Oracle® Tuxedo
Using Security in ATMI Applications
12c Release 1 (12.1.1)

June 2012

ORACLE

Oracle Tuxedo Using Security in ATMI Applications, 12c Release 1 (12.1.1)
Copyright © 1996, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. Introducing ATMI Security

What SeCUrity MBaNSot e e 1-2
SECUNtY PlUG-INS. . oo 1-3
ATMI Security Capabilities 1-4
Operating System (OS) SeCUMLYot i e et 1-6
Authentication. 1-7
Authentication Plug-in Architecture i 1-7
Understanding Delegated Trust Authentication. 1-7
Establishing aSessionooi i e e e 1-8
Getting Authorization and Auditing Tokens, 1-10
Replacing Client Tokenswith Server Tokensccoiii it 1-10
Implementing Custom Authentication.cciiiiiiiiinen... 1-12
AULNOMZALION. 1-12
Authorization Plug-in Architecture. L 1-12
How the Authorization Plug-inWorks. i, 1-14
Default AUtNOMZation. 1-15

Custom AUthOriZation. 1-16
Implementing Custom Authorization, 1-17
AUAItING. . .o e 1-18
Auditing Plug-in Architecture. 1-18
How the Auditing Plug-inWorks. i 1-19
Default Auditing.o 1-20

Using Security in ATMI Applications iii

CustomM AUAITING . . o ot 1-20

Implementing Custom Auditing 1-21
Link-Level ENCryption. 1-22
HOW LLEWOIKS. . . oo e 1-22
Encryption Key Size Negotiationt 1-23
Determining Min-Max Values. 1-23
FindingaCommonKey Size.. ...t 1-23
Backward Compatibility of LLE. 1-24
Interoperating with Release 6.5 Oracle Tuxedo Software. 1-24
Interoperating with Pre-Release 6.5 Oracle Tuxedo Software 1-25
WSL/WSH Connection Timeout During Initidization. 1-26
LLE Installationand Licensing.o oot 1-26
SSL ENCIYPLION .ot 1-27
How the SSL Protocol WOrks. 1-28
Requirementsfor Using the SSL Protocol 1-28
Encryption Key Size Negotiation 1-29
Determining Min-Max Values. 1-29
FindingaCommonKey Size.. ...t 1-30
Backward Compatibility of SSL........ ... i 1-31
WSL/WSH Connection Timeout During Initidization. 1-31
Supported Cipher SUItESo 1-32
SSL Installationand Licensingo v e 1-32
Public Key SECUNity oo 1-33
PKCS-7Complianto 1-33
Supported Algorithms for Public Key Security 1-34
PublicKey Algorithms 1-34

Digital Signature Algorithms.o i 1-34
Symmetric Key Algorithms. i 1-35

Using Security in ATMI Applications

Message Digest Algorithms. 1-35

Message-based Digital Signature. 1-36
Digital CertifiCates. 1-38
Certification Authority 1-38
Certificale REPOSITONES oot 1-39
Public-Key Infrastructure 1-39

Message-based ENCryption. 1-41

Public Key Implementation 1-43
Public Key Initiglization 1-43
Key Management. 1-44
Certificate LOOKUP. . . . oo ettt e e 1-44
Certificate Parsingo ot e 1-44
Certificate Validation. i 1-44
Proof Material Mappingcoovn it 1-44
Implementing Custom Public Key Security o ..., 1-44
Default Public Key Implementation it 1-45

Default Authentication and Authorization, 1-45
Client Namingo e 1-48

User-Client NamesS.ot e 1-48
Application Key o 1-49
User, Group, and ACL FileS oo e 1-51
Optional and Mandatory ACLS.t e 1-53

Security Interoperability 1-54
Interoperating with Pre-Release 7.1 Software.t 1-56
Interoperability for Link-Level Encryption. 1-56
Interoperability for SSL Encryption 1-57
Interoperability for Public Key Security o il 1-57

Security Compatibility 1-59

Using Security in ATMI Applications

vi

Mixing Default/Custom Authentication and Authorization 1-60

Mixing Default/Custom Authentication and Auditing 1-60
Compatibility Issuesfor Public Key Security. ...t 1-60
Compatibility/Interaction with Data-dependent Routing. 1-61
Compatibility/Interactionwith Threads. 1-61
Compatibility/Interaction with the EventBroker 1-62
Compatibility/Interactionwith/Qo i 1-63
Compatibility/Interaction with Transactions. 1-63
Compatibility/Interaction with Domain Gateways 1-64
Compatibility/Interaction with Other Vendors Gateways 1-68
Denial-of-Service (DOS) Defenseo 1-69
Limited/Restricted Connection Numbers. 1-70
Setting Up Connection Limitations/Restrictions 1-70
UBBCONFIGFle. ... e e 1-70
MESSagES . . .o 1-72
Message Sanity Check 1-73
Message Authentication Code (MAC) Usage.o e 1-73
Performance Impact.o 1-73
Setting up Message Authentication Code (MAC)Usage. vttt 1-73
DMCONFIG FileConfigurationt 1-73
MIB Configuration.t e 1-75
Password Pair Protection 1-79

2. Administering Security

What Administering Security Means.o i 2-2
Security Administration Tasks. 2-4
Setting the Oracle Tuxedo Registryo e 2-4

Purpose of the Oracle Tuxedo Registry 2-4

Using Security in ATMI Applications

Registering PlUg-iNS oo e 2-5

Configuring an ATMI Application for Security.ot 2-6
Editing the Configuration File. o i 2-6
Changingthe TM_MIB oo e e e 2-6
Using the Oracle AdministrationConsole.o, 2-7

Setting Up the Administration Environment 2-7

Administering Operating System (OS) Security ..., 2-8
Recommended Practicesfor OSSecurity, 2-8

Administering Authentication. 2-9

Specifying Principal Names. 2-11
How System Processes Acquire Credentials. 2-12
Why System ProcessesNeed Credentials.t 2-14
Example UBBCONFIG Entriesfor Principal Names. 2-14

Mandating Interoperability Policy i 2-15
Establishing an Identity foranOlder Client 2-19

How the WSH Establishes an Identity for an Older Client 2-20
How the Domain Gateway Establishes an Identity for an Older Client. 2-20
How the Server Establishes an Identity for an Older Client 2-21
Summarizing How the CLOPT -t Option Works.ot 2-21
Example UBBCONFIG Entriesfor Interoperability. 2-21

Establishing aLink Between DOmains.ovuineii i 2-24
Example DMCONFIG Entries for EstablishingalLink. 2-27

Setting ACL POlICY. . .. oot 2-29
Impersonating the Remote Domain Gatewaycovvuivvneen... 2-32
Example DMCONFIG Entriesfor ACL Policy 2-33

Setting Credential POliCY 2-34

Administering Authorization 2-34

Administering Link-Level Encryption. ... 2-35

Using Security in ATMI Applications vii

Understanding LLE minand max Values. 2-35

How to Configure LLE on Workstation Client Links. 2-36
How to Configure LLE on BridgeLinkso .. 2-37
How to Configure LLE ontlistenLinks.coo ... 2-38
How to Configure LLE on Domain Gateway Links. 2-38
Administering SSL ENCryptiont 2-40
Understanding SSL minandmax Values, 2-40
How to Configure SSL on Workstation Client Links. 2-41
How to Configure SSL on BridgeLinks., 2-42
How to Configure SSL ontlistenLinks 2-43
How to Configure SSL on Domain Gateway Links. 2-43
Development Processfor the SSL Protocolo 2-44
Creatingan OracleWallet. i 2-46
Creating an Oracle Wallet withorapki. oo, 2-47
Creating an Oracle Wallet withopenssl.o, 2-47
Runtime Creationof anOracleWallet 2-48
Use of the TUXCREATEWALLET Environment Variable 2-49
Debugging SSL ConnectionProblems 2-50
Enabling NZ Tracing e 2-50
Connection Establishment LogMessage. 2-50
Displaying the Contents of an OracleWallet. 2-50
Obtaining NZ Error Code Information, 2-51
Administering PublicKey Security 2-52
Recommended Practices for Public Key Security 2-52
Assigning Public-PrivateKey Pairs 2-52
Setting Digital Signature Policy 2-53
Setting a Postdated Limit for Signature Timestamps. 2-53
Setting a Predated Limit for Signature Timestamps 2-54

viii Using Security in ATMI Applications

Enforcing the Signature Policy for IncomingMessages 2-55

How the EventBroker Signature Policy IsEnforced 2-56

How the /Q Signature Policy IsEnforcedt 2-57

How the Remote Client Signature Policy IsEnforced. 2-57

Setting Encryption POlICYt e 2-57
Enforcing the Encryption Policy for IncomingMessages. 2-58

How the EventBroker Encryption Policy IsEnforced. 2-59

How the /Q Encryption Policy IsEnforced 2-60

How the Remote Client Encryption Policy IsEnforced. 2-60
Initializing Decryption Keys Throughthe Plug-ins 2-60
Failure Reportingand Auditing. e 2-64
Digital Signature Error Handling., 2-64
Encryption Error Handling. 2-65
Administering Default Authentication and Authorization. 2-65
Designatinga Security Level. 2-65
Establishing Security by Editing the ConfigurationFile. 2-66
Establishing Security by Changingthe TM_MIB 2-66
Establishing Security by Using the Oracle Administration Console. 2-66
Configuring the Authentication Server 2-66
How to Enable Application Password Security 2-68
How to Enable User-Level Authentication Security ..., 2-69
Setting Upthe UBBCONFIG File. 2-69
Setting UptheUserand Group Files. 2-70
Converting System Security Data Files to Oracle Tuxedo User and Group Files.

2-71

Adding, Modifying, or Deleting Usersand Groups. 2-72
Enabling Access Control SECUrityot 2-73
How to Enable Optional ACL Security.o, 2-74

Using Security in ATMI Applications ix

Setting Up the UBBCONFIG Fil€. . . o v oot 2-74

SettingUpthe ACL File e 2-75

How to Enable Mandatory ACL Security.cooviiiineiinennn... 2-76
Setting Upthe UBBCONFIG File. . ..o 2-77
SettingUpthe ACL File e 2-78

How to Enable Generic LDAP Based Security., 2-78
Setting Upthe UBBCONFIGFile. 2-79

Setting Up the XAUTHSVR Server ConfigurationFile................ 2-79

Setting Up the LDAPREPOSItOrYo v 2-81

Setting Up the AuthorizationCache 2-82

Using the Kerberos Authentication Plug-in. oot 2-84
Kerberos Plug-IN . ..o 2-84
Kerberos Supported Platforms 2-84
Kerberos Plug-in Features. 2-85
Kerberos Plug-In Pre-configuration. 2-85
Kerberos Plug-In Configuration.t 2-85
Configurethe Kerberos Plug-in 2-85
Restore Default Plug-in.o 2-87
Configure KAUTHSVR . ..o e 2-87
Configure Tuxedo Native Client.t 2-89
Limitations 2-89

S0 AlSD .t 2-89
Using the Cert-C PKI Encryption Plug-in. 2-90
Cert-C PKI Encryption Plug-1no 2-90
Cert-C PKI Encryption Plug-In Pre-configuration. 2-90
Cert-C PKI Encryption Plug-In Configuration, 2-91
Configure Certificate LOOKUDo oot e 2-91
Configure Key Management.ttt e 2-93

Using Security in ATMI Applications

PrivateKeyDir. . ..o 2-94
Configure Certificate Parsing oot 2-94
Configure Certificate Validation i i 2-94

caCertificateRile. 2-94

CrIFIl . 2-95
Sample Registry Command File o i 2-95
Limitations. . . .ot 2-96
S AlSD. .t 2-97

3. Programming Security

What Programming Security Means.t 31
Programming an ATMI Application with Security 33
Setting Up the Programming Environment 33
Writing Security Code So Client Programs Can Join the ATMI Application 34
Getting Security Data.o 35
Joiningthe ATMI Application e 3-7
Transferring the Client Security Datat 311
Calling a Service Request Before Joining the ATMI Application. 3-13
Writing Security Code to Protect Data Integrity and Privacy 314
ATMI Interface for PublicKey Securityt 3-15
Recommended Uses of Public Key Security. oot 321
Sending and Receiving Signed MeSSages.o vt 3-22
Writing Codeto Send Signed MessagesSo oo v e i e 3-22
Step 1: Opening aKey Handle for Digital Signature. 324

Step 2 (Optional): Getting Key Handle Information 325

Step 3 (Optiona): Changing Key Handle Information 3-26

Step 4: Allocating a Buffer and Putting a Messagein the Buffer 3-27

Using Security in ATMI Applications Xi

Step 5: Marking the Buffer for Digital Signature 3-27

Step 6: SendingtheMessage.o 3-29
Step 7: Closing the Signer’'sKey Handle., 3-29
How the System Generates aDigital Signature. 3-29
How aSigned MessagelsReceived. 331
Verifying Digital SIgnaturest 3-32
Verifying and Transmitting an Input Buffer’'s Signatures 3-32
Replacing an Output Buffer'sSignaturest 3-32
Sending and Receiving Encrypted MeSsages.ot 3-33
Writing Codeto Send Encrypted MeSSageso oo voe v i 3-33
Step 1: Opening aKey Handlefor Encryption 3-35
Step 2 (Optional): Getting Key Handle Information. 3-36
Step 3 (Optional): Changing Key Handle Information 3-37
Step 4: Allocating a Buffer and Putting aMessage in the Buffer 3-38
Step 5: Marking the Buffer for Encryption 3-38
Step 6: SendingtheMessage.o 3-39
Step 7: Closing the EncryptionKey Handle, 3-40
How the System EncryptsaMessageBuffer. 3-40
Writing Code to Receive Encrypted Messages.o v n s 3-42
Step 1: Opening aKey Handlefor Decryption 3-43
Step 2 (Optional): Getting Key Handle Information. 3-44
Step 3 (Optional): Changing Key Handle Information 3-45
Step 4: Closing the DecryptionKey Handle 3-46
How the System DecryptsaMessage Buffer. 3-46
Examining Digital Signature and Encryption Information 3-50
What Happens When an Originating Process Callstpenvelope. 3-51
What Happens When a Receiving Process Callstpenvelope. 351
Understanding the Composite Signature Statuso o eii et 3-53

Xii Using Security in ATMI Applications

Example Codefor tpenvelope.o 3-55

Externalizing Typed Message Buffers. i 3-56
How to Create an Externalized Representation.o.... 3-57
How to Convert an Externalized Representation 3-57
Example Code for tpexport and tpimport i 3-57

4. Implementing Single Point Security Administration

What Single Point Security AdministrationMeans 4-1
Single Point Security Administration Taskso 4-2
Setting up LAUTHSVR asthe Authentication Server. 4-2
LAUTHSVR Command Linelnterface. i, 4-3
Setting Up the LAUTHSVR ConfigurationFile. 4-4
Syntax Reguirements for LAUTHSVR Configuration File. 4-4
LAUTHSVR Configuration FileKeywords. 4-4
Example LAUTHSVR ConfigurationFile. 4-7
Example UBBCONFIGUSINGLAUTHSVR 4-8
Using Multiple Network Addresses for High Availability 4-9
Example LAUTHSVR Configuration of Multiple Network Addresses 4-10
Configuring the Database Search Order 4-10
Using tpmigldap to Migrate User Information to WebL ogic Server........... 4-11
Assigning New Passwordsfor thetpusr File......................... 4-11
tpmigldap Command Line Options 4-12

Adding New Tuxedo User Information., 4-13
Adding New User Informationintpusrortpgrpcoovvveeeen.... 4-13

Adding New User Information Using the WebL ogic Administration Console4-13

Setting up GAUTHSVR asthe Authentication Server. 4-16
GAUTHSVR Command Linelnterfaceo, 4-16
Setting Up the GAUTHSVR Configuration File. 4-17

Using Security in ATMI Applications Xiii

Syntax Requirements for GAUTHSVR ConfigurationFile 4-18

GAUTHSVR Configuration FileKeywords 4-18
Example GAUTHSVR ConfigurationFile 4-23
Example UBBCONFIG Using GAUTHSVR. i 4-24
Using tpmigldif to Migrate User Information. 4-25
Using tpmigldif Command LineOptionsccoo... 4-25
tpusrandtpgrp FileFormat 4-26
Creating aMigration Template 4-27
Supported LDAP Server TemplateExampleot 4-28

Xiv Using Security in ATMI Applications

Introducing ATMI Security

The following sections describe the various security capabilities available with the Oracle

Tuxedo system for ATMI applications:

What Security Means

Security Plug-ins

ATMI Security Capabilities
Operating System (OS) Security
Authentication

Auditing

Link-Level Encryption

SSL Encryption

Public Key Security
Message-based Digital Signature
M essage-based Encryption
Public Key Implementation
Default Authentication and Authorization

Security Interoperability

Using Security in ATMI Applications

e Security Compatibility
e Denial-of-Service (DoS) Defense
e Password Pair Protection

Note: The Oracle Tuxedo product includes environments that allow you to build both
Application-to-Transaction Monitor Interfaces (ATMI) and CORBA applications. This
topic explains how to implement security inan ATMI application. For information about
implementing security in a CORBA application, see Using Security in CORBA
Applications.

What Security Means

1-2

Security refers to techniques for ensuring that data stored in acomputer or passed between
computersis not compromised. Most security measuresinvolve passwords and data encryption,
where a password is a secret word or phrase that gives a user access to a particular program or
system, and data encryption is the translation of datainto aform that is unintelligible without a
deciphering mechanism.

Distributed applications such as those used for electronic commerce (e-commerce) offer many
access points for malicious people to intercept data, disrupt operations, or generate fraudulent
input; the more distributed a business becomes, the more vulnerable it is to attack. Thus, the
distributed computing software, or middleware, upon which such applications are built must
provide security.

The Oracle Tuxedo product provides several security capabilitiesfor ATMI applications, most of
which can be customized for your particular needs.

See Also
e “Security Plug-ins’ on page 1-3
e “ATMI Security Capabilities’ on page 1-4
e “What Administering Security Means’ on page 2-2

e “What Programming Security Means’ on page 3-1

Using Security in ATMI Applications

Security Plug-ins

Security Plug-ins

Asshownin Figure 1-1, all but one of the security capabilities available with the ATMI
environment of the Oracle Tuxedo product are implemented through a plug-in interface, which
allows Oracle Tuxedo customersto independently define and dynamically add their own security
plug-ins. A security plug-in is acode module that implements a particular security capability.

Figure 1-1 Oracle Tuxedo ATMI Plug-in Security Architecture

Authentication

| N | - | | Public Key
| Authorization \ Auditing | Encryption , Security
_

Oracle Tuxedo Security

SSL
Encryption

Link-Level
Encryption

Plug-in Interface

Default Default Default Default
Authentication Authorization Auditing Public Key Security
Custom | Custom | Custom Custom

Security Plug-ins

The specifications for the security plug-in interface are not generally available, but are available
to third-party security vendors. Third-party security vendors can enter into a special agreement
with Oracle Systems to develop security plug-ins for Oracle Tuxedo. Oracle Tuxedo customers
who want to customize a security capability must contact one of these vendors. For example, an
Oracle Tuxedo customer who wants a custom implementation of public key security must contact
athird-party security vendor who can provide the appropriate plug-ins. For more information
about security plug-ins, including installation and configuration procedures, see your Oracle
account executive.

See Also
e “ATMI Security Capabilities’ on page 1-4

Using Security in ATMI Applications 1-3

ATMI Security Capabilities

The Oracle Tuxedo system can enforce security in a number of ways, which includes using the
security features of the host operating system to control accessto files, directories, and system
resources. Table 1-1 describes the security capabilities available with the ATMI environment of
the Oracle Tuxedo product.

Table 1-1 ATMI Security Capabilities

Security Capability Description Plug-in Interface Default Implementation

Operating system Controls access to files, N/A N/A

security directories, and system
resources.

Authentication Proves the stated identity of Implemented as a The default authentication
users or system processes, single interface plug-in provides security at
safely remembers and three levels: no
transportsidentity information; authentication, application
and makesidentity information password, and user-level
available when needed. authentication. This plug-in

works the same way the
Oracle Tuxedo
implementation of
authentication has worked
since it was first made
available with the Oracle

Tuxedo system.
Authorization Controls access to resources Implemented as a The default authorization
based on identity or other single interface plug-in provides security at
information. two levels: optional access

control lists and mandatory
access control lists. This
plug-in works the same way
the Oracle Tuxedo
implementation of
authorization has worked
since it was first made
available with the Oracle
Tuxedo system.

1-4 Using Security in ATMI Applications

Tahle 1-1 ATMI Security Capabilities (Continued)

ATMI Security Capabilities

Security Capability

Description

Plug-in Interface

Default Implementation

Auditing

Safely collects, stores, and
distributes information about
operating requests and their
outcomes.

Implemented as a
singleinterface

Default auditing security is
implemented by the Oracle
Tuxedo EventBroker and
user log (ULOG) features.

Link-level encryption

Uses symmetric key encryption

to establish data privacy for
messages moving over the
network links that connect the
machinesin an ATMI
application.

N/A

RC4 symmetric key
encryption.

SSL encryption

Usestheindustry-standard TLS

1.0 protocol to establish data
privacy for messages moving
over the network links that
connect the machinesin an
ATMI application.

(TLSisthe successor standard
to the SSL protocol.)

N/A

Oracle NZ Security Layer

Public key security

Usespublic key (or asymmetric

key) encryption to establish
end-to-end digital signing and
data privacy between ATMI

application clients and servers.

Complies with the PKCS-7
standard.

Implemented as six
interfaces

Default public key security

supports the following

algorithms:

* RSA public key
algorithm

* RSA and DSA digitd
signature algorithms

« DES-CBC, two-key
triple-DES, and RC2
symmetric key
algorithms

 MD5and SHA-1

message digest
algorithms

Using Security in ATMI Applications 1-5

See Also
e “Operating System (OS) Security” on page 1-6
e “Authentication” on page 1-7
e “Authorization” on page 1-12
e “Auditing” on page 1-18
e “Link-Level Encryption” on page 1-22
e “SSL Encryption” on page 1-27
e “Public Key Security” on page 1-33

Operating System (0S) Security

1-6

On host operating systems with underlying security features, such as file permissions, the
operating-system level of security isthefirst line of defense. An application administrator can use
file permissions to grant or deny access privileges to specific users or groups of users.

Most ATMI applications are managed by an application administrator who configures the
application, startsit, and monitors the running application dynamically, making changes as
necessary. Becausethe ATMI applicationisstarted and run by the administrator, server programs
are run with the administrator’ s permissions and are therefore considered secure or “trusted.”
Thisworking method is supported by the login mechanism and the read and write permissionson
thefiles, directories, and system resources provided by the underlying operating system.

Client programs are run directly by users with the users' own permissions. In addition, users
running native clients (that is, clients running on the same machine on which the server program
is running) have access to the usBconr1c configuration file and interprocess communication
(IPC) mechanisms such as the bulletin board (a reserved piece of shared memory in which
parameters governing the ATMI application and statistics about the application are stored).

For ATMI applications running on platforms that support greater security, a more secure
approach isto limit access to the files and IPC mechanisms to the application administrator and
to have“trusted” client programsrun with the permissionsof the administrator (usingthe setuid
command on a UNIX host machine or the equivalent command on another platform). For the
most secure operating system security, allow only Workstation clients to access the application;
client programs should not be allowed to run on the same machines on which application server
and administrative programs run.

Using Security in ATMI Applications

Authentication

See Also
e “Security Administration Tasks’ on page 2-4
e “Administering Operating System (OS) Security” on page 2-8

e “About the Configuration File” and “ Creating the Configuration File” in Setting Up an
Oracle Tuxedo Application

e UBBCONFIG (5) inthe Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

Authentication

Authentication allows communicating processes to mutually prove identification. The
authentication plug-in interface in the ATMI environment of the Oracle Tuxedo product can
accommodate various security-provider authentication plug-ins using various authentication
technologies, including shared-secret password, one-time password, challenge-response, and
Kerberos. The interface closely follows the generic security service (GSS) application
programming interface (API) where applicable; the GSSAPI is a published standard of the
Internet Engineering Task Force. The authentication plug-in interface is designed to make
integration of third-party vendor security products with the Oracle Tuxedo system as easy as
possible, assuming the security products have been written to the GSSAPI.

Authentication Plug-in Architecture

The underlying plug-in interface for authentication security isimplemented as asingle plug-in.
The plug-in may be the default authentication plug-in or a custom authentication plug-in.

Understanding Delegated Trust Authentication

Direct end-to-end mutual authentication in adistributed enterprise middleware environment such
asthe Oracle Tuxedo system can be prohibitively expensive, especialy when accomplished with
security mechanisms optimized for long-duration connections. It is not efficient for clientsto
establish direct network connections with each server process, nor isit practical to exchange and
verify multiple authentication messages as part of processing each service request. Instead, the
ATMI applications use a delegated trust authentication model, as shown in Figure 1-2.

Using Security in ATMI Applications 1-1

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/ads/adfig.html

1-8

Figure 1-2 ATMI Delegated Trust Authentication Model

p— — ~
— ~

~ ~ 7 ~N
) Trusted Server Computing Base

/ — T~
~N
\
\
Workstation Client /
(
™ Server N
\
Initiator |
(Client) \ (Trusted Gateway) J
\
N /
~ \ S
-
\ _ /
-~ AN J
ANy -
~ .

A Workstation client authenticates to atrusted system gateway process, the workstation handler
(WSH), at initialization time. A native client authenticates within itself, as explained later in this
discussion. After asuccessful authentication, the authentication software assigns a security token
to the client. A token is an opagque data structure suitable for transfer between processes. The
WSH safely stores the token for the authenticated Workstation client, or the authenticated native
client safely stores the token for itself.

As aclient request flows through atrusted gateway, the gateway attaches the client’s security
token to the request. The security token travel swith the client’ srequest message, and isdelivered
to the destination server process(es) for authorization checking and auditing purposes.

In this model, the gateway trusts that the authentication software will verify the identity of the
client and generate an appropriate token. Servers, in turn, trust that the gateway process will
attach the correct security token. Servers also trust that any other serversinvolved in the
processing of aclient request will safely deliver the token.

Establishing a Session

Figure 1-3 shows the control flow inside the ATMI environment of the Oracle Tuxedo system
while asession is being established between aWorkstation client and the WSH. The Workstation

Using Security in ATMI Applications

Authentication

client and WSH are attempting to establish along-term mutually authenticated connection by
exchanging messages.

Figure 1-3 Client-WSH Authentication

Initiate Connection

Application Communication

Client Protocol
Y o

Oracle Tuxedo Library | <(u——p> WSH Process

¥ Oracle Tuxedo ¥ / Y Oracle Tuxedol ;

: (Exchange of Session :
Security Tokens) Security
Authentication v Authentication
Plug-in (1) Plug-in (1) /
Obtain a Session Obtain a Session Accept Received Session Obtain a Session
Credential Handle = Context Handle and Token and Return Credential Handle
a Session Token a Session Token (at Startup)

Theinitiator process (may be thought of asamiddleware client process) creates a session context
by repeatedly calling the Oracle Tuxedo “initiate security context” function until areturn code
indicates success or failure. A session context associates identity information with an
authenticated user.

WhenaWorkstationclient callstpinit (3c) for Cor TPINITIALIZE (3cbl) for COBOL tojoin
an ATMI application, the Oracle Tuxedo system begins its response by first calling the internal
“acquire credentials” function to obtain a session credential handle, and then calling the internal
“initiate security context” function to obtain a session context. Each invocation of the “initiate
security context” function takes an input session token (when oneis available) and returns an
output session token. A session token carries a protocol for verifying a user’ sidentity. The
initiator process passes the output session token to the session’ starget process (WSH), where it
isexchanged for another input token. The exchange of tokens continues until both processes have
completed mutual authentication.

A security-provider authentication plug-in defines the content of the session context and session
token for its security implementation, so ATMI authentication must treat the session context and
session token as opague objects. The number of tokens passed back and forth is not defined, and
may vary based on the architecture of the authentication system.

