
Oracle Endeca Commerce
Experience Manager Cartridge Developer's Guide

Version 3.1.1 • December 2012

Contents

Preface...7
About this guide..7
Who should use this guide..7
Conventions used in this guide...8
Contacting Oracle Support...8

Chapter 1: Cartridge Basics..9
First steps with a new cartridge..9
Adding a basic renderer..13
Deeper dive on the example cartridge..14

The cartridge template..14
The cartridge instance configuration...15
The cartridge renderer...16

Overview of cartridge extension points...17

Chapter 2: Customizing the Experience Manager interface.................19
Adding embedded user assistance to a cartridge..19
Using the core Experience Manager editors...21
About custom editors..22

Chapter 3: About Cartridge Handlers and the Assembler....................23
Overview of the Assembler processing model..23
About the CartridgeHandler interface...24

About initializing the cartridge configuration..24
About the NavigationCartridgeHandler class...25

Implementing a cartridge handler...25
Cartridge handler development scenarios..27

Chapter 4: Sample Cartridges...29
About using the sample cartridges...29

Setting up a test application based on Discover Electronics...29
Creating a Spring context file for sample cartridges..32

RSS Feed cartridge..33
Creating the cartridge template...34
Creating the cartridge handler...35
Creating the cartridge renderer...38

Custom Record Details cartridge with availability information..39
Creating the cartridge handler and supporting classes...39

Custom Results List with recommendations...42
Creating the cartridge handler and supporting classes...43

"Hello, World" cartridge with layered color configuration..47
Creating the cartridge handler and supporting classes...48
Creating the cartridge renderer...51
Testing the "Hello, World" cartridge with layered color configuration...52

iii

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content,
products and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

v

Preface

The Oracle Endeca Commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine™, a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This guide describes how to develop custom cartridges. It includes an overview of the Assembler
processing model and provides examples demonstrating how to customize Assembler behavior through
cartridge handlers.

This guide assumes that you have installed Oracle Endeca Commerce with Experience Manager, and
that you have deployed the Discover Electronics reference application as described in the Tools and
Frameworks Installation Guide. It also assumes that you are familiar with Experience Manager and
Assembler concepts as described in the Assembler Application Developer's Guide.

The Assembler is implemented in Java, so the examples in this guide are primarily Java-based.

Who should use this guide
This guide is intended for developers using Oracle Endeca Experience Manager who need to customize
or extend the Endeca Assembler for a specific application.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

| Preface8

https://support.oracle.com

Chapter 1

Cartridge Basics

This section introduces the basic components of a cartridge by examining how they work together in
a "Hello, World" example cartridge.

First steps with a new cartridge
To begin, we'll define a new cartridge and use Endeca Workbench to configure it to display on a page.

To create and configure a basic "Hello, World" cartridge:

1. Create a cartridge template.

a) Open a new plain text or XML file.
b) Type or copy the following into the contents of the file:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"

 xmlns:editors="editors"
 type="SecondaryContent"
 id="Hello">
 <Description>A sample cartridge that can display a simple
 message.</Description>
 <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/sidebar_con¬
tent.jpg</ThumbnailUrl>
 <ContentItem>
 <Name>Hello cartridge</Name>
 <Property name="message">
 <String/>
 </Property>
 <Property name="messageColor">
 <String/>
 </Property>
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>
 <editors:StringEditor propertyName="message" label="Message"/>
 <editors:StringEditor propertyName="messageColor"
 label="Color"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

c) Save the file with the name SecondaryContent-Hello.xml in the templates directory of
your Discover Electronics application, for example:
C:\Endeca\apps\Discover\config\cartridge_templates.

2. Upload the template to Endeca Workbench.

a) Open a command prompt and navigate to the control directory of your deployed application,
for example, C:\Endeca\apps\Discover\control.

b) Run the set_templates command.

C:\Endeca\apps\Discover\control>set_templates.bat
Removing existing cartridge templates for Discover
Setting new cartridge templates for Discover
Finished setting templates

C:\Endeca\apps\Discover\control>

3. Add the cartridge to a page.

a) Open Endeca Workbench in a Web browser.

The default URL for Workbench is http://<workbench-host>:8006.The default Username
is admin and the default Password is admin.

b) From the launch page, select Experience Manager.
c) In the tree on the left, select Search and Navigation Pages under the Content section, then

select the Default Page.

d) In the Edit Pane on the right, select the right column section from the Content Tree in the bottom
left.

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

Cartridge Basics | First steps with a new cartridge10

e) Click Add.

The cartridge selector dialog displays.

f) Select the Hello cartridge and click OK.
g) Select the new Hello cartridge from the Content Tree on the left and configure it as shown:

h) Click Save Changes in the upper right of the page.

4. Try to view the cartridge in the Discover Electronics application.

a) In a Web browser, navigate to http://<workbench-host>:8006/discover-authoring/.

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

11Cartridge Basics | First steps with a new cartridge

The error displays because we have not yet created a renderer for the Hello cartridge.

b) Scroll down to the bottom of the page and click the json link view the serialized Assembler
response model that respresents the current page.

Oracle recommends that you use a browser or install a plugin that supports native JSON display.
Otherwise, you can download the JSON response as a file.

Alternatively, you can click the xml link to view the same response in XML. In this guide, we
use the JSON format when examining the Assembler response.

The following shows the JSON representation of the page with most of the tree collapsed, highlighting
the data for the cartridge that we just added.

{

 "@type": "ResultsPageSlot",
 "name": "Browse Page",
 "contentCollection": "Search And Navigation Pages",
 "ruleLimit": "1",
 "contents": [
 {
 "@type": "ThreeColumnNavigationPage",
 "name": "Default Page",
 "title": "Discover Electronics",
 "metaKeywords": "camera cameras electronics",
 "metaDescription": "Endeca eBusiness reference application.",
 "links": [],

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

Cartridge Basics | First steps with a new cartridge12

 "header": […],
 "leftColumn": […],
 "main": […],
 "rightColumn": [
 { … },
 { … },
 {

"@type": "Hello",
 "name": "Hello cartridge",
 "message": "Hello, World!",
 "messageColor": "#FF0000"
 }
]
 }
],
 …

}

In the next section, we'll create a simple renderer that displays the message based on the values
configured in Experience Manager.

Adding a basic renderer
While there is no one way to write rendering code for an application, in this example we'll write a simple
JSP renderer for our basic cartridge.

To write a basic "Hello, World" renderer:

1. Create a new JSP page and type or copy the following:

<%@page language="java" pageEncoding="UTF-8"
 contentType="text/html;charset=UTF-8"%>

<%@include file="/WEB-INF/views/include.jsp"%>
<div style="border-style: dotted; border-width: 1px;
 border-color: #999999; padding: 10px 10px">
 <div style="font-size: 150%;
 color: ${component.messageColor}">${component.message}
 </div>
</div>

2. Save the renderer to
discover-electronics-authoring/WEB-INF/views/desktop/Hello/Hello.jsp.

3. Refresh the Discover Electronics authoring application at
http://<workbench-host>:8006/discover-authoring/ to see the result.

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

13Cartridge Basics | Adding a basic renderer

Deeper dive on the example cartridge
Now that we have created a basic example cartridge, let's examine each of the cartridge elements
more closely.

As we have seen, the high-level workflow for creating a basic cartridge is:

1. Create a cartridge template and upload it to Endeca Workbench.
2. Use Experience Manager to create and configure and instance of the cartridge.
3. Add a renderer to the front-end application.

Step 2 is necessary during development in order to have a cartridge instance with which to test.
However, once the cartridge is complete, the business user is typically responsible for creating and
maintaining cartridge instances in Experience Manager.

In the following sections, we'll describe each of these elements of the cartridge in greater detail.

The cartridge template
The template defines the configuration that the business user can specify in Endeca Workbench using
Experience Manager.

The template contains two main sections: the <ContentItem> element and the <EditorPanel>
element.

The content item is a core concept in Assembler applications that can represent both the configuration
model for a cartridge and the response model that the Assembler returns to the client application. A
content item is a map of properties, or key-value pairs. The <ContentItem> element in the template
defines the prototypical content item and its properties, similar to a class or type definition.

The <EditorPanel> defines the interface that can be used in Experience Manager to configure the
properties of the content item.The editor panel is composed of a number of editors.The editors provide

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

Cartridge Basics | Deeper dive on the example cartridge14

the UI controls that the business user can use to specify the property values for a particular instance
of that cartridge.

