Oracle® Tuxedo
ATMI C Function Reference

12c Release 1 (12.1.1)

June 2012

ORACLE

Oracle Tuxedo ATMI C Function Reference, 12c Release 1 (12.1.1)
Copyright © 1996, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

Introduction to the C Language Application-to-Transaction Monitor Interface 8
AEMsetblockinghook(3c) 44
AEOaddtypesw(3c) 45
AEPisblocked(3c) 48
AEWSsetunsol(3c) 49
buffer(3c) 50
catgets(3c) 59
catopen, catclose(3c) 60
decimal(3c) 62
getURLENtityCacheDir(3c) 65
getURLEntityCaching(3c) 66
gp_mktime(3c) 66
nl_langinfo(3c) 69
rpc_sm_allocate, rpc_ss_allocate(3c) 70
rpc_sm_client_free, rpc_ss_client_free(3c) 72
rpc_sm_disable_allocate, rpc_ss_disable_allocate(3c) 73
rpc_sm_enable_allocate, rpc_ss_enable_allocate(3c) 74
rpc_sm_free, rpc_ss_free(3c) 75
rpc_sm_set_client_alloc_free, rpc_ss_set_client_alloc_free(3c) 76
rpc_sm_swap_client_alloc_free, rpc_ss_swap_client_alloc_free(3c) 78
setlocale(3c) 79
setURLEntityCacheDir(3c) 81

ATMI C Function Reference

setURLEntityCaching(3c) 81
strerror(3c) 82
strftime(3c) 82
tpabort(3c) 85
tpacall(3c) 87
tpadmcall(3c) 90
tpadvertise(3c) 93
tpalloc(3c) 95
tpappthrinit(3c) 96
tpappthrterm(3c) 98
tpbegin(3c) 100
tpbroadcast(3c) 101
tpcall(3c) 104
tpcancel(3c) 109
tpchkauth(3c) 110
tpchkunsol(3c) 111
tpclose(3c) 113
tpcommit(3c) 114
tpconnect(3c) 116
tpconvert(3c) 119
tpconvmb(3c) 121
tpcryptpw(3c) 122
tpdequeue(3c) 124
tpdiscon(3c) 133
tpenqueue(3c) 135
tpenvelope(3c) 145
tperrordetail(3c) 149

ATMI C Function Reference

tpexport(3c) 153
tpfmlI32toxml(3c) 154
tpfmltoxml(3c) 156
tpforward(3c) 157
tpfree(3c) 160
tpgblktime(3c) 161
tpgetadmkey(3c) 163
tpgetctxt(3c) 164
tpgetlev(3c) 165
tpgetmbenc(3c) 167
tpgetrepos(3c) 168
tpgetrply(3c) 170
tpgprio(3c) 174
tpimport(3c) 175
tpinit(3c) 177
tpkey_close(3c) 186
tpkey_getinfo(3c) 187
tpkey_open(3c) 190
tpkey_setinfo(3c) 192
tpnotify(3c) 194
tpopen(3c) 196
tppost(3c) 197
tprealloc(3c) 201
tprecv(3c) 202
tpresume(3c) 207
tpreturn(3c) 209
tprmclose(3c) 213

ATMI C Function Reference

tprmend(3c) 214
tprmopen(3c) 215
tprmstart(3c) 216
tpsblktime(3c) 218
tpscmt(3c) 221
tpseal(3c) 223
tpsend(3c) 224
tpservice(3c) 227
tpsetctxt(3c) 230
tpsetmbenc(3c) 232
tpsetrepos(3c) 233
tpsetunsol(3c) 235
tpsign(3c) 237
tpsprio(3c) 238
tpstrerror(3c) 240
tpstrerrordetail(3c) 241
tpsubscribe(3c) 242
tpsuspend(3c) 250
tpsvrdone(3c) 252
tpsvrinit(3c) 253
tpsvrthrdone(3c) 255
tpsvrthrinit(3c) 256
tpterm(3c) 257
tptypes(3c) 259
tpunadvertise(3c) 260
tpunsubscribe(3c) 262
tputrace(3c) 264

ATMI C Function Reference

tpxmltofml32(3c) 268
tpxmltofml(3c) 272

TRY(3c) 275

tuxgetenv(3c) 283
tuxgetmbaconv(3c) 284
tuxgetmbenc(3c) 285
tuxputenv(3c) 285
tuxreadenv(3c) 286
tuxsetmbaconv(3c) 289
tuxsetmbenc(3c) 290
tuxthrputenv(3c) 290
tx_begin(3c) 291

tx_close(3c) 293
tx_commit(3c) 295
tx_info(3c) 297

tx_open(3c) 298
tx_rollback(3c) 300
tx_set_commit_return(3c) 302
tx_set_transaction_control(3c) 304
tx_set_transaction_timeout(3c) 305
userlog(3c) 307

Usignal(3c) 309
Uunix_err(3c) 312

ATMI C Function Reference

ATMI C Function Reference

Section 3c - C Functions

Table 1 Oracle Tuxedo ATMI C Functions

Name

Description

Introduction to the C Language
Application-to-Transaction Monitor Interface

Provides an introduction to the C language ATMI

AEMsetblockinghook(3c)

Establishes an application-specific blocking hook function

AEOaddtypesw(3c) Installs or replaces a user-defined buffer type at execution
time

AEPisblocked(3c) Determines if a blocking call is in progress

AEWsetunsol (3c) Posts Windows message for Oracle Tuxedo ATMI
unsolicited event

buffer(3c) Semantics of elements in tmtype_sw_t

catgets(3c) Reads a program message

catopen, catclose(3c)

Opens/closes a message catalogue

decimal (3c)

Decimal conversion and arithmetic routines

getURLEntityCacheDir(3c)

Gets the absolute path to the location where the DTD,
Schemas, and Entity files are cached. It specifies a particular
Xerces parser class method.

ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name

Description

getURLEntityCaching(3c)

Gets the caching mechanism for the DTD, schemas, and
Entity files. It specifies a particular Xerces parser class
method.

gp_mktime(3c)

Converts a tm structure to a calendar time

nl_langinfo(3c)

Language information

rpc_sm_allocate,
rpc_ss_allocate(3c)

Allocates memory within the RPC stub

rpc_sm_client_free,
rpc_ss_client_free(3c)

Frees memory returned from a client stub

rpc_sm_disable_allocate,
rpc_ss_disable_allocate(3c)

Releases resources and allocated memory within the stub
memory management scheme

rpc_sm_enable_allocate,
rpc_ss_enable_allocate(3c)

Enables the stub memory management environment

rpc_sm_free, rpc_ss_free(3c)

Frees memory allocated by the rpc_sm_allocate() routine

rpc_sm_set_client_alloc_free,
rpc_ss_set_client_alloc_free(3c)

Sets the memory allocation and freeing mechanisms used by
the client stubs

rpc_sm_swap_client_alloc_free,
rpc_ss_swap_client_alloc_free(3c)

Exchanges current memory allocation and freeing
mechanism used by client stubs with one supplied by client

setlocale(3c)

Modifies and queries a program’s locale

setURLEntityCacheDir(3c)

Sets the directory where the DTD, schemas, and Entity files
are to be cached. It specifies a particular Xerces parser class
method.

setURLEntityCaching(3c)

Turns caching on or off for DTD, schema, and Entity files by
default. It specifies a particular Xerces parser class method.

strerror(3c) Gets error message string
strftime(3c) Converts date and time to string
tpabort(3c) Routine for aborting current transaction

tpacall(3c)

Routine for sending a service request

2 ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name

Description

tpadmcal 1(3c)

Administers unbooted application

tpadvertise(3c)

Routine for advertising a service name

tpalloc(3c)

Routine for allocating typed buffers

tpappthrinit (3c)

Routine for creating and initializing a new Tuxedo context in
an application-created server thread

tpappthrterm(3c)

Routine for terminating Tuxedo application-created context
in a server process

tpbegin(3c) Routine for beginning a transaction

tpbroadcast(3c) Routine to broadcast notification by name

tpcal 1 (3c) Routine for sending service request and awaiting its reply

tpcancel (3c) Routine for canceling a call descriptor for outstanding reply

tpchkauth(3c) Routine for checking if authentication required to join an
application

tpchkunsol (3c) Routine for checking for unsolicited message

tpclose(3c) Routine for closing a resource manager

tpcommit(3c) Routine for committing current transaction

tpconnect(3c) Routine for establishing a conversational service connection

tpconvert(3c) Converts structures to/from string representations

tpconvmb(3c) Converts encoding of characters in an input buffer to a named
target encoding

tpcryptpw(3c) Encrypts application password in administrative request

tpdequeue(3c) Routine to dequeue a message from a queue

tpdiscon(3c) Routine for taking down a conversational service connection

tpenqueue(3c) Routine to enqueue a message

ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name

Description

tpenvelope(3c)

Accesses the digital signature and encryption information
associated with a typed message buffer

tperrordetail (3c)

Gets additional detail about an error generated from the last
Oracle Tuxedo ATMI system call

tpexport(3c)

Converts a typed message buffer into an exportable,
machine-independent string representation, that includes
digital signatures and encryption seals

tpfml32toxml (3¢c)

Converts FML32 buffer data to XML buffer data

tpfmltoxml (3¢c)

Converts FML buffer data to XML buffer data

tpforward(3c) Routine for forwarding a service request to another service
routine

tpfree(3c) Routine for freeing a typed buffer

tpgblktime(3c) Routine for returning a previously set, per second or
millisecond nontransactional blocktime value

tpgetadmkey(3c) Gets administrative authentication key

tpgetctxt(3c) Retrieves a context identifier for the current application
association

tpgetlev(3c) Routine for checking if a transaction is in progress

tpgetmbenc(3c) Gets the code-set encoding name from a typed buffer

tpgetrepos (3c)

Routine for retrieving service and parameter information
from a Tuxedo repository file.

tpgetrply(3c) Routine for getting a reply from a previous request

tpgprio(3c) Routine for getting a service request priority

tpimport(3c) Converts an exported representation back into a typed
message buffer

tpinit(3c) Joins an application

tpkey close(3c)

Closes a previously opened key handle

ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name

Description

tpkey_getinfo(3c)

Gets information associated with a key handle

tpkey_open(3c)

Opens a key handle for digital signature generation, message
encryption, or message decryption

tpkey_setinfo(3c)

Sets optional attribute parameters associated with a key
handle

tpnotify(3c) Routine for sending notification by client identifier
tpopen(3c) Routine for opening a resource manager
tppost(3c) Posts an event

tprealloc(3c)

Routine to change the size of a typed buffer

tprecv(3c) Routine for receiving a message in a conversational
connection

tpresume(3c) Resumes a global transaction

tpreturn(3c) Routine for returning from a service routine

tprmclose (3c)

Routines for close a specified RM configured in a multiple
RMs server group.

tprmend (3c)

Routines for end current work performed on behalf of a
transaction branch in a specified RM.

tprmopen (3c¢)

Routines for open a specified RM configured in a *RMS
section which is associated with a multiple RMs server

group.

tprmstart (3c)

Routines for start work on behalf of a transaction branch of
specified RM in a MRM server

tpsblktime(3c) Routine for setting nontransactional blocktime values, in
seconds or milliseconds, for the next service call or for all
service calls used per context

tpscmt(3c) Routine for setting when tpcommit() should return

tpseal (3c) Marks a typed message buffer for encryption

ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name Description

tpsend(3c) Routine for sending a message in a conversational connection

tpservice(3c) Template for service routines

tpsetctxt(3c) Sets a context identifier for the current application
association

tpsetmbenc(3c) Sets the code-set encoding name for a typed buffer

tpsetrepos (3c)

Adds, edits, or deletes service and parameter information
from a Tuxedo Service Metadata repository file

tpsetunsol (3c) Sets the method for handling unsolicited messages
tpsign(3c) Marks a typed message buffer for digital signature
tpsprio(3c) Routine for setting service request priority
tpstrerror(3c) Gets error message string for an Oracle Tuxedo ATMI

system error

tpstrerrordetail (3c)

Gets error detail message string for an Oracle Tuxedo ATMI
system

tpsubscribe(3c) Subscribes to an event

tpsuspend(3c) Suspends a global transaction

tpsvrdone(3c) Terminates an Oracle Tuxedo ATMI system server
tpsvrinit(3c) Initializes an Oracle Tuxedo ATMI system server
tpsvrthrdone(3c) Terminates an Oracle Tuxedo ATMI server thread
tpsvrthrinit(3c) Initializes an Oracle Tuxedo ATMI server thread
tpterm(3c) Leaves an application

tptypes(3c) Routine to determine information about a typed buffer
tpunadvertise(3c) Routine for unadvertising a service name
tpunsubscribe(3c) Unsubscribes to an event

6 ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name

Description

tputrace (3c)

User-defined routine to provide trace information

tpxmltofml32 (3¢c)

Converts XML buffer data to FML32 buffer data

tpxmltofml (3c)

Converts XML buffer data to FML buffer data

TRY(3c) Exception-returning interface

tuxgetenv(3c) Returns value for environment name

tuxgetmbaconv(3c) Gets the value for environment variable TPMBACONYV in the
process environment

tuxgetmbenc(3c) Gets the code-set encoding name for environment variable
TPMBENC in the process environment

tuxputenv(3c) Changes or adds value to environment

tuxreadenv(3c) Adds variables to the environment from a file

tuxsetmbaconv(3c) Sets the value for environment variable TPMBACONYV in the
process environment

tuxsetmbenc(3c) Sets the code-set encoding name for environment variable

TPMBENC in the process environment

tuxthrputenv (3c))

Changes or adds an environment variable for the current

thread

tx_begin(3c)

Begins a global transaction

tx_close(3c)

Closes a set of resource managers

tx_commit(3c)

Commits a global transaction

tx_info(3c)

Returns global transaction information

tx_open(3c)

Opens a set of resource managers

tx_rollback(3c)

Rolls back a global transaction

tx_set_commit_return(3c)

Sets commit_return characteristic

tx_set_transaction_control (3c)

Sets transaction_control characteristic

ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name Description

tx_set_transaction_timeout(3c) Sets transaction_timeout characteristic

userlog(3c) Writes a message to the Oracle Tuxedo ATMI system central
event log

Usignal (3c) Signal handling in an Oracle Tuxedo ATMI system

environment

Uunix_err(3c) Prints UNIX system call error

Introduction to the C Language
Application-to-Transaction Monitor Interface

Description

The Application-to-Transaction Monitor Interface (ATMI) provides the interface between the
application and the transaction processing system. This interface is known as the ATMI interface.
It provides function calls to open and close resources, manage transactions, manage typed
buffers, and invoke request/response and conversational service calls.

Communication Paradigms

The function calls described in the ATMI reference pages imply a particular model of
communication. This model is expressed in terms of how client and server processes can
communicate using request and reply messages.

There are two basic communication paradigms: request/response and conversational.
Request/response services are invoked by service requests along with their associated data.
Request/response services can receive exactly one request (upon entering the service routine) and
send at most one reply (upon returning from the service routine). Conversational services, on the
other hand, are invoked by connection requests along with a means of referring to the open
connection (that is, a descriptor used in calling subsequent connection routines). Once the
connection has been established and the service routine invoked, either the connecting program
or the conversational service can send and receive data as defined by the application until the
connection is torn down.

8 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Note that a process can initiate both request/response and conversational communication, but
cannot accept both request/response and conversational service requests. The following sections
describe the two communication paradigms in greater detail.

Note: Invarious parts of the Oracle Tuxedo documentation we refer to threads. When this term
is used in a discussion of multithreaded applications, it is self-explanatory. In some
instances, however, the term is used in a discussion of a topic that is relevant for both
single-threaded and multithreaded applications. In such cases, readers who are running
single-threaded applications may assume that the term thread refers to an entire process.

Oracle Tuxedo ATMI System Request/

Response Paradigm for Client/Server
With regard to request/response communication, a client is defined as a process that can send
requests and receive replies. By definition, clients cannot receive requests nor send replies. A
client can send any number of requests, and can wait for the replies synchronously or receive
(some limited number of) the replies at its convenience. In certain cases, a client can send a
request that has no reply. tpinit() and tpterm() allow a client to join and leave an Oracle
Tuxedo ATMI system application.

A request/response server is a process that can receive one (and only one) service request at a time
and send at most one reply to that request. (If the server is multithreaded, however, it can receive
multiple requests at one time and issue multiple replies at one time.) While a server is working
on a particular request, it can act like a client by initiating request/response or conversational
requests and receiving their replies. In such a capacity, a server is called a requester. Note that
both client and server processes can be requesters (in fact, a client can be nothing but a requester).

A request/response server can forward a request to another request/response server. Here, the
server passes along the request it received to another server and does not expect a reply. It is the
responsibility of the last server in the chain to send the reply to the original requester. Use of the
forwarding routine ensures that the original requester ultimately receives its reply.

Servers and service routines offer a structured approach to writing Oracle Tuxedo ATMI system
applications. In a server, the application writer can concentrate on the work performed by the
service rather than communications details such as receiving requests and sending replies.
Because many of the communication details are handled by Oracle Tuxedo ATMI system’s main,
the application must adhere to certain conventions when writing a service routine. At the time a
server finishes its service routine, it can send a reply using tpreturn() or forward the request
using tpforward(). A service is not allowed to perform any other work nor is it allowed to
communicate with any other process after this point. Thus, a service performed by a server is

ATMI C Function Reference 9

started when a request is received and ended when either a reply is sent or the request is
forwarded.

Concerning request and reply messages, there is an inherent difference between the two: a request
has no associated context before it is sent, but a reply does. For example, when sending a request,
the caller must supply addressing information, whereas a reply is always returned to the process
that originated the request, that is, addressing context is maintained for a reply and the sender of
the reply can exert no control over its destination. The differences between the two message types
manifest themselves in the parameters and descriptions of the routines described in tpcal1 ().

When a request message is sent, it is sent at a particular priority. The priority affects how a request
is dequeued: when a server dequeues requests, it dequeues the one with the highest priority. To
prevent starvation, the oldest request is dequeued every so often regardless of priority. By default,
arequest’s priority is associated with the service name to which the request is being sent. Service
names can be given priorities at configuration time (see UBBCONFI1G(5)). A default priority is
used if none is defined. In addition, the priority can be set at run time using a routine, tpsprio().
By doing so, the caller can override the configuration or default priority when the message is sent.

Oracle Tuxedo ATMI System Conversational Paradigm for Client/Server

10

With regard to conversational communication, a client is defined as a process that can initiate a
conversation but cannot accept a connection request.

A conversational server is a process that can receive connection requests. Once the connection
has been established and the service routine invoked, either the connecting program or the
conversational service can send and receive data as defined by the application until the
connection is torn down. The conversation is half-duplex in nature such that one side of the
connection has control and can send data until it gives up control to the other side. In a
single-threaded server, while the connection is established, the server is “reserved” such that no
other process can establish a connection with it. When a connection is established to a
multithreaded server, however, that server is not reserved for exclusive use by one process.
Instead, it can accept requests from multiple client threads.

As with a request/response server, the conversational server can act as a requester by initiating
other requests or connections with other servers. Unlike a request/response server, a
conversational server cannot forward a request to another server. Thus, a conversational service
performed by a server is started when a request is received and ended when the final reply is sent
via tpreturn().

Once the connection is established, the connection descriptor implies any context needed
regarding addressing information for the participants. Messages can be sent and received as

ATMI C Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

needed by the application. There is no inherent difference between the request and reply
messages and no notion of priority of messages.

Message Delivery

Sending and receiving messages, whether in conversation mode or request/response mode,
implies communication between two units of an application. The great majority of messages lead
to a reply or at least an acknowledgment, so that is an assurance that the message was received.
There are, however, certain messages (some originated by the system, others originated by an
application) where a reply or acknowledgment is not expected. For example, the system can send
an unsolicited message using tpnotify() without the TPACK() flag, or an application can send
a message using tpacal 1 () with the TPNOREPLY () flag. If the message queue of the receiving
program is full, the message is dropped.

If the sending and receiving side are on different machines, the communication takes place
between bridge processes that send and receive messages across a network. This raises the
additional possibility of non-delivery due to a circuit failure. Even when either of these conditions
leads to the positing of an event or to a ULOG message, it is not easy to associate the event or ULOG
message with the non-arrival of a particular message.

