Oracle® Communications
Network Charging and Control
Advanced Control Services Technical Guide
Release 5.0.1

June 2013
Copyright

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Contents

About This Document ... vii
Document Conventions .. viii

Chapter 1

System Overview ... 1

Overview .. 1
What is the Advanced Control Services? ... 1
What are the Main Components of ACS? .. 3
What are the Functions of ACS? .. 7
ACS CDR/EDR .. 7

Chapter 2

Security Overview .. 9

Overview .. 9
Security in ACS .. 9
Defining the Security Levels .. 10
Setting up ACS Security through SMS .. 12
Setting up ACS Security without using SMS ... 16

Chapter 3

Configuring the Environment .. 19

Overview .. 19
Configuring the Environment .. 19
Defining the Screen Language ... 20
Defining the Help Screen Language .. 22
Setting up the Screens .. 23

Chapter 4

Configuring the eserv.config ... 35

Overview .. 35
eserv.config Configuration ... 35
ACS Configuration in the eserv.config File .. 36
MRC Configuration .. 53

Chapter 5

Configuring the acs.conf ... 57

Overview .. 57
acs.conf ... 57
acsChassis Plug-ins ... 59
acsStatisticsDBInserter (SMS) ... 62
acsCompilerDaemon (SMS) .. 64
acsStatsMaster (SLC) .. 66
acsChassis Single Instance Parameters (SLC) ... 68
acsStatsLocal (SLC) .. 92
acsChassis Emergency Numbers (SLC) ... 92
acsChassis INAP Extension Parameters ... 93
acsChassis Normalization Parameters (SLC) .. 96
acsChassis SLEE Event Size Parameter (SLC) ... 101
acsChassis ServiceEntry Configuration (SLC) ... 102
acsChassis SRF Configuration (SLC) .. 110
acsChassis SCF Configuration (SLC) .. 113
acsChassis SSF Configuration (SLC) .. 117
acsChassis EDR Configuration (SLC) .. 122
acsChassis Service Library Configuration (SLC) .. 131
acsChassis Service Normalisation Parameters (SLC) .. 132
acsChassis AWOL Configuration ... 132
Get Hunting Number Node Configuration .. 135
Play Variable Part Announcement Node Configuration 135
Number Matching Node Configuration ... 136
acs.conf Example ... 137

Chapter 6

Background Processes ... 145

Overview .. 145
Automated ACS Processes (SMS Machine) ... 145
acsCompilerDaemon .. 146
acsSnCpActAlarms ... 147
acsDbCleanup.sh .. 149
acsProfileCompiler ... 149
acsStatisticsDBInserter .. 150
smsLogCleaner .. 151
Automated ACS Processes (SLC Machine) .. 152
acsStatsMaster .. 152
libacsChassisActions ... 153
libacsMacroNodes .. 153
libacsService ... 153

Chapter 7

Tools and Utilities .. 155

Overview .. 155
acsAddCallPlan .. 155
acsAddCustomer .. 156
acsAddGeography .. 158
acsAddServiceNumber ... 158
acsDecompile ... 159
acsDumpControlPlan .. 160
acsMonitorCompiler ... 161
acsScheduleCallPlan ... 161
acsSetupAnnouncement ... 162
numberDataImport ... 162

Chapter 8

Pre-installation .. 167

Overview ... 167
ACS Client Specifications ... 167
Preparing the System ... 168
Chapter 9

About Installation and Removal .. 171
 Overview .. 171
 Installation and Removal Overview .. 171
 Installing acsSms Packages on a Clustered SMS .. 172
 Checking the Installation ... 173
 System Manifest ... 176

Chapter 10

Post-Installation Procedures ... 179
 Overview .. 179
 Using Announcements ... 179
 ACS Global Control Plans .. 180

Appendix A

Time Zones .. 183

Appendix B

ASCII Codes ... 191
NCC Glossary of Terms .. 195
Index .. 205
About This Document

Scope

The scope of this document includes all the information required to install, configure and administer the ACS application.

Audience

This guide was written primarily for system administrators and persons installing and administering the ACS application. The documentation assumes that the person using this guide has a good technical knowledge of the system.

Prerequisites

Although there are no prerequisites for using this guide, familiarity with the target platform would be an advantage.

A solid understanding of Unix and a familiarity with IN concepts are an essential prerequisite for safely using the information contained in this guide. Attempting to install, remove, configure or otherwise alter the described system without the appropriate background skills, could cause damage to the system; including temporary or permanent incorrect operation, loss of service, and may render your system beyond recovery.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related documents

The following documents are related to this document:

- Oracle Communications Network Charging and Control ACS User's Guide
- Oracle Communications Network Charging and Control SLEE Technical Guide
- Oracle Communications Network Charging and Control SMS Technical Guide
- Oracle Communications Network Charging and Control SMS User's Guide
- Oracle Communications Network Charging and Control TCAP Interfaces Technical Guide
- Oracle Communications Network Charging and Control OSD User's & Technical Guide
Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Network Charging and Control (NCC) documentation.

<table>
<thead>
<tr>
<th>Formatting convention</th>
<th>Type of information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Bold</td>
<td>Items you must select, such as names of tabs. Names of database tables and fields.</td>
</tr>
<tr>
<td>Italics</td>
<td>Name of a document, chapter, topic or other publication. Emphasis within text.</td>
</tr>
<tr>
<td>Button</td>
<td>The name of a button to click or a key to press. Example: To close the window, either click Close, or press Esc.</td>
</tr>
<tr>
<td>Key+Key</td>
<td>Key combinations for which the user must press and hold down one key and then press another. Example: Ctrl+P, or Alt+F4.</td>
</tr>
<tr>
<td>Monospace</td>
<td>Examples of code or standard output.</td>
</tr>
<tr>
<td>Monospace Bold</td>
<td>Text that you must enter.</td>
</tr>
<tr>
<td>variable</td>
<td>Used to indicate variables or text that should be replaced.</td>
</tr>
<tr>
<td>menu option > menu option ></td>
<td>Used to indicate the cascading menu option to be selected, or the location path of a file. Example: Operator Functions > Report Functions Example: /IN/html/SMS/Helptext/</td>
</tr>
<tr>
<td>hypertext link</td>
<td>Used to indicate a hypertext link on an HTML page.</td>
</tr>
</tbody>
</table>

Specialized terms and acronyms are defined in the **Glossary** at the end of this guide.
Overview

Introduction
This chapter provides a high-level overview of the application. It explains the basic functionality of the system and lists the main components.

It is not intended to advise on any specific Oracle Communications Network Charging and Control (NCC) network or service implications of the product.

In this chapter

This chapter contains the following topics.

What is the Advanced Control Services? 1
What are the Main Components of ACS? 3
What are the Functions of ACS? 7
ACS CDR/EDR 7

What is the Advanced Control Services?

Description
Advanced Control Services (ACS) is an application that allows service providers to define enhanced call interaction to be triggered in the case of one or more of the following:

- Calls to specific dialed numbers (service numbers)
- Calls from specific calling numbers (CLI numbers)
- All calls triggered to a specified INAP service key

Call processing and features
The call processing consists of an arbitrary call-processing diagram, which makes decisions and performs actions chosen from a rich set of feature nodes.

These nodes include basic features such as: time routing (day, week, year), proportional routing, calling and called prefixes, special numbers, failover routing, and VIP customers. They include telephony actions such as announcement playing, IVR prompting, number redirection, account code, and PIN entry.

Other features
In addition, many ancillary functions are provided, such as detailed logging and analysis information, event counting and branching, customer self-administration, multi-lingual support for announcements and user interfaces, and many more features as described in *ACS User's Guide*.
Call routing services
These features make ACS an ideal application to provide a wide range of common and popular call routing services, for example:

- FreePhone
- Premium Rate
- TeleVote
- Follow Me/Personal Numbering
- Call Screening (Incoming)

Plus common residential/small business services, for example:

- Account Code Validation
- Toll Barring (With PIN Override)
- Hot Line
- Call Screening (Outgoing)
- Basic Friends & Family
What are the Main Components of ACS?

Diagram

The schematic diagram below depicts the main components of ACS on the IN Platform.

Standard profile block list

Here are the profile blocks available with a new installation of ACS.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Valid Profile</td>
<td>Allows you to search for relevant tags in all profiles that have been loaded.</td>
</tr>
<tr>
<td>App Specific Profile 1</td>
<td>Contains information specific to an application, for</td>
</tr>
<tr>
<td>Profile Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>App Specific Profile</td>
<td>Contains most of the information you can specify in the CLI tab of the Numbers screen, for example:</td>
</tr>
<tr>
<td></td>
<td>- Account code</td>
</tr>
<tr>
<td></td>
<td>- Language</td>
</tr>
<tr>
<td></td>
<td>- Follow me number</td>
</tr>
<tr>
<td>CLI Subscriber Profile</td>
<td>Contains most of the information you can specify in the CLI tab of the Numbers screen, for example:</td>
</tr>
<tr>
<td></td>
<td>- Account code</td>
</tr>
<tr>
<td></td>
<td>- Language</td>
</tr>
<tr>
<td></td>
<td>- Follow me number</td>
</tr>
<tr>
<td></td>
<td>Note: Only relevant to the 0800 service.</td>
</tr>
<tr>
<td>Call Context</td>
<td>Allows access to information received from the network, including the list of buffers as described in Buffers.</td>
</tr>
<tr>
<td>Control Plan Profile</td>
<td>This profile contains current switch node exits only.</td>
</tr>
<tr>
<td>Customer Profile</td>
<td>Contains customer information, for example:</td>
</tr>
<tr>
<td></td>
<td>- Incoming barred/allowed list type</td>
</tr>
<tr>
<td></td>
<td>- Incoming barred/allowed list</td>
</tr>
<tr>
<td></td>
<td>- PIN rights</td>
</tr>
<tr>
<td></td>
<td>- Default language</td>
</tr>
<tr>
<td></td>
<td>- Incoming barred/allowed ignore</td>
</tr>
<tr>
<td></td>
<td>- Termination number ranges</td>
</tr>
<tr>
<td></td>
<td>- Termination number range policy</td>
</tr>
<tr>
<td>Global Profile</td>
<td>Contains global information, for example:</td>
</tr>
<tr>
<td></td>
<td>- PIN rights</td>
</tr>
<tr>
<td></td>
<td>- Multi-lingual announcements</td>
</tr>
<tr>
<td></td>
<td>- Default language</td>
</tr>
<tr>
<td></td>
<td>- Control plan version hiding</td>
</tr>
<tr>
<td>Incoming Session Data</td>
<td>Data which comes in over the network. Examples include:</td>
</tr>
<tr>
<td></td>
<td>- InitialDP received for voice</td>
</tr>
<tr>
<td></td>
<td>- MO Forward SM for SMS using Messaging Manager</td>
</tr>
<tr>
<td></td>
<td>- Diameter CCR (INITIAL_REQUEST)</td>
</tr>
<tr>
<td>Outgoing Session Data</td>
<td>Data which goes out over the network.</td>
</tr>
<tr>
<td>Service Number Profile</td>
<td>Contains most of the information you can specify in the Service Number tab of the Numbers screen, for example:</td>
</tr>
<tr>
<td></td>
<td>- Account code</td>
</tr>
<tr>
<td></td>
<td>- Language</td>
</tr>
<tr>
<td></td>
<td>- Follow me number</td>
</tr>
<tr>
<td></td>
<td>Note: Only relevant to the 0800 service.</td>
</tr>
<tr>
<td>Temporary Storage</td>
<td>Stores the data in memory and does not write it to the database.</td>
</tr>
<tr>
<td></td>
<td>It exists for the duration of the control plan execution only.</td>
</tr>
</tbody>
</table>
VPN Network Profile

Contains most of the information you can specify in the VPN edit network, for example:

- Account Code maximum length
- Outgoing barred/allowed list type
- Incoming barred/allowed list type
- VPN network SD no check
- VPN present private address

Note: Only relevant if you have the VPN service installed.

VPN Station Profile

Contains most of the information you can specify in the VPN edit station, for example:

- Outgoing barred/allowed list type
- Incoming barred/allowed list type
- VPN bar all incoming
- VPN bar off network incoming

Note: Only relevant if you have the VPN service installed.

ACS primary tags

Here is a list of ACS primary tags.

Note: These tags are preloaded on installation of ACS and are displayed on the ACS Configuration screen, **Profile Tag Details** tab.

<table>
<thead>
<tr>
<th>Description</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO NOT USE</td>
<td>0x0000</td>
<td>0</td>
</tr>
<tr>
<td>PIN Prefix</td>
<td>0x0001</td>
<td>1</td>
</tr>
<tr>
<td>PIN Length</td>
<td>0x0002</td>
<td>2</td>
</tr>
<tr>
<td>Account Code Prefix</td>
<td>0x0003</td>
<td>3</td>
</tr>
<tr>
<td>Account Code Max Length</td>
<td>0x0004</td>
<td>4</td>
</tr>
<tr>
<td>A/S Prefix</td>
<td>0x0005</td>
<td>5</td>
</tr>
<tr>
<td>A/S Length</td>
<td>0x0006</td>
<td>6</td>
</tr>
<tr>
<td>Off Net Prefix</td>
<td>0x0007</td>
<td>7</td>
</tr>
<tr>
<td>S/D Prefix</td>
<td>0x0008</td>
<td>8</td>
</tr>
<tr>
<td>Outgoing Barred/Allowed List Type</td>
<td>0x0009</td>
<td>9</td>
</tr>
<tr>
<td>Outgoing Barred/Allowed List</td>
<td>0x000a</td>
<td>10</td>
</tr>
<tr>
<td>Incoming Barred/Allowed List Type</td>
<td>0x000b</td>
<td>11</td>
</tr>
<tr>
<td>Incoming Barred/Allowed List</td>
<td>0x000c</td>
<td>12</td>
</tr>
<tr>
<td>Account Code Values</td>
<td>0x000d</td>
<td>13</td>
</tr>
<tr>
<td>Account Code Policy</td>
<td>0x000e</td>
<td>14</td>
</tr>
<tr>
<td>-RESERVED-</td>
<td>0x000f</td>
<td>15</td>
</tr>
<tr>
<td>Divert RSF</td>
<td>0x0010</td>
<td>16</td>
</tr>
<tr>
<td>Divert Busy</td>
<td>0x0011</td>
<td>17</td>
</tr>
<tr>
<td>Divert No Answer</td>
<td>0x0012</td>
<td>18</td>
</tr>
<tr>
<td>Divert Follow Me</td>
<td>0x0013</td>
<td>19</td>
</tr>
<tr>
<td>Description</td>
<td>Hex</td>
<td>Decimal</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Divert TOW Schedule</td>
<td>0x0014</td>
<td>20</td>
</tr>
<tr>
<td>PIN Digits</td>
<td>0x0015</td>
<td>21</td>
</tr>
<tr>
<td>PIN Rights</td>
<td>0x0016</td>
<td>22</td>
</tr>
<tr>
<td>Off Net Bar</td>
<td>0x0017</td>
<td>23</td>
</tr>
<tr>
<td>Follow on Break Out Sequence</td>
<td>0x0018</td>
<td>24</td>
</tr>
<tr>
<td>Station is Manager</td>
<td>0x0019</td>
<td>25</td>
</tr>
<tr>
<td>Speed List</td>
<td>0x001a</td>
<td>26</td>
</tr>
<tr>
<td>Divert Barred/Allowed List Type</td>
<td>0x001b</td>
<td>27</td>
</tr>
<tr>
<td>Divert Barred/Allowed List</td>
<td>0x001c</td>
<td>28</td>
</tr>
<tr>
<td>Divert Locations</td>
<td>0x001d</td>
<td>29</td>
</tr>
<tr>
<td>Break Limit</td>
<td>0x001e</td>
<td>30</td>
</tr>
<tr>
<td>LCR Old National</td>
<td>0x001f</td>
<td>31</td>
</tr>
<tr>
<td>LCR New National</td>
<td>0x0020</td>
<td>32</td>
</tr>
<tr>
<td>LCR Old International</td>
<td>0x0021</td>
<td>33</td>
</tr>
<tr>
<td>LCR New International</td>
<td>0x0022</td>
<td>34</td>
</tr>
<tr>
<td>Multi Lingual Announcements</td>
<td>0x0023</td>
<td>35</td>
</tr>
<tr>
<td>Number Lists</td>
<td>0x0024</td>
<td>36</td>
</tr>
<tr>
<td>Language</td>
<td>0x0025</td>
<td>37</td>
</tr>
<tr>
<td>Switch Configuration</td>
<td>0x0026</td>
<td>38</td>
</tr>
<tr>
<td>Virtual Message List</td>
<td>0x0027</td>
<td>39</td>
</tr>
<tr>
<td>Number Of Messages</td>
<td>0x0028</td>
<td>40</td>
</tr>
<tr>
<td>GUI Language</td>
<td>0x0029</td>
<td>41</td>
</tr>
<tr>
<td>Carrier Code</td>
<td>0x002a</td>
<td>42</td>
</tr>
<tr>
<td>Barred Categories</td>
<td>0x002b</td>
<td>43</td>
</tr>
<tr>
<td>Outgoing Barred/Allowed Ignore</td>
<td>0x002c</td>
<td>44</td>
</tr>
<tr>
<td>Incoming Barred/Allowed Ignore</td>
<td>0x002d</td>
<td>45</td>
</tr>
<tr>
<td>Divert Barred/Allowed Ignore</td>
<td>0x002e</td>
<td>46</td>
</tr>
<tr>
<td>Account Code Minimum Length</td>
<td>0x002f</td>
<td>47</td>
</tr>
<tr>
<td>Timezone Geographical Map</td>
<td>0x0030</td>
<td>48</td>
</tr>
<tr>
<td>PIN Encryption Method</td>
<td>0x0031</td>
<td>49</td>
</tr>
<tr>
<td>Silent Disconnect</td>
<td>0x0032</td>
<td>50</td>
</tr>
<tr>
<td>Postpaid Flag</td>
<td>0x0033</td>
<td>51</td>
</tr>
<tr>
<td>Hunt On Busy</td>
<td>0x0034</td>
<td>52</td>
</tr>
<tr>
<td>Hunt On No Answer</td>
<td>0x0035</td>
<td>53</td>
</tr>
<tr>
<td>Hunt Always</td>
<td>0x0036</td>
<td>54</td>
</tr>
<tr>
<td>Hunt RESERVED</td>
<td>0x0037</td>
<td>55</td>
</tr>
<tr>
<td>Help Line Address</td>
<td>0x0038</td>
<td>56</td>
</tr>
<tr>
<td>Legacy</td>
<td>0x0039</td>
<td>57</td>
</tr>
<tr>
<td>Disable</td>
<td>0x003a</td>
<td>58</td>
</tr>
<tr>
<td>VARS</td>
<td>0x003b</td>
<td>59</td>
</tr>
<tr>
<td>VARS Mapping</td>
<td>0x003c</td>
<td>60</td>
</tr>
<tr>
<td>Toll Free Beep ID</td>
<td>0x003d</td>
<td>61</td>
</tr>
</tbody>
</table>
What are the Functions of ACS?

Introduction

Calls using the ACS service will follow a control plan, and given varying circumstances will be directed to a terminating point. A control plan is effectively a flow chart defining the decisions and actions made to determine the routing of a call.

A control plan may consist of multiple different decision or action nodes called feature nodes. Each feature node has one input and a number of outputs determined by the type of feature node. The exceptions to this are the Start and End feature nodes that have only one output or one input respectively.

Each output from a feature node can lead to another feature node. The output used when exiting a feature node during call processing is determined by the functionality of that feature node. For example, a day of week feature node has multiple outputs, which are used depending on the current day of the week, and an internal customer defined mapping of the day of week to an output.

ACS CDR/EDR

Introduction

All ACS EDR information is located in the *NCC Event Detail Record Reference Guide*.
Overview

Purpose

This chapter describes the security features of the Advanced Control Services application.

In this chapter

This chapter contains the following topics.

Security in ACS 9
Defining the Security Levels 10
Setting up ACS Security through SMS 12
Setting up ACS Security without using SMS 16

Security in ACS

Introduction

This chapter describes the ACS security system and gives instructions for its use. ACS will always be installed as a service that is available through Service Management System, but may also be accessed directly.

ACS maintains its own security system, distinct from that of SMS.

Accessing ACS through SMS

When ACS is accessed via the Service Management System, the SMS security settings take precedence over the ACS security settings. ACS is accessed through SMS as shown below:
Accessing ACS directly

ACS security settings are only valid when ACS is accessed directly (that is, not through the SMS). Accessing ACS directly displays the ACS Logon screen.

![ACS Logon Screen](image)

Defining the Security Levels

Introduction

The ACS security system, that applies when ACS is accessed directly, operates by assigning tiered permission levels to ACS customers, to manage the degree of access that each customer has to the features of ACS.

These permissions range from a Level 7 super user to a Level 1 user with read-only access to the system. When ACS is installed, a super user is automatically created, with full access to the system. Only one super user is allowed and cannot be deleted. Other users are created as required, with permission levels appropriate to the desired degree of access.

Note: These ACS permissions apply only when the user has accessed ACS without accessing the Service Management System screens. Any user who logs on through the SMS takes the SMS permission level associated with the SMS login used.
ACS User Privilege Levels

The diagram below shows the various user privilege levels. See Permission Levels for a description of each level.

Permission Levels

There are seven levels of security within the ACS application.

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Read only access to information for their Customer.
 ● May change own password |
| 2 | Access of permission 1 and in addition:
 ● Change any Switch Feature Nodes in the Control Plans of their customers to point to other output branches |
| 3 | User has access of permission 2 and in addition:
 ● Change all the Feature Node data in the Control Plans for their customers
 ● Add and Remove Statistics Counters
 ● Edit the Effective Date and Time and Control Plan used by a Service Number or CLI |
| 4 | User has access of permission 3 and in addition:
 ● Edit the structures of the Control Plans of their customers
 ● Add, Edit and Delete Customer Contacts
 ● Add, Edit and Delete Authorization Codes
 ● Add a second instance of a currently allocated Service Number or CLI
 ● Add, Edit and Delete private Holiday and Geography Sets |
| 5 | User has access of permission 4 and in addition:
 ● Add Users, delete Users, change passwords and change privileges. |
| 6 | ACS V2 System Administrator has access to add, delete and modify all aspects of ACS V2, including all Public data and announcements:
 ● Add and Delete customers |
<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Add and Delete Termination Numbers</td>
</tr>
<tr>
<td></td>
<td>Add and delete other level 6 users</td>
</tr>
<tr>
<td>7</td>
<td>User has full access to ACS and in addition:</td>
</tr>
<tr>
<td></td>
<td>Advanced Editing options on CPE available</td>
</tr>
</tbody>
</table>

Setting up ACS Security through SMS

Introduction

A Telco must set up SMS users for all users accessing the Service Management System. These SMS users must have a SMS security template assigned to them. All users who access the SMS use the security settings that are set up in the template assigned to them. When accessed through the SMS screens, the SMS security system takes precedence and the following steps are required.

Example:

A Telco may set up an ACS System Administrator template, for users who perform a System Administrator role, perhaps as a Telco help desk operator. The following example shows setting up this ACS System Administrator user to access ACS through the SMS, and then having this user create an ACS Customer.

Procedure

Follow these steps to set the security for a user.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set up an SMS User, using the User tab of the SMS User Management screen.</td>
</tr>
</tbody>
</table>
Step | Action
--- | ---

Image:

SU - User Management

- **User Details**
 - User Name: ACS_ADMIN
 - Full Name: ACS_ADMIN
 - Description:
 - Configuration:
 - Quality of Service: SU
 - Lock Reason:

Password Expiry Details

- Lifetime (days): 2
- Expiry Date:

Temporary Account Lock Details

- Temporary Account Lock Enabled:
- Temporary Account Lock Time (minutes):
- Temporary Account Lock Expire:

Account Expiry Details

- Account Expiry Set:
- Account Expiry Date:

See *SMS User's Guide* for further details about the SMS screens.

2 **Enter and confirm a Password for the new SMS User.**

Image:

SU - Set SMS User Password

- **New Password:**
- **Confirmation:**

When this user logs onto the SMS, the User Name and Password are entered into the Login dialog.

3 **Important:** Follow this step *only if you are required to create a new template* for a user, which should rarely arise.

1 Create a template for the permissions that are to be allocated to the new user. Do this on the **Template Creation** tab of the SMS User Management screen.

2 Select the required permission for each ACS feature from the tree diagram in the **Available Permissions** list. Using the mouse, drag the selected permission to the **Allocated Permissions** list.

The entries in the **Allocated Permissions** list indicate the level of access granted to any user allocated this template.

3 Name the template and save the settings.
Step 4

Assign a template to the user using the **Template** tab of the SMS User Management screen.

Allocate the new template to the new user. The user is then granted the specific access to ACS that has been set in the **Template Creation** tab.

To allocate a template, select the required template in the **Available Templates** list and click **Add**. The template will appear in the **Allocated Templates** list.

Note: You are able to assign any number of users to a template.
5 Close and restart the SMS screens.
6 Log in using the new User Name and Password.
7 Open the ACS Customer screen, accessed through the ACS main screen and set up an ACS Customer for the SMS User.
 Where the allocated template gives the SMS user full access to ACS, an ACS customer may be created with ACS user permissions up to Level 5.
 Only the ACS Boss User may create and delete ACS Level 6 Users. On the New Customer screen, select the Create User for Customer option, to automatically create a user for that customer.
This same user may also need to have set up for them an ACS System Administrator user. The Telco will set up a Level 6 user, who has full access to the ACS system but cannot add or delete other Level 6 users. This will be for direct access to ACS and may be achieved as shown in the example below.

Setting up ACS Security without using SMS

Introduction

When ACS is not accessed via the Service Management System screens, the SMS security system does not apply.

Procedure

Follow these steps to set the security for a level 6 user.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enter the ACS screens as the Boss user (permission level 7). Set up a</td>
</tr>
</tbody>
</table>
Chapter 2

Step	Action
1	new ACS Customer, using the **Customer** tab of the ACS Customer screen.
See *ACS User's Guide* for further details about the ACS screens.	

Select the new customer from the list at the top of the ACS Customer screen. Using the **User** tab, create a User for the new customer, with Permission Level 6.
<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>The customer may then log in directly, and with full access, to ACS (without having access to the SMS screens) using this user and password, in this example created using the Users tab of the ACS Customer screen.</td>
</tr>
</tbody>
</table>

![User Management Interface]

![New Users Interface]

The customer may then log in directly, and with full access, to ACS (without having access to the SMS screens) using this user and password, in this example created using the Users tab of the ACS Customer screen.
Chapter 3

Configuring the Environment

Overview

Purpose
This chapter describes the steps required to configure ACS.

Configuration file

Many ACS tools and processes depend on a shared configuration file. This file `acs.conf` is located in the `$ACS_ROOT/etc` directory. The configuration file consists of several sections named for the executable they control. Each section contains a name value pair representing a single configuration option.

If the operator changes the `acs.conf` file, the corresponding service needs to be restarted, so that the configuration file is reread and the changes take effect.

Final configuration

It is important to complete the final configuration of ACS after this chapter. See *ACS User's Guide - Setting up ACS for the First Time*.

In this chapter

This chapter contains the following topics.

- `Configuring the Environment` 19
- `Defining the Screen Language` 20
- `Defining the Help Screen Language` 22
- `Setting up the Screens` 23

Configuring the Environment

Setting the ACS root directory

The ACS installation depends on a single environment variable to determine the location of the configuration and other support files.

If the software is not installed in the default location, the UNIX system accounts used to execute the service logic and ancillary tools must have this environment variable defined.

The ACS_ROOT variable will only need to be modified if you intend to manually configure two ACS installations side-by-side on the same machine.

Important: This should only be done in consultation with a qualified Oracle engineer.
If you are not required to manually configure two ACS installations, side-by-side, on the same machine
the ACS_ROOT variable does not need to be set.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS_ROOT</td>
<td>/IN/service_packages/ACS</td>
<td>ACS installation base directory</td>
</tr>
</tbody>
</table>

ACS_ROOT

Description: The ACS installation base directory
Type: String
Optionality: Optional (default used if not set).
Default: /IN/service_packages/ACS

Oracle variables

The ACS account (acs_oper) requires the standard ORACLE environment variables to be present.

Oracle usr/pwd string

While it is possible to specify the usr/pwd string a process uses to connect to Oracle, it is recommended
to use the defaults.

Most ACS processes are run by the UNIX user acs_oper. The OPS$ACS_OPER Oracle operator
account corresponds to acs_oper. This allows acs_oper to log on to oracle as OPS$ACS_OPER
without specifying a user name or password (that is, the process uses the default of "/"). A separate
Oracle password is not needed for OPS$ACS_OPER because it is, in Oracle terms, identified
externally.

Configuration files

ACS is configured by the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Locations</th>
<th>Description</th>
<th>Further Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>.acs.conf</td>
<td>all SMSs and VWSs in the $(ACS_ROOT)/etc directory</td>
<td>This file consists of several sections named for the ACS executable they control. There are different configuration options in the.acs.conf on the SMS to the configuration options in the.acs.conf on the SLC.</td>
<td>Configuring the acs.conf (on page 57)</td>
</tr>
<tr>
<td>SLEE.cfg</td>
<td>all SLCs</td>
<td>This file sets up SLEE interfaces and applications.</td>
<td>SLEE Technical Guide</td>
</tr>
<tr>
<td>eserv.config</td>
<td>all SMSs and VWSs</td>
<td>ACS has some additional configuration in the ACS section of eserv.config.</td>
<td>eserv.config Configuration (on page 35)</td>
</tr>
</tbody>
</table>

Defining the Screen Language

Introduction

The default language file sets the language which the Java administration screens will start in. The user
can change to another language once they have logged in.

The default language can be changed by the system administrator.
By default, the language is set to English. If English is your preferred language, you can skip this step and proceed to the next configuration task: Defining the Help Screen Language.

Default.lang

When ACS is installed, a file called Default.lang is created in the application's language directory in the screens module. This contains a soft-link to the language file that defines the language that will be used by the ACS UI.

If a Default.lang file is:

- Not present, the English.lang file will be used
- Present, a user must explicitly set their language to their required language in the Tools screen or the default language will be used

The ACS Default.lang file is located in the following directory:

/IN/html/Acs_Service/language/

Example screen language

If Dutch is the language you want to set as the default, create a soft-link from the Default.lang file to the Dutch.lang file.

Procedure

Follow these steps to set the default language for your ACS user interface (UI).

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Go to the following directory:
 /IN/html/Acs_Service/language
 Example command:
 cd /IN/html/Acs_Service/language</td>
</tr>
<tr>
<td>2</td>
<td>Ensure the Default.lang file exists in this directory.</td>
</tr>
<tr>
<td>3</td>
<td>If the required file does not exist, create an empty file called Default.lang.</td>
</tr>
<tr>
<td>4</td>
<td>Ensure that the language file for your language exists in this directory. The file should be in the format:
 language.lang
 Where:
 language is your language.
 Example:
 Spanish.lang</td>
</tr>
<tr>
<td>5</td>
<td>If the required language file does not exist, perform one of the following actions:
 - Create a new one with your language preferences
 - Contact Oracle support.
 To create a language file, you will need a list of the phrases and words used in the screens. These should appear in a list with the translated phrase in the following format:
 original phrase=translated phrase
 Any existing language file should have the full set of phrases. If you do not have an existing file to work from, contact Oracle support.</td>
</tr>
<tr>
<td>6</td>
<td>Create a soft link between the Default.lang file, and the language file you want to use as the default language for the SMS UI.
 Example command:</td>
</tr>
</tbody>
</table>
Defining the Help Screen Language

Introduction

The default Helpset file sets the language which the help system for the Java Administration screens will start in. The user can change to another language once they have logged in.

The default language can be changed by the system administrator. By default, the language is set to English.

Default_Acs_Service.hs

When ACS is installed, a file called Default_Acs_Service.hs is created in the application's language directory in the screens module. This contains a soft-link to the language file which defines the language that will be used by the ACS UI.

If a Default_Acs_Service.hs file is:

- Not present, the English_Acs_Service.hs file will be used
- Present, a user must explicitly set their language to their required language in the Tools screen or the default language will be used.

The Default_Acs_Service.hs file is located in the following directory:

/IN/html/Acs_Service/helptext/.

Example helpset language

If Dutch is the language you want to set as the default, create a soft-link from the Default_Acs_Service.hs file to the Dutch_Acs_Service.hs file.

Procedure

Follow these steps to set the default language for your ACS user interface (UI).

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
</table>
| 1 | Go to the following directory: /
| | Example command: cd /IN/html/Acs_Service/helptext |
| 2 | Check to see if the Default_Acs_Service.hs file exists in this directory. |
| 3 | If the required file does not exist, create an empty file called Default_Acs_Service.hs. |
| 4 | Check if the language file for your language exists in this directory. The file should be in the format: language_Acs_Service.hs |
| | Where: language is your language. |
| | Example: Dutch_Acs_Service.hs |
| 5 | If the required language file does not exist, perform one of the following actions: |
| | Create a new one with your language preferences |
| | Contact Oracle support. |

ln -s Dutch.lang Default.lang
To create a language file, you will need a list of the phrases and words used in the screens. These should appear in a list with the translated phrase in the following format:
original phrase=translated phrase
Any existing language file should have the full set of phrases. If you do not have an existing file to work from, contact Oracle support.

Create a soft link between the Default_Acs_Service.hs file, and the language file you want to use as the default language for the ACS UI.
Example command:
ln -s Dutch_Acs_Service.hs Default_Acs_Service.hs

Setting up the Screens

Accessing ACS

There are several ways to access the ACS user interface (UI) using an Internet browser. For example, by using:

- Java Webstart to open the Service Management System default page at http://SMS_hostname/index.html, and then clicking on the WebStart link.
 Where: SMS_hostname is the hostname of an SMS platform in the IN.
- ACS Webstart directly by entering the following url: http://SMS_hostname/acs.jnlp
- The Service Management System application, and selecting ACS Service from the Services menu.
 You can also start the ACS UI from the Windows command line by entering the following command:
c:\> javaws http://SMShostname/acs.jnlp
 Where SMShostname is the hostname of an SMS in the IN.

For more information about the ACS UI, see ACS User’s Guide.

About customizing the ACS UI

You can customize the ACS UI by setting Java applet parameters in the following files located in the /IN/html/ directory:
- acs.jnlp
- sms.jnlp

You use the following syntax to set a Java applet parameter in the acs.jnlp or the sms.jnlp file:
<param name="parameter" value="value" />
Where:
- parameter is the name of the Java applet parameter
- value is the value to which that parameter will be set

Important: Some Java applet parameters may be set in both the acs.jnlp file and in the sms.jnlp file. You must specify the same value for Java applet parameters in both files.

About applet parameters in .html files

The ability to customize the NCC UI by setting applet parameters in the following .html files has been deprecated:
If you upgraded from an earlier version of NCC, you may continue to set applet parameters in these files. However, you must ensure that any parameters that you set are also set to the same value in the corresponding .jnlp file:

- `acs.jnlp`
- `sms.jnlp`
- `vpn.jnlp`

Note: You use the following syntax to set applet parameters in the .html files:

```html
<param name=parameter value="value">
```

Where:

- `parameter` is the name of the Java applet parameter
- `value` is the value to which that parameter will be set

Java applet parameters

The following applet parameters are available to customize the UI:

allowCallPlanSchedulingInPast

Syntax: See example

Description: If set to true, control plans are allowed to be scheduled to be effective in the past.

Type: String

Optionality: Optional

Allowed:
- True
- t(rue)
- Yes
- y(es)
- 1

All other values are considered to be false.

Default: True

Notes:

Example:

```html
<param name="allowCallPlanSchedulingInPast" value="t" />
```

allowRefInCustCombo

Syntax: See example

Description: If set to true this allows the searchable Customer combo field at the top of each top-level ACS screen to be used to search using the Customer Reference as an alternative to searching using the Customer Name.

Type: String

Optionality: Optional

Allowed:
- True
- t(rue)
- Yes
- y(es)
- 1

All other values are considered to be false.
Default: False
Notes:
Example: <param name="allowRefInCustCombo" value="t" />

autoCloseCompilerDialog
Syntax: See example
Description: If set to true, the compiler dialog will automatically close on successful compile of a control plan.
Type: String
Optionality: Optional
Allowed: • True
• t(rue)
• Yes
• y(es)
• 1

All other values are considered to be false.

Default: False
Notes:
Example: <param name="autoCloseCompilerDialog" value="t" />

autoCloseCPE
Syntax: See example
Description: If set to true the CPE will automatically close on successful compile of a control plan.
Type: String
Optionality: Optional
Allowed: • True
• t(rue)
• Yes
• y(es)
• 1

All other values are considered to be false.

Default: False
Notes:
Example: <param name="autoCloseCPE" value="t" />

defaultTelcoManaged
Syntax: See example
Description: If set to true all ACS customers will be created with the Managed Customer check box selected by default.
Type: String
Optionality: Optional
Allowed: • True
• t(rue)
• Yes
All other values are considered to be false.

Default: True

Notes:

Example:

```
<param name="defaultTelcoManaged" value="f" />
```

issuePCClockWarning

Syntax: See example

Description: If true and the user's PC clock time is different by more than two minutes to the SMS platform's clock time, a warning is given.

Type: String

Optionality: Optional

Allowed:
- True
- t(rue)
- Yes
- y(es)
- 1

All other values are considered to be false.

Default: True

Notes: The time difference limit is 120 seconds slower or faster.

Example:

```
<param name="issuePCClockWarning" value="t" />
```

logo

Syntax: See example

Description: Sets the system graphic that displays briefly in a splash window immediately before the Login window displays. At installation, the logo parameter is set to the .gif file for the Oracle logo.

Type: String

Optionality: Optional

Allowed: A valid network path/file.

Default: None

Notes: Set to the relative path name for the logo .gif file to use.

Example:

```
<param name="logo" value="SMS/images/oracle.gif" />
```

MAX_CONTROL_PLANS_DISPLAYED

Syntax: See example

Description: Sets the maximum number of control plans visible in the search box.

Type: String

Optionality: Optional

Allowed:

Default:

Notes:

Example:

```
<param name="MAX_CONTROL_PLANS_DISPLAYED" value="200" />
```
maximiseAcsScreens

Syntax: See example
Description: Sets the whether the windows in the ACS UI will be opened at maximum size or optimum size.
Type: String
Optionality: Optional
Allowed: • True
• t(rue)
• Yes
• y(es)
• 1
All other values are considered to be false.
Default: False
Notes: If set to:
• True, the windows in the ACS UI will be opened maximized.
• False, the windows in the ACS UI will be opened at optimum size.
Example: <param name="maximiseAcsScreens" value="t" />

paletteStyle

Syntax: See example
Description: Set to "old" to display the feature palette in the Control Plan Editor window using the static panel style.
Type: String
Optionality: Optional
Allowed: old
Default: Defaults to the floating panel style feature palette in the Control Plan Editor window when the paletteStyle parameter is not set.
Notes: • The floating panel style feature palette displays feature group names in a list, and the feature nodes within a selected group in a floating panel. You can filter the available feature nodes using the Search Palette feature.
• The static panel style feature palette displays an expandable list of node groups from which you select individual feature nodes in a static panel. The Search Palette feature is not available with this style.
• To enable the paletteStyle parameter configuration, you should clear the Java cache and the client browser cache before restarting the Control Plan Editor.
Example: <param name="paletteStyle" value="old" />

Profile

Syntax: param name="Profilenumber" value="new name"
Description: Use to either suppress or change the name of any of the 20 profile blocks.
Type: String
Optionality: Optional
Allowed: $1 \leq number \leq 20$
new_name is one of the following:
• - (dash)
string comprising any printable characters.

Default:
The following table lists default profile block names in the order in which they are displayed in the relevant feature node drop down lists.

<table>
<thead>
<tr>
<th>Profile</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile1</td>
<td>VPN Network Profile</td>
</tr>
<tr>
<td>Profile2</td>
<td>VPN Station Profile</td>
</tr>
<tr>
<td>Profile3</td>
<td>Customer Profile</td>
</tr>
<tr>
<td>Profile4</td>
<td>Control Plan Profile</td>
</tr>
<tr>
<td>Profile5</td>
<td>Global Profile</td>
</tr>
<tr>
<td>Profile6</td>
<td>CLI Subscriber Profile</td>
</tr>
<tr>
<td>Profile7</td>
<td>Service Number Profile</td>
</tr>
<tr>
<td>Profile8</td>
<td>App Specific 1</td>
</tr>
<tr>
<td>Profile9</td>
<td>App Specific 2</td>
</tr>
<tr>
<td>Profile10</td>
<td>App Specific 3</td>
</tr>
<tr>
<td>Profile11</td>
<td>App Specific 4</td>
</tr>
<tr>
<td>Profile12</td>
<td>App Specific 5</td>
</tr>
<tr>
<td>Profile13</td>
<td>App Specific 6</td>
</tr>
<tr>
<td>Profile14</td>
<td>App Specific 7</td>
</tr>
<tr>
<td>Profile15</td>
<td>App Specific 8</td>
</tr>
<tr>
<td>Profile16</td>
<td>Any Valid Profile</td>
</tr>
<tr>
<td>Profile17</td>
<td>Temporary Storage</td>
</tr>
<tr>
<td>Profile18</td>
<td>Call Context</td>
</tr>
<tr>
<td>Profile19</td>
<td>Outgoing Extensions</td>
</tr>
<tr>
<td>Profile20</td>
<td>Incoming Extensions</td>
</tr>
</tbody>
</table>

Notes:
- If you set "new_name" to - (a dash), the profile block will not display in the screens.
- If VPN is not installed, profile numbers Profile1 and Profile2 are suppressed by default.
- If Charging Control Services is installed, profile block names associated with profile numbers Profile8 through Profile15 are automatically changed. For more information, see *CCS Technical Guide*.
- If RCA is not installed, profile numbers Profile19 and Profile20 are suppressed by default. They can be made available by installing RCA or by appending them to the *sms.jnlp* file.
- Feature nodes with writable fields cannot access Profile16 to write into.

Examples:

```xml
<param name="Profile1" value="-" />
<param name="Profile6" value="Originating CLI" />
```

requireCustomerReference

Syntax: See example

Description: If set to true a customer reference is created for every new ACS customer created.

Type: String

Optionality: Optional
Allowed:
 - True
 - t(rue)
 - Yes
 - y(es)
 - 1

All other values are considered to be false.