In our example template, we defined two string properties named message and messageColor and
attached two simple string editors to those properties.The result looks like this in Experience Manager:

For more information about creating and managing cartridge templates, refer to the Assembler
Application Developer's Guide.

The cartridge instance configuration
The business user creates and configures instances of cartridges in Experience Manager based on
a template. During cartridge development you need to create at least one instance of a cartridge for
testing.

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

15Cartridge Basics | Deeper dive on the example cartridge

Experience Manager writes this cartridge instance configuration as XML.You can view the XML
representation of the configuration using the XML View tab in Experience Manager. The following
shows the XML that corresponds to the configured instance of our example cartridge:

Note the similarities to the <ContentItem> portion of the template that we created. At this stage, the
values of the string properties have been filled in based in the input in the Content Editor pane.

The Assembler retrieves this configuration at runtime and uses it to build the response model that it
returns to the client application.

For any given cartridge, the default behavior is for the Assembler to do no processing on the
configuration and simply return the configuration content item as a map of properties. That is, the
response object is the same as the configuration object unless specific processing logic is defined in
the Assembler for that cartridge.

The cartridge renderer
As a best practice, the client application should be composed of modular rendering components, each
corresponding to a particular cartridge.

Recall the contents of the Assembler response object corresponding to the example cartridge:

{
 "@type": "Hello",
 "name": "Hello cartridge",
 "message": "Hello, World!",
 "messageColor": "#FF0000"
}

For each cartridge, the @type of the response object corresponds to the id of the template that was
used to create it.The Discover Electronics application uses this type to identify the appropriate renderer
to use for this content item.

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

Cartridge Basics | Deeper dive on the example cartridge16

The logic for mapping response objects to the appropriate renderer is contained in include.tag in
the reference application.

Overview of cartridge extension points
Cartridges are made up of several components that may be customized for specific purposes.

The following diagram shows the parts of a cartridge and where they fit within the overall architecture:

The cartridge template defines the configuration options that are available to the business user in
Workbench. The Experience Manager interface is composed of editors, or Flex components that
provide UI controls for specifying property values. Experience Manager produces the cartridge instance
configuration that is consumed by the Assembler. During the processing of a query, the Assembler
may invoke cartridge handlers that define specific processing logic for particular cartridges. Using
these cartridge handlers, the Assembler produces the response object that it returns to the client
application. Typically, the client application includes modular renderers that are intended to handle a
particular cartridge.

We created a basic template and renderer in the example cartridge. We also inspected the cartridge
instance configuration generated in Workbench and the response returned by the Assembler. In the
example cartridge, both the configuration and the response model were generic content items that are
simple maps of properties. Many of the core Endeca cartridges have strongly typed configuration
models and response objects associated with them that extend from the basic content item. This
makes it easier to understand the expected input to and output from the core cartridge handlers, and
also enables reuse of the models for the core cartridges. Strongly typed configuration beans also make

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

17Cartridge Basics | Overview of cartridge extension points

it possible to configure default values for cartridge properties via Spring. Creating strongly typed model
objects for the Assembler configuration and response is not required when developing cartridges.

In the following sections, we discuss how to customize the Experience Manager interface using editors,
and how to define custom processing logic in the Assembler using cartridge handlers.

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

Cartridge Basics | Overview of cartridge extension points18

Chapter 2

Customizing the Experience Manager interface

Experience Manager provides a set of standard editors that you can use in cartridge templates as well
as the ability to develop custom editors.

Adding embedded user assistance to a cartridge
You can provide embedded assistance for the business user in the Experience Manager interface by
specifying it in the cartridge template.

In our example cartridge, we provided two simple text fields for the business user to enter a message
and the desired color. This user interface makes it unclear what values are allowed or expected for
those fields.The template schema for configuring editors allows you to supply a short descriptive label
for each field, but sometimes additional context can be helpful. For such cases, you can use the
bottomLabel attribute to provide further information.

To add additional guidance for the business user to the example cartridge:

1. Open the template file (SecondaryContent-Hello.xml) that you previously created.

2. Add a bottomLabel attribute to each editor in the <EditorPanel>, as in the example below:

 <EditorPanel>
 <BasicContentItemEditor>
 <editors:StringEditor propertyName="message" label="Message"

bottomLabel="Enter a message to display. HTML is allowed."/>
 <editors:StringEditor propertyName="messageColor"
 label="Color" bottomLabel="Enter the color as a hex code, such
 as #FF0000."/>
 </BasicContentItemEditor>

This additional label text can be configured for all editors built using the Experience Manager SDK,
including all the standard editors. For the full content of the updated template, see the example
below.

3. Save and close the template.

4. Upload the template by running the set_templates script.

The resulting user interface in Experience Manager looks like the following:

The following shows the complete content of the updated template:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 type="SecondaryContent"
 id="Hello">
 <Description>A sample cartridge that can display a simple
 message.</Description>
 <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/sidebar_con¬
tent.jpg</ThumbnailUrl>
 <ContentItem>
 <Name>Hello cartridge</Name>
 <Property name="message">
 <String/>
 </Property>
 <Property name="messageColor">
 <String/>
 </Property>
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>
 <editors:StringEditor propertyName="message" label="Message"
 bottomLabel="Enter a message to display. HTML is allowed."/>
 <editors:StringEditor propertyName="messageColor"
 label="Color" bottomLabel="Enter the color as a hex code, such as
 #FF0000."/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

For more information about label options for Experience Manager editors, refer to the Assembler
Application Developer's Guide.

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

Customizing the Experience Manager interface | Adding embedded user assistance to a cartridge20

Using the core Experience Manager editors
Experience Manager provides a set of editors that can configure primitive property types as well as
Endeca-specific features.You specify which editor to use to configure which properties in the <Edi¬
torPanel> portion of the template.

Even with additional user assistance text, asking the business user to type a hex code into a text field
does not provide a very user-friendly experience. One of the standard editors included with Experience
Manager is a combo box that can be used to specify a set of valid values for a string property. In this
example, we provide a set of colors from which the business user can choose. This not only relieves
the business user from typing in a hex code, but it can also ensure that the selected color matches
the site's color scheme.

To update the example cartridge to use a combo box editor:

1. Open the template file (SecondaryContent-Hello.xml) that you previously created.

2. Replace the string editor configuration for the messageColor property with the following:

 <EditorPanel>
 <BasicContentItemEditor>
 <editors:StringEditor propertyName="message" label="Message"
 bottomLabel="Enter a message to display. HTML is allowed."/>

<editors:ChoiceEditor propertyName="messageColor" label="Color">
 <choice label="Red" value="#FF0000"/>
 <choice label="Green" value="#00FF00"/>
 <choice label="Blue" value="#0000FF"/>
 </editors:ChoiceEditor>
 </BasicContentItemEditor>
 </EditorPanel>

For the full content of the updated template, see the example below.

3. Upload the template by running the set_templates script.

The resulting user interface in Experience Manager looks like the following:

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

21Customizing the Experience Manager interface | Using the core Experience Manager editors

Depending on the option that the business user selects, the value of the property is set to the appropriate
hex code.You can change the value and refresh the application to see the change.

The following shows the complete content of the updated template:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 type="SecondaryContent"
 id="Hello">
<Description>A sample cartridge that can display a simple
 message.</Description>
<ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/sidebar_con¬
tent.jpg</ThumbnailUrl>
<ContentItem>
 <Name>Hello cartridge</Name>
 <Property name="message">
 <String/>
 </Property>
 <Property name="messageColor">
 <String/>
 </Property>
</ContentItem>
<EditorPanel>
 <BasicContentItemEditor>
 <editors:StringEditor propertyName="message" label="Message"
 bottomLabel="Enter a message to display. HTML is allowed."/>
 <editors:ChoiceEditor propertyName="messageColor" label="Color">
 <choice label="Red" value="#FF0000"/>
 <choice label="Green" value="#00FF00"/>
 <choice label="Blue" value="#0000FF"/>
 </editors:ChoiceEditor>
 </BasicContentItemEditor>
</EditorPanel>
</ContentTemplate>

For more information about the standard Experience Manager editors and their configuration, refer to
the Assembler Application Developer's Guide.

About custom editors
If none of the standard editors meet your needs, you can develop your own editors using the Experience
Manager Editor SDK.

