Copyright

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Contents

About This Document ... v
Document Conventions ... vi

Chapter 1

System Overview ... 1
 - CAP3 SMS Gateway ... 1
 - Message Flows ... 2

Chapter 2

Configuration .. 5
 - Overview .. 5
 - Configuration Overview .. 5
 - Configuring capgw ... 6

Chapter 3

Background Processes ... 13
 - Overview .. 13
 - CAP3 SMS Gateway .. 13

Chapter 4

About Installation and Removal .. 17
 - Overview .. 17
 - Installation and Removal Overview ... 17

NCC Glossary of Terms ... 19

Index .. 21
About This Document

Scope

The scope of this document includes all the information required to install, configure and administer the Oracle Communications Network Charging and Control CAP3 SMS Gateway application.

Audience

This guide was written primarily for system administrators and persons installing, configuring and administering the CAP3 SMS Gateway application. However, sections of the document may be useful to anyone requiring an introduction to the application.

Prerequisites

A solid understanding of UNIX and a familiarity with IN concepts are an essential prerequisite for safely using the information contained in this technical guide. Attempting to install, remove, configure or otherwise alter the described system without the appropriate background skills, could cause damage to the system; including temporary or permanent incorrect operation, loss of service, and may render your system beyond recovery.

Although it is not a prerequisite to using this guide, familiarity with the target platform would be an advantage.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related documents

The following documents are related to this document:

- Oracle Communications Network Charging and Control SLEE Technical Guide
- Oracle Communications Network Charging and Control Short Message Charging Bundle User's & Technical Guide
Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Network Charging and Control (NCC) documentation.

<table>
<thead>
<tr>
<th>Formatting convention</th>
<th>Type of information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Bold</td>
<td>Items you must select, such as names of tabs. Names of database tables and fields.</td>
</tr>
<tr>
<td>Italics</td>
<td>Name of a document, chapter, topic or other publication. Emphasis within text.</td>
</tr>
<tr>
<td>Button</td>
<td>The name of a button to click or a key to press. Example: To close the window, either click Close, or press Esc.</td>
</tr>
<tr>
<td>Key+Key</td>
<td>Key combinations for which the user must press and hold down one key and then press another. Example: Ctrl+P, or Alt+F4.</td>
</tr>
<tr>
<td>Monospace</td>
<td>Examples of code or standard output.</td>
</tr>
<tr>
<td>Monospace Bold</td>
<td>Text that you must enter.</td>
</tr>
<tr>
<td>variable</td>
<td>Used to indicate variables or text that should be replaced.</td>
</tr>
<tr>
<td>menu option > menu option ></td>
<td>Used to indicate the cascading menu option to be selected, or the location path of a file. Example: Operator Functions > Report Functions Example: /IN/html/SMS/HelpText/</td>
</tr>
<tr>
<td>hypertext link</td>
<td>Used to indicate a hypertext link on an HTML page.</td>
</tr>
</tbody>
</table>

Specialized terms and acronyms are defined in the *Glossary* at the end of this guide.
CAP3 SMS Gateway

Description

The Oracle Communications Network Charging and Control CAP3 SMS Gateway (capgw) is a SLEE application that translates CAP v3 SMS operations to the equivalent CAP non-SMS operations used by Advanced Control Services ACS. It is used in conjunction with the Short Message Charging Bundle SMCB application. For a detailed description, refer to CAP3 SMS Gateway (on page 13) background process.

CAP3 SMS Gateway context

This diagram illustrates the logical message flow through capgw.
Message Flows

CAP3 SMS Gateway CapContinueSMS

Here is an example message flow where CAP3 SMS Gateway returns a CapContinueSMS.

Notes:
1 Network element triggers the SLC using IDPSMS containing calling and destination numbers.
2 Message is routed to the CAP3 SMS Gateway which triggers the ACS application by mapping parameters in the IDPSMS to an IDP.
3 Control plan is triggered. The control does not change the calling and/or destination numbers. This is sent in a Connect operation back to CAP3 SMS Gateway.
4 CAP3 SMS Gateway returns a ContinueSMS operation back to the network element.

CAP3 SMS Gateway CapConnectSMS

For some deployments, the triggered application (for example, Messaging Manager) has the capability to be able to change the calling and destination numbers of SMS messages (because of, number portability, for example) before they are delivered to the SMSC. In this case a connect will be sent.

