
Oracle® Tuxedo
Administering an Oracle Tuxedo Application at Run Time

12c Release 1 (12.1.1)

June 2012

Administering an Oracle Tuxedo Application at Run Time, 12c Release 1 (12.1.1)

Copyright © 1996, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
1. Starting Up and Shutting Down an Application
The Tasks Involved in Starting Up and Shutting Down an Application. 1-1

How to Set Your Environment . 1-2

On Windows. 1-2

On UNIX . 1-3

How to Create the TUXCONFIG File . 1-4

How to Start tlisten at All Sites. 1-5

tlisten Command Options . 1-5

How to Manually Propagate the Application-Specific Directories and Files 1-6

How to Create a TLOG Device. 1-7

How to Boot the Application . 1-8

Sequence of tmboot Tasks for a 2-Machine Configuration 1-9

Sequence of tmboot Tasks for Large Applications (Over 50 Machines) 1-10

How to Shut Down Your Application. 1-11

Running tmshutdown . 1-12

Using the IPC Tool When an Application Fails to Shut Down Properly. 1-12

2. Monitoring Your Oracle Tuxedo Application
Ways to Monitor Your Application . 2-1

System and Application Data That You Can Monitor . 2-4

Monitoring System Data . 2-4

Monitoring Dynamic and Static Administrative Data . 2-6
Administering an Oracle Tuxedo Application at Run Time iii

Common Startup and Shutdown Problems . 2-7

Common Startup Problems . 2-7

Common Shutdown Problems. 2-7

Selecting Appropriate Monitoring Tools . 2-8

Using the Oracle Administration Console to Monitor Your Application 2-9

Using the Toolbar to Monitor Activities . 2-9

Using Command-line Utilities to Monitor Your Application 2-10

Inspecting Your Configuration Using tmadmin . 2-10

Generating Reports on Servers and Services Using txrpt 2-11

How a tmadmin Session Works . 2-12

Monitoring Your System Using tmadmin Commands . 2-13

Using EventBroker to Monitor Your Application . 2-13

Using Log Files to Monitor Activity . 2-14

What Is the Transaction Log (TLOG)? . 2-15

What Is the User Log (ULOG)? . 2-15

Detecting Errors Using Logs . 2-15

Analyzing the Transaction Log (TLOG). 2-16

Analyzing the User Log (ULOG) . 2-16

Analyzing tlisten Messages in the ULOG. 2-17

Estimating Service Workload Using the Application Service Log 2-18

Using the MIB to Monitor Your Application. 2-19

Limiting Your MIB Queries . 2-19

Querying Global and Local Data . 2-19

Using tmadmcall to Access Information. 2-20

Querying and Updating the MIB with ud32. 2-20

Using the Run-time and User-level Tracing Utility . 2-21

Managing Errors Using the DBBL and BBLs . 2-22

Using ATMI to Handle System and Application Errors . 2-24
iv Administering an Oracle Tuxedo Application at Run Time

Using Configurable Timeout Mechanisms . 2-24

Configuring Redundant Servers to Handle Failures . 2-25

Monitoring Multithreaded and Multicontexted Applications. 2-26

How to Retrieve Data About a Multithreaded/Multicontexted Application Using the
MIB . 2-26

3. Dynamically Modifying an Application
Dynamic Modification Methods. 3-1

Tools for Modifying Your Application . 3-2

Using tmconfig to Make Permanent Changes to Your Configuration 3-4

How tmconfig Works. 3-5

How Results of a tmconfig Task Are Displayed . 3-8

How to Run tmconfig . 3-9

How to Set Environment Variables for tmconfig . 3-10

How to Conduct a tmconfig Walkthrough Session . 3-10

tmconfig Input Buffer Considerations . 3-13

Making Temporary Modifications to Your Configuration with tmconfig 3-13

How to Add a New Machine . 3-15

How to Add a Server . 3-18

How to Activate a Newly Configured Machine . 3-20

How to Add a New Group . 3-23

How to Change Data-dependent Routing (DDR) for an Application. 3-24

How to Change Factory-based Routing (FBR) for an Interface. 3-25

How to Change Application-wide Parameters . 3-27

How to Change an Application Password . 3-29

Limitations on Dynamic Modification Using tmconfig . 3-31

Tasks That Cannot Be Performed on a Running System. 3-32

Making Temporary Modifications to Your Configuration with tmadmin 3-33
Administering an Oracle Tuxedo Application at Run Time v

How to Set Environment Variables for tmadmin . 3-33

How to Suspend Tuxedo ATMI Services or Servers . 3-34

How to Resume Tuxedo ATMI Services or Servers . 3-34

How to Advertise Services or Servers . 3-35

How to Unadvertise Services or Servers . 3-35

How to Change Service Parameters for Tuxedo ATMI Servers 3-35

How to Change Interface Parameters for Tuxedo CORBA Servers 3-36

How to Change the AUTOTRAN Timeout Value. 3-37

How to Suspend Tuxedo CORBA Interfaces. 3-37

How to Resume Tuxedo CORBA Interfaces . 3-37

4. Managing the Network in a Distributed Application
Running a Network for a Distributed Application . 4-1

Compressing Data Over a Network . 4-1

How to Set the Compression Level. 4-2

Selecting Data Compression Thresholds . 4-3

Balancing Network Request Loads . 4-4

How to Use Data-Dependent Routing . 4-5

Example of Data-dependent Routing with a Horizontally-partitioned Database . . 4-5

Example of Data-dependent Routing with Rule-based Servers 4-6

How to Change Your Network Configuration . 4-7

5. About the EventBroker
What Is an Event?. 5-1

Differences Between Application-defined and System-defined Events 5-2

What Is the EventBroker? . 5-2

How the EventBroker Works . 5-3

Event Notification Methods . 5-4
vi Administering an Oracle Tuxedo Application at Run Time

Severity Levels of System Events . 5-5

What Are the Benefits of Brokered Events?. 5-6

6. Subscribing to Events
Process of Using the EventBroker . 6-1

How to Configure EventBroker Servers. 6-2

How to Set the Polling Interval. 6-3

Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB
6-3

Identifying Event Categories Using eventexpr and filter . 6-4

Accessing the EventBroker . 6-4

Subscribing, Posting, and Unsubscribing to Events Across Domains 6-6

Overview . 6-6

Configurations in DMCONFIG. 6-6

Dynamically Modifying the Event Configurations . 6-8

Interoperability . 6-8

How to Select a Notification Method . 6-9

How to Cancel a Subscription to an Event . 6-10

How to Use the EventBroker with Transactions . 6-10

How Transactions Work with the EventBroker. 6-11

7. Migrating Your Application
What Is Migration? . 7-1

Performing a Master Migration . 7-2

Migrating a Server Group . 7-3

Migrating Machines. 7-4

Performing a Scheduled Migration . 7-4

Migration Options. 7-5

How to Switch the Master and Backup Machines . 7-6
Administering an Oracle Tuxedo Application at Run Time vii

Examples of Switching MASTER and BACKUP Machines 7-6

How to Migrate Server Groups . 7-9

How to Migrate a Server Group When the Alternate Machine Is Accessible from the
Primary Machine . 7-9

How to Migrate a Server Group When the Alternate Machine Is Not Accessible from
the Primary Machine . 7-10

Examples of Migrating a Server Group . 7-10

How to Migrate Server Groups from One Machine to Another. 7-12

How to Migrate Machines When the Alternate Machine Is Accessible from the
Primary Machine . 7-12

How to Migrate Machines When the Alternate Machine Is Not Accessible from the
Primary Machine . 7-13

Examples of Migrating a Machine . 7-13

Automatic Migration . 7-14

How to Cancel a Migration . 7-15

Example of a Migration Cancellation . 7-15

How to Migrate Transaction Logs to a Backup Machine . 7-16

8. Tuning a Oracle Tuxedo ATMI Application
When to Use MSSQ Sets . 8-1

How to Enable Load Balancing . 8-3

How to Measure Service Performance Time . 8-3

How to Assign Priorities to Interfaces or Services. 8-4

Example of Using Priorities . 8-4

Using the PRIO Parameter to Enhance Performance . 8-4

Bundling Services into Servers . 8-5

When to Bundle Services . 8-5

Enhancing Overall System Performance . 8-5
viii Administering an Oracle Tuxedo Application at Run Time

Service and Interface Caching. 8-6

Removing Authorization and Auditing Security . 8-7

Using the Multithreaded Bridge . 8-7

Turning Off Multithreaded Processing . 8-8

Turning Off XA Transactions . 8-9

Determining Your System IPC Requirements . 8-9

Tuning IPC Parameters. 8-10

Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and
MAXSERVICES Parameters . 8-11

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters. . . . 8-11

Tuning with the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT
Parameters . 8-12

Recommended Values for Tuning-related Parameters . 8-12

Measuring System Traffic . 8-12

Example of Detecting a System Bottleneck . 8-13

Detecting Bottlenecks on UNIX Platforms . 8-13

Detecting Bottlenecks on Windows Platforms . 8-14

9. Troubleshooting an Oracle Tuxedo Application
Determining Types of Failures . 9-2

How to Determine the Cause of an Application Failure . 9-2

How to Determine the Cause of an Oracle Tuxedo System Failure 9-3

How to Broadcast an Unsolicited Message . 9-3

Maintaining Your System Files . 9-4

How to Print the Universal Device List (UDL). 9-5

How to Print VTOC Information. 9-5

How to Reinitialize a Device. 9-5

How to Create a Device List . 9-6
Administering an Oracle Tuxedo Application at Run Time ix

How to Destroy a Device List . 9-6

Recovery Considerations . 9-7

Repairing Partitioned Networks . 9-7

Detecting a Partitioned Network. 9-8

Restoring a Network Connection . 9-9

Restoring Failed Machines. 9-10

How to Restore a Failed MASTER Machine . 9-10

How to Restore a Failed Nonmaster Machine . 9-10

How to Replace System Components . 9-11

How to Replace Application Components . 9-12

Cleaning Up and Restarting Servers Manually . 9-12

How to Clean Up Resources Associated with Dead Processes. 9-12

How to Clean Up Other Resources . 9-13

How to Check the Order in Which Oracle Tuxedo CORBA Servers Are Booted. . . . 9-13

How to Check the Hostname Format and Capitalization of Oracle Tuxedo CORBA Servers
9-14

Why Some Oracle Tuxedo CORBA Clients Fail to Boot . 9-14

Aborting or Committing Transactions . 9-15

How to Abort a Transaction . 9-15

How to Commit a Transaction . 9-16

How to Recover from Failures When Transactions Are Used. 9-16

How to Use the IPC Tool When an Application Fails to Shut Down Properly 9-17

Troubleshooting Multithreaded/
Multicontexted Applications. 9-18

Debugging Multithreaded/Multicontexted Applications 9-18

Limitations of Protected Mode in a Multithreaded Application 9-18
x Administering an Oracle Tuxedo Application at Run Time

C H A P T E R 1
Starting Up and Shutting Down an
Application
This topic includes the following sections:

The Tasks Involved in Starting Up and Shutting Down an Application

How to Set Your Environment

How to Create the TUXCONFIG File

How to Start tlisten at All Sites

How to Manually Propagate the Application-Specific Directories and Files

How to Create a TLOG Device

How to Boot the Application

How to Shut Down Your Application

The Tasks Involved in Starting Up and Shutting Down an
Application

Figure 1-1 illustrates the tasks required to start up and shut down your Oracle Tuxedo application.

Click on each of the following tasks for instructions on completing that task.
Administering an Oracle Tuxedo Application at Run Time 1-1

Figure 1-1 Startup and Shutdown Tasks

How to Set Your Environment
Being able to access the Oracle Tuxedo executables and data libraries is essential to the job of
managing a Oracle Tuxedo application. For example, the commands needed to start up or shut
down an application are located in %TUXDIR%\bin on a Windows host machine, and in
$TUXDIR/bin on a UNIX host machine.

On Windows
On a Windows host machine, enter the following commands at the command prompt to set up
your environment:

set TUXCONFIG=path_name_of_TUXCONFIG_file
set TUXDIR=path_name_of_BEA_Tuxedo_system_root_directory
set APPDIR=path_name_of_BEA_Tuxedo_application_root_directory
set PATH=%APPDIR%;%TUXDIR%\bin;%PATH%
1-2 Administering an Oracle Tuxedo Application at Run Time

How to Se t Your Env i ronment
Replace the substitutable strings (italicized) with the absolute pathnames appropriate for your
installation.

Windows accesses the required dynamically loadable library files through its PATH variable
setting. Specifically, Windows searches for dynamically loadable library files in the following
order:

1. The directory from which the Oracle Tuxedo application was loaded

2. The current directory

3. The Windows system directory (for example, C:\Win2003\System32)

4. The Windows directory (for example, C:\Win2003)

5. The directories listed in the PATH environment variable

On UNIX
On a UNIX host machine, set and export the following environment variables to set up your
environment:

TUXCONFIG=path_name_of_TUXCONFIG_file
TUXDIR=path_name_of_BEA_Tuxedo_system_root_directory
APPDIR=path_name_of_BEA_Tuxedo_application_root_directory
PATH=$APPDIR:$TUXDIR/bin:/bin:$PATH
LD_LIBRARY_PATH=$APPDIR:$TUXDIR/lib:/lib:/usr/lib:$LD_LIBRARY_PATH
export TUXCONFIG TUXDIR APPDIR PATH LD_LIBRARY_PATH

Replace the substitutable strings (italicized) with the absolute pathnames appropriate for your
installation.

Note: The application administrator defines the TUXCONFIG, TUXDIR, and APPDIR environment
variables in the MACHINES section of the UBBCONFIG file or the T_MACHINE class of the
TM_MIB for each machine in an application. See the UBBCONFIG(5) or TM_MIB(5)
reference page for a description of these environment variables.

On This Platform . . . Make This change . . .

HP-UX on the HP 9000 Use SHLIB_PATH instead of LD_LIBRARY_PATH

AIX on the RS/6000 Use LIBPATH instead of LD_LIBRARY_PATH
Administering an Oracle Tuxedo Application at Run Time 1-3

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

How to Create the TUXCONFIG File
Each Oracle Tuxedo domain is controlled by a configuration file in which installation-dependent
parameters are defined. The text version of the configuration file is referred to as
UBBCONFIG.The binary version of the UBBCONFIG file is referred to as TUXCONFIG. As with
UBBCONFIG, the TUXCONFIG file may be given any name; the actual name is the device or system
filename specified in the TUXCONFIG environment variable.

Note: For information about the configuration file, refer to UBBCONFIG(5) in File Formats,
Data Descriptions, MIBs, and System Processes Reference.

The tmloadcf(1) command converts the text configuration file to a binary file called
TUXCONFIG and writes the new file to the location given in the TUXCONFIG variable. Run the
command as follows:

$ tmloadcf [-n] [-y] [-c] [-b blocks] {UBBCONFIG_file | - }

Note: You must be logged in on the MASTER machine and have the effective user ID of the
configuration file owner.

The options shown here perform the following functions:

-n performs a syntax check only; reports errors

-y overwrites the existing TUXCONFIG file without asking

-c calculates minimum interprocess communication (IPC) resources of the configuration.

-b limits the size of the TUXCONFIG file

The -c and -n options do not load the TUXCONFIG file. IPC resources are platform specific. If you
use the -c option, check the data sheet for your platform in the Oracle Tuxedo Installation Guide
to judge whether you must make changes. If you do want to change IPC resources, check the
administration documentation for your platform. If the -n option checks for syntax errors in the
configuration file, correct the errors before you proceed. (For UBBCONFIG_file, substitute the
fully qualified name of your configuration file.)

The -b option takes an argument that limits the number of blocks used to store the TUXCONFIG
file. Use it if you are installing TUXCONFIG on a raw disk device that has not been initialized. The
option is not recommended if TUXCONFIG is stored in a regular UNIX system file.
1-4 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

How to S ta r t t l i s ten a t A l l S i t es
How to Start tlisten at All Sites
For a networked application, a listener process must be running on each machine. A networked
application is an application that runs on more than one machine, as established by the MODEL MP
parameter in the RESOURCES section of the application’s UBBCONFIG file.

Note: You must define TUXDIR, TUXCONFIG, APPDIR, and other relevant environment variables
before starting tlisten.

The port on which the process is listening must be the same as the port specified for NLSADDR in
the NETWORK section of the configuration file. On each machine, use the tlisten(1) command,
as follows:

tlisten [-d device] -l nlsaddr [-u {uid-# | uid-name}] [-z bits] [-Z bits]

Example: tlisten -l //machine1:6500

tlisten Command Options
-d device—the full pathname of the network device. For Oracle Tuxedo release 6.4 or
later, this option is not required. For earlier versions of the Oracle Tuxedo system (up to
release 6.3), some network providers (for example, TCP/IP) require this information.

-l nlsaddr—network address at which the process listens for connections. TCP/IP
addresses may be specified in the following forms:

"//hostname:port_number"

"//#.#.#.#:port_number"

In the first example, tlisten finds an address for hostname using the local name
resolution facilities (usually DNS). hostname must be the local machine, and the local
name resolution facilities must unambiguously resolve hostname to the address of the
local machine.

In the second example, the #.#.#.# is in dotted decimal format. In dotted decimal format,
each # should be a number from 0 to 255. This dotted decimal number represents the IP
address of the local machine. In both of the above formats, port_number is the TCP port
number at which the tlisten process listens for incoming requests. port_number can
either be a number between 0 and 65535 or a name. If port_number is a name, then it
must be found in the network services database on your local machine. The address can
also be specified in hexadecimal format when preceded by the characters 0x. Each
character after the initial 0x is a number between 0 and 9 or a letter between A and F (case
insensitive). The hexadecimal format is useful for arbitrary binary network addresses such
Administering an Oracle Tuxedo Application at Run Time 1-5

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

as IPX/SPX or TCP/IP. The address can also be specified as an arbitrary string.The value
should be the same as that specified for the NLSADDR parameter in the NETWORK section of
the configuration file.

tmloadcf(1) prints an error if nlsaddr is missing from any entry—except the entry for
the MASTER LMID, for which it will print a warning. However, if nlsaddr is missing from
the MASTER LMID entry, tmadmin(1) cannot be run in administrator mode on remote
machines; it is limited to read-only operations. This also means that a backup site is unable
to reboot the MASTER site after failure.

-u uid-# or uid-name—used to run the tlisten process as the indicated user. This
option is required if the tlisten(1) command is run by root on a remote machine.

-z [bits]—specifies the minimum level of encryption required when establishing a
network link between a Oracle Tuxedo system administrative process and tlisten. Zero
(0) means no encryption, while 56 and 128 specify the length (in bits) of the encryption
key. If this minimum level of encryption cannot be met, link establishment fails. The
default is zero.

-Z [bits]—specifies the maximum level of encryption allowed when establishing a
network link between a Oracle Tuxedo system administrative process and tlisten. Zero
(0) means no encryption, while 56 and 128 specify the length (in bits) of the encryption
key. The default is 128.

How to Manually Propagate the Application-Specific
Directories and Files

TUXCONFIG is propagated automatically to all machines in your configuration by the Oracle
Tuxedo system when you run tmboot(1). There are, however, other files that you need to
propagate manually. Following is a list of the files and directories that you need to create for a
networked application. First, install the Oracle Tuxedo system on the machine.

Note: The tlisten process must be started on each machine of a networked Oracle Tuxedo
application before the application is booted. Refer to the tlisten(1) reference page.

You must define TUXDIR, TUXCONFIG, APPDIR, and other relevant environment variables before
starting tlisten.

Table 1-1 shows the directories and files to propagate.
1-6 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

How to Create a TLOG Dev ice
How to Create a TLOG Device
To create distributed transaction processing, you must have created a global transaction log
(TLOG) on each participating machine. To define a TLOG, complete the following steps.

1. You must first set several parameters in the MACHINES section of the configuration file:
TLOGDEVICE, TLOGOFFSET, TLOGNAME, and TLOGSIZE.

2. You must also create a universal device list entry (UDL) for the TLOGDEVICE on each
participating machine. (You can do this task before or after loading TUXCONFIG, but you must
do so before booting the system.) To create an entry in the UDL for the TLOG device, invoke
tmadmin -c on the MASTER machine with the application inactive. (The -c option invokes
tmadmin in configuration mode.)

3. Enter the command:

crdl -z config -b blocks

where -z config specifies the full pathname for the device on which the UDL should be
created (that is, where the TLOG will reside) and -b blocks specifies the number of blocks
to be allocated on the device. The value of config should match the value of the
TLOGDEVICE parameter in the MACHINES section. The blocks must be larger than the

Table 1-1 Directories and Files to Propagate

Directory/File Description

APPDIR You must create the directory named in the APPDIR variable on each node. It is easier
if this directory has the same pathname on all nodes.

Executables You must build one set of application servers for each platform, and manually
propagate the appropriate set to all machines running on each platform (that is, the
Oracle Tuxedo system does not do this automatically). Store the executables in
APPDIR, or in a directory specified in a PATH variable in ENVFILES in the MACHINES
section of your configuration file.

Field tables
VIEW tables

If FML or VIEWS buffer types are used, field tables and VIEW description files must be
manually propagated to the machines where they are used, and then recompiled. Use
mkfldhdr, mkfldhdr32(1) to make a header file out of a field table file; use
viewc, viewc32(1) to compile a VIEW file. The FML field tables and VIEW
description files should be available through the environment variables FLDTBLDIR,
FIELDTBLS, VIEWDIR, and VIEWFILES, or their 32-bit equivalents.
Administering an Oracle Tuxedo Application at Run Time 1-7

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

TLOGSIZE. If -z is not specified, the value of config defaults to the value of the variable
FSCONFIG (which points to the application’s databases).

4. Repeat steps 1 and 2 on each machine in your application that will use global transactions.

If the TLOGDEVICE is mirrored between two machines, step 4 is not required on the paired
machine. To be recoverable, the TLOG should reside on a device that can be mirrored. Because
the TLOG is too small (typically, 100 pages) to warrant the allocation of a whole disk partition, the
TLOG is commonly stored on the same raw disk slice as the Oracle Tuxedo /Q database.

How to Boot the Application
Once all prerequisites have been completed successfully, you can bring up the application using
tmboot. Only the administrator who created the TUXCONFIG file can execute tmboot(1).

The application is generally booted from the machine designated as MASTER in the RESOURCES
section of the configuration file or the BACKUP acting as the MASTER. The -b option allows some
deviation from this rule. For tmboot to find executables, Oracle Tuxedo system processes such
as the Bulletin Board Liason (BBL) must be located in $TUXDIR/bin. Application servers should
be in the directory defined by the APPDIR variable, as specified in the configuration file.

When booting application servers, tmboot uses the CLOPT, SEQUENCE, SRVGRP, SRVID, and MIN
parameters from the configuration file. Application servers are booted in the order specified by
the SEQUENCE parameter, if SEQUENCE is used. If SEQUENCE is not specified, servers are booted
in the order in which they appear in the configuration file. The command line should look
something like the following:

$ tmboot [-g grpname] [-o sequence] [-S] [-A] [-y]

Table 1-2 lists the tmboot options.

Table 1-2 tmboot Options

This Option Performs This Function

-g grpname Boots all TMS and application servers in groups using this grpname parameter.

-o sequence Boots all servers in the order shown in the SEQUENCE parameter.

-s server-name Boots an individual server.

-S Boots all servers listed in the SERVERS section.
1-8 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

How to Boot the Appl i cat ion
Note: For a complete list of tmboot options, see the tmboot(1) reference page.

Sequence of tmboot Tasks for a 2-Machine Configuration
To boot the entire configuration, enter the following command:

prompt> tmboot -y

tmboot performs the following tasks:

Figure 1-2 lists the default boot sequence for a small application.

-A Boots all administrative servers for machines listed in the MACHINES section. This
option ensures that the DBBL, BBL, and BRIDGE processes are started in the proper
order.

 -y Provides an automatic “yes” response to the prompt that asks whether all administrative
and application servers should be booted. This prompt is displayed only if no options
that limit the scope of the command (-g grpname, for example) are specified.

Table 1-2 tmboot Options

This Option Performs This Function
Administering an Oracle Tuxedo Application at Run Time 1-9

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

Figure 1-2 Default Boot Sequence for a Small Application

Sequence of tmboot Tasks for Large Applications (Over 50
Machines)
For relatively large applications (that is, those consisting of over 50 machines), tmboot boots
entire machines in a single step rather than performing all the steps used to boot two machines in
the default sequence.Figure 1-3 is the optimized sequence of tasks.
1-10 Administering an Oracle Tuxedo Application at Run Time

How to Shut Down Your App l i cat ion
Figure 1-3 Boot Sequence for a Large Application

Note: The boot sequence is much faster for large applications because the number of system
messages is far smaller. This method generally reduces boot time by 50%. In a
configuration running on a slow network, boot time can be improved by booting
machines with higher speed connections to the MASTER machine first.

How to Shut Down Your Application
Use the tmshutdown(1) command to shut down all or part of a Oracle Tuxedo application. The
rules for running this command are similar to those for running tmboot(1); tmshutdown is the
inverse of tmboot.

When the entire application is shut down, tmshutdown removes the interprocess communication
(IPC) resources associated with the Oracle Tuxedo system. The options used by tmboot for
partial booting (-A, -g, -I, -S, -s, -l, -M, -B) are supported in tmshutdown. The -b option (allowing
tmboot to be used from a non-MASTER machine) is not supported for tmshutdown; you must
enter the tmshutdown command from the MASTER (or BACKUP MASTER) machine.

To migrate servers, use the -R option. This option shuts down the servers without removing
bulletin board entries for them. If a machine is partitioned, run tmshutdown with the -P LMID
option on the partitioned machine to shut down the servers on that machine.

tmshutdown does not shut down the administrative server BBL on a machine to which clients
are attached. You can use the -c option to override this feature. You need this option for occasions
when you must bring down a machine immediately and you cannot contact the clients.

You can use the -w delay option to force a hard shutdown after delay seconds. This option
suspends all servers immediately so that additional work cannot be queued. The value of delay
should allow time for requests already queued to be serviced. After delay seconds, a SIGKILL
signal is sent to the servers. This option enables the administrator to shut down servers that are
looping or blocked in application code.
Administering an Oracle Tuxedo Application at Run Time 1-11

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

Running tmshutdown
Only the administrator who has written the TUXCONFIG file can execute tmshutdown(1). The
application can be shut down only from the machine designated as MASTER in the configuration
file. When the BACKUP acts as MASTER, it is considered to be the MASTER for shutdown purposes.
(The only exception to this rule is a partitioned machine. By using the -p option, an administrator
can run the tmshutdown command from a partitioned machine to shut down the application at
that site.)

The order in which application servers are shut down is the reverse of the order specified by the
SEQUENCE parameter for them, or the reverse order in which they are listed in the configuration
file. If some servers have SEQUENCE numbers and others do not, the unnumbered servers are the
first to be shut down, followed by the application servers with SEQUENCE numbers (in reverse
order). Finally, administrative servers are shut down.

When an application is shut down, all the IPC resources allocated by the Oracle Tuxedo system
are removed; tmshutdown does not remove IPC resources allocated by the DBMS.

Using the IPC Tool When an Application Fails to Shut Down
Properly
IPC resources are operating system resources, such as message queues, shared memory, and
semaphores. When a Oracle Tuxedo application shuts down properly with the tmshutdown
command, all IPC resources used by the Oracle Tuxedo application are removed from the system.
In some cases, however, an application may fail to shut down properly and stray IPC resources
may remain on the system. When this happens, it may not be possible to reboot the application.

One way to address this problem is to remove IPC resources with a script that invokes the system
IPCS command and scan for all IPC resources owned by a particular user account. However, with
this method, it is difficult to distinguish among different sets of IPC resources; some may belong
to a particular Oracle Tuxedo application; and others to applications unrelated to the Oracle
Tuxedo system. It is important to be able to distinguish among these sets of resources;
unintentional removal of IPC resources can severely damage an application.

The Oracle Tuxedo IPC tool (that is, the tmipcrm(1) command) enables you to remove IPC
resources allocated by the Oracle Tuxedo system (that is, for core Oracle Tuxedo and
Workstation components only) in an active application.

The command to remove IPC resources, tmipcrm(1), resides in TUXDIR/bin. This command
reads the binary configuration file (TUXCONFIG), and attaches to the bulletin board using the
1-12 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

How to Shut Down Your App l i cat ion
information in this file. tmipcrm works only on the local server machine; it does not clean up IPC
resources on remote machines in a Oracle Tuxedo configuration.

To run this command, enter it as follows on the command line:

tmipcrm [-y] [-n] [TUXCONFIG_file]

The IPC tool lists all IPC resources used by the Oracle Tuxedo system and gives you the option
of removing them.

Note: This command will not work unless you have set the TUXCONFIG environment variable
correctly or specified the appropriate TUXCONFIG file on the command line.