Because the Oracle Tuxedo ATMI system is designed to handle large volumes of messages across
broad networks, it is not programmed to detect and correct the small percentage of
failures-to-deliver described in the preceding paragraphs. For that reason, there can be no
guarantee that every message will be delivered.

Message Sequencing

In the conversational model, for messages being exchanged using tpsend() and tprecv(), a
sequence number is added to the message header and messages are received in the order in which
they are sent. If a server or client gets a message out of order, the conversation is stopped, any
transaction in progress is rolled back, and message 1572 in LIBTUX, “Bad Conversational
Sequence Number,” is logged.

In the Request/Response model, messages are not sequenced by the system. If the application
logic implies a sequence, it is the responsibility of the application to monitor and control it. The
parallel message transmission made possible by the support of multiple network addresses for
bridge processes increases the possibility that messages will not be received in the order sent. An
application that is concerned about this may choose to specify a single network address for each
bridge process, add sequence numbers to their messages or require periodic acknowledgments.

ATMI C Function Reference "

Queued Message Model

The Oracle Tuxedo ATMI system queued message model allows for enqueuing a request
message to stable storage for subsequent processing without waiting for its completion, and
optionally getting a reply via a queued response message. The ATMI functions that queue
messages and dequeue responses are tpenqueue () and tpdequeue(). They can be called from
any type of Oracle Tuxedo ATMI system application processes: client, server, or conversational.
The functions tpenqueue () and tpdequeue () can also be used for peer-to-peer communication
where neither the enqueuing application nor the dequeuing application are designated as server
or client.

The queued message facility is an XA-compliant resource manager. Persistent messages are
enqueued and dequeued within transactions to ensure one-time-only processing.

ATMI Transactions

12

The Oracle Tuxedo ATMI system supports two sets of mutually exclusive functions for defining
and managing transactions: the Oracle Tuxedo system’s ATMI transaction demarcation functions
(the names of which include the prefix tp) and X/Open’s TX Interface functions (the names of
which include the prefix tx_). Because X/Open used ATMI’s transaction demarcation functions
as the base for the TX Interface, the syntax and semantics of the TX Interface are quite similar to
those of the ATMI. This section is an overview of ATMI transaction concepts. The next section
introduces additional concepts about the TX Interface.

In the Oracle Tuxedo ATMI system, a transaction is used to define a single logical unit of work
that either wholly succeeds or has no effect whatsoever. A transaction allows work performed in
many processes, possibly at different sites, to be treated as an atomic unit of work. The initiator
of a transaction normally uses tpbegin() and either tpcommit () or tpabort() to delineate the
operations within a transaction.

The initiator may also suspend its work on the current transaction by issuing tpsuspend().
Another process may take over the role of the initiator of a suspended transaction by issuing
tpresume(). As a transaction initiator, a process must call one of the following: tpsuspend(),
tpcommit(), or tpabort(). Thus, one process can start a transaction that another may finish.

If a process calling a service is in transaction mode, then the called service routine is also placed
in transaction mode on behalf of the same transaction. Otherwise, whether the service is invoked
in transaction mode or not depends on options specified for the service in the configuration file.
A service that is not invoked in transaction mode can define multiple transactions between the
time it is invoked and the time it ends. On the other hand, a service routine invoked in transaction
mode can participate in only one transaction, and work on that transaction is completed upon
termination of the service routine. Note that a connection cannot be upgraded to transaction

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

mode: if tpbegin() is called while a conversation exists, the conversation remains outside of the
transaction (as if tpconnect() had been called with the TPNOTRANQ) flag).

A service routine joining a transaction that was started by another process is called a participant.
A transaction can have several participants. A service can be invoked to do work on the same
transaction more than once. Only the initiator of a transaction (that is, a process calling either
tpbegin() or tpresume()) can call tpcommit() or tpabort(). Participants influence the
outcome of a transaction by using tpreturn() or tpforward(). These two calls signify the end
of a service routine and indicate that the routine has finished its part of the transaction.

TX Transactions

Transactions defined by the TX Interface are practically identical with those defined by the ATMI
functions. An application developer may use either set of functions when writing clients and
service routines, but should not intermingle one set of functions with the other within a single
process (that is, a process cannot call tpbegin() and later call tx_commit()).

The TX Interface has two calls for opening and closing resource managers in a portable manner,
tx_open() and tx_close(), respectively. Transactions are started with tx_begin() and
completed with either tx_commit() or tx_rollback(). tx_info() is used to retrieve
transaction information, and there are three calls to set options for transactions:
tx_set_commit_return(), tx_set_transaction_control(), and
tx_set_transaction_timeout(). The TX Interface has no equivalents to ATMI’s
tpsuspend() and tpresume().

In addition to the semantics and rules defined for ATMI transactions, the TX Interface has some
additional semantics that are worth introducing here. First, service routine writers wanting to use
the TX Interface must supply their own tpsvrinit() routine that calls tx_open(). The default
Oracle Tuxedo ATMI system-supplied tpsvrinit() calls tpopen(). The same rule applies for
tpsvrdone(): if the TX Interface is being used, then service routine writers must supply their
own tpsvrdone() that calls tx_close().

Second, the TX Interface has two additional semantics not found in ATMI. These are chained and
unchained transactions, and transaction characteristics.

Chained and Unchained Transactions

The TX Interface supports chained and unchained modes of transaction execution. By default,
clients and service routines execute in the unchained mode; when an active transaction is
completed, a new transaction does not begin until tx_begin() is called.

In the chained mode, a new transaction starts implicitly when the current transaction completes.
That is, when tx_commit() or tx_rollback() is called, the Oracle Tuxedo ATMI system

ATMI C Function Reference 13

coordinates the completion of the current transaction and initiates a new transaction before
returning control to the caller. (Certain failure conditions may prevent a new transaction from
starting.)

Clients and service routines enable or disable the chained mode by calling
tx_set_transaction_control (). Transitions between the chained and unchained mode
affect the behavior of the next tx_commit() or tx_rollback() call. The call to
tx_set_transaction_control () does not put the caller into or take it out of transaction mode.

Since tx_close() cannot be called when the caller is in transaction mode, a caller executing in
chained mode must switch to unchained mode and complete the current transaction before calling
tx_close().

Transaction Characteristics

A client or a service routine may call tx_info() to obtain the current values of their transaction
characteristics and to determine whether they are executing in transaction mode.

The state of an application process includes several transaction characteristics. The caller
specifies these by calling tx_set_*() functions. When a client or a service routine sets the value
of a characteristic, it remains in effect until the caller specifies a different value. When the caller
obtains the value of a characteristic via tx_info(), it does not change the value.

Error Handling

14

Most of the ATMI functions have one or more error returns. An error condition is indicated by
an otherwise impossible returned value. This is usually -1 or error, or 0 for a bad field identifier
(BADFLDID) or address. The error type is also made available in the external integer tperrno.
tperrno is not cleared on successful calls, so it should be tested only after an error has been
indicated.

The tpstrerror() function is provided to produce a message on the standard error output. It
takes one argument, an integer (found in tperrno) and returns a pointer to the text of an error
message in LIBTUX_CAT. The pointer can be used as an argument to userlog().

tperrordetai I () can be used as the first step of a three step procedure to get additional detail
about an error in the most recent Oracle Tuxedo ATMI system call on the current thread.
tperrordetail () returns an integer which is then used as an argument to

tpstrerrordetail () to retrieve a pointer to a string that contains the error message. The
pointer can then be used as an argument to userlog or to fprintf().

The error codes that can be produced by an ATMI function are described on each ATMI reference
page. The F_error() and F_error32() functions are provided to produce a message on the

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

standard error output for FML errors. They take one parameter, a string; print the argument string
appended with a colon and a blank; and then print an error message followed by a newline
character. The error message displayed is the one defined for the error number currently in
Ferror() or Ferror32(), which is set when errors occur.

Fstrerror(), and its counterpart, Fstrerror32(), can be used to retrieve the text of an FML
error message from a message catalog; it returns a pointer that can be used as an argument to
userlog.

The error codes that can be produced by an FML function are described on each FML reference
page.

Timeouts

There are three types of timeouts in the Oracle Tuxedo ATMI system: one is associated with the
duration of a transaction from start to finish. A second is associated with the maximum length of
time a blocking call will remain blocked before the caller regains control. The third is a service
timeout and occurs when a call exceeds the number of seconds specified in the SVCTIMEOUT
parameter in the SERVICES section of the configuration file.

The first kind of timeout is specified when a transaction is started with tpbegin(). (See
tpbegin(3c) for details.) The second kind of timeout can occur when using the Oracle Tuxedo
ATMI system communication routines defined in tpcal 1 (3c). Callers of these routines
typically block when awaiting a reply that has yet to arrive, although they can also block trying
to send data (for example, if request queues are full). The maximum amount of time a caller
remains blocked is determined by an Oracle Tuxedo ATMI system configuration file parameter.
(See the BLOCKTIME parameter in UBBCONFIG(5) for details.)

Blocking timeouts are performed by default when the caller is not in transaction mode. When a
client or server is in transaction mode, it is subject to the timeout value with which the transaction
was started and is not subject to the blocking timeout value specified in the UBBCONFIG file.

When a transaction timeout occurs, replies to asynchronous requests made in transaction mode
become invalid. That is, if a process is waiting for a particular asynchronous reply for a request
sent in transaction mode and a transaction timeout occurs, the descriptor for that reply becomes
invalid. Similarly, if a transaction timeout occurs, an event is generated on the connection
descriptor associated with the transaction and that descriptor becomes invalid. On the other hand,
if a blocking timeout occurs, the descriptor is still valid and the waiting process can reissue the
call to await the reply.

The service timeout mechanism provides a way for the system to kill processes that may be frozen
by some unknown or unexpected system error. When a service timeout occurs in a

ATMI C Function Reference 15

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

request/response service, the Oracle Tuxedo ATMI system kills the server process that is
executing the frozen service and returns error code TPESVCERR. If a service timeout occurs in a
conversational service, the TP_EVSVCERR event is returned.

If a transaction has timed out, the only valid communications before the transaction is aborted are
calls to tpacal 1 () with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

Since release 6.4, some additional detail has been provided beyond the TPESVCERR error code. If
a service fails due to exceeding the timeout threshold, an event, .SysServiceTimeout, is
posted.

Dynamic Service Advertisements

By default, a server’s services are advertised when it is booted and unadvertised when it is shut
down. If a server needs to control the set of services that it offers at run time, it can do so by
calling tpadvertise() and tpunadvertise(). These routines affect only the services offered
by the calling server unless that server belongs to a Multiple Server, Single Queue (MSSQ) set.
Because all servers in an MSSQ set must offer the same set of services, these routines also affect
the advertisements of all servers sharing the caller’s MSSQ set.

Buffer Management

16

Initially, a process has no buffers. Before sending a message, a buffer must be allocated using
tpalloc(). The sender’s data can then be placed in the buffer and sent. This buffer has a specific
structure. The particular structure is denoted by the type argument to the tpal loc() function.
Since some structures can need further classification, a subtype can also be given (for example,
a particular type of C structure).

When receiving a message, a buffer is required into which application data can be received. This
buffer must be one originally gotten from tpalloc(). Note that an Oracle Tuxedo ATMI system
server, in its main, allocates a buffer whose address is passed to a request/response or
conversational service upon invoking the service. (See tpservice(3c) for details on how this
buffer is treated.)

Buffers used for receiving messages are treated slightly differently than those used for sending:
the size and address usually change upon receipt of a message, since the system internally swaps
the buffer passed into the receive call with internal buffers it used to process the buffer. A buffer
may grow or shrink when it receives data. Whether it grows or shrinks depends on the amount of
data sent by the sender, and the internal data flow needed to get the data from sender to receiver.
Many factors can affect the buffer size, including compression, receiving a message from a

different type of machine, and the action of the postrecv () function for the type of buffer being

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

used (see buffer(3c)). The buffer sizes in Workstation clients are usually different from those
in native clients.

It is best to think of the receive buffer as a placeholder, rather than the actual container that will
receive the message. The system sometimes uses the size of the buffer you pass as a hint, so it
does help if it is big enough to hold the expected reply.

On the sending side, buffer types that might be filled to less than their allocated capacity (for
example, FML or STRING buffers) send only the amount used. A 100K FML32 buffer with one
integer field in it is sent as a much smaller buffer, containing only that integer.

This means that the receiver will receive a buffer smaller than what was originally allocated by
the sender, yet larger than the data that was sent. For example, if a STRING buffer of 10K bytes
is allocated, and the string “HELLO” is copied into it, only the six bytes are sent, and the receiver
will probably end up with a buffer that is around 1K or 4K bytes. (It may be larger or smaller,
depending on other factors.) The Oracle Tuxedo ATMI system guarantees only that a received
message will contain all of the data that was sent; it does not guarantee that the message will
contain all the free space it originally contained.

The process receiving the reply is responsible for noting size changes in the buffer (using
tptypes()) and reallocating the buffer if necessary. All Oracle Tuxedo ATMI functions change
areceiver’s buffer return information about the amount of data in the buffer, so it should become
standard practice to check the buffer size every time a reply is received.

One can send and receive messages using the same data buffer. Alternatively, a different data
buffer can be allocated for each message. It is usually the responsibility of the calling process to
free its buffers by invoking tpfree(). However, in limited cases, the Oracle Tuxedo ATMI
system frees the caller’s buffer. For more information about buffer usage, see the descriptions of
communication functions such as tpfree().

Buffer Type Switch

The tmtype_sw_t structure provides the description required when adding new buffer types to
tm_typesw(), the buffer type switch for a process. The switch elements are defined in
typesw(5). The function names used in this entry are templates for the actual function names
defined by the Oracle Tuxedo ATMI system or by applications in which custom buffer types are
created. These function names can be mapped easily to switch elements: to create a template
name simply add the prefix _tm to the element name of a function pointer. For example, the
template name for the element initbuf is _tminitbuf.

The type element must be non-NULL and at most 8 characters in length. If this element is not
unique in the switch, then subtype () must be non-NULL.

ATMI C Function Reference 17

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

18

The subtype() element can be NULL, a string of at most 16 characters, or * (the wildcard
character). The combination of type () and subtype() must uniquely identify an element in the
switch.

A given type can have multiple subtypes. If all subtypes are to be treated the same for a given
type, then the wildcard character, “*”, can be used. Note that the tptypes () function can be used
to determine a buffer’s type and subtype if subtypes need to be distinguished. If some subset of
the subtypes within a particular type are to be treated individually, and the rest are to be treated
identically, then those that are to be singled out with specific subtype values should appear in the
switch before the subtype designated with the wildcard. Thus, searching for types and subtypes
in the switch is done from top to bottom, and the wildcard subtype entry accepts any “leftover”
type matches.

The dfltsize() element is used when allocating or reallocating a buffer. The semantics of
tpalloc() and tpreal loc() are such that the larger of the following two values is used to
create or reallocate a buffer: the value of dfltsize() or the value of the size parameter for the
tpalloc() and tprealloc() functions. For some types of structures, such as a fixed-sized C
structure, the buffer size should equal the size of the structure. If dfltsize() is set to this value,
then the caller may not need to specify the buffer’s length to routines in which a buffer is passed.
dfltsize() can be 0 or less. However, if tpalloc() or tprealloc() is called and the size
parameter for the function being called is also less than or equal to 0, then the routine will fail.
We recommend setting dfltsize() to a value greater than 0.

The Oracle Tuxedo ATMI system provides five basic buffer types:

e CARRAY—a character array, possibly containing NULL characters, which is neither encoded
nor decoded during transmission

STRING—a NULL-terminated character array

o FML—fielded buffers (FML or FML32)

XML—XML document or datagram buffer

VIEW—simple C structures (VIEW or VIEW32); all views are handled by the same set of
routines. The name of a particular view is its subtype name.

Two of these buffer types have synonyms: X_OCTET is a synonym for CARRAY, and both
X_C_TYPE and X_COMMON are synonyms for VIEW. X_C_TYPE supports all the same elements as
VIEW, whereas X_COMMON supports only longs, shorts, and characters. X_COMMON should be used
when both C and COBOL programs are communicating.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

An application wishing to supply its own buffer type can do so by adding an instance to the
tm_typesw() array. Whenever adding or deleting a buffer type, be careful to leave a NULL entry
at the end of the array. Note that a buffer type with a NULL name is not permitted. An application
client or server is linked with the new buffer type switch by explicitly specifying the name of the
source or object file on the bui ldserver() or buildclient() command line using the -f
option.

Unsolicited Notification

There are two methods for sending messages to application clients outside the boundaries of the
client/server interaction defined above. The first is the broadcast mechanism supported by
tpbroadcast(). This function allows application clients, servers, and administrators to
broadcast typed buffer messages to a set of clients selected on the basis of the names assigned to
them. The names assigned to clients are determined in part by the application (specifically, by the
information passed in the TPINIT typed buffer at tpinit() time) and in part by the system
(based on the processor through which the client accesses the application).

The second method is the notification of a particular client as identified from an earlier or current
service request. Each service request contains a unique client identifier that identifies the
originating client for the service request. Calls to the tpcal 1) and tpforward() functions
from within a service routine do not change the originating client for that chain of service
requests. Client identifiers can be saved and passed between application servers. The
tpnotify() function is used to notify clients identified in this manner.

Single or Multiple Application Contexts per Process

The Oracle Tuxedo ATMI system allows client programs to create an association with one or
more applications per process. If tpinit() is called with the TPMULTICONTEXTS parameter
included in the flags field of the TPINIT structure, then multiple client contexts are allowed. If
tpinit() is called implicitly, is called with a NULL parameter, or the flags field does not
include TPMULTICONTEXTS, then only a single application association is allowed.

In single-context mode, if tpinit() is called more than once (that is, if it is called after the client
has already joined the application), no action is taken and success is returned.

In multicontext mode, each call to tpinit() creates a new application association. The
application can obtain a handle representing this application association by calling
tpgetctxt(). Any thread in the same process can call tpsetctxt() to set that thread’s context.

Once an application has chosen single-context mode, all calls to tpinit() must specify
single-context mode until all application associations are terminated. Similarly, once an

ATMI C Function Reference 19

application has chosen multicontext mode, all calls to tpinit() must specify multicontext mode
until all application associations are terminated.

Server programs can be associated with only a single application and cannot act as clients.
However, within each server program, there may be multiple server dispatch contexts. Each
server dispatch context works in its own thread.

Table 2 shows the transitions that may occur, within a client process, among the following states:
the uninitialized state, the initialized in single-context mode state, and the initialized in
multicontext mode state.

Table 2 Per-Process Context Modes

Function States

Uninitialized Initialized Single-context Initialized Multicontext

So Mode Mode

$ $2

tpinit without Sy Sy S,(error)
TPMULTICONTEXTS
tpinitwith S, S; (error) S
TPMULTICONTEXTS
Implicit tpinit S1 S1 S, (error)
tpterm—not last S,
association
tpterm—Ilast association So So
tpterm—no association So

Context State Changes for a Client Thread

20

In a multicontext application, calls to various functions result in context state changes for the
calling thread and any other threads that are active in the same context as the calling process. The
following diagram illustrates the context state changes that result from calls to the tpinit(),
tpsetctxt(), and tpterm() functions. (The tpgetctxt() function does not produce any
context state changes.)

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Multicontext State Transitions

tpinit() without TPMULTICONTEXTS tpinit() with TPMULTICONTEXTS
or or
implicit €gpinit() invoked by ATMI function tpsetctxt() to avalid context

%m(

tpterm(Q)

or
tpsetctxt()

tptermQ

(see Note)
tpinit() without
TPMULTICONTEXTS

INVALID

CONTEXT tpsetctxt()

Note: When tpterm() is called by a thread running in the multicontext state
(TPMULT ICONTEXTS), the calling thread is placed in the NULL context state
(TPNULLCONTEXT). All other threads associated with the terminated context are switched
to the invalid context state (TP INVALIDCONTEXT).

Table 3 lists all possible context state changes produced by calling tpinit(), tpsetctxt(), and
tpterm(). These states are thread-specific; different threads can be in different states when they
are part of a multicontexted application. By contrast, each context state listed in the preceding
table (“Per-Process Context Modes”™) applies to an entire process.

ATMI C Function Reference 21

Table 3 Context State Changes for a Client Thread

When this function is
executed . ..

Then a thread in this context state resultsin. ..

