
Oracle Service Architecture Leveraging Tuxedo
Configuration Guide

12c Release 1 (12.1.1)

June 2012

Oracle Service Architecture Leveraging Tuxedo (SALT) Configuration Guide, 12c Release 1 (12.1.1)

Copyright © 2006, 2012 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Configuring an Oracle Service Architecture Leveraging Tuxedo
Application

Configuring Oracle Tuxedo Web Services . 1

Using Oracle Tuxedo Service Metadata Repository for Oracle Service Architecture
Leveraging Tuxedo . 2

Defining Service-Level Keywords for Oracle Service Architecture Leveraging
Tuxedo . 2

Defining Service Parameters for Oracle Service Architecture Leveraging Tuxedo6

Configuring Native Oracle Tuxedo Services . 8

Creating a Native WSDF. 9

Defining the SOAP Header . 9

Defining WSBinding Object . 11

Defining Service Object. 12

Configuring Message Conversion Handler . 12

Using WS-Policy Files . 13

Generating a WSDL File from a Native WSDF . 15

Configuring External Web Services . 15

Converting a WSDL File into Oracle Tuxedo Definitions 15

WSDL-to-Tuxedo Service Metadata Keyword Mapping 17

WSDL-to-WSDF Mapping . 18

Post Conversion Tasks . 19

Resolving Naming Conflict For the Generated Oracle Service Architecture
Leveraging Tuxedo Proxy Service Definitions 20

Loading the Generated SALT Proxy Service Metadata Definitions 20

Setting Environment Variables for GWWS Runtime 20

Creating the Oracle Service Architecture Leveraging Tuxedo Deployment File 21

Importing the WSDF Files . 21
Configuring an Oracle Service Architecture Leveraging Tuxedo Application i

Configuring the GWWS Servers. 22

Configuring GWWS Server-Level Properties . 23

Configuring Multiple Encoding Support . 25

Configuring System-Level Resources. 26

Configuring Certificates. 27

Configuring Plug-in Libraries . 28

Configuring Advanced Web Service Messaging Features . 29

Web Service Addressing . 29

Configuring the Addressing Endpoint for Outbound Services 29

Disabling WS-Addressing . 31

Web Service Reliable Messaging . 31

Creating the Reliable Messaging Policy File . 31

Specifying the Reliable Messaging Policy File in the WSDF File 32

Configuring Security Features . 33

Configuring Transport-Level Security . 33

Setting Up SSL Link-Level Security . 33

Configuring Inbound HTTP Basic Authentication . 33

Configuring Outbound HTTP Basic Authentication 34

Configuring Message-Level Web Service Security . 35

Main Use Cases of Web Service Security . 36

Using WS-Security Policy Files . 36

Configuring SAML Single Sign-On . 37

Transport Protection. 38

SAML Key File . 38

Compiling Oracle Service Architecture Leveraging Tuxedo Configuration 44

Configuring the UBBCONFIG File for Oracle Service Architecture Leveraging Tuxedo
44

Configuring the TMMETADATA Server in the *SERVERS Section 45
Configuring an Oracle Service Architecture Leveraging Tuxedo Application ii

Configuring the GWWS Servers in the *SERVERS Section 46

Updating System Limitations in the UBBCONFIG File 47

Configuring Certificate Password Phrase For the GWWS Servers 48

Configuring Oracle Tuxedo Authentication for Web Service Clients. 49

Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic
Authentication . 49

Configuring Oracle Service Architecture Leveraging Tuxedo In Oracle Tuxedo MP
Mode . 50

Migrating from Oracle Service Architecture Leveraging Tuxedo 1.1 50

Running GWWS servers with SALT 1.1 Configuration File 51

Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration
File . 51

Configuring Service Contract Discovery. 53

tpforward Support. 54

Service Contract Text File Output . 55

Examples . 57

Configuring Oracle Service Architecture Leveraging Tuxedo WS-TX Support 58

Configuring Transaction Log Device . 58

Registration Protocol . 59

Configuring WS-TX Transactions . 59

Configuring Incoming Transactions . 60

Error Conditions. 61

Configuring Outbound Transactions . 61

Error Conditions. 62

Configuring Maximum Number of Transactions . 62

Configuring Policy Assertions . 63

Policy. xml File . 63

Inbound Transactions . 63
Configuring an Oracle Service Architecture Leveraging Tuxedo Application iii

Outbound Transactions . 64

WSDL Generation . 64

WSDL Conversion . 64

Oracle Service Architecture Leveraging Tuxedo Configuration Tool 64

Enabling the Oracle Service Architecture Leveraging Tuxedo Configuration Tool . . 64

GWWS Option . 65

Security . 65

Configuring Configuration Tool Security . 66

See Also. 70
iv Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Configuring an Oracle Service Architecture Leveraging Tuxedo Application v

vi Configuring an Oracle Service Architecture Leveraging Tuxedo Application

1

Configuring an Oracle Service Architecture
Leveraging Tuxedo Application
This section contains the following topics:

Configuring Oracle Tuxedo Web Services

Configuring Service Contract Discovery

Configuring Oracle Service Architecture Leveraging Tuxedo WS-TX Support

Oracle SALT Configuration Tool

Configuring Oracle Tuxedo Web Services
Using Oracle Tuxedo Service Metadata Repository for Oracle Service Architecture
Leveraging Tuxedo

Configuring Native Oracle Tuxedo Services

Configuring External Web Services

Configuring Service Contract Discovery

Creating the Oracle Service Architecture Leveraging Tuxedo Deployment File

Configuring Advanced Web Service Messaging Features

Configuring Security Features

Compiling Oracle Service Architecture Leveraging Tuxedo Configuration
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 1

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Configuring the UBBCONFIG File for Oracle Service Architecture Leveraging Tuxedo

Configuring Oracle Service Architecture Leveraging Tuxedo In Oracle Tuxedo MP Mode

Migrating from Oracle Service Architecture Leveraging Tuxedo 1.1

Using Oracle Tuxedo Service Metadata Repository for
Oracle Service Architecture Leveraging Tuxedo
Oracle Service Architecture Leveraging Tuxedo (SALT) leverages the Oracle Tuxedo Service
Metadata Repository to define service contract information for both existing Oracle Tuxedo
services and SALT proxy services. Service contract information for all listed Oracle Tuxedo
services is obtained by accessing the Oracle Tuxedo Service Metadata Repository system service
provided by the local Oracle Tuxedo domain. Typically, SALT calls the TMMETADATA system as
follows:

During GWWS server run-time.

It calls the Oracle Tuxedo Service Metadata Repository to retrieve necessary Oracle
Tuxedo service definition at the appropriate time.

When tmwsdlgen generates a WSDL file.

It calls the Oracle Tuxedo Service Metadata Repository to retrieve necessary Oracle
Tuxedo service definitions and converts them to the WSDL description.

The following topics provide SALT-specific usage of Oracle Tuxedo Service Metadata
Repository keywords and parameters:

Defining Service-Level Keywords for Oracle Service Architecture Leveraging Tuxedo

Defining Service Parameters for Oracle Service Architecture Leveraging Tuxedo

Defining Service-Level Keywords for Oracle Service Architecture Leveraging
Tuxedo
Table 1 lists the Oracle Tuxedo Service Metadata Repository service-level keywords used and
interpreted by SALT.

Note: Metadata Repository service-level keywords that are not listed have no relevance to
SALT and are ignored when SALT components load the Oracle Tuxedo Service
Metadata Repository.
2 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../metarepo.html
../metarepo.html
../metarepo.html
../metarepo.html
../../../tuxedo/docs12c/rf5/index.html
../ref/comref.html#wp1106727

Using Orac le Tuxedo Serv ice Metadata Repos i to r y fo r Orac le Servi ce A rch i tec ture Leverag ing Tuxedo
Table 1 SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword SALT Usage

service The unique key value of the service. This value is referenced in the SALT
WSDF file.

For native Oracle Tuxedo services, this value can be the same as the
Oracle Tuxedo advertised service name or an alias name different from
the actual Oracle Tuxedo advertised service name.

For SALT proxy services, this value typically is the Web service
operation local name.

servicemode Determines the service mode (i.e., native Oracle Tuxedo service or SALT
proxy service.

The valid values are:
• tuxedo

represents a native Oracle Tuxedo service
• webservice

represents an SALT proxy service, i.e. a service definition converted
from a wsdl:operation

Do not use “webservice” to define a native Oracle Tuxedo service.
This value is always used to define services converted from external Web
services.

tuxservice The actual Oracle Tuxedo advertised service name. If no value is
specified, then the value is the same as the value in the service
keyword.

For native Oracle Tuxedo service, SALT invokes the Oracle Tuxedo
service defined using this keyword.

For SALT proxy service, GWWS server advertises the service name
using this keyword value.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 3

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
servicetype Determines the service message exchange pattern for the specified Oracle
Tuxedo service.

The following values specify mapping rules between the Oracle Tuxedo
service types and Web Service message exchange pattern (MEP):
• service

corresponds to request-response MEP
• oneway

corresponds to oneway request MEP
• queue
• corresponds to request-response MEP

inbuf Specifies the input buffer (request buffer) type for the service.

For native Oracle Tuxedo services, the value can be any Oracle Tuxedo
typed buffer type. The following values are Oracle Tuxedo reserved
buffer types:
STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty)

Note: The value is case sensitive, if inbuf specifies any other type
other than the previous buffer types, the buffer is treated as a
custom buffer type.

For SALT proxy services, the value is always FML32.

outbuf Specifies the output buffer (response buffer with TPSUCCESS), type for
the service.

For native Oracle Tuxedo services, the value can be any Oracle Tuxedo
typed buffer type. The following values are Oracle Tuxedo reserved
buffer types:

STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty)

Note: The value is case sensitive, if outbuf specifies any other type
other than the previous buffer types, the buffer is treated as a
custom buffer type.

For SALT proxy services, the value is always FML32.

Table 1 SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword SALT Usage
4 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Using Orac le Tuxedo Serv ice Metadata Repos i to r y fo r Orac le Servi ce A rch i tec ture Leverag ing Tuxedo
errbuf Specifies the error buffer (response buffer with TPFAIL) type for the
service.

For native Oracle Tuxedo services, the value can be any Oracle Tuxedo
typed buffer type. The following values are Oracle Tuxedo reserved
buffer types:

STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty).

Note: The value is case sensitive, if errbuf specifies any other type
other than the previous buffer types, the buffer is treated as a
custom buffer type.

For SALT proxy services, the value is always FML32.

inview Specifies the view name used by the service for the following input buffer
types:
VIEW, VIEW32, X_C_TYPE, X_COMMON

SALT requires that you specify the view name rather than accept the
default inview setting.

This keyword is for native Oracle Tuxedo services only.

outview Specifies the view name used by the service for the following output
buffer types:
VIEW, VIEW32, X_C_TYPE, X_COMMON

SALT requires that you specify the view name rather than accept the
default outview setting.

This keyword is for native Oracle Tuxedo services only.

errview Specifies the view name used by the service for the following error buffer
types:
VIEW, VIEW32, X_C_TYPE, X_COMMON

SALT requires that you specify the view name rather than accept the
default errview setting.

This keyword is for native Oracle Tuxedo services only.

Table 1 SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword SALT Usage
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 5

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Defining Service Parameters for Oracle Service Architecture Leveraging
Tuxedo
The Oracle Tuxedo Service Metadata Repository interprets parameters as sub-elements
encapsulated in an Oracle Tuxedo service typed buffer. Each parameter can have its own data
type, occurrences in the buffer, size restrictions, and other Oracle Tuxedo-specific restrictions.
Please note:

VIEW, VIEW32, X_C_TYPE, or X_COMMON typed buffers

Each parameter of the buffer should represent a VIEW/VIEW32 structure member.

FML or FML32 typed buffers

Each parameter of the buffer should represent an FML/FML32 field element that may be
present in the buffer.

STRING, CARRAY, XML, MBSTRING, and X_OCTET typed buffers

Oracle Tuxedo treats these buffers holistically. At most, one parameter is permitted for the
buffer to define restriction facets (such as buffer size threshold).

inbufschema Specifies external XML Schema element associated with the service
input buffer. If this value is specified, SALT incorporates the external
schema in the generated WSDL to replace the default data type mapping
rule for the service input buffer.

This keyword is for native Oracle Tuxedo services only.

outbufschema Specifies external XML Schema element associated with the service
output buffer. If this value is specified, SALT incorporates the external
schema in the generated WSDL to replace the default data type mapping
rule for the service output buffer.

This keyword is for native Oracle Tuxedo services only.

errbufschema Specifies external XML Schema element associated with the service error
buffer. If this value is specified, SALT incorporates the external schema
in the generated WSDL to replace the default data type mapping rule for
the service error buffer.

This keyword is for native Oracle Tuxedo services only.

Table 1 SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword SALT Usage
6 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Using Orac le Tuxedo Serv ice Metadata Repos i to r y fo r Orac le Servi ce A rch i tec ture Leverag ing Tuxedo
Custom typed buffers

Parameters facilitate describing details about the buffer type.

FML32 typed buffers that support embedded VIEW32 and FML32 buffers

Embedded parameters provide support.

View32 typed buffers that support embedded VIEW32 buffers

Embedded parameters provide support.

Table 2 lists the Oracle Tuxedo Service Metadata Repository parameter-level keywords used and
interpreted by SALT.