You may want to develop an editor if:

• You want to allow the business user to configure more advanced properties such as lists or maps
of key-value pairs.

• You want to provide a more advanced interface for the business user, such as a list that enables
drag-and-drop.

• You want the editor options to be populated dynamically from an external system rather than
configured in the template.

• You want the behavior of one editor or UI control to be linked to the state of another.

For more information about the Experience Manager Editor SDK and developing Experience Manager
editors, refer to the Experience Manager Editor Developer's Guide.

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

Customizing the Experience Manager interface | About custom editors22

Chapter 3

About Cartridge Handlers and the Assembler

This section provides an overview of the Endeca Assembler. It describes the Assembler processing
model and core interfaces as well as how to implement a cartridge handler.

Overview of the Assembler processing model
The core of the Assembler is the assemble() method, which takes a content item representing a
cartridge instance configuration and invokes cartridge handlers to process the configuration into the
response content item.

The Assembler uses the visitor pattern to traverse the configuration content item and any child content
items, invoking the appropriate cartridge handler, if any, for each content item. (Recall that a content
item can have properties that are themselves content items or lists of content items.)

The Assembler makes two passes over the content tree:

1. In the first pass, the Assembler calls CartridgeHandler.initialize() followed by Cartridge¬
Handler.preprocess() on each cartridge in the tree. This is a pre-order traversal of the tree
(working from the top of the tree down through its children), so cartridge handlers may add or modify
child content items at this stage.

2. In the second pass, the Assembler calls CartridgeHandler.process() on each cartridge,
which returns the response content item for that cartridge. This is a post-order traversal of the tree
(working from the bottom up), so all child content items are processed before the parent. The
response object for the root content item of the tree contains the response objects for all its child
cartridges.

The default implementation of the Assembler uses Spring to map each cartridge to the appropriate
handler based on its cartridge type, which corresponds to the id of the template that was used to
create the cartridge instance. If no cartridge handler is defined for a particular cartridge type, the
instance configuration is passed through as the response model.

The Assembler is typically invoked with a ContentInclude or ContentSlot item.The corresponding
handlers provide two alternatives for retrieving the relevant cartridge instance configuration for a
particular request, based on either a URI or a set of MDEX Engine trigger criteria. For more information
about invoking the Assembler, refer to the Assembler Application Developer's Guide.

About the CartridgeHandler interface
A cartridge handler takes a content item representing the cartridge instance configuration as input and
is responsible for returning the response as a content item.

The CartridgeHandler interface defines three methods: initialize(), preprocess(), and
process().

The initialize() method provides an opportunity for the cartridge handler to augment the cartridge
instance configuration specified in Experience Manager with configuration from other sources. This
can be used to define default behavior for a cartridge in the case where there is no Experience Manager
configuration, or to override the Experience Manager configuration for the current query.The initial¬
ize() method should return a content item containing the complete configuration for the cartridge
from all possible configuration sources. This augmented configuration item can either be the mutated
input content item or a new instance of ContentItem, and is used as input to both the preprocess()
and process() methods.

Because the preprocess() method is called on all cartridges before process() is called on any
cartridges, it provides an opportunity to coordinate processing between cartridges. Many of the core
Endeca cartridges make use of this mechanism in order to consoldiate queries to an MDEX Engine
among several cartridges during the course of a single assembly cycle.

The process() method is responsible for returning a ContentItem that represents the cartridge
response.

A cartridge handler need not define any behavior for initialize() or preprocess(). The Ab¬
stractCartridgeHandler class exists to simplify the task of implementing the CartridgeHandler
interface. It provides empty implementations for initialize() and preprocess(). Subclasses of
AbstractCartridgeHandler need only implement the process() method to return the response
object. They can optionally override the initialize() and preprocess() methods.

About initializing the cartridge configuration
The initialize() phase in the cartridge processing life cycle enables the cartridge handler to
synthesize the complete configuration for the cartridge from several sources.

The configuration content item that is passed in to the assembly process is the cartridge instance
configuration from Experience Manager, however, any given cartridge may also have other configuration
sources.

In a typical scenario, a cartridge has some default behavior that can be specified as a property value
in a Spring context file. A business user can specify a value for a specific instance of a cartridge using
Experience Manager. The site visitor may also have the ability to override either the default or the
cartridge instance setting from the client application. For example, in the Results List cartridge, the
default value for records per page is 10. The business user can set this value to 25 in Experience

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

About Cartridge Handlers and the Assembler | About the CartridgeHandler interface24

Manager, and the site visitor can choose to display 50 records by selecting the appropriate option on
the site.

The Assembler API includes the ConfigInitializer utility class with the method initialize().
The default implementation of initialize() layers the cartridge configuration in the following order
(from lowest to highest):

1. Default configuration, typically defined in the Spring configuration for the cartridge handler
2. Cartridge instance configuration, typically created in Experience Manager and passed in as the

configuration content item
3. Request-based configuration parsed from the HTTP request parameters, using the Request¬

ParamMarshaller helper class

The ConfigInitializer class also provides methods for additional layering of configuration.
Subclasses can override ConfigInitializer to define custom layering behavior, for example, to
incorporate configuration saved in the session state.

About the NavigationCartridgeHandler class
The core Endeca cartridges that make queries to an MDEX Engine use cartridge handlers that extend
from NavigationCartridgeHandler.

The NavigationCartridgeHandler makes use of the two-pass Assembler processing model to
consolidate MDEX Engine queries across cartridges.

In the preprocess() phase, the cartridge handler calls createMdexRequest() but does not
execute the request. In subsequent calls to createMdexRequest() by other handlers, the MDEX
resource broker determines whether the new request can be consolidated with an existing request in
order to minimize the number of queries to the MDEX Engine for a single assembly cycle.

During the process() phase, the handler calls executeMdexRequest() to retrieve the results.
The actual query to the MDEX Engine is executed when the first handler in the assembly cycle calls
executeMdexRequest() and the results are cached for all subsequent handlers that try to execute
the same request.

You can use a similar approach if you have multiple cartridges that need to make requests to the same
external resource and can achieve efficiencies by consolidating requests across cartridges.

For further information about the NavigationCartridgeHandler class, refer to the Endeca
Assembler API Reference (Javadoc).

Implementing a cartridge handler
You add a cartridge handler by writing a Java class that implements the CartridgeHandler interface
and configuring the Assembler to use the new handler in the Spring context file.

In this example, we update our "Hello, World" cartridge to do some simple string manipulation on the
message that was specified in Experience Manager. Because this cartridge does not use any
configuration other than the cartridge instance configuration from Experience Manager and does not
need to do any preprocessing, we can extend AbstractCartridgeHandler.

To add a cartridge handler to the example cartridge:

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

25About Cartridge Handlers and the Assembler | Implementing a cartridge handler

1. Create a new Java class in the package com.endeca.sample.cartridges and type or copy
the following:

 package com.endeca.sample.cartridges;

 import com.endeca.infront.assembler.AbstractCartridgeHandler;
 import com.endeca.infront.assembler.CartridgeHandlerException;
 import com.endeca.infront.assembler.ContentItem;

 public class UppercaseCartridgeHandler extends AbstractCartridgeHandler

 {
 //==

 // The cartridge handler 'process' method
 public ContentItem process(ContentItem pContentItem) throws Cartridge¬
HandlerException
 {
 // Get the message property off of the content item.
 final String message = (String) pContentItem.get("message");
 // If the message is non-null, uppercase it.
 if (null != message) {
 pContentItem.put("message", message.toUpperCase());
 }
 return pContentItem;
 }
 }

2. Compile the cartridge handler and add the compiled class to your application, for example, by
saving it in
%ENDECA_TOOLS_ROOT%\reference\discover-electronics-authoring\WEB-INF\classes.

3. Configure the Assembler to use the UppercaseCartridgeHandler for the Hello cartridge.

a) Navigate to the WEB-INF directory of your application, for example,
%ENDECA_TOOLS_ROOT%\reference\discover-electronics-authoring\WEB-INF.

b) Open the assembler-context.xml file.
c) Add the following in the CARTRIDGE HANDLERS section:

 <!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        ~ BEAN: CartridgeHandler_Hello 
    -->
    <bean id="CartridgeHandler_Hello"
    class="com.endeca.sample.cartridges.UppercaseCartridgeHandler"
    scope="prototype" />

d) Save and close the file.