Here is an example message flow where CAP3 SMS Gateway returns a CapConnectSMS.

Notes:
1 Network element triggers the SLC using IDPSMS containing calling and destination numbers.
2 Message is routed to the CAP3 SMS Gateway which triggers the ACS application by mapping parameters in the IDPSMS to an IDP.
3 Control plan is triggered. The service designer elects to change the calling and/or destination numbers. These are sent in a Connect operation back to CAP3 SMS Gateway.
4 CAP3 SMS Gateway returns a ConnectSMS operation back to the network element.
CAP3 SMS Gateway CapReleaseSMS

Here is an example message flow where CAP3 SMS Gateway returns a CapReleaseSMS. This may occur in cases such as insufficient funds.
Chapter 2

Configuration

Overview

Introduction

This chapter explains how to configure the Oracle Communications Network Charging and Control (NCC) application.

In this chapter

This chapter contains the following topics.

Configuration Overview 5
Configuring capgw 6

Configuration Overview

Introduction

This chapter provides a high level overview of how the Oracle Communications Network Charging and Control CAP3 SMS Gateway application, provided in the capgwScp package, is configured.

There are configuration options which are added to the configuration files that are not explained in this chapter. These configuration options are required by the applications and should not be changed.

Configuration process overview

This table describes the steps involved in configuring the applications for the first time.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The environment the applications will run in must be configured correctly. This includes if the directory the packages were installed into was not the recommended directory, setting the root directory.</td>
</tr>
<tr>
<td>2</td>
<td>The SLEE.cfg file must be configured for the SLCs. This file is automatically updated during installation.</td>
</tr>
<tr>
<td>3</td>
<td>The eserv.config file must be configured for the SLCs. This file is automatically updated during installation.</td>
</tr>
</tbody>
</table>

Configuration components

The CAP v3 SMS Gateway is configured by the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Locations</th>
<th>Description</th>
<th>Further Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>eserv.config</td>
<td>all SLCs</td>
<td>In the eserv.config file, CAP3 SMS Gateway is configured by the capgw section</td>
<td>eserv.config examples (see “Example capgw parameters” on page 6)</td>
</tr>
<tr>
<td>SLEE.cfg</td>
<td>all SLCs</td>
<td>Sets up the capgw service, service</td>
<td>SLEE configuration</td>
</tr>
</tbody>
</table>
Configuring capgw

Introduction
The CAP3 SMS Gateway (capgw) is a SLEE application, therefore it must be configured in the SLEE.cfg configuration file and also in the eserv.config configuration file.

SLEE configuration changes
The post installation scripts automatically run during the installation of the capgw package will make all necessary configuration changes to the SLEE configuration file to include the capgw application.

The SLEE.cfg is located in /IN/service_packages/SLEE/etc.

In the capgw section of the SLEE.cfg file, ensure that the following entries are present - if not, they must be added.

APPLICATION=capgw capgw.sh /IN/service_packages/CAP3_GW/bin 1 1
SERVICE=capgw 1 capgw capgw
SERVICEKEY=INTEGER 15 capgw

For further details on the configuration of the SLEE application, see SLEE Technical Guide.

eserv.config changes
The post installation scripts that run automatically during the installation of the capgwScp package make all the necessary configuration changes to the eserv.config configuration file to include the capgw application.

The eserv.config file is located in /IN/service_packages

Example capgw parameters
The following example shows the full list of entries in the capgw section of eserv.config file. These are created from your responses to the configuration questions asked during the installation of the capgwScp package. Some of these entries may not be present if the default values are being used.

capgw = {
 destinationServiceKey = 11
 # calling_noa = 2
 # calling_plan = 1
 # calling_screen = 0
 # calling_present = 2
 # calling_innorni = true
 called_noa_map = "0,4,3,5,1,0,0,0"
 calling_noa_map = "0,4,3,5,1,0,0,0"
 # idps_use_noa_maps = false

 connectSMS = {
 # smscNoa = 2
 # smscPlan = 1
 }

 tracing = {
 enabled = false
 outputFile = "/tmp/smsTrace.trc"
 callsPerMinute = 2
 outputFileCycle = 1024
 maxFileSizeKB = 0 # unlimited
 }
}
origAddress = [
 # "00123456789"
] destAddress = [
 # "00987654321"
]