To remove /Q IPC resources, use the qmadmin(1) ipcrm command.
Administering an Oracle Tuxedo Application at Run Time 1-13

1-14 Administering an Oracle Tuxedo Application at Run Time

C H A P T E R 2
Monitoring Your Oracle Tuxedo
Application
This topic includes the following sections:

Ways to Monitor Your Application

Selecting Appropriate Monitoring Tools

Using the Oracle Administration Console to Monitor Your Application

Using Command-line Utilities to Monitor Your Application

Using EventBroker to Monitor Your Application

Using Log Files to Monitor Activity

Using the MIB to Monitor Your Application

Using the Run-time and User-level Tracing Utility

Managing Errors Using the DBBL and BBLs

Using ATMI to Handle System and Application Errors

Monitoring Multithreaded and Multicontexted Applications

Ways to Monitor Your Application
As an administrator, you must ensure that once an application is up and running, it continues to
meet the performance, availability, and security requirements set by your company. To perform
this task, you need to monitor the resources (such as shared memory), activities (such as
Administering an Oracle Tuxedo Application at Run Time 2-1

transactions), and potential problems (such as security breaches) in your configuration, and take
any necessary corrective actions.

To help you meet this responsibility, the Oracle Tuxedo system provides several methods for
monitoring system and application events, and dynamically reconfiguring your system to
improve performance. The following facilities offer an excellent view of how your system is
working:

Oracle Tuxedo Administration Console

command-line utilities

log files

the ATMI

the MIB

run-time and user-level tracing facilities

These tools help make your application capable of responding quickly and efficiently to changing
business needs or failure conditions. They also assist you in managing your application’s
performance and security.

Figure 2-1 shows the monitoring tools.
2-2 Administering an Oracle Tuxedo Application at Run Time

Ways to Moni to r Your App l i cat ion
Figure 2-1 Monitoring Tools

The Oracle Tuxedo system offers the following tools to monitor your application:

Oracle Administration Console—a Web-based graphical user interface you can use to
observe the behavior of the application, and to dynamically configure its operation. You
can display and change configuration information, determine the state of each component
of the system, and obtain statistical information about items such as executed requests, and
queued requests.

Command-line utilities—a set of commands (for example, tmboot(1), tmadmin(1), and
tmshutdown(1)) you can use to activate, deactivate, configure, and manage your
application.

EventBroker—a mechanism that informs administrators of system faults and exceptional
happenings such as network failures. When an event is posted by clients or servers, the
EventBroker matches the name of the posted event to a list of subscribers for that event,
and takes appropriate action, determined by each subscription.

Log files—a set of files that make up a repository for error and warning messages,
debugging messages, and informational messages helpful in tracking and resolving
problems in the system.
Administering an Oracle Tuxedo Application at Run Time 2-3

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

MIB—an interface to a set of procedures for accessing and modifying information in the
MIBs. Using the MIB, you can write programs that enable you to monitor your run-time
application.

Run-time and User-level tracing facility—software that tracks the execution of an
application, thus providing information that is helpful in resolving system problems.

See Also
“System and Application Data That You Can Monitor” on page 2-4

“Selecting Appropriate Monitoring Tools” on page 2-8

“Using the Oracle Administration Console to Monitor Your Application” on page 2-9

“Benefits of Using the Oracle Tuxedo Administration Console” on page 4-4 in Introducing
Oracle Tuxedo ATMI

“Using Command-line Utilities to Monitor Your Application” on page 2-10

“Using EventBroker to Monitor Your Application” on page 2-13

“Using Log Files to Monitor Activity” on page 2-14

“Using ATMI to Handle System and Application Errors” on page 2-24

“Using the MIB to Monitor Your Application” on page 2-19

“Managing Operations Using the MIB” on page 4-12 in Introducing Oracle Tuxedo ATMI

“Using the Run-time and User-level Tracing Utility” on page 2-21

tmshutdown(1) in the Oracle Tuxedo Command Reference

“Oracle Tuxedo Management Tools” on page 4-1 in Introducing Oracle Tuxedo ATMI

System and Application Data That You Can Monitor
The Oracle Tuxedo system enables you to monitor system and application data.

Monitoring System Data
To help you monitor a running system, your Oracle Tuxedo system maintains parameter settings
and generates statistics for the following system components:
2-4 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intman.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intman.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intman.html

Sys tem and Appl i cat ion Data That You Can Moni to r
Clients

Conversations

Groups

Message queues

Networks

Servers

Services

CORBA Interfaces

Transactions

You can access these components using the MIB or tmadmin. You can set up your system so that
it can use the statistics in the bulletin board to make decisions and to modify system components
dynamically, without your intervention. With proper configuration, your system can perform the
following tasks (when bulletin board statistics indicate that they are required):

Turn on load balancing

Start a new copy of a server

Shut down servers that are not being used

By monitoring the administrative data for your system, you can prevent and resolve problems that
threaten the performance, availability, and security of your application.

Where the System Data Resides
To ensure that you have the information necessary to monitor your system, the Oracle Tuxedo
system provides the following three data repositories:

Bulletin board—a segment of shared memory (on each machine in your network) to which
your system writes statistics about the components and activities of your configuration

Log files—files to which your system writes messages

UBBCONFIG—a text file in which you define the parameters of your system and application
Administering an Oracle Tuxedo Application at Run Time 2-5

Monitoring Dynamic and Static Administrative Data
You can monitor two types of administrative data that are available on every running Oracle
Tuxedo system: static and dynamic.

What Is Static Data?
Static data about your configuration consists of configuration settings that you assign when you
first configure your system and application. These settings are never changed without
intervention (either in realtime or through a program you have provided). Examples include
system-wide parameters (such as the number of machines used) and the amount of interprocess
communication (IPC) resources (such as shared memory) allocated to your system on your local
machine. Static data is kept in the UBBCONFIG file and in the bulletin board.

Checking Static Data
At times you may need to check static data about your configuration. For example, you may want
to add a large number of machines without exceeding the maximum number of machines allowed
in your configuration (or allowed in the machine tables of the bulletin board). You can look up
the maximum number of machines allowed by checking the current values of the system-wide
parameters for your configuration (one of which is MAXMACHINES).

You may be able to improve the performance of your application by tuning your system. To
determine whether tuning is required, you need to check the amount of local IPC resources
currently available.

What Is Dynamic Data?
Dynamic data about your configuration consists of information that changes in realtime, that is,
while an application is running. For example, the load (the number of requests sent to a server)
and the state of various configuration components (such as servers) change frequently. Dynamic
data is kept in the bulletin board.

Checking Dynamic Data
Dynamic configuration data is useful in resolving many administrative problems, as
demonstrated by two examples.

In the first example, suppose your throughput is suffering and you want to know whether you
have enough servers running to accommodate the number of clients currently connected. Check
the number of running servers and connected clients, and the load on one or more servers. These
numbers help you determine whether adding more servers will improve performance.
2-6 Administering an Oracle Tuxedo Application at Run Time

Common S tar tup and Shutdown P rob lems
In the second example, suppose you receive multiple complaints about slow response from users
when making particular requests of your application. By checking load statistics, you can
determine whether increasing the value of the BLOCKTIME parameter would improve response
time.

Common Startup and Shutdown Problems
When evaluating whether your Oracle Tuxedo system is operating normally, you might want to
consider the following list of common startup and shutdown problems, and monitor your system
periodically.

Common Startup Problems
Application server failed or dumped core during initialization

Application server file not found or not executable

Automatic migration of server group

Default boot sequence may not be optimal

Environment variable not set or not set properly

IPCKEY is already in use

Invalid network address

Met upper bound limits specified in the UBBCONFIG file

Network port is in use already

Reached limit on system resources

Server boot dependency

TLOG file is not created

Common Shutdown Problems
Clients still attached

Dead servers

Shutdown sequence
Administering an Oracle Tuxedo Application at Run Time 2-7

Selecting Appropriate Monitoring Tools
To monitor a running application, you need to keep track of the dynamic aspects of your
configuration and sometimes check the static data. In other words, you need to be able to watch
the bulletin board on an ongoing basis and consult the UBBCONFIG file when necessary. The
method you choose depends on the following factors:

Your Oracle Tuxedo system administration experience: If you have a lot of experience as
an administrator, as well as shell programming expertise, you may prefer to write programs
that automate your most frequently run commands.

Your operating system experience: If you are inexperienced, you may be more comfortable
using the Oracle Administration Console.

Which information you want to view: If you decide to monitor your application by
examining the RESOURCES section of the UBBCONFIG file through the tmadmin command,
you will have access to only the current values.

Table 2-1 describes how to use each monitoring method.

Table 2-1 How to Use Each Monitoring Method

Use This Method... By...

Oracle Administration
Console

Using a graphical interface.

Command-line utilities, such
as txrpt and tmadmin

Entering commands after a prompt.

EventBroker Subscribing to Oracle Tuxedo system events, such as
servers dying, and network failures.

Log files (for example, ULOG,
TLOG)

Viewing the ULOG with any text editor; checking the ULOG
for tlisten messages; and converting the TLOG (a binary
file) to a text file by running tmadmin dumptlog which
downloads a TLOG to a text file.
2-8 Administering an Oracle Tuxedo Application at Run Time

Us ing the Orac le Admin is t ra t i on Conso le to Moni to r Your Appl i cat ion
Using the Oracle Administration Console to Monitor Your
Application

The Oracle Administration Console is a graphical user interface to the MIB that enables you to
tune and modify your application. It is accessed through the World Wide Web and used through
a Web browser. Any administrator with a supported browser can monitor a Oracle Tuxedo
application.

Using the Toolbar to Monitor Activities
The toolbar is a row of 12 buttons that allow you to run tools for frequently performed
administrative and monitoring functions. All buttons are labeled with both icons and names. The
following buttons are available for monitoring:

Logfile—displays the ULOG file from a particular machine in the active domain.

Event Tool—helps you monitor system events. When you click the Event Tool button, a
window displays four options: subscribe—to request notification of specified system
events, unsubscribe—to reject further notification of specified system events, snapshot—to
create a record of the data currently held by the Event Tool, and select format—to choose
parameters for the information being collected by the Event Tool.

Stats—to display a graphical representation of Oracle Tuxedo system activity.

Search—to look for a particular object class or object in the Tree.

MIB Writing programs that monitor your run-time application.

Run-time and user-level
tracing utility

Specifying a tracing expression that contains a category, a
filtering expression, and an action, and enabling the
TMTRACE run-time and TMUTRACE user-level environment
variable. For more information, see “Using the Run-time
and User-level Tracing Utility” on page 2-21.

Table 2-1 How to Use Each Monitoring Method

Use This Method... By...
Administering an Oracle Tuxedo Application at Run Time 2-9

See Also
“Management Operations Using the Oracle Tuxedo Administration Console” on page 4-3
in Introducing Oracle Tuxedo ATMI

Using Command-line Utilities to Monitor Your Application
To monitor your application through the command-line interface, use the tmadmin(1) or
txrpt(1) command.

Inspecting Your Configuration Using tmadmin
The tmadmin command is an interpreter for 53 commands that enable you to view and modify a
bulletin board and its associated entities. Using the tmadmin commands, you can monitor
statistical information in the system such as the state of services, the number of requests executed,
the number of queued requests, and so on.

Using the tmadmin commands, you can also dynamically modify your Oracle Tuxedo system.
You can, for example, perform the following types of changes while your system is running:

Suspend and resume services

Advertise and unadvertise services

Change service parameters

Change the AUTOTRAN timeout value

Whenever you start a tmadmin session, you can choose the following operating modes for that
session: the default operating mode, read-only mode, or configuration mode:

In default operating mode, you can view and change bulletin board data during a tmadmin
session, if you have administrator privileges (that is, if your effective UID and GID are
those of the administrator).

In read-only mode, you can view the data in the bulletin board, but you cannot make any
changes. The advantage of working in read-only mode is that your administrator process is
not tied up by tmadmin; the tmadmin process attaches to the bulletin board as a client,
leaving your administrator slot available for other work.

In configuration mode, you can view the data in the bulletin board and, if you are the
Oracle Tuxedo application administrator, you can make changes. You can start a tmadmin
session in configuration mode on any machine, including an inactive machine. On most
2-10 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intman.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

Using Command- l ine Ut i l i t i es to Moni to r Your Appl i cat ion
inactive machines, configuration mode is required in order to run tmadmin. (The only
inactive machine on which you can start a tmadmin session without requesting
configuration mode is the MASTER machine.)

Note: You can also generate a report of the Oracle Tuxedo version and license numbers.

Generating Reports on Servers and Services Using txrpt
The txrpt command analyzes the standard error output of a Oracle Tuxedo server and provides
a summary of service processing time within the server. The report shows the number of times
each service was dispatched and the average amount of time it took for each service to process a
request during the specified period. txrpt takes its input from the standard input or from a
standard error file redirected as input. To create standard error files, have your servers invoked
with the -r option from the servopts(5) selection; you can name the file by specifying it with
the -e servopts option. Multiple files can be concatenated into a single input stream for txrpt.

Over time, information about service X and server Y (on which service X resides) is accumulated
in a file. txrpt processes the file and provides you with a report about the service access and
timing characteristics of the server.

See Also
“Ways to Monitor Your Application” on page 2-1

“How a tmadmin Session Works” on page 2-12

“Monitoring Your System Using tmadmin Commands” on page 2-13

“Managing Operations Using Command-Line Utilities” on page 4-9 in Introducing Oracle
Tuxedo ATMI
Administering an Oracle Tuxedo Application at Run Time 2-11

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

How a tmadmin Session Works
The tmadmin command is an interpreter for 53 commands that enable you to view and modify
a bulletin board and its associated entities. Figure 2-2 shows you how a typical tmadmin session
works.

Figure 2-2 Typical tmadmin Session

2-12 Administering an Oracle Tuxedo Application at Run Time

Using EventBroker to Moni to r Your App l i cat ion
Monitoring Your System Using tmadmin Commands
Following is a list of run-time system functions that you can monitor with tmadmin commands:

Number of servers installed in a service

Appropriate load distribution

If a particular service is doing any work

Inactive clients

If distribution of work is flowing smoothly through the system

If a client is tying up a connection and preventing a server from doing any work for
another client

Stability of network

If you must manually commit or abort a transaction

Sufficient operating system resources (such as shared memory and semaphores) on a local
machine

See Also
tmadmin(1) in the Oracle Tuxedo Command Reference

Using EventBroker to Monitor Your Application
The Oracle Tuxedo EventBroker monitors a running application for events (for example, a state
change in a MIB object, such as the transition of a client from active to inactive). When the
EventBroker detects an event, it reports or posts the event, and then notifies relevant subscribers
that the event has occurred. You can be informed automatically when events occur in the MIB by
receiving FML data buffers representing MIB objects. To post the event and report it to
subscribers, the EventBroker uses the tppost(3c) function. Both administrators and application
processes can subscribe to events.

The EventBroker recognizes over 100 meaningful state transitions to a MIB object as system
events. A posting for a system event includes the current MIB representation of the object on
which the event occurred, and some event-specific fields that identify the event that occurred. For
example, if a machine is partitioned, an event is posted with the following:
Administering an Oracle Tuxedo Application at Run Time 2-13

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html

The name of the affected machine, as specified in the T_MACHINE class, with all the
attributes of that machine

Some event attributes identifying the event as machine partitioned

To use the EventBroker, you simply subscribe to system events.

See Also
“Managing Events Using EventBroker” on page 4-15 in Introducing Oracle Tuxedo ATMI

Using Log Files to Monitor Activity
To help you identify error conditions quickly and accurately, the Oracle Tuxedo system provides
the following log files:

Transaction log (TLOG)—a binary file that is not normally read by you (the
administrator), but that is used by the Transaction Manager Server (TMS). A TLOG is
created only on machines involved in Oracle Tuxedo global transactions.

User log (ULOG)—a log of messages generated by the Oracle Tuxedo system while your
application is running. The ULOGMILLISEC environment variable is used to time stamp
ulog message output intervals in milliseconds instead of seconds. The ULOGRTNSIZE
environment variable is used to specify rotation files size. For more information on
ULOGMILLISEC and ULOGRTNSIZE, see userlog(3c) in the Oracle Tuxedo Command
Reference.

These logs are maintained and updated constantly while your application is running.

See Also
“What Is the Transaction Log (TLOG)?” on page 2-15

“Ways to Monitor Your Application” on page 2-1

“Detecting Errors Using Logs” on page 2-15

“Estimating Service Workload Using the Application Service Log” on page 2-18

userlog(3c)
2-14 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html

What I s the T ransact ion Log (TLOG)?
What Is the Transaction Log (TLOG)?
The transaction log (TLOG) keeps track of global transactions during the commit phase. At the end
of the first phase of a 2-phase commit protocol, the participants in a global transaction issue a
reply to the question of whether to commit or roll back the transaction. This reply is recorded in
the TLOG.

The TLOG file is used only by the Transaction Manager Server (TMS) that coordinates global
transactions. It is not read by the administrator. The location and size of the TLOG are specified
by four parameters that you set in the MACHINES section of the UBBCONFIG file.

You must create a TLOG on each machine that participates in global transactions.

See Also
“Detecting Errors Using Logs” on page 2-15

What Is the User Log (ULOG)?
The user log (ULOG) is a file to which all messages generated by the Oracle Tuxedo system—error
messages, warning messages, information messages, and debugging messages—are written.
Application clients and servers can also write to the user log. A new log is created every day and
there can be a different log on each machine. However, a ULOG can be shared by multiple
machines when a remote file system is being used.

The ULOG provides an administrator with a record of system events from which the causes of most
Oracle Tuxedo system and application failures can be determined. You can view the ULOG, a text
file, with any text editor. The ULOG also contains messages generated by the tlisten process.
The tlisten process provides remote service connections for other machines in an application.
Each machine, including the master machine, should have a tlisten process running on it.

Detecting Errors Using Logs
The Oracle Tuxedo log files can help you detect failures in both your application and your system
by:

“Analyzing the Transaction Log (TLOG)” on page 2-16

“Analyzing the User Log (ULOG)” on page 2-16

“Analyzing tlisten Messages in the ULOG” on page 2-17
Administering an Oracle Tuxedo Application at Run Time 2-15

Analyzing the Transaction Log (TLOG)
The TLOG is a binary file that contains only messages about global transactions that are in the
process of being committed. To view the TLOG, you must first convert it to text format so that it
is readable. The Oracle Tuxedo system provides two tmadmin operations to do this:

dumptlog (dl) downloads (or dumps) the TLOG (a binary file) to a text file.

loadtlog uploads (or loads) an text version of the TLOG into an existing TLOG (a binary
file).

The dumptlog and loadtlog commands are also useful when you need to move the TLOG
between machines as part of a server group migration or machine migration.

Detecting Transaction Errors
Use the MIB T_TRANSACTION class to obtain the runtime transaction attributes within the system.
The tmadmin command printtrans (pt) can also be used to display this information.
Information about each group in the transaction is printed only if tmadmin is running in verbose
mode as set by a previous verbose (v) command.

Any serious errors during the transaction commit process, such as a failure while writing the
TLOG, is written to the USERLOG.

Analyzing the User Log (ULOG)
On each active machine in an application, the Oracle Tuxedo system maintains a log file that
contains Oracle Tuxedo system error messages, warning messages, debugging messages, or other
helpful information. This file is called the user log or ULOG. The ULOG simplifies the job of finding
errors returned by the Oracle Tuxedo ATMI, and provides a central repository in which the
Oracle Tuxedo system and applications can store error information.

You can use the information in the ULOG to identify the cause of system or application failures.
Multiple messages about a given problem can be placed in the user log. Generally, earlier
messages provide more useful diagnostic information than later messages.

ULOG Message Example
In the following example of Listing 2-1, message 358 from the LIBTUX_CAT catalog identifies
the cause of the trouble reported in subsequent messages, namely, that there are not enough UNIX
system semaphores to boot the application.
2-16 Administering an Oracle Tuxedo Application at Run Time

Detec t ing Er ro rs Us ing Logs
Listing 2-1 Sample ULOG Messages

151550.gumby!BBL.28041.1.0: LIBTUX_CAT:262: std main starting
151550.gumby!BBL.28041.1.0: LIBTUX_CAT:358: reached UNIX limit on semaphore ids
151550.gumby!BBL.28041.1.0: LIBTUX_CAT:248: fatal: system init function ...
151550.gumby!BBL.28040.1.0: CMDTUX_CAT:825: Process BBL at SITE1 failed ...
151550.gumby!BBL.28040.1.0: WARNING: No BBL available on site SITE1.
 Will not attempt to boot server processes on that site.

Note: System Messages contains complete descriptions of user log messages and
recommendations for any actions that should be taken to resolve the problems indicated.

Analyzing tlisten Messages in the ULOG
Part of the ULOG records error messages to the tlisten process. You can view tlisten
messages using any text editor. Each machine, including the MASTER machine contains a separate
tlisten process. Though separate tlisten logs are maintained in the ULOG on each machine,
they can be shared across remote file systems.

The ULOG records tlisten process failures. tlisten is used, during the boot process, by
tmboot and, while an application is running, by tmadmin. tlisten messages are created as soon
as the tlisten process is booted. Whenever a tlisten process failure occurs, a message is
recorded in the ULOG.

Note: Application administrators are responsible for analyzing the tlisten messages in the
ULOG, but programmers may also find it useful to check these messages.

The Oracle Tuxedo System Messages CMDTUX Catalog contains the following information
about tlisten messages:

Descriptions of all messages

Recommended actions that you (or a programmer) can take to resolve the error conditions
reported in these messages

tlisten Message Example
Consider the following example of a tlisten message in the ULOG:

121449.gumby!simpserv.27190.1.0: LIBTUX_CAT:262: std main starting

A ULOG message consists of a tag and text. The tag consists of the following:
Administering an Oracle Tuxedo Application at Run Time 2-17

A 6-digit string (hhmmss) representing the time of day (in terms of hour, minute, and
second).

The name of the machine (as returned, on UNIX systems, by the uname -n command).

The name and process identifier of the process that is logging the message. (This process
ID can optionally include a transaction ID.) Also included is a thread ID (1) and a context
ID (0).

Note: Placeholders are printed in the thread_ID and context_ID field of entries for
single-threaded and single-contexted applications. (Whether an application is
multithreaded is not apparent until more than one thread is used.)

The text consists of the following:

The name of the message catalog

The message number

The Oracle Tuxedo system message

Note: You can find this message in the Oracle Tuxedo System Messages LIBTUX Catalog.

See Also
“How to Create a TLOG Device” on page 1-7

“How to Boot the Application” on page 1-8

“Oracle Tuxedo Transaction Management Server” on page 3-10 in Introducing Oracle
Tuxedo ATMI

“Using Transactions” in Tutorials for Developing Oracle Tuxedo ATMI Applications

Estimating Service Workload Using the Application
Service Log

A Oracle Tuxedo application server can generate a log of the service requests it handles. The log
is displayed on the server’s standard output (stdout). Each record contains a service name, start
time, and end time.

You can request such a log when a server is activated. The txrpt facility produces a summary
of the time spent by the server, thus giving you a way to analyze the log output. Using this data,
2-18 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intarch.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/tutor/tutov.html

Us ing the MIB to Moni to r Your Appl i cat ion
you can estimate the relative workload generated by each service, which will help you set
workload parameters appropriately for the corresponding services in the MIB.

Using the MIB to Monitor Your Application
There are essentially two operations you can perform using the MIB: you can get information
from the MIB (a get operation) or you can update information in the MIB (a set operation) at
any time using a set of ATMI functions (for example, tpalloc(3c), tprealloc(3c),
tpcall(3c), tpacall(3c), tpgetrply(3c), tpenqueue(3c), and tpdequeue(3c)).

When you query the MIB with a get operation, the MIB responds to your reply with a number
of matches, and indicates how many more objects match your request. The MIB returns a handle
(that is, the cursor) that you can use to get the remaining objects. The operation you use to get the
next set of objects is called getnext. The third operation occurs when queries span multiple
buffers.

Limiting Your MIB Queries
When you query the MIB, which is a virtual database, you are selecting a set of records from the
database table. You can control the size of the database table in two ways: by controlling the
number of objects about which you want information, or by controlling the amount of
information about each object. Using key fields and filters, you can limit the scope of your request
to data that is meaningful for your needs. The more limits you specify, the less information is
requested from the application, and the faster the data is provided to you.

Querying Global and Local Data
Data in the MIB is stored in a number of different places. Some data is replicated on more than
one machine in a distributed application. Other data is not replicated, but is local to particular
machines based on the nature of the data or the object represented.

What Is Global Data?
Global data is information about application components such as servers that is replicated on
every machine in an application. Most of the data about a server, for example, such as information
about its configuration and state, is replicated globally throughout an application, specifically in
every bulletin board. An Oracle Tuxedo application can access this information from anywhere.

For example, from any machine in an application called Customer Orders, the administrator can
find out that server B6 belongs to Group 1, runs on machine CustOrdA, and is active.
Administering an Oracle Tuxedo Application at Run Time 2-19

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html

What Is Local Data?
Other information is not replicated globally, but is local to an entity, such as statistics for a server.
An example of a local attribute is TA_TOTREQC, which defines the number of times services have
been processed in a specified server. This statistic is stored with the server on its host machine.
When the server accepts and processes a service request, the counter is incremented. Because this
kind of information is managed locally, replicating it would inhibit your system’s performance.

There are also classes in the MIB that are exclusively local, such as clients. When a client logs
in, the Oracle Tuxedo system creates an entry for it in the bulletin board, and records all tracking
information about the client in that entry. The MIB can determine the state of the client at anytime
by checking this entry.

Using tmadmcall to Access Information
The Oracle Tuxedo system provides a programming interface that offers direct access to the MIB
while your application is not running. This interface, the tpadmcall function, gives the
application direct access to the data upon which the MIB is based. tpadmcall allows you access
to a subset of information that is local to your process.

Use tpadmcall when you need to query the system or make administrative changes while your
system is not running. tpadmcall queries the TUXCONFIG file on behalf of your request. Data
buffers that you put in, and data buffers that you receive (containing your queries and the replies
to them) are exactly the same.

See Also
“Managing Operations Using the MIB” on page 4-12 in Introducing Oracle Tuxedo ATMI

MIB(5) in File Formats, Data Descriptions, MIBs, and System Processes Reference

“Querying and Updating the MIB with ud32” on page 2-20

Querying and Updating the MIB with ud32
ud32 is a client program delivered with the Oracle Tuxedo system that reads input consisting of
text representation of FML buffers. You can use ud32 for ad hoc queries and updates to the MIB.
It creates an FML32 buffer, makes a service call with the buffer, receives a reply (also in an FML32
buffer) from the service call, and displays the results on screen or in a file in text format.
2-20 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Using the Run-t ime and User- l eve l T rac ing Ut i l i t y
ud32 builds an FML32-type buffer with the FML fields and values that you represent in text format,
makes a service call to the identified service in the buffer, and waits for the reply. The reply then
comes back in FML32 format as a report. Now, because the MIB is FML32-based, ud32 becomes
the scripting tool for the MIB.

For example, suppose you write a small file that contains the following text:

service name=.tmib and ta_operation=get, TACLASSES=T_SERVER

When you type this file into ud32, you receive an FML output buffer listing all the data in the
system about the servers.

Using the Run-time and User-level Tracing Utility
The Oracle Tuxedo system provides a run-time and user-level tracing facility that enable you to
track the execution of distributed business applications. The system has a set of built-in trace
points that mark calls to functions in different categories, such as ATMI functions issued by the
application or XA functions issued by the Oracle Tuxedo system to an X/Open compliant
resource manager.

To enable tracing, you must specify a tracing expression that contains a category, a filtering
expression, and an action. The category indicates the type of function (such as ATMI) to be
traced. The filtering expression specifies which particular functions trigger an action. The action
indicates the response to the specified functions by the Oracle Tuxedo system.

The system may, for example, write a record in the ULOG, execute a system command, or
terminate a trace process. A client process can also propagate the tracing facility with its requests.
This capability is called dyeing; the trace dye colors all services that are called by the client.

You can specify a tracing expression in the following ways.

Setting the TMTRACE run-time environment variable

For a simple tracing expression, define TMTRACE=on in the environment of the client. This
expression enables tracing of ATMI functions on the client and on any server that performs
a service on behalf of that client. The trace records are written to the ULOG file.

Specifying the expression in a server environment

You can also specify a tracing expression in the environment of a server using the ulog or
utrace tmtrace(5) receivers. For example, you might enter the following:

– Run-time Tracing Expression: TMTRACE=atmi:/tpservice/ulog. If you export this
setting within a server environment, a record with general run-time trace information is
created in the ULOG file for all service requests performed on that server.
Administering an Oracle Tuxedo Application at Run Time 2-21

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

– User-Level Expression: TMTRACE=atmi:utrace. Specifying the utrace receiver
automatically calls the user-defined tputrace(3c). If you export this setting within a
server environment, a record with trace information and output location defined by the
user is created for the ATMI functions running on that server.

