
Oracle Endeca Commerce
Assembler Application Developer's Guide

Version 3.1.1 • December 2012

Contents

Preface...9
About this guide..9
Who should use this guide..9
Conventions used in this guide...10
Contacting Oracle Support...10

Chapter 1: Supporting an Assembler Application.................................11
About planning your application sitemap..11
About page types..12

About page structure and content types..13
About mapping pages to services...14
Creating a page...16

About content collections..16
Content collections example..17
Creating a content collection...21
About moving content collections..22

Chapter 2: Creating Experience Manager Templates............................23
About creating templates..23
Anatomy of a template..24
Template naming conventions..25
About the template XML schema..25
About the type and ID for a template..26
Specifying the description and thumbnail image for a template..26

About using thumbnail images in Experience Manager..27
Specifying the default name for a cartridge..27
About defining the content properties and editing interface..28

About template properties...28
About defining the editing interface for properties...29

Structural properties...31
Adding a content item property..31
Adding a content item list property..32
About cartridge selectors...33

Chapter 3: Managing Experience Manager Templates..........................35
Updating Experience Manager templates...35

Troubleshooting problems with uploading templates...35
Troubleshooting invalid templates..37

About updating templates...37
About modifying templates that are used by existing pages...37
About removing templates..38

Removing templates from Experience Manager...39
Retrieving the current templates from Experience Manager..40

Chapter 4: Building Applications with the Endeca Assembler............41
Assembler dependencies..41
About deploying the Assembler..41
Assembler configuration...42

About configuring cartridge handlers...42
About configuring the Assembler servlet...46

Invoking the Assembler in Java...46
Invoking the Assembler with a ContentInclude item..47
Invoking the Assembler with a ContentSlotConfig item...48

Querying the Assembler Service..49
The Assembler servlet response format..50

About retrieving Assembler results using the packaged services...50

iii

The Dimension Search Service...51
The Record Details Service...52
The Guided Search Service..53

About handling the Assembler response..57
About rendering the Assembler response...58

About Assembler error handling...60

Chapter 5: Working with Application URLs..61
About application URLs..61
About Actions..61

Action fields...62
About using Actions with the packaged services...63

About working with URL parameters..64
About URL configuration in the reference application...64

URL formatter configuration...66
About working with canonical links...68

Chapter 6: Implementing Multichannel Applications............................71
Overview of multichannel applications with the Endeca Assembler...71
About creating templates for mobile channels..71
About device detection in the reference application...72

Chapter 7: Configuring Front-End Application Features......................75
About configuring application features..75

Feature configuration in the MDEX Engine...76
Default cartridge configuration...76
Cartridge instance configuration..77
Request-based configuration...78

Search features...78
Search box...78
Auto-suggest search results..80
Dimension search results..81
Search adjustments...84
Keyword redirects..89

Guided Navigation features..93
Refinement menu..93
Navigation Container...97
Breadcrumbs...98

Results features..99
Results list...99

Record details features...104
Record details page...104

Content and spotlighting features...105
Record Spotlight..105
Media Banner..107

Dynamic triggering features..108
About dynamic slots..108

Chapter 8: Setting up the Preview Application for Workbench..........111
About the preview application...111

About auditing content using a preview application...111
About previewing specific devices...112

About instrumenting your application for preview...114
Enabling your preview application...115
Changing the preview application in Workbench...117
Changing the preview link service...117
Testing your preview application..119

Chapter 9:Enabling Endeca Query Language in your Assembler application.121
About Endeca Query Language...121
Applying an EQL filter in a Java application..121

Oracle Endeca Commerceiv

About configuring an EQL filter using the Nrs URL parameter...123
About configuring a default EQL filter...123
About applying Relevance Ranking to EQL results..123
About troubleshooting EQL performance..124

Chapter 10: Using an MDEX Engine to Manage Media Assets...........125
Interaction between an Endeca application and the media MDEX Engine components..........................125
Uploading media content for use in Experience Manager..127
Overview of the reference data application...127

Deploying the media MDEX Engine data application..129
Media MDEX Engine schema definition...130

Chapter 11: Understanding and Debugging Query Results...............133
About the query debugging features...133
About enabling query debugging features..133
URL parameters for query debugging features...134
About query debugging results in the reference application...134

Chapter 12: Configuring Logging for an Assembler Application.......137
About request events..137
About request event adapters...138

About registering a request event adapter...139
Request event adapters in the reference application...140

Client side click events..140

Appendix A: Template Property and Editor Reference.......................143
Editor property mapping reference...143
Editor label configuration reference..146
Basic content properties...147

Adding a string property..148
About numeric properties..154
Adding a Boolean property..156
Adding a list property...158
Adding an item property..159

Adding a group label...160
Complex property editors..161

About the microbrowser...161
About the Select Records dialog...163
About the Dynamic Slot editor...164
Adding a Link Builder...167
About the Media editor..169
Adding a Boost-Bury Record editor...176
Adding a Guided Navigation editor..177
Adding a Dimension Selector..179
Adding a Dimension List editor..180
Adding a Dimension Value Boost-Bury editor..181
Adding a Dimension Value List editor..183
Adding a Record List editor...184
Adding a Record Stratification editor...186
Adding a Sort editor...187
Adding a Spotlight Selection editor..189
Adding a Rich Text editor...191

Application feature property reference..192

Appendix B: Request Event Attributes...197
Base request event attributes...197
Navigation request event attributes...197

v

Contents

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content,
products and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

vii

Preface

The Oracle Endeca Commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine™, a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This guide provides an overview of the Endeca Assembler and Experience Manager application
development architecture. It uses examples from the Discover Electronics reference application to
describe the configuration and customization tasks developers can perform to implement features in
their own applications.

Who should use this guide
This guide is intended for developers responsible for building applications using the Endeca Assembler
and supporting users of Experience Manager.You should familiarize yourself with the concepts in the
Oracle Endeca Commerce Concepts Guide and the Oracle Endeca Commerce Getting Started Guide
before reading this guide.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle Endeca Commerce Assembler Application Developer's Guide

| Preface10

https://support.oracle.com

Chapter 1

Supporting an Assembler Application

This section covers the supporting constructs that you must create in order to enable an Assembler
application.

About planning your application sitemap
An Assembler application consists of a combination of static pages and dynamic pages that contain
content related to an end user's navigation state.Your planned sitemap helps determine what pages
and content collections you should create for your application.

Consider a site with the following structure:

• about

• contact
• faq

• promotions

• christmas
• mothersDay

• browse
• details

In this case, each of the pages maps directly to a set of content. To separate most of the content out
from the site structure and support dynamic triggering, the organization of an Assembler application
is divided into the pages within an application, and the content that populates them:

• pages

• about

• contact
• faq

• browse
• details

• content

• guided navigation
• record details
• browse pages

default•
• christmas
• mothers day

• spotlights

• top rated
• best sellers

In the example above, the promotional Christmas and Mother's Day pages no longer exist as explicit
pages. Instead, the content associated with those promotions is stored as available "browse" page
configurations that each trigger during a specified date range.

You can refer to the Discover Electronics reference application for a further example of how content
and pages can be separated.When planning your own application, you should consider which locations
in your site are best represented as pages, and which locations consist of triggered content on an
existing page.

About page types
A typical application has several types of pages that may display under different circumstances or
contain different content.

For example, a site may have the following three basic page types:

These pages may differ in the following ways:

• They are intended to display in different contexts. The home page displays before the user
has made any selections. The results page displays only when the user has performed some
search or navigation query. The record detail page displays only when a user has selected a
specific product. These conditions are configured in Experience Manager as triggering criteria.

• They display different types of content. A home page or category page typically displays
high-level promotions and merchandising. A results page displays a list of record results as well
as additional controls for the user to select additional facets or otherwise refine the search. A record
detail page displays detailed product information as well as controls for transactions (such as add
to cart, wishlist, and so on). These differences in content imply differences in layout, which is
configured at the template level.

• They are accessed via different URLs. The home page is accessed at the base URL for the site.
Search results pages may be accessed at a URL that includes the path /browse/. Record details

Oracle Endeca Commerce Assembler Application Developer's Guide

Supporting an Assembler Application | About page types12

pages may be accessed at a URL that includes the path /detail/. These URL mappings are
typically achieved by setting up individual services for each page type.

The Discover Electronics reference application includes examples of results pages and a record details
page.

About page structure and content types
The logical structure of a page, including the types of content it can contain, is defined in an Experience
Manager template.

Every template defines a content item that can be processed by the Assembler. A page template
defines a container content item with sections that can be populated with other content items, such
as the following:

Typically, a section represents a physical area on the page, but it can also represent a functional
grouping, including content that may not be visible to an end user. Each section has an associated
content type that determines what kind of content items can be inserted in that section. An application
may have multiple cartridges of each type, providing greater flexibility for the content administrator to
configure the content for a specific page.

Oracle Endeca Commerce Assembler Application Developer's Guide

13Supporting an Assembler Application | About page types

You can create templates for different page types within your application and define which content
types are valid for each type of page.You can create templates for high-level page structures and
different layouts for a single page type. Each of the content items that can be inserted into a template
is itself defined by a template, and may be either another container content item or (more commonly)
a leaf content item associated with a front end feature.

About mapping pages to services
You can map the URL paths of pages in your application to specific services.

Services can be used to set attributes on the incoming request before it is processed by the Assembler
depending on the type of page being requested, which can control what content is triggered in response
to the request, and the format in which the response is returned.

The following is an example from the WEB-INF\web.xml file for the Discover Electronics reference
application, which maps end user requests to /services via a URL redirect and sends them to the
application controller, WEB-INF\services\assemble.jsp.

<!-- Services Definition. For reference, this is implemented as simple
jsp pages, -->

Oracle Endeca Commerce Assembler Application Developer's Guide

Supporting an Assembler Application | About page types14

 <!-- but this could also be done with a web framework, such as Spring
 MVC -->
 <servlet>
 <servlet-name>assemble</servlet-name>
 <jsp-file>/WEB-INF/services/assemble.jsp</jsp-file>
 </servlet>

 <servlet>
 <servlet-name>assemble-stats</servlet-name>
 <jsp-file>/WEB-INF/services/assemble-stats.jsp</jsp-file>
 </servlet>

 <servlet>
 <servlet-name>autosuggest.json</servlet-name>
 <jsp-file>/WEB-INF/services/autosuggest-json.jsp</jsp-file>
 </servlet>
 <servlet>
 <servlet-name>link</servlet-name>

<!-- link service content omitted for brevity -->
 </servlet>

 <servlet-mapping>
 <servlet-name>autosuggest.json</servlet-name>
 <url-pattern>/servlet/autosuggest.json/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>link</servlet-name>
 <url-pattern>/servlet/link.json/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>assemble-stats</servlet-name>
 <url-pattern>/servlet/stats/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>assemble</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

When a content administrator defines a new application page in the reference application, requests
on that page are mapped to the /services servlet.Your application should include similar logic for
mapping arbitrary pages to a controller, though you may also choose to explicitly define additional
services for certain pages within your site. Additionally, your UI tier must be able to resolve whatever
links you expect your content administrators to create. For more information about handling application
URLs, see "Working with Application URLs."

Related Links
Working with Application URLs on page 61

Each of the user-facing pages in an Assembler application exists as a page with a
corresponding navigation or record state; the combination of the page and its state results
in a specific set of results or a set of record details. The Assembler API includes an Action
class for storing these URL components and returning them as part of the output model
produced by a cartridge handler.

Oracle Endeca Commerce Assembler Application Developer's Guide

15Supporting an Assembler Application | About page types

Creating a page
The Content Tree in the left pane of Experience Manager is divided into two sections: Pages and
Content.You create pages within the Pages section.

You must deploy and provision your application with the EAC in order to modify it in Workbench.

To create a page:

1. Login to Workbench and navigate to Experience Manager.

2. Mouse over the Pages heading in the Content Tree.

The drop-down menu arrow appears on the right.

3. Click the drop-down menu arrow and select Add Page.
The Add Page panel appears.

4. Enter a Name/Path for the new page.

This is the part of the URL path that uniquely identifies the page within your application.

5. Click Create.
The new page is added to your application.

A page exists as a content item in Experience Manager. A content administrator can configure it directly
by selecting a template with included editors, or they can specify a template with a dynamic slot to
populate the page from a selected content collection.

About content collections
Before a content administrator can configure dynamic content items within an application, you must
create content collections to contain those items. Content items within the same collection are evaluated
against each other at runtime to determine which item (or items) should be returned to populate a
defined section of the current page.

In Experience Manager, content collections define the top-level organizational structure of an application,
in which the content administrator can browse for content. Within the MDEX Engine, a collection
represents the set of content items that are evaluated against each other to determine which ones are
returned for a particular query. If a query satisfies the trigger criteria for multiple content items within
a collection, items with higher priority take precedence over those with lower priority. A single application
request may trigger content items from multiple collections.

Content collections have the following properties:

• Content type — Specifies the type of content items that can be created in this collection, as defined
by the type attribute of the content template.

• Evaluation limit — The maximum number of content items in this collection that can be returned
for a single query.

Oracle recommends that you create at least one content collection for pages and one for each slot on
the page that can contain either shared or variable content. This provides a logical organization of
content within Experience Manager. It enables content to be triggered independently of the pages that
contain them and also enables content in one slot to be triggered independently of content in another
slot.

For example, the Discover Electronics reference application includes the following content collections:

Oracle Endeca Commerce Assembler Application Developer's Guide

Supporting an Assembler Application | About content collections16

• Mobile \ Mobile Browse Pages — Top-level page configuration for pages viewed from a mobile
device. Mobile pages must be more streamlined than Web pages, so they require a different page
template.

• Shared \ Auto-Suggest Panels — Configuration for the auto-suggest panel that displays when
a user starts to enter a search query. The Shared collections return the same response model for
both the Mobile and Web versions of the application, but the renderers vary based on the client.

• Shared \ Detail Pages — Configuration for record details pages within the application.
• Shared \ Guided Navigation — Configuration for the Guided Navigation menu.
• Shared \ Results List — Configuration for a list of search results.
• Web \ Category Spotlights — Category-specific product spotlights that display above the search

results when a user navigates to those products.
• Web \ Web Browse Pages — Top-level page configuration for Web pages. These templates are

structural and primarily consist of dynamic slots that pull in content items from other collections
to populate the page.

Content collections example
Content collections determine which content items are evaluated and which items are returned for a
particular query.

Suppose you have a site where a typical structure for a search and navigation page looks like the
following:

Based on this template, the content administrator wants to configure a page for a specific trigger (for
example, Category > Cameras > Digital Cameras) using contextual, shared, and variable content as
in this picture:

Oracle Endeca Commerce Assembler Application Developer's Guide

17Supporting an Assembler Application | About content collections

• The header and footer are populated from a content collection in order to avoid defining them
multiple times for a large number of pages.

• The Guided Navigation and Results List cartridges are configured specifically for this page and do
not need to vary based on criteria other than the page triggers.

• The Banner area is configured to display a different image depending on the brand that the site
visitor has selected.

• The Spotlight area displays a mix of promotions based on triggers that are independent of the
triggering criteria for the page itself. For example, a "Holiday Specials" spotlight may display for
the date range between November 1 and January 2.

The configuration for the page (as specified in Experience Manager) looks like this:

Oracle Endeca Commerce Assembler Application Developer's Guide

Supporting an Assembler Application | About content collections18

The configuration for Guided Navigation (including which dimensions to display and which dimension
values to boost or bury within those dimensions) and for the Results List (including default sort options
and record boost and bury) are specified as part of the page configuration.The other slots on the page
contain only placeholders.The actual Header, Footer, Banner, and Spotlight content items that display
when someone visits the site are defined in their respective content collections.

The mechanism for populating these slots is the same regardless of whether the content that should
display in each slot is shared or variable content.The only difference between the two kinds of content
is in the trigger criteria on the content items within those collections: variable content, such as the
Spotlight, has triggers that are more specific than the page trigger. Reusable content, such as the
generic header and footer, has triggers that are more general than or orthogonal to the page trigger.

When the content administrator has created all the content needed to populate this page (and a few
other pages), the application may include the following content items in the following collections:

The collections are configured as follows:

• The Browse Page collection contains all the content items representing search and navigation
pages in the site. Because only one page can display to a user for any given query, the evaluation
limit is 1.

• The Brand Banner collection contains cartridges of type MediumBanner that are appropriate to
display in the Banner slot. This collection also has an evaluation limit of 1 because the page is
designed to display only one banner at a time.

• The Spotlight collection contains cartridges of type SidebarItem because items created in this
collection are intended to display in the Spotlight slot in the right column. Because this space is
intended to display several independently triggered spotlight items, the evaluation limit for this
collection is 3.

• The Header and Footer collections each contain cartridges of type FullWidthContent. The
evaluation limit for these collections is also 1.

Each page or content item within these collections has an associated trigger and priority (relative to
the other items in the same collection) specified by the content administrator in Experience Manager.

When a site visitor refines on Category > Cameras > Digital Cameras and Brand > Sony, the following
content is triggered:

Oracle Endeca Commerce Assembler Application Developer's Guide

19Supporting an Assembler Application | About content collections

• The Digital Cameras page is returned from the Browse Page collection, which includes the content
administrator's configuration for Guided Navigation and for Results List. Note that the Default page
(with a trigger of "Applies at all locations") is also eligible to fire, but the Browse Page collection is
limited to one content item and the Digital Cameras page has a higher priority, therefore it takes
precedence and the Default page does not fire.

• The Banner slot is populated by the highest priority content item that matches the user's navigation
state in the Brand Banner collection. In this case, it is the Sony cameras banner. Again, there is
a Default banner but it does not fire because it has a lower priority.

• The Spotlight slot is populated by the highest priority content items that match the user's navigation
state in the Spotlight collection. In this case, the Default spotlight does fire because there is room
for three spotlights in this slot and that item has a high enough priority (among those that satisfy
the user's context) to be included. These three content items display in the Spotlight area in order
of priority.

• The Header and Footer collections have only one content item each, which is set to display at all
locations, therefore the same content is returned for this page as for all pages.

In this example, content is returned from five content collections (including the Browse Page collection).
Priority between items is specified within each collection. It does not make sense to prioritize the Sony
cameras banner against the April spotlight cartridge, for example, because they are not competing
against each other to be displayed on the page. In general, content items with more specific trigger
criteria should have a higher priority than those with more general criteria, especially if a content
collection has an evaluation limit of 1.

Oracle recommends that you create separate collections for each area on the page, even if they have
the same content type. For example, if you want to have two banners on the page, each populated
via dynamic slots, they should reference two different collections, or else the same banner (the one
with the highest priority for the current navigation state) would be returned for both sections of the
page.

Oracle also recommends that you do not mix reusable and variable content within the same collection.
For example, if a slot (such as the Spotlight slot) can be populated with either reusable or variable
content, create two different collections, Reusable Spotlight collection and Variable Spotlight collection.
The content administrator can configure a particular page to populate the Spotlight slot from either
collection as applicable. In order to populate the same slot with a mixture of reusable and variable
content, the content administrator can insert two (or more) placeholders in the Spotlight slot, each
referencing the corresponding collection for each type of content.

The final result for the site visitor who is looking at Sony cameras looks something like the following:

Oracle Endeca Commerce Assembler Application Developer's Guide

Supporting an Assembler Application | About content collections20

Related Links
About dynamic slots on page 108

A dynamic slot is a generic mechanism that enables content administrators to manage the
content for specific sections of an Experience Manager-driven page independently from the
overall page.

Creating a content collection
The Content Tree in the left pane of Experience Manager is divided into two sections: Pages and
Content.You create content collections within the Content section.

You must deploy and provision your application with the EAC in order to modify it in Workbench.

To create a content collection:

1. Login to Workbench and navigate to Experience Manager.

2. Mouse over the Content heading in the Content Tree.

The drop-down menu arrow appears on the right.

3. Click the drop-down menu arrow and select Add Collection.
The Add Content Collection panel appears.

4. Enter the Name of the collection you wish to add.

5. Enter the content type that you wish to use for the collection in the Content Type Allowed field.

You may also use the drop-down arrow to display a list of available content types. The drop-down
list is populated based on the available type values for each cartridge template you have uploaded
to the Endeca Configuration Repository.

This selection restricts the content collection to items of the specified type.

6. Set the Evaluation Limit for the content collection in the combo box.

7. Click Add.
The new content collection is added to the Content Tree in Experience Manager.

Oracle Endeca Commerce Assembler Application Developer's Guide

21Supporting an Assembler Application | About content collections

8. Optionally, drag the new content collection to a folder within Experience Manager for organizational
purposes.

You can create a new folder using the drop-down menu for the Content heading.

About moving content collections
You can move and re-organize content collections in the Content Tree within Experience Manager.

If you move a content collection that includes dynamic content referenced elsewhere in the application,
a warning dialog appears with a list of content items that rely on the content you are moving.You must
manually update these content items if you proceed with the move.

Oracle Endeca Commerce Assembler Application Developer's Guide

Supporting an Assembler Application | About content collections22

Chapter 2

Creating Experience Manager Templates

This section describes the process of creating templates that enable the configuration of content items
in Experience Manager.

About creating templates
Templates define the content structure of a content item as well as the editing interface that content
administrators can use to configure instances of content items in Experience Manager.

In general, you create one or more templates that define the high-level structure of the pages in your
application. These templates define sections that can be populated with other content items, or
cartridges. Cartridge templates specify the properties required to display the content for that component.
This may include values that the client application uses directly to render the information, or inputs
into the Assembler for processing (such as parameters for queries to an MDEX Engine or another
external resource).

While cartridges and template properties typically determine aspects of the visual appearance of the
page, keep in mind that they can also represent page elements that are not visible in the application.
For example, a property could contain meta keywords used for search engine optimization, or a
cartridge could include embedded code that does not render in the page but enables functionality such
as Web analytics beaconing.

The Discover Electronics reference application provides some sample page templates for some
standard page types as well as templates to enable configuration of the core set of cartridges in
Experience Manager.These cartridges cover basic Endeca functionality, and are provided as a starting
point for your application and can be customized to suit your needs.

Note: In some cases, the reference application includes more than one template for the same
functional cartridge. This is in order to enforce the proper constraints on which cartridges are
available to insert in specific sections or content collections in the application.The only difference
between the different versions of these templates is the template type.

This section concentrates on the basic template elements that enable you to create top-level page
templates appropriate to your application. Details about the template configuration for the core cartridges
are covered in the "Feature Configuration" section. Reference information about the full range of
properties and editors that can be used in templates is provided in the appendix to this guide.

Related Links
About the type and ID for a template on page 26

Each template is required to have a type and a unique id.

Configuring Front-End Application Features on page 75
This section describes the cartridge configuration model for front-end application features,
and provides a description of the core cartridges in Oracle Endeca Tools and Frameworks.

Template Property and Editor Reference on page 143
This section describes how to define basic content properties and associated editing interfaces
in Experience Manager templates.

Anatomy of a template
Top-level templates, which define an entire page, and cartridge templates, which drive the content of
individual components, are both XML documents that share the same structure.

Templates can be broken down into three parts:

• General information such as the template type, ID, description, and thumbnail image. This
information is used in Experience Manager to help the content administrator select the appropriate
template for a page or section.

• Content item definition. In this part of the template, you explicitly declare all the properties of the
content item that is described by this template. Property types can include Strings, Lists, and
Booleans.You can also specify the default values of properties here.

• Editor panel definition. These allow you to define the editing interface in Experience Manager
for this content item. Properties are generally associated with an editor that enables content
administrators to configure the content items that they create within the tool.

By defining the properties in the template along with how they can be configured in the tool, you ensure
that the content configured in Experience Manager matches the expected configuration model for the
corresponding cartridge handler in the Assembler.

Oracle Endeca Commerce Assembler Application Developer's Guide

Creating Experience Manager Templates | Anatomy of a template24

Template naming conventions
Templates are saved as XML files that are then uploaded to Experience Manager. It is possible to
have multiple templates in a single file, however, for ease of maintenance Oracle recommends the
following practices.

• Each template should be in a separate file.
• Name each template file using the following format: <TemplateType>-<TemplateID>.xml.

For example, ResultsPage-ThreeColumnNavigationPage.xml or
HorizontalBanner-ImageMap.xml

Note: Template file names cannot have spaces in them.

Endeca also recommends that you treat templates as part of your application's configuration and store
them in a version control system. It can also be useful to include a template version number in a
property for debugging purposes.

About the template XML schema
All templates share the same primary schema. In addition, there are several other namespaces that
are commonly used in templates.

The template schema

The template schema describes the overall structure of page and cartridge templates. It is also used
for primitive property types such as String and Boolean.

All templates must include the following schema declaration:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 type="PageTemplate" id="ThreeColumnNavigationPage">

Before you upload your templates to Experience Manager, Endeca recommends that you validate
them against the template schema. A copy of the template schema (content-template.xsd) is
located for your reference with your Endeca Workbench installation in
%ENDECA_TOOLS_CONF%\conf\schema (on Windows) or $ENDECA_TOOLS_CONF/conf/schema
(on UNIX).

The Xavia schema

The Xavia namespace is used for properties that are lists or items (collections of key-value pairs).
Include the following namespace declaration in templates that use these properties:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
xmlns:xavia="http://endeca.com/schema/xavia/2010"

 type="PageTemplate" id="ThreeColumnNavigationPage">

The editors schema

There is no formal schema for editor configuration, however, by convention, they are associated with
an editors namespace to distinguish these elements from the template schema. Include the following
namespace declaration in all templates:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"

Oracle Endeca Commerce Assembler Application Developer's Guide

25Creating Experience Manager Templates | Template naming conventions

xmlns:editors="editors"
 type="PageTemplate" id="ThreeColumnNavigationPage">

About the type and ID for a template
Each template is required to have a type and a unique id.

The template type determines where a template can be applied. There are two general categories of
templates. For top-level templates, such as page templates or templates that describe content items
that can be triggered independently from a content collection, the type must match the content type
of the collection in Experience Manager. Container templates specify the content type for each of their
sections, which determines which cartridges can be inserted into that section. For example, if you
have a template that includes a "HorizontalBanner" section, only cartridges of type "HorizontalBanner"
are available to insert into that section in Experience Manager.

The template id is a string that is used to identify the template. It must be unique within your application;
templates with non-unique IDs are not available in Experience Manager. The ID displays as the name
of the cartridge in the cartridge selector in Experience Manager. The value should be as descriptive
as possible to help the user select the appropriate template, for instance,
"ThreeColumnWithLargeBanner" or "HolidaySalePromotion."

The template type and id are specified as required attributes on the <ContentTemplate> element.
For example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
type="PageTemplate" id="ThreeColumnNavigationPage">

Note: The type and id attributes are defined as type xs:Name in the template schema. This
means that valid values for these attributes must:

• be a single string token (no spaces or commas)
• begin with a letter, a colon (:), or an underscore (_)

Numbers are allowed as long as they do not appear at the beginning of the string.

Specifying the description and thumbnail image for a
template

The description and thumbnail image for a template display in the template selector and cartridge
selector dialog boxes in Experience Manager. Adding a description and thumbnail image to a template
is optional.

To specify the description and thumbnail image for a template:

Insert the following elements within <ContentTemplate>:

DescriptionElement

One or two brief sentences to help the content administrator identify the
template in Experience Manager.This can include information about the visual

<Description>

layout of the template ("Three-column layout with large top banner") or its
intended purpose ("Back to school promotion").

Oracle Endeca Commerce Assembler Application Developer's Guide

Creating Experience Manager Templates | About the type and ID for a template26

DescriptionElement

The absolute URL to a thumbnail image that shows a sample page or section
that is based on the template. The images must be hosted on a Web server
accessible from the Experience Manager server.

<ThumbnailUrl>

Note: If your thumbnails are hosted on the same server as Endeca
Workbench, you can omit http://<host>:<port> from the URL.

Example

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="PageTemplate" id="ThreeColumnNavigationPage">
 <RuleInfo zone="NavigationPageZone" style="PageStyle"/>
<Description>A page layout with left and right sidebars intended for

general category pages.</Description>
<ThumbnailUrl>http://images.mycompany.com/thumbnails/PageTemplate/Three¬

ColumnNavigationPage.png</ThumbnailUrl>
<!-- additional elements deleted from this example -->

</ContentTemplate>

About using thumbnail images in Experience Manager
Thumbnail images can help the content administrator identify the appropriate template to use for the
pages they create.

The suggested size for thumbnail images is 81 x 81 pixels; smaller images are stretched to fill this
size and larger images are cropped to show only the top left corner.

The images must be hosted on a Web server accessible from the Experience Manager server. If the
thumbnail image for a template is either not specified or not accessible, a default image displays in
the dialog box.

Specifying the default name for a cartridge
The value of <Name> within the <ContentItem> displays as a label for the cartridge in the Content
Tree in Experience Manager.

To specify a default name for a cartridge:

Insert the <Name> element inside <ContentItem> as in the following example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"

 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="PageTemplate" id="ThreeColumnNavigationPage">
 <RuleInfo zone="NavigationPageZone" style="PageStyle"/>
 <Description>A page layout with left and right sidebars intended for
general category pages.</Description>
 <ThumbnailUrl>http://images.mycompany.com/thumbnails/PageTemplate/Three¬

Oracle Endeca Commerce Assembler Application Developer's Guide

27Creating Experience Manager Templates | Specifying the default name for a cartridge

ColumnNavigationPage.png</ThumbnailUrl>
<ContentItem>

 <Name>New Three-Column Navigation Page</Name>
<!-- additional elements deleted from this example -->

</ContentItem>
<!-- additional elements deleted from this example -->

</ContentTemplate>

<Name> is a required element. The value you specify in the template becomes the default name
when a content adminstrator creates the page or adds a cartridge. If you insert an empty <Name/>
element, an empty text field displays in Experience Manager and the content administrator can
supply a value.

About defining the content properties and editing interface
A template defines the properties of a content item and also the interface that enables a content
administrator to configure the properties.

You define properties within the <ContentItem> element in the template. For each property, you
specify a name and a property type.You can optionally specify a default value for a property.

You associate editors with properties to enable the content administrator to configure their values
within Experience Manager. Properties are generally primitive types such as Strings, Booleans, or
Lists. Another type of property is a section, which allows content administrators to insert and configure
another content item.

You can choose not to expose a particular property in Experience Manager and simply specify a default
value to pass to the Assembler and ultimately to the client application. This is useful for values that
do not need to be configured by the content administrator, but are needed by the Assembler for content
processing or by the client application to determine how to render the content.

About template properties
You can define the properties of a content item by nesting any number of <Property> elements
within the <ContentItem> element.

Cartridge properties are typically used for one of the following purposes:

• The property values may be intended to be used directly by the client application. For example,
the content administrator may be able to enter text to use a heading or link text, or she may supply
a URL to an image. Property values can also contain information such as meta keywords that are
part of the page but do not affect its display.

• The values may be intended for the relevant cartridge handler in the assembler to use for processing,
for example, parameters for a query to the MDEX Engine (or another external resource) to return
the actual content that the application should display.

• Occasionally, a cartridge has no properties (and therefore no configuration options in Experience
Manager), but exists only as a placeholder to indicate that a certain functional component should
be included on a page.The Assembler inserts the necessary information for this cartridge at query
time.

Each property must have a name that is unique within the template. If the property is to be passed
through directly to the renderer, this can be any name that makes sense for your application. However,
some properties are part of the configuration model for the cartridge. In this case the associated
cartridge handler depends on the presence of specific properties in the template.

Oracle Endeca Commerce Assembler Application Developer's Guide

Creating Experience Manager Templates | About defining the content properties and editing interface28

The property name is specified in the name attribute of the <Property> element.

Note: The name attribute is defined as type xs:Name in the template schema. This means that
valid values for these attributes must:

• be a single string token (no spaces or commas)
• begin with a letter, a colon (:), or a hyphen (-)

Numbers are allowed as long as they do not appear at the beginning of the string.

You specify the property type by adding a child element of <Property>. Properties can be one of
two kinds:

• content properties (described by the template schema for primitive properties and Xavia for lists
and items)

• structural properties (described by the template schema)

About defining the editing interface for properties
After you have defined the content properties in your template, you can define how those properties
can be configured by the content administrator in Experience Manager.

You add content editors inside the <EditorPanel> element in the template. The <BasicCon¬
tentItemEditor> element enables you to specify individual property editors that display in Experience
Manager and associate them with a particular property.

For example, this excerpt from a sample template defines a configurable string property named title:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
xmlns:editors="editors"
 type="ResultsPage"
 id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>Three-Column Navigation Page</Name>

<!-- First define the content property -->
 <Property name="title">
 <String>Discover Electronics</String>
 </Property>

<!-- additional properties deleted from this example -->
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>

<!-- Define an editor for each property that should
 be configurable -->
 <StringEditor propertyName="title" label="Title"/>

<!-- additional editors deleted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Editors are defined in templates with the editors namespace. By convention, the propertyName
is a required attribute and specifies the property that this editor is associated with. The property must
be defined in the <ContentItem> part of the template, and must be of the appropriate type for that
editor. For example, an <editors:StringEditor> cannot be associated with a <xavia:List>
property. If you define a content editor for a property that does not exist, or that is of the wrong type,
a warning displays in Experience Manager when a content administrator attempts to configure the
content.

Oracle Endeca Commerce Assembler Application Developer's Guide

29Creating Experience Manager Templates | About defining the content properties and editing interface

Property editors do not have to be defined in the same order as the properties in the template. The
<BasicContentItemEditor> renders the editors in a vertical layout in Experience Manager, in the
order in which you define them in the template. If you do not want a property to be exposed in the
Experience Manager interface, do not define an editor associated with it.

It is possible to create more than one editor associated with the same property. However, be aware
that all editors that you define in the template are displayed in Experience Manager, which may be
confusing to the content administrator. When the value of a property is changed, any other editors
associated with that property are instantly updated with the new value.

Related Links
Editor property mapping reference on page 143

This section provides an overview of which property types are associated with the different
Oracle Endeca Commerce Suite editors.

About configuring editor default values

You can configure default values for Experience Manager editors across the entire application by
modifying the editor configuration file, or on a per-template basis by modifying cartridge templates
directly.

You can configure Experience Manager editors through the following methods:

• You can configure editors in the editor configuration file, editors.xml.This configuration applies
to all instances of a specific editor within an application.

• You can configure editors within a cartridge template. This configuration applies to all instances
of a specific editor created based on that template. In the case of shared properties, configuration
in the cartridge template overrides configuration in editors.xml.

For details about configuring the core editors packaged with Oracle Endeca Tools and Frameworks,
see the "Template Property and Editor Reference" Appendix.

Related Links
Template Property and Editor Reference on page 143

This section describes how to define basic content properties and associated editing interfaces
in Experience Manager templates.

About defining the editing interface for properties on page 29
After you have defined the content properties in your template, you can define how those
properties can be configured by the content administrator in Experience Manager.

Specifying editor-specific configuration

You can modify the editor configuration file to set configuration that is common to all instances of a
specific editor within an application. This can include basic values for the editor, or information used
to communicate with an external resource.

Note: Oracle recommends configuring a data service for cases where different editors all need
to access a common set of configuration for an external resource.

To add configuration information to the editor configuration file:

1. Navigate to the editor configuration file at <app dir>\config\editors_config\editors.xml.

2. Insert an <EditorConfig> element directly inside the <Editor> tag of the editor you wish to
modify.

3. Add your arbitrary configuration information.

Oracle Endeca Commerce Assembler Application Developer's Guide

Creating Experience Manager Templates | About defining the content properties and editing interface30

The example below includes the configuration inside a nested element, but you can also specify
the information as attributes of the EditorConfig element:

<Editor name="editors:MyEditor">
<EditorConfig>

 <Arbitrary foo="bar" size="10" resizeable="false"/>
 </EditorConfig>
</Editor>

4. Save and close the file.

5. Navigate to the <app dir>\control directory.

6. Run the set_editors_config script to publish your changes to the Endeca Configuration
Repository.

Structural properties
You can define a section within a template by inserting a <ContentItem> or <ContentItemList>
element within a <Property>.

Adding a content item property
A content item property defines a template section by creating a placeholder for a nested content item
defined by a cartridge template.

Content administrators can configure a section in Experience Manager by choosing a cartridge to
insert in the section then configuring the properties of the cartridge.

To add a content item property to a template:

1. Insert a <ContentItem> element inside a <Property> element.

2. Specify the section type.

Only cartridge templates with a type that matches the section type are presented as options for the
content administrator to choose from in Experience Manager. For example, when a content
administrator inserts a cartridge in a RecommendedContent section, only templates of type Rec¬
ommendedContent display in the Select Cartridge dialog box. (Recall that the cartridge template
is the part of a cartridge that is exposed in Experience Manager). Because the type of the section
property and cartridge templates must match exactly, the type attribute is also defined as type
xs:Name in the schema and all restrictions that apply to template types also apply to section types.

The following example defines two sections within a template. Note that more than one section in a
template can have the same type, as long as your client application expects this kind of content.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>

<!-- additional properties deleted from this example -->
 <Property name="leftColumn">
 <ContentItem type="SidebarItem" />
 </Property>

Oracle Endeca Commerce Assembler Application Developer's Guide

31Creating Experience Manager Templates | Structural properties

 <Property name="rightColumn">
 <ContentItem type="SidebarItem" />
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->

</ContentTemplate>

Adding a content item list property
A content item list allows content administrators to add an arbitrary number of items to a section and
to reorder those items within the list using the Content Tree in Experience Manager.

Using content item properties to define the subsections of a cartridge restricts the number of subsections
available to the content administrator in Experience Manager. For example, the right column of this
page template can contain exactly four cartridges:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>
<!-- additional elements deleted from this example -->
 <Property name="rightColumn1">
 <ContentItem type="SidebarItem" />
 </Property>
 <Property name="rightColumn2">
 <ContentItem type="SidebarItem" />
 </Property>
 <Property name="rightColumn3">
 <ContentItem type="SidebarItem" />
 </Property>
 <Property name="rightColumn4">
 <ContentItem type="SidebarItem" />
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->
</ContentTemplate>

Although some of the sections can be left empty, no more than four cartridges can be added to the
right column.

Using a content item list removes the restriction and allows the content administrator to add an arbitrary
number of content items to the right column of the page:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>
<!-- additional elements deleted from this example -->
 <Property name="rightColumn">
 <ContentItemList type="SidebarItem" />
 </Property>
 </ContentItem>

Oracle Endeca Commerce Assembler Application Developer's Guide

Creating Experience Manager Templates | Structural properties32

<!-- additional elements deleted from this example -->
</ContentTemplate>

To add a content item list to a template:

1. Insert a <ContentItemList> element inside a <Property> element.

2. Specify the template type.

Only cartridge templates with a type that matches the content item list type are presented as options
for the content administrator to choose from in Experience Manager. In the above example, when
a content administratorinserts a cartridge in a RightColumn section, only templates of type
SidebarItem display in the Select Cartridge dialog box.

3. Optionally, specify a maximum number of content items using the maxContentItems attribute.
For example:

 <Property name="RightColumn">
 <ContentItemList type="SidebarItem" maxContentItems="4"/>
 </Property>

By default, the value of maxContentItems is 0, which means that there is no limit to the number
of cartridges that can be added to a content item list.

About cartridge selectors
Unlike other types of content properties, section properties are always editable; you do not need to
explicitly specify an editor in the template.

In Experience Manager, content administrators can select cartridges to insert in sections either by
clicking the cartridge Add button in the content detail panel or by right-clicking the section in the Content
Tree. Both options bring up the cartridge selector dialog box and are enabled automatically when you
define a section in the template.

Oracle Endeca Commerce Assembler Application Developer's Guide

33Creating Experience Manager Templates | Structural properties

Chapter 3

Managing Experience Manager Templates

You must upload templates to Endeca Workbench before they are available to users in Experience
Manager.

Updating Experience Manager templates
All deployment template applications include a set_templates script in the control directory to
update Experience Manager templates.You run the script after you locally modify XML template files
and you want the templates available in Experience Manager.

This script requires that the templates you modify are stored locally in <app
dir>\config\cartridge_templates.

To send updated templates to Experience Manager:

1. Start a command prompt (on Windows) or a shell (on UNIX).

2. Navigate to the control directory of your deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app
name>\control.

3. Run the set_templates script.
For example:

C:\Endeca\apps\Discover\control>set_templates.bat
Removing existing cartridge templates for Discover
Setting new cartridge templates for Discover
Finished setting templates

Troubleshooting problems with uploading templates
Template errors are returned to the emgr_update command line call and detailed in the
webstudio.log file.

The webstudio.log file is located in:

• %ENDECA_TOOLS_CONF%\logs on Windows
• $ENDECA_TOOLS_CONF/logs on UNIX

Uploading templates can fail for the following reasons:

Schema validation

Schema validation failure issues an error returned to the emgr_update command line call similar to
the following:

C:\Endeca\apps\ContentAssemblerRefApp\config\cartridge_templates
ERROR: The template "NavigationPage.xml" is invalid (org.xml.sax.SAXParse¬
Exception: cvc-complex-type.4: Attribute 'id' must appear on element 'Con¬
tentTemplate'.)
ERROR: Failed to set app config. Make sure you can connect to http://local¬
host:8006.

Each template that fails validation appears as a separate component. The error is also written to the
webstudio.log file at the WARN level.

In the case of malformed XML, a similar error is output to both the command line and the
webstudio.log file. For a file with multiple validation errors, only the first failure is logged.

Duplicate template ID

If you upload two template files with the same ID but different file names, then two separate templates
are stored in Experience Manager but neither one displays to content administrators. An error message
is returned to the emgr_update command line call similar to the following:

ERROR: 2 errors follow:
[ERROR 1] The template "HorizontalBanner-ImageMap.xml" has a non-unique ID
 ("ImageMap").
[ERROR 2] The template "VerticalBanner-ImageMap.xml" has a non-unique ID
("ImageMap").
ERROR: Failed to set app config. Make sure you can connect to http://local¬
host:8006.

The error is also written to the webstudio.log file at the SEVERE level.

To re-enable the templates, edit the id attribute of the <ContentTemplate> element so that each
template ID is unique, remove the templates from Experience Manager, and re-upload the templates.
In general, it is a best practice to remove templates from the Experience Manager and upload a
complete set of templates whenever you need to update templates.