4. Restart the Endeca Tools Service.

5. Refresh the authoring instance of the application.

The message now displays in all-uppercase letters.

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

About Cartridge Handlers and the Assembler | Implementing a cartridge handler26



Cartridge handler development scenarios
You should write a cartridge handler in cases where you need to perform some processing on the
cartridge instance configuration before sending the response to the client application.

It is always possible to do processing in the client application, but encapsulating the business logic in
an extension to the Assembler provides several advantages:

• It makes the rendering code cleaner and easier to maintain.
• It centralizes the processing in one place so that the results can be consumed by multiple client

applications including across multiple channels such as desktop, mobile, and others.
• It provides an opportunity for coordinating processing across multiple cartridges before returning

the response to the client application.

Depending on what the cartridge handler needs to accomplish, your implementation approach may
vary. Cartridge handlers must always implement the process() method to return the response model.

Example cartridgeImplementation approachScenario

"Hello, World" with
UppercaseCartridgeHandler

Extend AbstractCartridgeHandler
and override process() to update the
property values in the input content item

Update properties from the
cartridge instance configuration
in place (data cleansing or
manipulation scenario)

RSS Feed cartridgeExtend AbstractCartridgeHandler
and override process() to query the

Use information from the
cartridge instance configuration
to query an external resource for
the information to display

resource and insert the results in the
output content item

NavigationCartridgeHandlerTake advantage of the two-pass
assembly model with preprocess()

Query an external resource,
consolidating queries between
cartridges within a single and process() and implement a
assembly cycle for improved
performance

resource broker that can consolidate
queries and manage their execution

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

27About Cartridge Handlers and the Assembler | Cartridge handler development scenarios



Example cartridgeImplementation approachScenario

Custom Record Details
with availability information

Extend the core cartridge and override
process() to query the resource and
add additional properties to the MDEX

Augment the results from a core
Endeca cartridge with additional
information from a non-MDEX
resource query results before returning the

response

Custom Results List with
recommendations

Extend the core cartridge and override
either initialize() or prepro¬
cess() to modify the query before it is
executed

Customize a core Endeca
cartridge to modify the MDEX
Engine query parameters

"Hello, World" with layered
color configuration

Extend AbstractCartridgeHandler
or implement the CartridgeHandler
interface and override initialize(),

Combine multiple sources of
cartridge configuration before
processing results

making use of the ConfigInitializ¬
er and RequestParamMarshaller
helper classes to generate the complete
configuration model

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

About Cartridge Handlers and the Assembler | Cartridge handler development scenarios28



Chapter 4

Sample Cartridges

This section contains sample cartridge customizations that demonstrate how to use the various cartridge
extension mechanisms to address different use cases.

About using the sample cartridges
The sample cartridges are intended to demonstrate the cartridge extension mechanisms and provide
a model for your own cartridge customizations.

The sample code provided is written to be generic and easy to follow, rather than production-quality
code. Oracle recommends that you follow a few best practices when working with the examples:

• Set up a new instance of the Discover Electronics application to use as a sandbox for deploying
the sample cartridges.This isolates the samples from the out-of-the-box configuration for Discover
Electronics as well as your own application.

• Within your sandbox application, create a separate Spring context file for the custom cartridge
handlers described in this guide.

• When copying and pasting examples from this guide, pay attention to the end-of-line marker (¬)
that indicates that a long line of text has been wrapped. Ensure that any occurrences of the symbol
and the corresponding line break are deleted and any remaining space is closed up.

The steps described for creating and deploying the components of the sample cartridges correspond
to the steps described in previous sections for the "Hello, World" cartridge. If you need additional
information to complete a particular step in deploying one of the sample cartridges, refer to the more
detailed procedures for the "Hello, World" example.

Setting up a test application based on Discover Electronics
Oracle recommends that you use a test application to test the sample cartridges instead of deploying
them in Discover Electronics or your own application.

Because a test application is for development use only, we do not need to deploy a live instance of
the application.

To deploy a copy of Discover Electronics to use as a test for the sample cartridges:

1. Deploy a new test application using the Deployment Template.

a) From a command prompt, navigate to %ENDECA_TOOLS_ROOT%\deployment_template\bin
(on Windows) or $ENDECA_TOOLS_ROOT/deployment_template/bin (on UNIX).



b) Run the deploy script:

• On Windows:deploy.bat --app ..\..\reference\discover-data\deploy.xml
• On UNIX: deploy.sh --app ../../reference/discover-data/deploy.xml

c) Specify the application name Test and specify the following ports when prompted:

Recommended valuePort

15100Live Dgraph

15102Authoring Dgraph

15110LogServer

2. Provision the test application.

a) Ensure that the Endeca HTTP Service and Endeca Tools Service are running.
b) From a command prompt, navigate to <APP-DIR>\control (on Windows) or

<APP-DIR>/control (on UNIX).
c) Run initialize_services.
d) Run load_baseline_test_data.
e) Run baseline_update.

3. Deploy a copy of the authoring instance of the Discover Electronics application.

a) Navigate to %ENDECA_TOOLS_ROOT%\reference (on Windows) or
$ENDECA_TOOLS_ROOT/reference (on UNIX).

b) Make a copy of the directory discover-electronics-authoring and save the copy with
the name sandbox in the same parent directory.

c) Navigate to the test directory and then to the WEB-INF subdirectory.
d) Open assembler-context.xml in a text editor.
e) Locate the CARTRIDGE SUPPORT section:

<!--

########################################################################

    # CARTRIDGE SUPPORT
    #
    # The following section configures managers and other supporting 
objects.
    #
-->

f) In the mdexResource bean, update the Dgraph port:

<bean id="mdexResource" scope="request"
class="com.endeca.infront.navigation.model.MdexResource">
    <property name="host" value="localhost" />
    <property name="port" value="15102" />
    <property name="recordSpecName" value="common.id" />
</bean>

g) Locate the Content Sources section:

<!--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ Content Sources
-->

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

Sample Cartridges | About using the sample cartridges30

h) In the authoringContentSource bean, update the application name:

<bean id="authoringContentSource"" class="com.endeca.infront.con¬
tent.source.AuthoringContentSource"
scope="singleton" lazy-init="true">
 <property name="sitePath" value="/sites/Test"/>
 <property name="rootUrl" value="/ifcr"/>
 <property name="host" value="localhost"/>
 <property name="port" value="8006"/>
 <property name="serviceUrl" value="/ifcr/system/endeca/contentRe¬
solver"/>
 <property name="user" value="admin"/>
 <property name="password" value="admin"/>
</bean>

i) In the authoringMediaSources bean, update the application name:

<bean id="authoringMediaSources" class="java.util.ArrayList" lazy-
init="true">
 <constructor-arg>
 <list>
 <bean class="com.endeca.infront.cartridge.model.MediaSource¬
Config">
 <property name="sourceName" value="IFCRSource" />
 <property name="sourceValue" value="http://local¬
host:8006/ifcr/sites/Test/media/" />
 </bean>
 <bean class="com.endeca.infront.cartridge.model.MediaSource¬
Config">
 <property name="sourceName" value="default" />
 <property name="sourceValue" value="http://local¬
host:8006/ifcr/sites/Test/media/" />
 </bean>
 </list>
 </constructor-arg>
</bean>

j) Save and close the file.
k) Navigate to %ENDECA_TOOLS_CONF%\conf\Standalone\localhost (on Windows) or

$ENDECA_TOOLS_CONF/conf/Standalone/localhost (on UNIX).
l) Make a copy of discover-authoring.xml and save the copy with the name test in the

same directory.
m) Open test.xml in a text editor.
n) Change the value of docBase as follows:

docBase="${catalina.base}/../../reference/test"

o) Restart the Endeca Tools Service.

4. Validate your new sandbox application:

a) Navigate to http://<WorkbenchHost>:8006/login and verify that Test displays as an
option in the Application drop-down.

b) Select the Test application and verify that the sample page content from Discover Electronics
is available in Experience Manager.

c) In a separate browser window, navigate to the newly deployed sandbox application, at
http://<WorkbenchHost>:8006/test and verify that it displays.

5. Optionally, update the Workbench configuration to use the test Web application for preview.

a) Ensure that you are logged in to the Test application in Workbench.

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

31Sample Cartridges | About using the sample cartridges

b) Select Application Configuration.
c) Specify the URL to the sandbox application (for example,

http://<WorkbenchHost>:8006/test) as the Preview URL.
d) Preview a page from Experience Manager by selecting a page or content item and clicking

Preview in the upper right.