Default:
 True

Notes:
 The customer may not be saved until the Customer Reference field has been populated.

Example:
<param name="requireCustomerReference" value="f" />

scfs

Syntax:
<param name="scfs" value="scf1,scf2,...,scfn" />

Description:
A list of the network entities available to hand over to. For every entry in the .jnlp file, a matching scf entry must be created in the `acs.conf` file on each SLC defining the address associated with this scf entry.

Type:
String

Optionality:
Optional, but TCAP Handover node will not work without at least one scf.

Allowed:
Any scf name configured in the `acs.conf` file. See `acsChassis SCF Configuration (SCP)` (see "acsChassis SSF Configuration (SLC)" on page 117).

Default:
None

Notes:
The scfs names listed in this section are used by the following feature nodes:
- TCAP Handover node as the SCP Name list
- RIMS MAP Query and IS41 Query nodes as the Return Address for mapping the SCCP Calling Party Address

Example:
<param name="scfs" value="SCF_Name1,SCF_Name2" />

showAnnouncementSource

Syntax:
See example

Description:
If set to true the Announcement Source (Resource Name and Resource ID) will display in brackets next to the Announcement Name, in all Announcement Entry list boxes.

Type:
String

Optionality:
Optional

Allowed:
 - TRUE
 - true
 - YES
 - yes
 - Y
 - y

All other values are considered to be false.

Default:
True

Notes:

Example:
<param name="showAnnouncementSource" value="f" />
showCallPlanCopy
Syntax: See example
Description: If set to false the Copy button on the ACS Numbers screen is disabled.
Type: String
Optionality: Optional
Allowed: True, t(rue), Yes, y(es), 1
All other values are considered to be false.
Default: True
Notes:
Example: <param name="showCallPlanCopy" value="f" />

showNetwork
Syntax: See example
Description: If set to true the Networks field will be displayed in the New ACS Customer dialog.
Type: String
Optionality: Optional
Allowed: True, t(rue), Yes, y(es), 1
All other values are considered to be false.
Default: True
Notes:
Example: <param name="showNetwork" value="f" />

ssfs
Syntax: <param name="ssfs" value="ssf1,ssf2,...,ssfn" />
Description: A list of available switches in the IN network.
Type: String
Optionality: Optional, but the Call Initiation node will not work without at least one ssf.
Allowed: Any ssf name configured in the acs.conf file. See acsChassis SSF Configuration (SCP) (see “acsChassis SSF Configuration (SLC)” on page 117).
Default: None
Notes: The ssfs names listed here are used by the Call Initiation feature node as the Switch Name list.
Example: <param name="ssfs" value="SSF_Name1,SSF_Name2" />

suppressedSDRDigits
Syntax: See example
Description: Allows the system administrator to specify which digits and special characters are allowed in the Selection Dependant Routing feature node. The specified values
are suppressed, and are not available for selection in the Selection Dependant Routing feature node.

Type: String
Optionality: Optional
Allowed: 0-9, a-f, *, #
Default: None

Notes:
Example:
<param name="suppressedSDRDigits" value="12ab" />

SuppressTagID

Syntax: See example
Description: If the SuppressTagID parameter evaluates to true then the profile tag value is suppressed, and only the profile field name displays in profile field lists in the UI. When set to false the profile field name and profile tag value displays.

For example, when SuppressTagID is set to:
- true – the profile tag 196613 displays the name "PIN Prefix"
- false – the profile tag 196613 displays the name "PIN Prefix (196613)"

Type: Boolean
Optionality: Optional
Allowed: The following case-insensitive values evaluate to true:
- true
- t
- yes
- y
- 1

All other values evaluate to false.
Default: true
Notes:
Example:
<param name="SuppressTagID" value="TRUE" />

TZ

Syntax: See example
Description: The screens in the NCC UI display all time and date values in the time zone set by this parameter.
Type: String
Optionality: Optional (default used if not set)
Allowed: Any Java supported time zone.
Default: GMT
Notes: For a full list a Java supported time zones see *Time Zones* (on page 183) in the appendix in *ACS Technical Guide*.
Example:
<param name="TZ" value="GMT" />
updateCPReferences
Syntax: See example
Description: If set to true and the answer to the question at installation time "Do you want automatic Control Plan deletion and Service Number updating installed?" was 'No', the following will happen.
A dialog will be displayed on successful compilation of a control plan to allow the user to select which service numbers are to use the new version of the control plan as their scheduled control plan.
Type: String
Optionality: Optional
Allowed:
- True
- t(rue)
- Yes
- y(es)
- 1
All other values are considered to be false.
Default: None
Notes: Example: <param name="updateCPReferences" value="t" />

useTNForNodeName
Syntax: <param name="useTNForNodeName" value="true|false" />
Description: If set to true the Node name field for an Unconditional Termination (UT) feature node, or an Attempt Termination (AT) feature node, appears grayed out and the Termination Number (TN) configured for the feature node is displayed as the feature node name in the Control Plan Editor (CPE) window. The TN is displayed for any UT or AT feature node in the CPE canvas, without requiring you to save each feature node to update the stored control plan data. Unsetting the useTNForNodeName parameter reverts the CPE to display the stored feature node name, unless the feature node has been opened, saved and compiled again, thereby updating the stored control plan data.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed:
- True
- t(rue)
- Yes
- y(es)
- 1
All other values are considered to be false.
Default: False
Notes: You can update the TN for an UT feature node, or an AT feature node, in a control plan by updating the TN in the ACS Numbers screen. See the discussion on Editing Termination Numbers in NCC Advanced Control Services User's Guide for more information. If you use this method to update the TN, then enabling the useTNForNodeName parameter ensures that the configured TN for the UT, or AT feature node displays in the CPE window.
Example: <param name="useTNForNodeName" value="true" />
Example jnlp applet parameters

Here is an example acs.jnlp file showing the applet parameter settings at installation.

```xml
<jnlp spec="1.0+"
    codebase="http://HOST_IP_ADDR/
    href="acs.jnlp">
    ...
    ...
    <resources>
        <j2se version="J2SEVERSION" href="http://java.sun.com/products/autodl/j2se" />
        <property name="jnlp.packEnabled" value="true"/>
        <jar href="sms.sig.jar" />
        <jar href="acs.sig.jar" />
        <jar href="ojdbc6(sig).jar" />
        <jar href="jchart(sig).jar" />
        <jar href="ohj(sig).jar" />
        <jar href="help-share(sig).jar" />
        <jar href="oracle_ice(sig).jar" />
        <jar href="jewt(sig).jar" />
        <jar href="share.jar(sig)" />
        <jar href="osd.sig.jar" />
        <jar href="rims.sig.jar" />
        <jar href="xms(sig).jar" />
        <jar href="ses(sig).jar" />
        <property name="java.util.Arrays.useLegacyMergeSort" value="true" />
    </resources>
    <applet-desc
documentBase="http://HOST_IP_ADDR"
    name="ACSApplet"
    main-class="com.g8labs.acs.coreScreens.AcsApplet"
    width="275"
    height="25">
        <param name="TZ" value="GMT" />
        <param name="host" value="HOST_IP_ADDR" />
        <param name="port" value="LPORT" />
        <param name="database" value="DB_SID" />
        <param name="dBUser" value="acs_public" />
        <param name="dBPassword" value="acs_public" />
        <param name="INProtocol" value="" />
        <param name="UseAnnouncements" value="YES" />
        <param name="SuppressTagID" value="TRUE" />
        <param name="Profile8" value="Account Reference Profile" />
        <param name="Profile9" value="Product Type Profile" />
        <param name="Profile10" value="Control Plan Profile (App 3)" />
        <param name="Profile12" value="CCS Global Profile" />
        <param name="Profile13" value="CCS Temporary Profile (App 6)" />
        <param name="Profile14" value="CCS Temporary Profile (App 7)" />
        <param name="Profile15" value="CCS Temporary Profile (App 8)" />
    </applet-desc>
</jnlp>

For a definition of parameters that are not listed in this section of the ACS Technical Guide, see SMS Technical Guide.
Overview

Introduction

This chapter explains how to configure the ACS section of the eserv.config.

In this chapter

This chapter contains the following topics.

eserv.config Configuration 35
ACS Configuration in the eserv.config File 36
MRC Configuration 53

eserv.config Configuration

Introduction

The eserv.config file is a shared configuration file, from which many NCC applications read their configuration. Each NCC machine (SMS, SLC, and VWS) has its own version of this configuration file, containing configuration relevant to that machine. The eserv.config file contains different sections; each application reads the sections of the file that contains data relevant to it.

The eserv.config file is located in the /IN/service_packages/ directory.

The eserv.config file format uses hierarchical groupings, and most applications make use of this to divide up the options into logical groupings.

Configuration file format

To organize the configuration data within the eserv.config file, some sections are nested within other sections. Configuration details are opened and closed using either { } or [ ].

- Groups of parameters are enclosed with curly brackets - { }
- An array of parameters is enclosed in square brackets - [ ]
- Comments are prefaced with a # at the beginning of the line

To list things within a group or an array, elements must be separated by at least one comma or at least one line break. Any of the following formats may be used, as in this example:

```
{ name="route6", id = 3, prefixes = ["00000148", "0000473"] }
{ name="route7", id = 4, prefixes = ["000001049"] }
```

or

```
{ name="route6"
 id = 3
 prefixes = ["00000148"
 "0000473"
]
}
```
Editing the file

Open the configuration file on your system using a standard text editor. Do not use text editors, such as Microsoft Word, that attach control characters. These can be, for example, Microsoft DOS or Windows line termination characters (for example: ^M), which are not visible to the user, at the end of each row. This will cause file errors when the application tries to read the configuration file.

Always keep a backup of your file before making any changes to it. This will ensure you have a working copy to which you can return.

eserv.config files delivered

Most applications come with an example eserv.config configuration in a file called eserv.config.example in the root of the application directory, for example, /IN/service_packages/eserv.config.example.

ACS Configuration in the eserv.config File

ACS section

The ACS section is part of of the eserv.config file. See Example ACS configuration in eserv.config (on page 51) for a detailed example of the parameters.

Reread the configuration by sending a SIGHUP to slee_acs.

Here is the high-level structure of the section.

ACS = {
  countryCodes = [codes]
  macroNodes = {
    macronodes_parameters
  }
  tracing = {
    tracing_parameters
  }
  acsChassisActions = {
    acsChassisActions_parameters
  }
  SessionTimeInformation = {
    SessionTimeInformation_parameters
  }
  ServiceEntries = [
  ]
}
ServiceEntries_parameters
}
]
acsTriggerIF = {
acsTriggerIF_parameters
}
}
countryCodes
Syntax: countryCodes = [codes]
Description: The list of country codes supported for location number normalization.
Type: Array
Optionality: Optional (default used if not set).
Allowed: International country codes
Default: 
Notes: This is used when roaming to determine the location of the caller and add country code to called number if appropriate.
Example:
countryCodes = [
"61" # Australia
"64" # New Zealand
"65" # Singapore
"44" # United Kingdom
"1" # USA/Canada
]

macroNodes Configuration
The macroNodes configuration in the ACS section of the eserv.config supports configuration of ACS feature nodes.

Here is an example of the macroNodes section.

macroNodes = {
ATPD = {
   ReleaseInApplyCharging = true
}
}

ReleaseInApplyCharging
Syntax: ReleaseInApplyCharging = true|false
Description: Used in ATPD macro node to send a TCAP Disconnect(2) instead of a TCAP Release.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true, false
Default: true
Notes:
Example: ReleaseInApplyCharging = false

Tracing Configuration
The ACS configuration supports the following tracing parameters.
tracing = {
    enabled = true
    origAddress = [
        "0064212",
        "0064213",
        "0064214"
    ]
    destAddress = [
        "0064213",
        "0064214"
    ]
    traceDebugLevel = "all"
}

eabled

Syntax: enabled = true|false
Description: Enables the tracing functionality.
Type: Boolean
Optionality: Optional, default used if not set.
Allowed: true, false
Default: false
Notes: Turning on tracing may dramatically increase system load. Only turn on in a
production system if you have specified very limited tracing.
Example: enabled = true

origAddress

Syntax: origAddress = ["address1","address2",...,"addressN"]
Description: A list of Originating Addresses to trace.
Type: Array of number strings
Optionality: Optional
Allowed: The full originating address number.
Default: None
Notes: This may be an empty array list [], however to trace anything there must be at
least one address in either the origAddress or destAddress parameters.
Example: origAddress = ["0064212","0064213","0064214"]

destAddress

Syntax: destAddress = ["address1","address2",...,"addressN"]
Description: A list of Destination Addresses to trace.
Type: Array of number strings
Optionality: Optional
Allowed: The full destination address number.
Default: None
Notes: This may be an empty array list [], however to trace anything there must be at
least one address in either the origAddress or destAddress parameters.
Example: destAddress = ["0064213","0064214"]

traceDebugLevel

Syntax: traceDebugLevel = "flag1[,flag2,...]"
Description: Identifies the debug level for the addresses being traced.
Chapter 4

Type: String
Optionality: Mandatory (if enabled=true)
Allowed: Any valid flag.

A useful method of finding which flags are relevant to the tracing you want to do is to:

1. Run your call on a model environment with DEBUG=all
   Result: Debug will report all relevant sections.
2. Check through the debug and identify which sections to report or suppress.
3. Change the debug settings.
4. Rerun the call.

Default: "all,-COMMON_escher_detail,-COMMON_escher_dump,-slee_api,-cmnTimeout,-
cmnCacheDetail,-Config,-beVWARS_detail,-beSyncDetail"

Notes:

traceDebugLevel = flag turns only flag on.
traceDebugLevel=all,-flag,-flag2 turns all debug on, and then turns flag and flag2 off.

Any section can be removed from the trace by preceding with a minus sign.
The output columns are also configurable, and can be turned off.

By default the columns are:

    date file line pid section message

Columns in output are:
- * display:name the program name registered with
  cmnErrorSetProgram(), off by default
- * display:date the date in YYYY/MM/DD HH:MM:SS format
- * display:file the source filename
- * display:line the source line number
- * display:pid the process ID
- * display:section the debug section

The parameter string value must be enclosed in quotes.

Examples:

traceDebugLevel="all"
Traces everything for the original and or destination addresses.
traceDebugLevel="cmnConfig,slee_api"
Traces cmnConfig and slee_api sections for the original and or destination addresses.
traceDebugLevel="all,-cmnEscher"
Traces everything except cmnEscher section for the original and or destination addresses.
traceDebugLevel="all,-cmnEscher,-display:file"
Traces everything except cmnEscher section for the original and or destination addresses, and removes the file column from the output.

acsChassisActions Configuration

Here is an example of the acsChassisActions configuration of the ACS section of the eserv.config.

acsChassisActions = {
    mscAddressForEdr = [
    {
        mscAddress = "123456789"
        encoding = "BCD"
    },
    ]
}
encoding

**Syntax:**
```plaintext
encoding = "code"
```

**Description:**
The encoding of the MSC address

**Type:**
String

**Optionality:**
Optional

**Allowed:**
Values:
- "BCD" (Binary Coded Decimal)
- "ASCII"

**Default:**
BCD

**Notes:**
Member of `mscAddressForEdr` (on page 40) array

**Example:**
```
encoding = "BCD"
```

**mscAddress**

**Syntax:**
```plaintext
mscAddress = "addr"
```

**Description:**
The MSC address (in the CallReferenceNumber)

**Type:**
String

**Optionality:**
Optional

**Allowed:**

**Default:**

**Notes:**
Member of `mscAddressForEdr` (on page 40) array

**Example:**
```
mscAddress = "123456789"
```

**mscAddressForEdr**

**Syntax:**
```plaintext
mscAddressForEdr = [addr_parameters]
```

**Description:**
Array of MSC addresses and their encoding. This is used by the Add EDR Field chassis action.

**Type:**
Array

**Optionality:**
Optional (default used if not set).

**Allowed:**

**Default:**
All `mscAddresses` are encoded as BCD.

**Notes:**

**Example:**
```
mscAddressForEdr = [
 {
 mscAddress = "123456789"
 encoding = "BCD"
 }
]
```
SessionTimeInformation configuration

The SessionTimeInformation configuration in the ACS section of the eserv.config supports the facility for the processing of session time information for inbound interfaces such as EDR post processing control agents.

Here is an example of the section.

```plaintext
SessionTimeInformation = {
 STIServiceKey = 122
 IDPExtTypeEDRId = 901
 extractEdrId = true
 IDPExtTypeCallStartTime = 902
 extractCallStartTime = true
 callStartTimeFormat = "YYYYMMDDHH24MISS"
 IDPExtTypeCallAnswerTime = 903
 extractCallAnswerTime = true
 callAnswerTimeFormat = "YYYYMMDDHH24MISS"
 IDPExtTypeCallEndTime = 904
 extractCallEndTime = true
 callEndTimeFormat = "YYYYMMDDHH24MISS"
 IDPExtTypeEDRTimeZone = 905
 extractEdrTimeZone = true
}
```

callAnswerTimeFormat

**Syntax:**
```
callAnswerTimeFormat = "format"
```

**Description:** The format of call answer time string

**Type:** String

**Optionality:** Optional (default used if not set)

**Allowed:**
```
"YYYYMMDDHH24MISS"
```

**Default:**
```
"YYYYMMDDHH24MISS"
```

**Notes:**

**Example:**
```
callAnswerTimeFormat = "YYYYMMDDHH24MISS"
```

callEndTimeFormat

**Syntax:**
```
callEndTimeFormat = "format"
```

**Description:** The format of call end time string.

**Type:** String

**Optionality:** Optional (default used if not set)

**Allowed:**
```
"YYYYMMDDHH24MISS"
```

**Default:**
```
"YYYYMMDDHH24MISS"
```

**Notes:**

**Example:**
```
callEndTimeFormat = "YYYYMMDDHH24MISS"
```

callStartTimeFormat

**Syntax:**
```
callStartTimeFormat = "format"
```

**Description:** The format of call start time string.

**Type:** String

**Optionality:** Optional (default used if not set)

**Allowed:**
```
"YYYYMMDDHH24MISS"
```

**Default:**
```
"YYYYMMDDHH24MISS"
```

**Notes:**

**Example:**
```
callStartTimeFormat = "YYYYMMDDHH24MISS"
```
extractCallStartTime

Syntax: 

```
extRACTCallstartTime = True|false
```

Description: Enable or disable extraction of call start time from IDP extension.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true, false
Default: true
Notes:
Example: `extractCallstartTime = true`

extractCallEndTime

Syntax: 

```
extRACTCallEndTime = True|false
```

Description: Enable or disable extraction of EDR ID from IDP extension
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true, false
Default: true
Notes:
Example: `extractCallEndTime = true`

extractEdrId

Syntax: 

```
extRACTEdrId = True|false
```

Description: Enable or disable extraction of EDR ID from IDP extension.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true, false
Default: true
Notes:
Example: `extractEdrId = true`
extractEdrTimeZone
Syntax: extractEdrTimeZone = true|false
Description: Enable or disable extraction of timezone from IDP extension
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true, false
Default: true
Notes: 
Example: extractEdrTimeZone = true

IDPExtTypeCallAnswerTime
Syntax: IDPExtTypeCallAnswerTime = id
Description: The ID of IDP Extension in which the call answer time is passed to ACS.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: 
Default: 903
Notes: 
Example: IDPExtTypeCallAnswerTime = 903

IDPExtTypeCallEndTime
Syntax: IDPExtTypeCallEndTime = value
Description: The ID of IDP Extension in which the Call end time is passed to ACS.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: 
Default: 904
Notes: 
Example: IDPExtTypeCallEndTime = 904

IDPExtTypeCallStartTime
Syntax: IDPExtTypeCallStartTime = id
Description: The ID of IDP Extension in which the call start time is passed to ACS.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: 
Default: 901
Notes: 
Example: IDPExtTypeCallStart Time = 902

IDPExtTypeEDRId
Syntax: IDPExtTypeEDRId = id
Description: The ID of IDP Extension in which the EDR ID is passed to ACS.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: 901
Default: 901
Notes:
Example: IDPExtTypeEDRId = 901

**IDPExtTypeEDRTimeZone**

Syntax: IDPExtTypeEDRTimeZone = id
Description: The ID of IDP Extension in which the timezone is passed to ACS
Type: Integer
Optionality: Optional (default used if not set).
Allowed: 901
Default: 901
Notes:
Example: IDPExtTypeEDRTimeZone = 905

**STIServiceKey**

Syntax: STIServiceKey = skey
Description: The service key on which session time based (offline) calls are to be expected.
Type: Integer
Optionality: Optional (default used if not set).
Allowed:
Default: 0 - set to 0 to disable session data processing
Notes: This must match the service key in slee.cfg that you wish to run this service for on slee_acs.
Example: STIServiceKey = 122

**ServiceEntries Configuration**

You can optionally define ServiceEntries configuration in the ACS section of the eserv.config file to configure ACS services that will be handled by the specified service libraries. Each entry in the ServiceEntries array defines the service loaders that a particular service handle should use, and also defines how number selection should work for the service handle. This method of defining service entries has the same purpose as configuring ServiceEntry lines in the acs.conf configuration file, but it has the following advantages:

- The configuration is easy to read.
- The configuration is very flexible because you can specify a list of service libraries for each service library function.

**Important:** Each service entry must be configured either eserv.config or in acs.conf but not in both. For more information about configuring service entries in acs.conf, seeacsChassis ServiceEntry Configuration (on page 102).

Here is an example of the ServiceEntries configuration:

```plaintext
ServiceEntries = [
 {ServiceName = "MyTestService"
 Methods = {
```
Chapter 4

```plaintext
acsChassisInitSL = ["lib1.so", "lib2.so", "lib3.so"]
acsChassisLoadService = ["lib1.so", "lib3.so"]
acsChassisPrePOR = ["lib2.so", "lib1.so"]
acsChassisCallTerminated = ["lib1.so"]
acsChassisPreCTR = ["lib1.so"]
acsChassisPreETC = ["lib1.so"]

AddressSources = {
 NetworkCP = [
 { source = "callingPartyNumber", screening = "network" } ,
 { source = "callingPartyNumber", screening = "user" } ,
 { source = "additionalCallingPartyNumber", screening = "network" } ,
 { source = "additionalCallingPartyNumber", screening = "user" } ,
 { source = "extensionNumber", extension=4 } ,
 { source = "cellIDorLAI" } ,
 { source = "Empty" }
]
 LogicalCP = [
 { source = "callingPartyNumber", screening = "user" } ,
 { source = "callingPartyNumber", screening = "network" }
]
}
```

AddressSources

**Syntax:**

```
AddressSources = [AddressSources_parameters]
```

**Description:**

Lists the sources used to populate various ACS buffers that may then be used by the service loader, chassis actions, or control plan. For a list of allowed values, see Allowed.

**Type:**

`Array`

**Optionality:**

Optional (default used if not set)

**Allowed:**

- `NetworkCP` – To specify the sources for the network calling party number
- `LogicalCP` – To specify the sources for the logical calling party number
- `ConnectDRA` – To specify the sources for the default destination routing address to put in a Connect operation, and also the default pending termination number
- `ConnectCLI` – To specify the sources for the calling party ID in a Connect operation
- `RedirectingParty` – To specify the sources for the redirecting party ID in a Connect operation
- `OriginalCP` – To specify the sources for the original called party ID in a Connect operation

**Default:**

None

**Notes:**

None
Example:

```plaintext
AddressSources = {
 NetworkCP = [
 { source = "callingPartyNumber", screening = "network" }
 { source = "callingPartyNumber", screening = "user" }
]
 LogicalCP = [
 { source = "callingPartyNumber", screening = "network" }
 { source = "callingPartyNumber", screening = "user" }
]
}
```

**Methods**

**Syntax:**

```
Methods = {Methods_parameters}
```

**Description:**

Array of ACS chassis functions that may be invoked by the service, and the service libraries to associate with each function.

**Type:**

Array

**Optionality:**

Required

**Allowed:**

You must specify the following required ACS chassis functions:

- `acsChassisInitSL()` – Invoked by ACS chassis when it loads the shared library at startup time. You use this function to initialize global variables, and read configuration tables and files.
  
  **Note:** You must include the full list of libraries that will be loaded by the service in the definition for the `acsChassisInitSL()` function.

- `acsChassisLoadService()` – Invoked by ACS chassis at the beginning of a new session, call, or event, that the network starts.

You can specify one or more of the following optional ACS chassis functions:

- `acsChassisPrePOR()` – Called by ACS when a feature node within the control plan requests a specific network action or when `acsChassisLoadService()` returns a response that causes a specific network action.

- `acsChassisCallTerminated()` – Performs post-call cleanup when a call has been terminated

- `acsChassisPreCTR()` – Controls the FurnishChargingInformation (FCI) and SendChargingInformation (SCI) that is sent with outbound Connect To Resource (ETC) or ReleaseCall operations

- `acsChassisPreETC()` – Controls the FurnishChargingInformation (FCI) and SendChargingInformation (SCI) that is sent with outbound EstablishTemporaryConnect (ETC) operations

For more information about the allowed functions, see SDK Developer's Guide.

**Default:**

The service libraries specified for a function run in list order. For example, to run the `acsChassisLoadService()` function first from `ccsSvcLibrary.so`, and then from `libmyServiceExample1.so`, specify the following configuration:

```
acsChassisLoadService = ["ccsSvcLibrary.so", "libmyServiceExample1.so"]
```
Example:

```
Methods = [

 acsChassisInitSL = ["ccsSvcLibrary.so",
 "libmyServiceExample1.so"]
 acsChassisLoadService = ["ccsSvcLibrary.so","libmyServiceExample1.so"
]
 acsChassisPrePOR = ["libmyServiceExample1.so"]
 acsChassisCallTerminated = ["libServiceExample1.so"]
]
```

**ServiceName**

**Syntax:** `ServiceName = "str"`

**Description:** The name of the service that will be handled by the service libraries specified in the `Methods` section.

**Type:** String

**Optionality:** Required

**Example:** `ServiceName = "MyTestService"`

**screening**

**Syntax:** `screening = "user|network"`

**Description:** Sets the screening indicator for the source number to either user provided, or network provided.

**Type:** Boolean

**Optionality:** Required

**Allowed:** user or network

**Default:**

**Notes:**

**Example:** `screening = "user"`

**source**

**Syntax:** `source = "str"`

**Description:** Sets the ACS buffer to use for this variable in the AddressSources list. For more information address sources, see `acsChassis ServiceEntry Configuration` (on page 102).

**Type:** String

**Optionality:** Required
Allowed: Use any of the following values:
- callingParty
- firstRedirectingParty – This is the original called party ID from the IDP
- lastRedirectingParty – This is the redirecting party ID from the IDP
- additionalCallingParty
- imsi
- cellIDorLAI
- locationNumber
- mscAddress
- locationInfoLocationNumber
- calledParty
- vlrNumber
- Empty
- extensionNumber – You configure the extension number by using the following configuration format: source = "extensionNumber", extension = int, where int is a value between 0 and 9.

Default:

Notes: When ACS populates a buffer, ACS searches the list of number sources until it finds one that matches in the IDP. If ACS does not find a match then the buffer is left blank.

Example: source = "callingPartyNumber"

acsTriggerIF Configuration

Oracle Communications Billing and Revenue Management (BRM) is able to trigger notifications off the back of the AAA opcodes which drive the real-time charging interaction. The NCC architecture takes advantage of the BRM In-Session Notifications by triggering control plans at the point they are received. Refer to BRM Charging Driver Technical Guide for details on in-session notification mapping from BRM to NCC.

See the Triggers topic in ACS User's Guide for control plan trigger definitions.

The ACS SLEE interface (acsTriggerIF) generates an IDP to trigger a control plan on receipt of a SLEE event containing control plan trigger details and IDP data.

Here is an example of the acsTriggerIF section.

```plaintext
acsTriggerIF = {
 # sleeInterfaceName = "acsTriggerIF"
 # sleeServiceKey = 1
 # overrideSleeServiceKey = 0
 # inapServiceKey = 1
 # statisticsEnabled = true
 # noActivitySleepTime = 10000
 # triggerTimeOutSecs = 10
 deleteTagsAfterTrigger = [
 1312070, # ISN Balance
 1312052, # ISN Credit Threshold Balance
 1312075, # ISN Failure Reason
 1312074, # ISN Lifecycle State
 1312050, # ISN Preferred Channel
 1312051, # ISN Preferred Time
 1312073, # ISN Rating Status
 1312068, # ISN Streaming Threshold
 1312066 # ISN Subscription Expiry
]
 numberRules = [
```
deleteTagsAfterTrigger

Syntax:
```
deleteTagsAfterTrigger = [tags]
```

Description:
List of profile tags which should be deleted after they are sent in a trigger event.

Type: Array

Optionality: Optional (default used if not set)

Allowed:
Valid profile tags, matching those defined in the bcdActionHandler.InSessionNotificationMapping section of eserv.config.
See BRM Charging Driver Technical Guide.

Default: []

Notes:
Not specified means no tags will be deleted.

Example:
```
deleteTagsAfterTrigger = [1312070, # ISN Balance, 1312052, # ISN Credit Threshold Balance, 1312075, # ISN Failure Reason, 1312074, # ISN Lifecycle State, 1312050, # ISN Preferred Channel, 1312051, # ISN Preferred Time, 1312073, # ISN Rating Status, 1312068, # ISN Streaming Threshold, 1312066 # ISN Subscription Expiry]
```

inapServiceKey

Syntax:
```
inapServiceKey = int
```

Description:
The INAP service key that acsTriggerIF should use for generated IDP messages if not specified by the trigger event data.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 1

Notes:

Example:
inapServiceKey = 1

noActivitySleepTime

Syntax:
```
nnoActivitySleepTime = usecs
```

Description:
Period (microseconds) to sleep if no activity detected by last poll.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10000

Notes:
Zero (0) means no sleep.

Example:
nnoActivitySleepTime = 10000
numberRules
Syntax: numberRules = [rules]
Description: Rules for denormalizing numbers to send to slee_acs in an IDP.
Type: Array
Optionality: Optional (default used if not set)
Allowed: 
Default: no rules applied
Notes: The rule below assumes that all numbers in trigger events start with a country code # and should be sent in international format (NOA= 4).
Example: numberRules = [ 
    { prefix="", min=0, max = 100, remove=0, prepend="", resultNoa=4 } 
]

overrideSleeServiceKey
Syntax: overrideSleeServiceKey = int
Description: The SLEE service key that acsTriggerIF should *always* send generated IDP messages to. This overrides the sleeServiceKey config option and the trigger event data.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: 
Default: 0
Notes: Zero (0) means no override.
Example: overrideSleeServiceKey = 0

sleeInterfaceName
Syntax: sleeInterfaceName = "IFName"
Description: The SLEE interface name of the acsTriggerIF process.
Type: String
Optionality: Optional (default used if not set)
Allowed: 
Default: "acsTriggerIF"
Notes: 
Example: sleeInterfaceName = "acsTriggerIF"

sleeServiceKey
Syntax: sleeServiceKey = int
Description: The SLEE service key that acsTriggerIF should send generated IDP messages to if not specified by the trigger event data.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: 
Default: 1
Notes: 
Example: sleeServiceKey = 1
statisticsEnabled
Syntax: \.statisticsEnabled = true|false
Description: Set whether acsTriggerIF should log statistics or not.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: true, false
Default: true
Notes:
Example: \statisticsEnabled = true

triggerTimeOutSecs
Syntax: \triggerTimeOutSecs = seconds
Description: The maximum period (in seconds) that acsTriggerIF should wait for a response to an
IDP trigger event before giving up and closing the dialog.
Type: Integer
Optionality: Optional (default used if not set)
Allowed:
Default: 10
Notes:
Example: \triggerTimeOutSecs = 10

Statistics Updated by acsTriggerIF
The following statistic definitions have been defined for application "Acs_Service". These statistics are
turned on by default. Control this behavior by setting the acsTriggerIF statisticsEnabled (on page 51)
parameter. For each required extra statistic, turn the statistic on using the SMS Statistics Management
screen (See SMS User's Guide).

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGGER_FAIL</td>
<td>The number of failed control plan triggers.</td>
</tr>
<tr>
<td>TRIGGER_SUCCESS</td>
<td>The number of successful control plan triggers.</td>
</tr>
<tr>
<td>TRIGGER_TIMEOUT</td>
<td>The number of timed out control plan triggers.</td>
</tr>
</tbody>
</table>

Example ACS Configuration in eserv.config
This is an example of the ACS section of the eserv.config file.

ACS = {
    countryCodes = [
        "97",
        "64",
        "65",
        "44",
        "1"
    ]
}

macroNodes = {
    ATPD = {
        ReleaseInApplyCharging = true
    }
}
tracing = {
    enabled = true
    origAddress = [
        "0064212",
        "0064213",
        "0064214"
    ]
    destAddress = [
        "0064213",
        "0064214"
    ]
    traceDebugLevel = "all"
}

acsChassisActions = {
    mscAddressForEdr = [
        {mscAddress = "123456789" encoding = "BCD"},
        {mscAddress = "987654321" encoding = "ASCII"}
    ]
}

SessionTimeInformation = {STIServiceKey = 122
IDPExtTypeEDRId = 901
extractEdrId = true
IDPExtTypeCallStartTime = 902
extractCallStartTime = true
callStartTimeFormat = "YYYYMMDDHH24MISS"
IDPExtTypeCallAnswerTime = 903
extractCallAnswerTime = true
callAnswerTimeFormat = "YYYYMMDDHH24MISS"
IDPExtTypeCallEndTime = 904
extractCallEndTime = true
callEndTimeFormat = "YYYYMMDDHH24MISS"
IDPExtTypeEDRTimeZone = 905
extractEdrTimeZone = true
}

ServiceEntries = [{ServiceName = "MyTestService"
    Methods = [
        acsChassisInitSL = [ "lib1.so", "lib2.so", "lib3.so" ]
        acsChassisLoadService = [ "lib1.so", "lib3.so" ]
        acsChassisPrePOR = [ "lib2.so", "lib1.so" ]
        acsChassisPreCTR = [ "lib1.so" ]
        acsChassisPreETC = [ "lib1.so" ]
    ]
    AddressSources = {}
    NetworkKCF = {}
        { source = "callingPartyNumber", screening = "network" }
        { source = "callingPartyNumber", screening = "user" }
{ source = "additionalCallingPartyNumber", screening = "network" }  
{ source = "additionalCallingPartyNumber", screening = "user" }  
{ source = "extensionNumber", extension=4 }  
{ source = "cellIDorLAI" }  
{ source = "Empty" }  
]  
LogicalCP = [  
{ source = "callingPartyNumber", screening = "user" }  
{ source = "callingPartyNumber", screening = "network" }  
]  
}  
}  
]  
}

acsTriggerIF = {  
# sleeInterfaceName = "acsTriggerIF"  
# sleeServiceKey = 1  
# overrideSleeServiceKey = 0  
# inapServiceKey = 1  
# statisticsEnabled = true  
# noActivitySleepTime = 10000  
# triggerTimeOutSecs = 10  
deleteTagsAfterTrigger = [  
1312070, # ISN Balance  
1312052, # ISN Credit Threshold Balance  
1312075, # ISN Failure Reason  
1312074, # ISN Lifecycle State  
1312050, # ISN Preferred Channel  
1312051, # ISN Preferred Time  
1312073, # ISN Rating Status  
1312068, # ISN Streaming Threshold  
1312066 # ISN Subscription Expiry  
]  
numberRules = [  
{ prefix="", min=0, max = 100, remove=0, prepend="", resultNoa=4 }  
]  
}

MRC Configuration

locationInfoRetrieval configuration

In order to make slee_acs send AnyTimeInterrogation, so that it can do mid-call tariff changes if the subscriber moves, you need to configure the locationInfoRetrieval parameters in the MRC section of eserv.config.

MRC = {  
locationInfoRetrieval = {  
LocationInfoPollEnabled = true  
LocationInfoTcapInterfaceName = "m3ua_if"  
LocationInfoGSMScfAddress = "12345678"  
LocationInfoGSMScfMapNoa = 1  
LocationInfoOriginatingSubsystemNumber = 147  
LocationInfoDestinationSubsystemNumber = 6 # HLR  
LocationInfoRequestTimeout = 5  
}  
}


The `locationInfoRetrieval` parameter is optional. However, if the parameter is present, to configure the parameter to send AnyTimeInterrogation, the following parameters must be set to a valid value other than their default:

- `LocationInfoGSMScfAddress`
- `LocationInfoPollEnabled`
- `LocationInfoTcapInterfaceName`

The following parameters specify parts of the GSM SCF address parameter of AnyTimeInterrogation. They are also used for the SCCP originating address of the message containing the AnyTimeInterrogation:

- `LocationInfoGSMScfAddress`
- `LocationInfoGSMScfMapNoa`
- `LocationInfoOriginatingSubsystemNumber`
- `LocationInfoDestinationSubsystemNumber`
- `LocationInfoRequestTimeout`

### `LocationInfoDestinationSubsystemNumber`

**Syntax:**

`LocationInfoDestinationSubsystemNumber = num`

**Description:**
The SCCP subsystem number to put in the destination address.

**Type:** Integer

**Optionality:** Mandatory if `locationInfoRetrieval` is present

**Allowed:**

Default: 0

**Notes:**

Example:

`LocationInfoDestinationSubsystemNumber = 6`

### `LocationInfoGSMScfAddress`

**Syntax:**

`LocationInfoGSMScfAddress = "address"`

**Description:**
The digits of the GSM SCF address and Global Title.

**Type:** String

**Optionality:** Mandatory if `locationInfoRetrieval` is present

**Allowed:**

Default: ""

**Notes:**

The default setting will turn off the function.

Example:

`LocationInfoGSMScfAddress = "12345678"`

### `LocationInfoGSMScfMapNoa`

**Syntax:**

`LocationInfoGSMScfMapNoa = NoA`

**Description:**
The nature of address of the GSM SCF address.

**Type:** Integer

**Optionality:** Optional (default used if not set).

**Allowed:**

Default: 1 (International)

**Notes:**

The SCCP Global Title NOA is hard-coded to 4 = international.

Example:

`LocationInfoGSMScfMapNoa = 1`
locationInfoOriginatingSubsystemNumber
Syntax: locationInfoOriginatingSubsystemNumber = num
Description: The SCCP subsystem number to put in the originating address.
Type: Integer
Optionality: Mandatory if locationInfoRetrieval is present
Allowed: Default:
Notes: Example: locationInfoOriginatingSubsystemNumber = 147

locationInfoPollEnabled
Syntax: locationInfoPollEnabled = true|false
Description: Send AnyTimeInterrogation
Type: Boolean
Optionality: Mandatory if locationInfoRetrieval is present
Allowed: true, false
Default: false
Notes: The default setting will turn off the function
Example: locationInfoPollEnabled = true

LocationInfoRequestTimeout
Syntax: LocationInfoRequestTimeout = seconds
Description: The minimum number of seconds to wait before giving up waiting for a response to AnyTimeInterrogation.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Default: 5
Notes: Example: LocationInfoRequestTimeout = 5

locationInfoTcapInterfaceName
Syntax: locationInfoTcapInterfaceName = "name"
Description: The name of the TCAP interface to use to send MAP2 AnyTimeInterrogation.
Type: String
Optionality: Mandatory if locationInfoRetrieval is present
Allowed: Default: ""
Notes: The default setting will turn off the function.
Example: LocationInfoTcapInterfaceName = "m3ua_if"

Example MRC configuration in eserv.config
This is an example of the MRC section of the eserv.config file.
MRC = {
    locationInfoRetrieval = {
        LocationInfoPollEnabled = true
        LocationInfoTcapInterfaceName = "m3ua_if"
        LocationInfoGSMScfAddress = "12345678"
        LocationInfoGSMScfMapNoa = 1
        LocationInfoOriginatingSubsystemNumber = 147
        LocationInfoDestinationSubsystemNumber = 6 # HLR
        LocationInfoRequestTimeout = 5
    }
}
Chapter 5

Configuring the acs.conf

Overview

Introduction

This chapter explains how to configure acs.conf.

In this chapter

This chapter contains the following topics.

acs.conf 57
acsChassis Plug-ins 59
acsStatisticsDBInserter (SMS) 62
acsCompilerDaemon (SMS) 64
acsStatsMaster (SLC) 66
acsChassis Single Instance Parameters (SLC) 68
acsStatsLocal (SLC) 92
acsChassis Emergency Numbers (SLC) 92
acsChassis INAP Extension Parameters 93
acsChassis Normalization Parameters (SLC) 96
acsChassis SLEE Event Size Parameter (SLC) 101
acsChassis ServiceEntry Configuration (SLC) 102
acsChassis SRF Configuration (SLC) 110
acsChassis SCF Configuration (SLC) 113
acsChassis SSF Configuration (SLC) 117
acsChassis EDR Configuration (SLC) 122
acsChassis Service Library Configuration (SLC) 131
acsChassis Service Normalisation Parameters (SLC) 132
acsChassis AWOL Configuration 132
Get Hunting Number Node Configuration 135
Play Variable Part Announcement Node Configuration 135
Number Matching Node Configuration 136
acs.conf Example 137

acs.conf

Introduction

The ACS tools and processes depend on the ACS configuration file, acs.conf (located in /IN/service_packages/ACS/etc/). There is an acs.conf file on the SMS and each SLC. The configuration options on the SMS are different to the configuration options on the SLC.

When ACS is fully installed there may be other configuration options that are added to acs.conf which are not explained in this section. Any configuration options not described in this section are required by the application and should not be changed by the user.
The configuration file consists of several sections named for the executable they control. Each section contains a parameter representing a single configuration option. Leading '#' characters represent comments and are ignored by the system. Each section must be terminated by a ':' character. All configuration options (except those for section headers such as 'acsChassis') must be indented or they will be ignored.

**Note:** The `acsChassis` section is much larger than the other executables. Consequently the section has been subdivided within this document.

**Example configuration sections**

Here are examples of configuration sections.

**Example 1**

Here is an example of a configuration section for the acsStatsMaster executable.

```
acsStatsMaster
 port 1490
 shmKey 17170588
 semKey 17170589
 masterStatsServer tcpodscp:
```

**Example 2**

Here is an example of a configuration section for the ACS_outgoing service.