Using Security in ATMI Applications 1-9

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3cbl/rf3cbl.html

1-10

For anative client initiating a session, the initiator process and the target process are the same;
the process may bethought of asamiddleware client process. Themiddleware client processcalls
the security provider’ s authentication plug-in to authenticate the native client.

Getting Authorization and Auditing Tokens

After asuccessful authentication, the trusted gateway callstwo Oracle Tuxedo internal functions
that retrieve an authorization token and an auditing token for the client, which the gateway stores
for safekeeping. Together, these tokens represent the user identity of a security context. Theterm
security token refers collectively to the authorization and auditing tokens.

When default authentication is used, the authorization token carries two pieces of information:
e Principal name—the name of an authenticated user.

e Application key—a 32-bit value that uniquely identifies the client initiating the request
message. See “Application Key” on page 1-49 for more detail.

In addition, when default authentication is used, the auditing token carries the same two pieces
of information: principal name and application key.

Like the session token, the authentication and auditing tokens are opaque; their contents are
determined by the security provider. The authorization token can be used for performing
authorization (permission) checks. The auditing token can be used for recording audit
information. In some ATMI applications, it is useful to keep separate user identities for
authorization and auditing.

Replacing Client Tokens with Server Tokens

Asshown in Figure 1-4, there are situations where a client service request forwarded by a server
takes on the identity of the server. The server replaces the client tokens attached to the request
with its own tokens and then forwards the service request to the destination service.

Using Security in ATMI Applications

Authentication

Figure 1-4 Server Permission Upgrade Example

Server

Service

Client

I:I tpcall (“TOLOWER”,
— tpcall (“.TMIB”, .
L\ tpcall (“TRANSFER”,

Service Request Sent with Client’s Authorization and Auditing Tokens

Service Request Sent with Server’s Authorization and Auditing Tokens

Note: See " Specifying Principal Names’ on page 2-11 for an understanding of how servers
acquire their own authorization and auditing tokens and why they need them.

The feature demonstrated in the preceding figure is known as server permission upgrade, which
operatesin thefollowing manner: whenever aserver callsadot service (asystem-supplied service
having a beginning period in its name—such as . TM1B), the service request takes on the identity
of the server and thus acquiresthe access permissions of the server. A server’ saccess permissions
arethose of the application (system) administrator. Thus, certain requests that would be denied if
theclient called the dot service directly would be allowed if the client sent the requeststo aserver,
and the server forwarded the requests to the dot service. For moreinformation about dot services,
see the . TMIB service description on them1B (5) reference pagein the Oracle Tuxedo File
Formats, Data Descriptions, MIBs, and System Processes Reference.

Using Security in ATMI Applications 1-1

{DOCROOT}/rf5/rf5.html

Implementing Custom Authentication

Y ou can provide authentication for your ATMI application by using the default plug-in or a
custom plug-in. You choose a plug-in by configuring the Oracle Tuxedo registry, atool that
controls all security plug-ins.

If you want to use the default authentication plug-in, you do not need to configure the registry. If
you want to use a custom authentication plug-in, however, you must configure the registry for
your plug-in before you can install it. For more detail about the registry, see “ Setting the Oracle
Tuxedo Registry” on page 2-4.

See Also

e “Default Authentication and Authorization” on page 1-45

e “Security Administration Tasks’ on page 2-4

e “Administering Authentication” on page 2-9

e “Programming an ATMI Application with Security” on page 3-3

e “Writing Security Code So Client Programs Can Join the ATMI Application” on page 3-4

Authorization

1-12

Authorization allows administrators to control accessto ATMI applications. Specifically, an
administrator can use authorization to allow or disallow principals (authenticated users) to use
resources or facilitiesin an ATMI application.

Authorization Plug-in Architecture

A fanout is an umbrella plug-in to which individual plug-in implementations are connected. As
shown in Figure 1-5, the authorization plug-in interface isimplemented as a fanout.

Using Security in ATMI Applications

Authorization

Figure 1-5 Authorization Plug-in Architecture

Plug-in Interface

Fanout Plug-in

Default Custom Custom
Authorization Authorization) Authorization
Plug-in Plug-in Plug-in

The default authorization implementation consists of afanout plug-in and adefault authorization
plug-in. A custom implementation consists of the fanout plug-in, the default authorization
plug-in, and one or more custom authorization plug-ins.

Inafanout plug-in model, acaller sends arequest to the fanout plug-in. The fanout plug-in passes
the reguest to each of the subordinate plug-ins, and receives a response from each. Finally, the
fanout plug-in forms a composite response from the individual responses, and sends the
composite response to the caller.

The purpose of an authorization request is to determine whether a client operation should be
allowed or whether the results of an operation should be kept unchanged. Each authorization
plug-in returns one of three responses. permit, deny, or abstain. The abstain response gives
writers of authorization plug-ins a graceful way to handle situations that are not accommodated
by the original plug-in, such as names of operationsthat are added to the system after the plug-in
isinstalled.

The authorization fanout plug-in forms a composite response as described in Table 1-2. For
default authorization, the composite response is determined solely by the default authorization

plug-in.

Table 1-2 Authorization Composite Responses

If Plug-ins Return . .. The Composite Response Is . ..
All permit or acombination of permit
permit and abstain

Using Security in ATMI Applications 1-13

Table 1-2 Authorization Composite Responses (Continued)

If Plug-ins Return . .. The Composite Response Is . . .
At least one deny deny
All abstain deny

If the SECURITY parameter in the ATMI
application’ sUBBCONFIG fileisset to
MANDATORY_ACL
permit

If the SECURITY parameter isnot setinthe ATMI
application’ SUBBCONF IG file or is set to any value
other than MANDATORY_ACL

As an example of custom authorization, consider a banking application in which auser is
identified as a member of the customer group, and the following conditions are in effect:

e The default authorization plug-in allows any user in the customer group to withdraw
money from a particular account.

e A custom authorization plug-in allows any user in the customer group to withdraw money
from a particular account but only on Monday through Friday between 9:00 A.M. and 5:00
PM.

e A second custom authorization plug-in allows any user in the customer group to withdraw
money from a particular account but only if the amount being withdrawn is less than
$10,000.

So, if auser in the customer group attempts to withdraw $500.00 on Monday at 10 A.M., the
operation is alowed. If the same user attempts the same withdrawal on Saturday morning, the
operation is not allowed.

Many other custom authorization scenarios are possible. Feel free to improvise; define the
conditions that best serve the needs of your business.

How the Authorization Plug-in Works

Authorization decisions are based partly on user identity, which is stored in an authorization
token. Because authorization tokens are generated by the authentication security plug-in,
providers of authentication and authorization plug-ins need to ensure that these plug-ins work
together.

1-14 Using Security in ATMI Applications

Authorization

An Oracle Tuxedo system process or server (such as/Q server TMQUEUE (5) or EventBroker
server TMUSREVT (5)) calls the authorization plug-in when it receives a client request. In
response, the authorization plug-in performs a pre-operation check and returns whether the
operation should be allowed.

o |f alowed, the system carries out the client request.

o If not allowed, the system does not carry out the client request.

If the client operation is allowed, the Oracle Tuxedo system process or server may call the
authorization plug-in after the client operation completes. In response, the authorization plug-in
performs a post-operation check and returns whether the results of the operation are acceptable.

o |f acceptable, the system accepts the operation results.

o |If not unacceptable, the system either modifies the operation results or rolls back (reverses)
the operation.

These calls are system-level calls, not application-level calls. An ATMI application cannot call
the authorization plug-in.

The authorization processis somewhat different for (1) users of the default authorization plug-in
provided by the Oracle Tuxedo system and (2) users of one or more custom authorization
plug-ins. The default plug-in does not support post-operation checks. If the default authorization
plug-in receives a post-operation check request, it returns immediately and does nothing.

The custom plug-ins support both pre-operation and post-operation checks.

Default Authorization

When default authorization is called by an ATMI process to perform a pre-operation check in
response to a client request, the authorization plug-in performs the following tasks.

1. Getsinformation from the client’s authorization token by calling the authentication plug-in.

Because the authorization token is created by the authentication plug-in, the authorization
plug-in has no record of the token’'s content. This information is necessary for the
authorization process.

2. Performs a pre-operation check.

The authorization plug-in determines whether that operation should be allowed by
examining the client’s authorization token, the access control list (ACL), and the
configured security level (optional or mandatory ACL) of the ATMI application.

Using Security in ATMI Applications 1-15

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html

1-16

3. Issues adecision about whether the operation will be performed.

The authorization fanout plug-in receives a decision (permit or deny) from the default
authorization plug-in and operates on its behalf.

— If the decision isto permit the client operation, the fanout plug-in returns permit to the
calling process. The system carries out the client request.

— If the decision is to deny the operation, the fanout plug-in returns deny to the calling
process. The system does not carry out the client request.

Custom Authorization

Users of one or more custom authorization plug-ins may take advantage of additional
functionality offered by the ATMI environment of the Oracle Tuxedo product. Specifically, the
custom plug-ins may perform an additional check after an operation occurs.

When custom authorization is called by an ATMI process to perform a pre-operation check in
response to a client request, the authorization plug-in performs the following tasks.

1. Getsinformation from the client’s authorization token by calling the authentication plug-in.

2. Performs a pre-operation check.

The authorization plug-in determines whether the operation should be allowed by
examining the operation, the client’s authorization token, and associated data. “Associated
data’ may include user data and the security level of the ATMI application.

If necessary, in order to satisfy authorization requirements, the authorization plug-in may
modify the user data before the operation is performed.

3. Issues adecision about whether the operation will be performed.

The authorization fanout plug-in makes the ultimate decision by checking the individual
responses (permit, deny, abstain) of its subordinate plug-ins.

— If the fanout plug-in allows the client operation, it returns permit to the calling process.
The system carries out the client request.

— If the fanout plug-in does not allow the operation, it returns deny to the calling process.
The system does not carry out the client request.

If the client operation is alowed, custom authorization may be called by the ATMI processto
perform a post-operation check after the client operation completes. If so, the authorization
plug-in performs the following tasks.

1. Getsinformation from the client’s authorization token by calling the authentication plug-in.

Using Security in ATMI Applications

Authorization

2. Performs a post-operation check.

The authorization plug-in determines whether the operation results are acceptable by
examining the operation, the client’s authorization token, and associated data. “ Associated
data’ may include user data and the security level of the ATMI application.

3. Issues adecision about whether the operation results are acceptable.

The authorization fanout plug-in makes the ultimate decision by checking the individual
responses (permit, deny, abstain) of its subordinate plug-ins.
— If the fanout plug-in decides that the operation results are acceptable, it returns permit
to the calling process. The system accepts the operation results.

— If the fanout plug-in does not allow the operation, it returns deny to the calling process.
The system either modifies the operation results or rolls back (reverses) the operation.

A post-operation check is useful for label-based security models. For example, suppose that a
user isauthorized to access CONFIDENTIAL documents but performsan operation that retrieves
aTOP SECRET document. (Often, a document’ s classification label is not easily determined
until after the document has been retrieved.) In this case, the post-operation check is an efficient
means to either deny the operation or modify the output data by expunging any restricted
information.

Implementing Custom Authorization

Y ou can provide authorization for your ATMI application by using the default plug-in or adding
one or more custom plug-ins. Y ou choose a plug-in by configuring the Oracle Tuxedo registry, a
tool that controls all security plug-ins.

If you want to use the default authorization plug-in, you do not need to configure the registry. If
you want to add one or more custom authorization plug-ins, however, you must configure the
registry for your additional plug-ins before you can install them. For more detail about the
registry, see “Setting the Oracle Tuxedo Registry” on page 2-4.

See Also
e “Default Authentication and Authorization” on page 1-45
e “Security Administration Tasks’ on page 2-4
e “Administering Authorization” on page 2-34
e “Programming an ATMI Application with Security” on page 3-3

Using Security in ATMI Applications 1-17

Auditing

1-18

Auditing provides a means to collect, store, and distribute information about operating requests
and their outcomes. Audit-trail records may be used to determine which principal s performed, or
attempted to perform, actions that violated the security levels of an ATMI application. They may
also be used to determine which operations were attempted, which ones failed, and which ones
successfully completed.

How auditing isdone (that is, how information is collected, processed, protected, and distributed)
depends on the auditing plug-in.

Auditing Plug-in Architecture

A fanout is an umbrella plug-in to which individual plug-in implementations are connected. As
shown in Figure 1-6, the auditing plug-in interface isimplemented as a fanout.

Figure 1-6 Auditing Plug-in Architecture

Plug-in Interface

Fanout Plug-in

Default Custom Custom
Auditing Auditing e Auditing
Plug-in Plug-in Plug-in

The default auditing implementation consists of a fanout plug-in and a default auditing plug-in.
A custom implementation consists of the fanout plug-in, the default auditing plug-in, and one or
more custom auditing plug-ins.

Inafanout plug-in model, acaller sends arequest to the fanout plug-in. The fanout plug-in passes
the reguest to each of the subordinate plug-ins, and receives aresponse from each. Finally, the
fanout plug-in forms a composite response from the individual responses, and sends the
composite response to the caler.

The purpose of an auditing request isto record an event. Each auditing plug-in returns one of two
responses. success (the audit succeeded—Iogged the event) or failure (the audit failed—did not

Using Security in ATMI Applications

Auditing

log the event). The auditing fanout plug-in forms a composite response in the following manner:
if all responses are success, the composite responseis success; otherwise, the composite response
isfailure.

For default auditing, the composite response is determined solely by the default auditing plug-in.
For custom auditing, the composite response is determined by the fanout plug-in after collecting
the responses of the subordinate plug-ins. For moreinsight into how fanouts work, see
“Authorization Plug-in Architecture” on page 1-12.

How the Auditing Plug-in Works

Auditing decisionsare based partly on user identity, which isstored in an auditing token. Because
auditing tokens are generated by the authentication security plug-in, providers of authentication
and auditing plug-ins need to ensure that these plug-ins work together.

An ATMI system process or server (such as/Q server TMQUEUE (5) or EventBroker server
TMUSREVT (5)) calls the auditing plug-in when it receives a client request. Becauseit is called
before an operation begins, the auditing plug-in can audit operation attempts and store dataif that
datawill be needed later for a post-operation audit. In response, the auditing plug-in performs a
pre-operation audit and returns whether the audit succeeded.

The ATMI system process or server may call the auditing plug-in after the client operation is
performed. In response, the auditing plug-in performs a post-operation audit and returns whether
the audit succeeded.

In addition, an ATMI system process or server may call the auditing plug-in when a potential
security violation occurs. (Suspicion of a security violation arises when a pre-operation or
post-operation authorization check fails, or when an attack on security is detected.) In response,
the auditing performs a post-operation audit and returns whether the audit succeeded.

These calls are system-level calls, not application-level calls. An ATMI application cannot call
the auditing plug-in.

The auditing process is somewhat different for (1) users of the default auditing plug-in provided
by the Oracle Tuxedo system and (2) users of one or more custom auditing plug-ins. The default
plug-in does not support pre-operation audits. If the default auditing plug-in receives a
pre-operation audit request, it returnsimmediately and does nothing.

The custom plug-ins support both pre-operation and post-operation audits.

Using Security in ATMI Applications 1-19

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html

1-20

Default Auditing

The default auditing implementation consists of the Oracle Tuxedo EventBroker component and
userlog (uLog). Theseutilitiesreport only security violations; they do not report which operations
were attempted, which ones failed, and which ones successfully completed.

When default auditing is called by an ATMI process to perform a post-operation audit when a
security violation is suspected, the auditing plug-in performs the following tasks.

1. Getsinformation from the client’s auditing token by calling the authentication plug-in.

Because the auditing token is created by the authentication plug-in, the auditing plug-in has
no record of the token’s content. Thisinformation is necessary for the auditing process.

2. Performs a post-operation audit.

The auditing plug-in examines the client’s auditing token and the security violation
delivered in the post-operation audit request.

3. Issues a decision about whether the post-operation audit succeeded.

The auditing fanout plug-in receives a decision (success or failure) from the default
auditing plug-in and operates on its behalf.

— If the decision is success, the post-operation audit succeeded. The auditing fanout
plug-in returns success to the calling process and logs the security violation.

— If the decision is failure, the post-operation audit failed. The auditing fanout returns
failure to the calling process.

Custom Auditing

Users of one or more custom auditing plug-ins may take advantage of additional functionality
offered by the ATMI environment of the Oracle Tuxedo product. Specifically, the custom
plug-ins may perform an additional audit before an operation occurs.

When custom auditing is called by an ATMI processto perform apre-operation audit in response
to aclient request, the auditing plug-in performs the following tasks.

1. Getsinformation from the client’s auditing token by calling the authentication plug-in.

2. Performs a pre-operation audit.

The auditing plug-in examines the client’s auditing token and may store user data if that
data will be needed later for a post-operation audit.

3. Issues a decision about whether the pre-operation audit succeeded.

Using Security in ATMI Applications

Auditing

The auditing fanout plug-in makes the ultimate decision by checking the individual
responses (success or failure) from its subordinate plug-ins.

— If the composite decision is success, the pre-operation audit succeeded. The auditing
fanout plug-in returns success to the calling process and logs the client’s attempt to
perform the operation.

— If the composite decision is failure, the pre-operation audit failed. The auditing fanout
returns failure to the calling process.

Custom auditing may be called by the ATMI processto perform a post-operation audit after the
client operation is performed. If so, the auditing plug-in performs the following tasks.
1. Getsinformation from the client’s auditing token by calling the authentication plug-in.

2. Performs a post-operation audit.

The auditing plug-in examines the client’s auditing token, the completion status delivered
in the post-operation audit request, and any data stored during the pre-operation audit.

3. Issues adecision about whether the post-operation audit succeeded.

The auditing fanout plug-in decidesif the post-operation audit succeeded or failed by
checking the individual responses (success or failure) from its subordinate plug-ins.

— If the composite decision is success, the post-operation audit succeeded. The auditing
fanout plug-in returns success to the calling process and logs the compl etion status of
the operation.

— If the composite decision is failure, the post-operation audit failed. The auditing fanout
returns failure to the calling process.

An operation is considered successful if it passes both pre- and post-operation audits, and the
operation itself is successful. Some companies collect and store both pre- and post-operation
auditing data, even though such data can occupy alot of disk space.

Implementing Custom Auditing

Y ou can provide auditing for your ATMI application by using the default plug-in or adding one
or more custom plug-ins. Y ou choose a plug-in by configuring the Oracle Tuxedo registry, atool
that controls all security plug-ins.

If you want to use the default auditing plug-in, you do not need to configure the registry. If you
want to add one or more custom auditing plug-ins, however, you must configure the registry for
your additional plug-ins before you can install them. For more detail about the registry, see

“ Setting the Oracle Tuxedo Registry” on page 2-4.

Using Security in ATMI Applications 1-21

Link-Level Encryption

1-22

Link-level encryption (LLE) establishes data privacy for messages moving over the network
linksthat connect the machinesinan ATMI application. It employsthe symmetric key encryption
technique (specifically, RC4), which uses the same key for encryption and decryption.

When LLE is being used, the Oracle Tuxedo system encrypts data before sending it over a
network link and decryptsit as it comes off the link. The system repeats this
encryption/decryption process at every link through which the data passes. For thisreason, LLE
isreferred to as a point-to-point facility.

LLE can be used on the following types of ATMI application links:
e Workstation client to workstation handler (WSH)
e Bridge-to-Bridge
e Administrative utility (such as tmboot OF tmshutdown) t0 tlisten

e Domain gateway to domain gateway

There are three levels of LLE security: 0-bit (no encryption), 56-bit (International), and 128-bit
(United States and Canada). The International LLE version allows 0-bit and 56-bit encryption.
The United States and Canada LLE version alows 0, 56, and 128-bit encryption.

How LLE Works

LLE control parameters and underlying communication protocols are different for various link
types, but the setup is basically the samein al cases:

e Aninitiator process begins the communication session.
e A target processreceives theinitial connection.

e Both processes are aware of the link-level encryption feature, and have two configuration
parameters.

The first configuration parameter is the minimum encryption level that a process will
accept. It is expressed as akey length: 0, 56, or 128 bits.

The second configuration parameter is the maximum encryption level a process can
support. It aso is expressed as a key length: 0, 56, or 128 bits.

Using Security in ATMI Applications

Link-Level Encryption

For convenience, thetwo parameters are denoted as (min, max) in the discussion that follows. For
example, the values “ (56, 128)" for a process mean that the process accepts at |east 56-bit
encryption but can support up to 128-bit encryption.

Encryption Key Size Negotiation

When two processes at the opposite ends of anetwork link need to communicate, they must first
agree on the size of the key to be used for encryption. This agreement is resolved through a
two-step process of negotiation.

1. Each processidentifies its own min-max values.

2. Together, the two processes find the largest key size supported by both.

Determining Min-Max Values

When either of the two processes starts up, the local Oracle Tuxedo software (1) checksthe
bit-encryption capability of theinstalled LLE version by checking the LLE licensing information
inthe 1ic. txt fileand (2) checksthe LLE min-max values for the particular link type as
specified in the two configuration files. The local software then proceeds as follows:

o |f the configured min-max values accommodate the installed LLE version, then the local
software assigns those values as the min-max values for the process.

o |f the configured min-max values do not accommodate the installed LLE version, for
example, if the International LLE version isinstalled but the configured mi n-max values
are (128, 128), then the local software issues a run-time error; link-level encryption is not
possible at this point.

o If there are no min-max values specified in the configurations for a particular link type,
then the local software assigns 0 as the minimum value and assigns the highest
bit-encryption rate possible for the installed LLE versions as the maximum value, that is,
(O, 128) for the LLE when the license file specifies STRENGTH=128 .

Finding a Common Key Size

After the min-max valuesare determined for the two processes, the negotiation of key size begins.
The negotiation process need not be encrypted or hidden. Once akey size is agreed upon, it
remains in effect for the lifetime of the network connection.

Table 1-3 shows which key size, if any, is agreed upon by two processes when all possible
combinations of min-max values are negotiated. The header row holdsthe min-max valuesfor one
process; the far left column holds the min-max values for the other.

Using Security in ATMI Applications 1-23

Table 1-3 Interprocess Negotiation Results

0,0 (0, 56) (0,128) (56, 56) (56, 128) (128, 128)
(0,0 0 0 0 ERROR ERROR ERROR
(0, 56) 0 56 56 56 56 ERROR
(0,128) 0 56 128 56 128 128
(56, 56) ERROR 56 56 56 56 ERROR
(56, 128) ERROR 56 128 56 128 128
(128, 128) ERROR ERROR 128 ERROR 128 128

Backward Compatibility of LLE

The ATMI environment of the Oracle Tuxedo product offers some backward compatibility for

LLE.

Interoperating with Release 6.5 Oracle Tuxedo Software

Table 1-4 shows which key size, if any, is agreed upon by two ATMI applications when one of
them is running under release 6.5 and the other under release 7.1 or later. The header row holds
the min-max values for the process running under release 7.1 or later; the far left column holds
the min-max values for the process running under release 6.5.

Tahle 1-4 Negotiation Results When Interoperating with Release 6.5 Oracle Tuxedo Software

0,0 (0, 56) (0,128) (56, 56) (56, 128) (128, 128)
(0,0 0 0 0 ERROR ERROR ERROR
(0, 40) 0 56 56 56 56 ERROR
(0,128) 0 56 128 56 128 128
(40, 40) ERROR 56 56 56 56 ERROR
1-24 Using Security in ATMI Applications

Link-Level Encryption

Tahle 1-4 Negotiation Results When Interoperating with Release 6.5 Oracle Tuxedo Software (Continued)

0,0 (0, 56) (0,128) (56, 56) (56, 128) (128, 128)
(40, 128) ERROR 56 128 56 128 128
(128, 128) ERROR ERROR 128 ERROR 128 128

If your current Oracle Tuxedo installation isconfigured for (0, 56), (0, 128), (56, 56), or (56, 128),
and you want to interoperate with arelease 6.5 ATMI application that is configured for a
maximum LLE level of 40 bits, then any negotiation resultsin an automatic upgrade to 56.

The negotiation result in this case is the same as the negotiation result for two sites running
release 6.5 and configured for amaximum LLE level of 40 bits. In both scenarios, the negotiation
results in an automatic upgrade to 56.

Interoperating with Pre-Release 6.5 Oracle Tuxedo Software

Table 1-5 shows which key size, if any, is agreed upon by two ATMI applications when one of
them is running under pre-release 6.5 and the other under release 7.1 or later. The header row
holds the min-max values for the process running under release 7.1 or later; the far left column
holds the min-max values for the process running under pre-release 6.5.

Table 1-5 Negotiation Results When Interoperating with Pre-Release 6.5 Oracle Tuxedo Software

0,0 (0, 56) (0,128) (56, 56) (56, 128) (128, 128)
(0,0) 0 0 0 ERROR ERROR ERROR
(0, 40) 0 40 40 ERROR ERROR ERROR
(0, 128) 0 40 128 ERROR 128 128
(40, 40) ERROR 40 40 ERROR ERROR ERROR
(40, 128) ERROR 40 128 ERROR 128 128
(128, 128) ERROR ERROR 128 ERROR 128 128

If your current Oracle Tuxedo installation is configured for (0O, 56) or (0, 128), and you want to
interoperate with apre-release 6.5 ATMI applications that is configured for amaximum LLE
level of 40 hits, then the result of any negotiation is 40.

Using Security in ATMI Applications 1-25

1-26

If your current Oracle Tuxedo installation is configured for (56, 56), (56, 128), or (128, 128), then
your system cannot interoperate with a pre-release 6.5 ATMI application that is configured for a
maximum LLE level of 40 bits. Attempts to negotiate acommon key sizefail.

WSL/WSH Connection Timeout During Initialization

Thelength of time a Workstation client can take for initiaization is limited. By default, this
interval is 30 secondsin an ATMI application not using LLE, and 60 secondsin an ATMI
application using LLE. The 60-second interval includesthetime needed to negotiate an encrypted
link. Thistime limit can be changed when LLE is configured by changing the value of the
MAXINITTIME parameter for the workstation listener (WSL) server in the usBconF1G file, or the
vaue of the Ta_MAXINITTIME attribute in the T_wsL class of thews_MIB(5).

LLE Installation and Licensing

Aspart of the Oracle Tuxedo system, L L E softwareis delivered on the Oracle Tuxedo CD-ROM.
If you have an Oracle Tuxedo release 7.1 license to use LL E in the United States and Canada, you
can use 56-bit or 128-bit encryption. If you have alicenseto use LL E on an Oracle Tuxedo system
outside the United States and Canada, you can use 56-bit encryption.

All Oracle Tuxedo licenses are stored in the $TUXDIR/udataobj/lic. txt fileon aUNIX host
machine, or in the $TUXDIR% \udataobj\1lic. txt file on a Windows host machine.

Thefollowing listing isan excerpt from asamplelicensefilefor running LLE inthe United States
and Canada.

[Oracle Tuxedo]

VERSION=9.1

LICENSEE=ACME CORPORATION

SERIAL=155566678

ORDERID=

USERS=1000

EXPIRATION=2006-01-31

SIGNATURE=TXmtx+AhQdJgr3sjjznBgRB7SP9Jgr3UzAKctjz+e6RmsFSAhUAhSt]
znBQdL9n=

[LINK ENCRYPTION]
VERSION=9.1

LICENSEE=ACME CORPORATION
SERIAL=155566678

ORDERID=

Using Security in ATMI Applications

{DOCROOT}/rf5/rf5.html

SSL Encryption

USERS=1000

STRENGTH=128

EXPIRATION=2006-01-31

SIGNATURE=TXUAhSPnx2C9KMCOCFG+e6Rgr3UzmsFKRBPAJASAhU7KctjznBgFQs]j
jznBdhOh=

See Also
e “Security Administration Tasks’ on page 2-4
e “Administering Link-Level Encryption” on page 2-35

e “Distributing ATMI Applications Across a Network” and “Creating the Configuration File
for aDistributed ATMI Application” in Setting Up an Oracle Tuxedo Application

SSL Encryption

The Oracle Tuxedo product provides the industry-standard SSL protocol to establish secure
communi cations between client and server applications. When using the SSL protocol, principals
use digital certificatesto prove their identity to a peer.