Creating a Spring context file for sample cartridges
Oracle recommends that you specify the configuration for the sample cartridges in a separate Spring
context file from the core Endeca cartridges.

To create a Spring context file for the sample cartridges:

1. Navigate to %ENDECA_TOOLS_ROOT%\reference\sandbox\WEB-INF (on Windows) or
$ENDECA_TOOLS_ROOT/reference/sandbox/WEB-INF (on UNIX).

2. Open assembler-context.xml in a text editor.

3. At the top of the file, add the following import:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
">
 <bean class="org.springframework.beans.factory.config.PropertyPlace¬
holderConfigurer">
 <property name="locations">
 <list>
 <value>WEB-INF/assembler.properties</value>
 </list>
 </property>
 </bean>

 <import resource="endeca-url-config.xml"/>
 <import resource="perf-logging-config.xml"/>
<import resource="sample-cartridge-config.xml" />

4. Delete the configuration for the "Hello, World" sample cartridge that we added in an earlier example.

 <!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    ~ BEAN: CartridgeHandler_Hello
    -->
    <bean id="CartridgeHandler_Hello" 
    class="com.endeca.sample.cartridges.UppercaseCartridgeHandler"
    scope="prototype" />

5. Save and close the file.

6. Create a new file named sample-cartridge-config.xml in the same directory with the following
contents:

<beans xmlns="http://www.springframework.org/schema/beans" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
  http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

    <!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

Sample Cartridges | About using the sample cartridges32

 ~ BEAN: CartridgeHandler_Hello
 -->
 <bean id="CartridgeHandler_Hello"
 class="com.endeca.sample.cartridges.UppercaseCartridgeHandler"
 scope="prototype" />

</beans>

7. Save and close the file.

8. Validate the new configuration by adding the "Hello, World" cartridge to your new sandbox
application.

a) Copy the "Hello, World" template (SecondaryContent-Hello.xml) from the Discover
Electronics application (<APP-DIR>\config\page_builder_templates) to the sandbox
application.

b) Upload the template to Workbench using the set_templates script.
c) Using Experience Manager, add the cartridge to the default page of the sandbox application

and save your changes.
d) Verify that the Hello.jsp renderer and UppercaseCartridgeHandler are present in the

sandbox Web application. (These should have been included when you copied the Discover
Electronics authoring application.)

e) Refresh the sandbox application (http://<WorkbenchHost>:8006/sandbox) and verify
that the text you entered in Experience Manager displays, and has been converted to
all-uppercase letters.

RSS Feed cartridge
In this example, we build a cartridge that displays items from an RSS feed.

This cartridge enables a business user to specify some basic information about an existing RSS feed
in Experience Manager. The cartridge handler fetches the RSS results and returns an output model
to the client suitable for rendering.

It demonstrates the following use cases:

• Using a cartridge handler to fetch information from a source other than an MDEX Engine.
• Using the business user configuration from Experience Manager as input into the assembly process

and returning a different output model from the configuration model.

In this cartridge, we create the following components:

DescriptionComponent

Enables the business user to specify the URL to an RSS feed and the number
of entries to display.

cartridge template

Fetches results from the RSS feed and returns a number of entries up to
the value specified by the business user or the number of entries in the feed,
whichever is lower.

cartridge handler

Displays the name of the feed with a link to the channel URL, and the title
and description of each entry with a link to the entry on the original site.

cartridge renderer

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

33Sample Cartridges | RSS Feed cartridge

Creating the cartridge template
The business user needs to be able to configure the RSS Feed with a URL and the number of entries
to display.

To create the RSS Feed template and add it to your application:

1. Create a new template based on the example below.

Since the number of entries is expected to be an integer, the example uses a NumericStepperEd¬
itor for this property. It could also use a SliderEditor — both options guarantee that the value
of the string property is an integer. In the example, we specify a default value of 5 for the number
of entries.

2. Save the template with the name SecondaryContent-RssFeed.xml to the templates directory
of your application.

3. Upload the template using the set_templates script.

4. Add the cartridge to the default search and navigation page as in the example below.

Note: The sample renderer for this cartridge works best with RSS feeds that have brief
descriptions with no images or advertisements in the description field. A possible enhancement
to this cartridge would be to make displaying the description configurable.

5. Save your changes to the page.

The cartridge instance configuration is saved as XML. At this point, because there is no cartridge
handler specified for this cartridge, the same configuration is passed to the client as the response from
the Assembler.

 <ContentItem type="SecondaryContent">
 <TemplateId>RssFeed</TemplateId>
 <Name>RSS cartridge</Name>
 <Property name="feedUrl">
 <String>http://www.wired.com/reviews/feed/</String>
 </Property>
 <Property name="numEntries">
 <String>5</String>
 </Property>
 </ContentItem>

Oracle Endeca Commerce Experience Manager Cartridge Developer's Guide

Sample Cartridges | RSS Feed cartridge34

The following shows the sample template for the RSS Feed cartridge:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 type="SecondaryContent"
 id="RssFeed">
 <Description>A cartridge that displays entries from an RSS feed.</Descrip¬
tion>
 <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/sidebar_con¬
tent.jpg</ThumbnailUrl>
 <ContentItem>
 <Name>RSS cartridge</Name>
 <Property name="feedUrl">
 <String/>
 </Property>
 <Property name="numEntries">
 <String>5</String>
 </Property>
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>
 <editors:StringEditor propertyName="feedUrl" label="Feed URL"
 bottomLabel="The address of the RSS feed, such as http://www.ora¬
cle.com/us/corporate/press/rss/rss-pr.xml"/>
 <editors:NumericStepperEditor propertyName="numEntries"
 label="Number of entries to display" minValue="1" maxValue="15"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Creating the cartridge handler
The cartridge handler fetches the RSS results and returns an output model to the client suitable for
rendering.

To create the RSS Feed cartridge handler and add it to the application:

1. Create a new Java class in the package com.endeca.sample.cartridges based on the
example below, which extends AbstractCartridgeHandler.

2. Compile the cartridge handler and add the compiled class to your application.

3. Configure the Assembler to use the RssFeedHandler for the RSS Feed cartridge by adding the
following to the Spring context file:

 <!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    ~ BEAN: CartridgeHandler_RssFeed
    -->
    <bean id="CartridgeHandler_RssFeed" 
    class="com.endeca.sample.cartridges.RssFeedHandler"
    scope="prototype" />

4. Restart the Endeca Tools Service.

5. Refresh the application.

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

35Sample Cartridges | RSS Feed cartridge



The RSS feed does not display yet because we have not created the renderer, but you can validate
that the response model has been populated with the information that we want to display via the JSON
view:

{

    "@type": "RssFeed",
    "name": "RSS cartridge",
    "feedUrl": "http://www.wired.com/reviews/feed/",
    "numEntries": "5",
    "chanTitle": "Product Reviews",
    "chanUrl": "http://www.wired.com/reviews",
    "entries": [
        {
            "@type": "rssEntry",
            "itemDesc": "(description text omitted from this example)",
            "itemTitle": "(title text omitted from this example)",
            "itemUrl": "(url omitted from this example)"
        },
        {
            "@type": "rssEntry",
            "itemDesc": "(description text omitted from this example)",
            "itemTitle": "(title text omitted from this example)",
            "itemUrl": "(url omitted from this example)"
        },
        {
            "@type": "rssEntry",
            "itemDesc": "(description text omitted from this example)",
            "itemTitle": "(title text omitted from this example)",
            "itemUrl": "(url omitted from this example)"
        },
        {
            "@type": "rssEntry",
            "itemDesc": "(description text omitted from this example)",
            "itemTitle": "(title text omitted from this example)",
            "itemUrl": "(url omitted from this example)"
        },
        {
            "@type": "rssEntry",
            "itemDesc": "(description text omitted from this example)",
            "itemTitle": "(title text omitted from this example)",
            "itemUrl": "(url omitted from this example)"
        }
    ]

}

The following shows the code for the sample RSS Feed cartridge handler:

package com.endeca.sample.cartridges;

import com.endeca.infront.assembler.AbstractCartridgeHandler;
import com.endeca.infront.assembler.CartridgeHandlerException;
import com.endeca.infront.assembler.ContentItem;
import com.endeca.infront.assembler.BasicContentItem;
import java.net.URL;
import java.util.ArrayList;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;
import org.w3c.dom.CharacterData;