Note: Metadata Repository parameter-level keywords that are not listed have no relevance to
SALT and are ignored when SALT components load the Oracle Tuxedo Service
Metadata Repository.

Table 2 SALT Usage of Parameter-Level Keyword in Oracle Tuxedo Service Metadata Repository

Parameter-level Keyword SALT Usage

param Specifies the parameter name.
• VIEW, VIEW32, X_C_TYPE, or X_COMMON

Specifies the view structure member name in the param keyword.
• FML, FML32

Specifies the FML/FML32 field name in the param keyword.
• STRING, CARRAY, XML, MBSTRING, or X_OCTET

SALT ignores the parameter definitions.

type Specifies the data type of the parameter.

Note: SALT does not support dec_t and ptr data types.

subtype Specifies the view structure name if the parameter type is view32. For
any other typed parameter, SALT ignores this value.

Note: SALT requires this value if the parameter type is view32.

This keyword is for native Oracle Tuxedo service only.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 7

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Configuring Native Oracle Tuxedo Services
This section describes the required and optional configuration tasks for exposing native Oracle
Tuxedo services as Web services:

access The general definition applies for this parameter. To support an Oracle
Tuxedo TPFAIL scenario, the access attribute value has been
enhanced.

Original values: in, out, inout, noaccess.

New added values: err, inerr, outerr, inouterr.

count The general definition applies for this parameter. For SALT, the value
for the count parameter must be greater than or equal to
requiredcount.

requiredcount The general definition applies for this parameter. The default is 1. For
SALT, the value for the count parameter must be greater than or equal
to requiredcount.

size This optional keyword restricts the maximum byte length of the
parameter. It is only valid for the following parameter types:
STRING, CARRAY, XML, and MBSTRING

If this keyword is not set, there is no maximum byte length restriction
for this parameter.

The value range is [0, 2147483647]

paramschema Specifies the corresponding XML Schema element name of the
parameter. It is generated by the SALT WSDL converter.

This keyword is for SALT proxy service only. Do not specify this
keyword for native Oracle Tuxedo services.

primetype Specifies the corresponding XML primitive data type of the parameter.
It is generated by SALT WSDL converter according to SALT
pre-defined XML-to-Tuxedo data type mapping rules.

This keyword is for SALT proxy service only. Do not specify this
keyword for native Oracle Tuxedo services.

Table 2 SALT Usage of Parameter-Level Keyword in Oracle Tuxedo Service Metadata Repository

Parameter-level Keyword SALT Usage
8 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Conf igur ing Nat ive Orac le Tuxedo Serv ices
Creating a Native WSDF

Using WS-Policy Files

Generating a WSDL File from a Native WSDF

Creating a Native WSDF
To expose a set of Oracle Tuxedo services as Web services through one or more HTTP/S
endpoints, a native WSDF must be defined.

Each native WSDF must be defined with a unique WSDF name. A WSDF can define one or more
<WSBinding> elements for more Web service application details (such as SOAP protocol details,
the Oracle Tuxedo service list to be exposed as web service operations, and so on).

This section contains the following topics:

Defining the SOAP Header

Defining WSBinding Object

Defining Service Object

Configuring Message Conversion Handler

Defining the SOAP Header
The mapsoapheader attribute is used to configure SOAP headers. It defines an FML32 field that
represents the SOAP header. It is TA_WS_SOAP_HEADER STRING type.

Note: The mapsoapheader attribute It is defined in wssoapflds.h file shipped with SALT.

Listing 1 shows a SOAP header definition example.

Listing 1 SOAP Header Definition

<Definition ...>

 <WSBinding id="simpapp_binding">

 <Servicegroup id="simpapp">

 <Service name="toupper">

 <Property name="mapsoapheader" value="true" />

 </Service>
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 9

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
 </Servicegroup>

 </WSBinding>

</Definition>

The mapsoapheader attribute default value is "false" which indicates the GWWS does not
execute mapping between the SOAP header and FML fields.

If mapsoapheader is set to true, the mapping behavior is as follows for inbound and outbound
services:

Inbound

For inbound services, the GWWS translates the SOAP header as shown in Listing 2.

Listing 2 GWWS Soap Header Translation

<cup:SoapHeader xmlns:cup='http://www.xxx.com/soa/esb/message/1_0'>

<cup:Head>

<cup:Name>xxx</cup:Name>

<cup:Value>xxx</cup:Value>

</cup:Head>

</cup:SoapHeader>

The string buffer is assigned to the TA_WS_SOAP_HEADER field and injects the target
FML32 buffer. If the target buffer type is not FML32, the translation will not take effect.

Out Bound

For outbound services, the GWWS receives the TA_WS_SOAP_HEADER from the request
buffer and places it in the SOAP header when the SOAP package is composed.
10 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Conf igur ing Nat ive Orac le Tuxedo Serv ices
Defining WSBinding Object
Each WSBinding object is defined using the <WSBinding> element. Each WSBinding object
must be defined with a unique WSBinding id within the WSDF. The WSBinding id is a required
indicator for the SALTDEPLOY file reference used by the GWWS.

Each WSBinding object can be associated with SOAP protocol details by using the <SOAP> sub-
element. By default, SOAP 1.1, document/literal styled SOAP messages are applied to the
WSBinding object.

Listing 3 shows how SOAP protocol details are redefined using the <SOAP> sub-element.

Listing 3 Defining SOAP Protocol Details for a WSBinding

<Definition ...>
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Service name="toupper" />
 <Service name="tolower" />
 </Servicegroup>
 <SOAP version=”1.2” style=”rpc” use=”encoded”>
 <AccessingPoints>
 ...
 </AccessingPoints>
 </SOAP>
 </WSBinding>
</Definition>

Within the <SOAP> element, a set of access endpoints can be specified. The URL value of these
access endpoints are used by corresponding GWWS servers to create the listen HTTP/S protocol
port. It is recommended to specify one HTTP and HTTPS endpoint (at most), for each GWWS
server for an inbound WSBinding object.

Each WSBinding object must be defined with a group of Oracle Tuxedo services using the
<Servicegroup> sub-element. Each <Service> element under <Servicegroup> represents
an Oracle Tuxedo service that can be accessed from a Web service client.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 11

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Defining Service Object
Each service object is defined using the <Service> element. Each service must be specified with
the “name” attribute to indicate which Oracle Tuxedo service is exposed. Usually, the “name”
value is used as the key value for obtaining Oracle Tuxedo service contract information from the
Oracle Tuxedo Service Metadata Repository.

Listing 4 shows how a group of services are defined for WSBinding.

Listing 4 Defining a Group of Services for a WSBinding

<Definition ...>
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Service name="toupper" />
 <Service name="tolower" />
 </Servicegroup>
 ...
 </WSBinding>
</Definition>

Configuring Message Conversion Handler
You can create your own plug-in functions to customize SOAP XML payloads and Oracle
Tuxedo typed buffer conversion routines. For more information, see Using SALT Plug-ins in
Oracle Service Architecture Leveraging Tuxedo Programming Web Services and “Configuring
Plug-in Libraries” on page 28.

Once a plug-in is created and configured, it can be referenced using the <service> element to
specify user-defined data mapping rules for that service. The <Msghandler> element can be
defined at the message level (<Input>, <Output> or <Fault>) to specify which implementation
of “P_CUSTOM_TYPE” category plug-in should be used to do the message conversion. The
<Msghandler> element content is the Plug-in name.

Listing 5 shows a service that uses the “MBCONV” custom plug-in to convert input and “XMLCONV”
custom plug-in to convert output.
12 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../prog/plugin.html

Conf igur ing Nat ive Orac le Tuxedo Serv ices
Listing 5 Configuring Message Conversion Handler for a Service

<Definition ...>
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Service name="toupper" >
 <Input>
 <Msghandler>MBCONV</Msghandler>
 </Input>
 <Output>
 <Msghandler>XMLCONV</Msghandler>
 </Output>
 </Service>
 </Servicegroup>
 ...
 </WSBinding>
</Definition>

Using WS-Policy Files
Advanced Web service features can be enabled by configuring WS-Policy files (for example,
Reliable Messaging and Web Service Message-Level Security). You may need to create
WS-Policy files to use these features. The Web Service Policy Framework specifications
provides a general purpose model and syntax to describe and communicate the policies of a Web
Service.

To use WS-Policy files, the <Policy> element should be defined in the WSDF to incorporate
these separate WS-Policy files. The location attribute is used to specify the policy file path;
both abstract and relative file path are allowed. The use attribute is optionally used by
message-level assertion policy files to specify the applied messages, request (input) message,
response (output) message, fault message, or the combination of the three.

There are two different sub-elements in the WSDF that reference WS-Policy files:

<Servicegroup>

– If a WS-Policy file consists of Web Service Endpoint-level Assertions (for example,
Reliable Messaging Assertion), the WS-Policy file applies to all endpoints serving
the<Servicegroup> element
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 13

http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
– If a WS-Policy file consists of Web Service Operation-level Assertions (for example,
Security Identity Assertion), the WS-Policy file applies to all services listed in the
<Servicegroup> element.

– If a WS-Policy file consists of Web Service Message level Assertions (for example,
Security SignedParts Assertion), the WS-Policy file applies to input, output and/or fault
messages of all services listed in the <Servicegroup> element.

Note: SALT only supports request message-level assertions for the current release.
You must only specify use=”input” for message=level assertion policy files.

<Service>

– If a WS-Policy file consists of Web Service Operation-level Assertions (for example,
Security Identity Assertion), the WS-Policy file applies to this particular service.

– If a WS-Policy file consists of Web Service Message-level Assertions, (for example,
Security SignedParts Assertion), the WS-Policy file applies to input, output and/or fault
messages of this particular service.

Note: SALT only supports request message-level assertions for the current release.
You must specify use=”input” for message-level assertion policy files.

SALT provides some pre-packaged WS-Policy files for most frequently used cases. These
WS-Policy files are located under directory $TUXDIR/udataobj/salt/policy. These files can
be referenced using location=”salt:<policy_file_name>”.

Listing 6 shows a sample of using WS-Policy Files in the native WSDF file.

Listing 6 A Sample of Defining WS-Policy Files in the WSDF File

<Definition ...>
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Policy location=”./endpoint_policy.xml” />
 <Policy location=”/usr/resc/all_input_msg_policy.xml” use=”input” />
 <Service name="toupper">
 <Policy location=”service_policy.xml” />
 <Policy location=”/usr/resc/input_message_policy.xml”
 use=”input” />
 </Service>
 <Service name="tolower" />
 </Servicegroup>
14 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Conf igur ing Ex te rna l Web Serv ices

 </WSBinding>
</Definition>

For more information, see “Specifying the Reliable Messaging Policy File in the WSDF File” and
“Using WS-Security Policy Files”.

Generating a WSDL File from a Native WSDF
Once an Oracle Tuxedo native WSDF is created, the corresponding WSDL file can be generated
using the SALT WSDL generation utility, tmwsdlgen. The following example command
generates a WSDL file named “app1.wsdl” from a given WSDF named “app1.wsdf”:
tmwsdlgen -c app1.wsdf -o app1.wsdl

Note: Before executing tmwsdlgen, the TUXCONFIG environment variable must be set correctly
and the relevant Oracle Tuxedo application using TMMETADATA must be booted.

You can optionally specify the output WSDL file name using the ‘-o’ option. Otherwise,
tmwsdlgen creates a default WSDL file named “tuxedo.wsdl”.

If the native WSDF file contains Oracle Tuxedo services that use CARRAY buffers, you can specify
tmwsdlgen options to generate different styled WSDL files for CARRAY buffer mapping. By
default, CARRAY buffers are mapped as xsd:base64Binary XML data types in the SOAP
message. For more information, see Data Type Mapping and Conversions in Oracle Service
Architecture Leveraging Tuxedo Programming Web Services and tmwsdlgen in the Oracle
Service Architecture Leveraging Tuxedo Reference Guide.

Configuring External Web Services
To invoke an external Web Service from Oracle Tuxedo, the following configuration tasks need
to be performed:

Converting a WSDL File into Oracle Tuxedo Definitions

Post Conversion Tasks

Converting a WSDL File into Oracle Tuxedo Definitions
SALT provides a WSDL conversion command utility to convert external WSDL files into Oracle
Tuxedo definitions. The WSDL file is converted using Extensible Stylesheet Language
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 15

../prog/datamap.html
../ref/comref.html#wp1106727

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Transformations (XSLT) technology. Apache Xalan Java 2.7.0 is bundled in the SALT
installation package and is used as the default XSLT toolkit.

The SALT WSDL converter is composed of two parts:

The xsl files, which process the WSDL file.

The command utility, wsdlcvt, invokes the Xalan toolkit. This wrapper script provides a
user friendly WSDL Converter interface.

The following sample command converts an external WSDL file and generates Oracle Tuxedo
definition files.
wsdlcvt -i GoogleSearch.wsdl -o GSearch

Table 3 lists the Oracle Tuxedo definition files generated by SALT WSDL Converter.

Table 3 Tuxedo Definition Files generated by SALT WSDL Converter

Generated File Description

Oracle Tuxedo Service
Metadata Repository
input file

SALT WSDL Converter converts each wsdl:operation to a Oracle
Tuxedo service metadata syntax compliant service called SALT proxy
service. SALT proxy services are advertised by GWWS servers to accept
ATMI calls from Oracle Tuxedo applications.