}}
}

Parameters - capgw

The capgw supports the following parameters.
called_noa_map
Syntax: called_noa_map = “a,b,c,d,e,f,g,h”
Description: Associate called party address Type Of Number values in CAP SMS operations with NoA values used by SM-CB.
Value is an array of SM-CB NoA values indexed by Type Of Number value.
Type: String
Optionality: Optional (default used if not set).
Allowed: Where a-h have values 0-7.
Default: No mapping and values passed through CAP gateway transparently
Notes: Example: A mapping of “0,4,3,5,1,0,0,0” will map a ToN 1 to SM-CB NoA 4 and used in reverse will map SM-CB NoA 3 to ToN 2.
called_noa_map = “0,4,3,5,1,0,0,0”
calling_innorni
Syntax: calling_innorni = true|false
Description: The calling innOrNI value in InitialDPs to SM-CB.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true, false
Default: true
Notes: IDP override - If set this will be used instead of what was supplied in the InitialDPSMS.
Example: calling_innorni = false
calling_noa
Syntax: calling_noa = num
Description: The calling NoA in InitialDPs sent to SM-CB.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Default: no override
Notes: This overrides the value received in the InitialDPSMS and the calling_noa_map (on page 8) mapping.
Example: calling_noa = 2
calling_noa_map
Syntax: \(\text{calling_noa_map} = "a, b, c, d, e, f, g, h" \)
Description: Associate calling party address NoA values in SMS operations with NoA values used by SM-CB.
Value is array of SM-CB NoA values indexed by SMS NoA.
Type: String
Optionality: Optional (default used if not set).
Allowed: Where \(a-h \) have values 0-7.
Default: No mapping and values passed through CAP gateway transparently
Notes: Example: A mapping of “0,4,3,5,1,0,0,0” will map SMS NoA 1 to SM-CB NoA 4 and used in reverse will map SM-CB NoA 3 to SMS NoA 2.
\(\text{calling_noa_map} = "0,4,3,5,1,0,0,0" \)

calling_plan
Syntax: \(\text{calling_plan} = \text{num} \)
Description: The calling party numbering plan from the original InitialDPS to SM-CB.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Default: 1
Notes: IDP override - If set this will be used instead of what was supplied in the InitialDPSMS.
Example: \(\text{calling_plan} = 3 \)

calling_present
Syntax: \(\text{calling_present} = \text{num} \)
Description: The calling present value in InitialDPS to SM-CB
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Default: 2
Notes: IDP override - If set this will be used instead of what was supplied in the InitialDPSMS.
Example: \(\text{calling_present} = 3 \)

calling_screen
Syntax: \(\text{calling_screen} = \text{num} \)
Description: Calling party screening indicator.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Default: 0
Notes: IDP override - If set this will be used instead of what was supplied in the InitialDPSMS.
Example: calling_screen = 1

connectSMS
Syntax: connectSMS = {connect_parameters}
Description: The connect SMS operation configuration to support sending a CAP3 ConnectSMS operation back to the network element that originated the dialog.
Type: Parameter section
Optionality: Optional (default used if not set).
Allowed: Default:
Notes: Example: connectSMS = {
 smscNoa = 2
 smscPlan = 1
}

destinationServiceKey
Syntax: destinationServiceKey = skey
Description: Incoming IDP SMS messages are converted to IDPs and sent to this service key.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Default: 11
Notes: Normally SMCB is on this service key.
Example: destinationServiceKey = 1200

idps_use_noa_maps
Syntax: idps_use_noa_maps = true|false
Description: Map the NOAs in InitialDPs sent to SM-CB using the called_noa_map (on page 7) and calling_noa_map (on page 8) mappings.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true, false
Default: false
Notes: Example: idps_use_noa_maps = false

smscNoa
Syntax: smscNoa = NoA
Description: Specifies the NoA value to use for outgoing SMSC Address sent in connectSMS.
Type: Integer (value 0-7)
Optionality: Optional (default used if not set).
Allowed: Nature of Address values
Default: 2
Notes: This is a member of the connectSMS (on page 9) parameter group.
Example: \[\text{smscNoa} = 2 \]

\textbf{smscPlan}

\textbf{Syntax:} \[\text{smscPlan} = \text{NoA} \]

\textbf{Description:} Specifies the Numbering Plan value to use for outgoing SMSC Address sent in \texttt{connectSMS}.