Note: Theactua network protocol usedisTLS 1.0, which isthe successor to the SSL protocol,
but this document will follow common usage and refer to this protocol as SSL
Encryption.

Like LLE, the SSL protocol can be used with password authentication to provide confidentiality
and integrity to communication between the client application and the Oracle Tuxedo domain.
When using the SSL protocol with password authentication, you are prompted for the password
of the Listener/Handler (I1OP, Workstation, or JOLT) defined by the sEc_PRINCIPAL_NAME
parameter when you enter the tmloadcf command.

SSL can be used on the following types of ATMI application links:
e Client to server handler (I110OP, Workstation, or JOLT)
e Bridge-to-Bridge
o Administrative utility (such as tmboot OF tmshutdown) tO t1listen

e Domain gateway to domain gateway

Using Security in ATMI Applications 1-27

{DOCROOT}/ads/addist.html
{DOCROOT}/ads/adsdis.html

Available SSL ciphersinclude 256-bit, 128-bit, and 56-bit ciphers, as described later in this
chapter.

How the SSL Protocol Works

The SSL protocol works in the following manner:
1. The Target Process presentsitsdigital certificate to the initiating application.

2. Theinitiating application comparesthe digital certificate of the Target Process against itslist
of trusted certificate authorities.

3. If theinitiating application validates the digital certificate of the Target Process, the
application and the Target Process establish an SSL connection.

Theinitiating application can then use either password or certificate authentication to
authenticate itself to the Oracle Tuxedo domain.

Figure 1-7 illustrates how the SSL protocol works.

Figure 1-7 How the SSL Protocol Works in a Tuxedo Application

SSL Protocol

Initiating
Process

Target
Process

Certificate for
Target Process

Certificate for
Initiating Process
{if mutual authentication
is used)

Requirements for Using the SSL Protocol

The implementation of the SSL protocol is flexible enough to fit into most public key
infrastructures. Tuxedo offers two different methods to store SSL security credentials:

1-28 Using Security in ATMI Applications

SSL Encryption

e The Oracle Wallet is anew feature of Tuxedo 12c. An Oracle Wallet stores the private
key, certificate chain, and trusted certificates for a process within asingle PKCS12 file,
which can be created using either Oracle tools or tools from other security vendors.

e The plugin framework used in previous release of Tuxedo can also be used to store
security credentials. The default implementation of the plug-in frame work in the Oracle
Tuxedo product requires that digital certificates are stored in an LDAP-enabled directory.
You can choose any L DAP-enabled directory service. You also need to choose the
certificate authority from which to obtain digital certificates and private keysused in a
Tuxedo application. You must have an LDAP-enabled directory service and a certificate
authority in place before using the SSL protocol in a Tuxedo application.

Encryption Key Size Negotiation

When two processes at the opposite ends of anetwork link need to communicate, they must first
agree on the size of the key to be used for encryption. This agreement is resolved through a
two-step process of negotiation.

1. Each processidentifies its own min-max values.

2. Together, the two processes find the largest key size supported by both.

Determining Min-Max Values

When either of the two processes starts up, the local Oracle Tuxedo software (1) checksthe
bit-encryption capability of theinstalled SSL version by checking the SSL licensing information
inthe1ic.txt fileand (2) checksthe SSL min-maxvaluesfor the particular link type as specified
in the two configuration files. The local software then proceeds as follows:

o If the configured min-max values accommodate the installed SSL version, then the local
software assigns those values as the min-max values for the process.

o |f the configured min-max values do not accommodate the installed SSL version, for
example, if the International SSL version isinstalled but the configured min-max values are
(128, 256), then the local software issues arun-time error; it is not possible to negotiate a
connection at this point.

o If there are no min-max values specified in the configurations for a particular link type,
then the local software assigns 0 as the minimum value and assigns the highest
bit-encryption rate possible for the installed SSL versions as the maximum value, that is,
(O, 256) for a Tuxedo installation licensed for strong SSL encryption.

Using Security in ATMI Applications 1-29

Finding a Common Key Size

After the min-max values are determined for the two processes, the negotiation of key size begins.
The negotiation process need not be encrypted or hidden. Once akey size is agreed upon, it
remains in effect for the lifetime of the network connection.

Table 1-6 shows which key size, if any, is agreed upon by two processes when all possible
combinations of min-max valuesare negotiated. The header row holdsthe min-max valuesfor one
process; the far left column holds the mi n-max values for the other.

Table 1-6 Interprocess Negotiation Results (0, 0) to (56, 256)

(0,0) (0, 56) (0,128) (0, 256) (56, 56) (56,128) (56, 236)
(0,0) ERROR ERROR ERROR ERROR ERROR ERROR ERROR
(0, 56) ERROR 56 56 56 56 56 56
(0, 128) ERROR 56 128 128 56 128 128
(0, 256) ERROR 56 128 256 56 128 256
(56, 56) ERROR 56 56 56 56 56 56
(56, 128) ERROR 56 128 128 56 128 128
(56, 256) ERROR 56 128 256 56 128 256
(128, 128) ERROR ERROR 128 128 ERROR 128 128
(128,256) ERROR ERROR 128 256 ERROR 128 256
(256,256) ERROR ERROR ERROR 256 ERROR ERROR 256

Table 1-7 Interprocess Negotiation Results (128, 128) to (256, 256)

(128,128) (128, 256) (236, 256)
(0,0) ERROR ERROR ERROR
(0, 56) ERROR ERROR ERROR
(0,128) 128 128 ERROR

1-30

Using Security in ATMI Applications

SSL Encryption

Table 1-7 Interprocess Negotiation Results (128, 128) to (256, 256)
(128,128) (128,256) (256, 256)

(0, 256) 128 256 256
(56, 56) ERROR ERROR ERROR
(56, 128) 128 128 ERROR
(56, 256) 128 256 256
(128, 128) 128 128 ERROR
(128,256) 128 256 256
(256,256) ERROR 256 256

Backward Compatibility of SSL

In order to use SSL between two Tuxedo processes, both processes must be running Tuxedo 10.0
or later (except when using the CORBA SSL capabilities described in "Using Security in
CORBA Applications." It is possible to specify both non-SSL and SSL ports for WSL and JSL
processes and to specify SSL or LLE connectivity for individual entriesinthe*DM_TDOMAIN
section of aDMCONFIG file. In thisway, it is possible to gradually migrate a workstation or
domain application to use SSL asindividual workstation clients and Tuxedo domains are
upgraded to Tuxedo 10.

Notes:

e Itisnot possibleto use SSL between BRIDGE and tlisten processesin an MP
mode application until all machines in the Tuxedo domain are upgraded to Tuxedo
10.0 or later.

e Zero bit SSL ciphers (which do not actually encrypt application data) were allowed
prior to Tuxedo 12.1.1, but are disallowed by the Oracle NZ Security Layer used in
Tuxedo 12.1.1 and later.

WSL/WSH Connection Timeout During Initialization

The length of time a Workstation client can take for initialization is limited. By default, this
interval is 60. The 60-second interval includes the time needed to negotiate an encrypted link.
Thistime limit can be changed when WSL is configured by changing the value of the

Using Security in ATMI Applications 1-31

1-32

MAXINITTIME parameter for the workstation listener (WSL) server in the usBconF1G file, or the
vaue of the Ta_MAXINITTIME attribute in the T_wsL class of thews_MIB(5).

Supported Cipher Suites

A cipher suiteisa SSL encryption method that includes the key exchange algorithm, the
symmetric encryption algorithm, and the secure hash algorithm used to protect the integrity of
the communication. For example, the cipher suite Rsa_wITH_Rc4_128_MD5 Uses RSA for key
exchange, RC4 with a 128-hit key for bulk encryption, and M D5 for message digest.

The ATMI security environment supports the cipher suites described in Table 1-8.

Tahle 1-8 SSL Cipher Suites Supported by the ATMI Security Environment

Cipher Suite Key Symmetric
Exchange Key
Type Strength
TLS_RSA_WITH_AES_256_CBC_SHA RSA 256
TLS_RSA_WITH_AES_128_CBC_SHA RSA 128
SSL_RSA_WITH_RC4_128_SHA RSA 128
SSL_RSA_WITH_RC4_128_MD5 RSA 128
SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 112
SSL_RSA_WITH_DES_CDC_SHA RSA 56
SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA 40
SSL_RSA_EXPORT_WITH DES40_CBC_SHA RSA 40

SSL Installation and Licensing

SSL isdelivered as a standard feature of the Tuxedo system. If an application will not be using
the Oracle Wallet to store security credentialsand will be using LDAPto obtain certificates, then
the administrator should have the name of their LDAP server, the LDAP port number, and the
LDAPfilter file location available at installation time (The default LDAP filter file location of
$TUXDIR/udataobj/security/bea_ldap_filter.dat should befinefor most applications.)

Using Security in ATMI Applications

{DOCROOT}/rf5/rf5.html

Public Key Security

The epifregedt command can be used if thisinformation needs to be changed after installation
time.

See Also
e “Security Administration Tasks’ on page 2-4
e “Administering SSL Encryption” on page 2-40

e “Distributing ATMI Applications Across a Network” and “ Creating the Configuration File
for aDistributed ATMI Application” on page 10-1 in Setting Up an Oracle Tuxedo
Application

e Using Security in CORBA Applications

Public Key Security

Public key security provides two capabilities that make end-to-end digital signing and data
encryption possible:

o Message-based digital signature

e Message-based encryption

Message-based digital signature allows the recipient (or recipients) of a message to identify and
authenticate both the sender and the sent message. Digital signature provides solid proof of the
originator and content of a message; a sender cannot falsely repudiate responsibility for a
message to which that sender’ sdigital signature is attached. Thus, for example, Bob cannot issue
arequest for awithdrawal from his bank account and later claim that someone el se issued that
request.

In addition, message-based encryption protects the confidentiality of messages by ensuring that
only designated recipients can decrypt and read them.

PKCS-7 Compliant

Informal but recognized industry standards for public key software have been issued by a group
of leading communications companies, led by RSA Laboratories. These standards are called
Public-Key Cryptography Standards, or PKCS. The public key software in the ATMI
environment of the Oracle Tuxedo software complies with the PK CS-7 standard.

Using Security in ATMI Applications 1-33

{DOCROOT}/ads/addist.html
{DOCROOT}/ads/adsdis.html
../security/publickey.html

1-34

PKCS-7 isahybrid cryptosystem architecture. A symmetric key algorithmwith arandom session
key isused to encrypt amessage, and a public key algorithmis used to encrypt the random session
key. A random number generator creates a new session key for each communication, which
makes it difficult for awould-be attacker to reuse previous communications.

Supported Algorithms for Public Key Security

All the agorithms on which public key security is based are well known and commercially
available. To select the algorithms that will best serve your ATMI application, consider the
following factors: speed, degree of security, and licensing restrictions (for example, the United
States government restricts the algorithms that it allows to be exported to other countries).

Public Key Algorithms

The public key security in the ATMI environment of the Oracle Tuxedo product supports any
public key algorithms supported by the underlying plug-ins, including RSA, ElGamal, and Rabin.
(RSA stands for Rivest, Shamir, and Adelman, the inventors of the RSA algorithm.) All these
algorithms can be used for digital signatures and encryption.

Public key (or asymmetric key) algorithms such as RSA are implemented through a pair of
different but mathematically related keys:

e A public key (which is distributed widely) for verifying adigital signature or transforming
datainto a seemingly unintelligible form.

e A private key (which is always kept secret) for creating adigital signature or returning the
datato itsoriginal form.

Digital Signature Algorithms

The public key security in the ATMI environment of the Oracle Tuxedo product supports any
digital signature algorithms supported by the underlying plug-ins, including RSA, ElGamal,
Rabin, and Digital Signature Algorithm (DSA). With the exception of DSA, al these algorithms
can be used for digital signatures and encryption. DSA can be used for digital signatures but not
for encryption.

Digital signature algorithms are simply public key algorithms used to provide digital signatures.
DSA isaso apublic key agorithm (implemented through public-private key pairs), but it can
only be used to provide digital signatures, not encryption.

Using Security in ATMI Applications

Public Key Security

Symmetric Key Algorithms
Public key security supports the following three symmetric key algorithms:

e DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC isa64-hit block cipher run in Cipher Block Chaining (CBC) mode. It provides
56-bit keys (8 parity bits are stripped from the full 64-bit key) and is exportable outside the
United States.

e Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES isa 128-bit block cipher run in Encrypt-Decrypt-Encrypt (EDE)
mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit key) and is not
exportable outside the United States.

For some time it has been common practice to protect and transport a key for DES
encryption with triple-DES, which means that the input data (in this case the single-DES
key) is encrypted, decrypted, and then encrypted again (an encrypt-decrypt-encrypt
process). The same key is used for the two encryption operations.

e RC2 (Rivest's Cipher 2)

RC2 isavariable key-size block cipher with akey size range of 40 to 128 hits. It is faster
than DES and is exportable with a key size of 40 bits. A 56-bit key sizeis allowed for
foreign subsidiaries and overseas offices of United States companies. In the United States,
RC2 can be used with keys of virtually unlimited length, although the ATMI public key
security restricts the key length to 128 bits.

Oracle Tuxedo customers cannot expand or modify thislist of algorithms.

In symmetric key algorithms, the same key is used to encrypt and decrypt a message. The public
key encryption system uses symmetric key encryption to encrypt a message sent between two
communicating entities. Symmetric key encryption operates at least 1000 timesfaster than public
key cryptography.

A block cipher is atype of symmetric key algorithm that transforms a fixed-length block of
plaintext (unencrypted text) datainto ablock of ciphertext (encrypted text) data of the same
length. This transformation takes place in accordance with the value of arandomly generated
session key. The fixed length is called the block size.

Message Digest Algorithms

Public key security supportsany message digest algorithms supported by the underlying plug-ins,
including MD5, SHA-1 (Secure Hash Algorithm 1), and many others. Both MD5 and SHA-1 are

Using Security in ATMI Applications 1-35

well known, one-way hash agorithms. A one-way hash algorithm takes a message and converts
it into afixed string of digits, which isreferred to as a message digest or hash value.

MD?5 is a high-speed, 128-hit hash; it isintended for use with 32-bit machines. SHA-1 offers
more security by using a 160-bit hash, but is slower than MD5.

See Also
e “Message-based Digital Signature” on page 1-36
e “Message-based Encryption” on page 1-41
e “Public Key Implementation” on page 1-43
e “Security Administration Tasks’ on page 2-4
e “Administering Public Key Security” on page 2-52
e “Programming an ATMI Application with Security” on page 3-3

e “Writing Security Code to Protect Data Integrity and Privacy” on page 3-14

Message-based Digital Signature

1-36

Message-based digital signatures enhance ATMI security by allowing a message originator to
proveitsidentity, and by binding that proof to a specific message buffer. Mutually authenticated
and tamper-proof communication is considered essential for ATMI applications that transport
data over the Internet, either between companies or between a company and the general public.
It also iscritical for ATMI applications deployed over insecure internal networks.

The scope of protection for a message-based digital signature is end-to-end: amessage buffer is
protected from the time it leaves the originating process until thetime it is received at the
destination process. It is protected at al intermediate transit points, including temporary message
gueues, disk-based queues, and system processes, and during transmission over inter-server
network links.

Figure 1-8 shows how end-to-end message-based digital signature works.

Using Security in ATMI Applications

Message-based Digital Signature

Figure 1-8 ATMI PKCS-7 End-to-End Digital Signing

tpsign()
From Signer To Recipient
— — ~ — T
Clear Data Buffer - T~ — - ~ Buffer Clear Data
Public Key Security
/ \
/ N

1 Digital Signature Algorithm

e | <R oicars 1%
d | ? \\
/ L

' Compare /

Y

v !
' [
\ —>| Digest Encrypt I—»: Decrypt
) i) P AN
Signer’s Signer’s \
Private Key : Public Key v

(. Digest |
\ I—'—‘ |

\ Signer’s Assigned Public Key Pair /

~ | /

N Message Digest Algorithm / ~ _

~ — N /
~
A\ ~

~ -

-_
—_

Message-based digital signature involves generating adigital signature by computing amessage
digest on the message, and then encrypting the message digest with the sender’ sprivate key. The
recipient verifies the signature by decrypting the encrypted message digest with the signer’s
public key, and then comparing the recovered message digest to an independently computed
message digest. The signer’ s public key either is contained in adigital certificateincluded in the
signer information, or is referenced by an issuer-distinguished name and issuer-specific serial
number that uniquely identify the certificate for the public key.

Using Security in ATMI Applications 1-37

1-38

Digital Certificates

Digital certificates are electronic files used to uniquely identify individuals and resources over
networks such asthe Internet. A digital certificate securely binds the identity of an individual or
resource, as verified by atrusted third party known as a Certification Authority, to a particular
public key. Because no two public keys are ever identical, apublic key can be used to identify its
owner.

Digital certificatesallow verification of the claim that aspecific public key doesin fact belong to
aspecific subscriber. A recipient of acertificate can use the public key listed in the certificate to
verify that the digital signature was created with the corresponding private key. If such
verification is successful, this chain of reasoning provides assurance that the corresponding
private key is held by the subscriber named in the certificate, and that the digital signature was
created by that particular subscriber.

A certificate typically includes avariety of information, such as:

e The name of the subscriber (holder, owner) and other identification information required to
uniquely identify the subscriber, such as the URL of the Web server using the certificate,
or an individua’s e-mail address.

e The subscriber’s public key.
e The name of the Certification Authority that issued the certificate.
e A seria number.

e Thevalidity period (or lifetime) of the certificate (defined by a start date and an end date).

The most widely accepted format for certificates is defined by the ITU-T X.509 international
standard. Thus, certificates can be read or written by any ATMI application complying with
X.509. The public key security in the ATMI environment of the Oracle Tuxedo product
recognizes certificates that comply with X.509 version 3, or X.509v3.

Certification Authority

Certificates are issued by a Certification Authority, or CA. Any trusted third-party organization
or company that iswilling to vouch for the identities of those to whom it issues certificates and
public keyscan beaCA. When it creates acertificate, the CA signsthe certificate with its private
key, to obtain adigital signature. The CA then returns the certificate with the signature to the
subscriber; these two parts—the certificate and the CA’ s signature—together form avalid
certificate.

Using Security in ATMI Applications

Message-based Digital Signature

The subscriber and others can verify the issuing CA’ s digita signature by using the CA’s public
key. The CA makesits public key readily available by publicizing that key or by providing a
certificate from ahigher-level CA attesting to thevalidity of thelower-level CA’spublickey. The
second solution givesrise to hierarchies of CAs.

The recipient of an encrypted message can develop trust in the CA’s private key recursively, if
the recipient has a certificate containing the CA’s public key signed by a superior CA whom the
recipient already trusts. In this sense, acertificate is a stepping stonein digital trust. Ultimately,
it is necessary to trust only the public keys of a small number of top-level CAs. Through achain
of certificates, trust in alarge number of users' signatures can be established.

Thus, digital signatures establish the identities of communicating entities, but a signature can be
trusted only to the extent that the public key for verifying the signature can be trusted.

Note that Oracle has no plansto become a CA. By offering a public key plug-in interface, Oracle
extends the opportunity to all Oracle Tuxedo customersto select a CA of their choice.

Certificate Repositories

To make a public key and its identification with a specific subscriber readily available for usein
verification, the digital certificate may be published in arepository or made available by other
means. Repositories are databases of certificates and other information available for retrieval and
usein verifying digital signatures. Retrieval can be accomplished automatically by having the
verification program directly request certificates from the repository as needed.

Public-Key Infrastructure

The Public-Key Infrastructure (PK1) consists of protocols, services, and standards supporting
applications of public key cryptography. Because the technology is still relatively new, the term
PK is somewhat loosely defined: sometimes “PKI” simply refersto atrust hierarchy based on
public key certificates; in other contexts, it embraces digital signature and encryption services
provided to end-user applications as well.

Thereisno single standard public key infrastructure today, though efforts are underway to define
one. It isnot yet clear whether a standard will be established or multiple independent PKIs will
evolve with varying degrees of interoperability. In this sense, the state of PKI technology today
can be viewed as similar to local and wide-area network technology in the 1980s, before there
was widespread connectivity viathe Internet.

The following services are likely to be found in a PKI:

e Key registration: for issuing a new certificate for a public key

Using Security in ATMI Applications 1-39

e Certificate revocation: for canceling a previously issued certificate
e Key selection: for obtaining a party’s public key

e Trust evaluation: for determining whether a certificate is valid and which operations it
authorizes

Figure 1-9 shows the PKI process flow.

Figure 1-9 PKI Process Flow

Certification N ,
Authority 3 i Repository
Subscriber @ > Recipient

Subscriber appliesto Certification Authority (CA) for digital certificate.
CA verifiesidentity of subscriber and issues digital certificate.

CA publishes certificate to repository.

A W bdpoRE

Subscriber digitally signs electronic message with private key to ensure sender authenticity,
message integrity, and non-repudiation, and then sends message to recipient.

5. Recipient receives message, verifies digital signature with subscriber’s public key, and goes
to repository to check status and validity of subscriber’s certificate.

6. Repository returns results of status check on subscriber’s certificate to recipient.

Note that Oracle has no plansto become aPK| vendor. By offering apublic key plug-ininterface,
Oracle extendsthe opportunity to all Oracle Tuxedo customersto use aPK | security solution with
the PK| software from their vendor of choice.

See Also

e “Public Key Implementation” on page 1-43
e “Security Administration Tasks’ on page 2-4

e “Administering Public Key Security” on page 2-52

1-40 Using Security in ATMI Applications

Message-based Encryption

e “Programming an ATMI Application with Security” on page 3-3
e “Writing Security Code to Protect Data Integrity and Privacy” on page 3-14

Message-based Encryption

M essage-based encryption keeps data private, which is essential for ATMI applications that
transport data over the Internet, whether between companies or between a company and its
customers. Data privacy is aso critical for ATMI applications deployed over insecure internal
networks.

M essage-based encryption also hel ps ensure message integrity, becauseit ismore difficult for an
attacker to modify a message when the content is obscured.

The scope of protection provided by message-based encryption is end-to-end; a message buffer
is protected from the time it |eaves the originating process until thetimeiit is received at the
destination process. It is protected at al intermediate transit points, including temporary message
queues, disk-based queues, and system processes, and during transmission over interserver
network links.

Figure 1-10 shows how end-to-end message-based encryption works.

Using Security in ATMI Applications 1-41

From Sender i

Figure 1-10 ATMI PKCS-7 End-to-End Encryption

tpseal ()

To Recipient

Clear Data —| Buffer -~ LT IS Buffer [+ Clear Data
] Public Key Security il g
/ \
I / Symmetric Key Algorithm - =~
- \
s
s \

1-42

Public Key Algorithm

| ; /
\ : /
\

A

. Encrypt l : l Decrypt
// 4>| Encrypt H Decrypt }7 \\
o 1

\ Session Recipient's ' Recipient’s |

Key Public Key ' Private Key y
\ Z

N /
~ . /
~— \ Recipient’s Assigned Public Key Pair —_ _
\ /
~
N -
—~ - —

The messageisencrypted by asymmetric key algorithm and a session key. Then, the session key
isencrypted by the recipient’s public key. Next, the recipient decrypts the encrypted session key
with the recipient’s private key. Finally, the recipient decrypts the encrypted message with the
session key to obtain the message content.

Note: Thefigure does not show two other steps in this process: (1) the datais compressed

immediately before the message is encrypted; and (2) the data is uncompressed
immediately after the message is decrypted.

Because the unit of encryption isan ATMI message buffer, message-based encryption is
compatible with all existing ATMI programming interfaces and communication paradigms. The
encryption process is always the same, whether it is being performed on messages shipped

Using Security in ATMI Applications

Public Key Implementation

between two processesin asingle machine, or on messages sent between two machines through
anetwork.

See Also
e “Public Key Implementation” on page 1-43
e “Security Administration Tasks’ on page 2-4
e “Administering Public Key Security” on page 2-52
e “Programming an ATMI Application with Security” on page 3-3
e “Writing Security Code to Protect Data Integrity and Privacy” on page 3-14

Public Key Implementation

The underlying plug-in interface for public key security consists of six component interfaces,
each of which requires one or more plug-ins. By instantiating these interfaceswith your preferred
plug-ins, you can bring custom message-based digital signature and message-based encryptionto
your ATMI application.

The six component interfaces are:
e Public key initialization
e Key management
o Certificate lookup
e Certificate parsing
o Certificate validation

e Proof material mapping

Public Key Initialization

The public key initialization interface allows public key softwareto open public and private keys.
For example, gateway processes may need to have access to a specific private key in order to
decrypt messages before routing them. Thisinterface isimplemented as a fanout.

Using Security in ATMI Applications 1-43

1-44

Key Management

The key management interface allows public key software to manage and use public and private
keys. Notethat message digests and session keysare encrypted and decrypted using thisinterface,
but no bulk data encryption is performed using public key cryptography. Bulk dataencryptionis
performed using symmetric key cryptography.

Certificate Lookup

The certificate lookup interface allows public key software to retrieve X.509v3 certificates for a
given principal. Principal s are authenticated users. The certificate database may be stored using
any appropriate tool, such as Lightweight Directory Access Protocol (LDAP), Microsoft Active
Directory, Netware Directory Service (NDS), or local files.

Certificate Parsing

The certificate parsing interface allows public key software to associate a simple principa name
with an X.509v3 certificate. The parser analyzes a certificate to generate a principal name to be
associated with the certificate.

Certificate Validation

The certificate validation interface allows public key software to validate an X.509v3 certificate
in accordance with specific business logic. Thisinterface isimplemented as a fanout, which
allows Oracle Tuxedo customers to use their own business rules to determine the validity of a
certificate.

Proof Material Mapping

The proof material mapping interface allows public key software to access the proof materials
needed to open keys, provide authorization tokens, and provide auditing tokens.

Implementing Custom Public Key Security

Y ou can provide public key security for your ATMI application by using custom plug-ins. You
choose a plug-in by configuring the Oracle Tuxedo registry, atool that controls all security
plug-ins.

Using Security in ATMI Applications

Default Authentication and Authorization

If you want to use custom public key plug-ins, you must configure the registry for your public
key plug-ins before you can install them. For more detail about the registry, see “ Setting the
Oracle Tuxedo Registry” on page 2-4.

Default Public Key Implementation
The default public key implementation supports the following algorithms:
e Public key algorithms: RSA
e Digital signature algorithms: RSA and DSA
e Symmetric key algorithms:
— DESCBC
— Two-key triple-DES
- RC2
e Message digest algorithms:
— MD5
— SHA-1

See Also
e “Public Key Security” on page 1-33
e “Security Administration Tasks’ on page 2-4
e “Administering Public Key Security” on page 2-52
e “Programming an ATMI Application with Security” on page 3-3
e “Writing Security Code to Protect Data Integrity and Privacy” on page 3-14

Default Authentication and Authorization

The default authentication and authorization plug-ins provided by the ATMI environment of the
Oracle Tuxedo product work in the same manner that implementations of authentication and
authorization have worked since they were first made avail able with the Oracle Tuxedo system.

An application administrator can use the default authentication and authorization plug-insto
configure an ATMI application with one of five levels of security. The five levels are:

Using Security in ATMI Applications 1-45

1-46

No authentication

Application password security

o User-level authentication

e Optional access control list (ACL) security

e Mandatory ACL security

Atthelowest level, no authentication is provided. At the highest level, an access control checking
feature determines which users can execute a service, post an event, or engqueue (or degqueue) a
message on an application queue. The security levels are briefly described in Table 1-9.

Table 1-9 Security Levels for Default Authentication and Authorization

Security Level

Description

No authentication

Clients do not have to be verified before joining the ATMI
application.

When joining an ATMI application at this security level, auser
has access to all application resources.

Application password

The application administrator defines asingle password for the
entire ATMI application, and clientsmust provide the password
to join the application.

When successfully joining an ATMI application at this security
level, auser has accessto all application resources.

User-level authentication

In addition to the application password, each client must
provide avalid username and user-specific data, such asa
password, to join the ATMI application.

When successfully joining an ATMI application at this security
level, auser has access to al application resources.