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

Sample Cartridges | RSS Feed cartridge36



import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;

public class RssFeedHandler extends AbstractCartridgeHandler {

 public ContentItem process(ContentItem pContentItem)
   throws CartridgeHandlerException {

  final String urlString = (String) pContentItem.get("feedUrl");
  final int numEntries = 
    Integer.parseInt((String)pContentItem.get("numEntries"));

  try {
   URL url = new URL(urlString);
   DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
   DocumentBuilder docBuilder = factory.newDocumentBuilder();
   Document RssContents = docBuilder.parse(url.openStream());

   // get the channel info
   Element channel = 
    (Element)RssContents.getElementsByTagName("channel").item(0);
   pContentItem.put("chanTitle", getElementValue(channel, "title"));
   pContentItem.put("chanUrl", getElementValue(channel, "link"));

   // get the entries and add them to a list
   ArrayList<ContentItem> entries = new ArrayList<ContentItem>(numEntries);

   NodeList nodes = RssContents.getElementsByTagName("item");
   for(int i=0; i<numEntries; i++) {
    Element element = (Element)nodes.item(i);
    if (element!=null) {
     ContentItem entry = new BasicContentItem("rssEntry");
     entry.put("itemTitle", getElementValue(element, "title"));
     entry.put("itemUrl", getElementValue(element, "link"));
     entry.put("itemDesc", getElementValue(element, "description"));
     entries.add(entry);
    }
   }
   pContentItem.put("entries", entries);
  }
  catch (Exception e) {
   throw new CartridgeHandlerException(e);
  }

  return pContentItem;
 }

 private static String getCharacterDataFromElement(Element e) {
  try {
   Node child = e.getFirstChild();
   if(child instanceof CharacterData) {
    CharacterData cd = (CharacterData) child;
    return cd.getData();
   }
  }
  catch(Exception ex) {
  }
  return "";

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

37Sample Cartridges | RSS Feed cartridge



 }

 private static String getElementValue(Element parent, String label) {
  return getCharacterDataFromElement(
    (Element)parent.getElementsByTagName(label).item(0));
 }

}

Creating the cartridge renderer
The renderer displays a summary of the results with links that take the site visitor to the site that
originated the RSS feed.

To create a renderer for the RSS feed:

1. Create a new JSP page based on the example below.

2. Save the renderer to /WEB-INF/views/desktop/RssFeed/RssFeed.jsp.

3. Refresh the application to see the result.

The results from the RSS feed display in the right sidebar.

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

Sample Cartridges | RSS Feed cartridge38



The following shows the code for the sample RSS Feed renderer in JSP:

<%@page language="java" pageEncoding="UTF-8"
contentType="text/html;charset=UTF-8"%>

<%@include file="/WEB-INF/views/include.jsp"%>

<div style="padding:2ex 0">
<b><a href="${component.chanUrl}">${component.chanTitle}</a></b>
<c:forEach var="rssEntry" items="${component.entries}">
    <p><a href="${rssEntry.itemUrl}">${rssEntry.itemTitle}</a><br/>
    ${rssEntry.itemDesc}</p>
</c:forEach>
</div>

Custom Record Details cartridge with availability
information

In this example, we extend the Record Details cartridge to display information about the availability of
a product.

It demonstrates the following use cases:

• Extending one of the core Endeca cartridges
• Combining results from the MDEX Engine with information from another source during the pro¬
cess() phase of the assembly cycle

• Configuring a third-party service through Spring

In this cartridge, we create the following components:

DescriptionComponent

Extends the RecordDetailsHandler to add a property to the response
model containing availability information.

cartridge handler

Stands in for a real source of availability information such as an inventory
system.

mock "availability
service"

Because this cartridge does not introduce any change in the configuration options for the business
user, there are no template changes for this cartridge. To enable the full functionality of this cartridge,
the renderer should be updated to display the availability information, however that is not demonstrated
in this guide.

Creating the cartridge handler and supporting classes
The AvailabilityRecordDetailsHandler extends the core RecordDetailsHandler to call
a simple mock availability service to retrieve availability information about a particular record.

To create a cartridge handler that calls an availability service:

1. Create the following classes:Availability, AvailabilityService, and FixedAvailabil¬
ityService based on the examples below.

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

39Sample Cartridges | Custom Record Details cartridge with availability information



The AvailabilityService defines an interface that returns availability information based on a
record identifier, and FixedAvailabilityService provides a basic implementation of the
interface.

2. Create a new Java class in the package com.endeca.sample.cartridges based on the
example below, which extends RecordDetailsHandler.

The handler takes the results of the MDEX Engine query and adds an additional property that
represents the product availability.

3. Compile the classes and add them to your application.

4. Configure the Assembler to use the AvailabilityRecordDetailsHandler for the Record
Details cartridge by editing the Spring context file as in the following example.

Note:  If you have created a sample-cartridge-config.xml file for configuring the
example cartridges, copy the CartridgeHandler_ResultsList bean from assembler-
context.xml to your sample context file, comment out the version in assembler-con¬
text.xml, and then modify the version in your sample context file as indicated below.

<bean id="CartridgeHandler_RecordDetails"
  class="com.endeca.sample.cartridges.AvailabilityRecordDetailsHandler"
  parent="NavigationCartridgeHandler" scope="prototype" >
    <property name="recordState" ref="recordState" />
    <property name="availabilityService" ref="availabilityService" />
    <property name="recordSpec" value="common.id" /> 
    <property name="availabilityPropertyName" 
      value="product.availability" />
</bean>

<bean id="availabilityService"
  class="com.endeca.sample.cartridges.FixedAvailabilityService"
  scope="singleton" >
<!-- Implementation-specific configuration for the service

       could be specified here -->
</bean>

5. Restart the Endeca Tools Service.

6. Refresh the application and then click on any record to view its details page.

The availability property is now returned as part of the record details information:

{
    "@type": "RecordDetailsPageSlot",
    "name": "Record Details Page",
    "contentCollection": "Record Details Pages",
    "ruleLimit": "1",
    "contents": [
        {
            …
            },
            "recordDetails": {
                "@type": "RecordDetails",
                "record": {
                   "@class": "com.endeca.infront.cartridge.model.Record",
                   "numRecords": 1,
                   "attributes": {
                        …
                        "product.availability": [
                            "BACKORDER"

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

Sample Cartridges | Custom Record Details cartridge with availability information40



                        ],
                        …
                   },
                   "records": [ … ]
                },
                "name": "Record Details"
            }
        }
    ],
    …
}

The renderer can now be updated to display availability information based on the value of this property.

The following shows the code for the availability service and its supporting classes:

package com.endeca.sample.cartridges;

public enum Availability {
    IMMEDIATE,
    WEEK,
    DROP_SHIP,
    BACKORDER;

}

package com.endeca.sample.cartridges;

public interface AvailabilityService {

    Availability getAvailabilityFor(String identifier);
}

package com.endeca.sample.cartridges;

public class FixedAvailabilityService implements AvailabilityService {

    public Availability getAvailabilityFor(String identifier) {
        try {
            return Availability.valueOf(identifier);
        } catch (IllegalArgumentException e) {
            return Availability.BACKORDER;
        }
    }
}

The following shows the code for the custom cartridge handler:

package com.endeca.sample.cartridges;

import com.endeca.infront.assembler.CartridgeHandlerException;
import com.endeca.infront.cartridge.RecordDetails;
import com.endeca.infront.cartridge.RecordDetailsConfig;
import com.endeca.infront.cartridge.RecordDetailsHandler;
import com.endeca.infront.cartridge.model.Attribute;
import org.springframework.beans.factory.annotation.Required;

public class AvailabilityRecordDetailsHandler extends RecordDetailsHandler
 {

    private AvailabilityService availabilityService;
    private String recordSpec;

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

41Sample Cartridges | Custom Record Details cartridge with availability information



    private String availabilityPropertyName;

    @Required
    public void setAvailabilityService(
      AvailabilityService availabilityService_) {
        availabilityService = availabilityService_;
    }

    @Required
    public void setRecordSpec(String recordSpec_) {
        recordSpec = recordSpec_;
    }

    @Required
    public void setAvailabilityPropertyName(
      String availabilityPropertyName_) {
        availabilityPropertyName = availabilityPropertyName_;
    }

    @Override
    public RecordDetails process(RecordDetailsConfig detailsConfig) 
      throws CartridgeHandlerException {
        RecordDetails details = super.process(detailsConfig);
        if (null == details) return null;
        Attribute attr = 
          details.getRecord().getAttributes().get(recordSpec);
        if (null == attr || 1 != attr.size()) {
            throw new CartridgeHandlerException("No record spec 
              available on record, or spec is multiassign");
        }
        Attribute<Availability> availability = 
          new Attribute<Availability>();
        availability.add(
          availabilityService.getAvailabilityFor(attr.toString()));
        details.getRecord().getAttributes().put(availabilityPropertyName,
          availability);
        return details;
    }

}

Custom Results List with recommendations
In this example, we extend the Results List cartridge to boost certain products based on information
from a recommendation engine.