```
ACS_outgoing
 NormalUseHex 1
 NormalisationRule (2,-,0,32)
 NormalisationRule (2,0,1,32)
 NormalisationRule (2,00,2,32)
 DenormalisationRule (2,2,1,-)
 DenormalisationRule (3,3,1,-)
 DenormalisationRule (4,4,1,-):
```

**Implementing parameter changes**

If `acs.conf` is changed by the operator the service needs to be restarted, so that the configuration file is reread and the changes take effect. For more information about restarting the service see Managing Processes.

**Parameter types**

There are three types of parameters listed within the following topics:

1. Parameters that are a standard part of `acs.conf` and must be configured with the correct setting.
2. Parameters that are a standard part of `acs.conf` with default settings and do not require configuring except in the case of custom settings for a specific site.
3. Parameters that must be added to `acs.conf` with the correct setting.

**Note:** Some parameters appear only once within the following topics (for example, `port`). Other parameters may appear multiple times (for example, `ServiceEntry`).

**Before you begin**

Most values in `acs.conf` are set to sensible defaults. Be sure to read the relevant information in the following sections before modifying these values.

It is recommended that you make a backup copy of `acs.conf` before altering the service settings.
Procedure

Edit the `acs.conf` file with any UNIX text editor.

Example command: `vi acs.conf`

acsChassis Plug-ins

acsChassis

The `acsChassis` configuration defines details about how traffic coming in to `slee_acs` is handled. It defines what traffic is processed by which service on what service loader plug-in library. It also provides some additional configuration about how `slee_acs` will process the traffic to each service.

The available parameters are:

**ServiceEntry**

**Syntax:**

```
ServiceEntry (service, service_library)
```

**Description:**

The `ServiceEntry` lines are needed to define which services defined in the `SLEE.cfg` are handled by the CCS service loader library (`ccsSvcLibrary`).

**Type:**

Mandatory (must be set to include the required CCS library).

**Optionality:**

Mandatory (must be set to include the required CCS library).

**Allowed:**

For more information about the structure of this configuration option, see `acsChassis ServiceEntry Configuration (SLC)` (on page 102). For more information about the values which can be used in the service element of this configuration, see the technical guide for the relevant service.

**Default:**

Any service defined in `SLEE.cfg` must have a corresponding `ServiceEntry` line configured in `acs.conf`.

**Example:**

```
ServiceEntry (CCS, ccsSvcLibrary.so)
ServiceEntry (EAX_MO, libeaxSvcLibrary.so)
```

**MacroNodePluginFile**

**Syntax:**

```
MacroNodePluginFile
```

**Description:**

The `MacroNodePluginFile` lines are required to define which feature node libraries will be available in the control plans used by `slee_acs`. The CCS feature node library (`ccsMacroNodes`) must be included here.

**Type:**

Mandatory (must be set to include the required CCS library).

**Optionality:**

Mandatory (must be set to include the required CCS library).

**Allowed:**

Some plug-in-based feature nodes distributed with CCS are:

- Attempt Termination with Billing node
- Language Select node
- Voucher Recharge node

**Default:**

**Notes:**

**Example:**

```
MacroNodePluginFile ccsMacroNodes.so
```
ChassisPlugin

Syntax:
Description: Chassis plug-ins provide the ACS Control Plan Editor with an expanded interface to its environment.

The ChassisPlugin lines are required to define which chassis action libraries will be available to slee_acs. The CCS chassis action library (ccsActions) must be included here.

Type:
Optionality: Mandatory (must be set to include the required CCS library).
Allowed:
Default:

Notes: The interface between the CPE and the Voucher and Wallet Server is implemented using chassis plug-ins. Other uses include external database operations or network access.

One shared library may implement more than one chassis action.

No further configuration is needed to allow the Chassis to load the plug-ins at startup. However, individual plug-ins may have configuration requirements of their own.

For more information about the slee_acs, see ACS Technical Guide.

Example:
acsChassis
    ChassisPlugin ccsActions.so

srf

Syntax:
Description: The name and number of the Specialized Resource Function (or Intelligent Peripheral) is required for each IP on the network.

Type:
Optionality:
Allowed: (srfName, UseETC=Y/N, Address=IP or nothing, NOA=0-4 typeOfSrf=NAP or other)
Default:

Notes: Parsing should continue until no new IPs can be found in the configuration file. This will eliminate the need for a count to be specified in the configuration file for the number of resources available.

Example:
srf (nap1,UseETC=N,Address=,NOA=3)

acsChassis plugin libraries

Both parts of slee_acs (the acsChassis and the acsEngine) can be extended to do new tasks by installing plug-in libraries (independent pieces of program code that are loaded into the system at runtime).

Plug-ins are distributed as shared libraries with the file extension of .so.

slee_acs must be informed of the location of these shared libraries, so that their functionality can be made available to the running system.

Plug-in shared libraries may be stored anywhere in the file system. However, the recommended location for plug-ins is:

/IN/service_packages/package_name/lib
Note: If plug-ins are not specified in `acs.conf` as an absolute path to the shared library, shared libraries are searched for in the path read from the environment variable `LD_LIBRARY_PATH`. The location recommended above is listed in the search path by default after installation.

Initialization
The ACS ChassisEngine program will always load Engine plug-ins after fully loading and initializing all Chassis plug-ins, regardless of the order of configuration lines in `acs.conf`.

This is done to ensure that plug-in-based chassis actions are always available to plug-in-based engine nodes as they load and initialize themselves.

Note: All configured Chassis and Engine plug-ins are loaded and initialized in order of appearance in `acs.conf` within their own class of plug-in.

Plug-in list

The following plug-ins are required by the `acsChassis`:

**MacroNodePluginFile**

**Syntax:**`MacroNodePluginFile = lib`

**Description:** These lines configure which feature node libraries are available to `slee_acs`. This may be as simple as just the ACS feature node library (`libacsMacroNodes` (on page 153)) which provides the base ACS feature nodes, but may also include other libraries provided by other components.

**Type:** String

**Optionality:** Optional (no libraries loaded if not set).

**Allowed:** None

**Default:** None

**Notes:** Individual plug-ins may have additional configuration requirements of their own, not detailed here.

One shared library may implement more than one feature node.

Engine plug-ins must be configured with entries in the following database tables:

1. ACS_FN_TYPE
2. ACS_FN_STRUCT_DEF
3. ACS_FN_DATA_DEF

The database is configured appropriately on installation, and should not need updating.

**Example:**

```
MacroNodePluginFile = libacsMacroNodes
```

**ChassisPlugin**

**Syntax:**`ChassisPlugin = lib`

**Description:** Pluggable Action - base ACS actions.

These lines configure which chassis action libraries are available to `slee_acs`. This may be as simple as just the ACS chassis action library (`libacsChassisActions` (on page 153)), but may also include other libraries provided by other components.

**Type:** String

**Optionality:** Optional (no libraries loaded if not set).

**Allowed:** None

**Default:** None

**Notes:** Individual plug-ins may have additional configuration requirements of their own,
not detailed here.
One shared library may implement more than one feature node.

Example:
    ChassisPlugin = libacsChassisActions

srf
Syntax: For a full syntax, see acsChassis SRF Configuration (SLC) (on page 110).
Description: Specialized Resource Function mappings for the SLEE.
Type: String
Optionality: Optional (default used if not set).
Allowed:
Default: (NAP1, UseETC=N, Address=, NOA=3)
Notes:
Example:

acsStatisticsDBInserter (SMS)

Introduction
The acsStatisticsDBInserter must know the name and port number of the acsStatsMaster. Because this process also inserts data into the database it is also possible to change the default username and password in the acs.conf file.

Therefore the acsStatisticsDBInserter section within acs.conf on the SMS must be populated to specify the name of the machine and the port number used by the acsStatsMaster.

Parameters
The parameter below must be configured with the correct value;
oracleusername

Syntax: oracleusername user
Description: The user name acsStatisticsDBInserter will use to connect to Oracle.
Type: String
Optionality: Optional (default used if not set)
Allowed:
Default: null
Notes: If no oracleusername and oraclepassword are specified, the string used to connect to Oracle is "/". This is the recommended way to connect to Oracle. For more information, see Oracle usr/pwd string (on page 20).
Example:

oraclepassword

Syntax: oraclepassword password
Description: The password acsStatisticsDBInserter should use to connect to Oracle.
Type: String
Optionality: Optional (default used if not set)
Allowed:
Default: null
Notes: If the default is used, the actual string used to connect to Oracle will use the password for the account which is running acsStatisticsDBInserter. This should be the acs_oper account's password.

Example:

MasterServerPort
Syntax: MasterServerPort port
Description: The port on which the master statistics server is listening for requests.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: Any integer representing a valid port address
Default: null
Notes: 
Example:

Retries
Syntax: Retries int
Description: The number of attempts to make to communicate with the statistics master server before failing.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: Any non zero, positive integer.
Default: 3
Notes: 
Example:

Period
Syntax: Period seconds
Description: The number of seconds between queries of the statistics master server.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: Any non zero, positive integer.
Default: 30
Notes: 
Example:

MasterServerLocation
Syntax: MasterServerLocation name
Description: The system name of the master statistics server.
Type: String
Optionality: Optional (default used if not set)
Allowed: 
Default: SCP1
Notes: Any string representing the system name required.
acsCompilerDaemon (SMS)

Introduction

The acsCompilerDaemon process is responsible for converting a control plan into the binary format used by the ACS service logic to process calls.

Parameters

The parameters in this list assume the default values if they are not configured. Only one entry per parameter is allowed.

**oracleusername**

Syntax: `oracleusername user`

Description: The user name acsCompilerDaemon should use to connect to Oracle.

Type: String

Optionality: Optional (default used if not set)

Allowed: null

Default: null

Notes: If the default is used, the actual string used to connect to Oracle will use the account which is running acsCompilerDaemon. This should be acs_oper account.

Example:

```
```

**oraclepassword**

Syntax: `oraclepassword password`

Description: The password acsCompilerDaemon should use to connect to Oracle.

Type: String

Optionality: Optional (default used if not set)

Allowed: null

Default: null

Notes: If the default is used, the actual string used to connect to Oracle will use the password for the account which is running acsCompilerDaemon. This should be the acs_oper account's password.

Example:

```
```

**alertTimeout**

Syntax: `alertTimeout secs`

Description: The number of seconds to remain blocked waiting for the alert to occur before checking for signals.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Any non zero, positive integer.

Default: 5

Notes: Since signals are blocked for this period of time, it is recommended that this number is not increased beyond 5 because it may cause the process to not terminate correctly on system shutdown.

Example:

```
```
maxBranches
Syntax: maxBranches int
Description: The maximum number of branches any feature node in a control plan may have.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: Any non zero integer.
Default: 99
Notes: If this is set to lower than 99, users must ensure they do not set any of the feature nodes in their control plans to more than maxBranches. If they do, their control plan will not compile.
Example: maxBranches 99

maxNodes
Syntax: maxNodes int
Description: The maximum number of nodes any control plan may have.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Any non zero, positive integer.
Default: 100
Notes: To determine the number of nodes in a control plan, the control plan must be opened in the CPE. The properties for the control plan will give the number of nodes used.

maxCompiledKb
Syntax: maxCompiledKb int
Description: Max size of the binary produced when a control plan is compiled.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Any integers in range 1 - 256.
Default: 64
Notes: Setting above the default value may not be supported by replication, please check with support before increasing this limit.
Example:

compressAtKb
Syntax: compressAtKb Kb
Description: The maximum size in Kilobytes of a control plan, before acsCompilerDaemon will compress it when it compiles it.
acsCompilerDaemon compresses control plans before checking whether they exceed maxCompiledKb.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Any non zero, positive integer.
Default: 64
Notes: To be effective, this parameter should be set lower than maxCompiledKb (on page
compressLevel
Syntax: \textit{compressLevel int}
Description: The level of compression used in control plan compression if \textit{compressAtKb} (on page 65) is exceeded.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: 0 – No compression.
1-9 – Compression level, where 1 is low and 9 is high.
Default: 0
Notes: Any changes require the acsCompilerDaemon to be restarted for any changes to take effect.
Example:

endUnlinkedExits
Syntax: endUnlinkedExits 0|1
Description: Allow unconnected exits from a feature node in a control plan. The control plan must contain at least one End feature node.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: 0 – Do not allow unconnected feature node exits.
1 – Connect all unconnected exits to the first End feature node in the control plan when the control plan is saved.
Default: 0
Example: endUnlinkedExits 1

AuditChallenge
Description: Because acsCompilerDaemon runs on the SMS, \textit{AuditChallenge} should be set to 1 for acsCompilerDaemon. This parameter should be disabled for processes that run on the VWS, or SLC.
Default: 0
Allowed: 0 (disabled), 1 (enabled)
Example: AuditChallenge 1

\textbf{acsStatsMaster (SLC)}

\textbf{Introduction}
This process is the single point of statistics access for other systems in the network. It processes requests for other SLCs as well as the SMS.

\textbf{Parameters}
The following parameters must be configured with the correct value.
oracleusername

**Syntax:**  `oracleusername user`

**Description:** The user name `acsStatsMaster` should use to connect to Oracle.

**Type:** String

**Optionality:** Optional (default used if not set)

**Allowed:**

- **Default:** null

**Notes:** If the default is used, the actual string used to connect to Oracle will use the account which is running `acsStatsMaster`. This should be `acs_oper` account.

**Example:**

oraclepassword

**Syntax:**  `oraclepassword password`

**Description:** The password `acsStatsMaster` should use to connect to Oracle.

**Type:** String

**Optionality:** Optional (default used if not set)

**Allowed:**

- **Default:** null

**Notes:** If the default is used, the actual string used to connect to Oracle will use the password for the account which is running `acsStatsMaster`. This should be the `acs_oper` account's password.

**Example:**

masterStatsServer

**Description:** Host name of the machine running the master stats server.

**Default:** No default

**Allowed:** Any string representing a valid host name.

port

**Description:** Port on which the stats master listens for connection attempts.

**Default:** 1490

**Allowed:** Any integer that represents a valid port address.

shmKey

**Description:** Shared Memory key for the `acsStatsMaster`.

**Default:** 17170588

**Allowed:** `acsChassis` shmKey value.

**Notes:** This must be the same as the entry for the `acsChassis` shmKey. It is recommended that the user does not change this value unless there is a collision. It is up to the installer to ensure that there are no collisions.

semKey

**Description:** Semaphore Key for `acsStatsMaster`.

**Default:** 17170589

**Allowed:** `acsChassis` semKey value.
Notes: This must be the same as the entry for the acsChassis semKey.
It is recommended that the user does not change this value unless there is a collision. It is up to the installer to ensure that there are no collisions.

acsChassis Single Instance Parameters (SLC)

Parameters
The following parameters must be configured with the correct value.

masterStatsServer
Description: Host name of the machine running the master stats server.
Default: No default
Allowed: Any string representing a host name, but must be the same as the masterStatsServer of the acsStatsLocal section. For example, scp1.telconame.com

port
Description: Port on which the stats master listens for connection attempts.
Default: 1490
Allowed: Any valid integer representing a port address.

shmKey
Description: Shared Memory key for the acsStatsMaster.
Default: 17170588
Allowed: Must be the same as acsStatsMaster shmKey.

semKey
Description: Semaphore Key for acsStatsMaster.
Default: 17170589
Allowed: Must be the same as the acsStatsMaster semKey.

addChargingInfoToCTR
Description: Perform FCI/SCI for CTR
Default: 0 (false)
Allowed: 0 or 1 (true)

addChargingInfoToETC
Description: Perform FCI/SCI for ETC
Default: 0
Allowed: 0 (false) or 1 (true)

addChargingInfoToPA
Syntax: addChargingInfoToPA 0|1
Description: Perform FCI/SCI for PA and PACUI.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed:  
• 0 (false), do not perform FCI/SCI
• 1 (true), do perform FCI/SCI
Default: 0
Notes:
Example: addChargingInfoToPA 1

DigitsInAnnouncementList
Syntax: DigitsInAnnouncementList 0|1
Description: If set to true, records the details of any interaction between the caller and the control plan in the AIDL EDR tag.
Type: Boolean
Optionality: Optional (Default is used if omitted)
Allowed: 0 (off), 1 (on)
Default: 0
Notes: Refer to AIDL for a description of changes to the AIDL information.
Example: DigitsInAnnouncementList 1

AddMOLIPrefix
Description: Specifies a numeric prefix to the three character MOLI code that is placed into the calling network address field (see CheckMOLIPrefix (on page 73)).
Optionality: Optional, and does not need to be provided whenever a CheckMOLIPrefix parameter is included in the acs.conf file.
Default: 222
Allowed: 1 to 20 numeric characters can be specified.
Notes: See Section 6.2 of the ACIF document G532 for more details on the MOLI standard.

alwaysIncludePartyToCharge
Syntax: alwaysIncludePartyToCharge value
Description: Whether to set the partyToCharge parameter in ACS to the leg1 party or not.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Any integer value. However any value other than 1 is treated as 0.
Default: 0
Notes: 0 - partyToCharge is not set.
1 - partyToCharge is set.
Example: alwaysIncludePartyToCharge 1

alternativeCallPlanNamePostfix
Syntax: alternativeCallPlanNamePostfix _name
Description: This string is appended to the end of the control plan name creating a new plan. This is the replacement plan when alternative control plan replacement is activated from the ACS Screen:
Services -> ACS Service -> Customer -> Control Plan Change tab
Chapter 5

Type: String
Optionality: Optional (default used if not set).
Allowed: _alt
Default: _alt
Notes:
Example: alternativeCallPlanNamePostfix _emergency

armDisconnectAt

Syntax: armDisconnectAt 0|1
Description: Forces the AT feature node to arm for oDisconnect in the associated BCSM Event when set to true.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (false), do not arm for oDisconnect
         1 (true), arm for oDisconnect
Default: 0
Notes:
Example: armDisconnectAt 1

armDisconnectAtp

Syntax: armDisconnectAtp 0|1
Description: Forces the ATP feature node to arm for oDisconnect in the BCSM Event when set to true.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (false), do not arm for oDisconnect
         1 (true), arm for oDisconnect
Default: 0 - false
Notes:
Example: armDisconnectAtp 1

armDisconnectLeg1

Description: On disconnect requests, do we include Leg1 disconnects.
Default: 1
Allowed: 0 (false), 1 (true)

armDisconnectLeg2

Description: On disconnect requests, do we include Leg2 disconnects.
Default: 1
Allowed: 0 (false), 1 (true)

armLegsSeparately

Description: Produces two BCSM Event Reports; one for Leg1 and one for Leg2.
Default: 1
Allowed: 0 (disabled), 1 (enabled)
ArmTerminateTriggers
Default: 0
Allowed: 0 = Only use originating ('o') type EDPs
1 = Enable arming of originating ('o') and terminating ('t') type EDPs

AssumePreArrangedEnd
Description: Enables the logic in slee_acs that handles prearranged TCAP ends. This ensures the clean shut down of the call dialog and all related events.
Default: 0
Allowed: 0 (disabled), 1 (enabled)
Notes: This may be useful in cases where dialogs and events are leaking, yet the system appears to be operating normally.

atDisconnectMM_Leg1Interrupt
Description: Should arm disconnect on Leg1 as
Default: 0
Allowed: 0 (notify), 1 (interrupt)

atDisconnectMM_Leg2Interrupt
Description: Should arm disconnect on Leg2 as
Default: 1
Allowed: 0 (notify), 1 (interrupt)

AuditChallenge
Description: This should not be required to be set in an operational environment. Set this parameter to 0 (zero) unless running on an SMS.
Default: 0
Allowed: 0 (disabled), 1 (enabled)
Example: AuditChallenge 0

CallInitiationExtensionForIdp
Syntax: CallInitiationExtensionForIdp = int
Description: Determines whether the call initiation node should place the SLEE call ID in the configured extension.
Type: Integer
Optionality: Optional
Allowed:
Default:
Notes: The CallInitiationExtensionForIdp and extensionNumber (on page 95) configuration parameters in acs.conf can be used to correlate EDRs generated from two calls that involve the Call Initiation node.
Example: CallInitiationExtensionForIdp = 123
CallInitiationTimeoutToleranceSeconds

**Description:** This parameter is for use with the Call Initiation node (CIN).

**Default:** 10

**Allowed:** Maximum 0xFFFF (18 hours)

**Notes:** This value is added to the No Answer timeout value in the CIN to set an overall tolerance timer in the outgoing TCAP interface. When the sum of these two values is reached the TCAP interface will send a TCAP CANCEL back to ACS to defend against the event of lost responses from the SSF.

CallInitiationUseContextInd

**Syntax:** `CallInitiationUseContextInd value`

**Description:** Defines whether the indicator values are obtained from the call context buffer (so can be set through the Set Indicator node or denormalization rules) or are fixed.

**Type:** Integer

**Optionality:** Optional (default used if not set).

**Allowed:** 0, 1, 2, 3

**Default:** 0

**Notes:**
- 0=All indicator values, including NoA, set to the original values (NoA = 4, ScrnInd = 3, PresInd = 0, NumIncomplete = 0).
- 1=All indicator values, except NoA, set to original values. The NoA value would come from the context and could be altered using denormalization rules.
- 2=NoA set to original value. Other indicator values come from context and could be altered through Set Indicator nodes in the control plan.
- 3=All indicator values would come from the context. The NoA value could be altered through denormalization rules and the other indicator values could be altered through Set Indicator nodes in the call plan.

In all cases the NumberPlan will be set to 1.

**Example:** `CallInitiationUseContextInd 2`

CalledPartyBcdToNoaMap

**Syntax:** `CalledPartyBcdToNoaMap = "0,1,2,3,4,5,6,7"`

**Description:** Used to convert MAP nature of address (NOA) indicators, such as CAMEL BCD, to the ISUP standard used by ACS for internal NOA values.

**Type:** Array

**Optionality:** Optional (default used if not set).

**Allowed:** This array uses the position in the array (starting at 0) to determine the MAP NOA to match, and the value to determine the ISUP NOA to translate to.

**Default:** 2,4,3,5,1,0,0,0

That is, change MAP to ISUP as follows:

<table>
<thead>
<tr>
<th>MAP NOA</th>
<th>ISUP NOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (unknown)</td>
<td>2 (unknown)</td>
</tr>
<tr>
<td>1 (international)</td>
<td>4 (international)</td>
</tr>
<tr>
<td>2 (national)</td>
<td>3 (national)</td>
</tr>
<tr>
<td>3 (network-specific)</td>
<td>5 (network-specific)</td>
</tr>
<tr>
<td>4 (subscriber)</td>
<td>1 (subscriber)</td>
</tr>
<tr>
<td>5, 6, 7</td>
<td>0 (unknown)</td>
</tr>
</tbody>
</table>

**Notes:**
Example:  

```
CalledPartyBcdToNoaMap = "2,4,2,5,1,0,0,0"
```

callProcessingAllowedAfterAPartyDisconnect

**Syntax:**  
callProcessingAllowedAfterAPartyDisconnect 0|1

**Description:**  
Whether or not to allow call processing after the A party has hung up.

**Type:**  
Boolean

**Optionality:**  
Optional (default used if not set).

**Allowed:**  
0, 1

**Default:**  
0 (not allowed)

**Notes:**  
Setting this parameter to 1 leaves call processing set to true on receipt of 
TC_CONTINUER(BRCSM(oDisconnect,Leg1,Interrupted))

**Example:**  
callProcessingAllowedAfterAPartyDisconnect 1

CancelChar

**Description:**  
The character used by the user to cancel the previously entered digits.

**Default:**  
B (Hex value)

**Allowed:**  
Entry char and cancel char may be specified as hex digits or * or #. However, # 
must be entered as \# to stop it being interpreted as a comment.

CarrierCodeDisposal

**Syntax:**  
CarrierCodeDisposal 0|1

**Description:**  
How the carrier code call context variable is handled in outgoing connect 
operations.

**Type:**  
Boolean

**Optionality:**  
Optional, default used if not set.

**Allowed:**  
0 
The carrier code is prefixed to the termination number.
1 The Termination number is not modified. This 
effectively nullifies the function of any 
Set Carrier Code 
feature node.

**Default:**  
0

**Notes:**  
Example:  
CarrierCodeDisposal 0

ChainCountLimit

**Description:**  
This limits the number of times the control plan is allowed to chain to other ACS 
services during a single call.

**Default:**  
8

**Allowed:**  
Any non-zero positive integer.

**Notes:**  
The digit entered indicates the number of ServiceHandovers possible in a single 
call.
This is most important in VPN, where it stops station-forwarding loops.

CheckMOLIPrefix

**Description:**  
This specifies the prefix on a dialed number that identifies it as containing MOLI 
(Mobile Location Indicator) information.

**Default:**  
029
Allowed: Only a single prefix is supported, with a length of 1 to 20 characters.

Notes: If a called number has the prefix specified, the ACS chassis will remove the prefix and apply MOLI decoding rules. This places the three digit MOLI code from the number into the calling network address field.

CollectInfoReturnsAll

Description: When sending an RRB+CI, (Request Report BCSMEvent and Collect Information) though the service asks for 1 digit at a time, the SSP will always send 'previously sent DN+the extra digit'.

Default: 0
Allowed: 0 (false), 1 (true)

Notes: The ETSI INAP specification is unclear as to whether the return result should be all the digits collected thus far, or just the most recent digit. This configuration option enables you to specify what behavior to expect.

CopySpareBits

Description: slee_acs copies the following data from the indicated source:
- Presentation restricted and screening indicators from called party number
- INN and screening indicator from original called party number

Default: 0
Allowed: 0 (copies the data from the relevant parameter in the Initial DP on the grounds that they are defined as spare in the ETSI standards)
1 (copies from elsewhere)

DfcOnIpAbort

Description: Should we Dfc to the SSP when the IP dialog is doored.

Default: 0
Allowed: 0 (no), 1 (yes)

DialledHashEncoding

Description: Enter the network encoding for # in BCD.

Default: C (Hex value)

DialledStarEncoding

Description: Enter the network encoding for * in BCD.

Default: B (Hex value)

dialogTickInterval

Syntax: dialogTickInterval interval

Description: The time during which dialog timers are checked.

Type: Integer
Units: Seconds
Optionality: Optional
Allowed: interval \( \geq 0 \)
### Chapter 5

#### Configuring the acs.conf

**dialogTickInterval**

Default: The `dialogTickInterval` parameter is omitted.

Notes: If the `dialogTickInterval` parameter is omitted, the SLEE sets to 10 the time during which dialog timers are checked.

- If `interval = 0`, the SLEE sets to 10 the time during which dialog timers are checked.
- If `interval > 0`, `interval` is the time during which dialog timers are checked.

Example: `dialogTickInterval 15`

---

**disarmEDPs**

Description: How to handle EDPs which may still be armed on the SSP.

Default: 1

Allowed:

- 0 = Never disarm oAbandon (assume switch always disarms)
- 1 = Always explicitly dis-arm and re-arm for a subsequent connect.
- 2 = If oAbandon is still armed, and a subsequent connect wants it armed, then do nothing. If the subsequent connect does not want it armed, then explicitly clear it.

---

**DisconnectMidCallJumpBack**

Description: Should a Disconnect node instead generate a MidCallJump if there is a MidCallMark pending?

Default: 1

Allowed:

- 0 (no), 1 (yes)

---

**edpArmAbandoned**

Description: When an Attempt Terminate is performed in ETSI, there are a number of cases for which the switch may test, as not all switches support all cases.

Default: 0

Allowed:

- 0 This exit branch will never be followed from the Attempt Terminate or Follow Me nodes.
- 1 This exit branch will be followed.

---

**edpArmAnswer**

Description: When an Attempt Terminate is performed in ETSI, there are a number of cases for which the switch may test, as not all switches support all cases.

Default: 0

Allowed:

- 0 This exit branch will never be followed from the Attempt Terminate or Follow Me nodes.
- 1 This exit branch will be followed.

---

**edpArmBusy**

Description: When an Attempt Terminate is performed in ETSI, there are a number of cases for which the switch may test, as not all switches support all cases.

Default: 0

Allowed:

- 0 This exit branch will never be followed from the Attempt Terminate or Follow Me nodes.
- 1 This exit branch will be followed.
edpArmNoAnswer
Description: When an Attempt Terminate is performed in ETSI, there are a number of cases for which the switch may test, as not all switches support all cases.
Default: 0
Allowed: 0 This exit branch will never be followed from the Attempt Terminate or Follow Me nodes.
1 This exit branch will be followed.

edpArmRouteSelectFailure
Description: When an Attempt Terminate is performed in ETSI, there are a number of cases for which the switch may test, as not all switches support all cases.
Default: 0
Allowed: 0 This exit branch will never be followed from the Attempt Terminate or Follow Me nodes.
1 This exit branch will be followed.

edpSetNoAnswerTimer
Description: Options for handling no answer.
Default: 1
Allowed: 0 = Never (never set the applicationTimer)
1 = Always (always set the applicationTimer to the requested value)
2 = Non-Zero (override only nonzero requested values to the NoAnswerTimeout value)
3 = Override (always override the requested value to the NoAnswerTimeout value)
4 = Override Zero (override the requested value to the NoAnswerTimeout value if the requested value is zero)

edpUseNoAnswerTimer
Description: This flag indicates whether to explicitly tell the switch how long to wait for NoAnswer. Some switches do not like being told, in which case we will omit the parameter and let it use a network default.
Default: 1
Allowed: 0 (disabled), 1 (enabled)

emptyDraIsError
Syntax: emptyDraIsError = true|false
Description: Determines whether to retain the original behavior of reporting an error if the normalized DRA is empty, or suppress this error.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 1 true
0 false. This error will not be reported and the processing of the call will proceed as normal.
Default: 1
Notes:
Example: emptyDraIsError = 1
EntryChar
Description: The character used to indicate the end of input.
Default: C (Hex value)
Allowed: Entry char and cancel char may be specified as hex digits or * or #. However, # must be entered as \\# to stop it being interpreted as a comment.

ETC_CorrelationIdInIPAddr
Description: If on, appends the SRF correlation ID to the IP's address.
If off, uses the proper field in an ETC message for containing the SRF correlation ID.
Default: 0 (off), 1 (on)

ETC_MinCorrelationDigits
Description: The SRF correlation ID digits (used above) out to a fixed number of digits.
Default: Allowed:

ETC_SCF_ID
Description: Contains the SCF ID.
If the ETC_CorrelationIdInIPAddr is 1, then the IP prefix set is appended with the correlation ID and then appended with the value of ETC_SCF_ID, if it is set in the acs.conf file.
If ETC_SCF_ID is not set in the acs.conf file, the SCF ID is not appended. If ETC_CorrelationIdInIPAddr is 0, then the SCF ID and correlation ID are sent as separate parameters in the ETC message.
Default: Allowed: The SCF ID

extraStats
Description: Should we record extra statistics. See Extra statistics (on page 91) for the list.
Default: 0
Allowed: 0 (no), 1 (yes)

fakeAcrCallReleaseAtMaxDuration
Syntax: fakeAcrCallReleaseAtMaxDuration 0|1
Description: If this flag is set, then ACS assumes that a CAMEL phase 2 call is released with the call duration greater or equal to the maximum call duration period, and the call is treated like a CAMEL phase 3 call with the callReleasedAtTcpExpiry present.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 1 (true), 0 (false)
Default: 0
Notes: Example: fakeAcrCallReleaseAtMaxDuration 0
FakeAcrCallReleaseAtTcpExpiry

**Description:** Using CAP2, when you receive and process an Apply Charging Report it is unclear if you should expect a subsequent EventReportBCSM (caller/called hang-up case) or not (switch force disconnect case).

**Default:** 0

**Allowed:** 0 (not set), 1 (set)

**Notes:** CAP3 includes the callReleaseAtTcpExpiry flag to CAP3’s ACR to clarify this processing.

To enable processing to be clear while using CAP2, ACS attempts to detect the case by sniffing the primitive that contained the ACR to see if it also contains an ERBCSM.

If it does not contain an ERBCSM, it can be assumed that none is coming. To provide the ACR functions with the necessary data, we will set the callReleaseAtTcpExpiry flag on the ACR.

**Example:**

FakeAcrCallReleaseAtTcpExpiry 0

fakeMissingAcrAtDisconnection

**Syntax:** fakeMissingAcrAtDisconnection 0|1

**Description:** When the B party hangs up and oDisconnect leg 2 is armed as interrupted, NCC expects an Apply Charging Report followed by an Event Report BCSM to be returned by the SSP.

Some SSPs only return an Event Report BCSM. In this case setting fakeMissingAcrAtDisconnection to 1 will replicate the anticipated behavior.

**Type:** Boolean

**Optionality:** Optional (default used if not set)

**Allowed:** 0 (false), 1 (true)

**Default:** 0

**Notes:** In some cases, the Event Report BCSM is sent before the Apply Charging Report. This is non CAP standard behavior. In this case the parameter should be set to 0.

**Example:**

fakeMissingAcrAtDisconnection 0

fciInSeparateMessageAllOperations

**Syntax:** fciInSeparateMessageAllOperations 0|1

**Description:** Whether or not to send the FurnishChargeInformation in a separate TCAP message, before the TCAP message is sent.

**Type:** Boolean

**Optionality:** Optional (default used if not set).

**Allowed:** 0, 1

**Default:** 0 (do not send)

**Notes:** This applies to all operations, not just a Connect.

**Example:**

fciInSeparateMessageAllOperations 1

fciInSeparateMessage

**Syntax:** fciInSeparateMessage 0|1

**Description:** Whether or not to send the FurnishChargeInformation in a separate TCAP message, before the TCAP message is sent.

**Type:** Boolean

**Optionality:** Optional (default used if not set).
Allowed: 0, 1
Default: 0 (do not send)
Notes: This only applies to a Connect operation.
Example: fciInSeparateMessage 1

fciMaximumLength
Description: Maximum length of FCI binary data record generated by concatenating FCI tariff codes.
Default: 200
Allowed: Integer, in the range 1-200.

fciSeparator
Description: Optional separator between concatenated FCI tariff codes.
Default: "
Allowed:

FirstDigitTimeout
Description: This indicates the time to wait in seconds for the first digit to be entered.
Default: 4
Allowed: Any non zero, positive integer.

GlobalProfileMaxAge
Description: The maximum age, in seconds, that the global profile and global Control Plan is allowed to reach before it is reloaded from the database.
Default: 300
Allowed: Integer
Notes: The global profile and global Control Plan age is checked at the start of a call.

ignoreNumberPlanForConnectToContinue
Syntax: ignoreNumberPlanForConnectToContinue 1|0
Description: Determines whether to ignore the number plan indicator when comparing the DRA and the triggered called number while checking if a connect or continue message should be sent.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 1 (ignore), 0 (do not ignore)
Default: 0
Notes: Example: ignoreNumberPlanForConnectToContinue 0

InterDigitTimeout
Description: This indicates the time, in seconds, to wait for the next digit to be entered.
Default: 4
Allowed: Integer
Chapter 5

**InternalErrorAction**

Description: This indicates the required action if there is an unexpected internal error.

Default: disconnect

Allowed: disconnect, continue

**IPProtocolInfo**

Description: Use INAP to talk to Intelligent Peripherals.

Default: 1

Allowed: No other values are currently supported.

**maxAnnouncementTextBytes**

Syntax: maxAnnouncementTextBytes value

Description: Maximum number of bytes allowed in the text field of a PlayAnnouncement or PromptAndCollectUserInformation operation.

Type: Integer

Optionality: Optional

Allowed: Positive integer

Default: 80

Notes:

Example: maxAnnouncementTextBytes 80

**MaxPromptDigits**

Description: This parameter indicates the maximum number of digits to be entered.

Default: 255

Allowed:

**MinZeroTimeRemainingPeriod**

Description: Sets the amount of time (in seconds) for handling duplicate ACR on race condition during hang-up of secondary reservation time.

Default: 5

Allowed:

**NoAnswerTimeout**

Description: Time (in seconds) before a call returns No Answer.

Default: 10

Allowed: Integer

**NoCallPlanAction**

Description: This parameter indicates the required action if there is no control plan.

Default: continue

Allowed:

**NoCallPlanCause**

Description: Release cause to return to SSP if no Control Plan exists and if NoCallPlanAction is "disconnect".

Default: 1
NoCallPlanError
Description: This indicates the severity level of the error generated.
Default: NOTICE
Allowed: • NOTICE
        • WARNING
        • ERROR
        • CRITICAL
Notes: Errors are logged in two places:
        • SMS alarm system
        • /var/adm/messages

NoDatabaseConnectAction
Description: There is no connection to the database.
Default: 
Allowed: 

NoServiceAction
Description: This indicates the required action if there is no ServiceEntry in acs.conf for this
Service Name.
Default: disconnect
Allowed: disconnect, continue

NoServiceError
Description: This indicates the severity level of the error generated.
Default: WARNING
Allowed: • NOTICE
        • WARNING
        • ERROR
        • CRITICAL
Notes: Errors are logged in two places:
        • SMS alarm system
        • /var/adm/messages

OverrideDefaultIPDigitTimeout
Description: This indicates whether to override the default IP settings with those listed below when waiting for digits to be entered.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (Disabled), 1 (Enabled)
Default: 0
Notes: 
Example:
overFci

Syntax: overwriteFci 0|1

Description: Flag to control when a new FCI is appended to an existing FCI or overwrites an existing FCI.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: 0 (append to existing), 1 (overwrite existing)

Default: 0

Notes: Example: overwriteFci 1

PersistantAuthorisationInfo

Description: Should the last used PIN Number and A/C Numbers be copied across during a ServiceHandover.

Default: 1

Allowed: 0 (no), 1 (yes)

postAnswerBeepTimer

Description: The number of milliseconds to delay the notification announcement to be sent from the switch.

Default: 1000

Allowed: Integer

recordSmpStatistics

Description: Whether to record SMS statistics. See Statistics captured (on page 89) for the list of SMS stats.

Default: 1

Allowed: 0 (no), 1 (yes)

rrbcsmePrefix

Description: Optional prefix digits to send on Connect messages arming ERBCSMS.

Default: 

Allowed: 

sciMaximumLength

Description: Truncation (by FCS) for SCI data payload.

Default: 200

Allowed: Integer in the range 1-200.

roundDownACRCallDuration

Syntax: roundDownACRCallDuration 0|1

Description: Option to round down ACR call duration when converting from deciseconds to seconds

Type: Boolean

Optionality: Optional (default used if not set).
Chapter 5, Configuring the ACS.conf

Allowed: 0 (off), 1 (on)
Default: 0 (round up)
Notes:
Example: roundDownACRCallDuration 0

sendFciWithReleaseCall
Description: If set to 1, ACS will send a FurnishChargingInformation in a TCAP message where the call:
- Has been through a Set Tariff Code macro node
- Is passing through a Point of Return is returning a releaseCall
Default: 0 (ACS will not send an FCI)
Allowed: 0, 1

sendIdenticalCliInConnect
Syntax: sendIdenticalCliInConnect 0|1
Description: Whether to send callingPartyNumber in Connect, even if it is the same as in IDP.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 1 True. acsChassis will set the CallingPartyNumber in the Connect, even if it is identical to the one in the IDP
0 False.
Default: 0
Notes:
Example: sendIdenticalCliInConnect 1

smsStatsPeriodCheck
Description: This specifies how often ACS should check the SMS stats shared memory is valid.
Default: -1
Allowed: -1 no checking any non zero, positive integer.

sourceSelectionOnHandover
Syntax: sourceSelectionOnHandover int
Description: Set to 1 (one) to enable reload source selection on service handover, for example; this enables profile tag values to be reloaded from source when a control plan hands over to another service.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 1 – Enables source selection reload.
0 – Not set.
Default: Source selection reload disabled.
On service handover, reloading source selection will overwrite profile tag values that are set in the control plan.

For example, a control plan that is triggered by CCS captures the subscriber ID. The control plan hands back to CCS on completion. On handover, source selection is reloaded and the subscriber ID, captured in the control plan, is overwritten with the originating number.

Example:

```
sourceSelectionOnHandover 1
```

**statsReportingLevel**

**Description:** Sets the level of detail for statistics reporting.

**Default:** 0

**Allowed:**

- 0 Empty
- 1 service name
- 2 INAP service key
- 3 service name, INAP service key
- 4 Control Plan name
- 5 service name, Control Plan name
- 6 INAP service key, Control Plan name
- 7 service name, INAP service key, Control Plan name

**syslogLevel**

**Description:** This option defines, in a bit field, the behavior of certain syslog commands in ACS. It defines whether or not the message is printed out.

Currently this configuration parameter covers two areas of system log messages:
- The warning printed on the receive of a TC_U_ERROR
- The error printed on the receive of a TC_REJECT

**Format:** The format may be any of the following:

1) A plain decimal number, of the form:

```
syslogLevel 4294967295
```

2) A hex number, of the form (case insensitive):

```
syslogLevel 0xffffffff
```

3) A octal number, of the form:

```
syslogLevel 012345670
```

Each bit in the field is either 0 or 1. If 0, syslog messages for that error will not be printed. If 1, the error will be printed.

Only the least two bits (the last two bits on sun and hpux hardware) in the number currently define any behavior:

- LSB 1: Defines whether or not the warning messages for TC_U_ERROR are printed.
- LSB 2: Defines whether or not the warning messages for TC_REJECT are printed.

**Default:** 0xffffffff

**Allowed:** 0xffffffff = all possible syslog messages are printed.
Notes: '0' is required as the first character.
To turn off syslog warnings for the receive of TC_U_ERROR messages, set the configuration option as one of the following formats:
```plaintext
syslogLevel 0xffffffff
syslogLevel 0x2
```
(as only bits 1 and 2 control any output currently, the rest of the number is unneeded).
To turn off errors in the syslog on the receive of TC_REJECT messages, use the configuration option: `syslogLevel 0x1`
To turn off both: `syslogLevel 0x0`

**TcAbortOnPreArrangedEnd**

**Description:** If the AssumePreArrangedEnd parameter is not enabled, this parameter will send an abort to kill the dialog.

**Default:** 1

**Allowed:** 0 (Disabled), 1 (Enabled)

**TrimFStop**

**Description:** This is used to trim the trailing 'F' on the Called Party and/or Calling Party number.

**Default:** 0

**Allowed:** 0 (Do not trim), 1 (Trim)

**tzDefault**

**Description:** Where no match is found in a geography set, this parameter sets the default time zone to use.

**Default:** 

**Allowed:**
- The caller's time zone
- The called time zone

**UseContinueOperation**

**Syntax:** `UseContinueOperation 0|1`

**Description:** Determines whether to send an INAP Continue operation, rather than a Connect operation.

**Type:**

**Optionality:**

**Allowed:**
- 0 Send Connect
- 1 Attempt to send INAP Continue

**Default:** 0

**Notes:** A Continue is sent instead of a Connect if and only if:
1. the InitialDP operation has been triggered from the TermAttemptAuthorized detection point and the pending termination number is identical to the service number (that is, the pending termination number has not been changed by the service loader or Control Plan logic.)
   OR:
2. `UseContinueOperation` is 1 and all of the following statements are true:
- The cut and paste parameter has not been requested. (for example, by the Cut and Paste node.)
- No digits are to be cut from the calling number. (Specified, for example, by the cut calling number node)
- The number to be terminated to is exactly the same as the Called Party Number received in the InitialDP.
- Calling Party Number has been specified for the Connect or the Calling Party Number to go in the connect is exactly the same as the Calling Party Number received in the InitialDP.
- No Original Called Party ID has been specified for the Connect or the Original Called Party ID to go in the connect is exactly the same as the Original Called Party ID received in the InitialDP.
- No Redirecting Party ID has been specified for the Connect or the Redirecting Party ID to go in the connect is exactly the same as the Redirecting Party ID received in the InitialDP.
- No extensions are to be sent in the Connect.
- The oMidCall event detection point has not been armed.
- The InitialDP operation has been triggered from the AnalyzedInformation detection point or from the TermAttemptAuthorized detection point
- No redirection information is to be sent in the Connect
- suppressionOfAnnouncement is to be sent in the Connect
- oCSIApplicable is to be sent in the Connect

Example: UseContinueOperation 0

UseLanguageExtensions

Description: This indicates whether or not the language features of the SRF are used to set the language in which the SRF plays the announcement.

Default: 0

Allowed: 0 (Disabled), 1 (Enabled)

UseReplication

Description: This determines whether ACS should use the replication system to update the database, or should write directly to the database.

Default: 1

Allowed: 0 If the SMF has been installed on the same machine as the SCP and if they share the same database installation
        1 If the SCP is a separate machine from the SMF

PIN logging parameters

The following parameters are optional and may be added when required.
PINLogEnable
Description: If enabled, slee_acs will log the PIN to a separate PIN file:
/IN/service_packages/SMS/cdr/current/PIN_yyyymmddhhmms_pid.txt
Where:
- yyyymmddhhmms is the date and time the file was opened, and
- pid is the process id for the slee_acs process which is writing to the file.
This file is periodically moved to: /IN/service_packages/SMS/cdr/closed/
If disabled, no PIN logging is done and other PINLog entries in the acs.conf file are ignored.
Default: 1
Allowed: 0 (Disabled), 1 (Enabled)

PINLogFail
Description: If enabled, slee_acs will log all unsuccessful PIN attempts to the PIN file.
Default: 1
Allowed: 0 (Disabled), 1 (Enabled)

PINLogMaxAge
Description: The time (in seconds) before slee_acs will close the file and move it to:
/IN/service_packages/SMS/cdr/closed/
Default: 3600
Allowed: Any non zero, positive integer.

PINLogMaxSize
Description: The size (in KB) before slee_acs will close the file and move it to:
/IN/service_packages/SMS/cdr/closed/
Default: 8
Allowed: Any non zero positive integer.

PINLogSuccess
Description: If enabled, slee_acs will log all successful PIN attempts to the PIN file.
Default: 0
Allowed: 0 (Disabled), 1 (Enabled)

Call Dump parameters
The following parameters are optional and may be added when required.

CallDumpEnabled
Description: Is call dumping enabled?
Default: 0
Allowed: 0 (no), 1 (yes)

CallDumpSeconds
Description: Minimum number of seconds between generating call dumps.
Default: 60 (means no limit)
Allowed:

**CallDumpDir**

Description: Output directory for call dump files.
Default: “/tmp”
Allowed: Any valid directory.

**CallDumpSeverity**

Description: Error level threshold to reach in generated syslog message to trigger call dump.
Default: ERROR
Allowed: Notice, Warning, Error, Critical

Notes: Not currently used for this purpose. If set to ERROR or below, then call dumps will be generated by the “handleInternalError” function in the SLEE chassis.

**CallDumpMessage**

Description: Sub-string to match in generated syslog message to trigger call dump. Not currently implemented. Reserved for future use.
Default: “”
Allowed:

---

**Call Information Report parameters**

The following parameters are optional and may be added when required.

**SendCIR**

Description: This is the primary flag for controlling the sending of the Call Information Report.
Default: 0
Allowed: 0 (No logging will be done), 1 (Chassis data that is produced during execution of a Control Plan will be logged and placed in the EDR).

Notes: The format for the logging is customer-specific and is set up at installation.

**AskCirAttemptElapsedTime**

Description: This indicates report inclusion of how long is spent attempting to connect (that is, ringing).
Default: 1
Allowed: 0 (Not included), 1 (Included)

**AskCirStopTime**

Description: This indicates report inclusion of a call finish time.
Default: 1
Allowed: 0 (Not included), 1 (Included)
AskCirConnectElapsedTime
Description: This indicates report inclusion of the elapsed time of a call.
Default: 1
Allowed: 0 (Not included), 1 (Included)

AskCirCallAddress
Description: This indicates report inclusion of the called number.
Default: 1
Allowed: 0 (Not included), 1 (Included)

AskCirReleaseCause
Description: This indicates report inclusion of the cause of the release.
Default: 1
Allowed: 0 (Not included), 1 (Included)

NokiaCIR
Description: If enabled, ACS will use Nokia CIR sending rules.
Default: 0
Allowed: 0 (disabled), 1 (enabled)

usePendingTnForCaInCdr
Syntax: usePendingTnForCaInCdr 0|1
Description: Sets whether or not to use the pending TN value in the CA field in the ACS CDR.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: 0 – Do not use the pending TN value to set the CA field in the ACS CDR.
1 – When AskCirCallAddress is set to false, use the pending TN value to set the CA field in the ACS CDR.
Default: 0
Example: usePendingTnForCaInCdr 0

Statistics captured
A range of statistics are gathered automatically by the ACS service. These statistics are gathered by the ACS service logic and stored in the SMS database through the SMS statistics mechanism.

To gather any of these statistics, the `acs.conf` configuration parameter `recordSmpStatistics` (on page 82) must be set to 1.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALLS_INITIATED</td>
<td>This statistic counts the number of calls that successfully encountered by the ACS service loader. It is incremented by one for each call that is loaded by the ACS service loader, and incremented before any service logic (such as loading a Control Plan) is done. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>Statistic</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>CALLS_UNMATCHED_CLI</td>
<td>This statistic counts the number of calls whose CLI cannot be matched to a Control Plan. If the service initiated is 'ACS_Outgoing', and a Control Plan cannot be found in the DB that links successfully to the CLI of the IDP of the call, this statistic is incremented by one. A successful link between CLI and Control Plan requires the CLI to be linked to a Control Plan, the Control Plan to be scheduled to be available at the time of the call, and the Control Plan to be successfully compiled. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_MATCHED_CLI</td>
<td>This statistic counts the number of calls whose CLI successfully matches a Control Plan and where the Control Plan is loaded successfully. This statistic is incremented by one for each call which is passed onto the Control Plan engine for call processing. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_UNMATCHED_SN</td>
<td>This statistic counts the number of calls whose service number (SN) cannot be matched to a Control Plan. If the service initiated is 'ACS' or 'ACS_Management', and a Control Plan cannot be found in the DB that links successfully to the SN of the IDP of the call, this statistic is incremented. A successful link between SN and Control Plan requires the SN to be linked to a Control Plan, the Control Plan to be scheduled to be available at the time of the call, and the Control Plan to be successfully compiled. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_MATCHED_SN</td>
<td>This statistic counts the number of calls whose SN successfully matches a Control Plan and where the Control Plan is loaded successfully. This statistic is incremented by one for each call which is passed onto the Control Plan engine for call processing. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_UNMATCHED_NAMED_CALLPLAN</td>
<td>This statistic counts the number of times a call is made to a service (as defined as a service in the ACS configuration file) which is not one of 'ACS', 'ACS_Outgoing' or 'ACS_Management' but which does not have a Control Plan associated with the service. The service name should match the name of the Control Plan exactly, otherwise the Control Plan will not be found. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLSMATCHED_NAMED_CALLPLAN</td>
<td>This statistic counts the number of times a call is made to a service (as defined as a service in the ACS configuration file) which is not one of 'ACS', 'ACS_Outgoing' or 'ACS_Management' and for which a Control Plan is successfully found in the ACS database. The service name should match the name of the Control Plan exactly, otherwise the Control Plan will not be found. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_INVOKING_CALLPLAN</td>
<td>This statistic is incremented by one each time a Control Plan is successfully loaded for call processing by the ACS service loader. The sum of CALLS_MATCHED_SN, CALLS_MATCHED_CLI and CALLS_MATCHED_NAMED_CALLPLAN should equal the value of this statistic. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_DISCONNECTED</td>
<td>This statistic is incremented each time a call is ended by sending a</td>
</tr>
</tbody>
</table>
### Extra statistics

The following extra statistic definitions have been defined for application "Acs_Service". These statistics are turned off by default. Turn them on by setting the `acsChassis` parameter `extraStats` (on page 77) to 1. For each required extra statistic, turn the statistic on using the SMS Statistics Management screen (See SMS User's Guide).

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALLS_AT_ABORT</td>
<td>Number of Attempt Termination Actions performed by ACS that were aborted.</td>
</tr>
<tr>
<td>CALLS_AT_ANSWER</td>
<td>Number of Attempt Termination Actions performed by ACS that were answered.</td>
</tr>
<tr>
<td>CALLS_AT_BUSY</td>
<td>Number of Attempt Termination Actions with a busy response.</td>
</tr>
<tr>
<td>CALLS_AT_NO_ANSWER</td>
<td>Number of Attempt Termination Actions performed by ACS that were not answered.</td>
</tr>
<tr>
<td>CALLS_AT_RSF</td>
<td>Number of Attempt Termination Actions with a route selection failure response.</td>
</tr>
<tr>
<td>CALLS_CHG_ABORT</td>
<td>Number of Termination and Charging actions performed by ACS that were aborted.</td>
</tr>
<tr>
<td>CALLS_CHG_ANSWER</td>
<td>Number of Termination and Charging actions performed by ACS that were answered.</td>
</tr>
<tr>
<td>CALLS_CHG_BUSY</td>
<td>Number of Termination and Charging actions with a busy response.</td>
</tr>
<tr>
<td>CALLS_CHG_COUNT</td>
<td>Number of Termination and Charging actions performed by ACS Chassis.</td>
</tr>
<tr>
<td>CALLS_CHG_HOLD_TIME</td>
<td>Total charged time of Termination and Charging actions performed by ACS Chassis.</td>
</tr>
<tr>
<td>CALLS_CHG_NO_ANSWER</td>
<td>Number of ACS Termination and Charging actions that were not answered.</td>
</tr>
<tr>
<td>CALLS_CHG_RSF</td>
<td>Number of Termination and Charging actions with route select failure response.</td>
</tr>
<tr>
<td>CALLS_ETC_COUNT</td>
<td>Number of temporary connections established (for example, for announcements.</td>
</tr>
<tr>
<td>CALLS_ETC_HOLD_TIME</td>
<td>Total duration of established temporary connections.</td>
</tr>
<tr>
<td>Statistic</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PROMPT_AND_COLLECT</td>
<td>Total number of Play Announcement and Collect User Input operations performed.</td>
</tr>
</tbody>
</table>

**acsStatsLocal (SLC)**

**Introduction**

The acsStatsLocal takes a request from the chassis and passes it on to the acsStatsMaster, so that the chassis is able to continue processing calls. Once a reply has been received, the acsStatsLocal informs the chassis that it has a result.

**Parameters**

The following parameters must be configured with the correct value.

**masterStatsServer**

- **Description:** Host name of the machine running the master stats server.
- **Default:** No default
- **Allowed:** Any string representing a host name, but must be the same as the `masterStatsServer` (on page 67) of the `acsStatsMaster` section. For example, scp1.telconame.com

**port**

- **Description:** Port on which the stats master listens for connection attempts.
- **Default:** 1490
- **Allowed:** Must be the same as the `port` (on page 67) of the `acsStatsMaster` section.

**acsChassis Emergency Numbers (SLC)**

**Parameters**

This parameter will assume the default value if it is not configured. This parameter may have multiple entries.

**EmergencyNumber**

- **Syntax:** `EmergencyNumber string`
- **Description:** Enter the Emergency Numbers for the Network. The EmergencyNumber parameters are loaded by the ACS Chassis for use by the service libraries.
- **Default:**
- **Allowed:** There is no checking on the values. However, non-numeric strings as values should have no effect on the processing of the service.
- **Notes:** Emergency Numbers represent destination numbers that the service libraries should not intercept on originating calls. If a service library (ACS/VPN/ABS) receives a line-based call-origination trigger with a destination in the list of EmergencyNumbers, the service library will inform the Chassis that it is to send a Continue back to the SSP. There can be multiple entries.
Example:

EmergencyNumber 911
EmergencyNumber 111
EmergencyNumber 0, etc.

acsChassis INAP Extension Parameters

Introduction

Extension numbers are defined in INAP. A network operator / switch manufacturer may specify arbitrary pieces of extra information to appear in the InitialDP, each identified by an integer type.

Parameters

Use in the following format:

Usage:

```
extensionNumber Number ID [sequence] Type Subfield,Subfield,... [Context Tag]
```

Notes:

The INAP number is a telephone number format, as defined in the ISUP ITU-T recommendations. The INAP address string is a telephone number format, as defined in the MAP ITU-T recommendations.

Number

Description: The number of the extensionNumber. This limit is hard coded into the source. It is simply to separate each extensionNumber so they can be chosen in the CPE.

Default: No default

Allowed: 0 to 9 inclusive

ID

Description: The identification number of the extensionNumber. This is used to identify extensions between clients and servers.

Default: No default

Allowed: The range is imposed by the TC_PROTOS implementation and each must be unique within the configuration file.

Sequence

Description: If the keyword 'sequence' is added before the type, slee_acs expects the extensionNumber it wants wrapped in a sequence tag (as defined in the ITU ASN.1 standard, X.209). In such cases, the context tag to expect must be given.

Default: No default

Allowed: 'sequence', or nothing

Type

Description: The type of extensionNumber. This indicates what sort of information is expected.

Default: No default

Allowed:

- inapnumber
- inapaddressstring
Subfield

Description: The sub field is particular to the type of `extensionNumber`. This sub field data indicates what data is expected when the `extensionNumber` is used. At least one sub field must be specified and if several sub fields are specified then separate each subfield with a comma.

Default: No default

Allowed: See table.

Notes: For those that have no sub fields defined in the standard a placeholder is used. The word ‘value’ needs to be used as a sub field.

This table lists full details of all the options:

<table>
<thead>
<tr>
<th>Type</th>
<th>Sub field</th>
<th># of Digits</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>inapNumber</td>
<td>digits</td>
<td>n</td>
<td>The actual digits</td>
</tr>
<tr>
<td></td>
<td>nqi</td>
<td>1</td>
<td>Number qualifier indicator</td>
</tr>
<tr>
<td></td>
<td>nature</td>
<td>2</td>
<td>Nature of address</td>
</tr>
<tr>
<td></td>
<td>innOrNi</td>
<td>1</td>
<td>emergency network number or number incomplete indicator</td>
</tr>
<tr>
<td></td>
<td>plan</td>
<td>1</td>
<td>Numbering plan</td>
</tr>
<tr>
<td></td>
<td>present</td>
<td>1</td>
<td>presentation restricted indicator</td>
</tr>
<tr>
<td></td>
<td>screening</td>
<td>1</td>
<td>screening indicator</td>
</tr>
<tr>
<td>String</td>
<td>digits</td>
<td>n</td>
<td>The actual digits</td>
</tr>
<tr>
<td></td>
<td>extension</td>
<td>1</td>
<td>Extension</td>
</tr>
<tr>
<td></td>
<td>nature</td>
<td>1</td>
<td>Nature of address</td>
</tr>
<tr>
<td></td>
<td>plan</td>
<td>1</td>
<td>Numbering plan</td>
</tr>
<tr>
<td>inapbcdstring</td>
<td>value</td>
<td>2 * sizeof(int) (usually 8)</td>
<td>Hex representation of the integer for example, &quot;00000002E&quot; for 2E hex</td>
</tr>
<tr>
<td>asnlInteger</td>
<td>value</td>
<td>2 * sizeof(int) (usually 8)</td>
<td>Hex representation of the integer for example, &quot;00000002E&quot; for 2E hex</td>
</tr>
<tr>
<td>asnlEnumerated</td>
<td>value</td>
<td>2 * sizeof(int) (usually 8)</td>
<td>Hex representation of the integer for example, &quot;00000002E&quot; for 2E hex</td>
</tr>
<tr>
<td>asnlBoolean</td>
<td>value</td>
<td>1</td>
<td>1 for true, 0 for false</td>
</tr>
<tr>
<td>asnlOctet</td>
<td>value</td>
<td>n</td>
<td>Hex representation of the octet string</td>
</tr>
<tr>
<td>octets</td>
<td>value</td>
<td>n</td>
<td>Octet string raw data</td>
</tr>
<tr>
<td>Type</td>
<td>Sub field</td>
<td># of Digits</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td>mapsmssubmit</td>
<td>plan</td>
<td>1</td>
<td>Numbering plan</td>
</tr>
<tr>
<td></td>
<td>digits</td>
<td>n</td>
<td>The actual digits</td>
</tr>
<tr>
<td>inapGenericNumber</td>
<td>digits</td>
<td>n</td>
<td>The actual digits</td>
</tr>
<tr>
<td></td>
<td>nqi</td>
<td>1</td>
<td>Number qualifier indicator</td>
</tr>
<tr>
<td></td>
<td>nature</td>
<td>2</td>
<td>Nature of address</td>
</tr>
<tr>
<td></td>
<td>innOrNi</td>
<td>1</td>
<td>emergency network number or number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>incomplete indicator</td>
</tr>
<tr>
<td></td>
<td>plan</td>
<td>1</td>
<td>Numbering plan</td>
</tr>
<tr>
<td></td>
<td>present</td>
<td>1</td>
<td>presentation restricted indicator</td>
</tr>
<tr>
<td></td>
<td>screening</td>
<td>1</td>
<td>screening indicator</td>
</tr>
</tbody>
</table>

**Context Tag**

**Description:** This context tag can be specified to override the universal default tag.

**Optionality:** Optional

**Default:** No default

**Allowed:** The context tag is defined as a hex number. For example, 55 is the hex number 0x55, rather than the decimal number 55.

**Notes:** Usually, the extensionNumber is identified by a universal tag, which depends on the type of extension it is. Sometimes though a site will wish to define a unique special tag, and create a context specific tag for an extension. If this is the case, slee_acs must know about this and it can be specified by adding the context specific tag to the end of the extension line.

**Extension numbers example**

Nokia uses the following extension digits:

- IMSI type 26
- MSRN type 28
- tp_da field type 47

**Example 1**

extensionNumber 0 26 inapaddressstring digits

This entry in the `acs.conf` instructs the system to copy the digits out of extension type 26 into extension slot 0. (The number matching node can then route on these digits, by selecting extension slot 0 in the pull down list.)

**Example 2**

extensionNumber 1 28 inapaddressstring extension,nature,plan,digits

The following MSRN digits are copied into extension slot 1:

1 digit representing extension, 1 digit representing nature, 1 digit representing numbering plan + the actual digits.

**Example 3**

extensionNumber 0 47 mapsmssubmit type,plan,digits

The extension type "mapsmssubmit" allows a parameter of this type, and specifically the "tp_da" field, to be picked from extension digits in the IDP for source selection purposes.
acsChassis Normalization Parameters (SLC)

**NOA and normal rules**

The NOA (nature of address) is a classification to determine in what realm (Local, National or International) a given phone number resides, for the purposes of routing and billing.

**Note:** Details vary between different implementations of phone systems, but the following table is representative.

<table>
<thead>
<tr>
<th>Dialed Digits</th>
<th>NOA (aka NOC, NON)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>477 9425</td>
<td>1 ==&gt; Subscriber</td>
<td>Number within Local Telephone Exchange</td>
</tr>
<tr>
<td>4 477 9425</td>
<td>3 ==&gt; National</td>
<td>Number within Country Telephone Exchange</td>
</tr>
<tr>
<td>64 4 477 9425</td>
<td>4 ==&gt; International</td>
<td>Number within World Telephone Exchange</td>
</tr>
<tr>
<td>477 9425</td>
<td>2 ==&gt; UNKNOWN</td>
<td>Numbering Scheme rule ==&gt; Subscriber</td>
</tr>
<tr>
<td>0 4 477 9425</td>
<td>2 ==&gt; UNKNOWN</td>
<td>Numbering Scheme rule ==&gt; National</td>
</tr>
<tr>
<td>00 64 4 477 9425</td>
<td>2 ==&gt; UNKNOWN</td>
<td>Numbering Scheme rule ==&gt; International</td>
</tr>
</tbody>
</table>

In essence, the subscriber's telephone system *may* try to ascertain the nature by examining the dialed digits. If they can be understood by "built-in" mechanisms, the NOA can unambiguously be one of the values Subscriber, National, International, or a finer classification determined by the protocol variant.

Otherwise the NOA is unknown and the dialed digits must be made unambiguous by a set of (usually simple) rules specified by a Numbering Scheme.

Leading zeros are often ignored, but the leading characters could be any arbitrary sequence that the Numbering Scheme could specify.

Ultimately the usage of NOA is determined by the phone network itself which may classify and possibly modify a phone number while it is being transmitted between the service logic and the switch.

**Number normalization**

People deal with, and a database usually stores, telephone numbers in their normalized form. However, the network gives and receives numbers in a de-normalized form, that is where the NOA is known explicitly.

**Example:**

<table>
<thead>
<tr>
<th>Normalized number:</th>
<th>00441918666223</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-Normalized number:</td>
<td>Nature of Address:</td>
</tr>
<tr>
<td></td>
<td>Digits:</td>
</tr>
</tbody>
</table>

**Possible Natures of Addresses:**

- Subscriber (local) (is 1 with ITU/ETSI CS-1)
- Unknown (is 2 with ITU/ETSI CS-1)
- National (is 3 with ITU/ETSI CS-1)
- International (is 4 with ITU/ETSI CS-1)

**Number denormalization**

Use the *DenormalisationRule* (on page 98) parameter to specify denormalization rules.
Global and service specific normalization

Each individual service decides what numbers need to be normalized, however, the ACS framework provides the conversion functionality. Conversion rules can be global, or specific for each individual service (defined by the ServiceEntry parameters).

Global rules are defined within the acsChassis section, while specific service rules are defined in separate service sections in the acs.conf. Global normalization rules will be used by services for which no specific sections are defined in the acs.conf.

Normalization parameters

The conversion mapping is created through the acs.conf file using the following parameters:

NormalUnknownNOA

Syntax:

Description: This value is the NOA to be used in the code to denormalize a number.
Default: No default
Type: 
Optionality: 
Allowed: 
Notes: The rules to normalize and denormalize numbers should be set up separately. There is no single configuration option to do both.

Example:

NormalUseHex

Syntax:

Description: Indicates whether the converted number is a hexadecimal or decimal value.
Type: 
Optionality: 
Allowed: 0 false (decimal value)
1 true (hexadecimal value)
Default: 0
Notes: 

Example:

NormalisationRule

Syntax: NormalisationRule
(inNOA, inPrefix, noOfDigitsToRemove, outPrefix[, minLength[, maxLength]])

Description: Defines a conversion rule for incoming (denormalized) numbers to normalized numbers.
Default: No default
Type: Array of parameters
Optionality: Optional
Allowed: Valid list of parameters
Notes: Normalization rules are applied based on the best match for the number and NoA, and the value of inPrefix. The rule with the longest matching inPrefix value is applied. If there is more than one matching rule with the same inPrefix value,
then the last rule in the list of matching rules is applied.

Example:  
NormalisationRule (4,0,0,000)

DenormalisationRule

Syntax:  
DenormalisationRule  
\((inPrefix,outNOA,noOfDigitsToRemove,\text{outPrefix}[,.minLength[,.maxLength]])\)  
DenormalisationRule  
\((\text{noa},inNOA,inPrefix,outNOA,noOfDigitsToRemove,\text{DigitsToAdd})\)

Description:  
Defines conversion rule for normalized (internal) numbers to (outgoing) denormalized numbers.

Default:  
No denormalization

Type:  
Array of parameters

Optionality:  
Optional

Allowed:  
Valid list of parameters following either the first or second format.

Notes:  
There are NO spaces within either rule format.

Example:  
DenormalisationRule (800,3,0,-,7,9)  
DenormalisationRule (\text{noa},3,E,4,0,999)

inNOA

Syntax:  
inNOA

Description:  
Incoming numbers which match this NOA and \text{inPrefix} will have the rule applied.

Type:  
Decimal integer

Optionality:  
Mandatory

Allowed:  

Default:  

Notes:  
Incoming prefix can be ‘E’ to specify the global rule for a given NOA, which will map anything not matched by a prefix.  
For NormalisationRule, the number may also need to match the \text{inNOA}.

Example:  
3

inPrefix

Syntax:  
inPrefix

Description:  
All numbers with this prefix have this rule applied.

Type:  
String

Optionality:  
Mandatory

Allowed:  
0-9A-F#*

Default:  
No default

Notes:  
Incoming prefix can be ‘E’ to specify the global rule for a given NOA, which will map anything not matched by a prefix.  
For NormalisationRule, the number may also need to match the \text{inNOA}.

Example:  
00

NOAToAdd

Syntax:  
NOAToAdd

Description:  
The NOA is set to NOAToAdd after denormalization.

Default:  
No default

Type:  
Hexadecimal integer
Optionality: Mandatory

Allowed: 

Notes: Only applies to DenormalisationRule.

Example: 1

defOfDigitsToRemove
Syntax: noOfDigitsToRemove
Description: This number of digits are stripped from the beginning of the number.
Type: Decimal integer
Optionality: Mandatory
Allowed: 

Default: No default

Notes: Outgoing prefix can be 'E' to specify no digits to add to the digit string.

Example: 2

outNOA
Syntax: outNOA
Description: Outgoing numbers which match this NOA and outPrefix will have the rule applied.
Type: Decimal integer
Optionality: Mandatory
Allowed: 

Default: No default

Notes: Only applies in DenormalisationRule.

Example: 3

outPrefix
Syntax: outPrefix
Description: These digits are prepended to the number, after stripping any as specified by NoOfDigitsToRemove.
Type: String
Optionality: Mandatory
Allowed: 0-9A-F#*

Default: No default

Notes: Outgoing prefix can be 'E' to specify no digits to add to the digit string.

Example: 04

minLength
Syntax: minLength
Description: The minimum length number must be to trigger the rule.
Default: 0
Type: Integer
Optionality: Optional (Required if maxLength is used.)
Allowed: 

Notes: If a minimum parameter is present and a maximum parameter is not provided then
only the minimum check is carried out.

Example: 6

**maxLength**

**Syntax:** maxLength

**Description:** The maximum length number can be to trigger the rule.

**Default:** 999

**Type:** Integer

**Optionality:** Optional (if used, minLength is required.)

**Allowed:**

**Notes:** If a minimum parameter is present and a maximum parameter is not provided then only the minimum check is carried out.

Example: 9

**normaliseTerminationNumber**

**Syntax:**

**Description:** Set the engine's terminationNumber, which is printed as TN in the EDR.

**Default:**

**Type:**

**Optionality:**

**Allowed:**

**Notes:** This parameter is only specified at the global level.

Example:

**normaliseServiceNumber**

**Syntax:**

**Description:** Set the EDR serviceNumber, which is printed as SN in the EDR.

**Type:**

**Optionality:**

**Allowed:**

**Notes:** This parameter is only specified at the global level.

Example:

**Play Number Announcement node denormalization rules**

If denormalization is turned on, the number will be denormalized according to the rules in one of the following:

- The section of acs.conf specified by the NumberRulesSection entry in the acsPlayNumberAnnouncement section
- If the NumberRulesSection entry does not specify an acs.conf section, the NumberRulesInteraction section.
Example: This text shows an example number denormalization configuration from `acs.conf` using `acsPlayNumberAnnouncement`.

```plaintext
acsPlayNumberAnnouncement
 NumberRulesSection NumberRulesPNAN :
 NumberRulesPNAN
 DenormalisationRule (62,2,2,E)
 DenormalisationRule (E,2,0,00)
```

If no denormalization rule matches, the number will be played in its normalized form.

Example 1

This example shows a `NormalisationRule`.

```plaintext
NormalisationRule (4,E,0,00)
```

**Results:** Will normalize:

- International Nature Of Address (4) with any prefix (E).
- Will not strip any digits (0), but will prefix 00 to the number.
- This rule would normalize `[International, "6449391234"]` to `"006449391234"`.

Example 2

This example shows a `DenormalisationRule` (on page 98).

```plaintext
DenormalisationRule (0,3,1,E)
```

**Results:** Will denormalize numbers beginning with 0.

- Set the Nature of Address to National (3).
- Strip one digit (1) but will not prefix anything (E).
- This rule would denormalize "049391234" to `[National, "49391234"]`.

Example 3

This example shows a `DenormalisationRule` (on page 98), using the second format.

```plaintext
DenormalisationRule (noa,3,E,4,0,999)
```

**Results:** This rule will:

- denormalize any ICA outgoing number with an NoA of 3
- convert the NoA to 4
- add "999" to it.

acsChassis SLEE Event Size Parameter (SLC)

**Introduction**

The `minimumSizeOfConnectSleeEvent` parameter defines the minimum size for SLEE events containing connect operations from ACS.

You define the `minimumSizeOfConnectSleeEvent` parameter globally in the `acsChassis` section of `acs.conf`. You can also override the global value on a per service basis by defining an override value for the parameter in the service configuration.

For more information, see *Configuring minimumSizeOfConnectSleeEvent per service* (on page 109).
**Important:** For this configuration to work, you must also define `MAXEVENTS` in `SLEE.cfg` of at least the sizes specified for `minimumSizeOfConnectSleeEvent`.

`minimumSizeOfConnectSleeEvent`

**Syntax:** `minimumSizeOfConnectSleeEvent event_size`

**Description:** Sets the minimum size in bytes for SLEE events containing connect operations. You can override the global definition for the minimum size for a service by including a definition for this parameter in the service configuration.

**Type:** Integer

**Optionality:** Optional (default used if not set).

**Allowed:** A valid integer

**Default:** 1024

**Notes:** You must also configure `MAXEVENTS` in the `SLEE.cfg` file for each `minimumSizeOfConnectSleeEvent` definition, using the same value, or a higher value.

**Example:** `minimumSizeOfConnectSleeEvent 16384`

---

**acsChassis ServiceEntry Configuration (SLC)**

**Introduction**

A service entry is a line in `acs.conf` telling `slee_acs` how to handle new calls arriving from the SLEE. They specify:

- Which service loader should handle calls from which SLEE service handle
- How the InitialDP parameters are translated into the call context and outgoing Connect variables

**Service loaders:**

- Load control plans, profiles, etc.
- Copy InitialDP parameters to ACS call context variables
- Construct outgoing Connects.

**Note:** The SLEE service handle is derived from the `SLEE.cfg` file. They are based on the:

- INAP service key in the InitialDP
- Originating SCCP sub-system number of the message containing the InitialDP

For more information about SLEE.cfg service handles, see *SLEE Technical Guide*.

**Syntax**

In `acs.conf`, `ServiceEntry` lines may take one of the following forms.

**First form**

`ServiceEntry(ServiceName, libname)`

**Second form**

`ServiceEntry(ServiceName, CallType, libname)`

**Third form**

`ServiceEntry(ServiceName, NetworkCPSource, LogicalCPSource, libname)`

**Fourth form**

`ServiceEntry(ServiceName, NetworkCPSource, LogicalCPSource, ConnectCLISource, libname)`

**Fifth form**

---

102 NCC Advanced Control Services Technical Guide
Sixth form

ServiceEntry(ServiceName, NetworkCPSource, LogicalCPSource, PendingTNSource, ConnectCLISource, RedirectingPartyID, libname)

Seventh form

ServiceEntry(ServiceName, NetworkCPSource, LogicalCPSource, PendingTNSource, ConnectCLISource, RedirectingPartyID, OriginalCalledPartyID, libname)

Parameters

Here are the definitions for each parameter.

ServiceName

Syntax: See Allowed.

Description: This is the name of the service this entry defines. This parameter is used to identify the Control Plan to use.

Type: String

Optionality: Mandatory

Allowed: ACS

slee_acs uses the service number (usually derived from the called party number) in the ACS_SN_CALL_PLAN_ACTIVATION table.

a string

slee_acs uses the logical calling party number in the ACS_CLI_CALL_PLAN_ACTIVATION table.

Note: Must match the service handle name in the SLEE configuration file (SLEE.cfg) for this application.

Default: None

Notes:

Example: MO_ACS_Outgoing

CallType

Syntax: Type

Description: The type of the call. This parameter is used to identify the Control Plan to use.

Type: String

Optionality: If using the second ServiceEntry form, this parameter is mandatory.

This parameter cannot be set in any other form.
Allowed: ACS

If the service handle is "ACS", slee_acs uses the service number (usually derived from the called party number) in the ACS_SN_CALL_PLAN_ACTIVITY table.

ACS_Outgoing

If the service handle contains "ACS_Outgoing", slee_acs uses the logical calling party number in the ACS_CLI_CALL_PLAN_ACTIVITY table.

FixedControlPlanName

A string which corresponds to a control plan name.

Default: None

Notes: Usage 2 form is deprecated. If used, the callType parameter is ignored, and an alarm is produced:

acsParseServiceLine: acs.conf contains old ServiceEntry fmt - field2 ignored.

Example: MO_ACS_Outgoing

NetworkCPSource

Syntax:

Description: Sets the CC Calling Network Address call context variable.

Type: String

Optionality: If using the third, fourth, fifth, sixth and seventh ServiceEntry forms, this parameter is mandatory.

This parameter cannot be set in any other form.

Allowed: See Settings table (see "Extraction sources in IDP" on page 106).

Default: CANLcan

Notes: CC Calling Network Address can be selected in CPE feature node configuration screens.

It describes the location of the calling party relative to the network. This parameter defines where the subscriber is. This is used in the Geographical Routing feature node. It can also be used in other services (for example, for CLIxDN tables in CCS, to calculate how much the call will cost).

NetworkCPSource and LogicalCPSource can be the same. They will be different when the calling party has call-forwarded or is roaming internationally.

Example: LCAN1can

LogicalCPSource

Syntax:

Description: Sets the CC Calling Logical Number call context variable.

Type: String

Optionality: If using the third, fourth, fifth, sixth and seventh ServiceEntry forms, this parameter is mandatory.

This parameter cannot be set in any other form.

Allowed: See Settings table (see "Extraction sources in IDP" on page 106).

Default: LlcCanAnN

Notes: CC Calling Logical Number can be selected in CPE feature node configuration screens.
screens.
It describes the identity of the calling party. This parameter defines who the subscriber is and, for billing purposes, who will pay.
This is used in the Call Filtering feature node.

NetworkCPSource and LogicalCPSource can be the same. They will be different when the calling party has call-forwarded or is roaming internationally.

Example:  
cClLaAnN

PendingTNSource
Syntax:  
Description:  Sets the CC Pending Termination Number call context variable.
Type:  String
Optionality:  If using the fifth, sixth and seventh ServiceEntry forms, this parameter is mandatory.
This parameter cannot be set in any other form.
Allowed:  See Settings table (see "Extraction sources in IDP" on page 106).
Default:  dD
Notes:  CC Pending Termination Number can be selected in CPE feature node configuration screens. If it is not changed during a control plan, it is used to populate the destinationRoutingAddress (DRA) parameter in Connect operations sent to the SSP.
Example:  
fFdD

ConnectCLISource
Syntax:  
Description:  Sets the callingPartyNumber in Connect operations which are sent to the SSP.
Type:  String
Optionality:  If using the fourth, fifth, sixth and seventh ServiceEntry forms, this parameter is mandatory.
This parameter cannot be set in any other form.
Allowed:  See Extraction sources in IDP (on page 106).
Default:  E
Notes:  
Example:  
cC

RedirectingPartyID
Syntax:  
Description:  Populates the redirectingPartyID parameter in Connect operations which are sent to the SSP.
Type:  String
Optionality:  If using the sixth and seventh ServiceEntry forms, this parameter is mandatory.
This parameter cannot be set in any other form.
Allowed:  See Extraction sources in IDP (on page 106).
Default:  E
Notes:  
Example:  
cC
OriginalCalledPartyID

**Syntax:**

**Description:** Populates the originalCalledPartyID parameter in Connect operations which are sent to the SSP.

**Type:** String

**Optionality:** If using the seventh ServiceEntry form, this parameter is mandatory.

This parameter cannot be set in any other form.

**Allowed:** See *Extraction sources in IDP* (on page 106).

**Default:** fFE

**Notes:**

**Example:** fFdD

libname

**Syntax:**

**Description:** The name of the slee_acs service loader plug-in library to use for this service.

**Type:** String

**Optionality:** Mandatory

**Allowed:**

**Default:** None

**Notes:**

slee_acs will look for the library in all locations specified in the LD_LIBRARY environmental variable. This is usually set up in the .profile of acs_oper. The service loader library required to run a service application will be installed by the application's packages.

**Example:** libacsService.so

**Extraction sources in IDP**

Extraction source settings define where slee_acs extracts data to populate the call context and outgoing Connects from. Each letter corresponds to a parameter in the InitialDP. slee_acs takes the first valid value, checking each InitialDP parameter in the order the letters appear. This can be used to:

- Set up roaming calls so the called and calling parties are swapped so they can be billed correctly
- Ensure a call context or outgoing Connect variable is present by using more than one source value (for example, using redirectingPartyID and callingPartyNumber to populate the CC Calling Party Number call context variable)
- Ensure a call context or outgoing Connect is empty

**Note:** The settings can only be used for these ServiceEntry parameters:

- NetworkCPSource
- LogicalCPSource
- PendingTNSource
- ConnectCLISource
- RedirectingPartyID
- OriginalCalledPartyID
# Extraction value construction

When `slee_acs` constructs the call context or outgoing Connect parameter values from the source InitialDP parameter values, some values are changed. The rules are described in the following table.

<table>
<thead>
<tr>
<th>Source</th>
<th>InitialDP (IDP) source fields</th>
<th>Digits</th>
<th>Screen</th>
<th>NOA</th>
<th>NII</th>
<th>PRI</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>a or A *</td>
<td>additionalCallingPartyNumber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c or C *</td>
<td>callingPartyNumber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d or D *</td>
<td>calledPartyNumber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Empty</td>
<td>&quot;***&quot;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>f or F *</td>
<td>originalCalledPartyID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g or G</td>
<td>cellIDorLAI (from the Location Information parameter)</td>
<td>See G digits</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>i or I</td>
<td>IMSI</td>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>l or L</td>
<td>redirectingPartyID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m or M</td>
<td>mscAddress</td>
<td></td>
<td>0</td>
<td></td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>n or N *</td>
<td>locationNumber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o or O</td>
<td>Location Number (from the Location Information parameter)</td>
<td></td>
<td>See NOA ISUP type</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v or V</td>
<td>Visitor Location Register (VLR) number (from the Location Information parameter.)</td>
<td></td>
<td>0</td>
<td>See NOA MAP type</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0-9</td>
<td>extensionNumber (for more information on extension numbers, see <code>acsChassis INAP Extension Parameters</code> (on page 93)).</td>
<td>0</td>
<td>1st digit</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

## Notes:

An empty cell indicates the source value is copied with no changes.

The sources marked "***" indicate the following:

- lower case - screening indicator provided by user.
- upper case - screening indicator provided by network.

## G digits

The digits sourced from gG are reconstructed into the following format:

```
MccMncLac[CellID]
```
Rules are applied as follows:

<table>
<thead>
<tr>
<th>Digits</th>
<th>Value</th>
</tr>
</thead>
</table>
| 1 to 3 | MCC (Mobile country code)  
If country code < 3 digits long, pad to the left of country code with Fs to 3 digits. |
| 4 to 6 | MNC (Mobile network code)  
If network code < 3 digits long, pad to the left of country code with Fs to 3 digits. |
| 7 to 10 | LAC - Hex digits of Location Area Code.  
If LAC is < 4 digits long, pad to the left of LAC with 0s to 4 digits. |
| 11 to 14 | CellID - Hex digits of cell ID (if present).  
If CellID is not present, total length will only be 10 digits. |

Examples:

If MCC = 21, MNC=183, LAC=42, and CellID is unset, reconstructed value for gG will be:

F21183002A

If MCC = 221, MNC=83, LAC=42, and CellID=10, reconstructed value for gG will be:

221F83002A000A

NOA-MAP type

The NOA for all the extracted numbers use the ISUP value definitions (see NOA_ISUP type table), however the MAP protocol NOA value is copied with no changes.

Warning: When comparing the MAP and ISUP tables, the incoming MAP NOA type has a different meaning than the NOA ISUP type for the number extracted.

For example, incoming MAP NOA = 1 (international number), outgoing ISUP NOA = 1 (subscriber number (national use)).

Therefore the extracted NOA may cause unpredictable effects if the extracted number is further processed.

This NOA is in the MAP protocol format and will be one of the following values:

<table>
<thead>
<tr>
<th>NOA</th>
<th>MAP Protocol Type Number Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>unknown</td>
</tr>
<tr>
<td>1</td>
<td>international number</td>
</tr>
<tr>
<td>2</td>
<td>national significant number</td>
</tr>
<tr>
<td>3</td>
<td>network specific number</td>
</tr>
<tr>
<td>4</td>
<td>subscriber number</td>
</tr>
<tr>
<td>5</td>
<td>reserved</td>
</tr>
<tr>
<td>6</td>
<td>abbreviated number</td>
</tr>
<tr>
<td>7</td>
<td>reserved for extension</td>
</tr>
</tbody>
</table>

Note: These NOA values are used by the v, V, m or M source letters only.

NOA-ISUP type

This NOA is in the ISUP protocol format and will be one of the following values:

<table>
<thead>
<tr>
<th>NOA</th>
<th>ISUP Protocol Type Number Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>spare</td>
</tr>
</tbody>
</table>
NOA | ISUP Protocol Type Number Description
--- | ---
1 | subscriber number (national use)
2 | unknown (national use)
3 | national (significant) number
4 | international number
5 | network-specific number (national use)

**Note:** These NOA values are used by the a, A, c, C, d, D, f, F, l, L, n, N, o or O source letters only.

### Overriding AWOL configuration per service

It is possible to override the values of three AWOL parameters defined in the acsChassis AWOL configuration section by specifying different values in the service configuration for each service. These parameters are:

- `awolTimeout` ([on page 133](#))
- `awolReportOnly` ([on page 134](#))
- `awolReportPeriod` ([on page 134](#))

**Example**

Here is an example of the `acs.conf` with AWOL parameters defined globally and the values of three parameters changed at per service level:

```plaintext
acsChassis

global AWOL params
checkAWOL 1
checkAWOLMarginAC 90

global serviceEntry settings that can be overridden on a per serviceEntry basis
awolTimeout 300
awolReportOnly 1
awolReportPeriod 600:

CCS_CS
awolTimeout 400
awolReportOnly 1
awolReportPeriod 900:

CCS_SM_MO
awolTimeout 900
awolReportOnly 1
awolReportPeriod 1800:
```

### Configuring minimumSizeOfConnectSleeEvent per service

Configure `minimumSizeOfConnectSleeEvent` on a per service basis to override the global configuration defined for it in the `acsChassis` section of `acs.conf`.

For more information on `minimumSizeOfConnectSleeEvent` parameter, see `acsChassis SLEE Event Size Parameter (SLC)` ([on page 101](#)).
Example
This example configuration defines a global value for the minimumSizeOfConnectSleeEvent parameter in the acsChassis section of acs.conf, and a service specific entry to override the global value for the CCS_BPL service.

In the example, all SLEE events that contain connect operations will be at least 16384 bytes in size. However, if the service is CCS_BPL, then these events will be at least 163840 bytes in size because the service specific entry will override the acsChassis entry.

acsChassis
...
ServiceEntry (CCS_BPL, ccsSvcLibrary.so)
...
# global minimumSizeOfConnectSleeEvent setting that can be overridden on a per serviceEntry basis
minimumSizeOfConnectSleeEvent 16384

CCS_BPL
# Defines parameters that are specific to the CCS_BPL service
...
minimumSizeOfConnectSleeEvent 163840

acsChassis SRF Configuration (SLC)

Introduction
The srf parameter defines an SRF (Specialized Resource Function) name which may be referenced in the ACS announcement configuration screens.

Parameter

Usage:

srf (srfName, UseETC=Y|N, Address=address_of_IP, NOA=0-4[, TypeOfSr=string[, tcapPreEnd=Y|N]])

srfName
Syntax: srfName
Description: Unique name for this SRF entry
Type: String
Optionality: Mandatory
Allowed:
Default: No default
Notes: Resource Name on the New and Edit Announcement Entry screens must match this entry.
For more information about setting up announcements using the ACS screens, see ACS User's Guide.
Example: NAP1

UseETC

Syntax:

Description: Whether or not to Establish a Temporary Connection directly to an external Intelligent Peripheral.
Type: Boolean
Optionality: Mandatory
Allowed: Y
An external IP is contacted directly from the SLC.
This establishes a temporary connection to that IP.

N
Default: N
Notes:
Example: UseETC=Y

Address
Syntax: Address=host|ip_addr
Description: This is the hostname or address of an external Intelligent Peripheral.
Type: Hostname or IP address
Optionality: Mandatory
You do not need to set a value if the IP is internal to the switch.

Allowed: No default
Default: No default
Notes: Required if UseETC is set to Y.
If the IP is internal, do not specify any value.
Example: Address=C400102

NOA
Syntax: NOA=value
Description: The Nature of Address indicator.
Type: Integer
Optionality:
Allowed: 0 spare
1 subscriber number
2 unknown
3 national significant number
4 international significant number
Default: 0
Notes:
Example: NOA=3

TypeOfSrf
Syntax: TypeOfSrf=string
Description: What type of Intelligent Peripheral this SRF entry refers to.
Type: String
Optionality:
Allowed: NAP
NOKIA
Nortel Only required on older Nortel internal SRF implementations.
Other No SRF-type-specific extensions will be activated.
ZTE
Default: If `UseLanguageExtensions = Y` and the SRF is a Unisys speaking NAP, `TypeOfSrf` will default to NAP. Otherwise `TypeOfSrf` will default to Other.

Notes:
Example: `TypeOfSrf=NAP`

tcapPreEnd
Syntax: `tcapPreEnd=Y|N`
Description: Use prearranged End to TCAP dialogs.
Type: Boolean
Optionally: Optional
Allowed: Y, N
Default: Y
Notes:
Example: `UseETC=Y`

How the SRF configuration works

There are three ways in which this configuration works, depending on the parameters set:

1. The SLC communicates with the SSP through CTR (Connect to Resource) and using an internal IP. No IP address is required for this option. UseETC is not required (select N). The IP name is required. NOA is required (but ignored).

2. The SLC communicates with the SSP through the CTR and IP address. The SSP then uses the IP address to communicate with an external IP. The IP address is required for this option. UseETC is not required (select N). The IP name is required. NOA is required.
3 The SLC communicates with the SSP through the ETC operation (EstablishTemporaryConnection) and IP address. The SSP then uses the IP address to communicate with an external IP. The IP address is required for this option. The IP also communicates directly with the SLC, using an ARI (AssistRequestInstructions). UseETC is required (select Y). The IP name is required. NOA is required.

acsChassis SCF Configuration (SLC)

Introduction

The scf parameter defines an SCF (Service Control Function) name and SCCP Address that can be used by the TCAP Handover feature node as a destination for the handed over TCAP primitive. For more information about the TCAP Handover feature node, see CPE User's Guide.

Parameter

Usage:

scf (scfName, NOA=0-4, Address=SCF_addr, TT=translation_type, NPI=number_plan_ind, PC=point_code, SSN=subsystem_number, RI= routing_ind, NI=national_ind, appContext=context)

To specify a location, Point Code or Global Title addressing may be used.

Valid combinations are:

- PC+SSN
Chapter 5

- Address+NOA
- Address+TT
- Address+TT+NPI
- Address+NOA+TT+NPI

You can also cause an originating address to be set in the outgoing ICA request by slee_acs instead of your TCAP IF using:

```
scf (LocationAddress,NOA=0-4,Address=SCF_addr)
```

**Note:** Consult standard Q713 for full parameter definitions.

### scfName

**Syntax:**

```
scfName
```

**Description:** The SCF Name to deliver the TCAP primitive to.

**Type:** String

**Optionality:** Required if TCAP Handover is used.

**Allowed:** Must match the Name from the TCAP Handover feature node configuration in the control plan.

**Default:** none

**Notes:** If you set LocationAddress in this position in the scf, slee_acs will set an originating address in the outgoing ICA request (otherwise it is set by TCAP IF).

**Example:** For an example of how to use this configuration in context, see Example (on page 116) SCF configuration.

### Address

**Syntax:**

```
SCF_addr
```

**Description:** The address of IP if an external IP is used.

**Type:**

**Optionality:**

**Allowed:** Address of IP or nothing if internal IP

**Default:** none

**Notes:**

**Example:** For an example of how to use this configuration in context, see Example (on page 116) SCF configuration.

### NOA

**Syntax:**

```
noa
```

**Description:** The Nature of Address indicator.

**Type:**

**Optionality:** Optional (default used if not set)

**Allowed:**

0    spare
1    subscriber number
2    unknown
3    national significant number
4    international significant number

**Default:** 0

**Notes:**

**Example:** For an example of how to use this configuration in context, see Example (on page 116).

---

114  NCC Advanced Control Services Technical Guide
TT
Syntax: translation_type
Description: The Translation Type.
Type:
Optionality:
Allowed:
Default: none
Notes:
Example: For an example of how to use this configuration in context, see Example (on page 116) SCF configuration.

NPI
Syntax: number_plan_ind
Description: The Number Plan Indicator.
Type:
Optionality:
Allowed:
Default: none
Notes:
Example: For an example of how to use this configuration in context, see Example (on page 116) SCF configuration.

PC
Syntax: point_code
Description: The Point Code.
Type:
Optionality:
Allowed:
Default: none
Notes:
Example: For an example of how to use this configuration in context, see Example (on page 116) SCF configuration.

SSN
Syntax: subsystem_number
Description: The Sub System Number.
Type:
Optionality:
Allowed:
Default: none
Notes:
Example: For an example of how to use this configuration in context, see Example (on page 116) SCF configuration.
RI
Syntax: routing_ind
Description: The Routing Indicator.
Type: Optionality: Allowed: Default: Notes:
Notes:
Example: For an example of how to use this configuration in context, see Example (on page 116) SCF configuration.

NI
Syntax: national_ind
Description: The National Indicator.
Type: Optionality: Allowed: Default: Notes:
Example: For an example of how to use this configuration in context, see Example (on page 116) SCF configuration.

appContext
Syntax: appContext=cont
Description: The application context for this scf.
Type: String Optionality: Optional
Allowed: Any valid context:
  - Nokia_IDP
  - CAPv2_IDP
  - CAPv3_IDP
  - CAPv3_SMS
  - <n>.<m>.<p> - Where n, m and p are integer numbers that form an object identifier, defining the protocol to use.
Default: None Notes:
Example: Required if the TCAP Handover node is expected to pass on the application context.
Example: appContext=CAPv2_IDP

Example
Here are examples of valid scf definitions:
scf (SCF_Name1, PC=0xADB, SSN=11)
scf (SCF_Name2, NOA=4, Address=01224)
scf (LocationAddress, NOA=4, Address=01234)
About defining scfs in acs.jnlp and sms.jnlp

The values used for SCP names in the scf section of the acs.conf configuration file must match the scfs applet parameter definition in both the acs.jnlp and the sms.jnlp files.

Example: If acs.conf contains the following two lines:

```
scf (SCP_Name1, PC=0xADB, SSN=11)
scf (SCP_Name2, NOA=4, Address=01224)
```

The applet section of the acs.jnlp and sms.jnlp files must contain a corresponding entry for the scfs applet parameter:

```
<param name="scfs" value="SCP_Name1,SCP_Name2" />
```

For more information about configuring applet parameters in acs.jnlp and sms.jnlp, see Setting up the screens (on page 23).

acsChassis SSF Configuration (SLC)

Introduction

In acs.conf, the ssf line defines a Service Switching Function (SSF) that can be used by the Call Initiation node as a destination for the Initiate Call Attempt.

Parameters

An ssf parameter line in acs.conf must contain at least:

1. The ssf_name parameter
2. The interface=handle parameter
3. An address specified by one of the following:
   - GT
   - PC and SSN

acsChassis uses the address specification to construct address and address indicator numbers that comply with the ITU-T SS7 standard.

GT can be specified in four different ways, each defined in terms of ITU-T SS7’s global titles.

1. GT1: [Address=GlobalTitleAddress, NOA=noa]
2. GT2: [Address=GlobalTitleAddress, TT=TranslationType]
3. GT3: [Address=GlobalTitleAddress, TT=TranslationType, NPI=NumberingPlanIndicator]
4. GT4: [Address=GlobalTitleAddress, TT=TranslationType, NPI=NumberingPlanIndicator, NOA=noa]

The address indicator number is made up of the PC=<pc>, SSN=<ssn>, RI=RI parameters.

Usage: The full syntax of an ssf line in acs.conf is:

```
ssf (ssf_name[, Address=GlobalTitleAddress[, NOA=noa][, TT=TranslationType[, NPI=NumberingPlanIndicator[, NOA=noa]]]][, PC=pc, SSN=ssn][, RI=RI], interface=handle[, appContext=objectIdentifier])
```

Definitions for individual parameters follow.

For more information about the address and address indicator parameters, refer to ITU-T Recommendation Q.713 Signalling Connection Control Part formats and codes.
ssf_name

Syntax: \texttt{ssf\_name} \\
Description: The name of the switch that appears in the configuration screen of the Call Initiation feature node. \\
Type: String \\
Optionality: Required \\
Allowed: \\
Default: \\
Notes: For more information about the Call Initiation feature node, see \textit{NCC Feature Nodes Reference Guide} \\
Example: \texttt{Switch\_Name1}

Address

Syntax: \texttt{Address=Global\_Title\_Address} \\
Description: The global title address \\
Type: Integer \\
Optionality: Optional (Mandatory if PC and SSN are not used). \\
Allowed: \\
Default: \\
Notes: \\
Example: \texttt{Address=40053}

NOA

Syntax: \texttt{NOA = Nature\_Of\_Address} \\
Description: The nature of address indicator. \\
Type: Integer \\
Optionality: NOA \\
Allowed: \\
\begin{tabular}{|c|c|}
\hline
Nature Of Address for number of address signals & Type of number \\
\hline
Even & Odd \\
\hline
0 & 128 & Unknown \\
\hline
1 & 129 & Subscriber \\
\hline
2 & 130 & Reserved for national use. \\
\hline
3 & 131 & National significant. \\
\hline
4 & 132 & International. \\
\hline
\end{tabular} \\
Default: \\
Notes: \\
Example: \texttt{NOA=1}

TT

Syntax: \texttt{TT = Translation\_Type} \\
Description: Directs messages to the appropriate translator. The value depends on the GT chosen under Parameters (on page 117). \\
Type: Integer \\
Optionality: Optional
Allowed:

\[\text{GT}_1: \text{not used.}\]
\[\text{GT}_2: 0 \text{ to } 255\]
\[\text{GT}_3: \text{The ITU have not defined a translation type for this global title.}\]
\[\text{GT}_4: 1 \text{ to } 254. \text{ For } \text{GT}_4, \text{ values for } \text{TranslationType} \text{ are defined in the table.}\]

<table>
<thead>
<tr>
<th>Translation Type for GT,</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 63</td>
<td>International</td>
</tr>
<tr>
<td>64 through 127</td>
<td>Spare</td>
</tr>
<tr>
<td>128 through 254</td>
<td>National</td>
</tr>
</tbody>
</table>

Default:

Notes:

\[\text{GT}_2: \]
\begin{itemize}
  \item Set \text{TranslationType} to 0 if the TT parameter is not to be used.
  \item Translation types for internetwork services are assigned in ascending order, starting with 1.
  \item Translation types for network-specific services are assigned in descending order, starting with 254.
\end{itemize}

\text{TranslationType} type may also imply the scheme used to encode address information and a numbering plan.

Example:

NPI

Syntax: \(\text{NPI} = \text{NPI}\)

Description: Defines the numbering plan.

Type: Integer

Optionality: Optional

Allowed: 1 to 14.

Default:

Notes: This table describes the meanings of the different NPIs.

<table>
<thead>
<tr>
<th>NPI</th>
<th>Numbering Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISDN and telephony</td>
</tr>
<tr>
<td>2</td>
<td>Generic</td>
</tr>
<tr>
<td>3</td>
<td>Data</td>
</tr>
<tr>
<td>4</td>
<td>Telex</td>
</tr>
<tr>
<td>5</td>
<td>Maritime mobile</td>
</tr>
<tr>
<td>6</td>
<td>Land mobile</td>
</tr>
<tr>
<td>7</td>
<td>ISDN and mobile</td>
</tr>
<tr>
<td>8 through 13</td>
<td>Spare</td>
</tr>
<tr>
<td>14</td>
<td>Private network</td>
</tr>
</tbody>
</table>

Example:

PC

Syntax: \(\text{PC} = \text{pc}\)

Description: Defines the signaling point code.

Type: Integer; hexadecimal, decimal or octal.

Optionality: Optional (Mandatory if SSN is set).
Chapter 5

Allowed:  
- 0 to 16383 for decimal
- 0 to 0x3FFF for hexadecimal
- 0 to 037777 for octal

Default:

Notes:
- A decimal number must not begin with a 0.
- A hexadecimal number must begin with 0x. For example, if the signaling point code is 2780, the parameter would be \texttt{PC=0xADC}.
- An octal number must begin with 0. For example, if the signaling point code is 2780, the parameter would be \texttt{PC=05334}.

Example:

SSN

Syntax: \texttt{SSN = SSN}

Description: Identifies an SCCP user function.

Type: Integer

Optionality: Optional (Mandatory if PC is set).

Allowed: 0 - 255.

Default:

Notes: This table describes the values.

<table>
<thead>
<tr>
<th>SSN</th>
<th>SCCP user function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SSN not known or not used</td>
</tr>
<tr>
<td>1</td>
<td>SCCP management</td>
</tr>
<tr>
<td>2</td>
<td>Reserved for ITU-T allocation</td>
</tr>
<tr>
<td>3</td>
<td>ISDN user part</td>
</tr>
<tr>
<td>4</td>
<td>Operation, Maintenance and Administration part</td>
</tr>
<tr>
<td>5</td>
<td>Mobile application part</td>
</tr>
</tbody>
</table>

Globally-standardized subsystem numbers 6 through 10 have been allocated for use by GSM/UMTS.

<table>
<thead>
<tr>
<th>SSN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Home location register</td>
</tr>
<tr>
<td>7</td>
<td>Visitor location register</td>
</tr>
<tr>
<td>8</td>
<td>Mobile switching center</td>
</tr>
<tr>
<td>9</td>
<td>Equipment identifier center</td>
</tr>
<tr>
<td>10</td>
<td>Authentication center</td>
</tr>
<tr>
<td>11</td>
<td>ISDN supplementary services</td>
</tr>
<tr>
<td>12</td>
<td>Reserved for international use</td>
</tr>
<tr>
<td>13</td>
<td>Broadband ISDN edge-to-edge applications</td>
</tr>
<tr>
<td>14</td>
<td>TC test responder</td>
</tr>
</tbody>
</table>
National network subsystem numbers 142, 143 and 145 through 150 have been allocated for use within and between GSM/UMTS networks.

- 142: RANAP
- 143: RNSAP
- 145: GMLC (MAP)
- 146: CAP
- 147: gsmSCF (MAP) or IM-SSF (MAP)
- 148: SIWF (MAP)
- 149: SGSN (MAP)
- 150: GGSN (MAP)

National network subsystem numbers 249 through 254 have been allocated for use within GSM/UMTS networks.

- 249: PCAP
- 250: BSC (BSSAP-LE)
- 251: MSC (BSSAP-LE)
- 252: SMLC (BSSAP-LE)
- 253: BSS O&M (A interface)
- 254: BSSAP (A interface)

Example: SSN = 12

RI
Syntax: RI = RI
Description: The Routing Indicator. It identifies the address element to use for routing.
Type: Integer
Optionality: Optional
Allowed: 0 Route on SSN
1 Route on GT
Default:
Notes:
Example: RI = 1

interface
Syntax: interface = handle
Description: The handle for the SLEE interface that sends ICA messages to the SSF.
Type: String
Optionality: Mandatory
Allowed:
Default:
Notes: Must match the handle in the SLEE.cfg file. For more information, see SLEE Technical Guide.
Example: interface = sua_if
appContext

Syntax: appContext=string

Description: The transaction capability (TC) object.

Type: String

Optionality: Optional

Allowed: Nokia_IDP
         CAPv2_IDP
         CAPv3_IDP
         CAPv3_SMS
         n.m.p

Where n, m and p are integer numbers that form an object identifier, defining the protocol to use.

Default: When the ICA node uses an ssf with appContext set, appContext enables you to specify the application context to pass back up to ACS in the generated IDP.

Notes: When the ICA node uses an ssf with appContext set, appContext enables you to specify the application context to pass back up to ACS in the generated IDP.

Examples: appContext=Nokia_IDP
         appContext=15.36.5

Example

Here are three examples of valid ssf definitions:

ssf (SSF_Name1,PC=0xADC,SSN=11,interface=hssScIf)
ssf (SSF_Name2,NOA=1,Address=01234,interface=hssScIf)
ssf (Company,NOA=1,Address=01234,interface=VSSP,
     appContext=CAPv2_IDP)

About defining ssfs in acs.jnlp and sms.jnlp

The value used for ssf_name (the switch name) in the ssf section of the acs.conf configuration file must match the ssfs applet parameter entry in the acs.jnlp and sms.jnlp files.

Example: If the acs.conf file contains the following two lines:

ssf (SwitchName1,PC=0xADC,SSN=11,interface=hssScIf)
ssf (SwitchName2,NOA=1,Address=01234,interface=hssScIf)

The applet section of the acs.jnlp and sms.jnlp files must contain a corresponding entry for the ssfs applet parameter:

<PARAM NAME="ssfs" VALUE="SwitchName1,SwitchName2" />

For more information about defining applet parameters in the acs.jnlp and sms.jnlp files, see Setting up the screens (on page 23).

acsChassis EDR Configuration (SLC)

Logging EDRs

The parameters listed below in this topic affect the way EDRs are logged.

Note: For EDRs to be logged at all, the acsChassis section of the acs.conf file must contain the line CdrFile 1.
TCP Network Loading

EDR files are collated on each SLC and uploaded at regular intervals to the SMS. Files are transferred using the proprietary program cmnPushFiles. Refer to the main component diagram (on page 3).

EDR files contain a base content that has a size of approximately 350 bytes per call attempt or call disconnect. The total data size to be transferred can be computed from the call rate combined with assumptions about the complexity of the Control Plan.

A Control Plan that attempts to terminate and then terminates to a second number will generate two EDRs.

The total data will be typically distributed over a number of files.

A new EDR file is created when the old file reaches a specified age or size as defined by the CdrFileMaxAge (on page 126) and CdrFileMaxSize (on page 126) parameters.

The CdrExtraFields and SendCIR parameters cause additional content to be written to each EDR line. This raises the average data flow above the base 350 bytes per EDR line. The size of the additional content depends on the nature of the Control Plan. Experimentation with individual Control Plans is required to determine the size of extended EDRs.

Parameters

The following parameters are optional and may be added when required. Only one entry per parameter is allowed.

callReferenceIDAsHex

Syntax:    callReferenceIDAsHex 0|1
Description: Indicates the Call Reference ID (an Octet string) in an IDP is a BCD number ASCII string or not.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (false), 1 (true)
Default: 0
Notes: If the Call Reference ID (an Octet string) in an IDP is a BCD number other than an ASCII string, for instance 0x28 0x81 0x1F 0xE3 0x29, then we need to set this option to true in order to be able to read the hex values "28811FE329" in EDR other than see unreadable characters.
Example: callReferenceIDAsHex 1

CdrClosedDirectory

Syntax:    CdrClosedDirectory "path"
Description: The path to move the EDR file to when it is flushed due to one of CdrFileMaxAge (on page 126) or cdrFileMaxSize (on page 126) being exceeded.
Type: String
Optionality: Optional (default used if not set).
Allowed:
Default: /IN/service_packages/SMS/cdr/closed
Warning: This parameter only changes the output of the EDR file. If this parameter is changed all other relevant parts of the platform must also be updated.
Example: \texttt{CdrClosedDirectory "/var/EDRs/closed"}

\textbf{CdrCompressCall}

\textbf{Syntax:} \texttt{CdrCompressCall 0|1}

\textbf{Description:} Whether or not to log multiple connect attempts as one EDR.

\textbf{Type:} Boolean

\textbf{Optionality:} Optional (default used if not set).

\textbf{Allowed:} 0 \hspace{1cm} a separate EDR will be created for each connection attempt, abort, or disconnect individually.

1 \hspace{1cm} calls with multiple connect attempts are logged as one EDR. A single EDR will be generated at the end of every call, at the point where it is torn down, regardless of how the call finishes.

\textbf{Default:} 0

\textbf{Notes:} If \texttt{CdrCompressCall} is 0, the \texttt{CdrOnAbort} (on page 129) and \texttt{CdrOnDisconnect} (on page 129) parameters determine if abort and/or disconnect events generate EDRs.

\textbf{Example:} \texttt{CdrCompressCall 0}

\textbf{CdrCurrentDirectory}

\textbf{Syntax:} \texttt{CdrCurrentDirectory "path"}

\textbf{Description:} The path to write the EDR file to.

\textbf{Type:} String

\textbf{Optionality:} Optional (default used if not set).

\textbf{Allowed:} Default:

\textbf{Warning:} This parameter only changes the output of the EDR file. If this parameter is changed all other relevant parts of the platform must also be updated.

\textbf{Example:} \texttt{CdrCurrentDirectory "/var/EDRs/current"}

\textbf{CdrFile}

\textbf{Syntax:} \texttt{CdrFile 0|1}

\textbf{Description:} Whether or not to log EDRs to a file.

\textbf{Type:} Boolean

\textbf{Optionality:} Optional (default used if not set).

\textbf{Allowed:} 0 \hspace{1cm} (no), 1 \hspace{1cm} (yes)

\textbf{Default:} 0

\textbf{Notes:} Example: \texttt{CdrFile 0}

\textbf{CdrExtraFields}

\textbf{Syntax:} \texttt{CdrExtraFields 0|1|2}

\textbf{Description:} EngineNodes that are traversed during execution of a Control Plan will be logged and placed in the EDR (TFN tag)

\textbf{Type:} Integer

\textbf{Optionality:} Optional (default used if not set).
Allowed: 0 No logging will be done
1 Track traversed feature nodes and played announcements, and record in EDR. The format is:
   <node fast key>-<node number>.
2 In addition to 1, track feature node substates, showing all the states the node is going through.
The format is:
   <node fast key>-<node number>..<state>..<state>..<state>

Default: 1
Notes: There is a maximum length of 1024 characters for this data.
There are no separators between the <state> fields which are all single characters as defined in Node states (on page 125) below.
Example: CdrExtraFields 1

Node states

<table>
<thead>
<tr>
<th>State Number</th>
<th>Node State</th>
<th>State Number</th>
<th>Node State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>26</td>
<td>J</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>27</td>
<td>K</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>28</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>29</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>30</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>31</td>
<td>O</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>32</td>
<td>P</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>33</td>
<td>Q</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>34</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>35</td>
<td>S</td>
</tr>
<tr>
<td>10</td>
<td>:</td>
<td>36</td>
<td>T</td>
</tr>
<tr>
<td>11</td>
<td>;</td>
<td>37</td>
<td>U</td>
</tr>
<tr>
<td>12</td>
<td>&lt;</td>
<td>38</td>
<td>V</td>
</tr>
<tr>
<td>13</td>
<td>=</td>
<td>39</td>
<td>W</td>
</tr>
<tr>
<td>14</td>
<td>&gt;</td>
<td>40</td>
<td>X</td>
</tr>
<tr>
<td>15</td>
<td>?</td>
<td>41</td>
<td>Y</td>
</tr>
<tr>
<td>16</td>
<td>@</td>
<td>42</td>
<td>Z</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>43</td>
<td>[</td>
</tr>
<tr>
<td>18</td>
<td>B</td>
<td>44</td>
<td>\</td>
</tr>
<tr>
<td>19</td>
<td>C</td>
<td>45</td>
<td>]</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>46</td>
<td>^</td>
</tr>
<tr>
<td>21</td>
<td>E</td>
<td>47</td>
<td>_</td>
</tr>
</tbody>
</table>
CdrFileAppendCloseTime

Syntax: CdrFileAppendCloseTime 0|1
Description: Whether or not to append the time that the file was closed to the EDR file name.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (no), 1 (yes)
Default: 0
Notes:
Example: CdrFileAppendCloseTime 0

CdrFileAppendPid

Syntax: CdrFileAppendPid 0|1
Description: Whether or not to append the PID of the logging process to the EDR file name.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (no), 1 (yes)
Default: 1
Notes:
Example: CdrFileAppendPid 1

CdrFileMaxAge

Syntax: CdrFileMaxAge seconds
Description: Set the maximum age of the EDR file. After this period expires the file is purged.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Any integer
Default: 600
Notes: Value is in seconds.
Example: CdrFileMaxAge 600

CdrFileMaxSize

Syntax: CdrFileMaxSize KB
Description: Set the maximum size of the EDR file. When this file size is exceeded, the file is purged.
Type: Integer
Optionality: Optional (default used if not set).
Allowed:
Default: 8
Notes:
Example:  

CdrFileMaxSize 8

CdrFileUseGMT - 10291824

Syntax:  
Description:  Whether or not to add a start timestamp in GMT to the EDR filename.
Type:  
Optionality:  
Allowed:  0 - Do not add a GMT timestamp to the EDR filename.
1 - Add a GMT timestamp to the EDR filename.
Default:  

Notes:  If set to 1, the EDR filename uses this format:
application_gmtZ_start_time.cdr
If set to 0, the EDR filename uses this format:
application_start_time.cdr
Where:
- application is the name of the application that triggered the EDR.
- gmt is the EDR start time in GMT.
- start_time is the EDR start time in local time.

Example:  CdrFileUseGMT 1

CdrFileUseLocalTime - 10291824

Syntax:  
Description:  What timezone to use for the start and end timestamps in the EDR filename.
Type:  
Optionality:  
Allowed:  0 - Use GMT.
1 - Use local time.
Default:  

Notes:  This parameter does not affect the timestamp added if CdrFileUseGMT is set to 1(adds GMT timestamp to EDR filename).

Example:  CdrFileUseLocalTime 1

CdrRemoveFields

Syntax:  
Description:  Mask that specifies the fields to remove from an EDR. To set the mask, sum the values used to identify each field that you want to remove, and convert to hexadecimal.
Type:  
Optionality:  
Allowed:  Hexadecimal number that is the sum of the values for the fields you want to remove. For a list of valid values, see EDR field values table below.
Default:  0 - Do not remove any fields.
Notes: For more information about the EDR fields, see *NCC Event Detail Record Reference Guide*.

Example: CdrRemoveFields 2001000000

Turns off release cause and slee call ID \((2^{24} + 2^{37} = \text{hex} \ 2001000000).\)

The following table lists the EDR field values you can use and their corresponding field codes and field names. The EDR field values have the following format: \(2^x,\) which means 2 to the power of \(x\).

<table>
<thead>
<tr>
<th>EDR Field Value</th>
<th>EDR Field Code</th>
<th>Field Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^0)</td>
<td>OA</td>
<td>Originating Address (IP/PC)</td>
</tr>
<tr>
<td>(2^1)</td>
<td>OTI</td>
<td>Originating Transaction ID</td>
</tr>
<tr>
<td>(2^2)</td>
<td>CUST</td>
<td>Customer ID</td>
</tr>
<tr>
<td>(2^3)</td>
<td>SN</td>
<td>Service (Original Called) Number</td>
</tr>
<tr>
<td>(2^4)</td>
<td>TN</td>
<td>Termination Number</td>
</tr>
<tr>
<td>(2^5)</td>
<td>CGN</td>
<td>Calling Network Number</td>
</tr>
<tr>
<td>(2^6)</td>
<td>CLI</td>
<td>Calling Line Identifier</td>
</tr>
<tr>
<td>(2^7)</td>
<td>SK</td>
<td>Service Key</td>
</tr>
<tr>
<td>(2^8)</td>
<td>TCS</td>
<td>Time Call Start</td>
</tr>
<tr>
<td>(2^9)</td>
<td>TCE</td>
<td>Time Call End (ETSI only)</td>
</tr>
<tr>
<td>(2^{10})</td>
<td>LPN</td>
<td>Last PIN Number Entered</td>
</tr>
<tr>
<td>(2^{11})</td>
<td>LAC</td>
<td>Last Account Code Entered</td>
</tr>
<tr>
<td>(2^{12})</td>
<td>CS</td>
<td>Connect Status</td>
</tr>
<tr>
<td>(2^{13})</td>
<td>CPC</td>
<td>Calling Party Category</td>
</tr>
<tr>
<td>(2^{14})</td>
<td>CC</td>
<td>Carrier Code</td>
</tr>
<tr>
<td>(2^{15})</td>
<td>CPNI</td>
<td>Calling Private Network ID</td>
</tr>
<tr>
<td>(2^{16})</td>
<td>PCNA</td>
<td>Calling Private Network Address</td>
</tr>
<tr>
<td>(2^{17})</td>
<td>PTNA</td>
<td>Called Private Network Address</td>
</tr>
<tr>
<td>(2^{18})</td>
<td>CGNA</td>
<td>Calling Global Network Address (for example, GVNS number)</td>
</tr>
<tr>
<td>(2^{19})</td>
<td>TFN</td>
<td>Track Feature Nodes</td>
</tr>
<tr>
<td>(2^{20})</td>
<td>CPN</td>
<td>Call Plan Name</td>
</tr>
<tr>
<td>(2^{21})</td>
<td>CAET</td>
<td>Call Attempt Elapsed Time (CallInfoRequest)</td>
</tr>
<tr>
<td>(2^{22})</td>
<td>CCET</td>
<td>Call Connect Elapsed Time (CallInfoRequest)</td>
</tr>
<tr>
<td>(2^{23})</td>
<td>CA</td>
<td>Called Address (CallInfoRequest)</td>
</tr>
<tr>
<td>(2^{24})</td>
<td>RELC</td>
<td>Release Cause (CallInfoRequest)</td>
</tr>
<tr>
<td>(2^{25})</td>
<td>OCPN</td>
<td>Original Called Party ID</td>
</tr>
<tr>
<td>(2^{26})</td>
<td>CPNN</td>
<td>Called Party Nature of Number (Address)</td>
</tr>
<tr>
<td>(2^{27})</td>
<td>NOAT</td>
<td>Number of Attempt Terminations</td>
</tr>
<tr>
<td>(2^{28})</td>
<td>LGID</td>
<td>Language ID</td>
</tr>
<tr>
<td>(2^{29})</td>
<td>CBAT</td>
<td>Connect by Attempt Termination</td>
</tr>
<tr>
<td>(2^{30})</td>
<td>FATS</td>
<td>First Announcement Timestamp</td>
</tr>
<tr>
<td>(2^{31})</td>
<td>HTS</td>
<td>Hunting Timestamp</td>
</tr>
<tr>
<td>(2^{32})</td>
<td>CCTS</td>
<td>Call Connect Timestamp</td>
</tr>
</tbody>
</table>
### EDR Field Value

<table>
<thead>
<tr>
<th>EDR Field Value</th>
<th>EDR Field Code</th>
<th>Field Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^{33}$</td>
<td>AIDL</td>
<td>Announcement ID List</td>
</tr>
<tr>
<td>$2^{34}$</td>
<td>TPNI</td>
<td>Terminating Private Network ID</td>
</tr>
<tr>
<td>$2^{35}$</td>
<td>CGNN</td>
<td>CallingPartyID Nature of Number</td>
</tr>
<tr>
<td>$2^{36}$</td>
<td>CPPI</td>
<td>CallingPartyID Presentation Restriction Indicator</td>
</tr>
<tr>
<td>$2^{37}$</td>
<td>CID</td>
<td>Slee Call ID</td>
</tr>
<tr>
<td>$2^{38}$</td>
<td>TGNA</td>
<td>Terminating Global Network Address (for example, GVNS number)</td>
</tr>
<tr>
<td>$2^{39}$</td>
<td>SL_CONTENT</td>
<td>All service library supplied fields (may be zero, one, or more fields)</td>
</tr>
<tr>
<td>$2^{40}$</td>
<td>EXT(0-9)</td>
<td>Any extension digits fields</td>
</tr>
</tbody>
</table>

### CdrLogPIN

**Syntax:** `CdrLogPIN 0|1`

**Description:** Whether or not to log the PIN.

**Type:** Boolean

**Optionality:** Optional (default used if not set).

**Allowed:**
- 1: the LPN field which records the PIN is written to the EDR log files as part of EDR creation.
- 0: this action is suppressed. The EDRs will be created normally but the LPN field will be missing.

**Default:** 1

**Notes:** For more information about PIN logging configuration, see PIN logging parameters (on page 86).

**Example:** `CdrLogPIN 1`

### CdrOnAbort

**Syntax:** `CdrOnAbort 0|1`

**Description:** Whether or not to create EDRs when one of the following occurs:
- A TCAP abort is received
- A TCAP reject is received and a TCAP abort is sent in response

**Type:** Boolean

**Optionality:** Optional (default used if not set).

**Allowed:**
- 0: Abort logging is disabled
- 1: Aborted calls are logged

**Default:** 1

**Notes:**

**Example:** `CdrOnAbort 1`

### CdrOnDisconnect

**Syntax:** `CdrOnDisconnect 0|1`

**Description:** Whether or not to create EDRs when a call is deliberately disconnected (for example, by a disconnect call node).

**Type:** Boolean

**Optionality:** Optional (default used if not set).
Chapter 5

Allowed: 0 (no), 1 (yes)
Default: 1
Notes:
Example: CdrOnDisconnect 1

\textbf{cdrOnForcedDisc}

\textbf{Syntax:} cdrOnForcedDisc 0|1
\textbf{Description:} When set to true, forces ACS to write an EDR in the event of a forced disconnect.
\textbf{Type:} Boolean
\textbf{Optionality:} Optional (default used if not set).
\textbf{Allowed:}
\begin{itemize}
  \item 0 (false), do not write EDR
  \item 1 (true), write EDR
\end{itemize}
\textbf{Default:} 0
\textbf{Notes:}
\textbf{Example:} cdrOnForcedDisc 1

\textbf{CdrOnHandover}

\textbf{Syntax:} CdrOnHandover 0|1
\textbf{Description:} When set to true, forces ACS to write an EDR on service handover, providing the CdrCompressCall (on page 124) parameter is set to zero (0).
\textbf{Type:} Boolean
\textbf{Optionality:} Optional (default used if not set).
\textbf{Allowed:}
\begin{itemize}
  \item 0 (false), do not write EDR on service handover
  \item 1 (true), write EDR on service handover
\end{itemize}
\textbf{Default:} 0
\textbf{Notes:}
\textbf{Example:} CdrOnHandover 0

\textbf{CdrResetOnWriteRELC}

\textbf{Syntax:} CdrResetOnWriteRELC 0|1
\textbf{Description:} When set to true, forces ACS to reset the call release cause to zero after it has been written to an EDR, providing the CdrCompressCall (on page 124) parameter is set to zero (0).
\textbf{Type:} Boolean
\textbf{Optionality:} Optional (default used if not set).
\textbf{Allowed:}
\begin{itemize}
  \item 0 (false), do not reset release cause to zero
  \item 1 (true), reset release cause to zero
\end{itemize}
\textbf{Default:} 0
\textbf{Notes:}
\textbf{Example:} CdrResetOnWriteRELC 1

\textbf{elapsedTimesFromApplyChargingReport}

\textbf{Syntax:} elapsedTimesFromApplyChargingReport 0|1
\textbf{Description:} Whether or not to calculate CAET and CCET using the ApplyChargingReport.
\textbf{Type:} Boolean
\textbf{Optionality:} Optional (default used if not set).
Allowed: 0 (no), 1 (yes)
Default: 0
Notes: This is an option to use when a call has been released, in which there is no CallInformationReport.
Example: elapsedTimesFromApplyChargingReport 1

zeroElapsedTimesInCdr
Syntax: zeroElapsedTimesInCdr 0|1
Description: Whether or not to include TCS, CCET and CAET in the EDR, even in the case where call duration is zero.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (no), 1 (yes)
Default: 0
Notes: zeroElapsedTimesInCdr 1

acsChassis Service Library Configuration (SLC)
Parameter
The entries in the acsServiceLibrary topic determine configuration parameters for the acsServiceLibrary.
ProfileOrder
Syntax: ProfileOrder (key, pro1, pro2, pro3)
Description: Defines the order of the profiles for loading and searching for traffic with a specific service key.
Type: Array
Optionality: Optional (default used if not set).
Allowed: Each pro1-3 is one of:
  • CUSTOMER
  • CALL_PLAN
  • SERVICE_NUMBER
Default: ProfileOrder (110,CUSTOMER,CALL_PLAN,SERVICE_NUMBER)
Notes: All three profiles must specified for each parameter.
Examples: ProfileOrder (10,CUSTOMER,CALL_PLAN,SERVICE_NUMBER) ProfileOrder (11,CALL_PLAN,SERVICE_NUMBER,CUSTOMER) ProfileOrder (12,CUSTOMER,SERVICE_NUMBER,CALL_PLAN)
acsChassis Service Normalisation Parameters (SLC)

Introduction

Each service for which a ServiceEntry exists in the acs.conf can have a specific config section where you define configuration parameters specific for that service. The name for the service section must be the same name specified in the corresponding ServiceEntry (see "acsChassis ServiceEntry Configuration (SLC)" on page 102), that is, ACS_Outgoing, CCS, VPN_Originating...

Service specific normalization parameters

The service specific normalization parameters are used to define conversion rules specific to each available service. These parameters are equivalent to those with the same name described in the acsChassis Normalization Parameters section. For a description of each, refer to Normalization parameters (on page 97).

When a service section is found in the acs.conf, the global normalization rules are ignored for that particular service and the specific rules (if any) are used instead. In this sense, a service will only use the global configuration when no specific section is defined for it in the acs.conf. Also, in no case global and specific normalization rules will be used simultaneously within the same service.

acsChassis AWOL Configuration

AWOL processing

The ACS service supports many different call scenarios, including scenarios where the SLC is involved in the call right up to when the A or B party disconnects at the end of a conversation.

The number of entities involved in the call and managing the connection between the SSP and SLC software can lead to many complex interactions. Occasionally these interactions may not follow the INAP CS1 call model due to situations beyond the direct control of the ACS service.

In particular, ACS can be used for billable call control by using the ApplyCharging and ApplyChargingReport INAP messages. When ACS sends an ApplyCharging request to a SSP, it will expect a response within a certain time frame due to the request defining a limit on the time the call can proceed for.

Certain circumstances can occur in production networks that can cause the ApplyChargingReport to be never returned. This would in general cause the call to be left 'hanging' in the ACS service, using system and service resources that would never, usually, be freed.

To alleviate this situation, AWOL checking has been developed in the ACS service. The basic premise is that the ACS service should abort any call for which an expected ApplyChargingReport is late.

Calls that are considered as AWOL, are aborted. This will clean up all call resources within the ACS service and the SLEE.

The ACS Service will continue to process the Control Plan for the call according to the service limitations.

Defining acsChassis AWOL configuration

The acsChassis AWOL configuration section defines six AWOL parameters, two of which are global and should only be defined in the acsChassis section of acs.conf:

- checkAWOL
- checkAWOLMarginAC
The other parameters are defined globally in the `acsChassis` section; but they can also be defined in the service configuration, per service, which will override the global values. These parameters are:

- `awolTimeout`
- `awolReportOnly`
- `awolReportPeriod`
- `awolOverrideACRTimeout`

For more information, see **overriding AWOL configuration per service** (on page 109).

### Parameters

The following configuration parameters are provided to control AWOL checking:

**checkAWOL**

| Syntax:          | `checkAWOL 0|1`          |
|------------------|----------------|
| Description:     | Whether or not the ACS service should check for calls with later ApplyChargingReport messages. |
| Type:            | Boolean        |
| Optionality:     | Optional (uses default if not set) |
| Allowed:         | 0 No AWOL checking is done and if the ACR is never received, the call will never be torn down 1 AWOL checking is done as defined by the other AWOL parameters. |
| Default:         | 0              |
| Notes:           |                |
| Example:         | `checkAWOL 1`  |

**checkAWOLMarginAC**

<table>
<thead>
<tr>
<th>Syntax:</th>
<th><code>checkAWOLMarginAC int</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Tolerance, in seconds, added to the apply charging timeout.</td>
</tr>
<tr>
<td>Type:</td>
<td>Integer</td>
</tr>
<tr>
<td>Optionality:</td>
<td>Optional</td>
</tr>
<tr>
<td>Allowed:</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Default:</td>
<td>30</td>
</tr>
<tr>
<td>Notes:</td>
<td>Apply Charging operations use this parameter and not the <code>awolTimeout</code> parameter. If an ApplyCharging report was sent for a call with a talk time of 60 seconds, using the <code>checkAWOLMarginAC</code> parameter, it would be 90 seconds after this message was sent before the call was considered AWOL and aborted by the ACS service.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>checkAWOLMarginAC 30</code></td>
</tr>
</tbody>
</table>

**awolTimeout**

<table>
<thead>
<tr>
<th>Syntax:</th>
<th><code>awolTimeout duration</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>The time a call must be in progress before it becomes eligible for termination.</td>
</tr>
<tr>
<td>Type:</td>
<td>Integer</td>
</tr>
<tr>
<td>Units:</td>
<td>Seconds</td>
</tr>
<tr>
<td>Optionality:</td>
<td>Optional</td>
</tr>
<tr>
<td>Allowed:</td>
<td><code>duration ≥ 0</code></td>
</tr>
</tbody>
</table>
Chapter 5

Default: If the awolTimeout parameter is omitted, duration = 0 is assumed.
Notes:
- May be specified for service instance section which will override the value specified globally.
- If duration is set to zero, no timer is configured and calls are never placed in a 'close' queue.
- If duration > 0, at the end of duration, a SLEE event is triggered notifying that the call should be placed in a 'close' queue.
- The awolTimeout parameter can be specified in the in the acs.conf file as a specific service entry. See acsChassis ServiceEntry Configuration (SCP) (on page 102).
- This parameter is not used by any Apply Charging operations.

Example:
awolTimeout 1800

awolReportOnly
Syntax: awolReportOnly 0|1
Description: Determines the type of AWOL message printed to the system log.
Type: Boolean
Optionality: Optional
Allowed:
0  For every timed out message:
   - report the time overdue,  
   - the message type last sent, and
   - the transaction and call ID (including the service handle, where applicable).
1  For every timed out message, print only a summary report.

Default: 0
Notes:
- May be specified for service instance section which will override the value specified globally.
- For the awolReportOnly 0 option, an example of a message printed to the system log is shown below.

WARNING: Ending Call 268413469. TID L.0x0 R.0x0  Sent operation(s)
TCAP_INVOKE: CS1_CallInformationRequest, TCAP_INVOKE: CS1_Continue.
Received timeout 0s ago. Service Handle CCS_ROAM. Origin Address - GT: 60181000010
SSN: 146

WARNING: Ending Call 271216901. TID L.0x0 R.0x0  Sent operation(s)
TCAP_INVOKE: CS1_ApplyCharging, TCAP_INVOKE: CS1_ApplyCharging, TCAP_INVOKE: 
CS1_ApplyCharging, TCAP_INVOKE: CS1_ApplyCharging, TCAP_INVOKE: 
CS1_ApplyCharging, TCAP_INVOKE: CS1_ApplyCharging, TCAP_INVOKE: 
CS1_ApplyCharging, TCAP_INVOKE: CS1_ApplyCharging, TCAP_INVOKE: 
CS1_ApplyCharging, TCAP_INVOKE: CS1_ApplyCharging, TCAP_INVOKE: 
Service Handle Ccs. Origin Address - GT: 60197030004 SSN: 146

Example:  awolReportOnly 0

awolReportPeriod
Syntax: awolReportPeriod value
Description: How often, in seconds, to provide AWOL reporting.
Type: Integer
Optionality: Optional
Allowed: Positive integer
Default: 900
Notes: May be specified for service instance section which will override the value specified globally.
Example: awolReportPeriod 900

awolOverrideACRTimeout
Syntax: awolOverrideACRTimeout value
Description: Specifies the period of time (seconds) within which we expect to have received an Apply Charging Report. If the ACR is not received during this time then the call is cleaned up. It is anticipated that this value will be used in data session scenarios where the return time of the ACR cannot be predicted based on the Apply Charging request.
Type: Integer
Optionality: Optional. Configurable on a per-service basis only.
Notes: If set, then the value in checkAWOLMarginAC is ignored.
Value of zero means do not override timeout from ACR.
Example: awolOverrideACRTimeout 1800

Get Hunting Number Node Configuration

Parameters
The following configuration parameter is provided to control Get Hunting Number node.

setCallData
Description: If non zero, use the VPN Set Call Data chassis action to set the RedirectingPartyID and OriginalCalledPartyID.
Type: String
Optionality: Allowed: 0, 1
Default: 0
Notes: Set to 1 if you have VPN installed.

Play Variable Part Announcement Node Configuration

Parameters
The following configuration parameters are provided to control Play Variable Part Announcement node:

NumberRulesSection
Syntax: NumberRulesSection section_name:
Description: Defines where to find custom denormalization rules when the Denormalize check box is ticked in the Play Variable Part Announcement node.
Type: String
Optionality: Optional
Allowed: Any section name defined in the acsPlayVariablePartAnnouncement section of acs.conf
Number Matching Node Configuration

Parameters

The following configuration parameters are provided to control Number Matching node.

RegMapFlushPeriod

Syntax: RegMapFlushPeriod secs

Description: The number of seconds between attempts to flush the compiled regular expression map. Entries are flushed if they are older than the time specified by the RegMapMaxAge parameter.

Type: Integer

Optionality: Optional.

Allowed: 600

Default: 600

Notes: To disable the flushing mechanism for the regular expression map, set the value to 0 (zero).

Example: RegMapFlushPeriod 600

RegMapMaxAge

Syntax: RegMapMaxAge secs

Description: The maximum number of seconds a compiled regex may remain in the map unused.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: 43200 (12 hours)

Default: 43200

Notes: 

Example: RegMapMaxAge 43200
acs.conf Example

Example acs.conf

Here is an example acs.conf file. Note that not all available parameters appear in the example.