You can activate or deactivate the tracing option using the changetrace command of tmadmin.
This command enables you to overwrite the tracing expression on active client or server
processes. Administrators can enable global tracing for all clients and servers, or for a particular
machine, group, or server.

See Also
“Ways to Monitor Your Application” on page 2-1

tmtrace(5) in File Formats, Data Descriptions, MIBs, and System Processes Reference

userlog(3c) and tputrace(3c) in Oracle Tuxedo ATMI C Function Reference

Managing Errors Using the DBBL and BBLs
The Oracle Tuxedo system uses the following two administrative servers to distribute the
information on the bulletin board to all active machines in the application:

DBBL—the Distinguished Bulletin Board Liaison server propagates global changes to the
MIB and maintains the static part of the MIB. Specifically, the DBBL:

– Resides (only one DBBL per application) on the MASTER machine and provides
periodic status requests to all BBLs

– Coordinates bulletin board updates, the state of different machines, and queries with the
BBLs

– Coordinates migration of servers

– Can be migrated to other machines for fault resiliency

BBL—the Bulletin Board Liaison server maintains the bulletin board on its host machine,
coordinating changes to the local MIB, and verifying the integrity of application programs
active on its machine. Specifically, the bulletin board:

– Resides on each Oracle Tuxedo machine in an application, carries out requests from the
DBBL, and administers timeouts for service requests, replies to requesters, and
transactions
2-22 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html

Managing E r ro rs Us ing the DBBL and BBLs
– Detects server failures, initiates user-defined recovery, and automatically restarts
servers

– Detects client failures

– Cleans up client and server entries, and conversations on the bulletin board

– Detects and recovers DBBL failures (if it is the BBL residing on the MASTER machine)

Figure 2-3 shows the diagnosis and repair using the DBBL and BBLs.

Figure 2-3 Diagnosis and Repair Using the DBBL and BBLs

Both servers have a role in managing faults. The DBBL coordinates the state of other active
machines in the application. Each BBL communicates state changes in the MIB, and sometimes
sends a message to the DBBL indicating all is OK on its host machine.
Administering an Oracle Tuxedo Application at Run Time 2-23

The Oracle Tuxedo run-time system records events, along with system errors, warnings, and
tracing events, in the user log (ULOG). Programmers can use the ULOG to debug their applications
or notify administrators of special conditions or states found (for example, an authorization
failure).

Using ATMI to Handle System and Application Errors
Using ATMI, a programmer controls some of the more global aspects of communications. ATMI
provides functions for handling both application and system-related errors. When a service
routine encounters an application error, such as an invalid account number, the client knows the
service performed its task but could not fulfill its request because of an application error.

With a system failure, such as a server crashing while performing a request, the client knows the
service routine did not perform its task because of an underlying system error. The Oracle Tuxedo
system notifies programs of system errors that occur as it monitors the application’s behavior and
its own behavior.

Using Configurable Timeout Mechanisms
At times, a service may get stuck in an infinite loop while processing a request. The client waits,
but no reply is forthcoming. To protect a client from endless waiting, the Oracle Tuxedo system
has two types of configurable timeout mechanisms: blocking timeouts and transaction timeouts.
For more information about these timeout mechanisms, refer to Specifying Domains Transaction
and Blocking Timeouts in Using the Oracle Tuxedo Domains Component.

A blocking timeout is a mechanism that ensures a blocked program waits no longer than the
specified timeout value for something to occur. Once a timeout is detected, the waiting program
is alerted with a system error informing it that a blocking timeout has occurred. The blocking
timeout defines the duration of service requests, or how long the application is willing to wait for
a reply to a service request. The timeout value is a global value defined in the BLOCKTIME field
of the RESOURCES section of the TUXCONFIG file.

A transaction timeout is another type of timeout that can occur because active transactions tend
to be resource-intensive. A transaction timeout defines the duration of a transaction, which may
involve several service requests. The timeout value is defined when the transaction is started
(with tpbegin(3c)). Transaction timeouts are useful when maximizing resources. For example,
if database locks are held while a transaction progresses, an application programmer may want to
limit the amount of time that the application’s transaction resources are held up. A transaction
timeout always overrides a blocking timeout.
2-24 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/add/addom.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/add/addom.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html

Using ATMI t o Handle Sys tem and App l icat ion E r ro rs
There are two UBBCONFIG file transaction timeout parameters:

TRANTIME which is specified in the SERVICES section of the UBBCONFIG and controls the
timeout value for a specific AUTOTRAN service.

MAXTRANTIME which is specified in the RESOURCES section of the UBBCONFIG and is used
by the administrator to place a maximum upper bound on the timeout value of a transaction
started via tpbegin(3c) or via an AUTOTRAN service invocation.

For more information about these transaction timeout parameters, refer to UBBCONFIG(5) in
File Formats, Data Descriptions, MIBs, and System Processes Reference.

Configuring Redundant Servers to Handle Failures
You can handle some failure situations by configuring an application with redundant servers and
the automatic restart capability. Redundant servers provide high availability, and can be used to
handle large amounts of work, server failures, or machine failures. The Oracle Tuxedo system
continually checks the status of active servers, and when it detects the failure of a restartable
server, the system automatically creates a new instance of that server.

By configuring servers with the automatic restart property, you can handle individual server
failures.You can also specify the number of restarts that the system will provide. This capability
can prevent a recurring application error by limiting the number of times a server is restarted.

The Oracle Tuxedo system frequently checks the availability of each active machine. A machine
is marked as partitioned when it cannot be reached by the system. If this occurs, a system event
is generated. A partition can occur due to a network failure, machine failure, or severe
performance degradation.

See Also
“Oracle Tuxedo System Administration and Server Processes” on page 3-1 in Introducing
Oracle Tuxedo ATMI

“System and Application Data That You Can Monitor” on page 2-4

“Monitoring Dynamic and Static Administrative Data” on page 2-6
Administering an Oracle Tuxedo Application at Run Time 2-25

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intarch.html

Monitoring Multithreaded and Multicontexted
Applications

While monitoring a multithreaded application, keep in mind that individual threads are not
visible to an administrator.

You can get MIB statistical reports for various aspects of your multithreaded and/or
multicontexted application by running the tmadmin(1) command interpreter. Here are a
few examples of the information you can request for a multithreaded application:

– Count of client contexts per client process and a separate entry for each client context
(obtained by running the tmadmin pclt command).

– Count of dispatched services per server process and, optionally, information about each
context (obtained by running tmadmin/psr, optionally in verbose mode).

When the BBL checks clients, it verifies that a process is alive. If a process has died, the
BBL detects the process death. If an individual thread within a process has died, however,
the death of the thread is not detected by the BBL.

Therefore application programmers should keep in mind the possibility that individual
threads within a process may die. If one thread dies and a signal is issued, the whole
process to which the thread belongs usually dies, and that death is detected by the BBL.

If a thread dies as the result of an erroneous call to a thread exit function, however, no
signal is generated. If this type of death occurs before the thread calls tpterm(), then the
BBL cannot detect the death and does not deallocate the registry table slot for the context
associated with the dead thread. (It would not be proper for the BBL to deallocate this
registry table slot even if it could detect the death of the thread because, in some
application models, another thread might subsequently choose to associate itself with that
context.)

There is no solution for this limitation so it is important for programmers to keep it in mind
and design their applications accordingly.

How to Retrieve Data About a Multithreaded/Multicontexted
Application Using the MIB
Note: The information presented here applies to all multithreaded and/or multicontexted

applications, regardless of which administrative tools are being used. The functionality
is discussed from the point of view of an administrator using MIB calls, but is the same
2-26 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

Moni to r ing Mu l t i th readed and Mu l t i contex ted App l i cat i ons
for an administrator using an interface to the MIB, whether that interface is tmadmin(1)
or the Oracle Administration Console.

You can obtain information about a multithreaded or multicontexted application by:

Issuing calls to the MIB

Issuing selected tmadmin commands

Information is available in the following locations:

The client section of the bulletin board registry provides an entry for each context. (An
entry is created automatically by the Oracle Tuxedo system whenever a new context is
created through a call to tpinit() in TPMULTICONTEXTS mode.)

The T_SERVERCTXT class of the TM_MIB provides multiple instances of 14 fields if multiple
server dispatch threads are active simultaneously. Specifically, the T_SERVERCTXT section
includes an instance of each of the following fields for each active sever dispatch thread:

– TA_CONTEXTID (key field)

– TA_SRVGRP (key field)

– TA_SRVID (key field)
– TA_CLTLMID

– TA_CLTPID

– TA_CLTREPLY

– TA_CMTRET

– TA_CURCONV

– TA_CURREQ

– TA_CURRSERVICE

– TA_LASTGRP

– TA_SVCTIMEOUT

– TA_TIMELEFT

– TA_TRANLEV

For example, if 12 server dispatch threads are active simultaneously, then the
T_SERVERCTXT class of the MIB for this application will include 12 occurrences of the
TA_CONTEXTID field, 12 occurrences of the TA_SRVGRP field, and so on.
Administering an Oracle Tuxedo Application at Run Time 2-27

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

When multiple instances of T_SERVER class fields contain multiple values for different
contexts of a multicontexted server, a “dummy” value is specified in the T_SERVER class
field and the T_SERVERCTXT field contains an actual value for each context.

See Also
tmadmin(1) in the Oracle Tuxedo Command Reference

TM_MIB(5) in the File Formats, Data Descriptions, MIBs, and System Processes Reference

“Programming a Multithreaded and Multicontexted ATMI Application” on page 10-1 in
Programming Oracle Tuxedo ATMI Applications Using C
2-28 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/pgc/pgthr.html

C H A P T E R 3
Dynamically Modifying an Application
This topic includes the following sections:

Dynamic Modification Methods

Using tmconfig to Make Permanent Changes to Your Configuration

How to Run tmconfig

Making Temporary Modifications to Your Configuration with tmconfig

Limitations on Dynamic Modification Using tmconfig

Making Temporary Modifications to Your Configuration with tmadmin

Dynamic Modification Methods
As an administrator, you must ensure that once an application is up and running, it continues to
meet the performance, availability, and security requirements set by your company. The Oracle
Tuxedo system allows you to make changes to your configuration without shutting it down.
Without inconveniencing your users, you can do the following:

Modify existing entries in your configuration file, that is, make changes to TUXCONFIG.

Add components to your application by adding entries for them to your configuration file.

Make temporary changes to an application by advertising, unadvertising, suspending, or
resuming services, and changing service parameters (such as LOAD and PRIORITY).
Administering an Oracle Tuxedo Application at Run Time 3-1

Note: To modify the configuration file for a running application, you must do one of the
following:

Shut down your application first (and reboot it after revising the configuration file).

Run the tmconfig(1) command (described on the tmconfig, wtmconfig(1)
reference page), which allows you to modify your configuration file dynamically.

Thus, you can adjust your system to reflect either current or expected conditions by making either
permanent or temporary changes to an application. Temporary changes are reflected in the
bulletin board only. Permanent changes are made by modifying the TUXCONFIG file. Because
TUXCONFIG is a binary file, however, you cannot edit it through a simple text editor.

Tools for Modifying Your Application
To help you dynamically modify your application, the Oracle Tuxedo system provides the
following three methods: the Oracle Administration Console, command-line utilities, and the
Management Information Base (MIB) API. These tools help you respond quickly and efficiently
to the need for changes in your application resulting from changing business needs or failure
conditions. Use them to keep your application performing fast, well, and securely.

Figure 3-1 shows the dynamic modification tools.
3-2 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

Dynamic Modi f i cat i on Methods
Figure 3-1 Dynamic Modification Tools

Oracle Administration Console—a Web-based graphical user interface (GUI) you can use
to dynamically configure your application. You can display and change configuration
information, determine the state of each component of the system, and obtain statistical
information about items such as executed requests and queued requests.

Command-line utilities—most of the functionality needed for dynamic modification is
provided by two commands: tmadmin and tmconfig. tmadmin is a shell-level command
with over 70 subcommands for performing various administrative tasks, including dynamic
system modification. tmconfig is a shell-level command that you can use to add and
modify configuration entries while your system is running.

MIB API—a Management Information Base API that enables you to write your own
programs to monitor your system and make dynamic changes to your system.

You always have the choice of these three tools for any administrative task. For dynamic
modification or reconfiguration, however, we recommend the Oracle Administration Console for
its ease of use. Full descriptions of all the features in the Administration Console are available
through the Help utility provided with the GUI.

If you prefer to work on the command line, however, simply run the tmadmin or tmconfig
command.
Administering an Oracle Tuxedo Application at Run Time 3-3

Note: For lists of configuration parameters and reconfiguration restrictions, see
tmconfig, wtmconfig(1) in the Oracle Tuxedo Command Reference and TM_MIB(5)
in File Formats, Data Descriptions, MIBs, and System Processes Reference.

See Also
“Using tmconfig to Make Permanent Changes to Your Configuration” on page 3-4

“Management Operations Using the Oracle Tuxedo Administration Console” in
Introducing Oracle Tuxedo ATMI

“Managing Operations Using the MIB” in Introducing Oracle Tuxedo ATMI

APPQ_MIB(5), DM_MIB(5), MIB(5), and TM_MIB(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference

Using tmconfig to Make Permanent Changes to Your
Configuration

The tmconfig command enables you to browse and modify your configuration file (TUXCONFIG
on the MASTER machine) and its associated entities, and to add new components (such as
machines and servers) to your application while it is running. When you modify your
configuration file (TUXCONFIG on the MASTER machine), tmconfig enables you to perform the
following tasks:

Update the TUXCONFIG file on all machines that are currently booted in the application.

Propagate the TUXCONFIG file automatically to new machines as they are booted.

Note: The tmconfig command runs as a Oracle Tuxedo system client.

Because tmconfig runs as a Oracle Tuxedo client, it is characterized by the following conditions:

tmconfig fails if it cannot allocate a TPINIT typed buffer.

The username associated with the client is the login name of the user. (tmconfig fails if
the user’s login name cannot be determined.)

For a secure application (that is, an application for which the SECURITY parameter has
been set in the configuration file), tmconfig prompts for the application password. If the
application password is not provided, tmconfig fails.
3-4 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intman.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intman.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Us ing tmconf ig to Make Permanent Changes to Your Conf igurat ion
If tmconfig cannot register as a client, an error message containing tperrno is displayed
and tmconfig exits. If this happens, check the user log to determine the cause. The most
likely causes for this type of failure are:

– The TUXCONFIG environment variable was not set correctly.

– The system was not booted on the machine on which tmconfig is being run.

tmconfig ignores all unsolicited messages.

The client name for the tmconfig process that is displayed in the output from
printclient (a tmadmin command) is tpsysadm.

How tmconfig Works
When you type tmconfig on a command line, you are launching the display of a series of menus
and prompts through which you can request an operation such as the display or modification of
a configuration file record. tmconfig collects your menu choices, performs the requested
operation, and prompts you (by displaying another set of menu choices) to request another
operation. It repeatedly offers to perform operations (by repeatedly displaying the menus) until
you exit the session by selecting QUIT from a menu.

Listing 3-1 shows the menus and prompts that are displayed once you launch a tmconfig
command session.

Note: The lines in the listing are numbered in this example for your convenience; during an
actual tmconfig session, these numbers are not displayed.

Listing 3-1 Menus and Prompts Displayed in a tmconfig Session

1 $ tmconfig
2 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
3 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
4 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
5
6 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
7 6) CLEAR BUFFER 7) QUIT [1]:
8 Enter editor to add/modify fields [n]?
9 Perform operation [y]?
Administering an Oracle Tuxedo Application at Run Time 3-5

As shown, you are asked to answer four questions:

In which section of the configuration file do you want to view, add, or modify a record?

For the section of the configuration file you have just specified, which operation do you
want to perform?

Do you want to enter a text editor now to add or modify fields for the record?

Do you want tmconfig to perform the requested operation now?

How to Select a Section of the Configuration File
When you start a tmconfig session, the following menu is displayed Each item is a section of
TUXCONFIG, the configuration file for the application.

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

Note: For details about these sections (including a list of configurable parameters for each
section), see TM_MIB(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference. TM_MIB includes the names of fields that are displayed during a
tmconfig command session, the range of values for each field, the key fields for each
section, and any restrictions or updates to the fields in each section.

To select a section, enter the appropriate number after the menu prompt. For example, to
select the MACHINES section, enter 2, as follows.

10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2

The default section is the RESOURCES section, in which parameters that apply to your entire
application are defined. To accept the default selection (which is displayed within square
brackets), simply press the Enter key.

10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

How to Select a tmconfig Task
A menu of tasks that tmconfig can perform is displayed after you select a section of the
configuration file.

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:

To select an operation, enter the appropriate number at the menu prompt. For example, to select
the CLEAR BUFFER section, enter 6, as follows.
3-6 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Us ing tmconf ig to Make Permanent Changes to Your Conf igurat ion
6) CLEAR BUFFER 7) QUIT [1]: 6

Table 3-1 defines each task.

Table 3-1 tmconfig tasks

This Menu
Item

Called Performs the Following Activities

1 FIRST Displays the first record from the specified section. No key fields are
needed. If any are in the input buffer, they are ignored.

Using the FIRST operation can reduce the amount of typing that is
needed. When adding a new record to a section, instead of typing all the
required field names and values, use the FIRST operation to retrieve an
existing record for the UBBCONFIG section. Then, select the ADD
operation and use the text editor to modify the parameter values in the
newly created record.

2 NEXT Displays the next record from the specified section, based on the key
fields in the input buffer.

3 RETRIEVE Displays the requested record (specified with the appropriate key fields)
from the specified section.

4 ADD Adds the indicated record to the specified section. For any optional fields
that are not specified, the defaults specified in TM_MIB(5) are used. (All
defaults and validations used by tmloadcf(1) are enforced.) The
current values for all fields are returned in the output buffer. This
operation can be done only by the Oracle Tuxedo application
administrator.

5 UPDATE Updates the record specified in the input buffer in the selected section.
Any fields not specified in the input buffer remain unchanged. (All
defaults and validations used by tmloadcf(1) are enforced.) The
current values for all fields are returned in the input buffer. This operation
can be done only by the Oracle Tuxedo application administrator.

6 CLEAR BUFFER Clears the input buffer. (All fields are deleted.) After this operation,
tmconfig immediately prompts for the specified section again.

7 QUIT Exits tmconfig gracefully: the client is terminated. You can also exit
tmconfig at any time by entering q at any prompt.
Administering an Oracle Tuxedo Application at Run Time 3-7

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

How Results of a tmconfig Task Are Displayed
After tmconfig completes a task, the results—a return value and the contents of the output
buffer—are displayed on the screen.

If the operation was successful but no update was done, the following message is
displayed:

Return value TAOK

The message in the TA_STATUS field is:

Operation completed successfully.

If the operation was successful and an update was done, the following message is
displayed:

Return value TAUPDATED

The message in the TA_STATUS field is:

Update completed successfully.

If the operation failed, an error message is displayed:

– If there is a problem with permissions or a Oracle Tuxedo system communications
error (rather than with the configuration parameters), one of the following return values
is displayed: TAEPERM, TAEOS, TAESYSTEM, or TAETIME.

– If there is a problem with a configuration parameter of the running application, the
name of that parameter is displayed as the value of the TA_BADFLDNAME file, and the
problem is indicated in the value of the TA_STATUS field in the output buffer. If this
type of problem occurs, one of the following return values is displayed: TAERANGE,
TAEINCONSIS, TAECONFIG, TAEDUPLICATE, TAENOTFOUND, TAEREQUIRED, TAESIZE,
TAEUPDATE, or TAENOSPACE.

tmconfig Error Message Conditions
The following list describes the conditions indicated by both sets of error messages.

TAEPERM
The UPDATE or ADD operation was selected but tmconfig is not being run by the Oracle
Tuxedo application administrator.

 TAESYSTEM
An Oracle Tuxedo system error has occurred. The exact nature of the error is recorded in
the user log. See userlog(3c) in the Oracle Tuxedo ATMI C Function Reference.
3-8 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html

How to Run tmconf ig
TAEOS
An operating system error has occurred. The exact nature of the error is written to the user
log.

TAETIME
A blocking timeout has occurred. The output buffer is not updated so no information is
returned for retrieval operations. The status of update operations can be checked by
retrieving the record that was being updated.

TAERANGE
A field value is either out of range or invalid.

TAEINCONSIS
For example, an existing RQADDR value or one SRVGRP/SERVERNAME entry may be
specified for a different SRVGRP/SERVERNAME entry.

TAECONFIG
An error occurred while the TUXCONFIG file was being read.

TAEDUPLICATE
The operation attempted to add a duplicate record.

TAENOTFOUND
The record specified for the operation was not found.

TAEREQUIRED
A field value is required but is not present.

TAESIZE
A value for a string field is too long.

TAEUPDATE
The operation attempted to do an update that is not allowed.

TAENOSPACE
The operation attempted to do an update but there was not enough space in the TUXCONFIG
file and/or the bulletin board.

How to Run tmconfig
To run tmconfig properly, you must set the required environmental variables. Also, if you have
not run tmconfig, we recommend that you walk through a generic tmconfig session, during
which you modify entries in your configuration file.
Administering an Oracle Tuxedo Application at Run Time 3-9

How to Set Environment Variables for tmconfig
Before you can start a tmconfig session, you must set the required environment variables and
permissions. For your convenience, you may also want to select a text editor other than the default
editor.

Complete the following procedure to set up your working environment properly before running
tmconfig.

1. Log in as the Oracle Tuxedo application administrator if you want to add entries to
TUXCONFIG, or modify existing entries. (You do not need to log in as the administrator if you
only want to view existing configuration file entries without changing or adding to them.)

2. Assign values to two mandatory environment variables: TUXCONFIG and TUXDIR.

– The value of TUXCONFIG must be the full pathname of the binary configuration file on
the machine on which tmconfig is being run.

– The value of TUXDIR must be the full pathname of the root directory for the Oracle
Tuxedo system binary files. (tmconfig must be able to extract field names and
identifiers from $TUXDIR/udataobj/tpadmin.)

3. You may also set the EDITOR environment variable; this step is optional. The value of EDITOR
must be the name of the text editor you want to use when changing parameter values; the
default is ed (a UNIX system command-line editor).

Note: Many full-screen editors do not function properly unless the TERM environment
variable is also set.

How to Conduct a tmconfig Walkthrough Session
The following procedure leads you through a sample tmconfig session.

1. Enter tmconfig after a shell prompt.

$ tmconfig

Note: You can end a session at any time by entering q (short for quit) after the Section menu
prompt.

A menu of sections in the TUXCONFIG file is displayed.

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
3-10 Administering an Oracle Tuxedo Application at Run Time

How to Run tmconf ig
2. Select the section that you want to change by entering the appropriate menu number, such as
2 for the MACHINES section. The default choice is the RESOURCES section, represented by [1]
at the end of the list of sections shown in Step 1. If you specify a section (instead of accepting
the default), that section becomes the new default choice and remains so until you specify
another section.

A menu of possible operations is displayed.

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:

Each operation listed here is available to be performed on one record at a time of one
section of the configuration file. The names of most operations (FIRST and NEXT) are
self-explanatory. When you select FIRST, you are asking to have the first record (in the
specified section of the configuration file) displayed on the screen. When you select NEXT,
you are asking to have the contents of the buffer replaced by the second record in the
specified section, and to have the new buffer contents displayed on the screen. By
repeatedly choosing NEXT, you can view all the records in a given section of the
configuration file in the order in which they are listed.

3. Select the operation that you want to have performed.

The default choice is the FIRST operation, represented by [1] at the end of the list of
operations shown in step 2.

A prompt is displayed, asking whether you want to enter a text editor to start making
changes to the TUXCONFIG section you specified in step 2.

Enter editor to add/modify fields [n]?

4. Select y or n (for yes or no, respectively). The default choice (shown at the end of the prompt)
is n.

If you select yes (y), the specified editor is invoked and you can start adding or changing
fields. The format of each field is:

field_name<tabs>field_value

where the name and value of the field are separated by one or more tabs.

In most cases, the field name is the same as the corresponding KEYWORD in the UBBCONFIG
file, prefixed with TA_.

Note: For details about valid input, see “tmconfig Input Buffer Considerations” on
page 3-13. For descriptions of the field names associated with each section of the
UBBCONFIG file, see TM_MIB(5) in the File Formats, Data Descriptions, MIBs, and
System Processes Reference.
Administering an Oracle Tuxedo Application at Run Time 3-11

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

When you finish editing the input buffer, tmconfig reads it. If any errors are found, a
syntax error is displayed and tmconfig prompts you to decide whether to correct the
problem.

Enter editor to correct?

5. Select n or y.

If you decide not to correct the problem (by entering n), the input buffer contains no fields;
otherwise, the editor is executed again.

When you finish editing the input buffer, a prompt is displayed, asking whether you want
to have the operation you specified (in step 3) performed now.

Perform operation [y]?

6. Select n or y. The default choice (shown at the end of the prompt) is y.

– If you select no, the menu of sections is displayed again. Return to step 2.

– If you select yes, tmconfig executes the requested operation and displays the
following confirmation message.

Return value TAOK

The results of the operation are displayed on the screen.

You have completed an operation on one section of TUXCONFIG; you may now start
another operation on the same section or on another section. To allow you to start a
new operation, tmconfig displays, again, the menu of the TUXCONFIG sections
displayed in step 1.

Note: All output buffer fields are available in the input buffer unless the input buffer is
cleared.

7. Continue your tmconfig session by requesting more operations, or quit the session.

– To continue requesting operations, return to step 2.

– To end your tmconfig session, select QUIT from the menu of operations (as shown in
step 3).

8. After you end your tmconfig session, you can make a backup copy, in text format, of your
newly modified TUXCONFIG file. In the following example, the administrator chooses the
default response to the offer of a backup (yes) and overrides the default name of the backup
file (UBBCONFIG) by specifying another name (backup).
3-12 Administering an Oracle Tuxedo Application at Run Time

Making Temporary Mod i f i cat ions to Your Conf igurat ion wi th tmconf ig
Unload TUXCONFIG file into ASCII backup [y]?
Backup filename [UBBCONFIG]? backup
Configuration backed up in backup

tmconfig Input Buffer Considerations
The following considerations apply to the input buffer used with tmconfig:

If the value that you are typing into a field extends beyond one line, you may continue it
on the next line if you insert one or more tabs at the beginning of the second line. (The tab
characters are dropped when your input is read into TUXCONFIG.)

A line that contains only a single newline character is ignored.

If more than one line is provided for a particular field, the first occurrence is used and
other occurrences are ignored.

To enter an unprintable character as part of the value of a field, or to enter a tab as the first
character in a field, enter a backslash, followed by the two-character hexadecimal
representation of the desired character. (For a mapping of ASCII to hexadecimal
characters, see ASCII(5) in a UNIX system reference manual.) Here are a few examples:

– To insert a blank space, type:
\20

– To insert a backslash, type:
\\

Making Temporary Modifications to Your Configuration
with tmconfig

Many aspects of your configuration can be changed dynamically. This section provides
instructions for performing the tasks cited in the following list:

“How to Add a New Machine” on page 3-15

“How to Add a Server” on page 3-18

“How to Activate a Newly Configured Machine” on page 3-20

“How to Add a New Group” on page 3-23

“How to Change Data-dependent Routing (DDR) for an Application” on page 3-24
Administering an Oracle Tuxedo Application at Run Time 3-13

“How to Change Factory-based Routing (FBR) for an Interface” on page 3-25

“How to Change Application-wide Parameters” on page 3-27

“How to Change an Application Password” on page 3-29
3-14 Administering an Oracle Tuxedo Application at Run Time

How to Add a New Machine
How to Add a New Machine
1. Enter tmconfig.

2. To specify the MACHINES section of the configuration file, enter 2 after the prompt following
the list of sections. (Refer to lines 2-4 in the following sample listing.)

3. Press the Enter key to accept the default operation to be performed. The default is 1) FIRST,
an operation that displays the first record in the designated section. In this case, the first record
is for the first machine appearing in the MACHINES section. (Refer to line 6.)

4. Press the Enter key to accept the default choices regarding whether to enter the text editor (no)
and whether to have the specified operation performed (yes). As requested, the first record in
the MACHINES section is now displayed, which is the record for a machine named SITE1 in
the following sample listing. (Refer to lines 10-35 in the following listing.)

5. Select the MACHINES section again, by pressing the Enter key after the menu of sections.
(Refer to lines 36-38.)

6. Select the ADD operation by entering 4 after the menu of operations. (Refer to lines 39-40.)

7. Enter the text editor by entering y at the prompt. (Refer to line 41.)

8. Change pathnames as appropriate and specify new values for four key fields:

– TA_TLOGSIZE (refer to lines 50-51)

– TA_PMID (refer to lines 52-53)

– TA_LMID (refer to lines 54-55)

– TA_TYPE (refer to lines 56-57)

9. Write (that is, save) your input and quit the editor. (Refer to lines 58-60.)

10. Direct tmconfig to perform the operation (add the machine) by entering y at the prompt.
(Refer to line 61.)

Listing 3-2 illustrates a tmconfig session in which a machine is being added.