Invalid filename or directory path

If the template file or containing directories include a space, the emgr_update command line call issues
an error similar to the following (in this case, for a file named Copy of TestA.xml):

ERROR: 09/22/09 15:54:36.795 UTC (1253634876795) EMGR_MKPKG
{emgr_mkpkg}: Unknown file type "of" specified for filename "C:\Ende¬
ca\apps\ContentAssemblerRefApp\config\cartridge_templates\Copy". Valid file
 types are: AENE_OP_CONFIG ANALYTICS_CONFIG CONTENT CRAWLER_DEFAULTS
CRAWLER_GLOBAL_CONFIG CRAWL_PROFILE CRAWL_PROFILES CRAWL_PROFILE_CON¬
FIGCRAWL_PROFILE_URL_LIST DERIVED_PROPS DIMENSIONS DIMENSION_GROUPS DIMEN¬
SION_REFS DIMSEARCH_CONFIG DIMSEARCH_INDEX DVAL_RANKS DVAL_REFS ENEIDX_OP_CON¬
FIG ENE_OP_CONFIG FORGEOUTDIMS FORGE_OP_CONFIG KEYWORD_REDIRECT_GROUP
KEY_PROPS LANGUAGES MERCHSTYLES MERCHZONES MERCH_RULES MERCH_RULE_GROUP
PHRASES PIPELINE PIPELINE_PARTIAL PRECEDENCE_RULES PRECOMPUTE PROFILES
PROP_REFS RECORD_FILTER RECORD_ID_PROP RECORD_SORT_CONFIG RECORD_SPEC REC¬
SEARCH_CONFIG RECSEARCH_INDEXES REFINEMENT_CONFIG RELRANK_STRATEGIES REN¬
DER_CONFIG ROLLUPS SEARCH_CHARS STEMMING STOP_WORDS THESAURUS VIEWS RESOURCE

To avoid this error, make sure that your file and directory names do not include spaces.

Oracle Endeca Commerce Assembler Application Developer's Guide

Managing Experience Manager Templates | Updating Experience Manager templates36

Empty directory

When uploading templates, if the specified directory does not contain any XML files, the emgr_update
command line call displays the following message:

There are no templates in the specified directory.

If you receive this message, check to make sure that you specified the correct directory to the
emgr_update call. The utility script provided with the Deployment Template module assumes that the
templates are located in APP_DIR/config/cartridge_templates.

Troubleshooting invalid templates
Some templates may be successfully uploaded to Workbench, but still contain errors that lead to
unexpected behavior in Experience Manager.

The most common scenario is when a property is associated with an editor that has constraints, such
as a choice editor that can only accept certain string properties. If the default value of the property
does not meet the editor's constraints, the editor may discard the value and display the following
messsage in the Content Details Panel when a user adds the cartridge to a page:

Some fields or cartridges within this cartridge may have been
updated or removed. Your content has been converted to the new cartridge.
To accept these changes click OK and Save All Changes from the List View.
To reject these changes, click Cancel. For more information, see
"Troubleshooting pages" in the Oracle Endeca Workbench Help.

To avoid this message, ensure that all property defaults are valid options in the associated property
editor.

About updating templates
When updating templates in Experience Manager, you should be aware of how conflicts are handled.

Experience Manager uses the most recently uploaded template. If you have an existing template in
Experience Manager and upload a template with the same file name, the new template replaces the
previously uploaded template.

However, if you upload two template files with the same ID but different file names, then two separate
templates are stored in Experience Manager but neither one displays to content administrators. For
this reason, you should avoid renaming template files after they have been uploaded to Experience
Manager unless you make sure to remove the old template first. In general, it is a best practice to
remove templates from Experience Manager and upload a complete set of templates whenever you
need to update templates.

About modifying templates that are used by existing pages
During the development and testing phase of your application deployment, you may need to make
adjustments to your templates and update them in Experience Manager.

When Experience Manager populates the Content Detail Panel for a content item, it checks the
content configuration of the loaded page against the template. If the template has been changed such
that it is no longer compatible with the content, Experience Manager displays a warning and attempts
to upgrade existing content to fit the new template definition.

Oracle Endeca Commerce Assembler Application Developer's Guide

37Managing Experience Manager Templates | About updating templates

Note: Existing configurations are not upgraded to the new template until a content administrator
edits and saves the affected content item in Experience Manager.

Experience Manager does the following to ensure that the content and template are in sync:

• If a property has not changed its name or type, the existing values are migrated to the new template.
• If new properties are added to a template, any corresponding property editors become available

in Experience Manager when a content administrator edits a content item based on the updated
template. If you specify default values for the new properties, they are applied when a content
administrator edits and saves the content item using the updated template.

• If properties are removed from a template, the corresponding property editors no longer display
in Experience Manager when a content administrator edits a content item based on the updated
template. The properties and their values are deleted from the page configuration.

• If the type of a property has changed (for example from string to list) within a template, the
corresponding property editor (if one is specified) becomes available in the Experience Manager
when a content administrator edits a content item based on the updated template. The existing
value for the property does not display in Experience Manager until the content administrator saves
the new value, replacing the previous value.

• If a content item or content item list property has changed to specify a different content type, then
any existing cartridge in that section is ejected and its configured properties deleted.

• If the default value of an existing property has changed, it is only applied to new content items that
are created based on the updated template. In existing pages, the previously saved value of the
property (even if it is an empty string) is preserved regardless of whether it was originally a default
or user-specified value.

• Some editors may implement specific update-handling logic in cases where an existing value does
not meet the editor's constraints.

Note: Changing the name of a property is equivalent to removing the property with the old name
and adding a property with the new name. Avoid changing the names of properties that are being
used by existing pages. To change the display name of a property on Experience Manager, use
the label attribute instead.

Managing template changes

Because existing content is not automatically updated to the new templates, and default values are
never updated in existing pages, any changes that you make to your rendering code to reflect changes
to a template should be backward-compatible.You can trigger the content upgrade process manually
by accessing all affected content, but this approach is not recommended.

For this reason, you should avoid making changes to existing templates that are being used in
production.You should limit updates to templates to the early stages of application development when
you have little or no legacy content to support.

About removing templates
If you remove a template that is being used for an existing page, the properties of the corresponding
content item are no longer editable in Experience Manager.

When a content administrator attempts to edit an existing content item that uses a missing template,
the following occurs:

Oracle Endeca Commerce Assembler Application Developer's Guide

Managing Experience Manager Templates | About removing templates38

• The properties defined in the content item itself can no longer be edited in the content details panel.
All the existing values of the missing template's properties are preserved unless the content
administrator removes the content item and selects a different template.

• The tree of child content items is still active. The content administrator can change or edit child
cartridges via the Content Tree, as long as their templates are still available.

The content administrator has the following options:

• Leave the existing content as is. The Assembler continues to evaluate and process configurations
as long as the appropriate cartridge handlers are present, regardless of whether the template
exists in Experience Manager. Existing pages continue to display in the client application as long
as the appropriate rendering code is still in place.

• Replace the missing template or cartridge with another template.This action deletes all configured
properties of the template as well as any nested cartridges.

• The existing content can be re-enabled for editing by uploading the missing template.

Note: Changing the ID of a template is equivalent to removing the template with the old ID and
creating a new template with the new ID. Avoid changing the ID of templates that are being used
for existing pages.

Removing templates from Experience Manager
You can remove all the templates from Experience Manager using the emgr_update utility.

Note: Before removing templates from Experience Manager, be sure you have a backup of the
current set of templates. Oracle recommends that you store page and cartridge templates in a
version control system.

When removing or updating templates, make sure that all users are logged out of Experience
Manager.

The emgr_update --action remove_templates command removes all templates from an
application, not specific templates. Removing specific templates from Experience Manager consists
of the following steps:

1. Retrieving the current set of templates from Experience Manager.
2. Deleting the templates that are no longer needed from your local copy.
3. Removing all templates from Experience Manager using the procedure below.
4. Uploading the remaining templates to Experience Manager.

To remove templates from Experience Manager:

1. Open a command prompt or UNIX shell.

2. Run emgr_update with the --action of remove_templates and the following parameters:

ValueParameters

The machine name and port for the staging Endeca Workbench
environment, in the format host:port.

--host

The name of the application from which you want to remove the
templates.

--app_name

Oracle Endeca Commerce Assembler Application Developer's Guide

39Managing Experience Manager Templates | About removing templates

The following is a Windows example:

emgr_update.bat --action remove_templates --host localhost:8006
--app_name My_application

The following is a UNIX example:

emgr_update --action remove_templates --host localhost:8006
--app_name My_application

Retrieving the current templates from Experience Manager
If you need to view or edit an existing template on a local machine, you can run the get_templates
script to download templates from Experience Manager to the local <app
dir>\config\cartridge_templates directory.

To get templates from Experience Manager:

1. Start a command prompt (on Windows) or a shell (on UNIX).

2. Navigate to the control directory of your deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app
dir>\control.

3. Run the get_templates script.

Oracle Endeca Commerce Assembler Application Developer's Guide

Managing Experience Manager Templates | Retrieving the current templates from Experience Manager40

Chapter 4

Building Applications with the Endeca Assembler

This section describes how to build a client application that uses the Endeca Assembler to query the
MDEX Engine or other services.

Assembler dependencies
Assembler dependencies are packaged in the %ENDECA_TOOLS_ROOT%\assembler\lib directory.
You must include them in any custom Assembler application that you build.

The Assembler relies on the following libraries:

• AOP Alliance 1.0
• Apache Commons Logging 1.1.1
• Endeca Navigation API 6.3.0
• Endeca Logging API 6.3.0
• Spring AOP 3.0.1
• Spring ASM 3.0.1
• Spring Beans 3.0.1
• Spring Context 3.0.1
• Spring Core 3.0.1
• Spring Expression 3.0.1
• Spring Web 3.0.1

About deploying the Assembler
The Assembler can run in process as part of a Java application that powers a Web site, or it can be
deployed as a standalone servlet. Non-Java applications must use the Assembler servlet.

The Tools and Frameworks package includes an example of each deployment mode in
/reference/discover-electronics (for the Assembler running in process) and
/reference/discover-service (for the standalone Assembler servlet). The standalone servlet,
or Assembler Service, provides a RESTful interface for Assembler queries that returns results in either
JSON or XML.

Both deployment modes depend on a Spring context file for application-specific configuration. The
deployment descriptor files for the reference implementations specify a context file located in
/WEB-INF/assembler-context.xml, as follows:

<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>
<listener>
 <listener-class>
 org.springframework.web.context.request.RequestContextListener
 </listener-class>
</listener>
<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/assembler-context.xml</param-value>
</context-param>

Assembler configuration
The Assembler implementation included with Tools and Frameworks is configured through Spring.
The configuration in the Spring context file applies to both the in-process Assembler, and the Assembler
Service.

This guide assumes an application based around the included Assembler implementations.You can
provide your own implementation if you wish to use an alternate means of configuring the Assembler.

In the reference implementations, application-specific Assembler configuration is specified in the Spring
context file located in WEB-INF\assembler-context.xml.

Assembler factory

The AssemblerFactory is an interface for creating a new Assembler. In the reference implementation,
it is implemented in the SpringAssemblerFactory class and defined as follows:

<bean id="assemblerFactory" class="com.endeca.infront.assem¬
bler.spring.SpringAssemblerFactory"
 scope="singleton">
 <constructor-arg>
 <bean class="com.endeca.infront.assembler.AssemblerSettings">
 <property name="previewEnabled" value="${preview.enabled}" />
 <property name="previewModuleUrl" value="http://${work¬
bench.host}:${workbench.port}/preview" />
 </bean>
 </constructor-arg>
</bean>

For details on the AssemblerFactory interface and SpringAssemblerFactory implementation,
see the Assembler API Reference (Javadoc).

About configuring cartridge handlers
A cartridge handler is an Assembler component that takes the configuration model for a specific
cartridge and interacts with an external system to produce a response model. Cartridge handler
configuration is a subset of Assembler configuration.

Oracle Endeca Commerce Assembler Application Developer's Guide

Building Applications with the Endeca Assembler | Assembler configuration42

HTTP servlet request access

The httpServletRequest bean provides access to the HTTPServletRequest object for the
current request.

<bean id="httpServletRequest" scope="request"
 factory-bean="springUtility"
 factory-method="getHttpServletRequest" />

Cartridge handlers that need access to the servlet request can specify a reference to this bean as
follows:

<property name="httpServletRequest" ref="httpServletRequest" />

Search and navigation request configuration

The Assembler provides several utilities for parsing incoming requests and forming MDEX Engine
queries.

MDEX resource configuration

The MDEX resource provides access to the MDEX Engine and manages information about the MDEX
Engine and its schema configuration. Cartridge handlers can request data from their MDEX resource
during the course of processing a cartridge.

The MDEX resource has the following properties:

DescriptionMDEX resource property

The hostname or IP address of your MDEX Engine server.host

The port on which the MDEX Engine server listens.port

The name of the property that serves as the record spec in
your data set.

recordSpecName

Navigation state builder configuration

The navigation state builder is responsible for parsing the request URL into a NavigationState
object and for generating Endeca URLs based on a NavigationState.

DescriptionNavigation state builder property

Specifies the UrlFormatter object to use for parsing the
request URL into a NavigationState object and for
generating Endeca URLs based on a NavigationState.

urlFormatter

Note: In the Discover Electronics application, this bean
is configured in endeca-url-config.xml.

The MdexRequestBuilder implementation to use for
forming MDEX Engine requests. For more information, see

mdexRequestBuilder

"About configuring cartridge handlers that make search and
navigation queries."

Specifies the ContentPathProvider implementation that
provides the URL path info for a navigation query or a record

contentPathProvider

query. A reference implementation, BasicContentPath¬

Oracle Endeca Commerce Assembler Application Developer's Guide

43Building Applications with the Endeca Assembler | Assembler configuration

DescriptionNavigation state builder property

Provider, is included as part of Discover Electronics. As
configured in the example below, it returns /browse for
navigation queries and /detail for record detail queries.

The name of a property, dimension, or search interface
against which searches (using the Search Box cartridge) are
performed.

defaultSearchKey

The match mode to use for text searches. Valid values for
this property follow the syntax of URL parameters for search
mode, without the mode+match prefix.

defaultMatchMode

A default filter state to apply to all queries. See below for
more details about default filter state configuration; all
properties of the default filter state are optional.

defaultFilterState

These properties configure which URL parameters from the
request URL are preserved when generating action strings

removeAlways and which ones are removed, depending on the type of
transition the action URL represents.removeOnUpdateFilterState

removeOnClearFilterState

A list of dimensions whose dimension values should be
applied to the navigation state for a record query (based on

recordDetailsDimensionNames

the values that are tagged on that record). This navigation
state can be used for triggering configuration for the
associated record detail page or for a spotlight cartridge that
has the "restrict to refinement state" option enabled.

DescriptionFilter state property

A rollup key (used for aggregated records) to apply to all
queries made with the default filter state.

rollupKey

Specifies whether to apply automatic phrasing to text search
queries. By default, automatic phrasing is enabled. For more

autoPhraseEnabled

information about automatic phrasing configuration, see
"About implementing automatic phrasing" in this guide.

A default record filter to apply to MDEX Engine queries. For
information about the record filter syntax, refer to the MDEX
Engine Advanced Developer's Guide.

securityFilter

The language ID (as a valid RFC-3066 or ISO-639 code) to
specify for MDEX Engine queries. For information about

languageId

working with internationalized data, refer to the MDEX Engine
Advanced Developer's Guide.

About configuring cartridge handlers that make search and navigation queries

Cartridge handlers that need to make MDEX Engine queries can reference the navigation state, record
state, and MDEX request builder beans configured in the cartridge support section of the Spring context
file.

Oracle Endeca Commerce Assembler Application Developer's Guide

Building Applications with the Endeca Assembler | Assembler configuration44

The navigation state and record state represent the query parameters for each type of MDEX Engine
query. The MDEX request builder consolidates requests from all the cartridge handlers in a single
Assembler processing cycle into as few MDEX queries as possible. These beans are defined in terms
of previously configured beans; their configuration should not need to vary between applications..

The NavigationCartridgeHandler references the navigationState and mdexRequest¬
Builder beans for making navigation queries. The RecordDetailsHandler references the
recordState for record detail queries. Cartridge handlers (including many of the core cartridges)
that need access to the navigation state, record state, or the MDEX request builder typically extend
one of these handlers. Note that RecordDetailsHandler itself extends NavigationCartridge¬
Handler as shown below, thereby inheriting the references to the navigation state and MDEX request
builder specified in the NavigationCartridgeHandler bean.

<bean id="NavigationCartridgeHandler" abstract="true">
 <property name="navigationState" ref="navigationState" />
 <property name="mdexRequestBuilder" ref="mdexRequestBuilder" />
</bean>

<bean id="CartridgeHandler_RecordDetails"
 class="com.endeca.infront.cartridge.RecordDetailsHandler"
parent="NavigationCartridgeHandler" scope="prototype" >

 <property name="recordState" ref="recordState" />
</bean>

About configuring cartridges to retrieve dynamic content

Cartridge handlers that need to retrieve content dynamically from content collections based on trigger
criteria can reference the content manager bean configured in the cartridge support section of the
Spring context file.

The content manager depends on the content trigger state builder and its associated content trigger
state, which perform similar functions to the navigation state builder and navigation state, only for the
trigger query that retrieves dynamic content configuration, rather than the main navigation query.

Application-specific configuration for these beans relates to preview and auditing functionality. For
more information about configuring preview, see "Setting up the Preview Application for Workbench."

The ContentSlotHandler references the content manager to make dynamic content queries. Other
handlers that need to retrieve contents from a content collection should extend from this handler.

<bean id="CartridgeHandler_ContentSlot"
 class="com.endeca.infront.cartridge.ContentSlotHandler"
 scope="prototype">
 <property name="contentManager" ref="contentManager" />
</bean>

Related Links
Setting up the Preview Application for Workbench on page 111

If you are using Experience Manager, you can use a preview application to simulate sets of
trigger conditions, such as time-based triggers, in order to determine which content items
display when specific conditions are met. This section describes how to set up a custom
Endeca application to function as the preview application in Workbench.

Oracle Endeca Commerce Assembler Application Developer's Guide

45Building Applications with the Endeca Assembler | Assembler configuration

About configuring the Assembler servlet
The Spring Assembler servlet extends the AbstractAssemblerServlet class, which requires a
method for retrieving an AssemblerFactory, and another for retrieving a ResponseWriter that
processes Assembler output.

The Assembler servlet references the same Spring configuration as the rest of the Assembler, with
an additional dependency on response writer configuration.

Response writers

The Assembler servlet uses JSON or XML response writers to serialize the results of a query. The
Assembler includes default implementations of a JSONResponseWriter and an XMLResponseWrit¬
er.You can provide your own implementation if you need to output the Assembler response to a
different format (such as a different XML representation).

<bean id="jsonResponseWriter"
 class="com.endeca.infront.assembler.servlet.JsonResponseWriter"
 scope="singleton"/>

<bean id="xmlResponseWriter"
 class="com.endeca.infront.assembler.servlet.XmlResponseWriter"
 scope="singleton"/>

Reference implementations

The reference content includes two Web applications that run the Spring Assembler servlet with the
appropriate configuration for Discover Electronics in either an authoring or a live environment:

• The implementation for an authoring environment is located at
reference\discover-service-authoring.

• The implementation for a live environment is located at reference\discover-service.

Invoking the Assembler in Java
You invoke the Assembler by passing in a content item object to be assembled.

The content item that is passed as input to the Assembler is known as the configuration model. The
Assembler invokes the appropriate cartridge handler to process that content item, which may in turn
invoke other cartridge handlers to process child content items. The end result of the processing cycle
is another content item representing the response model.

// Get the AssemblerFactory from the Spring context and
// create an Assembler
WebApplicationContext webappCtx =
 WebApplicationContextUtils.getRequiredWebApplicationContext(application);
AssemblerFactory assemblerFactory =
 (AssemblerFactory)webappCtx.getBean("assemblerFactory");
Assembler assembler = assemblerFactory.createAssembler();
assembler.addAssemblerEventListener(new MyLogger());

// Assemble the content
ContentItem responseContentItem = assembler.assemble(contentItem);

You can instantiate any configuration model programmatically and pass it to the Assembler, but typically
an assembly cycle begins with a ContentInclude or ContentSlotConfig item. Both of these

Oracle Endeca Commerce Assembler Application Developer's Guide

Building Applications with the Endeca Assembler | Invoking the Assembler in Java46

methods retrieve additional content configuration specified in Workbench, the former by URI, and the
latter by triggering content from a collection populated either in Experience Manager or Rule Manager.

Note: If you have only purchased Oracle Endeca Guided Search, you typically query the
Assembler using one of the packaged services, either with a ContentInclude item or via the
Assembler servlet.

Related Links
About retrieving Assembler results using the packaged services on page 50

If you have purchased Oracle Endeca Guided Search (without Oracle Endeca Experience
Manager), you must retrieve Assembler results via the packaged services. These services
are also available for Experience Manager implementations.

Invoking the Assembler with a ContentInclude item
The content include mechanism retrieves content configuration that a content administrator has
specified in the sitemap section of Experience Manager.

In an authoring instance the content configuration is stored in the Endeca Configuration Repository.
In a live instance, the Assembler retrieves the content configuration from the live content source. This
is specified in the CartridgeHandler_ContentInclude bean in assembler-context.xml.

The ContentInclude item specifies the URI from which to retrieve the content.

• In Oracle Endeca Experience Manager implementations, the URI typically begins with /pages (a
hard-coded path to distinguish the sitemap from the content collections in Experience Manager),
with the path info from the request URL appended.

• In Oracle Endeca Guided Search implementations, the URI must begin with /services and
specify one of the Assembler packaged services.

The following shows an example of a content include query that retrieves the page content for the
Discover Electronics application with Experience Manager:

// Construct a content include to query the content source
// for content, given the path info of the request
ContentItem contentItem =
 new ContentInclude("/pages" + request.getPathInfo());

The ContentIncludeHandler retrieves the content that matches the deepest path in the URI. For
example, if the request URL is http://www.example.com/browse/electronics/Sony/Cameras,
the URI passed to the Assembler is /pages/browse/electronics/Sony/Cameras. Suppose
that the sitemap for this site looks like the following:

The cartridge handler first tries to retrieve the content at the exact URI. There is no content at that
location, so it attempts to find the deepest matching path, which in this case is the content configuration

Oracle Endeca Commerce Assembler Application Developer's Guide

47Building Applications with the Endeca Assembler | Invoking the Assembler in Java

at /browse/electronics. The Assembler then processes the content item at that location and
returns the response for rendering.

Invoking the Assembler with a ContentSlotConfig item
The content slot mechanism retrieves configuration from a content collection based on a set of trigger
criteria.

The ContentSlotConfig specifies a content collection and the number of content items to return
from that collection.

The following shows an example of a content slot query that drives the autosuggest feature of the
Search Box cartridge:

// Construct a content slot config to query content
// in the SearchBoxAutoSuggestContent collection
ContentItem contentItem = new ContentSlotConfig(request.getParameter("col¬
lection"), 1);

The ContentSlotHandler uses these parameters to form a content trigger request to fetch the top
configuration content item (or items) from the collection by priority.The Assembler then processes the
content items from the collection and returns them as part of the response for rendering.

Content slots within other content items

You can construct a ContentSlotConfig as the root content item of an Assembler query, but other
content items can also contain content slots that are configured to retrieve content dynamically from
collections.

For example, in Discover Electronics the /browse path corresponds to a page within the sitemap.
The browse page consists of a content slot that references the Web Browse Pages collection. Most
of the pages within the Web Browse Pages collection contain a mixture of content items that are
configured directly in the page, and content slots that retrieve content from other collections. As the
Assembler processes the query for http://www.example.com/discover/browse (assuming no
search terms or refinement selections), the following steps occur:

1. The Assembler is invoked with a ContentInclude item with the URI /pages/browse.
2. The Assembler invokes the ContentIncludeHandler to retrieve the configuration for the browse

page, which is a ContentSlotConfig that specifies a single content item from the Three-Column
Page collection.

3. The Assembler invokes the ContentSlotHandler to retrieve the highest priority content item
within the Three-Column Page collection. In this case, it is the Default Browse Page, which is a
ThreeColumnPage.

4. There is no cartridge handler configured to process the ThreeColumnPage, but it contains child
content items, so the Assembler goes on to process the child content items:

a. It passes the configuration for the search box cartridge through to the response object.
b. It invokes the BreadcrumbsHandler to process the breadcrumbs cartridge.
c. It invokes the ContentSlotHandler to process the navigation slot, which in turn retrieves the

Default Guided Navigation configuration from the Guided Navigation collection and invokes
DimensionNavigationHandler to process it.

d. It invokes the SearchAdjustmentsHandler to process the search adjustments cartridge.
e. It invokes the ContentSlotHandler to process the results list slot, which in turn retrieves the

Default Results List configuration from the Results List collection and invokes Result¬
sListHandler to process it.

Oracle Endeca Commerce Assembler Application Developer's Guide

Building Applications with the Endeca Assembler | Invoking the Assembler in Java48

f. It invokes the RecordSpotlightHandler to process the spotlight records.

Querying the Assembler Service
The Assembler Service provides a RESTful interface for making Assembler queries and retrieving
results in either JSON or XML.

You query the Assembler Service by making a GET request to a URL that specifies the location of a
content item that you wish to assemble. The URL should be of the following form:

http://[hostname:port]/[servlet-path]/[content-URI]?[query-params]

In the reference deployment of the Assembler Service, the servlet path determines the format of the
Assembler response. The deployment descriptor file (web.xml) in the reference deployment defines
two servlets:

Servlet descriptionServlet path

Returns the Assembler response as JSON./json

Returns the Assembler response as XML./xml

The difference between the servlets is in the ResponseWriter implementation that they use. It is
also possible to write an Assembler response writer that forwards the results to another servlet rather
than serializing them.

The content-URI is the path to the content item to be assembled.

• In Experience Manager implementations, the URI typically begins with /pages (a hard-coded path
to distinguish the sitemap from the content collections in Experience Manager), with the path info
from the request URL appended.

• In Oracle Endeca Guided Search-only implementations, the URI must begin with /services and
specify one of the Assembler packaged services.

The Assembler servlet request URL http://www.example.com/json/pages/browse is equivalent
to passing a ContentInclude item to the Assembler assemble() method with the URI
/pages/browse and retrieving the results in JSON format.

Query parameters in an Assembler servlet request URL are processed the same way as in the
embedded Java Assembler. For example, the URL
http://www.example.com/json/browse?N=101022 with the reference Assembler servlet
deployment returns the same results as http://www.example.com/discover/browse?N=101022
in the reference Java application.

Making dynamic content queries to the Assembler servlet

Unlike the Assembler in embedded mode, which allows assembly of any configuration content item,
all queries to the Assembler servlet are treated as content include queries. To request content from a
content collection based on a set of trigger criteria, you can create a content slot at a location in the
sitemap that you can then specify in your Assembler request URL. In the reference implementation,
the browse page is one example of a content item that is addressable by URI that then references
content items within a content collection.

Related Links
Invoking the Assembler with a ContentInclude item on page 47

Oracle Endeca Commerce Assembler Application Developer's Guide

49Building Applications with the Endeca Assembler | Querying the Assembler Service

The content include mechanism retrieves content configuration that a content administrator
has specified in the sitemap section of Experience Manager.

Content slots within other content items on page 48
You can construct a ContentSlotConfig as the root content item of an Assembler query,
but other content items can also contain content slots that are configured to retrieve content
dynamically from collections.

The Assembler servlet response format
The Assembler provides response writer implementations that serialize the Assembler response to
JSON or XML.

The Assembler response takes the form of a content item (that is, a map of properties).The properties
are key-value pairs where the key is a string and the value may be one of the following types:

• String
• Boolean
• Integer
• List (of any property type)
• Item (a nested map of properties)

This structure makes it straightforward to serialize the response to JSON.

The XML output of the Assembler (using the default XmlResponseWriter) is not SOAP-compliant.
The default XML format has the following characteristics:

• The root element of the response is <Item>.
• <Item> may have either a type attribute whose value is equivalent to the template id that defined

the content item, or a class attribute in the case of a strongly typed reponse model for a content
item.

• The child elements of <Item> are <Property> elements.
• Each <Property> element has a name attribute whose value is the property key, and contains

either a <String>, <Boolean>, <Integer>, <List>, or <Item> element whose contents
represent the property value.

For convenience, the Discover Electronics reference application provides links to the JSON and XML
representations of the Assembler response, which are identical to the output of the Assembler servlet.
This link can be useful for debugging purposes, but it is not recommended as a primary means of
querying the Assembler for JSON or XML-formatted results.

About retrieving Assembler results using the packaged
services

If you have purchased Oracle Endeca Guided Search (without Oracle Endeca Experience Manager),
you must retrieve Assembler results via the packaged services. These services are also available for
Experience Manager implementations.

The packaged services include the following:

Oracle Endeca Commerce Assembler Application Developer's Guide

Building Applications with the Endeca Assembler | About retrieving Assembler results using the packaged
services

50

DescriptionService URI

Returns dimension search results based on a text search./services/dimensionsearch

Returns record detail information for a given record./services/recorddetails

Returns search and navigation results including core Endeca
features such as Guided Navigation, along with dynamic content
returned from content collections.

/services/guidedsearch

You query the services by passing a ContentInclude item to the Assembler with the relevant service
URI or making an Assembler servlet request specifying the service URI. The services are configured
to return results for a specific cartridge or set of cartridges.

The cartridges that are returned by the services cannot be configured on a per-instance basis in Rule
Manager or Experience Manager, but application-wide default configuration for the cartridges can be
specified in the Spring context file for the Assembler. The exception is the dynamic content that can
be configured in content collections and that is returned by the Guided Search Service, which can be
configured in Rule Manager or Experience Manager.

The services are populated in the Endeca Configuration Repository (for use by the authoring instance)
when you run initialize_services after deploying an application. They are promoted to the live
content source when you promote the site configuration for the live instance.

Related Links
Default cartridge configuration on page 76

You can specify default configuration settings for a cartridge as part of the cartridge handler
configuration in the Spring context file for the Assembler.

The Dimension Search Service
The Dimension Search Service returns dimension search results for a keyword search.

The service returns a single DimensionSearchResults object in a dimensionSearchResults
property, representing the list of dimensions that match the search term.

The default behavior of this cartridge is configured as part of the CartridgeHandler_Dimension¬
SearchResults bean in the Spring context file for the Assembler. For information about the
configuration options for the Dimension Search Results cartridge, refer to the Endeca Assembler API
Reference (Javadoc) for the DimensionSearchResultsConfig class.

This service exists for cases where you want to retrieve dimension search results only (such as in the
case of an auto-suggest dimension search feature). Dimension search results are also returned as
part of the response from the Guided Search Service.

The following is an example of the results of a Dimension Search Service query for the URI
http://localhost:8006/assembler-authoring/json/services/dimension¬
search?Ntt=fla*&Dy=1, serialized to JSON:

{
 "@type": "DimensionSearchService",
 "name": "Dimension Search Service",
 "dimensionSearchResults": {
 "@type": "DimensionSearchResults",
 "totalNumResults": 13,
 "dimensionSearchGroups": [
 {

Oracle Endeca Commerce Assembler Application Developer's Guide

51Building Applications with the Endeca Assembler | About retrieving Assembler results using the packaged
services

 "@class": "com.endeca.infront.cartridge.model.Dimension¬
SearchGroup",
 "dimensionSearchValues": […],
 "dimensionName": "camera.flash"
 },
 {
 "@class": "com.endeca.infront.cartridge.model.Dimension¬
SearchGroup",
 "dimensionSearchValues": […],
 "dimensionName": "product.features"
 },
 {
 "@class": "com.endeca.infront.cartridge.model.Dimension¬
SearchGroup",
 "dimensionSearchValues": […],
 "dimensionName": "product.category"
 }
]
 },
 "endeca:contentPath": "/services/dimensionsearch",
 "previewModuleUrl": "http://localhost:8006/preview"
}

The Record Details Service
The Record Details Service returns record detail information for a given record.

The service returns a single RecordDetails object in a recordDetails property, representing
the details for a single record or an aggregate record.

The default behavior of this cartridge is configured as part of the CartridgeHandler_RecordDe¬
tails bean in the Spring context file for the Assembler. For information about the configuration options
for the Record Details cartridge, refer to the Endeca Assembler API Reference (Javadoc) for the
RecordDetailsConfig class.

The following is an example of the results of a record details service query for the URI http://lo¬
calhost:8006/assembler-authoring/json/services/recorddetails/Canon/Prima-
Super-130U-Date/_/A-266556, serialized to JSON:

{
 "@type": "RecordDetailsService",
 "name": "Record Details Service",
 "recordDetails": {
 "@type": "ProductDetail",
 "record": {
 "@class": "com.endeca.infront.cartridge.model.Record",
 "numRecords": 1,
 "attributes": { … },
 "records": [
 {
 "@class": "com.endeca.infront.cartridge.model.Record",

 "numRecords": 0,
 "attributes": { … }
 }
]
 }
 },

Oracle Endeca Commerce Assembler Application Developer's Guide

Building Applications with the Endeca Assembler | About retrieving Assembler results using the packaged
services

52

 "endeca:siteRootPath": "/services",
 "endeca:contentPath": "/recorddetails",
 "previewModuleUrl": "http://localhost:8006/preview",
 "endeca:assemblerRequestInformation": { … }
}

The Guided Search Service
The Guided Search Service returns search and navigation results including core Endeca features such
as Guided Navigation, along with dynamic content returned from content collections.

The properties returned as part of the response model, as well as their associated configuration, are
listed below:

Configuration modelConfiguration beanResponse modelProperty name

GuidedNavigation¬
Config

CartridgeHan¬
dler_GuidedNaviga¬
tion

GuidedNavigationnavigation

BreadcrumbsConfigCartridgeHan¬
dler_Breadcrumbs

Breadcrumbsbreadcrumbs

ResultsListConfigCartridgeHan¬
dler_ResultsList

ResultsListresultsList

SearchAdjust¬
mentsConfig

CartridgeHan¬
dler_SearchAdjust¬
ments

SearchAdjustmentssearchAdjustments

DimensionSearchRe¬
sultsConfig

CartridgeHan¬
dler_Dimension¬
SearchResults

DimensionSearchRe¬
sults

dimensionSearchRe¬
sults

ContentSlotConfigCartridgeHan¬
dler_Con¬
tentSlotList

Depends on contents of
referenced content
collections

zones

The following is an example of the results of a guided search service query for the URI http://lo¬
calhost:8006/assembler-authoring/json/services/guidedsearch?Ntt=pink+camera,
serialized to JSON:

{
 "@type": "GuidedSearchService",
 "name": "Guided Search Service",
 "navigation": {
 "@type": "GuidedNavigation"
 },
 "breadcrumbs": {
 "@type": "Breadcrumbs",
 "removeAllAction": "/services/guidedsearch",
 "refinementCrumbs": [],
 "searchCrumbs": […],
 "rangeFilterCrumbs": []
 },
 "resultsList": {
 "@type": "ResultsList",

Oracle Endeca Commerce Assembler Application Developer's Guide

53Building Applications with the Endeca Assembler | About retrieving Assembler results using the packaged
services

 "totalNumRecs": 213,
 "sortOptions": […],
 "firstRecNum": 1,
 "lastRecNum": 10,
 "pagingActionTemplate": "/services/guidedsearch?No=%7Boff¬
set%7D&Nrpp=%7BrecordsPerPage%7D&Ntt=pink+camera",
 "recsPerPage": 10,
 "records": […]
 },
 "searchAdjustments": {
 "@type": "SearchAdjustments",
 "originalTerms": [
 "pink camera"
]
 },
 "zones": {
 "@type": "ContentSlotList"
 },
 "endeca:contentPath": "/services/guidedsearch",
 "previewModuleUrl": "http://localhost:8006/preview"
}

Note:

For details about the contents of the zones property, see "About dynamic content and the
Guided Search Service."

About dynamic content and the Guided Search Service

In order to retrieve results from content collections as part of the response from the Guided Search
Service, you must configure the default content slot list in the Spring context file for the Assembler.

The content slot list is configured in the CartridgeHandler_ContentSlotList bean in
assembler-context.xml.

For each content collection that you want to enable for the Guided Search Service, add a ContentSlot¬
Config bean to the contentSlotList as in the example below:

<bean id="CartridgeHandler_ContentSlotList" class="com.endeca.infront.car¬
tridge.ContentSlotListHandler"
 scope="prototype">
 <property name="contentItemInitializer">
 <bean class="com.endeca.infront.cartridge.ConfigInitializer"
scope="request">
 <property name="defaults">
 <bean class="com.endeca.infront.cartridge.ContentSlotList¬
Config" scope="singleton">
 <property name="contentSlotList">
 <list>

<bean class="com.endeca.infront.cartridge.ContentSlot¬
Config" scope="singleton">
 <property name="contentCollection" val¬
ue="/content/Right Column Spotlights"/>
 <property name="ruleLimit" value="3"/>
 </bean>
 </list>
 </property>
 </bean>
 </property>

Oracle Endeca Commerce Assembler Application Developer's Guide

Building Applications with the Endeca Assembler | About retrieving Assembler results using the packaged
services

54

 </bean>
 </property>
</bean>

For each ContentSlotConfig, specify the following properties:

ValueProperty name

The path to the collection from which you want to return results. The
example above specifies a collection named Record Spotlight Content
in a folder named Web.

contentCollection

The maximum number of content items to return from this collection.The
Assembler returns up to this number of items that match the trigger
criteria, based on priority.

ruleLimit

Recall the zones property returned by the guided search service query for the URI http://in¬
front.eng.endeca.com:8006/assembler-authoring/json/services/guided¬
search?Ntt=pink+camera:

{
[Additional items removed from this response]

 "zones": {
 "@type": "ContentSlotList"
 },
 "endeca:contentPath": "/services/guidedsearch",
 "previewModuleUrl": "http://localhost:8006/preview"
}

The response model, determined by the configuration above, is the following:

About retrieving content item properties from packaged services

This topic outlines the logic required for retrieving properties from the Assembler response model for
the included Guided Search Service.

The example below includes processing logic within a renderer JSP file. Oracle recommends including
most of your logic for handling Assembler responses in your cartridge handlers, as this minimizes the
amount of duplicate code required across multiple renderers.

Note: API documentation for the Assembler packages is available in the
assembler\apidoc\assembler directory of your Tools and Frameworks installation.

Retrieving information from the Assembler response

Recall the serialized Assembler response for the URI http://localhost:8006/assembler-au¬
thoring/json/services/guidedsearch?Ntt=pink+camera:

{
 "@type": "GuidedSearchService",
 "name": "Guided Search Service",
 "navigation": {
 "@type": "GuidedNavigation"
 },
 "breadcrumbs": {
 "@type": "Breadcrumbs",
 "removeAllAction": "/services/guidedsearch",
 "refinementCrumbs": [],

Oracle Endeca Commerce Assembler Application Developer's Guide

55Building Applications with the Endeca Assembler | About retrieving Assembler results using the packaged
services

 "searchCrumbs": […],
 "rangeFilterCrumbs": []
 },
 "resultsList": {
 "@type": "ResultsList",
 "totalNumRecs": 213,
 "sortOptions": […],
 "firstRecNum": 1,
 "lastRecNum": 10,
 "pagingActionTemplate": "/services/guidedsearch?No=%7Boff¬
set%7D&Nrpp=%7BrecordsPerPage%7D&Ntt=pink+camera",
 "recsPerPage": 10,
 "records": […]
 },
 "searchAdjustments": {
 "@type": "SearchAdjustments",
 "originalTerms": [
 "pink camera"
]
 },
 "zones": {
 "@type": "ContentSlotList"
 },
 "endeca:contentPath": "/services/guidedsearch",
 "previewModuleUrl": "http://localhost:8006/preview"
}

To create a sample JSP file that invokes the Assembler:

1. Import the required packages and create the necessary objects for supporting the Assembler:

<%@page language="java" contentType="text/html; charset=UTF-8" %>
<%@page import="com.endeca.infront.assembler.Assembler"%>
<%@page import="com.endeca.infront.assembler.AssemblerFactory"%>
<%-- additional imports removed from this example --%>
<%@page import="org.springframework.web.context.WebApplicationContext"%>
<%@taglib prefix="discover" tagdir="/WEB-INF/tags/discover" %>
<%
 // Create the Web Application Context object
 WebApplicationContext webappCtx = WebApplicationContextUtils.getRe¬
quiredWebApplicationContext(application);

 // Get the AssemblerFactory from the Spring context file
 AssemblerFactory assemblerFactory = (AssemblerFactory)webappCtx.get¬
Bean("assemblerFactory");

2. Recall that the packaged services invoke the Assembler with a ContentInclude item. Create
the assembler object and the ContentInclude item, and pass it into the Assembler as the
configuration model:

 // Create an Assembler object
 Assembler assembler = assemblerFactory.createAssembler();

 // Construct a content include item for the Guided Search service
 ContentItem contentItem = new ContentInclude("/services/guidedsearch");

Oracle Endeca Commerce Assembler Application Developer's Guide

Building Applications with the Endeca Assembler | About retrieving Assembler results using the packaged
services

56

 // Assemble the content
ContentItem responseContentItem = assembler.assemble(contentItem);

The Assembler returns a com.endeca.infront.assembler.ContentItem interface as the
response model; this extends the Java Map interface. Assign this response to a responseCon¬
tentItem object.

3. get the resultsList object from the responseContentItem:

 ContentItem resultsListItem = (ContentItem) responseContentItem.get("re¬
sultsList");

This retrieves the top-level resultsList object, which is itself an extension of BasicCon¬
tentItem, from the Assembler response.

4. You can now retrieve and use the individual values stored on the resultsList object, for example,
the total number of records:

 String totalNumRecs = resultsListItem.get("totalNumRecs");

This assigns a value of "213" to the totalNumRecs variable (based on the sample response
presented at the start of this topic). Similarly, you could retrieve any other value from the key/value
pairs that comprise resultsList, including other objects that extend the Map interface and are
themselves made up of key/value pairs.

Refer to the Assembler API documentation for additional information on available Assembler interfaces,
implementations, and methods. Following the pattern described in Steps 3-4, you can continue to
retrieve values from the Assembler response by calling the get method on the response model object
to traverse the nested values.

About handling the Assembler response
As a best practice, your application should have modular renderers to handle the response model for
each content item.