Using Security in ATMI Applications

Default Authentication and Authorization

Tahle 1-9 Security Levels for Default Authentication and Authorization (Continued)

Security Level

Description

Optional ACL security

Clientsmust provide the application password, ausername, and
user-specific data such as a password.

For a user who successfully joins an ATMI application at this
security level, accessto application resourcesisrestricted in the
following way. The ACL database containsalist of application
resources and, for each resource, alist of userswith permission
touseit. A user who is not included in the list for a particular
resource is not allowed to access that resource, regardless of
whether optional ACL or mandatory ACL security is being
used.

If thereis no entry in the ACL database for aresource and the
security level for the ATMI application is set to optional ACL
security, all users are permitted to access the resource.

Mandatory ACL security

Clientsmust provide the application password, ausername, and
user-specific data such as a password.

For a user who successfully joins an ATMI application at this
security level, accessto application resourcesisrestricted inthe
following way. The ACL database containsalist of application
resources and, for each resource, alist of userswith permission
to useit. A user who is not included in the list for a particular
resource is not allowed to access that resource, regardless of
whether optional ACL or mandatory ACL security is being
used.

If thereis no entry in the ACL database for aresource and the
security level for the ATMI application is set to mandatory
ACL security, users are not permitted to access the resource.

Note: Theterm client issynonymouswith client process, meaning aspecificinstance of aclient

program in execution. An ATMI client program can exist in active memory in any

number of individual instances.

An application administrator can designate a security level by setting the securITy parameter in
the uBBconF1c configuration file to the appropriate value.

Using Security in ATMI Applications

1-41

1-48

For This Security Level Set SECURITY Parameter to. ..

No authentication NONE

Application password security APP_PW
User-level authentication USER_AUTH
Optional ACL security ACL

Mandatory ACL security MANDATORY_ACL

The default isNONE. If SECURITY IS Set t0 USER_AUTH, ACL, Of MANDATORY_ACL, then the
application administrator must configure a system-supplied authentication server named
AUTHSVR. AUTHSVR performs per-user authentication.

An application developer can replace auTasvVR with an authentication server that has logic
specific to the ATMI application. For example, a company may want to develop a custom
authentication server so that it can use the popul ar Kerberos mechanism for authentication.

Client Naming

Uponjoining an ATMI application, aclient process has two names: acombined user-client name
and a unique client identifier known as an application key.

e The user-client name consists of a username and a client name and is used for security,
administration, and communications.

e The application key isa 32-bit value that is called on behalf of the client and used by the
access control checking feature.

Two client names are reserved for special semantics: tpsysadm and tpsysop. tpsysadmiS
treated as the application administrator, and tpsysop IS treated as the application operator.

User-Client Names

When an authenticated client joinsan ATMI application, it passes ausername and client nameto
tpinit (3c) inaTpINIT buffer if theapplicationiswrittenin C, or to TPINITIALIZE (3cbl) in
aTPINFDEF-REC record if the application iswritten in COBOL. The username and client name,
aswell asother security-related fieldsin therpIn1T buffer/ TPINFDEF-REC record, are described
in Table 1-10.

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3cbl/rf3cbl.html

Default Authentication and Authorization

Table 1-10 Security-Related Fields in TPINIT Buffer/ TPINFDEF-REC Record
TPINIT TPINFDEF-REC Description

usrname USRNAME A user name consisting of a string of up to 30
characters. Required for security level USER_AUTH,
ACL, Or MANDATORY_ACL. The username represents
the caler.

cltname CLTNAME A client name consisting of a string of up to 30
characters. Required for security level USER_AUTH,
ACL, or MANDATORY_ACL. The client name
represents the client program.

passwd PASSWD Application password. Required for security level
APP_PW, USER_AUTH, ACL, Of MANDATORY_ACL.
tpinit () or TPINITIALIZE () validatesthis
password by comparing it to the configured
application password stored in the TUXCONF IG file*

datalen DATALEN Length of the user-specific data** that follows.

data N/A User-specific data** Required for security level
USER_AUTH, ACL, Of MANDATORY_ACL.
tpinit () or TPINITIALIZE () forwardsthe
user-specific data to the authentication server for
validation. The authentication server iSAUTHSVR.

* The binary equivalent of the UBBCONFIG file.
** Usually auser password.

For an authenticated security level (USER_AUTH, ACL, Of MANDATORY_ACL), the username, client
name, and user-specific data are transferred to auTasvr without interpretation by the Oracle
Tuxedo system. The only manipulation of thisinformation is its encryption when transmitted
over the network from a Workstation client.

Application Key

Every time aclient joinsan ATMI application, it is assigned a 32-bit application key by the
Oracle Tuxedo system. The client cannot reset the key other than by terminating its association
and joining the ATMI application as a different user.

Using Security in ATMI Applications 1-49

Theassigned application key isthe client’ s security credential. The client providesits application
key with every service invocation as part of the TpsvcINFO structure in the appkey field. (See
tpservice (3c¢) inthe Oracle Tuxedo ATMI C Function Reference for more information about

TPSVCINFO.)

Table 1-11 shows how the application key is set for various security levels and clients. All
application key assignments are hardcoded except the last item in the table.

Table 1-11 Application Key Assignments

At This Security Level

Messages of This Type

Are Assigned the Following Application
Key

Any security level

Messages from native ATMI clients that
must be run by the administrator (like
tmadmin (1))

0x80000000
(Application key of the administrator)

NONE Or APP_PW

Messages from native ATMI clients that
cal tpinit ()/ TPINITIALIZE ()
with aclient name of tpsysadm and are
run by the administrator

0x80000000
(Application key of the administrator)

Messages from native ATMI clients that
cal tpinit ()/ TPINITIALIZE ()
with aclient name of tpsysop and are
run by the administrator

0xC0000000
(Application key of the operator)

Messages from any ATMI client other
than tpsysadm or tpsysop

1-50 Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rfcm/rfcmd.html

Default Authentication and Authorization

Tahble 1-11 Application Key Assignments (Continued)

At This Security Level

Messages of This Type

Are Assigned the Following Application
Key

USER_AUTH, ACL, Or
MANDATORY_ACL

Messages from native ATMI clients that
cal tpinit ()/ TPINITIALIZE ()
with aclient name of tpsysadm and are
run by the administrator and bypass
authentication

0x80000000
(Application key of the administrator)

M essages from authenticated ATMI
clientsthat call tpinit ()/
TPINITIALIZE () withaclient nameof
tpsysadm

0x80000000
(Application key of the administrator)

M essages from authenticated ATMI
clientsthat call tpinit()/
TPINITIALIZE () withaclient nameof
tpsysop

0xC0000000
(Application key of the operator)

M essages from authenticated ATMI
clientsthat call tpinit ()/
TPINITIALIZE () withaclient name
other than tpsysadm or tpsysop

Application key = user
identifier (UID) inthelower 17
bitsand group identifier (GID)
in the next higher 14 bits; remaining
upper bitis 0. AUTHSVR returns this
application key value

In addition, any message that originates from tpsvrinit (3c) Of tpsvrdone (3c) inaC

program (TPSVRINIT (3cbl) OF TPSVRDONE (3cbl) in COBOL) isassigned the application key
of the administrator: 0x80000000. The application key of the client is assigned to messages that
passthrough aserver but originate at aclient; an exception to thisruleisdescribed in “ Replacing
Client Tokens with Server Tokens” on page 1-10.

A user identifier (UID) isan integer, between 0 and 128K, that is used by the application to refer
toaparticular user. A group identifier (GID) isan integer, between 0 and 16K, that isused by the
application to refer to an application group.

User, Group, and ACL Files

To use access control, an application administrator must maintain lists of (1) users, (2) groups,
and (3) and mappings of groups to application entities (such as services, events, and application

Using Security in ATMI Applications 1-51

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3cbl/rf3cbl.html
{DOCROOT}/rf3cbl/rf3cbl.html

1-52

gueues). Thethird type of list, amapping of groupsto application entities, isknown asthe access
control list (ACL).

When aclient tries to access an application resource, such as a service, the system checks the
client’ sapplication key and thus identifies the group to which the user belongs. Next, the system
checks the ACL for the target resource and determines whether the client’ s group has access
permission. The application administrator, application operator, and processesor service requests
running with the privileges of the application administrator or operator are not subject to ACL
permission checking.

The user, group, and ACL filesarelocated inthe app1ication_root directory, where
application _root isthefirst pathname defined for the apppIR Variable. Figure 1-11
identifies these files and specifies the administrative commands available for controlling each
list.

Figure 1-11 Default User, Group, and ACL Files

application_root

tpusr tpgrp tpacl

Administrative Commands Administrative Commands Administrative Commands

for User File for Group File for ACL File
m tpusradd(1) m tpgrpadd(1) m tpacladd(1)
m tpusrdel(1) m tpgrpdel(1) m tpacldel(1)
m tpusrmod(1) m tpgrpmod(1) m tpacimod(1)

Note: For an ATMI application running on the Compaq VMS operating system, the names of
the user, group, and ACL fileshave .dat extensions: tpusr.dat, tpgrp.dat, and
tpacl.dat.

Thefiles are colon-delimited, flat text files that can be read and written only by the application
administrator—the owner of the Tuxconr1c file referenced by the Tuxconr1c variable. The
format of the filesisirrelevant, since thefiles are fully administered with a set of dedicated
commands. Only the application administrator is allowed to use these commands.

Using Security in ATMI Applications

Default Authentication and Authorization

An application administrator can use the tpaclcvt (1) command to convert security datafiles
to the format needed by the ACL checking feature. For example, on a UNIX host machine, an
administrator can use tpaclcvt to convert the /etc/password file and store the converted
version inthe tpusr file. The same administrator can use tpaclcvt to convert the /etc/group
file and store the converted version in the tpgrp file.

The AuTHSVR Server uses the user information stored in the tpusr file to authenticate users who
want to join the ATMI application.

When extensible security administration is enabled with the default xauTHsvR implemented,
user, group, and ACL definition are placed in the LDAP repository rather than in aplain text.
These informations should follow the LDAP schemas. For information about LDAP schemas,
refer to How to Enable The Extended Security in Administering Security.

The xAUTHSVR Server uses the user, group, and permission information in the LDAP repository
to authenticate users who want to join the ATMI application or access Tuxedo resources.

Optional and Mandatory ACLs

The acL and MANDATORY_ACL Security levels constitute the default authorization implementation
for the ATMI environment in the Oracle Tuxedo product.

When the security level is act, if thereisno entry in the tpac1 fileor LDAP
orcljaznpermission class associated with the target application entity, the client is permitted
to accesstheentity. Thissecurity level enablesan administrator to configure accessfor only those
resources that need more security. That is, there is no need to add entriesto the tpac1 file for
services, events, or application queues that are open to everyone.

When the security level isMaNDATORY_acL, if thereisno entry in the tpac1 fileor LDAP
orcljaznpermission classassociated with the target application entity, the client is not
permitted to access the entity. For thisreason, thislevel is called mandatory. There must be an
entry in the tpac1i fileor LDAP orcljaznpermission classfor each and every application
entity that the client needsto access.

For both the ac1, and MANDATORY_ACL Security levels, if an entry for an application entity exists
inthe tpac1 fileor LDAP orcljaznpermission classand the client attempts to access that
entity, the user associated with that client must be amember of agroup that is allowed to access
that entity; otherwise, permission is denied.

For some ATMI applications, it may be necessary to use both system-level and application-level
authorization. An entry inthe tpac1 file can be used to control which users can access a service,

Using Security in ATMI Applications 1-53

{DOCROOT}/rfcm/rfcmd.html
../sec/index.html

and application logic can control data-dependent access, for example, which users can handle
transactions for more than amillion dollars.

Note that thereis no ACL permission checking for administrative services, events, and
application queues with names that begin with adot (.). For example, any client can subscribeto
administrative events such as . SysMachineBroadcast, .SysNetworkConfig, and
.SysServerCleaning. In addition, thereis no ACL permission checking for the application
administrator, application operator, or processes or service requests running with the privileges
of the application administrator or operator.

See Also
e “What Administering Security Means’ on page 2-2
e “Security Administration Tasks’ on page 2-4
e “Administering Authentication” on page 2-9
e “Administering Authorization” on page 2-34
e “What Programming Security Means’ on page 3-1
e “Programming an ATMI Application with Security” on page 3-3
e “Writing Security Code So Client Programs Can Join the ATMI Application” on page 3-4

e “About the Configuration File” and “ Creating the Configuration File’ in Setting Up an
Oracle Tuxedo Application

e UBBCONFIG (5) inthe Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

e AUTHSVR (5) inthe Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

Security Interoperability

1-54

Application developers and administrators must be aware of certain security issues when
configuring ATMI applicationsto interoperate with Oracle Tuxedo pre-release 7.1 (6.5 or earlier)
software.

Interoperability, as defined in this discussion, is the ability of the current release of Oracle
Tuxedo software to communicate over a network with a previous rel ease of Oracle Tuxedo

Using Security in ATMI Applications

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/ads/adconf.html
{DOCROOT}/ads/adfig.html

Security Interoperability

software. Specificaly, inter-domain interoperability and intra-domain interoperability have the
following meanings:
e Inter-domain interoperability

Involves one ATMI application running Oracle Tuxedo release 7.1 or later software, and
another ATMI application running Oracle Tuxedo pre-release 7.1 software. See the
diagram “Inter-Domain Interoperability” on page 1-55 for clarification.

e Intra-domain interoperability

Involves one machine in a multiple-machine ATMI application running Oracle Tuxedo
release 7.1 or later software, and another machine in the same application running Oracle
Tuxedo pre-release 7.1 software. See the figure “Intra-Domain Interoperability” on

page 1-56 for clarification.

Figure 1-12 Inter-Domain Interoperability

. - __ \ — - N - — ~ / ™~ N
Application 1 Running Application 2 Running
Oracle Tuxedo Release 7.1 or Later Software Oracle Tuxedo Pre-Release 7.1 Software
e A\
AN / \
(R |
[/
/ \ \
\
VLo [
} \ _] Workstation }
/ \ ;E\ Client /
/
\ Network / ~ _
N /o~ / Connection (Link) \ AN)
~ / N\ P

Using Security in ATMI Applications 1-55

Figure 1-13 Intra-Domain Interoperability

Same Oracle Tuxedo Application

Machine 1 Running Oracle Tuxedo Machine 2 Running Oracle Tuxedo
Release 7.1 or Later Software Pre-Release 7.1 Software

Client

Client

1-56

Workstation Network Workstation _l
Client Connection (Link) Client =

Interoperating with Pre-Release 7.1 Software

Interoperating with Oracle Tuxedo pre-release 7.1 softwareis allowed or disallowed at the
authentication security level. Authentication, asimplemented by Oracle Tuxedo release 7.1 or
later software, allows communicating processes to mutually prove their identities.

By default, interoperability with amachine running Oracle Tuxedo pre-release 7.1 softwareisnot
allowed. To change the default, an application administrator can use the cLopT -t option to
alow workstation handlers (WSHSs), domain gateways (GwrpoMAINs), and serversin the release
7.1 or later ATMI application to interoperate with Oracle Tuxedo pre-release 7.1 software.
“Mandating Interoperability Policy” on page 2-15 providesinstructions for using the cLopT -t
option as well as the security ramifications for authentication and authorization when using
CLOPT -t.

Interoperability for Link-Level Encryption

Whenever a network link is established between machines running Oracle Tuxedo software,
link-level encryption may be used to encrypt data before sending it over the network link, and

Using Security in ATMI Applications

Security Interoperability

decrypt it asit comes off the link. Of course, link-level encryption is possibleonly if LLE is
installed on both the sending and receiving machines.

LLE interoperability with Oracle Tuxedo pre-release 7.1 software is described in “Backward
Compatibility of LLE” on page 1-24.

Interoperability for SSL Encryption

SSL encryption can be used over network links between machines running Oracle Tuxedo
software only if both machines are running Tuxedo 10.0 or later. LLE encryption can be used
over network links to machines running earlier releases of Tuxedo.

Note: The only exception to the SSL encryption interoperabiliy rulesisthat the CORBA
related SSL capabilities described in “ Using Security in CORBA Applications’ can
be used when interoperating with Tuxedo 8.0 and above, and when interoperating
with the former WLE product.

Interoperability for Public Key Security

The following interoperability rules for public key security shown in Table 1-12 apply to a

machine running release 7.1 or later Oracle Tuxedo software that is configured to interoperate
with amachine running Oracle Tuxedo pre-release 7.1 software. To clarify the rules, each rule
has an accompanying example scenario involving a Workstation client running Oracle Tuxedo

pre-release 7.1 software.

Table 1-12 Interoperability Rules for Public Key Security

Interoperability Rule

Example Comments

Encrypted outgoing message buffers

Encrypted outgoing message buffers “Encrypted” refersto public

destined for amachine running Oracle destined for apre-release 7.1 key message-based
Tuxedo pre-release 7.1 softwarearenot ~ Workstation client are not transmitted encryption, not link-level
transmitted to the machine. to the Workstation client. encryption.

Incoming message buffers from a Incoming message buffers from a See “ Setting Encryption
machine running an Oracle Tuxedo pre-release 7.1 Workstation client do Policy” on page 2-57 for a
pre-release 7.1 softwarearenot accepted not have encryption envel opes description of the

if routed to a process requiring attached, and are not accepted if routed ENCRYPTION_REQUIRED
encryption. t0 a process requiring encryption. configuration parameter.

Using Security in ATMI Applications 1-57

{DOCROOT}/security/index.html

Table 1-12 Interoperability Rules for Public Key Security (Continued)

Interoperability Rule Example

Comments

For outgoing message buffersdestined Digital signatures are verified and then
for the machine running Oracle Tuxedo removed from outgoing message

pre-release 7.1 software, any digital buffers destined for apre-release 7.1
signaturesareverifiedandthenremoved Workstation client.
before the message buffers are

transmitted to the older machine.

It is assumed that the
outgoing message buffer is
digitally signed but not
encrypted. If the outgoing
message buffer isdigitally
signed and encrypted, the
message is hot decrypted,
thedigital signaturesare not
verified, and the messageis
not transmitted to the older
machine.

Incoming message buffers from a Incoming message buffers from a
machine running Oracle Tuxedo pre-release 7.1 Workstation client do
pre-release 7.1 softwarearenot accepted not have digital signatures attached,
if routed to a process requiring digital and are not accepted if routed to a
signatures. process requiring digital signatures.

See “ Setting Digital
Signature Policy” on

page 2-53 for adescription
of the
SIGNATURE_REQUIRED
configuration parameter.

1-58

For inter-domain interoperability, release 7.1 or later domain gateway (GWTDOMATN) Processes

enforce the interoperability rules for public key security.

For intra-domain interoperability, release 7.1 or later native clients, workstation handlers
(WSHSs), or server processes communicating with the local bridge process enforce the
interoperability rulesfor public key security, as shown in Figure 1-14. A bridge process operates
only as a conduit; it does not decrypt message buffer content or verify digital signatures.

Using Security in ATMI Applications

Security Compatibility

Figure 1-14 Enforcing Intra-Domain Interoperability Rules for Public Key Security

Same Oracle Tuxedo Application

Machine 1 Running Oracle Tuxedo
Release 7.1 or Later Software

@ Local Bridge

Machine 2 Running Oracle Tuxedo
Pre-Release 7.1 Software

Bridge

Enforcers

Native
Client

Client

Workstation
Client

Network

Connection (Link)

Workstation
Client

Typicaly, arelease 7.1 or later WSH does not verify digital signatures. But when routing

adigitaly signed message buffer to a process running Oracle Tuxedo pre-release 7.1
software, the WSH verifies any digital signatures before removing them.

See Also

e “Security Compatibility” on page 1-59

e “Mandating Interoperability Policy” on page 2-15

e “Setting Digital Signature Policy” on page 2-53

e “Setting Encryption Policy” on page 2-57

Security Gompatibility

For an ATMI application running Oracle Tuxedo release 7.1 or later software, it is possible to
have any combination of default or custom authentication, authorization, auditing, and public key
security. In addition, any combination of these four security capabilitiesis compatible with

link-level encryption.

Using Security in ATMI Applications 1-59

1-60

Mixing Default/Custom Authentication and Authorization

It is possible to have default authentication and custom authorization, or custom authentication
and default authorization, as long as the application developer is aware of the following
restriction: the authorization security token must carry at a minimum (1) an authenticated
username, or principal name, and (2) an application key value as defined in “ Application Key”
on page 1-49.

Authorization decisions are based partly on user identity, which is stored in an authorization
token. Because authorization tokens are generated by the authentication security plug-in,

providers of authentication and authorization plug-ins need to ensure that these plug-ins work
together. (See “ Authentication” on page 1-7 and “ Authorization” on page 1-12 for more detail.)

Mixing Default/Custom Authentication and Auditing

It is possible to have default authentication and custom auditing, or custom authentication and
default auditing, aslong as the application devel oper is aware of the following restriction: the
auditing security token must carry at aminimum (1) an authenticated username, or principal
name, and (2) an application key value as defined in “ Application Key” on page 1-49.

Auditing decisionsare based partly on user identity, which isstored in an auditing token. Because
auditing tokens are generated by the authentication security plug-in, providers of authentication
and auditing plug-ins need to ensure that these plug-ins work together. (See“ Authentication” on
page 1-7 and “ Auditing” on page 1-18 for more detail.)

Compatibility Issues for Public Key Security

Public key security is compatible with all features and processes supported by Oracle Tuxedo
release 7.1 or later software except the compression feature. Encrypted message buffers cannot
be compressed using the compression feature. But, because the public key software compresses
the message content just before it encrypts the message buffer, any size savingsare still achieved.

Thistopic describesthe compatibility/interaction of public key security with thefollowing ATMI
features and processes:

e Data-dependent routing
e Threads

o EventBroker

e /Q

Using Security in ATMI Applications

Security Compatibility

e Transactions
e Domain gateways (GWTDOMAINS)

e Other vendors' gateways

Compatibility/Interaction with Data-dependent Routing

Central to the data-dependent routing feature is the ability of aprocess to examine the content of
incoming message buffers. If an incoming message buffer is encrypted, a process configured for
data-dependent routing must have opened arecipient’ s private key so that the public key software
can use that key to decrypt the message buffer. For data-dependent routing, the public key
software does not verify digital signatures.

If adecryption key isnot available, the routing operation fails. The system generates an ERROR
userlog (3c) message to report the failure.

If adecryption key is available, the process makes a routing decision based on a decrypted copy
of the encrypted message buffer. The chain of eventsisasfollows:

1. The public key software makes a copy of the encrypted message buffer and uses the
decryption key to decrypt the buffer.

2. The process reads the resulting plaintext (unencrypted text) message content to make the
routing decision.

3. Thepublic key software overwritesthe plai ntext message content with zero valuesto preserve
privacy.

The system then transmits the original encrypted message buffer in accordance with the routing

decision.

Compatibility/Interaction with Threads

Public-private keys are represented and manipulated via handles. A handle has data associated
with it that is used by the public key application programming interface (API) to locate or access
the item named by the handle. A process opens akey handle for digital signature generation,
message encryption, or message decryption.

A key handle is a process resource; it is not bound to any specific thread or context. Any
communication necessary to open akey is performed within thethread’ s currently active context.
Thereafter, the key is available to any context in the process, whether or not the context is
associated with the same ATMI application.

Using Security in ATMI Applications 1-61

{DOCROOT}/rf3c/rf3c.html

A key’sinternal data structures are thread safe. As such, akey may be accessed concurrently by
multiple threads.

Compatibility/Interaction with the EventBroker

Ingeneral, aTMUsSREVT (5) System server handles encrypted message bufferswithout decrypting
them, that is, both digital signatures and encryption envelopes remain intact as messages flow
through the Oracle Tuxedo EventBroker component. However, the following cases require that
the EventBroker component decrypt posted message buffers:

e To evaluate subscription filter expressions based on message content.

If the EventBroker does not have access to a suitable decryption key, the subscription’s
filter expression is assumed to be false, and the subscription is not considered a match.

e To perform subscription notification actions that require access to message content:
userlog (3c) Processing or system command execution.

If the EventBroker does not have access to a suitable decryption key, the subscription’s
notification action fails, and the system generates an ERROR userlog (3c) message to
report the failure.

e To perform subscription notification actions that, based on system configurations, need to
access message content for data-dependent routing.

If the EventBroker does not have access to a suitable decryption key, the subscription’s
notification action fails, and the system generates an ERROR userlog () messageto
report the failure.

For atransactional subscription, the system also marks the transaction as rollback-only.

e To comply with an administrative system policy requiring encryption (as explained in
“Setting Encryption Policy” on page 2-57).

If the EventBroker does not have access to a suitable decryption key, the tppost (3¢)
operation fails, and the system generates an ERROR userlog () message to report the
failure.

e To verify that a posted encrypted message has avalid digital signature attached, if required
to do so by an administrative system policy requiring digital signatures (asexplained in
“Setting Digital Signature Policy” on page 2-53).

If the EventBroker does not have access to a suitable decryption key, the tppost (3c)

operation fails, and the system generates an ERROR userlog () message to report the
failure.

1-62 Using Security in ATMI Applications

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

Security Compatibility

Compatibility/Interaction with /Q

In general, a TMQUEUE (5) OF TMOFORWARD (5) System server handles encrypted message buffers
without decrypting them, that is, both signatures and encryption envelopes remain intact as
messages flow through the Oracle Tuxedo /Q component. However, the following cases require
that the /Q component decrypt enqueued message buffers:

e To perform TMQFORWARD oOperations that, based on system configurations, need to access
message content for data-dependent routing.

If TMoFORWARD does not have access to a suitable decryption key, the forward operation
fails. The system returns the message to the queue and generates an ERROR userlog (3c)
message to report the failure.

After anumber of periodic retry attempts, TMororwARD Might place the unreadable
message on an error queue.

e To comply with an administrative system policy requiring encryption (as explained in
“Setting Encryption Policy” on page 2-57).

If the /Q component does not have access to a suitable decryption key, the tpenqueue (3¢)
operation fails, and the system generates an ERROR userlog () message to report the
failure.

o To verify that an enqueued encrypted message has a valid signature attached, if required to
do so by an administrative system policy requiring digital signatures (as explained in
“Setting Digital Signature Policy” on page 2-53).

If the /Q component does not have access to a suitable decryption key, the tpenqueue (3c¢)

operation fails, and the system generates an ERROR userlog () message to report the
failure.

A non-transactional tpdequeue (3c¢) operation has the side effect of destroying an encrypted
gueued message if the invoking process does not hold avalid decryption key.

If amessage with aninvalid signature is placed in a queue (or if the message is corrupted or
tampered with while on the queue), any attempt to dequeue it fails. A non-transactional
tpdequeue () operation has the side effect of destroying such amessage. A transactional
tpdequeue () operation causes transaction rollback, and all future transactional attemptsto
dequeue the message will continueto fail.

Compatibility/Interaction with Transactions

Public key security operations—opening and closing keys, requesting a digital signature, or
requesting encryption—are not transactional, and are not undone by transaction rollback.

Using Security in ATMI Applications 1-63

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html

However, transactions might rollback due to failure conditions associated with the following
public key operations:

o If atransactional request or reply message cannot be decrypted, its associated transaction is
rolled back.

o |f atransactional request or reply message is discarded because of an invalid or missing
digital signature, its associated transaction is rolled back.

e If atransactiona request or reply message is rejected because it violates an administrative
system policy requiring encryption or digital signatures, its associated transaction isrolled
back.

Compatibility/Interaction with Domain Gateways

Domain gateway (GWTDOMAIN) processes connecting two ATMI applications running Oracle
Tuxedo release 7.1 or later software preserve digital signatures and encryption envelopes. In
addition, the domain gateway processes verify digital signatures and enforce administrative
system policies regarding digital signatures and encryption.

Figure 1-15 is an aid to understanding how domain gateway processes interact with local and
remote ATMI applications. The table following the figure describes how release 7.1 or later
domain gateway processes handle digitally signed and encrypted message buffers.