\textbf{Type:} Integer (value 0-15)

\textbf{Optionality:} Optional (default used if not set).

\textbf{Allowed:}

\textbf{Default:} 1

\textbf{Notes:} This is a member of the \texttt{connectSMS} (on page 9) parameter group.

\textbf{Example:} \[\text{smscPlan} = 1 \]

\textbf{Tracing parameters}

The capgw configuration supports the following tracing parameters.

\begin{verbatim}
tracing = {
 enabled = false
 outputFile = "/tmp/smsTrace.trc"
 callsPerMinute = 2
 outputFileCycle = 1024
 maxFileSizeKB = 0 # unlimited
 origAddress = [
 # "00123456789"
]
 destAddress = [
 # "00987654321"
]
}
\end{verbatim}

\textbf{callsPerMinute}

\textbf{Syntax:} \[\text{callsPerMinute} = \text{num} \]

\textbf{Description:} The maximum number of calls per minute to trace.

\textbf{Type:} Integer

\textbf{Optionality:}

\textbf{Allowed:}

\textbf{Default:} 2

\textbf{Notes:}

\textbf{Example:} \[\text{callsPerMinute} = 2 \]

\textbf{destAddress}

\textbf{Syntax:} \[\text{destAddress} = ["add1","add2"] \]

\textbf{Description:} Array of destination addresses for which calls will be traced.

\textbf{Type:}

\textbf{Optionality:}

\textbf{Allowed:}

\textbf{Default:} You can specify "0" for all numbers.

\textbf{Notes:} Prefixes in this list (\texttt{TonNpi} format) must be enclosed in double quotes; that is,"tttnnn"
Example:

```
destAddress = [
  "00987654321"
]
```

enabled

Syntax:

```
enabled = true|false
```

Description:
Determines whether or not to collect tracing details of numbers whose prefixes match those specified in the `origAddress` (on page 11) and `destAddress` (on page 10) parameter lists.

Type:
Boolean

Optionality:
Optional (default used if not set).

Default:
true, false

Notes:
Example:
```
enabled = true
```

maxFileSizeKB

Syntax:

```
maxFileSizeKB = size
```

Description:
The maximum file size, in KB.

Type:
Integer

Optionality:

Allowed:

Default:
0 (unlimited)

Notes:
Example:
```
maxFileSizeKB = 0
```

origAddress

Syntax:

```
origAddress = ["add1","add2"]
```

Description:
Array of originating addresses for which calls will be traced.

Type:

Optionality:

Allowed:

Default:
You can specify "0" for all numbers.

Notes:
Prefixes in this list (TonNpi format) must be enclosed in double quotes; that is,"tttnnn"

Example:
```
origAddress = [
  "00987654321"
]
```

outputFile

Syntax:

```
outputFile = "file"
```

Description:
The file that all tracing details are to be written to. The primary output file.

Type:

Optionality:

Allowed:

Default:
"/tmp/smsTrace.trc"
Notes: Once established, capgw cannot remove or rename the tracing output file.
Example: `outputFile = "/tmp/smsTrace.trc"

outputFileCycle

Syntax: `outputFileCycle = num`
Description: Close and re-open the file every N calls. Checks for file size exceeded at this time also.

Type:
Optionality:
Allowed:
Default: 1024
Notes: Tracing buffered data is flushed to the output file before closing.
Example: `outputFileCycle = 1024`

tracing

Syntax: `tracing = {tracing_parameters}`
Description: The tracing feature allows individual calls to be identified and traced.
To activate tracing, the tracing section of the capgw configuration must be enabled, and the prefixes to be traced must be defined. Tracing output is written to file at a specified interval.

Type:
Optionality: Optional
Allowed:
Default:
Notes:
Example: See *Tracing parameters* (on page 10).
Chapter 3

Background Processes

Overview

Introduction

This chapter explains the processes which run automatically as part of the application. These processes are started automatically by one of the following:

- inittab
- crontab
- Service Logic Execution Environment SLEE

Note: This chapter also includes some plug-ins to background processes which do not run independently.