NULL Context Single Context Multicontext Invalid Context
tpinit without Single context Single context Error Error
TPMULTICONTEXTS
tpinitwith Multicontext Error Multicontext Error
TPMULTICONTEXTS
tpsetctxt to NULL Error NULL NULL
TPNULLCONTEXT
tpsetctxtto Error Single context Error Error
context 0
tpsetctxtto Multicontext Error Multicontext Multicontext
context >0
Implicit tpinit Single context N/A N/A Error
tpterminthisthread NULL NULL NULL NULL
tpterminadifferent N/A NULL Invalid N/A

thread of this context

Support for Threads Programming

The Oracle Tuxedo ATMI system supports multithreaded programming in several ways. If the
process is using single-context mode, then as the application creates new threads, those threads
share the Oracle Tuxedo ATMI context for the process. In a client, after a thread issues a
tpinit() call in single-context mode, other threads may then proceed to issue ATMI calls. For
example, one thread may issue a tpacal 1 () and a different thread in the same process may issue

a tpgetrply(Q.

When in multicontext mode, threads initially are not associated with an Oracle Tuxedo ATMI
application. A thread can either join an existing application association by calling tpsetctxt()
or create a new association by calling tpinit() with the TPMULTICONTEXTS flag set.

Whether running in single-context mode or multicontext mode, the application is responsible for
coordinating its threads so that ATMI operations are performed at the appropriate time.

22 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

An application may create additional threads within a server by using OS thread functions. These
threads may operate independently of the Oracle Tuxedo ATMI system, or they may operate in
the same context as one of the server dispatch threads. Initially, application-created server threads
are not associated with any server dispatch context. An application-created server thread may call
tpsetctxt() to associate itself with a server dispatch thread. The application-created server
thread must complete all of its ATMI calls before the dispatched thread calls tpreturn() or
tpforward(). A server thread dispatched by the Oracle Tuxedo ATMI system may not call
tpsetctxt(). In addition, application-created threads may not make ATMI calls that would
cause an implicit tpinit() when not associated with a context. On the other hand, this failure to
make ATMI calls does not occur with dispatcher-created threads because those threads are
always associated with a context. All server threads are prohibited from calling tpinit().

In a multithreaded application, a thread that is operating in the TPINVALIDCONTEXT state is
prohibited from calling many ATMI functions. The following lists specify which functions may
and may not be called under these circumstances.

The Oracle Tuxedo ATMI system allows a thread operating in the TPINVALIDCONTEXT state to
call the following functions:

catgets(3c)

e catopen, catclose(3c)
e decimal (3c)

e gp_mktime(3c)

e nl_langinfo(3c)

e setlocale(3c)

e strerror(3c)

e strftime(3c)

e tpalloc(3c)

e tpconvert(3c)

e tpcryptpw(3c)

e tperrordetail (3c)
® tpfml32toxml (3c)
® tpfmltoxml (3¢c)

e tpfree(3c)

® tpgblktime (3c)

ATMI C Function Reference 23

e tpgetctxt(3c)

e tpgetrepos(3c)
e tprealloc(3c)

® tpsblktime (3c)

e tpsetctxt(3c)

® tpsetrepos(3c)

e tpstrerror(3c)
e tpstrerrordetail(3c)
e tpterm(3c)

e tptypes(3c)

® tpxmltofml32(3c)
® tpxmltofml (3c)

e TRY(3c)

e tuxgetenv(3c)

e tuxputenv(3c)

e tuxreadenv(3c)
e userlog(3c)

e Usignal (3c)

e Uunix_err(3c)

The Oracle Tuxedo ATMI system does not allow a thread operating in the TP INVALIDCONTEXT
state to call the following functions:

e AEWsetunsol (3c)
e tpabort(3c)

e tpacall(3c)

e tpadmcall(3c)

e tpbegin(3c)

e tpbroadcast(3c)
e tpcall(3c)

e tpcancel (3c)

e tpchkauth(3c)

24 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

tpchkunsol (3¢)
tpclose(3c)
tpcommit(3c)
tpconnect(3c)
tpdequeue(3c)
tpenqueue(3c)
tpgetadmkey(3c)
tpgetlev(3c)
tpgetrply(3c)
tpgprio(3c)
tpinit(3c)
tpnotify(3c)
tpopen(3c)
tppost(3c)
tprecv(3c)
tpresume(3c)
tpscmt(3c)
tpsend(3c)
tpsetunsol (3c)
tpsprio(3c)
tpsubscribe(3c)
tpsuspend(3c)
tpunsubscribe(3c)
tx_begin(3c)
tx_close(3c)
tx_commit(3c)
tx_info(3c)
tx_open(3c)
tx_rollback(3c)

tx_set_commit_return(3c)

ATMI C Function Reference

25

e tx_set transaction_control(3c)

e tx_set transaction_timeout(3c)

C Language ATMI Return Codes and Other Definitions

The following return code and flag definitions are used by the ATMI routines. For an application
to work with different transaction monitors without change or recompilation, each system must

define its flags and return codes as follows:

/*

* The following definitions must be included in atmi.h

*/

/* Flags

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/* Flags
#define
#define
#define

/* Flags

*/

to service routines */

TPNOBLOCK
TPSIGRSTRT
TPNOREPLY
TPNOTRAN
TPTRAN
TPNOT IME
TPABSOLUTE
TPGETANY
TPNOCHANGE

RESERVED_BIT1

TPCONV
TPSENDONLY
TPRECVONLY
TPACK

to tpreturn -

TPFAIL
TPEXIT
TPSUCCESS

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

also defined
0x20000000 /* service FAILURE for tpreturn */
0x08000000 /* service FAILURE with server exit */
0x04000000 /* service SUCCESS for tpreturn */

non-blocking send/rcv */
restart rcv on interrupt */

no reply expected */

not sent iIn transaction mode */
sent in transaction mode */

no timeout */

absolute value on tmsetprio */
get any valid reply */

force incoming buffer to match */
reserved for future use */
conversational service */
send-only mode */

recv-only mode */

*/

in xa.h */

to tpscmt - Valid TP_COMMIT_CONTROL
* characteristic values

#define TP_CMT_LOGGED 0x01

#define TP_CMT_COMPLETE 0x02

/* client identifier structure

26 ATMI C Function Reference

*/

/*
*
/*

*

return after commit
decision is logged */
return after commit has
completed */

Introduction to the C Language Application-to-Transaction Monitor Interface

struct clientid_t {

long clientdata[4]; /*
}

typedef struct clientid_t CLIENTID;
/* context identifier structure */
typedef long TPCONTEXT_T;

/* interface to service routines */
struct tpsvcinfo {

name[128];

long flags; /*
char *data; /*
long len; /*
int cd; /*
* if (flags TPCONV) true */

long appkey; /*
* key */

CLIENTID cltid; /*
* client */

¥

typedef struct tpsvcinfo TPSVCINFO;

/* tpinit(3c) interface structure */
#define MAXTIDENT 30

struct tpinfo_t {

char usrname[MAXTIDENT+2]; /*
char cltname[MAXTIDENT+2]; /*
char passwd[MAXTIDENT+2]; /*
long flags; /*
long datalen; /*
long data; /*

};
typedef struct tpinfo_t TPINIT;

/* The transactionlD structure passed to tpsuspend(3c) and tpresume(3c) */

struct tp_tranid_t {

long info[6]; /*
}:
typedef struct tp_tranid_t TPTRANID;

/* Flags for TPINIT */

#define TPU_MASK 0x00000007 /* unsolicited notification
* mask */
#define TPU_SIG 0x00000001 /* signal based

*

#define TPU_DIP

*

0x00000002

reserved for internal use */

describes service attributes */
pointer to data */

request data length */
connection descriptor

application authentication client

client identifier for originating

client user name */

app client name */

application password */
initialization flags */

length of app specific data */
placeholder for app data */

Internally defined */

notification */
/* dip-in based
notification */

ATMI C Function Reference

21

#define TPU_IGN

#define TPU_THREAD
#define TPSA_FASTPATH

#define TPSA_PROTECTED
#define TPMULTICONTEXTS

/* /Q tpgctl_t data structure
#define TMQNAMELEN
#define TMMSGIDLEN
#define TMCORRIDLEN

struct tpqctl_t {

long flags;

long deq_time;

long priority;

long diagnostic;

char msgid[TMMSGIDLEN];

char corrid[TMCORRIDLEN];

char replygueue[[TMQNAMELEN+1] ;

char failurequeue[TMQNAMELEN+1];

CLIENTID cltid;

urcode;
appkey;
delivery_qos;
reply_qos;
exp_time

long
long
long
long
long

}.

/* /Q structure elements that are

#ifndef
#define
#endif

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

TPNOFLAGS
TPNOFLAGS

TPQCORRID
TPQFAILUREQ
TPQBEFOREMSGID
TPQGETBYMSG IDOLD
TPQMSGID
TPQPRIORITY
TPQTOP

TPQWAIT
TPQREPLYQ
TPQTIME_ABS
TPQTIME_REL
TPQGETBYCORRIDOLD

28 ATMI C Function Reference

typedef struct tpgctl_t TPQCTL;

0x00000004

0x00000040
0x00000008

0x00000010

0x00000020

/* ignore unsolicited
* messages */

/* THREAD notification */
/* System acces
* fastpath */
/* System access
* protected */
/* multiple context associa-
* tions per process */

*/

127

32
32

/*
/*
/*
/*
/*
/*

control parameters to queue primitives */
indicates which values are set */
absolute/relative time for dequeuing */
enqueue priority */

indicates reason for failure */

ID of message before which to queue */

/* correlation ID used to identify message */

queue name for reply message */

queue name for failure message */

client identifier for */

originating client */

application user-return code */
application authentication client key */
delivery quality of service */

reply message quality of service */
expiration time */

valid - set in flags */

0x00000 /* no flags set -- no get */
0x00001 /* set/get correlation ID */
0x00002 /* set/get failure queue */
0x00004 /* enqueue before message ID */
0x00008 /* deprecated */

0x00010 /* get msgid of enqg/deq message */
0x00020 /* set/get message priority */
0x00040 /* enqueue at queue top */
0x00080 /* wait for dequeuing */
0x00100 /* set/get reply queue */
0x00200 /* set absolute time */

0x00400 /* set relative time */

0x00800 /* deprecated */

#define
#define
#define
#define
#define
#define
#define
#define

/* Valid
#define

#define
#define

/* error

Introduction to the C Language Application-to-Transaction Monitor Interface

TPQPEEK

TPQDELIVERYQOS

TPQREPLYQOS

TPQEXPTIME_ABS
TPQEXPTIME_REL
TPQEXPT IME_NONE
TPQGETBYMSGID

TPQGETBYCORRID

flags for the quality of
TPQQOSDEFAULTPERSIST

TPQQOSPERSISTENT
TPQQOSNONPERSISTENT

return codes */

extern int tperrno;

extern long tpurcode;

0x01000
0x02000
0x04000
0x08000
0x10000
0x20000
0x40008
0x80800

service
0x00001

0x00002
0x00004

/* tperrno values - error codes */
* The reference pages explain the context in which the following

* error codes can return.

*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

TPMINVAL
TPEABORT
TPEBADDESC
TPEBLOCK
TPEINVAL
TPELIMIT
TPENOENT
TPEOS
TPEPERM
TPEPROTO
TPESVCERR
TPESVCFAIL
TPESYSTEM
TPETIME
TPETRAN
TPGOTSIG
TPERMERR
TPEITYPE
TPEOTYPE
TPERELEASE
TPEHAZARD

TPEHEURISTIC

TPEEVENT
TPEMATCH

TPEDIAGNOSTIC

©CoO~NOUAWNEO

/*
/*
/*
/*
/*
/*
/*
/*

non-destructive dequeue */
delivery quality of service */
reply msg quality of service*/
absolute expiration time */
relative expiration time */
never expire */

dequeue by msgid */

dequeue by corrid */

fields in the TPQCTL structure */

/*
/*
/*
/*

/*

queue”s default persistence */
policy */

disk message */

memory message */

minimum error message */

ATMI C Function Reference 29

#define TPEMIB 25
#define TPMAXVAL 26 /* maximum error message */

/* conversations - events */

#define TPEV_DISCONIMM 0x0001
#define TPEV_SVCERR 0x0002
#define TPEV_SVCFAIL 0x0004
#define TPEV_SVCSUCC 0x0008
#define TPEV_SENDONLY 0x0020

/* /Q diagnostic codes */

#define QMEINVAL -1

#define QVMEBADRMID -2

#define QMENOTOPEN -3

#define QMETRAN -4

#define QMEBADMSGID -5

#define QMESYSTEM -6

#define QMEOS -7

#define QMEABORTED -8

#define QMENOTA QMEABORTED
#define QMEPROTO -9

#define QMEBADQUEUE -10
#define QMENOMSG -11
#define QMEINUSE -12
#define QMENOSPACE -13
#define QMERELEASE -14
#define QMEINVHANDLE -15
#define QMESHARE -16

/* EventBroker Messages */

#define TPEVSERVICE 0x00000001
#define TPEVQUEUE 0x00000002
#define TPEVTRAN 0x00000004
#define TPEVPERSIST 0x00000008

/* Subscription Control Structure */
struct tpevctl_t {

long flags;
char namel[XATMI_SERVICE_NAME_LENGTH];
char name2[XATMI_SERVICE_NAME_LENGTH];
TPQCTL qctl;

}:

typedef struct tpevctl_t TPEVCTL;

C Language TX Return Codes and Other Definitions

The following return code and flag definitions are used by the TX routines. For an application to
work with different transaction monitors without change or recompilation, each system must
define its flags and return codes as follows:

30 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

#define TX_H VERSION 0 /* current version of this
* header file */
/*
* Transaction identifier
*/
#define XIDDATASIZE 128 /* size in bytes */
struct xid_t {
long formatlD; /* format identifier */
long gtrid_length; /* value not to exceed 64 */
long bqual_length; /* value not to exceed 64 */
char data[XIDDATASIZE];
}:
typedef struct xid_t XID;
/*

* A value of -1 in formatlD means that the XID is null.
*/

/*

* Definitions for tx_ routines

*/

/* commit return values */

typedef long COMMIT_RETURN;

#define TX_COMMIT_COMPLETED O
#define TX_COMMIT_DECISION_LOGGED 1

/* transaction control values */
typedef long TRANSACTION_CONTROL;
#define TX_UNCHAINED O
#define TX _CHAINED 1

/* type of transaction timeouts */
typedef long TRANSACTION_TIMEOUT;

/* transaction state values */
typedef long TRANSACTION_STATE;
#define TX _ACTIVE O
#define TX_TIMEOUT_ROLLBACK ONLY 1
#define TX_ROLLBACK_ONLY 2

/* structure populated by tx_info */
struct tx_info_t {

XID xid;
COMMIT_RETURN when_return;
TRANSACTION_CONTROL transaction_control;
TRANSACTION_TIMEOUT transaction_timeout;
TRANSACTION_STATE transaction_state;

}:

typedef struct tx_info_t TXINFO;

ATMI C Function Reference

31

/*
* tx_ return codes
* (transaction manager reports to application)

*/

#define TX_NOT_SUPPORTED 1 /* option not supported */

#define TX_OK 0 /* normal execution */

#define TX_OUTSIDE -1 /* application is in an RM
* local transaction */

#define TX_ROLLBACK -2 /* transaction was rolled
* back */

#define TX_MIXED -3 /* transaction was

* partially committed and
* partially rolled back */
#define TX_HAZARD -4 /* transaction may have been
* partially committed and
* partially rolled back */

#define TX_PROTOCOL_ERROR -5 /* routine invoked in an
* improper context */
#define TX_ERROR -6 /* transient error */
#define TX_FAIL -7 /* fatal error */
#define TX_EINVAL -8 /* invalid arguments were given */
#define TX_COMMITTED -9 /* transaction has

* heuristically committed */

#define TX_NO_BEGIN -100 /* transaction committed plus
* new transaction could not
* be started */
#define TX_ROLLBACK_NO_BEGIN (TX_ROLLBACK+TX_NO_BEGIN)
/* transaction rollback plus
* new transaction could not
* be started */
#define TX _MIXED_NO BEGIN (TX_MIXED+TX_NO_BEGIN)
/* mixed plus new transaction
* could not be started */
#define TX_HAZARD _NO BEGIN (TX_HAZARD+TX_NO_BEGIN)
/* hazard plus new transaction
* could not be started */
#define TX_COMMITTED_NO_BEGIN (TX_COMMITTED+TX_NO_BEGIN)
/* heuristically committed plus
* new transaction could not
* be started */

ATMI State Transitions

The Oracle Tuxedo ATMI system keeps track of the state for each process and verifies that legal
state transitions occur for the various function calls and options. The state information includes
the process type (request/response server, conversational server, or client), the initialization state

32 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

(uninitialized or initialized), the resource management state (closed or open), the transaction state
of the process, and the state of all asynchronous request and connection descriptors. When an
illegal state transition is attempted, the called function fails, setting tperrno to TPEPROTO. The
legal states and transitions for this information are described in the following tables.

Table 4 indicates which functions may be called by request/response servers, conversational
servers, and clients. Note that tpsvrinit(), tpsvrdone(), tpsvrthrinit(), and
tpsvrthrdone() are not included in this table because they are not called by applications (that
is, they are application-supplied functions that are invoked by the Oracle Tuxedo ATMI system).

Table 4 Available Functions

Function Process Type

Request/Response Server Gonversational Server Client

tpabort Y Y Y
tpacall Y Y Y
tpadvertise Y Y N
tpalloc Y Y Y
tpbegin Y Y Y
tpbroadcast Y Y Y
tpcall Y Y Y
tpcancel Y Y Y
tpchkauth Y Y Y
tpchkunsol N N Y
tpclose Y Y Y
tpcommit Y Y Y
tpconnect Y Y Y
tpdequeue Y Y Y
tpdiscon Y Y Y

ATMI C Function Reference 33

34

Table 4 Available Functions (Continued)

Function

Process Type

Request/Response Server

Conversational Server

Client

tpenqueue

Y

<

tpfmltoxml

tpfml32toxml

tpforward

tpfree

tpgblktime

tpgetctxt

tpgetlev

tpgetrepos

tpgetrply

tpgprio

tpinit

tpnotify

tpopen

tppost

tprealloc

tprecv

tpresume

tpreturn

tpsblktime

tpscmt

tpsend

<] <| <|<| <| <|<| <|<|=<|z|<|=<|<|=<|=<|=<|=<|=<]|=<]| <

<| <| <|<| <| <|<| <|<|=<|z|<|=<|<|=<|=<|=<|=<|z|<]| <

<| <|<|z|<| <|<|<|<|<|=<|<|=<|z|<|=<|<|=<|z]|<]|<]|<x

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Table 4 Available Functions (Continued)

Function Process Type

Request/Response Server Conversational Server Client

tpservice Y Y N

tpsetctxt Y (in application- Y (in application- Y
created threads) created threads)

tpsetrepos Y Y

tpsetunsol

tpsprio

tpsubscribe

tpsuspend

tpterm

tptypes

tpunadvertise

tpunsubscribe

tpxmltofml

<| <|<|<|=<|z|=<|<|<]|z
<| <|<|=<|=<|z|=<|=<|<]|z
<|<|<|z|=<|=<|=<|=<|=<|<|z

tpxmltofml32

The remaining state tables are for both clients and servers, unless otherwise noted. Keep in mind
that because some functions cannot be called by both clients and servers (for example,
tpinit()), certain state transitions shown below may not be possible for both process types. The
above table should be consulted to determine whether the process in question is allowed to call a
particular function.

The following state table indicates whether or not a thread in a client process has been initialized
and registered with the transaction manager. Note that this table assumes the use of tpinit(),
which is optional in single-context mode. That is, a single-context client may implicitly join an
application by issuing one of many ATMI functions (for example, tpconnect() or tpcall()).
A client must use tpinit() when one of the following is true:

ATMI C Function Reference 35

e Application authentication is required. (See tpinit(3c) and the description of the
SECURITY keyword in UBBCONFIG(5) for details.)

e The client wants to access an XA-compliant resource manager directly. (See tpinit(3c)
for details.)

e The client wants to create multiple application associations.

A server is placed in the initialized state by the Oracle Tuxedo ATMI system’s main() before its
tpsvrinit() function is invoked, and it is placed in the uninitialized state by the Oracle Tuxedo
ATMI system’s main() after its tpsvrdone () function has returned. Note that in all of the state
tables shown below, an error return from a function causes the thread to remain in the same state,
unless otherwise noted.