1-64 Using Security in ATMI Applications

Security Compatibility

Figure 1-15 Communication Between ATMI Applications

~ - —~ - N
/ DI ENN P N
! \
ATMI Application 1 ATMI Application 2
BN ~ =
/ N/ \
[\/ \
\ [/

) GWTDOMAIN / \ GWTDOMAIN [
/ () \
[\4/ \
| inbound ||| outbound |
<<] <]

\ Workstation _I Native | outbound ||\ inbound (Native _I Workstation /
\ Client p= Client l:>/ \I:> Client =3 Client /
N _ ;= e ~ — \ — _
— \ Network / —

N s~ _ / Connection (Link) \ N\ y
~ / AN e

Using Security in ATMI Applications 1-65

Table 1-13 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation

Inbound message— Hasencryptionenvelopeand The domain gateway process accepts the message and
originating from a may or may not havedigital forwardsit in encrypted form.

remote process and signature

received over a
network connection

If the data-dependent routing feature applies and the
domain gateway process does not have a suitable
decryption key, the gateway process rejects the
message. (See “ Compatibility/Interaction with
Data-dependent Routing” on page 1-61 for
clarification.)

Inbound message Does not have encryption

envelope or digital signature

If the domain gateway processis running within a
domain, machine, or group requiring encryption, the
gateway process rejects the message. If aservice
advertised by the domain gateway requires encryption,
the gateway process rejects the message. (See “ Setting
Encryption Policy” on page 2-57 for clarification.)

If the domain gateway does not require encryption, the
gateway process accepts and forwards the message.

Inbound message Hasdigital signaturebutis ~ The domain gateway process verifies the digital
not encrypted signature and forwards the message with digital
signature attached.
Inbound message Does not have digital If the domain gateway processis running within a

signature and is not
encrypted

domain, machine, or group requiring digital signatures,
the gateway process rejects the message. If aservice
advertised by the domain gateway requires digital
signatures, the gateway process rejects the message.
(See* Setting Digital SignaturePolicy” on page 2-53for
clarification.)

If the domain gateway does not require digital
signatures, the gateway process accepts and forwards
the message.

1-66

Using Security in ATMI Applications

Security Compatibility

Table 1-13 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes (Continued)

Message Type Condition Resulting Operation

Outbound message— Hasencryptionenvelopeand The domain gateway process accepts the message and
originatingfromaloca may or may not have digital forwards it in encrypted form over the network.
process and signature

transmitted over a
network connection

If the data-dependent routing feature applies and the
domain gateway process does not have a suitable
decryption key, the gateway process rejects the
message. (See “ Compatibility/Interaction with
Data-dependent Routing” on page 1-61 for
clarification.)

If the encrypted message is destined for a process
running Oracle Tuxedo pre-release 7.1 (6.5 or earlier)
software, the domain gateway process rejects the
message. (See “Interoperating with Pre-Release 7.1
Software” on page 1-56 and “ Interoperability for Public
Key Security” on page 1-57 for clarification.)

Outbound message

Does not have encryption
envelope or digital signature

If the domain gateway processis running within a
domain, machine, or group requiring encryption, the
gateway process rejects the message. If aservice
advertised by the domain gateway requires encryption,
the gateway process rejects the message. (See “ Setting
Encryption Policy” on page 2-57 for clarification.)

If the domain gateway does not require encryption, the
gateway process accepts the message and forwards it
over the network.

Using Security in ATMI Applications 1-67

Table 1-13 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes (Continued)

Message Type

Condition

Resulting Operation

Outbound message

Hasdigital signature but is
not encrypted

The domain gateway process verifies the digital
signature and forwards the message with digital
signature attached over the network.

If the message is destined for a process running Oracle
Tuxedo pre-release 7.1 software and assuming
interoperability with Oracle Tuxedo pre-release 7.1
software is allowed, the domain gateway process
verifies and then removes the digital signature before
forwarding the message over the network. (See
“Interoperating with Pre-Release 7.1 Software” on
page 1-56 and “Interoperability for Public Key
Security” on page 1-57 for clarification.)

Outbound message

Does not have digital
signature and is not
encrypted

If the domain gateway processis running within a
domain, machine, or group requiring digital signatures,
the gateway process rejects the message. If a service
advertised by the domain gateway requires digital
signatures, the gateway process rejects the message.
(See* Setting Digital SignaturePolicy” on page 2-53for
clarification.)

If the domain gateway does not require digital

signatures, the gateway process accepts the message
and forwards it over the network.

Compatibility/Interaction with Other Vendors’ Gateways

A domain gateway (GWTDOMAIN) process connecting arelease 7.1 or later ATMI application to
another vendor’ s gateway process operates on outbound message buffers as follows:

1. Decrypts encrypted messages.

2. Verifiesdigital signatures (if any) and then removes digital signatures.

3. Transmits messages in plaintext format over the network to the vendor’s gateway process.

In addition, the domain gateway process enforces the administrative system policies regarding
encryption and digital signatures for the ATMI application. As an example, if encryption and/or

1-68 Using Security in ATMI Applications

Denial-of-Service (DoS) Defense

digital signatures are required at the domain level for the ATMI application, the local domain
gateway process rejects any message coming from the other vendor’ s gateway process.

See Also
e “Security Interoperability” on page 1-54
e “Mandating Interoperability Policy” on page 2-15
e “Setting Digital Signature Policy” on page 2-53
e “Setting Encryption Policy” on page 2-57

Denial-of-Service (DoS) Defense

With more distributed multi-domain Tuxedo applications extending their reach to public
networks and | ess secure environments, the Tuxedo domain gateway is required to better defend
against potential threats. These environments may contain insecure networks and untrusted

participants, who can initiate or propagate malicious attacks such as Denial-of-Service (DoS)
attacks as shown in Figure 1-16.

Figure 1-16 Denial-of-Service (DoS) Attacks

The Tuxedo TDomain gateway (GWTDOMAIN) uses the following features to defend against
DoS attacks.

Limited/Restricted Connection Numbers
Message Sanity Check
Message Authentication Code (MAC) Usage

Using Security in ATMI Applications 1-69

1-70

Limited/Restricted Connection Numbers

GWTDOMAIN is adaemon server that waits on awell-known TCP port to accept incoming
connection requests. Thisopensthe vulnerability to connection flood attack, atype of DoS attack
where the attacker continuously tries to establish many connections with GWTDOMAIN at the
same timeusing particular tools (for example, a port scanning program). This causes the domain
gateway to waste computing power (time, memory, and so on) to accept the connection requests
and allocate resources for each connection.

By limiting the number of connections, GWTDOMAIN can avoid this problem. For more
GWTDOMAIN information, see GWTDOMAIN (5).

Setting Up Connection Limitations/Restrictions

The Limited/Restricted Connection Numbers feature requires modification of the *SErVERS
section in the UBBCONFIG file.

UBBCONFIG File

The CLOPT used to specify the parameter for GWTDOMAIN is" -x" using the following syntax:
-x limit[:{[duration] [:period]}]. A colon (:)isused to separate each option.

Notes: Thecolon (:) can only be used between two options. For example, configurations like
":duration” or "limit::" areinvalid.
The default value(s) for the duration and period options are used if they are not
specified.
Please be aware that the timing is not exact for performance reason. There may be a
one-second difference.

If the number of current active connections plus the number of closed connectionsin a specified
previous period is greater than the limit, GWTDOMAIN is suspended for aduration specified in
seconds.

Note: Thenumber of current active connectionsincludes both active incoming connectionsand
active outgoing connections. The number of closed connectionsin a previous period
includes both closed incoming connections and closed outgoing connections. However,
when GWTDOMAIN is suspended, none of the closed connections are counted.

limit, duration, and period are defined as follows:

e limit

Using Security in ATMI Applications

../rf5/rf5.html

Denial-of-Service (DoS) Defense

The maximum number of connections. The minimum Limit valueis 0, and the maximum
valueis 2,147,483,647.

When the limit is reached (or exceeded) and there is an incoming request, GWTDOMAIN
is suspended for the given duration. At the same time, the current incoming request which
triggers the suspending is not accepted. Polling is resumed after duration has elapsed.

Setting the 1imit to O prohibits the domain gateway from accepting any incoming
connection requests. In other words, thisisan "OUTGOING_ONLY" connection policy.

e duration

The duration in seconds to suspend polling for incoming connection when 1imit is
reached. The default valueis (SCANUNIT * SANITY SCAN) seconds. The minimum
duration valueis5, and the maximum valueis 65,535.

e period

The time interval (in seconds) proceeding GWTDOMAIN check point to count the closed
connections in the past. When not specified, the default value is the same as duration.
The minimum period valueis 0, and the maximum value is 65,535.

If period isspecified as 0, the number of closed connectionsin aprior period will always
be 0, 1imit only counts active connections.

Examples

Listing 1-1 shows an example where the GWTDOMAIN 1limit isset to 512 concurrent socket
connections. When the 512 1imit isreached and thereisan incoming request, GWTDOMAIN
will stop polling and accepting new incoming connection requests for aduration of 300 seconds
(or, 5 minutes). Sinceperiod isspecified as0, only the active connections are counted.

Listing 1-1 UBBCONFIG File Example 1

UBBCONFIG

*SERVERS
GWTDOMAIN SRVGRP=GWGRP1 SRVID=2 CLOPT= “-A -- -x 512:300:0"

Listing 1-2 shows an example where the GWTDOMAIN limit is set to 200 concurrent socket
connections. When the 200 1imit isreached, (for example:

Using Security in ATMI Applications 1-Nn

o there arel00 outgoing connections
e 50 incoming connections,

e in the passed 60 seconds 50 connections were closed (including outgoing connections and
incoming connections))

e acurrent incoming connection is requested

and since the duration vaueis not specified, GWTDOMAIN will stop polling and accepting
new incoming connection requests for the duration default value SCANUNIT *
SANITY SCAN seconds.

Note: The current incoming connection that triggered the suspension is also not accepted, and
is closed at the end of the suspended duration.

Listing 1-2 UBBCONFIG File Example 2

UBBCONFIG
*SERVERS
GWTDOMAIN SRVGRP=GWGRP1 SRVID=2 CLOPT= “-A -- -x 200::60”"

Messages
The following conditions will post messages to USERL OG:

e A new connection request arrives that reaches the preset number of connections limit:

<LIBGW_CAT 5359> "WARN: The number of connections for <ldom-name>
exceeds limit <%d>, start to suspend for <%d> seconds"

e GWTDOMAIN resumes checking for new incoming connection request:
<LIBGW_CAT 5360> "INFO: Resume accepting connection request"

Note: These two messages can be controlled using the "throttle message" mechanism to
avoid the potential of flooding the USERLOG.

e If 1imit isspecified as 0, when GWTDOMAIN starts up:

<LIBGW_CAT 5361> "INFO: The connection limit for <ldom-name> is set to
0. No incoming connection request will be accepted."

1-712 Using Security in ATMI Applications

Denial-of-Service (DoS) Defense

Message Sanity Check

The sanity check of message is strengthened with this feature, to protect GWTDOMAIN from
crash when under attack. Thisfeatureis deployed automatically after installed, no configuration
work needed.

Message Authentication Code (MAC) Usage

By associating the message authentication code (MAC) with messages, a Tuxedo domain
gateway can validate and authenticate them. With MAC, the domain gateway can defend against
various types of DoS attacks (for example, message tampering, message forging, and message
replay attack).

This feature can only take effect when LLE and/or domain SECURITY is configured. MAC
worksafter connectionis established. When aM A C message from aremote domain gateway fails
validation and authentication, the corresponding connection is dropped. All pending messages
are also dropped, and al on-going service requests fail.

GWTDOMAIN determines whether MAC is turned on for the session during the session
negotiation phase. MAC can only be enabled when either LLE and/or SECURITY is supported
and activated for the session.

Note: SSL does not support MAC usage.

Itisnot necessary to turn on the SECURITY featureto enable MAC; however, itisrecommended
since SECURITY can be used to defend against the “ man-in-the-middle” attack.

Performance Impact

When MAC isturned on, it may cause degradation on the throughput and response time for
requests across domains.

Setting up Message Authentication Code (MAC) Usage

There are two options that you configure the MAC feature. Y ou can use DMCONFIG file
configuration, or MIB configuration.

DMCONFIG File Configuration

Thisfeature can be configured in DM_TDOMAIN section of DMCONFIG file with two new
keywords, MAC and MACLEVEL. MAC is used to toggle the MAC feature for a session;
MACLEVEL isused to specify the MAC level.

Using Security in ATMI Applications 1-13

Note: A large number MACLEVEL meansthe stronger algorithm from cryptographic point of
view, but will introduce more performance degradation.

Table 1-14 DMCONFIG File Keywords

Keyword Option Definition
MAC OFF Turn off feature. Thisisthe default
value.
ON Turn on feature. The established

session MAC support depends on the
negotiation result between the two
domain gateways.

MANDATORY Turn on feature. The session cannot
be setup if:

» the remote domain does not
support or disablethe MAC
feature, or

¢ neither LLE nor domain
SECURITY isavailable.

MACLEVEL 0 Only protects the message header
with MAC. Thisisthe default value

1 Protects the entire message with
MAC using MD5-based algorithm

2 Protects the entire message with
MAC using SHA1-based algorithm.

3 Protects the entire message with
MAC, using SHA256-based
algorithm.

Listing 1-3 shows an example DMCONFIG configuration.

Listing 1-3 DMCONFIG File Configuration

DMCONFIG

1-14 Using Security in ATMI Applications

Denial-of-Service (DoS) Defense

*DM_TDOMAIN

“RDOM” NWADDR="//RHOST :RPORT"”
MAC="0ON"
MACLEVEL=1

MIB Configuration

Dynamic setting of MAC viaMIB does not have any impact on existing domain sessions. It only
takes effect for new connections.

Two new attributes are added to support MIB interfaceinthe T_DM_TDOMAIN classdefinition
attribute table: Ta_pvMac and TA_DMMACLEVEL .

Table 1-15 DM_MIB(5): T_DM_TDOMAIN Class Definition Attribute Table

Attribute Type Permissions Values Default

TA_DMMAC string rw--—----- string “OFF”

“ {OFF | ON | MANDATORY }

"

TA_DMMACLEVEL string rw---—---—-— string “ Q"

||{O|1|2|3}||

TA_DMMAC=" {OFF | ON | MANDATORY } "
Relevant to remote domain access points only. Specifieswhether to activate MAC feature

when connecting to the remote domain. Supported values are "OFF", "ON",
"MANDATORY".

"OFF"
Specifies the connection to a domain gateway does not use the MAC feature.

"ON"
Specifies the connection to a domain gateway that uses the MAC feature.

"MANDATORY"

Specifies the connection to a domain gateway must use the MAC feature,
otherwise a successful connection cannot be established.

Using Security in ATMI Applications 1-715

1-76

TA_DMMACLEVEL="{0|1]|2]|3}"
Relevant to remote domain access points only. Specifies the manner when protecting the
whole message with MAC. "0" specifies that only the message header is protected by
MAC. "1","2", and "3" specify that the entire message is protected by MAC viaan
algorithm based on MD5, SHA1 and SHA256.

Listing 1-4 and Listing 16 show examples of how to retrieve and update MAC attributes using
ud32 respectively.

Listing 1-4 Sample Retrieve MAC Attribute Script

SRVCNM .TMIB
TA_OPERATION GET

TA_CLASS T_DM_TDOMAIN
TA_DMACCESSPOINT RDOM
TA_DMNWADDR //host:port

Listing 16 Sample Update MAC Attribute Script

SRVCNM .TMIB

TA_OPERATION SET

TA_CLASS T_DM_TDOMAIN
TA_DMACCESSPOINT RDOM
TA_DMNWADDR //host:port
TA_DMLACCESSPOINT LDOM
TA_DMMAC MANDATORY
TA_DMMACLEVEL 2

MAC Negotiation

Table 1-17 showstwo domains: DOM1 and DOM2. When DOM 1 (initiator) establishesasession
with DOM2 (acceptor), the MAC negotiation result is (1) MAC = ON; and (2) MACLEVEL =2.

Tahle 1-17 MAC Negotiation Example

Using Security in ATMI Applications

Denial-of-Service (DoS) Defense

Table 1-18 and Table 1-19 provide more MAC and MACLEVEL details respectively.

Thefirst column from each table contains the configuration parameter for DOM2 in the
DM_TDOMAIN section of the DOM 1 DM CONFI G file. The header row holdsthe configuration
parameter for DOM1 in the DM_TDOMAIN section of the DOM2 DMCONFIG file.

An "ERROR" result in Table 4 means that the connection cannot be established. When MAC
negotiation resultisON, the MACLEVEL for theentire message isdetermined asshown in Table
5.

When MAC isturned on, the MACLEVEL in useis set to the higher number, or max (m1,m2)
for safety purpose. It must be supported by both endpoints (that is, not greater than min
(Max1,Max2)). In short, the negotiated MACLEVEL must satisfy following relationship:
max(my, mp)<=negotiated MACLEVEL<=min(Max,, Max,), otherwise the connection is closed

with one ERROR message logged in USERL OG.

Tahle 1-18 MAC Negotiation Results (parameter: MAC)

Using Security in ATMI Applications 1-11

Table 1-19 MAC NegotiationResults (parameter: MACLEVEL)

Messages

The following messages are posted to the USERL OG:

INFO M essages

The following INFO messages are printed after agreement about MAC is made to denote MAC
feature for one session:

e MAC isnot supported for the session:

<LIBGWT 1686> "INFO: MAC is not supported for session (<ldom-name>,
<rdom-name>"

Note: This message will only be printed in the domain with MAC set to "ON".

e MAC isturned on for the session:

<LIBGWT 1687> "INFO: MAC is turned on for session (<ldom-name>,
<rdom-name>) and effective MACLEVEL is <%d>"

ERROR M essages

1-78 Using Security in ATMI Applications

Password Pair Protection

Thefollowing error messages appear during session negotiation and MAC validation phase. The
connection is dropped when these messages are printed:
e MAC ismandatory, but MAC is not supported for the session when negotiation:

<LIBGWT 1681> "ERROR: MAC is MANDATORY but remote domain <rdom-name>
does not support this feature"

e MAC ismandatory but neither LLE nor SECURITY is supported when negotiation:

<LIBGWT 1682> "ERROR: MAC is MANDATORY but neither LLE nor SECURITY is
supported for connection of (<ldom-name>, <rdom-name>)"

e MAC ismandatory in the remote domain but MAC is not supported in local domain:

<LIBGWT 1683> "ERROR: MAC is MANDATORY in remote domain <rdom-name>
but not supported in local domain <ldom-name>"

e MAC negotiation fails to make an agreement on MACLEVEL.:

<LIBGWT 1684> "ERROR: MAC failed to make an agreement on MACLEVEL
(<ldom_name> is <%d>..<%d>, <rdom-name> is <%d>..<%d>)"

Note: The four corresponding parameters for "%d" placeholder in this message are m1,
Max1, m2, and Max2.

o MAC failsvalidation and authentication:

<LIBGWT 1685> "ERROR: Message from <rdom-name> has invalid MAC"

Password Pair Protection

Password pair protection is deployed automatically after installation; configuration is not
required. It improvesthe GWTDOMAIN security mechanism and removes the previous security
restriction that did not alow dual password pairs with the same remote password.

Password pair protection is funtional only when supported by both local and remote domains. If
it is not supported by both local and remote domains, it does not affect existing behavior.

Using Security in ATMI Applications 1-19

1-80 Using Security in ATMI Applications

Administering Security

The following sections explain how to set security policies for an Oracle Tuxedo ATMI
application:

e What Administering Security Means

Security Administration Tasks

Setting the Oracle Tuxedo Registry

Configuring an ATMI Application for Security
e Setting Up the Administration Environment
e Administering Operating System (OS) Security

e Administering Authentication

Specifying Principal Names

Mandating Interoperability Policy

Establishing a Link Between Domains

Setting ACL Policy

Setting Credential Policy
e Administering Authorization

e Administering Link-Level Encryption

Using Security in ATMI Applications

2-1

e Administering SSL Encryption

e Administering Public Key Security

e Administering Default Authentication and Authorization
e Using the Kerberos Authentication Plug-in

e Kerberos Plug-In

e Kerberos Plug-In Pre-configuration

e Kerberos Plug-In Configuration

e Using the Cert-C PKI Encryption Plug-in

e Cert-C PKI Encryption Plug-In

e Cert-C PKI Encryption Plug-In Pre-configuration

e Cert-C PKI Encryption Plug-In Configuration

What Administering Security Means

Administering security for an ATMI application involves setting and enforcing security policies
for the components of the application, including its clients, server machines, and gateway links.
The application administrator setsthe security policiesfor the ATMI application, and the Oracle
Tuxedo system upon which the ATMI application is built enforces those policies.

The Oracle Tuxedo system offers the following ATMI security capabilities:
o Authentication
e Authorization
e Auditing
e Link-level encryption
e SSL Encryption

e Public key security

All but one of the security capabilities can be configured by the application administrator. The
exception is auditing, which cannot be configured, as shown in Figure 2-1.

2-2 Using Security in ATMI Applications

What Administering Security Means

Figure 2-1 Administering ATMI Security

ATMI Application Administration

Commands API GUI

Oracle Tuxedo Library

Authentication Authorization Encryption Pls'lggzrli(tiy
| | | }
ATMI Security ssL
Encryption
Link-Level
Encryption

Plug-in Interface

Default Default Default Default
Authentication Authorization Auditing Public Key Security
Custom | Custom | Custom Custom

Security Plug-ins

See Also

e “Security Administration Tasks’ on page 2-4
e “What Security Means’ on page 1-2

e “What Programming Security Means’ on page 3-1

Using Security in ATMI Applications 2-3

Security Administration Tasks

Security administration consists of the following tasks:

Setting the Oracle Tuxedo Registry

Configuring an ATMI Application for Security
e Setting Up the Administration Environment

e Administering Operating System (OS) Security
e Administering Authentication

e Administering Authorization

e Administering Link-Level Encryption

e Administering SSL Encryption

e Administering Public Key Security

e Administering Default Authentication and Authorization

See Also
e “Setting the Oracle Tuxedo Registry” on page 2-4

Setting the Oracle Tuxedo Registry

2-4

The application administrator needs to know about the Oracle Tuxedo registry if the ATMI
application isto be configured with one or more custom security capabilities. On the other hand,
if the ATMI application isto be configured only with default security, the Oracle Tuxedo registry
does not need to be changed.

The Oracle Tuxedo registry is a disk-based repository for storing information related to plug-in
modules. Initialy, thisregistry holds registration information about the default security plug-ins.

Purpose of the Oracle Tuxedo Registry

Most Oracle middleware products use a common transaction processing (TP) infrastructure that
consists of a set of core services, such as security. The TP infrastructureis available to ATMI
applicationsthrough well defined interfaces. Theseinterfaces allow application administratorsto

Using Security in ATMI Applications

Setting the Oracle Tuxedo Registry

changethe default behavior of the TPinfrastructure by loading and linking their own service code
modules, referred to as plug-in modules or simply plug-ins.

Thefirst step in loading a plug-in isto register the plug-in with the host operating system.
Registering a plug-in adds an entry for the plug-in to the Oracle Tuxedo registry, which is a set
of binary files that stores information about active plug-ins. There is one registry per Oracle
Tuxedo installation.

e On aUNIX host machine, the Oracle Tuxedo registry isin the $TUxDIR/udataobij
directory.

e On aWindows 2003 host machine, the Oracle Tuxedo registry isin the
$TUXDIR%\udataobj directory.

Every Workstation client and server machine in an ATMI application must use the same set of
plug-in modules.

Registering Plug-ins

The administrator of an ATMI application in which custom plug-ins will be used is responsible
for registering those plug-ins and performing other registry related tasks. An administer can
register plug-insin the Oracle Tuxedo registry only from the local machine. That is, an
administrator cannot register plug-ins while logged on to the host machine from a remote
location.

Three commands are available for administering plug-ins:
e epifreg—for registering aplug-in
e epifunreg—for unregistering aplug-in

e cpifregedt—for editing registry information

Instructions for using these commands are available in Developing Security Services for ATMI
and CORBA Environments. (This document contains the specifications for the security plug-in
interface, and describes the plug-in framework feature that makes the dynamic loading and
linking of security plug-in modules possible.) Also, when installing custom plug-ins, the
supplying third-party security vendor should provide instructions for using these commands to
set up the Oracle Tuxedo registry to access the custom plug-ins.

For more information about security plug-ins, including installation and configuration
procedures, see your Oracle account executive.

Using Security in ATMI Applications 2-5

See Also
e “Configuring an ATMI Application for Security” on page 2-6

Configuring an ATMI Application for Security

2-6

An application administrator configures security for the ATMI application on the MASTER
machine when the application isinactive. The underlying Oracle Tuxedo system propagates the
configuration information to the other machinesin the ATMI application when the applicationis
booted.

Asthe administrator, you can configure security for your ATMI application by:
e Editing the configuration file (uBBCONFIG)
e Changing the TM_m1B, Or

e Using the Oracle Administration Console

The set of security parameters involved depends upon the security capability (authentication,
authorization, link-level encryption, or public key) and whether you are using the default or
custom security software.

Editing the Configuration File

Y ou can edit the uBrconF1G configuration file to set security policiesfor an ATMI application.
The uesconrIc configuration file may have any filename, as long as the content of thefile
conformsto the format described onthe useconr1c (5) reference pageinthe Oracle Tuxedo File
Formats, Data Descriptions, MIBs, and System Processes Reference.

For more details about useconFIG and its binary equivalent, TuxconrIc, see “About the
Configuration File” and “ Creating the Configuration File” in Setting Up an Oracle Tuxedo
Application.

Changing the TM_MIB

The tv_m1B defines a set of classes through which the fundamental aspects of an ATMI
application may be configured and managed. Separate classes are designated for machines,
servers, networks, and so on. Y ou should use the reference page Tv_m1B (5) in combination with
the generic Management Information Base (MIB) reference page m1B (5) to format
administrative requests and interpret administrativereplies. The MIB reference pages are defined
in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference.

Using Security in ATMI Applications

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/ads/adconf.html
{DOCROOT}/ads/adconf.html
{DOCROOT}/ads/adfig.html

Setting Up the Administration Environment

Other component MIBs, including the act,_m1B, DM_M1B, and ws_MIB, also play arolein
managing security for an ATMI application. The reference page act._m1B (5) definesthe
ACL_MIB, thereferencepagepm miB(5) definesthepw m1B, and thereference pagews_MIB (5)
defines the ws_m1B.

For more information about Oracle Tuxedo MIBs, start withm1Bs (5) inthe Oracle Tuxedo File
Formats, Data Descriptions, MIBs, and System Processes Reference. Also, see Introducing
Oracle Tuxedo ATMI.

Using the Oracle Administration Console

Y ou can a'so use the Oracle Administration Console to change security policiesfor an ATMI
application. The Oracle Administration Console is a Web-based tool used to configure, monitor,
and dynamically re-configure an application.

For details about the Oracle Administration Console, see Introducing Oracle Tuxedo ATMI.

See Also

e “Setting Up the Administration Environment” on page 2-7

Setting Up the Administration Environment

The application administrator defines certain environment variables for an ATMI application as
part of configuring the application. The values defined for the variables are absolute pathnames
that reference Oracle Tuxedo executables and data libraries.

Being able to find such filesis essentia to the job of administering an ATMI application. For
example, all commands needed to manage application security are located in $TUXDIR/bin ONa
UNIX host machine, and in $TuxDIR%\bin on a Windows 2003 host machine.

For details on setting up the administration environment, see Administering an Oracle Tuxedo
Application at Run Time.

See Also
e “Administering Operating System (OS) Security” on page 2-8
e “Administering Authentication” on page 2-9

e “Administering Authorization” on page 2-34

Using Security in ATMI Applications 2-1

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html

e “Administering Link-Level Encryption” on page 2-35
e “Administering SSL Encryption” on page 2-40

e “Administering Public Key Security” on page 2-52

e “Security Administration Tasks’ on page 2-4

Administering Operating System (0S) Security

In addition to the security featuresin the ATMI environment of the Oracle Tuxedo product, the
application administrator needs to take full advantage of the security features of the host
operating system to control access to files, directories, and system resources.