FML32 field table
definition file

Oracle Service Architecture Leveraging Tuxedo maps each
wsdl:message to an Oracle Tuxedo FML32 typed buffer. The SALT
WSDL Converter decomposes XML Schema of each message and maps
each basic XML snippet as an FML32 field. The generated FML32 fields
are defined in a definition table file, and the field name equals to the XML
element local name by default.

To access an SALT proxy service, Oracle Tuxedo applications must refer
to the generated FML32 fields to handle the request and response message.
FML32 environment variables must be set accordingly so that both Oracle
Tuxedo applications and GWWS servers can map between field names and
field identifier values.

Note: You may want to re-define the generated field names due to field
name conflict or some other reason. In that case, both Oracle
Tuxedo Service Metadata Definition input file and FML32 field
table definition file must be changed accordantly. For more
information, see “Resolving Naming Conflict For the Generated
Oracle Service Architecture Leveraging Tuxedo Proxy Service
Definitions”.
16 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../ref/comref.html

Conf igur ing Ex te rna l Web Serv ices
WSDL-to-Tuxedo Service Metadata Keyword Mapping
Table 4 lists WSDL Element-to-Tuxedo Service Metadata Definition Keyword mapping rules.

Non-native WSDF file SALT WSDL Converter converts the WSDL file into a WSDF file, which
can be deployed to GWWS servers in the SALT deployment file for
outbound direction. The generated WSDF file is anon-native WSDF file.

Note: Please do not deploy non-native WSDF files for inbound
direction.

XML Schema files WSDL embedded XML Schema and imported XML Schema (XML
Schema content referenced with <xsd:import>) are saved locally as
.xsd files. These files are used by GWWS servers and need to be saved
under the same directory.

Note: New XML Schema environment variables XSDDIR and
XSDFILES must be set accordingly so that GWWS servers can
load these .xsd files.

Table 3 Tuxedo Definition Files generated by SALT WSDL Converter

Generated File Description

Table 4 WSDL Element-to-Tuxedo Service Metadata Definition Mapping

WSDL Element Corresponding Oracle
Tuxedo Service Metadata
Definition Keyword

Note

/wsdl:definitions
 /wsdl:portType
 /wsdl:operation
 @name

service SALT proxy service name.

The keyword value equals to the operation local
name.

tuxservice SALT proxy service advertised name in Oracle
Tuxedo system.

If the wsdl operation local name is less than 15
characters, the keyword value equals to the
operation local name, otherwise the keyword
value is the first 15 characters of the operation
local name.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 17

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
WSDL-to-WSDF Mapping
Table 5 lists WSDL Element-to-WSDF Element mapping rules.

/wsdl:definitions
 /wsdl:portType
 /wsdl:operation
 /wsdl:input

inbuf=FML32 WSDL operation messages are always mapped
as Oracle Tuxedo FML32 buffer types.

Please do not change the buffer type any way.

Note: For more information about wsdl
message and FML32 buffer mapping,
see XML-to-Tuxedo Data Type
Mapping for External Web Services in
the SALT Programming Web
Services.

/wsdl:definitions
 /wsdl:portType
 /wsdl:operation
 /wsdl:output

outbuf=FML32

/wsdl:definitions
 /wsdl:portType
 /wsdl:operation
 /wsdl:fault

errbuf=FML32

Table 4 WSDL Element-to-Tuxedo Service Metadata Definition Mapping

WSDL Element Corresponding Oracle
Tuxedo Service Metadata
Definition Keyword

Note

Table 5 WSDL Element-to-WSDF Element Mapping

WSDL Element WSDF Element Note

/wsdl:definitions
 @targetNamespace

/Definition
 @wsdlNamespace

Each wsdl:definition maps to a WSDF
Definition.

/wsdl:definitions
 /wsdl:binding

/Definition
 /WSBinding

Each wsdl:binding object maps to a WSDF
WSBinding element.

/wsdl:definitions
 /wsdl:binding
 @type

/Definition
 /WSBinding
 /Servicegroup

Each wsdl:binding referenced
wsdl:portType object maps to the
Servicegroup element of the corresponding
WSBinding element.
18 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../prog/datamap.html#wp1050031
../prog/datamap.html#wp1050031

Conf igur ing Ex te rna l Web Serv ices
Post Conversion Tasks
The following post conversion tasks must be performed for configuring outbound Web service
applications:

Resolving Naming Conflict For the Generated Oracle Service Architecture Leveraging
Tuxedo Proxy Service Definitions

Loading the Generated SALT Proxy Service Metadata Definitions

Setting Environment Variables for GWWS Runtime

/wsdl:definitions
 /wsdl:binding
 /soap:binding

/Definition
 /WSBinding
 /SOAP
 @version

If namespace prefix “soap” refers to URI
“http://schemas.xmlsoap.org/wsdl
/soap/”, the SOAP version attribute value is
“1.1”;

If namespace prefix “soap” refers to URI
“http://schemas.xmlsoap.org/wsdl
/soap12/”, the SOAP version attribute value
is “1.2”.

/wsdl:definitions
 /wsdl:binding
 /soap:binding
 @style

/Definition
 /WSBinding
 /SOAP
 @style

The WSDF WSBinding SOAP message style
setting is equal to the corresponding WSDL
soap binding message style setting (“rpc” or
“document”).

/wsdl:definitions
 /wsdl:binding
 /wsdl:operation

/Definition
 /WSBinding
 /Servicegroup
 /Service

Each wsdl:operation object maps to a
Service element of the corresponding
WSBinding element.

/wsdl:definitions
 /wsdl:port
 /soap:address

/Definition
 /WSBinding
 /SOAP
 /AccessingPoints
 /Endpoint

Each soap:address endpoint defined for a
wsdl:binding object maps to a Endpoint
element of the corresponding WSBinding
element.

Table 5 WSDL Element-to-WSDF Element Mapping

WSDL Element WSDF Element Note
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 19

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Resolving Naming Conflict For the Generated Oracle Service Architecture Leveraging
Tuxedo Proxy Service Definitions
When converting a WSDL file, unexpected naming conflicts may arise due to truncation or lost
context information. Before using the generated Service Metadata Definitions and FML32 field
table files, the following potential naming conflicts must be eliminated first.

Eliminating the duplicated service metadata keyword “tuxservice” definitions

The keyword tuxservice in the SALT proxy service metadata definition is the truncated
value of the original Web Service operation local name if the operation name is more than
15 characters.

The truncated tuxservice value may be duplicated for multiple SALT proxy service
entries. Since GWWS server uses tuxservice values as the advertised service names, you
must manually resolve the naming conflict among multiple SALT proxy services to avoid
uncertain service request delivery. To resolve the naming conflict, you should assign a
unique and meaningful name to tuxservice.

Eliminating the duplicated FML32 field definitions

When converting an external WSDL file into Oracle Tuxedo definitions, each
wsdl:message is parsed and mapped as an FML32 buffer format which contains a set of
FML32 fields to represent the basic XML snippets of the wsdl:message. By default, The
generated FML32 fields are named using the corresponding XML element local names.

The FML32 field definitions in the generated field table file are sorted by field name so
that duplicated names can be found easily. In order to achieve a certain SOAP/FML32
mapping, the field name conflicts must be resolved. You should modify the generated
duplicated field name with other unique and meaningful FML32 field name values. The
corresponding Service Metadata Keyword param values in the generated SALT proxy
service definition must be modified accordingly. The generated comments of the FML32
fields and Service Metadata Keyword “param” definitions are helpful in locating the
corresponding name and param.

Loading the Generated SALT Proxy Service Metadata Definitions
After potential naming conflicts are resolved, you should load the SALT proxy service metadata
definitions into the Oracle Tuxedo Service Metadata Repository through tmloadrepos utility.
For more information, see tmloadrepos, in the Oracle Tuxedo Command Reference Guide.

Setting Environment Variables for GWWS Runtime
Before booting GWWS servers for outbound Web services, the following environment variable
settings must be performed.
20 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../../../tuxedo/docs12c/rfcm/index.html

Creat ing the Orac le Se rv i ce A rch i tec tu re Leverag ing Tuxedo Dep lo yment F i l e
Update FLDTBLDIR32 and FIELDTBLS32 environment variables to add the generated
FML32 field table files.

Place all excerpted XML Schema files into one directory. and set the XSDDIR and
XSDFILES environment variables accordingly.

– The XSDDIR and XSDFILES environment variables, are introduced in the SALT 2.0
release. They are used by the GWWS server to load all external XML Schema files at run
time. Multiple XML Schema file names should be delimited with comma ‘,’. For
instance, if you placed XML Schema files: a.xsd, b.xsd and c.xsd in directory
/home/user/myxsd, you must set environment variable XSDDIR and XSDFILES as
follows before booting the GWWS server:

 XSDDIR=/home/user/myxsd
 XSDFILES=a.xsd,b.xsd,c.xsd

Creating the Oracle Service Architecture Leveraging
Tuxedo Deployment File
The SALT Deployment file (SALTDEPLOY) defines a SALT Web service application. The
SALTDEPLOY file is the major input for Web service application in the binary SALTCONFIG file.

To create a SALTDEPLOY file, do the following steps:

1. Importing the WSDF Files

2. Configuring the GWWS Servers

3. Configuring System-Level Resources

For more information, see SALT Deployment File Reference in the Oracle SALT Reference
Guide.

Importing the WSDF Files
You should import all your required WSDF files to the SALT deployment file. Each imported
WSDF file must have a unique WSDF name which is used by the GWWS servers to make
deployment associations. Each imported WSDF file must be accessible through the location
specified in the SALTDEPLOY file.

Listing 7 shows how to import WSDF files in the SALTDEPLOY file.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 21

../ref/deploy.html

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Listing 7 Importing WSDF Files in the SALTDEPLOY File

<Deployment ..>
 <WSDF>
 <Import location="/home/user/simpapp_wsdf.xml" />
 <Import location="/home/user/rmapp_wsdf.xml" />
 <Import location="/home/user/google_search.wsdf" />
 </WSDF>
 ...
</Deployment>

Configuring the GWWS Servers
Each GWWS server can be deployed with a group of inbound WSBinding objects and a group of
outbound WSBinding objects defined in the imported WSDF files. Each WSBinding object is
referenced using attribute “ref=<wsdf_name>:<WSBinding id>”. For inbound WSBinding
objects, each GWWS server must specify at least one access endpoint as an inbound endpoint from
the endpoint list in the WSBinding object. For outbound WSBinding objects, each GWWS server
can specify zero or more access endpoints as outbound endpoints from the endpoint list in the
WSBinding object.

Listing 8 shows how to configure GWWS servers with both inbound and outbound endpoints.

Listing 8 GWWS Server Defined In the SALTDEPLOY File

<Deployment ..>
 ...
 <WSGateway>
 <GWInstance id="GWWS1">
 <Inbound>
 <Binding ref="app1:app1_binding">
 <Endpoint use="simpapp_GWWS1_HTTPPort" />
 <Endpoint use="simpapp_GWWS1_HTTPSPort" />
 </Binding>
 </Inbound>
 <Outbound>
 <Binding ref="app2:app2_binding">
22 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Creat ing the Orac le Se rv i ce A rch i tec tu re Leverag ing Tuxedo Dep lo yment F i l e
 <Endpoint use=" simpapp_GWWS1_HTTPPort" />
 <Endpoint use=" simpapp_GWWS1_HTTPSPort" />
 </Binding>
 <Binding ref="app3:app3_binding" />
 </Outbound>
 </GWInstance>
 </WSGateway>
 ...
</ Deployment>

Configuring GWWS Server-Level Properties
The GWWS server can be configured with properties that can switch feature on/off or set an
argument to tune server performance.

Properties are configured in the <GWInstance> child element <Properties>. Each individual
property is defined by using the <Property> element which contains a “name” attribute and a
“value” attribute). Different “name” attributes represent different property elements that contain
a value. Table 6 lists GWWS server-level properties.

Table 6 GWWS Server Level Properties

Property Name Description Value Range Default

enableMultiEncoding Switch on/off the SOAP message
multiple encoding support on/off.

“true”|“false” “false”

max_backlog Specifies socket backlog control value. [1, 255] 20

max_content_length Specifies the maximum allowed
incoming HTTP message content length.

[0, 1G](byte)

(Can set
suffix
‘M’,’G’, e.g.
1.5M, 0.2G)

0

(means no
limit)

thread_pool_size Specifies the GWWS server thread pool
size.

[1, 1024] 16
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 23

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Note: For more information, see “Configuring Multiple Encoding Support”.

For more information, see “Tuning the GWWS Server” in Administering SALT at
Runtime.

Listing 9 shows an example of how GWWS properties are configured.

Listing 9 Configuring GWWS Server Properties

<Deployment ..>
 ...
 <WSGateway>
 <GWInstance id="GWWS1">

 <Properties>
 <Property name="thread_pool_size" value="20"/>
 <Property name="enableMultiEncoding" value="true"/>
 <Property name="timeout" value="600"/>
 </Properties>
 </GWInstance>
 </WSGateway>
 ...
</ Deployment>

timeout Specifies the network timeout in
seconds.

[1, 65535]

(unit:sec)

300

wsrm_acktime Specifies the Reliable Messaging
Acknowledgement message reply
policy. GWWS servers support replying
acknowledgement messages either after
receiving the SOAP request from
network immediately or after the Oracle
Tuxedo service returns the response
message.