A typical page consists of a content item that contains several child content items representing the
individual feature cartridges. The Discover Electronics application maps each response model to the
proper renderer by convention, based on the @type. The model @type corresponds to the id of the
template that was used to configure it. (Recall that the template type determines where a cartridge
can be placed in another content item, while the template id uniquely identifies the cartridge and its
associated content definition.) For each cartridge, the associated renderer is located in
WEB-INF/views/<channel>/<TemplateID>/<TemplateID>.jsp. For example, the renderer
for the Breadcrumbs cartridge is located in
WEB-INF/views/desktop/Breadcrumbs/Breadcrumbs.jsp.

In the Discover Electronics application, this logic is implemented in include.tag.Your application
should implement a similar mapping of response models to their corresponding rendering code.

Source code for the renderers in the Discover Electronics application is provided as an example of
how to work with the model objects returned by the Assembler in Java. The sample rendering code
is intentionally lightweight, enabling it to be more easily customized for your own site. For information
about the response models for the core cartridges, refer to the Endeca Assembler API Reference
(Javadoc).

Some features in the Discover Electronics application are designed with certain assumptions about
the data set, such as property and dimension names. Mirroring the Discover Electronics data schema

Oracle Endeca Commerce Assembler Application Developer's Guide

57Building Applications with the Endeca Assembler | About handling the Assembler response

for your own data can facilitate reuse of the reference cartridges, reducing the need to update rendering
logic and Assembler configuration for your data set.

About rendering the Assembler response
Once you have retrieved the necessary information for your page, Oracle recommends subdividing
your view logic to correspond to the hierarchy of content items returned by the Assembler.

The renderer for the Three Column Navigation Page content item in Discover Electronics provides an
example of the page rendering process as implemented in the reference application. It is located in
your Tools and Frameworks installation directory under
reference\discover-electronics-authoring\WEB-INF\views\desktop\ThreeColumnPage\ThreeColumnPage.jsp.
You can use this JSP file as a point of reference for developing your own application pages. While the
details are specific to the Discover Electronics implementation of the Assembler API, your general
approach should be similar.

Recall that each of the <div> elements that make up the page uses a custom <discover:include>
tag, defined in WEB-INF\tags\discover\include.jsp, to include the rendering code for the
associated page component:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<!-- Additional elements removed from this sample -->
</head>
<body>
 <endeca:pageBody rootContentItem="${rootComponent}">
 <div class="PageContent">
 <%--include user panel --%>
 <%@ include file="/WEB-INF/views/userPanel.jsp" %>
 <%--include user page logo --%>
 <%@ include file="/WEB-INF/views/pageLogo.jsp" %>
 <div class="PageHeader">
 <c:forEach var="element" items="${component.headerContent}">

<discover:include component="${element}"/>
 </c:forEach>
 </div>
 <div class="PageLeftColumn">
 <c:forEach var="element" items="${component.leftContent}">

 <discover:include component="${element}"/>
 </c:forEach>
 </div>
 <div class="PageCenterColumn">
 <c:forEach var="element" items="${component.mainContent}">

 <discover:include component="${element}"/>
 </c:forEach>
 </div>
 <div class="PageRightColumn">
 <c:forEach var="element" items="${component.rightContent}">

 <discover:include component="${element}"/>
 </c:forEach>
 </div>
 <div class="PageFooter">
 <%--include copyright --%>

Oracle Endeca Commerce Assembler Application Developer's Guide

Building Applications with the Endeca Assembler | About handling the Assembler response58

 <%@include file="/WEB-INF/views/copyright.jsp" %>
 </div>
 </div>
 </endeca:pageBody>
</body>
</html>

For the example above, the JSP is composed as follows:

1. The static <div class="UserPanel"> and <div class="PageLogo"> elements are included
from the specified JSP files.

2. The <div class="PageHeader"> element retrieves the list of headerContent content items
from the component.

• In an Oracle Endeca Experience Manager installation, this is the list of content items defined
by the content administrator in Experience Manager:

• In an Oracle Endeca Guided Search installation, this is the list of content items specified
application-wide under WEB-INF\services\browse.jsp:

<div class="PageContent">
 <%--include user panel --%>
 <%@ include file="/WEB-INF/views/userPanel.jsp" %>
 <%@ include file="/WEB-INF/views/pageLogo.jsp" %>

 <div class="PageHeader">
<discover:include component="${searchBox}"/>

 </div>
 <div class="PageLeftColumn">
 <discover:include component="${component.breadcrumbs}"/>
 <discover:include component="${component.navigation}"/>
 </div>
 ...

3. For each of the included content items, the JSP includes the output of the associated renderer.
4. The <div class="PageLeftColumn">, <div class="PageCenterColumn">, and <div

class="PageRightColumn"> elements are included in the same fashion.
5. The static <div class="Copyright"> element is included from the specified JSP file.

Oracle Endeca Commerce Assembler Application Developer's Guide

59Building Applications with the Endeca Assembler | About handling the Assembler response

For additional information on cartridge handlers and renderers, as well as a walkthrough of creating
a sample cartridge, refer to the Cartridge Development Guide.

About Assembler error handling
The Assembler API defines two kinds of exceptions: AssemblerException and CartridgeHan¬
dlerException.

The exceptions are distinguished as follows:

DescriptionException

Indicates that an exception occurred while creating or processing
an Assembler request. Exceptions of this type indicate that the entire
assembly process was terminated.

AssemblerException

Indicates that an exception occurred while invoking a single cartridge
handler. Exceptions of this type do not terminate the entire assembly
process.

CartridgeHandlerExcep¬
tion

Both types of exceptions are returned as part of the Assembler response.

Error handling in the Assembler servlet

The Assembler servlet returns an HTTP status code of 200 (OK) regardless of whether any exceptions
occurred during Assembler processing. The Assembler communicates error conditions as exceptions
that are serialized as part of the response, as in the following example.

{
 @error: "com.endeca.infront.assembler.CartridgeHandlerException"
 description: "Detailed cartridge handler error description"
}

Unchecked exceptions result in the Assembler servlet returning HTTP status code 500 (Internal Server
Error).

Oracle Endeca Commerce Assembler Application Developer's Guide

Building Applications with the Endeca Assembler | About Assembler error handling60

Chapter 5

Working with Application URLs

Each of the user-facing pages in an Assembler application exists as a page with a corresponding
navigation or record state; the combination of the page and its state results in a specific set of results
or a set of record details. The Assembler API includes an Action class for storing these URL
components and returning them as part of the output model produced by a cartridge handler.

About application URLs
Features in a front-end application can provide one or more links to other locations within a site. The
information required for constructing these links is provided on the cartridge response model as an
Action object that includes the components of a destination URL.

For example, a dimension refinement in a Refinement Menu cartridge has an associated action to
select the refinement and add it to the end user's navigation state. A record in a Results List cartridge
has an action to view the corresponding record detail page.

The Assembler API includes an ActionPathProvider interface that returns components of an
application URL. For the Discover Electronics reference application, an implementation of this interface
is configured in the NavigationCartridgeHandler.

Cartridge handlers in the reference application use this implementation to create NavigationAction
paths to a certain navigation state (like the modified navigation state created when a user selects a
dimension refinement), or RecordAction paths to specified records (such as a record select from
the results list).

About Actions
An Action object allows you to construct a link that represents a decision by an end user.The included
fields and values depend on the action that the user wishes to take; they can include the action label,
the root site path, and the path to the destination content within the site.

The Action class does not include a complete URL to the resulting navigation state or record; instead,
the URL resulting from an Action is generally created by combining fields. For details, see "Action
fields."

The Assembler splits the class into three subclasses:

• NavigationAction — An Action that represents changing the current navigation state, such as
through a search query or the addition of a dimension refinement. For example, the "See All" link

on a RecordSpotlight object includes a NavigationAction for navigating to the refinement
state represented by the spotlight.

• RecordAction — An Action that represents selecting a record or aggregate record.The individual
records in a RecordSpotlight each include a RecordAction for selecting that record.

• UrlAction — An Action that represents following an arbitrary URL. The Media Banner cartridge
includes a UrlAction for URLs that are manually specified in Experience Manager.

Note: For information on the Actions associated with each output model, refer to the Assembler
API Reference (Javadoc) for the corresponding class.

Action fields
All Actions include the following fields:

DescriptionField

The label that displays to the application end-user for the specified action. For
example, you might set this to a product name for a link from a results list to a record

Label

detail page, or it you might set it to a dimension refinement name when displaying a
breadcrumb with an associated Action to remove the refinement and adjust the user's
navigation state.

The path that identifies the site associated with the Action.Site root path

The path that identifies the content associated with the Action within the containing
site . In the Discover Electronics reference application, this is the servlet that handles
the specified content type, such as /browse or /detail.

Content path

Additionally, certain types of Actions may include additional fields. A NavigationAction includes
a field for the navigation state represented by the Action, while a RecordAction action includes a
field for the corresponding record state.

Using action fields

To construct a useable link from an Action, the UI tier of your application (the cartridge renderers in
the Discover Electronics reference application) must include logic for combining the Action fields. A
typical use case consists of directly concatenating fields, depending on the type of page you wish to
link to.

In the reference application, a link to a navigation state typically combines the content path and the
desired navigation state:

String href = action.getContentPath() + action.getNavigationState();

A link to a record details page combines the content path with the appropriate record state:

String href = action.getContentPath() + action.getRecordState();

A link to an arbitrary URL does not require combining fields, since the UrlAction object includes a
method for directly retrieving a configured URL:

String href = action.getUrl();

Most of the Discover Electronics cartridge renderers use the <discover:link> tag, defined in
WEB-INF\tags\discover\link.tag. The tag makes use of the getUrlForAction function
declared in WEB-INF\tlds\functions.tld and defined in
WEB-INF\classes\com\endeca\infront\refapp\support\FunctionTags.java.

Oracle Endeca Commerce Assembler Application Developer's Guide

Working with Application URLs | About Actions62

About using Actions with the packaged services
The packaged services in Oracle Endeca Tools and Frameworks return specific actions for the included
cartridges.

The following is an example of the results of a guided search service query for the URI http://lo¬
calhost:8006/assembler-authoring/json/services/guidedsearch?Ntt=pink+camera,
serialized to JSON:

{
 "@type": "GuidedSearchService",
 "name": "Guided Search Service",
 "navigation": { … },
 "breadcrumbs": { … },
 "resultsList": {
 "@type": "ResultsList",
 "totalNumRecs": 213,
 "sortOptions": [
 {
 "@class": "com.endeca.infront.cartridge.model.SortOptionLa¬
bel",
 "selected": false,

"navigationState": "?Ntt=pink+camera",
 "contentPath": "/guidedsearch",
 "siteRootPath": "/services",
 "label": "Relevance"
 },
 {
 "@class": "com.endeca.infront.cartridge.model.SortOptionLa¬
bel",
 "selected": false,

"navigationState": "?Ns=product.price%7C0&Ntt=pink+camera",

 "contentPath": "/guidedsearch",
 "siteRootPath": "/services",
 "label": "Price (Ascending)"
 },
 { … }
],
 "firstRecNum": 1,
 "lastRecNum": 10,
 "pagingActionTemplate": { … },
 "recsPerPage": 10,
 "records": [
 {
 "@class": "com.endeca.infront.cartridge.model.Record",
 "detailsAction": {
 "@class": "com.endeca.infront.cartridge.model.RecordAc¬
tion",

"recordState": "/Kodak/Slim-Camera-Case/_/A-2707821",
 "contentPath": "/recorddetails",
 "siteRootPath": "/services"
 },
 "numRecords": 1,
 "attributes": { … },
 "records": […]
 },

{ content removed from this example }
]
 },

Oracle Endeca Commerce Assembler Application Developer's Guide

63Working with Application URLs | About Actions

"content removed from this example"
}

Note that the sortOptions returned for the Results List cartridge include the Action fields required
to create a URL for the navigation state resulting from modifying the sort order. Sorting by Price
(Ascending) requires constructing a URL with the appropriate navigationState, resulting in
http://localhost:8006/assembler-authoring/json/services/guidedsearch?Ns=product.price|0&Ntt=pink+camera.
Querying this URL returns the JSON response for the re-ordered results.

Similarly, each of the records returned in the Results List includes the Action fields for an associated
record details page. Using the /recorddetails content root and the recordState for the Slim
Camera Case results in the URL
http://localhost:8006/assembler-authoring/json/services/recorddetails/Kodak/Slim-Camera-Case/_/A-2707821.
Querying this URL returns the record details for the Slim Camera Case.

About working with URL parameters
The navigationStateBuilder handles both Endeca-specific and non-Endeca URL parameters.

All URL parameters are parsed into the parameters map in the NavigationState object that
represents the user's current navigation state. Endeca-specific parameters are used in constructing
MDEX Engine queries. All other parameters are included in the navigation state or record state fields
on the Action object in the output model.You can change this default behavior by specifying which
parameters to remove when generating Actions:

DescriptionProperty

A list of URL parameters that should be removed
from all Actions.

removeAlways

A list of URL parameters that should be removed
from an Action when the Action represents a
change in the filter (search or navigation) state.

removeOnUpdateFilterState

A list of URL parameters that should be removed
from an Action when the user clears the filter state
of all search and navigation selections.

removeOnClearFilterState

About URL configuration in the reference application
URL configuration in the Discover Electronics reference application is located in the Assembler context
file, WEB-INF\assembler-context.xml. Configuration is divided between the navigationState¬
Builder and the NavigationCartridgeHandler.

The configuration for the navigationStateBuilder specifies a urlFormatter to use when
serializing a NavigationState:

<!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    ~ Navigation state (including record state) and related config
-->

<bean id="navigationStateBuilder" scope="request"

Oracle Endeca Commerce    Assembler Application Developer's Guide

Working with Application URLs | About working with URL parameters64



      class="com.endeca.infront.navigation.url.UrlNavigationStateBuilder">

<property name="urlFormatter" ref="seoUrlFormatter" />
    <property name="mdexRequestBroker" ref="mdexRequestBroker"/>
    <property name="defaultSearchKey" value="All" />
    <property name="defaultMatchMode" value="ALLPARTIAL" />
    <property name="defaultFilterState">

<!-- Filter state properties removed from this example -->
    </property>

Note: The seoUrlFormatter bean is defined in the imported endeca-seo-url-config
file.

Configuring URL parameters

The configuration for the navigationStateBuilder also lets you specify the URL parameters to
remove from the request URL when serializing a NavigationState or RecordState:

    <property name="removeAlways">
        <list>
            <value>contentText</value>
            <value>Nty</value>
            <value>Dy</value>
            <value>collection</value>
        </list>

</property>
    <property name="removeOnUpdateFilterState">
        <list>
            <value>No</value>
        </list>
    </property>

<property name="removeOnClearFilterState">
        <list>
            <value>Ns</value>
            <value>Nrpp</value>
            <value>more</value>
        </list>

</property>
</bean>

Configuration for navigation and record paths

The content paths that prefix navigation and record states when creating Action URLs are configured
in the actionPathProvider of the NavigationCartridgeHandler as sets of key-value pairs:

<bean id="NavigationCartridgeHandler" abstract="true">
    <property name="navigationState" ref="navigationState" />
    <property name="mdexRequestBroker" ref="mdexRequestBroker" />
    <property name="actionPathProvider">
        <bean scope="request" class="com.endeca.infront.refapp.navigation.Ba¬
sicActionPathProvider">
            <constructor-arg index="0" ref="contentSource"/>
            <constructor-arg index="1" ref="httpServletRequest"/>

<!-- navigationActionUriMap -->
            <constructor-arg index="2">
                <map>
                    <entry key="^/pages/mobile/detail$" value="/pages/mo¬
bile/browse" />

Oracle Endeca Commerce    Assembler Application Developer's Guide

65Working with Application URLs | About URL configuration in the reference application



                    <entry key="^/pages/detail$" value="/pages/browse" />
                </map>
            </constructor-arg>
            <!-- recordActionUriMap -->
            <constructor-arg index="3">
                <map>
                    <entry key="^/pages/mobile/.*$" value="/pages/mobile/de¬
tail" />
                    <entry key="^/pages/.*$" value="/pages/detail" />
                </map>
            </constructor-arg>
        </bean>
    </property>
</bean>

URL formatter configuration
The Discover Electronics reference application serializes NavigationState objects through the use
of a UrlNavigationStateBuilder configured with a UrlFormatter. By default, the application
is configured for search engine optimized (SEO) URLs using the SeoUrlFormatter class, but it also
includes a BasicUrlFormatter for creating basic Endeca URLs.

The basic URL formatter

The following properties can be set on the basicUrlFormatter bean:

DescriptionProperty

Specifies the default query encoding, for example, UTF-8.defaultEncoding

Specifies whether a question mark is prepended to the URL
parameter portion of the URL, after the servlet path.

prependQuestionMark

The configuration in WEB-INF\endeca-url-config is shown below:

<!--
    ########################################################################

    # BEAN: basicUrlFormatter
    #
    # This is an UrlFormatter that generates "classic" Endeca URLs.
    #
-->

<bean id="basicUrlFormatter" class="com.endeca.soleng.urlformatter.basic.Ba¬
sicUrlFormatter">
    <property name="defaultEncoding">
        <value>UTF-8</value>
    </property>

    <property name="prependQuestionMark">
        <value>true</value>
    </property>
</bean>

The SEO URL formatter

The following properties can be set on the seoUrlFormatter bean:

Oracle Endeca Commerce    Assembler Application Developer's Guide

Working with Application URLs | About URL configuration in the reference application66



DescriptionProperty

Specifies the default query encoding, for example, UTF-8.defaultEncoding

The separator token used to separate the path section of the URL
from the parameter section.

pathSeparatorToken

The character used to separate key/value pairs in the parameter
section of the URL.

pathKeyValueSeparator

Specifies the URL parameter keys for the following:pathParamKeys

• The parameter key used for record detail links. The default value
is R.

• The parameter key used for aggregate record detail links. The
default value is A.

• The parameter key used for navigation state. The default value is
N.

The NavStateFormatter that maps navigation state information to
URL path keywords.

navStateFormatter

The ERecFormatterthat maps Endeca record attributes to URL path
keywords.

ERecFormatter

The AggrERecFormatter that maps aggregate record attributes to
URL path keywords.

aggrERecFormatter

Specifies the canonicalizer used to sort URL parameters to ensure
that included parameters are arranged a specific order.

navStateCanonicalizer

Determines whether or not the canonicalizer specified in navState¬
Canonicalizer is used. The default value is true. This value is
ignored if the canonicalLinkBuilder enables canonical links.

useNavStateCanonicaliz¬
er

A list of UrlParamEncoder objects to use for encoding URL
parameters.

urlParamEncoders

The configuration in WEB-INF\endeca-seo-url-config is shown below:

<!--
    ########################################################################

    # BEAN: seoUrlFormatter
    #
    # This is the SEO URL formatter, which is responsible for
    # transforming UrlState objects into URL strings. 
    #
-->
    <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">

    <property name="defaultEncoding">
        <value>UTF-8</value>
    </property>

    <property name="pathSeparatorToken">
        <value>_</value>
    </property>

Oracle Endeca Commerce    Assembler Application Developer's Guide

67Working with Application URLs | About URL configuration in the reference application



    <property name="pathKeyValueSeparator">
        <value>-</value>
    </property>

    <property name="pathParamKeys">
        <list>
            <value>R</value>
            <value>A</value>
            <value>N</value>
        </list>
    </property>

    <property name="navStateFormatter">
        <ref bean="navStateFormatter"/>
    </property>

    <property name="ERecFormatter">
        <ref bean="erecFormatter"/>
    </property>

    <property name="aggrERecFormatter">
        <ref bean="aggrERecFormatter"/>
    </property>

    <property name="navStateCanonicalizer">
        <ref bean="navStateCanonicalizer"/>
    </property>

    <property name="useNavStateCanonicalizer">
        <value>false</value>
    </property>

    <property name="urlParamEncoders">
        <list>
            <ref bean="N-paramEncoder"/>
        </list>
    </property>
</bean>

About working with canonical links
Configure the Assembler to add canonical link support to the root content item.

The canonical link configuration in the Discover Electronics reference application is located in the
Assembler context file, WEB-INF\assembler-context.xml. Configuration is handled by the
canonicalLinkBuilder which constructs links for navigation state and record state URLs that
include the canonical link element.

The Canonical Link Builder

The following properties can be set on the canonicalLinkBuilder:

DescriptionProperty

Allows the retrieval of services without explicit
injection. In this case, it is used to reference the

objectLocator

Oracle Endeca Commerce    Assembler Application Developer's Guide

Working with Application URLs | About working with canonical links68



DescriptionProperty

framework for retrieving the recordState and
navigationState for the current request.

The ID of the recordState being retrieved, not
the actual recordState.

recordStateId

The ID of the navigationState being retrieved,
not the actual navigationState.

navigationStateId

The list of URL parameters that are included in the
canonical link.

includedParameters

The configuration for the canonicalLinkBuilder specifies an objectLocator to use when
creating canonical links:

<bean id="assemblerFactory" class="com.endeca.infront.assem¬
bler.spring.SpringAssemblerFactory">
...
    <constructor-arg>
        <list>
            ...
            <bean class="com.endeca.infront.navigation.url.event.CanonicalL¬
inkBuilder">
                <property name="objectLocator" ref="springUtility"/>
                <property name="recordStateId" value="recordState"/>
                <property name="navigationStateId" value="navigationState"/>

                <property name="includedParameters">
                    <list>
                        <value>R</value>
                        <value>A</value>
                        <value>N</value>
                        <value>Ntt</value>
                    </list>
                </property>
            </bean>
        </list>
    </constructor-arg>
</bean>

Output content items

The Assembler API returns navigation state and record state content items as output from the
CanaonicalLinkBuilder. The following examples are JSON representations of the output.

NavigationState

{
    name: "Static Page Slot",
    ...,
    canonicalLink: {
        @class: "com.endeca.infront.cartridge.model.NavigationAction",
        navigationState: "/Canon/cameras/_/N-1z141xuZ1z141yaZ25y6Zej4?for¬
mat=json",
        contentPath: "/browse",
        siteRootPath: "/pages",
        label: ""

Oracle Endeca Commerce    Assembler Application Developer's Guide

69Working with Application URLs | About working with canonical links



    }
}

RecordState

{
    name: "Static Page Slot",
    ...,
    canonicalLink: {
        @class: "com.endeca.infront.cartridge.model.RecordAction",
        recordState: "/_/A-1318562?format=json",
        contentPath: "/detail",
        siteRootPath: "/pages",
        label: ""
    }
}

For each of the content items, a JSP file can render output as in this example:

<link rel="canonical" href="<c:url value='${util:getUrlForAction(rootCompo¬
nent.canonicalLink)}'/>"/>

Related Links
About application URLs on page 61

Features in a front-end application can provide one or more links to other locations within a
site.The information required for constructing these links is provided on the cartridge response
model as an Action object that includes the components of a destination URL.

About Actions on page 61
An Action object allows you to construct a link that represents a decision by an end user.
The included fields and values depend on the action that the user wishes to take; they can
include the action label, the root site path, and the path to the destination content within the
site.

About working with URL parameters on page 64
The navigationStateBuilder handles both Endeca-specific and non-Endeca URL
parameters.

About URL configuration in the reference application on page 64
URL configuration in the Discover Electronics reference application is located in the Assembler
context file, WEB-INF\assembler-context.xml. Configuration is divided between the
navigationStateBuilder and the NavigationCartridgeHandler.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Working with Application URLs | About working with canonical links70



Chapter 6

Implementing Multichannel Applications

This section covers how to design and implement multichannel applications built on the Assembler
and managed using Workbench with Experience Manager.

Overview of multichannel applications with the Endeca
Assembler

The Endeca Assembler provides an API for delivering content across an entire site, allowing content
configuration to be shared between channels when appropriate, and also enabling a more targeted
channel-specific experience where desired.

Enabling the full flexibility of the cross-channel experience involves the following:

• Creating channel-specific templates. Content administrators may wish to configure different
features or cartridges for different channels. For example, pages designed for mobile devices
typically have a simpler structure and present fewer options than pages designed for desktop Web.

• Writing channel-specific rendering code. Due to the limitations of mobile browsers and device
bandwidth, renderers for mobile Web applications are typically more lightweight than those for
desktop Web, while native applications for mobile devices require platform-specific client code.

• Enabling device detection. The UI tier of your Assembler application should include logic for
handling device detection.Typically, this also includes redirecting a client to the appropriate service
for their user agent.

Note:  Endeca for Mobile is licensed separately from Oracle Endeca Guided Search and Oracle
Endeca Experience Manager. It requires an additional software license.

About creating templates for mobile channels
The set of templates in a multichannel application should give content administrators the flexibility to
manage channel-specific content in Experience Manager. At the same time, it should enable them to
share configuration across channels whenever possible in order to provide the maximum consistency
throughout a site.

The following general practices help enable this combination of flexibility and consistency:

• Create different top-level page templates for channels that have a different high-level structure.
For example, the same range of cartridges may not be appropriate to a page designed to display



on a mobile device as opposed to a page designed to display on a desktop computer. Native
applications for mobile devices may display content in "pages" that differ from those intended for
mobile Web browsers.

• Use dynamic slots for configuration that should be shared across channels, similar to how dynamic
slots enable reuse of content between pages. For example, if the same refinement configuration
(such as overall dimension order, refinement ordering, and boost and bury options) should apply
at a specific navigation state regardless of channel, it may make sense to configure this in a
separate content collection for navigation and reference it from the appropriate pages for each
channel.

To enable the greatest flexibility in Experience Manager while ensuring that content administrators
create configurations that are appropriate to each channel, you can restrict the cartridges that can be
placed on a page or in a content collection via the content type mechanism in Experience Manager.
These content types may vary depending on the intended purpose of a page or dynamic slot. For
example, you may have the following in your application:

• Page templates for desktop Web, which may define a section of type SecondaryContent. This
section may be populated with Guided Navigation cartridges, Spotlight cartridges, or dynamic slots
serving as a placeholder for either type.

• A content collection designed for Guided Navigation cartridges. This is similar to the Navigation
section of the mobile page, but it should not allow a content administrator to create a dynamic slot
within a dynamic slot, so it should have a third content type (such as Navigation) to enforce this
restriction.

In most cases, all the Dimension Navigation cartridges in an application should be identical as the
configuration of data-driven cartridges should be the same regardless of channel. Each of these
identical cartridges should be mapped to the same cartridge handler in the Endeca Assembler. For
more information about configuring cartridge handlers, refer to the Endeca Assembler Application
Developer's Guide.

About device detection in the reference application
The reference application uses a DeviceManager class in the com.endeca.mobile.services.de¬
tection package to parse user agent strings and determine the appropriate content path and rendering
channel for a request.

Each end user request is sent to the application controller, WEB-INF\services\assemble.jsp.
The controller determines the device channel, dispatches the request to the Assembler, then sends
the resulting response model to the appropriate renderer:

<%
    //The channel to prefix map. See the DeviceManager class for more info

    //Note: LinkedHashMap will preserve the order of entries
    Map<String,String> channelToPagePrefixMap = new Linked¬
HashMap<String,String>();
    channelToPagePrefixMap.put("Endeca.Infront.Channel.Mobile","/mobile");

    //This channel is the default one. This entry should be the last one 
in the map
    //because all strings start with the empty string.
    channelToPagePrefixMap.put("Endeca.Infront.Channel.Desktop","");

    //The resources map. See the DeviceManager class for more info
    Map<String,String> resourcesMap = new LinkedHashMap<String,String>();
    resourcesMap.put("/desktop", "/WEB-INF/views/desktop/");

Oracle Endeca Commerce    Assembler Application Developer's Guide

Implementing Multichannel Applications | About device detection in the reference application72



    resourcesMap.put("/mobile", "/WEB-INF/views/mobile/");

    //The list of the pages that will get redirected. See the DeviceManager
 class for more info
    List<String> validMobilePages = new ArrayList<String>();
    validMobilePages.add("/browse");
    validMobilePages.add("/detail");

    DeviceManager deviceManager = new DeviceManager(channelToPagePrefixMap,
 validMobilePages, resourcesMap);

//AssemblerFactory, spring context, and user state creation removed 
from this example

    String userAgent =  userState.getUserAgent();

    //If the userAgent is null, then no user-agent was specified and we 
need to use the original one.
    if(userAgent == null){
        userAgent = request.getHeader("user-agent");
    }

    String contentUri = deviceManager.getContentPath(request.getPathInfo(),
 userAgent);

    if(!contentUri.equals(request.getPathInfo())){
        String query = request.getQueryString() == null ? "" : "?" + re¬
quest.getQueryString();
        response.sendRedirect(request.getContextPath() + contentUri + query);

    }else{
// Assembler and ContentInclude creation removed from this example

        // Assemble the content
        ContentItem responseContentItem = assembler.assemble(contentItem);

        // If the response contains an error, send an error
// error handling removed from this example

        else
        {
            // Determine the output format and write to response
            String format = request.getParameter("format");
            if("json".equals(format)) {
                response.setHeader("content-type", "application/json");
                new JsonSerializer(response.getWriter()).write(responseCon¬
tentItem);
            } else if ("xml".equals(format)) {
                response.setHeader("content-type", "application/xml");
                new XmlSerializer(response.getWriter()).write(responseCon¬
tentItem);
            } else {
                request.setAttribute("component", responseContentItem);
                request.setAttribute("rootComponent", responseContentItem);

                // This is used by the discover:include tag
                request.setAttribute("Endeca.InFront.ComponentResourcePath",
 deviceManager.getResourcePath(contentUri));

Oracle Endeca Commerce    Assembler Application Developer's Guide

73Implementing Multichannel Applications | About device detection in the reference application



                %>
                <discover:include component="${component}"/>
                <%
            }
        }
    }
%>

For more information about content paths and application URLs, see "Working with Application URLs."

Related Links
Working with Application URLs on page 61

Each of the user-facing pages in an Assembler application exists as a page with a
corresponding navigation or record state; the combination of the page and its state results
in a specific set of results or a set of record details. The Assembler API includes an Action
class for storing these URL components and returning them as part of the output model
produced by a cartridge handler.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Implementing Multichannel Applications | About device detection in the reference application74



Chapter 7

Configuring Front-End Application Features

This section describes the cartridge configuration model for front-end application features, and provides
a description of the core cartridges in Oracle Endeca Tools and Frameworks.

About configuring application features
Features in an Assembler application are implemented as cartridges. In the Discover Electronics
reference application, the behavior of cartridges depends on multiple sources of configuration. These
are combined into a configuration model.

Cartridge-specific configuration falls into the following categories, in ascending order of priority:

• MDEX Engine configuration, which may be specified as part of the data integration process or
by a configuration update

• Default cartridge configuration, which is typically specified in the Spring context file for the
Assembler

• Cartridge instance configuration, which is typically specified by the content administrator in
Workbench

• Request-based configuration, which is typically specified by the end-user in the client application

Request-based configuration overrides the cartridge instance configuration, which overrides the
cartridge-level defaults, which override the application-wide defaults in the MDEX Engine.

The core cartridges typically consist of a strongly typed configuration model, a response model, and
a cartridge handler that processes the configuration model into the response model. By convention,
they are named as follows:

DescriptionClass name

The configuration model for the cartridge. For the core cartridges,
the properties of this class represent all the configuration parameters

<CartridgeName>Config

that the cartridge handler needs to do its processing. It does not
include configuration that can only be specified in the MDEX Engine
or pass-through properties that are used by the reference application
renderers without any modification by the cartridge handler.

The handler that processes a cartridge.The core cartridge handlers
are responsible for layering the default configuration, instance

<CartridgeName>Handler

configuration, and request-based configuration during processing.
For more information about how to customize the handling of



DescriptionClass name

cartridge configuration (such as introducing additional sources of
configuration), refer to the Experience Manager Cartridge
Developer's Guide.

The response model produced by the cartridge handler. Cartridge
response models may include objects that are reused among

<CartridgeName>

cartridges. For example, the ResultsList and RecordSpot¬
light both contain Record objects.

For details about the implementations of these classes for specific cartridges, refer to the Endeca
Assembler API Reference (Javadoc).

Feature configuration in the MDEX Engine
There are two subcategories of MDEX Engine–level feature configuration: dynamic configuration that
can be updated in a running MDEX Engine without re-indexing, and static configuration that must be
specified at index time.

Dynamic configuration includes search interfaces, thesaurus, and automatic phrasing. Static
configuration includes features such as such as stop words or precedence rules. Updating static
configuration requires that you re-run the data ingest process before the changes can take effect. For
detailed information on feature configuration in the MDEX Engine, refer to the MDEX Engine Basic
Development Guide and the MDEX Engine Advanced Development Guide.

In addition, some features depend on certain Dgraph and Dgidx flags to enable or configure their
functionality. For information about Dgraph and Dgidix flags, refer to the Oracle Endeca Commerce
Administrator's Guide.

Default cartridge configuration
You can specify default configuration settings for a cartridge as part of the cartridge handler configuration
in the Spring context file for the Assembler.

Cartridge handlers are responsible for managing the various sources of configuration that apply to a
specific cartridge.The cartridge handler configuration (including default configuration values) is specified
as part of the Spring context file for the Assembler. In the Discover Electronics application, this is
defined in WEB-INF/assembler-context.xml.

You specify the cartridge handler for a specific cartridge by defining a bean whose ID follows the format
CartridgeHandler_<CartridgeType>, where the <CartridgeType> is the id of the
corresponding template. For example, the cartridge handler for the Breadcrumbs cartridge is defined
in the CartridgeHandler_Breadcrumbs bean.You can map more than one cartridge to the same
cartridge handler.

Typically, you specify the default configuration for a cartridge by defining a contentItemInitial¬
izer property within the cartridge handler.The value of this property is a bean whose class implements
the ContentItemInitializer interface.The core cartridges use the ConfigInitializer class,
which provides a default implementation for merging the default, instance, and request-based
configuration for a cartridge. Within the contentItemInitializer bean, the defaults property
(if defined) must be a bean whose class is a ContentItem representing the cartridge configuration
model to use as a default.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | About configuring application features76



For information about the properties available in the configuration model for the core cartridges, refer
to the Endeca Assembler API Reference (Javadoc) for the relevant configuration model class.

The following shows an example of default configuration for a Record Spotlight cartridge. The de¬
faults property of the ConfigInitializer bean is an instance of RecordSpotlightConfig
that has been initialized with a set of default values for the fieldNames property.

<bean id="CartridgeHandler_RecordSpotlight" 
    class="com.endeca.infront.cartridge.RecordSpotlightHandler"
    parent="NavigationCartridgeHandler" 
    scope="prototype">
    <property name="contentItemInitializer">
        <bean class="com.endeca.infront.cartridge.ConfigInitializer" 
scope="request">
            <property name="defaults">
                <bean class="com.endeca.infront.cartridge.RecordSpotlight¬
Config" scope="singleton">
                    <property name="fieldNames">
                        <list>
                            <value>product.name</value>
                            <value>product.brand.name</value>
                            <value>product.price</value>
                            <value>product.min_price</value>
                            <value>product.max_price</value>
                            <value>product.img_url_thumbnail</value>
                            <value>product.review.avg_rating</value>
                        </list>
                    </property>
                </bean>
            </property>
        </bean>
    </property>
</bean>

Note:  Any property of the configuration model can be specified in the Spring context file.
However, it is not required to specify a value for every property, only those for which you want
to specify a default.

Cartridge instance configuration
The content administrator can configure each instance of a cartridge using Experience Manager in
Endeca Workbench.The cartridge instance configuration is passed in as the argument to the initial¬
ize() method of the cartridge handler.

You define which aspects of a cartridge are configurable in Workbench via the cartridge template.
Typically this is a subset of the properties in the configuration model. The sample templates provided
as part of the Discover Electronics application are intended to cover the majority of use cases.

Cartridge templates for the reference application are included in the
reference\discover-data\cartridge_templates directory, or <app
dir>\config\cartridge_templates directory for a deployed application.

You can customize the templates for the core cartridges by adding properties to a template in addition
to those required by the configuration model. These additional properties can either be processed by
a custom cartridge handler implementation or passed through directly to the response model. Some

Oracle Endeca Commerce    Assembler Application Developer's Guide

77Configuring Front-End Application Features | About configuring application features



of the templates in the Discover Electronics application define pass-through properties; these are
described in the sections on the specific cartridges.

For details about configuring properties and editors in a cartridge template, refer to the "Template
Property and Editor Reference" appendix in this guide.

Note:  If you have purchased Oracle Endeca Guided Search only and do not have Oracle Endeca
Experience Manager, most of the core cartridges are not available for configuration in Workbench.
Of the core cartridges, only the Record Spotlight cartridge is available in Rule Manager. Custom
cartridges that use primitive properties only (typically as pass-through properties) can also be
configured in Rule Manager. The remaining cartridges can be configured with application-wide
default values in the Spring context file for the Assembler.

Related Links
Template Property and Editor Reference on page 143

This section describes how to define basic content properties and associated editing interfaces
in Experience Manager templates.

Request-based configuration
For some cartridges, it is appropriate for aspects of their configuration to be overridden at query time.
Typically, request-based configuration is specified as URL query parameters.

To enable per-request configuration based on URL parameters, the contentItemInitializer
bean of the cartridge handler can specify a requestParamMarshaller bean whose class is Re¬
questParamMarshaller or a subclass. RequestParamMarshaller is a helper class that parses
request parameters into properties of the cartridge configuration model.

For information about the URL query parameters that apply to the core cartridges, refer to the Endeca
Assembler API Reference (Javadoc) for the relevant RequestParamMarshaller subclass. These
classes define the URL parameters that the cartridge accepts and their mappings to properties on the
configuration model.

Search features
The Discover Electronics application includes reference implementations of several commonly-used
search features. The configuration models for these features are described in the following section.

Search box
The Search Box cartridge enables the site visitor to enter search terms and view record results. If
dimension search is enabled, dimension search results may also be displayed. A content administrator
can configure Search Box behavior such as whether to apply search adjustments or display auto-suggest
search results.

The response model for this cartridge is SearchBox.

The Search Box cartridge does not make use of a configuration model or a cartridge handler; properties
specified in the cartridge template and in the end user's search request are passed through to the
renderer.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Search features78



The renderer for this cartridge makes use of a JavaScript module, endeca-auto-suggest.js, to
display the auto-suggest panel for search suggestions.

MDEX Engine configuration for the Search Box cartridge

Because the Search Box enables keyword search for records and dimension values, most search
configuration affects the behavior of this cartridge.This section focuses on record search configuration.

Dynamic configuration

The main aspects of search-related configuration that can be updated without re-indexing are the
search interfaces for an application. Search interfaces specify a collection of properties and dimensions
against which text searches are performed, and may also specify a default relevance ranking strategy.
For information about creating search interfaces, refer to the MDEX Engine Basic Development Guide.

The properties and dimensions within a search interface must be enabled for record search as part
of the data ingest process. For information about enabling properties and dimensions for search, refer
to the Developer Studio Help.

Search results are also affected by thesaurus configuration that a content administrator can specify
in Workbench.

Static configuration

Aspects of search behavior that must be specified at index time include stop words, stemming, and
search characters.

• stop words are commonly occurring words (like "the") that are ignored for keyword search.
• stemming broadens search results to include root words and variants of root words.
• search characters configuration enables you to designate certain non-alphanumeric characters

as significant for search.

For information about configuring these features, refer to the MDEX Engine Basic Developer's Guide.

Template configuration for the Search Box cartridge

The Search Box cartridge does not include a configuration model or a cartridge handler; instead,
template configuration is passed through to the cartridge renderer.

The Search Box cartridge template includes properties that impact auto-suggest behavior. The
auto-suggest panel itself is implemented as a configurable dynamic slot, and is configured separately.

The Search Box cartridge template includes the following configurable pass-through properties:

DescriptionProperty name

This property specifies the content collection that should be used
to populate the dynamic slot for the auto-suggest panel.

contentCollection

This property specifies how many characters a user must type before
the auto-suggest panel displays.

minAutoSuggestInput¬
Length

This property sets the number of content items to return when
populating the auto-suggest panel dynamic slot. It is limited by the

ruleLimit

evaluation limit of the specified contentCollection. The actual
number of auto-suggest content items displayed is also limited by
the rendering code, which only supports rendering a single
auto-suggest panel by default.

Oracle Endeca Commerce    Assembler Application Developer's Guide

79Configuring Front-End Application Features | Search features



Note:  If you do not want to provide the option of enabling auto-suggest search results in
Experience Manager, remove the properties and editors from the template, and remove the
JavaScript module from the component.

Related Links
Auto-suggest search results on page 80

Auto-suggest search results display as the site visitor types in the search box, rather than
displaying after the visitor has completed the search. In the Discover Electronics reference
application, the auto-suggest panel is implemented as a content item that populates a dynamic
slot in the Search Box cartridge.

Auto-suggest search results
Auto-suggest search results display as the site visitor types in the search box, rather than displaying
after the visitor has completed the search. In the Discover Electronics reference application, the
auto-suggest panel is implemented as a content item that populates a dynamic slot in the Search Box
cartridge.

In addition to configuring the auto-suggest feature on the Search Box cartridge, a content administrator
must also configure the display of different types of search suggestions. This section describes the
cartridges that can be configured within the auto-suggest panel.

Currently, the only auto-suggest cartridge in the Discover Electronics reference application is one that
displays dimension search results. It returns the same response model as the Dimension Search
cartridge. Other possible uses for auto-suggest cartridges include those for Popular Searches, Featured
Categories, and Product Search.

MDEX Engine configuration that impacts search results also applies to auto-suggest results. For
example, enabling or disabling wildcard search on dimension search will affect the dimensions returned
for a dimension search auto-suggest panel.

The JavaScript component of the Search Box in the Discover Electronics application acts as the
renderer for the auto-suggest panel.

Template configuration for the auto-suggest panel

The cartridge template for the auto-suggest panel itself includes a dynamic content slot, with no other
configuration.

Configuration model for the Auto-Suggest Dimension Search Results cartridge

The Auto-Suggest Dimension Search Results cartridge uses the same configuration model as the
Dimension Search Results cartridge.

The configuration model for this cartridge is DimensionSearchResultsConfig. For an overview
of this model, see "Configuration model for the Dimension Search Results cartridge" or refer to the
Assembler API documentation (Javadoc).

Related Links
Configuration model for the Dimension Search Results cartridge on page 82

The Dimension Search Results cartridge configuration model controls the number, ranking,
and display of returned results.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Search features80



Cartridge handler configuration for the Auto-Suggest Search Results cartridge

Because the Auto-Suggest Dimension Search Results cartridge uses the same configuration model
as the Dimension Search Results cartridge, it also shares the same cartridge handler.