Tahle 5 Thread Initialization States

Function States
Uninitialize Initialize
lo h
tpalloc ly I
tpchkauth lo Iy
tpfree lo Iy
tpgetctxt ly I
tp init |1 |1
tprealloc lo Iy
tpsetctxt I I
(set to a non-NULL context)
tpsetctxt) lg
(with the TPNULLCONTEXT
context set)
tpsetunsol Iy Iy
tpterm) lg

(in this thread)

36 ATMI C Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Tahle 5 Thread Initialization States (Continued)

Function States
Uninitialize Initialize
Iy h
tpterm) lg
(in a different thread of this
context)
tptypes ly I
All other ATMI functions I Iy

The remaining state tables assume a precondition of state I, (regardless of whether a process
arrived in this state via tpinit(), tpsetctxt(), or the Oracle Tuxedo ATMI system’s

mainQ)).

Table 6 indicates the state of a client or server with respect to whether or not a resource manager

associated with the process has been initialized.

Table 6 Resource Management States

Function States

Closed Open

Rg Ry
tpopen Ry R1
tpclose Ro Ro
tpbegin Ry
tpcommit Ry
tpabort Ry
tpsuspend Ry
tpresume R1

ATMI C Function Reference

31

38

Tahle 6 Resource Management States (Continued)

Function States

Closed Open

Ro Rq
tpservice with flag TPTRAN Ry
All other ATMI functions Ro Ry

Table 7 indicates the state of a process with respect to whether or not the process is associated
with a transaction. For servers, transitions to states T4and T, assume a precondition of state Ry

(for example, tpopen() has been called with no subsequent call to tpclose() or tpterm()).

Table 7 Transaction State of Application Association

Function State
Not in Transaction Initiator Participant
Ty Ty Ty
tpbegin
tpabort To
tpcommit To
tpsuspend Ty
tpresume Ty To
tpservice with flag TPTRAN T,
tpservice (not in transaction Ty
mode)
tpreturn To Ty
tpforward Ty Ty
tpclose Ro

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Table 7 Transaction State of Application Association (Continued)

Function State
Not in Transaction Initiator Participant
Ty Ty Ty
tpterm lo To
All other ATMI functions Ty T T,

Table 8 indicates the state of a single request descriptor returned by tpacal1().

Table 8 Asynchronous Request Descriptor States

Function States

No Descriptor Valid

Ag Descriptor A,

tpacall A

tpgetrply Ag
tpcancel Ap?
tpabort Ag A b
tpcommit Ag AP
tpsuspend Ag A
tpreturn Ag Ag
tpforward Ay Ay
tpterm lo Iy
All other ATMI functions Ay Aq

Note: @ This state change occurs only if the descriptor is not associated with the caller’s
transaction.

ATMI C Function Reference 39

b This state change occurs only if the descriptor is associated with the caller’s transaction.

¢ If the descriptor is associated with the caller’s transaction, then tpsuspend() returns a
protocol error.

Table 9 indicates the state of a connection descriptor returned by tpconnect() or provided by a
service invocation in the TPSVCINFO structure. For primitives that do not take a connection
descriptor, the state changes apply to all connection descriptors, unless otherwise noted.

The states are as follows:
o Cy—No descriptor
e C;—tpconnect() descriptor send-only

e C,—tpconnect() descriptor receive-only

C3—TPSVCINFO descriptor send-only

C,—TPSVCINFO descriptor receive-only

Table 9 Connection Request Descriptor States

Function/Event States

tpconnect with TPSENDONLY C,?

tpconnect with TPRECVONLY C,?

tpservice with flag TPSENDONLY CyP

tpservice with flag TPRECVONLY C,P

tprecv/no event C, Cy
tprecv/TPEV_SENDONLY C, Cs
tprecv/TPEV_DISCONIMM Co Co
tprecv/TPEV_SVCERR Co
tprecv/TPEV_SVCFAIL Co

40 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Table 9 Connection Request Descriptor States (Continued)

Function/Event States

G b, G G

tprecv/TPEV_SVCSUCC Co

tpsend/no event Cy Cs
tpsend with flag TPRECVONLY C, Cy
tpsend/TPEV_DISCONIMM Co Co
tpsend/TPEV_SVCERR Co
tpsend/TPEV_SVCFAIL Co

tpterm (client only) Co Co

tpcommi t (originator only) Co Co© Co®

tpsuspend (originator only) Co C, ¢ C,¢

tpabort (originator only) Co Co© Cp

tpdiscon Co Co

tpreturn (CONV server) Co Co Co ©Co
tpforward (CONV server) Co Co Co Gy
All other ATMI functions Co C, C, Cs Cy

Note: @ If process is in transaction mode and TPNOTRAN is not specified, the connection is in
transaction mode.

b If the TPTRAN flag is set, the connection is in transaction mode.
¢ If the connection is not in transaction mode, no state change.

4 If the connection is in transaction mode, then tpsuspend() returns a protocol error.

ATMI C Function Reference 4

TX State Transitions
The Oracle Tuxedo ATMI system ensures that a process calls the TX functions in a legal
sequence. When an illegal state transition is attempted (that is, a call from a state with a blank
transition entry), the called function returns TX_PROTOCOL_ERROR. The legal states and
transitions for the TX functions are shown in Table 10. Calls that return failure do not make state
transitions, unless they are described by specific state table entries. Any Oracle Tuxedo ATMI
system client or server is allowed to use the TX functions.

The states are defined below:

e Sy: No RMs have been opened or initialized. An application association cannot start a
global transaction until it has successfully called tx_open.

e S;: An application association has opened its RM but is not in a transaction. Its
transaction_control characteristic is TX_UNCHAINED.

e S, An application association has opened its RM but is not in a transaction. Its
transaction_control characteristic is TX_CHAINED.

e S3: An application association has opened its RM and is in a transaction. Its
transaction_control characteristic is TX_UNCHAINED.

e S, An application association has opened its RM and is in a transaction. Its
transaction_control characteristic is TX_CHAINED.

Table 10 TX Function States and Transitions

Function States

tx_begin S3 Sy
tx_close So So So
tx_commit —> TX_SET1 Sy Sy
tx_commit —> TX_SET2 S,
tx_info Sy S, S3 S,
tx_open S, S, S S3 Sy

42 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Tahle 10 TX Function States and Transitions (Continued)

Function States

Ss S S S S,

tx_rollback —> TX_SET1 S; Sy
tx_rollback —> TX_SET2 S,
tx_set_commit_return S S S3 Sy
tx_set_transaction_control control S, S, Sy Sy
= TX_CHAINED

tx_set_transaction_control control = S1 S1 S3 S3

TX_UNCHAINED

tx_set_transaction_timeout S, S S3 Sy

e TX_SET1 denotes any of the following: TX_OK, TX_ROLLBACK, TX_MIXED, TX_HAZARD, or
TX_COMMITTED. TX_ROLLBACK is not returned by tx_rollback() and TX_COMMITTED is
not returned by tx_commit().

e TX_SET2 denotes any of the following: TX_NO_BEGIN, TX_ROLLBACK_NO_BEGIN,
TX_MIXED_NO_BEGIN, TX_HAZARD_NO_BEGIN, or TX_COMMITTED_NO_BEGIN.
TX_ROLLBACK_NO_BEGIN is not returned by tx_rollback() and
TX_COMMITTED_NO_BEGIN is not returned by tx_commit().

e If TX_FAIL is returned on any call, the application process is in an undefined state with
respect to the above table.

e When tx_info() returns either TX_ROLLBACK_ONLY or TX_TIMEOUT_ROLLBACK_ONLY in
the transaction state information, the transaction is marked rollback-only and will be rolled
back whether the application program calls tx_commit() or tx_rol Iback().

See Also

buffer(3c), tpadvertise(3c), tpalloc(3c), tpbegin(3c), tpcall(3c),
tpconnect(3c), tpgetctxt(3c), tpinit(3c), tpopen(3c), tpservice(3c),
tpsetctxt(3c), tuxtypes(5), typesw(5)

ATMI C Function Reference 43

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

AEMsethlockinghook(3c)

Name

AEMsetblockinghook()—Establishes an application-specific blocking hook function.

Synopsis

#include <atmi.h>
int AEMsetblockinghook(_TM_FARPROC)

Description

AEMsetblockinghook() is an “ATMI Extension for Mac” that allows a Mac task to install a
new function which the ATMI networking software uses to implement blocking ATMI calls. It
takes a pointer to the procedure instance address of the blocking function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The function
AEMsetblockinghook() gives the application the ability to execute its own function at
“blocking” time in place of the default function. If called with a NULL pointer, the blocking hook
function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated and then a
loop is entered which is equivalent to the following pseudocode:

for(Gs) {
execute operation in non-blocking mode
it error
break;
if operation complete
break;
while(BlockingHook())

}

Return Values

44

AEMsetblockinghook() returns a pointer to the procedure-instance of the previously installed
blocking function. The application or library that calls the AEMsetblockinghook() function
should save this return value so that it can be restored if necessary. (If “nesting” is not important,
the application may simply discard the value returned by AEMsetblockinghook() and
eventually use AEMsetblockinghook(NULL) to restore the default mechanism.)

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

AEMsetblockinghook() returns NULL on error and sets tperrno to indicate the error
condition.

Errors
Under failure, AEMsetblockinghook() sets tperrno to the following value:
[TPEPROTO]
AEMsetblockinghook() was called while a blocking operation was in progress.

Portability
This interface is supported only in Mac clients.

Notices
The blocking function is reset after tpterm(3c) is called by the application.

AEOaddtypesw(3c)

Name
AEOaddtypesw()—Installs or replaces a user-defined buffer type at execution time.

Synopsis
#include <atmi.h>
#include <tmtypes.h>

int FAR PASCAL AEOaddtypesw(TMTYPESW *newtype)

Description

AEOaddtypesw() is an “ATMI Extension for OS/2” that allows an OS/2 client to install a new,
or replace an existing, user-defined buffer type at execution time. The argument to this function
is a pointer to a TMTYPESW structure that contains the information for the buffer type to be
installed.

If the type () and the subtype() match an existing buffer type already installed, then all the
information is replaced with the new buffer type. If the information does not match the type ()
and the subtype () fields, then the new buffer type is added to the existing types registered with
the Oracle Tuxedo ATMI system. For new buffer types, make sure that the WSH and other Oracle
Tuxedo ATMI system processes involved in the call processing have been built with the new
buffer type.

ATMI C Function Reference 45

The function pointers in the TMTYPESW array should appear in the Module Definition file of the
application in the EXPORTS section.

The application can also use the Oracle Tuxedo ATMI system’s defined buffer type routines. The
application and the Oracle Tuxedo ATMI system’s buffer routines can be intermixed in one user

defined buffer type.
Return Values

Upon success, AEOaddtypesw() returns the number of user buffer types in the system Upon
failure, AECaddtypesw() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, AEOaddtypesw() sets tperrno to one of the following values:

[TPEINVAL]
AEOaddtypesw() was called and the type parameter was NULL.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

Portability

This interface is supported only in Windows clients. The preferred way to install a type switch is
to add it to the Oracle Tuxedo ATMI system type switch DLL. Please refer to Setting Up an
Oracle Tuxedo Application for more information.

Notices
FAR PASCAL is used only for the 16-bit OS/2 environment.

Examples

#include <o0s2.h>
#include <atmi.h>
#include <tmtypes.h>

int FAR PASCAL Nfinit(char FAR *, long);

int (FAR PASCAL * IpFinit)(char FAR *, long);
int FAR PASCAL Nfreinit(char FAR *, long);

int (FAR PASCAL * IpFreinit)(char FAR *, long);
int FAR PASCAL Nfuninit(char FAR *, long);

int (FAR PASCAL * IpFuninit)(char FAR *, long);

TMTYPESW newtype =

46 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

{

“MYFML™’, e 1024,
NULL, _fpresend, _fpostsend,
_froute

};

newtype.initbuf = Nfinit;
newtype.reinitbuf = Nfreinit;
newtype.uninitbuf = Nfuninit;

if(AEOaddtypesw(newtype) == -1) {

NULL, NULL,
_Tpostrecv, _Tfencdec,

userlog(“AEOaddtypesw failed %s’, tpstrerror(tperrno));

B

int

FAR PASCAL

Nfinit(char FAR *ptr, long len)

return(l);
}
int
FAR PASCAL
Nfreinit(char FAR *ptr, long len)

return(l);
}
int
FAR PASCAL

Nfuninit(char FAR *ptr, long mdlen)

return(l);

The application Module Definition File:
; EXAMPLE.DEF file
NAME EXAMPLE
DESCRIPTION “EXAMPLE for 0S/2*°

EXETYPE 0s/2

EXPORTS

ATMI C Function Reference

41

NFinit
Nfreinit
Nfuninit

See Also
buildwsh(1), buffer(3c), typesw(5)

AEPishlocked(3c)

Name
AEPisblocked()—Determines if a blocking call is in progress.

Synopsis
#include <atmi.h>
int far pascal AEPisblocked(void)

Description

AEPisblocked() is an “ATMI Extension for OS/2 Presentation Manager” that allows a OS/2
PM task to determine if it is executing while waiting for a previous blocking call to complete.

Return Values

If there is an outstanding blocking function awaiting completion, AEPisblocked() returns 1.
Otherwise, it returns 0.

Errors
No errors are returned.

Portability
This interface is supported only in OS/2 PM clients.

Comments

Although a blocking ATMI call appears to an application as though it “blocks,” the OS/2 PM
ATMI DLL has to relinquish the processor to allow other applications to run. This means that it
is possible for the application which issued the blocking call to be reentered, depending on the
message(s) it receives. In this instance, the AEPisblocked() function can be used to ascertain
whether the task has been reentered while waiting for an outstanding blocking call to complete.
Note that ATMI prohibits more than one outstanding call per thread.

48 ATMI C Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

See Also
AEMsetblockinghook(3c)

AEWsetunsol(3c)

Name
AEWsetunsol Q)—Posts a Windows message for Oracle Tuxedo ATMI unsolicited event.

Synopsis
#include <windows.h>
#include <atmi.h>
int far pascal AEWsetunsol (HWND hWnd, WORD wMsg)

Description

In certain Microsoft Windows programming environments, it is natural and convenient for the
Oracle Tuxedo ATMI system’s unsolicited messages to be posted to the Windows event message
queue.

AEWsetunsol () controls which window to notify, hwnd, and which Windows message type to
post, wmsg. When an Oracle Tuxedo ATMI unsolicited message arrives, a Windows message is
posted. IParam() is set to the Oracle Tuxedo ATMI system buffer pointer, or zero if none. If
IParam() is non-zero, the application must call tpfree() to release the buffer.

If wisg is zero, any future unsolicited messages will be logged and ignored.

In a multithreaded application, a thread in the TPINVAL IDCONTEXT state is not allowed to issue a
call to AEWsetunsol ().

Return Values
Upon failure, AEWsetunsol () returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, AEWsetunsol () sets tperrno to one of the following values:

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a

log file.

[TPEOS]
An operating system error has occurred.

ATMI C Function Reference 49

Portability
This interface is supported only in Microsoft Windows clients.

Notices

AEWsetunsol () posting of Windows messages may not be activated simultaneously with a
tpsetunsol () callback routine. The most recent tpsetunsol () or AEWsetunsol () request
controls how unsolicited messages will be handled.

See Also
tpsetunsol (3c)

buffer(3c)

Name
buffer(Q—Semantics of elements in tmtype_sw_t.

Synopsis

int /* Initialize a new data buffer */

_tminitbuf(char *ptr, long len)

int /* Reinitialize a reallocated data buffer */

_tmreinitbuf(char *ptr, long len)

int /* Uninitialize a data buffer to be freed */

_tmuninitbuf(char *ptr, long len)

long /* Process buffer before sending */

_tmpresend(char *ptr, long dlen, long mdlen)

void /* Process buffer after sending */

_tmpostsend(char *ptr, long dlen, long mdlen)

long /* Process buffer after receiving */

_tmpostrecv(char *ptr, long dlen, long mdlen)

long /* Encode/decode a buffer to/from a transmission format */
_tmencdec(int op, char *encobj, long elen, char *obj, long olen)

int /* Determine server group for routing based on data */
_tmroute(char *routing_name, char *service, char *data, long \ len, char *group)
int /* Evaluate boolean expression on buffer’s data */

_tmfFilter(char *ptr, long dlen, char *expr, long exprlen)

int /* Extract buffer’s data based on format string */

_tmformat(char *ptr, long dlen, char *fmt, char *result, long \ maxresult)
long /* Process buffer before sending, possibly generating copy */
_tmpresend2(char *iptr, long ilen, long mdlen, char *optr, long olen, long *flags
)

long /* Multibyte code-set encoding conversion */

50 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

_tmconvmb(char *ibufp, long ilen, char *enc_name, char *obufp, long olen, long
*Flags)

Description

This page describes the semantics of the elements and routines defined in the tmtype_sw_t
structure. These descriptions are necessary for adding new buffer types to a process buffer type
switch, tm_typesw. The switch elements are defined in typesw(5). The function names used in
this entry are templates for the actual function names defined by the Oracle Tuxedo ATMI system
as well as by applications adding their own buffer types. The names map to the switch elements
very simply: the template names are made by taking each function pointer’s element name and
prepending _tm (for example, the element initbuf has the function name _tminitbuf()).

The element type must be non-NULL and up to 8 characters in length. The element subtype can
be NULL, a string of up to 16 characters, or the wildcard character, “*”. If type is not unique in
the switch, then subtype must be used; the combination of type and subtype must uniquely
identify an element in the switch.

A given type can have multiple subtypes. If all subtypes are to be treated the same for a given
type, then the wildcard character, “*”, can be used. Note that the function tptypes() can be used
to determine a buffer’s type and subtype if subtypes need to be distinguished. If some subset of
the subtypes within a particular type are to be treated individually, and the rest are to be treated
identically, then those which are to be singled out with specific subtype values should appear in
the switch before the subtype designated with the wildcard. Thus, searching for types and
subtypes in the switch is done from top to bottom, and the wildcard subtype entry accepts any
“leftover” type matches.

dfltsize() is used when allocating or reallocating a buffer. The larger of dfltsize() and the
routines’ size parameter is used to create or reallocate a buffer. For some types of structures, like
a fixed sized C structure, the buffer size should equal the size of the structure. If dfltsize() is
set to this value, then the caller may not need to specify the buffer’s length to routines in which
a buffer is passed. dfltsize() can be 0 or less; however, if tpalloc() or tprealloc() is
called and its size parameter is also less than or equal to 0, then the routine will fail. It is not
recommended to set dfltsize() to a value less than 0.

Routine Specifics

The names of the functions specified below are template names used within the Oracle Tuxedo
ATMI system. Any application adding new routines to the buffer type switch must use names that
correspond to real functions, either provided by the application or library routines. If a NULL
function pointer is stored in a buffer type switch entry, the Oracle Tuxedo ATMI system calls a
default function that takes the correct number and type of arguments, and returns a default value.

ATMI C Function Reference 51

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

_tminitbuf

_tminitbuf() is called from within tpal 1oc() after a buffer has been allocated. It is passed a
pointer to the new buffer, ptr, along with its size so that the buffer can be initialized
appropriately. 1en is the larger of the length passed into tpalloc() and the default specified in
dfltsize() in that type’s switch entry. Note that ptr will never be NULL due to the semantics
of tpalloc() and tpreal loc(). Upon successful return, ptr is returned to the caller of
tpalloc().

If a single switch entry is used to manipulate many subtypes, then the writer of _tminitbuf()
can use tptypes() to determine the subtype.

If no buffer initialization needs to be performed, specify a NULL function pointer.

Upon success, _tminitbuf() returns 1. If the function fails, it returns -1 causing tpal loc() to
also return failure setting tperrno to TPESYSTEM.

_tmreinitbuf
_tmreinitbuf() behaves the same as _tminitbuf() except it is used to reinitialize a
reallocated buffer. It is called from within tpreal loc() after the buffer has been reallocated.
If no buffer reinitialization needs to be performed, specify a NULL function pointer.

Upon success, _tmreinitbuf() returns 1. If the function fails, it returns -1 causing
tprealloc() to also return failure setting tperrno to TPESYSTEM.