“NETRECV” |
“RPLYRECV”

“NETRECV”

Table 6 GWWS Server Level Properties

Property Name Description Value Range Default
24 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../admin/admin.html

Creat ing the Orac le Se rv i ce A rch i tec tu re Leverag ing Tuxedo Dep lo yment F i l e
Configuring Multiple Encoding Support
SALT supports multiple encoding SOAP messages and the encoding mappings between SOAP
message and Oracle Tuxedo buffer. SALT supports the following character encoding:

ASCII, BIG5, CP1250, CP1251, CP1252, CP1253, CP1254, CP1255, CP1256,
CP1257, CP1258, CP850, CP862, CP866, CP874, EUC-CN, EUC-JP, EUC-KR,
GB18030, GB2312, GBK, ISO-2022-JP, ISO-8859-1, ISO-8859-13,
ISO-8859-15, ISO-8859-2, ISO-8859-3, ISO-8859-4, ISO-8859-5,
ISO-8859-6, ISO-8859-7, ISO-8859-8, ISO-8859-9, JOHAB, KOI8-R,
SHIFT_JIS, TIS-620, UTF-16, UTF-16BE, UTF-16LE, UTF-32, UTF-32BE,
UTF-32LE, UTF-7, UTF-8

To enable the GWWS multiple encoding support, GWWS server-level
“enableMultiEncoding” property should be set to “true” as shown in Listing 10.

Note: GWWS internally converts non UTF-8 external messages into UTF-8. However,
encoding conversion hurts server performance. By default, encoding conversion is turned
off and messages that are not UTF-8 encoded are rejected.

Listing 10 Configuring GWWS Server Multiple Encoding Property

<Deployment ..>
 ...
 <WSGateway>
 <GWInstance id="GWWS1">

 <Properties>
 <Property name="enableMultiEncoding" value="true"/>
 </Properties>
 </GWInstance>
 </WSGateway>
 ...
</ Deployment>

Table 7 explains the detailed SOAP message and Oracle Tuxedo buffer encoding mapping rules
if the GWWS server level multiple encoding switch is turned on.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 25

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Configuring System-Level Resources
SALT defines a set of global resources shared by all GWWS servers in the SALTDEPLOY file. The
following system-level resources can be configured in the SALTDEPLOY file:

Certificates

Table 7 SALT Message Encoding Mapping Rules

Mapping from ... Mapping to ... Encoding Mapping Rule

SOAP/XML Oracle Tuxedo Typed
Buffer

string/mbstring/xml buffer or field
character encoding equals to SOAP xml
encoding.

STRING Typed Buffer SOAP/XML GWWS sets the target SOAP message in UTF-8
encoding, and assumes the original STRING
buffer contains only UTF-8 encoding
characters.

Note: Oracle Tuxedo Developers must
ensure the STRING characters are
UTF-8 encoded.

MBSTRING/XML Typed
Buffer

SOAP/XML SOAP xml encoding equals to
MBSTRING/XML encoding.

FML/32, VIEW/32 Typed
Buffer that containing the
same encoding setting for
multiple FLD_MBSTRING
fields

SOAP/XML SOAP xml encoding is set to FLD_MBSTRING
encoding, the original Typed buffer field
characters are not changed in the SOAP
message.

Note: Oracle Tuxedo Developers must
ensure the FLD_STRING characters in
the same buffer are consistent.

FML/32, VIEW/32 Typed
Buffer that containing the
different encoding for
multiple FLD_MBSTRING
fields

SOAP/XML SOAP xml encoding is set to UTF-8, the
original Typed buffer FLD_MBSTRING field
characters in other encoding are converted into
UTF-8 in the SOAP message.

Note: Oracle Tuxedo Developers must
ensure the FLD_STRING characters in
the same buffer are UTF-8 encoded.
26 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Creat ing the Orac le Se rv i ce A rch i tec tu re Leverag ing Tuxedo Dep lo yment F i l e
Plug-in load libraries

Configuring Certificates
Certificate information must be configured in order for the GWWS server to create an SSL listen
endpoint, or to use X.509 certificates for authentication and/or message signature. All GWWS
servers defined in the same deployment file shares the same certificate settings, including the
private key file, trusted certificate directory, and so on.

The private key file is configured using the <Certificate>/<PrivateKey> sub-element. The
private key file must be in PEM file format and stored locally. SSL clients can optionally be
verified if the <Certificate>/<VerifyClient> sub-element is set to true.

Note: By default, the GWWS server does not verify SSL clients.

If SSL clients are to be verified, and/or the X.509 certificate authentication feature is enabled, a
set of trusted certificates must be stored locally and located by the GWWS server. There are two
ways to define GWWS server trusted certificates:

1. Include all certificates in one PEM format file and define the file path using the
<<Certificate>/<TrustedCert> sub-element.

2. Save separate certificate PEM format files in one directory and define the directory path using
the <<Certificate>/<CertPath> sub-element.

Note: The "cn" attribute of a distinguished name is used as a key for certificate lookup.
Wildcards used in a name are not supported. Empty subject fields are not allowed. This
limitation is also found in Oracle Tuxedo.

Listing 11 shows a SALTDEPLOY file segment configuring GWWS server certificates.

Listing 11 Configuring Certificates In the SALTDEPLOY File

<Deployment ..>
 ...
 <System>
 <Certificates>
 <PrivateKey>/home/user/gwws_cert.pem</PrivateKey>
 <VerifyClient>true</VerifyClient>
 <CertPath>/home/user/trusted_cert</CertPath>
 </Certificates>
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 27

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
 </System>
</Deployment

Configuring Plug-in Libraries
A plug-in is a set of functions that are called when the GWWS server is running. SALT provides a
plug-in framework as a common interface for defining and implementing plug-ins. Plug-in
implementation is carried out through a dynamic library that contains the actual function code.
The implementation library can be loaded dynamically during GWWS server start up. The functions
are registered as the implementation of the plug-in interface.

In order for the GWWS server to load the library, the library must be specified using the
<Plugin>/<Interface> element in the SALTDEPLOY file.

Listing 12 shows a SALTDEPLOY file segment configuring multiple customized plug-in libraries
to be loaded by the GWWS servers.

Listing 12 Configuring Plug-in Libraries In the SALTDEPLOY File

<Deployment ..>
 ...
 <System>
 <Plugin>
 <Interface lib=”plugin_1.so” />
 <Interface lib=”plugin_2.so” />
 </Plugin>
 </System>
</Deployment

Note: If the plug-in library is developed using the SALT 2.0 plug-in interface, the “id” and
“name”attributes for the interface do not need to be specified. These values can be
obtained through plug-in interfaces.

For more information, see Using Plug-ins with SALT in Oracle SALT Programming with
Web Services.
28 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../prog/plugin.html

Conf igur ing Advanced Web Se rv ice Messaging Featu res
Configuring Advanced Web Service Messaging Features
SALT currently supports the following advanced Web Service Messaging features:

Web Service Addressing

Supports both inbound and outbound asynchronous Web service messaging.

Web Service Reliable Messaging

Supports inbound Web Service reliable message delivery.

Web Service Addressing
SALT supports Web service addressing for both inbound and outbound services. The Web
service addressing (WS-Addressing) messages used by the GWWS server must comply with the
Web Service Addressing standard (W3C Member Submission 10 August 2004).

Inbound services do not require specific Web service addressing configuration. The GWWS server
accepts and responds accordingly to both WS-Addressing request messages and non
WS-Addressing request messages.

Outbound services require Web service addressing configuration as described in the following
sections:

Configuring the Addressing Endpoint for Outbound Services

Disabling WS-Addressing

Configuring the Addressing Endpoint for Outbound Services
For outbound services, Web service addressing is configured at the Web service binding level. In
the SALTDEPLOY file, each GWWS server can specify a WS-Addressing endpoint by using the
<WSAddressing> element for any referenced outbound WSBinding object to enable
WS-Addressing.

Once the WS-Addressing endpoint is configured, the GWWS server creates a listen endpoint at start
up. All services defined in the outbound WSBinding are invoked with WS-Addressing messages.

Listing 13 shows a SALTDEPLOY file segment enabling WS-Addressing for a referenced outbound
Web service binding.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 29

http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Listing 13 WS-Addressing Endpoint Defined for Outbound Web Service Binding

<Deployment ..>
 ...
 <WSGateway>
 <GWInstance id="GWWS1">
 ...
 <Outbound>
 <Binding ref="app1:app1_binding">
 <WSAddressing>
 <Endpoint address=”https://myhost:8801/app1_async_point”>
 </WSAddressing>
 <Endpoint use=" simpapp_GWWS1_HTTPPort" />
 <Endpoint use=" simpapp_GWWS1_HTTPSPort" />
 </Binding>
 <Binding ref="app2:app2_binding">
 <WSAddressing>
 <Endpoint address=”https://myhost:8802/app2_async_point”>
 </WSAddressing>
 <Endpoint use=" simpapp_GWWS1_HTTPPort" />
 <Endpoint use=" simpapp_GWWS1_HTTPSPort" />
 </Binding>
 </Outbound>
 ...
 </GWInstance>
 </WSGateway>
 ...
</ Deployment>

Notes: In a GWWS server, each outbound Web Service binding can be associated with a particular
WS-Addressing endpoint address. These endpoints can be defined with the same
hostname and port number, but the context path portion of the endpoint addresses must
be different.

If the external Web service binding does not support WS-Addressing messages,
configuring Addressing endpoints may result in run time failure.
30 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Conf igur ing Advanced Web Se rv ice Messaging Featu res
Disabling WS-Addressing
If you create a WS-Addressing endpoint in the SALTDEPLOY file or not, you can explicitly disable
the Addressing capability for particular outbound services in the WSDF. To disable the
Addressing capability for a particular outbound service, you should use the property name
“disableWSAddressing” with a value set to “true” in the corresponding <Service> definition
in the WSDF file. This property has no impact on any inbound services.

Listing 14 shows WSDF file segment disabling Addressing capability.

Listing 14 Disabling Service-Level WS-Addressing

<Definition ...>
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Service name="toupper">
 <Property name="disableWSAddressing" value=”true” />
 </Service>
 <Service name="tolower" />
 </Servicegroup>

 </WSBinding>
</Definition>

Web Service Reliable Messaging
SALT currently supports Reliable Messaging for inbound services only. To enable Reliable
Messaging functionality, you must create a Web Service Reliable Messaging policy file and
include the policy file in the WSDF. The policy file must comply with the
WS-ReliableMessaging Policy Assertion Specification (February 2005).

Note: A WSDF containing a Reliable Messaging policy definition should be used by the GWWS
server for inbound direction only.

Creating the Reliable Messaging Policy File
A Reliable Messaging Policy file is a general WS-Policy file containing WS-ReliableMessaging
Assertions. The WS-ReliableMessaging Assertion is an XML segment that describes features
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 31

http://schemas.xmlsoap.org/ws/2005/02/rm/policy/

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
such as the version of the supported WS-ReliableMessage specification, the source endpoint’s
retransmission interval, the destination endpoint’s acknowledge interval, and so on.

For more information, see the SALT WS-ReliableMessaging Policy Assertion Reference in the
Oracle Service Architecture Leveraging Tuxedo Reference Guide.

Listing 15 shows a Reliable Messaging policy file example.

Listing 15 Reliable Messaging Policy File Example

<?xml version="1.0"?>
<wsp:Policy wsp:Name="ReliableSomeServicePolicy"
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp=”http://schemas.xmlsoap.org/ws/2004/09/policy”
 xmlns:beapolicy="http://www.bea.com/wsrm/policy">
 <wsrm:RMAssertion>
 <wsrm:InactivityTimeout Milliseconds="600000" />
 <wsrm:AcknowledgementInterval Milliseconds="2000" />
 <wsrm:BaseRetransmissionInterval Milliseconds="500"/>
 <wsrm:ExponentialBackoff />
 <beapolicy:Expires Expires="P1D" />
 <beapolicy:QOS QOS=”ExactlyOnce InOrder" />
 </wsrm:RMAssertion>
</wsp:Policy>

Specifying the Reliable Messaging Policy File in the WSDF File
You must reference the WS-ReliableMessaging policy file at the <Servicegroup> level in the
native WSDF file. Listing 16 shows how to reference the WS-ReliableMessaging policy file.

Listing 16 Reference the WS-ReliableMessaging Policy At the Endpoint Level

<Definition ...>
 <WSBinding ...>
 <Servicegroup ...>
 <Policy location=”RMPolicy.xml” />
 <Service ... />
32 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../ref/rm_assert.html

Conf igur ing Secur i t y Fea tu res
 <Service ... />
 ...
 </Servicegroup ...>
 </WSBinding>
</Definition>

Note: Reliable Messaging in SALT does not support process/system failure scenarios, which
means SALT does not store the message in a persistent storage area. SALT works in a
direct mode with the SOAP client. Usually, system failure recovery requires business
logic synchronization between the client and server.

Configuring Security Features
SALT provides security support at both the transport level and SOAP message level. The
following topics explains how to configure security features for each level:

Configuring Transport-Level Security

Configuring Message-Level Web Service Security

Configuring SAML Single Sign-On

Configuring Transport-Level Security
SALT provides point-to-point security using SSL link-level security and supports HTTP basic
authentication mechanisms for both inbound and outbound service authentication.

Setting Up SSL Link-Level Security
To set up link-level security using SSL at inbound endpoints, you can simply specify the endpoint
address with prefix “https://”. The GWWS server who uses this inbound endpoint creates SSL
listen port and make SSL secured connections with Web Service Clients. SSL features need to
specify certificates settings. For more information, see “Configuring Certificates”.