Most ATMI applications are managed by an application administrator who configures and boots
the application, monitors the running application, and makes changesto it dynamically, as
necessary. Becausethe ATMI application isstarted and run by the administrator, server programs
are run with the administrator’ s permissions and are therefore considered secure or “trusted.”
Thisworking method is supported by the login mechanism and the read and write permissionson
the files, directories, and system resources provided by the underlying operating system.

Clients, on the other hand, are not started by the administrator. Instead, they are run directly by
users with their own permissions. As aresult, clients are not trusted.

In addition, users running native clients (that is, clients running on the same machine on which
the server isrunning) have accessto the configuration file and interprocess communication (1 PC)
mechanisms such as the bulletin board (in shared memory). Users running native clients aways
have such access, even when additional ATMI security is configured.

Recommended Practices for 0S Security

As the administrator, you can improve operating system security by observing the following
genera rules:

e Limit accessto files and IPC resources to the application administrator.

e Have “trusted” client programs run only with the permissions of the administrator (using a
setuid utility).

e For maximum security on your operating system, allow only Workstation clients to access
the application; client programs should not be allowed to run on the same machines on
which application servers and administrative programs run.

Using Security in ATMI Applications

Administering Authentication

e Combineall of these practices with ATMI security so that the application can identify any
client making arequest.

See Also
e “Operating System (OS) Security” on page 1-6
e “Security Administration Tasks’ on page 2-4

Administering Authentication

Authentication allows communicating processes to prove their identities. It isthe foundation for
most other security capabilities.

Except for the configuration instructionsidentified in thistopic, the procedures for administering
authentication depend upon the underlying authentication system of the application. For
procedures to administer a custom authentication system, see the documentation for that system.
For procedures to administer the default authentication system, see “ Administering Default
Authentication and Authorization” on page 2-65.

The following figure demonstrates the use of the delegated trust authentication model by
applications running Oracle Tuxedo release 7.1 or later software. Workstation handlers (WSHS)
and domain gateways (GWTDOMAINs) are known as trusted system gateway processes in the
delegated trust authentication model, which is described in “ Understanding Delegated Trust
Authentication” on page 1-7.

Using Security in ATMI Applications 2-9

Figure 2-2 Mutual Authentication in the Delegated Trust Authentication Model

7 ~ TN P ~ ~

ATMI Application 1 ATMI Application 2

Network y
Y Connection (Link) N

- = Mutual Authentication

Note: Mutual authentication is not used for a native client, which authenticates with itself.

The following topics provide the instructions needed to set up the configuration shown in the
preceding figure. All of the topicsinvolve authentication and the authentication plug-in.

Specifying principal names

Mandating interoperability policy

Establishing alink between domains

Setting ACL policy

Setting credential policy

See Also

“Authentication” on page 1-7

“Default Authentication and Authorization” on page 1-45

“Administering Default Authentication and Authorization” on page 2-65

“Security Administration Tasks’ on page 2-4

2-10 Using Security in ATMI Applications

e “Security Interoperability” on page 1-54

e “Security Compatibility” on page 1-59

Specifying Principal Names

e “Oracle Tuxedo Domains (Multiple-Domain) Servers’ in Introducing Oracle Tuxedo ATMI

Specifying Principal Names

Asthe administrator, you use the following configuration parameters to specify principal names
for theworkstation handler (WSH), domain gateway (GwTDoMAIN), and Server processes running
in your ATMI application built with release 7.1 or later of the Oracle Tuxedo software.

Parameter Name

Description

Setting

SEC_PRINCIPAL_NAME in
UBBCONFIG
(TA_SEC_PRINCIPAL_NAME in
TM_MIB)

During application booting, each
WSH, domain gateway, and server
processin the ATMI application calls
the authentication plug-in to acquire
security credentials for the security
principal name specified in
SEC_PRINCIPAL_NAME.*

1- 511 characters. If not
specified at any level in the
configuration hierarchy, the
security principal namedefaults
to the DOMATINID string
specified in the UBBCONFIG
file.

CONNECTION_PRINCIPAL_NAME
for local domain access point in
DMCONFIG
(TA_DMCONNPRINCIPALNAME for
LACCESSPOINT inDM_MIB)

During application booting, each
domain gateway processinthe ATMI
application calls the authentication
plug-in asecond time to acquire
security credentials for the connection
principal name specified in
CONNECTION_PRINCIPAL_NAME.*

1 - 511 characters. If not
specified, the connection
principal name defaults to the
ACCESSPOINTID** string for
the local domain access point
specified in the DMCONFIG file.

* The topics that follow explain how the system processes acquire credentials and why they need them.

**The ACCESSPOINTID parameter is also known as DOMAINID.

SEC_PRINCIPAL_NAME may be specified any of the following four levelsin the configuration

hierarchy:

® RESOURCES Section in UBBCONFIG Of T_DOMAIN classin TM_MIB

e MACHINES SEction in UBBCONFIG Of T_MACHINE classin T™M_MIB

e GROUPS Section in UBBCONFIG Or T_GROUP classin TM_MIB

Using Security in ATMI Applications

2-1

{DOCROOT}/int/intarch.html

2-12

e SERVERS Section in UBBCONFIG Of T_SERVER Classin T™_MIB

A security principal name at a particular configuration level can be overridden at alower level.
For example, suppose you configure terri asthe principal name for machine machi, and john
asthe principal name for server servl running on machi. The processes on machl behave as
follows:

e All WSH, domain gateway, and server processes on machl except servl Processes use
terri asaprincipal name.

e All servl processes use john asaprincipal name.

Note: Security principal information must be specified for all machinesin a networked
application (MP mode) configuration. If aboot failure occurs, examine the ULOG files
on both sides of the connection wherethefailure occurred for moreinformation about the
cause of the failure.

How System Processes Acquire Credentials

During application booting, each WSH, domain gateway, and server process in the ATMI
application includes its security principal name as an argument when calling the authentication
plug-into (1) acquire security credentials and (2) get authorization and auditing tokensfor itself.
Figure 2-3 demonstrates the procedure.

Using Security in ATMI Applications

Specifying Principal Names

Figure 2-3 Acquiring Credentials and Tokens During Application Booting

Myubbconfig

*RESOURCES
SEC_PRINCIPAL_NAME “Tommy”
SECURITY USER_AUTH

tmloadcf -y myubbconfig (User Input)
Enter New Application Password: (System Response)
password (User Input)
Re-enter New Application Password: (System Response)
password (User Input)
Mytuxconfig l
Call tmboot ()
Oracle Tuxedo Library Tokens for WSH,
Domain Gateway,
or Server
“Tommy”
Length of APP_PW, - >
APP_PW | (> > >
Credentials % "
1. Call “acquire 2. Call “initiate 3. Call “accept 4. Call “get 5. Call “get
credentials” security context” security context” authorization token” auditing token”
Function Function Function Function Function

ATMI Security . -

Authentication Plug-in

Each domain gateway processin the application calls the authentication plug-in asecond time to
acquire credentials and tokens for its assigned connection principal name.

Using Security in ATMI Applications 2-13

2-14

Why System Processes Need Credentials

A WSH needs credentials so that it can authenticate Workstation clients that want to join the
application, and to get authorization and auditing tokens for the authenticated Workstation
clients. A WSH needs its own authorization and auditing tokens when handling requests from
pre-release 7.1 clients (clients running Oracle Tuxedo release 6.5 or earlier software) so that it
can call the authentication plug-in to establish identities for the older clients. This behavior is
described in “Mandating Interoperability Policy” on page 2-15.

A domain gateway needs one set of credentials so that it can authenticate remote domain
gateways for the purpose of establishing links between ATMI applications, as described in
“Establishing a Link Between Domains’ on page 2-24. (No authorization or auditing tokens are
assigned to authenticated remote domain gateways.) A domain gateway acquires these
credentials for the principal name specified in the CONNECTION_PRINCIPAL_NAME parameter.

A domain gateway needs a second set of credentials so that it can handle requests from
pre-release 7.1 clients, which involves calling the authentication plug-in to establish identitiesfor
the older clients. Thisbehavior isdescribed in “Mandating Interoperability Policy” on page 2-15.
It also needs these credential's to establish identities when enforcing the local access control list
(ACL) policy, as described in “ Setting ACL Policy” on page 2-29. A domain gateway acquires
these credentials for the principal name specified in the SEC_PRINCIPAL_NAME parameter.

A system or application server needs its own authorization and auditing tokens when handling
requests from pre-release 7.1 clients so that it can call the authentication plug-in to establish
identitiesfor the older clients. Thisbehavior isdescribed in “Mandating I nteroperability Policy”
on page 2-15.

A server also needs its own tokens when performing a server permission upgrade, which occurs
when the authorization and auditing tokens of the server are assigned to messages that pass
through the server but originate at a client. The service upgrade capability is described in
“Replacing Client Tokens with Server Tokens’ on page 1-10.

Note: An application server cannot call the authentication plug-in itself. It is the underlying
system code that calls the authentication plug-in for the application server.

Example UBBCONFIG Entries for Principal Names

The following example pertains to specifying security principal namesin the ussconr1c file
using the sec_PRINCIPAL_NAME parameter. For an example of specifying connection principal
namesin the pMconF1G file using the CONNECTTON_PRINCIPAL_NAME parameter, see“ Example
DMCONFIG Entriesfor Establishing aLink” on page 2-27.

Using Security in ATMI Applications

Mandating Interoperability Policy

*RESOURCES

SEC_PRINCIPAL_NAME "Tommy "

*SERVERS

"TMQUEUE" SRVGRP="QUEGROUP" SRVID=1

CLOPT="-t -s secsdb:TMQUEUE"
SEC_PRINCIPAL_NAME="TOUPPER"

See Also

“Mandating Interoperability Policy” on page 2-15

“Establishing a Link Between Domains’ on page 2-24

“Setting ACL Policy” on page 2-29

“Security Administration Tasks’ on page 2-4

Mandating Interoperability Policy

Asthe administrator, you usethecr.opt -t optionintheussconric fileto allow WSH, domain
gateway (cWTDOMAIN), and server processes in your ATMI application to interoperate with
machines running Oracle Tuxedo pre-release 7.1 (6.5 or earlier) software. In addition, you use
thewsInTOPPRE71 environment variable to allow Workstation clients to interoperate with
machines running Oracle Tuxedo pre-rel ease 7.1 software. Thefollowing four figures show what
interoperability means for these processes.

Using Security in ATMI Applications 2-15

Figure 2-4 WSH Operating with Older Workstation Client

VN N

ATMI Application Running
Oracle Tuxedo Release 7.1 or Later Software

N
|

Workstation Client Running
racle Tuxedo Pre-Release 7.1 Software

In the preceding figure, the WSH authenticates with the Workstation client using an older
(pre-release 7.1) authentication protocol, calls the internal impersonate user function to get
authorization and auditing tokens for the client, and attaches the tokens to the client request. If
thecropT -t optionisnot specified for the workstation listener (WSL) that controls the WSH,
no communication is possible between the newer WSH and the older Workstation client.

Note: Theimpersonate user function involves calling the authentication plug-in to establish an
identity for the older client. See “Establishing an Identity for an Older Client” on
page 2-19 for details.

2-16 Using Security in ATMI Applications

Mandating Interoperability Policy

Figure 2-5 Older WSH Operating with Workstation Client

PN //\

ATMI Application Running
Oracle Tuxedo Pre-Release 7.1 Software

’ RN
/ AN
(|
\ GWTDOMAIN }
/ /
/ \
| \
\ : I
\ I ‘ /
AN \-: | S o— -
1IN s
|
|

WSINTOPPRE71=Y Workstation Client Running
Oracle Tuxedo Release 7.1 or Later Software

In the preceding figure, the WSH authenticates with the Workstation client using an older
(pre-release 7.1) authentication protocol; the client request does not receive authorization and
auditing tokens. If the wsINTOPPRE71 environment variable is not set at the Workstation client
or is set to N, no communication is possible between the older WSH and the newer Workstation
client.

Using Security in ATMI Applications 2-11

Figure 2-6 Server Interoperating with Older ATMI Application

TN TN AR
ATMI Application 1 Running ATMI Application 2 Running
Oracle Tuxedo Release 7.1 or Later Software Oracle Tuxedo Pre-Release 7.1 Software
/ RN

2-18

Network /
/ Connection (Link) \

In the preceding figure, the local domain gateway (cwrpomMa1N) in application 1 authenticates
with the remote domain gateway in application 2 using an older (pre-release 7.1) authentication
protocol. Upon receiving arequest from aremote client, the local domain gateway callsthe
internal impersonate user function to get authorization and auditing tokens for the remote client
and then attaches the tokens to the client request. For any outbound client request (client request
originating in application 1 and destined for application 2), the local domain gateway strips the
tokens from the request before sending the request along with the client’s application key to the
older application. (See “ Application Key” on page 1-49 for a description of the application key.)

If thecLopT -t option isnot specified for the domain gateway, no communication is possible
between the newer ATMI application and the older ATMI application.

Using Security in ATMI Applications

Mandating Interoperability Policy

Figure 2-7 Server Interoperating with Older Oracle Tuxedo Systems

Same ATMI Application

Machine 1 Machine 2
Running Oracle Tuxedo Release 7.1 or Later Softwar| Running Oracle Tuxedo Pre-Release 7.1 Software

W

CLOPT -t

Client

I
_l Workstation Network Workstation _l
fF— Client Connection (Link) Client =

In the preceding figure, the destination server on machine 1 calls the internal impersonate user
function to get authorization and auditing tokens for the remote client on machine 2, attachesthe
tokensto the client request, and then performs the request assuming the client passes any
authorization checks. If thecr.opT -t optionisnot specified for the server, no communicationis
possible between the newer server and the older client.

Note: Also, inthe preceding figure, if the WSH on machine 1 receives aclient request destined
for aserver on machine 2, the WSH strips the tokens from the request before sending the
request along with the client’ sapplication key to the older system. Similarly, if the native
client on machine 1 sends arequest to a server on machine 2, the native client stripsthe
tokensfrom the request before sending the request al ong with the client’ sapplication key
to the older system. See “ Application Key” on page 1-49 for a description of the
application key.

Establishing an Identity for an Older Client

For aWSH, domain gateway (GWTDOMAIN), Or Server process to establish an identity for an older
client, the processcallstheinternal impersonate user function to obtai n authorization and auditing
tokens for the older client. The following figure demonstrates the procedure.

Using Security in ATMI Applications 2-19

2-20

Figure 2-8 Obtaining Authorization and Auditing Tokens for an Older Client

WSH, Domain Gateway, or Server Process

1. Name of Older Client or LOCAL_PRINCIPAL_NAME
Configured for Remote Domain Access Point

2. WSH/ Domain Gateway/ Server Authorization Token Tokens for
3. WSH/ Domain Gateway/ Server Auditing Token Older Client

L}

Call impersonate user Function

ATMI Security
I

Authentication Plug-in

How the WSH Establishes an Identity for an Older Client

Whenthecropt -t option isspecified, the WSH establishes an identity for an older client using
the usrname field of the rprnIT buffer for C, or the usrnavme field of the TPINFDEF-REC record
for COBOL. (The WSH receivesatprIiNiT buffer/ TpINFDEF-REC record from aclient when the
client attempts to join the application, as described in “Joining the ATMI Application” on

page 3-7.) The WSH includes the user name as the principal name when calling the impersonate
user function.

For default authentication plug-ins, the impersonate user function finds the user name and its
associated application key (user identifier, group identifier combination) inthelocal tpusr file,
and then includesthe user name and application key in both the authorization and auditing tokens
created for theolder client. The tpusr fileisbriefly describedin “ Setting Up the User and Group
Files’ on page 2-70.

How the Domain Gateway Establishes an Identity for an Older Client

When the cLopT -t option is specified, the domain gateway establishes an identity for an older
client using the LocaL_PRINCIPAL_NAME string configured for the remote domain access point.
(The domain gateway searches the pm_reMOTE section of the local Bpmconr1G file—the binary

Using Security in ATMI Applications

Mandating Interoperability Policy

equivaent of the pmconric (5) file—to find the Locar._prINCIPAL_NaME string for the remote
domain access point. If not specified, the identity defaults to the accEsspoINTID String for the
remote domain access point.) The domain gateway uses the LoCAL_PRINCIPAL_NAME String as
the principal name when calling the impersonate user function.

For default authentication plug-ins, the impersonate user function finds the
LOCAL_PRINCIPAL_NAME String and its associated application key in thelocal tpusr file, and
then includes that string (identity) and application key in both the authorization and auditing
tokens created for the older client.

How the Server Establishes an Identity for an Older Client

WhenthecLorT -t optionisspecified, the server establishes an identity for an older client using
the client’ s assigned application key. (The client request received by the server contains the
client’ sassigned application key.) The server findsthe application key and its associated namein
thelocal tpusr file, and then includes the name as the principal name when calling the
impersonate user function.

For default authentication plug-ins, the impersonate user function finds the name and its
associated application key inthelocal tpusr file, and then includesthe name and application key
in both the authorization and auditing tokens created for the older client.

Summarizing How the CLOPT -t Option Works

Thefollowing table summarizesthefunctionality of WSH, domain gateway, and server processes
when interoperability is and is not allowed using the cLopT -t option.

Example UBBCONFIG Entries for Interoperability

In the following example, all WSHSs controlled by the workstation listener (WSL) are configured
for interoperability.

*SERVERS
WSL SRVGRP="group_name" SRVID=server_number ...
CLOPT="-A -t ..."

See Also

e “Specifying Principal Names’ on page 2-11
e “Establishing a Link Between Domains’ on page 2-24

Using Security in ATMI Applications 2-21

{DOCROOT}/rf5/rf5.html

Table 2-1 Functionality of WSH, Domain Gateway, and Server Processes When Interoperability Is and Is Not

Allowed
Process Interoperability Allowed (CLOPT -t) Interoperability Not Allowed
Workstation If the WSH receives arequest from a If the WSH receives areguest from a

Handler (WSH) pre-release 7.1 Workstation client to join the

application, the WSH authenticates the client
using apre-release 7.1 authentication protocol
and calls the impersonate user function to get
authorization and auditing tokensfor the client
based on the user name given in the request.

When the WSH receivesaservicerequest from
the authenticated Workstation client, it
attaches the tokens to the client request and
forwards the request to the destination server.

pre-release 7.1 Workstation client to
join the application, the WSH rejects
the request. No communication is
possible between the newer WSH and
the older Workstation client.

2-22

Using Security in ATMI Applications

Mandating Interoperability Policy

Table 2-1 Functionality of WSH, Domain Gateway, and Server Processes When Interoperability Is and Is Not

Allowed (Continued)

Process

Interoperability Allowed (CLOPT -t)

Interoperability Not Allowed

Domain gateway
(GWTDOMATIN)

When the domain gateway setsup aconnection
to apre-release 7.1 remote domain gateway, it
authenticates the remote domain gateway
using apre-release 7.1 authentication protocol
and then sets up the network connection.

When the domain gateway receives a client
request from the older domain, the domain
gateway callsthe impersonate user function to
get authorization and auditing tokens for the
client based on the
LOCAL_PRINCIPAL_NAME (defaultsto
ACCESSPOINTID) identity configured for the
remote domain access point, attaches the
tokens to the client request, and then forwards
therequest to the destination server. Theclient
has the same access permissions as the
LOCAL_PRINCIPAL_NAME identity.

For any outbound client request, the domain
gateway strips the tokens from the request
before sending the request along with the
client’ s application key to the older domain.

The domain gateway does not set up a
connection to apre-release 7.1 remote
domain gateway. No communicationis
possible between the newer and older
domains.

System or
application server

If the server receives arequest from aremote
client running Oracle Tuxedo pre-release 7.1
software, the server calls the impersonate user
function to get authorization and auditing
tokens for the client based on the client’s
assigned application key, and then performs
the client request assuming the client passes
any authorization checks.

If the server receives arequest from a
remote client running Oracle Tuxedo
pre-release 7.1 software, the server
rejects the client request. No
communication is possible between
the newer server and the older client.

e “Setting ACL Policy” on page 2-29

e “Security Administration Tasks’ on page 2-4

e “Security Interoperability” on page 1-54

Using Security in ATMI Applications

2-23

e “Setting Up Security in a Domains Configuration” and “ Setting Up Connectionsin a

Domains Configuration” in Using the Oracle Tuxedo Domains Component

Establishing a Link Between Domains

When adomain gateway (ecwrpomMa1N) attempts to establish anetwork link with another domain
gateway, the following major events occur.

2-24

1

Theinitiator domain gateway and the target domain gateway exchange SSL or link-level
encryption (LLE) min-max valuesto be used to set up SSL or LLE on the link between the
gateways. If SSL is being used, the initiator and target domain gateways also authenticate
each other through the use of SSL certificates.

LLE isdescribed in “Link-Level Encryption” on page 1-22. SSL is described in “ SSL
Encryption” on page 1-27.

Theinitiator and target domain gateways authenticate one another through the exchange of
security tokens assuming that both gateways are running Oracle Tuxedo release 7.1 or later
software.

If one or both of the domain gateways are running Oracle Tuxedo pre-release 7.1 software,
the gateway processes use an older (pre-release 7.1) authentication protocol when setting
up the connection.

As the administrator, you use the following configuration parameter to establish alink between
domain gateways running Oracle Tuxedo release 7.1 or later software.

Using Security in ATMI Applications

{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

Establishing a Link Between Domains

Parameter Name

Description

Setting

CONNECTION_PRINCIPAL_NAME
in DMCONFIG
(TA_DMCONNPRINCIPALNAME in
DM_MIB)

When this parameter appearsin the DM_LOCAL
section* of the DMCONFIG file, itsvalue becomes
the principal name of the local domain access
point when setting up a connection with aremote
domain access point.

For default authentication plug-ins, if avalueis
assigned to CONNECTION_PRINCIPAL_NAME
for the local domain access point, it must be the
same as the value assigned to the
ACCESSPOINTID parameter* for the local
domain accesspoint. If these valuesdo not match,
the local domain gateway process will not boot,
and the system will generate the following
userlog (3c) Message: ERROR: Unable to
acquire credentials.

1-511 characters. If
not specified, the
principa name
defaults to the
ACCESSPOINTID
string for the local
domain access point.

When this parameter appearsin the DM_REMOTE
section* of the DMCONF1G file for a particular
remote domain access point, its value becomes
the principal name of the remote domain access
point when setting up a connection with the local
domain access paint.

For default authentication plug-ins, if avalueis
assigned to CONNECTION_PRINCIPAL_NAME
for aremote domain access point, it must be the
same as the value assigned to the
ACCESSPOINTID parameter* for the remote
domain accesspoint. If these valuesdo not match,
any attempt to set up a connection between the
local domain gateway and the remote domain
gateway will fail, and the system will generatethe
following userlog (3c) message: ERROR :
Unable to initialize administration
key for domain domain_name.

1-511 characters. If
not specified, the
principal name
defaults to the
ACCESSPOINTID
string for the remote
domain access point.

*The DM_LOCAL section is also known as DM_LOCAL_DOMAINS; the DM_REMOTE section is also known as
DM_REMOTE_DOMAINS; and the ACCESSPOINTID parameter is also known as DOMAINID.

Using Security in ATMI Applications

2-25

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

Figure 2-9 demonstrates how alink is established between domains using default authentication

plug-ins.

Figure 2-9 Establishing a Link Between Domains Using Default Authentication

— Part of ATMI Application 1 = — Part of ATMI Application 2 A
dmconfig1 dmconfig2
*DM_LOCAL *DM_LOCAL

c01 GWGRP=bankg1
TYPE=TDOMAIN
ACCESSPOINTID="BA.CEN1"
CONNECTION_PRINCIPAL_NAME="BA.CEN1"
SECURITY=DM_PW

*DM_REMOTE

b01 TYPE=TDOMAIN
ACCESSPOINTID="BA.BK1"
CONNECTION_PRINCIPAL_NAME="BA.BK1"

b01 GWGRP=auth
TYPE=TDOMAIN
ACCESSPOINTID="BA.BK1"
CONNECTION_PRINCIPAL_NAME="BA.BK1"
SECURITY=DM_PW

*DM_REMOTE

c01 TYPE=TDOMAIN
ACCESSPOINTID="BA.CEN1"
CONNECTION_PRINCIPAL_NAME="BA.CEN1"

dmloadcf -y dmconfigl

bdmconfig1 ‘

dmloadcf -y dmconfig2

bdmconfig2 ‘

!

l

Initiator Domain Gateway (GWTDOMAIN) DM_PW

Target Domain Gateway (GWTDOMAIN)

password
(encrypt) "BA.BK1"

Credentials "BA.CEN1") | Credentials
“acquire 1. Call “initiate Network Link 2. Call “accept “acquire
credentials” security context” security context” credentials”
Function Function Function Function

ATMI Security | |

ATMI Security | .

W il

W)

Authentication Plug-in

Authentication Plug-in

2-26 Using Security in ATMI Applications

Establishing a Link Between Domains

Note: The"“Credentials’ shown in the preceding figure were acquired by each domain gateway
process at application booting using the CONNECTION_PRINCIPAL_NAME identity
configured for the local domain access point.

In the preceding figure, notice that the information exchanged between the initiator and target
domain gatewaysinvolvesthe CONNECTION_PRINCIPAL_NAME Stringsconfigured for thedomain
gateways, as specified in the BpMconF1c files. Each authentication plug-in uses the password
assigned to the remote domain access point (as defined in the pm_passworDs section of the
BDMCONFIG fil€) to encrypt the string before transmitting it over the network, and uses the
password assigned to the local domain access point (as defined in the pm_passworbps section of
the BDMcoNF1G fil€) to decrypt the received string. The encryption algorithm used is 56-bit DES,
where DES is an acronym for the Data Encryption Standard.

For the encryption/decryption operation to succeed, the assigned password for the remote domain
access point in the local BomconF1G file must be the same as the assigned password for the local
domain access point in the remote soMconFIc file. (Similarly, if the domain security level is set
to app_pw, the application passwords in the respective Tuxconr1c files must beidentical for the
encryption/decryption operation to succeed.) For the authentication process to succeed, the
received string must match the connEcTION_PRINCIPAI_NAME string configured for the sender.

When the domain gateways pass the security checks, thelink is established, and the gateways can
forward service requests and receive replies over the established link.

Example DMCONFIG Entries for Establishing a Link

In the following example, the configurations shown in the local pmconr1c file are used when
establishing a connection through the local domain access point co1 and the remote domain
access point bo1.

*DM__LOCAL
<local domain access point name> <gateway group name> <domain type>
<domain id> [<connection principal name>] [<security>]...
c01 GWGRP=bankgl
TYPE=TDOMAIN
ACCESSPOINTID="BA.CENTRALO1"
CONNECTION_PRINCIPAL_NAME="BA.CENTRALO1"
SECURITY=DM_PW

Using Security in ATMI Applications 2-21

*DM_REMOTE
<remote domain access point name> <domain type> <domain id>
[<connection principal name>]...
b0l TYPE=TDOMAIN
ACCESSPOINTID="BA.BANKO1"
CONNECTION_PRINCIPAL_NAME="BA.BANKOL1"

See Also
e “Specifying Principal Names’ on page 2-11
e “Mandating Interoperability Policy” on page 2-15
e “Setting ACL Policy” on page 2-29
e “Security Administration Tasks’ on page 2-4

e “Setting Up Security in a Domains Configuration” in Using the Oracle Tuxedo Domains
Component

2-28 Using Security in ATMI Applications

{DOCROOT}/add/addomc.html

Setting ACL Policy

Setting ACL Policy

Asthe administrator, you use the following configuration parametersto set and control the access
control list (ACL) policy between ATMI applications running Oracle Tuxedo release 7.1 or later

software.

Parameter Name

Description

Setting

ACL_POLICY in DMCONFIG
(TA_DMACLPOLICY inDM_MIB)

May appear in the DM_REMOTE section of the
DMCONFIG file for each remote domain access
point. Its value for a particular remote domain
access point determines whether or not the local
domain gateway modifies the credential
(identity) of service requests received from the
remote domain.

LOCAL Or GLOBAL.
Default is LOCAL.

LOCAL means replace
credential of any service
reguest received from
remote domain, and
GLOBAL Mmeans pass
service requests with no
change.