Listing 3-2 Adding a Machine

1 $ tmconfig
2 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
3 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
Administering an Oracle Tuxedo Application at Run Time 3-15

4 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2
5 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6 6) CLEAR BUFFER 7) QUIT [1]:
7 Enter editor to add/modify fields [n]?
8 Perform operation [y]?
9 Return value TAOK
10 Buffer contents:
11 TA_OPERATION 4
12 TA_SECTION 1
13 TA_OCCURS 1
14 TA_PERM 432
15 TA_MAXACCESSERS 40
16 TA_MAXGTT 20
17 TA_MAXCONV 10
18 TA_MAXWSCLIENTS 0
19 TA_TLOGSIZE 100
20 TA_UID 4196
21 TA_GID 601
22 TA_TLOGOFFSET 0
23 TA_TUXOFFSET 0
24 TA_STATUS LIBTUX_CAT:1137: Operation completed successfully
25 TA_PMID mchn1
26 TA_LMID SITE1
27 TA_TUXCONFIG /home/apps/bank/TUXCONFIG
28 TA_TUXDIR /home/tuxroot
29 TA_STATE ACTIVE
30 TA_APPDIR /home/apps/bank
31 TA_TYPE 3B2
32 TA_TLOGDEVICE /home/apps/bank/TLOG
33 TA_TLOGNAME TLOG
34 TA_ULOGPFX /home/apps/bank/ULOG
35 TA_ENVFILE /home/apps/bank/ENVFILE
36 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
37 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
38 10) NETGROUPS 11) NETMAPS 12) INTERFACES [2]:
39 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
40 6) CLEAR BUFFER 7) QUIT [1]: 4
41 Enter editor to add/modify fields [n]? y
42 491
43 g/home/s//usr/p
44 TA_TUXCONFIG /usr/apps/bank/TUXCONFIG
45 TA_TUXDIR /usr/tuxroot
46 TA_APPDIR /usr/apps/bank
47 TA_TLOGDEVICE /usr/apps/bank/TLOG
48 TA_ULOGPFX /usr/apps/bank/ULOG
49 TA_ENVFILE /usr/apps/bank/ENVFILE
50 /100/s//150/p
51 TA_TLOGSIZE 150
52 /mchn1/s//mchn2/p
3-16 Administering an Oracle Tuxedo Application at Run Time

How to Add a New Machine
53 TA_PMID mchn2
54 /SITE1/s//SITE3/p
55 TA_LMID SITE3
56 /3B2/s//SPARC/p
57 TA_TYPE SPARC
58 w
59 412
60 q
61 Perform operation [y]?
62 Return value TAUPDATED
63 Buffer contents:
64 TA_OPERATION 2
65 TA_SECTION 1
66 TA_OCCURS 1
67 TA_PERM 432
68 TA_MAXACCESSERS 40
69 TA_MAXGTT 20
70 TA_MAXCONV 10
71 TA_MAXWSCLIENTS 0
72 TA_TLOGSIZE 150
73 TA_UID 4196
74 TA_GID 601
75 TA_TLOGOFFSET 0
76 TA_TUXOFFSET 0
77 TA_STATUS LIBTUX_CAT:1136: Update completed successfully
78 TA_PMID mchn2
79 TA_LMID SITE3
80 TA_TUXCONFIG /usr/apps/bank/TUXCONFIG
81 TA_TUXDIR /usr/tuxroot
82 TA_STATE NEW
83 TA_APPDIR /usr/apps/bank
84 TA_TYPE SPARC
85 TA_TLOGDEVICE /usr/apps/bank/TLOG
86 TA_TLOGNAME TLOG
87 TA_ULOGPFX /usr/apps/bank/ULOG
88 TA_ENVFILE /usr/apps/bank/ENVFILE
Administering an Oracle Tuxedo Application at Run Time 3-17

How to Add a Server
1. Enter tmconfig.

2. To specify the SERVERS section of the configuration file, enter 4 after the menu of sections.
(Refer to line 3 in the following sample listing.)

3. Request the CLEAR BUFFER operation by entering 6 after the menu of operations. (Refer to line
5 in the following sample listing.)

4. Press the Enter key to accept the default section: SERVERS. (Refer to lines 7-9 in the following
sample listing.)

5. Request the ADD operation by entering 4 after the menu of operations. (Refer to lines 10-11 in
the listing.)

6. Enter the text editor by entering y at the prompt. (Refer to line 12.)

7. Specify new values for three key fields:

– TA_SERVERNAME (refer to line 15)

– TA_SRVGRP (refer to line 16)

– TA_SRVID (refer to line 17)

8. Write (that is, save) your input and quit the editor. (Refer to lines 19-21.)

9. Direct tmconfig to perform the operation (add the server) by entering y at the prompt. (Refer
to line 22.)

Listing 3-3 illustrates a tmconfig session in which a server is being added.

Listing 3-3 Adding a Server

1 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
2 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
3 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 4
4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
5 6) CLEAR BUFFER 7) QUIT [4]: 6
6 Buffer cleared
7 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
8 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
9 10) NETGROUPS 11) NETMAPS 12) INTERFACES [4]:
10 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
11 6) CLEAR BUFFER 7) QUIT [6]: 4
3-18 Administering an Oracle Tuxedo Application at Run Time

How to Add a Server
12 Enter editor to add/modify fields [n]? y
13 1
14 c
15 TA_SERVERNAME XFER
16 TA_SRVGRP BANKB1
17 TA_SRVID 5
18 .
19 w
20 28
21 q
22 Perform operation [y]?
23 Return value TAOK
24 Buffer contents:
25 TA_OPERATION 3
26 TA_SECTION 3
27 TA_OCCURS 1
28 TA_SRVID 5
29 TA_SEQUENCE 0
30 TA_MIN 1
31 TA_MAX 1
32 TA_RQPERM 432
33 TA_RPPERM 432
34 TA_MAXGEN 5
35 TA_GRACE 86400
36 TA_STATUS LIBTUX_CAT:1137: Operation completed successfully
37 TA_SYSTEM_ACCESS FASTPATH
38 TA_ENVFILE
39 TA_SRVGRP BANKB1
40 TA_SERVERNAME XFER
41 TA_CLOPT -A
42 TA_CONV N
43 TA_RQADDR
44 TA_REPLYQ Y
45 TA_RCMD
46 TA_RESTART Y
Administering an Oracle Tuxedo Application at Run Time 3-19

How to Activate a Newly Configured Machine
1. Enter tmconfig.

2. To specify the MACHINES section of the configuration file, enter 2 after the menu of sections.
(Refer to lines 1-3 in the following sample listing.)

3. In order to select the appropriate record in the MACHINES section, you need to toggle through
the list of machine records. To view the first machine record, select the FIRST operation by
pressing the Enter key after the menu of operations. (Refer to lines 4-5 in the following sample
listing.) If you do not want the first machine record, select the NEXT operation to view the next
machine record by entering 2 after the menu of operations.

4. Press the Enter key to accept the default choices regarding whether to enter the text editor (no)
and whether to have the specified operation performed (yes). The requested record in the
MACHINES section is now displayed, which is the record for a machine named SITE3 in the
following sample listing. (Refer to lines 9-34 in the following listing.)

5. Select the MACHINES section again, by pressing the Enter key after the menu of sections.
(Refer to lines 35-37.)

6. Select the UPDATE operation by entering 5 after the menu of operations. (Refer to lines 38-39.)

7. Enter the text editor by entering y at the prompt. (Refer to line 40.)

8. Change the value of the TA_STATE field from NEW to ACTIVE. (Refer to lines 42-45.)

9. Write (that is, save) your input and quit the editor. (Refer to lines 46-48.)

10. Direct tmconfig to perform the operation (activate the newly configured machine) by
entering y at the prompt. (Refer to line 49.)

11. tmconfig displays the revised record for the specified machine so that you can review your
change and, if necessary, edit it.

12. If the revised entry is acceptable, select 7 after the menu of operations to end the tmconfig
session.

Listing 3-4 illustrates a tmconfig session in which a server is being activated.

Listing 3-4 Activating a New Server

1 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
2 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
3-20 Administering an Oracle Tuxedo Application at Run Time

How to Ac t ivate a Newly Conf igured Machine
3 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2
4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
5 6) CLEAR BUFFER 7) QUIT [1]:
6 Enter editor to add/modify fields [n]?
7 Perform operation [y]?
8 Return value TAOK
9 Buffer contents:
10 TA_OPERATION 4
11 TA_SECTION 1
12 TA_OCCURS 1
13 TA_PERM 432
14 TA_MAXACCESSERS 40
15 TA_MAXGTT 20
16 TA_MAXCONV 10
17 TA_MAXWSCLIENTS 0
18 TA_TLOGSIZE 150
19 TA_UID 4196
20 TA_GID 601
21 TA_TLOGOFFSET 0
22 TA_TUXOFFSET 0
23 TA_STATUS LIBTUX_CAT:1175: Operation completed successfully
24 TA_PMID mchn2
25 TA_LMID SITE3
26 TA_TUXCONFIG /usr/apps/bank/TUXCONFIG
27 TA_TUXDIR /usr/tuxroot
28 TA_STATE NEW
29 TA_APPDIR /usr/apps/bank
30 TA_TYPE SPARC
31 TA_TLOGDEVICE /usr/apps/bank/TLOG
32 TA_TLOGNAME TLOG
33 TA_ULOGPFX /usr/apps/bank/ULOG
34 TA_ENVFILE /usr/apps/bank/ENVFILE
35 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
36 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
37 10) NETGROUPS 11) NETMAPS 12) INTERFACES [2]:
38 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
39 6) CLEAR BUFFER 7) QUIT [1]: 5
40 Enter editor to add/modify fields [n]? y
41 491
42 /TA_STATE
43 TA_STATE NEW
44 s/NEW/ACTIVE
45 TA_STATE ACTIVE
46 w
47 412
48 q
49 Perform operation [y]?
50 Return value TAUPDATED
51 Buffer contents:
Administering an Oracle Tuxedo Application at Run Time 3-21

52 .
53 .
54 .
3-22 Administering an Oracle Tuxedo Application at Run Time

How to Add a New Group
How to Add a New Group
1. Enter tmconfig.

2. To specify the GROUPS section of the configuration file, enter 3 after the prompt following the
list of sections. (Refer to lines 1-3 in the following sample listing.)

3. Request the CLEAR BUFFER operation by entering 6 after the menu of operations. (Refer to line
5 in the following sample listing.)

4. Accept the default section, GROUPS, by pressing the Enter key. (Refer to lines 7-9 in the
following sample listing.)

5. Request the ADD operation by entering 4 after the menu of operations. (Refer to lines 10-11 in
the listing.)

6. Enter the text editor by entering y at the prompt. (Refer to line 12.)

7. Specify new values for three key fields:

– TA_LMID (refer to line 15)

– TA_SRVGRP (refer to line 16)

– TA_GRPNO (refer to line 17)

Listing 3-5 illustrates a tmconfig session in which a group is being added.

Listing 3-5 Adding a Group

1 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
2 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
3 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 3
4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
5 6) CLEAR BUFFER 7) QUIT [4]: 6
6 Buffer cleared
7 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
8 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
9 10) NETGROUPS 11) NETMAPS 12) INTERFACES [3]:
10 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
11 6) CLEAR BUFFER 7) QUIT [6]: 4
12 Enter editor to add/modify fields [n]? y
13 1
14 c
15 TA_LMID SITE3
16 TA_SRVGRP GROUP3
Administering an Oracle Tuxedo Application at Run Time 3-23

17 TA_GRPNO 3
18 .
19 w
20 42
21 q
22 Perform operation [y]?
23 Return value TAUPDATED
24 Buffer contents:
25 TA_OPERATION 2
26 TA_SECTION 2
27 TA_OCCURS 1
28 TA_GRPNO 3
29 TA_TMSCOUNT 0
30 TA_STATUS LIBTUX_CAT:1136: Update completed successfully
31 TA_LMID SITE3
32 TA_SRVGRP GROUP3
33 TA_TMSNAME
34 TA_OPENINFO
35 TA_CLOSEINFO

How to Change Data-dependent Routing (DDR) for an
Application

To change the data-dependent routing for an application, complete the following steps:

1. Enter tmconfig.

2. To specify the ROUTING section of the configuration file, enter 7 after the prompt following
the list of sections.

3. Toggle through the list of entries for the ROUTING section by selecting the FIRST and NEXT
operations, which display the first and subsequent entries, respectively. Select the entry for
which you want to change the DDR.

4. Select 5)UPDATE from the menu of operations.

5. Enter the text editor by entering y at the prompt.

Do you want to edit(n)? y

6. Change the values of relevant fields to the values shown in the “Sample Value” column of
Table 3-2.
3-24 Administering an Oracle Tuxedo Application at Run Time

How to Change Facto ry-based Rout ing (FBR) f o r an In te r face
Note: For details, see tmconfig, wtmconfig(1) in the Oracle Tuxedo Command Reference.

How to Change Factory-based Routing (FBR) for an
Interface

Note: For detailed information about factory-based routing for a distributed Oracle Tuxedo
CORBA application, refer to the Scaling, Distributing, and Tuning CORBA Applications
guide.

To change the factory-based routing for a CORBA interface, complete the following steps:

1. Start a tmconfig session.

2. Select the ROUTING section of the configuration file (choice #7 on the menu of configuration
file sections).

3. Using the FIRST and NEXT operations, select the entry for which you want to change the FBR.

4. Select the UPDATE operation.

5. Enter y (for yes) when prompted to say whether you want to start editing.

Do you want to edit(n)? y

6. Change the relevant fields to values such as those shown in the middle column in Table 3-3:

Table 3-2 Change Data-dependent Routing (DDR) for an Application

Field Sample Value Meaning

TA_ROUTINGNAME account_routing Name of the routing section

TA_BUFTYPE FML Buffer type

TA_FIELD account_ID Name of the routing field

TA_RANGES 1-10:group1,*:* The routing criteria being used. If, as shown here, the value of
account_ID is between 1 and 10 (inclusive), requests are
sent to the servers in group 1. Otherwise, requests are sent to
any other server in the configuration.
Administering an Oracle Tuxedo Application at Run Time 3-25

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

:

The value of the TA_RANGES field is the routing criterion. For example, assume that our modest
student enrollment before the update allowed for a routing criterion of student IDs between
100001–100005 to ORA_GRP1, and 100006–100010 to ORA_GRP2. In the change shown in the
preceding table, if the value of student_id is between 100001–100050 (inclusive), requests are
sent to the servers in ORA_GRP1. Other requests are sent to ORA_GRP2.

Note: Dynamic changes that you make to a routing parameter with tmconfig take effect on
subsequent invocations and do not affect outstanding invocations.

You can also dynamically change the TA_FACTORYROUTING assignment in the INTERFACES
section. For example:

1. Start a tmconfig session.

2. Select the INTERFACES section of the configuration file (choice #12 on the menu of
configuration file sections).

3. Using the FIRST and NEXT operations, select the interface entry for which you want to change
the FBR. For example, if you defined a new factory-based routing criterion named CAMPUS in
the ROUTING section, you could reassign a Registrar interface to this criterion.

4. Select the UPDATE operation.

5. Enter y (for yes) when prompted to say whether you want to start editing.

Do you want to edit(n)? y

Table 3-3 Change Factory-based Routing (FBR) for an Interface

Field Sample Value Meaning

TA_ROUTINGNAME STU_ID Name of the routing section.

TA_FIELD student_id The value of this field is subject to the
criterion (specified in the TA_RANGES
field); that is, the value of this field
determines the routing result.

TA_RANGES 100001-100050:ORA_GRP1,
100051-*:ORA_GRP2

The routing criterion being used.
3-26 Administering an Oracle Tuxedo Application at Run Time

How to Change Appl ica t i on-w ide Parameters
How to Change Application-wide Parameters
Some run-time parameters are relevant to all the components (machines, servers, and so on) of
your configuration. These parameters are listed in the RESOURCES section of the configuration
file.

An easy way to familiarize yourself with the parameters in the RESOURCES section is to display
the first entry in that section. To do so, complete the following procedure.

1. Enter tmconfig.

2. Select the RESOURCES section, which is the default, by pressing the Enter key after the list of
sections. (Refer to lines 1-3 in the following sample listing.)

3. Request the FIRST operation, which is the default, by pressing the Enter key after the menu
of operations. (Refer to lines 4-5.)

4. When asked whether you want to edit, accept the default (n) by pressing the Enter key.

Do you want to edit(n)?

5. When asked whether you want the specified operation (FIRST) to be performed, accept the
default (y) by pressing the Enter key.

Perform operation [y]?

Listing 3-6 shows a tmconfig session in which the first entry in the RESOURCES section is
displayed.

Listing 3-6 Displaying the First Entry in the RESOURCES Section

1 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
2 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
3 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
5 6) CLEAR BUFFER 7) QUIT [1]:
6 Enter editor to add/modify fields [n]?
7 Perform operation [y]?
8 Return value TAOK
9 Buffer contents:
10 TA_OPERATION 1
11 TA_SECTION 0
12 TA_STATUS Operation completed successfully
13 TA_OCCURS 1
14 TA_PERM 432
Administering an Oracle Tuxedo Application at Run Time 3-27

15 TA_BBLQUERY 30
16 TA_BLOCKTIME 6
17 TA_DBBLWAIT 2
18 TA_GID 10
19 TA_IPCKEY 80997
20 TA_LICMAXUSERS 1000000
21 TA_MAXACCESSERS 100
22 TA_MAXBUFSTYPE 32
23 TA_MAXBUFTYPE 16
24 TA_MAXCONV 10
25 TA_MAXDRT 0
26 TA_MAXGROUPS 100
27 TA_MAXGTT 25
28 TA_MAXMACHINES 256
29 TA_MAXQUEUES 36
30 TA_MAXRFT 0
31 TA_MAXRTDATA 8
32 TA_MAXSERVERS 36
33 TA_MAXSERVICES 100
34 TA_MIBMASK 0
35 TA_SANITYSCAN 12
36 TA_SCANUNIT 10
37 TA_UID 5469
38 TA_MAXACLGROUPS 16384
39 TA_MAXNETGROUPS 8
40 TA_MAXINTERFACES 150
41 TA_MAXOBJECTS 1000
42 TA_SIGNATURE_AHEAD 3600
43 TA_SIGNATURE_BEHIND 604800
44 TA_MAXTRANTIME 0
45 TA_STATE ACTIVE
46 TA_AUTHSVC
47 TA_CMTRET COMPLETE
48 TA_DOMAINID
49 TA_LDBAL Y
50 TA_LICEXPIRE 2003-09-15
51 TA_LICSERIAL 1234567890
52 TA_MASTER SITE1
53 TA_MODEL SHM
54 TA_NOTIFY DIPIN
55 TA_OPTIONS
56 TA_SECURITY NONE
57 TA_SYSTEM_ACCESS FASTPATH
58 TA_USIGNAL SIGUSR2
59 TA_PREFERENCES
60 TA_COMPONENTS TRANSACTIONS,QUEUE,TDOMAINS,
61 EVENTS,WEBGUI,WSCOMPRESSION,TDOMCOMPRESSION
62 TA_SIGNATURE_REQUIRED
63 TA_ENCRYPTION_REQUIRED
3-28 Administering an Oracle Tuxedo Application at Run Time

How to Change an App l i ca t i on Password
64 TA_SEC_PRINCIPAL_NAME
65 TA_SEC_PRINCIPAL_LOCATION
66 TA_SEC_PRINCIPAL_PASSVAR

How to Change an Application Password
1. Enter tmconfig.

2. Select the RESOURCES section, which is the default, by pressing the Enter key following the
list of sections. (Refer to lines 2-4 in the following sample listing.)

3. Request the CLEAR BUFFER operation by entering 6 after the menu of operations. (Refer to
line 6.)

4. Select the RESOURCES section again, by pressing the Enter key after the menu of sections.
(Refer to lines 8-10.)

5. Select the UPDATE operation by entering 5 after the menu of operations. (Refer to lines 11-12.)

6. Enter the text editor by entering y at the prompt. (Refer to line 13.)

7. Enter (in the buffer):

TA_PASSWORD new_password

8. Write (that is, save) your input and quit the editor. (Refer to lines 18-20.)

Listing 3-7 shows a tmconfig session in which an application password is changed to neptune.

Listing 3-7 Changing an Application Password

1 $ tmconfig
2 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
3 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
4 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
5 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6 6) CLEAR BUFFER 7) QUIT [4]: 6
7 Buffer cleared
8 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
9 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
10 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
11 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
12 6) CLEAR BUFFER 7) QUIT [6]: 5
Administering an Oracle Tuxedo Application at Run Time 3-29

13 Enter editor to add/modify fields [n]? y
14 1
15 c
16 TA_PASSWORD neptune
17 .
18 w
19 49
20 q
21 Perform operation [y]?
22 Return value TAUPDATED
23 Buffer contents:
24 TA_OPERATION 1
25 TA_SECTION 0
26 TA_STATUS Operation completed successfully
27 TA_OCCURS 1
28 TA_PERM 432
29 TA_BBLQUERY 30
30 TA_BLOCKTIME 6
31 TA_DBBLWAIT 2
32 TA_GID 10
33 TA_IPCKEY 80997
34 TA_LICMAXUSERS 1000000
35 TA_MAXACCESSERS 100
36 TA_MAXBUFSTYPE 32
37 TA_MAXBUFTYPE 16
38 TA_MAXCONV 10
39 TA_MAXDRT 0
40 TA_MAXGROUPS 100
41 TA_MAXGTT 25
42 TA_MAXMACHINES 256
43 TA_MAXQUEUES 36
44 TA_MAXRFT 0
45 TA_MAXRTDATA 8
46 TA_MAXSERVERS 36
47 TA_MAXSERVICES 100
48 TA_MIBMASK 0
49 TA_SANITYSCAN 12
50 TA_SCANUNIT 10
51 TA_UID 5469
52 TA_MAXACLGROUPS 16384
53 TA_MAXNETGROUPS 8
54 TA_MAXINTERFACES 150
55 TA_MAXOBJECTS 1000
56 TA_PASSWORD neptune
57 TA_STATE ACTIVE
58 TA_AUTHSVC
59 TA_CMTRET COMPLETE
60 TA_DOMAINID
61 TA_LDBAL Y
3-30 Administering an Oracle Tuxedo Application at Run Time

L imi ta t ions on Dynamic Mod i f i cat ion Us ing tmconf ig
62 TA_LICEXPIRE 1998-09-15
63 TA_LICSERIAL 1234567890
64 TA_MASTER SITE1
65 TA_MODEL SHM
66 TA_NOTIFY DIPIN
67 TA_OPTIONS
68 TA_SECURITY NONE
69 TA_SYSTEM_ACCESS FASTPATH
70 TA_USIGNAL SIGUSR2
71 TA_PREFERENCES
72 TA_COMPONENTS TRANSACTIONS,QUEUE,TDOMAINS,EVENTS,WEBGUI,
73 WSCOMPRESSION,TDOMCOMPRESSION

Limitations on Dynamic Modification Using tmconfig
Keep in mind the following restrictions when modifying your application dynamically using
tmconfig. Be careful about setting parameters that cannot be changed easily.

Associated with each section is a set of key fields that are used to identify the record upon
which operations are performed. (For details, see tmconfig, wtmconfig(1) in the
Oracle Tuxedo Command Reference.) Key field values cannot be changed while an
application is running. Normally, it is sufficient to add a new entry, with a new key field,
and use it instead of the old entry. When this is done, only the new entry is used; the old
entry in the configuration is not booted by the administrator.

Generally speaking, you cannot update a parameter while the configuration component
with which it is associated is booted. For example, you cannot change an entry in the
MACHINES section while the machine associated with that entry is booted. Specifically:

– If any server in a group is booted, you cannot change the entry for that group.

– If a server is booted, you cannot change its name, type (conversational or not), or
parameters related to its message queue. (You can change other server parameters at
any time but your changes do not take effect until the next time the server is booted.)

– You can change a SERVICES entry at any time, but your changes do not take effect until
the next time the service is advertised.

– Updates to the RESOURCES section are restricted by the following conditions: the UID,
GID, PERM, MAXACCESSERS, MAXGTT, and MAXCONV parameters cannot be updated in the
RESOURCES section but can be updated on a per-machine basis; and the IPCKEY,
Administering an Oracle Tuxedo Application at Run Time 3-31

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

MASTER, MODEL, OPTIONS, USIGNAL, MAXSERVERS, MAXSERVICES, MAXBUFTYPE, and
MAXBUFSTYPE parameters cannot be changed dynamically.

Carefully track the section of the configuration file in which you are working; tmconfig
does not warn against performing an operation in the incorrect section. For example, if you
try to update the ENVFILE parameter (in the MACHINES section) while you are working in
the RESOURCES section, the operation appears to succeed (that is, tmconfig returns TAOK),
but the change does not appear in your unloaded UBBCONFIG file. You can be sure an
update is done only when the TAUPDATED status message is displayed.

In a multiple-machine configuration, always perform the following tasks:

Specify a backup for the MASTER machine, along with the MIGRATE option (even if a need
for application server migration is not anticipated).

For MAXSERVERS, MAXSERVICES, and other parameters that define maximum limits, assign
settings that are high enough to allow for sufficient growth. If your application is initially
deployed on only one machine, but is expected to grow to a multiple-machine
configuration, use the MP model, specifying the LAN option and a network entry for the
initial machine.

Set the parameters in the MACHINES section carefully because updating them requires
shutting down the machine (and switching the MASTER to the backup in the case of the
MASTER machine).

Tasks That Cannot Be Performed on a Running System
Most elements of the Oracle Tuxedo system can be changed dynamically, through either manual
intervention or automatic processes. For example, new servers can be spawned, new machines
can be added, timeout parameters can be changed, and so on. A few parameters, however, cannot
be changed while a system is operational:

Any parameter that affects the size of the bulletin board is not dynamic. Most of these
parameters begin with the string MAX, such as MAXGTT, which defines the maximum number
of in-flight transactions allowed within the Oracle Tuxedo system at any time.

The name of a machine being used in a running application is not dynamic. New machines
(that is, machines with new names) can be added, but an existing machine name cannot be
changed.

Once server executables are assigned to run on both master and backup machines, the
assignment of the master and backup cannot be changed.
3-32 Administering an Oracle Tuxedo Application at Run Time

Mak ing Temporary Mod i f i cat i ons to Your Conf igura t i on wi th tmadmin
Note: You can configure new copies of a server executable to run on additional machines, but
you cannot change existing servers with unique identifiers.

Making Temporary Modifications to Your Configuration
with tmadmin

When you use the tmconfig command to update the TUXCONFIG file and any bulletin board
entries associated with it, the changes you make are permanent; they persist after the system is
shut down and rebooted.

In some situations, however you may want to make temporary changes to a running application.
For example, you may want to:

Suspend Tuxedo ATMI services or servers

Resume Tuxedo ATMI services or servers

Advertise services or servers

Unadvertise services or servers

Change ATMI service parameters

Change CORBA interface parameters

Change the timeout value

Suspend CORBA interfaces

Resume CORBA interfaces

You can perform these tasks with the tmadmin command, as specified in the procedures provided
in this section.

How to Set Environment Variables for tmadmin
Before you can start a tmadmin session, you must set your environment variables and any
required permissions. For your convenience, you may also want to select a text editor other than
the default editor.

Complete the following procedure to set up your working environment properly before running
tmadmin.
Administering an Oracle Tuxedo Application at Run Time 3-33

1. Log in as the Oracle Tuxedo application administrator if you want to add entries to
TUXCONFIG, or to modify existing entries. This step is not required if you only want to view
existing configuration file entries without changing or adding to them.

2. Assign values to two mandatory environment variables: TUXCONFIG and TUXDIR.

– The value of TUXCONFIG must be the full path name of the binary configuration file on
the machine on which tmconfig is being run.

– The value of TUXDIR must be the root directory for the Oracle Tuxedo system binary
files. (tmconfig must be able to extract field names and identifiers from
$TUXDIR/udataobj/tpadmin.)

How to Suspend Tuxedo ATMI Services or Servers
To suspend a Tuxedo ATMI server or a service, enter the tmadmin and susp (short for suspend)
commands, as follows:

$ tmadmin
> susp

The suspend command marks one of the following as inactive:

One service

All services of a particular queue

All services of a particular group ID or server ID combination

After you suspend a service or a server, any requests for it that remain on the queue are handled,
but no new service requests are routed to the suspended server. If a group ID or server ID
combination is specified and it is part of an MSSQ set, all servers in that MSSQ set become
inactive for the services specified.