The GWWS server automatically creates SSL secured connection to outbound endpoints that are
published with URLs that having prefix “https://”.

Configuring Inbound HTTP Basic Authentication
SALT depends on the Oracle Tuxedo security framework for Web Service client authentication.
There is no special SALT configuration required to enable inbound HTTP Basic Authentication.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 33

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
If the Oracle Tuxedo system requires user credentials, HTTP Basic Authentication is an
alternative for Web Service client programs to carry user credentials.

The GWWS gateway supports Oracle Tuxedo domain security configuration for the following two
authentication patterns:

Application password (APP_PW)

User-level authentication (USER_AUTH)

The GWWS server passes the following string from the HTTP header of the client SOAP request
for Oracle Tuxedo authentication.

Authorization: Basic <base64Binary of username:password>

The following is an example of a string from the HTTP header:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

In this example, the client sends the Oracle Tuxedo username “Aladdin” and the password
“open sesame”, and uses this paired value for Oracle Tuxedo authentication.

Using Application Password (APP_PW)

If Oracle Tuxedo uses APP_PW, then the HTTP username value is ignored and the GWWS
server only uses the password string as the Oracle Tuxedo application password to check
the authentication.

Using User-level Authentication (USER_AUTH)

If Oracle Tuxedo uses USER_AUTH, then both the HTTP username and password value are
used. In this case, the GWWS server does not check the Oracle Tuxedo application password.

Note: ACL and MANDATORY_ACL are not supported for Web service clients, which means the
Oracle Tuxedo system ignores any ACL-related configuration specifications. SALT
does not make group information available for Web service clients.

Configuring Outbound HTTP Basic Authentication
SALT supports authentication plug-in development to prepare user credentials for outbound
HTTP Basic Authentication. Outbound HTTP Basic Authentication is configured at
Endpoint-level. If an outbound Endpoint requires a user profile in the HTTP message, you must
specify the HTTP Realm for the HTTP endpoint in the WSDF file. The GWWS server invokes the
authentication plug-in library to prepare usernames and passwords, and sends them using HTTP
Basic Authentication mechanism in the request message.

Listing 17 shows how to enable HTTP Basic Authentication for the outbound endpoints.
34 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Conf igur ing Secur i t y Fea tu res
Listing 17 Enabling HTTP Basic Authentication For the Outbound Endpoint

<Definition ...>
 <WSBinding id="simpapp_binding">
 <SOAP>
 <AccessingPoints>
 <Endpoint id=”...” address=”...”>
 <Realm>SIMP_REALM</Realm>
 </Endpoint>
 </AccessingPoints>
 </SOAP>
 <Servicegroup id="simpapp">

 </Servicegroup>

 </WSBinding>

</Definition>

Once a service request is sent to an outbound endpoint using <Realm> element, the GWWS server
passes the Oracle Tuxedo client uid and gid to the authentication plug-in function, so that the
plug-in can determine HTTP Basic Authentication username/password according to the Oracle
Tuxedo client information. To obtain Oracle Tuxedo client uid / gid for HTTP basic
authentication username/password mapping, Oracle Tuxedo security level may also need to be
configured in the UBBCONFIG file. For more information, see “Configuring Oracle Tuxedo
Security Level for Outbound HTTP Basic Authentication”.and Programming Outbound
Authentication Plug-ins in the Oracle Service Architecture Leveraging Tuxedo Programming
Web Services.

Configuring Message-Level Web Service Security
SALT supports Web Service Security 1.0 and 1.1 specification for message level security. You
can use message-level security in SALT to assure:

Authentication, by requiring username or X.509 tokens

Inbound request message integrity, by requiring the soap body signature
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 35

../prog/plugin.html#wp1040794

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Main Use Cases of Web Service Security
SALT implementation of the Web Service Security: SOAP Message Security specification
supports the following use cases:

Include a token (username, or X.509) in the SOAP message for authentication.

Include a token (X.509) and the soap body signature in the SOAP message for integrity.

Using WS-Security Policy Files
SALT includes a number of WS-Security Policy 1.0 and 1.2 files you can use for message level
security use cases.

The WS-Policy files can be found at $TUXDIR/udataobj/salt/policy once you have
successfully installed SALT.

Table 8 lists the default WS-Security Policy files bundled by SALT.

The above policy files (with the exception of the WS-Security Policy 1.2 UserToken file), can
be referenced using<Servicegroup> or <Service> elements in the native WSDF file. The WSSP
1.2 UserToken file can only be referenced using<Servicegroup>.

Table 8 WS-Security Policy Files Provided By SALT

File Name Purpose

wssp1.0-username-au
th.xml

WS-Security Policy 1.0. Plain Text Username Token for Service
Authentication

wssp1.0-x509v3-auth
.xml

WS-Security Policy 1.0. X.509 V3 Certificate Token for Service
Authentication

wssp1.0-signbody.xm
l

WS-Security Policy 1.0. Signature on SOAP:Body for verification of
X.509 Certificate Token

wssp1.2-Wss1.0-User
nameToken-plain-aut
h.xml

WS-Security Policy 1.2. Plain Text Username Token for Service
Authentication

wssp1.2-Wss1.1-X509
V3-auth.xml

WS-Security Policy 1.2. X.509 V3 Certificate Token for Service
Authentication

wssp1.2-signbody.xm
l

WS-Security Policy 1.2. Signature on SOAP:Body for verification of
X.509 Certificate Token
36 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Conf igur ing Secur i t y Fea tu res
Listing 18 shows a combination of policy assignment making that the service “TOUPPER”
requires client send a UsernameToken (in plain text format) and an X509v3Token in request, and
also requires the SOAP:Body part of message to be signed with the X.509 token. The sample
“wsseapp” shows how to clip the WSSP 1.2 UserToken file used in the <Service> element.

Listing 18 WS-Security Policy Usage

<Definition ...>
 <WSBinding id="simpapp_binding">

 <Servicegroup id="simpapp">
 <Policy location="salt:wssp1.2-Wss1.1-X509V3-auth.xml"/>
 <Service name="TOUPPER" >
 <Policy location="D:/wsseapp/wssp1.2-UsernameToken-Plain.xml"/>
 <Policy location="salt:wssp1.2-signbody.xml" use="input"/>
 </Service>
 </Servicegroup>

 </WSBinding>

</Definition>

Policy is referred using the “location” attribute of the <Policy> element. A prefix “salt:”
means an SALT default bundled policy file is used. User-defined policy file can be used by
directly specifying the file path.

Notes: If a policy is referred at the <Servicegroup> level, it applies to all services in this
service group.

The “signbody” policy must be used with the attribute “use” set as “input”, which
specifies the policy applied only for input message. This is necessary because the
SOAP:Body of the output message is not signed.

Configuring SAML Single Sign-On
Transport Protection
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 37

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
SAML Key File

SALT supports SAML 1.1 and SAML 2.0 Single Sign-On (SSO). You can use Single Sign-On
to process a secure incoming request by performing authentication on behalf of the end user,
without having to request their credentials.

The SALT implementation of SAML SSO supports the sender-vouches confirmation method.
With this method, SALT represents a back-end system, and a Web Service intermediary sits
between the back-end and the end user. In this case, the Web Service intermediary "vouches" for
the end user using SAML token mechanisms.

Transport Protection
Although it is not required to use TLS/SSL as a transport to carry an SAML security token to
access Oracle Tuxedo through GWWS, it is recommended that the Web Service intermediary use
TLS/SSL to access Oracle Tuxedo through GWWS using an SAML security token. The use of
TLS/SSL ensures the SOAP message content from being disclosed or modified without detection
This is particularly important when accessing Oracle Tuxedo services through a wide area
network outside of a fire wall.

SAML Key File
The public key certificate of trusted SAML assertion issuers must be located in the $APPDIR
directory. These certificates must be in PEM format. The name of the certificate must reflect the
issuer name. For instance, if the issuer id is "ws_1" then the certificate name should be
ws_1.pem.

However, for long issuer names the key file provides the ability to correlate between the real issue
name and its local reference name so that the PEM file name can be much more concise but still
remain useful to the administrator.

For example, if the assertion issuer name is web.abc.com/saml/authenticator, then the PEM
file name for its public key certificate can be called "abc.pem" instead of
"www.abc.com/saml/authenticator.pem".

This is especially useful when in a UNIX environment where the "/" symbol also works as a path
separator. This translation is required when confusion like this may arise.

The key file name is fixed to "saml_key.meta". It should be located in the same file folder
specified by "CertPath". This file should be protected by the file system and is in XML format.

This section contains the following topics:

Key File Format
38 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Conf igur ing Secur i t y Fea tu res
File Information

GWWS Key

Assertion Issuer Information

Key File Generation

Procedure to Manage Key File

WS-Policy Files

Mapping SAML Elements with Oracle Tuxedo Security

Key File Format
The key file is an XML file. There are three types of information stored in this file:

file information, GWWS key, and issuer information.

Note: You should not modify this file manually since this will cause the file to fail integrity
checking.

File Information
The file information section contains the version number of the tool generated this file, a random
key, administrative password, and digital signature.

GWWS Key
This GWWS key section contains one GWWS symmetric key. There can be only one symmetric
configured for GWWS to simplify the validation task. This key is encrypted with obfuscated key.
This section is optional and is missing if no GWWS symmetric key is configured.

In MP configuration with multiple GWWS on different machine nodes, this file needs to be
replicated on each node; however, if a different GWWS key is desired, then a similar key file but
with a different GWWS key record can be copied to a different node.

Assertion Issuer Information
This section contains multiple records, one for each trusted assertion issuer. It contains issuer
identifier, local issuer identifier, symmetric key, and whether a public key certificate also exists
or not.

The issuer identifier is the value presented in the "issuer" attribute of "<saml:Assertion>"
element in the WSSE security header.

The local issuer identifier is the abbreviated name for the issuer. The purpose is to make any long
issuer identifier become shorter and easier to memorize, but still remain locally unique. This data
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 39

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
is optional; if it exists and a certificate also exists, then the certificate must take the name of this
local issuer identifier with 'pem" as file extension.

The symmetric key is the shared secret that issuer used to sign the assertion. This data is optional.
The length of the key also dictates which algorithm can be used for signing.

The public key certificate exists field tells whether a public key certificate exists. If it exists, the
certificate should be located in the folder specified by the "CertPath" element. This field can
be true while the symmetric key field also exists. At runtime, GWWS detects which key to use to
validate the signature.

Key File Generation
 A new command is added to wsadmin to manage the key file. This new command is used to
generate new key file, add new record, delete existing record, and modify record. The name of
the file it managed is "saml_key.meta" in the current working directory.

To create the key file issues the following wsadmin command:
saml create -p password

Where the "-p password" is for the administrative password to access the newly created key
file. A key file with name "saml_key.meta" is created in the current working directory.

To add a trusted issuer, input the following command:
saml add -i -n authority.abc.com -l abc -c -p password

Where "-i" tells it to add an issuer with name "authority.abc.com" with short local reference
name "abc" and the access password to access the key file. The key file saml_key.meta" must
exist in current working directory. Since "-c" option is given, a public key certificate named
"abc.pem" must exist in the "CertPath".

For more information, see wsadmin the SALT Command Reference.

Procedure to Manage Key File
The following procedure describes a SALT administrator setting up GWWS to be able to handle
SAML assertion for the first time.

1. Change directory to $APPDIR and start wsadmin.

2. Use "saml create" command to create the key file.

3. Use "saml add -g" command to add GWWS record.

4. Use "saml add -i" command to add trusted assertion issuer record for every trusted
assertion issuer.
40 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../ref/comref.html

Conf igur ing Secur i t y Fea tu res
5. Copy the file "saml_key.meta" to the directory described in the SALT deployment
descriptor file "CertPath" element under "Certificate".

6. Change directory to Oracle Tuxedo application domain, and use "tmboot -y" to boot the
Oracle Tuxedo application domain.

In MP mode configuration, it is possible to have a different GWWS record in the key file for a
different GWWS instance. The following procedure creates the key file for a GWWS instance on
a different node.

1. Copy the original key file to different directory or machine.

2. Use "saml delete -g" to delete existing GWWS record.

3. Use "saml add -g" to add a different GWWS record.

4. Boot Oracle Tuxedo.

WS-Policy Files
SALT includes a number of WS-Policy files that you can use for configuring services for SAML
SSO as listed in Table 9

The above files can be referenced at the <ServiceGroup> or <Service> level in the native
WSDF file.

This policy may be combined with other WS-Security policies (such as inbound body signature).
For more information, see Configuring Message-Level Web Service Security.

For example, Listing 19 shows the SAML 1.1 policy file with supported capabilities outlined.

Table 9 SAML SSO Policy Files

File Name Purpose

Wssp1.2-2007-Saml1.1-Se
nderVouches.xml

SAML 1.1 support

Wssp1.2-2007-Saml2.0-Se
nderVouches.xml

SAML 2.0 support
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 41

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Listing 19 SAML 1.1 Policy File

<?xml version="1.0"?>

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Tokensp:IncludeToken="http://docs.oasis-open.org/ws-

sx/ws-securitypolicy/200512/IncludeToken/Always">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512

/IncludeToken/Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
42 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Conf igur ing Secur i t y Fea tu res
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

/IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
</wsp:Policy>

Mapping SAML Elements with Oracle Tuxedo Security
Table 10 lists what optional SAML assertion elements must present.