The cartridge handler configuration maps the Dimension Search Auto-Suggest cartridge to the Dimen¬
sionSearchResultsHandler. There are no application-wide default values set for this cartridge.

Related Links
Search box on page 78

The Search Box cartridge enables the site visitor to enter search terms and view record
results. If dimension search is enabled, dimension search results may also be displayed. A
content administrator can configure Search Box behavior such as whether to apply search
adjustments or display auto-suggest search results.

Template configuration for the Auto-Suggest Dimension Search Results cartridge

The Auto-Suggest Dimension Search Results cartridge populates the dynamic slot in the Auto-Suggest
panel. The cartridge template is similar to the Dimension Search Results template.

The Auto-Suggest Dimension Search Results cartridge template allows a content administrator to
configure the following properties on the configuration model:

• maxResults

• dimensionList

• maxResultsPerDimension

• showCountsEnabled

In addition, the cartridge template includes the following pass-through properties:

DescriptionProperty name

Optional. A header that displays above the dimension search results.title

If set to true, a thumbnail image displays next to each dimension
value.The URL of the image must be the value of a dimension value
property named img_thumbnail_url.

displayImage

Note:  If there is no such property on dimension values in the
data set, remove this option and its associated editor from the
template to disable this feature.

Dimension search results
The Dimension Search Results cartridge displays refinement links based on the names of dimension
values that match the search keywords entered by the site visitor.

The dimension search results display in a panel after the site visitor performs the search.These results
provide suggestions for additional navigation refinements based on the search terms.

The response model for this cartridge is DimensionSearchResults. It contains a list of Dimension¬
SearchGroup objects that in turn contain dimensionSearchValues that provide refinement links.

Oracle Endeca Commerce    Assembler Application Developer's Guide

81Configuring Front-End Application Features | Search features



Configuration model for the Dimension Search Results cartridge

The Dimension Search Results cartridge configuration model controls the number, ranking, and display
of returned results.

The configuration model for this cartridge is DimensionSearchResultsConfig. It includes the
following properties:

DescriptionProperty name

Enables or disables the display of returned dimension refinements.
By default, this property is false. It is enabled via URL request by
setting the Dy URL parameter to 1.

enabled

Specifies the maximum number of dimension value results across
all dimensions to display.

maxResults

Specifies the maximum number of dimension values to display per
dimension.

maxResultsPerDimension

Specifies the dimensions on which to perform dimension search.
The results display based on the order in which the dimensions are
specified, up to the maximum number of suggestions.

dimensionList

Specifies whether to display refinement counts in dimension search
results.

showCountsEnabled

Optional. Specifies a relevance ranking string to use for dimension
search, such as "first,static(nbins,desc)". If you do not set this

relRank

property, dimension value relevance ranking is set to the default
(alpha, numeric, or manual) defined in Developer Studio.

MDEX Engine configuration for dimension search results

Different aspects of dimension search can be configured on a global or per-dimension basis.

Dynamic configuration

You can specify global dimension search behavior in the Dimension Search Configuration editor in
Developer Studio. Oracle recommends enabling wildcard search for dimensions, especially if you are
using the Auto-Suggest Dimension Search cartridge or the Dimension Value Boost-Bury editor.Wildcard
search enables partial matches to be returned for searches in addition to full word matches (for example,
a search for "pink" would also return "gray/pink") which is useful for displaying suggestions while the
user is typing search terms.

Additional options include whether to return only the highest ancestor dimension value, and whether
to return inert dimension values in dimension search results. For more information about global
dimension configuration, refer to the Developer Studio Help.

Static configuration

You can configure dimension-specific search behavior in the Dimension editor in Developer Studio.
This includes whether to search across the entire dimension hierarchy rather than only individual
dimension values and also enables you to specify dimension value synonyms to be used for search.
For more information about per-dimension configuration, refer to the Developer Studio Help.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Search features82



Cartridge handler configuration for Dimension Search Results

The Dimension Search Results cartridge handler extends the NavigationCartridgeHandler.

The cartridge handler uses the DimensionSearchResultsConfigInitializer to merge the
layered configuration. The included requestParamMarshaller bean enables URL request-based
configuration for the cartridge, which is required for dynamically enabling the feature.

Template configuration for the Dimension Search Results cartridge

The Dimension Search Results cartridge template allows a content administrator to configure how
many results should be displayed to the end user, and how they should display.The cartridge template
also includes two pass-through properties that are passed directly to the cartridge renderer.

The Dimension Search Results cartridge template allows a content administrator to configure the
following properties on the configuration model:

• maxResults

• dimensionList

• maxResultsPerDimension

• showCountsEnabled

In addition, the cartridge template includes the following pass-through properties:

DescriptionProperty name

Optional. A header that displays above the dimension search results.title

If set to true, a thumbnail image displays next to each dimension
value.The URL of the image must be the value of a dimension value
property named img_thumbnail_url.

displayImage

Note:  If there is no such property on dimension values in the
data set, remove this option and its associated editor from the
template to disable this feature.

URL request parameters for the Dimension Search Results cartridge

The display of the Dimension Search Results cartridge on a page is controlled by setting the value of
the enabled property on the cartridge configuration model at runtime via the Dy URL parameter.

The cartridge renderer in the reference implementation sets the Dy parameter to 1 in all cases. While
this is equivalent to setting the property to true in the cartridge handler configuration, or as a
non-editable property in the cartridge template, the intent is to demonstrate where the logic belongs
in the application.

DescriptionURL
Parameter

Property name

Enables or disables the display of returned dimension refinements.
Setting Dy=1 sets the property to true.

Dyenabled

Oracle Endeca Commerce    Assembler Application Developer's Guide

83Configuring Front-End Application Features | Search features



Search adjustments
Search adjustments include automatic spelling correction, automatic phrasing, and Did You Mean
functionality.

The response model for this cartridge is SearchAdjustments.

The behavior of the spelling correction and Did You Mean features are configured at the MDEX Engine
level. The Search Adjustments cartridge enables content administrators to specify whether or not
search adjustments messaging displays on a page; it does not have any configuration options in
Experience Manager.

Configuration model for the Search Adjustments cartridge

The Search Adjustments cartridge configuration model enables you to enable or disable automatic
phrasing and automatic spelling correction. If query debugging features are enabled in your application,
you can also enable or disable debugging information about Word Interpretation.

The configuration model for this cartridge is SearchAdjustemntsConfig. It includes the following
properties:

DescriptionProperty name

Specifies whether to enable automatic phrasing. Defaults to true. Set via
URL request by setting the Ntp URL parameter to 1.

phraseSuggestio¬
nEnabled

Specifies whether to enable automatic spelling correction. Defaults to false.
Set via URL request by setting the Nty URL parameter to 1.

spellSuggestionEn¬
abled

If query debugging features are enabled, this property enables debugging
information about word or phrase subsitutions as a map that can be accessed

showWordInterp

via SearchAdjustments.getInterpretedTerms(). For additional
information, see "About query debugging results in the reference application."

Related Links
About query debugging results in the reference application on page 134

In Discover Electronics, query debugging results can be returned as part of the response
model for the Results List, Search Adjustments, and Refinement Menu cartridges as
appropriate. In the Discover Electronics reference application, these results can be enabled
by un-commenting the corresponding properties in each cartridge handler.

MDEX Engine configuration for the Search Adjustments cartridge

Search adjustments features are configured at indexing and at Dgraph startup.

Dynamic configuration

You can specify a list of phrases to be automatically applied to text search queries in Developer Studio.
For more information about configuring automatic phrasing, refer to the MDEX Engine Advanced
Development Guide.

Static configuration

You can configure the constraints on the spelling dictionaries for record search and dimension search
in the Spelling editor in Developer Studio. These settings determine the size of the spelling dictionary
that is generated at indexing time. Larger spelling dictionaries lead to slower performance of spelling
correction at query time; setting more restrictive constraints on the contents of the spelling dictionary

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Search features84



can lead to improved query performance. For more information about tuning the size of the spelling
dictionary, refer to the MDEX Engine Performance Tuning Guide.

Dgidx flags

You specify the spelling mode as a flag to Dgidx. Generally, applications that only need to correct
normal English words can enable just the default Aspell module. Applications that need to correct
international words, or other non-English/non-word terms (such as part numbers) should enable the
Espell module. For more information on spelling modes and the associated Dgidx flags, refer to the
MDEX Engine Advanced Development Guide.

The Deployment Template application configuration for the Discover Electronics reference application
has spelling correction and Did You Mean enabled as in the following example:

<!--
  ########################################################################

  # Dgidx
  #
-->
<dgidx id="Dgidx" host-id="ITLHost">
  <properties>
    <property name="numLogBackups" value="10" />
    <property name="numIndexBackups" value="3" />
  </properties>
  <args>
    <arg>-v</arg>
    <arg>--compoundDimSearch</arg>
  </args>
  <log-dir>./logs/dgidxs/Dgidx</log-dir>
  <input-dir>./data/forge_output</input-dir>
  <output-dir>./data/dgidx_output</output-dir>
  <temp-dir>./data/temp</temp-dir>
<run-aspell>true</run-aspell>

</dgidx>

Dgraph flags

You enable spelling correction and Did You Mean through Dgraph flags. Additional Dgraph flags
provide advanced tuning options for the spelling adjustment features that affect performance and
behavioral characteristics, such as the threshold for the number of hits at or above which spelling
corrections or Did You Mean suggestions are not generated. For more information on Dgraph flags
for search adjustment tuning, refer to the MDEX Engine Advanced Development Guide.

Note:  Auto-correct should be relatively conservative.You only want the engine to complete the
correction when there is a high degree of confidence. For more aggressive suggestions, it is
best to use Did You Mean.

The Deployment Template application configuration for the Discover Electronics reference application
has spelling correction and Did You Mean enabled as in the following example:

<!--
  ########################################################################

  # Global Dgraph Settings - inherited by all dgraph components.
  #
-->
<dgraph-defaults>
  <properties>

Oracle Endeca Commerce    Assembler Application Developer's Guide

85Configuring Front-End Application Features | Search features



<!-- additional elements removed from this example -->
  </properties>
  <directories>

<!-- additional elements removed from this example -->
  </directories>
  <args>
    <arg>--threads</arg>
    <arg>2</arg>
    <arg>--whymatch</arg>

<arg>--spl</arg>
    <arg>--dym</arg>
    <arg>--dym_hthresh</arg>
    <arg>5</arg>
    <arg>--dym_nsug</arg>
    <arg>3</arg>
    <arg>--stat-abins</arg>
  </args>
  <startup-timeout>120</startup-timeout>
</dgraph-defaults>

Cartridge handler configuration for Search Adjustments

The Search Adjustments cartridge handler extends the NavigationCartridgeHandler. The
application-wide default configuration in the Assembler context file allows you to enable or disable the
word interpretation debugging feature.

The cartridge handler uses a contentItemInitializer to merge the layered configuration. The
included requestParamMarshaller bean enables URL request-based configuration for the cartridge,
which is required for dynamically disabling or enabling automatic phrase suggestions and spelling
correction.

Related Links
About implementing automatic phrasing on page 87

You can configure the MDEX Engine to consider certain combinations of words in a text
search as a phrase search and specify whether to apply phrasing automatically to a site
visitor's text search queries.

Template configuration for the Search Adjustments cartridge

The cartridge template for the Search Adjustments cartridge does not include any configurable
properties. A content administrator can add the cartridge to a page in order to enable the display of
Search Adjustments, but cannot otherwise configure cartridge behavior.

URL request parameters for the Search Adjustments cartridge

Automatic phrasing and spelling correction are controlled by setting the value of their respective
properties on the cartridge configuration model at runtime via the Ntp and Nty URL parameters.

The cartridge renderer in the reference implementation sets both parameters to 1 in all cases. While
this is equivalent to setting the properties in the cartridge handler configuration, or in the cartridge
template, the intent is to demonstrate where the logic belongs in the application.

DescriptionURL
Parameter

Property name

Specifies whether to enable automatic phrasing.NtpphraseSugges¬
tionEnabled

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Search features86



DescriptionURL
Parameter

Property name

Specifies whether to enable automatic spelling correction.NtyspellSuggestio¬
nEnabled

About implementing automatic phrasing

You can configure the MDEX Engine to consider certain combinations of words in a text search as a
phrase search and specify whether to apply phrasing automatically to a site visitor's text search queries.

The high level steps for enabling automatic phrasing are:

• Enabling the MDEX Engine to compute phrases
• Configuring the default behavior of the Assembler application as to whether or not to automatically

apply computed phrases
• Adding application logic to enable Did You Mean suggestions or override the default automatic

phrasing behavior in certain situations

You enable the MDEX Engine to compute phrases that can be applied to a site visitor's text search
by creating a phrase dictionary. For information about creating a phrase dictionary, refer to the section
on Automatic Phrasing in the MDEX Engine Advanced Developer's Guide.

You can configure the default behavior of the Assembler application as to whether to automatically
rewrite a text search as a phrase search or keep it as a search for individual keywords using the
following property on the Filter State object:

DescriptionProperty

If set to true, instructs the MDEX Engine to compute phrases that
can be applied to a text search and automatically rewrite the query
using the phrased version. Automatic phrasing is enabled by default.

autoPhraseEnabled

The autoPhraseEnabled setting on the default Filter State can be overridden at query time using
the URL parameter autophrase. If the value of autophrase is 1, then computed phrases are
automatically applied to the query. If the value is 0 then phrases may still be computed, but are not
automatically applied to the query.

The Filter State configuration in the Assembler context file for the Discover Electronics reference
application is shown below:

<bean id="navigationStateBuilder" scope="request"
    class="com.endeca.infront.navigation.url.UrlNavigationStateBuilder">

<!-- additional elements removed from this example -->
<property name="defaultFilterState">

        <bean scope="singleton" class="com.endeca.infront.navigation.mod¬
el.FilterState">
            <property name="rollupKey" value="product.code" />

<property name="autoPhraseEnabled" value="true" />
            <!-- <property name="securityFilter" value="" /> -->
            <!-- <property name="languageId" value="en" /> -->
        </bean>
    </property>

<!-- additional elements removed from this example -->
</bean>

Oracle Endeca Commerce    Assembler Application Developer's Guide

87Configuring Front-End Application Features | Search features



Interaction with the Did You Mean feature

Whether automatic phrasing is applied or not, you can specify whether to return a "Did You Mean"
link for the alternate version using the Nty URL parameter. For example, if phrasing was automatically
applied, the Did You Mean suggestion would provide a link to the unphrased version of the query, and
vice versa. If the value of Nty is 1, then the Assembler returns suggestions for the alternate form of
the query. If the value is 0, no suggestions are returned.

Note: The Nty parameter controls Did You Mean suggestions for regular text search as well
as for automatic phrasing.

Phrase search scenario: Automatically applying phrases

In the Discover Electronics application, the default behavior is to automatically apply phrases to text
search queries and to return the unphrased version as a search suggestion.

In this scenario, autoPhraseEnabled is set to true on the default Filter State object, and the Search
Box cartridge sets Nty=1 on the text search query. The user has two choices:

• Select the Did You Mean suggestion to search for the keywords separately, rather than as a phrase.
This link sends the same query with the URL parameter Ntp=0 to override the Filter State
configuration, and also sets Nty=0 since we do not need to suggest the phrased version of the
query after the user has decided to use the unphrased version.

• Make another selection on the page, such as clicking on a refinement or advancing to the next
page of results. This signifies acceptance of the automatically applied phrase, so we keep au¬
toPhraseEnabled=true from the Default Filter State and suppress further suggestions by
setting Nty=0.

These outcomes are summarized in the following table:

ResultDid You Mean
setting (Nty)

Autophrase
setting (Ntp)

User action

Phrase is automatically applied to the
text search. A Did You Mean suggestion
is offered for the unphrased version.

Nty=1trueInitial search

Phrase is not applied to the search. No
suggestion is offered.

Nty=0Ntp=0Select Did You Mean
suggestion

Phrase continues to be automatically
applied. Suggestions are no longer
offered.

Nty=0trueMake another
follow-on selection

Phrase search scenario: Phrases as a search suggestion

You can configure the application not to apply phrases by default, but to return phrases as a search
suggestion.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Search features88



In this scenario, autoPhraseEnabled is set to false on the default Filter State object, and the
Search Box cartridge sets Nty=1 on the text search query. The user has two choices:

• Select the Did You Mean suggestion to consider the text search as a phrase. This link sends the
same query with the URL parameter Ntp=1 to override the default Filter State configuration, and
also sets Nty=0 since we do not need to suggest the unphrased version of the query after the
user has decided to use the phrased version.

• Make another selection on the page, such as clicking on a refinement or advancing to the next
page of results. This signifies acceptance of the unphrased query, so we keep autoPhraseEn¬
abled set to false and suppress further suggestions by setting Nty=0.

These outcomes are summarized in the following table:

ResultDid You Mean
setting (Nty)

Autophrase setting
(Ntp)

User action

Phrase is not applied to the text
search. A Did You Mean

Nty=1falseInitial search

suggestion is offered for the
phrased version.

Phrase is automatically applied
to the search. No suggestion is
offered.

Nty=0Ntp=1Select Did You Mean
suggestion

Text search continues to be
treated as individual keywords

Nty=0falseMake another
follow-on selection

instead of as a phrase.
Suggestions are no longer
offered.

Keyword redirects
Content administrators can configure keyword redirects that redirect a front-end user to a new page
if the user's search terms match the set keyword.

When an end user enters a search term that matches a keyword redirect, the Assembler returns the
redirect URI with the response model. The Assembler response can be limited to the redirect URI, or
it can also return the results for the user's search term.

The content administrator specifies a search term, match mode, and redirect URI on the Keyword
Redirects page in Workbench.

Cartridge handler configuration for keyword redirects

The Endeca Assembler API includes a RedirectAwareContentIncludeHandler that implements
keyword redirect functionality.

The cartridge handler takes the following two properties:

Oracle Endeca Commerce    Assembler Application Developer's Guide

89Configuring Front-End Application Features | Search features



• defaultFullAssembleOnRedirect — A Boolean that specifies whether to return search results
in addition to the redirect URI when making an assemble() call. Defaults to false. If you do not
necessarily wish to execute a redirect (for cases where the redirect URI is displayed as a link, or
may be skipped entirely if the user is not on a specific device), you must set this property to true.

• defaultRedirectCollection — A string that contains the name of the keyword redirect
collection in the Endeca Configuration Repository. Setting a null or empty value for this property
disables keyword redirect functionality.

The cartridge handler configuration in the Assembler context file for Discover Electronics is shown
below:

<!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 ~ BEAN: CartridgeHandler_ContentInclude
 ~ Used by the assembler service when keyword redirects are not enabled
-->
<bean id="CartridgeHandler_ContentInclude"
 class="com.endeca.infront.cartridge.ContentIncludeHandler"
 scope="prototype">
 <property name="contentSource" ref="contentSource" />
</bean>

<!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    ~ BEAN: CartridgeHandler_RedirectAwareContentInclude
    ~ For root calls to the assembler when keyword redirects are desired
-->
<bean id="CartridgeHandler_RedirectAwareContentInclude" 
  class="com.endeca.infront.cartridge.RedirectAwareContentIncludeHandler"
  scope="prototype">
    <property name="contentSource" ref="contentSource" />
    <property name="contentBroker" ref="contentRequestBroker" />
    <property name="navigationState" ref="navigationState" />

<property name="defaultFullAssembleOnRedirect" value="false"/>
</bean>

Content XML for keyword redirects

You can override the default settings for the fullAssembleOnRedirect or redirectCollection
properties by setting new values in the content XML that is retrieved by the RedirectAwareCon¬
tentIncludeHandler.

The primary use case for setting these properties on content XML is for deployments running the
Assembler service. Keyword redirects are programatically enabled in the service, so by default the
feature is explicitly disabled for services where it does not apply (Dimension Search and Record
Details) by including an element in the content XML that sets redirectCollection to a null value.

Note:  If you are creating your Assembler application in Java, you can disable keyword redirects
by using the ContentInclude class instead of RedirectAwareContentInclude for those
services where you wish to disable the feature.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Search features90



About using keyword redirects with the Assembler service

The Assembler service in the Discover Electronics application implements the com.endeca.in¬
front.assembler.servlet.AbstractAssemblerServlet abstract class. Keyword redirect
configuration is configured in the application's web.xml file.

The JSON and XML servlets in the Discover Electronics reference application are configured in
reference\discover-service\WEB-INF\web.xml:

<servlet>
    <servlet-name>JsonAssemblerServiceServlet</servlet-name>
    <servlet-class>com.endeca.infront.assembler.servlet.spring.SpringAssem¬
blerServlet</servlet-class>
    <init-param>
         <param-name>assemblerFactoryID</param-name>
         <param-value>assemblerFactory</param-value>
    </init-param>
    <init-param>
         <param-name>responseWriterID</param-name>
         <param-value>jsonResponseWriter</param-value>
    </init-param>

<init-param>
        <param-name>enableKeywordRedirects</param-name>
        <param-value>true</param-value>
    </init-param>
</servlet>

When the application queries the Assembler service, the redirect URI is returned as part of the response.

About handling keyword redirects in an application

In order to execute a redirect, an application must include logic for handling the URI components
returned from the Assembler.You must use the RedirectAwareContentInclude class for any
content items that require keyword redirect functionality.

The assemble.jsp service uses the RedirectAwareContentInclude class to enable keyword
redirects, as shown below:

<%@page import="com.endeca.infront.cartridge.RedirectAwareContentInclude"%>

...

AssemblerFactory assemblerFactory = (AssemblerFactory)webappCtx.getBean("as¬
semblerFactory");
Assembler assembler = assemblerFactory.createAssembler();

//Retrieve the content for the given content uri
ContentItem contentItem = new RedirectAwareContentInclude("/pages" + conten¬
tUri);

// Assemble the content
ContentItem responseContentItem = assembler.assemble(contentItem);

The Assembler response

When an end user enters a search term that matches a keyword redirect configured in Workbench,
the Assembler response includes a ContentItem with the necessary information for creating a
destination URI.

Oracle Endeca Commerce    Assembler Application Developer's Guide

91Configuring Front-End Application Features | Search features



The following example shows a JSON response from the Guided Search service when fullAssem¬
bleOnRedirect is false:

{
    endeca:siteRootPath: "/services",
    endeca:contentPath: "/guidedsearch",
    endeca:assemblerRequestInformation:
    {
        @type: "AssemblerRequestEvent",
        endeca:assemblyStartTimestamp: 1341943119538,
        endeca:assemblyFinishTimestamp: 1341943119546,
        endeca:contentPath: "/guidedsearch",
        endeca:sessionId: "FF9D21355A3CBB9DFF75614DD7D2948D",
        endeca:siteRootPath: "/services"
    },

endeca:redirect:
    {
        @type: "Redirect",
        link: {
            @class: "com.endeca.infront.cartridge.model.UrlAction",
            url: "/browse/cameras/_/N-25y6"
        }
    }
}

The keyword redirect information is included in the ContentItem with the key endeca:redirect.
The value specifies an Action object with the destination URI, which may be either relative or absolute.

Using the Assembler response

You must retrieve and use the information from the Assembler response in your application to execute
a keyword redirect. In the Discover Electronics reference application, this is accomplished in the
assemble.jsp service:

<%@ taglib prefix="util" uri="/WEB-INF/tlds/functions.tld"  %> 
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

...

// Assemble the content
ContentItem responseContentItem = assembler.assemble(contentItem);

request.setAttribute("component", responseContentItem);
request.setAttribute("rootComponent", responseContentItem);

Map map = (Map) request.getAttribute("component");
if (map.containsKey("endeca:redirect")) {
    request.setAttribute("action", ((ContentItem) map.get("endeca:redi¬
rect")).get("link"));
    %>
    <c:redirect url="${util:getUrlForAction(action)}"/>
    <%
}
...

For more information about Action objects in an Assembler application, see "Working with Application
URLs," or consult the Endeca Assembler API Reference (Javadoc).

Related Links
About Actions on page 61

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Search features92



An Action object allows you to construct a link that represents a decision by an end user.
The included fields and values depend on the action that the user wishes to take; they can
include the action label, the root site path, and the path to the destination content within the
site.

Guided Navigation features
The following sections provide an overview of the configuration models for Guided Navigation features
included with Tools and Frameworks and implemented in Discover Electronics.

Refinement menu
The Refinement Menu cartridge displays dimension values within a single dimension for Guided
Navigation. It supports dimension value boost and bury.

The response model for this cartridge is RefinementMenu, which contains a list of Refinement
objects.

Dimension value boost and bury

Dimension value boost and bury is a feature that enables re-ordering of dimension values within a
particular dimension for Guided Navigation. With dimension value boost, you can assign specific
dimension values to ranked strata, with those in the highest stratum being shown first, those in the
second-ranked stratum shown next, and so on. With dimension value bury, you can assign specific
dimension values to strata that are ranked much lower relative to others. This boost/bury mechanism
therefore lets you manipulate ranking of returned dimension values in order to promote or push certain
refinements to the top or bottom of the navigation menu.

The Refinement Menu cartridge enables the content administrator to specify an ordered list of dimension
values to boost and an ordered list of dimension values to bury. Each dimension value is translated
into its own stratum in the query that returns refinements so as to preserve the exact order of refinements
specified by the content administrator.

For more information about dimension value boost and bury, refer to the MDEX Engine Basic
Development Guide.

Configuration model for the Refinement Menu cartridge

The Refinement Menu cartridge configuration model allows you to configure sorting, "Show More..."
link behavior, and boosted and buried refinements. Additionally, it includes a whyPrecedenceRule¬
Fired property that can be used for debugging precedence rule behavior in your application.

The configuration model for this cartridge is RefinementMenuConfig. It includes the following
properties:

DescriptionProperty name

A string representing the id of the dimension being configured.dimensionId

An ordered list of dimension value refinements to display at the top of the list.boostRefine¬
ments

An ordered list of dimension value refinements to display at the bottom of the list.buryRefine¬
ments

Oracle Endeca Commerce    Assembler Application Developer's Guide

93Configuring Front-End Application Features | Guided Navigation features



DescriptionProperty name

The base sort order of dimension values within this dimension.This property should
have one of the following values:

sort

• default — Sort dimension values according to the application configuration
for this dimension.

• static — Sort dimension values in alphabetic or numeric order, depending
on the dimension configuration.

• dynRank — Sort dimension values so that the refinements with the highest
number of records display first.

A Boolean indicating whether to enable a link to show more refinements than are
displayed by default.

showMoreLink

A string representing the text to use for the "show more refinements" link.moreLinkText

A string representing the text to use for the "show fewer refinements" link.lessLinkText

A string representing the number of refinements to display by default, or when a
user clicks the "show fewer refinements" link.

numRefine¬
ments

A string representing the maximum number of refinements to display when a user
clicks the "show more refinements" link.

maxNumRefine¬
ments

A string that sets the amount of refinements to return, from the following values:refine¬
mentsShown • none — returns no refinements.

• some — returns numRefinements refinements.
• all — returns maxNumRefinements refinements.

(Deprecated) A Boolean indicating whether to display the maxNumRefinements
number of menu items. When this value is false, the number of menu items

showMore

generated is limited by numRefinements, and a "show more refinements" link
is generated.This value should be set using showMoreIds URL parameter when
the "show more refinements" link is selected.

(Deprecated) A Boolean that sets whether to use the showMoreIds URL
parameter when determining how many refinements to display. If false, the

useShowMoreI¬
dsParam

showMore property on the RefinementMenuConfig object is used instead. If
this property is set to true, refinements cannot be collapsed. Defaults to true.

If query debugging features are enabled, this property enables debugging
information about why precedence rules fired on a query in a

whyPrece¬
denceRule¬
Fired DGraph.WhyPrecedenceRuleFired property for each root dimension value.

For additional information, see "About query debugging results in the reference
application."

Important: The useShowMoreIdsParam property and associated showMoreIds URL
parameter are included in this release for backwards compatibility. Use the refinementsShown
property if you are refactoring your code or developing a new application.

Notes on sorting

The static sort option is described as "Alphanumeric" sorting in the Experience Manager user
interface for the default Refinement Menu cartridge. Dimension values are ordered alphanumerically
within a dimension by default, however it is possible to manually specify a dimension order (for example,

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Guided Navigation features94



using the Dimension Values editor in Developer Studio). This custom dimension value order is used
when static sorting is specified.To ensure alphanumeric sorting of dimension values, do not specify
a custom dimension value order.

Dynamic refinement ranking is incompatible with displaying disabled refinements for a dimension. In
the default Refinement Menu cartridge, the option to show disabled refinements is not available unless
the content administrator has explicitly selected static sorting.

Related Links
About query debugging results in the reference application on page 134

In Discover Electronics, query debugging results can be returned as part of the response
model for the Results List, Search Adjustments, and Refinement Menu cartridges as
appropriate. In the Discover Electronics reference application, these results can be enabled
by un-commenting the corresponding properties in each cartridge handler.

MDEX Engine configuration for Guided Navigation

No special configuration is necessary to enable Guided Navigation, however, there is some static
configuration that affects the display of refinements.

Static configuration

In the Dimension editor in Developer Studio, you can configure dimensions to be:

• multiselect — A multiselect dimension enables a user to select more than one refinement at the
same time.You can specify whether the navigation results when multiple refinements are selected
are treated as a Boolean AND or Boolean OR on a per-dimension basis.

• hidden — A hidden dimension does not display in Guided Navigation; however, users can still
search for records based on their dimension values in a hidden dimension.

You can also configure the following refinement behavior on a per-dimension basis:

• dynamic refinement ranking — Dynamic ranking returns refinements based on their popularity
(number of associated record results for each refinement). This is a default setting that can be
overridden by the content administrator in Experience Manager.

• refinement statistics — Enabling refinement statistics returns the number records (or aggregated
records) are associated with each refinement so that this information can be displayed in the
application.

Additionally, you can designate specific dimension values as inert. For more information about these
configuration options, refer to the MDEX Engine Basic Development Guide.

Cartridge handler configuration for the Refinement Menu cartridge

The Refinement Menu cartridge handler extends the NavigationCartridgeHandler. The
application-wide default configuration in the Assembler context file determines the behavior of collapsed
dimensions and "show more" and "show less" links, and can be set to enable or disable the precedence
rule debugging feature if query debugging features are enabled.

The cartridge handler uses a contentItemInitializer to merge the layered configuration. The
included requestParamMarshaller bean enables URL request-based configuration for the cartridge,
which is required for disabling or enabling the full list of refinement results returned when the end user
clicks the "show more refinements" link.

Oracle Endeca Commerce    Assembler Application Developer's Guide

95Configuring Front-End Application Features | Guided Navigation features



Template configuration for the Refinement Menu cartridge

The Refinement Menu cartridge template allows a content administrator to configure which dimension
to query for the cartridge and how many results should display. It also allows control over boosted and
buried dimension refinements, in order to modify the order in which dimensions display to the end
user.

The Refinement Menu cartridge template allows a content administrator to configure the following
properties on the configuration model:

• dimensionId

• sort

• showMoreLink

• moreLinkText

• lessLinkText

• numRefinements

• maxNumRefinements

• boostRefinements

• buryRefinements

In addition, the cartridge template includes the following pass-through property:

DescriptionProperty name

The name of the string property that represents the dimension name.
This is required by the Dimension Selector editor to enable a content
administrator to select a dimension by name, rather than by ID.

dimensionName

URL request parameters for the Refinement Menu cartridge

You can configure the Refinement Menu cartridge at runtime by setting the value of the DYNAMIC_RE¬
FINEMENT_MENU_CONFIG property on the  RefinementMenuRequestParamMarshaller via the
Nrmc URL parameter.

The sample cartridge renderer includes logic for displaying the maxNumRefinements number of
results when a user clicks on the "show more refinements" link.

DescriptionURL parameterProperty name

The Nrmc parameter takes multiple arguments allow you to
configure dimension refinement behavior in the cartridge.

NrmcDYNAMIC_RE¬
FINE¬
MENT_MENU_CON¬
FIG

(Deprecated) A Boolean indicating whether to display the
maxNumRefinements number of menu items. Use the re¬

ShowMoreIdsshowMore

finementsShown property if you are refactoring your code
or developing a new application.

About Nrmc URL parameter syntax

The Nrmc parameter takes the following values:

• Dimension ID — Required. The ID of the dimension you wish to configure.
• +show:<value> — Required;<value> is the value to pass to the refinementsShown property

on the configuration object.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Guided Navigation features96



The configuration for each dimension is separated by a vertical pipe, as in the example below:

20001+show:all|20002+show:some

Note: You can also use the notation used with the Presentation API, for example:
Nrc=id+10074+expand+true+more+true. For more information about this notation, see
the MDEX Engine Basic Developer's Guide.

Navigation Container
The Navigation Container is provided as an alternative the refinement menu cartridge for
implementations using Oracle Endeca Guided Search with the packaged services. It enables you to
retrieve the full list of available dimension refinements for a dimension query.

The response model for the Navigation Container includes a list of RefinementMenu objects that
each include the records within a dimension refinement. The NavigationContainerHandler
handles the "show more refinements" link and associated link Action for each of these refinements,
and also controls whether to display debugging information.

Related Links
About Actions on page 61

An Action object allows you to construct a link that represents a decision by an end user.
The included fields and values depend on the action that the user wishes to take; they can
include the action label, the root site path, and the path to the destination content within the
site.

Configuration model for the Navigation Container

The Navigation Container configuration model includes the List<String> property of dimension
IDs that are returned with the response model. Since it is a dimension navigation feature, it includes
a whyPrecedenceRuleFired property that can be used for debugging precedence rule behavior in
your application.

The configuration model for this cartridge is NavigationContainerConfig. It includes the following
properties:

DescriptionProperty name

A List of dimension IDs to return as expanded lists of available refinements.
Any dimension refinements not included in this List are returned in the default,
shorter form output by the MDEX Engine.

showMoreIds

A string representing the text to use for the "show more refinements" link.
The same string is used for each of the included dimension refinements.

moreLinkText

A string representing the text to use for the "show fewer refinements" link.
The same string is used for each of the included dimension refinements.

lessLinkText

A Boolean indicating whether the refinement menus should be fully expanded.
Defaults to true. When using a dataset that includes dimensions with a
large number of refinements, you should set this to false.

refinementsShownBy¬
Default

A string that sets the amount of refinements to return on each refinement
menu, from the following values:

refinementsShown

• none — returns no refinements.

Oracle Endeca Commerce    Assembler Application Developer's Guide

97Configuring Front-End Application Features | Guided Navigation features



DescriptionProperty name

• some — returns numRefinements refinements.

(Deprecated) A Boolean that sets whether to use the showMoreIds URL
parameter when determining how many refinements to display. If false,

useShowMoreI¬
dsParam

the showMore property on the RefinementMenuConfig object is used
instead. If this property is set to true, refinements cannot be collapsed.
Defaults to true.

If query debugging features are enabled, this property enables debugging
information about why precedence rules fired on a query in a

whyPrecedenceRule¬
Fired

DGraph.WhyPrecedenceRuleFired property for each root dimension
value. For additional information, see "About query debugging results in the
reference application."

Cartridge handler configuration for the Navigation Container

The Navigation Container handler extends the NavigationCartridgeHandler.The application-wide
default configuration in the Assembler context file determines the behavior of collapsed dimensions
and "show more" and "show less" links, and can be set to enable or disable the precedence rule
debugging feature if query debugging features are enabled.

The cartridge handler uses a contentItemInitializer to merge the layered configuration. The
included requestParamMarshaller bean enables URL request-based configuration for the cartridge,
which is required for modifying the properties on the response model through URL parameters.

URL request parameters for the Navigation Container

Because the Navigation Container returns a list of RefinementMenu objects, it takes the same Nrmc
URL parameter as the Refinement Menu cartridge.

DescriptionURL parameterProperty name

The Nrmc parameter takes multiple arguments allow
you to configure dimension refinement behavior in the
cartridge.

NrmcDYNAMIC_REFINE¬
MENT_MENU_CONFIG

If query debugging is enabled for the reference
application, this property allows you to include

whyPrece¬
denceRuleFired

whyPrecedenceRule¬
Fired

debugging information about why precedence rules
fired on a query in a DGraph.WhyPrecedenceRule¬
Fired property for each dimension value.

For details on configuring the Nrmc parameter, see "URL request parameters for the Refinement Menu
cartridge."

Breadcrumbs
The Breadcrumbs cartridge displays the parameters defining the search or navigation state for the
current set of search results.

The response model for this cartridge is Breadcrumbs, which may contain SearchBreadcrumb,
RefinementBreadcrumb,RangeFilterBreadcrumb, and GeoFilterBreadcrumb objects as

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Guided Navigation features98



appropriate. Each breadcrumb contains information about search or navigation selections that the end
user has made, and provides links to remove that selection from the filter state.

The Breadcrumbs cartridge does not have any associated Experience Manager configuration options
or MDEX Engine configuration.

Cartridge handler configuration for Breadcrumbs

The Breadcrumbs cartridge handler extends the NavigationCartridgeHandler, but otherwise
does not require any additional configuration.

Results features
The following sections provide an overview of the configuration models for features that display search
results in the reference implementation.

Results list
The Results List cartridge displays search and navigation results in a list view.

The response model for this cartridge is ResultsList, which contains a list of Record objects and
SortOptionLabel objects that enable the end user to select from a set of pre-defined sort orders.

About the order of records in the record list

The order of records returned by the MDEX Engine is determined by a sort key or relevance ranking
strategy depending on the type of query that returns the results.

Relevance ranking is applied when the query includes a text search. Record sorting is applied to all
other queries including navigation queries. The sort options that are available to the end user in the
application represent static sort orders that are not based on relevance to any search terms.

Record boost and bury

Record boost and bury is a feature that enables fine-grained re-ordering of records within search or
navigation results.With record boost, you can assign records to ranked strata, with those in the highest
stratum being shown first, those in the second-ranked stratum shown next, and so on. With record
bury, you can assign records to strata that are ranked much lower relative to others. This boost/bury
mechanism therefore lets you manipulate ranking of returned record results in order to promote or
push certain records to the top or bottom of the results list. The records in each stratum are defined
as a set of specific records or a navigation state that the records must satisfy. A record is assigned to
the highest stratum whose definition it matches, so boosting takes precedence over burying. Record
boost and bury apply regardless of whether the records returned are the results of a search or navigation
query.

The core Results List cartridge enables the content administrator to specify one set of records to boost
and one set of records to bury. Boost and bury are applied to the result list before any additional sorting
or relevance ranking modules. For more information about record boost and bury, refer to the Basic
Development Guide.

Oracle Endeca Commerce    Assembler Application Developer's Guide

99Configuring Front-End Application Features | Results features



Configuration model for the Results List cartridge

The Results List configuration model allows you to configure the number and sorting of records returned
by a search or navigation query. Additionally, it includes whyMatchEnabled and whyRankEnabled
properties that can be used for debugging the set of records returned for a query.

The configuration model for this cartridge is ResultsListConfig. It includes the following properties:

DescriptionProperty name

An integer that controls the number of results to display per page. This value can
be set using Nrpp URL parameter.

recordsPerPage

A String that specifies the field that stores the record's logical name.recordDisplay¬
FieldName

An enumerated list of sort options on the results list available to the site visitor.
Each item in this list is a SortOptionConfig with the following properties:

sortOption

• label — A descriptive label that displays to the site visitor in the client
application

• value — A sort order specified in the format <key>|<direction>, where
key is the name of the property or dimension on which to sort, and the
direction is 0 for ascending and 1 for descending. An empty string represents
the default sort order specified by the content administrator in Experience
Manager.

You can set this value via the Ns URL parameter.

A String that specifies the selected Sort.sortRequestPa¬
rameter

A Boolean that specifies whether to return precomputed sorts. Defaults to false.
If you do not set this to true, any calls to the getPrecomputedSorts() method
return an empty list.

includePrecom¬
putedSorts

(Optional) The Relevance Ranking Strategy. If you specify a Relevance Ranking
Strategy without setting relRankTerms, relRankKey, or relRankMatchMode,

relRankStrate¬
gy

your Relevance Ranking strategy will apply to the results from the current search
filter. This setting is ignored if an end user explicitly selects a sort.

(Optional) The Relevance Ranking key to use with the selected Relevance Ranking
strategy. This can be a search interface, dimension, or property set in the MDEX

relRankKey

Engine.You must set a relRankStrategy and relRankTerms if you specify
a value for this property.

(Optional) Relevance Ranking terms, delimited by a + sign.These can be different
from the terms in the search filter.You must set a relRankStrategy and
relRankKey if you specify a value for this property.

relRankTerms

(Optional) The match mode that determines the subset of results to apply
Relevance Ranking to.You must set a relRankStrategy if you specify a value
for this property.

relRankMatch¬
Mode

An ordered list of CollectionFilters that enable items to be boosted to the
top of the results list.This setting is ignored if an end user explicitly selects a sort.

boostStrata

An ordered list of CollectionFilters that enable items to be buried at the
bottom of the results list. This setting is ignored if an end user explicitly selects
a sort.

buryStrata

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Results features100



DescriptionProperty name

The number of sub-records to return for any aggregate records in the results list.
This property should have one of the following values:

subRecordsPer¬
AggregateRe¬
cord • ZERO — Sub-records are not returned.

• ONE — A single representative record is returned.
• ALL — All sub-records are returned.

The default value is ONE. For best performance, Oracle recommends that you
use ZERO or ONE.

An integer record offset for the result list. This property defaults to 0 and is used
for paging. This value can be set using No URL parameter.

offset

A list of record fields to pass through from each record to the Record output
model of the ResultsListHandler.

fieldNames

For aggregate records, a list of sub-record fields to pass through from each
sub-record to the Record output model of the ResultsListHandler.

subRecordField¬
Names

If query debugging features are enabled, this property enables debugging
information about why each record matched the search and navigation state. For

whyMatchEn¬
abled

additional information, see "About query debugging results in the reference
application."

If query debugging features are enabled, this property enables debugging
information about why each record was ranked in the given order. For additional
information, see "About query debugging results in the reference application."

whyRankEnabled

Note: You only need to set the relRankKey, relRankTerms and relRankMatchMode
properties if you wish to apply relevance ranking to values other than those specified in the
search filter, or to the results of an EQL expression.

MDEX Engine configuration for the Results List cartridge

Your MDEX Engine configuration for your application allows you to configure which properties and
dimensions should display in the results list view, optimize certain properties to use for sorting records,
and specify a default sort order.