LOCAL_PRINCIPAL_NAME in
DMCONFIG
(TA_DMLOCALPRINCIPALNAM
E inDM_MIB)

May appear in the DM_REMOTE section of the
DMCONFIG filefor each remote domain access
point. If the ACL_POLICY parameter is set (or
defaulted) to LOCAL for a particular remote
domain access point, the local domain gateway
replaces the credential of any service request
received from the remote domain with the
principal name specified in the
LOCAL_PRINCIPAL_NAME parameter for this
remote domain access point.

1-511 characters. If not
specified, the principal
name defaults to the
ACCESSPOINTIDString
for the remote domain
access point.

The following three figures show how the ac1,_porn1cy configuration affects the operation of
local domain gateway (GWTDOMAIN) ProCesses.

Using Security in ATMI Applications

2-29

Figure 2-10 Establishing a Local ACL Policy

~ N
AN — ~ o~ s
7 o N Vs ~ O AN
ATMI Application 1 Running ATMI Application 2 Running

Oracle Tuxedo Release 7.1 or Later Software Oracle Tuxedo Release 7.1 or Later Software
/ N/ \

[ACL_POLICY=LOCAL \ [ACL,_POLICY=LOCAL \

(Default) (Default)

\ | 1 | /

) GWTDOMAIN / \ GWTDOMAIN (

/ () \
[N4/ \
| inbound ||| outbound |

P — P —

\ Workstation E Native\ outbound | |\ inbound E Workstation /
\ Client = : Client |:(>/ N Client /
AN - -~ N — — e
- \ / Network \ / d
N s~ Vi Connection (Link) \ N Yy,
~ 7 AN -

In the preceding figure, each domain gateway (cwrpoma1n) modifies inbound client requests
(requests originating from the remote application and received over the network connection) so
that they take on the LocaL_prRINCIPAL_NaME identity configured for the remote domain access
point and thus have the same access permissions as that identity. Each domain gateway passes
outbound client requests without change.

In this configuration, each ATMI application has an ACL database containing entries only for
usersin its own domain. One such user isthe L.ocar._prINcIPAL_NAME identity configured for
the remote domain access point.

Note: The preceding description also appliesto ATMI applications running Oracle Tuxedo
pre-release 7.1 software except that the system uses the accesspoInTID identity
configured for the remote domain access point. Essentially, the local ACL policy is
hardcoded in Oracle Tuxedo release 6.5 or earlier software.

2-30 Using Security in ATMI Applications

Setting ACL Policy

Figure 2-11 Establishing a Global ACL Policy

— — ~ o~ - ~
% S - N p ~_7 N
ATMI Application 1 Running ATMI Application 2 Running
Oracle Tuxedo Release 7.1 or Later Software Oracle Tuxedo Release 7.1 or Later Software
/ N/ \

ACL_POLICY=GLOBAL) [ACL_POLICY=GLOBAL
(Pass-through) [(Pass-through)

\ /
\ |

) GWTDOMAIN / \ GWTDOMAIN (
/ () \
\4/ \
inbound ||| outbound |
\ Workstation _I outbound | |\ inbound _I Workstation /
\ Client = |:>/ N = Client /

' - - N — — i

— \ / Network \ / —
N />~ / Connection (Link) \ ~ N\ y
~ / AN e

In the preceding figure, each domain gateway (cwrpoMaIN) passes inbound and outbound client
requests without change. In this configuration, each ATMI application has an ACL database
containing entries for usersin its own domain as well as usersin the remote domain.

Using Security in ATMI Applications 2-31

Figure 2-12 Establishing a One-way Local and One-way Global ACL Policy

~— I
N -~ o~ s
ATMI Application 1 Running ATMI Application 2 Running
Oracle Tuxedo Release 7.1 or Later Software Oracle Tuxedo Release 7.1 or Later Software
N/ \
ACL_POLICY=LOCAL \ [ACL_POLICY=GLOBAL \

\| Workstation _I outbound | |\ inbound

~

2-32

(Default) | I (Pass-through)

\ \
GWTDOMAIN / \ GWTDOMAIN

()
\t/

inbound ||| outbound
< P —

_I Workstation /

> N e Client /

- - N —
~ \ / Network \ / -
/o~ J Connection (Link) AN “ N\

~ / N\ Ve

In the preceding figure, the domain gateway (cwrpomMaIn) in ATMI application 1 modifies
inbound client requests so that they take on the .ocar,_pPRINCIPAL_NaME identity configured for
the remote domain access point for ATMI application 2 and thus have the same access
permissions asthat identity; the domain gateway passes outbound client requests without change.
The domain gateway (cwrpoMaIN) in ATMI application 2 passes inbound and outbound client
requests without change.

In this configuration, ATMI application 1 has an ACL database containing entries only for users
in its own domain; one such user isthe L.ocaL_PRINCIPAL_NAME identity configured for the
remote domain access point for application 2. ATMI application 2 has an ACL database
containing entries for usersin its own domain aswell asusersin ATMI application 1.

Impersonating the Remote Domain Gateway

If the domain gateway receives aclient request from aremote domain for which theacr_poricy
parameter is set (or defaulted) to LocaL inthelocal pmconr1c file, the domain gateway performs
the following tasks.

Using Security in ATMI Applications

Setting ACL Policy

1. Cadlstheinternal impersonate user function to get authorization and auditing tokens for the
client based on the .ocar._priNcIPAL_NaME identity configured for the remote domain
access point.

2. Usesthese tokens to overwrite the tokens already attached to the client request.

3. Forwards the request to the destination server.

For more detail on the impersonate user function, see “Establishing an Identity for an Older
Client” on page 2-19.

Example DMCONFIG Entries for ACL Policy

In the following example, the connection through the remote domain access point bo1 is
configured for global ACL inthelocal pmconr1c file, meaning that the domain gateway process
for domain access point co1 passes client requests from and to domain access point bo1 without
change. For global ACL, the LocAL_PRINCIPAL_NAME entry for domain access point bo1l is
ignored.

*DM_LOCAL
<local domain access point name> <gateway group name>
<domain type> <domain id> [<connection principal name>]
[<security>]...
c01 GWGRP=bankgl
TYPE=TDOMAIN
ACCESSPOINTID="BA.CENTRALO1"
CONNECTION_PRINCIPAL_NAME="BA.CENTRALO1"
SECURITY=DM_PW

*DM_REMOTE
<remote domain access name> <domain type> <domain id>
[<ACL policy>] [<connection principal name>]
[<local principal name>]...
b0l TYPE=TDOMAIN
ACCESSPOINTID="BA.BANKO1"
ACL_POLICY=GLOBAL
CONNECTION_PRINCIPAL_NAME="BA.BANKOL1"
LOCAL_PRINCIPAL_NAME="BA.BANKO1l.BOB"

Using Security in ATMI Applications 2-33

See Also

e “Specifying Principal Names’ on page 2-11

e “Mandating Interoperability Policy” on page 2-15

e “Establishing a Link Between Domains’ on page 2-24

e “Security Administration Tasks’ on page 2-4

Setting Credential Policy

Asthe administrator, you use the following configuration parameter to set and control the
credentia policy between ATMI applications running Oracle Tuxedo release 8.0 or later

software.

Parameter Name

Description

Setting

CREDENTIAL_POLICYin
DMCONFIG
(TA_DMCREDENTIALPOLICYIN
DM_MIB)

May appear in the DM_REMOTE section of the
DMCONFIG file for each remote domain access
point. Its value for a particular remote domain
access point determines whether or not the local
domain gateway removes the credential
(identity) from alocal service request destined
for this remote domain access point.

Notethat the CREDENTIAL_POLICY parameter
controlswhether or not thelocal domain gateway
removes the credential from alocal service
request before sending the request to aremote
domain. The ACL_POLICY parameter controls
whether or not thelocal domain gateway replaces
the credential of a service request received from
aremote domain with the principal name
specified in the LOCAL_PRINCIPAL_NAME
parameter.

LOCAL Of GLOBAL.
Default isLOCAL.

LOCAL meansremove
the credential from a
local service request
destined for this remote
domain accesspoint, and
GLOBAL means do not
remove the credential
from alocal service
reguest destined for this
remote domain access
point.

Administering Authorization

Authorization enforces limitations on user access to resources or facilities within an ATMI
application in accordance with application-specific rules. Only when users are authenticated to
join an ATMI application does authorization go into effect.

2-34

Using Security in ATMI Applications

Administering Link-Level Encryption

The procedures for administering authori zation depend upon the underlying authorization system
of the ATMI application. For procedures to administer a custom authorization system, see the
documentation for that system. For proceduresto administer the default authorization system, see
“ Administering Default Authentication and Authorization” on page 2-65.

See Also

e “Authorization” on page 1-12

e “Default Authentication and Authorization” on page 1-45

e “Administering Default Authentication and Authorization” on page 2-65
e “Security Administration Tasks’ on page 2-4

e “Security Compatibility” on page 1-59

Administering Link-Level Encryption

Link-level encryption establishes data privacy for messages moving over the network links that
connect the machinesin an ATMI application. There are three levels of link-level encryption
(LLE) security: 0-bit (no encryption), 56-bit, and 128-hit.

LLE appliesto the following types of ATMI links:
e Workstation client to workstation handler (WSH)
e Bridge-to-Bridge
e Administrative utility (such as tmboot) to t1isten

e Domain gateway to domain gateway

Understanding LLE min and max Values

Before you can configure LLE for your ATMI application, you need to be familiar withthe LLE
notation: (min, max). The defaults for these parameters are:

e FOrmin: O

e For max: Number of bits that indicates the highest level of encryption possible for the
installed LLE version

Using Security in ATMI Applications 2-35

2-36

For example, the default min and max values for LLE when the license file specifies
STRENGTH=128 are (0, 128). If youwant to change the defaults, you can do so by assigning new
valuesto min and max in the uBBCoNFIG file for your application.

For more information, see “How LLE Works’ on page 1-22 and “Encryption Key Size
Negotiation” on page 1-23.

How to Configure LLE on Workstation Client Links

If Workstation clients are included in an application, the administrator must configure one or
more workstation listeners (WSL s) to listen for connection requests from Workstation clients.
Each WSL uses one or more associated workstation handlers (WSHSs) to handle the Workstation
client workload. Each WSH can manage multiple Workstation clients by multiplexing all
requests and replies with a particular Workstation client over a single connection.

Astheadministrator, you enable Workstation client accessto the ATMI application by specifying
aWSL server in the servERs section of the application’ s urBconFIG file. Y ou need to specify

the -z and -z command-line options for the WSL server if you want to override the defaults for
the LLE min and max parameters. (See “ Understanding LL E min and max Vaues’ on page 2-35
for details.) Of course, link-level encryptionispossibleonly if LLE isinstalled on both thelocal
machine and the Workstation client.

Note: At the Workstation client end of a network connection, you use environment variables
TMMINENCRYPTBITS and TMMAXENCRYPTBITS to override the defaults for the LLE min
and max parameters.

To configure LLE on Workstation client links, follow these steps.

1. Ensure that you are working on the ATMI application masTER machine and that the
application isinactive.

2. Open uBBcoNFIG With atext editor and add the following lines to the sErvERS section:

*SERVERS
WSL SRVGRP="group_name" SRVID=server_number ...
CLOPT="-A -- -z min -Z max ..."

3. Load the configuration by running tmloadcf (1). The tmloadcf command parses
UBBCONFIG and loadsthe binary Tuxconr1c fileto thelocation referenced by the Tuxconr1c
variable.

In the preceding example, when tmboot (1) startsthe ATMI application, it passesthe "-a --
-z min -2z max" command-line optionsto the WSL server. When establishing a network link

Using Security in ATMI Applications

{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

Administering Link-Level Encryption

between a Workstation client and the WSH, the Workstation client and WSL negotiate the key
size until they agree on the largest key size supported by both.

SeewsL (5), WS_MIB(5), and UBBCONFIG (5) inthe Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference for additional information.

How to Configure LLE on Bridge Links

The Oracle Tuxedo system architecture optimizes network communications by establishing a
multiplexed channel among the machines in a multiple-machine application. Oracle Tuxedo
messages flow in both directions over this channel, and the message traffic is managed by a
specialized ATMI server known as a Bridge server.

Asthe administrator, you place an entry in the NETWORK section of the uBeconr1c file for each
machine in an ATMI application on which a Bridge server resides. Y ou need to specify the
MINENCRYPTBITS and MAXENCRYPTBITS optional run-time parametersfor the Bridge server if
you want to override the defaultsfor the LLE min and max parameters. (See* Understanding LLE
min and max Vaues’ on page 2-35 for details.) Of course, Bridge-to-Bridge link-level
encryption is possible only if LLE isinstalled on the machines where the Bridge serversreside.

To configure LLE on Bridge links, follow these steps.

1. Ensure that you are working on the ATMI application masTER machine and that the
application isinactive.

2. Open uBBCcONFIG With atext editor and add the following lines to the NETwORK Section:

*NETWORK

LMID NADDR="bridge_network_address" BRIDGE="bridge_device"
NLSADDR="1listen_network_address"
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

mrDisthe logical machine where the Bridge server resides; it has direct accessto the
network device specified in the BRIDGE parameter.

3. Load the configuration by running tmloadcf (1). The tmloadcf command parses
UBBCONFIG and loadsthe binary Tuxconr1c fileto thelocation referenced by the Tuxconr1c
variable.

In the preceding example, when tmboot (1) startsthe ATMI application, the Bridge server reads
the TuxconF1c file to access various parameters, including MINENCRYPTBITS and
MAXENCRYPTBITS. When establishing a network link with aremote Bridge server, the local and

Using Security in ATMI Applications 2-31

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

2-38

remote Bridge servers negotiate the key size until they agree on the largest key size supported by
both.

SeeTM MIB(5) and UBBCONFIG (5) inthe Oracle Tuxedo File Formats, Data Descriptions,
MIBs, and System Processes Reference for additional information.

How to Configure LLE on tlisten Links

tlisten (1) isanetwork-independent listener processthat provides connections between nodes
of amultiple-machine application, on which administrative utilities such as tmboot (1) can run.
The application administrator installs t 1isten on al machines defined in the NETwoRrk section
of the uBconF1c file.

To configure LLE on t1isten links, follow the steps given in the previous topic, “How to
Configure LLE on Bridge Links’ on page 2-37. If you so desire, you can start a separate instance
of tlisten ontheloca machine by entering a command such as:

tlisten -1 nlsaddr [-z min -Z max]

The n1saddr value must be the same as that specified for the n1.saDDR parameter for this
machine in the NETWORK Section of the uBBconF1G file. Seetlisten (1) inthe Oracle Tuxedo
Command Reference, and Tv_mIB (5) and UBBCONFIG (5) inthe Oracle Tuxedo File Formats,
Data Descriptions, MIBs, and System Processes Reference for additional information.

How to Configure LLE on Domain Gateway Links

A domain gateway is a GwIDOMAIN process that relays service requests and service replies
between two or more ATMI applications. It provides interoperability through a specially
designed transaction processing (TP) protocol that flows over network transport protocols such
as TCP/IP.

A domain gateway belongs to a domain gateway group, for which a Domains configuration file
isrequired. A domain gateway group represents alocal domain access point that communicates
with one or more remote domain access points. Like the application configuration files,
UBBCONFIG and TUxCONFIG, a Domains configuration fileis created in text format and then
converted to binary format. Thetext and binary filesarereferred to aspmconr e and BDMCONFIG,
respectively. The pMconrF1G and BpMcoONFIG files, and the environment variabl es associated with
them, are described on reference page pmconF1G (5) in Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.

Asthe administrator, you must place an entry in the pmM_TpoMaIN section of the pmconric file
for each:

Using Security in ATMI Applications

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

Administering Link-Level Encryption

e Loca domain access point that will accept requests for local services from remote domain
access points

e Remote domain access point accessible by a defined local domain access point

e TDomain session between specific local and remote access points

Y ou need to specify the MINENCRYPTBITS and MAXENCRYPTBITS optional run-time parameters
for each domain access point and TDomain session for which you want to override the defaults
for the LLE min and max parameters. (See “Understanding LLE min and max Vaues’ on

page 2-35 for details.) Of course, domain-to-domain link-level encryptionispossibleonly if LLE
isinstalled on the machines where the domains reside.

To configure LLE on domain gateway links, follow these steps.

1. Ensurethat you are working on the ATMI application MasTER machine and that the ATMI
application isinactive.

2. Open puconr1c With atext editor and add the following lines to the pM_TpoMAIN section:

*DM_TDOMAIN
Local network addresses

LDOM

NWADDR="I1ocal_domain_network_ address"
NWDEVICE="1local_domain_device"
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

Remote network addresses

RDOM

NWADDR="remote_domain_ network_ address"
NWDEVICE="remote domain_ device"
MINENCRYPTBITS=min

MAXENCRYPTBITS=max

TDomain network addresses

RDOM

NWADDR="remote_domain_network_ address"
NWDEVICE="remote domain device"
CONNECTION_POLICY=ON_START
LACCESSPOINT="1ocal_domain_access_point_identifier"
FAILOVERSEQ=100

MINENCRYPTBITS=min

MAXENCRYPTBITS=max

Using Security in ATMI Applications 2-39

LDOM is replaced with a local domain access point identifier, and RDOM
is replaced with a remote domain access point identifier.

3. Loadtheconfiguration by running dmloadcf (1). Thedmloadcf command parses DMCONFIG
and loads the binary sBomconF1G file to the location referenced by the BbmconFzc variable.

In the preceding example, when tmboot (1) startsthe ATMI application, each domain gateway
reads the BomcoNF1G file to access various parameters, including MINENCRYPTBITS and
MAXENCRYPTBITS, and propagates those parameters to itslocal and remote domains. When the
local domain is establishing anetwork link with aremote domain, the two domains negotiate the
key size until they agree on the largest key size supported by both.

See pMCONFIG (5) in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference for additional information. Also, see“ Setting Up Security in a Domains
Configuration” in Using the Oracle Tuxedo Domains Component.

See Also
e “Link-Level Encryption” on page 1-22
e “Security Administration Tasks’ on page 2-4
e “Security Interoperability” on page 1-54
e “Security Compatibility” on page 1-59

Administering SSL Encryption

2-40

SSL encryption establishes data privacy for messages moving between the machinesinan ATMI
application. The industry-standard TLS 1.0 protocol is used for SSL encryption. Customers can
used 256-hit, 128-bit, and 56-bit SSL ciphers.

Understanding SSL min and max Values

Before you can configure SSL for your ATMI application, you need to be familiar with the SSL
notation: (min, max). The defaults for these parameters are:

e FOormin: O

e For max: Number of bits that indicates the highest level of encryption possible for the
installed SSL version

Using Security in ATMI Applications

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/add/addomc.html
{DOCROOT}/add/addomc.html

Administering SSL Encryption

If you want to change the defaults, you can do so by assigning new valuesto min and max in the
uBBCONFIG filefor your application. For more information, see “How the SSL Protocol Works”
on page 1-28 and “Encryption Key Size Negotiation” on page 1-23.

How to Configure SSL on Workstation Client Links

To configure SSL on Workstation client links, follow these steps.

1. Ensure that you are working on the ATMI application masTerR machine and that the
application isinactive.

2. SEC_PRINCIPAL_NAME,SEC_PRINCIPAL_LOCATION,andSEC_PRINCIPAL_PASSVAR
parameters must be specified. Thismay be donein the *RESOURCES, *MACHINES, *GROUPS,
Or *SERVERS Sections.

Note: Ingeneral, itisrecommended to specify these parameters at the highest level possible
to avoid duplicating information in the UBBCONFI G and to avoid multiple password
prompts if running tmloadcf interactively.

3. Open usrcoNFIG With atext editor and add the following linesto the sErvERS sections:

*SERVERS
WSL SRVGRP="group_ name" SRVID=server_ number ...

CLOPT="-A -- -z min -7Z max -n <network_address> -S <secure port>
[-a] [-R <renegotiation_interval>] ..."

If the secure port is set to the same port used in the network address then the WSL will
accept only SSL connections; if different ports are used, the same WSL can accept both
non-SSL and SSL connections.

The WSC must set the SEC_PRINCIPAL_LOCATION, SEC_PRINCIPAL_NAME and/or
SEC_PRINCIPAL_PASSWORD enviornment variables as appropriate.

All workstation clients using SSL must specify the list of trusted certificate(s) used to
verify the credentials presented by the WSH. When using legacy security credentials, the
location is specified viathe plugin framework certificate validation interface and
does not require setting any environment variables. When the Oracle Wallet is used for
security credentials, the trusted certificates are contained in the Oracle Wallet. The
SEC_PRINCIPAL_LOCATION and SEC_PRINCIPAL_NAME environment variables are used to
locate the wallet as described in Runtime Creation of an Oracle Wallet. The
SEC_PRINCIPAL_PASSWORD envionment variable is used to open the wallet.

Using Security in ATMI Applications 2-11

2-42

Notes:

e |tispossible for SEC_PRINCIPAL_NAME to be unset, in which case it will be
interpreted as a O-length string.

o |f legacy security credentials for 1-way SSL are converted to an Oracle Wallet at
runtime and the SEC_PRINCIPAL_PASSWORD enviornment variable is not set
at the time of creation, then a default password TrustedCertsOnlyNoPWNeeded
will be used to create the wallet. Such awallet can be subsequently accessed
without setting the SEC_PRINCIPAL_PASSWORD environment variable.

If the WSL -a (mutual authentication) option is being used then the WSC must also specify
the location of its own certificate and private key. Regardless of whether legacy security
credentials or the Oracle Wallet are being used, the SEC_PRINCIPAL_LOCATION,
SEC_PRINCIPAL_NAME, and SEC_PRINCIPAL_PASSWORD enviornment variables must be
set to access these credentials.

4. Load the configuration by running tmloadcf (1). The tmloadcf command parses
UBBCONFIG and loadsthe binary Tuxconr1c fileto thelocation referenced by the Tuxconr1c
variable.

How to Configure SSL on Bridge Links

To configure SSL on Bridge links, follow these steps:

1. Ensure that you are working on the ATMI application masTerR machine and that the
application isinactive.

2. Open uBBcoNFIG With atext editor and add the following lines to the REsourcEs and
NETWORK Sections:

*RESOURCES
OPTIONS SSL,LAN
SSL_RENEGOTIATION (optional) [value]

*NETWORK

LMID NADDR="bridge_network_address" BRIDGE="bridge_device"
NLSADDR="1listen_network_address"
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

SEC_PRINCIPAL_NAME,SEC_PRINCIPAL_LOCATION,andSEC_PRINCIPAL_PASSVARlﬂug
be specifed in the *rREsoURCES and/or *MACHINES Sections.

rurpisthelogical machine where the Bridge server resides; it has direct access to the
network device specified in the BRIDGE parameter.

Using Security in ATMI Applications

{DOCROOT}/rfcm/rfcmd.html

Administering SSL Encryption

3. Load the configuration by running tmloadcf (1). The tmloadcf command parses
UBBCONFIG and loadsthe binary Tuxconr1g fileto thelocation referenced by the TuxconrIc
variable.

How to Configure SSL on tlisten Links

To configure SSL on t1isten links, follow the steps given in the previous topic, “How to
Configure LLE on Bridge Links’ on page 2-37. Y ou must enter the following command:

tlisten -1 nlsaddr [-z min -Z max][-s][-c <sec_principal_location>][-n
<sec_principal_name>] [-p <sec_principal_passvar>]

Note: The -s option specifies an SSL connection instead of an LLE connection.

The-c, -n, and -p options specify SSL security principal information and must match
the values specified for the sEc_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION,
and SEC_PRINCIPAL PASSVAR inthe usBcoNFIG file.

How to Configure SSL on Domain Gateway Links

To configure SSL on domain gateway links, follow these steps.

1. Ensurethat you are working on the ATMI application MasTER machine and that the ATMI
application isinactive.

2. Open prconrFIc With atext editor and add the following lines to the pm_TpomMaIN Section:
*DM_TDOMAIN
SSL
DEFAULT: NWPROTOCOL={SSL|SSL_ONE_WAY}
SSL_RENEGOTIATION = [valu€]

Local network addresses

LDOM NWADDR="Iocal domain network address"
NWDEVICE="Iocal domain device"
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

Remote network addresses

RDOM NWADDR="remote_domain_network_address"
NWDEVICE="remote_domain_device"
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

Using Security in ATMI Applications 2-43

{DOCROOT}/rfcm/rfcmd.html

2-44

TDomain network addresses

RDOM NWADDR="remote_domain_network_ address"
NWDEVICE="remote domain device"
CONNECTION_POLICY=ON_START
LACCESSPOINT="1ocal_domain_access_point_identifier"
FAILOVERSEQ=100
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

LDOM is replaced with a local domain access point identifier, and RDOM
is replaced with a remote domain access point identifier.

3. SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and SEC_PRINCIPAL_PASSWORD Must
be specified in the UBBCONFIG file.

4. Loadtheconfiguration by running dmloadcf (1). Thedmloadcf command parses DMCONFIG
and loads the binary BpmconF1G file to the location referenced by the BpmconrFIc variable.

Development Process for the SSL Protocol

Using the SSL protocol in aTuxedo application is primarily an administration process. Table 2-2
lists the administration steps required to set up the infrastructure required to use the SSL protocol
and configure the servers and clientsin your application to use SSL.

For a detailed description of the administration steps, see “Managing Public Key Security” and
“Configuring the SSL Protocol” in Using Security in CORBA Applications.

Once the administration steps are complete, you can use either password authentication or
certificate authentication in your Tuxedo application. The steps are similar for CORBA
application authentication. For more information, see “Writing a CORBA Application That
Implements Security” in Using Security in CORBA Applications.

Note: If you are using the Oracle CORBA C++ ORB as a server application, the ORB can also
be configured to use the SSL protocol. For more information, see “ Configuring the SSL
Protocol” in Using Security in CORBA Applications.

Using Security in ATMI Applications

{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/security/config.html
{DOCROOT}/security/certs.html
{DOCROOT}/security/writewle.html
{DOCROOT}/security/writewle.html
{DOCROOT}/security/config.html
{DOCROOT}/security/config.html

Administering SSL Encryption

Table 2-2 Administration Steps for the SSL Protocol

Step Description

1 Set up an LDAP-enabled directory service. You will be prompted for the name of
the LDAP server during the installation of the Oracle Tuxedo product.

2 Install the license for the SSL protocol.

3 Obtain adigital certificate and private key for the Oracle Tuxedo application from
a certificate authority.

4 Publish the digital certificates for the Oracle Tuxedo application and the certificate
authority in the LDAP-enabled directory service.

5 Define the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR parameters for the Tuxedo server processin the
UBBCONFIG file.

6 Changeto "Set the UBBCONFIG parameters, DMCONFIG parameters, WSL
CLOPT, JSL CLOPT, or ISL CLOPT so that SSL isturned on.

7 Defineaport for SSL communication in the appropriate configuration file or server
CLOPT.

8 Create a Trusted Certificate Authority file (trust_ca. cer) that definesthe
certificate authorities trusted by the Oracle Tuxedo application.

9 Change to "Use the tmloadcf and/or dmloadcf commands to load the appropriate
configuration file(s).

10 Optionally, create a Peer Rulesfile (peer_val.rul) for the Oracle Tuxedo
product.

11 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in

place in your enterprise.

If you use the SSL protocol with password authentication, you need to set the sEcurRITY
parameter in the uBecoNnFIG fileto desired level of authentication and if appropriate, configure
the Authentication Server (auTHsRrv). For information about the administration steps for
password authentication, see“ Password Authentication” in Using Secuity in ATMI Applications..

Figure 2-13 illustrates the configuration of a Tuxedo application that uses the SSL protocol.