In this chapter

This chapter contains the following topics.

CAP3 SMS Gateway

Purpose

The Oracle Communications Network Charging and Control CAP3 SMS Gateway (capgw) is a SLEE application that translates CAP v3 SMS INAP operations to the CAP v2 equivalent. It is intended for use in conjunction with the Short Message Charging Bundle application.

Example: When the capgw application receives an InitialDPSMS, it uses the parameters from the InitialDPSMS to construct an InitialDP. The InitialDP is then sent to the required destination.

Startup

The capgw application is started using the /IN/service_packages/CAP3_GW/bin/capgw.sh startup script.

Configuration

capgw accepts the following command line arguments.

Usage:

`capgw -c configuration_section`

The available parameter is:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c config_section</td>
<td>capgw</td>
<td>Defines the configuration section in eserv.config to use for capgw, if you do not want to use the default. See Configuring capgw (on page 6) for details.</td>
</tr>
<tr>
<td>Parameters</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: The configuration section for capgw is automatically populated with the required configuration parameters and values by the installation process.</td>
</tr>
</tbody>
</table>

Signal handling

The capgw application accepts signal requests from the watchdog to shut down. It only handles the signal once. This means that the capgw reverts to the default signal handling after the signal is received.

Example: If the watchdog sends a SIGABORT to the capgw, the capgw tries to shutdown gracefully. In the mean time, the default SIGABORT handling is set so that if a second SIGABORT is sent, then the default behavior (exit with core) is used.

Signals table

This table shows the signals that are accepted by the capgw application.

Note: Default signal handling specified by the operating system is used if any other signals are sent to capgw.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGTERM</td>
<td>Shuts down the capgw application gracefully.</td>
</tr>
<tr>
<td>SIGHUP</td>
<td>The capgw application re-reads the configuration file.</td>
</tr>
<tr>
<td>SIGABORT</td>
<td>Shuts down the capgw application gracefully.</td>
</tr>
<tr>
<td>SIGUSR1</td>
<td>Shuts down the capgw application gracefully.</td>
</tr>
<tr>
<td>SIGUSR2</td>
<td>Shuts down the capgw application gracefully.</td>
</tr>
</tbody>
</table>

Failure

If the CAP3 SMS Gateway fails, then CAP v3 SMS INAP operations will not be translated to their CAP v2 equivalent, and no further calls will be received.

Output

The capgw application writes error messages to the system log file.

Number tracing

You can activate a number tracing facility for calls passing through the CAP3 SMS Gateway using the tracing parameter in the `capgw` section of the `eserv.config` file.

The tracing parameter is a number prefix. When it is present in the configuration file, calling party numbers that match the prefix are traced. The trace is placed in the following file: `/tmp/calling_party_number`.

Switching tracing on and off

Follow these steps to switch tracing on or off.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• To turn tracing on, add the tracing parameter and the desired number prefix to</td>
</tr>
<tr>
<td>Step</td>
<td>Action</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>the capgw section of the eserv.config file.</td>
</tr>
<tr>
<td></td>
<td>• To turn tracing off, remove the tracing parameter line from the capgw section of eserv.config.</td>
</tr>
<tr>
<td>2</td>
<td>Type kill -HUP pid_of_capgw</td>
</tr>
<tr>
<td></td>
<td>Result: Sends a SIGHUP to capgw, causing it to re-read the configuration file.</td>
</tr>
</tbody>
</table>
Overview

Introduction
This chapter provides details of the installation and removal process for the application.

In this chapter

This chapter contains the following topics.
Installation and Removal Overview

Installation and Removal Overview

Introduction
For information about the following requirements and tasks, see *NCC Installation Guide*:

- NCC system requirements
- Pre-installation tasks
- Installing and removing NCC packages

CAP3 SMS Gateway packages
An installation of Oracle Communications Network Charging and Control CAP3 SMS Gateway includes the following packages, on the:

- SMS:
 - capgwSms
- SLC:
 - capgwScp

Checking the installation
When the capgwScp package is installed correctly, and the SLEE is restarted, the following process will be run on the SLEE:

- capgw
NCC Glossary of Terms

ACS
Advanced Control Services configuration platform.