Dynamic configuration

In the Property and Dimension editors in Developer Studio, you can specify which properties and
dimensions are returned for the record with the record list. This configuration can be overridden in the
cartridge handler configuration. For more information about configuring the display of properties and
dimensions for the record list, refer to the Developer Studio Help.

Static configuration

Although you can sort on any property or dimension at query time, it is also possible to optimize a
property or dimension for sorting in Developer Studio. This controls the generation of a precomputed
sort, which you can retrieve on the ResultsListConfig object by using the getPrecomputed¬
Sorts() method. For more information about precomputed sorts, refer to the MDEX Engine Basic
Development Guide.

Oracle Endeca Commerce    Assembler Application Developer's Guide

101Configuring Front-End Application Features | Results features



Dgidx flags

You can specify the default sort order for records as a flag in Dgidx. For more information about Dgidx
flags and sorting, refer to the MDEX Engine Basic Development Guide.

The Deployment Template configuration for the Discover Electronics reference application does not
specify a default sort key.

Cartridge handler configuration for the Results List cartridge

The Results List cartridge handler extends the NavigationCartridgeHandler.The application-wide
default configuration in the Assembler context file specifies default sort options, relevance ranking
strategy, and record and sub-record properties to pass through to the cartridge handler response
model. It also allows you to enable or disable debugging features if query debugging features are
enabled.

The cartridge handler uses a contentItemInitializer to merge the layered configuration. The
included requestParamMarshaller bean enables URL request-based configuration for the cartridge.

Template configuration for the Results List cartridge

The Results List template allows a content administrator to configure the main results of a search or
navigation query based on the site visitor's filter state. Configuration options include sort order,
boost/bury, and number of records to display per page.

The Results List cartridge template allows a content administrator to configure the following properties
on the configuration model:

• recordsPerPage

• sortOption

• relRank

• boostStrata

• buryStrata

URL request parameters for the Results List cartridge

End user configuration is passed to the configuration model as URL parameters.This allows application
end users to specify how records should be displayed and sorted in order to customize their navigation
experience.

For most of the properties on the configuration model, the cartridge renderer in the reference
implementation respects the values set at the cartridge handler or template level. The offset value
is used to control paging display.

DescriptionURL
Parameter

Property

The cartridge renderer uses this property to enable an application
end user to set their own limit on records to display per page.

NrpprecordsPerPage

This parameter enables you to override sort options on a per-query
basis.

NssortOption

This parameter enables you to control record display when paging.Nooffset

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Results features102



DescriptionURL
Parameter

Property

(Optional) The Relevance Ranking key.You must set a rel¬
RankStrategy on the cartridge to use this parameter.You must
also specify relRankTerms.

NrkrelRankKey

(Optional) Relevance Ranking terms, delimited by a + sign.You
must set a relRankStrategy on the cartridge to use this
parameter.You must also specify a relRankKey.

NrtrelRankTerms

(Optional) The match mode that determines the subset of results
to apply Relevance Ranking to.You must set a relRankStrate¬

NrmrelRankMatch¬
Mode

gy, relRankKey, and relRankTerms if you specify a value for
this property.

If query debugging is enabled for the reference application, this
property enables you to include record matching information on a
per-query basis, rather than at the cartridge handler level.

whymatchwhyMatchEn¬
abled

If query debugging is enabled for the reference application, this
property enables you to include record ranking information on a
per-query basis, rather than at the cartridge handler level.

whyrankwhyRankEnabled

Note: The Nrk, Nrt, and Nrm parameters take precedence over any relevance ranking
declaration in the Ntk, Ntt, and Ntx parameters.

Enabling snippeting in record results

The Assembler can return snippets (an excerpt from a record property that contains the user's search
terms and the surrounding context) for display in results lists.

Snippeting is configured as part of a search interface.You can enable snippeting on one or more
properties in a search interface, typically properties that contain multiple lines of text.

To enable snippeting:

1. Enable snippeting on one or more properties in the relevant search interface.

For more information about configuring snippeting, refer to the Basic Developer's Guide.

2. In the Results List cartridge handler configuration, specify the relevant snippet property in the list
of fieldNames.

For example, if you enabled the property product.short_desc for snippeting, you would specify
the property product.short_desc.Snippet, as in the following example:

  <bean id="CartridgeHandler_ResultsList" class="com.endeca.infront.car¬
tridge.ResultsListHandler" 
      parent="NavigationCartridgeHandler" scope="prototype">
   <property name="fieldNames">
    <list>
     <value>product.id</value>
     <value>product.code</value>
     <value>product.name</value>
     <value>product.brand.name</value>
     <value>product.short_desc</value>

<value>product.short_desc.Snippet</value>
     <value>product.price</value>

Oracle Endeca Commerce    Assembler Application Developer's Guide

103Configuring Front-End Application Features | Results features



     <value>product.min_price</value>
     <value>product.max_price</value>
     <value>product.img_url_thumbnail</value>
    </list>
   </property>  

<!-- additional elements omitted from this example -->
  </bean>

The snippet is returned as a string property on the response model for each record for display by the
renderer.

Record details features
The following section provides an overview of the configuration model for record detail features in the
reference implementation.

Record details page
The Record Details page displays detailed information about a specific record.

The response model for this cartridge is RecordDetails, which contains a single Record.

The rendering logic for a record details page is expected to be highly customized for each site, in order
to display the relevant record information and provide additional functionality such as bookmarking or
initiating a purchase transaction.

Configuration model for the Record Details cartridge

The Record Details configuration model allows you to configure which properties on the record should
be passed through to the output model of the cartridge handler, so that the renderer can display them.

The configuration model for this cartridge is RecordDetailsConfig. It includes the following
properties:

DescriptionProperty name

A list of record fields to pass through from the record to the Record output
model of the RecordDetailsHandler.

fieldNames

For aggregate records, a list of sub-record fields to pass through from each
sub-record to the Record output model of the RecordDetailsHandler.

subRecordField¬
Names

MDEX Engine configuration for the Record Details page

No special configuration is required the display of record details, but you can specify what information
you want to display on the record page.

Dynamic configuration

You can specify which properties and dimensions are returned with the record for a record details
page in Developer Studio. For more information about configuring the display of properties and
dimensions for record details, refer to the Developer Studio Help.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Record details features104



Cartridge handler configuration for the Record Details cartridge

The Record Details cartridge handler extends the NavigationCartridgeHandler, but otherwise
does not require any additional configuration.

Template configuration for the Record Details cartridge

The Record Details cartridge in the Discover Electronics application does not require any configuration
in Experience Manager. The cartridge can be placed on a Record Details page to display detailed
information about a record.

Content and spotlighting features
The following sections provide an overview of the configuration models for features that enable content
spotlighting in the reference implementation.

Record Spotlight
The Record Spotlight cartridge can promote either specific featured records or a set of dynamic records
based on a navigation state.

The response model for this cartridge is RecordSpotlight, which includes a list of Record objects
and an optional action to show all records (in the case of a dynamic record spotlight).

Configuration model for the Record Spotlight cartridge

The Record Spotlight configuration model allows you to configure the selected records and "See All"
link within a record spotlight, as well as the record fields to pass through to the cartridge response
model.

The configuration model for this cartridge is RecordSpotlightConfig. It includes the following
properties:

DescriptionProperty name

A string representing the maximum number of records that this spotlight can
contain. If the content administrator designates specific records in the

maxNumRecords

Experience Manager, the number of records cannot exceed the value of
maxNumRecords. If the content administrator specifies a query, the
Assembler returns no more than this number of records.

A RecordSpotlightSelection object that represents the records selected
for spotlighting.This includes the specified filter state, sort options, and result
limit.

recordSelection

A Boolean that determines whether to display the "See All" link. The link
requires a value for seeAllLinkText in order to display.

showSeeAllLink

A string representing the display text for a link that represents the navigation
state of a dynamic record spotlight. If this string is not configured, no link is
generated for the client application.

seeAllLinkText

A list of record fields to pass through from the record to the Record output
model of the RecordSpotlightHandler.

fieldNames

Oracle Endeca Commerce    Assembler Application Developer's Guide

105Configuring Front-End Application Features | Content and spotlighting features



DescriptionProperty name

For aggregate records, a list of sub-record fields to pass through from each
sub-record to the Record output model of the RecordSpotlightHandler.

subRecordField¬
Names

MDEX Engine configuration for a spotlight

You can configure which properties and dimensions can be displayed in a spotlight.

Dynamic configuration

Although the content administrator can designate the records for a spotlight either by specifying a
search and navigation query or by specifying individual record IDs, the Assembler query that fetches
the spotlighted records is always a navigation query (using records in the specific record case).
Therefore, the configuration that determines which properties and dimensions are returned with the
record for spotlighting is "show with record list." This configuration can be overridden in the cartridge
handler configuration. For more information about configuring the display of properties and dimensions
for the record list, refer to the Developer Studio Help.

Related Links
MDEX Engine configuration for the Results List cartridge on page 101

Your MDEX Engine configuration for your application allows you to configure which properties
and dimensions should display in the results list view, optimize certain properties to use for
sorting records, and specify a default sort order.

Cartridge handler configuration for the Record Spotlight cartridge

The Record Spotlight cartridge handler extends the NavigationCartridgeHandler. The
application-wide default configuration in the Assembler context file specifies record properties to pass
through to the cartridge handler response model.

Template configuration for a record spotlight

A Record Spotlight cartridge enables a content administrator to specify a set of contextually relevant
records to spotlight on a particular page.

The Record Spotlight cartridge template allows a content administrator to configure the following
properties on the configuration model:

• maxNumRecords

• recordSelection

• showSeeAllLink

• seeAllLinkText

In addition, the cartridge template includes the following pass-through property:

DescriptionProperty name

A title that the content administrator can specify to display for this
cartridge in the front-end application.

title

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Content and spotlighting features106



Media Banner
The Media Banner cartridge displays video or images to the site user and can be configured to link to
a static page, a single record, or a specified navigation state.

The response model for this cartridge is MediaBanner, which includes a MediaObject and an Ac¬
tionLabel that contains a destination link.

Configuration model for the Media Banner cartridge

The configuration model for the Media Banner cartridge includes a media object and an associated
link.

The configuration model for this cartridge is MediaBannerConfig. It includes the following properties:

DescriptionProperty name

The MediaObject representing the image or video asset to display in the
application.

media

The LinkBuilder object used to construct a link to a navigation state or a
static page within the application.

link

MDEX Engine configuration for a media banner

No special configuration is required for the media banner, but your MDEX Engine configuration will
affect the display of records in the link selector when setting a navigation state or choosing a specified
record.

Dynamic configuration

You can specify how records are sorted and which properties and dimensions are returned with a
record in Developer Studio. For more information about configuring record sorting and display, refer
to the Developer Studio Help.

Cartridge handler configuration for the Media Banner cartridge

The Media Banner cartridge handler extends the NavigationCartridgeHandler, but otherwise
does not require any additional configuration.

Template configuration for the Media Banner cartridge

The Media Banner enables the content administrator to use the media selector and link editor to create
a media banner that links to a specified page, selected record, or dynamic navigation state.

The Media Banner cartridge template allows a content administrator to configure the following properties
on the configuration model:

• media

• link

In addition, the cartridge template includes the following pass-through property:

DescriptionProperty name

(Optional) The alt-text to display when the end user hovers over the media asset
in the application.

imageAlt

Oracle Endeca Commerce    Assembler Application Developer's Guide

107Configuring Front-End Application Features | Content and spotlighting features



For detailed information on the properties within the media and link properties, consult the Javadoc
for the MediaObject and LinkBuilder classes.

Related Links
Link Builder property reference The Link Builder modifies three properties in the content item template:
path, linkType, and queryString.

Dynamic triggering features
The following sections contain information about features related to triggering content items based on
the user's context.

The dynamic slot feature is typically used to trigger a cartridge independently from the page that
contains it, although the Discover Electronics application uses the same mechanism to trigger entire
pages by programmatically creating a content slot configuration and passing it to the Assembler.

About dynamic slots
A dynamic slot is a generic mechanism that enables content administrators to manage the content for
specific sections of an Experience Manager-driven page independently from the overall page.

There two main scenarios for using dynamic slots:

• To share content across different pages. In this case, the triggers on the content items that
populate the slot are more general or orthogonal to the trigger criteria for the page. For example,
a header cartridge may be shared across an entire site if it is referenced from every page and has
an "Applies at all locations" trigger. A promotion may be configured with a user segment trigger
and display when a site visitor who belongs to the specified user segment browses to any of the
pages that references the collection that contains the promotion.

• To create variants of a page. In this case, the triggers on the content items that populate the slot
are more specific than the trigger criteria for the page. (Typically, they would "inherit" the parent
content item's triggers and add additional criteria for the variable content.)

Following are some specific use cases for dynamic slots:

• A brand manager needs to control the banner images that display throughout the site. This is a
different person from the merchandiser who typically manages pages in Experience Manager.

• A brand manager needs to be able to specify the images that display at a particular navigation
state (for example, Digital Cameras > Samsung) even if there is no specific landing page for that
navigation state.

• A merchandiser wishes to display promotions in the menu area based on more specific trigger
criteria than those that apply to the page as a whole. For example, one could create a page to use
as a base for all "Digital Cameras" pages, and populate the menu sections with more specific
content based on the brand, price range, or other dimensions. This model enables content reuse
for most of the content within a page with page-specific overrides for subsections as needed. It
removes the need to create many individual pages for each specific combination of triggers.

• A merchandiser wishes to display promotions in the menu area based on trigger criteria that are
simply different from those on the page as a whole. For example, there might be a "Back to School"
special for a particular time frame that applies to all pages within a category or even the entire site.
This model enables content reuse for individual sections across a variety of pages. The reusable
sections are managed in a central location so that updates immediately take effect across all the
pages that include the reused content, rather than having to edit each one manually.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Configuring Front-End Application Features | Dynamic triggering features108



Dynamic slot prerequisites

The dynamic slot feature enables content administrators to populate a section of a content item with
content from a different collection in Experience Manager. As a prerequisite, your application must
include a collection with the appropriate content type for populating an administrator's dynamic slot
cartridge.

Note:  If a content administrator attempts to populate a dynamic slot in a given collection with
a content item from the same collection and creates a circular reference, the Assembler detects
the conflict during preprocessing and returns the content item with an @error property.

Related Links
About content collections on page 16

Before a content administrator can configure dynamic content items within an application,
you must create content collections to contain those items. Content items within the same
collection are evaluated against each other at runtime to determine which item (or items)
should be returned to populate a defined section of the current page.

Oracle Endeca Commerce    Assembler Application Developer's Guide

109Configuring Front-End Application Features | Dynamic triggering features





Chapter 8

Setting up the Preview Application for Workbench

If you are using Experience Manager, you can use a preview application to simulate sets of trigger
conditions, such as time-based triggers, in order to determine which content items display when specific
conditions are met. This section describes how to set up a custom Endeca application to function as
the preview application in Workbench.

About the preview application
The preview application is the end-user application that displays in a new browser tab or window when
selected. It allows content administrators to determine why each content item does or does not fire
for specified navigation query and trigger combinations. This chapter describes how to set up your
own custom application as the Workbench preview application.

You can launch the preview application for a specific page, or for an individual cartridge. A selected
cartridge will display in the context of a page that includes it.

It is not necessary for the preview application to be an exact representation of your final front-end
application, as long as it is using the correct data. The business logic that is built into Workbench is
not tied to the physical representation of the front-end application. It is good practice, however, to
make sure that your preview application represents your final application closely enough so that
business users know if their changes are correct.

By default, Workbench is configured to use the Discover Electronics reference application as the
preview application. This application is located under %ENDECA_TOOLS_ROOT%\reference\dis¬
cover-electronics-authoring ($ENDECA_TOOLS_ROOT/reference/discover-electron¬
ics-authoring on UNIX).

Workbench communicates with the preview application via settings you specify in the Preview Settings
tool. The Preview URL field lets you specify the preview application URL.

Note: The preview application must not use frames, because they are likely to collide with the
frames of the Workbench preview toolbar.

About auditing content using a preview application
The Workbench preview feature includes auditing functionality that enables business users to view
the underlying triggers for the set of displayed content items. Instrumenting a custom application for
preview enables auditing.



If a content administrator wants to know which content items trigger for a specified navigation state,
such as Category > Cameras, they can audit content by navigating to the desired state in the preview
application. Clicking the Audit button for a content item displays the Audit Panel, which includes a
Status column as shown below:

Content Items can exist in any of the following states:

MeaningStatus

The content item triggers and displays for the current navigation and trigger states.Fired

The content item triggers for the current navigation and trigger states, but does not
display. This is due to one or more content items in the same collection having higher

Collection full

priority, causing the collection to reach its limit for the maximum number of allowable
content items.

The content item does not trigger for the current navigation and trigger states.Not
considered

The content item does not trigger. The navigation state conditions are met, but
additional trigger conditions (such as a schedule trigger) are not.

Navigation
trigger not
satisfied

About previewing specific devices
Workbench preview functionality includes support for specifying a device to preview against for a
specified user agent.

The Preview Settings tool includes a Device Manager that allows you to map a user agent to a device
with an associated preview skin.The Discover Electronics reference application includes the following
configured devices:

• Mobile (landscape and portrait orientations)
• Tablet (landscape and portrait orientations)

Adding a device for preview

You can add additional device profiles and map them to the device skins included with Workbench.

To add a device for preview:

1. In Workbench, navigate to the Application Settings > Preview Settings tool.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Setting up the Preview Application for Workbench | About the preview application112



2. Click Add Device.
The Add Device panel appears.

3. In the Device Name field, enter the device name to associate with your user agent.

This is the unique name that appears in the Device dropdown when previewing your application.

4. Select the device skin from the Skin Name dropdown.

5. In the User Agent field, enter the user agent string that you wish to add.

6. Click Save.

7. To confirm that your device is available for preview:

a) Navigate to the Experience Manager tool in Workbench.
b) Navigate to a content item of your choosing.
c) Mouseover the content item.

The Action dropdown button appears.
d) Select Preview from the Action dropdown.

The preview application launches in a new browser tab.
e) Click the arrow beside the Device: None entry in the Preview Toolbar:

The Preview Toolbar expands to show configuration options.
f) Click the Device dropdown and confirm that your device is included in the dropdown list.
g) Select the device name and click Submit.
h) Confirm that the appropriate device skin displays.

Note: The preview application itself must have rendering logic for the selected user agent
in order to display correctly.

Modifying a preview device

You can modify any of the fields for an existing preview device by clicking the device name in the
Preview Settings tool.

To modify a preview device:

1. In Workbench, navigate to the Application Settings > Preview Settings tool.

2. In the Device Name column, select the device you wish to edit.
The Edit Device panel appears.

3. Modify the desired fields.

4. Click Save.

Removing a preview device

If a device is not required for previewing your application, you can remove it from the preview toolbar.

To remove a preview device:

1. In Workbench, navigate to the Application Settings > Preview Settings tool.

2. In the Delete column, click the X for the device you wish to remove.
A confirmation dialog appears.

3. Click Delete.

Oracle Endeca Commerce    Assembler Application Developer's Guide

113Setting up the Preview Application for Workbench | About the preview application



About instrumenting your application for preview
In order to enable auditing in your custom preview application, your rendering code must include logic
for adding preview frames and an "Audit" button to content items that your content administrator
mouses over.

Your custom preview application should include tags that specify paths to the required JavaScript and
CSS resources, as well as tags for enabling audit functionality. These are provided in the endeca tag
library.

Note: These requirements assume an application that uses JSP files for cartridge renderers
(as in the case of the Discover Electronics reference application). If you are using a different
technology stack to implement your Assembler application, you must write your own auditing
functionality.

Adding Preview resources

All JSP files must include the endeca tag library, as shown below:

<%@ taglib prefix="endeca" uri="/endeca-infront-assembler/utilityTags"%>

Each <head> tag must contain a reference to the pageHead tag. This includes paths to the Preview
JavaScript and CCS files:

<head>
<endeca:pageHead rootContentItem="${rootComponent}"/>

    <title><c:out value="${component.title}"/></title>
    <meta name="keywords" content="${component.metaKeywords}" />
    <meta name="description" content="${component.metaDescription}" />
</head>

Enabling auditing

Each <body> tag must contain a reference to the pageBody tag.This wraps content slot components
in a <div class="endeca-slot"> element and enables audit functionality:

</head>
<body>

<endeca:pageBody rootContentItem="${rootComponent}"/>
        <div class="PageContent"...>
        <script type="text/javascript"...>

</endeca:pageBody>
</body>
</html>

Additionally, all JSP files that define a cartridge with content slots must include an includeSlot tag.
This serves the same purpose as the reference to the pageBody tag for JSP files that do not contain
a <head> tag:

<%@include file="/WEB-INF/views/include.jsp"%>

<endeca:includeSlot contentItem="${component}">
    <c:forEach var="element" items="${component.contents}">
        <discover:include component=${element}"/>

Oracle Endeca Commerce    Assembler Application Developer's Guide

Setting up the Preview Application for Workbench | About instrumenting your application for preview114



    </c:forEach>
</endeca:includeSlot>

Device-specific auditing

In order to handle preview for different devices, you must implement conditional rendering logic for
different user agent strings. The rendering code should include the tags described above.

You can retrieve the user agent String by getting a reference to the UserState object and calling
getUserAgent() on it.The UserState class is documented in the Javadoc for the com.endeca.in¬
front.navigation package.

For example, the Discover Electronics reference application includes the following logic in the
WEB-INF\services\assemble.jsp page:

UserState userState = webappCtx.getBean(properties.getProperty("us¬
er.state.ref"), UserState.class);

String userAgent =  userState.getUserAgent();

//If the userAgent is null, then no user-agent was specified and we need 
to get the user agent from the request header.
if(userAgent == null){
    userAgent = request.getHeader("user-agent");
}

Enabling your preview application
Once you have finished instrumenting your preview application, you can enable it for use in Workbench.

Ensure that your application has been correctly instrumented before enabling it for preview in
Workbench.

All examples shown below are taken from the configuration files for the Discover Electronics authoring
application, located in %ENDECA_TOOLS_ROOT%\reference\discover-electronics-authoring
(on Windows) or $ENDECA_TOOLS_ROOT/reference/discover-electronics-authoring (on
UNIX). The exact mechanisms used for configuring your Assembler and content sources will vary
depending on your implementation details.

For a full description of the properties described below, see the Assembler API Javadoc for the Assem¬
blerFactory and ContentSource interfaces and their corresponding implementations.

To enable your custom preview application:

1. In the constructor arguments for your AssemblerSettings, set the following:

ValueProperty

truepreviewEnabled

http://localhost:8006/previewpreviewModuleUrl

In the Discover Electronics reference implementation, these are configured as properties in
WEB-INF\assembler.properties:

workbench.host=localhost
workbench.port=8006

# ... Additional settings removed from this example ...

Oracle Endeca Commerce    Assembler Application Developer's Guide

115Setting up the Preview Application for Workbench | About instrumenting your application for preview



preview.enabled=true

These properties are then included in the Assembler context file,
WEB-INF\assembler-context.xml:

<!--

########################################################################

    # ASSEMBLER FACTORY
    #
    # Required.
    #
-->
<bean id="assemblerFactory" 
class="com.endeca.infront.assembler.spring.SpringAssemblerFactory"
scope="singleton">
    <constructor-arg>
        <bean class="com.endeca.infront.assembler.AssemblerSettings">

<property name="previewEnabled" value="${preview.enabled}" 
/>
            <property name="previewModuleUrl" value="http://${work¬
bench.host}:${workbench.port}/preview" />
        </bean>
    </constructor-arg>
    <constructor-arg>
        <list>
            <bean class="com.endeca.infront.logger.SLF4JAssemblerEvent¬
Logger" />
        </list>
    </constructor-arg>
</bean>

2. In the constructor arguments for your WorkbenchContentSource, set isAuthoring to true.

Preview is only supported in an authoring environment. In the Discover Electronics reference
implementation, isAuthoring takes the value of the preview.enabled property, since any
content source with preview enabled must be an authoring content source:

<!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 ~ Content Sources
-->
<bean id="contentSource" class="com.endeca.infront.content.source.Work¬
benchContentSource"
 scope="singleton" init-method="init" destroy-method="destroy">

<property name="isAuthoring" value="${preview.enabled}"/>
 <property name="appName" value="${workbench.app.name}" />
 <property name="defaultSiteRootPath" value="/pages" />
 <property name="host" value="${workbench.host}" />
 <property name="workbenchPort" value="${workbench.port}" />
 <property name="clientPort" value="${workbench.publishing.client¬
Port}"/>
</bean>

3. Configure a link service for your application that returns a preview link as a JSONP response.

This service must construct a link to the page selected for preview; for example, if a content
administrator previews the Brand - Canon Web Browse page in the reference application, the

Oracle Endeca Commerce Assembler Application Developer's Guide

Setting up the Preview Application for Workbench | About instrumenting your application for preview116

service returns "/browse/_/N-25y6". Additionally, the response from the service is used to
construct the links in the Audit Panel.

In Discover Electronics, the link service is configured as a link servlet that uses the com.ende¬
ca.infront.web.spring.PreviewLinkServlet class. The servlet is defined in
WEB-INF\web.xml:

<servlet>
 <servlet-name>link</servlet-name>
 <servlet-class>
 com.endeca.infront.assembler.servlet.spring.SpringPre¬
viewLinkServlet
 </servlet-class>
 <init-param>
 <description>
 The ID of the NavigationStateBuilder in the spring
 contextConfig file
 </description>
 <param-name>navigationStateBuilderBeanId</param-name>
 <param-value>navigationStateBuilder</param-value>
 </init-param>
 <init-param>
 <description>
 The ID of the MdexResource in the spring
 contextConfig file
 </description>
 <param-name>mdexResourceBeanId</param-name>
 <param-value>mdexResource</param-value>
 </init-param>
</servlet>

Changing the preview application in Workbench
You can set the preview application in Workbench by using the Preview Settings tool.

Once you have instrumented and enabled your application for preview, you can select it as the preview
application in Workbench.

To change the preview application in Workbench:

1. In Workbench, navigate to the Application Settings > Preview Settings tool.

2. Click the Edit link beside the Preview URL field.

3. In the Preview URL field, enter the fully qualified URL of your preview application.

If you wish to revert to the default Discover Electronics preview application, recall that the URL is
http://<host>:<port>/discover-electronics-authoring, or
http://localhost:8006/discover-electronics-authoring by default.

4. Click Save.
The application at the specified URL is now used for preview.

Changing the preview link service
If you have implemented your own link service for use with preview, you can specify the path to the
service in your application in the Preview Settings tool.

Oracle Endeca Commerce Assembler Application Developer's Guide

117Setting up the Preview Application for Workbench | About instrumenting your application for preview

Once you have created your own preview link service, you can specify it for use with preview instead
of the default link service included with the Discover Electronics reference application.

Note: For information on the required inputs and outputs for a link service, see the Javadoc for
the AbstractPreviewLinkServlet class in the com.endeca.infront.assem¬
bler.servlet package.

To change the preview link service:

1. Stop the Endeca Tools Service.

2. Open your application's deployment descriptor file, web.xml.

For the Discover Electronics reference application, this file is located at
%ENDECA_TOOLS_ROOT%\reference\discover-electronics-authoring\WEB-INF\web.xml.

3. Define the link servlet.

The servlet definition for the Discover Electronics reference application is shown below:

<servlet>
 <servlet-name>link</servlet-name>
 <servlet-class>
 com.endeca.infront.assembler.servlet.spring.SpringPre¬
viewLinkServlet
 </servlet-class>
 <init-param>
 <description>
 The ID of the NavigationStateBuilder in the spring
 contextConfig file
 </description>
 <param-name>navigationStateBuilderBeanId</param-name>
 <param-value>navigationStateBuilder</param-value>
 </init-param>
 <init-param>
 <description>
 The ID of the ContentSource in the spring
 contextConfig file
 </description>
 <param-name>contentSourceBeanId</param-name>
 <param-value>contentSource</param-value>
 </init-param>
</servlet>

4. Define the link servlet mapping.

For example:

<servlet-mapping>
 <servlet-name>link</servlet-name>
 <url-pattern>/servlet/link.json/*</url-pattern>
</servlet-mapping>

5. Save and close the file.

6. Start the Endeca Tools Service.

7. Login to Workbench.

8. In Workbench, navigate to the Application Settings > Preview Settings tool.

9. Click the Edit link beside the Link Settings URL field.

10. In the Link Settings URL field, enter the fully qualified URL of your link service within the application.

Oracle Endeca Commerce Assembler Application Developer's Guide

Setting up the Preview Application for Workbench | About instrumenting your application for preview118

If you wish to revert to the default Discover Electronics reference application and link servlet, recall
that the URL for the link servlet is http://<host>:<port>/discover-authoring/link.json.

11. Click Save.
The link service at the specified URL is now used for preview.

Testing your preview application
After instrumenting and enabling your preview application, you can test the preview and audit
functionality in Endeca Workbench.

Your custom preview application must be fully instrumented and enabled in Workbench in order for
the preview option to display.

To test your custom preview application:

1. In Workbench, navigate to the Experience Manager tool.

2. Navigate to a content item of your choosing.

3. Mouseover the content item.
The Action dropdown button appears.

4. Select Preview from the Action dropdown.
The preview application launches in a new browser tab.

5. Optionally, specify the preview time instead of using the default indicated by the system clock for
the MDEX Engine:

a) Click the arrow beside the selected Device in the Preview Toolbar:

The Preview Toolbar expands to show configuration options.
b) Select a device from the Device dropdown and click Submit.

Specifying a preview device lets you see how the application renders on that device.

6. To test audit functionality:

a) Mouseover the cartridge you wish to audit.
The Audit button appears.

b) Click the Audit button.
The Audit Panel appears with a list of all content items for the specified content collection:

c) Click any of the listed Locations to navigate to that location in the preview application.

Oracle Endeca Commerce Assembler Application Developer's Guide

119Setting up the Preview Application for Workbench | About instrumenting your application for preview

d) Click the name of any of the listed content items and confirm that you return to that item in
Experience Manager.

Oracle Endeca Commerce Assembler Application Developer's Guide

Setting up the Preview Application for Workbench | About instrumenting your application for preview120

Chapter 9

Enabling Endeca Query Language in your
Assembler application

Endeca Query Language allows you to apply additional filters to an end user's search and navigation
state in your application.

About Endeca Query Language
Endeca Query Language (EQL) enables you to filter the records returned from the MDEX Engine
based on your own criteria. By combining an EQL filter with an end user's search and navigation state,
you can present a more relevant set of results.

Using EQL in your application enables you to develop for the following scenarios:

• Your data set requires you to enable search against more than one search interface at a time —
For example, if you wish to enable both thesaurus expansion and wildcard search on an end user's
search terms, you must configure two separate search interfaces (since wildcard search is not
compatible thesaurus expansion). In this case, you can configure the wildcard search as an "or"
in the EQL expression.

• You are dealing with a data set that requires record joins — This can be a product catalog where
each "product" record contains different properties or properties with slightly differing values,
depending on the location that entered the data. In this case, you may wish to configure a default
EQL filter that performs a record join and executes a search against the combined record
information.

For a detailed overview of the syntax and capabilities of EQL, see "Using the Endeca Query Language"
in the MDEX Engine Advanced Development Guide.

Applying an EQL filter in a Java application
If you are developing a Java Assembler application, you can apply an EQL filter to an end user's filter
state by creating the expression as an instance of the EqlFilter class, and calling the setEqlFil¬
ter() method to apply it to your filter state.

Note: The approach outlined below is one suggested implementation of the EQL feature. If you
are relying on the packaged services to interface with the Assembler, you must instead pass

EQL filters to your application through the Nrs URL parameter.You can also configure a single,
default EQL filter that applies across your entire application.

To apply an EQL filter programatically:

1. Decide where to insert your EQL logic.

Oracle recommends extending the UrlNavigationStateBuilder class.

2. Duplicate the current filter state in the application as an EQL expression:

//Retrieve the search key, terms, and match mode from the search filter
 in the parsed FilterState
if (filterState.getSearchFilters() != null && filterState.getSearchFil¬
ters().size() > 0){
 String searchTerms = filterState.getSearchFilters().get(0).getTerms();

 String searchKey = filterState.getSearchFilters().get(0).getKey();
 String matchMode = filterState.getSearchFilters().get(0).getMatch¬
Mode().toString();

 //Build the EQL expression using the first search filter
 String eqlExpression;
 if (matchMode == null){

eqlExpression = "collection()/record[endeca:matches(.,\"" +
searchKey + "\",\"" + searchTerms + "\");
 } else {

eqlExpression = "collection()/record[endeca:matches(.,\"" +
searchKey + "\",\"" + searchTerms
 + "\",\"" + matchMode + "\");
 };

3. Make any desired customizations to the EQL expression.

For example, to execute a normal search but wildcard search terms when matching against the
"product.id" dimension, you could use the following expression:

 if (matchMode == null){
 eqlExpression = "collection()/record[endeca:matches(.,\"" +
searchKey + "\",\"" + searchTerms
 + "\") or endeca:matches(.,\"product.id\",\"" + searchTerms
 + "*\")]";
 } else {
 eqlExpression = "collection()/record[endeca:matches(.,\"" +
searchKey + "\",\"" + searchTerms
 + "\",\"" + matchMode + "\") or endeca:matches(.,\"prod¬
uct.id\",\"" + searchTerms + "*\")]";
 };

4. Create your EQL filter as an instance of the EqlFilter class and set the EQL expression:

 //Create a EqlFilter and set it on the filterState
 EqlFilter eqlFilter = new EqlFilter();
 eqlFilter.setExpression(eqlExpression);

5. Return the completed filter state to your application and handle it as necessary.

Oracle Endeca Commerce Assembler Application Developer's Guide

Enabling Endeca Query Language in your Assembler application | Applying an EQL filter in a Java
application

122

About configuring an EQL filter using the Nrs URL
parameter

You can pass an EQL expression to your application through the Nrs URL parameter.

Once you have created an EQL expression, you can use the Nrs URL parameter pass it into the
UrlNavigationStateBuilder, for example:

Nrs=collection()/record[endeca:matches(.,"product.description",searchTerms)]

For additional information about the UrlNavigationStateBuilder and a full list of associated URL
parameters, refer to the class documentation in the Assembler API Reference (Javadoc).

About configuring a default EQL filter
You can apply an EQL filter to your application's default filter state.

You may wish to apply a specific, consistent EQL expression to all queries in your application.

You can configure a default EQL filter for your application by specifying it as a eqlFilter property
on the default FilterState.

In the Discover Electronics reference application, this is configured in the Assembler context file:

<bean id="navigationStateBuilder" scope="request"
 class="com.endeca.infront.navigation.url.UrlNavigationStateBuilder">
 <property name="defaultFilterState">
 <bean scope="singleton" class="com.endeca.infront.navigation.mod¬
el.FilterState">

<property name="eqlFilter">
 <bean scope="request" class="com.endeca.infront.naviga¬
tion.model.EqlFilter">
 <property name="expression" value="collec¬
tion()/record[...]" />
 </bean>
 </property>

<!-- additional elements removed from this example -->
 </bean>
 </property>

<!-- additional elements removed from this example -->
</bean>

For additional information about search interfaces, see the MDEX Engine Basic Development Guide.

About applying Relevance Ranking to EQL results
You can apply Relevance Ranking to search keys, terms, and match modes other than those specified
in the search filter.

You can specify your relevance ranking settings programatically through the ResultsListConfig
object, or through the relevance ranking URL parameters. To apply these to your EQL query rather
than the end user's search filter, pass in the EQL-specific values when setting the relRankStrategy,
relRankKey, and relRankTerms properties (or the associated URL parameters).You must use
one of these two methods to set the properties if you wish to apply relevance ranking to the EQL
search results rather than the results from the end user's search filter.

Oracle Endeca Commerce Assembler Application Developer's Guide

123Enabling Endeca Query Language in your Assembler application | About configuring an EQL filter using
the Nrs URL parameter

For additional information, see the Assembler API Reference (Javadoc) and the documentation for
the Results List cartridge.

Related Links
Configuration model for the Results List cartridge on page 100

The Results List configuration model allows you to configure the number and sorting of records
returned by a search or navigation query. Additionally, it includes whyMatchEnabled and
whyRankEnabled properties that can be used for debugging the set of records returned for
a query.

About troubleshooting EQL performance
If you wish to determine the impact of EQL expressions on your application, you should review the
performance of cartridge handlers that are EQL-enabled.

EQL-enabled queries are not categorized separately in application logs; instead, you should review
the performance metrics and behavior of cartridges that use EQL expressions. If you are modifying a
cartridge handler to use EQL or creating a new cartridge handler that includes the feature, Oracle
recommends supplementing the logging information for that cartridge to reflect the presence of EQL.

Oracle Endeca Commerce Assembler Application Developer's Guide

Enabling Endeca Query Language in your Assembler application | About troubleshooting EQL
performance

124

Chapter 10

Using an MDEX Engine to Manage Media Assets

If you are storing media resources in an independent content store, you can set up an MDEX Engine
where records represent media assets and include asset metadata and URIs. Storing this information
as records enables Guided Navigation in the Experience Manager Media Browser, allowing content
administrators to easily navigate across resources when selecting media assets for a content item.

Interaction between an Endeca application and the media
MDEX Engine components

The interactions between a media MDEX Engine, Experience Manager, and Endeca Web application
are summarized below.

Note that for simplicity, the MDEX Engine backing the Endeca Web application is not shown in the
diagrams below.

Interaction between the media MDEX Engine and Experience Manager

Experience Manager retrieves media asset information as follows:

1. A CAS crawl and Forge pipeline populate the media MDEX Engine with media asset metadata and
URIs from one or more content sources.

2. In Experience Manager, the Media Browser queries the media MDEX Engine for media records.
This allows the content administrator to select media assets by navigating across them with Guided
Navigation.

3. The content administrator's configuration changes are published to the Endeca application each
time a content item is saved.

Interaction between the media content source and an Endeca application

In a production environment, the Endeca Web application can be configured to retrieve media assets
from a content delivery network or another media delivery server:

1. Media assets are uploaded from the media content source to the runtime content delivery network.
2. The Web application retrieves media from this content delivery network.

Note: The server hosting your media assets can differ between authoring and live environments,
as long as the media path relative to the media root is consistent. In the case of the reference
data application, the Endeca Configuration Repository is used as the authoring content source.
For more information on configuring content sources, see "About Media editor configuration" in
the "Template Property and Editor Reference" Appendix.

Related Links
About Media editor configuration on page 171

You can specify allowable media formats in the editor configuration file.You can also enable
or disable the Media Browser, and specify the MDEX Engine that it should query for media
records.

About resolving media paths in content items on page 175

Oracle Endeca Commerce Assembler Application Developer's Guide

Using an MDEX Engine to Manage Media Assets | Interaction between an Endeca application and the
media MDEX Engine components

126

Links to media assets are resolved in the Media editor by combining configuration in the
editor configuration file with the media.path property on the selected record. At runtime,
these links are resolved against the media sources specified in the Assembler context file.

Uploading media content for use in Experience Manager
All applications created using the Deployment Template include a set_media script in the <app
dir>\control directory. This script uploads media content from the <app dir>\config\media
directory to the Endeca Configuration Repository.You run the script after you locally add content to
<app dir>\config\media. After uploading the content, it becomes available for use in Experience
Manager.

In general, you can store moderate amounts of media content in the Endeca Configuration Repository.
Very roughly speaking, a moderate amount of media content is approximately thousands of media
files but not tens of thousands of media files. This storage mechanism is intended as a convenience
when you build an application in a development environment.

If you have larger amounts of media content, Oracle recommends employing a digital asset management
system rather than uploading the media content into the Endeca Configuration Repository.

Here are a few specific guidelines to keep in mind before you upload media content to the Endeca
Configuration Repository:

• Do not upload more than approximately 1 GB of media content per transaction. In this context, a
transaction is one run of set_media.

• Do not upload more than approximately 5000 files in one transaction. This guideline essentially
means you should not have more than approximately 5000 files stored in <app
dir>\config\media and its subdirectories.

• If you have more than approximately 1000 files to upload, create subdirectories under <app
dir>\config\media and distribute the media files among the subdirectories. (One run of
set_media uploads all content in all subdirectories.)

To upload media content for use in Experience Manager:

1. Ensure any new media content is stored locally in <app dir>\config\media.

This may include image files, video files, and so on.

2. Start a command prompt (on Windows) or a shell (on UNIX).

3. Navigate to the <app dir>\control directory of your deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app
name>\control.

4. Run the set_media script.

Overview of the reference data application
The Tools and Frameworks package includes a reference implementation of a media MDEX Engine
that includes a CAS crawl and Forge pipeline for crawling resources in the Endeca Configuration
Repository and indexing the corresponding metadata and URIs. The Experience Manager can then
query the MDEX Engine for record information.

Oracle Endeca Commerce Assembler Application Developer's Guide

127Using an MDEX Engine to Manage Media Assets | Uploading media content for use in Experience
Manager

Endeca software requirements

In addition to the hardware and software required for Oracle Endeca Tools and Frameworks, the data
ingest process for the media MDEX Engine requires the Oracle Endeca Content Acquisition System.
You must have CAS 3.1.1 installed on the machine on which you are hosting your media MDEX Engine.

Media MDEX CAS crawl

Below is a representation of the CAS crawl for the media MDEX Engine:

Important: A connector for the JSR-170 Compliant data source is provided for the reference
application, but requires a separate license for use. To obtain licensing information for this
connector, contact your Oracle sales representative.

The crawl uses the following manipulators:

1. Directory Filter: This manipulator filters out directory records, so that only media files are output
to the MDEX Engine.

2. Property Renamer: This manipulator maps crawled property value names to the schema used by
the Media Browser in Experience Manager. For more information, see "Media MDEX Engine schema
definition."

3. Application Property Generator: This manipulator analyzes record paths to determine which
application a record is associated with (if any) and assigns it to a media.site property.This allows
the Media Browser to display only those media assets that are relevant to the application that the
content administrator is currently modifying in Workbench.

4. Image Property Generator: This manipulator analyzes image binaries to determine their width
and height. It then adds corresponding height and width properties to each record.

Media MDEX Forge pipeline

The Forge pipeline for the reference data application reads data from the Endeca Record Store
populated by the CAS crawl, and runs a baseline update to index records to the media MDEX Engine.