How to Resume Tuxedo ATMI Services or Servers
To have a Tuxedo ATMI server or a service resume, enter the tmadmin and resume (or res)
commands, as follows:

$ tmadmin
> res

The resume command undoes the effect of the suspend command; it marks as active for the
queue one of the following:
3-34 Administering an Oracle Tuxedo Application at Run Time

How to Adve r t i se Se rv ices o r Se rve rs
One service

All services of a particular queue

All services of a particular group ID/server ID combination

If, in this state, the group ID or the server ID is part of an MSSQ set, all servers in that MSSQ set
become active for the services specified.

How to Advertise Services or Servers
To advertise a service or server, enter the following commands:

$ tmadmin
> adv [{[-q queue_name] | [-g grpid] [-i srvid]}] service

Although a service must be suspended before it may be unadvertised, you do not need to
unsuspend a service before readvertising it. If you simply advertise a service that was
unadvertised earlier, and is currently suspended, the service is unsuspended.

How to Unadvertise Services or Servers
To unadvertise a service or server, you must suspend it by entering the following commands:

$ tmadmin
> unadv [{[-q queue_name] | [-g grpid] [-i srvid]}] service

Unadvertising a service has more drastic results than suspending it. When you unadvertise a
service, the service table entry for it is deallocated and the cleared space in the service table
becomes available to other services.

How to Change Service Parameters for Tuxedo ATMI
Servers

The tmadmin command allows you to change, dynamically, the values of service parameters for
a specific group ID/server ID combination or for a specific queue.

Table 3-4 lists the tmadmin commands available for changing service parameters defined in this
way.
Administering an Oracle Tuxedo Application at Run Time 3-35

The -s option must be specified, either on the tmadmin default command line or on the
tmadmin chl, chp, or chtt command line. Because it is possible to set the -s option on the
default command line, the -s option is considered optional on the chl, chp, and chtt
command lines.

How to Change Interface Parameters for Tuxedo CORBA
Servers

The tmadmin command allows you to change, dynamically, the values of interface parameters
for a specific group ID/server ID combination or for a specific queue.

Table 3-5 lists the tmadmin commands available for changing interface parameters defined in
this way.

Table 3-4 tmadmin Commands for Changing Service Parameters

To Change... Enter the Following Commands...

Load value (LOAD) $tmadmin
>chl -s service_name

Dequeueing priority (PRIO) $tmadmin
>chp -s service_name

Transaction timeout value $tmadmin
>chtt -s service_name

Table 3-5 tmadmin Commands for Changing Interface Parameters

To Change... Enter the Following Commands...

Load value (LOAD) $tmadmin
>chl -I interface_name

Dequeueing priority (PRIO) $tmadmin
>chp -I interface_name

Transaction timeout value $tmadmin
>chtt -I interface_name
3-36 Administering an Oracle Tuxedo Application at Run Time

How to Change the AUTOTRAN T imeout Va lue
The -I option must be specified, either on the tmadmin default command line or on the
tmadmin chl, chp, or chtt command line. Because it is possible to set the -I option on the
default command line, the -I option is considered optional on the chl, chp, and chtt
command lines.

How to Change the AUTOTRAN Timeout Value
To change the transaction timeout (TRANTIME) for an interface or service with the AUTOTRAN flag
set, run the changetrantime (chtt) command, as follows:

$ tmadmin
chtt [-m machine] {-q qaddress [-g groupname] [-i srvid]
 [-s service] | -g groupname -i srvid -s service |
 -I interface [-g groupname]} newtlim

You cannot change transaction timeouts begun by application clients using tpbegin() or
tx_set_transaction_timeout().

How to Suspend Tuxedo CORBA Interfaces
Note: The execution of the suspend commands has minimal impact on the Oracle Tuxedo

system resources when compared with the resources gained by suspending a server.

To suspend an interface, enter the suspend (or susp) command. For example:

tmadmin
>susp -i IDL:beasys.com/Simple:1.0

If an interface is suspended, a client will not be able to invoke a method on that interface until the
interface is resumed.

How to Resume Tuxedo CORBA Interfaces
Note: The execution of the resume command has minimal impact on the Oracle Tuxedo system

resources when compared with the resources gained by suspending a server.

To resume an interface, enter the resume (or res) command. For example:

tmadmin
>res -i IDL:beasys.com/Simple:1.0

If a suspended interface is resumed, clients will be able to invoke methods on that interface.
Administering an Oracle Tuxedo Application at Run Time 3-37

3-38 Administering an Oracle Tuxedo Application at Run Time

C H A P T E R 4
Managing the Network in a Distributed
Application
This topic includes the following sections:

Running a Network for a Distributed Application

Compressing Data Over a Network

Balancing Network Request Loads

How to Use Data-Dependent Routing

How to Change Your Network Configuration

Running a Network for a Distributed Application
Most of the work associated with running the network for a distributed application is done in the
configuration or setup phase. Once you have defined the network and booted the application, the
software automatically runs the network for you.

This topic describes how the Oracle Tuxedo system moves data through a network, and explains
how to set the configuration file parameters that control network operations.

Compressing Data Over a Network
The Oracle Tuxedo system allows you to compress data being sent from one application process
to another. Data compression is useful in most applications and is vital in supporting large
configurations. You can use data compression when the sender and receiver of a message are on
Administering an OracleTuxedo Application at Run Time 4-1

the same machine (local data compression), or when the sender and receiver of a message are on
different machines (remote data compression). Both forms of compression provide advantages:

Because messages are sent over interprocess communication (IPC) queues, the advantage
of local data compression is that it results in lower utilization of IPC resources.

Because messages are sent over a network, the advantage of remote data compression is
that it results in lower utilization of network bandwidth.

How to Set the Compression Level
If you decide to use data compression, you must set the CMPLIMIT parameter in the MACHINES
section of the configuration file, as follows:

CMPLIMIT=string_value1[,string_value2]

The strings that make up the value of this parameter specify the threshold message size for
messages bound to remote processes (string_value1) and local processes (string_value2).
Only the first string is required. The default for both strings is the value of the MAXLONG
parameter.

In addition, you have the option of setting the TMCMPPRFM parameter to establish an appropriate
balance between compression and CPU performance. Higher and slower compression results in
more efficient network bandwidth; lower but faster compression yields less CPU utilization.

To specify the desired level of compression, complete the following procedure.

1. Set the compression threshold using the CMPLIMIT parameter in the UBBCONFIG
configuration file.

2. (Optional step) Set the TMCMPPRFM environment variable. The value of TMCMPPRFM must be a
single digit between 1 and 9; the default is 1.

A value of 1 specifies the lowest level of compression with the fastest performance; 9
represents the highest level of compression with the slowest performance. The lower the
number, the more quickly the compression routine is executed.

For more information on setting the TMCMPPRFM variable, refer to tuxenv(5) in the File Formats,
Data Descriptions, MIBs, and System Processes Reference.
4-2 Administering an OracleTuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Compress ing Data Over a Network
Selecting Data Compression Thresholds
You can designate a compression threshold for messages: any messages larger than the threshold
you specify are compressed. To designate a compression threshold, set the CMPLIMIT parameter.
For instructions, see “How to Set the Compression Level” on page 4-2.

When choosing data compression thresholds, keep in mind the following criteria:

Consider using remote data compression if your sites are running Oracle Tuxedo release
4.2.1 or later. Your setting depends on the speed of your network. You may want to assign
different settings, for example, to an Ethernet network (which is a high-speed network) and
an X.25 network (which is a low-speed network).

– For a high-speed network, consider setting remote data compression to the lowest limit
for file transfers generated by the Oracle Tuxedo system. (See the note about file
transfers provided later in this list.) In other words, compress only messages that are
large enough to be candidates for file transfer on either the sending site or the receiving
site. Note that each machine in an application may have a different limit. If this is the
case, choose the lowest limit possible for each machine.

– For a low-speed network, consider setting remote data compression to zero on all
machines; that is, compress all application and system messages.

Consider using local data compression for sites running Oracle Tuxedo release 4.2.1 or
later, even if they are interoperating with pre-release 4.2.1 sites. This results in lower
utilization of IPC resources. This setting also enables you to avoid file transfers in many
situations that might otherwise require a transfer and, when file transfers cannot be
avoided, this setting greatly reduces the size of the files used. For more information, refer
to “Message Queues and Messages” in Installing the Oracle Tuxedo System.

For local data compression, you can assign a different threshold to each machine in an
application. If this is the case, always choose the lowest limit possible for each machine.

Note: For high-traffic applications that involve a large volume of timeouts and discarding
of messages due to IPC queue blocking, you may want to lower the demand of the
application on the IPC queuing subsystem by having local compression done at all
times.

Because compression depends on the type of data being transmitted, we strongly recommend that
you try different settings in your environment to determine which one yields the best results.
Administering an OracleTuxedo Application at Run Time 4-3

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/install/insappd.html

See Also
DMCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

tuxenv(5) in the File Formats, Data Descriptions, MIBs, and System Processes Reference

“What Is Data Compression?” in Introducing Oracle Tuxedo ATMI

Balancing Network Request Loads
If load balancing is turned on (that is, if LDBAL is set to Y in the RESOURCES section of the
application configuration file), the Oracle Tuxedo system attempts to balance requests across the
network. Because load information is not updated globally, each site has a unique view of the load
at remote sites.

Use the NETLOAD parameter in the MACHINES section of the configuration file (or the TMNETLOAD
environment variable) to force more requests to be sent to local queues. The value of this
parameter is a number that is added to the load for remote queues, so the remote queues appear
to have more work than they do. As a result, even if load balancing is turned on, local requests
are sent to local queues more often than to remote queues.

As an example, assume servers A and B offer a service with load factor 50. Server A is running
on the same machine as the calling client (local), and server B is running on a different machine
(remote). If NETLOAD is set to 100, approximately three requests will be sent to A for every one
sent to B.

Another mechanism that affects load balancing is local idle server preference. Requests are
always sent to a server on the same machine as the client, assuming that the server offers the
desired service and is idle. This decision overrides any load balancing considerations, because the
local server is known to be available immediately.

See Also
“What Is Load Balancing?” in Introducing Oracle Tuxedo ATMI
4-4 Administering an OracleTuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intatm.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intatm.html

How to Use Data-Dependent Rout ing
How to Use Data-Dependent Routing
Data-dependent routing is useful when clients issue service requests to:

Horizontally-partitioned databases

Rule-based servers

A horizontally-partitioned database is an information repository that is divided into segments,
each of which is used to store a different category of information. This arrangement is similar to
a library in which each shelf of a bookcase holds books for a different category (for example,
biography, fiction, and so on).

A rule-based server is a server that determines whether service requests meet certain,
application-specific criteria before forwarding them to service routines. Rule-based servers are
useful when you want to handle requests that are almost identical by taking slightly different
actions for business reasons.

Note: For detailed information about factory-based routing for a distributed Oracle Tuxedo
CORBA application, refer to the Scaling, Distributing, and Tuning CORBA Applications
guide.

Example of Data-dependent Routing with a
Horizontally-partitioned Database
Suppose two clients in a banking application issue requests for the current balance in two
accounts: Account 3 and Account 17. If data-dependent routing is being used in the application,
then the Oracle Tuxedo system performs the following actions:

1. Gets the account numbers for the two service requests (3 and 17).

2. Checks the routing tables on the Oracle Tuxedo bulletin board that show which servers handle
which range of data. (In this example, server 1 handles all requests for Accounts 1 through
10, and server 2 handles all requests for Accounts 11 through 20.)

3. Sends each request to the appropriate server. Specifically, the system forwards the request
about Account 3 to server 1, and the request about Account 17 to server 2.

Figure 4-1 illustrates this process.
Administering an OracleTuxedo Application at Run Time 4-5

Figure 4-1 Data-dependent Routing with a Horizontally-partitioned Database

Example of Data-dependent Routing with Rule-based
Servers
A banking application includes the following rules:

Customers can withdraw up to $500 without entering a special password.

Customers must enter a special password to withdraw more than $500.

Two clients issue withdrawal requests: one for $100 and one for $800. If data-dependent routing
is enabled to support the withdrawal rules, then the Oracle Tuxedo system performs the following
actions:

1. Gets the amount specified for withdrawal in the two service requests ($100 and $800).

2. Checks the routing tables on the Oracle Tuxedo bulletin board that show which servers handle
requests for the amount being requested. (In this example, server 1 handles all requests to
withdraw amounts up to $500; server 2 handles all requests to withdraw amount over $500.)

3. Sends each request to the appropriate server. Specifically, the system forwards the request for
$100 to server 1 and the request for $800 to server 2.

Figure 4-2 illustrates this process.
4-6 Administering an OracleTuxedo Application at Run Time

How to Change Your Network Conf igurat ion
Figure 4-2 Data-dependent Routing with Rule-Based Servers

See Also
“What Is Data-Dependent Routing?” in Introducing Oracle Tuxedo ATMI

Chapter 9, “Distributing ATMI Applications Across a Network,”in Setting Up an Oracle
Tuxedo Application

Chapter 10, “Creating the Configuration File for a Distributed ATMI Application,”in
Setting Up an Oracle Tuxedo Application

Chapter 11, “Setting Up the Network for a Distributed Application,” in Setting Up an
Oracle Tuxedo Application

Scaling, Distributing, and Tuning CORBA Applications

How to Change Your Network Configuration
To change configuration parameters while your application is running, run the tmconfig(1)
command. This command is a shell-level interface to the Oracle Tuxedo System Management
Information Base (MIB).

Using tmconfig, you can browse and modify the TUXCONFIG file without bringing down your
system. For example, you can add new components, such as machines and servers, while your
application is running.
Administering an OracleTuxedo Application at Run Time 4-7

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intatm.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/ads/addist.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/ads/adsdis.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/ads/adsnet.html

See Also
“Operating Your Application Using Command-Line Utilities” in Introducing Oracle
Tuxedo ATMI

tmconfig, wtmconfig(1) in the Oracle Tuxedo Command Reference

MIB(5) in the File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

“Administering Link-Level Encryption” in Using Security in CORBA Applications

“Administering Public Key Security” in Using Security in CORBA Applications
4-8 Administering an OracleTuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intman.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/sec/secadm.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/sec/secadm.html

C H A P T E R 5
About the EventBroker
This topic includes the following sections:

What Is an Event?

Differences Between Application-defined and System-defined Events

What Is the EventBroker?

How the EventBroker Works

What Are the Benefits of Brokered Events?

What Is an Event?
An event is a state change or other occurrence in a running application (such as a network
connection being dropped) that may require intervention by an operator, an administrator, or the
software. The Oracle Tuxedo system reports two types of events:

System-defined events—which are situations (primarily failures) defined by the Oracle
Tuxedo system, such as the exceeding of certain system capacity limits, server
terminations, security violations, and network failures.

Application-defined events—which are situations defined by a customer application, such
as the ones listed in Table 5-1.
Administering an Oracle Tuxedo Application at Run Time 5-1

Application events are occurrences of application-defined events, and system events are
occurrences of system-defined events. Both application and system events are received and
distributed by the Oracle Tuxedo EventBroker component.

Differences Between Application-defined and
System-defined Events

Application-defined events are defined by application designers and are therefore application
specific. Any of the events defined for an application may be tracked by the client and server
processes running in the application.

System-defined events are defined by the Oracle Tuxedo system code and are generally
associated with objects defined in TM_MIB(5). A complete list of system-defined events is
published on the EVENTS(5) reference page. Any of these events may be tracked by users of the
Oracle Tuxedo system.

The Oracle Tuxedo EventBroker posts both application-defined and system-defined events, and
an application can subscribe to events of both types. The two types of events can be distinguished
by their names: the names of system-defined events begin with a dot (.); the names of
application-specific events cannot begin with a dot (.).

What Is the EventBroker?
The Oracle Tuxedo EventBroker is a tool that provides asynchronous routing of application
events among the processes running in a Oracle Tuxedo application. It also distributes system
events to whichever application processes want to receive them.

Table 5-1 Application-defined Events

In an application for this type
of business . . .

An occurrence of this situation may be defined as an
“event” . . .

Stock brokerage A stock is traded at or above a specified price.

Banking A withdrawal or deposit above a specified amount is made.

The cash available in an ATM machine drops below a
specified amount.

Manufacturing An item is out of stock.
5-2 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

How the EventBroke r Works
The EventBroker performs the following tasks:

Monitors events and notifies subscribers when events are posted via tppost(3c).

Keeps an administrator informed of changes in an application.

Provides a system-wide summary of events.

Provides a tool through which an event can trigger a variety of notification activities.

Provides a filtering capability, providing additional conditions to the posted event’s buffer.

Note: For a sample application that you can copy and run as a demo, see “Tutorial for bankapp,
a Full C Application” in Tutorials for Developing Oracle Tuxedo ATMI Applications.

The EventBroker recognizes over 100 meaningful state transitions to a MIB object as system
events. A posting for a system event includes the current MIB representation of the object on
which the event occurred and some event-specific fields that identify the event that occurred. For
example, if a machine is partitioned, an event is posted with the following:

The name of the affected machine, as specified in the T_MACHINE class, with all the
attributes of that machine

Some event attributes that identify the event as machine partitioned

You can use the EventBroker simply by subscribing to system events. Then, instead of having to
query for MIB records, you can be informed automatically when events occur in the MIB by
receiving FML data buffers representing MIB objects.

How the EventBroker Works
The Oracle Tuxedo EventBroker is a tool through which an arbitrary number of suppliers of
event notifications can post messages for an arbitrary number of subscribers. The suppliers of
such notifications may be application or system processes operating as clients or servers. The
subscribers of such notifications may be administrators or application processes operating as
clients or servers.

Client and server processes using the EventBroker communicate with one another based on a set
of subscriptions. Each process sends one or more subscription requests to the EventBroker,
identifying the event types that the process wants to receive. The EventBroker, in turn, acts like
a newspaper delivery person who delivers newspapers only to customers who have paid for a
subscription. For these reasons, the paradigm on which the EventBroker is based is described as
publish-and-subscribe communication.
Administering an Oracle Tuxedo Application at Run Time 5-3

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/tutor/tutba.html

Event suppliers (either clients or servers) notify the EventBroker of events as they occur. We refer
to this type of notification as posting an event. Once an event supplier posts an event, the
EventBroker matches the posted event with the subscribers that have subscribed for that event
type. Subscribers may be administrators or application processes. When the EventBroker finds a
match, it takes the action specified for each subscription; subscribers are notified and any other
actions specified by subscribers are initiated.

Figure 5-1 shows how the EventBroker handles event subscriptions and postings.

Figure 5-1 Posting and Subscribing to an Event

As the administrator for your Oracle Tuxedo application, you can enter subscription requests on
behalf of client and server processes through calls to the T_EVENT_COMMAND class of the
EVENT_MIB(5). You can also invoke the tpsubscribe(3c) function to subscribe,
programmatically, to an event by using the EventBroker.

Event Notification Methods
The EventBroker subscription specifies one of the notification methods shown in Figure 5-2.

Figure 5-2 Supported Notification Methods
5-4 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html

How the EventBroke r Works
Notify a client—the EventBroker keeps track of a client’s interest in particular events and
notifies the client, without being prompted, when such an event occurs. For this reason,
this method is called unsolicited notification.

Invoke a service—if a subscriber wants event notifications to be passed to service calls, the
subscriber process should invoke the tpsubscribe() function to provide the name of the
service to be called.

Enqueue message to stable-storage queues—for subscriptions with requests to send event
notifications to stable-storage queues, the EventBroker will obtain a queue space, queue
name, and correlation identifier. A subscriber specifies a queue name when subscribing to
an event. The correlation identifier can be used to differentiate among multiple
subscriptions for the same event expression and filter rule, that are destined for the same
queue.

Execute a command—when an event is posted, the buffer associated with it is transformed
into a system command that is then executed. For example, the buffer may be changed to a
system command that sends an e-mail message. This process must be executed through the
MIB.

Write messages to the user log—when events are detected and matched by the
EventBroker, the specified messages are written to the user log, or ULOG. This process must
be executed through the MIB.

Severity Levels of System Events
The EventBroker assigns one of three levels of severity to system events such as server
terminations or network failure.

Table 5-2 shows the severity levels of system events.

Table 5-2 Severity Levels of System Events

The level of severity is
. . .

When the EventBroker is informed of . . .

ERROR An abnormal occurrence, such as a server being terminated or a
network connection being dropped.
Administering an Oracle Tuxedo Application at Run Time 5-5

What Are the Benefits of Brokered Events?
Anonymous communication—the Event Broker enables Oracle Tuxedo programs to
subscribe to events in which they are interested and it keeps track of all subscriptions.
Therefore, a subscriber to one event does not need to know which programs subscribe to
the same event, and a poster of an event does not need to know which other programs
subscribe to that event. This anonymity allows subscribers to come and go without
synchronizing with posters.

Decoupling of exception conditions—a publish-and-subscribe communication model
allows the software detecting an exception condition to be decoupled from the software
handling the exception condition.

Tight integration with the Oracle Tuxedo system—the EventBroker retains functionality
such as message buffers, messaging paradigms, distributed transactions, and ACL
permission checks for event postings.

Variety of notification methods—when a client or server subscribes to a system event (such
as the termination of a server) or an application event (such as an ATM machine running
out of money), it specifies an action that the EventBroker should take when it is notified
that the target event has occurred.

If the subscriber is an Oracle Tuxedo client, it can do one of the following at the time it
subscribes:

– Request unsolicited notification

– Name a service routine that should be invoked

– Name an application queue in which the EventBroker should store the data for later
processing

INFO (short for
“Information”)

A state change resulting from a process or a change in the
configuration.

WARN (short for
“Warning”)

The fact that a client has not been allowed to join the application
because it failed authentication. A configuration change that
threatens the performance of the application has occurred.

Table 5-2 Severity Levels of System Events

The level of severity is
. . .

When the EventBroker is informed of . . .
5-6 Administering an Oracle Tuxedo Application at Run Time

What Are the Benef i ts o f Broke red Events?
If the subscriber is an Oracle Tuxedo server, it can do one of the following at the time it
subscribes:

– Specify a service request

– Name an application queue in which the EventBroker should store the data

See Also
“Subscribing to Events” on page 6-1

“Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB”
on page 6-3 in Introducing Oracle Tuxedo ATMI

EVENT_MIB(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

tpsubscribe(3c) in the Oracle Tuxedo ATMI C Function Reference

tpunsubscribe(3c) in the Oracle Tuxedo ATMI C Function Reference
Administering an Oracle Tuxedo Application at Run Time 5-7

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html

5-8 Administering an Oracle Tuxedo Application at Run Time

C H A P T E R 6
Subscribing to Events
This topic includes the following sections:

Process of Using the EventBroker

How to Configure EventBroker Servers

How to Set the Polling Interval

Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB

Subscribing, Posting, and Unsubscribing to Events across Domains

How to Select a Notification Method

How to Cancel a Subscription to an Event

How to Use the EventBroker with Transactions

Process of Using the EventBroker
Use of the EventBroker requires the completion of several preparatory steps. The following
flowchart lists these steps and indicates whether each step should be performed by an application
administrator or programmer.
Administering an Oracle Tuxedo Application at Run Time 6-1

For instructions on any of these tasks, click on the appropriate box in the flowchart.

Note: A good way to learn how the EventBroker works is by running bankapp, the sample
application delivered with the Oracle Tuxedo system. To find out how to copy bankapp
and run it as a demo, see “Tutorial for bankapp, a Full C Application” in Tutorials for
Developing Oracle Tuxedo ATMI Applications<Default ? Font>.

How to Configure EventBroker Servers
A client accesses the EventBroker through either of two servers provided by the Oracle Tuxedo
system: TMUSREVT(5), which handles application events, and TMSYSEVT(5), which handles
system events. Both servers process events and trigger the sending of notification to subscribers.

To set up the Oracle Tuxedo EventBroker on your system, you must configure either or both of
these servers in the SERVERS section of the UBBCONFIG file, as shown in the following example.

 *SERVERS
 TMSYSEVT SRVGRP=ADMIN1 SRVID=100 RESTART=Y GRACE=900 MAXGEN=5
 CLOPT="-A --"
 TMSYSEVT SRVGRP=ADMIN2 SRVID=100 RESTART=Y GRACE=900 MAXGEN=5
 CLOPT="-A -- -S -p 90"

 TMUSREVT SRVGRP=ADMIN1 SRVID=100 RESTART=Y
 MAXGEN=5 GRACE=3600
 CLOPT="-A --"
 TMUSREVT SRVGRP=ADMIN2 SRVID=100 RESTART=Y
 MAXGEN=5 GRACE=3600
 CLOPT="-A -- -S -p 120"
6-2 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/tutor/tutba.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

How to Se t the Po l l ing In te rva l
We recommend that you assign the principal server to the MASTER site, even though either server
can reside anywhere on your network.

Note: You can reduce the network traffic caused by event postings and notifications by
assigning secondary servers to other machines in your network.

How to Set the Polling Interval
Periodically, the secondary server polls the primary server to obtain the current subscription list,
which includes filtering and notification rules. By default, polling is done every 30 seconds. If
necessary, however, you can specify a different interval.

You can configure the polling interval (represented in seconds) with the -p command-line option
in TMUSREVT(5) or TMSYSEV(5) entries in the configuration file, as follows:

-p poll_seconds

It may appear that event messages are lost while subscriptions are being added and secondary
servers are being updated.

Subscribing, Posting, and Unsubscribing to Events with
the ATMI and the EVENT_MIB

As the administrator for your Oracle Tuxedo application, you can enter subscription requests on
behalf of a client or server process through calls to the T_EVENT_COMMAND class of the
EVENT_MIB(5). You can also use invoke the tpsubscribe(3c) function to subscribe,
programmatically, to an event.

Figure 6-1 shows how clients and servers use the EventBroker to subscribe to events, to post
events, and to unsubscribe to events.

Figure 6-1 Subscribing to an Event
Administering an Oracle Tuxedo Application at Run Time 6-3

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html

Identifying Event Categories Using eventexpr and filter
Clients or servers can subscribe to events by calling tpsubscribe(3c). The tpsubscribe()
function takes one required argument: eventexpr. The value of eventexpr can be a wildcard
string that identifies the set of event names about which the user wants to be notified. Wildcard
strings are described on the tpsubscribe(3c) reference page in the Oracle Tuxedo ATMI C
Function Reference<Default ? Font>.

As an example, a user on a UNIX system platform who wants to be notified of all events related
to the category of networking can specify the following value of eventexpr:

\.SysNetwork.*

The backslash preceding the period (.) indicates that the period is literal. (Without the preceding
backslash, the period (.) would match any character except the end-of-line character.) The
combination .* at the end of \.SysNetwork.* matches zero or more occurrences of any
character except the end-of-line character.

In addition, clients or servers can filter event data by specifying the optional filter argument
when calling tpsubscribe(). The value of filter is a string containing a Boolean filter rule
that must be evaluated successfully before the EventBroker posts the event.

As an example, a user who wants to be notified only about system events having a severity level
of ERROR can specify the following value of filter:

”TA_EVENT_SEVERITY=’ERROR’”

When an event name is posted that evaluates successfully against eventexpr, the EventBroker
tests the posted data against the filter rule associated with eventexpr. If the data passes the filter
rule or if there is no filter rule for the event, the subscriber receives a notification along with any
data posted with the event.

Accessing the EventBroker
Your application can access the EventBroker through either the ATMI or the EVENT_MIB(5).
Table 6-1 describes both methods.
6-4 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Subscr ib ing , Pos t ing , and Unsubscr ib ing to Events w i th the ATMI and the EVENT_MIB
Table 6-1 Accessing the EventBroker

Method Function Purpose

ATMI tppost(3c) Notifies the EventBroker, or posts an event and any
accompanying data. The event is named by the eventname
argument and the data argument, if not NULL, points to the data.
The posted event and data are dispatched by the Oracle Tuxedo
EventBroker to all subscribers with subscriptions that
successfully evaluate against eventname and optional filter
rules that successfully evaluate against data.

tpsubscribe(3c) Subscribes to an event or a set of events named by eventexpr.
Subscriptions are maintained by the Oracle Tuxedo EventBroker,
and are used to notify subscribers when events are posted via
tppost(). Each subscription specifies one of the following
notification methods: client notification, service calls, message
enqueuing to stable-storage queues, executing of commands, and
writing to the user log. Notification methods are determined by
the subscriber’s process type (that is, whether the process is a
client or a server) and the arguments passed to tpsubscribe().

tpunsubscribe(3c) Removes an event subscription or a set of event subscriptions
from the Oracle Tuxedo EventBroker’s list of active
subscriptions. subscription is an event subscription handle
returned by tpsubscribe(). Setting subscription to the
wildcard value, -1, directs tpunsubscribe to unsubscribe to
all nonpersistent subscriptions previously made by the calling
process. Nonpersistent subscriptions are those made without the
TPEVPERSIST bit setting in the ctl->flags parameter of
tpsubscribe(). Persistent subscriptions can be deleted only
by using the handle returned by tpsubscribe().

EVENT_MIB(5) N/A The EVENT_MIB is a management information base (MIB) that
stores subscription information and filtering rules. In your own
application, you cannot define new events for the Oracle Tuxedo
EventBroker using EVENT_MIB, but you can customize the
EventBroker to track events and notify subscribers of occurrences
of special interest to the application.