Table 10 Optional SAML Assertion Elements

Oracle Tuxedo Security and SAML Assertion Correspondence

Oracle Tuxedo SECURITY
Level

Additional SAML Assertion
Elements Required

Access Principal

NONE None Anonymous, Subject/NameID

APP_PW None Anonymous, Subject/NameID

USER_PW Subject Subject/NameID

ACL Subject Subject/NameID

MANDATORY_ACL Subject Subject/NameID
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 43

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
In NONE and APP_PW cases, if the optional element "Subject" exists, then "NameID" is used to
access Oracle Tuxedo. If the optional element "Subject" does not exist, then the client assumes
anonymous user identity to access Oracle Tuxedo. If the anonymous access is not allowed (i.e.
no credential mapping for anonymous), then the request fails.

If the SAML assertion does not contain a "Subject" element and Tuxedo SECURITY level is
configured at USER_PW, ACL, or MANDATORY_ACL, then the request is rejected.

Compiling Oracle Service Architecture Leveraging Tuxedo
Configuration
Compiling a SALT configuration file means generating a binary version of the file (SALTCONFIG)
from the XML version SALTDEPLOY file. To compile a configuration file, run the wsloadcf
command. wsloadcf parses a deployment file and loads the binary file.

wsloadcf reads a deployment file and all imported WSDF files and WS-Policy files referenced
in the deployment file, checks the syntax according to the XML schema of each file format, and
optionally loads a binary configuration file called SALTCONFIG. The SALTCONFIG and
(optionally) SALTOFFSET environment variables point to the SALTCONFIG file and (optional)
offset where the information should be stored.

wsloadcf validates the given SALT configuration files according to the predefined XML
Schema files. XML Schema files needed by SALT can be found at directory:
$TUXDIR/udataobj/salt.

wsloadcf can execute for validating purpose only without generating the binary version
SALTCONFIG once option “-n” is specified.

For more information, see wsloadcf reference in the Oracle Service Architecture Leveraging
Tuxedo Reference Guide.

Configuring the UBBCONFIG File for Oracle Service
Architecture Leveraging Tuxedo
After configuring and compiling the SALT configuration, the Oracle Tuxedo UBBCONFIG file
needs to be updated to apply SALT components in the Oracle Tuxedo application. Table 11 lists
the UBBCONFIG file configuration tasks for SALT.
44 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../ref/comref.html#wp1110855

Conf igur ing the UBBCONFIG F i l e fo r Orac le Se rv ice A rch i tec tu re Leve rag ing Tuxedo
Configuring the TMMETADATA Server in the *SERVERS Section
SALT requires at least one TMMETADATA server defined in the UBBCONFIG file. Multiple
TMMETADATA servers are also allowed to increase the throughput of accessing the Oracle Tuxedo
service definitions.

Listing 20 lists a segment of the UBBCONFIG file that shows how to define TMMETADATA servers
in an Oracle Tuxedo application.

Listing 20 TMMETADATA Servers Defined In the UBBCONFIG File *SERVERS Section

......
*SERVERS
TMMETADATA SRVGRP=GROUP1 SRVID=1
 CLOPT="-A -- –f domain_repository_file -r"
TMMETADATA SRVGRP=GROUP1 SRVID=2
 CLOPT="-A -- –f domain_repository_file"
......

Note: Maintaining only one Service Metadata Repository file for the entire Oracle Tuxedo
domain is highly recommended. To ensure this, multiple TMMETADATA servers running
in the Oracle Tuxedo domain must point to the same repository file.

Table 11 UBBCONFIG File Configuration Tasks for SALT

Configuration Tasks Required Optional

Configuring the TMMETADATA Server in the *SERVERS Section X

Configuring the GWWS Servers in the *SERVERS Section X

Updating System Limitations in the UBBCONFIG File X

Configuring Certificate Password Phrase For the GWWS Servers X

Configuring Oracle Tuxedo Authentication for Web Service Clients X

Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic
Authentication

X

Configuring an Oracle Service Architecture Leveraging Tuxedo Application 45

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
For more information, see “Managing The Tuxedo Service Metadata Repository” in the Oracle
Tuxedo documentation.

Configuring the GWWS Servers in the *SERVERS Section
To boot GWWS instances defined in the SALTDEPLOY file, the GWWS servers must be defined in
the *SERVERS section of the UBBCONFIG file. You can define one or more GWWS server instances
concurrently in the UBBCONFIG file. Each GWWS server must be assigned with a unique instance id
with the option “-i” within the Oracle Tuxedo domain. The instance id must be present in the
XML version SALTDEPLOY file and the generated binary version SALTCONFIG file.

Listing 21 lists a segment of the UBBCONFIG file that shows how to define GWWS servers in an
Oracle Tuxedo application.

Listing 21 GWWS Servers Defined In the UBBCONFIG File *SERVERS Section

......
*SERVERS
GWWS SRVGRP=GROUP1 SRVID=10
 CLOPT="-A -- –i GW1"
GWWS SRVGRP=GROUP1 SRVID=11
 CLOPT="-A -- –i GW2"
GWWS SRVGRP=GROUP2 SRVID=20
 CLOPT="-A -- -c saltconf_2.xml –i GW3"
......

For more information, see “GWWS” in the Oracle SALT Reference Guide.

Notes: Be sure that the TMMETADATA system server is set up in the UBBCONFIG file to start before
the GWWS server boots. Because the GWWS server calls services provided by TMMETADATA,
it must boot after TMMETADATA.

To ensure TMMETADATA is started prior to being called by the GWWS server, put
TMMETADATA before GWWS in the UBBCONFIG file or use SEQUENCE parameters in
*SERVERS definition in the UBBCONFIG file.

SALT configuration information is pre-compiled with wsloadcf to generate
theSALTCONFIG file binary. GWWS server reads the SALTCONFIG file at start up.The
46 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../../../../tuxedo/docs12c/ads/admrp.html
../ref/comref.html#wp1111835

Conf igur ing the UBBCONFIG F i l e fo r Orac le Se rv ice A rch i tec tu re Leve rag ing Tuxedo
SALTCONFIG environment variable must be set correctly with the SALTCONFIG file
entity before booting GWWS servers.

Option “-c” is deprecated in the current version SALT. In SALT 1.1 release, option “-c”
is used to specify SALT 1.1 configuration file for the GWWS server. In SALT 2.0, GWWS
server reads SALTCONFIG file at start up. GWWS server specified with this option can be
booted with a warning message to indicate this deprecation. The specified file can be
arbitrary and is not read by the GWWS server.

Updating System Limitations in the UBBCONFIG File
When configuring the Oracle Tuxedo domain with SALT GWWS servers, you must plan and update
Oracle Tuxedo system limitations defined in the UBBCONFIG file according to your SALT
application requirements.

Tip: Define an adequate MAXSERVERS number in the *RESOURCES section

SALT requires the following system servers to be started in an Oracle Tuxedo domain:
TMMETADATA and GWWS. The number of TMMETADATA and GWWS server must be accounted for in
the MAXSERVERS value.

Tip: Define an adequate MAXSERVICES number in the *RESOURCES section

When the GWWS server working in the outbound direction, external wsdl operations are mapped
with Oracle Tuxedo services and advertised via the GWWS servers. The number of the advertised
services by all GWWS servers must be accounted for in the MAXSERVICES value.

Tip: Define an adequate MAXACCESSERS number in the *RESOURCES section

The MAXACCESSERS value is used to specify the default maximum number of clients and servers
that can be simultaneously connected to the Oracle Tuxedo bulletin board on any particular
machine in this application. The number of TMMETADATA and GWWS server, maximum concurrent
Web Service client requests must be accounted for in the MAXACCESSERS value.

Tip: Define an adequate MAXWSCLIENTS number in the *MACHINES section

When the GWWS server operating in the inbound direction, each Web Service client is deemed a
workstation client in the Oracle Tuxedo system; therefore, MAXWSCLIENTS must be configured
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 47

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
with a valid number in the UBBCONFIG file for the machine where the GWWS server is deployed.
The number is shared.

Configuring Certificate Password Phrase For the GWWS Servers
Configuring a security password phrase is required when setting up certificates for SALT. The
certificates setting is desired when the GWWS servers enable SSL link-level encryption and/or Web
Service Security X.509 Token and signature features. The certificate private key file must be
created and encrypted with a password phrase.

When GWWS servers are specified with certificate-related features, they are required to read the
private key file and decrypt it using the password phrase. To configure a password phrase for each
GWWS server, the keywords SEC_PRINCIPAL_NAME and SEC_PRINCIPAL_PASSVAR must be
specified under each desired GWWS server entry in the *SERVERS section. During compiling the
UBBCONFIG file with tmloadcf, the administrator must type the password phrase, which can be
used to decrypt the private key file correctly.

Note: Only one private key file can be specified in the SALT deployment file. All the GWWS
servers defined in the SALT deployment file must be provided the same password phrase
for the private key file decryption.

Listing 22 shows a segment of the UBBCONFIG file that defines a security password phrase for the
GWWS servers.

Listing 22 Security Password Phrase Defined in the UBBCONFIG File For the GWWS Servers

......
*SERVERS
GWWS SRVGRP=GROUP1 SRVID=10
 SEC_PRINCIPAL_NAME="gwws_certkey"
 SEC_PRINCIPAL_VAR="gwws_certkey"
 CLOPT="-A -- –i GW1"
GWWS SRVGRP=GROUP1 SRVID=11
 SEC_PRINCIPAL_NAME="gwws_certkey"
 SEC_PRINCIPAL_PASSVAR="gwws_certkey"
 CLOPT="-A -- –i GW2"
......
48 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Conf igur ing the UBBCONFIG F i l e fo r Orac le Se rv ice A rch i tec tu re Leve rag ing Tuxedo
For more information, see UBBCONFIG(5)in the Oracle Tuxedo 12cR1 documentation.

Configuring Oracle Tuxedo Authentication for Web Service Clients
SALT GWWS servers rely on Oracle Tuxedo authentication framework to check the validity of the
Web Service clients. If your existing Oracle Tuxedo application is already applied, Web Service
clients must send user credentials using one of the following:

HTTP Basic Authentication in the HTTP message header

Web Service Security Username Token in the SOAP message header

Contrarily, if you want to authenticate Web Service clients for SALT, you must configure Oracle
Tuxedo authentication in the Oracle Tuxedo domain.

For more information, see Administering Authentication in the Oracle Tuxedo 12cR1
Documentation.

Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic
Authentication
To obtain Oracle Tuxedo client uid/gid for outbound HTTP Basic Authentication username
/password mapping, you must configure the Oracle Tuxedo Security level as USER_AUTH, ACL
or MANDATORY_ACL in the UBBCONFIG file.

Listing 23 shows a segment of the UBBCONFIG file that defines security-level ACL in the
UBBCONFIG file.

Listing 23 Security-Level ACL Defined in the UBBCONFIG File For Outbound HTTP Basic Authentication

*RESOURCES
IPCKEY ...
......
SECURITY ACL
......
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 49

../../../tuxedo/docs12c/rf5/rf5.html
../../../tuxedo/docs12c/sec/secadm.html

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Configuring Oracle Service Architecture Leveraging Tuxedo
In Oracle Tuxedo MP Mode
To set up GWWS servers running on multiple machines within an MP mode Oracle Tuxedo domain,
each Oracle Tuxedo machine must be defined with a separate SALTDEPLOY file and a set of
separate other components.

You must propagate the following global resources across different machines:

Certificates.

Private key file and the trusted certificate files must be accessible from each machine
according to the settings defined in the SALTDEPLOY file.

Plug-in load libraries.

Plug-in shared libraries must be compiled on each machine and must be accessible
according to the settings defined in the SALTDEPLOY file.

You may define two GWWS servers running on different machine with the same functionality by
associating the same WSDF files. But it requires manual propagation of the following artifacts:

The WSDF files

The WS-Policy files

FML32 field table definition files if Oracle Tuxedo Services consume FML32 typed
buffers

XML Schema files excerpted by wsdlcvt.

Migrating from Oracle Service Architecture Leveraging
Tuxedo 1.1
This section describes the following two possible migrating approaches for SALT 1.1 customers
who plan to upgrade to SALT 2.0 release:

Running GWWS servers with SALT 1.1 Configuration File

Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration File
50 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Migrat ing f rom Orac l e Se rv ice A r ch i tec ture Leve rag ing Tuxedo 1 .1
Running GWWS servers with SALT 1.1 Configuration File
After upgrading from SALT 1.1 to SALT 2.0 release, you may still want to run your existing
SALT applications with the original SALT 1.1 configuration file. This is supported in SALT 2.0.

The SALT configuration compiler utility, wsloadcf, supports loading the binary version
SALTCONFIG from one SALT 1.1 format configuration file.

To run SALT 2.0 GWWS servers with SALT 1.1 configuration file, you must perform the following
steps:

1. Load the binary version SALTCONFIG from the SALT 1.1 format configuration file via
wsloadcf.

2. Set the SALTCONFIG environment variable before booting the GWWS servers.

3. Boot the GWWS servers associated with this SALT 1.1 configuration file.

Note: If you have more than one SALT 1.1 configuration files defined in an Oracle Tuxedo
domain, you must follow steps 1 - 3 to generate more binary SALTCONFIG files and boot
corresponding GWWS servers.

Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration
File
When wsloadcf loads a binary SALTCONFIG from a SALT 1.1 configuration file, it also converts
this SALT 1.1 configuration file into one WSDF file and one SALTDEPLOY file.