It demonstrates the following use cases:

• Extending one of the core Endeca cartridges
• Using data from another source to modify the query to the MDEX Engine created during the pre¬
process() phase of the assembly cycle

• Configuring a third-party service through Spring

In this cartridge, we create the following components:

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

Sample Cartridges | Custom Results List with recommendations42



DescriptionComponent

Extends the ResultsListHandler to retrieve a set of items to boost from
a recommendations engine and add a boost stratum to the MDEX Engine
query.

cartridge handler

Stands in for a real source of recommendations.mock recommendations
service

Because this cartridge does not introduce any change in the configuration options for the business
user, there are no template changes for this cartridge. Additionally, the response model for the
customized cartridge is the same as the default Results List (only with the records in a different order),
so there is no need for changes to the default renderer.

Creating the cartridge handler and supporting classes
The RecommendationsResultsListHandler extends the core ResultsListHandler to call a
simple mock recommendations service and boosts the recommended products.

To create a cartridge handler that boosts recommended records:

1. Create the interface RecommendationService and the concrete implementation TestRecom¬
mendationService based on the examples below.

As a proof of concept, the recommendations service always returns the same recommendations
from the Discover Electronics data set.

2. Create a new Java class in the package com.endeca.sample.cartridges based on the
example below, which extends ResultsListHandler.

The handler retrieves a list of recommended records from the service and adds them to a boost
stratum for the MDEX Engine query. If the records are present in the results set, they are boosted
to the top of the results list.

3. Compile the classes and add them to your application.

4. Configure the Assembler to use the RecommendationsResultsListHandler for the Results
List cartridge by editing the Spring context file as follows:

Note:  If you have created a sample-cartridge-config.xml file for configuring the
example cartridges, copy the CartridgeHandler_ResultsList bean from assembler-
context.xml to your sample context file, comment out the version in assembler-con¬
text.xml, and then modify the version in your sample context file as indicated below.

<bean id="CartridgeHandler_ResultsList"
  class="com.endeca.sample.cartridges.RecommendationsResultsListHandler"

  parent="NavigationCartridgeHandler" scope="prototype">
    <property name="contentItemInitializer">

<!-- additional elements omitted from this example -->
    </property>
    <property name="sortOptions">

<!-- additional elements omitted from this example -->
    </property>
    <property name="recommendationService" ref="recommendationService" 
/>
    <property name="recordSpec" value="common.id"/>
</bean>

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

43Sample Cartridges | Custom Results List with recommendations



<bean id="recommendationService"
  class="com.endeca.sample.cartridges.TestRecommendationService"
  scope="singleton" >
<!-- Implementation-specific configuration for the service

       could be specified here -->
</bean>

5. Restart the Endeca Tools Service.

6. Refresh the application.

The recommended records are boosted to the top of the results:

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

Sample Cartridges | Custom Results List with recommendations44



Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

45Sample Cartridges | Custom Results List with recommendations



The following shows the code for the recommendations service interface and concrete implementation:

package com.endeca.sample.cartridges;

import java.util.List;

public interface RecommendationService {
    public List<String> getRecommendedProductIds();
}

package com.endeca.sample.cartridges;

import java.util.Arrays;
import java.util.List;

public class TestRecommendationService 
  implements RecommendationService {
    public static final List<String> IDS = 
      Arrays.asList("5891932", "6001963", "1438066", "1581692", 
        "2708142", "1235424", "3422480");

    public List<String> getRecommendedProductIds() {
        return IDS;
    }

}

The following shows the code for the custom cartridge handler:

package com.endeca.sample.cartridges;

import java.util.ArrayList;
import java.util.List;

import com.endeca.infront.assembler.CartridgeHandlerException;
import com.endeca.infront.cartridge.ResultsListConfig;
import com.endeca.infront.cartridge.ResultsListHandler;
import com.endeca.infront.navigation.model.CollectionFilter;
import com.endeca.infront.navigation.model.PropertyFilter;

public class RecommendationsResultsListHandler extends ResultsListHandler
 {
    private RecommendationService recommendationService;
    private String recordSpec;

    public String getRecordSpec() {
        return recordSpec;
    }

    public void setRecordSpec(String recordSpec_) {
        this.recordSpec = recordSpec_;
    }

    public void setRecommendationService(
      RecommendationService recommendationService_) {
        recommendationService = recommendationService_;
    }

    /**
     * This cartridge will get the list of recommended products
     * (by record spec) and explicitly boost each one of them using 

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

Sample Cartridges | Custom Results List with recommendations46



     * a PropertyFilter.
     */
    @Override
    public void preprocess(ResultsListConfig pContentItem)
      throws CartridgeHandlerException {
        List<String> ids =
          recommendationService.getRecommendedProductIds();
        List<CollectionFilter> boostFilters =
          new ArrayList<CollectionFilter>(
                ids.size());
        for (String s : ids) {
            boostFilters.add(new CollectionFilter(new PropertyFilter(
                    recordSpec, s)));
        }

        pContentItem.setBoostStrata(boostFilters);
        super.preprocess(pContentItem);
    }

}

"Hello, World" cartridge with layered color configuration
In this example, we extend the "Hello, World" example cartridge to demonstrate the layering of
configuration from several sources.

In this scenario, we can define a default color for the message in our "Hello, World" cartridge, which
the business user can override on a per-instance basis in Experience Manager. The site visitor can
also select a preferred color from the client application.

It demonstrates the following use cases:

• Combining the default cartridge configuration, cartridge instance configuration, and request-based
configuration using the ConfigInitializer and RequestParamMarshaller helper classes

• Using a cartridge configuration bean

In this cartridge, we create the following components:

DescriptionComponent

Uses the ColorConfigInitializer to layer multiple sources of
configuration for message color.

cartridge handler

Provides a means of specifying default values for this cartridge via Spring.cartridge configuration
bean

Provides a drop-down list from which the site visitor can choose a color for
the message.

cartridge renderer

Because this cartridge does not introduce any change in the configuration options for the business
user, there are no template changes for this cartridge.

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

47Sample Cartridges | "Hello, World" cartridge with layered color configuration



Creating the cartridge handler and supporting classes
The cartridge handler combines the various sources of configuration for message color using the
ConfigInitializer and RequestParamMarshaller helper classes.

To create the "Hello, World" cartridge handler with color configuration and add it to the application:

1. Create a new Java class in the package com.endeca.sample.cartridges based on the
example below, which extends AbstractCartridgeHandler.

2. Create a configuration bean for this cartridge based on the example below. This enables us to
define default values for the cartridge properties in the Spring context file.