Oracle Endeca Commerce Assembler Application Developer's Guide

Using an MDEX Engine to Manage Media Assets | Overview of the reference data application128

Important: The reference media MDEX Engine and data application are provided as example
implementations. If you wish to connect to an external data source, you must configure a CAS
crawl specific to your data set, including a custom repository adapter and custom record
manipulators as necessary. Additionally, your MDEX Engine configuration must include certain
properties in order to function correctly with the Media editor in Experience Manager. For details,
see "Media MDEX Engine schema definition."

Related Links
Media MDEX Engine schema definition on page 130

In order for the Media Browser in Experience Manager to have sufficient information for
forming content XML, any media MDEX Engine that you configure must define specific
properties and dimensions.

Deploying the media MDEX Engine data application
The media MDEX Engine data application assumes an environment where all required Oracle Endeca
components are running on the same machine.

You must have the Oracle Endeca Content Acquisition System and Oracle Endeca Tools and
Frameworks installed on the machine onto which you wish to deploy the media MDEX Engine.
Additionally, your Discover Electronics reference application must be deployed and running.

To deploy the media MDEX Engine data application:

1. Include the CAS manipulators for the reference data application as server plugins:

a) Navigate to the %CAS_ROOT%\lib\cas-server-plugins.
b) Create a directory named mediaMDEX.
c) Navigate to the

%ENDECA_TOOLS_ROOT%\reference\media-mdex-cas\cas\media-mdex-manipulators
directory.

d) Copy the following JAR files to the %CAS_ROOT%\lib\cas-server-plugins\mediaMDEX
directory you created in step 1b:

• media-mdex-manipulators-3.1.1.jar

• google-collections-1.0.jar

2. Set up CAS for crawling JSR-170/ 283 compliant Jackrabbit repositories:

a) Navigate to the
%ENDECA_TOOLS_ROOT%\reference\media-mdex-cas\cas\dependencies directory.

b) Copy the CAS dependencies to the %CAS_ROOT%\lib\server directory:

• jackrabbit-jcr-rmi-2.2.9.jar
• jcr-2.0.jar

3. Restart the CAS Service.

4. Deploy the reference data application:

a) Open a command prompt or command shell.

Note: If you are running the Tools and Frameworks from the included batch files,
you must run <Endeca
Directory>/ToolsAndFrameworks/<version>/server/bin/setenv.bat
to set the environment variables for the current command window.

Oracle Endeca Commerce Assembler Application Developer's Guide

129Using an MDEX Engine to Manage Media Assets | Overview of the reference data application

b) Navigate to the
C:\Endeca\ToolsAndFrameworks\<version>\deployment_template\bin directory
on Windows, or
/usr/local/endeca/ToolsAndFrameworks/<version>/deployment_template/bin
on UNIX.

c) Run deploy.bat or deploy.sh with the following options:

deploy --app <Endeca Directory>/ToolsAndFrameworks/<version>/refer¬
ence/media-mdex-cas/deploy.xml

d) Confirm the Platform Services installation directory.
e) Enter n to skip installation of a base application.
f) Specify media as the application name.
g) Specify the Endeca application directory.

Typically, this is C:\Endeca\apps on Windows, or /usr/local/endeca/apps on UNIX.

h) Specify the EAC port previously used for the Discover Electronics reference application.

By default, this is port 8888.

i) Specify the port that Workbench is running on.

By default, this is port 8006.

j) Specify the Dgraph and LogServer ports for your reference data application.

Note: These must be different from those used for the Discover Electronics reference
application.

By default, this is port 17000 for the Dgraph and port 17010 for the LogServer. If you change
these values, you must also update the configuration for the MediaEditor in the <app
dir>\config\editors_config\editors.xml file.

k) Specify the CAS installation directory.
l) Enter the port that CAS runs on.
m) Enter the hostname that Workbench runs on.

This information enables the data application to locate and query the Endeca Configuration
Repository during the data ingest process.

n) Enter the name of the Discover Electronics application as specified during deployment.

By default, this should be Discover.

5. Initialize and run a baseline update on the media MDEX Engine:

a) Navigate to the control directory of your deployed data application.
b) Run the initialize_services batch or shell script.
c) Run the baseline_update batch or shell script.

Media MDEX Engine schema definition
In order for the Media Browser in Experience Manager to have sufficient information for forming content
XML, any media MDEX Engine that you configure must define specific properties and dimensions.

Required properties

The following properties are required for the Media Browser to function correctly:

Oracle Endeca Commerce Assembler Application Developer's Guide

Using an MDEX Engine to Manage Media Assets | Media MDEX Engine schema definition130

DescriptionField

A unique identifier for each of the media items.record.id

The filename of the media asset.media.name

The file path, relative to the root of the content source.media.path

The logical host of the content source.The value of this property is mapped
to configuration elements for the Media editor in the editor configuration

media.repository_id

file, which in turn contain the path to the content source. For additional
information, see "About Media editor configuration."

The EAC application that the specified media asset is associated with.
The Media editor in Experience Manager filters entries in the Media

media.site

Browser based on which application the content administrator is currently
editing.

The binary size of the media asset, in bytes.media.size

The height of the media asset, if it is an image.The renderer for the Media
editor uses this information to scale images appropriately.

image.height

The width of the media asset, if it is an image. The renderer for the Media
editor uses this information to scale images appropriately.

image.width

Properties and dimensions provided in the reference data application

Optionally, additional properties and dimensions can be displayed in the Media Browser.The reference
media MDEX Engine includes the following such fields:

DescriptionTypeField

The MIME type of the media asset. This enables filtering
by media type and file extension in the Media Browser.

Dimensionmedia.mime_type

The user who uploaded the specified asset to the Endeca
Configuration Repository. This enables filtering by author
in the Media Browser.

Dimensionmedia.author

The date and time that the file was created on the Endeca
Configuration Repository.

Propertymedia.creation_date

The date and time that the file was last modified prior to
being crawled by the Content Acquisition System.

Propertymedia.last_modifica¬
tion_date

If you configure your own media MDEX Engine that includes properties or dimensions not listed above,
they become available for Guided Navigation in the Media Browser. However, any such properties
are not saved in the content XML once a media asset has been selected.

Search interface requirements

The Media Browser requires a defined search interface named "All" that includes all searchable
properties and dimensions in the data set. Additionally, the Media Browser in the reference application
uses the "MatchAllPartial" search mode.

Related Links
About the Media Browser on page 170

Oracle Endeca Commerce Assembler Application Developer's Guide

131Using an MDEX Engine to Manage Media Assets | Media MDEX Engine schema definition

The default asset browser for the Media editor can only be configured to browse media assets
in the Endeca Configuration Repository. If you are using another system for managing media
assets, you must stand up a corresponding media MDEX Engine and enable the Media
Browser in the editor configuration file.

Oracle Endeca Commerce Assembler Application Developer's Guide

Using an MDEX Engine to Manage Media Assets | Media MDEX Engine schema definition132

Chapter 11

Understanding and Debugging Query Results

The MDEX Engine provides several methods for understanding why certain results were returned for
a query so that you can determine how to tune search features to provide the desired results.

About the query debugging features
The MDEX Engine query debugging features include Why Match, Word Interpretation, Why Rank, and
Why Precedence Rule Fired. Each feature provides information on a different aspect of search results.

DescriptionFeature

Augments record results with information about which record properties
were involved in search matching.

Why Match

Augments record results with information about which relevance ranking
modules ordered the results and why a particular record was ranked in
the way that it was.

Why Rank

Augments root dimension values with information about how the
precedence rule was triggered (explicitly or implicitly), which dimension

Why Precedence Rule Fired

ID and name triggered the precedence rule, and the type of precedence
rule (standard, leaf, or default).

Reports word or phrase substitutions made during text search processing
due to stemming, thesaurus expansion, or spelling correction.

Word Interpretation

About enabling query debugging features
You enable the query debugging features on an Endeca Assembler application via the debugEnabled
constructor argument on your MdexRequestBroker object. In the Discover Electronics reference
application, this is configured in the MDEX Resource section of the Spring context file for the Assembler.

When debugEnabled is set to true, it enables query debugging features to be applied to an Assembler
request. When set to false, debugging features are turned off for every request. Debugging features
are disabled by default.

Important: Query debugging features are not optimized for performance and can be very
expensive to process. For both performance and security reasons, the debug constructor
argument should always be set to false in a production environment.

In addition to the corresponding object configuration, Word Interpretation must be enabled via the
--wordInterp Dgraph flag.

The following shows the default MDEX resource configuration in the Discover Electronics application:

<bean id="mdexRequestBuilder" scope="request" class="com.endeca.infront.nav¬
igation.request.MdexRequestBroker">
 <constructor-arg ref="mdexResource" />
 <!-- Debug Enabled Parameter. When set to true, allows debug information
 to be returned from the Assembler -->

<constructor-arg value="false"/>
</bean>

URL parameters for query debugging features
All query debugging features except for Word Interpretation may be enabled on a per-query basis via
URL parameters.

The following parameters take a value of 1 (for enabled) or 0 (for disabled):

• whymatch

• whyrank

• whyprecedencerulefired

The Word Interpretation feature can only be enabled at the level of an individual cartridge handler.

Note: If the debug constructor argument on the MDEX resource bean is set to false, all
debugging features are disabled on every request regardless of URL parameters.

About query debugging results in the reference application
In Discover Electronics, query debugging results can be returned as part of the response model for
the Results List, Search Adjustments, and Refinement Menu cartridges as appropriate. In the Discover
Electronics reference application, these results can be enabled by un-commenting the corresponding
properties in each cartridge handler.

The debugging results are returned as properties on returned records:

ResultsFeature

Returns information about why each record matched the query in a
Dgraph.WhyMatch property on the record.

Why Match

Returns information about why each record was ranked the way it was
in a Dgraph.WhyRank property on the record.

Why Rank

Returns information about precedence rules that fired on a query in a
DGraph.WhyPrecedenceRuleFired property on each root dimension
value.

Why Precedence Rule Fired

Oracle Endeca Commerce Assembler Application Developer's Guide

Understanding and Debugging Query Results | URL parameters for query debugging features134

ResultsFeature

Returns information about word or phrase substitutions as a map that
can be accessed via getInterpretedTerms() on the SearchAd¬
justments model.

Word Interpretation

For details about the format of the debugging results, refer to the MDEX Engine Advanced Developer's
Guide.

Note: The renderers in the Discover Electronics application do not include rendering logic to
display the query debugging properties, but the information is available from the JSON or XML
view.

The relevant configuration for the individual cartridge handlers in the Discover Electronics reference
application is shown below:

• Results List — Why Match, Why Rank

<bean class="com.endeca.infront.cartridge.ResultsListConfig" scope="sin¬
gleton">

<!-- <property name="whyMatchEnabled" value="true"/> -->
 <!-- <property name="whyRankEnabled" value="true"/> -->

<!-- additional elements omitted from this example -->
</bean>

Enabling these settings overrides the default values specified for the setWhyMatchEnabled and
setWhyRankEnabled methods on the com.endeca.infront.cartridge.ResultsListCon¬
fig object when the Endeca Tools Service is initialized.

• Refinement Menu — Why Precedence Rule Fired

<bean class="com.endeca.infront.cartridge.RefinementMenuConfig"
scope="singleton">
 <property name="moreLinkText" value="More..."/>
 <!-- <property name="whyPrecedenceRuleFired" value="true"/> -->
</bean>

Enabling this setting overrides the default value specified for the setWhyPrecedenceRuleFired
method on the com.endeca.infront.cartridge.RefinementMenuConfig object when
the Endeca Tools Service is initialized.

• Search Adjustments — Word Interpretation

<bean class="com.endeca.infront.cartridge.SearchAdjustmentsConfig"
scope="singleton">

<!-- <property name="showWordInterp" value="true"/> -->
</bean>

Enabling this setting overrides the default value specified for the setShowWordInterp method
on the com.endeca.infront.cartridge.SearchAdjustmentsConfig object when the
Endeca Tools Service is initialized.

Important: In order for interpreted word information to be available, you must start your
Dgraph with the --wordInterp flag. This flag is not enabled in the deployment descriptor
file for the Discover Electronics reference application.

Oracle Endeca Commerce Assembler Application Developer's Guide

135Understanding and Debugging Query Results | About query debugging results in the reference application

Chapter 12

Configuring Logging for an Assembler Application

By default, the Assembler logs the search and navigation information associated with a request event.
However, you can create custom cartridge handlers to collect and act on any information that is
important to your application.

About request events
Each invocation of the Assembler creates an associated RequestEvent object that tracks request
information.

Information on a RequestEvent is stored as key/value pairs.You can include arbitrary information
on an Assembler request by extending the RequestEvent object in a cartridge handler's process
method. For example:

/**
 * Cartridge Handler process method
 */
public void process(ConfigType pContentType) {

 // Create a new RequestEvent from the global RequestEvent object
 RequestEvent event = RequestEventFactory.getEvent();

 // Store arbitrary information
 event.put("myKey","my arbitrary value");

 ...
}

The NavigationEventWrapper class

The NavigationEventWrapper class provides convenience methods for getting and setting common
search and navigation information on a request event. It modifies the RequestEvent object specified
in the constructor, as in the example below:

/**
 * Cartridge Handler process method
 */
public void process(ConfigType pContentType) {

 // Create a new NavigationEventWrapper around the global RequestEvent
object
 NavigationEventWrapper navigationEvent = new NavigationEventWrapper(Re¬

questEventFactory.getEvent());

 // Store navigation event information
 navigationEvent.setAutocorrectTo("autocorrected term");

 ...
}

For additional information about the RequestEvent and NavigationEventWrapper classes,
including a full list of the convenience methods available for the NavigationEventWrapper, see
the Assembler API Reference (Javadoc).

About request event adapters
Request event adapter classes perform some action based on information included with a request
event.

A request event adapter class implements the handleAssemblerRequest() method in the abstract
RequestEventListener class. This method is invoked at the end of the Assembler's assemble()
method.

The following is an example of a simple request event adapter:

/**
 * Add log information to root content item
 */
public class SampleRequestEventAdapter extends RequestEventListener {

 /**
 * Constructor
 * @param sessionIdProvider provides an ID for the current user session

 */
 public SampleRequestEventAdapter(SessionIdProvider sessionIdProvider)
{
 super(sessionIdProvider);
 }

 /**
 * Prints the request event's session id and search term (if present)
to the console
 * @param assemblerRequestEvent the event containing all of the
 * information about the Assembler request
 * @param rootContentItem the Assembler output
 */

public void handleAssemblerRequestEvent(RequestEvent event, ContentItem
 rootContentItem) {
 NavigationEventWrapper navigationEvent = new NavigationEventWrap¬
per(assemblerRequestEvent);
 // Print Session ID - Note that the session Id has already been
determined and set in the event object
 System.out.println("The current session is: "+event.getSessionId());

 // Print Search Term
 if (navigationEvent.getSearchTerms() != null && !navigationEvent.get¬
SearchTerms().trim().isEmpty()) {
 System.out.println("The current search terms are: "+navigation¬

Oracle Endeca Commerce Assembler Application Developer's Guide

Configuring Logging for an Assembler Application | About request event adapters138

Event.getSearchTerms());
 } else {
 System.out.println("There were no search terms in the current
request");
 }
 }
}

The SessionIdProvider interface

The example request event adapter above registers an implementation of SessionIdProvider in
the constructor. This enables it to retrieve the server session ID.

The Oracle Endeca Tools and Frameworks installation implements this interface in the included
SpringUtility class.You can create your own SessionIdProvider class by extending the
SessionIdProvider interface and implementing the getSessionID() method.

Request event adapters in the reference application

The Discover Electronics reference application includes the following implementations of the Assem¬
blerEventListener interface:

• AssemblerEventAdapter
• ContentItemAugmentAdapter
• LogServerAdapter
• RequestEventListener

For additional information on these classes, see the Assembler API Reference (Javadoc).

About registering a request event adapter
To use a request event adapter, you must register it with your AssemblerFactory.

You can disable request event adapters by removing them from the AssemblerFactory configuration.

Request event adapter configuration in the reference application

In the reference application, the AssemblerFactory interface is implemented as SpringAssem¬
blerFactory, and the AssemblerEventListener objects are specified as constructor arguments
in the Assembler context file:

<!--
 ##

 # ASSEMBLER FACTORY
 #
 # Required.
 #
-->
<bean id="assemblerFactory" class="com.endeca.infront.assem¬
bler.spring.SpringAssemblerFactory"
 scope="singleton">
 <constructor-arg>
 <bean class="com.endeca.infront.assembler.AssemblerSettings">
 <property name="previewEnabled" value="${preview.enabled}" />
 <property name="previewModuleUrl" value="http://${work¬
bench.host}:${workbench.port}/preview" />
 </bean>

Oracle Endeca Commerce Assembler Application Developer's Guide

139Configuring Logging for an Assembler Application | About request event adapters

 </constructor-arg>
 <constructor-arg>
 <list>
 <bean class="com.endeca.infront.logger.SLF4JAssemblerEventLogger"
 />

<bean class="com.endeca.infront.assembler.event.request.Con¬
tentItemAugmentAdapter">
 <constructor-arg ref="springUtility"/>
 </bean>
 <bean class="com.endeca.infront.navigation.event.LogServer¬
Adapter">
 <constructor-arg ref="springUtility"/>
 <constructor-arg value="${logserver.host}"/>
 <constructor-arg value="${logserver.port}"/>
 </bean>
 </list>
 </constructor-arg>
</bean>

Request event adapters in the reference application
The reference application includes two request event adapters, ContentItemAugmentAdapter and
LogServerAdapater.

DescriptionAdapter

Appends request event information to the
Content Item returned by the assemble()

com.endeca.infront.assembler.re¬
quest.ContentItemAugmentAdapter

method. Information is included as a nested
Content Item of type AssemblerRe¬
questEvent, with the key endeca:assembler¬
RequestInformation. For a list of attributes
that are available out-of-the-box, see Request
Event Attributes on page 197.

Formats data from the request event and sends
it to the Oracle Endeca Log Server, which allows

com.endeca.infront.naviga¬
tion.event.LogServerAdapter

Workbench users to generate reports using the
Report Generator.

The adapter must be configured with the host
and port of the log server. In the reference
application, these values are configured in the
WEB-INF\assembler.properties file.

Client side click events
The Oracle Endeca log server tracks the following click events from the client side of an Assembler
application:

Oracle Endeca Commerce Assembler Application Developer's Guide

Configuring Logging for an Assembler Application | Client side click events140

DescriptionTypeAttribute Key

Did the user select a dimension search result.
BooleanIN_DIM_SEARCH

Did the user select the "did-you-mean" value.
BooleanIN_DYM

Did the user select a merch rule (spotlight).
BooleanIN_MERCH

Did an action cause a conversion.
BooleanCONVERTED

You can include the information collected from these events in your application reports. For more
information about the Log Server and Report Generator components, refer to the Platform Services
Log Server and Report Generator Guide.

Oracle Endeca Commerce Assembler Application Developer's Guide

141Configuring Logging for an Assembler Application | Client side click events

Appendix A

Template Property and Editor Reference

This section describes how to define basic content properties and associated editing interfaces in
Experience Manager templates.

Editor property mapping reference
This section provides an overview of which property types are associated with the different Oracle
Endeca Commerce Suite editors.

Oracle Endeca Commerce Core Editors

The following core editors are included with all installations of Oracle Endeca Commerce:

FunctionalityProperty
Type

Editor

Displays as a checkbox that the content administrator selects
or de-selects. Optionally, the editor may be set to a read-only
state.

<Boolean>BooleanEditor

Displays as a dropdown with an optional default value. The
content administrator selects from a set of pre-defined
values.

<String>ChoiceEditor

Displays as a drop-down list for specifying a valid content
collection, and a numeric stepper for setting the evaluation
limit for that collection.

<String>DynamicSlot Editor

Displays as a one-line text field with a pair of arrow buttons
for increasing or decreasing the value by a set amount. The

<String>NumericStepperEdi¬
tor

content administrator inputs or adjusts the value to any
number within the minimum and maximum boundaries
defined in the editor.

FunctionalityProperty
Type

Editor

Displays as a series of radio buttons with an optional default
value. The content administrator selects from a set of
pre-defined values.

<String>RadioGroupEditor

<xavia:List>RecordListEditor
Important: This editor is deprecated. Use the Spot¬
lightSelectionEditor instead.

Displays as a button that launches the microbrowser and
allows the content administrator to select the list of records
that populates a <xavia:Item class="com.endeca.in¬
front.cartridge.RecordSpotlightSelection"/>
record selection property.

Displays as a slider bar. The content administrator selects
a value by moving the slider along specified intervals within
the minimum and maximum boundaries defined in the editor.

<String>SliderEditor

Displays as a button that launches the Select Records
dialog and allows the content administrator to select the

<xavia:Item>SpotlightSelec¬
tionEditor

navigation state or list of records that populates a
<xavia:Item class="com.endeca.infront.car¬
tridge.RecordSpotlightSelection"/> record
selection property.

Displays as a text field or text area. The content
administrator enters arbitrary string values. Optionally, the

<String>StringEditor

editor may be set to a read-only state to display a fixed,
default value.

Oracle Endeca Experience Manager Editors

The following editors are included in the Oracle Endeca Experience Manager package:

FunctionalityProperty
Type

Editor

Displays as a three-pane, drag-and-drop interface consisting
of a central pane that lists available dimension refinements,

<xavia:List>BoostBuryEditor

a left pane for boosted refinements, and a right pane for
buried refinements. The content administrator can filter the
list of available dimensions by searching against a text string.

The editor populates two <xavia:List> properties, one
for boosted dimension refinements and one for buried
dimension refinements.

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Editor property mapping reference144

FunctionalityProperty
Type

Editor

Displays as two panes, Boosted Records and Buried
Records, each with an Edit List button that launches the

<xavia:List>BoostBuryRecordEdi¬
tor

Select Records dialog. The content administrator uses the
Select Records dialog to populate the lists of boosted and
buried records.

The editor populates two <xavia:List> properties, one
for boosted records and one for buried records.

Displays as two panels, one with a list of available
dimensions and one with a list of selected dimensions. The

<xavia:List>DimensionListEdi¬
tor

content administrator can drag values back and forth
between the two lists.

Displays as a dropdown. The content administrator selects
a value from the list of available dimensions retrieved from
the MDEX Engine.

<String>DimensionSelec¬
torEditor

The editor populates two <xavia:String> properties, one
for the dimension name and one for the ID.

Displays as two panels, one with a list of available dimension
refinements and one with a list of selected refinements.The

<xavia:List>DimvalListEditor

content administrator can drag values back and forth
between the two lists. Additionally, the list of available
refinements includes a search box for finding specific
refinements in a large data set.

Displays as a button for launching the Generate Guided
Navigation wizard, which allows a content administrator to

<Con¬
tentItem¬
List>

GuidedNavigationEd¬
itor

select and order a set of dimensions in order to create
multiple Refinement Menu cartridges at once.

Displays two radio buttons, one for specifying an External
link via a text field, and one for specifying an Internal

<xavia:Item>LinkBuilderEditor

(Relative) link.The content administrator specifies a relative
link by selecting a servlet from a dropdown list, then
launching the Select Records dialog to navigate to a specific
record or a navigation state.

The editor populates a<xavia:Item class=com.ende¬
ca.infront.cartridge.model.LinkBuilder/> item
property. For more information, see "Adding a Link Builder."

Displays as a Media URL field, with an associated preview
box and Select and Clear buttons for launching the media

<xavia:Item>MediaEditor

editor or clearing the current URL.The content administrator

Oracle Endeca Commerce Assembler Application Developer's Guide

145Template Property and Editor Reference | Editor property mapping reference

FunctionalityProperty
Type

Editor

can browse through media in the configured source
repository, and generate a link to a selected asset.

<xavia:List>RecordStratifica¬
tionEditor Important: This editor is deprecated. Use the

BoostBuryRecordEditor instead.

Displays as two panes, Boosted Records and Buried
Records, each with an Edit List button that launches the
microbrowser. The content administrator uses the
microbrowser to populate the lists of boosted and buried
records.

The editor populates two <xavia:List> properties, one
for boosted records and one for buried records.

Displays as a text area with a configurable formatting toolbar.
The content administrator enters arbitrary string values and
can include markup to add text formatting and hyperlinks.

<String>RichTextEditor

Displays as a dropdown. The content administrator selects
a sort order from those configured in the editor.

<xavia:Item>SortEditor

The editor includes multiple <xavia:Item
class="com.endeca.infront.navigation.mod¬
el.SortOption"/> item properties that each specify an
available sort option. For more information, see "Adding a
Sort editor."

Related Links
Basic content properties on page 147

Content items properties must be one of several basic types. All configuration models are
composed of the same primitive property types.

Complex property editors on page 161
This section describes editors that are designed for specific aspects of Endeca feature
configuration.

Editor label configuration reference
All editors share a set of common attributes that can be used to configure the appearance of the editor
in Experience Manager.

When adding an editor to a template, you can configure its appearance by setting the following attributes:

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Editor label configuration reference146

DescriptionAttribute

This attribute enables you to specify a more descriptive label for the
editor in Experience Manager. If no label is specified, the value of the
associated propertyName is used by default.

label

The position of the label text. Valid values are "left" (the default) and
"top".

labelPosition

This attribute allows you to specify a descriptive label that appears below
the editor.

bottomLabel

This attribute allows you to specify mouseover text for the editor.tooltip

Basic content properties
Content items properties must be one of several basic types. All configuration models are composed
of the same primitive property types.

The basic content property types are:

• <String>

• <Boolean>

• <xavia:List>

• <xavia:Item>

The following example shows a several properties of various types.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent"
 id="ResultsList">

<!-- additional elements omitted from this example -->

 <ContentItem>
 <Name>Results List</Name>
 <Property name="boostStrata">
 <xavia:List/>
 </Property>
 <Property name="buryStrata">
 <xavia:List/>
 </Property>
 <Property name="sortOption">
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption">

 <xavia:Property name="label">Most Sales</xavia:Property>
 <xavia:Property name="sorts">
 <xavia:List>
 <xavia:Item class="com.endeca.infront.navigation.mod¬
el.SortSpec">
 <xavia:Property name="key">product.analytics.to¬
tal_sales</xavia:Property>
 <xavia:Property name="descending">false</xavia:Prop¬
erty>
 </xavia:Item>

Oracle Endeca Commerce Assembler Application Developer's Guide

147Template Property and Editor Reference | Basic content properties

 </xavia:List>
 </xavia:Property>
 </xavia:Item>
 </Property>
 <Property name="relRank">
 <!-- Margin Bias -->
 <String>nterms,maxfield,exact,static(product.analytics.conver¬
sion_rate,descending)</String>
 </Property>
 <Property name="recordsPerPage">
 <String>10</String>
 </Property>
 </ContentItem>
<!-- additional elements omitted from this example -->

</ContentTemplate>

Adding a string property
String properties are very flexible and can be used to specify information such as text to display on a
page, URLs for banner images, or meta keywords for search engine optimization.

To add a string property to a template:

1. Insert a <String> element inside a <Property> element.

2. Optionally, specify the default value for the property as the content of the <String> element.

The following example shows a variety of string properties:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="SidebarContent" id="DimensionNavigation">

<!-- additional elements omitted from this example -->
 <ContentItem>
 <Name>Dimension Navigation</Name>
 <Property name="dimensionName">
 <String/>
 </Property>
 <Property name="dimensionId">
 <String/>
 </Property>
 <Property name="sort">
 <String>default</String>
 </Property>
 <Property name="showMoreLink">
 <Boolean>false</Boolean>
 </Property>
 <Property name="moreLinkText">
 <String>Show More Refinements...</String>
 </Property>
 <Property name="numRefinements">
 <String>10</String>
 </Property>
 <Property name="maxNumRefinements">
 <String>200</String>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Basic content properties148

<!-- additional elements omitted from this example -->
</ContentTemplate>

Adding a string editor

You add a string editor to enable configuration of string properties. The string editor displays in the
Experience Manager interface as a text field or text area depending on the configuration.

String editors enable content administrators to supply arbitrary values for a string property. If you want
to constrain the input to a specific enumeration of values, use a choice editor.

To add a string editor to a template:

1. Insert an <StringEditor> element within <BasicContentItemEditor>.

2. Specify label attributes and additional attributes for the editor:

DescriptionAttribute

Required. The name of the string property that this editor is associated with.
This property must be declared in the same template as the string editor.

propertyName

If set to false, this attribute makes the property read-only so that the value of
the property displays in the Content Details Panel in Experience Manager, but

enabled

cannot be edited. Set this to false only if you specify a default value in the
definition of the string property. Editors are enabled by default.

The width in pixels of the text field presented in the Experience Manager interface.
The default width is 100% and scales with the screen width.

width

Note: You cannot specify a percent value in your editor configuration.
You must specify the editor width in pixels.

The height in pixels of the text field presented in the Experience Manager
interface. The default height for a single-row field is 24 pixels. Setting the value
to 34 pixels or higher creates a multiline text area with word wrap enabled.

height

The following example shows a variety of editing options for string properties:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
xmlns:editors="editors"
 type="ResultsPage"
 id="ThreeColumnNavigationPage">
<!-- additional elements omitted from this example -->

 <ContentItem>
 <Name>Three-Column Navigation Page</Name>
 <Property name="title">
 <String>Discover Electronics</String>
 </Property>
 <Property name="metaKeywords">
 <String>camera cameras electronics</String>
 </Property>
 <Property name="metaDescription">
 <String>Endeca eBusiness reference application.</String>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

Oracle Endeca Commerce Assembler Application Developer's Guide

149Template Property and Editor Reference | Basic content properties

 <EditorPanel>
 <BasicContentItemEditor>
 <GroupLabel label="Page metadata"/>
 <editors:StringEditor propertyName="title" label="Title" en¬
abled="true"/>
 <editors:StringEditor propertyName="metaKeywords" label="Meta keywords"

 enabled="true" height="72"/>
 <editors:StringEditor propertyName="metaDescription" label="Meta de¬
scription"
 enabled="true" height="72"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Note: Neither Experience Manager nor the Assembler applies HTML escaping to strings. This
enables content administrators to specify HTML formatted text in Experience Manager and have
it rendered appropriately. If you intend to treat a string property as plain text, be sure to add
HTML escaping to your application logic in order to avoid invalid characters and
non-standards-compliant HTML.

Adding a choice editor

A choice editor enables the user to select from predefined string values for a property that are presented
in a drop-down list.

Choice editors affect the value of a string property. For example, you might use a choice editor to
provide sorting options for dimension values in a Guided Navigation cartridge:

To add a choice editor:

1. Insert an <editors:ChoiceEditor> element within <BasicContentItemEditor>.

2. Specify additional attributes for the editor:

DescriptionAttribute

Required.The name of the string property that this editor is associated with.
This property must be declared in the same template as the choice editor.

propertyName

If set to true, this attribute allows Experience Manager users to specify
custom string values. By default, choice editors are not editable.

editable

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Basic content properties150

DescriptionAttribute

If set to false, the choice editor displays in Experience Manager but the
value cannot be changed by the user. By default, choice editors are enabled.

enabled

Specifies a custom prompt. The default prompt is an empty string.
prompt

If present, specifies optional help text to display in a tool tip window. The
default behavior is no tool tip.

tooltip

The width, in pixels, of the choice editor. By default, the width of the editor
adjusts to fit the longest choice in the editor. Use this attribute if you want
to set a fixed width for the editor.

width

3. Specify one or more menu options for the choice editor by adding <choice> elements.<choice>
takes the following attributes:

DescriptionAttribute

Required. The string value to assign to the associated property if this <choice>
is selected.

value

This attribute allows you to specify a more descriptive label for this option in the
drop down list. If no label is specified, the value is used by default.You must either

label

specify a label for all of the choices or none of them.You cannot have labels for
some choices and not others.

Note: If you choose to make a choice editor editable (so that users can enter
arbitrary strings), you should not use the label attribute for choices. Instead,
the choice editor should display the raw value of the string so that users
entering custom values can see the expected format of the string property.

4. Optionally, set a default value in the corresponding <ContentItem> property.
For example, to specify the default sort order for a dimension as the default choice for a choice
editor with propertyName="sort":

<Property name="relrank">
 <!-- Margin Bias -->
 <String>nterms,maxfield,exact,static(product.analytics.conver¬
sion_rate,descending)</String>
 </Property>

Note: Ensure that the default value for the property is one of the options defined for the
choice editor in a <choice> element.

The following example shows a choice editor configured with a default value.The selected value when
the editor is first instantiated is nterms,maxfield,exact,static(product.analytics.con¬

Oracle Endeca Commerce Assembler Application Developer's Guide

151Template Property and Editor Reference | Basic content properties

version_rate,descending), which displays with the label "Margin Bias" in the drop-down menu.
Content administrators can select a different sort order.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent"
 id="ResultsList">

<!-- additional elements omitted from this example -->
 <ContentItem>
 <Name>Results List</Name>

<!-- additional elements omitted from this example -->
 <Property name="relrank">
 <!-- Margin Bias -->
 <String>nterms,maxfield,exact,static(product.analytics.conver¬
sion_rate,descending)</String>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
 <GroupLabel label="Search Result Settings (apply when user provides
 search terms)"/>
 <editors:ChoiceEditor propertyName="relrank" label="Relevance ranking">

 <choice label="Margin Bias" value="nterms,maxfield,exact,stat¬
ic(product.analytics.conversion_rate,descending)" />
 <choice label="Inventory Bias" value="nterms,maxfield,exact,stat¬
ic(product.inventory.count,descending)" />
 <choice label="First" value="first" />
 <choice label="By Price (Static)" value="static(product.price)"
 />
 <choice label="Frequency" value="freq" />
 </editors:ChoiceEditor>

<!-- additional elements omitted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Adding a radio group editor

A radio group editor is similar to the choice editor in that it enables the user to select from predefined
string values for a property. The choices are presented as a set of radio button controls.

Although radio buttons are often used for binary choices such as yes/no, the radio group editor can
be used for any scenario where the user must specify exactly one value out of a number of options.
In order to enable the more general use case, the radio group editor affects the value of a string
property.

To add a radio group editor:

1. Insert an <editors:RadioGroupEditor> element within <BasicContentItemEditor>.

2. Specify label attributes and the additional attributes for the editor:

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Basic content properties152

DescriptionAttribute

Required. The name of the string property that this editor is associated
with. This property must be declared in the same template as the choice
editor.

propertyName

If set to false, the radio group editor displays in Experience Manager but
the value cannot be changed by the user. By default, radio group editors
are enabled.

enabled

3. Specify one or more radio button options by adding <choice> elements. <choice> takes the
following attributes:

DescriptionAttribute

Required. The string value to assign to the associated property if this
<choice> is selected.

value

This attribute allows you to specify a more descriptive label for the radio
button associated with this option. If no label is specified, the value is used
by default.

label

4. Optionally, set a default value in the corresponding <ContentItem> property.
For example, to specify the default value for a radio group editor with propertyName="showDis¬
abledRefinements":

 <Property name="showDisabledRefinements">
 <String>false</String>
 </Property>

Note: Ensure that the default value for the property is one of the options defined for the
editor in a <choice> element.

The following example shows a radio group editor configured with a default value. The selected value
when the editor is first instantiated is false, which displays with the label "No."

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="SidebarItem" id="ExampleRadioGroupCartridge">

<!-- additional elements omitted from this example -->
 <ContentItem>

<!-- additional elements omitted from this example -->
 <Property name="showDisabledRefinements">
 <String>false</String>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
 <editors:RadioGroupEditor propertyName="showDisabledRefinements"

Oracle Endeca Commerce Assembler Application Developer's Guide

153Template Property and Editor Reference | Basic content properties

 label="Show 'Disabled Refinements'" enabled="true">
 <choice label="Yes" value="true"/>
 <choice label="No" value="false"/>
 </editors:RadioGroupEditor>

<!-- additional elements omitted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

About numeric properties
Numeric properties should be specified as string properties in the template.

Properties that are expected to have numeric values can be associated with editors that are designed
to work with numbers. These editors guarantee that the property is assigned a numeric value.

Adding a numeric stepper

A numeric stepper enables content administrators to select a numeric value from a set of possible
values by stepping through values or typing into an input field.

The numeric stepper provides a single-line input text field and a pair of arrow buttons for stepping
through values. If a user enters number that is not a multiple of the stepSize property or is not in the
range between the maximum and minimum properties, this property is set to the nearest valid value.

To add a numeric stepper to a template:

1. Insert an <editors:NumericStepperEditor> element within <BasicContentItemEditor>.

2. Specify additional attributes for the editor:

DescriptionAttribute

Required.The name of the string property that this editor is associated with.
This property must be declared in the same template as the string editor.

propertyName

The width, in pixels, of the editor. The default width is 60.width

The height, in pixels, of the editor. The default height is 24.height

The minimum value of the property bound to this editor. The minValue
can be any number, including a fractional value.The default minimum value
is 0.

minValue

The maximum value of the property bound to this editor. The maxValue
can be any number, including a fractional value. The default maximum
value is 10.

maxValue

The increment by which the property value is increased or decreased when
a user clicks on the up or down arrows. The value must be a multiple of
this number. The default step size is 1.

stepSize

The following example shows the configuration for a numeric stepper:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="SidebarContent" id="DimensionNavigation">

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Basic content properties154

<!-- additional elements omitted from this example -->
 <ContentItem>
 <Name>Dimension Navigation</Name>

<!-- additional elements omitted from this example -->
 <Property name="numRefinements">
 <String>10</String>
 </Property>
 <Property name="maxNumRefinements">
 <String>200</String>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
 <editors:NumericStepperEditor propertyName="numRefinements"
 label="Max. Refinements" maxValue="10000" enabled="true"/>

<!-- additional elements omitted from this example -->
 <editors:NumericStepperEditor propertyName="maxNumRefinements"

 label="'More' Max. Refinements" maxValue="100000" en¬
abled="true"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Adding a slider

A slider enables content administrators to select a numeric value by moving a slider between predefined
endpoint values.

The current value of the slider is determined by the relative location of the thumb between the end
points of the slider, corresponding to the slider's minimum and maximum values.

To add a slider to a template:

1. Insert an <editors:SliderEditor> element within <BasicContentItemEditor>.

2. Specify label attributes and additional attributes for the editor:

DescriptionAttribute

Required.The name of the string property that this editor is associated with.
This property must be declared in the same template as the string editor.

propertyName

The width, in pixels, of the editor. The default width is 160.width

The height, in pixels, of the editor. The default height is 36.height

The default position of the slider thumb. By default, the thumb is set to 0.default

The minimum value of the property bound to this editor.The minValue can
be any number, including a fractional value. The default minimum value is
0.

minValue

The maximum value of the property bound to this editor. The maxValue
can be any number, including a fractional value.The default maximum value
is 10.

maxValue

Specifies the increment value of the slider thumb as the user moves the
thumb. A value of 0 means that the slider moves continuously between the
minimum and maximum values. The default value is 0.

snapInterval

Oracle Endeca Commerce Assembler Application Developer's Guide

155Template Property and Editor Reference | Basic content properties

DescriptionAttribute

The spacing of the tick marks. A value of 0 displays no tick marks. The
default value is 0.

tickInterval

Number of decimal places to use for the property value and data tip text. A
value of 0 means all values are rounded to the nearest integer. The default
value is 0.

precision

An array of strings to use for the slider labels. These labels display at the
beginning and end of the track and, if there are more than two values, spaced

labels

evenly between the two ends. By default, the beginning and end of the slider
track are labeled in Experience Manager with the minimum and maximum
values.

The following example shows the configuration for a slider:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors" type="SidebarItem" id="ExampleSliderCar¬
tridge">
<!-- additional elements omitted from this example -->
<!-- Define the content properties -->

 <ContentItem>
<!-- additional elements omitted from this example -->
<!-- define numeric properties as simple string properties -->

 <Property name="numRefinements">
 <String>10</String>
 </Property>
 </ContentItem>
<!-- Define editors for numeric properties -->

 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
 <editors:SliderEditor propertyName="numRefinements"
 label="Number of refinements" minValue="10" maxValue="30"
 snapInterval="5" tickInterval="5" labels="10,15,20,25,30"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Adding a Boolean property
Boolean properties represent a true or false value and can be used to enable or disable features in
your application.

To add a Boolean property to a template:

1. Insert a <Boolean> element inside a <Property> element.

2. Optionally, you can specify the default value for the property.

 <Property name="eligibleFreeShipping">
 <Boolean>true</Boolean>
 </Property>

Any value other than the string "true" (case insensitive) defaults to a value of false.

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Basic content properties156

The following example shows the configuration of a Boolean property:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 type="HeaderContent"
 id="SearchBox">

<!-- additional elements omitted from this example -->
 <ContentItem>
 <Name>Search Box</Name>
 <Property name="autoSuggestEnabled">
 <Boolean>false</Boolean>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

<!-- additional elements omitted from this example -->
</ContentTemplate>

Adding a Boolean editor

A Boolean editor provides a checkbox for Experience Manager users to specify the value of a Boolean
property.

To add a Boolean editor:

1. Insert a <editors:BooleanEditor> element within <BasicContentItemEditor>.

2. Specify additional attributes for the editor:

DescriptionAttribute

Required.The name of the Boolean property that this editor is associated
with.This property must be declared in the same template as the Boolean
editor.

propertyName

If set to false, the checkbox displays in Experience Manager but the
value cannot be changed by the user. By default, checkboxes are enabled.

enabled

The following example illustrates a checkbox for specifying whether auto-suggest search results
should be enabled, with a default value of false:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 type="HeaderContent"
 id="SearchBox">

<!-- additional elements omitted from this example -->
 <ContentItem>
 <Name>Search Box</Name>
 <Property name="autoSuggestEnabled">
 <Boolean>false</Boolean>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>
 <GroupLabel label="Auto-Suggest Configuration"/>
 <editors:BooleanEditor propertyName="autoSuggestEnabled"
 label="Enable Auto-Suggest"
 enabled="true"/>

<!-- additional elements omitted from this example -->

Oracle Endeca Commerce Assembler Application Developer's Guide

157Template Property and Editor Reference | Basic content properties

 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Adding a list property
A property can consist of an ordered list of strings, Booleans, items, or other lists.

Because lists can be used for a variety of purposes, Oracle Endeca Guided Search does not include
any generic editors for working with lists. However, editors intended for specific purposes may store
their values in list properties.