You can use the EVENT_MIB to subscribe to an event, or to
modify or cancel a subscription.
Administering an Oracle Tuxedo Application at Run Time 6-5

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Note: tppost(3c), tpsubscribe(3c), and tpunsubscribe(3c) are C functions.
Equivalent routines (TPPOST(3cbl), TPSUBSCRIBE(3cbl), and
TPUNSUBSCRIBE(3cbl)) are provided for COBOL programmers. See the Oracle
Tuxedo ATMI C Function Reference<Default ? Font> and the Oracle Tuxedo ATMI
COBOL Function Reference<Default ? Font> for details.

Subscribing, Posting, and Unsubscribing to Events
Across Domains

Overview
Tuxedo is now equipped to subscribe, post, and unsubscribe brokered events in cross domain
environment.

To realize such feature, two new sections, DM_EVT_IN and DM_EVT_OUT, are added to DMCONFIG
to manage static event in/out information.

For details of DM_EVT_IN and DM_EVT_OUT, see “DMCONFIG(5)” in Tuxedo Reference Guide.

Note: In UBBCONFIG, the EvtBroker server should be configured prior to the GWT server as GWT
will subscribe the configured events to the EvtBroker when starting up.

Configurations in DMCONFIG

How to Process Brokered Events Crossing Domains
Figure 6-2 as below illustrates a typical processing flow of subscribing, posting, and
unsubscribing a brokered event in cross domain environment.
6-6 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3cbl/rf3cbl.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3cbl/rf3cbl.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3cbl/rf3cbl.html
../rf5/rf5.html

Subscr ib ing , Pos t ing , and Unsubscr ib ing to Events Ac ross Domains
Figure 6-2 Cross Domain Event Overall Flow

How to Configure DMCONFIG — Case Study
This use case elaborates how to get DMCONFIG well configured.

As shown on Figure 6-2, two clients (Client A and Client B) are located in two domains (Domain
A and Domain B), each has one machine within SHM mode (Machine A and Machine B).

For machine A, use dmloadcf to create new BDMCONFIG with additional configurations in
DMCONFIG as below, and then tmboot Tuxedo.

*DM_EVT_IN
MACHINEB_EVT

LACCESSPOINT=DOMAINA

*DM_EVT_OUT
MACHINEA_EVT

LACCESSPOINT= DOMAINA
RACCESSPOINT= DOMAINB

For machine B, use dmloadcf to create new BDMCONFIG with additional configurations in
DMCONFIG as below, and then tmboot Tuxedo.
Administering an Oracle Tuxedo Application at Run Time 6-7

*DM_EVT_IN
MACHINEA_EVT
 LACCESSPOINT=DOMAINB

*DM_EVT_OUT
MACHINEB_EVT
 LACCESSPOINT= DOMAINB
 RACCESSPOINT= DOMAINA

After configuring as above, take a two-step test as below by two clients.

1. Client B issues tpsubscribe (“MACHINEA_EVT”) on Machine B;

2. Client A issues tppost (“MACHINEA_EVT”) on Machine A.

Result: Client B will receive the event MACHINEA_EVT if DMCONFIG is configured correctly.

In cross domain environment, all events should be explicitly imported or exported — requests for
an unknown domain will not be accepted. Once configured correctly, GWT server will
automatically subscribe every configured event to the local Event Broker when Tuxedo starts up.
When receiving a remote event message, local GWT will forward this request to Event Broker. On
the other side, when a local event is posted, the Event Broker will forward this event to the local
GWT which has subscribed such event. After that, the local GWT will forward this event to the
configured remote domain’s GWT.

Dynamically Modifying the Event Configurations
Besides allowing users to set up static configurations as above, Tuxedo provides two
administration methods to dynamically modify the event configurations as needed without
shutting the system down: dmadmin command and MIB operations.

For “dmadmin” command, two sub-commands (“advertiseevent” and “unadvertiseevent”)
and two sections (“EVENTS_IN” and “EVENTS_OUT”) are added to support the modification of
event configurations dynamically. Related classes are added in MIB operations.

For detailed information, see dmadmin(1) in Tuxedo Command Reference, and DM_MIB(5) in
Tuxedo Reference Guide.

Interoperability
The cross domain event broker feature is supported only when both GWT and EvtBroker are
running Oracle Tuxedo 12c Release 1 (12.1.1).
6-8 Administering an Oracle Tuxedo Application at Run Time

../rfcm/rfcmd.html
../rf5/rf5.html

How to Se lec t a Not i f i cat i on Method
How to Select a Notification Method
The EventBroker supports a variety of methods for notifying subscribers of events, as shown in
Figure 6-3.

Figure 6-3 Notification Methods Supported by the EventBroker

Whichever notification method you choose, the procedure for implementing it is the same: in
your call to tpsubscribe(), specify an argument that refers to a structure of type TPEVCTL.

If the value of the argument is NULL, the EventBroker sends an unsolicited message to the
subscriber. Two of these methods, having the notification sent to a service and having it sent to a
queue in stable storage, cannot be requested directly by a client. Instead, a client must invoke a
service routine to subscribe on its behalf.

For each subscription, you can select any of the following notification methods. The EventBroker
can:

Notify the client—the EventBroker keeps track of events in which the client is interested
and sends unsolicited notifications to the client when they occur. Some events are
anonymously posted. A client can join an application, regardless of whether any other
clients have subscribed, and post events to the EventBroker. The EventBroker matches
these events against its database of subscriptions and sends an unsolicited notification to
the appropriate clients. (See the definition of the T_EVENT_CLIENT class in the
EVENT_MIB(5) entry in the File Formats, Data Descriptions, MIBs, and System Processes
Reference<Default ? Font>.)
Administering an Oracle Tuxedo Application at Run Time 6-9

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Invoke a service—if a subscriber wants event notifications to be sent to service calls, then
the ctl parameter must point to a valid TPEVCTL structure. (See the definition of the
T_EVENT_SERVICE class in the EVENT_MIB(5) entry in the File Formats, Data
Descriptions, MIBs, and System Processes Reference<Default ? Font>.)

Enqueue messages to stable-storage queues—for subscriptions to stable-storage queues, a
queue space, queue name, and correlation identifier are specified, in addition to values for
eventexpr and filter, so that matching can be performed. The correlation identifier can
be used to differentiate among several subscriptions characterized by the same event
expression and filter rule, and destined for the same queue. (See the definition of the
T_EVENT_QUEUE class in the EVENT_MIB(5) entry in the File Formats, Data Descriptions,
MIBs, and System Processes Reference<Default ? Font>.)

Execute commands—using the T_EVENT_COMMAND class of the EVENT_MIB, subscribers
can invoke an executable process. When a match is found, the data is used as the name of
the executable process and any required options. (See the definition of the
T_EVENT_COMMAND class in the EVENT_MIB(5) entry in the File Formats, Data
Descriptions, MIBs, and System Processes Reference<Default ? Font>.)

Write messages to the user log (ULOG)—using the T_EVENT_USERLOG class of the
EVENT_MIB, subscribers can write system USERLOG messages. When events are detected
and matched, they are written to the USERLOG. (See the definition of the T_EVENT_USERLOG
class in the EVENT_MIB(5) entry in the File Formats, Data Descriptions, MIBs, and
System Processes Reference<Default ? Font>.)

How to Cancel a Subscription to an Event
When a client leaves an application by calling tpterm(3c), all of its subscriptions are canceled
unless the subscription is specified as persistent. (If persistent, the subscription continues to
receive postings even after a client performs a tpterm().) If the client later rejoins the
application and wants to renew those subscriptions, it must subscribe again.

A well-behaved client unsubscribes before calling tpterm(). This is accomplished by issuing a
tpunsubscribe(3c) call before leaving an application.

How to Use the EventBroker with Transactions
Special handling is needed to use the EventBroker with transactions.

Before you can use the EventBroker with transactions, you must configure the NULL_TMS
parameter with the TMUSREVT(5) server for the server groups in which the EventBroker is
running.
6-10 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

How to Use the EventBroker w i th T ransact ions
The advantage of posting an event in a transaction is that all of the work, including work
not related to the posting, is guaranteed to be complete if the transaction is successful. If
any work performed within the transaction fails, it is guaranteed that all the work done
within the transaction will be rolled back. The disadvantage is that the poster takes a risk
that something may cause the transaction to be aborted, and the posting will be lost.

To specify that a subscription is part of a transaction, use the TPEVTRAN flag with
tpsubscribe(3c). If the subscription is made transactionally, the action taken in response
to an event will be part of the caller’s transaction.

Note: This method can be used only for subscriptions that cause an Oracle Tuxedo service
to be invoked, or that cause a record to be enqueued on a permanent queue.

How Transactions Work with the EventBroker
If both a poster and a subscriber agree to link their transactions, they create a form of voting. The
poster makes an assertion that something is true and infects the message with this transaction. (In
other words, the message that leaves the originating process is marked as being associated with
the transaction.) The transaction goes to the EventBroker.

The EventBroker’s actions, such as calling the service or putting a message in the queue for the
subscriber, are also part of the same transaction. If a service routine that is running encounters an
error, it can fail the transaction, rolling back everything, including all other transactional
subscriptions and the poster’s original transaction, which might have invoked other services and
performed other database work. The poster makes an assertion (“I’m about to do this”), provides
data, and links the data to its transaction.

A number of anonymous subscribers, that is, subscribers about which the poster knows nothing,
are invoked transactionally. If any subscriber fails to link its work with the poster’s work, the
whole transaction is rolled back. All transactional subscribers must agree to link their work with
the poster’s work, or all the work is rolled back. If a poster has not allowed the posting to
participate in its transaction, the EventBroker starts a separate transaction, and gathers all the
transactional subscriptions into that transaction. If any of these transactions fail, all the work done
on behalf of the transactional subscriptions is rolled back, but the poster’s transaction is not rolled
back. This process is controlled by the TPEVTRAN flag.

Example of Using the EventBroker with Transactions
A stock trade is about to be completed by a brokerage application. A number of database records
have been updated by various services during the trade transaction. A posting states that the trade
is about to happen.
Administering an Oracle Tuxedo Application at Run Time 6-11

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html

An application responsible for maintaining an audit trail of such trades has subscribed to this
event. Specifically, the application has requested the placement of a record in a specified queue
whenever an event of this type is posted. A service routine responsible for determining whether
trades can be performed, also subscribes to this type of event; it, too, is notified whenever such a
trade is proposed.

If all goes well, the trade is completed and an audit trail is made.

If an error occurs in the queue and no audit trail can be made, the entire stock trade is rolled back.
Similarly, if the service routine fails, the transaction is rolled back. If all is successful, the trade
is made and the transaction is committed.

See Also
What Is an Event?

“Managing Events Using EventBroker” in Introducing Oracle Tuxedo ATMI<Default ?
Font>

“Using Event-based Communication” in Tutorials for Developing Oracle Tuxedo ATMI
Applications<Default ? Font>

tppost(3c), tpsubscribe(3c), and tpunsubscribe(3c) in the Oracle Tuxedo ATMI C
Function Reference<Default ? Font>

TPPOST(3cbl), TPSUBSCRIBE(3cbl), and TPUNSUBSCRIBE(3cbl) in the Oracle Tuxedo
ATMI COBOL Function Reference<Default ? Font>

EVENT_MIB(5), EVENTS(5), TMSYSEVT(5), and TMUSREVT(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference<Default ? Font>
6-12 Administering an Oracle Tuxedo Application at Run Time

../int/intman.html
../tutor/tutov.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3cbl/rf3cbl.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3cbl/rf3cbl.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf3cbl/rf3cbl.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

C H A P T E R 7
Migrating Your Application
This topic includes the following sections:

What Is Migration?

Migration Options

How to Switch the Master and Backup Machines

How to Migrate Server Groups

How to Migrate Server Groups from One Machine to Another

Automatic Migration

How to Cancel a Migration

How to Migrate Transaction Logs to a Backup Machine

What Is Migration?
Under normal circumstances, an administrator performs daily administrative tasks on the
configured MASTER machine. The DBBL on the MASTER machine monitors other machines in a
configuration, handles configuration updates, and broadcasts dynamic changes to the TMIB. If the
MASTER machine fails, for example, due to a machine crash, database corruptions, Oracle Tuxedo
system problems, network partitioning, or application faults, the application does not stop
running. Clients can still join the application, servers can still service requests, and naming is still
available on each local machine. However, until the MASTER machine is restored, servers cannot
be activated or deactivated, and an administrator cannot dynamically reconfigure the system.
Administering an Oracle Tuxedo Application at Run Time 7-1

Similarly, application servers are configured to run on specific machines to service client
requests. However, if a machine fails or must be brought down to be serviced, the servers on that
machine become unavailable. In each case, you can migrate the servers to a configured BACKUP
or alternate machine.

An administrator who performs a migration in preparation for shutting down a machine for
service or upgrading, does not face the problems inherent in a machine failure. Therefore an
administrator in this situation has a relatively high degree of control over migration activities.

Performing a Master Migration
A master migration is the process of moving the DBBL from the configured MASTER machine to
the configured BACKUP machine so that servers can continue to be serviced while the configured
MASTER machine is down. To start a migration, an administrator requests that the configured
BACKUP assume the role of acting MASTER, and the configured MASTER, the role of acting BACKUP.
The acting MASTER then performs all administrative functions: it begins monitoring other
machines in the configuration and accepts any dynamic reconfiguration changes.

InFigure 7-1, Machine 2, the configured BACKUP machine, assumes the role of MASTER, while
Machine 1, the configured MASTER, assumes the role of acting BACKUP. When the configured
MASTER is available again, it can be reactivated from the acting MASTER (that is, the configured
BACKUP). The configured MASTER then regains control as acting MASTER.

Figure 7-1 Perfoming a Master Migration
7-2 Administering an Oracle Tuxedo Application at Run Time

What I s Mig rat i on?
Migrating a Server Group
For each group of servers, an administrator specifies a primary machine and an alternate machine.
The process of migrating a server group involves activating the server group on the alternate
machine.

In Figure 7-2, GroupA is assigned to Machine 1 (that is, Machine 1 is configured as the primary
machine); Machine 2 is configured as the alternate machine for GroupA. After migration,
GroupA is activated on Machine 2, which means that all servers in this group and the services
associated with them, are available on Machine 2 (the acting primary).

Figure 7-2 Migrating a Server Group
Administering an Oracle Tuxedo Application at Run Time 7-3

Migrating Machines
While it is sometimes useful to migrate only a single server group, it is more often necessary to
migrate an entire machine. This type of migration may be necessary, for example, when a
computer fails. Migrating a machine involves migrating each of the server groups running on the
machine. An alternate machine must be configured for each server group.

Performing a Scheduled Migration
In a controlled situation, such as when a computer needs to be offline for a while, or needs to be
upgraded, an administrator can preserve information about the current configuration for servers
and services, and use that information when activating servers on alternate machines. Such use
of configuration information is possible because server entries are retained on a primary machine,
even after the servers are deactivated and become unavailable in response to a request for a
migration.

You can migrate an entire server group or an entire machine. Migration of an entire machine is
possible when the same machine is configured as the alternate for all the server groups on a
primary machine. When that is not the case (that is, when different alternate machines are
configured for different server groups on a primary machine), then the servers must be migrated
by group, rather than by machine.

In Figure 7-3, Machine 1 is the configured MASTER and the primary machine for GroupB;
Machine 2 is the configured BACKUP. Server GroupB is configured with Machine 1 as its primary
7-4 Administering an Oracle Tuxedo Application at Run Time

Migrat i on Opt ions
machine and Machine 3 as its alternate. If Machine 1 is taken down, Machine 2 becomes the
acting MASTER, and Server GroupB is deactivated, migrated to its alternate (Machine 3), and
reactivated.

Figure 7-3 Performing a Scheduled Migration

After deactivating all the servers in a group, you can migrate the group from the acting primary
to the acting alternate. You do not need to specify which servers are running, which services are
currently advertised, or which, if any, dynamic configuration changes are being made. The
configured alternate machine obtains this information from the configuration information for the
servers that is available on the configured primary machine, when the servers are deactivated. If
data-dependant routing is being used and will continue to be used on the alternate machine,
services are routed on the basis of the target group name, instead of the target machine name.

Whether you need to migrate an entire application or only portions of it, be sure to make the
necessary changes with minimal service disruption. The integrity of all machines, networks,
databases, and other components of your application must remain intact. The Oracle Tuxedo
system provides a way to migrate an application while preserving the integrity of all its
components.

Migration Options
The Oracle Tuxedo system allows you to migrate:
Administering an Oracle Tuxedo Application at Run Time 7-5

A MASTER machine to a BACKUP machine, and vice-versa

A server group from its primary machine to its alternate machine

All server groups on a primary machine to an alternate machine

A transaction log

You can also cancel a migration.

By migrating a combination of the application components listed here, and using the system
utilities for recovering a partitioned network, you can migrate entire machines.

How to Switch the Master and Backup Machines
When a MASTER machine must be shut down for maintenance, or is no longer accessible due to
an unanticipated problem (such as a partitioned network), then you must transfer the work of the
MASTER to a configured BACKUP machine.

Note: Before you can migrate the MASTER, both the MASTER and BACKUP machines must be
running the same release of the Oracle Tuxedo system software.

This type of switching is done by migrating the DBBL from the MASTER to the BACKUP. To
migrate the DBBL, enter the following command:

tmadmin master

In most cases, you need to migrate application servers to alternate sites, or restore the MASTER
machine. For more detail about the tmadmin command, see the tmadmin(1) reference page in
the File Formats, Data Descriptions, MIBs, and System Processes Reference<Default ? Font>.

Examples of Switching MASTER and BACKUP Machines
The following two sample tmadmin sessions show how to switch MASTER and BACKUP machines
regardless of whether the MASTER machine is accessible from the BACKUP machine. In Listing 7-1,
the MASTER machine is accessible, so the DBBL process is migrated from the MASTER to the
BACKUP.

Listing 7-1 Switching MASTER and BACKUP When MASTER Is Accessible from BACKUP

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved.
7-6 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

How to Swi tch the Maste r and Backup Mach ines
> master
are you sure? [y,n] y
Migrating active DBBL from SITE1 to SITE2, please wait...
DBBL has been migrated from SITE1 to SITE2
> q

In Listing 7-2, because the MASTER machine is not accessible from the BACKUP machine, the DBBL
process is created on the BACKUP machine on backup node (SITE2).

Listing 7-2 Switching MASTER and BACKUP When MASTER Is Not Accessible from BACKUP

$ tmadmin

...

TMADMIN_CAT:199: WARN: Cannot become administrator.Limited set of commands
available.

> master

Are you sure? [y, n] y

Creating new DBBL on SITE2, please wait ...

New DBBL created on SITE2

> q

$ tmadmin

...

> pcl SITE1

 Cleaning the DBBL.

 Pausing 10 seconds waiting for system to stabilize.

 3 SITE1 servers removed from bulletin board

> q
Administering an Oracle Tuxedo Application at Run Time 7-7

In Listing 7-3 and Listing 7-4, after the old master (SITE1) becomes accessible again, execute the
following commands to make the new MP mode work well. Make sure tlisten on both nodes starts
up.

Listing 7-3 Make Sure the New MP Mode Works Well After the Old Master Is Accessible Again on Site 1

$ tmadmin

...

> pcl SITE2

 Cleaning the DBBL.

 Pausing 10 seconds waiting for system to stabilize.

 3 SITE2 servers removed from bulletin board

> q

$tmshutdown -y

Listing 7-4 Make Sure the New MP Mode Works Well After the Old Master Is Accessible Again on Site 2

$ tmadmin

...

> boot -B SITE1 -l SITE1

INFO: Oracle Tuxedo, Version 12.1.1.0, 64-bit, Patch Level (none)

Booting admin processes ...

exec BBL -A :

 on SITE1 -> process id=15044 ... Started.

Booting server processes ...

exec serverping -A :

 on SITE1 -> process id=15053 ... Started.

2 processes started.
7-8 Administering an Oracle Tuxedo Application at Run Time

How to Mig ra te Se rve r G roups
> q

How to Migrate Server Groups
1. Configure an alternate location in the LMID parameter (for the server group being migrated)

in the GROUPS section of the UBBCONFIG file. Servers in the group must specify RESTART=Y
and the MIGRATE option must be specified in the RESOURCES section of the UBBCONFIG file.

2. If you are planning to migrate a group of servers, shut down each server in the group by
issuing the following command:

tmshutdown -R -g groupname

3. Start a tmadmin session by entering the following command:

tmadmin

4. At the tmadmin prompt, enter one of the following commands:

– To migrate all the servers in a single group, enter:

migrategroup(migg)

This command takes the name of a single server group as an argument.

– To migrate all the server groups on a machine (as specified by an LMID), enter:

migratemach(migm)

5. If transactions are being logged for a server being migrated as part of a group, you may need
to move the TLOG to the BACKUP machine, load it, and “warm start” it.

How to Migrate a Server Group When the Alternate Machine
Is Accessible from the Primary Machine
To migrate a server group when the alternate machine is accessible from the primary machine,
complete the following procedure.

1. Shut down the MASTER machine by entering the following command:

tmshutdown -R -g groupname

2. On the primary machine, start a tmadmin session by entering the following command:

tmadmin
Administering an Oracle Tuxedo Application at Run Time 7-9

3. Migrate the appropriate group by entering the following command:

migrategroup groupname

4. If necessary, migrate the transaction log.

5. If necessary, migrate the application data.

How to Migrate a Server Group When the Alternate Machine
Is Not Accessible from the Primary Machine
To migrate a server group when the alternate machine is not accessible from the primary machine,
switch the MASTER and BACKUP machines, if necessary.

1. On the alternate machine, start a tmadmin session by entering the following command:

tmadmin

2. Request cleanup and restart of any servers on the primary machine that require these
operations by entering the following command:

pclean primary_machine

3. Transfer the appropriate server group to a configured alternate machine by entering the
following command:

migrate groupname

4. Boot the newly migrated server group by entering the following command:

boot -g groupname

Examples of Migrating a Server Group
The following two sample sessions show how you can migrate a server group, regardless of
whether the alternate machine is accessible from the primary machine. In Listing 7-5, the
alternate machine is accessible from the primary machine.

Listing 7-5 Migrating a Group When the Alternate Machine Is Accessible from the Primary Machine

$ tmshutdown -R -g GROUP1
Shutting down server processes...
Server ID = 1 Group ID = GROUP1 machine = SITE1: shutdown succeeded
1 process stopped.
7-10 Administering an Oracle Tuxedo Application at Run Time

How to Mig ra te Se rve r G roups
$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> migg GROUP1
migg successfully completed
> q

In Listing 7-6, the alternate machine is not accessible from the primary machine.

Listing 7-6 Migrating a Group When the Alternate Machine Is Not Accessible from the Primary Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> pclean SITE1
Cleaning the DBBL.
Pausing 10 seconds waiting for system to stabilize.
3 SITE1 servers removed from bulletin board
> migg GROUP1
migg successfully completed.
> boot -g GROUP2
Booting server processes ...
exec simpserv -A :
on SITE2 -> process id=22699 ... Started.
1 process started.
> q
Administering an Oracle Tuxedo Application at Run Time 7-11

How to Migrate Server Groups from One Machine to
Another

1. Use the LMID parameter to name the processor on which the server group(s) have been
running. The alternate location must be the same for all server groups on the LMID.

2. In the RESOURCES section of the UBBCONFIG file, set the following parameters:

– Set RESTART=Y for each server on the machine indicated by the LMID.

– Specify the MIGRATE options.

3. Shut down all server groups and mark the servers in the groups as restartable by entering the
following command:

tmshutdown -R

4. Use the tmadmin(1) migratemach (migm) command to migrate all server groups from one
machine to another when the primary machine must be shut down for maintenance or when
the primary machine is no longer accessible. (The command takes one logical machine
identifier as an argument.)

How to Migrate Machines When the Alternate Machine Is
Accessible from the Primary Machine
To migrate a machine when the alternate machine is accessible from the primary machine,
complete the following procedure.

1. Shut down the MASTER machine by entering the following command on that machine:

tmshutdown -R -1 primary_machine

2. On the MASTER machine, start a tmadmin session by entering the following command:

tmadmin

3. At the tmadmin prompt, migrate the appropriate machine by entering the following
command:

migratemach primary_machine

4. If necessary, migrate the transaction log.

5. If necessary, migrate the application data.
7-12 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

How to Migrate Serve r Groups f rom One Machine to Another
How to Migrate Machines When the Alternate Machine Is
Not Accessible from the Primary Machine
To migrate a machine when the alternate machine is not accessible from the primary machine,
switch the MASTER and BACKUP machines, if necessary.

1. On the alternate machine, start a tmadmin session by entering the following command:

tmadmin

2. Request cleanup and restart of the primary machine that require these operations by entering
the following command:

pclean primary_machine

3. Transfer the appropriate server group to a configured alternate machine by entering the
following command:

migratemach primary_machine

4. Boot the newly migrated server group by entering the following command:

boot -l alternate_machine

Examples of Migrating a Machine
Listing 7-7 shows how to migrate machines. In the first example, the alternate machine is
accessible from the primary machine.

Listing 7-7 Migrating a Machine When the Alternate Machine Is Accessible from the Primary Machine

$ tmshutdown -R -l SITE1
Shutting down server processes...
Server ID = 1 Group ID = GROUP1 machine = SITE1: shutdown
succeeded 1 process stopped.
$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> migm SITE1
migm successfully completed
> q
Administering an Oracle Tuxedo Application at Run Time 7-13

In Listing 7-8, the alternate machine is not accessible from the primary machine.

Listing 7-8 Migrating a Machine When the Alternate Machine Is Not Accessible from the Primary Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
>pclean SITE1
Cleaning the DBBL.
Pausing 10 seconds waiting for system to stabilize.
3 SITE1 servers removed from bulletin board
> migm SITE1
migm successfully completed.
> boot -l SITE2
Booting server processes ...
exec simpserv -A :
on SITE2 -- process id=22782 ... Started.
1 process started.
>q

Automatic Migration
When only one logical machine fails (unreachable), the entities (DBBL and server groups) on that
machine will be migrated by Automatic Migration feature if both such feature is enabled and the
entity has backup machine defined in UBB. If the machine is unreachable merely due to network
issue and the automatic migration is evoked, once the network issue is resolved and the “dead”
machine comes back, one of the duplicate entities will be removed.

To enable the Automatic Migration feature, two threshold options are required to be configured
in *RESOURCES section of UBBCONFIG.

DBBLFAILOVER numeric_value (0 <= num < 32768)
The time threshold for migrating DBBL. If not specified, DBBLFAILOVER will be set as 0
by default. The Automatic Migration for DBBL will be enabled only if DBBLFAILOVER is
configured greater than 0.

SGRPFAILOVER numeric_value (0 <= num < 32768)
7-14 Administering an Oracle Tuxedo Application at Run Time

How to Cance l a Migrat ion
The time threshold for migrating server groups. If not specified, SGRPFAILOVER will be
set as 0 by default. The Automatic Migration for server groups will be enabled only if
SGRPFAILOVER is configured greater than 0.

Besides that, two related attributes TA_DBBLFAILOVER and TA_SGRPFAILOVER are defined in
T_DOMAIN class for MIB operations.

See the UBBCONFIG(5) or TM_MIB(5) reference for more details.

How to Cancel a Migration
If you decide, after deactivating a server group or machine, that you do not want to continue, you
can cancel the migration before reactivating the server group or machine. All the information in
the name server for the deactivated servers and services is deleted.

To cancel a migration after a shutdown but before issuing the migrate command, enter one of
the following commands shown in Table 7-1.

Example of a Migration Cancellation
The following sample tmadmin session in Listing 7-9 shows how a server group and a machine
can be migrated between their respective primary and alternate machines.

Table 7-1 How to Cancel a Migration

To Cancel . . . Enter This Command . . . As a Result . . .

Server migration tmadmin migrategroup -cancel

or
tmadmin migg -cancel

Server entries are deleted
from the bulletin board.
You must reboot the
servers once the migration
procedure is canceled.

Machine
migration

tmadmin migratemach -cancel
or
tmadmin migm -cancel

The migration is stopped.
Administering an Oracle Tuxedo Application at Run Time 7-15

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Listing 7-9 Canceling a Server Group Migration for GROUP1

$tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> psr -g GROUP1

a.out Name Queue Name Grp Name ID RqDone Ld Done Current Service
---------- ---------- -------- -- ------ ------- ---------------
simpserv 00001.00001 GROUP1 1 - - (DEAD MIGRATING)
> psr -g GROUP1
TMADMIN_CAT:121: No such server
migg -cancel GROUP1
>boot -g GROUP1
Booting server processes...
exec simpserv -A:
on SITE1 ->process id_27636 ... Started. 1 process started.
> psr -g GROUP1

a.out Name Queue Name Grp Name ID RqDone Ld Done Current Service
---------- ---------- -------- -- ------ ------- ---------------
simpserv 00001.00001 GROUP1 1 - - (-)
> q

How to Migrate Transaction Logs to a Backup Machine
To migrate a transaction log to a BACKUP machine, complete the following procedure.