It is highly recommended to start using the SALT 2.0 styled configuration once you get
the converted files from SALT 1.1 configuration. If you want to incorporate more than
one SALT 1.1 configuration file into one SALT 2.0 deployment, you must manually edit
the SATLDEPLOY file for importing the other WSDF files.

Listing 24 shows the converted SALTDEPLOY file and WSDF file from a given SALT 1.1
configuration file.

Listing 24 A Sample of SALT 1.1 Configuration File (simpapp.xml)

<Configuration xmlns=" http://www.bea.com/Tuxedo/Salt/200606">
 <Servicelist id="simpapp">
 <Service name="toupper" />
 <Service name="tolower" />
 </Servicelist>
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 51

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
 <Policy />
 <System />
 <WSGateway>
 <GWInstance id="GWWS1">
 <HTTP address="//127.0.0.1:7805" />
 <HTTPS address="127.0.0.1:7806" />
 <Property name="timeout" value="300" />
 </GWInstance>
 </WSGateway>
</Configuration>

The converted SALT 2.0 WSDF file and deployment file are shown in Listing 25 and Listing 26
respectively.

Listing 25 Converted WSDF File for SALT 1.1 Configuration File (simpapp.xml.wsdf)

<Definition name="simpapp" wsdlNamespace="urn:simpapp.wsdl"
 xmlns=" http://www.bea.com/Tuxedo/WSDF/2007">
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Service name="toupper" />
 <Service name="tolower" />
 </Servicegroup>
 <SOAP>
 <AccessingPoints>
 <Endpoint id="simpapp_GWWS1_HTTPPort"
 address=http://127.0.0.1:7805/simpapp />
 <Endpoint id=" simpapp_GWWS1_HTTPSPort"
 address=https://127.0.0.1:7806/simpapp />
 </AccessingPoints>
 </SOAP>
 </WSBinding>
</Definition>
52 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Conf igur ing Serv i ce Cont ract D iscove ry
Listing 26 Converted SALTDEPLOY File for SALT 1.1 Configuration File (simpapp.xml.dep)

<Deployment xmlns=" http://www.bea.com/Tuxedo/SALTDEPLOY/2007">
 <WSDF>
 <Import location="/home/myapp/simpapp.wsdf" />
 </ WSDF>
 <WSGateway>
 <GWInstance id="GWWS1">
 <Inbound>
 <Binding ref="simpapp:simpapp_binding">
 <Endpoint use=" simpapp_GWWS1_HTTPPort" />
 <Endpoint use=" simpapp_GWWS1_HTTPSPort" />
 </Binding>
 </Inbound>
 <Properties>
 <Property name="timeout" value="300" />
 </Properties>
 </GWInstance>
 </WSGateway>
</ Deployment>

Configuring Service Contract Discovery
When discovery is activated for a service, the server that provides the service collects service
contract information and sends the information to an internal service implemented by
TMMETADATA(5). The same service contract is only sent once to reduce communication
overhead.

The TMMETADATA server summarizes the collected data and generates a service contract. The
contract information can either can be stored in the metadata repository, or output to a text file
(which is then loaded to the metadata repository using tmloadrepos). SALT uses the tmscd
command to control the service contract runtime collection. For more information, see tmscd in
the Oracle Service Architecture Leveraging Tuxedo Command Reference Guide.

Generated service contract information contains the service name, request buffer information,
response buffer information, and error buffer information if there is a failure. The collected
service contract information is discarded if it fails to send information to the TMMETADATA server.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 53

../../../tuxedo/docs11gr1ps1/rf5/index.html
http://e-docs.bea.com/salt/docs12c/ref/comref.html

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
The buffer information includes buffer type and subtype, and field information for FML/FML32
(name,type,subtype).

Discovery is supported for any embedded buffer in FML32 buffer. For FML/FML32 field
occurrences, the discovery automatically updates the pattern for the count/requiredcount in
metadata repository. Field occurrence does not impact the pattern, but the minimum occurrence
is the "requiredcount".The maximum occurrence is the "count" of the entire contract
discovery period.

For VIEW/VIEW32/X_C_TYPE/X_COMMON, only the view name is discovered. SALT can
generate a detailed description by view name when using metadata repository.

Note: Patterns flagged with autodiscovery (see Table 12) are compared.

If the same autodiscovery pattern already exists in the metatdata repository, then the
newer pattern is ignored.

Only application ATMI services (local, or imported via /TDOMAIN gateway) are supported.
Service contract discovery does not support the following services:

system services (name starts with '.' or '..')

conversational services

CORBA services

/Q and SALT proxy services

Note: Services without a reply are mapped as "oneway" services in the metadata repository.

tpforward Support
If a service issues tpforward() instead of tpreturn(), its reply buffer information is the same
as the reply buffer of the service which it forwards to. For example:

client calls SVCA with a STRING typed buffer

SVCA processes the request, and then creates a new FML32 typed buffer as the request is
forwarded to SVCB

SVCB handles the request and returns a STRING buffer to the client. The SVCA contract
is STRING+STRING. The SVCB contract is FML32+STRING
54 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Serv ice Cont ract Tex t F i l e Output
Service Contract Text File Output
If you want collected service contract discovery information logged to a file instead of directly to
the metadata repository, you must use the TMMETADATA(5) -o<filename> option and then use
tmloadrepos to manually load the file to the metadata repository. For more information, see
tmloadrepos in the Oracle Tuxedo Command Reference Guide.

The output complies with the format imposed by tmloadrepos if a file is used as storage instead
of the metadata repository. The file contains a service header section and a parameter section for
each parameter. Service header contains items listed in Table 12. The "service" field format is
<TuxedoServiceName>+'_'+<SequenceNo>. The suffix <SequenceNo> is used to avoid name
conflict when multiple patterns are recognized for an Oracle Tuxedo service.

Note: <SequenceNo> starts from the last <SequenceNo> number already stored in the
metadata repository.

Service parameter contains information is listed in Table 13.

Table 12 Service Level Attributes

Keyword (abbreviation) Sample Value Description

service(sv) TOUPPER_1 <RealServiceName>_<Seq
uenceNo>.

tuxservice(tsv) TOUPPER The service name.

servicetype(st) service|oneway one way if TPNOREPLY is set.

inbuf(bt) STRING FML, FML32, VIEW, VIEW32,
STRING, CARRAY, XML,
X_OCTET, X_COMMON,
X_C_TYPE, MBSTRING or
other arbitrary string
representing an application
defined custom buffer type.

outbuf(BT) FML32 set to "NULL" if it is an error
reply.

errbuf(ebt) STRING present only when it is an error
reply.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 55

../../../tuxedo/docs12c/rf5/index.html
../../../tuxedo/docs12c/rfcm/index.html

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
inview View name. Present only when
inbuf is of type VEW or
VIEW32.

outview View name. Present only when
outbuf is of type VIEW or
VIEW32.

errview View name. Present only when
errbuf is of type VIEW or
VIEW32.

autodiscovery true Set to "true".

Table 13 Parameter Level Attributes

Keyword (abbreviation) Sample Description

param(pn) USER_INFO

paramdescription(pd) service parameter

access(pa) in A combination of
{in}{out}{err}.

type(pt) fml32 byte, short, integer, float,
double, string, carray, dec_t,
xml, ptr, fml32, view32,
mbstring.

subtype(pst) A view name for a view or
view32 typed parameter.

count 100 The maximum occurrence of
FML/FML32 field watched
during the collection period

requiredcount 1 The minimum occurrence of
FML/FML32 field watched
during the collection period.

Table 12 Service Level Attributes

Keyword (abbreviation) Sample Value Description
56 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Serv ice Cont ract Tex t F i l e Output
Examples
Example 1:

Input: service=SVC, request=STRING, reply = TPSUCCESS + STRING

Output Pattern: service=SVC_1,tuxservice=SVC,inbuf=STRING,outbuf=STRING

Example 2:

Input: service=SVC, request=STRING, reply = TPFAIL+ STRING

Output Pattern (partial): Service=SVC_1,
tuxservice=SVC,inbuf=STRING,outbuf=NULL,errbuf=STRING

Example 3:

Input:
service=SVC, request=STRING, reply = TPSUCCESS + STRING

service=SVC, request=STRING, reply = TPFAIL+ STRING

Output Pattern:
service=SVC_1,tuxservice=SVC,inbuf=STRING,outbuf=STRING

Service=SVC_2, tuxservice=SVC,inbuf=STRING,outbuf=NULL,errbuf=STRING

Example 4:

Input: service=FMLS,request=FML32(name,pwd),reply=TPSUCCESS+FML32(id)

Output Pattern:

service=FMLS_1,tuxservice=FMLS,inbuf=FML32,outbuf=FML32
param: input(name, pwd), output(id)

Example 5:

Input:
service=FMLS,request=FML32(name,pwd),reply=TPSUCCESS+FML32(id)

service=FMLS,request=FML32(name,pwd,token),reply=TPSUCCESS+FML32(id)

Output Pattern:
service=FMLS_1,tuxservice=FMLS,inbuf=FML32,outbuf=FML32

param: input(name, pwd), output(id)

service=FMLS_2,tuxservice=FMLS,inbuf=FML32,outbuf=FML32

param: input(name, pwd,token), output(id)
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 57

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Configuring Oracle Service Architecture Leveraging
Tuxedo WS-TX Support

This section contains the following topics:

Configuring Transaction Log Device

Registration Protocol

Configuring WS-TX Transactions

Configuring Maximum Number of Transactions

Configuring Policy Assertions

WSDL Generation

WSDL Conversion

Notes: These configuration changes are summarized in the SALTDEPLOY additions
pseudo-schema and WSDF additions pseudo-schema Appendix.

For additional information, see the SALT Interoperability Guide.

Configuring Transaction Log Device
The GWWS system server must be configured using the transaction log (TLogDevice) element
(similar to the Oracle Tuxedo or /Domains TLog files). The TLOGDevice element is added to the
SALTCONFIG source file (SALTDEPLOY) as shown in Listing 27.

A TLOGName element is also added to allow sharing the same TLog device across GWWS
instances.

Only one TLog device per Web services Gateway instance is permitted (that is, the transaction
log element is a child element of /Deployment/WSGateway/GWInstance).

Listing 27 TLOG Element Added to SALTDEPLOY File

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

 <WSDF>

 ...
58 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../interop/index.html

Regis t ra t ion P ro toco l
 </WSDF>

 <WSGateway>

 <GWInstance id="GW1">

 <TLogDevice location="/app/GWTLOG"/>

 <TLogName id="GW1TLOG"/>

...

 </GWInstance>

 </WSGateway>

 ...

</Deployment>

Registration Protocol
Oracle Tuxedo-based services are registered with a Durable 2PC protocol with coordinators.

When Oracle Tuxedo is the coordinator (outbound direction), the GWWS system server allows
either Volatile 2PC or Durable 2PC registration requests and handles them accordingly.

Configuring WS-TX Transactions
Figure 2 illustrates the application and protocol flows of a typical WS-AT context service
invocation.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 59

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Figure 2 WS-AT Service Invocation

The configuration steps and runtime behavior of the SALT GWWS gateway are outlined in the
following sections (depending on the role of the Oracle Tuxedo domain as shown in Figure 2):

Configuring Incoming Transactions

Configuring Outbound Transactions

Configuring Incoming Transactions
Oracle Tuxedo services exposed as Web services do not require any specific configuration other
than creating a transaction log file and adding it to the GWWS deploy configuration file in order
to initiate a local transaction associated with an incoming WS-AT transaction request.

To ensure a transaction can be propagated into an Oracle Tuxedo domain, do the following steps:

1. Ensure that the Oracle Tuxedo service called supports transactions.
60 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Conf igur ing WS-TX T ransact i ons
2. Configure a transaction log g file in the GWWS deployment file. For more information, see
Configuring Transaction Log Device.

3. Configure a policy file containing a WS-AT Assertion corresponding to the desired behavior
with respect to the external Web Service called. For more information, see Configuring Policy
Assertions.

4. Incoming calls containing a CoordinationContext element creates an Oracle Tuxedo
global transaction.

Error Conditions
Error conditions are handled as follows:

No log file is configured for the gateway. A wscoor:InvalidState fault is sent back to
the caller. The Detail field contains a corresponding message.

The target Oracle Tuxedo service does not support transactions. An application fault with a
TPETRAN error code is returned to the caller.

For all other applications, configuration (such as TPENOENT) or system errors are handled
the same way that normal (non-transactional) requests are handled.

Configuring Outbound Transactions
In order for Oracle Tuxedo clients to propagate an Oracle Tuxedo global transaction to external
Web services, do the following steps:

1. Configure a transaction log g file in the GWWS deployment file. For more information, see
Configuring Transaction Log Device.

2. Configure a policy file containing a WS-AT Assertion corresponding to the desired behavior
with respect to the external Web Service called. For more information, see Configuring Policy
Assertions.

3. Depending on the assertion setting and presence of an Oracle Tuxedo transaction context, a
CoordinationContext element is created and sent in the SOAP header along with the
application request.

4. An endpoint reference is automatically generated and sent along with the
CoordinationContext element for the remote RegistrationService element to enlist in
the transaction. This step, along with the protocol exchanges (Prepare/Commit or Rollback
etc.) is transparent on both sides.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 61

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Error Conditions
Error conditions are handled as follows:

If the remote system does not support transactions and the WS-AT Assertion/transaction
context call has must create transaction semantics, a TPESYSTEM error is returned to the
client.