To add a list property to a template:

1. Insert a <xavia:List> element inside a <Property> element.

2. Optionally, specify a default value by inserting either <String>, <Boolean>, <xavia:List>, or
<xavia:Item> elements.

Following is an example of a template that uses lists both with and without default values:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent" id="ResultsList">
<!-- additional elements omitted from this example -->

 <ContentItem>
 <Name>Results List</Name>
 <Property name="boostStrata">
 <xavia:List/>
 </Property>
 <Property name="buryStrata">
 <xavia:List/>
 </Property>
 <Property name="sortOption">
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
 <xavia:Property name="label">Most Sales</xavia:Property>
 <xavia:Property name="sorts">
 <xavia:List>
 <xavia:Item class="com.endeca.infront.navigation.model.SortSpec">

 <xavia:Property name="key">product.analytics.to¬
tal_sales</xavia:Property>
 <xavia:Property name="ascending">true</xavia:Property>
 </xavia:Item>
 </xavia:List>
 </xavia:Property>
 </xavia:Item>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Basic content properties158

<!-- additional elements omitted from this example -->
</ContentTemplate>

Adding an item property
A property can consist of a collection of properties (key-value pairs) of any valid type.

Because item properties can be used for a variety of purposes, InFront does not include any generic
editors for working with items. However, editors intended for specific purposes may store their values
in item properties.

To add an item property to a template:

1. Insert a <xavia:Item> element inside a <Property> element.

2. Specify the class attribute with the fully qualified class name of the configuration model class that
corresponding to this item property.

3. Optionally, specify a default value by inserting a <xavia:Property> of type <String>,
<Boolean>, <xavia:List>, or <xavia:Item>. (A <Property> with no type specified is treated
as a string by default.)

Note: Properties defined within <xavia:Item> must declare the Xavia namespace (i.e.,
<xavia:Property> instead of <Property>.

Following is an example of a template that uses an item with a default value:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent" id="ResultsList">
<!-- additional elements omitted from this example -->

 <ContentItem>
 <Name>Results List</Name>

<!-- additional elements omitted from this example -->
 <Property name="sortOption">
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
 <xavia:Property name="label">Most Sales</xavia:Property>
 <xavia:Property name="sorts">
 <xavia:List>
 <xavia:Item class="com.endeca.infront.navigation.model.SortSpec">

 <xavia:Property name="key">product.analytics.to¬
tal_sales</xavia:Property>
 <xavia:Property name="ascending">true</xavia:Property>
 </xavia:Item>
 </xavia:List>
 </xavia:Property>
 </xavia:Item>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

Oracle Endeca Commerce Assembler Application Developer's Guide

159Template Property and Editor Reference | Basic content properties

<!-- additional elements omitted from this example -->
</ContentTemplate>

Following is an example of a template that uses an item without a default value:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="SidebarContent"
 id="RecordSpotlight">

<!-- additional elements omitted from this example -->
 <ContentItem>

<!-- additional elements omitted from this example -->
 <Property name="recordSelection">
 <xavia:Item class="com.endeca.infront.cartridge.RecordSpotlight¬
Selection" />
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

<!-- additional elements omitted from this example -->
</ContentTemplate>

Adding a group label
In the Experience Manager interface, group labels can serve as a visual cue that several properties
are related.

Group labels are only used to provide additional context in the editing interface of Experience Manager
and do not affect rendering in the front-end application. Group labels are optional.

One use of group labels is to give the content administrator information about properties that they
need to configure the cartridge. For example, if a template defines properties that are required in order
to render the content properly, you can indicate these with a descriptive group label so that the content
administrator can easily identify the required fields in Experience Manager.

The editor panel in Experience Manager includes a default heading of "Section settings." This heading
includes the required Name field and the read-only type of a template, as well as any properties that
are defined before the first group label.

To add a group label to the editor panel:

Insert the <GroupLabel> element inside <BasicContentItemEditor> as in the following
example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="SidebarContent"
 id="RecordSpotlight">

<!-- additional elements omitted from this example -->
 <EditorPanel>
 <BasicContentItemEditor>
 <GroupLabel label="Define Spotlight"/>
 <editors:StringEditor propertyName="title" label="Spotlight
 Title" enabled="true"/>
 <editors:StringEditor propertyName="maxNumRecords" label="Max
 Number Of Records" enabled="false"/>
 <editors:RecordListEditor propertyName="recordSelection" la¬

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Adding a group label160

bel="Spotlight Records">
 <PreviewProperty name="product.name"/>
 </editors:RecordListEditor>
 <editors:StringEditor propertyName="seeAllLink" label="See
All Link" enabled="true"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

<GroupLabel> is an empty tag that allows you to specify the label text with the label attribute.

Complex property editors
This section describes editors that are designed for specific aspects of Endeca feature configuration.

About the microbrowser
The microbrowser is used in several editors in the core cartridges to enable a content administrator
to specify a set of records. It is deprecated in this release; use the Select Records dialog instead.

Important: The microbrowser is deprecated. Use the Select Records dialog instead.

The microbrowser is a lightweight search and Guided Navigation application that enables a content
administrator to browse to a particular location in the data set (which may include search terms,
dimension refinements, or a combination of both). The content administrator can then do one of two
things:

• Save the current filter state to designate a dynamic set of records.
• Select specific records from that filter state (or other filter states) to designate a set of specific

featured records.

An instance of a microbrowser is usually bound to a list property, which contains items that represent
either refinements or record IDs.

The microbrowser communicates with the MDEX Engine to retrieve search and navigation results.

Note: In order to enable the microbrowser, ensure that you have enabled communication
between Experience Manager and the MDEX Engine. For instructions, see "Communicating
with the MDEX Engine" in the Tools and Frameworks Installation Guide.

Data service configuration reference

The Discover Electronics reference application makes MDEX Engine configuration information available
through a data service. The data service configuration file is used by editors that need to query the
authoring MDEX Engine used in the reference application, such as those that use the microbrowser.

Important: The microbrowser is deprecated. Use the Select Records dialog instead.

The data service configuration file, <app
dir>\config\editors_config\services\dataservice.json, is shown below:

{
 "jcr:primaryType": "endeca:unstructured",

Oracle Endeca Commerce Assembler Application Developer's Guide

161Template Property and Editor Reference | Complex property editors

 "host": "myhost.mydomain.com",
 "port": "15002",
 "recordSpecName": "common.id",
 "aggregationKey": "product.code",
 "recordFilter": "",
 "wildcardSearchEnabled": false,
 "recordNameField": "",
 "fields": {
 "product.id": "",
 "product.name": "plain",
 "product.price": "currency",
 "product.short_desc": ""
 }
}

It specifies the following:

ValueKey

The hostname or IP address of your MDEX Engine server. By default, this is
populated with the same host as the authoring MDEX Engine when you deploy

host

the Discover Electronics reference application and run the
initialize_services script.

The port that the MDEX Engine server listens on. By default, this is populated
with the same port as the authoring MDEX Engine.

port

The dimension used as the record specifier. This must be a unique identifier.
recordSpecName

Optional. Enables aggregated records mode in the microbrowser, using the
specified property or dimension as the aggregation key when displaying and

aggregationKey

sorting records. All records with the same value in the selected dimension or
property are treated as a single record.

Optional. The property used to filter records for record boost and bury.
recordFilter

Optional. Wildcard search is enabled by default. If your configuration does not
index dimensions by wildcard index, you must explicitly set this property to false.

wildcard¬
SearchEnabled

Optional. The property that should be used to represent the name of a record.
recordName¬
Field

Each key in the array of key/value pairs specifies a property or dimension to
display as a column in the microbrowser. Optionally, you may specify a formatting
value from among the following:

fields

• plain — no formatting. Used as the default if no format value is present.
• currency — adds a dollar ($) symbol before the value.
• integer — removes the decimal point and any trailing digits, if present.This

setting does not round the integer value.
• html — attempts to handle markup tags within the content returned from the

MDEX Engine.

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors162

Running <app dir>\control\set_editors_config pushes changes to the Discover Electronics
reference application and updates all editors that rely on the data service.

About the Select Records dialog
The Select Records dialog is used in several editors in the core cartridges to enable a content
administrator to specify a set of records.

The Select Records dialog is a lightweight search and Guided Navigation application that enables a
content administrator to browse to a particular location in the data set (which may include search terms,
dimension refinements, or a combination of both). The content administrator can then do one of two
things:

• Save the current filter state to designate a dynamic set of records.
• Select specific records from that filter state (or other filter states) to designate a set of specific

featured records.

An instance of a Select Records dialog is usually bound to a <List> property in a cartridge template,
which contains <Item> properties that represent either dimension refinements or record IDs. The
dialog communicates with the MDEX Engine to retrieve search and navigation results.

Note: In order to enable the Select Records dialog, ensure that you have enabled
communication between Experience Manager and the MDEX Engine. For instructions, see
"Communicating with the MDEX Engine" in the Tools and Frameworks Installation Guide.

The following editors launch the Select Records dialog:

• Link Builder editor
• Boost-Bury Record editor
• Spotlight Selection editor

Select Records data service configuration reference

To make MDEX Engine configuration information available to editors, you must configure a data
service. In the Discover Electronics reference application, the data service configuration file is used
by editors that need to query the authoring MDEX Engine used in the reference application, such as
those that use the Select Records dialog.

The configuration file, <app
dir>\config\editors_config\services\endecaBrowserService.json, is shown below:

{
 "host": "myhost.mydomain.com",
 "port": "15002",
 "recSpecProp": "common.id",
 "recAggregationKey": "product.code",
 "recFilter": "",
 "recImgUrlProp" : "product.img_url_thumbnail",
 "recDisplayProps": ["product.name", "product.price", "product.short_de¬
sc"],
 "textSearchKey": "All",
 "textSearchMatchMode" : "ALLPARTIAL"
}

It specifies the following:

Oracle Endeca Commerce Assembler Application Developer's Guide

163Template Property and Editor Reference | Complex property editors

ValueKey

The hostname or IP address of your MDEX Engine server. By default, this is
populated with the same host as the authoring MDEX Engine when you deploy

host

the Discover Electronics reference application and run the
initialize_services script.

The port that the MDEX Engine server listens on. By default, this is populated
with the same port as the authoring MDEX Engine.

port

The dimension used as the record specifier. This must be a unique identifier.
recSpecProp

Optional. Enables aggregated records mode in the Select Records dialog using
the specified property or dimension as the aggregation key when displaying and

recAggregation¬
Key

sorting records. All records with the same value in the selected dimension or
property are treated as a single record.

Optional. The property used to filter records for record boost and bury.
recFilter

Optional. The property used to retrieve the URL for the record thumbnail image.
recImgUrlProp

An array of record properties to display in the dialog.
recDis¬
playProps

Optional. Specifies the search key to apply to text searches in the Select Records
dialog.

textSearchKey

Optional. Specifies the match mode to apply to text searches in the Select
Records dialog.

textSearch¬
MatchMode

You can modify these values as necessary. Running <app dir>\control\set_editors_config
pushes changes to the Discover Electronics reference application and updates all editors that rely on
the data service.

About the Dynamic Slot editor
The Dynamic Slot editor enables the content administrator to configure a section of an application
page at query time by specifying a content collection and number of content items with which to
populate that section.

The dynamic slot editor takes a single property, zoneType. When the content administrator edits this
cartridge in Experience Manager, the editor queries the Endeca Configuration Repository for content
collections of the appropriate type. The evaluation limit of the selected collection determines the
maximum possible evaluation limit for the dynamic slot, though the slot may be configured to return
fewer content items than this maximum.

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors164

Creating a cartridge template with a dynamic slot

You should configure a separate cartridge template for each template type into which you wish to
include a dynamic slot.

To create a cartridge template with a dynamic slot:

1. Insert a ContentItem that includes a contentCollection and ruleLimit property, as in the
following example:

<ContentItem>
 <Name>Search Box Slot</Name>
 <Property name="contentCollection"/>
 <Property name="ruleLimit"></Property>
</ContentItem>

2. Within the ruleLimit property, insert a String element that specifies the maximum number of
matching content items to return for a query:

<ContentItem>
 <Name>Search Box Slot</Name>
 <Property name="contentCollection"/>

<Property name="ruleLimit"><String>1</String></Property>
</ContentItem>

3. Insert a corresponding <editors:DynamicSlotEditor> element within <BasicContentItemEd¬
itor>.

4. Specify the zoneType attribute for the editor. This value must match the id attribute for the
corresponding template type:

<EditorPanel>
 <BasicContentItemEditor>
 <editors:DynamicSlotEditor zoneType="SearchBox"/>
 </BasicContentItemEditor>
</EditorPanel>

5. Upload the template to your application:

a) Navigate to your <app dir>\control directory.

For the Discover Electronics reference application, this is
C:\Endeca\apps\Discover\control on Windows, or
/usr/local/endeca/apps/discover/control on UNIX.

b) Run the set_templates batch or shell script.

Note: You must configure a cartridge handler for your template in order to use it in
Experience Manager.

The following shows the sample template in the Discover Electronics application for a dynamic slot
Search Box cartridge. Note that although the content type for this cartridge is HeaderContent, the
zone type for items in the Search Box Content collection is SearchBox, which is a more specific
constraint on what content items can populated the dynamic slot:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
type="HeaderContent"

 id="SearchBoxSlot">
<!-- additional elements omitted from this example -->
<ContentItem>

Oracle Endeca Commerce Assembler Application Developer's Guide

165Template Property and Editor Reference | Complex property editors

 <Name>Search Box Slot</Name>
 <Property name="contentCollection"/>
 <Property name="ruleLimit"><String>1</String></Property>
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>

<editors:DynamicSlotEditor zoneType="SearchBox"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

If the content administrator wishes to change the specified collection, they are restricted to collections
of the appropriate zoneType, in this case, SearchBox.

You must specify a cartridge handler for each cartridge template that you configure as a dynamic slot.

Specifying a cartridge handler for a dynamic slot template

All dynamic slot cartridges can share the same cartridge handler, but each unique cartridge must be
configured separately.

Once you have created a cartridge template that uses a dynamic slot, you must specify a cartridge
handler for that template.Your cartridge handler should inherit the CartridgeHandler_ContentSlot
handler.

The response model for a dynamic slot cartridge is a ContentItem that includes a contents property
containing a list of content items. The ContentItem also returns its contentCollection and
ruleLimit.

The examples below use the cartridge handler configuration in the Assembler context file of the Discover
Electronics application, located in
%ENDECA_TOOLS_ROOT%\reference\discover-electronics-authoring\WEB-INF\assembler-context.xml.

To add a cartridge handler for your dynamic slot template:

1. Stop the Endeca Tools Service.

2. Open your Spring context configuration file.

In the Discover Electronics reference application, this is located in
%ENDECA_TOOLS_ROOT%\reference\discover-electronics-authoring\WEB-INF\assembler-context.xml.

3. Locate the CartridgeHandler_ContentSlot bean:

<!--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ BEAN: CartridgeHandler_ContentSlot
-->
<bean id="CartridgeHandler_ContentSlot" class="com.endeca.infront.car¬
tridge.ContentSlotHandler" 
    scope="prototype">
  <property name="contentManager" ref="cartridgeManager" />
</bean>

4. Add a new CartridgeHandler bean for your dynamic slot cartridge.

Set the id attribute to correspond to the ID of your dynamic slot cartridge template, and set the
parent attribute to the CartridgeHandler_ContentSlot handler:

<bean id="CartridgeHandler_MyPageSlot" parent="CartridgeHandler_Con¬
tentSlot"
      scope="prototype"/>

Oracle Endeca Commerce    Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors166



5. Save and close the file.

6. Start the Endeca Tools Service.

Adding a Link Builder
The Link Builder editor allows the content administrator to specify a link to a static page, a single
selected record, or a navigation state.

The Link Builder uses the Select Records dialog to enable the content administrator to browse to a
single record or a particular navigation state in the data set (which may include search terms, dimension
refinements, or a combination of both). Alternately, the Link Builder also supports entering an absolute
URL to a static resource.

To add a Link Builder to a template:

1. Insert an Item property named link, of class com.endeca.infront.cartridge.mod¬
el.LinkBuilder, as in the following example:

<Property name="link">
    <Item class="com.endeca.infront.cartridge.model.LinkBuilder" 
xmlns="http://endeca.com/schema/xavia/2010">
    </Item>
</Property>

2. Within the Item property, insert three empty Property elements named path, linkType, and
queryString:

<Property name="link">
    <Item class="com.endeca.infront.cartridge.model.LinkBuilder" 
xmlns="http://endeca.com/schema/xavia/2010">

<Property name="path"></Property>
        <Property name="linkType"></Property>
        <Property name="queryString"></Property>
    </Item>
</Property>

These properties are populated by the Select Records dialog and processed by the cartridge handler
into an action string.

3. Insert a corresponding <editors:LinkBuilderEditor> element within <BasicContentItemEd¬
itor>.

4. Specify the propertyName attribute for the editor:

<editors:LinkBuilderEditor propertyName="link" enabled="true"/>

5. Specify any additional label attributes for the editor:

<editors:LinkBuilderEditor propertyName="link" label="Link Destination"
 enabled="true"/>

The following shows an example of a template that includes a link builder editor:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
  xmlns:editors="editors"
  xmlns:xavia="http://endeca.com/schema/xavia/2010"
  type="MainContent"
  id="MediaBanner">

<!-- additional elements omitted from this example -->
    <ContentItem>

Oracle Endeca Commerce    Assembler Application Developer's Guide

167Template Property and Editor Reference | Complex property editors



        <Name>Media banner</Name>
<!-- additional elements omitted from this example -->
<Property name="link">

          <Item class="com.endeca.infront.cartridge.model.LinkBuilder" 
xmlns="http://endeca.com/schema/xavia/2010">
            <Property name="path"></Property>
            <Property name="linkType"></Property>
            <Property name="queryString"></Property>
          </Item>
        </Property>

<!-- additional elements omitted from this example -->
    </ContentItem>

    <EditorPanel>
      <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
        <GroupLabel label="Link Settings"/>

<editors:LinkBuilderEditor propertyName="link" label="Link Desti¬
nation" enabled="true"/>

<!-- additional elements omitted from this example -->
      </BasicContentItemEditor>
    </EditorPanel>
</ContentTemplate>

About configuring the Link Builder

The Link Builder must be configured with a path to a data service in order to display the Select Records
dialog.

Below is the configuration for the Link Builder in the editor configuration file for the Discover Electronics
reference application, located at <app dir>\config\editors_config\editors.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!-- additional elements removed from this example -->
<EditorConfig xmlns="http://endeca.com/schema/editor-config/2010">
    <EditorModule url="/ifcr/tools/pbx/modules/editors.swf">

<!-- additional elements removed from this example -->
<Editor name="editors:LinkBuilderEditor">           

            <EditorConfig resourcePath="/configuration/tools/xmgr/services/en¬
decaBrowserService.json" />        
        </Editor>

<!-- additional elements removed from this example -->
    </EditorModule>
    <GlobalEditorConfig></GlobalEditorConfig>
</EditorConfig>

To publish and view changes to the editor configuration file, run the <app
dir>\control\set_editors_config script and clear your browser cache.

Deprecated configuration

The Link Builder formerly supported multiple nested configuration properties that applied to all instances
of the editor in an application. This configuration model is deprecated in the current release:

DescriptionProperty

The hostname or IP address of the MDEX Engine server to use for the Select
Records dialog.

host

Oracle Endeca Commerce    Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors168



DescriptionProperty

The port on which the specified MDEX Engine server listens.port

The name of the property that serves as the record spec in the data set. This
must be a unique identifier.

spec

The name of a property, dimension, or search interface against which searches
are performed.

searchKey

The rollup key (used for aggregated records) to apply to all queries made via
this MDEX.

rollupKey

The match mode to use for text searches. Valid values for this property follow
the syntax of URL parameters for search mode, without the mode+match
prefix.

matchMode

The property that specifies the location of the thumbnail image for a record.imgUrlProperty

A comma separated list of record properties that display for each record returned
by the content administrator's search and navigation state in the link builder
Assembler application.

properties

Specifying a path to a data service overrides these settings.

Related Links
Select Records data service configuration reference on page 163

To make MDEX Engine configuration information available to editors, you must configure a
data service. In the Discover Electronics reference application, the data service configuration
file is used by editors that need to query the authoring MDEX Engine used in the reference
application, such as those that use the Select Records dialog.

About the Select Records dialog on page 163
The Select Records dialog is used in several editors in the core cartridges to enable a content
administrator to specify a set of records.

About the Media editor
The Media editor allows the content administrator to select and link to media assets stored in a content
repository.

The media editor consists of an Experience Manager editor and a lightweight Web application that
enables the content administrator to browse and navigate across a set of media assets in order to
more easily find specific files.

The default Discover Electronics reference application stores media directly in the Endeca Configuration
Repository and uses a built-in asset browser to present these assets to the content administrator.You
may also initialize an MDEX Engine to index media asset metadata and URIs as records, making them
available for Guided Navigation in an enhanced Media Browser.

Note: The configuration repository provides an acceptable store for media files when used for
preview purposes in an authoring environment, but Oracle recommends serving media assets
from a media or content delivery server for production environments.

Oracle Endeca Commerce    Assembler Application Developer's Guide

169Template Property and Editor Reference | Complex property editors



About the Media Browser

The default asset browser for the Media editor can only be configured to browse media assets in the
Endeca Configuration Repository. If you are using another system for managing media assets, you
must stand up a corresponding media MDEX Engine and enable the Media Browser in the editor
configuration file.

Adding a Media editor

A Media editor allows a content administrator to link media into a cartridge. It can be combined with
the Link Builder in order to create images that link to destinations in your application, such as those
used in site banners.

To add a Media editor to a template:

1. Insert an Item property named media, of class com.endeca.infront.cartridge.model.Me¬
diaObject, as in the following example:

<Property name="media">
    <Item class="com.endeca.infront.cartridge.model.MediaObject" 
xmlns="http://endeca.com/schema/xavia/2010">
    </Item>
</Property>

2. Within the Item property, insert six empty Property elements:

• uri

• contentWidth

• contentHeight

• contentBytes

• contentType

• contentSrcKey

<Property name="media">
    <Item class="com.endeca.infront.cartridge.model.MediaObject" 
xmlns="http://endeca.com/schema/xavia/2010">

<Property name="uri"></Property>
        <Property name="contentWidth"></Property>
        <Property name="contentHeight"></Property>
        <Property name="contentBytes"></Property>
        <Property name="contentType"></Property>
        <Property name="contentSrcKey"></Property>
    </Item>
</Property>

These properties are populated by the Select Records dialog and processed by the cartridge
handler.

3. Insert a corresponding <editors:MediaEditor> element within <BasicContentItemEditor>.

4. Specify the propertyName attribute for the editor:

<editors:MediaEditor propertyName="media" enabled="true"/>

5. Specify any additional label attributes for the editor:

<editors:MediaEditor propertyName="media" label="Media Url" en¬
abled="true"/>

Oracle Endeca Commerce    Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors170



The following shows an example of a template that includes a media editor as part of a media banner
cartridge:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
                 xmlns:editors="editors"
                 xmlns:xavia="http://endeca.com/schema/xavia/2010"
                 type="MainContent"
                 id="MediaBanner">
<!-- additional elements omitted from this example -->

  <ContentItem>
    <Name>Media banner</Name>

<!-- additional elements omitted from this example -->
    <Property name="media">
      <Item class="com.endeca.infront.cartridge.model.MediaObject" 
xmlns="http://endeca.com/schema/xavia/2010">
        <Property name="uri">/</Property>
        <Property name="contentWidth"></Property>
        <Property name="contentHeight"></Property>
        <Property name="contentBytes"></Property>
        <Property name="contentType"></Property>
        <Property name="contentSrcKey"></Property>
      </Item>
    </Property>
  </ContentItem>

  <EditorPanel>
    <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
      <GroupLabel label="Media"/>
        <editors:MediaEditor propertyName="media" label="Media Url" en¬
abled="true"/>
    </BasicContentItemEditor>
  </EditorPanel>
</ContentTemplate>

In order to use the Media editor, if you are using the Endeca Configuration Repository as your media
store, you must upload any media files to the repository. If you are using an external digital asset
management system with a corresponding MDEX Engine, the matching Endeca application must be
configured and running and the Media Browser must be enabled.

Related Links
Uploading media to the Endeca Configuration Repository on page 174

The set_media script uploads any media assets in your application's local config\media
directory to the Endeca Configuration Repository.

About Media editor configuration

You can specify allowable media formats in the editor configuration file.You can also enable or disable
the Media Browser, and specify the MDEX Engine that it should query for media records.

The Discover Electronics reference application uses the Endeca Configuration Repository to store
media and accesses these resources through a default asset browser, rather than relying on the Media
Browser and an accompanying media MDEX Engine.

Below is the configuration for the Media editor in the editor configuration file, located at <app
dir>\config\editors_config\editors.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!-- additional text removed from this example -->

Oracle Endeca Commerce    Assembler Application Developer's Guide

171Template Property and Editor Reference | Complex property editors



<EditorConfig xmlns="http://endeca.com/schema/editor-config/2010">
    <EditorModule url="/ifcr/tools/pbx/modules/editors.swf">

<!-- additional elements removed from this example -->
        <Editor name="editors:MediaEditor">
            <EditorConfig>
                <useMediaBrowser>false</useMediaBrowser>
                <mediaRoots>
                    <default>http://myhost.mydomain.com:8006/ifcr/sites/Dis¬
cover/media/</default>
                    <IFCRSource>http://myhost.mydo¬
main.com:8006/ifcr/sites/Discover/media/</IFCRSource>
                </mediaRoots>
                <mdexPort>17000</mdexPort>
                <mdexHost>myhost.mydomain.com</mdexHost>
                <videoFormats>flv|f4v|3pg|mov|mp4</videoFormats>
                <imageFormats>jpg|jpeg|png|gif</imageFormats>
                <mediaURI>/ifcr/sites/Discover/media/</mediaURI>
            </EditorConfig>
        </Editor>

<!-- additional elements removed from this example -->
    </EditorModule>
    <GlobalEditorConfig></GlobalEditorConfig>
</EditorConfig>

This sets the following properties across all instances of the media editor in the application:

DescriptionProperty

This property enables or disables the media browser. By default, it is set to
false.

useMediaBrowser

This property specifies the absolute URLs to available media repositories. It
includes a nested default property that points to the Endeca Configuration

mediaRoot

Repository, and an additional property for each repository indexed by the media
MDEX Engine. For more information, see "About resolving media paths in
content items."

The absolute URL to the Endeca Configuration Repository, used by the default
asset browser.The specified host and port should match those used by Endeca
Workbench.

default

The absolute URL to the media repository used by the Media Browser. The
property name is the same as that of the associated CAS crawl name used by
the media MDEX Engine.

IFCRSource

For applications using the Media Browser, this is the hostname or IP address
of the media MDEX Engine server.

mdexPort

For applications using the Media Browser, this is the port on which the specified
media MDEX Engine server listens.

mdexHost

A pipe-delineated list of valid video formats. Any videos not matching a listed
format do not display in either the default asset browser or Media Browser.

videoFormats

A pipe-delineated list of valid image formats. Any images not matching a listed
format do not display in either the default asset browser or Media Browser.

imageFormats

The location of the media node within the Endeca Configuration Repository.
This is only used by the default asset browser.

mediaURI

Oracle Endeca Commerce    Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors172



Note: The default list of video and image formats includes only those that are supported by the
included renderers for the Discover Electronics reference application. If you wish to extend this
list for your own application, ensure that your cartridge renderers can handle additional formats,
and that your application includes logic for displaying them.

Related Links
Media MDEX Engine schema definition on page 130

In order for the Media Browser in Experience Manager to have sufficient information for
forming content XML, any media MDEX Engine that you configure must define specific
properties and dimensions.

Enabling the Media Browser

The default browser for the Media editor can only be configured to browse media assets in the Endeca
Configuration Repository. If you are serving media assets from an external content source, you must
enable the Media Browser and configure it to use your media MDEX Engine.

You can enable and configure the Media Browser by modifying the editor configuration file for your
application.

To enable the Media Browser in the Media editor:

1. Navigate to the editor configuration file at <app dir>\config\editors_config\editors.xml.

2. Locate the <EditorConfig> element for the Media editor:

<Editor name="editors:MediaEditor">
    <EditorConfig>
        <useMediaBrowser>false</useMediaBrowser>
        <mediaRoots>
            <default>http://myhost.mydomain.com:8006/ifcr/sites/Discov¬
er/media/</default>
            <IFCRSource>http://myhost.mydomain.com:8006/ifcr/sites/Dis¬
cover/media/</IFCRSource>
        </mediaRoots>
        <mdexPort>17000</mdexPort>
        <mdexHost>mymediahost.mydomain.com</mdexHost>
        <videoFormats>flv|f4v|3pg|mov|mp4</videoFormats>
        <imageFormats>jpg|jpeg|png|gif</imageFormats>
        <mediaURI>/ifcr/sites/Discover/media/</mediaURI>

</EditorConfig>
</Editor>

3. Within the <EditorConfig> element, change the value of the <useMediaBrowser> property
to true:

<useMediaBrowser>true</useMediaBrowser>

4. Include a content source element under <mediaRoots>that points to your media host.

The element name is a unique key that identifies your media host and corresponds to the value of
the media.repository_id property assigned to each record. For example, in the CAS crawl
configuration for the reference data application, each record is assigned a media.repository_id
property with a value of IFCRSource:

<mediaRoots>
    <default>http://myhost.mydomain.com:8006/ifcr/sites/Discover/media/</de¬
fault>

<IFCRSource>http://myhost.mydomain.com:8006/ifcr/sites/Discover/me¬

Oracle Endeca Commerce    Assembler Application Developer's Guide

173Template Property and Editor Reference | Complex property editors



dia/</IFCRSource>
</mediaRoots>

Note: The <default> value is only used by the default asset browser. For more information,
see "About Media editor configuration" and "Media MDEX Engine schema definition."

5. Modify the <mdexPort> and <mdexHost> elements to point to the host and port of the MDEX
Engine backing your media host.

6. Save and close the file.

7. Navigate to the <app dir>\control directory.

8. Run the set_editors_config script to publish your changes to the Endeca Configuration
Repository.

Related Links
Using an MDEX Engine to Manage Media Assets on page 125

If you are storing media resources in an independent content store, you can set up an MDEX
Engine where records represent media assets and include asset metadata and URIs. Storing
this information as records enables Guided Navigation in the Experience Manager Media
Browser, allowing content administrators to easily navigate across resources when selecting
media assets for a content item.

Media MDEX Engine schema definition on page 130
In order for the Media Browser in Experience Manager to have sufficient information for
forming content XML, any media MDEX Engine that you configure must define specific
properties and dimensions.

Uploading media to the Endeca Configuration Repository

The set_media script uploads any media assets in your application's local config\media directory
to the Endeca Configuration Repository.

These steps are based on local copies of your files being up to date and located in the <app
dir>\config\media directory.

To upload images to the Endeca Configuration Repository:

1. Confirm that local copies of the images you wish to upload have been copied to the <app
dir>\config\media directory, for example, C:\Endeca\apps\Discover\config\media.

2. From a command prompt, navigate to the <app dir>\control directory, for example,
C:\Endeca\apps\Discover\control.

3. Run the set_media batch or shell script.
This script uploads media assets to the /ifcr/sites/<App_Name>/media node in the Endeca
Configuration Repository, where they become available to the Media editor.

4. To verify that your media assets are available:

a) Log in to Workbench.
b) Open Experience Manager.
c) Select a cartridge that includes the Media editor.

In the Discover Electronics reference application, navigate to Web > Web Browse Pages >
Category - Camerasand select the Media banner template.

d) Click the Select button to launch the Media editor and confirm that your media assets display.

Oracle Endeca Commerce    Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors174



About resolving media paths in content items

Links to media assets are resolved in the Media editor by combining configuration in the editor
configuration file with the media.path property on the selected record. At runtime, these links are
resolved against the media sources specified in the Assembler context file.

About media root elements

You identify authoring content sources as nested elements within the <mediaRoots> element in the
editor configuration file.The name of each such element corresponds to the value of the media.repos¬
itory_id property assigned to each record in your media MDEX Engine.The value of each element
identifies the root location of the authoring content source.

When a content administrator opens the Media Browser in Experience Manager, media assets are
retrieved for preview by appending the value of the media.path property on the record to the
corresponding content source element within <mediaRoots>. The media.path is then saved to the
content item when the content administrator saves the cartridge configuration.

By keeping the relative location of your media assets consistent across environments, you can maintain
separate content sources for authoring and live environments without requiring content administrators
to reconfigure content items.

For example, assume the following element within <mediaRoots> in the editor configuration file:

<myMediaSource>http://myhost.mydomain.com:8006/myCMS/Discover/media/</my¬
MediaSource>

A media record with a media.repository_id value of "myMediaSource" and a media.path
value of "images/foo.jpg" would resolve to:

http://myhost.mydomain.com:8006/myCMS/Discover/media/images/foo.jpg

At runtime, the value of the media.path property is instead appended to the appropriate media
source configured in assembler-context.xml:

<!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 ~ Media Sources
-->

<bean id="authoringMediaSources" class="java.util.ArrayList" lazy-
init="true">
 <constructor-arg>
 <list>
 <bean class="com.endeca.infront.cartridge.model.MediaSourceCon¬
fig">

<property name="sourceName" value="MyMediaSource" />
 <property name="sourceValue" value="http://myhost.mydo¬
main.com:8006/myCMS/Discover/media/" />
 </bean>
 <bean class="com.endeca.infront.cartridge.model.MediaSourceCon¬
fig">
 <property name="sourceName" value="default" />
 <property name="sourceValue" value="http://myhost.mydo¬
main.com:8006/myCMS/Discover/media/" />
 </bean>
 </list>
 </constructor-arg>
</bean>

Oracle Endeca Commerce Assembler Application Developer's Guide

175Template Property and Editor Reference | Complex property editors

<bean id="liveMediaSources" class="java.util.ArrayList" lazy-init="true">
 <constructor-arg>
 <list>
 <bean class="com.endeca.infront.cartridge.model.MediaSourceCon¬
fig">

<property name="sourceName" value="MyMediaSource" />
 <property name="sourceValue" value="http://myhost.mydo¬
main.com:8006/myBiggerFasterCMS/Discover/media/assets/" />
 </bean>
 <bean class="com.endeca.infront.cartridge.model.MediaSourceCon¬
fig">
 <property name="sourceName" value="default" />
 <property name="sourceValue" value="http://myhost.mydo¬
main.com:8006/myBiggerFasterCMS/Discover/media/assets/" />
 </bean>
 </list>
 </constructor-arg>
</bean>

In a live environment, the aforementioned media record would resolve to:

http://myhost.mydomain.com:8006/myBiggerFasterCMS/Discover/media/assets/im¬
ages/foo.jpg

Note: While the tooling, authoring, and live content sources can all differ, Oracle recommends
configuring the Media Browser to use the authoring content source.

Related Links
Interaction between an Endeca application and the media MDEX Engine components on page 125

The interactions between a media MDEX Engine, Experience Manager, and Endeca Web
application are summarized below.

Adding a Boost-Bury Record editor
The Boost-Bury Record editor enables a content administrator to specify certain records to display
either at the top or bottom of the list of results for a page.

The Boost-Bury Record editor uses the Select Records dialog to enable the content administrator to
specify either an ordered list of record IDs or a set of refinements that define the set of records to be
boosted or buried.

Note: The Boost-Bury Record editor communicates with the MDEX Engine. In order to enable
the editor, ensure that you have enabled communication between Experience Manager and the
MDEX Engine.

To add a Boost-Bury Record editor:

1. Insert an <editors:BoostBuryRecordEditor> element within <BasicContentItemEditor>.

2. Specify additional attributes for the editor:

DescriptionAttribute

Required. The name of the item property that represents the records to be
boosted to the top of the results. This property must be declared in the
same template as the Record Stratification editor.

propertyName

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors176

DescriptionAttribute

Required. The name of the list property that represents the records to be
buried at the bottom of the results. This property must be declared in the
same template as the Record Stratification editor.

buryProperty

The following shows an example of a template that includes a Boost-Bury Record editor:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent" id="ResultsList">
<!-- additional elements omitted from this example -->

 <ContentItem>
 <Name>Results List</Name>

<Property name="boostStrata">
 <xavia:List/>
 </Property>
 <Property name="buryStrata">
 <xavia:List/>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
<editors:editors:BoostBuryRecordEditor propertyName="boostStrata"

 buryProperty="buryStrata" label="Customize Results List" />
<!-- additional elements omitted from this example -->

 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Related Links
Select Records data service configuration reference on page 163

To make MDEX Engine configuration information available to editors, you must configure a
data service. In the Discover Electronics reference application, the data service configuration
file is used by editors that need to query the authoring MDEX Engine used in the reference
application, such as those that use the Select Records dialog.

About the Select Records dialog on page 163
The Select Records dialog is used in several editors in the core cartridges to enable a content
administrator to specify a set of records.

Adding a Guided Navigation editor
The Guided Navigation editor enables a content administrator to quickly create a navigation menu
through the use of the Generate Guided Navigation wizard.

Note: The Guided Navigation editor communicates with the MDEX Engine. In order to enable
the editor, ensure that you have enabled communication between Experience Manager and the
MDEX Engine.

Oracle Endeca Commerce Assembler Application Developer's Guide

177Template Property and Editor Reference | Complex property editors

A content administrator can use the Generate Guided Navigation button to trigger the Generate
Guided Navigation wizard. The wizard allows them to select and order a set of dimensions to add as
Refinement Menu cartridges. Alternately, they can choose to add, order, and configure the cartridges
manually.

To add a Guided Navigation editor:

1. Insert an <editors:GuidedNavigationEditor> element within <BasicContentItemEditor>.

2. Set a propertyName attribute on the <editors:GuidedNavigationEditor> element.

This must be set to the name of the ContentItemList property that represents the list of
Refinement Menu content items. The property must be declared in the same template.

3. Insert an <editors:ContentItemMapping> element within the editor.

4. Map the content item name to the dimension property that should populate it.

This determines the name of the Refinement Menu content items created by the Generate Guided
Navigation wizard.

a) Include an <endeca:Name/> element within </endeca:ContentItemMapping>:

<endeca:ContentItemMapping>
 <endeca:Name/>
</endeca:ContentItemMapping>

b) Specify the dimension property to use for the content item name in a dimensionProperty
attribute:

<endeca:ContentItemMapping>
 <endeca:Name dimensionProperty="display_name" />
</endeca:ContentItemMapping>

c) Specify the dimension name as a fallback value.

The Generate Guided Navigation wizard uses the first non-null value when naming a
newly-created content item.

<endeca:ContentItemMapping>
 <endeca:Name dimensionProperty="display_name" />
 <endeca:Name dimensionProperty="endeca:name" />
</endeca:ContentItemMapping>

5. Map the dimensionName and dimensionID properties to the dimension properties that populate
them:

<endeca:ContentItemMapping>
 <endeca:Name dimensionProperty="display_name" />
 <endeca:Name dimensionProperty="endeca:name" />
 <endeca:Property name="dimensionName" dimensionProperty="endeca:name"
 />
 <endeca:Property name="dimensionId" dimensionProperty="endeca:identi¬
fier" />
</endeca:ContentItemMapping>

The following shows an example of a template that includes a guided navigation editor:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:endeca="editors" type="SecondaryContent" id="GuidedNavigation">
 <Description>Creates a container for navigation cartridges.</Description>

 <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/Secondary_Guid¬
edNav.png</ThumbnailUrl>

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors178

 <ContentItem>
 <Name>Navigation Container</Name>

<Property name="navigation">
 <ContentItemList type="Navigation" />
 </Property>
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>

<endeca:GuidedNavigationEditor propertyName="navigation"
 label="">
 <endeca:ContentItemMapping>

<!-- additional elements omitted from this example --
>
 <endeca:Name dimensionProperty="display_name" />
 <endeca:Name dimensionProperty="endeca:name" />
 <endeca:Property name="dimensionName" dimensionProper¬
ty="endeca:name" />
 <endeca:Property name="dimensionId" dimensionProper¬
ty="endeca:identifier" />
 </endeca:ContentItemMapping>
 </endeca:GuidedNavigationEditor>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Adding a Dimension Selector
A Dimension Selector enables a content administrator to specify a dimension by name.

Note: The Dimension Selector communicates with the MDEX Engine. In order to enable the
Dimension Selector, ensure that you have enabled communication between Experience Manager
and the MDEX Engine.

To add a Dimension Selector:

1. Insert an <editors:DimensionSelectorEditor> element within <BasicContentItemEdi¬
tor>.

2. Specify additional attributes for the editor:

DescriptionAttribute

Required. The name of the string property that represents the dimension
name.This property must be declared in the same template as the Dimension
Selector.

propertyName

Required. The name of the string property that represents the dimension id.
This property must be declared in the same template as the Dimension
Selector.

idProperty

If set to false, this attribute makes the property read-only so that the value
of the property displays in the Content Details Panel in Experience Manager,

enabled

but cannot be edited. Use this option only if you specify a default value in the
definition of the dimension name and dimension ID properties. Editors are
enabled by default.

Oracle Endeca Commerce Assembler Application Developer's Guide

179Template Property and Editor Reference | Complex property editors

The following shows an example of a template that includes a dimension selector:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="Navigation" id="RefinementMenu">
 <Description>Displays Endeca Facet Navigation in a Text Link Rendering.
 For Flat Dimensions only.</Description>
 <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/dimension_navi¬
gation.jpg</ThumbnailUrl>
 <ContentItem>
 <Name>Dimension Navigation</Name>

<Property name="dimensionName">
 <String/>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>

<editors:DimensionSelectorEditor propertyName="dimensionName"
 idProperty="dimensionId"
 label="Dimension Name" enabled="true"/>

<!-- additional elements omitted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Related Links
Select Records data service configuration reference on page 163

To make MDEX Engine configuration information available to editors, you must configure a
data service. In the Discover Electronics reference application, the data service configuration
file is used by editors that need to query the authoring MDEX Engine used in the reference
application, such as those that use the Select Records dialog.

About the Select Records dialog on page 163
The Select Records dialog is used in several editors in the core cartridges to enable a content
administrator to specify a set of records.

Adding a Dimension List editor
The Dimension List editor enables a content administrator to select a list of dimensions from the
application data set. The templates included with the reference application use this editor to specify
which dimensions should be available for display in a dimension search auto-suggest panel or a
dimension search results panel.