1. Start a tmadmin session by entering the following command:

tmadmin

2. Shut down the servers in all the groups that write to the log, to prevent them from writing
further entries.

3. Dump the TLOG into a text file by running the following command:

dumptlog [-z config] [-o offset] [-n filename] [-g groupname]

Note: The TLOG is specified by the config and offset arguments. The value of offset
defaults to 0; name defaults to TLOG. If the -g option is chosen, only those records
coordinated by the TMS from groupname are dumped.

4. Copy filename to the BACKUP machine.
7-16 Administering an Oracle Tuxedo Application at Run Time

How to M igrate T ransac t ion Logs to a Backup Machine
5. Read the file into the existing TLOG for the specified machine by entering the following
command:

loadtlog -m machine filename

6. Force a warm start of the TLOG by entering the following command:

logstart machine

The system reads the information in the TLOG and uses it to create an entry in the
transaction table in shared memory.

7. Migrate the servers to the BACKUP machine.
Administering an Oracle Tuxedo Application at Run Time 7-17

7-18 Administering an Oracle Tuxedo Application at Run Time

C H A P T E R 8
Tuning a Oracle Tuxedo ATMI
Application
This topic includes the following sections:

When to Use MSSQ Sets

How to Enable Load Balancing

How to Measure Service Performance Time

How to Assign Priorities to Interfaces or Services

Bundling Services into Servers

Enhancing Overall System Performance

Determining Your System IPC Requirements

Tuning IPC Parameters

Measuring System Traffic

Note: For detailed information about tuning your applications in the Oracle Tuxedo CORBA
environment, refer to the Scaling, Distributing, and Tuning CORBA Applications guide.

When to Use MSSQ Sets
Note: Multiple Servers, Single Queue (MSSQ) sets are not supported in Oracle Tuxedo

CORBA servers.
Administering an Oracle Tuxedo Application at Run Time 8-1

The MSSQ scheme offers additional load balancing in Oracle Tuxedo ATMI environments. One
queue is accommodated by several servers offering identical services at all times. If the server
queue to which a request is sent is part of an MSSQ set, the message is dequeued to the first
available server. Thus load balancing is provided at the individual queue level.

When a server is part of an MSSQ set, it must be configured with its own reply queue. When the
server makes requests to other servers, the replies must be returned to the original requesting
server; they must not be dequeued by other servers in the MSSQ set.

You can configure MSSQ sets to be dynamic so they automatically spawn and eliminate servers
based upon a queue load.

The following table specifies when it is beneficial to use MSSQ sets.

The following two analogies illustrate when it is beneficial to use MSSQ sets.

A situation analogous to the appropriate use of MSSQ sets can be found in a bank at which
several tellers performing identical services handle a single line of customers. The next
available teller always takes the next person in line. In this scenario, each teller must be
able to perform all customer services. In an Oracle Tuxedo environment, all servers set up
to share a single queue must offer an identical set of services at all times. The advantage of
MSSQ sets is that they offer a second form of load balancing at the individual queue level.

A supermarket at which different cashiers accept different forms of payment (some accept
credit cards, while others accept only cash) is similar to a Oracle Tuxedo application in
which MSSQ sets should not be used.

You Should Use MSSQ Sets If . . . You Should Not Use MSSQ Sets If . . .

You have between 2 and 12 servers. There are many servers. (A compromise is to use many
MSSQ sets.)

Buffer sizes are not too large, that is, large enough
to exhaust a queue.

Buffer sizes are large enough to exhaust one queue.

All servers offer identical sets of services. Each server offers different services.

Messages are relatively small. Large messages are being passed to the services, causing the
queue to be exhausted. When a queue is exhausted, either
nonblocking sends fail or blocking sends block.

Optimization and consistency of service
turnaround time are paramount.
8-2 Administering an Oracle Tuxedo Application at Run Time

How to Enable Load Balanc ing
How to Enable Load Balancing
To alleviate the performance degradation resulting from heavy system traffic, you may want to
implement a load balancing algorithm on your entire application. With load balancing, a load
factor is applied to each service within the system, and you can track the total load on every
server. Every service request is sent to the qualified server that is least loaded.

To implement system-wide load balancing, complete the following procedure.

1. Run your application for an extended period of time.

2. Note the average amount of time it takes for each service to be performed.

3. In the RESOURCES section of the configuration file:

– Set LDBAL to Y.

– Assign a LOAD value of 50 (LOAD=50) to any service that takes approximately the
average amount of time.

– For any service taking longer than the average amount of time, set LOAD>50; for any
service taking less than the average amount of time, set LOAD<50.

Note: This algorithm, although effective, is expensive and should be used only when necessary,
that is, only when a service is offered by servers that use more than one queue. Services
offered by only one server, or by multiple servers, all of which belong to the same MSSQ
(Multiple Server, Single Queue) set, do not need load balancing.

How to Measure Service Performance Time
You can measure service performance time in either of two ways:

Administratively—in the configuration file, you can arrange to have a log of services that
are performed to be written to standard error. In the SERVICES section, specify:

servopts -r

To analyze the information in the log, run the txrpt(1) command.

For details about servopts(5) and txrpt(1), see the File Formats, Data Descriptions,
MIBs, and System Processes Reference and Oracle Tuxedo Command Reference,
respectively.

Programmatically—insert a call to time() at the beginning and end of a service routine.
Services that take the longest time receive the highest load; those that take the shortest time
Administering an Oracle Tuxedo Application at Run Time 8-3

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

receive the lowest load. (For details about time(), see the documentation for your C
language libraries.)

How to Assign Priorities to Interfaces or Services
Assigning priorities enables you to exert significant control over the flow of data in an
application, provide faster service to the most important requests, and provide slower service to
the less important requests. You can also give priority to specific users—at all times or in specific
circumstances.

You can assign priorities to Oracle Tuxedo services in either of two ways:

Administratively—in the SERVICES section of the configuration file, specify the PRIO
parameter for each service named.

Programmatically—add calls to the tpsprio() function to the appropriate client and
server applications, to allow designated clients and servers to change a priority
dynamically. Only preferred clients should be able to increase the service priority. In a
system on which servers perform service requests, the server can call tpsprio() to
increase the priority of its interface or service calls so the user does not wait in line for
every interface or service request that is required.

Example of Using Priorities
Server 1 offers Interfaces A, B, and C. Interfaces A and B have a priority of 50; Interface C, a
priority of 70. An interface requested for C is always dequeued before a request for A or B.
Requests for A and B are dequeued equally with respect to one another. The system dequeues
every tenth request in first-in, first-out (FIFO) order to prevent a message from waiting
indefinitely on the queue.

Using the PRIO Parameter to Enhance Performance
The PRIO parameter determines the priority of an interface or a service on a server’s queue. It
should be used cautiously. Once priorities are assigned, it may take longer for some messages to
be dequeued. Depending on the order of messages on the queue (for example, A, B, and C), some
(such as A and B) are dequeued only one in ten times when there are more than 10 requests for
C. This means reduced performance and potential slow turnaround time for some services.

When you are deciding whether to use the PRIO parameter, keep the following implications in
mind:
8-4 Administering an Oracle Tuxedo Application at Run Time

Bundl ing Se rv ices in to Se rve rs
Because higher priorities get first preference, a higher priority should usually be assigned
only to an interface or service that is not called frequently.

A message with a lower priority does not remain enqueued indefinitely; every tenth
message is retrieved on a FIFO basis. Before you assign a low priority to an interface or
service you should be sure that response time for that interface or service is not important.

Bundling Services into Servers
The easiest way to package services into servers is to avoid packaging them at all. Unfortunately,
if you do not package services, the number of servers, message queues, and semaphores rises
beyond an acceptable level. Thus there is a trade-off between no bundling and too much bundling.

When to Bundle Services
We recommend that you bundle services if you have one of the situations or requirements
described in the following list.

Functional similarity—if multiple services play a similar role in the application, you can
bundle them in the same server. The application can offer all or none of them at a given
time. In the bankapp application, for example, the WITHDRAW, DEPOSIT, and INQUIRY
services are all operations that can be grouped together in a “bank teller operations” server.
Administration of services is simplified when functionally similar services are bundled.

Similar libraries—less disk space is required if you bundle services that use the same
libraries. For example, if you have three services that use the same 100K library and three
services that use different 100K libraries, bundling the first three services saves 200K.
Functionally equivalent services often use similar libraries.

Filling the queue—bundle only as many services into a server as the queue can handle.
Each service added to an unfilled MSSQ set may add relatively little to the size of an
executable, and nothing to the number of queues in the system. Once the queue is filled,
however, system performance is degraded and you must create more executables to
compensate.

Do not put two or more services that call each other, that is, call-dependent services, in the same
server. If you do so, the server issues a call to itself, causing a deadlock.

Enhancing Overall System Performance
The following performance enhancement controls can be applied to Oracle Tuxedo release 8.0 or
later.
Administering an Oracle Tuxedo Application at Run Time 8-5

Service and Interface Caching

Removing Authorization and Auditing Security

Turning Off Multithreaded Processing

Turning Off XA Transactions

Service and Interface Caching
Oracle Tuxedo release 8.0 or later allows you to cache service and interface entries, and to use
the cached copies of the service or interface without locking the bulletin board. This feature
represents a significant performance improvement, especially in systems with large numbers of
clients and only a few services.

The SICACHEENTRIESMAX option has been added to the MACHINES and SERVERS sections of the
configuration file to allow you to define the maximum number of service cache entries that any
process and/or server can hold.

Since caching may not be useful for every client or every application, the
TMSICACHEENTRIESMAX environment variable has been added to control the cache size. The default
value for TMSICACHEENTRIESMAX is preconfigured so that no administrative changes are
necessary when upgrading from previous releases. TMSICACHEENTRIESMAX can also control the
number of cache entries, since it is not desirable for clients to grow too large.

Service Caching Limitations
The following limitations apply to the caching feature:

If there are routing criteria on a service, then the service will not be cached.

If there are buffer type restrictions on a service, then the service will not be cached.

If the group of a service is predetermined (that is, TMS services), then the service will not
be cached.

If the number of service entries is zero, no caching will be done.
8-6 Administering an Oracle Tuxedo Application at Run Time

Enhanc ing Overa l l Sys tem Per fo rmance
Notes: For more information about the SICACHEENTRIESMAX option, refer to the
UBBCONFIG(5)and TM_MIB(5) sections in the File Formats, Data Descriptions, MIBs,
and System Processes Reference.

For more information about the TMSICACHEENTRIESMAX variable, refer to the
tuxenv(5)section in the File Formats, Data Descriptions, MIBs, and System Processes
Reference.

Removing Authorization and Auditing Security
For Oracle Tuxedo release 7.1, the AAA (authentication, authorization, and auditing) security
features were added so that implementations using the AAA plug-in functions would not need to
base security on the Oracle Tuxedo administrative option. As a result, the Oracle Engine AAA
security functions are always called in the main Oracle Tuxedo 7.1 code path. Since many
applications do not use security, they should not pay the overhead price of these Oracle Engine
security calls.

For Oracle Tuxedo release 8.0 or later, the NO_AA option has been added to the OPTIONS
parameter in the RESOURCES section of the configuration file. The NO_AA option will circumvent
the calling of the authorization and auditing security functions. Since most applications need
authentication, this feature cannot be turned off.

If the NO_AA option is enabled, the following SECURITY parameters may be affected:

The parameters NONE, APP_PW, and USER_AUTH parameters will continue to work
properly—except that no authorization or auditing will be done.

The ACL and MANDATORY_ACL parameters will continue to work properly, but will only use
the default Oracle security mechanism.

Note: For more information about the NO_AA option, refer to the UBBCONFIG(5)and
TM_MIB(5) sections in the File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Using the Multithreaded Bridge
Because only one Bridge process is running per host machine in a multiple machine Tuxedo
domain, all traffic from a host machine passes through a single Bridge process to all other host
machines in the domain. The Bridge process supports both single-threaded and multithreaded
execution capabilities. The availability of multithreaded Bridge processing improves the data
throughput potential. To enable multithreaded Bridge processing, you can configure the
BRTHREADS parameter in the MACHINES section of the UBBCONFIG file.
Administering an Oracle Tuxedo Application at Run Time 8-7

Setting BRTHREADS=Y configures the Bridge process for multithreaded execution. Setting
BRTHREADS=N or accepting the default N, configures the Bridge process for single-threaded
execution.

Configurations with BRTHREADS=Y on the local machine and BRTHREADS=N on the remote
machine are allowed, but the thoughput between the machines will not be greater than that for the
single-threaded Bridge process.

Other important considerations for using the BRTHREADS parameter include:

Setting BRTHREADS=Y makes sense only if a machine has multiple CPUs; however,
having multiple CPUs id not a prerequisite for setting BRTHREADS=Y.

If the MODEL parameter in the RESOURCES section of the UBBCONFIG file is set to
SHM, the BRTHREADS parameter has no effect and is ignored.

If BRTHREADS=Y and the Bridge environment contains TMNOTHREADS=Y, the Bridge starts
up in threaded mode and logs a warning message. Basically, BRTHREADS overrides
TMNOTHREADS and the warning message states that the Bridge is ignoring the
TMNOTHREADS setting.

Note: In a Tuxedo multiple-machine domain, setting BRTHREADS=Y has no effect for a machine
that is running an earlier version of Tuxedo.

For more information about the multithreaded Bridge, see the BRTHREADS parameter
in the MACHINES section of the UBBCONFIG(5) in File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Turning Off Multithreaded Processing
Oracle Tuxedo has a generalized threading feature. Due to the generality of the architecture, all
ATMI calls must call mutexing functions in order to protect sensitive state information.
Furthermore, the layering of the engine and caching schemes used in the libraries cause more
mutexing. For applications that do not use threads, turning them off can result in significant
performance improvements without making changes to the application code.

To turn off multithreaded processing use the TMNOTHREADS environment variable. With this
setting, individual processes can turn threads on and off without introducing a new API or flag in
order to do so.

If the TMNOTHREADS=Y, then the calls to the mutexing functions are avoided.

Note: For more information about TMNOTHREADS, refer to the tuxenv(5) section in File
Formats, Data Descriptions, MIBs, and System Processes Reference.
8-8 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Dete rmin ing Your Sys tem IPC Requ i rements
Turning Off XA Transactions
Although not all Oracle Tuxedo applications use XA transactions, all processes pay the cost of
transactional semantics by calling internal transactional verbs. To boost performance for
applications that don’t use XA transactions for Oracle Tuxedo release 8.0 or later, the NO_XA flag
has been has been added to the OPTIONS parameter in the RESOURCES section of the configuration
file.

No XA transactions are allowed when the NO_XA flag is set. It is important to remember though,
that any attempt to configure TMS services in the GROUPS section will fail if the NO_XA option
has been specified.

Note: For more information about the NO_XA option, refer to the UBBCONFIG(5)and
TM_MIB(5) sections in the File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Determining Your System IPC Requirements
The IPC requirements for your system are determined by the values of several system parameters:

MAXACCESSERS

REPLYQ

RQADDR

MAXSERVERS

MAXSERVICES

MAXGTT

You can use the tmboot -c command to display the minimum IPC requirements of your
configuration.

The following table describes these system parameters.
Administering an Oracle Tuxedo Application at Run Time 8-9

Tuning IPC Parameters
The following application parameters enable you to enhance the efficiency of your system:

Table 8-1 Parameters for Tuning IPC Resources

Parameter(s) Description

MAXACCESSSERS Equals the number of semaphores.

Number of message queues is almost equal to MAXACCESSERS +
number of servers with reply queues (number of servers in MSSQ set *
number of MSSQ sets).

MAXSERVERS,
MAXSERVICES,
and MAXGTT

While MAXSERVERS, MAXSERVICES, MAXGTT, and the overall size of
the ROUTING, GROUP, and NETWORK sections affect the size of shared
memory, an attempt to devise formulas that correlate these parameters
can become complex. Instead, simply run tmboot -c or tmloadcf
-c to calculate the minimum IPC resource requirements for your
application.

Queue-related
kernel parameters

Need to be tuned to manage the flow of buffer traffic between clients
and servers. The maximum total size (in bytes) of a queue must be large
enough to handle the largest message in the application. A typical queue
is not more than 75 to 85 percent full. Using a smaller percentage of a
queue is wasteful; using a larger percentage causes message sends to
block too frequently.

Set the maximum size for a message to handle the largest buffer that the
application sends.

The maximum queue length (the largest number of messages that are
allowed to sit on a queue at once) must be adequate for the application’s
operations.

Simulate or run the application to measure the average fullness of a
queue or its average length. This process may require a lot of trial and
error; you may need to estimate values for your tunables before running
the application, and then adjust them after running under performance
analysis.

For a large system, analyze the effects of parameter settings on the size
of the operating system kernel. If they are unacceptable, reduce the
number of application processes or distribute the application across
more machines to reduce MAXACCESSERS.
8-10 Administering an Oracle Tuxedo Application at Run Time

Tuning IPC Parameters
MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES

MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE

SANITYSCAN, BLOCKTIME, and individual transaction timeouts

BBLQUERY and DBBLWAIT

Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES,
and MAXSERVICES Parameters
The MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES parameters increase
semaphore and shared memory costs, so you should carefully weigh these costs against the
expected benefits before using these parameters, and choose the values that best satisfy the needs
of your system. You should take into account any increased resources your system may require
for a potential migration. You should also allow for variation in the number of clients accessing
the system simultaneously. Defaults may be appropriate for a generous allocation of IPC
resources; however, it is prudent to set these parameters to the lowest appropriate values for the
application.

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE
Parameters
To determine whether the default is adequate for your application, multiply the number of clients
in the system times the percentage of time they are committing a transaction. If the product of this
multiplication is close to 100, you should increase the value of the MAXGTT parameter. As a result
of increasing MAXGTT:

Your system may require a greater number of clients, depending on the speed of commits.

You should also increase TLOGSIZE accordingly for every machine.

You should set MAXGTT to 0 for applications in which distributed transactions are not used.

To limit the number of buffer types and subtypes allowed in the application, set the MAXBUFTYPE
and MAXBUFSTYPE parameters, respectively. The current default for MAXBUFTYPE is 16. If you
plan to create eight or more user-defined buffer types, you should set MAXBUFTYPE to a higher
value. Otherwise, you do not need to specify this parameter; the default value is used.

The current default for MAXBUFSTYPE is 32. You may want to set this parameter to a higher value
if you intend to use many different VIEW subtypes.
Administering an Oracle Tuxedo Application at Run Time 8-11

Tuning with the SANITYSCAN, BLOCKTIME, BBLQUERY, and
DBBLWAIT Parameters
If a system is running on slow processors (for example, due to heavy usage), you can increase the
timing parameters: SANITYCAN, BLOCKTIME, and individual transaction timeouts.

If networking is slow, you can increase the value of the BLOCKTIME, BBLQUERY, and DBBLWAIT
parameters.

Recommended Values for Tuning-related Parameters
In the following table are recommended values for the parameters available for tuning an
application.

Measuring System Traffic
As on any road that supports a lot of traffic, bottlenecks can occur in your system. On a highway,
cars can be counted with a cable strung across the road, that causes a counter to be incremented
each time a car drives over it.

Use These Parameters . . . To . . .

MAXACCESSERS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES

Set the smallest satisfactory value because of
IPC cost. (Allow for extra clients.)

MAXGTT, MAXBUFTYPE, and
MAXBUFSTYPE

Increase MAXGTT for many clients; set
MAXGTT to 0 for nontransactional
applications.

Use MAXBUFTYPE only if you create eight or
more user-defined buffer types.

Increase the value of MAXBUFSTYPE if you
use many different VIEW subtypes.

BLOCKTIME, TRANTIME, and
SANITYSCAN

Increase the values if the system is slow.

BLOCKTIME, TRANTIME, BBLQUERY, and
DBBLWAIT

Increase the values if networking is slow.
8-12 Administering an Oracle Tuxedo Application at Run Time

Measur ing Sys tem T raf f i c
You can use a similar method to measure service traffic. For example, when a server is started
(that is, when tpsvrinit() is invoked), you can initialize a global counter and record a starting
time. Subsequently, each time a particular service is called, the counter is incremented. When the
server is shut down (through the tpsvrdone() function), the final count and the ending time are
recorded. This mechanism allows you to determine how busy a particular service is over a
specified period of time.

In the Oracle Tuxedo system, bottlenecks can originate from problematic data flow patterns. The
quickest way to detect bottlenecks is to measure the amount of time required by relevant services
from the client’s point of view.

Example of Detecting a System Bottleneck
Client 1 requires 4 seconds to display the results. Calls to time() determine that the tpcall to
service A is the culprit with a 3.7-second delay. Service A is monitored at the top and bottom and
takes 0.5 seconds. This finding implies that a queue may be clogged, a situation that can be
verified by running the pq command in tmadmin.

On the other hand, suppose service A takes 3.2 seconds. The individual parts of service A can be
bracketed and measured. Perhaps service A issues a tpcall to service B, which requires 2.8
seconds. Knowing this, you should then be able to isolate queue time or message send blocking
time. Once the relevant amount of time has been identified, the application can be retuned to
handle the traffic.

Using time(), you can measure the duration of the following:

An entire client program

A single client service request

An entire service function

A service function making a service request (if any)

Detecting Bottlenecks on UNIX Platforms
The UNIX system sar(1) command provides valuable performance information that can be used
to find system bottlenecks. You can run sar(1) to do the following:

Sample cumulative activity counters in the operating system at predetermined intervals

Extract data from a system file
Administering an Oracle Tuxedo Application at Run Time 8-13

The following table describes the sar(1) command options.

Note: Some flavors of the UNIX system do not support the sar(1) command, but offer
equivalent commands, instead. BSD, for example, offers the iostat(1) command; Sun
offers perfmeter(1).

Detecting Bottlenecks on Windows Platforms
On Windows platforms, you can use the Performance Monitor to collect system information and
detect bottlenecks. To open the Performance Monitor, select the following options from the Start
menu:

Start —> Settings —> Control Settings —> Administration Tools —> Performance

Use This Option... To...

-u Gather CPU utilization numbers, including percentages of time
during which the system: runs in user mode, runs in system mode,
remains idle with some process waiting for block I/O, and
otherwise remains idle.

-b Report buffer activity, including number of data transfers, per
second, between system buffers and disk (or other block devices).

-c Report activity of system calls of all types, as well as specific
system calls, such as fork(2) and exec(2).

-w Monitor system swapping activity, including the number of
transfers for swapins and swapouts.

-q Report average queue lengths while queues are occupied, and the
percentage of time they are occupied.

-m Report message and system semaphore activities, including the
number of primitives per second.

-p Report paging activity, including the number of address translation
page faults, page faults and protection errors, and valid pages
reclaimed for free lists.

-r Report the number of unused memory pages and disk blocks,
including the average number of pages available to user processes
and disk blocks available for process swapping.
8-14 Administering an Oracle Tuxedo Application at Run Time

Measur ing Sys tem T raf f i c
See Also
“Creating the Configuration File for a Distributed ATMI Application” in Setting Up an
Oracle Tuxedo Application

“Setting Up the Network for a Distributed Application” in Setting Up an Oracle Tuxedo
Application

“Managing the Network in a Distributed Application” on page 4-1

Scaling, Distributing, and Tuning CORBA Applications
Administering an Oracle Tuxedo Application at Run Time 8-15

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/ads/adsdis.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/ads/adsnet.html

8-16 Administering an Oracle Tuxedo Application at Run Time

C H A P T E R 9
Troubleshooting an Oracle Tuxedo
Application
This topic includes the following sections:

Determining Types of Failures

How to Broadcast an Unsolicited Message

Maintaining Your System Files

Recovery Considerations

Repairing Partitioned Networks

Restoring Failed Machines

How to Replace System Components

How to Replace Application Components

Cleaning Up and Restarting Servers Manually

Aborting or Committing Transactions

How to Recover from Failures When Transactions Are Used

How to Use the IPC Tool When an Application Fails to Shut Down Properly

Troubleshooting Multithreaded/ Multicontexted Applications
Administering an Oracle Tuxedo Application at Run Time 9-1

Determining Types of Failures
The first step in troubleshooting is determining problem areas. In most applications you must
consider six possible sources of trouble:

Application

Oracle Tuxedo system

Database management software

Network

Operating system

Hardware

Once you have determined the problem area, you must then work with the appropriate
administrator to resolve the problem. If, for example, you determine that the trouble is caused by
a networking problem, you must work with the network administrator.

How to Determine the Cause of an Application Failure
The following steps will help you detect the source of an application failure.

1. Check any Oracle Tuxedo system warnings and error messages in the user log (ULOG).

2. Select the messages you think most likely reflect the current problem. Note the catalog name
and the number of each of message, so you can look up the message in System Messages. The
manual entry provides:

– Details about the error condition indicated by the message

– Recommendations for recovery actions

3. Check any application warnings and error messages in the ULOG.

4. Check any warnings and errors generated by application servers and clients. Such messages
are usually sent to the standard output and standard error files (named, by default stdout and
stderr, respectively).

– The stdout and stderr files are located in the directory defined by the APPDIR
variable.

– The stdout and stderr files for your clients and servers may have been renamed.
(You can rename the stdout and stderr files by specifying -e and -o in the
9-2 Administering an Oracle Tuxedo Application at Run Time

How to Broadcas t an Unso l ic i ted Message
appropriate client and server definitions in your configuration file. For details, see
servopts(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference.)

5. Look for any core dumps in the directory defined by the APPDIR.variable. Use a debugger
such as dbx to get a stack trace. If you find core dumps, notify your application developer.

6. Check your system activity reports (for example, by running the sar(1) command) to
determine why your system is not functioning properly. Consider the following reasons:

– The system may be running out of memory.

– The kernel might not be tuned correctly.

How to Determine the Cause of an Oracle Tuxedo System
Failure
The following steps will help you detect the source of a system failure.

1. Check any Oracle Tuxedo system warnings and error messages in the user log (ULOG):

– TPEOS messages indicate errors in the operating system.

– TPESYSTEM messages indicate errors in the Oracle Tuxedo system.

2. Select the messages you think most likely reflect the current problem. Note the catalog name
and number of each of message, so you can look up the message in System Messages. The
manual entry provides:

– Details about the error condition flagged by the message.

– Recommendations for recovery actions.

3. Prepare for debugging in the following ways:

– Shut down the suspend service.

– Use tmboot -n -s(server) -d1. (This will not boot the server, but prints the
command line used to boot the server by the Oracle Tuxedo system.) Use that
command line with a debugger such as dbx.

How to Broadcast an Unsolicited Message
The EventBroker enhances troubleshooting by providing a system-wide summary of events and
a mechanism whereby an event triggers notification. The EventBroker provides details about
Oracle Tuxedo system events, such as servers dying and networks failing, or application events,
Administering an Oracle Tuxedo Application at Run Time 9-3

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

such as an ATM machine running out of money. An Oracle Tuxedo client that receives
unsolicited notification of an event, can name a service routine to be invoked, or name an
application queue in which data should be stored for later processing. An Oracle Tuxedo server
that receives unsolicited notification can specify a service request or name an application queue
to store data.

1. To send an unsolicited message, enter the following command:

broadcast (bcst) [-m machine] [-u usrname] [-c cltname] [text]

Note: By default, the message is sent to all clients.

2. You can limit distribution to one of the following recipients:

– One machine (-m machine)

– One client group (-c client_group)

– One user (-u user)

The text may not include more than 80 characters. The system sends the message in a STRING
type buffer, which means the client’s unsolicited message handling function (specified by
tpsetunsol(0)) must be able to handle this type of message. The tptypes() function may be
useful in this case.

See Also
“Unsolicited Communication” in Introducing Oracle Tuxedo ATMI

“Managing Events Using EventBroker” in Introducing Oracle Tuxedo ATMI

Maintaining Your System Files
Periodically, you may need to perform the following tasks to maintain your file system:

Print the Universal Device List

Print VTOC information

Reinitialize a device

Create a device list

Destroy a device list

Note: This file format is used for TUXCONFIG, TLOG, and /Q.
9-4 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intatm.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/int/intman.html

Mainta in ing Your Sys tem F i l es
How to Print the Universal Device List (UDL)
To print a UDL, complete the following procedure:

1. Run tmadmin -c.

2. Enter the following command:

lidl

3. To specify the device from which you want to obtain the UDL, you have a choice of two
methods:

– Specify the device on the lidl command line:

-z device_name [devindx]

– Set the environment variable FSCONFIG to the name of the desired device.

How to Print VTOC Information
To print VTOC information, complete the following procedure.

1. Run tmadmin -c.

2. To get information about all VTOC table entries, enter the following command:

livtoc

3. To specify the device from which you want to obtain the VTOC, you have a choice of two
methods:

– Specify the following on the lidl command line:

-z device name [devindx]

– Set the environment variable FSCONFIG to the name of the desired device.