```bash
The following programs or groups of programs get their configuration
from this configuration file.
#
acsStatisticsDBInserter
acsStatsMaster
acsStatsLocal
acsCompilerDaemon
acsChassis
#
This file is parsed according to the following rules:
- Indenting beyond the first white space is ignored by the parser, it is done
only for clarity for human readers.
- Lines without at least a single leading white space or comment character are
section names.
- The file is parsed until a line containing only the indicated section
name is matched.
- Following lines are considered part of the section, until either the
end of file, or a line terminated with a ':' is reached.
- Parameter lines are in the form '<key> <value>'
- All key strings are case-sensitive. The specific keys recognised by
an application are specific to that application.
- To add service specific Chassis configuration: specify the service name, such
as 'ACS_Outgoing' and then set the configuration parameters as required. See example at the end
of this file.
#
acsStatisticsDBInserter
oracleusername <sms_user>
oraclepassword <sms_passwd>
Retries 3
Period 30
MasterServerLocation STATSMASTERNODE
MasterServerPort 1490:

acsStatsMaster
 port 1490
 shmKey 17170588
 semKey 17170589
 masterStatsServer STATSMASTERNODE:

acsStatsLocal
 port 1490
 masterStatsServer STATSMASTERNODE:

acsCompilerDaemon
 alertTimeout 3
 maxBranches 99
 maxNodes 2000
 maxCompiledKb 256
```

Chapter 5, Configuring the acs.conf  137
Chapter 5

compressAtKb 128
compressLevel 1
AuditChallenge 1:

acsChassis
# oracleusername SMF
# oraclepassword SMF
# ServiceEntry (ACS,libacsService.so)
ServiceEntry (ACS_Outgoing,libacsService.so)
# # Macro Node library - base ACS macro nodes.
# MacroNodePluginFile libacsMacroNodes.so
# # Pluggable Action - base ACS actions.
# ChassisPlugin libacsChassisActions.so
# # Special Resource Function mappings for the SLEE
# srf (NAP1,UseETC=N,Address=,NOA=3)
srf (nap1,UseETC=N,Address=,NOA=3)
# Example of the ssf/scf definitions:
# ssf (SSF_Name1,PC=0xADC,SSN=11,interface=hssScIf)
ssf (SSF_Name2,NOA=1,Address=01234,interface=hssScIf)
# scf (SCP_Name1,PC=0xADB,SSN=11)
# Example entry for the ICA originating address
# Setting this will cause an originating address to be set
# in the outgoing ICA request by slee_acs instead of your tcap IF
# scf (LocalAddress,NOA=4,Address=01224)
#
# # Extension Numbers
# # *** Unique to each site ***
# # Examples:
# extensionNumber 0 26 inapaddressstring digits
# extensionNumber 1 28 inapaddressstring extension,nature,plan,digits
# extensionNumber 2 1  InapNumber digits
#
# # Here are the rest of the Chassis parameters.
# port 1490
shmKey 17170588
semKey 17170589
NoServiceAction disconnect
NoServiceError WARNING
NoCallPlanAction continue
NoCallPlanError
InternalErrorAction continue
ChainCountLimit 8
DialledStarEncoding B
DialledHashEncoding C
EntryChar C
EmergencyNumber 111
# If the Call Reference ID (an Octet string) in an IDP is a BCD number other than an Ascii string,
# for instance 0x28 0x81 0x1F 0xE3 0x29, then we need to set this option to true
# in order to be able to read the hex values "28811FE329" in EDR other than see unreadable characters.
# Defaults to false
callReferenceIDAsHex 1

# For use with the CIN
CallInitiationTimeoutToleranceSeconds 10

# CallInitiationUseContextInd
# CDR file configuration, disabled by default.
#
# Valid values for CallInitiationUseContextInd are:
#
# 0: All indicator values, including NoA, set to the original values:
#   (NoA = 4, ScrnInd = 3, PresInd = 0, NumIncomplete = 0)
#   (Default = 0)
# 1: All indicator values, except NoA, set to original values. The NoA value would come from the context and could be altered via denormalisation rules.
# 2: NoA set to original value. Other indicator values come from context and could be altered via Set Indicator nodes in the call plan.
# 3: All indicator values would come from the context. The NoA value could be altered via denormalisation rules and the other indicator values could be altered via Set Indicator nodes in the call plan. In all cases the NumberPlan will be set to 1, as in the original version.
#
# CallInitiationUseContextInd 0

# CDR file configuration, disabled by default.
#
CdrFile 0
CdrFileMaxAge 600
CdrFileMaxSize 8
CdrExtraFields 1
CdrOnDisconnect 1
CdrOnAbort 1
CdrCompressCall 0
CdrLogPIN 1

# Append PID of logging process to filename (enabled by default)
CdrFileAppendPid 1

# Append time that file was closed to filename (disabled by default)
CdrFileAppendCloseTime 0

PINLogEnable 1
PINLogMaxAge 3600
PINLogMaxSize 1024
PINLogSuccess 0
PINLogFail 1
OverrideDefaultIPDigitTimeout 0
FirstDigitTimeout 4
InterDigitTimeout 4
MaxPromptDigits 21

# Maximum number of bytes allowed in the text field of a
# PlayAnnouncement or PromptAndCollectUserInformation operation.
maxAnnouncementTextBytes 80

#
# Call Dump configuration, disabled by default.
#
CallDumpEnabled 0
CallDumpSeconds 120
CallDumpDir /tmp
CallDumpSeverity ERROR
CallDumpMessage

edpArmAnswer 1
edpArmNoAnswer 1
edpArmBusy 1
edpArmRouteSelectFailure 1
edpArmAbandoned 1
edpUseNoAnswerTimer 1
NokiaCIR 0
CarrierCodeDisposal 0
UseReplication 0
AuditChallenge 0
ArmTerminateTriggers 0
UseContinueOperation 0
masterStatsServer STATSMASTERNODE

SendCIR 0
AskCIRAttemptElapsedTime 1
AskCIRStopTime 1
AskCIRConnectElapsedTime 1
AskCIRCallAddress 1
usePendingTnForCaInCdr 0
AskCIRReleaseCause 1
recordSmpStatistics 1
disarmEDPs 0

# set the engine's terminationNumber, which
# is printed as TN in the CDR, to:
# 0 - the digits sent over the network in the connect
# 1 - the normalised number sent to the service loader
normaliseTerminationNumber 0

# Normalise the SN (Service Number) in the CDR and set CPNN
# (Called Party Nature of Number) to match:
# 0: SN = the digits received over the network in the IDP
#    CPNN = the Nature of Address received over the network in the IDP
# 1: SN = the normalised number received from the service loader
#    CPNN = 0, a normalised number does not have a Nature of Address
normaliseServiceNumber 0

# Normalisation rules
# These translate numbers from the network, which have NOA and digits, into a
# standard form for use within ACS.
# They can either be in the acsChassis section or in a service entry specific
# section, which has
# the same name as the service name in the ServiceEntry line.

# NormalisationRule
(<inNOA>,<inPrefix>,<stripDigits>,<outPrefix>[,<minLength>[,<maxLength>]])

# inNOA : This rule will only match numbers with this NOA
# inPrefix : This rule will only match numbers with this prefix
# stripDigits : Strip this many digits from the front of the number
# outPrefix : Then, add this many digits to the front of the number
# minLength, maxLength : The rule will only match numbers of this length

# NormalisationRule (3,-,0,-,10,13,m)
# This says normalise nationally significant (NOA 3) numbers where the MSC
# address
# (m) has a prefix in the countryCodes list (longest match), the matched number
# is
# between 10 and 13 characters long and the result is the matched number
# prefixed
# with the country code prefix from the MSC address.

# Denormalisation rules
# These translate numbers stored inside ACS as just digits to digits and NOA to be
# sent out to the network.
# They can either be in the acsChassis section or in a service entry specific
# section, which has
# the same name as the service name in the ServiceEntry line.

# DenormalisationRule
(<inPrefix>,<outNOA>,<noOfDigitsToRemove>,<outPrefix>[,<minLength>[,<maxLength>]])

# inPrefix : This rule will only match numbers with this prefix
# outNOA : Use this NOA in the number sent out
# noOfDigitsToRemove : Strip this many digits from the front of the number
# outPrefix : Then, add this many digits to the front of the number
# minLength, maxLength : The rule will only match numbers of this length

# There is a second form of DenormalizationRule which takes an NOA

# DenormalisationRule
(noa,<NOA>,<inPrefix>,<outNOA>,<noOfDigitsToRemove>,DigitsToAdd)

# Where the first noa is the literal, lowercase text "noa".

# Example:
# DenormalisationRule (noa,3,E,4,0,999)

# This rule will convert the NoA to 4 and add "999" to any ICA outgoing number
# with an NoA of 3.

# The interval in seconds to be used for checking dialog timers.
# Note that this effectively depricates the RIMS Chassis Action approach to doing
# this.
# Setting to 0 will disable this explicit setting (in which case 10 will be used).
# Defaults to 0 if not specified for backwards compatibility.
# dialogTickInterval 10

# alwaysIncludePartyToCharge

# If set, we set partyToCharge parameter in ACs
# to the leg1 party.
# Defaults to 0 - partyToCharge is not set.
# alwaysIncludePartyToCharge 1
# alternativeCallPlanNamePostfix
# This string is appended to the end of the Control Plan name and this new control plan is the replacement control plan when alternative control plan replacement is activated from the ACS Screens: Services -> ACS Service -> Customer -> Control Plan Change Tab
# Defaults to _alt
# Example:
# alternativeCallPlanNamePostfix _emergency
# alternativeCallPlanNamePostfix _alt

# minimumSizeOfConnectSleeEvent configures the minimum size of a SLEE event used to return the Connect message. This defaults to 1024. A service specific configuration may be added if required to reduce the amount of memory required for 'normal' services.
# minimumSizeOfConnectSleeEvent 1024

# Checking for AWOL calls, disabled by default.
# Note that Apply Charging operations do not use awolTimeout (see below).
# checkAWOL 0 - disable
# 1 - enable
# awolTimeout - the timeout period (in seconds) for events that are not the last events. May be specified for service instance section.
# awolReportOnly 0 - always raise warning alarm when cleaning up each AWOL call
# 1 - only raise warning alarm which summarises changes
# awolReportPeriod - how often (in seconds) to provide summary report.
# checkAWOLMarginAC - configurable tolerance added to Apply Charging timeout.
# 0 - replaces old checkAWOLMargin setting (now deprecated).
# awolOverrideACRTimeout - Configurable on a per-service basis only.
# Specifies the period of time (seconds) within which we expect to have received an Apply Charging Report. If the ACR is not received during this time then the call is cleaned up. It is anticipated that this value will be used in data session scenarios where the return time of the ACR cannot be predicted based on the Apply Charging request.
# checkAWOL 0
# awolTimeout 1800
# awolReportOnly 0
# awolReportPeriod 900
# awolOverrideACRTimeout 0

Note: if set, then the value in checkAWOLMarginAC is ignored.
Note: value of zero means do not override timeout from ACR.
checkAWOLMarginAC 30:

# end of acsChassis configuration

# =============
================================================================
# configuration for Get Hunting Number node
acsGetHuntingNumber

# setCallData {0|1}
# if non zero use the VPN Set Call Data chassis action
# to set the RedirectingPartyID and OriginalCalledPartyID
# set to 1 if you have VPN installed.
# defaults to 0
setCallData 0:

================================================================
# configuration for Play Variable Part Announcement node
#
# This is necessary if the Denormalise check box is used in the
# Play Variable Part node. By default, the Play Variable Part Announcement
# node looks in a section called NumberRulesInteraction.
# An alternative section name can be given in the
# acsPlayVariablePartAnnouncement section
#
# Uncomment this to use the examplePVP section for denormalisation rules
# for the Play Variable Part Announcement node.
# #acsPlayVariablePartAnnouncement
# NumberRulesSection examplePVP:
#
#examplePVP
# # Denormalisation Rules (Prefix, NOAToAdd, NumberOfDigitsToRemove, DigitsToAdd, MinLength)
# DenormalisationRule (0064,2,4,0,12):

# Uncomment this to use the default section name for denormalisation rules
# for the Play Variable Part Announcement node.
# #NumberRulesInteraction
# # Denormalisation Rules (Prefix, NOAToAdd, NumberOfDigitsToRemove, DigitsToAdd, MinLength)
# DenormalisationRule (0064,2,4,0,12):

# service specific configuration for ACS_Outgoing (overrides standard acsChassis configuration)
ACS_Outgoing
  minimumSizeOfConnectSleeEvent 2048:

# end of file
Overview

Introduction

This chapter explains how to manage the ACS processes.

Purpose

The chapter lists the ACS processes which execute on an installed ACS platform. These processes are a combination of inittab processes, and cron processes.

Important: It is a prerequisite for managing these core service functions that the operator is familiar with the basics of Unix process scheduling and management. Specifically, the following Unix commands:

- init (and inittab)
- cron (and crontab)
- ps
- kill

In this chapter

This chapter contains the following topics.

Automated ACS Processes (SMS Machine)  145
acsCompilerDaemon  146
acsSnCpActAlarms  147
acsDbCleanup.sh  149
acsProfileCompiler  149
acsStatisticsDBInserter  150
smsLogCleaner  151
Automated ACS Processes (SLC Machine)  152
acsStatsMaster  152
libacsChassisActions  153
libacsMacroNodes  153
libacsService  153

Automated ACS Processes (SMS Machine)

Introduction

The acsSmp package installs three tasks into the /etc/inittab. These tasks should be running at all times. The tasks are:

- acsCompilerDaemon
- acsStatisticsDBInserter
- acsProfileCompiler
These three binaries are run from `/IN/service_packages/ACS/bin`, through start shell scripts also in that directory.

The acsSmp packages also install two tasks into the crontab for user acs_oper. The tasks are:

- smsLogCleaner
- acsDbCleanup.sh

## acsCompilerDaemon

### Purpose

The acsCompilerDaemon runs continuously, polling the database to look for newly written Control Plans and Control Plan structures (for example, indicated by database field ACS_CALLPLAN.BUILD = B).

The Control Plan compiler generates the fast-lookup binary compiled Control Plan data which is actually used at execution time.

The compiler can use plugins for additional, specialized functions.

### Plugins

The compiler uses the plug-ins after the standard compilation has completed, and in the order the plug-ins are listed in `acs.conf`.

This table describes the function of each acsCompilerDaemon plug-in.

<table>
<thead>
<tr>
<th>Plug-in</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>libwsdlGenerator.so</td>
<td>This plug-in produces the WSDL code for the operation used by the Control Plan. If this is the first operation, the complete WSDL operation set file is produced and this operation inserted. For all other operations for the same operation set, the code is inserted after the previous operation code. For further information on operations and operation sets, see <em>OSD User's &amp; Technical Guide</em>.</td>
</tr>
</tbody>
</table>

### Startup

This task is started by entry acs0 in the inittab, via the shell script:

```
/IN/service_packages/ACS/bin/acsCompilerDaemonStartup.sh
```

### Location

This binary is located on SMSs.

### Parameters

The acsCompilerDaemon does not support any command line parameters; it is completely configured through the `acs.conf` file. For more information, see *Configuring the acs.conf* (on page 57).

### Failure

If the acsCompilerDaemon has failed, then Control Plans will not be compiled. This can be detected by executing the following SQL statement on the SMF database instance:
SELECT ID from ACS_CALL_PLAN where BUILD='B';

Under normal operation, Control Plans will only remain in the B state for a few seconds at most.

Output

The acsCompilerDaemon writes error messages to the system messages file, and also writes additional output to:

/IN/service_packages/ACS/tmp/acsCompilerDaemon.log

acsSnCpActAlarms

Purpose

acsSnCpActAlarms queries the ACS_SN_CALL_PLAN_ACTIVATION database table and generates alarms when it finds any scheduled control plans that have been temporarily disabled by Emergency Control Plan Activation.

Location

This binary is located on SMSs.

Startup

This task is run in the crontab for acs_oper.

/IN/service_packages/ACS/bin/acsSnCpActAlarms

Note: You may optionally write a shell script (to manually start) if you wish to change defaults.

Parameters

The acsSnCpActAlarms does not support any command line parameters. It is configured through the eserv.config file.

eserv.config parameters

Here is an example of the acsSnCpActAlarms section in the eserv.config file.

```json
acsSnCpActAlarms = {
 oracleUserIdPassword = "/
 alarmCheckInterval = 60
 repeatAlarm = false
 serviceNameTerm = "Service Number"
 alarmReason = "by Alternative Control Plan Activation"
}
```

oracleUserIdPassword

Syntax: `oracleUserIdPassword = "user/pw"`

Description: The Oracle user ID and password that acsSnCpActAlarms uses to log into the database.

Type: String

Optionality: Optional (default used if not set).

Allowed: "/"

Default: "/"
Notes:
Example:  \texttt{oracleUserIdPassword = "/"}

\textbf{alarmCheckInterval}

\textbf{Syntax:}  \texttt{alarmCheckInterval = mins}

\textbf{Description:}  Alarms will be generated if the difference between the current time and the control plan's Effective Date (being in the past) is less than the value specified by this parameter.

\textbf{Type:}  Integer

\textbf{Optionality:}  Optional (default used if not set).

\textbf{Allowed:}  60

\textbf{Default:}  60

\textbf{Notes:}  Set this value to a similar/compatible value when running acsSnCpActAlarms from crontab. For example, if crontab is set up to run this process every hour, set this value to 60 minutes.

\textbf{Warning:}  Running this process too frequently from crontab may adversely affect system performance. The recommended crontab configuration is to run this process every hour or at a greater interval.

\textbf{Example:}  \texttt{alarmCheckInterval = 60}

\textbf{repeatAlarm}

\textbf{Syntax:}  \texttt{repeatAlarm = true|false}

\textbf{Description:}  If set to true, relevant alarm(s) will be repeated every alarmCheckInterval minutes until alternative control plan replacement is deactivated.

\textbf{Type:}  Boolean

\textbf{Optionality:}  Optional (default used if not set).

\textbf{Allowed:}  false

\textbf{Default:}  false

\textbf{Notes:}

\textbf{Example:}  \texttt{repeatAlarm = false}

\textbf{serviceNumberTerm}

\textbf{Syntax:}  \texttt{serviceNumberTerm = "snterm"}

\textbf{Description:}  The preferred term used to describe a Service Number.

\textbf{Type:}  String

\textbf{Optionality:}  Optional (default used if not set).

\textbf{Allowed:}  "Service Number"

\textbf{Default:}  "Service Number"

\textbf{Notes:}

\textbf{Example:}  \texttt{serviceNumberTerm = "Freephone Number"}

\textbf{alarmReason}

\textbf{Syntax:}  \texttt{alarmReason = "reason"}

\textbf{Description:}  The reason the alarm is generated. This text is used in the alarm description.

\textbf{Type:}  String

\textbf{Optionality:}  Optional (default used if not set).
Allowed:
Default: "by Alternative Control Plan Activation"

Notes:
Example alarm:
If serviceNumberTerm = "Freephone Number" and alarmReason = "by Emergency Control Plan Activation", then the alarm description would be:

"WARNING: Scheduled Control Plan(Name) for Customer(Name), Freephone Number(123) has been temporary disabled by Emergency Control Plan Activation"

Example: alarmReason = "by Alternative Control Plan Activation"

acsDbCleanup.sh

Purpose

This task executes SQL statements to delete old data from the ACS Event Counter table ACS_STATISTICS_COUNT, and also to delete old compiler output from the ACS_COMPILE_ERRORS table.

Startup

This task is run in the crontab for acs_oper, by default at 02:00 local system time. It is a shell script, specifically /IN/service_packages/ACS/bin/acsDbCleanup.sh.

Location

This binary is located on SMSs.

Parameters

The purge-age in days is defined inside the shell script itself, and can be adjusted, subject to limitations of table space in the database.

Failure

If this process is not running, old entries in the specified tables will not be purged.

Output

The acsDbCleanup.sh script writes output to:

/IN/service_packages/ACS/tmp/acsDbCleanup.sh.log

acsProfileCompiler

Purpose

The acsProfileCompiler polls for changes in the timezone and/or termination number ranges configured in the database. It then performs changes in the global profile, and in customer profiles for customers who have non-default termination ranges defined.
Chapter 6

**Startup**
This task is started by entry acs2 in the inittab, through the
`/IN/service_packages/ACS/bin/acsProfileCompilerStartup.sh` shell script.

**Location**
This binary is located on SMSs.

**Parameters**
The `acsProfileCompiler` does not support any command line parameters, it is completely configured via the `acs.conf` file. For more information, see *Configuring the acs.conf* (on page 57).

**Failure**
If the process fails, then changes to the ACS timezone geography set will not be reflected on the SLC call-processing. Similarly, changes to the self-management Control Plan.

*Note:* The termination number constraints for ACS GUI changes will continue to operate as expected.

**Output**
The `acsProfileCompiler` writes error messages to the system messages file, and also writes additional output to:
`/IN/service_packages/ACS/tmp/acsProfileCompiler.log`

**acsStatisticsDBInserter**

**Purpose**
The `acsStatisticsDBInserter` communicates with the `acsStatsMaster` process (see below), and polls for changes to ACS Event Counters.

*Note:* This process is not the same as the `smsStatsDaemon`, although the names are similar.

**Startup**
This task is started by entry acs1 in the inittab, through the
`/IN/service_packages/ACS/bin/acsStatisticsDBInserterStartup.sh` shell script.

**Location**
This binary is located on SMSs.

**Parameters**
The `acsStatisticsDBInserter` supports the following command-line options:

*Usage:*

```
acsStatisticsDBInserter -h hostname -p port -s sleep
```
These options can be used for testing to override the values specified in the `acsStatisticsDBInserter` section of the `acs.conf`, however they should not be required on an operational platform.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>hostname</td>
<td></td>
</tr>
<tr>
<td>-p</td>
<td>port</td>
<td></td>
</tr>
<tr>
<td>-s</td>
<td>sleep</td>
<td></td>
</tr>
</tbody>
</table>

**Failure**

This process will periodically write updated Event Counts to the ACS database, into the table `ACS_STATISTICS_COUNT`. If there are no Event Counts being modified by active Control Plans, the this process may appear to be inactive.

Failure of this process will result in no updates to the `ACS_STATISTICS_COUNT` table, even when EventCounting nodes are encountered in active Control Plans.

**Output**

The `acsStatisticsDBInserter` writes error messages to the system messages file, and also writes additional output to `/IN/service_packages/ACS/tmp/acsStatisticsDBInserter.log`.

**smsLogCleaner**

**Purpose**

The log cleaner looks for old/large log files in `/IN/service_packages/ACS/tmp`, and moves them into the archive subdirectory. Old files in that subdirectory are purged.

**Startup**

This task is run in the crontab for `acs_oper`. By default, it runs at 35 minutes past each hour. It is run through the `/IN/service_packages/ACS/bin/acsLogCleanerStartup.sh` shell script.

**Location**

This binary is located on both SLCs and SMSs.

**Parameters**

For more information about command line parameter description for the `smsLogCleaner` binary, which is installed as part of the `smsSms` packages, see the *SMS Technical Guide*.

**Failure**

If this process is not running, log files will accumulate in the tmp directory beyond the configured parameters for size and age.

**Output**

The `smsLogCleaner` run by `acs_oper` writes error messages to the system messages file, and also writes additional output to:
Automated ACS Processes (SLC Machine)

Introduction

The acsScp package installs one task into the /etc/inittab for one of the SLC machines in an SLC grouping. This task should be running on that one machine at all times. The task is:

- acsStatsMaster
  This binary is run from /IN/service_packages/ACS/bin, via start-up shell script contained within that same directory.

The acsScp packages also install one task into the crontab for user acs_oper. The task is:

- smsLogCleaner

acsStatsMaster

Purpose

The acsStatsMaster runs only on one SLC machine, typically SCP1. All other SLC nodes communicate with the master through TCP/IP to correlate their ACS event counter values.

Startup

This task is started by entry acs3 in the inittab, through the /IN/service_packages/ACS/bin/acsStatsMasterStartup.sh shell script.

Location

This binary is located on SLCs.

Parameters

The acsStatsMaster does not support any command line parameters, it is completely configured through the acs.conf file. For more information, see Configuring the acs.conf (on page 57).

Failure

If the acsStatsMaster is not running, then individual nodes will not be able to correlate their event counter values. This will mean that Control Plans may perform incorrect branching. Additionally, the acsStatisticsDBInserter process will not be able to track changes to ACS Event Counter values, and there will be no updates to the corresponding table in the database.

Output

The acsStatsMaster writes error messages to the system messages file, and also writes additional output to:

/IN/service_packages/ACS/tmp/acsStatsMaster.log
libacsChassisActions

Purpose

libacsChassisActions provides the functions which enable the ACS Feature Nodes to interact with other elements in the system, including:

- SLEE interfaces (such as TCAP IF), and
- other elements on the network (such as the VPU).

Startup

If libacsChassisActions is included in the acs.conf, libacsChassisActions will be available to slee_acs when the SLEE is started.

For more information about how this included in acs.conf, see ChassisPlugin (on page 61).

Configuration

libacsChassisActions is configured by parameters in the acsChassis section of acs.conf. For more information, see Configuring the acs.conf (on page 57).

libacsMacroNodes

Purpose

This slee_acs plug-in library provides the base ACS feature nodes. For more information about the feature nodes provided by this library, see CPE User’s Guide.

Startup

If libacsMacroNodes is included in the acs.conf, libacsMacroNodes will be available to slee_acs when the SLEE is started.

For more information about how this included in acs.conf, see MacroNodePluginFile (on page 61).

Configuration

libacsMacroNodes accepts the parameters from acs.conf. For more information about the available configuration, see:

- Get Hunting Number Node Configuration (on page 135), and
- Play Variable Part Announcement Configuration (see “Play Variable Part Announcement Node Configuration” on page 135).

libacsService

Purpose

libacsService is the ACS service library plug-in for slee_acs which handles initial set up of control plans. Based on the incoming call details, it loads up the relevant control plan and feature nodes.

Note: If other applications are installed, they may provide their own service libraries which will be used instead of libacsService.
Chapter 6

Startup

If libacsService is configured in acs.conf, it is made available to slee_acs when slee_acs is initialised. It is included in the acsChassis section of acs.conf in a ServiceEntry.

acsChassis
    ServiceEntry (ACS,libacsService.so)
For more information about this configuration, see ServiceEntry - acschassis (see "acsChassis ServiceEntry Configuration (SLC)" on page 102).

Configuration

libacsService supports parameters from acs.conf. For more information, see Configuring the acs.conf (on page 57).
Overview

Introduction

This chapter explains the tools and utilities available in ACS.

In this chapter

This chapter contains the following topics.

- acsAddCallPlan
- acsAddCustomer
- acsAddGeography
- acsAddServiceNumber
- acsDecompile
- acsDumpControlPlan
- acsMonitorCompiler
- acsScheduleCallPlan
- acsSetupAnnouncement
- numberDataImport

acsAddCallPlan

Purpose

Use the acsAddCallPlan tool to import a control plan, defined in a .cpl text file, into the SMF database on either the same platform, or a different platform. For example, you can export a control plan from one platform by using acsDumpControlPlan (on page 160) and import the previously exported control plan into a different platform by using acsAddCallPlan.

The java shell script for acsAddCallPlan is located on SMS nodes. It launches a Java command line class that reuses the CPE code to achieve its requirements.

Configuration

acsAddCallPlan accepts the following parameters.

Usage:

acsAddCallPlan -u \usr/pwd [\-v] [\-D directory \[-O directory\] \-C acs_customer]

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u \usr/pwd</td>
<td></td>
<td>username/ password. Username must be screens user credentials or SMF database user.</td>
</tr>
<tr>
<td>-v</td>
<td>off</td>
<td>Verbose (optional)</td>
</tr>
<tr>
<td>-D</td>
<td>ignored</td>
<td>Specify the directory containing the .cpl files to import (optional).</td>
</tr>
</tbody>
</table>
### Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-O</td>
<td>ignored</td>
<td>Specify the directory to move successfully imported files to (optional, only relevant with -D). Any files that fail to import will not be moved.</td>
</tr>
<tr>
<td>-C</td>
<td>ignored</td>
<td>Specify the ACS customer that will own the imported control plans (mandatory if -D is used).</td>
</tr>
</tbody>
</table>

When -D option is absent, records are added by stdin lines in the following format:

```
-c name -f file [-s name] [-t name] [-d name] [-m ID] [-p]
```

Where the record content is:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c name</td>
<td>Customer name.</td>
</tr>
<tr>
<td>-f file</td>
<td>Exported control plan file name.</td>
</tr>
<tr>
<td>-s name</td>
<td>New template name (optional). Tip: This is used when there is no existing template.</td>
</tr>
<tr>
<td>-t name</td>
<td>Existing template name (optional).</td>
</tr>
<tr>
<td>-d name</td>
<td>New control plan name (optional).</td>
</tr>
<tr>
<td>-m ID</td>
<td>MF Identifier for the control plan (optional).</td>
</tr>
<tr>
<td>-p</td>
<td>Make inserted control plan public (optional).</td>
</tr>
</tbody>
</table>

When -D option is present, records are added in the following format for each .cpl file:

```
-c cust_name -f cpl_file -s cpl_name -d cpl_name
```

Where the record content is:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c cust_name</td>
<td>Customer name is taken from the -C option argument.</td>
</tr>
<tr>
<td>-f cpl_file</td>
<td>Is the filename of each .cpl file in the directory from the -D argument.</td>
</tr>
<tr>
<td>-s cpl_name</td>
<td>Is the cpl file basename with the .cpl extension removed.</td>
</tr>
<tr>
<td>-d cpl_name</td>
<td>Is the cpl file basename with the .cpl extension removed.</td>
</tr>
</tbody>
</table>

The control plan text file format is the same as that used for an exported control plan. Imported control plans will be set private and mf_identifier will be set NULL.

### acsAddCustomer

#### Purpose

Inserts a customer record into the SMF database.

#### Location

This binary is located on SMSs.

#### Configuration

acsAddCustomer accepts the following parameters.

**Usage:**

```
acsAddCallPlan -u usr/pwd [-v]
```
The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u usr/pwd</td>
<td>username/password. Username must be acs_admin.</td>
<td></td>
</tr>
<tr>
<td>[-v]</td>
<td>off</td>
<td>Verbose</td>
</tr>
</tbody>
</table>

Records are added by stdin lines in the following format:

```
```

Where the record content is:

<table>
<thead>
<tr>
<th>Field</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c name</td>
<td></td>
<td>Customer name (optional).</td>
</tr>
<tr>
<td>-f set</td>
<td></td>
<td>Feature node set name (optional).</td>
</tr>
<tr>
<td>-y set</td>
<td></td>
<td>Holiday set name (optional).</td>
</tr>
<tr>
<td>-g set</td>
<td></td>
<td>Geography set name (optional).</td>
</tr>
<tr>
<td>-n set</td>
<td></td>
<td>Announcement set name (optional).</td>
</tr>
<tr>
<td>-m</td>
<td></td>
<td>Customer is Telco managed (optional).</td>
</tr>
<tr>
<td>-r ref</td>
<td></td>
<td>Customer reference (optional).</td>
</tr>
<tr>
<td>-d desc</td>
<td></td>
<td>Customer description (optional).</td>
</tr>
<tr>
<td>-l usr</td>
<td></td>
<td>User name to be added for this customer (optional).</td>
</tr>
<tr>
<td>-o val=options</td>
<td></td>
<td>Resource limits for customer (optional).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Options are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- eventlogs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- statscounters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nodesinplan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- callplans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- callplanstructures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- announcementsets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- announcemententries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- holidaysets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- holidayentries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- geographysets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- geographyentries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- users</td>
</tr>
<tr>
<td>-t policy</td>
<td>global</td>
<td>Termination number range rules (optional).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Options are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- private (own range)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- global (default checking)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- any (no checking)</td>
</tr>
</tbody>
</table>
acsAddGeography

**Purpose**
Inserts Geography Set(s) into the SMF database from a text file.

**Location**
This binary is located on SMSs.

**Configuration**
acsAddGeography accepts the following parameters.

**Usage:**
acsAddGeography -u usr/pwd [-c customer | -p] [-r int] [-g] filenames

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u</td>
<td>Oracle username/ password.</td>
<td></td>
</tr>
<tr>
<td>-c</td>
<td>Customer to own created geography sets.</td>
<td></td>
</tr>
<tr>
<td>-p</td>
<td>The -c and -p parameters are mutually exclusive.</td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td>Number of records before a commit (optional).</td>
<td></td>
</tr>
<tr>
<td>-g</td>
<td>Global number prefix (optional).</td>
<td></td>
</tr>
<tr>
<td>filenames</td>
<td>Input filename.</td>
<td></td>
</tr>
</tbody>
</table>

**Input file structure**
Geography set input files use the following format, where the indentation indicates what the data is, and hence is very important:

```
Geography set name
 area = 1
 another area
 sub area = 21
 another sub area = 22
blank lines or comments (# = comment line) are allowed.