Note: The Dimension List editor communicates with the MDEX Engine. In order to enable the
editor, ensure that you have enabled communication between Experience Manager and the
MDEX Engine.

To add a Dimension List editor:

1. Insert an <editors:DimensionListEditor> element within <BasicContentItemEditor>.

2. Specify additional attributes for the editor:

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors180

DescriptionAttribute

Required. The name of the List property that represents the selected
dimension values.The property must be declared in the same template.

propertyName

The following shows an example of a template that includes a dimension list editor:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors" type="MainContent" id="DimensionSearchResults">

 <Description>Displays dimension search results.</Description>
 <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/Main_Dimension¬
SearchResults.png</ThumbnailUrl>
 <ContentItem>
 <Name>Dimension Search Results</Name>

<!-- additional elements omitted from this example -->
<Property name="dimensionList">

 <xavia:List/>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
<editors:DimensionListEditor propertyName="dimensionList"

 label="Dimensions Searched"
 enabled="true"/>

<!-- additional elements omitted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Adding a Dimension Value Boost-Bury editor
The boost-bury editor enables a content administrator to specify certain dimension values to display
either at the top or bottom of the list of refinements for a particular dimension.

In order to enable a Dimension Value Boost-Bury editor, the cartridge template must include a dimen¬
sionId property with an associated editor or a default value. This specifies the dimension to which
the boost-bury editor applies.

Note: The Dimension Value Boost-Bury editor makes use of an auto-suggest dimension search
component to enable the content administrator to quickly find the relevant dimension values. In
order for this component to display partial matches as the user types in the search box, ensure
that wildcard search is enabled for dimension searches in your MDEX Engine configuration.

To add a Dimension Value Boost-Bury editor:

1. Insert an <editors:BoostBuryEditor> element within <BasicContentItemEditor>.

2. Specify additional attributes for the editor:

Oracle Endeca Commerce Assembler Application Developer's Guide

181Template Property and Editor Reference | Complex property editors

DescriptionAttribute

Required. The name of the list property that represents the list of dimension
values to be boosted to the top of the list of refinements. This property must
be declared in the same template as the boost-bury editor.

propertyName

Required. The ID of the dimension that contains the dimension refinements
to boost or bury.

dimensionId

Required. The name of the list property that represents the list of dimension
values to be boosted to the top of the refinement list. This property must be
declared in the same template as the boost-bury editor.

boostProperty

Required. The name of the list property that represents the list of dimension
values to be buried at the bottom of the list of refinements.This property must
be declared in the same template as the boost-bury editor.

buryProperty

If set to false, this attribute makes the property read-only so that the value
of the property displays in the Content Details Panel in Experience Manager,

enabled

but cannot be edited. Use this option only if you specify a default value for
the boostList and buryList properties. Editors are enabled by default.

The following shows an example of a template that includes a dimension value boost-bury editor:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="Navigation" id="RefinementMenu">
 <Description>Displays Endeca Facet Navigation in a Text Link Rendering.
 For Flat Dimensions only.</Description>
 <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/dimension_navi¬
gation.jpg</ThumbnailUrl>
 <ContentItem>
 <Name>Dimension Navigation</Name>
 <Property name="dimensionName">
 <String/>
 </Property>

<Property name="dimensionId">
 <String/>
 </Property>

<!-- additional elements omitted from this example -->
<Property name="boostRefinements">

 <xavia:List/>
 </Property>
 <Property name="buryRefinements">
 <xavia:List/>
 </Property>
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
<editors:BoostBuryEditor propertyName="boostRefinements"

buryProperty="buryRefinements"
 label="Boost and Bury" dimensionIdProperty="dimensionId" en¬
abled="true"/>

<!-- additional elements omitted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors182

Adding a Dimension Value List editor
The Dimension Value List editor enables a content administrator to select a list of dimension values
from the application data set.

Note: The Dimension Value List editor communicates with the MDEX Engine. In order to enable
the editor, ensure that you have enabled communication between Experience Manager and the
MDEX Engine.

To add a Dimension Value List editor:

1. Insert an <editors:DimvalListEditor> element within <BasicContentItemEditor>.

2. Specify additional attributes for the editor:

DescriptionAttribute

Required.The name of the List property that represents the selected
dimension values. The property must be declared in the same
template.

propertyName

Required. The ID of the dimension that the editor applies to.dimensionId

The following shows an example of a Refinement Menu template that uses two Dimension Value List
editors to specify boosted and buried refinements, instead of a Dimension Value Boost-Bury editor:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="Navigation" id="RefinementMenu">
 <Description>Displays Endeca Facet Navigation in a Text Link Rendering.
 For Flat Dimensions only.</Description>
 <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/dimension_navi¬
gation.jpg</ThumbnailUrl>
 <ContentItem>
 <Name>Dimension Navigation</Name>

<!-- additional elements omitted from this example -->
<Property name="dimensionId">

 <String/>
 </Property>

<!-- additional elements omitted from this example -->
<Property name="boostRefinements">

 <xavia:List/>
 </Property>
 <Property name="buryRefinements">
 <xavia:List/>
 </Property>
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->

 <GroupLabel label="Boost and Bury Dimension Refinements"/>
<editors:DimvalListEditor dimensionIdProperty="dimensionId"

 propertyName="boostRefinements" label = "Boost Records"/>
 <editors:DimvalListEditor dimensionIdProperty="dimensionId"
 propertyName="buryRefinements" label = "Bury Records"/>

<!-- additional elements omitted from this example -->

Oracle Endeca Commerce Assembler Application Developer's Guide

183Template Property and Editor Reference | Complex property editors

 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Adding a Record List editor
The Record List editor uses the microbrowser to enable a content administrator to designate specific
records to spotlight in a section, or to specify a query to return a dynamic list of records. This editor is
deprecated.

Important: This editor is deprecated. Use the SpotlightSelectionEditor instead.

Note: The Record List editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX
Engine.

A Record List editor is bound to a RecordSpotlightSelection property, which can contain either
a list of record IDs (for featured records) or a set of refinements (for dynamic records).

To add a Record List editor to a template:

1. Insert an Item property of class com.endeca.infront.cartridge.RecordSpotlightSe¬
lection named recordSelection as in the following example:

<Property name="recordSelection">
 <xavia:Item class="com.endeca.infront.cartridge.RecordSpotlightSelection"
 />
</Property>

2. Insert an <editors:RecordListEditor> element within <BasicContentItemEditor>.

3. Specify label attributes and the additional attributes for the editor:

DescriptionAttribute

Required. The name of the record selection property that represents the
records to be spotlighted. This property must be declared in the same
template as the Record Stratification editor.

propertyName

4. Insert a <PreviewProperty> element within <editors:RecordStratificationEditor>
with the following attribute:

DescriptionAttribute

The name of the record property to display in the Content Details Panel
indicating which records have been selected for boost or bury.

name

The following shows an example of a template that includes a record list editor:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="SidebarContent"
 id="RecordSpotlight">

<!-- additional elements omitted from this example -->
 <ContentItem>

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors184

 <Name>Spotlight records</Name>
<!-- additional elements omitted from this example -->
<Property name="recordSelection">

 <xavia:Item class="com.endeca.infront.cartridge.RecordSpotlight¬
Selection" />
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>
 <GroupLabel label="Define Spotlight"/>

<!-- additional elements omitted from this example -->
<editors:RecordListEditor propertyName="recordSelection"

 label="Spotlight Records">
 <PreviewProperty name="product.name"/>
 </editors:RecordListEditor>

<!-- additional elements omitted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Specifying record sort options

The sortOption property of the results list cartridge enables the content administrator to specify a
default sort order to apply to the results list when a site visitor reaches the page via navigation.

The available default sort options are defined in the Sort editor definition, which enables the content
administrator to select from a predefined set of sort orders. The sort options that are available to the
site visitor to apply to the results list are configured in the cartridge handler for this cartridge.

To specify sort options for the record list:

1. Insert an item property of class com.endeca.infront.navigation.model.SortOption
named sortOption:

 <Property name="sortOption">
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption"/>

 </Property>

2. Optionally, specify a default value for the property. The SortOption model includes the following
properties:

DescriptionProperty Name

A descriptive label that displays in a drop-down menu in Experience Manager.label

A list of one or more items of class com.endeca.infront.naviga¬
tion.model.SortSpec. Each SortSpec has two properties:

sorts

• key — A string representing the name of an Endeca property or
dimension on which to sort

• descending — A Boolean value representing the sort direction

Oracle Endeca Commerce Assembler Application Developer's Guide

185Template Property and Editor Reference | Complex property editors

The following shows an example of a template that specifies a default sort option:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent" id="ResultsList">
<!-- additional elements omitted from this example -->

 <ContentItem>
 <Name>Results List</Name>

<!-- additional elements omitted from this example -->
 <Property name="sortOption">
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
 <xavia:Property name="label">Most Sales</xavia:Property>
 <xavia:Property name="sorts">
 <xavia:List>
 <xavia:Item class="com.endeca.infront.navigation.model.SortSpec">

 <xavia:Property name="key">product.analytics.to¬
tal_sales</xavia:Property>
 <xavia:Property name="ascending">true</xavia:Property>
 </xavia:Item>
 </xavia:List>
 </xavia:Property>
 </xavia:Item>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>
<!-- additional elements omitted from this example -->

</ContentTemplate>

Related Links
Cartridge handler configuration for the Results List cartridge on page 102

The Results List cartridge handler extends the NavigationCartridgeHandler. The
application-wide default configuration in the Assembler context file specifies default sort
options, relevance ranking strategy, and record and sub-record properties to pass through
to the cartridge handler response model. It also allows you to enable or disable debugging
features if query debugging features are enabled.

Adding a Record Stratification editor
The Record Stratification editor enables a content administrator to specify certain records to display
either at the top or bottom of the list of results for a page.

Important: This editor is deprecated. Use the BoostBuryRecordEditor instead.

The Record Stratification editor uses the microbrowser to enable the content administrator to specify
either an ordered list of record IDs or a set of refinements that define the set of records to be boosted
or buried.

Note: The Record Stratification editor communicates with the MDEX Engine. In order to enable
the editor, ensure that you have enabled communication between Experience Manager and the
MDEX Engine.

To add a Record Stratification editor:

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors186

1. Insert an <editors:RecordStratificationEditor> element within <BasicContentItemEd¬
itor>.

2. Specify additional attributes for the editor:

DescriptionAttribute

Required. The name of the item property that represents the records to be
boosted to the top of the results. This property must be declared in the
same template as the Record Stratification editor.

propertyName

Required. The name of the list property that represents the records to be
buried at the bottom of the results. This property must be declared in the
same template as the Record Stratification editor.

buryProperty

The following shows an example of a template that includes a record stratification editor:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent" id="ResultsList">
<!-- additional elements omitted from this example -->

 <ContentItem>
 <Name>Results List</Name>

<Property name="boostStrata">
 <xavia:List/>
 </Property>
 <Property name="buryStrata">
 <xavia:List/>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
<editors:RecordStratificationEditor propertyName="boostStrata"

 buryProperty="buryStrata" label="Customize Results List" />
<!-- additional elements omitted from this example -->

 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Adding a Sort editor
A Sort editor enables the content administrator to choose a sort order (sort key and direction) to apply
to a list of records.

Within the results list cartridge, this sort order (along with any boost/bury that is configured for the
page) is applied to the results list by default when the end user first arrives at a page. If additional sort
options are specified for this cartridge, the end user can select an alternate sort order and later return
to the default ordering as specified by the content administrator.

To add a Sort editor:

1. Insert an <editors:SortEditor> element within <BasicContentItemEditor>.

2. Specify additional attributes for the editor:

Oracle Endeca Commerce Assembler Application Developer's Guide

187Template Property and Editor Reference | Complex property editors

DescriptionAttribute

Required. The name of the item property that represents the default
sort option. This property must be declared in the same template as
the Sort editor.

propertyName

3. Specify one or more items of class com.endeca.infront.navigation.model.SortOption
from which the content administrator can select.

The following shows an example of a template that includes a sort editor:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent" id="ResultsList">
<!-- additional elements omitted from this example -->

 <ContentItem>
 <Name>Results List</Name>

<!-- additional elements omitted from this example -->
 <Property name="sortOption">
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
 <xavia:Property name="label">Most Sales</xavia:Property>
 <xavia:Property name="sorts">
 <xavia:List>
 <xavia:Item class="com.endeca.infront.navigation.model.SortSpec">

 <xavia:Property name="key">product.analytics.to¬
tal_sales</xavia:Property>
 <xavia:Property name="ascending">true</xavia:Property>
 </xavia:Item>
 </xavia:List>
 </xavia:Property>
 </xavia:Item>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
 <GroupLabel label="Navigation Result Settings (apply when user does
 not provide search terms)"/>
 <editors:SortEditor propertyName="sortOption" label="Default Sort">
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption">

 <xavia:Property name="label">Default</xavia:Property>
 <xavia:Property name="sorts">
 <xavia:List />
 </xavia:Property>
 </xavia:Item>
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption">

 <xavia:Property name="label">Most Sales</xavia:Property>
 <xavia:Property name="sorts">
 <xavia:List>
 <xavia:Item class="com.endeca.infront.navigation.model.Sort¬
Spec">
 <xavia:Property name="key">product.analytics.to¬
tal_sales</xavia:Property>

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors188

 <xavia:Property name="ascending">true</xavia:Property>
 </xavia:Item>
 </xavia:List>
 </xavia:Property>
 </xavia:Item>
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption">

 <xavia:Property name="label">Best Conversion Rate</xavia:Property>

 <xavia:Property name="sorts">
 <xavia:List>
 <xavia:Item class="com.endeca.infront.navigation.model.Sort¬
Spec">
 <xavia:Property name="key">product.analytics.conver¬
sion_rate</xavia:Property>
 <xavia:Property name="ascending">true</xavia:Property>
 </xavia:Item>
 </xavia:List>
 </xavia:Property>
 </xavia:Item>
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption">

 <xavia:Property name="label">Price (Ascending)</xavia:Property>
 <xavia:Property name="sorts">
 <xavia:List>
 <xavia:Item class="com.endeca.infront.navigation.model.Sort¬
Spec">
 <xavia:Property name="key">product.price</xavia:Property>
 <xavia:Property name="ascending">true</xavia:Property>
 </xavia:Item>
 </xavia:List>
 </xavia:Property>
 </xavia:Item>
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption">

 <xavia:Property name="label">Price (Descending)</xavia:Property>

 <xavia:Property name="sorts">
 <xavia:List>
 <xavia:Item class="com.endeca.infront.navigation.model.Sort¬
Spec">
 <xavia:Property name="key">product.price</xavia:Property>
 <xavia:Property name="ascending">false</xavia:Property>
 </xavia:Item>
 </xavia:List>
 </xavia:Property>
 </xavia:Item>
 </editors:SortEditor>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Adding a Spotlight Selection editor
The Spotlight Selection editor uses the Select Records dialog to enable a content administrator to
designate specific records to spotlight in a section, or to specify a query to return a dynamic list of
records.

Oracle Endeca Commerce Assembler Application Developer's Guide

189Template Property and Editor Reference | Complex property editors

Note: The Spotlight Selection editor communicates with the MDEX Engine. In order to enable
the editor, ensure that you have enabled communication between Experience Manager and the
MDEX Engine.

A Spotlight Selection editor is bound to a RecordSpotlightSelection property, which can contain
either a list of record IDs (for featured records) or a set of dimension refinements (for dynamic records).

To add a Spotlight Selection editor to a template:

1. Insert an Item property of class com.endeca.infront.cartridge.RecordSpotlightSe¬
lection.
In the following example, this is the recordSelection property:

<Property name="recordSelection">
 <xavia:Item class="com.endeca.infront.cartridge.RecordSpotlightSelec¬
tion" />
</Property>

2. Insert an <editors:RecordSpotlightSelectionEditor> element within <BasicCon¬
tentItemEditor>.

3. Specify label attributes and the additional attributes for the editor:

DescriptionAttribute

Required. The name of the record selection property that represents the
selected records or navigation state. This property must be declared in
the same template as the record selection editor.

propertyName

The following shows an example of a template that includes a spotlight selection editor:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="SecondaryContent"
 id="RecordSpotlight">
 <Description>Displays selected records in seconday content area.</De¬
scription>
 <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/Sec¬
ondary_RecordSpotlight.png</ThumbnailUrl>
 <ContentItem>
 <Name>Spotlight Records</Name>

<!-- additional elements omitted from this example -->
<Property name="recordSelection">

 <xavia:Item class="com.endeca.infront.cartridge.RecordSpotlight¬
Selection" />
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>
 <GroupLabel label="Define Spotlight"/>

<!-- additional elements omitted from this example -->
<editors:SpotlightSelectionEditor propertyName="recordSelection"

 label="Spotlight Records" />
<!-- additional elements omitted from this example -->

 </BasicContentItemEditor>

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors190

 </EditorPanel>
</ContentTemplate>

Related Links
Select Records data service configuration reference on page 163

To make MDEX Engine configuration information available to editors, you must configure a
data service. In the Discover Electronics reference application, the data service configuration
file is used by editors that need to query the authoring MDEX Engine used in the reference
application, such as those that use the Select Records dialog.

About the Select Records dialog on page 163
The Select Records dialog is used in several editors in the core cartridges to enable a content
administrator to specify a set of records.

Adding a Rich Text editor
The Rich Text editor provides a text field and formatting toolbar that allows a content administrator to
include formatted text and hyperlinks in a content item.

To add a Rich Text editor to a template:

1. Insert a <String> element inside a <Property> element.

2. Optionally, specify the default value for the property as the content of the <String> element.

3. Insert a corresponding <editors:RichTextEditor> element within <BasicContentItemEd¬
itor>.

4. Specify the propertyName attribute for the editor:

<editors:RichTextEditor propertyName="description" enabled="true"/>

5. Specify any additional label attributes for the editor:

<editors:RichTextEditor propertyName="description" label="Description"
enabled="true"/>

6. Specify the height and toolbar configuration for the editor:

<editors:RichTextEditor propertyName="description" label="Description"
enabled="true" height="200" toolbar="[
 { name: 'document', items : ['Source'] },
 { name: 'clipboard', items : ['Cut','Copy','Paste','PasteText','Paste¬
FromWord','-','Undo','Redo'] },
 { name: 'insert', items : ['Image','Table','HorizontalRule','Spe¬
cialChar'] },
 { name: 'paragraph', items : ['NumberedList','BulletedList','-
','Outdent','Indent','-','JustifyLeft',
 'JustifyCenter','JustifyRight','Justi¬
fyBlock'] },
 { name: 'links', items : ['Link','Unlink','Anchor'] },
 '/',
 { name: 'basicstyles', items : ['Bold','Italic','Under¬
line','Strike','Subscript','Superscript'] },
 { name: 'styles', items : ['Styles','Format','Font','FontSize'
] },
 { name: 'colors', items : ['TextColor'] }
]"/>

Oracle Endeca Commerce Assembler Application Developer's Guide

191Template Property and Editor Reference | Complex property editors

Note: The Rich Text editor is an implementation of the open source CKEditor WYSIWYG
Rich Text editor. For a full list of toolbar buttons and their functionality, see the documentation
for version 3.x of the CKEditor at
http://docs.cksource.com/CKEditor_3.x/Developers_Guide/Toolbar.

The following shows an example of a template that includes a rich text editor:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent"
 id="MediaBanner">

<!-- additional elements omitted from this example -->
 <ContentItem>
 <Name>CategoryDescription</Name>

<Property name="description">
 <String></String>
 </Property>
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>
 <GroupLabel label="Contents"/>

<editors:RichTextEditor propertyName="description" label="De¬
scription" enabled="true" height="200"
 toolbar="[
 { name: 'document', items : ['Source'] },
 { name: 'clipboard', items : [
'Cut','Copy','Paste','PasteText','PasteFromWord','-','Undo','Redo'] },
 { name: 'insert', items : ['Image','Table','Horizon¬
talRule','SpecialChar'] },
 { name: 'paragraph', items : ['NumberedList','Bullet¬
edList','-','Outdent','Indent','-',
 'JustifyLeft','JustifyCen¬
ter','JustifyRight','JustifyBlock'] },
 { name: 'links', items : ['Link','Unlink','Anchor'
] },
 '/',
 { name: 'basicstyles', items : ['Bold','Italic','Under¬
line','Strike','Subscript','Superscript'] },
 { name: 'styles', items : ['Styles','For¬
mat','Font','FontSize'] },
 { name: 'colors', items : ['TextColor'] }
]"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Application feature property reference
This is an overview of the mappings between features in a front-end application and their associated
configuration properties.

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Application feature property reference192

http://docs.cksource.com/CKEditor_3.x/Developers_Guide/Toolbar

Query configuration mappings

Global configuration for the features below is typically set in the Assembler context file on the class
and property specified in the table.

Cartridge Handler(s)
Global Configuration
<class>.<property>

URL
Parameter

Feature

UrlNavigationState¬
Builder

FilterState.navigation¬
Filters

NNavigation query

RefinementMenuRefinementMenuConfig.re¬
finementsShown

NrmcRefinement display
in menu

RefinementMenuRefinementMenuCon¬
fig.showMore

Enable "Show More
Refinements" link

NavigationContainerNavigationContainer.show¬
MoreIds

"Show More"
dimension IDs

UrlNavigationState¬
Builder

DefaultResultsListConfigRRecord details

ResultsListResultsListConfig.offsetNoRecord offset

ResultsListResultsListConfig.sub¬
RecordsPerAggregatRecord

- -Records to show per
aggregate record

UrlNavigationState¬
Builder

FilterState.recordFil¬
ters

NrRecord filter

ResultsListResultsListCon¬
fig.recordsPerPage

NrppRecords per page

ResultsList, Dimension¬
SearchResult

FilterState.SearchFil¬
ters.key

NtkRecord search key

UrlNavigationState¬
Builder

- -AAggregate record
selection

ResultsListResultsListConfig.offsetNaoAggregate record
offset

UrlNavigationState¬
Builder

FilterState.rollupKey- -Aggregate record
rollup key

ResultsListResultsListCon¬
fig.whyRankEnabled

whyrankWhy Rank

ResultsListResultsListConfig.why¬
MatchEnabled

whymatchWhy Match

RefinementMenu, Naviga¬
tionContainer

RefinementMenu.whyPrece¬
denceRuleFired, Naviga¬
tionContainer.whyPrece¬
denceRuleFired

whyprece¬
dencerule¬
fired

Why Precedence
Rule Fired

UrlNavigationState¬
Builder

FilterState.rangeFiltersNfRange filter

Oracle Endeca Commerce Assembler Application Developer's Guide

193Template Property and Editor Reference | Application feature property reference

Cartridge Handler(s)
Global Configuration
<class>.<property>

URL
Parameter

Feature

UrlNavigationState¬
Builder

FilterState.rangeFiltersNfgGeocode range filter

- -UserState.dateEnde¬
ca_Time

Set preview time

ResultsListFilterState.SearchFil¬
ters.MatchMode

NrmRelevance ranking
Match Mode

ResultsListResultsListConfig.rel¬
RankStrategy, Dimension¬

- -Relevance ranking
strategy

SearchResultsConfig.rel¬
RankStrategy

- -- -NrtRelevance ranking
search terms

ResultsList- -NrkRelevance ranking
search key

UrlNavigationState¬
Builder

FilterState.eqlFilterNrsEQL filter

ResultsList, Refinement¬
Menu

ResultsListConfig.sortOp¬
tion, RefinementMenu.sort

NsSort key

Sort order

UrlNavigationState¬
Builder

SearchAdjustmentsCon¬
fig.phraseSuggestionEn¬
abled

NtpCompute phrasings

Rewrite query with
alternate phrasing

UrlNavigationState¬
Builder

FilterState.SearchFil¬
ters.terms

NttSearch terms

UrlNavigationState¬
Builder

FilterState.SearchFil¬
ters.matchMode

NtxSearch mode

UrlNavigationState¬
Builder

SearchAdjustmentsCon¬
fig.spellSuggestionEn¬
abled

Nty"Did You Mean"

DySignal dimension
search

See NttSee NttNtt with
Dy=1

Dimension search
term

See NfSee NfNf with
Dy=1

Dimension search
range filter

DimensionSearchRe¬
sultHandler

DimensionSearchResultCon¬
fig.relRank

- -Enable dimension
search relevance
ranking

See NSee NN with Dy=1Dimension search
scope

Oracle Endeca Commerce Assembler Application Developer's Guide

Template Property and Editor Reference | Application feature property reference194

Cartridge Handler(s)
Global Configuration
<class>.<property>

URL
Parameter

Feature

- -- -- -Dimension search
result offset

DimensionSearchRe¬
sultHandler

DimensionSearchResultCon¬
fig.maxResultsPerDimen¬
sion

- -Dimension search
dimVal count

See NrSee NrNr with
Dy=1

Dimension search
record filter

DimensionSearchRe¬
sultHandler

DimensionSearchResultCon¬
fig.showCountsEnabled

- -Dimension search
refinement
configuration

See NrsSee NrsNrs with
Dy=1

Dimension search
EQL filter

- -- -- -Dimension search
options

Oracle Endeca Commerce Assembler Application Developer's Guide

195Template Property and Editor Reference | Application feature property reference

Appendix B

Request Event Attributes

The RequestEvent and NavigationEventWrapper classes support getting and setting common
search and navigation information on a request event. This Appendix provides a reference table of
out-of-the-box attributes that you can retrieve or set on a RequestEvent object.

Base request event attributes
The following describes the base schema for an Assembler request event.

The RequestEvent class includes getter and setter methods for each of these attributes.

DescriptionTypeAttribute

The unique identifier for a browser session. To retrieve this
information, you must register an implementation of Session¬
IdProvider in the request event adapter constructor.

Stringendeca:sessionId

The time (in milliseconds from POSIX Epoch) that the assem¬
ble() method started

longendeca:assemblyStart¬
Timestamp

The time (in milliseconds from POSIX Epoch) that the assem¬
ble() method finished

longendeca:assemblyFinish¬
Timestamp

Navigation request event attributes
The following describes the schema for an Assembler navigation request event. These fields are in
addition to those described for the base request.

The NavigationEventWrapper class includes getter and setter methods for each of these attributes.

DescriptionTypeAttribute

The suggested auto-correct term, if it triggers for the request.
Stringendeca:autocorrectTo

DescriptionTypeAttribute

The content path of the page corresponding to the request.
Stringendeca:contentPath

The suggested "Did You Mean" term, if it triggers for the
request.

List
<String>

endeca:didYouMeanTo

The dimension names selected for navigation.
List
<String>

endeca:dimensions

The dimension value names selected for navigation.
List
<String>

endeca:dimensionVal¬
ues

The time, in milliseconds, that it takes the MDEX Engine to
run the query.

Longendeca:eneTime

The number of records returned for the request.
Longendeca:numRecords

The number of selected refinements.
Integerendeca:numRefine¬

ments

The names of the records returned by the request.
List
<String>

endeca:recordNames

To populate this attribute, the recordDisplayFieldName
property on the ResultsListConfig object must be set
to the name of the field that contains record names.

The record specifier for a selected record.
Stringendeca:recordSpec

The type of request. Possible values are:
Request¬
Type

endeca:requestType

• T - Root navigation
• N - Navigation only
• S - Search only
• SN - Search, then navigation
• R - Record detail
• UNKNOWN - Unknown

The search key for the current navigation state.
Stringendeca:searchKey

The search mode for the request.
Stringendeca:searchMode

The search terms for the request.
Stringendeca:searchTerms

The site root path of the page corresponding to the request.
Stringendeca:siteRootPath

The sort keys for the request. Each key is a String with
the format fieldName|<Descending|Ascending> .

List
<String>

endeca:sortKey

Oracle Endeca Commerce Assembler Application Developer's Guide

Request Event Attributes | Navigation request event attributes198

DescriptionTypeAttribute

The list of spotlights triggered for the request.
List
<String>

endeca:spotlights

Oracle Endeca Commerce Assembler Application Developer's Guide

199Request Event Attributes | Navigation request event attributes

Index

A

Actions
about 61
Action fields 62, 63
using 62, 63
using with packaged services 63

application URLs
about 61
Actions 61
configuration 64

Assembler
Assembler Service 49
configuration 42
content include query 47
content slot query 48
dependencies 41
deploying 41
dynamic content query 48
error handling 60
invoking in Java 46
libraries 41
processing content by URI 47
rendering the response 58
requirements 41
Spring configuration 42

Assembler API
ActionPathProvider interface 61

Assembler libraries 41
Assembler service

about 46
configuring 46

Assembler Service 41
querying 49

Assembler services 14
Assembler servlet

error handling 60
response format 50

Auto-suggest cartridges 80
Auto-Suggest Dimension Search Results cartridge

cartridge handler configuration 81
configuration model 80
template configuration 81

Auto-Suggest panel
template configuration 80

automatic phrasing
example scenarios 88, 89
implementing 87

B

boost and bury 99

Breadcrumbs cartridge 98
cartridge handler configuration 99

C

canonical link 68
cartridge

default configuration 76
instance configuration 77
MDEX Engine configuration 76
request configuration 78

cartridge handlers 45
configuring 43, 76

checkbox editor 157
choice editor 150
combo box editor 150
content collections

creating 21
example 17
moving 22
overview 16

content item
property type 31
type 26

content item list 32
content items

container 31
content properties

editor mappings 143
primitive types 147

content slot
nested in other content items 48

content type 13, 26
core cartridges

Auto-Suggest Dimension Search Results cartridge
80
Auto-Suggest panel 80
Breadcrumbs 98
Dimension Search Results 81
Media Banner 107
Record Details 104
Record Spotlight 105
Refinement Menu 93
Results List 99
Search Adjustments 84
Search Box 78

D

data application 128, 129, 130
interaction with Experience Manager 125

device detection
reference application 72

Dimension List editor 180
Dimension Search Results cartridge 81

cartridge handler configuration 83
configuration model 82
MDEX Engine configuration 82
template configuration 83
URL parameters 83

dimension value list editor 183
Discover Electronics

handling of renderers 57
sample templates 23

dynamic content 54
dynamic slot editor 166
dynamic slots 45, 108, 164

about 108
adding 165
Assembler configuration 166
configuration 166
editor 166
use cases 108

E

editor configuration
data service 161, 163

editors
configuring 30
dimension list editor 180
dimension selector 179
dimension value boost-bury 181
dimension value list editor 183
dynamic slots 164, 165
editor-specific configuration 30
editors.xml 30
guided navigation editor 177
label configuration 146
Link Builder 167
media editor 169, 170, 171, 173, 174
record list editor 184, 190
record stratification 176, 186
rich text editor 191
sort editor 187

emgr_update
remove_templates 39

Endeca Query Language
about 121
applying a default filter 123
applying a filter 122
relevance ranking 123
troubleshooting 124
URL parameters 123

EQL 121
See also Endeca Query Language

Experience Manager
interaction with media MDEX Engine 125

F

feature configuration
sources of 75

G

group labels 160
guided navigation editor 177
Guided Search Service

dynamic content 55
handling the response 55

Guided Search services 50, 63
Dimension Search Service 51
Guided Search Service 53, 54
Record Details Service 52

H

HTTP servlet request 43

J

JSP
example 55, 58

K

keyword redirects
about 89
Assembler response 91
Assembler service 91
cartridge handler configuration 89
content XML 90

L

Link Builder
adding 167
configuration 168

Log Server
client side click events 141

logging
request event adapters 138, 139, 140
request events 137

M

MDEX Engine
configuration for Experience Manager editors 161,
163
data service configuration 161, 163
media MDEX Engine 128, 130
using to index media

MDEX request builder 43
MDEX resource 43
Media Banner cartridge 107

cartridge handler configuration 107

Oracle Endeca Commerce202

Index

Media Banner cartridge (continued)
configuration model 107
MDEX Engine configuration 107
template configuration 107

media browser
enabling 173

Media Browser 170, 171
media editor 171
Media editor 169, 170, 175

media browser 173
uploading media 174

media MDEX Engine 173
interaction with Experience Manager 125

media paths 175
microbrowser 161
multichannel applications

about 71

N

Navigation Container
about 97
cartridge handler configuration 98
configuration model 97
URL parameters 98

navigation state builder 43
NavigationCartridgeHandler

and navigation state 45
and subclasses 45

P

packaged services
Actions 63

page types
content structure 13
overview 12
with services 14

pages
creating 16

preview application
about 111
about previewing mobile devices 112
adding a device 112
auditing 112
changing 117
changing the link service 118
enabling 115
instrumenting 114
modifying a device 113
removing a device 113
testing 119

preview link service 118
properties

and configuration in Experience Manager 29
Boolean 156
content item 31
content item list 32
defining 28

properties (continued)
editor mappings 143
item 159
list 158
numeric 154
overview 28
sort options 185
string 148
template section 31, 32

property editors
cartridge selector 33
checkbox 157
choice 150
default value 149
grouping 160
introduced 29
numeric stepper 154
radio group 152
section 33
slider 155
string 149

Q

query debugging
about 133
enabling 133, 134
results 134
URL parameters 134

R

radio button editor 152
Record Details cartridge 104

cartridge handler configuration 105
configuration model 104
MDEX Engine configuration 104
template configuration 105

Record Spotlight cartridge 105
cartridge handler configuration 106
configuration model 105
MDEX Engine configuration 106
template configuration 106

RecordDetailsHandler
and record state 45

reference application
device detection

reference application 72
request event adapters 140

reference data application
configuring 129
overview 128
requirements 128

Refinement Menu cartridge 93
cartridge handler configuration 95
configuration model 93
MDEX Engine configuration 95
template configuration 96
URL parameters 96

203

Index

relevance ranking 99
renderers 57
request event adapters

registering 139
request events

attributes 197
navigation attributes 197

response format 50
Results List cartridge 99

cartridge handler configuration 102
configuration model 100
MDEX Engine configuration 101
template configuration 102
URL parameters 102

Rich Text editor 191
rule groups, See content collections

S

Search Adjustments cartridge 84
cartridge handler configuration 86
configuration model 84
MDEX Engine configuration 84
template configuration 86
URL parameters 86

Search Box cartridge 78
MDEX Engine configuration 79
template configuration 79

Select Records dialog 163
services, See Assembler services
sitemap

planning 11
snippeting 103
sorting 99
structural properties 31

T

templates
and Discover Electronics 23

templates (continued)
creating 23
defining editors 29

See also property editors
defining properties 28
defining sections 31, 32
description, specifying 26
id 26
mobile channel templates 71
Name property 27
naming conventions 25
pages based on missing templates 38
properties 28

See also properties
removing from Experience Manager 39
saving 25
schema 25
structure 24
troubleshooting 35
troubleshooting default values 37
type 26
updating 37
validation 25, 35

thumbnail images
specifying 26
using 27

U

URL formatter class
basic URLs 66
optimized URLs 66

URL parameters 64

Z

zones, See content collections

Oracle Endeca Commerce204

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Supporting an Assembler Application
	About planning your application sitemap
	About page types
	About page structure and content types
	About mapping pages to services
	Creating a page

	About content collections
	Content collections example
	Creating a content collection
	About moving content collections

	Creating Experience Manager Templates
	About creating templates
	Anatomy of a template
	Template naming conventions
	About the template XML schema
	About the type and ID for a template
	Specifying the description and thumbnail image for a template
	About using thumbnail images in Experience Manager

	Specifying the default name for a cartridge
	About defining the content properties and editing interface
	About template properties
	About defining the editing interface for properties
	About configuring editor default values
	Specifying editor-specific configuration

	Structural properties
	Adding a content item property
	Adding a content item list property
	About cartridge selectors

	Managing Experience Manager Templates
	Updating Experience Manager templates
	Troubleshooting problems with uploading templates
	Troubleshooting invalid templates

	About updating templates
	About modifying templates that are used by existing pages
	About removing templates
	Removing templates from Experience Manager

	Retrieving the current templates from Experience Manager

	Building Applications with the Endeca Assembler
	Assembler dependencies
	About deploying the Assembler
	Assembler configuration
	About configuring cartridge handlers
	HTTP servlet request access
	Search and navigation request configuration
	About configuring cartridge handlers that make search and navigation queries
	About configuring cartridges to retrieve dynamic content

	About configuring the Assembler servlet

	Invoking the Assembler in Java
	Invoking the Assembler with a ContentInclude item
	Invoking the Assembler with a ContentSlotConfig item
	Content slots within other content items

	Querying the Assembler Service
	The Assembler servlet response format

	About retrieving Assembler results using the packaged services
	The Dimension Search Service
	The Record Details Service
	The Guided Search Service
	About dynamic content and the Guided Search Service
	About retrieving content item properties from packaged services

	About handling the Assembler response
	About rendering the Assembler response

	About Assembler error handling

	Working with Application URLs
	About application URLs
	About Actions
	Action fields
	About using Actions with the packaged services

	About working with URL parameters
	About URL configuration in the reference application
	URL formatter configuration

	About working with canonical links

	Implementing Multichannel Applications
	Overview of multichannel applications with the Endeca Assembler
	About creating templates for mobile channels
	About device detection in the reference application

	Configuring Front-End Application Features
	About configuring application features
	Feature configuration in the MDEX Engine
	Default cartridge configuration
	Cartridge instance configuration
	Request-based configuration

	Search features
	Search box
	MDEX Engine configuration for the Search Box cartridge
	Template configuration for the Search Box cartridge

	Auto-suggest search results
	Template configuration for the auto-suggest panel
	Configuration model for the Auto-Suggest Dimension Search Results cartridge
	Cartridge handler configuration for the Auto-Suggest Search Results cartridge
	Template configuration for the Auto-Suggest Dimension Search Results cartridge

	Dimension search results
	Configuration model for the Dimension Search Results cartridge
	MDEX Engine configuration for dimension search results
	Cartridge handler configuration for Dimension Search Results
	Template configuration for the Dimension Search Results cartridge
	URL request parameters for the Dimension Search Results cartridge

	Search adjustments
	Configuration model for the Search Adjustments cartridge
	MDEX Engine configuration for the Search Adjustments cartridge
	Cartridge handler configuration for Search Adjustments
	Template configuration for the Search Adjustments cartridge
	URL request parameters for the Search Adjustments cartridge
	About implementing automatic phrasing
	Phrase search scenario: Automatically applying phrases
	Phrase search scenario: Phrases as a search suggestion

	Keyword redirects
	Cartridge handler configuration for keyword redirects
	Content XML for keyword redirects
	About using keyword redirects with the Assembler service
	About handling keyword redirects in an application

	Guided Navigation features
	Refinement menu
	Configuration model for the Refinement Menu cartridge
	MDEX Engine configuration for Guided Navigation
	Cartridge handler configuration for the Refinement Menu cartridge
	Template configuration for the Refinement Menu cartridge
	URL request parameters for the Refinement Menu cartridge

	Navigation Container
	Configuration model for the Navigation Container
	Cartridge handler configuration for the Navigation Container
	URL request parameters for the Navigation Container

	Breadcrumbs
	Cartridge handler configuration for Breadcrumbs

	Results features
	Results list
	Configuration model for the Results List cartridge
	MDEX Engine configuration for the Results List cartridge
	Cartridge handler configuration for the Results List cartridge
	Template configuration for the Results List cartridge
	URL request parameters for the Results List cartridge
	Enabling snippeting in record results

	Record details features
	Record details page
	Configuration model for the Record Details cartridge
	MDEX Engine configuration for the Record Details page
	Cartridge handler configuration for the Record Details cartridge
	Template configuration for the Record Details cartridge

	Content and spotlighting features
	Record Spotlight
	Configuration model for the Record Spotlight cartridge
	MDEX Engine configuration for a spotlight
	Cartridge handler configuration for the Record Spotlight cartridge
	Template configuration for a record spotlight

	Media Banner
	Configuration model for the Media Banner cartridge
	MDEX Engine configuration for a media banner
	Cartridge handler configuration for the Media Banner cartridge
	Template configuration for the Media Banner cartridge

	Dynamic triggering features
	About dynamic slots

	Setting up the Preview Application for Workbench
	About the preview application
	About auditing content using a preview application
	About previewing specific devices
	Adding a device for preview
	Modifying a preview device
	Removing a preview device

	About instrumenting your application for preview
	Enabling your preview application
	Changing the preview application in Workbench
	Changing the preview link service
	Testing your preview application

	Enabling Endeca Query Language in your Assembler application
	About Endeca Query Language
	Applying an EQL filter in a Java application
	About configuring an EQL filter using the Nrs URL parameter
	About configuring a default EQL filter
	About applying Relevance Ranking to EQL results
	About troubleshooting EQL performance

	Using an MDEX Engine to Manage Media Assets
	Interaction between an Endeca application and the media MDEX Engine components
	Uploading media content for use in Experience Manager
	Overview of the reference data application
	Deploying the media MDEX Engine data application

	Media MDEX Engine schema definition

	Understanding and Debugging Query Results
	About the query debugging features
	About enabling query debugging features
	URL parameters for query debugging features
	About query debugging results in the reference application

	Configuring Logging for an Assembler Application
	About request events
	About request event adapters
	About registering a request event adapter
	Request event adapters in the reference application

	Client side click events

	Template Property and Editor Reference
	Editor property mapping reference
	Editor label configuration reference
	Basic content properties
	Adding a string property
	Adding a string editor
	Adding a choice editor
	Adding a radio group editor

	About numeric properties
	Adding a numeric stepper
	Adding a slider

	Adding a Boolean property
	Adding a Boolean editor

	Adding a list property
	Adding an item property

	Adding a group label
	Complex property editors
	About the microbrowser
	Data service configuration reference

	About the Select Records dialog
	Select Records data service configuration reference

	About the Dynamic Slot editor
	Creating a cartridge template with a dynamic slot
	Specifying a cartridge handler for a dynamic slot template

	Adding a Link Builder
	About configuring the Link Builder

	About the Media editor
	About the Media Browser
	Adding a Media editor
	About Media editor configuration
	Enabling the Media Browser
	Uploading media to the Endeca Configuration Repository
	About resolving media paths in content items

	Adding a Boost-Bury Record editor
	Adding a Guided Navigation editor
	Adding a Dimension Selector
	Adding a Dimension List editor
	Adding a Dimension Value Boost-Bury editor
	Adding a Dimension Value List editor
	Adding a Record List editor
	Specifying record sort options

	Adding a Record Stratification editor
	Adding a Sort editor
	Adding a Spotlight Selection editor
	Adding a Rich Text editor

	Application feature property reference

	Request Event Attributes
	Base request event attributes
	Navigation request event attributes

	Index