How to Reinitialize a Device
To reinitialize a device that is included on a device list, complete the following procedure.

1. Run tmadmin -c.

2. Enter the following command:

initdl [-z devicename] [-yes] devindx

Note: The value of devindx is the index to the file to be destroyed.
Administering an Oracle Tuxedo Application at Run Time 9-5

3. You can specify the device by:

– Entering its name after the -z option (as shown here), or

– Setting the environment variable FSCONFIG to the device name

4. If you include the -yes option on the command line, you are not prompted to confirm your
intention to destroy the file before the file is actually destroyed.

How to Create a Device List
To create a device list, complete the following procedure.

1. Run tmadmin -c.

2. Enter the following command:

crdl [-z devicename] [-b blocks]

– The value of devicename [devindx] is the desired device name. (Another way to
assign a name to a new device is by setting the FSCONFIG environment variable to the
desired device name.)

– The value of blocks is the number of blocks needed. The default is 1000 blocks.

Note: Because 35 blocks are needed for the administrative overhead associated with a
TLOG, be sure to assign a value higher than 35 when you create a TLOG.

How to Destroy a Device List
To destroy a device list with index devindx, complete the following procedure.

1. Run tmadmin -c.

2. Enter the following command:

dsdl [-z devicename] [yes] [devindx]

Note: The value of devindx is the index to the file to be destroyed.

3. You can specify the device by:

– Entering its name after the -z option (as shown here), or

– Setting the environment variable FSCONFIG to the device name

4. If you include the yes option on the command line, you are not prompted to confirm your
intention to destroy the file before the file is actually destroyed.
9-6 Administering an Oracle Tuxedo Application at Run Time

Recovery Cons ide rat ions
Recovery Considerations
The Oracle Tuxedo system requires a certain level of environmental stability to provide optimum
functionality. Although the Oracle Tuxedo administrative subsystem offers unparalleled
capabilities of recovering from network, machine, and application process failures, it is not
invulnerable. You should be aware of the following ways in which an Oracle Tuxedo system
works.

Application clients and servers that use the FASTPATH model of SYSTEM_ACCESS (the default)
have direct memory access to the Oracle Tuxedo shared data structures. Using the FASTPATH
model helps ensure that the Oracle Tuxedo system achieves its outstanding performance. The
Oracle Tuxedo system uses the IPC (InterProcess Communication and File System) facilities
provided by the operating system.

If an application accidentally uses these facilities to write into the Oracle Tuxedo shared memory
or to an Oracle Tuxedo file descriptor, or if it mistakenly uses any other Oracle Tuxedo system
resource, data may become corrupted, Oracle Tuxedo functionality may be compromised, or an
application may be brought down.

It is inappropriate for a user or administrator to directly terminate application clients, application
servers, or Oracle Tuxedo administrative processes because these processes may be executing
within a critical section (that is, updating shared information in shared memory). Interrupting a
critical section during a memory update could potentially cause inconsistent internal data
structures. (This is characteristic not only of the Oracle Tuxedo system, but of any system in
which shared data is used.) Error messages in the Oracle Tuxedo userlog that refer to locks or
semaphores may indicate that such corruption has occurred.

For maximum application availability, you can take advantage of the Oracle Tuxedo system’s
facilities for managing redundancy, such as its multiple server, machine, and domain facilities.
Distributing an application’s functionality allows continued operation if a failure occurs in one
area.

Repairing Partitioned Networks
This topic provides instructions for troubleshooting a partition, identifying its cause, and taking
action to recover from it. A network partition exists if one or more machines cannot access the
MASTER machine. As the application administrator, you are responsible for detecting partitions
and recovering from them.

A network partition may be caused by any the following failures:
Administering an Oracle Tuxedo Application at Run Time 9-7

A network failure—either a transient failure, which corrects itself in minutes, or a severe
failure, which requires you to take the partitioned machine out of the network

A machine failure on either the MASTER machine or the nonmaster machine

A BRIDGE failure

The procedure you follow to recover from a partitioned network depends on the cause of the
partition.

Detecting a Partitioned Network
You can detect a network partition in one of the following ways:

Check the user log (ULOG) for messages that may shed light on the origin of the problem.

Gather information about the network, server, and service, by running the tmadmin
commands provided for this purpose.

How to Check the ULOG
When problems occur with the network, Oracle Tuxedo system administrative servers start
sending messages to the ULOG. If the ULOG is set up over a remote file system, all messages are
written to the same log. In this scenario, you can run the tail(1) command on one file and check
the failure messages displayed on the screen.

If, however, the remote file system is using the network in which the problem has occurred, the
remote file system may no longer be available.

Listing 9-1 Example of a ULOG Error Message

151804.gumby!DBBL.28446: ... : ERROR: BBL partitioned, machine=SITE2

How to Gather Information About the Network, Server, and Service
The following is an example of a tmadmin session in which information is being collected about
a partitioned network, a server, and a service on that network. Three tmadmin commands are run:

pnw (the printnetwork command)
9-8 Administering an Oracle Tuxedo Application at Run Time

Repai r ing Par t i t i oned Ne tworks
psr (the printserver command)

psc (the printservice command)

Listing 9-2 Example tmadmin Session

$ tmadmin
> pnw SITE2
Could not retrieve status from SITE2

> psr -m SITE1
a.out Name Queue Name Grp Name ID Rq Done Load Done Current Service
BBL 30002.00000 SITE1 0 - - (-)
DBBL 123456 SITE1 0 121 6050 MASTERBB
simpserv 00001.00001 GROUP1 1 - - (-)
BRIDGE 16900672 SITE1 0 - - (DEAD)
>psc -m SITE1
Service Name Routine Name a.out Grp Name ID Machine # Done Status
------------ ------------ -------- -------- -- ------- ------------
ADJUNCTADMIN ADJUNCTADMIN BBL SITE1 0 SITE1 - PART
ADJUNCTBB ADJUNCTBB BBL SITE1 0 SITE1 - PART
TOUPPER TOUPPER simpserv GROUP1 1 SITE1 - PART
BRIDGESVCNM BRIDGESVCNM BRIDGE SITE1 1 SITE1 - PART

Restoring a Network Connection
This topic provides instructions for recovering from transient and severe network failures.

How to Recover from Transient Network Failures
Because the BRIDGE tries, automatically, to recover from any transient network failures and
reconnect, transient network failures are usually not noticed. If, however, you need to perform a
manual recovery from a transient network failure, complete the following procedure.

1. On the MASTER machine, start a tmadmin(1) session.

2. Run the reconnect command (rco), specifying the names of nonpartitioned and partitioned
machines:

rco non-partioned_node1 partioned_node2
Administering an Oracle Tuxedo Application at Run Time 9-9

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

How to Recover from Severe Network Failures
To recover from severe network failure, complete the following procedure.

1. On the MASTER machine, start a tmadmin session.

2. Run the pclean command, specifying the name of the partitioned machine:

pcl partioned_machine

3. Migrate the application servers or, once the problem has been corrected, reboot the machine.

Restoring Failed Machines
The procedure you follow to restore a failed machine depends on whether that machine was the
MASTER machine.

How to Restore a Failed MASTER Machine
To restore a failed MASTER machine, complete the following procedure.

1. Make sure that all IPC resources for the Oracle Tuxedo processes that are removed.

2. Start a tmadmin session on the ACTING MASTER (SITE2):

tmadmin

3. Boot the BBL on the MASTER (SITE1) by entering the following command:

boot -B SITE1

(The BBL does not boot if you have not executed pclean on SITE1.)

4. Still in tmadmin, start a DBBL running again on the MASTER site (SITE1) by entering the
following:

MASTER

5. If you have migrated application servers and data off the failed machine, boot them or migrate
them back.

How to Restore a Failed Nonmaster Machine
To restore a failed nonmaster machine, complete the following procedure.

1. On the MASTER machine, start a tmadmin session.
9-10 Administering an Oracle Tuxedo Application at Run Time

How to Rep lace Sys tem Components
2. Run pclean, specifying the partitioned machine on the command line.

3. Fix the machine problem.

4. Restore the failed machine by booting the Bulletin Board Liaison (BBL) for the machine from
the MASTER machine.

5. If you have migrated application servers and data from the failed machine, boot them or
migrate them back.

In the following list, SITE2, a nonmaster machine, is restored.

Listing 9-3 Example of Restoring a Failed Nonmaster Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved

> pclean SITE2
Cleaning the DBBL.

Pausing 10 seconds waiting for system to stabilize.
3 SITE2 servers removed from bulletin board

> boot -B SITE2
Booting admin processes ...

Exec BBL -A :

on SITE2 -> process id=22923 ... Started.
1 process started.
> q

How to Replace System Components
To replace Oracle Tuxedo system components, complete the following procedure.

1. Install the Oracle Tuxedo system software that is being replaced.

2. Shut down those parts of the application that will be affected by the changes:

– The Oracle Tuxedo system servers may need to be shut down if libraries are being
updated.
Administering an Oracle Tuxedo Application at Run Time 9-11

– Application clients and servers must be shut down and rebuilt if relevant Oracle
Tuxedo system header files or static libraries are being replaced. (Application clients
and servers do not need to be rebuilt if the Oracle Tuxedo system message catalogs,
system commands, administrative servers, or shared objects are being replaced.)

3. If relevant Oracle Tuxedo system header files and static libraries have been replaced, rebuild
your application clients and servers.

4. Reboot the parts of the application that you shut down.

How to Replace Application Components
To replace components of your application, complete the following procedure.

1. Install the application software. This software may consist of application clients, application
servers, and various administrative files, such as the FML field tables.

2. Shut down the application servers being replaced.

3. If necessary, build the new application servers.

4. Boot the new application servers.

Cleaning Up and Restarting Servers Manually
By default, the Oracle Tuxedo system cleans up resources associated with dead processes (such
as queues) and restarts restartable dead servers from the Bulletin Board (BB) at regular intervals
during BBL scans. You may, however, request cleaning at other times.

How to Clean Up Resources Associated with Dead
Processes
To request an immediate cleanup of resources associated with dead processes, complete the
following procedure.

1. Start a tmadmin session.

2. Enter bbclean machine.

The bbclean command takes one optional argument: the name of the machine to be cleaned.
9-12 Administering an Oracle Tuxedo Application at Run Time

How to Check the Order in Which Orac le Tuxedo CORBA Serve rs A re Booted
How to Clean Up Other Resources
To clean up other resources, complete the following procedure.

1. Start a tmadmin session.

2. Enter pclean machine.

Note: You must specify a value for machine; it is a required argument.

This command is useful for restoring order to a system after partitioning has occurred
unexpectedly.

How to Check the Order in Which Oracle Tuxedo CORBA
Servers Are Booted

If a Oracle Tuxedo CORBA application fails to boot, open the application’s UBBCONFIG file with
a text editor and check whether the servers are booted in the correct order in the SERVERS section.
The following is the correct order in which to boot the servers in a Oracle Tuxedo CORBA
environment. A Oracle Tuxedo CORBA application will not boot if this order is not adhered to.

Boot the servers in the following order:

If You Specify... Then...

No machine The resources on the default machine are cleaned.

A machine The resources on the specified machine are cleaned.

DBBL The resources on the Distinguished Bulletin Board Liaison
(DBBL) and the bulletin boards at all sites are cleaned.

If the Specified Machine Is Then

Not partitioned pclean will invoke bbclean.

Partitioned pclean will remove all entries for servers and
services from all nonpartitioned bulletin boards.
Administering an Oracle Tuxedo Application at Run Time 9-13

1. The system EventBroker, TMSYSEVT.

2. The TMFFNAME server with the -N option and the -M option, which starts the NameManager
service (as a MASTER). This service maintains a mapping of application-supplied names to
object references.

3. The TMFFNAME server with the -N option only, to start a slave NameManager service.

4. The TMFFNAME server with the -F option, to start the FactoryFinder.

5. The application servers that are advertising factories.

For a detailed example, see the section “Required Order in Which to Boot CORBA C++ Servers”
in Setting Up an Oracle Tuxedo Application.

How to Check the Hostname Format and Capitalization of
Oracle Tuxedo CORBA Servers

The network address that is specified by programmers in the Bootstrap object constructor or in
TOBJADDR must exactly match the network address in the server application’s UBBCONFIG file.
The format of the address as well as the capitalization must match. If the addresses do not match,
the call to the Bootstrap object constructor will fail with a seemingly unrelated error message:

ERROR: Unofficial connection from client at
<tcp/ip address>/<port-number>:

For example, if the network address is specified as //TRIXIE:3500 in the ISL command-line
option string (in the server application’s UBBCONFIG file), specifying either
//192.12.4.6:3500 or //trixie:3500 in the Bootstrap object constructor or in TOBJADDR
will cause the connection attempt to fail.

On UNIX systems, use the uname -n command on the host system to determine the capitalization
used. On Windows systems, see the host system’s Network control panel to determine the
capitalization used.

Why Some Oracle Tuxedo CORBA Clients Fail to Boot
You may want to perform the following steps on a Windows server that is running a Oracle
Tuxedo CORBA application, if the following problem occurs: some Internet Inter-ORB Protocol
(IIOP) clients boot, but some clients fail to create a Bootstrap object and return an
InvalidDomain message, even though the //host:port address is correctly specified. (For
9-14 Administering an Oracle Tuxedo Application at Run Time

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/ads/adfig.html

Abor t ing o r Commit t ing T ransact ions
related information, see the section “How to Check the Hostname Format and Capitalization of
Oracle Tuxedo CORBA Servers” on page 9-14.)

1. Start regedt32, the Registry Editor.

2. Go to the HKEY_LOCAL_MACHINE on Local Machine window.

3. Select:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Afd\Parameters

4. Add the following values by using the Edit —> Add Value menu option:
DynamicBacklogGrowthDelta: REG_DWORD : 0xa

EnableDynamicBacklog: REG_DWORD: 0x1

MaximumDynamicBacklog: REG_DWORD: 0x3e8

MinimumDynamicBacklog: REG_DWORD: 0x14

5. Restart the Windows system for the changes to take effect.

These values replace the static connection queue (that is, the backlog) of five pending
connections with a dynamic connection backlog, that will have at least 20 entries (minimum
0x14), at most 1000 entries (maximum 0x3e8), and will increase from the minimum to the
maximum by steps of 10 (growth delta 0xa).

These settings only apply to connections that have been received by the system, but are not
accepted by an IIOP Listener. The minimum value of 20 and the delta of 10 are recommended by
Microsoft. The maximum value depends on the machine. However, Microsoft recommends that
the maximum value not exceed 5000 on a Windows server.

Aborting or Committing Transactions
This topic provides instructions for aborting and committing transactions.

How to Abort a Transaction
To abort a transaction, complete the following procedure.

1. Enter the following command:

aborttrans (abort) [-yes] [-g groupname] tranindex

2. To determine the value of tranindex, run the printtrans command (a tmadmin
command).
Administering an Oracle Tuxedo Application at Run Time 9-15

3. If groupname is specified, a message is sent to the TMS of that group to mark as “aborted”
the transaction for that group. If a group is not specified, a message is sent, instead, to the
coordinating TMS, requesting an abort of the transaction. You must send abort messages to
all groups in the transaction to control the abort.

This command is useful when the coordinating site is partitioned or when the client terminates
before calling a commit or an abort. If the timeout is large, the transaction remains in the
transaction table unless it is aborted.

How to Commit a Transaction
To commit a transaction, enter the following command:

committrans (commit) [-yes] [-g groupname] tranindex

Note: Both groupname and tranindex are required arguments.

The operation fails if the transaction is not precommitted or has been marked aborted. This
message should be sent to all groups to fully commit the transaction.

Cautions About Using the committrans Command
Be careful about using the committrans command. The only time you need to run it is when both
of the following conditions apply:

The coordinating TMS has gone down before all groups got the commit message.

The coordinating TMS will not be able to recover the transaction for some time.

Also, a client may be blocked on tpcommit(), which will be timed out. If you are going to
perform an administrative commit, be sure to inform this client.

How to Recover from Failures When Transactions Are
Used

When the application you are administering includes database transactions, you may need to
apply an after-image journal (AIJ) to a restored database following a disk corruption failure. Or
you may need to coordinate the timing of this recovery activity with your site’s database
administrator (DBA). Typically, the database management software automatically performs
transaction rollback when an error occurs. When the disk containing database files has become
corrupted permanently, however, you or the DBA may need to step in and perform the
rollforward operation.
9-16 Administering an Oracle Tuxedo Application at Run Time

How to Use the IPC Too l When an App l icat ion Fa i l s to Shut Down Proper l y
Assume that a disk containing portions of a database is corrupted at 3:00 P.M. on a Wednesday.
For this example, assume that a shadow volume (that is, you have disk mirroring) does not exist.

1. Shut down the Oracle Tuxedo application. (For instructions, see “Starting Up and Shutting
Down an Application” on page 1-1 in Setting Up an Oracle Tuxedo Application.)

2. Obtain the last full backup of the database and restore the file. For example, restore the full
backup version of the database from last Sunday at 12:01 A.M.

3. Apply the incremental backup files, such as the incrementals from Monday and Tuesday. For
example, assume that this step restores the database up until 11:00 P.M. on Tuesday.

4. Apply the AIJ, or transaction journal file, that contains the transactions from 11:15 P.M. on
Tuesday up to 2:50 P.M. on Wednesday.

5. Open the database again.

6. Restart the Oracle Tuxedo application.

Refer to the documentation for the resource manager (database product) for specific instructions
on the database rollforward process.

How to Use the IPC Tool When an Application Fails to Shut
Down Properly

Inter-process communication (IPC) resources are operating system resources, such as message
queues, shared memory, and semaphores. When a Oracle Tuxedo application shuts down
properly with the tmshutdown command, all IPC resources are removed from the system. In
some cases, however, an application may fail to shut down properly and stray IPC resources may
remain on the system. When this happens, it may not be possible to reboot the application.

One way to address this problem is to remove IPC resources with a script that invokes the system
IPCS command and scan for all IPC resources owned by a particular user account. However, with
this method, it is difficult to distinguish among different sets of IPC resources; some may belong
to the Oracle Tuxedo system; some to a particular Oracle Tuxedo application; and others to
applications unrelated to the Oracle Tuxedo system. It is important to be able to distinguish
among these sets of resources; unintentional removal of IPC resources can severely damage an
application.

The Oracle Tuxedo IPC tool (that is, the tmipcrm command) enables you to remove IPC
resources allocated by the Oracle Tuxedo system (that is, for core Oracle Tuxedo and
Workstation components only) in an active application.
Administering an Oracle Tuxedo Application at Run Time 9-17

The command to remove IPC resources, tmipcrm, resides in TUXDIR/bin. This command reads
the binary configuration file (TUXCONFIG), and attaches to the bulletin board using the
information in this file. tmipcrm works only on the local server machine; it does not clean up IPC
resources on remote machines in a Oracle Tuxedo configuration.

To run this command, enter it as follows on the command line:

tmipcrm [-y] [-n] [TUXCONFIG_file]

The IPC tool lists all IPC resources used by the Oracle Tuxedo system and gives you the option
of removing them.

Note: This command will not work unless you have set the TUXCONFIG environment variable
correctly or specified the appropriate TUXCONFIG file on the command line.

Troubleshooting Multithreaded/
Multicontexted Applications

Debugging Multithreaded/Multicontexted Applications
Multithreaded applications can be much more difficult to debug than single-threaded
applications. As the administrator, you may want to establish a policy governing whether such
multithreaded applications should be created.

Limitations of Protected Mode in a Multithreaded
Application
When running in protected mode, an application attaches to shared memory only when an ATMI
call is being executed. Protected mode is used to guard against problems that arise when Oracle
Tuxedo shared memory is accidentally overwritten by stray application pointers.

If your multithreaded application is running in protected mode, some threads may be executing
application code while others are attached to the Oracle Tuxedo Bulletin Board’s shared memory
within an Oracle Tuxedo function call. Therefore, as long as at least one thread is attached to the
bulletin board in an ATMI call, the use of protected mode cannot guard against stray application
pointers in threads executing application code, which may overwrite the Oracle Tuxedo shared
memory. As a result, the usefulness of protected mode is relatively limited in multithreaded
applications.
9-18 Administering an Oracle Tuxedo Application at Run Time

T roub leshoot ing Mul t i th readed/ Mul t i contex ted App l icat ions
There is no solution to this limitation. We simply want to warn you that when running a
multithreaded application you cannot rely on protected mode as much as you do when running a
single-threaded application.
Administering an Oracle Tuxedo Application at Run Time 9-19

9-20 Administering an Oracle Tuxedo Application at Run Time

	Oracle® Tuxedo
	12c Release 1 (12.1.1)

	Administering an Oracle Tuxedo Application at Run Time, 12c Release 1 (12.1.1)
	Contents
	Starting Up and Shutting Down an Application
	The Tasks Involved in Starting Up and Shutting Down an Application
	How to Set Your Environment
	On Windows
	On UNIX

	How to Create the TUXCONFIG File
	How to Start tlisten at All Sites
	tlisten Command Options

	How to Manually Propagate the Application-Specific Directories and Files
	How to Create a TLOG Device
	How to Boot the Application
	Sequence of tmboot Tasks for a 2-Machine Configuration
	Sequence of tmboot Tasks for Large Applications (Over 50 Machines)

	How to Shut Down Your Application
	Running tmshutdown
	Using the IPC Tool When an Application Fails to Shut Down Properly

	Monitoring Your Oracle Tuxedo Application
	Ways to Monitor Your Application
	System and Application Data That You Can Monitor
	Monitoring System Data
	Monitoring Dynamic and Static Administrative Data

	Common Startup and Shutdown Problems
	Common Startup Problems
	Common Shutdown Problems

	Selecting Appropriate Monitoring Tools
	Using the Oracle Administration Console to Monitor Your Application
	Using the Toolbar to Monitor Activities

	Using Command-line Utilities to Monitor Your Application
	Inspecting Your Configuration Using tmadmin
	Generating Reports on Servers and Services Using txrpt

	How a tmadmin Session Works
	Monitoring Your System Using tmadmin Commands

	Using EventBroker to Monitor Your Application
	Using Log Files to Monitor Activity
	What Is the Transaction Log (TLOG)?
	What Is the User Log (ULOG)?
	Detecting Errors Using Logs
	Analyzing the Transaction Log (TLOG)
	Analyzing the User Log (ULOG)
	Analyzing tlisten Messages in the ULOG

	Estimating Service Workload Using the Application Service Log
	Using the MIB to Monitor Your Application
	Limiting Your MIB Queries
	Querying Global and Local Data
	Using tmadmcall to Access Information

	Querying and Updating the MIB with ud32
	Using the Run-time and User-level Tracing Utility
	Managing Errors Using the DBBL and BBLs
	Using ATMI to Handle System and Application Errors
	Using Configurable Timeout Mechanisms
	Configuring Redundant Servers to Handle Failures

	Monitoring Multithreaded and Multicontexted Applications
	How to Retrieve Data About a Multithreaded/Multicontexted Application Using the MIB

	Dynamically Modifying an Application
	Dynamic Modification Methods
	Tools for Modifying Your Application

	Using tmconfig to Make Permanent Changes to Your Configuration
	How tmconfig Works
	How Results of a tmconfig Task Are Displayed

	How to Run tmconfig
	How to Set Environment Variables for tmconfig
	How to Conduct a tmconfig Walkthrough Session
	tmconfig Input Buffer Considerations

	Making Temporary Modifications to Your Configuration with tmconfig
	How to Add a New Machine
	How to Add a Server
	How to Activate a Newly Configured Machine
	How to Add a New Group
	How to Change Data-dependent Routing (DDR) for an Application
	How to Change Factory-based Routing (FBR) for an Interface
	How to Change Application-wide Parameters
	How to Change an Application Password
	Limitations on Dynamic Modification Using tmconfig
	Tasks That Cannot Be Performed on a Running System

	Making Temporary Modifications to Your Configuration with tmadmin
	How to Set Environment Variables for tmadmin

	How to Suspend Tuxedo ATMI Services or Servers
	How to Resume Tuxedo ATMI Services or Servers
	How to Advertise Services or Servers
	How to Unadvertise Services or Servers
	How to Change Service Parameters for Tuxedo ATMI Servers
	How to Change Interface Parameters for Tuxedo CORBA Servers
	How to Change the AUTOTRAN Timeout Value
	How to Suspend Tuxedo CORBA Interfaces
	How to Resume Tuxedo CORBA Interfaces

	Managing the Network in a Distributed Application
	Running a Network for a Distributed Application
	Compressing Data Over a Network
	How to Set the Compression Level
	Selecting Data Compression Thresholds

	Balancing Network Request Loads
	How to Use Data-Dependent Routing
	Example of Data-dependent Routing with a Horizontally-partitioned Database
	Example of Data-dependent Routing with Rule-based Servers

	How to Change Your Network Configuration

	About the EventBroker
	What Is an Event?
	Differences Between Application-defined and System-defined Events
	What Is the EventBroker?
	How the EventBroker Works
	Event Notification Methods
	Severity Levels of System Events

	What Are the Benefits of Brokered Events?

	Subscribing to Events
	Process of Using the EventBroker
	How to Configure EventBroker Servers
	How to Set the Polling Interval
	Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB
	Identifying Event Categories Using eventexpr and filter
	Accessing the EventBroker

	Subscribing, Posting, and Unsubscribing to Events Across Domains
	Overview
	Configurations in DMCONFIG
	Dynamically Modifying the Event Configurations
	Interoperability

	How to Select a Notification Method
	How to Cancel a Subscription to an Event
	How to Use the EventBroker with Transactions
	How Transactions Work with the EventBroker

	Migrating Your Application
	What Is Migration?
	Performing a Master Migration
	Migrating a Server Group
	Migrating Machines
	Performing a Scheduled Migration

	Migration Options
	How to Switch the Master and Backup Machines
	Examples of Switching MASTER and BACKUP Machines

	How to Migrate Server Groups
	How to Migrate a Server Group When the Alternate Machine Is Accessible from the Primary Machine
	How to Migrate a Server Group When the Alternate Machine Is Not Accessible from the Primary Machine
	Examples of Migrating a Server Group

	How to Migrate Server Groups from One Machine to Another
	How to Migrate Machines When the Alternate Machine Is Accessible from the Primary Machine
	How to Migrate Machines When the Alternate Machine Is Not Accessible from the Primary Machine
	Examples of Migrating a Machine

	Automatic Migration
	How to Cancel a Migration
	Example of a Migration Cancellation

	How to Migrate Transaction Logs to a Backup Machine

	Tuning a Oracle Tuxedo ATMI Application
	When to Use MSSQ Sets
	How to Enable Load Balancing
	How to Measure Service Performance Time
	How to Assign Priorities to Interfaces or Services
	Example of Using Priorities
	Using the PRIO Parameter to Enhance Performance

	Bundling Services into Servers
	When to Bundle Services

	Enhancing Overall System Performance
	Service and Interface Caching
	Removing Authorization and Auditing Security
	Using the Multithreaded Bridge
	Turning Off Multithreaded Processing
	Turning Off XA Transactions

	Determining Your System IPC Requirements
	Tuning IPC Parameters
	Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES Parameters
	Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters
	Tuning with the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT Parameters
	Recommended Values for Tuning-related Parameters

	Measuring System Traffic
	Example of Detecting a System Bottleneck
	Detecting Bottlenecks on UNIX Platforms
	Detecting Bottlenecks on Windows Platforms

	Troubleshooting an Oracle Tuxedo Application
	Determining Types of Failures
	How to Determine the Cause of an Application Failure
	How to Determine the Cause of an Oracle Tuxedo System Failure

	How to Broadcast an Unsolicited Message
	Maintaining Your System Files
	How to Print the Universal Device List (UDL)
	How to Print VTOC Information
	How to Reinitialize a Device
	How to Create a Device List
	How to Destroy a Device List

	Recovery Considerations
	Repairing Partitioned Networks
	Detecting a Partitioned Network
	Restoring a Network Connection

	Restoring Failed Machines
	How to Restore a Failed MASTER Machine
	How to Restore a Failed Nonmaster Machine

	How to Replace System Components
	How to Replace Application Components
	Cleaning Up and Restarting Servers Manually
	How to Clean Up Resources Associated with Dead Processes
	How to Clean Up Other Resources

	How to Check the Order in Which Oracle Tuxedo CORBA Servers Are Booted
	How to Check the Hostname Format and Capitalization of Oracle Tuxedo CORBA Servers
	Why Some Oracle Tuxedo CORBA Clients Fail to Boot
	Aborting or Committing Transactions
	How to Abort a Transaction
	How to Commit a Transaction

	How to Recover from Failures When Transactions Are Used
	How to Use the IPC Tool When an Application Fails to Shut Down Properly
	Troubleshooting Multithreaded/ Multicontexted Applications
	Debugging Multithreaded/Multicontexted Applications
	Limitations of Protected Mode in a Multithreaded Application