Errors generated remotely are returned to the Oracle Tuxedo client in the same manner as
regular, non-transactional calls. The fault Reason and Detail fields returned describe the
nature of the failure (which is environment dependent).

Configuring Maximum Number of Transactions
The MaxTran element allows you to configure the size of the internal transaction table as shown
in Listing 1. The default is MAXGTT.

Note: The MaxTran value is optional. If the configured value is greater than MAXGTT, it is
ignored and MAXGTT is used instead

Listing 1 MAxTran Element

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

 <WSDF>

 ...

 </WSDF>

 <WSGateway>

 <GWInstance id="GW1">

...

<MaxTran value="500"/>

...

 </GWInstance>

 </WSGateway>

 ...

</Deployment>
62 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Conf igur ing Po l i c y Asser t i ons
Configuring Policy Assertions
WS-AT defines a policy assertion that allows requests to indicate whether an operation call must
or may be made as part of an Atomic Transaction.

Policy. xml File
The policy.xml file includes WS-AT policy elements. WS-AT defines the ATAssertion
element, with an Optional attribute, as follows:
/wsat:ATAssertion/@wsp:Optional="true" as shown in Listing 2.

Listing 2 Policy .XML ATAssertion Element

<?xml version="1.0"?>

<wsp:Policy wsp:Name="TransactionalServicePolicy"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wsat="http://docs.oasis-open.org/ws-tx/wsat/2006/06">

 <wsat:ATAssertion wsp:Optional="true"/>

</wsp:Policy>

Note: In order to correctly import external WSDL files, the wsdlcvt command is modified to
generate a policy.xml file containing the ATAssertion element when one is present
in the WSDL. For outbound requests, a policy.xml file containing an ATAssertion
element must be created and properly pointed to in the SALTDEPLOY source.

Inbound Transactions
For inbound transactions, no particular behavior change takes place at runtime. The client
consuming the WSDL takes the decision based on the configured value and runtime behavior is
the same for the normal cases.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 63

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Outbound Transactions

When an ATAssertion with no "Optional=true" is configured, the call must be made in
a transaction. If no corresponding XA transaction exists, the WS-TX transaction is initiated
but not associated with any Oracle Tuxedo XA transaction. If an XA transaction exists,
there is no change in behavior.

When an ATAssertion with "Optional=true" is configured, an outbound transaction
context is requested only if a corresponding Oracle Tuxedo XA transaction exists in the
context of the call.

When no ATAssertion is configured for this service, the corresponding service call is
made outside of any transaction. If a call is made to an external Web service in the context
of an Oracle Tuxedo XA transaction, the Web service call will not propagate the
transaction.

This allows excluding certain Web service calls from a global transaction, and represents
the default for most existing Web services calls (that do not support WS-TX).

WSDL Generation
WSDL generation is enhanced to generate an ATAssertion element corresponding to the
assertion configured in the policy file for the corresponding service.

WSDL Conversion
For outbound requests, the WSDL conversion tool, wsdlcvt, generates a policy.xml file
containing the ATAssertion element when one is present in the processed WSDL.You must
properly configure the location of the policy.xml file in the SALTDEPLOY source.

Oracle Service Architecture Leveraging Tuxedo
Configuration Tool

The SALT configuration tool allows you to view and modify your configuration. Oracle Tuxedo
services can be exposed as Web Services without having to edit configuration files.

Enabling the Oracle Service Architecture Leveraging
Tuxedo Configuration Tool

GWWS Option
64 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Enabl ing the Orac le Serv ice A rch i tec tu re Leve rag ing Tuxedo Conf igurat ion Too l
Security

Note: With Internet Explorer 9, web pages are displayed without CSS information by default.
In order to display the pages properly, Internet Explorer 8 document compatibility mode
should be used. Do the following:

Click on tools (little gear icon on the right) then select "Developer Tools" or hit
F12

Select "Document mode" and "IE8 standards"

GWWS Option
Web administration is disabled by default. In order to enable admin capabilities, the GWWS
server must be configured as such in UBBCONFIG, using the -a option as follows:
-a <scheme>://<host>:<port>

<scheme> can be 'http' or 'https'. If using 'https', GWWS must be configured for SSL
capabilities by adding private-key and certificates in the same manner as securing
application Web Services with SSL.

<host> is the name or IP address of the admin URL listening endpoint.

<port> is the port value of the admin URL listening endpoint.

Use the following URL to access the Web Admin Console:
<scheme>://<host>:<port>/admin

For example: https://server.company.com:3333/admin.

Security
Note: It is recommended that you use SSL/TLS to protect user name and password in order to

integrate the SALT Configuration Tool with Oracle Tuxedo security.

For Oracle Tuxedo application domains that requires ACL or MANDATORY_ACL security, a console
service must be configured in the Oracle Tuxedo security data files. This added information is
used for Oracle Tuxedo access control to the Configuration Tool service. By default, the
Configuration Tool service name is "SALTWEBCONSOLE", but you can modify it using the GWWS
option "-C <CONSOLE SERVICE NAME>". For example:
GWWS SRVGRP=GROUP1 SRVID=3

 CLOPT="-A -- -iGWWS1 -a

http://server.company.com:3333/admin -C CONSOLE"

This tells GWWS to use "CONSOLE" as the service name for access control.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 65

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
Note: You should also use "tpacladd" to add this Web Console service into the security data
file.For example: $ tpacladd -g 1000 CONSOLE.

This will add CONSOLE as an Oracle Tuxedo SERVICE into the security data file and
restrict the access only to user belongs to the group with group id 1000.

Configuring Configuration Tool Security

No Security

Without configuring SECURITY in the "*RESOURCES" section of the UBBCONFIG file or
configuring it with a value of "NONE", no security is used for accessing the SALT Configuration
Tool. Anyone who knows the URL of the tool can access it. Listing 3 shows a UBBCONFIG file
"*RESOURCES" section example.

Listing 3 No Security UBBCONFIG *RESOURCES Section Example

*RESOURCES

IPCKEY 15301

DOMAIN mydomain

MASTER machine1

MAXACCESSERS 50

MAXSERVERS 10

MAXSERVICES 40

MODEL SHM

LDBAL N

Application Password Security

Configuring SECURITY in the "*RESOURCES" section with a value of APP_PW causes Oracle
Tuxedo application password security to be enabled. Users who want to access the SALT
configuration tool are requested to present this password; failure to do so results in denied access.
Listing 4 shows a UBBCONFIG file "*RESOURCES" section example.
66 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Enabl ing the Orac le Serv ice A rch i tec tu re Leve rag ing Tuxedo Conf igurat ion Too l
Listing 4 Application Password Security UBBCONFIG *RESOURCES Section Example

*RESOURCES

IPCKEY 15301

DOMAIN mydomain

MASTER machine1

MAXACCESSERS 50

MAXSERVERS 10

MAXSERVICES 40

MODEL SHM

LDBAL N

SECURITY APP_PW

User Authentication Security

Configuring SECURITY in the "*RESOURCES" section with a value of USER_AUTH causes Oracle
Tuxedo user authentication security to be enabled. To access the SALT configuration tool users
are requested to present a valid Oracle Tuxedo user name and password; failure to do so results
in denied access. Listing 5 shows a UBBCONFIG file "*RESOURCES" section example.

Listing 5 User Authentication Security UBBCONFIG *RESOURCES Section Example

*RESOURCES

IPCKEY 15301

DOMAIN mydomain

MASTER machine1

MAXACCESSERS 50

MAXSERVERS 10

MAXSERVICES 40

MODEL SHM
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 67

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
LDBAL N

SECURITY USER_AUTH

A user can be added using the "tpusradd" command. The following example adds user "tom"
to the group with group id 1000 in the Oracle Tuxedo application domain.
$ tpusradd -u 2503 -g 1000 tom

Access Control List Security

Configuring SECURITY in the "*RESOURCES" section with a value of ACL causes Oracle Tuxedo
access control list security to be enabled. Anyone who wants to access the SALT configuration
tool is requested to present a valid Oracle Tuxedo user name and password that belongs to the
group(s) allowed to access the Web Console; failure to do so results in denied access. Listing 6
shows a UBBCONFIG file "*RESOURCES" section example.

Listing 6 Access Control List Security UBBCONFIG *RESOURCES Section Example

*RESOURCES

IPCKEY 15301

DOMAIN mydomain

MASTER machine1

MAXACCESSERS 50

MAXSERVERS 10

MAXSERVICES 40

MODEL SHM

LDBAL N

SECURITY ACL

Access control to the configuration tool can be added using the "tpacladd" command. The
following example adds Configuration Tool service "SALTWEBCONSOLE" to the access control
list in an Oracle Tuxedo application domain.
68 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

Enabl ing the Orac le Serv ice A rch i tec tu re Leve rag ing Tuxedo Conf igurat ion Too l
$ tpacladd -g 1000 SALTWEBCONSOLE

If the service is not added to the Oracle Tuxedo access control security data file, any user with a
valid Oracle Tuxedo user name and password can access the SALT Web Console.

Mandatory Access Control List Security

Configuring SECURITY in the "*RESOURCES" section with a value of MANDATORY_ACL causes
Oracle Tuxedo access control list security to be enabled. Anyone who wants to access the SALT
configuration tool is requested to present a valid Oracle Tuxedo user name and password that
belongs to the group(s) allowed to access the configuration tool; failure to do so results in denied
access. Listing 7 shows a UBBCONFIG file "*RESOURCES" section example.

Listing 7 Mandatory Access Control List Security UBBCONFIG *RESOURCES Section Example

*RESOURCES

IPCKEY 15301

DOMAIN mydomain

MASTER machine1

MAXACCESSERS 50

MAXSERVERS 10

MAXSERVICES 40

MODEL SHM

LDBAL N

SECURITY MANDATORY_ACL

Access control to the configuration tool can be added using the "tpacladd" command. The
following example adds the configuration tool service "SALTWEBCONSOLE" to the access control
list in the Oracle Tuxedo application domain.
$ tpacladd -g 1000 SALTWEBCONSOLE

If the service is not added to the Oracle Tuxedo access control security data file, then no one can
access the SALT Web Console.
Configuring an Oracle Service Architecture Leveraging Tuxedo Application 69

Conf igur ing an Orac le Se rv ice A rch i tec ture Leverag ing Tuxedo App l i cat ion
See Also
tmadmin

tmloadrepos

ubbconfig

WSDF documentation

SALT Programming Guide

SALT Reference Guide

SALT Interoperability Guide
70 Configuring an Oracle Service Architecture Leveraging Tuxedo Application

../../../tuxedo/docs12c/rfcm/index.html
../../../tuxedo/docs12c/rfcm/index.html
../../../tuxedo/docs12c/rf5/index.html
../ref/comref.html
../prog/index.html
../ref/index.html
../interop/index.html

	Oracle Service Architecture Leveraging Tuxedo
	12c Release 1 (12.1.1)

	Oracle Service Architecture Leveraging Tuxedo (SALT) Configuration Guide, 12c Release 1 (12.1.1)
	Configuring Oracle Tuxedo Web Services
	Using Oracle Tuxedo Service Metadata Repository for Oracle Service Architecture Leveraging Tuxedo
	Defining Service-Level Keywords for Oracle Service Architecture Leveraging Tuxedo
	Defining Service Parameters for Oracle Service Architecture Leveraging Tuxedo

	Configuring Native Oracle Tuxedo Services
	Creating a Native WSDF
	Using WS-Policy Files
	Generating a WSDL File from a Native WSDF

	Configuring External Web Services
	Converting a WSDL File into Oracle Tuxedo Definitions
	WSDL-to-WSDF Mapping
	Post Conversion Tasks

	Creating the Oracle Service Architecture Leveraging Tuxedo Deployment File
	Importing the WSDF Files
	Configuring the GWWS Servers
	Configuring System-Level Resources

	Configuring Advanced Web Service Messaging Features
	Web Service Addressing
	Web Service Reliable Messaging

	Configuring Security Features
	Configuring Transport-Level Security
	Configuring Message-Level Web Service Security
	Configuring SAML Single Sign-On

	Compiling Oracle Service Architecture Leveraging Tuxedo Configuration
	Configuring the UBBCONFIG File for Oracle Service Architecture Leveraging Tuxedo
	Configuring the TMMETADATA Server in the *SERVERS Section
	Configuring the GWWS Servers in the *SERVERS Section
	Updating System Limitations in the UBBCONFIG File
	Configuring Certificate Password Phrase For the GWWS Servers
	Configuring Oracle Tuxedo Authentication for Web Service Clients
	Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic Authentication

	Configuring Oracle Service Architecture Leveraging Tuxedo In Oracle Tuxedo MP Mode
	Migrating from Oracle Service Architecture Leveraging Tuxedo 1.1
	Running GWWS servers with SALT 1.1 Configuration File
	Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration File

	Configuring Service Contract Discovery
	tpforward Support
	Service Contract Text File Output
	Examples

	Configuring Oracle Service Architecture Leveraging Tuxedo WS-TX Support
	Configuring Transaction Log Device
	Registration Protocol
	Configuring WS-TX Transactions
	Configuring Incoming Transactions
	Configuring Outbound Transactions

	Configuring Maximum Number of Transactions
	Configuring Policy Assertions
	Policy. xml File

	WSDL Generation
	WSDL Conversion

	Oracle Service Architecture Leveraging Tuxedo Configuration Tool
	Enabling the Oracle Service Architecture Leveraging Tuxedo Configuration Tool
	GWWS Option
	Security

	See Also