_tmuninitbuf
_tmuninitbuf() is called by tpfree() before the data buffer is freed. _tmuninitbuf() is
passed a pointer to the application portion of a data buffer, along with its size, and can be used to
clean up any structures or state information associated with that buffer. ptr will never be NULL
due to tpfree()’s semantics. Note that _tmuninitbuf() should not free the buffer itself. The
tpfree() function is called automatically for any FLD_PTR fields in the data buffer.

If no processing needs to be performed before freeing a buffer, specify a NULL function pointer.

Upon success, _tmuninitbuf() returns 1. If the function fails, it returns -1 causing tpfree()
to print a log message.

_tmpresend

_tmpresend() is called before a buffer is sent in tpcal 1 (), tpacall (), tpconnect(),

tpsend(), tpbroadcast(), tpnotify(), tpreturn(), or tpforward(). Itis also called after
_tmroute() but before _tmencdec(). If ptr () is non-NULL, preprocessing is performed on a
buffer before it is sent. _tmpresend()’s firstargument, ptr, is the application data buffer passed

52 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

into the send call. Its second argument, dlen, is the data’s length as passed into the send call. Its
third argument, mdlen, is the actual size of the buffer in which the data resides.

One important requirement on this function is that it ensures that when the function returns, the
data pointed to by ptr can be sent “as is.” That is, since _tmencdec() is called only if the buffer
is being sent to a dissimilar machine, _tmpresend() must ensure upon return that no element in
ptrs buffer is a pointer to data that is not contiguous to the buffer.

If no preprocessing needs to be performed on the data and the amount of data the caller specified
is the same as the amount that should be sent, specify a NULL function pointer. The default
routine returns dlen and does nothing to the buffer.

If _tmpresend2() is not NULL, _tmpresend() is not called and _tmpresend2() is called in
its place.

Upon success, _tmpresend() returns the amount of data to be sent. If the function fails, it returns
-1 causing _tmpresend()’s caller to also return failure setting tperrno to TPESYSTEM.

_tmpostsend

_tmpostsend() is called after a buffer is sent in tpcal 1), tpbroadcast(), tpnotify(),
tpacall (), tpconnect(), or tpsend(). This routine allows any post-processing to be
performed on a buffer after it is sent and before the function returns. Because the buffer passed
into the send call should not be different upon return, _tmpostsend() is called to repair a buffer
changed by _tmpresend(). This function’s first argument, ptr, points to the data sent as a result
of _tmpresend(). The data’s length, as returned from _tmpresend(), is passed in as this
function’s second argument, dlen. The third argument, mdlen, is the actual size of the buffer in
which the data resides. This routine is called only when ptr is non-NULL.

If no post-processing needs to be performed, specify a NULL function pointer.

_tmpostrecv

_tmpostrecv() is called after a buffer is received, and possibly decoded, in tpgetrply(),
tpcall(), tprecv(), or inthe Oracle Tuxedo ATMI system’s server abstraction, and before
it is returned to the application. If ptr is non-NULL, _tmpostrecv() allows post-processing to
be performed on a buffer after it is received and before it is given to the application. Its first
argument, ptr, points to the data portion of the buffer received. Its second argument, dlen,
specifies the data’s size coming in to _tmpostrecv(). The third argument, mdlen, specifies the
actual size of the buffer in which the data resides.

If _tmpostrecv() changes the data length in post-processing, it must return the data’s new
length. The length returned is passed up to the application in a manner dependent on the call used

ATMI C Function Reference 53

(for example, tpcal 1 () sets the data length in one of its arguments for the caller to check upon
return).

The buffer’s size might not be large enough for post-processing to succeed. If more space is
required, _tmpostrecv() returns the negative absolute value of the desired buffer size. The
calling routine then resizes the buffer, and calls _tmpostrecv() a second time.

If no post-processing needs to be performed on the data and the amount of data received is the
same as the amount that should be returned to the application, specify a NULL function pointer.
The default routine returns dlen and does nothing to the buffer.

On success, _tmpostrecv() returns the size of the data the application should be made aware of
when the buffer is passed up from the corresponding receive call. If the function fails, it returns
-1 causing _tmpostrecv()’s caller to return failure, setting tperrno to TPESYSTEM.

_tmencdec

54

_tmencdec() is used to encode/decode a buffer sent/received over a network to/from a machine
having different data representations. The Oracle Tuxedo ATMI system recommends the use of
XDR; however, any encoding/decoding scheme can be used that obeys the semantics of this
routine.

This function is called by tpcal 1 (), tpacall(), tpbroadcast(), tpnotify(),
tpconnect(), tpsend(), tpreturn(), or tpforward() to encode the caller’s buffer only
when it is being sent to an “unlike” machine. In these calls, _tmencdec() is called after both
_tmroute() and _tmpresend(), respectively. Recall from the description of _tmpresend()
that the buffer passed into _tmencdec () contains no pointers to data that is not contiguous to the
buffer.

On the receiving end, tprecv(), tpgetrply(), the receive half of tpcal 1) and the server
abstraction all call _tmencdec() to decode a buffer after they have received it from an “unlike”
machine but before calling _tmpostrecv().

_tmencdec()’s first argument, op, specifies whether the function is encoding or decoding data.
op can be one of TMENCODE or TMDECODE.

When op is TMENCODE, encobj points to a buffer allocated by the Oracle Tuxedo ATMI system
where the encoded version of the data will be copied. The unencoded data resides in obj. That is,
when op is TMENCODE, _tmencdec() transforms obj to its encoded format and places the result
in encobj. The size of the buffer pointed to by encobj is specified by elen and is at least four
times the size of the buffer pointed to by obj whose length is olen. olen is the length returned
by _tmpresend. _tmencdec() returns the size of the encoded data in encobj (that is, the

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

amount of data to actually send). _tmencdec() should not free either of the buffers passed into
the function.

When op is TMDECODE, encobj points to a buffer allocated by the Oracle Tuxedo ATMI system
where the encoded version of the data resides as read off a communication endpoint. The length
of the buffer is elen. obj points to a buffer that is at least the same size as the buffer pointed to
by encobj into which the decoded data is copied. The length of obj is olen. As obj is the buffer
ultimately returned to the application, this buffer may be grown by the Oracle Tuxedo ATMI
system before calling _tmencdec() to ensure that it is large enough to hold the decoded data.
_tmencdec() returns the size of the decoded data in obj. After _tmencdec() returns,
_tmpostrecv() is called with obj passed as its first argument, _tmencdec()’s return value as
its second, and olen as its third. _tmencdec() should not free either of the buffers passed into
the function.

_tmencdec() is called only when non-NULL data needs to be encoded or decoded.

If no encoding or decoding needs to be performed on the data even when dissimilar machines
exist in the network, specify a NULL function pointer. The default routine returns either olen
(op equals TMENCODE) or elen (op equals TMDECODE).

On success, _tmencdec() returns a non-negative length as described above. If the function fails,
it returns -1 causing _tmencdec()’s caller to return failure, setting tperrno to TPESYSTEM.

_tmroute

The default for message routing is to route a message to any available server group that offers the
desired service. Each service entry in the UBBCONFIG file can specify the logical name of some
routing criteria for the service using the ROUT ING parameter. Multiple services can share the same
routing criteria. In the case that a service has a routing criteria name specified, _tmroute() is
used to determine the server group to which a message is sent based on data in the message. This
mapping of data to server group is called “data-dependent routing.” _tmroute() is called before
a buffer is sent (and before _tmpresend() and _tmencdec() are called) in tpcall1(),
tpacall(), tpconnect(), and tpforward().

routing_name is the logical name of the routing criteria (as specified in the UBBCONFIG file) and
is associated with every service that needs data dependent routing. service is the name of the

service for which the request is being made. The parameter data points to the data that is being
transmitted in the request and len is its length. Unlike the other routines described in these pages,
_tmroute() is called even when ptr is NULL. The group parameter is used to return the name
of the group to which the request should be routed. This group name must match one of the group
names listed in the UBBCONFIG file (and one that is active at the time the group is chosen). If the

ATMI C Function Reference 55

request can go to any available server providing the specified service, group should be set to the
NULL string and the function should return 1.

If data dependent routing is not needed for the buffer type, specify a NULL function pointer. The
default routine sets group to the NULL string and returns 1.

Upon success, _tmroute() returns 1. If the function fails, it returns -1 causing _tmroute()’s
caller to also return failure; as a result, tperrno is set to TPESYSTEM. If _tmroute() fails
because a requested server or service is not available, tperrno is set to TPENOENT.

If group is set to the name of an invalid server group, the function calling _tmroute() will return
an error and set tperrno to TPESYSTEM.

_tmfilter

_tmfilter() is called by the EventBroker server to analyze the contents of a buffer posted by
tppost(). An expression provided by the subscriber (tpsubscribe()) is evaluated with respect
to the buffer’s contents. If the expression is true, _tmFilter() returns 1 and the EventBroker
performs the subscription’s notification action. Otherwise, if _tmFilter() returns 0, the
EventBroker does not consider this posting a “match” for the subscription.

If exprlenis -1, expr is interpreted as a NULL-terminated character string. Otherwise expr is
interpreted as exprlen bytes of binary data. An exprlen of 0 indicates no expression.

If filtering does not apply to this buffer type, specify a NULL function pointer. The default
routine returns 1 if there is no expression or if expr is an empty NULL-terminated string.
Otherwise the default routine returns 0.

_tmformat

56

_tmformat() is called by the EventBroker server to convert a buffer’s data into a printable
string, based on a format specification named fmt. The EventBroker converts posted buffers to
strings as input for userlog or system notification actions.

The output is stored as a character string in the memory location pointed to by result. Up to
maxresult bytes are written in result, including a terminating NULL character. If result is
not large enough, _tmformat() truncates its output. The output string is always NULL
terminated.

On success, _tmformat() returns a non-negative integer. 1 means success, 2 means the output
string is truncated. If the function fails, it returns -1 and stores an empty string in result.

If formatting does not apply to this buffer type, specify a NULL function pointer. The default
routine succeeds and returns an empty string in result.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

_tmpresend?

_tmpresend2() is called before a buffer is sent in tpcal 1), tpacal 1), tpconnect(),
tpsend(), tpbroadcast(), tpnotify(), tpreturn(), and tpforward(). It is also called
after _tmroute() but before _tmencdec(). If iptr is not NULL, preprocessing is performed
on a buffer before the buffer is sent.

The first argument to _tmpresend2(), iptr, is the application data buffer passed into the send
call. The second argument, i len, is the length of the data as passed into the send call. The third
argument, mdlen, is the actual size of the buffer in which the data resides.

Unlike _tmpresend(), _tmpresend2() receives a pointer, optr, which is used to pass a pointer
to a buffer into which the data in iptr can be placed, after any required processing is done. Use
this pointer if you want to use a new buffer for the data modified by _tmpresend2() instead of
modifying the input buffer. The fifth argument, olen, is the size of the optr buffer. The sixth
argument, flags, tells _tmpresend2() whether the buffer being processed is the parent buffer
(the one being sent). The flags argument is returned by _tmpresend2() to indicate the results
of processing.

The size of the optr buffer may not be large enough for successful postprocessing. If more space
is required, _tmpresend2() returns the negative absolute value of the desired buffer size. All
olen bytes of the optr buffer are preserved. The calling routine then resizes the buffer and calls
_tmpresend2() a second time.

If no postprocessing needs to be performed on the data, and the amount of data received is the
same as the amount that should be returned to the application, specify a NULL function pointer.
The default routine returns ilen and does not modify the buffer.

The following is a valid flag on input to _tmpresend2():
[TMPARENT]
This is the parent buffer (the one being sent).
The flags returned in flags specify the results of _tmpresend2(). Possible values are:
[TMUSEIPTR]

_tmpresend2() was successful: the processed data is in the buffer referenced by iptr,
and the return value contains the length of the data to be sent.

[TMUSEOPTR]
_tmpresend2() was successful: the processed data is in the buffer referenced by optr,
and the return value contains the length of the data to be sent.

ATMI C Function Reference 57

If TMUSEOPTR is returned, the processing done after messages are transmitted is different from the
processing done by _tmpresend(): the iptr buffer remains unchanged and _tmpostsend() is
not called. If TMUSEIPTR is returned, _tmpostsend() is called, as it is called for _tmpresend().
It is the responsibility of the caller to allocate and to free or cache the optr buffer.

There are several reasons why you may want to use this approach for a typed buffer:

e The buffer created by processing for transmission is larger than the maximum length
allowed for the input buffer.

e Undoing the processing to prepare a buffer for transmission is so complicated that it is
easier to copy the data to a different buffer.

The _tmpresend2() function ensures that when a function returns, the data in the buffer to be
sent can be sent without further processing. Because _tmencdec() is called only if the buffer is
being sent to a dissimilar machine, _tmpresend2() ensures, upon return, that all data is stored
contiguously in the buffer to be sent.

If no preprocessing needs to be performed on the data, and the amount of data specified by the
caller is the same as the amount that should be sent, specify a NULL function pointer for
_tmpresend2() in the buffer type switch. If _tmpresend2() is NULL, _tmpresend() is
called by default.

Upon success, _tmpresend2() returns the amount of data to be sent or, if a larger buffer is
needed, the negative absolute value of the desired buffer size. If the function fails, it returns -1,
causing the caller of _tmpresend2() to also return failure, setting tperrno to TPESYSTEM.

_tmconvmb

58

_tmconvmb() is called after tmpostrecv() to convert multibyte data from a source encoding to
a target encoding. The first argument to _tmconvmb(), ibufp, is a pointer to a stream of bytes—
the multibyte data—to be converted. The second argument, i len, is the number of bytes in
ibufp. The third argument, enc_name, is one of the encoding names used in the processing. For
an MBSTRING buffer, the third argument is the target encoding name; for an FML32 buffer, the
third argument is the source encoding name.

_tmconvmb () receives a pointer, obufp, which is used to pass a pointer to a buffer into which
the data in ibufp can be placed, after any required code-set encoding conversion is done. Use
this pointer if you want to use a new buffer for the data converted by _tmconvmb() instead of
modifying the input pointer. The fifth argument, ollen, is the size of the obufp buffer. The flags
argument is returned by _tmconvmb() to indicate the results of processing.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

The size of the obufp buffer may not be large enough for successful post processing. If more
space is required, _tmconvmb () returns the negative absolute value of the desired buffer size. All
i len bytes of the ibufp buffer are preserved. The calling routine then resizes the buffer and calls
_tmconvmb() a second time.

If no code-set encoding conversion needs to be performed on the data, and the encoding name of
the sending process is the same as the encoding name of the receiving process, specify a NULL
function pointer. The default routine returns i Ien and does not convert the buffer. If this function
does not know how to convert the code-set encoding, it returns -1.

The value returned in flags specifies the result of _tmconvmb (). Possible values are:

[TMUSEIPTR]
_tmconvmb() was successful: the processed data is in the buffer referenced by ibufp,
and the return value contains the length of the converted data to be passed to the service.

[TMUSEOPTR]
_tmconvmb () was successful: the processed data is in the buffer referenced by obufp,
and the return value contains the length of the data to be converted. It is the responsibility
of the caller to allocate and to free or cache the obufp buffer.

Upon success, _tmconvmb() returns the amount of data buffer that had code-set encoding
conversion or, if a larger buffer is needed, the negative absolute value of the desired buffer size.
If the function fails, it returns -1, causing the caller of _tmconvmb() to also return failure, setting
tperrno to TPESYSTEM.

See Also

tpacal 1 (3c), tpalloc(3c), tpcall(3c), tpconnect(3c), tpdiscon(3c), tpfree(3c),
tpgetrply(3c), tpgprio(3c), tprealloc(3c), tprecv(3c), tpsend(3c), tpsprio(3c)
tptypes(3c), tuxtypes(5)

catgets(3c)

Name

catgets()—Reads a program message.

Synopsis

#include <nl_types.h>
char *catgets (nl_catd catd, int set _num, int msg_num, char *s)

ATMI C Function Reference 59

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Description

catgets() attempts to read message msg_num, in set set_num, from the message catalogue
identified by catd. catd is a catalogue descriptor returned from an earlier call to catopen(). s
points to a default message string which will be returned by catgets() if the identified message
catalogue is not currently available.

A thread in a multithreaded application may issue a call to catgets() while running in any
context state, including TPINVALIDCONTEXT.

Diagnostics

If the identified message is retrieved successfully, catgets() returns a pointer to an internal
buffer area containing the NULL terminated message string. If the call is unsuccessful because
the message catalogue identified by catd is not currently available, a pointer to s is returned.

See Also

catopen, catclose(3c)

catopen, catclose(3c)

Name
catopen(), catclose()—Opens/closes a message catalogue.

Synopsis
#include <nl_types.h>
nl_catd catopen (char *name, int oflag)
int catclose (nl_catd catd)

Description

catopen() opens a message catalogue and returns a catalogue descriptor. name specifies the
name of the message catalogue to be opened. If name contains a “/”” then name specifies a
pathname for the message catalogue. Otherwise, the environment variable NLSPATH is used. If
NLSPATH does not exist in the environment, or if a message catalogue cannot be opened in any of
the paths specified by NLSPATH, then the default path is used (see nl_types(5)).

The names of message catalogues, and their location in the filestore, can vary from one system
to another. Individual applications can choose to name or locate message catalogues according to
their own special needs. A mechanism is therefore required to specify where the catalogue
resides.

60 ATMI C Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

The NLSPATH variable provides both the location of message catalogues, in the form of a search
path, and the naming conventions associated with message catalogue files. For example:

NLSPATH=/nlIslib/%L/%N.cat:/nlslib/%N/%L

The metacharacter % introduces a substitution field, where %L substitutes the current setting of the
LANG environment variable (see following section), and %N substitutes the value of the name
parameter passed to catopen(). Thus, in the above example, catopen() will search in
/nlslib/$LANG/name. cat, then in /nlslib/name/$LANG, for the required message catalogue.

NLSPATH will normally be set up on a system wide basis (for example, in Zetc/profile) and
thus makes the location and naming conventions associated with message catalogues transparent
to both programs and users.

The following table lists the full set of metacharacters.

Metacharacter Description

%N The value of the name parameter passed to catopen.
%L The value of LANG.

%1 The value of the language element of LANG.

%t The value of the territory element of LANG.

%c The value of the codeset element of LANG.

%% Assingle %.

The LANG environment variable provides the ability to specify the user’s requirements for native
languages, local customs and character set, as an ASCII string in the form
LANG=language[_territory[.codeset]]

A user who speaks German as it is spoken in Austria and has a terminal that operates in 1SO
8859/1 codeset, would want the setting of the LANG variable to be as follows:

LANG=De_A.88591
With this setting it should be possible for the user to find relevant catalogues if they exist.

If the LANG variable is not set then the value of LC_MESSAGES as returned by setlocale(3c) is
used. If this is NULL then the default path as defined in nl_types(5) is used.

ATMI C Function Reference 61

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

oflag() is reserved for future use and should be set to 0. The results of setting this field to any
other value are undefined.

catclose() closes the message catalogue identified by catd.
A thread in a multithreaded application may issue a call to catopen() or catclose() while
running in any context state, including TP INVAL IDCONTEXT.

Diagnostics

If successful, catopen() returns a message catalogue descriptor for use on subsequent calls to
catgets() and catclose(). Otherwise catopen() returns (nl_catd) -1.catclose()
returns O if successful, otherwise -1.

See Also
catgets(3c), setlocale(3c), nl_types(5)
decimal(3c)

Name
decimal Q—Decimal conversion and arithmetic routines.