3. Compile the cartridge handler and configuration bean and add them to your application.

4. Configure the Assembler to use the ColorConfigHandler for the "Hello, World" cartridge by
editing the Spring context file as follows:

<bean id="CartridgeHandler_Hello" 
  class="com.endeca.sample.cartridges.ColorConfigHandler"
  scope="prototype">
  <property name="contentItemInitializer">
    <bean class="com.endeca.infront.cartridge.ConfigInitializer" 
      scope="singleton">
      <property name="defaults">
        <bean class="com.endeca.sample.cartridges.ColorConfig" 
          scope="singleton">
          <property name="messageColor" value="#FF6600"/>
        </bean>
      </property>
      <property name="requestParamMarshaller">
        <bean 
          class="com.endeca.infront.cartridge.RequestParamMarshaller" 
          scope="singleton">
          <property name="httpServletRequest" ref="httpServletRequest"/>

          <property name="requestMap">
            <map>
              <entry key="color" value="messageColor"/>
            </map>
          </property>
        </bean>
      </property>
    </bean>
  </property>
  <property name="colorOptions">
    <map>
      <entry key="Red" value="#FF0000"/>
      <entry key="Green" value="#00FF00"/>
      <entry key="Blue" value="#0000FF"/>
      <entry key="Black" value="#000000"/>
    </map>            
  </property>
</bean>

5. Restart the Endeca Tools Service.

6. Refresh the application.

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

Sample Cartridges | "Hello, World" cartridge with layered color configuration48



The color options do not display yet because we have not updated the renderer, but you can validate
that the response model has been populated with the information that we want the renderer to use via
the JSON view:

{

    "@type": "Hello",
    "name": "Hello cartridge",
    "message": "Hello, color world!",
    "messageColor": "#0000FF",
    "colorOptions": [
        {
            "@type": "colorOption",
            "hexCode": "#FF0000",
            "label": "Red"
        },
        {
            "@type": "colorOption",
            "hexCode": "#00FF00",
            "label": "Green"
        },
        {
            "@type": "colorOption",
            "hexCode": "#0000FF",
            "label": "Blue"
        },
        {
            "@type": "colorOption",
            "hexCode": "#000000",
            "label": "Black"
        }
    ]

}

The following shows the code for the sample "Hello, World" cartridge handler with color configuration:

package com.endeca.sample.cartridges;

import com.endeca.infront.assembler.AbstractCartridgeHandler;
import com.endeca.infront.assembler.CartridgeHandlerException;
import com.endeca.infront.assembler.ContentItem;
import com.endeca.infront.assembler.BasicContentItem;
import com.endeca.infront.assembler.ContentItemInitializer;
import com.endeca.sample.cartridges.ColorConfig;
import java.util.ArrayList;
import java.util.Map;

public class ColorConfigHandler extends AbstractCartridgeHandler {

 private ContentItemInitializer mInitializer;
 private Map<String, String> mColorOptions;

  public void setContentItemInitializer(ContentItemInitializer initializer)
 {
    mInitializer = initializer;
  }

  public void setColorOptions(Map<String, String> colorOptions) {
    mColorOptions = colorOptions;

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

49Sample Cartridges | "Hello, World" cartridge with layered color configuration



  }

  /**
   * Returns the merged configuration based on Spring defaults,
   * Experience Manager configuration, and request parameters
   */
  @Override 
  public ContentItem initialize(ContentItem pContentItem) {
    // If any configuration from Experience Manager is empty, remove 
    // that property so we can use the default value
    for (String key: pContentItem.keySet()) {
      if (((String)pContentItem.get(key)).isEmpty())
        pContentItem.remove(key);
    }
      return mInitializer == null ? new ColorConfig(pContentItem) :
        mInitializer.initialize(pContentItem);
    }

  /**
   * Returns the merged configuration and information about the color options

   * available to the site visitor.
   */
  @Override
  public ContentItem process(ContentItem pContentItem)
    throws CartridgeHandlerException {
    int numColors = mColorOptions.size();
    ArrayList<ContentItem> colors = 
      new ArrayList<ContentItem>(numColors);  
    if (mColorOptions != null && !mColorOptions.isEmpty()) {
      for (String key: mColorOptions.keySet()) {
        ContentItem color = new BasicContentItem("colorOption");
        color.put("label", key);
        color.put("hexCode", mColorOptions.get(key));
        colors.add(color);
      }
      pContentItem.put("colorOptions", colors);
    }
    return pContentItem;
  }
}

The following code implements a basic bean that enables us to specify a default value for the message
color in the Spring configuration:

package com.endeca.sample.cartridges;

import com.endeca.infront.assembler.BasicContentItem;
import com.endeca.infront.assembler.ContentItem;

public class ColorConfig extends BasicContentItem {

  public ColorConfig() {
    super();
  }

  public ColorConfig(final String pType) {
    super(pType);
  }

  public ColorConfig(ContentItem pContentItem) {

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

Sample Cartridges | "Hello, World" cartridge with layered color configuration50



    super(pContentItem);
  }

  public String getMessageColor() {
    return getTypedProperty("messageColor");
  }

  public void setMessageColor(String color) {
    this.put("messageColor", color);
  }
}

Creating the cartridge renderer
In this example we update the "Hello, World" renderer to add a control for the site visitor to select a
color for the message.

To add a drop-down for the site visitor to select a message color based on the options configured for
this cartridge:

1. Create a new JSP page based on the example below, or update the renderer you previously created
by adding the section in bold.

2. Save the renderer to /WEB-INF/views/desktop/Hello/Hello.jsp.

3. Refresh the application to verify that the drop-down menu displays.

The following shows the code for the sample "Hello, World" renderer with color choice drop-down in
JSP:

<%@page language="java" pageEncoding="UTF-8"
contentType="text/html;charset=UTF-8"%>

<%@include file="/WEB-INF/views/include.jsp"%>
<div style="border-style: dotted; border-width: 1px;
border-color: #999999; padding: 10px 10px">
  <div style="font-size: 150%; 
    color: ${component.messageColor}">${component.message}
  </div>
<div style="font-size: 80%; padding: 5px 0px">

    <select onchange="location = this.options[this.selectedIndex].value">
      <option value="">Select a color</option>
      <c:forEach var="colorOption" items="${component.colorOptions}">
        <c:url value="<%= request.getPathInfo() %>" var="colorAction">
          <c:param name="color" value="${colorOption.hexCode}" />
        </c:url>
        <option value="${colorAction}">${colorOption.label}</option>
      </c:forEach>
    </select>

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

51Sample Cartridges | "Hello, World" cartridge with layered color configuration



  </div>
</div>

Testing the "Hello, World" cartridge with layered color configuration
We can validate that the cartridge handler applies the different sources of configuration properly by
incrementally populating each source of the configuration.

To test the "Hello, World" cartridge:

1. In Experience Manager, remove any previously created instance of the Hello cartridge.

2. Insert a new instance of the cartridge on the default page and specify a message string, but do not
select a color.

3. Save the page.

4. Refresh the application.

The message displays using the default color, orange.

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

Sample Cartridges | "Hello, World" cartridge with layered color configuration52



5. Going back to Experience Manager, now select a message color for this instance of the cartridge.

6. Refresh the application.

The message displays using the color configured in Experience Manager.

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

53Sample Cartridges | "Hello, World" cartridge with layered color configuration



7. Using the drop-down list on the cartridge, select another color.

The drop-down control adds a color parameter to the URL, which is parsed by the RequestParam¬
Marshaller into the messageColor property.

Oracle Endeca Commerce    Experience Manager Cartridge Developer's Guide

Sample Cartridges | "Hello, World" cartridge with layered color configuration54



Index

A

adding help to a cartridge 19
Assembler

overview 23
processing model 23

C

cartridge
handler 25
handler interface 24
Hello World example 9
help 19
introduced 9
renderer 13
samples 29
template 14
testing 29

cartridge extension points 17

configuring
cartridge instance 16

custom editors
introduced 22

H

handler implementation cases 27
Hello World

renderer 13

I

initializing a cartridge 24

R

Record Details cartridge 39
rendering a cartridge 13
Results List cartridge 42
RSS cartridge 33




	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Cartridge Basics
	First steps with a new cartridge
	Adding a basic renderer
	Deeper dive on the example cartridge
	The cartridge template
	The cartridge instance configuration
	The cartridge renderer

	Overview of cartridge extension points

	Customizing the Experience Manager interface
	Adding embedded user assistance to a cartridge
	Using the core Experience Manager editors
	About custom editors

	About Cartridge Handlers and the Assembler
	Overview of the Assembler processing model
	About the CartridgeHandler interface
	About initializing the cartridge configuration
	About the NavigationCartridgeHandler class

	Implementing a cartridge handler
	Cartridge handler development scenarios

	Sample Cartridges
	About using the sample cartridges
	Setting up a test application based on Discover Electronics
	Creating a Spring context file for sample cartridges

	RSS Feed cartridge
	Creating the cartridge template
	Creating the cartridge handler
	Creating the cartridge renderer

	Custom Record Details cartridge with availability information
	Creating the cartridge handler and supporting classes

	Custom Results List with recommendations
	Creating the cartridge handler and supporting classes

	"Hello, World" cartridge with layered color configuration
	Creating the cartridge handler and supporting classes
	Creating the cartridge renderer
	Testing the "Hello, World" cartridge with layered color configuration


	Index