CAMEL
Customized Applications for Mobile network Enhanced Logic
This is a 3GPP (Third Generation Partnership Project) initiative to extend traditional IN services found in fixed networks into mobile networks. The architecture is similar to that of traditional IN, in that the control functions and switching functions are remote. Unlike the fixed IN environment, in mobile networks the subscriber may roam into another PLMN (Public Land Mobile Network), consequently the controlling function must interact with a switching function in a foreign network. CAMEL specifies the agreed information flows that may be passed between these networks.

CAP
CAMEL Application Part

cron
Unix utility for scheduling tasks.

crontab
File used by cron.

DP
Detection Point

HTML
HyperText Markup Language, a small application of SGML used on the World Wide Web. It defines a very simple class of report-style documents, with section headings, paragraphs, lists, tables, and illustrations, with a few informational and presentational items, and some hypertext and multimedia.

IDP
INAP message: Initial DP (Initial Detection Point)

IN
Intelligent Network

INAP
Intelligent Network Application Part - a protocol offering real time communication between IN elements.

Initial DP
Initial Detection Point - INAP Operation. This is the operation that is sent when the switch reaches a trigger detection point.
Messaging Manager

The Messaging Manager service and the Short Message Service components of Oracle Communications Network Charging and Control product. Component acronym is MM (formerly MMX).

MM

Messaging Manager. Formerly MMX, see also XMS (on page 20) and Messaging Manager (on page 20).

MS

Mobile Station

Oracle

Oracle Corporation

PLMN

Public Land Mobile Network

SGML

SLC

Service Logic Controller (formerly UAS).

SLEE

Service Logic Execution Environment

SMS

Depending on context, can be:
- Short Message Service
- Service Management System platform
- NCC Service Management System application

SMSC

Short Message Service Centre - stores and forwards a short message to the indicated destination subscriber number.

XMS

Three letter code used to designate some components and path locations used by the Oracle Communications Network Charging and Control Messaging Manager (on page 20) service and the Short Message Service. The published code is MM (on page 20) (formerly MMX).
Index

A
About Installation and Removal • 17
About This Document • v
ACS • 19
Audience • v

B
Background Processes • 13

C
called_noa_map • 7, 9
calling_innorni • 7
calling_noa • 7
calling_noa_map • 8, 9
calling_plan • 8
calling_present • 8
calling_screen • 8
callsPerMinute • 10
CAP • 19
CAP3 SMS Gateway • 1, 13
CAP3 SMS Gateway CapConnectSMS • 2
CAP3 SMS Gateway CapContinueSMS • 2
CAP3 SMS Gateway CapReleaseSMS • 3
CAP3 SMS Gateway context • 1
CAP3 SMS Gateway packages • 17
Checking the installation • 17
Configuration • 5, 13
Configuration components • 5
Configuration Overview • 5
Configuration process overview • 5
Configuring capgw • 6, 13
connectSMS • 9, 10
Copyright • ii
cron • 19
crontab • 19

D
Description • 1
destAddress • 11
destinationServiceKey • 9
Document Conventions • vi
DP • 19

E
enabled • 11
eserv.config changes • 6
Example capgw parameters • 5, 6

F
Failure • 14

H
HTML • 19

I
IDP • 19
idps_use_noa_maps • 9
IN • 19
INAP • 19
Initial DP • 19
Installation and Removal Overview • 17
Introduction • 5, 6, 17

M
maxFileSizeKB • 11
Message Flows • 2
Messaging Manager • 20
MM • 20
MS • 20

N
Number tracing • 14

O
Oracle • 20
origAddress • 11
Output • 14
outputFile • 12
outputFileCycle • 12
Overview • 5, 13, 17

P
Parameters - capgw • 7
PLMN • 20
Prerequisites • v
Purpose • 13

R
Related documents • v

S
Scope • v
SGML • 20
Signal handling • 14
SLC • 20
SLEE • 20
SLEE configuration changes • 5, 6
SMS • 20
SMSC • 20
smscNoa • 10
smscPlan • 10
Startup • 13
Switching tracing on and off • 14
System Overview • 1
T
tracing • 12
Tracing parameters • 10, 12
Typographical Conventions • vi

X
XMS • 20