Another geography set
 newlands = 343
```

acsAddServiceNumber

**Purpose**
Inserts a Service Number record into the SMF database.

**Location**
This binary is located on SMSs.

**Configuration**
acsAddServiceNumber accepts the following parameters.
Usage:
acsAddServiceNumber -u usr/pwd [-v]

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u usr/pwd</td>
<td>Oracle username/ password.</td>
<td></td>
</tr>
<tr>
<td>[-v]</td>
<td>off</td>
<td>Verbose</td>
</tr>
</tbody>
</table>

Records are added by stdin lines in the following format:

```
-c customer -s sn [-r desc] [-b] [-p pin] [-f number] [-a options] [-t 1|2] [-i 0|1] [-d list]
```

Where the record content is:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c name</td>
<td>Customer Name.</td>
</tr>
<tr>
<td>-s sn</td>
<td>Service Number.</td>
</tr>
<tr>
<td>-r desc</td>
<td>Description (optional).</td>
</tr>
<tr>
<td>-b</td>
<td>Use Toll Free beeps (optional).</td>
</tr>
<tr>
<td>-p pin</td>
<td>PIN (optional).</td>
</tr>
<tr>
<td>-f number</td>
<td>Follow me number (optional).</td>
</tr>
<tr>
<td>-a options</td>
<td>Policy, Min/Max, Account Codes (optional).</td>
</tr>
</tbody>
</table>
| -t 1|2 | Barred list type (optional).  
| -i 0|1 | Barred list ignore (optional).  
| -d list | List of barred/ allowed numbers (optional). |

acsDecompile

Purpose
Takes a compiled control plan and decodes it into the control plan text file format.

Location
This binary is located on both SLCs and SMSs.

Configuration - acsDecompile
acsDecompile accepts the following parameters.

Usage:
acsDecompile [-u usr/pwd] [-d dataID|-s structureID] [-r]-n]
The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u usrpwd</td>
<td></td>
<td>Oracle username/password.</td>
</tr>
<tr>
<td>-d dataID</td>
<td></td>
<td>Control Plan Data ID to Decompile.</td>
</tr>
<tr>
<td>-s structureID</td>
<td></td>
<td>Control Plan Structure ID to Decompile.</td>
</tr>
<tr>
<td>-r</td>
<td></td>
<td>Dump raw content only.</td>
</tr>
<tr>
<td>-n</td>
<td></td>
<td>Attempt to decompile node data.</td>
</tr>
</tbody>
</table>

**acsDumpControlPlan**

**Purpose**

Use the `acsDumpControlPlan` tool to export one or more control plans from the SMF database to text files (one file per control plan). You can import the control plan text files to either the same platform or a different platform, by using `acsAddCallPlan` (on page 155).

The java shell script for `acsDumpControlPlan` is located on SMS nodes. It launches a Java command line class that reuses the CPE code to achieve its requirements.

**Configuration**

**Usage:**

```bash
```

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u usrpwd</td>
<td></td>
<td>username/password. Username must be screens user credentials or SMF database user.</td>
</tr>
<tr>
<td>-d out_dir</td>
<td></td>
<td>Directory where exported control plan will be written.</td>
</tr>
<tr>
<td>-c customer</td>
<td>ignored</td>
<td>Name of the customer who owns the control plan (optional).</td>
</tr>
<tr>
<td>-p</td>
<td>ignored</td>
<td>Name of the control plan. May contain % and wildcard characters (optional).</td>
</tr>
<tr>
<td>-i id</td>
<td>ignored</td>
<td>The control plan ID in the ACS call plan table. If specified, ignores -c and -p. (optional)</td>
</tr>
<tr>
<td>-v</td>
<td>off</td>
<td>Verbose mode (optional).</td>
</tr>
<tr>
<td>-S</td>
<td>ignored</td>
<td>If set, create all files in the same directory as: out_dir/customer_name_version.cpl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Otherwise, create files in subdirectories as: out_dir/customer/name/version.cpl (optional)</td>
</tr>
</tbody>
</table>

The control plan text file format is the same as that used for an exported control plan using the CPE.
acsMonitorCompiler

Purpose
Checks the number of control plans waiting to be compiled.

acsMonitorCompiler is designed to be run after a large number of control plans have been entered.

Note: No further Control Plans should be entered once acsMonitorCompiler has been started.

Location
This binary is located on SMSs.

Configuration
acsMonitorCompiler accepts the following parameters.

Usage:
acsMonitorCompiler -u usr/pwd -s secs [-w] [-e]

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u</td>
<td>usr/pwd</td>
<td>Oracle username/password.</td>
</tr>
<tr>
<td>-s</td>
<td>secs</td>
<td>Seconds between DB checks.</td>
</tr>
<tr>
<td>-w</td>
<td></td>
<td>Display warnings and above (optional).</td>
</tr>
<tr>
<td>-e</td>
<td></td>
<td>Display errors and above (optional).</td>
</tr>
</tbody>
</table>

acsScheduleCallPlan

Purpose
Inserts a control plan schedule record into the SMF database.

Location
This binary is located on SMSs.

Configuration
acsScheduleCallPlan accepts the following

Usage:
acsScheduleCallPlan -u usr/pwd [-v]

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u</td>
<td></td>
<td>Oracle username/ password.</td>
</tr>
<tr>
<td>[-v]</td>
<td>off</td>
<td>Verbose</td>
</tr>
</tbody>
</table>

Records are added by stdin lines in the following format:
Where the record content is:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c name</td>
<td>Customer Name.</td>
</tr>
<tr>
<td>-s sn</td>
<td>Service Number.</td>
</tr>
<tr>
<td>-p name</td>
<td>Control Plan name.</td>
</tr>
<tr>
<td>-d list</td>
<td>Schedule time.</td>
</tr>
<tr>
<td>-a</td>
<td>Activate against CLI not SN. (optional).</td>
</tr>
</tbody>
</table>

**acsSetupAnnouncement**

**Purpose**

Inserts an announcement record into the SMF database.

**Location**

This binary is located on SMSs.

**Configuration**

acsSetupAnnouncement accepts the following parameters.

**Usage:**

```
```

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u usr/pwd</td>
<td>Oracle username/password (optional).</td>
</tr>
<tr>
<td>-l lang</td>
<td>Language name (optional).</td>
</tr>
<tr>
<td>-s set</td>
<td>Set name.</td>
</tr>
<tr>
<td>-e entry</td>
<td>Entry name.</td>
</tr>
<tr>
<td>-r srf</td>
<td>srf name.</td>
</tr>
<tr>
<td>-i id</td>
<td>Numeric announcement ID.</td>
</tr>
<tr>
<td>-c name</td>
<td>Customer name (optional). If not set, the Announcement Set will be public.</td>
</tr>
<tr>
<td>-v</td>
<td>Verbose (optional).</td>
</tr>
<tr>
<td>-n</td>
<td>No SMS security challenge (optional).</td>
</tr>
<tr>
<td>-g time</td>
<td>Generate script to run this tool to create same mappings (optional).</td>
</tr>
<tr>
<td>-d desc</td>
<td>Announcement description (optional).</td>
</tr>
</tbody>
</table>

**numberDataImport**

**Purpose**

The numberDataImport tool enables you to create and update table lookup datasets from a comma separated value (CSV) file.
You can create any number of table lookup datasets. Each table lookup dataset contains a group of related codes and prefix mappings. For example, you can create a table lookup dataset for a specific geographic area or suburb.

A table lookup dataset can be public or private. A private table lookup dataset belongs to a specific customer. It is only available to that customer and the parent customers linked to that customer in the customer hierarchy. A public table lookup dataset is available to all customers.

The numberDataImport tool is located here:

```
/IN/service_packages/ACS/bin
```

Before running numberDataImport, you must do the following:

1. Configure the numberDataImport tool in the `eserv.config` file. See Configuring the numberDataImport Tool (on page 163).
2. Create the CSV input file for the numberDataImport tool. See Creating the Dataset Input File (on page 163).

To run numberDataImport, see Creating and Updating Table Lookup Datasets (on page 164).

After creating Table Lookup Datasets, you can use them in the Table Lookup feature node configurations. For information about configuring the Table Lookup feature node, see NCC Feature Nodes Reference Guide.

You can search table lookup datasets for a prefix number or a mapping code using the ACS UI. For more information, see the discussion on configuring ACS in NCC Advanced Control Services User's Guide.

### Configuring the numberDataImport Tool

You configure numberDataImport in the `NumberMappingImport` section of the `eserv.config` configuration file on the SMS. The following example shows the `NumberMappingImport` section:

```
NumberMappingImport = {
 closedDirectory = "closed_dir"
 errorDirectory = "error_dir"
 dbCommitBatchSize = size
 progressDotTimeInterval = int
}
```

Where:

- `closed_dir` is the directory to which numberDataImport copies successful import files. Defaults to `/IN/service_packages/ACS/mappingData/closed` if not specified.
- `error_dir` is the directory to which numberDataImport writes import error files. Defaults to `/IN/service_packages/ACS/mappingData/error` if not specified.
- `size` sets the number of insert or update operations to perform before committing the data to the database. There is a 10 second pause at each interval to help throttle replication. Defaults to 5000 if not specified.
- `int` defines the number of insert or update operations to perform before displaying a progress dot (a dot that is displayed on the console for every `x` number of updates). Defaults to 100 if not specified.

### Creating the Dataset Input File

You import entries into a table lookup dataset from a comma-separated value (CSV) file that you create. You specify this file as input to the numberDataImport tool when you run the tool from a command line.

To create the dataset CSV file:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open a new file in a text editor.</td>
</tr>
</tbody>
</table>
Step | Action
--- | ---
2 | Add dataset entries to the file by using the following syntax for each entry. Add each entry on a new line:
   
   a|A|d|D,lookup_code,lookup_prefix

   Where:
   
   - a or A specifies to add the dataset entry. If the dataset entry already exists, it is updated.
   - d or D specifies to delete the dataset entry. If the dataset entry does not exist, this file entry is ignored.
   - lookup_code is the code that maps to the prefix in lookup_prefix.
   - lookup_prefix is a prefix number or CLI.

3 | Save the file, giving it the file extension .csv.

Example CSV file entries:

a,3333,32014733
a,4444,32014744
d,5555,320147355
d,6666,320147366

Creating and Updating Table Lookup Datasets

Follow these steps to run the numberDataImport tool.

Step	Action
1 | Open a command shell and log in to the SMS as the acs_oper user.

2 | Navigate to the /IN/service_packages/ACS/bin directory.
Step	Action
3 | Run the numberDataImport tool by using the following syntax:

```bash
./numberDataImport [-F|D] -u user/password [-s dataset] [-a acs_customer] -i filename
```

Where:
- F and D are optional parameters that indicate whether to create or update the dataset. Specify:
  - F to create the dataset. If the dataset already exists then you see a warning message asking if you want to continue. If you want to overwrite the existing dataset entries, then answer Y, otherwise answer N.
  - D to update the specified dataset.
- If you do not specify F or D and the dataset does not already exist, then numberDataImport creates a new dataset. If the dataset does exist, then it is updated.
- `user/password` is the user and password for an ACS user with the required user privilege level. For information on setting user privileges, see *NCC Service Management System User’s Guide*.
- `dataset` is an optional parameter that defines the name of the dataset that you want to create or update. If you don't specify `dataset`, then the dataset name defaults to "Default".
- `acs_customer` is an optional parameter that defines the name of the ACS customer the dataset belongs to. If you don't specify `acs_customer`, then the dataset will be public and therefore available to all customers.
- `filename` is the name of the CSV file that contains the dataset entries.

**Note:** Values for the `-a`, `-s`, and `-i` parameters can be quoted or unquoted. However, you must enclose a value in quotes if it contains spaces.

For example, you could create Dataset1 for customer ABC from the entries in `Dataset1.csv` by running the following command:

```bash
./numberDataImport -F -u user/password -s Dataset1 -a ABC -i Dataset1.csv
```

After successfully importing a dataset from a CSV file, the CSV file is moved to the following location by default:

```
/IN/service_packages/ACS/mappingData/closed
```

If the numberDataImport tool fails to import any entries, then these failed entries are written to the following error file by default:

```
/IN/service_packages/ACS/mappingData/error/filename.error
```

Where `filename` is the name of the csv input file.

For information about the location of the numberDataImport output files, see *Configuring the numberDataImport Tool* (on page 163).
Overview

Introduction

This chapter explains the pre-installation configuration requirements of the application.

In this chapter

This chapter contains the following topics.

ACS Client Specifications 167
Preparing the System 168

ACS Client Specifications

Specifications

This topic provides the specifications of ACS.

Network

The minimum requirements of network bandwidth for acceptable normal response times are as follows:

<table>
<thead>
<tr>
<th>Number of Users</th>
<th>Minimum Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>512 KB</td>
</tr>
<tr>
<td>6-15</td>
<td>1 MB</td>
</tr>
<tr>
<td>16 +</td>
<td>LAN connection (at least 25% available resource of 10 MB)</td>
</tr>
</tbody>
</table>

Memory

This table shows the minimum Client resources required.

<table>
<thead>
<tr>
<th>RAM</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>256 MB</td>
<td>800 MHz</td>
</tr>
</tbody>
</table>

This table shows the recommended Client resources required.

<table>
<thead>
<tr>
<th>RAM</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>512 MB</td>
<td>1.2 GHz</td>
</tr>
</tbody>
</table>
Response times

This table shows typical response time.

<table>
<thead>
<tr>
<th>GUI Action</th>
<th>Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup to Login dialog</td>
<td>30 seconds maximum</td>
</tr>
<tr>
<td>Login to SMS main screen</td>
<td>20 seconds maximum</td>
</tr>
<tr>
<td>SMS main screen to ACS</td>
<td>5 seconds maximum</td>
</tr>
<tr>
<td>ACS main screen to CPE</td>
<td>15 seconds maximum</td>
</tr>
</tbody>
</table>

Screen

Here is the required screen specification.

<table>
<thead>
<tr>
<th>Pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 x 600 pixel resolution</td>
</tr>
</tbody>
</table>

Preparing the System

Introduction

It is recommended that you check the kernel parameters on the system to ensure the system is optimally configured.

The following parameters are described in their respective technical guides. However, they are collated here for reference.

Note: Actual kernel parameters may be greater than those listed here.

Checking Kernel parameters

Follow these steps to check the Kernel parameters for Solaris.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Log in as root.</td>
</tr>
<tr>
<td>2</td>
<td>Enter <code>cat /etc/system</code></td>
</tr>
<tr>
<td>3</td>
<td>Check the parameters are set to at least the minimum values.</td>
</tr>
<tr>
<td>4</td>
<td>Change the parameters as required using the following command from <code>/etc/system</code>.</td>
</tr>
</tbody>
</table>

Parameters

Here is a list of the Kernel parameters.

`msgtql`

**Description:** Maximum number of messages (system wide).

**Allowed:** Positive integer

**Default:** 600

`msgmnb`

**Description:** Maximum number of bytes per message queue.

**Allowed:** Positive integer
Default: 64000

semnmi
Description: Number of semaphore identifiers.
Allowed: Positive integer
Default: 100

semml
Description: Maximum number of semaphores per unique ID.
Allowed: Positive integer
Default: 250

semnms
Description: Maximum number of semaphores.
Allowed: Positive integer
Default: 1024

shmmmax
Description: Maximum shared Mem segment (bytes).
Allowed: Positive integer
Default: 4294967295 (Hex 40000000)

shmmin
Description: Minimum shared Mem segment (bytes).
Allowed: Positive integer
Default: 1

shmmni
Description: Number of shared memory identifiers.
Allowed: Positive integer
Default: 100

shmsseg
Description: Number of shared memory segments allowed per process.
Allowed: Positive integer
Default: 10

semopm
Description: Maximum number of semaphore operations that can be executed per semop system call.
Allowed: Positive integer
Default: 100
semvmx

Description: Maximum semaphore value.
Allowed: Positive integer
Default: 65535
Chapter 9

About Installation and Removal

Overview

Introduction

This chapter provides details of the installation and removal process for the application.

In this chapter

This chapter contains the following topics.

Installation and Removal Overview 171
Installing acsSms Packages on a Clustered SMS 172
Checking the Installation 173
System Manifest 176

Installation and Removal Overview

Introduction

For information about the following requirements and tasks, see NCC Installation Guide:

- NCC system requirements
- Pre-installation tasks
- Installing and removing NCC packages

ACS packages

An installation of ACS includes the following packages, on the:

- SMS:
  - acsSms
  - acsCluster (for clustered SMS)
- SLC:
  - acsScp
- VWS:
  - acsBe

Icons

During the acsSms installation process, you will be asked to nominate icons.

The icons referred to appear on the left hand side of each ACS window's title bar.
The most commonly used icon is Java's red and white cup of coffee: 🟢. If the Java icon is chosen, ACS uses it for all windows.

Two sets of Oracle (Oracle) icons are also available. One set has blue as its dominant color; the other has orange. If you choose an Oracle icon set, ACS assigns a different icon to each ACS window. Some of the Oracle icons look like this: 🟢🟦🟦🟦.

Choosing an Oracle icon instead of the Java icon may be helpful because:

- each ACS window displays a different icon, and
- you can use the two color themes to identify two different systems. This makes it easy to see at a glance which windows are attached to which systems.

## Installing acsSms Packages on a Clustered SMS

### Raw devices

ACS can allocate tablespace storage based on raw (without a file system) partitions. This enhances the performance of ACS on the SMS.

If you are using the raw devices option, you must create the raw partitions before installing the database using tools such as the system's format command.

The raw devices file (which you will be prompted to complete during the installation) must contain the full paths of the device files for the appropriate partitions.

The partitions must be at least as big as the required datafile sizes listed in the sizing file used by the installation.

### Raw devices configuration

Follow these steps to configure raw devices.

**Note:** This is required only if the installation uses raw devices in place of datafiles.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
</table>
| 1    | If your database sizing was set to large, create disk partitions of the following sizes:  
  1. 2501 MB  
  2. 1501 MB  
  3. 1501 MB  
  For more information about the format command, see man format.  
  If your database sizing was set to medium, create disk partitions of the following sizes:  
  1. 7002 MB  
  2. 5002 MB  
  3. 4002 MB  
  4. 201 MB  
  5. 101 MB  
  6. 2 MB  
  For more information about the format command, see man format. |
| 2    | Edit the acs_devices.sh file specified above. |
| 3    | Change the line:  
  ACS_DATA_DATAFILE=  
to  
  ACS_DATA_DATAFILE=/dev/did/rdsk/partition  
**Where:**  
*partition* is the name of the partition (for example: d8s0) |
Step | Action
--- | ---
4 | Change the line:
   ACS_INDEX_DATAFILE1=
   to
   ACS_INDEX_DATAFILE1=/dev/rdsk/partition
   Where:
   partition is the name of the partition (for example: d8s1)
5 | Change the line:
   ACS_INDEX_DATAFILE2=
   to
   ACS_INDEX_DATAFILE2=/dev/rdsk/partition
   Where:
   partition is the name of the partition (for example: d8s2)
6 | Check the device files for the new partitions are readable and writeable by the oracle user prior to commencing/continuing the installation.
   Example command: chmod ugo+rw /dev/rdsk/d8s*

Example acs_devices.sh file

This is an example acs_devices.sh file.