Synopsis

#include “decimal.h”

int

Iddecimal(cp, len, np) /* load a decimal */
char*cp; /* input: location of compacted format */
int

len; /* input: length of compacted format */
dec_t*np; /* output: location of dec_t format */
void

stdecimal(np, cp, len) /* store a decimal */
dec_t*np; /* input: location of dec_t format */
char*cp; /* output: location of compacted format */
int len; /* input: length of compacted format */
int

deccmp(nl, n2) /* compare two decimal numbers */
dec_t*nil; /* input: number to be compared */
dec_t*n2; /* input: number to be compared */

62 ATMI C Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

int

dectoasc(np, cp, len, right) /* convert dec_t to ascii */
dec_t*np; /* input: number to be converted */
char*cp; /* output: number after conversion */
int len; /* input: length of output string */

int right; /* input: number of places to right of decimal point */
int

deccvasc(cp, len, np) /* convert ascii to dec_t */
char*cp; /* input: number to be converted */

int len; /* input: maximum length of number to be converted */
dec_t*np; /* output: number after conversion */
int

dectoint(np, ip) /* convert int to dec_t */
dec_t*np; /* input: number to be converted */

int *ip; /* output: number after conversion */
int

deccvint(in, np) /* convert dec_t to int */

int in; /* input: number to be converted */
dec_t*np; /* output: number after conversion */
int

dectolong(np, Ingp) /* convert dec_t to long */
dec_t*np; /* input: number to be converted */
long*Ingp; /* output: number after conversion */
int

deccvlong(lng, np) /* convert long to dec_t */
longling; /* input: number to be converted */
dec_t*np; /* output: number after conversion */

int

dectodbl(np, dblp) /* convert dec_t to double */
dec_t*np; /* input: number to be converted */

double *dblp;

int

deccvdbl (dbl,

double *dbl;
dec_t*np;
int
dectoflt(np,
dec_t*np;
float*fltp;

int

deccvflt(flt,

/* output: number after conversion */

np) /* convert double to dec_t */
/* input: number to be converted */
/* output: number after conversion */

fltp) /* convert dec_t to float */
/* input: number to be converted */
/* output: number after conversion */

np) /* convert float to dec_t */

ATMI C Function Reference

63

double *flIt;

/* input: number to be converted */

dec_t*np; /* output: number after conversion */

int

decadd(*nl, *n2, *n3) /* add two decimal numbers */
dec_t*nl; /* input: addend */

dec_t*n2; /* input: addend */

dec_t*n3; /* output: sum */

int

decsub(*nl, *n2, *n3) /* subtract two decimal numbers */
dec_t*nl; /* input: minuend */

dec_t*n2; /* input: subtrahend */

dec_t*n3; /* output: difference */

int

decmul (*nl1, *n2, *n3) /* multiply two decimal numbers */
dec_t*nl; /* input: multiplicand */

dec_t*n2; /* input: multiplicand */

dec_t*n3; /* output: product */

int

decdiv(*nl, *n2, *n3) /* divide two decimal numbers */
dec_t*nl; /* input: dividend */

dec_t*n2; /* input: divisor */

dec_t*n3; /* output: quotient */

Description

These functions allow storage, conversion, and manipulation of packed decimal data on the
Oracle Tuxedo ATMI system. Note that the format in which the decimal data type is represented
on the Oracle Tuxedo ATMI system is different from its representation under CICS.

A thread in a multithreaded application may issue a call to any of the decimal conversion
functions while running in any context state, including TPINVAL IDCONTEXT.

Native Decimal Representation

Decimals are represented on native Oracle Tuxedo ATMI system nodes using the dec_t
structure. This definition of this structure is as follows:

#define DECSIZE 16
struct decimal {
short dec_exp; /* exponent base 100 */

short dec_pos; /*
short dec_ndgts; /*
char dec_dgts[DECSIZE]; /7*

sign: 1=pos, O=neg, -1=null */
number of significant digits */
actual digits base 100 */

64 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

b
typedef struct decimal dec_t;

It should never be necessary for programmers to directly access the dec_t structure, but it is
presented here nevertheless to give an understanding of the underlying data structure. If large
amounts of decimal data need to be stored, the stdecimal () and Iddecimal () functions may
be used to obtain a more compact format. dectoasc(), dectoint(), dectolong(),
dectodbl (), and dectoflt() allow the conversion of decimals to other data types.
deccvasc(), deccvint(), deccvlong(), deccvdbl (), and deccvFlt() allow the conversion
of other data types to the decimal data type. deccmp() is the function which compares two
decimals. It returns -1 if the first decimal is less than the second, O if the two decimals are equal,
and 1 if the first decimal is greater than the second. A negative value other than -1 is returned if
either of the arguments is invalid. decadd(), decsub(), decmul (), and decdiv() perform
arithmetic operations on decimal numbers.

Return Value
Unless otherwise stated, these functions return 0 on success and a negative value on error.

getURLEntityCacheDir(3c)

Name

getURLEntityCacheDir() - Specifies a Xerces class method for getting the absolute path to the
location where the DTD, schema and Entity files are cached.

Synopsis
char * getURLEntityCacheDir()

Description

getURLENntityCacheDir() is a method that is called to find out the location where the DTD,
schema and Entity files are cached. It returns the absolute path to the cached file location. This
method is exclusively used in conjunction with the following two Xerces objects:

o XercesDOMParser

e SAXparser

ATMI C Function Reference 65

getURLEntityCaching(3c)

Name

GetURLEntityCaching() - Specifies a Xerces class method for getting the caching mechanism
for DTD, schema and Entity files.

Synopsis
bool getURLEntityCaching(Q)

Description

GetURLEntityCaching() is a method that is called to find out if caching of the DTD, schema
and Entity files are turned on or off. It returns true if caching is turned on and false if caching is
turned off. This method is exclusively used in conjunction with the following two Xerces objects:

o XercesDOMParser

e SAXparser

gp_mktime(3c)

Name
gp_mktime()—Converts a tm structure to a calendar time.

Synopsis
#include <time.h>
time_t gp_mktime (struct tm *timeptr);

Description

gp_mktime() converts the time represented by the tm structure pointed to by timeptr into a
calendar time (the number of seconds since 00:00:00 Universal Coordinated Time—UTC,
January 1, 1970).

The tm structure has the following format:

struct tm {
int tm_sec; /* seconds after the minute [0, 61] */
int tm_min; /* minutes after the hour [0, 59] */
int tm_hour; /* hour since midnight [0, 23] */
int tm_mday; /* day of the month [1, 31] */

66 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

int tm_mon; /* months since January [0, 11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday [0, 6] */

int tm_yday; /* days since January 1 [0, 365] */

int tm_isdst; /* Fflag for daylight savings time */
};

In addition to computing the calendar time, gp_mktime() normalizes the supplied tm structure.
The original values of the tm_wday and tm_yday components of the structure are ignored, and
the original values of the other components are not restricted to the ranges indicated in the
definition of the structure. On successful completion, the values of the tm_wday and tm_yday
components are set appropriately, and the other components are set to represent the specified
calendar time, but with their values forced to be within the appropriate ranges. The final value of
tm_mday is not set until tm_mon and tm_year are determined.

The original values of the components may be either greater than or less than the specified range.
For example, a tm_hour of -1 means 1 hour before midnight, tm_mday of 0 means the day
preceding the current month, and tm_mon of -2 means 2 months before January of tm_year.

If tm_isdst is positive, the original values are assumed to be in the alternate time zone. If it turns
out that the alternate time zone is not valid for the computed calendar time, then the components
are adjusted to the main time zone. Likewise, if tm_isdst is zero, the original values are assumed
to be in the main time zone and are converted to the alternate time zone if the main time zone is
not valid. If tm_isdst is negative, the correct time zone is determined and the components are
not adjusted.

Local time zone information is used as if gp_mktime() had called tzset().

gp_mktime() returns the specified calendar time. If the calendar time cannot be represented, the
function returns the value (time_t)-1.

A thread in a multithreaded application may issue a call to gp_mktime() while running in any
context state, including TPINVALIDCONTEXT.

Example
What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>

static char *const wday[] = {
"Sunday', ""Monday', ""Tuesday", "Wednesday",

ATMI C Function Reference 67

hursday", "Friday", 'Saturday", '‘-unknown-'‘

}:

struct tm time_str;

/*... %/

time_str.tm_year = 2001 - 1900;
time_str.tm_mon =7 - 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec =1;
time_str.tm_isdst = -1;

ifT (gp_mktime(time_str) == -1)

time_str.tm_wday=7;
printf(""%s\en", wday[time_str.tm wday]);

Notices

tm_year of the tm structure must be for year 1970 or later. Calendar times before 00:00:00 UTC,
January 1, 1970 or after 03:14:07 UTC, January 19, 2038 cannot be represented.

Portability

68

On systems where the C compilation system already provides the ANSI C mktime() function,
gp_mktime() simply calls mktime() to do the conversion. Otherwise, the conversion is
provided directly in gp_mktime().

In the latter case, the Tz environment variable must be set. Note that in many installations, Tz is
set to the correct value by default when the user logs on. The default value for Tz is GMTO. The
format for Tz is the following:

stdoffset[dst[offset], [start[time],end[time]]]

std and dst
Three or more bytes that designate the standard time zone (std) and daylight savings time
time zone (dst). Only std is required. If dst is missing, then daylight savings time does
not apply in this locale. Uppercase and lowercase letters are allowed. Any characters
except a leading colon (%), digits, a comma (), a minus (-) or a plus (+) are allowed.

offset
Indicates the value one must add to the local time to arrive at Coordinated Universal Time.
The offset has the following form: hh[:mm[:ss]]. The minutes (mm) and seconds (ss) are

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

optional. The hour (hh) is required and may be a single digit. The offset following std
is required. If no offset follows dst, daylight savings time is assumed to be one hour
ahead of standard time. One or more digits may be used; the value is always interpreted
as a decimal number. The hour must be between 0 and 24, and the minutes (and seconds)
if present, between 0 and 59. Out of range values may cause unpredictable behavior. If
preceded by a “-”, the time zone is east of the Prime Meridian; otherwise it is west (which
may be indicated by an optional preceding “+” sign).

start/time,end/time
Indicates when to change to and back from daylight savings time, where start/time
describes when the change from standard time to daylight savings time occurs, and
end/time describes when the change back happens. Each time field describes when, in
current local time, the change is made.
The formats of start and end are one of the following:

Jn
The Julian day n (1 n 365). Leap days are not counted. That is, in all years,
February 28 is day 59 and March 1 is day 60. It is impossible to refer to the
occasional February 29.

n
The zero-based Julian day (0 n 365). Leap days are counted, and it is possible to
refer to February 29.

Mm.n.d

Day d (0 d 6) of week n of month m in the year (1 n 5, 1 m 12), where week 5 means “the
last d-day in month m,” which may occur in either the fourth or the fifth week). Week 1 is
the first week in which day d occurs. Day 0 (zero) is Sunday.

Implementation specific defaults are used for start and end if these optional fields are not given.

The time has the same format as offset except that no leading sign (“-” or “+”) is allowed. The
default, if time is not specified, is 02:00:00.

See Also

ctime(3c), getenv(3c), timezone(4) in a UNIX system reference manual

nl_langinfo(3c)

Name

nl_langinfo()—Language information.

ATMI C Function Reference 69

Synopsis

#include <nl_types._h>
#include <langinfo.h>

char *nl_langinfo (nl_item item);

Description

nl_langinfo() returns a pointer to a NULL-terminated string containing information relevant
to a particular language or cultural area defined in the programs locale. The manifest constant
names and values of item are defined by langinfo.h.

For example:
nl_langinfo (ABDAY_1);

returns a pointer to the string “Dim” if the identified language is French and a French locale is
correctly installed; or “sun” if the identified language is English.

A thread in a multithreaded application may issue a call to nl_langinfo() while running in any
context state, including TPINVALIDCONTEXT.

Diagnostics

If setlocale() has not been called successfully, or if langinfo() data for a supported
language is either not available or item is not defined therein, then nl_langinfo() returns a
pointer to the corresponding string in the C locale. In all locales, nl_langinfo() returns a
pointer to an empty string if item contains an invalid setting.

Notices

The array pointed to by the return value should not be modified by the program. Subsequent calls
to nl_langinfo() may overwrite the array.

See Also
setlocale(3c), strftime(3c), langinfo(5), nl_types(5)
rpc_sm_allocate, rpc_ss_allocate(3c)

Name

rpc_sm_allocate(), rpc_ss_allocate(Q—Allocates memory within the RPC stub
memory management scheme.

10 ATMI C Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Synopsis
#include <rpc/rpc.h>
idl_void _p_t rpc_sm_allocate(unsigned32 size, unsigned32 *status)
idl_void_p_t rpc_ss_allocate(unsigned32 size)

Description

Applications call rpc_sm_allocat3() to allocate memory within the RPC stub memory
management scheme. The input parameter, size, specifies in bytes, the size of memory to be
allocated. Before a call to this routine, the stub memory management environment must have
been established. For service code that is called from the server stub, the stub itself normally
establishes the necessary environment. When rpc_sm_allocate() is used by code that is not
called from the stub, the application must establish the required memory management
environment by calling rpc_sm_enable_allocate().

Specifically, if the parameters of a server stub include any pointers other than those used for
passing parameters by reference or the [enable_al locate] attribute is specified for the
operation in the ACS file, then the environment is automatically set up. Otherwise, the
environment must be set up by the application by calling rpc_sm_enable_allocate().

When the stub establishes the memory management environment, the stub itself frees any
memory allocated by rpc_sm_allocate(). The application can free such memory before
returning to the calling stub by calling rpc_sm_free().

When the application establishes the memory management environment, it must free any
memory allocated, either by calling rpc_sm_free() or by calling
rpc_sm_disable_allocate().

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s ok
Always returned. The return value is used to determine failure.

rpc_ss_allocate() is the exception-returning version of this function and has no status output
parameter. No exceptions are raised.

A thread in a multithreaded application may issue a call to rpc_sm_al locate() or
rpc_ss_allocate() while running in any context state, including TPINVALIDCONTEXT.

ATMI C Function Reference n

Return Values

Upon success, the routines return a pointer to the allocated memory. Note that in the SO standard
C environments, idl_void_p_t is defined as void * and in other environments it is defined as
char *.

If there is insufficient memory, the routines return a NULL pointer.

See Also

rpc_sm_disable_allocate, rpc_ss_disable_allocate(3c), rpc_sm_enable_allocate,
rpc_ss_enable_allocate(3c), rpc_sm_free, rpc_ss_free(3c)

Programming Oracle Tuxedo ATMI Applications Using TXRPC

rpc_sm_client_free, rpc_ss_client_free(3c)

Name

rpc_sm_client_free(), rpc_ss_client_free()—Frees memory returned from a client
stub.

Synopsis

#include <rpc/rpc.h>
void rpc_sm _client_free (idl_void_p_t node_to_free, unsigned32 *status)

void rpc_ss _client_free (idl_void_p_t node_to_free)

Description

12

The rpc_sm_client_free() routine releases memory allocated and returned from a client stub.
The input parameter, node_to_free, specifies a pointer to memory returned from a client stub.
Note that in the ISO standard C environments, idl_void_p_t is defined as void * and in other
environments is defined as char *.

This routine enables a routine to deallocate dynamically allocated memory returned by an RPC
call without knowledge of the memory management environment from which it was called.

Note that this routine is always called from client code, even if the code can is executing as part
of a server.

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

rpc_s_ok
Success.

rpc_ss_client_free() is the exception-returning version of this function and has no status
output parameter. No exceptions are raised.

A thread in a multithreaded application may issue a call to rpc_sm_client_free() or
rpc_ss_client_free() while running in any context state, including TP INVAL IDCONTEXT.

Return Values
None.

See Also
rpc_sm_free, rpc_ss_free(3c), rpc_sm_set client_alloc_free, rpc_ss_set_client_alloc_free(3c),
rpc_sm_swap_client_alloc_free, rpc_ss_swap_client_alloc_free(3c)

Programming Oracle Tuxedo ATMI Applications Using TXRPC

rpc_sm_disable_allocate, rpc_ss_disable_allocate(3c)

Name

rpc_sm _disable_allocate(), rpc_ss_disable_allocate()—Releases resources and
allocated memory within the stub memory management scheme.

Synopsis
#include <rpc/rpc.h>
void rpc_sm_disable_allocate(unsigned32 *status);

void rpc_ss_disable_allocate(void);

Description
The rpc_sm_disable_allocate() routine releases all resources acquired by a call to
rpc_sm_enable_allocate(), and any memory allocated by calls to rpc_sm_allocate()
after the call to rpc_sm_enable_allocate() was made.

The rpc_sm_enable_allocate() and rpc_sm_disable_al locate () routines must be used
in matching pairs. Calling this routine without a previous matching call to
rpc_sm_enable_al locate() results in unpredictable behavior.

ATMI C Function Reference 13

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s ok
Success.

rpc_ss_disable_allocate() is the exception-returning version of this function and has no
status output parameter. No exceptions are raised.

A thread in a multithreaded application may issue a call to rpc_sm_disable_allocate() or
rpc_ss_disable_allocate() while running in any context state, including
TPINVAL IDCONTEXT.

Return Values
None.

See Also
rpc_sm_allocate, rpc_ss_allocate(3c), rpc_sm_enable_allocate, rpc_ss_enable_allocate(3c)

Programming Oracle Tuxedo ATMI Applications Using TXRPC

rpc_sm_enable_allocate, rpc_ss_enable_allocate(3c)

Name

rpc_sm_enable_allocate(), rpc_ss_enable_allocate()—Enables the stub memory
management environment.

Synopsis
#include <rpc/rpc.h>
void rpc_sm_enable_allocate(unsigned32 *status)

void rpc_ss_enable_allocate(void)

Description

Applications can call rpc_sm_enable_al locate() to establish a stub memory management
environment in cases where one is not established by the stub itself. A stub memory management
environment must be established before any calls are made to rpc_sm_al locate(). For service
code called from the server stub, the stub memory management environment is normally
established by the stub itself. Code that is called from other contexts needs to call

14 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

rpc_sm_enable_allocate() before calling rpc_sm_allocate() (for example, if the service
code is called directly instead of from the stub).

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s_ok
Success.

rpc_s_no_memory
Insufficient memory available to set up necessary data structures.

rpc_ss_enable_allocate() is the exception-returning version of this function and has no
status output parameter. The following exceptions are raised by this routine:

rpc_X_no_memory
Insufficient memory available to set up necessary data structures.
A thread in a multithreaded application may issue a call to rpc_sm_enable_al locate() or
rpc_ss_enable_al locate() while running in any context state, including
TP INVALIDCONTEXT.

Return Values

None.

See Also

rpc_sm_allocate, rpc_ss_allocate(3c), rpc_sm_disable_allocate, rpc_ss_disable_allocate(3c)

Programming Oracle Tuxedo ATMI Applications Using TXRPC

rpc_sm_free, rpc_ss_free(3c)

rpc_sm_free, rpc_ss_free()—Frees memory allocated by the rpc_sm_allocate() routine.

Synopsis

#include <rpc/rpc.h>
void rpc_sm_free(idl_void_p_t node_to_free, unsigned32 *status)

void rpc_ss_free(idl_void_p_t node_to_free)

ATMI C Function Reference 15

Description

Applications call rpc_sm_free() to release memory allocated by rpc_sm_allocate(). The
input parameter, node_to_free, specifies a pointer to memory allocated by rpc_sm_al locate().
Note that in ISO standard C environments, idl_void_p_t is defined as void * and in other
environments is defined as char *.

When the stub allocates memory within the stub memory management environment, service code
called from the stub can also use rpc_sm_free() to release memory allocated by the stub.

Unpredictable behavior results if rpc_ss_free() is called with a pointer to memory not
allocated by rpc_sm_allocate() or memory allocated by rpc_sm_al locate(), but not the
first address of such an allocation.

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s ok
Success.

rpc_ss_free is the exception-returning version of this function and has no status output parameter.
No exceptions are raised.

A thread in a multithreaded application may issue a call to rpc_sm_free() or rpc_ss_free()
while running in any context state, including TPINVAL IDCONTEXT.

Return Values

None.

See Also

rpc_

Name

16

rpc_sm_allocate, rpc_ss_allocate(3c)

Programming Oracle Tuxedo ATMI Applications Using TXRPC

sm_set_client_alloc_free, rpc_ss_set_client_alloc_free(3c)

rpc_sm_set_client_alloc_free(), rpc_ss_set_client_alloc_free()—Sets the
memory allocation and freeing mechanisms used by the client stubs.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Synopsis

#include <rpc/rpc.h>

void rpc_sm_set_client_alloc_free(idl_void_p_t (*p_allocate)(unsigned long
size), void (*p_free) (idl_void _p_t ptr), unsigned32 *status)

void rpc_ss_set_client_alloc_free(idl_void_p_t (*p_allocate)(unsigned long
size), void (*p_free) (idl_void_p_t ptr))
Description

The rpc_sm_set_client_alloc_free() routine overrides the default routines that the client
stub uses to manage memory. The input parameters, p_al locate and p_free specify memory
allocator and free routines. The default memory management routines are 1ISO C malloc() and
free() except when the remote call occurs within server code in which case the memory
management routines must be rpc_ss_allocate() and rpc_ss_free().

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s_ok
Success.

rpc_s_no_memory
Insufficient memory available to set up necessary data structures.

rpc_ss_set_client_alloc_free is the exception-returning version of this function and has
no status output parameter. The following exceptions are raised by this routine:

rpc_x_no_memory
Insufficient memory available to set up necessary data structures.

A thread in a multithreaded application may issue a call to
rpc_sm_set_client_alloc_free() or rpc_ss_set_client_alloc_free() while running
in any context state, including TP INVAL IDCONTEXT.

Return Values
None.

See Also
rpc_sm_allocate, rpc_ss_allocate(3c), rpc_sm_free, rpc_ss_free(3c)

Programming Oracle Tuxedo ATMI Applications Using TXRPC

ATMI C Function Reference 11

rpc_sm_swap_client_alloc_free, rpc_ss_swap_client_alloc_free(3c)

Name

rpc_sm_swap_client_alloc_free(), rpc_ss_swap_client_alloc_free()—Exchanges
current memory allocation and freeing mechanism used by client stubs with one supplied by
client.

Synopsis

#include <rpc/rpc.h>

void rpc_sm_swap_client_alloc_free(idl_void_p_t (*p_allocate)(unsigned
long size),

void (*p_free) (idl_void_p_t ptr), idl_void p t
(**p_p_old_allocate)(unsigned long size),

void (**p_p_old _free)(idl_void_p_t ptr), unsigned32 *status)

void rpc_ss_swap_client_alloc_free(idl_void_p_t (*p_allocate)(unsigned
long size),

void (*p_free) (idl_void_p_t ptr), idl_void_p_t
(**p_p_old_allocate)(unsigned long size),

void (**p_p_old_free)(idl_void_p_t ptr))

Description

18

The rpc_sm_swap_client_alloc_free() routine exchanges the current allocate and free
mechanisms used by the client stubs for routines supplied by the caller. The input parameters,
p_allocate and p_free, specify new memory allocation and free routines. The output
parameters, p_p_old_allocate and p_p_old_free return the memory allocation and free
routines in use before the call to this routine.

When a callable routine is an RPC client, it may need to ensure which allocate and free routines
are used, despite the mechanism its caller had selected. This routine allows scoped replacement
of the allocation/free mechanism to allow this.

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s_ok
Success.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

rpc_s_ho_memory
Insufficient memory available to set up necessary data structures.

rpc_ss_swap_client_alloc_free is the exception-returning version of this function and has
no status output parameter. The following exceptions are raised by this routine:
rpc_X_no_memory

Insufficient memory available to set up necessary data structures.

A thread in a multithreaded application may issue a call to
rpc_sm _swap_client_alloc_free() or rpc_ss_swap_client_alloc_free() while
running in any context state, including TP INVAL IDCONTEXT.

Return Values
None.

See Also
rpc_sm_allocate, rpc_ss_allocate(3c), rpc_sm_free, rpc_ss_free(3c),
rpc_sm_set_client_alloc_free, rpc_ss_set client_alloc_free(3c)

Programming Oracle Tuxedo ATMI Applications Using TXRPC.

setlocale(3¢c)

Name
setlocale(D)—Modifies and queries a program’s locale.

Synopsis
#include <locale.h>
char *setlocale (int category, const char *locale);

Description

setlocale() selects the appropriate piece of the program’s locale as specified by the category
and locale arguments. The category argument may have the following values:

LC_CTYPE
LC_NUMERIC
LC_TIME
LC_COLLATE
LC_MONETARY

ATMI C Function Reference 19

Files

Note

LC_MESSAGES
LC_ALL

These names are defined in the 1ocale.h header file. For the Oracle Tuxedo ATMI system
compatibility functions, setlocale() allows only asingle locale for all categories. Setting any
category is treated the same as LC_ALL, which names the program’s entire locale.

A value of “C” for locale specifies the default environment.

A value of """ for 1ocale specifies that the locale should be taken from an environment variable.
The environment variable LANG is checked for a locale.

At program startup, the equivalent of
setlocale(LC_ALL, "C™)

is executed. This has the effect of initializing each category to the locale described by the
environment “C”.

If a pointer to a string is given for locale, setlocale() attempts to set the locale for all the
categories to locale. The locale must be a simple locale, consisting of a single locale. If
setlocale() fails to set the locale for any category, a NULL pointer is returned and the
program’s locale for all categories is not changed. Otherwise, locale is returned.

ANULL pointer for locale causes setlocale() to return the current locale associated with the
category. The program’s locale is not changed.

A thread in a multithreaded application may issue a call to setlocale() while running in any
context state, including TPINVALIDCONTEXT.

$TUXDIR/locale/C/LANGINFO - time and money database for the C locale
$TUXDIR/locale/locale/* - locale specific information for each
locale $TUXDIR/locale/C/*_CAT - text messages for the C locale

A composite locale is not supported. A composite locale is a string beginning with a “/”, followed
by the locale of each category, separated by a “/”.

See Also

80

mklanginfo(1)

ctime(3c), ctype(3c), getdate(3c), localeconv(3c), strftime(3c), strtod(3c),
printf(3S), environ(5) in a UNIX system reference manual

ATMI C Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

Introduction to the C Language Application-to-Transaction Monitor Interface

setURLEntityCacheDir(3c)

Name

setURLEntityCacheDir() - Specifies a Xerces class method for setting the directory where the
DTD, schema and Entity files are to be cached.

Synopsis
void setURLEntityCacheDir (const char* cachedir)

Description

setURLEntityCacheDir() is method called when caching is turned on and you want the DTD,
schema and Entity files to be cached to a specific directory. cachedir specifies the absolute path
to the location of the files.

If this method is not called and caching is turned on either by calling the method
setURLEntityCaching() or by not setting the environment variable, then the files are cached
in the current directory. This method is exclusively used in conjunction with the following two
Xerces objects:

o XercesDOMParser

e SAXparser

setURLEntityCaching(3c)

Name

setURLEntityCaching() - Specifies a Xerces class method for setting or unsetting DTD,
schema or Entity file caching for the XML parser.

Synopsis
void setURLEntityCaching (bool UseCache)

Description

setURLEntityCaching()is a method that caches the DTD, schema and Entity files by default.
It allows you to turn caching of the files on or off. UseCache is set to false if caching is to be
turned off and set to true if caching is to be turned on. This method is exclusively used in
conjunction with the following two Xerces objects:

o XercesDOMParser

ATMI C Function Reference 81

e SAXparser

strerror(3c)

Name
strerror()—Gets error message string.

Synopsis
#include <string.h>
char *strerror (int errnum);

Description

strerror maps the error number in errnum to an error message string, and returns a pointer to
that string. strerror uses the same set of error messages as perror. The returned string should
not be overwritten.

A thread in a multithreaded application may issue a call to strerror() while running in any
context state, including TPINVALIDCONTEXT.

See Also
perror(3) in a UNIX system reference manual

strftime(3c)

Name
strftime()—Converts date and time to string.

Synopsis

#include <time.h>

size_t *strftime (char *s, size_t maxsize, const char *format, const struct
tm *timeptr);

Description

strftime() places characters into the array pointed to by s as controlled by the string pointed
to by format. The format string consists of zero or more directives and ordinary characters. All

82 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

ordinary characters (including the terminating NULL character) are copied unchanged into the
array. For strftime(), no more than maxsize characters are placed into the array.

If fFormat is (char *)0, then the locale’s default format is used. The default format is the same as

e,

Each directive is replaced by appropriate characters as described in the following list. The

appropriate characters are determined by the LC_TIME category of the program’s locale and by
the values contained in the structure pointed to by timeptr.

Character

Description

%%

Same as %

%a

Locale’s abbreviated weekday name

%A

Locale’s full weekday name

%b

Locale’s abbreviated month name

%B

Locale’s full month name

%c

Locale’s appropriate date and time representation

%C

Locale’s date and time representation as produced by date(1)

%d

Day of month (01 -31)

%D

Date as %m/%d/%y

%e

Day of month (1-31; single digits are preceded by a blank)

%h

Locale’s abbreviated month name.

%H

Hour (00 - 23)

%l

Hour (01-12)

%J

Day number of year (001 - 366)

%m

Month number (01 -12)

%M

Minute (00 - 59)

%n

Same as \

ATMI C Function Reference

83

84

%p

Locale’s equivalent of either AM or PM

%r

Time as %1:%M:%S [AM|PM]

%R

Time as %H:%M

%S

Seconds (00 - 61), allows for leap seconds

%t

Insert a tab

%T

Time as %H:%M:%S

%U

Week number of year (00 - 53), Sunday is the first day of week 1

Y%w

Weekday number (0 - 6), Sunday =0

%W

Week number of year (00 - 53), Monday is the first day of week 1

%X

Locale’s appropriate date representation

%X

Locale’s appropriate time representation

thy

Year within century (00 -99)

%Y

Year as ccyy (for example, 1986)

%Z

Time zone name or no characters if no time zone exists

The difference between %U and %W lies in which day is counted as the first of the week. Week
number 01 is the first week in January starting with a Sunday for %U or a Monday for %w. Week
number 00 contains those days before the first Sunday or Monday in January for %U and %W,
respectively.

If the total number of resulting characters including the terminating NULL character is not more
than maxsize, strftime(), returns the number of characters placed into the array pointed to by
s not including the terminating NULL character. Otherwise, zero is returned and the contents of

the array are indeterminate.

A thread in a multithreaded application may issue a call to strftime() while running in any

context state, including TPINVALIDCONTEXT.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Selecting the Output Language

By default, the output of strftime(), appears in U.S. English. The user can request that the
output of strftime() be in a specific language by setting the locale for category LC_TIME
in setlocale()

Time Zone
The time zone is taken from the environment variable Tz. See ctime(3c) for a description of Tz.

Examples

The example illustrates the use of strftime(). It shows what the string in str would look like
if the structure pointed to by tmptr contains the values corresponding to Thursday, August 28,
1986 at 12:44:36 in New Jersey.

strftime (str, strsize, "%A %b %d %j", tmptr)

This results in str containing "Thursday Aug 28 240".

Files

$TUXDIR/1ocale/locale/LANGINFO—file containing compiled locale-specific date and time
information

See Also
mklanginfo(1), setlocale(3c)

tpabort(3c)

Name
tpabort()—Routine for aborting current transaction.

Synopsis
#include <atmi.h>
int tpabort(long flags)

Description

tpabort() signifies the abnormal end of a transaction. When this call returns, all changes made
to resources during the transaction are undone. Like tpcommit(), this function can be called only
by the initiator of a transaction. Participants (that is, service routines) can express their desire to
have a transaction aborted by calling tpreturn() with TPFAIL.

ATMI C Function Reference 85

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html

If tpabort() is called while call descriptors exist for outstanding replies, then upon return from
the function, the transaction is aborted and those descriptors associated with the caller’s
transaction are no longer valid. Call descriptors not associated with the caller’s transaction remain
valid.

For each open connection to a conversational server in transaction mode, tpabort() will send a
TPEV_DISCONIMM event to the server, whether or not the server has control of a connection.
Connections opened before tpbegin() or with the TPNOTRAN flag (that is, not in transaction
mode) are not affected.

Currently, the sole argument to the tpabort()function, flags, is reserved for future use and
should be set to 0.

In a multithreaded application, a thread in the TP INVAL IDCONTEXT state is not allowed to issue a
call to tpabort().

Return Values

Upon failure, tpabort() returns -1 and sets tperrno to indicate the error condition.

Errors

86

Upon failure, tpabort() sets tperrno to one of the following values:

[TPEINVAL]
flags is not equal to 0. The caller’s transaction is not affected.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction was partially
committed and partially aborted.

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could have been
heuristically completed.

[TPEPROTO]
tpabort() was called improperly (for example, by a participant).

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Notices

When using tpbegin(), tpcommit(), and tpabort() to delineate an Oracle Tuxedo ATMI
system transaction, it is important to remember that only the work done by a resource manager
that meets the XA interface (and is linked to the caller appropriately) has transactional properties.
All other operations performed in a transaction are not affected by either tpcommit() or
tpabort().

See Also
tpbegin(3c), tpcommit(3c), tpgetlev(3c)

tpacall(3c)

Name
tpacal 1 (Q—Routine for sending a service request.

Synopsis

#include <atmi.h>
int tpacall(char *svc, char *data, long len, long flags)

Description

tpacal 1 () sends a request message to the service named by svc. The request is sent out at the
priority defined for svc unless overridden by a previous call to tpspri (). If datais non-NULL,
it must point to a buffer previously allocated by tpalloc() and lIen should specify the amount
of data in the buffer that should be sent. Note that if data points to a buffer of a type that does

not require a length to be specified, (for example, an FML fielded buffer), then 1en is ignored (and
may be 0). If data is NULL, len is ignored and a request is sent with no data portion. The type
and subtype of data must match one of the types and subtypes recognized by svc. Note that for
each request sent while in transaction mode, a corresponding reply must ultimately be received.

The following is a list of valid flags:

TPNOTRAN
If the caller is in transaction mode and this flag is set, then when svc is invoked, it is not
performed on behalf of the caller’s transaction. If svc belongs to a server that does not
support transactions, then this flag must be set when the caller is in transaction mode. Note
that svc may still be invoked in transaction mode but it will not be the same transaction:
a svc may have as a configuration attribute that it is automatically invoked in transaction
mode. A caller in transaction mode that sets this flag is still subject to the transaction

ATMI C Function Reference 87

timeout (and no other). If a service fails that was invoked with this flag, the caller’s
transaction is not affected.

TPNOREPLY
Informs tpacal 1 () that a reply is not expected. When TPNOREPLY is set, the function
returns 0 on success, where 0 is an invalid descriptor. When the caller is in transaction
mode, this setting cannot be used unless TPNOTRAN is also set.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full). When TPNOBLOCK is not specified and a
blocking condition exists, the caller blocks until the condition subsides or a timeout occurs
(either transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued.

In a multithreaded application, a thread in the TPINVAL IDCONTEXT state is not allowed to issue a
call to tpacall().

Return Values

Upon successful completion, tpacal 1 () returns a descriptor that can be used to receive the reply
of the request sent.

Upon failure, tpacal 1 () returns a value of -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpacal 1 () sets tperrno to one of the following values. (Unless otherwise noted,
failure does not affect the caller’s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, svc is NULL, data does not point to space
allocated with tpal loc(), or flags are invalid).

[TPENOENT]
Cannot send to svc because it does not exist or is a conversational service.

88 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPEITYPE]
The type and subtype of data is not one of the allowed types and subtypes that svc
accepts.

[TPELIMIT]
The caller’s request was not sent because the maximum number of outstanding
asynchronous requests has been reached.

[TPETRAN]
svc belongs to a server that does not support transactions and TPNOTRAN was not set.

[TPETIME]
This error code indicates that either a timeout has occurred or tpacal 1 () has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, tpacal 1 () with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpacal 1 () was called improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

ATMI C Function Reference 89

[TPEOS]
An operating system error has occurred. If a message queue on a remote location is filled,
TPEOS may be returned even if tpacal 1 () returned successfully.

See Also
tpalloc(3c), tpcall(3c), tpcancel (3c), tpgetrply(3c), tpgprio(3c), tpsprio(3c)

tpadmcall(3c)

Name
tpadmcal 1 Q—Administers unbooted application.

Synopsis
#include <atmi.h>
#include <fml32.h>
#include <tpadm.h>

int tpadmcall (FBFR32 *inbuf, FBFR32 **outbuf, long flags)

Description

tpadmcal 1 () is used to retrieve and update attributes of an unbooted application. It may also be
used in an active application to perform direct retrievals of a limited set of attributes without
requiring communication to an external process. This function provides sufficient capability such
that complete system configuration and administration can take place through system provided
interface routines.

inbuf is a pointer to an FML32 buffer previously allocated with tpalloc() that contains the
desired administrative operation and its parameters.

outbuf is the address of a pointer to the FML32 buffer that should contain the results. outbuf
must point to an FML32 buffer originally allocated by tpalloc(). If the same buffer is to be
used for both sending and receiving, outbuf should be set to the address of inbuf.

Currently, tpadmcal 1 ()’s last argument, Flags, is reserved for future use and must be set to 0.

MIB(5) should be consulted for generic information on construction of administrative requests.
TM_MIB(5) and APPQ_MIB(5) should be consulted for information on the classes that are
accessible through tpadmcal 1 ().

There are four modes in which calls to tpadmcal 1 () can be made.

90 ATMI C Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Mode 1: Unbooted, Unconfigured Application:
The caller is assumed to be the administrator of the application. The only operations
permitted are to SET a NEW T_DOMAIN class object, thus defining an initial
configuration for the application, and to GET and SET objects of the classes defined in
APPQ_MIBQ).

Mode 2: Unbooted, Configured Application:
The caller is assigned administrator or other privileges based on a comparison of their
UID/GID to that defined in the configuration for the administrator on the local system.
The caller may GET and SET any attributes for any class in TM_MIB() and APPQ_MIB()
for which they have the appropriate permissions. Note that some classes contain only
attributes that are inaccessible in an unbooted application and attempts to access these
classes will fail.

Mode 3: Booted Application, Unattached Process:
The caller is assigned administrator or other privileges based on a comparison of their
UID/GID to that defined in the configuration for the administrator on the local system.
The caller may GET any attributes for any class in TM_MIB() for which they have the
appropriate permissions. Similarly, the caller may GET and SET any attributes for any
class in APPQ_MIB(), subject to class-specific restrictions. Attributes accessible only
while ACTIVE will not be returned.

Mode 4: Booted Application, Attached Process:
Permissions are determined from the authentication key assigned at tpinit() time. The
caller may GET any attributes for any class in TM_MI1B() for which they have the
appropriate permissions. Additionally, the caller may GET and SET any attributes for any
class in APPQ_MIB(Q), subject to class-specific restrictions.

Access to and update of binary Oracle Tuxedo ATMI system application configuration files
through this interface routine is controlled through the use of UNIX system permissions on
directory names and filenames.

In a multithreaded application, a thread in the TP INVAL IDCONTEXT state is not allowed to issue a
call to tpadmcal1().

Environment Variables
The following environment variables must be set prior to calling this routine:

TUXCONFIG
Name of the file or device on which the binary Oracle Tuxedo system configuration file
for this application is or should be stored.

ATMI C Function Reference 91

Notices

Use of the TA_OCCURS attribute on GET requests is not supported when using tpadmcall1 ().

GETNEXT requests are not supported when using tpadmcal1().

Return Values
tpadmcal 1 () returns O on success and -1 on failure.

Errors

Intero

92

Upon failure, tpadmcal 1 () sets tperrno to one of the following values:

Note: Except for TPEINVAL, the caller’s output buffer, outbuf, will be modified to include
TA_ERROR, TA_STATUS, and possibly TA_BADFLD attributes to further qualify the error
condition. See MI1B(5), TM_MIB(5), and APPQ_MIB(5) for an explanation of possible
error codes returned in this fashion.

[TPEINVAL]
Invalid arguments were specified. The flags value is invalid or inbuf or outbuf are not
pointers to typed buffers of type “FML32.”

[TPEMIB]
The administrative request failed. outbuf is updated and returned to the caller with
FML32 fields indicating the cause of the error as is discussed in MIB(5) and TM_MIB(5).

[TPEPROTO]
tpadmcal 1 () was called improperly.

[TPERELEASE]
tpadmcal 1 () was called with the TUXCONFIG environment variable pointing to a
different release version configuration file.

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to
userlog().

perability
This interface supports access and update to the local configuration file and bulletin board only;
therefore, there are no interoperability concerns.

ATMI C Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Portability

This interface is available only on UNIX system sites running Oracle Tuxedo ATMI release 5.0
or later.

Files
The following library files are required:

${TUXDIR}/Iib/libtmib.a, ${TUXDIR}/lib/libgm.a
${TUXDIR}/lib/libtmib.so.<rel>, ${TUXDIR}/I1ib/libgm.so.<rel>
${TUXDIR}/lib/libtmib. lib, ${TUXDIR}/Iib/libgm.lib

The libraries must be linked manually when using buildclient. The user must use:
-L${TUXDIR}/1ib -1tmid -Igm
See Also

ACL_MIB(5), APPQ_MIB(5), EVENT_MIB(5), MIB(5), TM_MIB(5), WS_MIB(5)
Setting Up an Oracle Tuxedo Application
Administering an Oracle Tuxedo Application at Run Time

tpadvertise(3c)

Name
tpadvertise(Q)—Routine for advertising a service name.