```
#!/bin/sh
#
The following file is the structure required for knowledge of raw device utilisation.
Raw device specification for datafile paths.
ACS_DATA_DATAFILE=/dev/did/rdsk/d14s0
ACS_INDEX_DATAFILE1=/dev/did/rdsk/d14s1
ACS_INDEX_DATAFILE2=/dev/did/rdsk/d14s2
export ACS_DATA_DATAFILE ACS_INDEX_DATAFILE1 ACS_INDEX_DATAFILE2
```

Checking the Installation

Introduction

Refer to these checklists to ensure that ACS has installed correctly.
The end of the package installation process specifies a script designed to check the installation just performed. They must be run from the command line.

Checklist - SMS

Follow these steps in this checklist to ensure ACS has been installed on an SMS machine correctly.

Step	Action
1 | Log in to SMS machine as root.
Chapter 9

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
</table>
| 2    | Check the following directory structure exists with subdirectories:  
  - /IN/service_packages/ACS  
  - /IN/html/Acs_Service |
| 3    | Check that directories contain subdirectories and that all are owned by:  
  acs_oper user (group oracle) |
| 4    | Log into the system as acs_oper.  
  Note: This step is to check that the acs_oper user is valid.  
  Type sqlplus /  
  No password is required.  
  Note: This step is to check that the acs_oper user has valid access to the database. |
| 5    | Ensure that the required ACS triggers have been added to the database for the SMF oracle user. To do this, execute the smsInstallCheck program with the following parameters:  
  ~smf_oper/bin/smsInstallCheck -u smf/smf password -f /IN/service_packages/ACS/etc/acsSms_SMF.check  
  Result: You should see the following output:  
  CHECKING: This program is run with -u SMF/password.  
  ... OK  
  CHECKING: Logged OraUser (SMF) has 67 valid triggers like 'ACS_%'.  
  ... OK  
  Dec 29 03:39:01 cmnError(20808) NOTICE: smsInstallCheck: Passed all 2 tests. |
| 6    | Ensure that the required ACS tables have been added to the database for the ACS_ADMIN user and the required ACS processes are running. To do this, execute the smsInstallCheck program with the following parameters:  
  ~smf_oper/bin/smsInstallCheck -u acs_admin/acs_admin password -f /IN/service_packages/ACS/etc/acsSms_ACS_ADMIN.check  
  Result: You should see the following output:  
  CHECKING: This program is run with -u ACS_ADMIN/password.  
  ... OK  
  CHECKING: User acs_oper program acsStatisticsDBInserter has 1 instances.  
  ... OK  
  CHECKING: User acs_oper program acsProfileCompiler has 1 instances.  
  ... OK  
  CHECKING: User acs_oper program acsCompilerDaemon has 1 instances.  
  ... OK  
  CHECKING: Logged OraUser (ACS_ADMIN) has 57 tables like 'ACS_%'.  
  ... OK  
  CHECKING: Logged OraUser (ACS_ADMIN) has 320 valid triggers like 'ACS_%'.  
  ... OK  
  Dec 29 03:45:23 cmnError(20976) NOTICE: smsInstallCheck: Passed all 6 tests. |
| 7    | Check the entries of /etc/inittab file.  
  Inittab Entries Reserved for ACS on SMS:  
  1    acs0 |
Check that the processes listed in the process lists are running on the relevant machine. For a list of the processes which should be running, see Process list - SMS (see “Process list - SMP” on page 176).

Checklist - SLC
Follow these steps in this checklist to ensure ACS has been installed on an SLC machine correctly.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Log in to SLC machine as root.</td>
</tr>
<tr>
<td>2</td>
<td>Check the following directory structure exists with subdirectories:</td>
</tr>
<tr>
<td></td>
<td>- /IN/service_packages/ACS</td>
</tr>
<tr>
<td>3</td>
<td>Check the directory contains subdirectories and that all are owned by:</td>
</tr>
<tr>
<td></td>
<td>acs_oper user (group oracle)</td>
</tr>
<tr>
<td>4</td>
<td>Log into the system as acs_oper.</td>
</tr>
</tbody>
</table>
| 5    | Type `sqlplus /`
|      | No password is required. |
|      | **Note:** This step is to check that the acs_oper user is valid. |
| 6    | Ensure that the required ACS triggers have been added to the database for the ACS_ADMIN oracle user. To do this, execute the smsInstallCheck program with the following parameters: |
|      | `-smf_oper/bin/smsInstallCheck -n -u acs_admin/acs_admin password -f /IN/service_packages/ACS/etc/acsScp.check`
| **Result:** | You should see the following output:
|      | CHECKING: This program is run with `-u ACS_ADMIN/password`. |
|      | ... OK |
|      | CHECKING: Logged OraUser (ACS_ADMIN) has 12 tables like 'ACS_%'. |
|      | ... OK |
|      | Dec 29 04:23:37 cmnError(18133) NOTICE: smsInstallCheck: Passed all 2 tests. |
| 7    | Check the entries of following file: |
|      | `/etc/inittab` |
|      | Inittab Entries Reserved for ACS on SLC: |
| 1    | acs3 /IN/service_packages/ACS/bin/acsStatsMasterStartup.sh |
|      | (runs acsStatsMaster) |
| 8    | Check that the processes listed in the process lists are running on the relevant
Step Action

machine. For a list of the processes which should be running, see Process list - SLC (see “Process list - SCP” on page 176).

Process list - SMP

If the application is running correctly, the following processes should be running on each SMS:

- started from the initab:
  - acsCompilerDaemon
  - acsStatisticsDBInserter
  - acsProfileCompiler

Process list - SCP

If the application is running correctly, the following processes should be running on each SLC:

- started from the initab:
  - acsStatsMaster
- started during SLEE startup:
  - slee_acs

System Manifest

Introduction

Advanced Control Services (ACS) consists of several software executables and directories.

SMS packages

The ACS system on the SMS contains the following directory structure in the directory /IN/service_packages/ACS.

<table>
<thead>
<tr>
<th>Directory</th>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/bin</td>
<td>acsCompilerDaemonStartup.sh</td>
<td>Start up script.</td>
</tr>
<tr>
<td></td>
<td>acsStatisticsDBInserter</td>
<td>Start up script.</td>
</tr>
<tr>
<td></td>
<td>acsProfileCompilerStartup.sh</td>
<td>Start up script.</td>
</tr>
<tr>
<td></td>
<td>acsLogCleanerStartup.sh</td>
<td>Start up script.</td>
</tr>
<tr>
<td></td>
<td>acsDbCleanup.sh</td>
<td>Start up script.</td>
</tr>
<tr>
<td></td>
<td>acsAddCallPlan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsAddCustomer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsAddGeography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsAddServiceNumber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsDecompile</td>
<td></td>
</tr>
</tbody>
</table>
### Directory

<table>
<thead>
<tr>
<th>Directory</th>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/db</td>
<td></td>
<td>This directory contains install-time database scripts.</td>
</tr>
<tr>
<td>/etc</td>
<td></td>
<td>This directory contains run-time configuration files.</td>
</tr>
<tr>
<td>/etc/inittab</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsCompilerDaemon</td>
<td>Background process.</td>
</tr>
<tr>
<td></td>
<td>acsStatisticsDBInserter</td>
<td>Background process.</td>
</tr>
<tr>
<td></td>
<td>acsProfileCompiler</td>
<td>Background process.</td>
</tr>
<tr>
<td>/lib</td>
<td></td>
<td>This directory contains run-time shared libraries and install-time shell scripts.</td>
</tr>
<tr>
<td>/tmp</td>
<td></td>
<td>Run-time and install-time log files.</td>
</tr>
<tr>
<td></td>
<td>acsCompilerDaemon.log</td>
<td>Error log file.</td>
</tr>
<tr>
<td></td>
<td>acsStatisticsDBInserter.log</td>
<td>Error log file.</td>
</tr>
<tr>
<td></td>
<td>acsProfileCompiler.log</td>
<td>Error log file.</td>
</tr>
<tr>
<td></td>
<td>acsLogCleaner.log</td>
<td>Error log file.</td>
</tr>
<tr>
<td></td>
<td>acsDbCleanup.sh.log</td>
<td>Error log file.</td>
</tr>
<tr>
<td>/tmp/archive</td>
<td></td>
<td>Archived log files.</td>
</tr>
</tbody>
</table>

### SLC packages

The ACS system on the SLC will have the following directory structure in the directory /IN/service_packages/ACS.

<table>
<thead>
<tr>
<th>Directory</th>
<th>Files</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/bin</td>
<td></td>
<td>This directory contains run-time service executables and shell scripts.</td>
</tr>
<tr>
<td></td>
<td>acsStatsMasterStartup.sh</td>
<td>Start up script.</td>
</tr>
<tr>
<td></td>
<td>acsDecompile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsLogCleanerStartup.sh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsProfile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsStatsLocalSLEE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsSLSStartup.sh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cmnPushFilesStartup.sh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pinLogFileCleanup.sh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsTriggerIF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsTriggerIF.sh</td>
<td></td>
</tr>
</tbody>
</table>
### Directory Files Description

<table>
<thead>
<tr>
<th>Directory</th>
<th>Files</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/db</td>
<td></td>
<td>This directory contains install-time database scripts.</td>
</tr>
<tr>
<td>/etc</td>
<td></td>
<td>This directory contains run-time configuration files.</td>
</tr>
<tr>
<td>/etc/inittab</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsStatsMaster</td>
<td>Background process.</td>
</tr>
<tr>
<td></td>
<td>smsLogCleaner</td>
<td>Background process.</td>
</tr>
<tr>
<td>/install</td>
<td></td>
<td>This directory contains install-time scripts for optional SLEE rc.d auto-start.</td>
</tr>
<tr>
<td>/lib</td>
<td></td>
<td>This directory contains run-time shared libraries and install-time shell scripts.</td>
</tr>
<tr>
<td>/tmp</td>
<td></td>
<td>This directory contains run-time and install-time log files.</td>
</tr>
<tr>
<td></td>
<td>acsStatsMaster.log</td>
<td>Error log file.</td>
</tr>
<tr>
<td>/tmp/archive</td>
<td></td>
<td>This directory contains archived log files.</td>
</tr>
</tbody>
</table>
Overview

Purpose
This chapter provides the operating procedures for the ACS application.
These procedures are normally performed once, after the installation and configuration of the system.

In this chapter

This chapter contains the following topics.

Using Announcements 179
ACS Global Control Plans 180

Using Announcements

Introduction
When ACS is installed, the announcements required by the ACS Management Control Plan are inserted into the database. These announcements have been assigned a Virtual Announcement ID, but do not have an actual Resource Name and ID assigned to them.

To use the ACS Management Control Plan the system administrator must arrange to have the required announcements recorded on the IP that is to be used, and then enter into the system the language that the announcement was recorded in and the Resource Name and ID of the location of each announcement.

Each Announcement may be recorded in several languages, it is important that the Virtual Announcement ID is the same for each recording of the announcement, and the system entries differ only by the language, Resource Name and Resource ID.

Note
These announcement mappings are not installed automatically because in most cases, the required values are customer specific.

If you wish to configure these values you can enter them manually with the ACS announcement screens or you may run the provided configuration script as acs_oper.

/

Originating announcements
Here is a list of announcements used by the ACS Management Control Plan.

- activate date prompt
- activate date reprompt
- Control Plan activation failed
ACS Global Control Plans

About Global Control Plans

Global control plans are an optional feature that enable the telco to apply global call-screening to calls for all customers before the customer's control plans are applied. Global control plans are automatically assigned to the default customer, and therefore they are always owned by the telco.

Global control plans are associated with a specific service entry, so that they apply only to control plans of a selected type. Service entries are defined in the `acs.conf` configuration file for the NCC application. You specify whether a control plan is global when you save the control plan by giving it a name that corresponds to the service to which it applies.

For more information on using global control plans, see *CPE User's Guide*. 
Appendix A

Time Zones

Introduction

The screens in the NCC user interface (UI) show time values in the local time zone. You specify the time zone in the TZ applet parameter in the `sms.jnlp` file, located in the `/IN/html` directory. For remote SMS users in other time zones, it is possible to have separate `sms.jnlp` files to specify their time zones.

For users who access ACS directly it is possible to add the TZ applet parameter to the `acs.jnlp` file located in the `/IN/html` directory, and thus display time values in the ACS UI in the desired time zone.

Description

A list of time zones supported by Java is shown in the following table.

<table>
<thead>
<tr>
<th>Offset:</th>
<th>Timezone ID:</th>
<th>Offset in ms</th>
<th>Daylight Time?</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMT-11:00</td>
<td>Pacific/Niue</td>
<td>-39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-11:00</td>
<td>Pacific/Apia</td>
<td>-39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-11:00</td>
<td>MIT</td>
<td>-39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-11:00</td>
<td>Pacific/Pago Pago</td>
<td>-39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-10:00</td>
<td>Pacific/Tahiti</td>
<td>-36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-10:00</td>
<td>Pacific/Fakaofo</td>
<td>-36000000</td>
<td>false</td>
</tr>
<tr>
<td>HST</td>
<td>Pacific/Honolulu</td>
<td>-36000000</td>
<td>false</td>
</tr>
<tr>
<td>HST</td>
<td>HST</td>
<td>-36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-10:00</td>
<td>America/Adak</td>
<td>-36000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-10:00</td>
<td>Pacific/Rarotonga</td>
<td>-36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-09:30</td>
<td>Pacific/Marquesas</td>
<td>-34200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-09:00</td>
<td>Pacific/Gambier</td>
<td>-32400000</td>
<td>false</td>
</tr>
<tr>
<td>AKST</td>
<td>America/Anchorage</td>
<td>-32400000</td>
<td>true</td>
</tr>
<tr>
<td>AKST</td>
<td>AST</td>
<td>-32400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-08:00</td>
<td>Pacific/Pitcairn</td>
<td>-28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-08:00</td>
<td>America/Vancouver</td>
<td>-28800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-08:00</td>
<td>America/Tijuana</td>
<td>-28800000</td>
<td>true</td>
</tr>
<tr>
<td>PST</td>
<td>America/Los_Angeles</td>
<td>-28800000</td>
<td>true</td>
</tr>
<tr>
<td>PST</td>
<td>PST</td>
<td>-28800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-07:00</td>
<td>America/Dawson_Creek</td>
<td>-25200000</td>
<td>false</td>
</tr>
<tr>
<td>MST</td>
<td>America/Phoenix</td>
<td>-25200000</td>
<td>false</td>
</tr>
<tr>
<td>MST</td>
<td>PNT</td>
<td>-25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-07:00</td>
<td>America/Edmonton</td>
<td>-25200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-07:00</td>
<td>America/Mazatlan</td>
<td>-25200000</td>
<td>true</td>
</tr>
<tr>
<td>MST</td>
<td>America/Denver</td>
<td>-25200000</td>
<td>true</td>
</tr>
<tr>
<td>MST</td>
<td>MST</td>
<td>-25200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Belize</td>
<td>-21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Regina</td>
<td>-21600000</td>
<td>false</td>
</tr>
<tr>
<td>Offset :</td>
<td>Timezone ID :</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>Pacific/Galapagos</td>
<td>-16000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Guatemala</td>
<td>-16000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Tegucigalpa</td>
<td>-16000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/El_Salvador</td>
<td>-16000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Costa_Rica</td>
<td>-16000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Winnipeg</td>
<td>-16000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>Pacific/Easter</td>
<td>-16000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Mexico_City</td>
<td>-16000000</td>
<td>true</td>
</tr>
<tr>
<td>CST</td>
<td>America/Chicago</td>
<td>-16000000</td>
<td>true</td>
</tr>
<tr>
<td>CST</td>
<td>CST</td>
<td>-16000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Porto_Acre</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Bogota</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Guayaquil</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Jamaica</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Cayman</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Managua</td>
<td>-16000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Panama</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Lima</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>EST</td>
<td>America/Indianapolis</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>EST</td>
<td>IET</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Nassau</td>
<td>-18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Montreal</td>
<td>-18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Havana</td>
<td>-18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Port-au-Prince</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Grand_Turk</td>
<td>-18000000</td>
<td>true</td>
</tr>
<tr>
<td>EST</td>
<td>America/New_York</td>
<td>-18000000</td>
<td>true</td>
</tr>
<tr>
<td>EST</td>
<td>EST</td>
<td>-18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Antigua</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Anguilla</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Curacao</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Aruba</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Barbados</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/La_Paz</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Manaus</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Dominica</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Santo_Domingo</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Grenada</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Guadeloupe</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Guyana</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/St_Kitts</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/St_Lucia</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Martinique</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Montserrat</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>Offset</td>
<td>Timezone ID</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Puerto_Rico</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>PRT</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Port_of_Spain</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/St_Vincent</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Tortola</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/St_Thomas</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Caracas</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>Antarctica/Palmer</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>Atlantic/Bermuda</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Cuiaba</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>AST</td>
<td>America/Halifax</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>Atlantic/Stanley</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Thule</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Asuncion</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Santiago</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>NST</td>
<td>America/St_Johns</td>
<td>-12600000</td>
<td>true</td>
</tr>
<tr>
<td>NST</td>
<td>CNT</td>
<td>-12600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Fortaleza</td>
<td>-10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Cayenne</td>
<td>-10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Paramaribo</td>
<td>-10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Montevideo</td>
<td>-10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Buenos_Aires</td>
<td>-10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>AGT</td>
<td>-10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Godthab</td>
<td>-10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Miquelon</td>
<td>-10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Sao_Paulo</td>
<td>-10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>BET</td>
<td>-10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-02:00</td>
<td>America/Noronha</td>
<td>-7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-02:00</td>
<td>Atlantic/South_Georgia</td>
<td>-7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-01:00</td>
<td>Atlantic/Jan_Mayen</td>
<td>-3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-01:00</td>
<td>Atlantic/Cape_Verde</td>
<td>-3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-01:00</td>
<td>America/Scoresbysund</td>
<td>-3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-01:00</td>
<td>Atlantic/Azores</td>
<td>-3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Ouagadougou</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Abidjan</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Accra</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Banjul</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Conakry</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Bissau</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Atlantic/Reykjavik</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Monrovia</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT</td>
<td>Africa/Casablanca</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Timbuktu</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>Offset</td>
<td>Timezone ID</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Nouakchott</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Atlantic/St_Helena</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Freetown</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Dakar</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Sao_Tome</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Lome</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT</td>
<td>GMT</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>UTC</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Atlantic/Faeroe</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Atlantic/Canary</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Europe/Dublin</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Europe/Lisbon</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Europe/London</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>WET</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Luanda</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Porto-Nov</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Bangui</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Kinshasa</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Douala</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Libreville</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Malabo</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Niamey</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Lagos</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Ndjamena</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Tunis</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Algiers</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Andorra</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Tirane</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Vienna</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Brussels</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Zurich</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Prague</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Berlin</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Copenhagen</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Madrid</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Gibraltar</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Budapest</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Rome</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Vaduz</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Luxembourg</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Tripoli</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Monaco</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Malta</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>Offset</td>
<td>Timezone ID</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Windhoek</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Amsterdam</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Oslo</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Warsaw</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Stockholm</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Belgrade</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>CET</td>
<td>Europe/Paris</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>CET</td>
<td>ECT</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Bujumbura</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Gaborone</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Lubumbashi</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Maseru</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Blantyre</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Maputo</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Mbabane</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Lusaka</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Harare</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>CAT</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Johannesburg</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Sofia</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Minsk</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Asia/Nicosia</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Tallinn</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Cairo</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>ART</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Helsinki</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Athens</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>IST</td>
<td>Asia/Jerusalem</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Asia/Amman</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Asia/Beirut</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Vilnius</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Riga</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Chisinau</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>EET</td>
<td>Europe/Bucharest</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Kaliningrad</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Asia/Damascus</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Kiev</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Istanbul</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>EET</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Asia/Bahrain</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Djibouti</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>Offset</td>
<td>Timezone ID</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Asmera</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Addis_Ababa</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>EAT</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Nairobi</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Indian/Comoro</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Asia/Kuwait</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Indian/Antananarivo</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Asia/Qatar</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Mogadishu</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Dar_es_Salaam</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Kampala</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Asia/Aden</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Indian/Mayotte</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Asia/Riyadh</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Asia/Baghdad</td>
<td>10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Simferopol</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Europe/Moscow</td>
<td>10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+03:30</td>
<td>Asia/Tehran</td>
<td>12600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+03:30</td>
<td>MET</td>
<td>12600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Asia/Dubai</td>
<td>14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Indian/Mauritius</td>
<td>14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Asia/Muscat</td>
<td>14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Indian/Reunion</td>
<td>14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Indian/Mahe</td>
<td>14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Asia/Yerevan</td>
<td>14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>NET</td>
<td>14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Asia/Baku</td>
<td>14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Asia/Aqtau</td>
<td>14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Europe/Samara</td>
<td>14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+04:30</td>
<td>Asia/Kabul</td>
<td>16200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Indian/Kerguelen</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Asia/Tbilisi</td>
<td>14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Indian/Chagos</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Indian/Maldives</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Dushanbe</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Ashkhabad</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Tashkent</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Karachi</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>PLT</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Bishkek</td>
<td>18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Aqtobe</td>
<td>18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Yekaterinburg</td>
<td>18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+05:30</td>
<td>Asia/Calcutta</td>
<td>19800000</td>
<td>false</td>
</tr>
<tr>
<td>Offset</td>
<td>Timezone ID</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT +05:30</td>
<td>IST</td>
<td>19800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +05:45</td>
<td>Asia/Katmandu</td>
<td>20700000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +06:00</td>
<td>Antarctica/Mawson</td>
<td>21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +06:00</td>
<td>Asia/Thimbu</td>
<td>21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +06:00</td>
<td>Asia/Colombo</td>
<td>21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +06:00</td>
<td>Asia/Dacca</td>
<td>21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +06:00</td>
<td>BST</td>
<td>21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +06:00</td>
<td>Asia/Almaty</td>
<td>21600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT +06:00</td>
<td>Asia/Novosibirsk</td>
<td>21600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT +06:30</td>
<td>Indian/Cocos</td>
<td>23400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +06:30</td>
<td>Asia/Rangoon</td>
<td>23400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +07:00</td>
<td>Indian/Christmas</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +07:00</td>
<td>Asia/Jakarta</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +07:00</td>
<td>Asia/Phnom_Penh</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +07:00</td>
<td>Asia/Vientiane</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +07:00</td>
<td>Asia/Saigon</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +07:00</td>
<td>VST</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +07:00</td>
<td>Asia/Bangkok</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +07:00</td>
<td>Asia/Krasnoyarsk</td>
<td>25200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT +08:00</td>
<td>Antarctica/Casey</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +08:00</td>
<td>Australia/Perth</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +08:00</td>
<td>Asia/Brunei</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +08:00</td>
<td>Asia/Hong_Kong</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +08:00</td>
<td>Asia/Ujung_Pandang</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +08:00</td>
<td>Asia/Macao</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +08:00</td>
<td>Asia/Kuala_Lumpur</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +08:00</td>
<td>Asia/Manila</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +08:00</td>
<td>Asia/Singapore</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +08:00</td>
<td>Asia/Taipei</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>CST</td>
<td>Asia/Shanghai</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>CST</td>
<td>CTT</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +08:00</td>
<td>Asia/Ulan_Bator</td>
<td>28800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT +08:00</td>
<td>Asia/Irkutsk</td>
<td>28800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT +09:00</td>
<td>Asia/Jayapura</td>
<td>32400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +09:00</td>
<td>Asia/Pyongyang</td>
<td>32400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +09:00</td>
<td>Asia/Seoul</td>
<td>32400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +09:00</td>
<td>Pacific/Palau</td>
<td>32400000</td>
<td>false</td>
</tr>
<tr>
<td>JST</td>
<td>Asia/Tokyo</td>
<td>32400000</td>
<td>false</td>
</tr>
<tr>
<td>JST</td>
<td>JST</td>
<td>32400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +09:00</td>
<td>Asia/Yakutsk</td>
<td>32400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT +09:30</td>
<td>Australia/Darwin</td>
<td>34200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +09:30</td>
<td>ACT</td>
<td>34200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT +09:30</td>
<td>Australia/Adelaide</td>
<td>34200000</td>
<td>true</td>
</tr>
<tr>
<td>Offset</td>
<td>Timezone ID</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT+09:30</td>
<td>Australia/Broken_Hill</td>
<td>34200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Australia/Hobart</td>
<td>36000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Antarctica/DumontDUrville?</td>
<td>36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Pacific/Truk</td>
<td>36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Pacific/Guam</td>
<td>36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Pacific/Saipan</td>
<td>36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Pacific/Port_Moresby</td>
<td>36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Australia/Brisbane</td>
<td>36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Asia/Vladivostok</td>
<td>36000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Australia/Sydney</td>
<td>36000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>AET</td>
<td>36000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+10:30</td>
<td>Australia/Lord_Howe</td>
<td>37800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>Pacific/Ponape</td>
<td>39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>Pacific/Efate</td>
<td>39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>Pacific/Guadalcanal</td>
<td>39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>SST</td>
<td>39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>Pacific/Noumea</td>
<td>39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>Asia/Magadan</td>
<td>39600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+11:30</td>
<td>Pacific/Norfolk</td>
<td>41400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>Pacific/Kosrae</td>
<td>39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Tarawa</td>
<td>43200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Majuro</td>
<td>43200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Nauru</td>
<td>43200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Funafuti</td>
<td>43200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Wake</td>
<td>43200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Wallis</td>
<td>43200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Fiji</td>
<td>43200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Antarctica/McMurdo?</td>
<td>43200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Asia/Kamchatka</td>
<td>43200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Auckland</td>
<td>43200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>NST</td>
<td>43200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+12:45</td>
<td>Pacific/Chatham</td>
<td>45900000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+13:00</td>
<td>Pacific/Enderbury</td>
<td>46800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+13:00</td>
<td>Pacific/Tongatapu</td>
<td>46800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Asia/Anadyr</td>
<td>43200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+14:00</td>
<td>Pacific/Kiritimati</td>
<td>50400000</td>
<td>false</td>
</tr>
</tbody>
</table>
## ASCII Codes

### Description

This table shows the ASCII code values.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Octal</th>
<th>Hex</th>
<th>Binary</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
<td>00</td>
<td>00000000</td>
<td>NUL (Null char.)</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
<td>01</td>
<td>00000001</td>
<td>SOH (Start of Header)</td>
</tr>
<tr>
<td>002</td>
<td>002</td>
<td>02</td>
<td>00000010</td>
<td>STX (Start of Text)</td>
</tr>
<tr>
<td>003</td>
<td>003</td>
<td>03</td>
<td>00000011</td>
<td>ETX (End of Text)</td>
</tr>
<tr>
<td>004</td>
<td>004</td>
<td>04</td>
<td>00000100</td>
<td>EOT (End of Transmission)</td>
</tr>
<tr>
<td>005</td>
<td>005</td>
<td>05</td>
<td>00000101</td>
<td>ENQ (Enquiry)</td>
</tr>
<tr>
<td>006</td>
<td>006</td>
<td>06</td>
<td>00000110</td>
<td>ACK (Acknowledgment)</td>
</tr>
<tr>
<td>007</td>
<td>007</td>
<td>07</td>
<td>00000111</td>
<td>BEL (Bell)</td>
</tr>
<tr>
<td>008</td>
<td>010</td>
<td>08</td>
<td>00010000</td>
<td>BS (Backspace)</td>
</tr>
<tr>
<td>009</td>
<td>011</td>
<td>09</td>
<td>00010001</td>
<td>HT (Horizontal Tab)</td>
</tr>
<tr>
<td>010</td>
<td>012</td>
<td>0A</td>
<td>00010010</td>
<td>LF (Line Feed)</td>
</tr>
<tr>
<td>011</td>
<td>013</td>
<td>0B</td>
<td>00010111</td>
<td>VT (Vertical Tab)</td>
</tr>
<tr>
<td>012</td>
<td>014</td>
<td>0C</td>
<td>00011000</td>
<td>FF (Form Feed)</td>
</tr>
<tr>
<td>013</td>
<td>015</td>
<td>0D</td>
<td>00011011</td>
<td>CR (Carriage Return)</td>
</tr>
<tr>
<td>014</td>
<td>016</td>
<td>0E</td>
<td>00011110</td>
<td>SO (Shift Out)</td>
</tr>
<tr>
<td>015</td>
<td>017</td>
<td>0F</td>
<td>00011111</td>
<td>SI (Shift In)</td>
</tr>
<tr>
<td>016</td>
<td>020</td>
<td>10</td>
<td>00100000</td>
<td>DLE (Data Link Escape)</td>
</tr>
<tr>
<td>017</td>
<td>021</td>
<td>11</td>
<td>00100001</td>
<td>DC1 (XON) (Device Control 1)</td>
</tr>
<tr>
<td>018</td>
<td>022</td>
<td>12</td>
<td>00100100</td>
<td>DC2 (Device Control 2)</td>
</tr>
<tr>
<td>019</td>
<td>023</td>
<td>13</td>
<td>00100111</td>
<td>DC3 (XOFF) (Device Control 3)</td>
</tr>
<tr>
<td>020</td>
<td>024</td>
<td>14</td>
<td>00101000</td>
<td>DC4 (Device Control 4)</td>
</tr>
<tr>
<td>021</td>
<td>025</td>
<td>15</td>
<td>00101010</td>
<td>NAK (Negative Acknowledgment)</td>
</tr>
<tr>
<td>022</td>
<td>026</td>
<td>16</td>
<td>00101100</td>
<td>SYN (Synchronous Idle)</td>
</tr>
<tr>
<td>023</td>
<td>027</td>
<td>17</td>
<td>00101111</td>
<td>ETB (End of Trans. Block)</td>
</tr>
<tr>
<td>024</td>
<td>030</td>
<td>18</td>
<td>00110000</td>
<td>CAN (Cancel)</td>
</tr>
<tr>
<td>025</td>
<td>031</td>
<td>19</td>
<td>00110010</td>
<td>EM (End of Medium)</td>
</tr>
<tr>
<td>026</td>
<td>032</td>
<td>1A</td>
<td>00110100</td>
<td>SUB (Substitute)</td>
</tr>
<tr>
<td>027</td>
<td>033</td>
<td>1B</td>
<td>00110111</td>
<td>ESC (Escape)</td>
</tr>
<tr>
<td>028</td>
<td>034</td>
<td>1C</td>
<td>00111000</td>
<td>FS (File Separator)</td>
</tr>
<tr>
<td>029</td>
<td>035</td>
<td>1D</td>
<td>00111010</td>
<td>GS (Group Separator)</td>
</tr>
<tr>
<td>030</td>
<td>036</td>
<td>1E</td>
<td>00111100</td>
<td>RS (Request to Send) (Record Separator)</td>
</tr>
<tr>
<td>031</td>
<td>037</td>
<td>1F</td>
<td>00111111</td>
<td>US (Unit Separator)</td>
</tr>
<tr>
<td>032</td>
<td>040</td>
<td>20</td>
<td>01000000</td>
<td>SP (Space)</td>
</tr>
<tr>
<td>Decimal</td>
<td>Octal</td>
<td>Hex</td>
<td>Binary</td>
<td>Value</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>000</td>
<td>000</td>
<td>00</td>
<td>00000000</td>
<td>NUL (Null char.)</td>
</tr>
<tr>
<td>033</td>
<td>041</td>
<td>21</td>
<td>00100001</td>
<td>!</td>
</tr>
<tr>
<td>034</td>
<td>042</td>
<td>22</td>
<td>00100010</td>
<td>&quot;</td>
</tr>
<tr>
<td>035</td>
<td>043</td>
<td>23</td>
<td>00100011</td>
<td>#</td>
</tr>
<tr>
<td>036</td>
<td>044</td>
<td>24</td>
<td>00100100</td>
<td>$</td>
</tr>
<tr>
<td>037</td>
<td>045</td>
<td>25</td>
<td>00100101</td>
<td>%</td>
</tr>
<tr>
<td>038</td>
<td>046</td>
<td>26</td>
<td>00100110</td>
<td>&amp;</td>
</tr>
<tr>
<td>039</td>
<td>047</td>
<td>27</td>
<td>00100111</td>
<td>'</td>
</tr>
<tr>
<td>040</td>
<td>050</td>
<td>28</td>
<td>00101000</td>
<td>(</td>
</tr>
<tr>
<td>041</td>
<td>051</td>
<td>29</td>
<td>00101001</td>
<td>)</td>
</tr>
<tr>
<td>042</td>
<td>052</td>
<td>2A</td>
<td>00101010</td>
<td>*</td>
</tr>
<tr>
<td>043</td>
<td>053</td>
<td>2B</td>
<td>00101011</td>
<td>+</td>
</tr>
<tr>
<td>044</td>
<td>054</td>
<td>2C</td>
<td>00101100</td>
<td>,</td>
</tr>
<tr>
<td>045</td>
<td>055</td>
<td>2D</td>
<td>00101101</td>
<td>-</td>
</tr>
<tr>
<td>046</td>
<td>056</td>
<td>2E</td>
<td>00101110</td>
<td>.</td>
</tr>
<tr>
<td>047</td>
<td>057</td>
<td>2F</td>
<td>00101111</td>
<td>/</td>
</tr>
<tr>
<td>048</td>
<td>060</td>
<td>30</td>
<td>00110000</td>
<td>0</td>
</tr>
<tr>
<td>049</td>
<td>061</td>
<td>31</td>
<td>00110001</td>
<td>1</td>
</tr>
<tr>
<td>050</td>
<td>062</td>
<td>32</td>
<td>00110010</td>
<td>2</td>
</tr>
<tr>
<td>051</td>
<td>063</td>
<td>33</td>
<td>00110011</td>
<td>3</td>
</tr>
<tr>
<td>052</td>
<td>064</td>
<td>34</td>
<td>00110100</td>
<td>4</td>
</tr>
<tr>
<td>053</td>
<td>065</td>
<td>35</td>
<td>00110101</td>
<td>5</td>
</tr>
<tr>
<td>054</td>
<td>066</td>
<td>36</td>
<td>00110110</td>
<td>6</td>
</tr>
<tr>
<td>055</td>
<td>067</td>
<td>37</td>
<td>00110111</td>
<td>7</td>
</tr>
<tr>
<td>056</td>
<td>070</td>
<td>38</td>
<td>00111000</td>
<td>8</td>
</tr>
<tr>
<td>057</td>
<td>071</td>
<td>39</td>
<td>00111001</td>
<td>9</td>
</tr>
<tr>
<td>058</td>
<td>072</td>
<td>3A</td>
<td>00111010</td>
<td>:</td>
</tr>
<tr>
<td>059</td>
<td>073</td>
<td>3B</td>
<td>00111011</td>
<td>;</td>
</tr>
<tr>
<td>060</td>
<td>074</td>
<td>3C</td>
<td>00111100</td>
<td>&lt;</td>
</tr>
<tr>
<td>061</td>
<td>075</td>
<td>3D</td>
<td>00111101</td>
<td>=</td>
</tr>
<tr>
<td>062</td>
<td>076</td>
<td>3E</td>
<td>00111110</td>
<td>&gt;</td>
</tr>
<tr>
<td>063</td>
<td>077</td>
<td>3F</td>
<td>00111111</td>
<td>?</td>
</tr>
<tr>
<td>064</td>
<td>100</td>
<td>40</td>
<td>01000000</td>
<td>@</td>
</tr>
<tr>
<td>065</td>
<td>101</td>
<td>41</td>
<td>01000001</td>
<td>A</td>
</tr>
<tr>
<td>066</td>
<td>102</td>
<td>42</td>
<td>01000010</td>
<td>B</td>
</tr>
<tr>
<td>067</td>
<td>103</td>
<td>43</td>
<td>01000011</td>
<td>C</td>
</tr>
<tr>
<td>068</td>
<td>104</td>
<td>44</td>
<td>01000100</td>
<td>D</td>
</tr>
<tr>
<td>069</td>
<td>105</td>
<td>45</td>
<td>01000101</td>
<td>E</td>
</tr>
<tr>
<td>070</td>
<td>106</td>
<td>46</td>
<td>01000110</td>
<td>F</td>
</tr>
<tr>
<td>071</td>
<td>107</td>
<td>47</td>
<td>01001111</td>
<td>G</td>
</tr>
<tr>
<td>072</td>
<td>110</td>
<td>48</td>
<td>01001000</td>
<td>H</td>
</tr>
<tr>
<td>073</td>
<td>111</td>
<td>49</td>
<td>01001001</td>
<td>I</td>
</tr>
<tr>
<td>Decimal</td>
<td>Octal</td>
<td>Hex</td>
<td>Binary</td>
<td>Value</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>000</td>
<td>000</td>
<td>00</td>
<td>00000000</td>
<td>NUL (Null char.)</td>
</tr>
<tr>
<td>074</td>
<td>112</td>
<td>4A</td>
<td>01001010</td>
<td>J</td>
</tr>
<tr>
<td>075</td>
<td>113</td>
<td>4B</td>
<td>01001011</td>
<td>K</td>
</tr>
<tr>
<td>076</td>
<td>114</td>
<td>4C</td>
<td>01001100</td>
<td>L</td>
</tr>
<tr>
<td>077</td>
<td>115</td>
<td>4D</td>
<td>01001101</td>
<td>M</td>
</tr>
<tr>
<td>078</td>
<td>116</td>
<td>4E</td>
<td>01001110</td>
<td>N</td>
</tr>
<tr>
<td>079</td>
<td>117</td>
<td>4F</td>
<td>01001111</td>
<td>O</td>
</tr>
<tr>
<td>080</td>
<td>120</td>
<td>50</td>
<td>01010000</td>
<td>P</td>
</tr>
<tr>
<td>081</td>
<td>121</td>
<td>51</td>
<td>01010001</td>
<td>Q</td>
</tr>
<tr>
<td>082</td>
<td>122</td>
<td>52</td>
<td>01010010</td>
<td>R</td>
</tr>
<tr>
<td>083</td>
<td>123</td>
<td>53</td>
<td>01010011</td>
<td>S</td>
</tr>
<tr>
<td>084</td>
<td>124</td>
<td>54</td>
<td>01010100</td>
<td>T</td>
</tr>
<tr>
<td>085</td>
<td>125</td>
<td>55</td>
<td>01010101</td>
<td>U</td>
</tr>
<tr>
<td>086</td>
<td>126</td>
<td>56</td>
<td>01010110</td>
<td>V</td>
</tr>
<tr>
<td>087</td>
<td>127</td>
<td>57</td>
<td>01010111</td>
<td>W</td>
</tr>
<tr>
<td>088</td>
<td>130</td>
<td>58</td>
<td>01011000</td>
<td>X</td>
</tr>
<tr>
<td>089</td>
<td>131</td>
<td>59</td>
<td>01011001</td>
<td>Y</td>
</tr>
<tr>
<td>090</td>
<td>132</td>
<td>5A</td>
<td>01011010</td>
<td>Z</td>
</tr>
<tr>
<td>091</td>
<td>133</td>
<td>5B</td>
<td>01011011</td>
<td>[</td>
</tr>
<tr>
<td>092</td>
<td>134</td>
<td>5C</td>
<td>01011100</td>
<td>\</td>
</tr>
<tr>
<td>093</td>
<td>135</td>
<td>5D</td>
<td>01011101</td>
<td>]</td>
</tr>
<tr>
<td>094</td>
<td>136</td>
<td>5E</td>
<td>01011110</td>
<td>^</td>
</tr>
<tr>
<td>095</td>
<td>137</td>
<td>5F</td>
<td>01011111</td>
<td>_</td>
</tr>
<tr>
<td>096</td>
<td>140</td>
<td>60</td>
<td>01100000</td>
<td>`</td>
</tr>
<tr>
<td>097</td>
<td>141</td>
<td>61</td>
<td>01100001</td>
<td>a</td>
</tr>
<tr>
<td>098</td>
<td>142</td>
<td>62</td>
<td>01100010</td>
<td>b</td>
</tr>
<tr>
<td>099</td>
<td>143</td>
<td>63</td>
<td>01100011</td>
<td>c</td>
</tr>
<tr>
<td>100</td>
<td>144</td>
<td>64</td>
<td>01100100</td>
<td>d</td>
</tr>
<tr>
<td>101</td>
<td>145</td>
<td>65</td>
<td>01100101</td>
<td>e</td>
</tr>
<tr>
<td>102</td>
<td>146</td>
<td>66</td>
<td>01100110</td>
<td>f</td>
</tr>
<tr>
<td>103</td>
<td>147</td>
<td>67</td>
<td>01100111</td>
<td>g</td>
</tr>
<tr>
<td>104</td>
<td>150</td>
<td>68</td>
<td>01101000</td>
<td>h</td>
</tr>
<tr>
<td>105</td>
<td>151</td>
<td>69</td>
<td>01101001</td>
<td>i</td>
</tr>
<tr>
<td>106</td>
<td>152</td>
<td>6A</td>
<td>01101010</td>
<td>j</td>
</tr>
<tr>
<td>107</td>
<td>153</td>
<td>6B</td>
<td>01101011</td>
<td>k</td>
</tr>
<tr>
<td>108</td>
<td>154</td>
<td>6C</td>
<td>01101100</td>
<td>l</td>
</tr>
<tr>
<td>109</td>
<td>155</td>
<td>6D</td>
<td>01101101</td>
<td>m</td>
</tr>
<tr>
<td>110</td>
<td>156</td>
<td>6E</td>
<td>01101110</td>
<td>n</td>
</tr>
<tr>
<td>111</td>
<td>157</td>
<td>6F</td>
<td>01101111</td>
<td>o</td>
</tr>
<tr>
<td>112</td>
<td>160</td>
<td>70</td>
<td>01110000</td>
<td>p</td>
</tr>
<tr>
<td>113</td>
<td>161</td>
<td>71</td>
<td>01110001</td>
<td>q</td>
</tr>
<tr>
<td>114</td>
<td>162</td>
<td>72</td>
<td>01110010</td>
<td>r</td>
</tr>
<tr>
<td>Decimal</td>
<td>Octal</td>
<td>Hex</td>
<td>Binary</td>
<td>Value</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>000</td>
<td>000</td>
<td>00</td>
<td>00000000</td>
<td>NUL</td>
</tr>
<tr>
<td>115</td>
<td>163</td>
<td>73</td>
<td>01110011</td>
<td>s</td>
</tr>
<tr>
<td>116</td>
<td>164</td>
<td>74</td>
<td>01110100</td>
<td>t</td>
</tr>
<tr>
<td>117</td>
<td>165</td>
<td>75</td>
<td>01110101</td>
<td>u</td>
</tr>
<tr>
<td>118</td>
<td>166</td>
<td>76</td>
<td>01110110</td>
<td>v</td>
</tr>
<tr>
<td>119</td>
<td>167</td>
<td>77</td>
<td>01110111</td>
<td>w</td>
</tr>
<tr>
<td>120</td>
<td>170</td>
<td>78</td>
<td>01111000</td>
<td>x</td>
</tr>
<tr>
<td>121</td>
<td>171</td>
<td>79</td>
<td>01111001</td>
<td>y</td>
</tr>
<tr>
<td>122</td>
<td>172</td>
<td>7A</td>
<td>01111010</td>
<td>z</td>
</tr>
<tr>
<td>123</td>
<td>173</td>
<td>7B</td>
<td>01111011</td>
<td>{</td>
</tr>
<tr>
<td>124</td>
<td>174</td>
<td>7C</td>
<td>01111100</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>175</td>
<td>7D</td>
<td>01111101</td>
<td>)</td>
</tr>
<tr>
<td>126</td>
<td>176</td>
<td>7E</td>
<td>01111110</td>
<td>~</td>
</tr>
<tr>
<td>127</td>
<td>177</td>
<td>7F</td>
<td>01111111</td>
<td>DEL</td>
</tr>
</tbody>
</table>
NCC Glossary of Terms

AAA

ACS
Advanced Control Services configuration platform.

ANI
Automatic Number Identification - Term used in the USA by long-distance carriers for CLI.

ASN.1
Abstract Syntax Notation One - a formal notation used for describing data transmitted by telecommunications protocols. ASN.1 is a joint ISO/IEC and ITU-T standard.

BCSM
Basic Call State Model - describes the basic processing steps that must be performed by a switch in order to establish and tear down a call.

C7
See SS7.

CAMEL
Customized Applications for Mobile network Enhanced Logic
This is a 3GPP (Third Generation Partnership Project) initiative to extend traditional IN services found in fixed networks into mobile networks. The architecture is similar to that of traditional IN, in that the control functions and switching functions are remote. Unlike the fixed IN environment, in mobile networks the subscriber may roam into another PLMN (Public Land Mobile Network), consequently the controlling function must interact with a switching function in a foreign network. CAMEL specifies the agreed information flows that may be passed between these networks.

CAP
CAMEL Application Part

CC
Country Code. Prefix identifying the country for a numeric international address.

CCR
Credit-Control-Request, used in Diameter by the credit-control client to request credit authorization from the credit-control server.

CCS
1) Charging Control Services (or Prepaid Charging) component.
2) Common Channel Signalling. A signalling system used in telephone networks that separates signalling information from user data.

**CDR**

Call Data Record

*Note:* The industry standard for CDR is EDR (Event Detail Record). Over time EDR will replace CDR in the Oracle documentation.

**CID**

Call Instance Data

**CLI**

Calling Line Identification - the telephone number of the caller. Also referred to as ANI.

**Connection**

Transport level link between two peers, providing for multiple sessions.

**CPE**

Control Plan Editor (previously Call Plan Editor) - software used to define the logic and data associated with a call -for example, "if the subscriber calls 0800 nnnn from a phone at location xxx then put the call through to bb bbb bbbb".

**CPU**

Central Processing Unit

**cron**

Unix utility for scheduling tasks.

**crontab**

File used by cron.

**CS1**

ETSI INAP Capability Set 1. An ITU standard.

**CSV**

A Comma-Separated Values file contains the values in a table as a series of ASCII text lines organized so that each column value is separated by a comma from the next column's value and each row starts a new line, for example:

Doe, John, 944-7077  
Johnson, Mary, 370-3920  
Smith, Abigail, 299-3958  
(etc.)

A CSV file is a way to collect the data from any table so that it can be conveyed as input to another table-oriented application such as a relational database application. Microsoft Excel can read CSV files. A CSV file is sometimes referred to as a flat file.
DB
Database

**Diameter**
A feature rich AAA protocol. Utilises SCTP and TCP transports.

**DLE**
Destination Local Exchange

**DP**
Detection Point

**DRA**
Destination Routing Address. The parameter in the INAP Connect operation, sent from ACS to the SSP. This is the number the SSP is instructed to connect to.

**DTMF**
Dual Tone Multi-Frequency - system used by touch tone telephones where one high and one low frequency, or tone, is assigned to each touch tone button on the phone.

**EDR**
Event Detail Record

*Note:* Previously CDR. The industry standard for CDR is EDR (Event Detail Record). Over time EDR will replace CDR in the NCC documentation.

**ETSI**
European Telecommunications Standards Institute

**FCI**
Furnish Charging Information. An INAP operation sent from ACS to the SSP to control the contents of EDRs produced by the SSP.

**FDA**
First Delivery Attempt - the delivery of a short message directly to the SME rather than relaying it through the MC.

**GMLC**
The Gateway Mobile Location Centre contains functionality required to support LCS (LoCation Services).

**GPRS**
General Packet Radio Service - employed to connect mobile cellular users to PDN (Public Data Network- for example the Internet).
GSM
Global System for Mobile communication.

It is a second generation cellular telecommunication system. Unlike first generation systems, GSM is digital and thus introduced greater enhancements such as security, capacity, quality and the ability to support integrated services.

GT
Global Title.

The GT may be defined in any of the following formats:
- Type 1: String in the form "1,<noa>,<BCD address digits>"
- Type 2: String in the form "2,<trans type><BCD address digits>"
- Type 3: String in the form "3,<trans type>,<num plan>,<BCD address digits>"
- Type 4: String in the form "4,<trans type>,<num plan>,<noa>,<BCD address digits>"

The contents of the Global Title are defined in the Q713 specification, please refer to section 3.4.2.3 for further details on defining Global Title.

GUI
Graphical User Interface

GVNS
Global Virtual Numbering Scheme - When multiple VPNs are in use by a customer, the capability to route calls between these VPNs requires a numbering scheme that uses destination addresses based on a customer id and extension number. These GVNS addresses can then be interpreted to provide inter VPN operation.

HLR
The Home Location Register is a database within the HPLMN (Home Public Land Mobile Network). It provides routing information for MT calls and SMS. It is also responsible for the maintenance of user subscription information. This is distributed to the relevant VLR, or SGSN (Serving GPRS Support Node) through the attach process and mobility management procedures such as Location Area and Routing Area updates.

HPLMN
Home PLMN

HTML
HyperText Markup Language, a small application of SGML used on the World Wide Web. It defines a very simple class of report-style documents, with section headings, paragraphs, lists, tables, and illustrations, with a few informational and presentational items, and some hypertext and multimedia.

Hunting
A terminating call feature where a subscriber may request a list of alternate destination addresses. If their mobile station is not attached, or does not answer a call, then the service logic should attempt to reach the supplied alternate destinations in sequence.
ICA
InitiateCallAttempt. A CAMEL/INAP operation sent by the SLC to an SSP request that a voice call is started.

IDP
INAP message: Initial DP (Initial Detection Point)

IMSI
International Mobile Subscriber Identifier. A unique identifier allocated to each mobile subscriber in a GSM and UMTS network. It consists of a MCC (Mobile Country Code), a MNC (Mobile Network Code) and a MSIN (Mobile Station Identification Number).
The IMSI is returned by the HLR query (SRI-SM) when doing FDA. This tells the MSC exactly who the subscriber is that the message is to be sent to.

IN
Intelligent Network

INAP
Intelligent Network Application Part - a protocol offering real time communication between IN elements.

Initial DP
Initial Detection Point - INAP Operation. This is the operation that is sent when the switch reaches a trigger detection point.

IP
1) Internet Protocol
2) Intelligent Peripheral - This is a node in an Intelligent Network containing a Specialized Resource Function (SRF).

IP address
Internet Protocol Address - network address of a card on a computer

ISDN
Integrated Services Digital Network - set of protocols for connecting ISDN stations.

ISUP
ISDN User Part - part of the SS7 protocol layer and used in the setting up, management, and release of trunks that carry voice and data between calling and called parties.

ITU
International Telecommunication Union
IVR
Interactive Voice Response - systems that provide information in the form of recorded messages over telephone lines in response to user input in the form of spoken words or, more commonly, DTMF signalling.

LAC
Location Area Code. This is an integer value specified as the third level of detail in the location area information. One LAC contains multiple Cell IDs or SAs.

MAP
Mobile Application Part - a protocol which enables real time communication between nodes in a mobile cellular network. A typical usage of the protocol would be for the transfer of location information from the VLR to the HLR.

MC
Message Centre. Also known as SMSC.

MCC
Mobile Country Code. In the location information context, this is padded to three digits with leading zeros. Refer to ITU E.212 ("Land Mobile Numbering Plan") documentation for a list of codes.

Messaging Manager
The Messaging Manager service and the Short Message Service components of Oracle Communications Network Charging and Control product. Component acronym is MM (formerly MMX).

MM
Messaging Manager. Formerly MMX, see also XMS (on page 204) and Messaging Manager (on page 200).

MNC
Mobile Network Code. The part of an international address following the mobile country code (MCC), or at the start of a national format address. This specifies the mobile network code, that is, the operator owning the address. In the location information context, this is padded to two digits with a leading zero. Refer to ITU E.212 ("Land Mobile Numbering Plan") documentation for a list of codes.

MO
Mobile Originated

MS
Mobile Station

MSC
Mobile Switching Centre. Also known as a switch.
**MSIN**
Mobile Station Identification Number.

**MSRN**
Mobile Station Roaming Number

**MT**
Mobile Terminated

**MTP**
Message Transfer Part (part of the SS7 protocol stack).

**NOA**
Nature Of Address - a classification to determine in what realm (Local, National or International) a given phone number resides, for the purposes of routing and billing.

**NP**
Number Portability

**NPI**
Number Plan Indicator

**Octet**
Byte - 8 bits.

**Oracle**
Oracle Corporation

**PACUI**
Play Announcement and Collect User Information

**PC**
Point Code. The Point Code is the address of a switching point.

**PIN**
Personal Identification Number

**PLMN**
Public Land Mobile Network

**RIMS**
Routing Information for Mobile Services. Used to cache HLR lookup information.

*Note: Now known as "Messaging Manager Navigator".*
SCCP
Signalling Connection Control Part (part of the SS7 protocol stack).

SCCP Address
Is made up of PC + SSN + GT; or PC + SSN; or GT; or GT + PC.

SCF
Service Control Function - this is the application of service logic to control functional entities in providing Intelligent Network services.

SCI
Send Charging Information. An INAP operation sent from ACS to the SSP to control real time charging by the SSP.

SCP
Service Control Point. Also known as SLC.

SCTP
Stream Control Transmission Protocol. A transport-layer protocol analogous to the TCP or User Datagram Protocol (UDP). SCTP provides some similar services as TCP (reliable, in-sequence transport of messages with congestion control) but adds high availability.

Session
Diameter exchange relating to a particular user or subscriber access to a provided service (for example, a telephone call).

SGML

SGSN
Serving GPRS Support Node

SK
Service Key

SLC
Service Logic Controller (formerly UAS).

SLEE
Service Logic Execution Environment
SME
Short Message Entity - an entity which may send or receive Short Messages. It may be located in a fixed network, a mobile, or an SMSC.

SMS
Depending on context, can be:
- Short Message Service
- Service Management System platform
- NCC Service Management System application

SN
Service Number

SQL
Structured Query Language - a database query language.

SRF
Specialized Resource Function - This is a node on an IN which can connect to both the SSP and the SLC and delivers additional special resources into the call, mostly related to voice data, for example play voice announcements or collect DTMF tones from the user. Can be present on an SSP or an Intelligent Peripheral (IP).

SRI
Send Routing Information - This process is used on a GSM network to interrogate the HLR for subscriber routing information.

SS7
A Common Channel Signalling system used in many modern telecoms networks that provides a suite of protocols which enables circuit and non circuit related information to be routed about and between networks. The main protocols include MTP, SCCP and ISUP.

SSF
Sub Service Field.

SSN
Subsystem Number. An integer identifying applications on the SCCP layer.
For values, refer to 3GPP TS 23.003.

SSP
Service Switching Point

Switching Point
Anything that can send and receive C7 messages.
**System Administrator**

The person(s) responsible for the overall set-up and maintenance of the IN.

**TCAP**

Transaction Capabilities Application Part – layer in protocol stack, message protocol.

**TCP**

Transmission Control Protocol. This is a reliable octet streaming protocol used by the majority of applications on the Internet. It provides a connection-oriented, full-duplex, point to point service between hosts.

**Telco**

Telecommunications Provider. This is the company that provides the telephone service to customers.

**Telecommunications Provider**

See Telco.

**Termination Number**

The final number that a call terminates to. Can be set in control plan nodes such as Attempt Termination and Unconditional Termination for re-routing numbers such as Toll Free or Follow Me numbers.

**VLR**

Visitor Location Register - contains all subscriber data required for call handling and mobility management for mobile subscribers currently located in the area controlled by the VLR.

**VPN**

The Virtual Private Network product is an enhanced services capability enabling private network facilities across a public telephony network.

**VWS**

Oracle Voucher and Wallet Server (formerly UBE).

**WSDL**

Web Services Description Language.

**XMS**

Three letter code used to designate some components and path locations used by the Oracle Communications Network Charging and Control Messaging Manager (on page 200) service and the Short Message Service. The published code is MM (on page 200) (formerly MMX).
Index

A
AAA • 199
About applet parameters in .html files • 24
About customizing the ACS UI • 23
About defining scfs in acs.jnlp and sms.jnlp • 120
About defining ssfs in acs.jnlp and sms.jnlp • 126
About Global Control Plans • 184
About Installation and Removal • 175
About This Document • vii
Accessing ACS • 23
Accessing ACS directly • 10
Accessing ACS through SMS • 9
ACS • 199
ACS CDR/EDR • 7
ACS Client Specifications • 171
ACS Configuration in the eserv.config File • 36
ACS Global Control Plans • 184
ACS packages • 175
ACS primary tags • 5
ACS section • 36
ACS User Privilege Levels • 11
cs.conf • 57
cs.conf Example • 141
ACS_ROOT • 20
acsAddCallPlan • 159, 164
acsAddCustomer • 160
acsAddGeography • 162
acsAddServiceNumber • 162
acsChassis • 59
acsChassis AWOL Configuration • 136
acsChassis EDR Configuration (SLC) • 126
acsChassis Emergency Numbers (SLC) • 95
acsChassis INAP Extension Parameters • 95, 110
acsChassis Normalization Parameters (SLC) • 98
acsChassis plugin libraries • 60
acsChassis Plug-ins • 59
acsChassis SCF Configuration (SLC) • 117
acsChassis Service Library Configuration (SLC) • 135
acsChassis Service Normalisation Parameters (SLC) • 136
acsChassis ServiceEntry Configuration (SLC) • 45, 48, 59, 105, 136, 138, 158
acsChassis Single Instance Parameters (SLC) • 68
acsChassis SLEE Event Size Parameter (SLC) • 104, 113
acsChassis SRF Configuration (SLC) • 62, 113
acsChassis SSF Configuration (SLC) • 29, 31, 120
acsChassisActions Configuration • 40
acsCompilerDaemon • 150
acsCompilerDaemon (SMS) • 64
acsDbCleanup.sh • 153
acsDecompile • 163
acsDumpControlPlan • 159, 164
acsMonitorCompiler • 165
acsProfileCompiler • 154
acsScheduleCallPlan • 165
acsSetupAnnouncement • 166
acsSnCpActAlarms • 151
acsStatisticsDBInserter • 154
acsStatisticsDBInserter (SMS) • 62
acsStatsLocal (SLC) • 94
acsStatsMaster • 156
acsStatsMaster (SLC) • 67
acsTriggerIF Configuration • 48
addChargingInfoToCTR • 69
addChargingInfoToETC • 69
addChargingInfoToPA • 69
AddMOLIPrefix • 70
Address • 114, 117, 121
AddressSources • 45
alarmCheckInterval • 152
alarmReason • 153
alertTimeout • 65
allowCallPlanSchedulingInPast • 24
allowRefInCustCombo • 24
alternativeCallPlanNamePostfix • 70
alwaysIncludePartyToCharge • 70
ANI • 199
appContext • 119, 125
armDisconnectAt • 71
armDisconnectAtp • 71
armDisconnectLeg1 • 71
armDisconnectLeg2 • 71
armLegsSeparately • 71
ArmTerminateTriggers • 71
ASCII Codes • 195
AskCirAttemptElapsedTime • 91
AskCirCallAddress • 91
AskCirConnectElapsedTime • 91
AskCirReleaseCause • 91
AskCirStopTime • 91
ASN.1 • 199
AssumePreArrangedEnd • 72
atDisconnectMM_Leg1Interrupt • 72
atDisconnectMM_Leg2Interrupt • 72
Audience • vii
AuditChallenge • 67, 72
autoCloseCompilerDialog • 25
autoCloseCPE • 25
Automated ACS Processes (SLC Machine) • 156
Automated ACS Processes (SMS Machine) • 149
AWOL processing • 136
awolOverrideACRTimeout • 139
awolReportOnly • 112, 138
awolReportPeriod • 112, 139
awolTimeout • 112, 137

B

Background Processes • 149
BCSM • 199
Before you begin • 58

C

C7 • 199
Call Dump parameters • 90
Call Information Report parameters • 90
Call processing and features • 1
Call routing services • 2
callAnswerTimeFormat • 41
CallDumpDir • 90
CallDumpEnabled • 90
CallDumpMessage • 90
CallDumpSeconds • 90
CallDumpSeverity • 90
CalledPartyBcdToNoaMap • 73
callEndTimeFormat • 41
CallInitiationExtensionForIdp • 72
CallInitiationTimeoutToleranceSeconds • 72
CallInitiationUseContextInd • 73
callProcessingAllowedAfterAPartyDisconnect • 74
callReferenceIDAsHex • 127
callStartTimeFormat • 42
CallType • 106
CAMEL • 199
CancelChar • 74
CAP • 199
CarrierCodeDisposal • 74
CC • 199
CCR • 199
CCS • 199
CDR • 200
CdrClosedDirectory • 127
CdrCompressCall • 127, 134
CdrCurrentDirectory • 128
CdrExtraFields • 128
CdrFile • 128
CdrFileAppendCloseTime • 129
CdrFileAppendPId • 130
CdrFileMaxAge • 126, 127, 130
CdrFileMaxSize • 126, 127, 130
CdrFileUseGMT • 10291824 • 130
CdrFileUseLocalTime • 10291824 • 131
CdrLogPIN • 133
cdrOnAbort • 127, 133
cdrOnDisconnect • 127, 133
cdrOnForcedDisc • 134
cdrOnHandover • 134
CdrRemoveFields • 131
CdrResetOnWriteRELC • 134
ChainCountLimit • 75
ChassisPlugin • 60, 61, 157
checkAWOL • 137
checkAWOLMarginAC • 137
Checking Kernel parameters • 172
Checking the Installation • 177
Checklist - SLK • 179
Checklist - SMS • 178
CheckMOLIPrefix • 70, 75
CID • 200
CLI • 200
CollectInfoReturnsAll • 75
compressAtKb • 66
compressLevel • 66
Configuration • 157, 158, 159, 160, 162, 164, 165, 166
Configuration - acsDecompile • 163
Configuration file format • 35
Configuration files • 20
Configuring minimumSizeOfConnectSleeEvent per service • 105, 113
Configuring the acs.conf • 20, 57, 150, 154, 156, 157, 158
Configuring the Environment • 19
Configuring the eserv.config • 35
Configuring the numberDataImport Tool • 167, 169
ConnectCLISource • 108
Connection • 200
Context Tag • 97
Copyright • ii
CopySpareBits • 75
countryCodes • 37
CPE • 200
CPU • 200
Creating and Updating Table Lookup Datasets • 167, 168
Creating the Dataset Input File • 167, 168
cron • 200
crontab • 200
CS1 • 200
CSV • 200

D

DB • 201
Default.lang • 21
Default_Acs_Service.hs • 22
defaultTelcoManaged • 26
Defining acsChassis AWOL configuration • 136
Defining the Help Screen Language • 22
Defining the Screen Language • 20
Defining the Security Levels • 10
deleteTagsAfterTrigger • 49
DenormalisationRule • 99, 101, 104, 140
Description • 1, 187, 195
destAddress • 38
dfcOnIpAbort • 76
Diagram • 3, 126
DialledHashEncoding • 76
DialledStarEncoding • 76
dialogTickInterval • 76
Diameter • 201
DigitsInAnnouncementList • 69
disarmEDPs • 76
DisconnectMidCallJumpBack • 76
DLE • 201
Document Conventions • viii
DP • 201
DRA • 201
DTMF • 201

E
Editing the file • 36
edpArmAbandoned • 77
edpArmAnswer • 77
edpArmBusy • 77
edpArmNoAnswer • 77
edpArmRouteSelectFailure • 77
edpSetNoAnswerTimer • 77
edpUseNoAnswerTimer • 78
EDR • 201
elapsedTimesFromApplyChargingReport • 134
EmergencyNumber • 95
emptyDraIsError • 78
enabled • 38
encoding • 40
endUnlinkedExits • 66
EntryChar • 78
eserv.config Configuration • 20, 35
eserv.config files delivered • 36
eserv.config parameters • 151
ETC_CorrelationIdInIPAddr • 78
ETC_MinCorrelationDigits • 78
ETC_SCF_ID • 79
ETSI • 201
Example • 112, 113, 117, 118, 119, 120, 125
Example 1 • 58, 104
Example 2 • 58, 104
Example 3 • 104
Example ACS Configuration in eserv.config • 36, 52
Example acs.conf • 141
Example acs_devices.sh file • 177
Example configuration sections • 58
Example helpset language • 22
Example jnlp applet parameters • 33
Example MRC configuration in eserv.config • 56
Example screen language • 21
Extension numbers example • 72, 98
Extra statistics • 79, 93
extractCallAnswerTime • 42
extractCallEndTime • 42
extractCallStartTime • 42
extractEdrId • 43
extractEdrTimeZone • 43
Extraction sources in IDP • 107, 108, 109
Extraction value construction • 110
extraStats • 79, 93
F
Failure • 150, 153, 154, 155, 156
fakeAcrCallReleaseAtMaxDuration • 79
FakeAcrCallReleaseAtTcpExpiry • 79
fakeMissingAcrAtDisconnection • 80
FCI • 201
fciInSeparateMessage • 80
fciInSeparateMessageAllOperations • 80
fciMaximumLength • 81
fciSeparator • 81
FDA • 201
FirstDigitTimeout • 81

G
g digits • 111
Get Hunting Number Node Configuration • 139, 157
Global and service specific normalization • 99
GlobalProfileMaxAge • 81
GMLC • 201
GPRS • 201
GSM • 202
GT • 202
GUI • 202
GVNS • 202

H
HLR • 202
How the SRF configuration works • 115
HPLMN • 202
HTML • 202
Hunting • 202

I
ICA • 203
Icons • 175
ID • 96
IDP • 203
IDPExtTypeCallAnswerTime • 43
IDPExtTypeCallEndTime • 43
IDPExtTypeCallStartTime • 44
IDPExtTypeEDRId • 44
IDPExtTypeEDRT TimeZone • 44
ignoreNumberPlanForConnectToContinue • 81
Implementing parameter changes • 58
IMSI • 203
IN • 203
INAP • 203
inapServiceKey • 49
Initial DP • 203
inNOA • 101
inPrefix • 101
Installation and Removal Overview • 175
Installing acsSms Packages on a Clustered SMS • 176
InterDigitTimeout • 81
interface • 125
InternalErrorAction • 82
Introduction • 7, 9, 10, 12, 16, 20, 22, 35, 57, 62, 64, 67, 94, 95, 104, 105, 113, 117, 120, 136, 149, 156, 172, 175, 177, 180, 183, 187
IP • 203
IP address • 203
IPProtocolInfo • 82
ISDN • 203
issuePCClockWarning • 26
ISUP • 203
ITU • 203
IVR • 204
Java applet parameters • 24
L
LAC • 204
libacsChassisActions • 61, 157
libacsMacroNodes • 61, 157
libacsService • 158
libname • 109
Location • 150, 151, 153, 154, 155, 156, 160, 162, 163, 165, 166
LocationInfoDestinationSubsystemNumber • 54
LocationInfoGSMScfAddress • 54
LocationInfoGSMScfMapNoa • 55
locationInfoOriginatingSubsystemNumber • 55
locationInfoPollEnabled • 55
LocationInfoRequestTimeout • 55
locationInfoRetrieval configuration • 54
locationInfoTcpInterfaceName • 56
Logging EDRs • 126
LogicalCPSSource • 107
logo • 26
M
MacroNodePluginFile • 59, 61, 157
macroNodes Configuration • 37
MAP • 204
MasterServerLocation • 64
MasterServerPort • 63
masterStatsServer • 68, 94
MAX_CONTROL_PLANS_DISPLAYED • 27
maxAnnouncementTextBytes • 82
maxBranches • 65
maxCompiledKb • 66
maximiseAcsScreens • 27
maxLength • 103
maxNodes • 65
MaxPromptDigits • 82
MC • 204
MCC • 204
Memory • 171
Messaging Manager • 204, 208
Methods • 46
minimumSizeOfConnectSleeEvent • 105
minLength • 102
MinZeroTimeRemainingPeriod • 82
MM • 204, 208
MNC • 204
MO • 204
MRC Configuration • 54
MS • 204
MSC • 204
mscAddress • 40
mscAddressForEdr • 40
msgmnb • 173
msgtql • 172
MSIN • 205
MSRN • 205
MT • 205
MTP • 205
N
Network • 171
NetworkCPSource • 107
NI • 119
NOA • 114, 118, 121, 205
NOA and normal rules • 98
noActivitySleepTime • 50
NOA-ISUP type • 112
NOA-MAP type • 111
NoAnswerTimeout • 82
NOAToAdd • 101
NoCallPlanAction • 82
NoCallPlanCause • 83
NoCallPlanError • 83
NoDatabaseConnectAction • 83
Node states • 128, 129
NokiaCIR • 91
noOfDigitsToRemove • 102
NormalisationRule • 100
normaliseServiceNumber • 103
normaliseTerminationNumber • 103
Normalisation parameters • 99, 136
NormalUnknownNOA • 100
NormalUseHex • 100
NoServiceAction • 83
NoServiceError • 83
Note • 183
NP • 205
NPI • 118, 122, 205
Number • 95
Number denormalization • 99
Number Matching Node Configuration • 140
Number normalization • 99