Synopsis
#include <atmi._h>
int tpadvertise(char *svcname, void (*func)(TPSVCINFO *))

Description

tpadvertise() allows a server to advertise the services that it offers. By default, a server’s
services are advertised when it is booted and unadvertised when it is shutdown.

All servers belonging to a Multiple Server, Single Queue (MSSQ) set must offer the same set of
services. These routines enforce this rule by affecting the advertisements of all servers sharing an
MSSQ set.

tpadvertise() advertises svcname for the server (or the set of servers sharing the caller’s
MSSQ set). svcname should be 127 characters or less, but cannot be NULL or the NULL string
(“). (See *SERVICES section of UBBCONFIG(5).)func is the address of an Oracle Tuxedo

ATMI C Function Reference 93

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

ATMI system service function. This function will be invoked whenever a request for svcname is
received by the server. func cannot be NULL. Explicitly specified function names (see
servopts(5)) can be up to 128 characters long. Names longer than 127 characters are accepted
and truncated to 127 characters. Users should make sure that truncated names do not match other
service names.

If svcname is already advertised for the server and func matches its current function, then
tpadvertise() returns success (this includes truncated names that match already advertised
names). However, if svcname is already advertised for the server but func does not match its
current function, then an error is returned (this can happen if truncated names match already
advertised names).

Service names starting with dot (.) are reserved for administrative services. An error will be
returned if an application attempts to advertise one of these services.

Return Values

Upon failure, tpadvertise() returns -1 and sets tperrno to indicate the error condition.

Errors

94

Upon failure, tpadvertise() sets tperrno to one of the following values:

[TPEINVAL]
svcname is NULL or the NULL string (“”),or begins with a “.” or func is NULL.

[TPELIMIT]
svcname cannot be advertised because of space limitations. (See MAXSERVICES in the
RESOURCES section of UBBCONFI1G(5).)

[TPEMATCH]
svcname is already advertised for the server but with a function other than func. Although
the function fails, svcname remains advertised with its current function (that is, func does
not replace the current function).

[TPEPROTO]
tpadvertise() was called in an improper context (for example, by a client).

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.

ATMI C Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

See Also
tpservice(3c), tpunadvertise(3c)

tpalloc(3c)

Name
tpal loc(Q—Routine for allocating typed buffers.

Synopsis
#include <atmi.h>
char * tpalloc(char *type, char *subtype, long size)

Description

tpalloc() returns a pointer to a buffer of type type. Depending on the type of buffer, both
subtype and size are optional. The Oracle Tuxedo ATMI system provides a variety of typed
buffers, and applications are free to add their own buffer types. Consult tuxtypes(5) for more
details.

If subtype is non-NULL in tmtype_sw for a particular buffer type, then subtype must be
specified when tpalloc() is called. The allocated buffer will be at least as large as the larger of
size and dfltsize, where dfltsize is the default buffer size specified in tmtype_sw for the
particular buffer type. For buffer type STRING the minimum is 512 bytes; for buffer types FML
and VIEW the minimum is 1024 bytes.

Note that only the first eight bytes of type and the first 16 bytes of subtype are significant.

Because some buffer types require initialization before they can be used, tpalloc() initializes
a buffer (in an Oracle Tuxedo ATMI system-specific manner) after it is allocated and before it is
returned. Thus, the buffer returned to the caller is ready for use. Note that unless the initialization
routine cleared the buffer, the buffer is not initialized to zeros by tpallocQ).

A thread in a multithreaded application may issue a call to tpal loc() while running in any
context state, including TPINVALIDCONTEXT.

Return Values

Upon successful completion, tpalloc() returns a pointer to a buffer of the appropriate type
aligned on a long word; otherwise, it returns NULL and sets tperrno to indicate the condition.

ATMI C Function Reference 95

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Errors
Upon failure, tpalloc() sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, type is NULL).

[TPENOENT]
No entry in tmtype_sw matches type and, if non-NULL, subtype.

[TPEPROTO]
tpal loc() was called improperly.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.
Usage
If buffer initialization fails, the allocated buffer is freed and tpalloc() fails returning NULL.

This function should not be used in concert with malloc(), realloc(), or free() inthe C
library (for example, a buffer allocated with tpalloc() should not be freed with free()).

Two buffer types are supported by any compliant implementation of the Oracle Tuxedo ATMI
system extension. Details are in the Introduction to the C Language Application-to-Transaction
Monitor Interface.

See Also
tpfree(3c), tprealloc(3c), tptypes(3c)

tpappthrinit(3c)

Name
tpappthrinit() - Routine for creating and initializing a new Tuxedo context in an
application-created server thread

Synopsis

#include <atmi._h>
int tpappthrinit(TPINIT *tpthrinfo);

96 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Description

tpappthrinit() creates a new Tuxedo context in an application-created server thread. The
context created by tpappthrinit() connects to the domain that the application server is in. It
also sets the context of current application thread to the newly created context.

Before an application-created thread in a Tuxedo server process can use Tuxedo ATMI system
communication or transaction routines, it first must call tpappthrinit(), or associate itself
with a valid context using tpsetctxt().

After tpappthrinit() successfully returns, the application-created server thread can initiate
service requests and define transactions.

Note: The application thread cannot call tpreturn() or tpforward(). The application thread
may send, but cannot receive unsolicited messages.

After tpappthrinit() successfully returns, the application-created server thread can get the
current context by calling tpgetctxt() and pass it as a tpsetctxt() parameter called by
another application-created server thread to associate itself to the context.

Note: It is not allowed to set the context created by tpappthrinit() in service routine.

The tpappthrinit() argument, tpthrinfo, is a pointer to a TPINIT buffer type and a
NULL subtype. TPINIT is a buffer type is defined in the atmi . h header file. The buffer must be
allocated via tpal loc() prior to calling tpappthrinit(). It should be released using
tpfree() after calling tpappthrinit().

Please refer to the tpinit() routine for description of TPINIT structure. The tpthrinfo
members usrname, data, and datalen are used to pass authentication information to
tpappthrinit(). The tpthrinfo members cltname, grpname and passwd are currently not
used and must be set to a 0-length string. The TPINIT member flags is also not used by
tpappthrinit().

tpappthrinit() canonly be called in an application created server-thread. The server must be
built using the buildserver -t option.

Note: tpappthrinit() is not allowed in service routines.
Return Values
Upon successfully creating and initializing a Tuxedo context, tpappthrinit() returns 0.

Upon failure, it leaves the calling thread in TPNULLCONTEXT, returns -1, and sets tperrno to
indicate the error condition.

ATMI C Function Reference 97

Errors
Upon failure, tpappthrinit() sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were specified. For example: tpthrinfo is non-NULL but does not
point to a TPINIT typed buffer.

[TPEPROTO]
tpappthrinit() has been called improperly. For example: it is called in client program,
or service routine, or the server is not built with the bui ldserver -t option.

[TPENOENT]
The context cannot be created due to space limitations.

[TPEPERM]
The context cannot be created because of authentication failure.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.

See Also
tpappthrterm(3c), tpinit(3c), tpterm(3c),tpgetctxt(3c), tpsetctxt(3c)

Programming a Multithreaded and Multicontexted ATMI application

tpappthrterm(3c)

Name

tpappthrterm() - Routine for terminating Tuxedo context created by tpappthrinit() inan
application-created server thread.

Synopsis
#include<atmi .h>
int tpappthrterm(void);

Description

tpappthrterm() removes the current Tuxedo context, and sets the context of a current
application-created server thread to TPNULLCONTEXT. If the application thread is in transaction

98 ATMI C Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/pgc/pgthr.html

Introduction to the C Language Application-to-Transaction Monitor Interface

mode, then the transaction is rolled back. When tpappthrterm() returns successfully, the caller
can no longer perform most Tuxedo ATMI operations. Any outstanding conversations are
immediately disconnected.

tpappthrterm() can only be used to terminated a context which is created by
tpappthrinit(), and it can only be invoked in an application-created server thread, the server
must be built using the bui Idserver -t option .

Notes: tpappthrterm() is not allowed in service routine, or in application-created server
thread which is currently associated with a server-dispatched context.
It is important to avoid calling tpappthrterm() on a context while other application
created server-threads are still working on that context.
Return Values

Upon successfully terminating a Tuxedo context, tpappthrterm()returns 0 and sets current
context to TPNULLCONTEXT.

Upon failure, tpappthrterm() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpappthrterm() sets tperrno to one of the following values:

[TPEPROTO]
tpappthrterm() has been called improperly. For example, it is called in client program,
or service routine, or it is called in an application-created server thread which is currently
associated with a server-dispatched context.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.

See Also
tpappthrinit(3c), tpinit(3c), tpgetctxt(3c), tpsetctxt(3c), tpterm(3c)

Programming a Multithreaded and Multicontexted ATMI application

ATMI C Function Reference 99

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/pgc/pgthr.html

tpbegin(3c)

Name

tpbegin()—Routine for beginning a transaction.

Synopsis

Descr

#include <atmi.h>

int tpbegin(unsigned long timeout, long flags)

iption

A transaction in the Oracle Tuxedo ATMI system is used to define a single logical unit of work
that either wholly succeeds or has no effect whatsoever. A transaction allows work being
performed in many processes, at possibly different sites, to be treated as an atomic unit of work.
The initiator of a transaction uses tpbegin() and either tpcommit() or tpabort() to delineate
the operations within a transaction. Once tpbegin() is called, communication with any other
program can place the latter (of necessity, a server) in “transaction mode” (that is, the server’s
work becomes part of the transaction). Programs that join a transaction are called participants. A
transaction always has one initiator and can have several participants. Only the initiator of a
transaction can call tpcommit() or tpabort(). Participants can influence the outcome of a
transaction by the return values (rvals) they use when they call tpreturn(). Once in transaction

mode, any service requests made to servers are processed on behalf of the transaction (unless the
requester explicitly specifies otherwise).

Note that if a program starts a transaction while it has any open connections that it initiated to
conversational servers, these connections will not be upgraded to transaction mode. It is as if the
TPNOTRAN flag had been specified on the tpconnect() call.

tpbegin()’s first argument, timeout, specifies that the transaction should be allowed at least
timeout seconds before timing out. Once a transaction times out it must be marked abort-only.
If timeout is 0, then the transaction is given the maximum number of seconds allowed by the

system before timing out (that is, the timeout value equals the maximum value for an unsigned
long as defined by the system).

Currently, tpbegin()’s second argument, flags, is reserved for future use and must be set to 0.

In a multithreaded application, a thread in the TPINVAL IDCONTEXT state is not allowed to issue a
call to tpbegin().

Return Values

100

Upon failure, tpbegin() returns -1 and sets tperrno to indicate the error condition.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Errors
Upon failure, tpbegin() sets tperrno to one of the following values:

[TPEINVAL]
flags is not equal to 0.

[TPETRAN]
The caller cannot be placed in transaction mode because an error occurred starting the
transaction.

[TPEPROTO]
tpbegin() was called in an improper context (for example, the caller is already in
transaction mode).

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.

Notices

When using tpbegin(), tpcommit(), and tpabort() to delineate an Oracle Tuxedo ATMI
system transaction, it is important to remember that only the work done by a resource manager
that meets the XA interface (and is linked to the caller appropriately) has transactional properties.
All other operations performed in a transaction are not affected by either tpcommit() or
tpabort(). See bui ldserver () for details on linking resource managers that meet the XA
interface into a server such that operations performed by that resource manager are part of an
Oracle Tuxedo ATMI system transaction.

See Also
tpabort(3c), tpcommit(3c), tpgetlev(3c), tpscmt(3c)

tpbroadcast(3c)

Name
tpbroadcast()—Routine to broadcast notification by name.

ATMI C Function Reference 101

Synopsis

#include <atmi.h>

int tpbroadcast(char *Imid, char *usrname, char *cltname,
char *data, long len, long flags)

Description

102

tpbroadcast() allows aclient or server to send unsolicited messages to registered clients within
the system. The target client set consists of those clients matching identifiers passed to
tpbroadcast(). Wildcards can be used in specifying identifiers.

Imid, usrname, and cltname are logical identifiers used to select the target client set. A NULL
value for any argument constitutes a wildcard for that argument. A wildcard argument matches
all client identifiers for that field. A 0-length string for any argument matches only 0-length client
identifiers. Each identifier must meet the size restrictions defined for the system to be considered
valid, that is, each identifier must be between 0 and MAXTIDENT characters in length.

The data portion of the request is pointed to by data, a buffer previously allocated by
tpalloc(). len specifies how much of data to send. Note that if data points to a buffer type
that does not require a length to be specified (for example, an FML fielded buffer), then 1en is
ignored (and may be 0). Also, data may be NULL, in which case len is ignored. The buffer
passes through the typed buffer switch routines just as any other outgoing or incoming message
would; for example, encode/decode are performed automatically.

The following is a list of valid flags:

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full).

TPNOT IME
This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. Upon successful return from tpbroadcast(), the message has been delivered
to the system for forwarding to the selected clients. tpbroadcast() does not wait for the
message to be delivered to each selected client.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to
issue a call to tpbroadcast().

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Return Values
Upon failure, tpbroadcast() returns -1 and sets tperrno to indicate the error condition.

Errors

Upon failure, tpbroadcast()sends no broadcast messages to application clients and sets
tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, identifiers too long or invalid flags). Note that
use of an illegal LM1D will cause tpbroadcast() to fail and return TPEINVAL. However,
non-existent user or client names will simply successfully broadcast to no one.

[TPETIME]
A blocking timeout occurred. (A blocking timeout cannot occur if TPNOBLOCK and/or
TPNOT IME is specified.)

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpbroadcast() was called improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.

Portability

The interfaces described in tpnotify(3c) are supported on native site UNIX-based processors.
In addition, the routines tpbroadcast() and tpchkunsol () as well as the function
tpsetunsol () are supported on UNIX and MS-DOS workstation processors.

Usage

Clients that select signal-based notification may not be signal-able by the system due to signal
restrictions. When this occurs, the system generates a log message that it is switching notification
for the selected client to dip-in and the client is notified then and thereafter via dip-in notification.

ATMI C Function Reference 103

(See the description of the RESOURCES NOTIFY parameter in UBBCONFIG() for a detailed
discussion of notification methods.)

Because signaling of clients is always done by the system, the behavior of notification is always
consistent, regardless of where the originating notification call is made. Therefore to use
signal-based notification:

e A native client must be running as an application administrator

e A Workstation client is not required to be running as the application administrator

The ID for the application administrator is identified as part of the configuration for the
application.

If signal-based notification is selected for a client, then certain ATMI calls can fail, returning
TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not specified. See
UBBCONFIG(5) and tpinit(3c) for more information on notification method selection.

See Also
tpalloc(3c), tpinit(3c), tpnotify(3c), tpterm(3c), UBBCONFIG(5)

tpcall(3c)

Name
tpcal 1 ()—Routine for sending service request and awaiting its reply.

Synopsis
int tpcall(char *svc, char *idata, long ilen, char **odata, long \
*olen, long flags)

Description

tpcal 1) sends a request and synchronously awaits its reply. A call to this function is the same
as calling tpacal 1) immediately followed by tpgetrply(). tpcal 1 () sends a request to the
service named by svc. The request is sent out at the priority defined for svc unless overridden
by a previous call to tpspri (). The data portion of a request is pointed to by idata, a buffer
previously allocated by tpalloc(). ilen specifies how much of idata to send. Note that if
idata points to a buffer of a type that does not require a length to be specified, (for example, an
FML fielded buffer), then ilen is ignored (and may be 0). Also, idata may be NULL, in which
case ilen is ignored. The type and subtype of idata must match one of the types and subtypes
recognized by svc.

104 ATMI C Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Note: Ifapplication needs to use an XML buffer as the send buffer in a tpcal 1), the sendlen
parameter must be specified to accurate length, which is string length of the XML buffer
+1.

odata is the address of a pointer to the buffer where a reply is read into, and olen points to the
length of that reply. *odata must point to a buffer originally allocated by tpal loc(). If the same
buffer is to be used for both sending and receiving, odata should be set to the address of idata.
FML and FML32 buffers often assume a minimum size of 4096 bytes; if the reply is larger than
4096, the size of the buffer is increased to a size large enough to accommodate the data being
returned. Also, if idata and *odata were equal when tpcal 1 () was invoked, and *odata is
changed, then idata no longer points to a valid address. Using the old address can lead to data
corruption or process exceptions. As of release 6.4, the default allocation for buffers is 1024
bytes. Also, historical information is maintained on recently used buffers, allowing a buffer of
optimal size to be reused as a return buffer.

Buffers on the sending side that may be only partially filled (for example, FML or STRING
buffers) will have only the amount that is used send. The system may then enlarge the received
data size by some arbitrary amount. This means that the receiver may receive a buffer that is
smaller than what was originally allocated by the sender, yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably changes, as the
system swaps buffers around internally. To determine whether (and how much) a reply buffer
changed in size, compare its total size before tpgetrply() was issued with *Ien. See
“Introduction to the C Language Application-to-Transaction Monitor Interface” for more
information about buffer management.

If *olen is 0 upon return, then the reply has no data portion and neither *odata nor the buffer it
points to were modified. It is an error for *odata or olen to be NULL.

The following is a list of valid flags:

TPNOTRAN
If the caller is in transaction mode and this flag is set, then when svc is invoked, it is not
performed on behalf of the caller’s transaction. Note that svc may still be invoked in
transaction mode but it will not be the same transaction: a svc may have as a configuration
attribute that it is automatically invoked in transaction mode. A caller in transaction mode
that sets this flag is still subject to the transaction timeout (and no other). If a service fails
that was invoked with this flag, the caller’s transaction is not affected.

TPNOCHANGE
By default, if a buffer is received that differs in type from the buffer pointed to by *odata,
then *odata’s buffer type changes to the received buffer’s type so long as the receiver
recognizes the incoming buffer type. When this flag is set, the type of the buffer pointed

ATMI C Function Reference 105

to by *odata is not allowed to change. That is, the type and subtype of the received buffer
must match the type and subtype of the buffer pointed to by *odata.

TPNOBLOCK

The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full). Note that this flag applies only to the send
portion of tpcal 1(): the function may block waiting for the reply. When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the condition subsides
or a timeout occurs (either transaction or blocking timeout).

TPNOT IME

This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. However, if the caller is in transaction mode, this flag has no effect;
it is subject to the transaction timeout limit. Transaction timeouts may still occur.

TPNOCOPY

This flag is only available for Exalogic and used when the Use of Shared Memory for Inter
Process Communication feature is enabled (see SHMQ option in UBBCONFIG(5)). It
indicates Tuxedo not making safe copy for request buffer during message sending
process, thus saving cost of copying large buffers. However, in the event that tpcall1 ()
fails, causing the caller application unable to access the request buffer anymore, it is
recommended you call tpfree() to release the request buffer. If Use of Shared Memory
for Inter Process Communication is not enabled, this flag has no effect.

TPSIGRSTRT

If a signal interrupts any underlying system calls, then the interrupted system call is
reissued.

In a multithreaded application, a thread in the TP INVAL IDCONTEXT state is not allowed to issue a

call to tpcall Q).

Return Values

Upon successful return from tpcal 1) or upon return where tperrno is set to TPESVCFAIL,

tpurcode() contains an application defined value that was sent as part of tpreturn().

Upon failure, tpcal 1 () returns -1 and sets tperrno to indicate the error condition. If a call fails

with a particular tperrno value, a subsequent call to tperrordetai 1 (), with no intermediate
ATMI calls, may provide more detailed information about the generated error. Refer to the
tperrordetail (3c) reference page for more information.

Errors

Upon failure, tpcal 1) sets tperrno to one of the following values. (Unless otherwise noted,
failure does not affect the caller’s transaction, if one exists.)

106

ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPEINVAL]
Invalid arguments were given (for example, svc is NULL or flags are invalid).

[TPENOENT]
Cannot send to svc because it does not exist, or it is a conversational service, or the name
provided begins with a dot (.).

[TPEITYPE]
The type and sub