Using Security in ATMI Applications 2-45

{DOCROOT}/sec/secadm.html

Figure 2-13 Configuration for Using the SSL Protocol in a Tuxedo Application

IIOP, Workstation,

Tuxedo JOLT
Workstation Listener/Handler
Application

L J

SEC_PRINGIPAL_NAME
SEC_PRINCIPAL_LOCATION
trust_ca.cer SEC_PRINCIPAL_PASSVAR

LDAP
Directory Service

Certificate for IIOP, -
Workstation, JOLT Private Key for
Listener/Handler lHOP,
Certifi P Workstation,
erti u?a!tes or JOLT
Certificate .
Authorities Listener/Handler

Creating an Oracle Wallet

An Oracle Wallet can be created in any of the following ways:
e Using the owm graphical tool for those customers who have installed Oracle Database

e Using the orapki command line tool for those customers who have installed Oracle
Database

e Using opensdl or another third party tool

e Automatically at execution time by conversion of security credentials used in Tuxedo 119
or earlier rel eases.

2-46 Using Security in ATMI Applications

Administering SSL Encryption

Creating an Oracle Wallet with orapki

For information about how to create an Oracle Wallet using orapki, see the orapki Utility section
in Oracle Database Advanced Security Administrator's Guide (The documentation link may be
different depending on which version of Oracle Database you have installed).

Oracle Tuxedo walletsrequire apassword, so the Auto L ogin option should not be used. orapki
and owm can be used to generate wall et with anew private key and certificate, but current versions
of these tools cannot import a previously used private key and certificate into awallet. If it is
necessary to import a preexisting private key and certificate pair into awallet, use runtime
conversion, openss, or another third party tool.

Creating an Oracle Wallet with openssl
An example of an openss1 command that can be used to create an Oracle Wallet is as follows:

Listing 2-1 Example of Creating an Oracle Wallet with openssl

openssl pkcsl2 \

—export \

-chain \

-inkey private_key_ file.pem \

-in certificate_file.pem \

-CAfile trusted_certificate_file.pem \
-out ewallet.pl2 \

-passin pass:private_key_ password \

-passout pass:wallet_password \

Where,
e -export: indicatesthat a PKCS 12 file is being created.

e -chain: specifiesthat an attempt is made to include the entire certificate chain of the user
certificate.

Using Security in ATMI Applications 2-41

http://docs.oracle.com/cd/E11882_01/network.112/e10746/asoappf.htm

2-48

e -inkey: specifiesthe private key file.

e -in: specifiesthe file that contains the user certificate and any other certificatesin the
certificate chain.

Note: If the private key and the certificate chain are in the samefile, the -inkey and -in
parameters can specify the samefile.

e -cafile: specifiesafile containing trusted certificates.
e —out: specifies the output file name, which must be ewallet.p12 for an Oracle Wallet.
e -passin: Specifies the password for the private key file.

e -passout: specifiesthe password for the newly created wallet.

Note: If thereisany concern about other usersexecuting "ps" while orapki isrunning, then
the -passin and -passout parameters should be omitted and orapki will prompt
for the passwords.

Runtime Creation of an Oracle Wallet

When the sEc_PRINCIPAL_LOCATION configuration parameter or the workstation client
SEC_PRINCIPAL_LOCATION environment variable does not point to an Oracle Wallet, Tuxedo
looks for legacy security credentials and attemptsto create an Oracle Wallet as follows:

e Asin previous releases, sEC_PRINCIPAL_LOCATION pointsto the private key file for the
process. A private key fileis mandatory for processes that will be on the server side of an
SSL connection or that will be on the client side of the connection when mutual
authentication isused. It isoptional for processes that will be on the client side of a
one-way SSL connection. The value of the sec_PRINCIPAL_PASSVAR configuration file
environment variable (or the workstation client SEC_PRINCIPAL_PASSWORD environment
variable) will be used to decrypt the private key.

e The certificate chain for the process is obtained via the plugin framework passing the value
of sEc_PRINCIPAI_NAME asinput (In the default plugin framework implementation this
uses LDAP). A certificate chain is mandatory for processes that will be on the server side
of an SSL connection or that will be on the client side of the connection when mutual
authentication isused. It is optional for processes that will be on the client side of a
one-way SSL connection.

e Thetrusted certificates for the process are contained in the file specified as the
caCertificateFile parameter of the plugin framework certificate_validation
interface. The default cacertificaterileis

Using Security in ATMI Applications

Administering SSL Encryption

$TUXDIR/udataobj/security/certs/trust_ca.cer. Trusted certificates need to exist
for SSL serversand SSL clients.

A PKCS12 wallet fileiscreated using the process' private key (if any) and user certificate (if any)
aswell asthe other certificatesin the chain and the trusted certificates.

If sEc_prINcIPAL_LocATION isafile, then definewarrL.ET_DpIR asthe directory where
SEC_PRINCIPAL_LOCATION iSlocated and define SUBDIR aswallet.* basename
SEC_PRINCIPAL_LOCATION.

If sECc_PRINCIPAL_LOCATION iSadirectory or doesnot exist then definewar..eT_pIR equa to
SEC_PRINCIPAL_LOCATION and define SUBDIR aswallet.SEC_PRINCIPAL_NAME.

The new wallet will be created in WALLET_DIR/SUBDIR/ewallet.pl2 .

(Note that war.L.ET_DIR does not represent any Tuxedo configuration parameter or environment
variable and is used only for ease of explanation.)

For example, if

SEC_PRINCIPAL_NAME="ISH_ tuxga" and
SEC_PRINCIPAL_LOCATION="/home/tuxedo/myapp/wallet"
then the wallet file name is expected to be

/home/tuxedo/myapp/wallet/wallet.ISH_tuxga/ewallet.pl?2

Use of the TUXCREATEWALLET Environment Variable

The conversion of legacy security credentialsto the Oracle Wallet format is affected by the
TUXCREATEWALLET environment variable, which may have the following settings:

® TUXCREATEWALLET=KEEP Of TUXCREATEWALLET=YES Of TUXCREATEWALLET Unset: If a
wallet does not exist but old-style security credentials do exist then convert the legacy
security credentialsto awallet. Thisisthe default behavior. The directory where the wallet
is created will have 700 permissions and the ewallet.p12 file will have 600 permissions.
The user must have proper permissionsto read any existing wallet or to create awallet. If
ULOG_SSLINFO=y iS et then the following message will be logged:

LIBTUX_CAT:6908: INFO: Security credentials for principal name have
been converted to Oracle Wallet wallet_directory

On subsequent process invocations the newly created wallet will be used so that the legacy
security credentials do not need to be recreated.

Using Security in ATMI Applications 2-49

2-50

e TUXCREATEWALLET=TEMP: If awallet does not exist but old-style security credentials do
exist create awallet in atemporary directory and then remove the temporary file wallet
onceitisopen. No LIBTUX_CAT:6908 message will belogged when using this option.
The TEMP option isless efficient but is needed if:

— Old-style security credentials gotten from the plugin framework could change
dynamically, or

— The application does not want to store wallets on aloca file system for security
reasons or for any other reason, or

— SEC_PRINCIPAL_LOCATION islocated on aread-only file system.

® TUXCREATEWALLET=NO Of TUXCREATEWALLET=anyothervalue: |If awallet does not exist
report an error and do not ook at old-style security credentials.

The values keEP or TEMP May be in any case but must be those 4 characters. The values YEs or
No may bein the local language asis true for many other ves/No environment variablesin
Tuxedo.

Debugging SSL Connection Problems
Enabling NZ Tracing

If the environment variable TuxNZTRACE=8191 is set, Tuxedo will output an SSL trace for the
processto afilenamed trace-process_id. log. Thetrace output will containinformation sent
across the SSL handshake process as well as encrypted application data. This trace can be very
helpful in determining why a particular certificate chain is not considered valid or why thereis
some other error in the SSL handshake process.

Connection Establishment Log Message

If the environment variable uL.oc_ssLINFO=yes iS Set, then Tuxedo will write a message to the
userlog each time an SSL connection is established which will include the name of the negotiated
cipher.

Displaying the Contents of an Oracle Wallet
Varioustools can be used to display information about an Oracle Wallet, whichisaPKCS12 file.

Openssl isavailable as part of the OS distribution on some operating systems and can be
downloaded and compiled from source on other operating systems.

The following openssl command will show the certificates and private keysin an Oracle Wallet:

Using Security in ATMI Applications

Administering SSL Encryption

openssl pkcsl2 -in ewallet.pl2

openss1 Will prompt for a password to be used to open the wallet. (The option -password
pass: password can be used to avoid the prompt but using this option could allow the password
to be seen by another user on the machine who is executing the ps command.)

openss1 Will also prompt for a password to be used to encrypt the decrypted private key when
displaying it on the terminal. The option -nodes can be used to avoid this prompt and to display
the private key in unencrypted format.

Any of the certificates contained in the output of openss1 pkcsi2 can be copied into another
file and the following command can be used to display the fields in the certificate:

openssl x509 -in certificatefile -text -noout

Userswho have Oracle Database softwareinstalled can a so usethe or apki command or the owm
graphical command to display information about awallet. The orapki command to display
wallet information looks like this:

orapki wallet display -wallet wallet_location

Obtaining NZ Error Code Information

Many SSL error messagesincludean error code number returned by the Oracle NZ security layer.
In some but not all error messages thisis followed by a short text description of the NZ error
number. For those error messages where no text description of the NZ error codeisincluded, this
information can be obtained by looking in the file $TUXDIR/1locale/C/ORACLE. text .

Users who have Oracle Database software installed can al so use the oerr command to determine
the string associated with a particular error number.

See Also
e “SSL Encryption” on page 1-27
e “Security Administration Tasks’ on page 2-4
e UBBCONFIG (5) Resources Section
e DM_MIB(5) T_DM_TDOMAIN Class
e DMCONFIG(5) DM_TDOMAIN Section

e ws_MIB(5) T_wsL Class

Using Security in ATMI Applications 2-51

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html

e Using Security in CORBA Applications

Administering Public Key Security

2-52

The most effective way to make a distributed ATMI application secure isto combine link-level

encryption with public key encryption. Public key encryption is the framework on which public
key security is built.

Public key security allows you to incorporate message-based digital signatures and
message-based encryption into your ATMI applications. Together, these capabilities provide data
integrity and privacy, which are especially important when an ATMI application interacts with
other ATMI applications or Workstation clients from outside the company.

Recommended Practices for Public Key Security

e The ATMI application’s operating environment largely determines the level of security
achieved. For maximum safety, install hardware devices that protect private key
information.

e Establish policies regarding key expiration intervals and key renewal procedures.
Expiration of a Certification Authority’s certificate might have a dramatic impact on
system operation, and should be anticipated so updated user certificates can beissued in
advance.

Assigning Public-Private Key Pairs

Application administrators and devel opers need to choose a Certification Authority to provide
public-private key pairs and the digital certificates associated with them. Then they must decide
how to assign the key pairs to the ATMI application. There are many options for assigning key
pairs. An administrator can assign one or more of the following:

e One public-private key to an entire ATMI application

e A public-private key pair to each machine in an ATMI application
e A public-private key pair to each server in an ATMI application

e A public-private key pair to each servicein an ATMI application

e A public-private key pair to each end user

Using Security in ATMI Applications

../security/publickey.html

Administering Public Key Security

Application administrators and devel opers are responsible for choosing a method of assigning
key pairs and assigning them. Once key pairs are assigned, however, no more administrative
work is required; the plug-ins for public key security distribute and manage the keys.

Setting Digital Signature Policy

Asthe administrator, you use the following configuration parameters to set the digital signature
policy for your ATMI application.

Parameter Name

Description

Setting

SIGNATURE_AHEAD in
UBBCONFIG
(TA_SIGNATURE_AHEAD in
TM_MIB)

Maximum permissible time
difference between (1) the
timestamp value attached to a

digitally signed message buffer and

(2) the time at which the message
buffer isreceived. If the signature

timestamp is too far into the future,

the receiving process rejects the
message buffer.

1-2147483647
seconds. Default is
3600 seconds (one
hour).

SIGNATURE_BEHIND in
UBBCONFIG
(TA_SIGNATURE_BEHIND N
TM_MIB)

Maximum permissible time
difference between (1) thetime at
which adigitally signed message
buffer is received and (2) the
timestamp value attached to the
message buffer. If the signature
timestamp is too far into the past,
the receiving process regjects the
message buffer.

1-2147483647
seconds. Default is
604800 seconds
(one week).

SIGNATURE_REQUIRED N
UBBCONFIG
(TA_SIGNATURE_REQUIRED
in TM_MIB)

Determines whether areceiving
process will accept only message
buffersthat are digitally signed.

Y (yes—digital
signatureis
required) or N (no—
digital signatureis
not required).
Default isN.

Setting a Postdated Limit for Signature Timestamps

SIGNATURE_AHEAD isspecified at the domain-widelevel of the configuration hierarchy, meaning
that the value you assign to it appliesto al processes running in the ATMI application.

Using Security in ATMI Applications

2-53

2-54

Domain-wide parameters are set in the REsoURCES section in the useconr1c file, and the
T_DOMAIN classin the TM_MIB.

The sIGNATURE_AHEAD parameter establishesthe maximum permissibletimedifference between
(2) the timestamp attached to the incoming message buffer and (2) the current time shown on the
verifying system’slocal clock. The minimum valueis 1 second; the maximum, 2147483647
seconds. The default is 3600 seconds (one hour).

If the attached timestamp shows atimetoo far into the future, the signature is considered invalid.
This parameter is useful for rejecting signatures that are postdated, while allowing a certain
amount of leeway for unsynchronized local clocks.

Example UBBCONFIG Entries for Postdated Limit

*RESOURCES
SIGNATURE_AHEAD 2400

Setting a Predated Limit for Signature Timestamps

SIGNATURE_BEHIND isS specified at the domain-wide level of the configuration hierarchy,
meaning that the value you assign to it appliesto all processes running in the ATMI application.
Domain-wide parameters are set in the RESOURCES section in the ussconr1c file, and the
T_DOMAIN classin the Tv_M1B.

The SIGNATURE_BEHIND parameter establishes the maximum permissible time difference
between (1) the current time shown on the verifying system’slocal clock and (2) the timestamp
attached to the incoming message buffer. The minimum value is 1 second; the maximum,
2147483647 seconds. The default is 604800 seconds (one week).

If the attached timestamp shows atime too far into the past, the signature is considered invalid.
Thisparameter isuseful for resisting replay attacks, inwhich avalid signed buffer isinjected into
the system a second time. However, in a system with asynchronous communication—for
example, in asystem in which disk-based queues are used—nbuffers signed along time ago may
till be considered valid. So, in a system with asynchronous communication, you may want to
increase the STGNATURE_BEHIND Setting.

Example UBBCONFIG Entries for Predated Limit

*RESOURCES
SIGNATURE_BEHIND 300000

Using Security in ATMI Applications

Administering Public Key Security

Enforcing the Signature Policy for Incoming Messages

SIGNATURE_REQUIRED may be specified any of the following four levelsin the configuration
hierarchy:

e RESOURCES Section in UBBCONFIG OF T_DOMAIN classin T™™M_MIB
e MACHINES SEction in UBBCONFIG OfF T_MACHINE classin T™M_MIB
e GROUPS SECtiONn in UBBCONFIG OF T_GROUP Classin TM_MIB

e SERVICES SEction in UBBCONFIG OF T_SERVICE classin T™M_MIB

Setting SIGNATURE_REQUIRED t0 v (yes) at aparticular level means that signatures are required
for all processes running at that level or below. For example, setting STGNATURE_REQUIRED tO Y
for amachine named mach1 meansthat all processesrunning onmachi will accept only incoming
messages that are digitally signed.

e Set at the domain-wide level (RESOURCES section or T_DoMAIN class), this parameter
covers all application services advertised within the domain, including those advertised by
gateway processes. The default isn.

e Set at the machine level (MACHINES section or T_MACHINE class), this parameter coversal
application services advertised on a particular machine, including those advertised by
gateway processes. The default is.

e Set at the group level (Groups section or T_croup class), this parameter coversal
application services advertised by a particular group, including those advertised by
gateway processes. The default is.

e Set at the service level (seErvICES section T_sERVICE class), this parameter covers all
instances of a particular service advertised within the domain, including those advertised
by gateway processes. The default isn.

Y ou may specify both SIGNATURE_REQUIRED=Y and ENCRYPTION_REQUIRED=Y together at the
domain-wide level, machine level, group level, or service level. See “Enforcing the Encryption
Policy for Incoming Messages’ on page 2-58 for a description of ENCRYPTION_REQUIRED.

Qualifier

The enforcement policy for sTeNATURE_REQUIRED applies only to application services,
application events, and application engueue requests. It does not apply to system-generated
service invocations and system event postings.

Using Security in ATMI Applications 2-55

2-56

Example
To configure STGNATURE_REQUIRED for a machine named mach1, follow these steps.

1. Ensurethat you are working on the ATMI application masTER machine and that the ATMI
application isinactive.

2. Open usBconFIG With atext editor and add the following linesto the MacHINES section:

*MACHINES

machl LMID="machine_logical_name"
TUXCONFIG="absolute path name to_tuxconfig file"
TUXDIR="absolute_path_name_to_BEA_Tuxedo_directory"
APPDIR="absolute_path_name_to_application_directory"
SIGNATURE_REQUIRED=Y

3. Load the configuration by running tmloadcf (1). The tmloadcf command parses
UBBCONFIG and loadsthe binary Tuxconrig fileto thelocation referenced by the TuxconrIc
variable.

In the preceding example, when tmboot (1) startsthe ATMI application, it passes the
SIGNATURE_REQUIRED=Y parameter to the machine named machi. At that point, al application
services advertised by machi, including those advertised by gateway processes, are allowed to
accept only messages that include valid digital signatures. If aprocess controlled by mach1
receives a message that does not include avalid digital signature, the system takes the following
actions:

e Generatesauserlog (3c) message (Severity WARN)

e Discardsthe buffer asif it were never received by the process

Note: A NULL (empty) buffer cannot be digitally signed, meaning that the system rejects any
NULL buffer received by a process requiring digital signatures, in the manner stated in
the preceding bullet list.

How the EventBroker Signature Policy Is Enforced

When digital signatures are attached to a posted message buffer, these signatures are preserved
and forwarded along with the message buffer to subscribers for the relevant event.

If the TMUSREVT (5) System server isrunning in adomain, machine, or server group that requires
digital signatures, it rejects any incoming posting without a TPsIGN_ok composite signature
status—see “ Understanding the Composite Signature Status’ on page 3-53.

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

Administering Public Key Security

Possible subscription notification actions that the TMusrEVT server might take include invoking
aservice or enqueuing amessage. If the target service or queue requiresavalid digital signature,
but one is not attached to the posted message, the subscription notification action fails.

System events (eventsthat are posted by the system itself and processed by the TMsYSEVT Server)
may be digitally signed. The administrative policies regarding digital signature do not apply to
the TMSYSEVT (5) Server.

How the /Q Signature Policy Is Enforced

When digital signatures are attached to aqueued buffer, the signatures are preserved in the queue
and forwarded to the dequeuing process. Also, if amessage is processed by TMOFORWARD (5) tO
invoke a service, signatures are preserved.

If the TMQUEUE (5) System server isrunning in adomain, machine, or server group that requires
digital signatures, it rejects any incoming engqueue request without a TpsIGN_ox composite
signature status—see “ Understanding the Composite Signature Status’ on page 3-53. In addition,
the TMQUEUE server requires adigital signatureif such apolicy isin effect for the service name
associated with the queue space.

How the Remote Client Signature Policy Is Enforced

If the workstation handler (WSH) is running in a domain, machine, or server group that requires
digital signatures, it rejects any incoming message buffer containing application data without a
TPSIGN_OK composite signature status—see“ Understanding the Composite Signature Status” on
page 3-53.

Setting Encryption Policy

Asthe administrator, you use the following configuration parameter to set the encryption policy
for your ATMI application.

Parameter Name Description Setting
ENCRYPTION_REQUIRED in Determines whether areceiving Y (yes—encryption
UBBCONFIG process will accept only message isrequired) or N
(TA_ENCRYPTION_REQUIRED buffersthat are encrypted. (no—encryptionis
in TM_MIB) not required).
Default is.

Using Security in ATMI Applications 2-51

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html

2-58

Enforcing the Encryption Policy for Incoming Messages

ENCRYPTION_REQUIRED may be specified at any of the following four levelsin the configuration
hierarchy:

e RESOURCES Section in UBBCONFIG OF T_DOMAIN classin T™™M_MIB
e MACHINES SEction in UBBCONFIG Of T_MACHINE classin TM_MIB
e GROUPS SECtiON in UBBCONFIG OF T_GROUP Classin TM_MIB

e SERVICES SEction in UBBCONFIG OF T_SERVICE classin T™M_MIB

Setting ENCRYPTION_REQUIRED t0 v (yes) at a particular level meansthat encryption isrequired
for al processesrunning at that level or below. For example, setting ENCRYPTION_REQUIRED tO
v for amachine named mach1 means that all processes running on mach1 will accept only
incoming messages that are encrypted.

e Set at the domain-wide level (RESOURCES section or T_DoMAIN class), this parameter
covers all application services advertised within the domain, including those advertised by
gateway processes. The default isn.

e Set at the machine level (MACHINES Section or T_MACHINE class), this parameter coversal
application services advertised on a particular machine, including those advertised by
gateway processes. The default is.

e Set at the group level (Groups section or T_GRroup class), this parameter coversal
application services advertised by a particular group, including those advertised by
gateway processes. The default is.

e Set at the service level (seErvICES section T_sERVICE class), this parameter covers all
instances of a particular service advertised within the domain, including those advertised
by gateway processes. The default isn.

Y ou may specify both ENCRYPTION REQUIRED=Y and SIGNATURE REQUIRED=Y together at the
domain-wide level, machine level, group level, or service level. See “Enforcing the Signature
Policy for Incoming Messages’ on page 2-55 for a description of SIGNATURE_REQUIRED.

Qualifier

The enforcement policy for ENCRYPTTON_REQUIRED applies only to application services,
application events, and application engueue requests. It does not apply to system-generated
service invocations and system event postings.

Using Security in ATMI Applications

Administering Public Key Security

Example
To configure ENCRYPTION_REQUIRED for aserver group named stpcrp, follow these steps.

1. Ensurethat you are working on the ATMI application masTER machine and that the ATMI
application isinactive.

2. Open usBconrFIG With atext editor and add the following linesto the crours section:

*GROUPS

STDGRP LMID="machine_logical_name"
GRPNO="server_group_number"
ENCRYPTION_REQUIRED=Y

3. Load the configuration by running tmloadcf (1). The tmloadcf command parses
uBBCONFIG and loadsthe binary Tuxconric fileto thelocation referenced by the TuxconrFIc
variable.

In the preceding example, when tmboot (1) startsthe ATMI application, it passes the
ENCRYPTION_REQUIRED=Y parameter to the server group named stpGrp. At that point, all
application services advertised by stperp, including those advertised by gateway processes, are
allowed to accept only messages protected by an encryption envelope. If aprocess controlled by
STDGRP receives an unencrypted message, the system takes the following actions:

e Generatesauserlog (3c) message (severity ERROR)

e Discardsthe buffer asif it were never received by the process

Note: A NULL (empty) buffer cannot be encrypted, meaning that the system rejectsany NULL
buffer received by a process requiring encryption, in the manner stated in the preceding
bullet list.

How the EventBroker Encryption Policy Is Enforced

When a posted message buffer is encrypted, encryption envelopes are preserved and forwarded,
along with the encrypted message content, to subscribers for the relevant event.

If the TmusrREVT (5) System server isrunning in adomain, machine, or server group that requires
encryption, it rejects any incoming posting message that is not encrypted.

Possible subscription notification actions that the TMusrEvVT server might take include invoking
aservice or enqueuing amessage. If the target service or queue requires encrypted input, but the
posted message is not encrypted, the subscription notification action fails. Also, if the subscriber
does not possess an appropriate decryption key, the event notification action fails.

Using Security in ATMI Applications 2-59

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

2-60

System events (eventsthat are posted by the system itself and processed by the TMsYSEVT Server)
may be encrypted. The administrative policies regarding encryption do not apply to the
TMSYSEVT (5) SErver.

How the /Q Encryption Policy Is Enforced

When a queued message buffer is encrypted, this statusis preserved in the queue, and the buffer
isforwarded, in encrypted form, to the dequeuing process. Also, if amessage is processed by
TMQFORWARD (5) tOinvoke aservice, encryption statusis preserved.

If the TMQUEUE (5) System server isrunning in adomain, machine, or server group that requires
encryption, it rejects any incoming enqueue request that is not encrypted. In addition, the
TMQUEUE Server requires encryption if such apolicy isin effect for the service name associated
with the queue space.

How the Remote Client Encryption Policy Is Enforced

If the workstation handler (WSH) is running in adomain, machine, or server group that requires
encryption, it rejects any incoming message buffer containing an unencrypted application data
buffer.

Initializing Decryption Keys Through the Plug-ins

Asthe administrator, you use the following configuration parameters to specify principal names
and decryption keys for the system processes running in your ATMI application.

Parameter Name Description Setting
SEC_PRINCIPAL_NAME in The name of the target principal, 1-511 characters.
UBBCONFIG which becomes the identity of one
(TA_SEC_PRINCIPAL_NAME in Or more System processes.

TM_MIB)

Using Security in ATMI Applications

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html

Administering Public Key Security

Parameter Name Description Setting
SEC_PRINCIPAL_LOCATION N The location of thefile or device 0-1023 characters. If
UBBCONFIG where the decryption (private) key not specified,
(TA_SEC_PRINCIPAL_LOCATION for thetarget principa resides. defaultsto aNULL
inTM_MIB) (zero length) string.
SEC_PRINCIPAL_PASSVARIN Thevariableinwhichthepassword 0-31 characters. If
UBBCONFIG for the target principal is stored. not specified,
(SEC_PRINCIPAL_PASSVARIN defaultsto aNULL
TM_MIB) (zero length) string.

Thistrio of configuration parameters can be specified at any of the following four levelsin the
configuration hierarchy:

e RESOURCES Section in UBBCONFIG OF T_DOMAIN classin T™™M_MIB
e MACHINES SEction in UBBCONFIG Of T_MACHINE classin T™M_MIB
e GROUPS Section in UBBCONFIG Or T_GROUP classin TM_MIB

e SERVERS SECtion in UBBCONFIG OF T_SERVER classin TM_MIB

A principal name and decryption key at a particular configuration level can be overridden at a
lower level. For example, suppose you configure a principal name and decryption key for
machine mach1, and a principal name and decryption key for a server called serv1 running on
mach1. The processes on machi behave as follows:

e All processes on machl except servl processes use the decryption key assigned to mach1
to decrypt any received message buffer that is encrypted.

e All servi processes use the decryption key assigned to serv1 to decrypt any received
message buffer that is encrypted.

Configured decryption keys are automatically opened when an ATMI application is booted.
Figure 2-14 demonstrates how the process works.

Using Security in ATMI Applications 2-61

Figure 2-14 How a Decryption Key Is Initialized Example

Myubbconfig

*RESOURCES

SEC_PRINCIPAL_NAME “Tommy”
SEC_PRINCIPAL_LOCATION “/home/...”
SEC_PRINCIPAL_PASSVAR “TOMMY_VAR”

tmloadcf -y myubbconfig (User Input)
Enter password for Tommy: (System Response)
password (User Input)
Re-enter password for Tommy: (System Response)
password (User Input)
Mytuxconfig l
|
tmboot ()
'

Oracle Tuxedo Library

ATMI Security

Public Key Security Plug-in Interface

1

Proof Material Mapping Public Key Initialization

map_proof PKi_init

L l

tpkey_open (key_handle, “Tommy”, “/home/...”,
“password’, password_len, TPKEY_DECRYPT) ;

l

Decryption Key Handle for Tommy

2-62 Using Security in ATMI Applications

Administering Public Key Security

Thefollowing is a detailed description of how the operation shown in the preceding figureis
performed.

1. Theadministrator defines SEc_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR at aparticular level inthe ATMI application’ s uBecoNFIG file.

2. The administrator loads the configuration by running tmloadcf (1). The tmloadcf
command parses uBBCcoNFIG and loads the binary Tuxconr1c fileto the location referenced
by the TuxconrF1c variable.

3. When prompted, the administrator enters and then re-enters the password for the target
principal.

4. The administrator enters the tmboot (1) command to boot the ATMI application.

5. During the boot process, the map_proof plug-in reads SEC_PRINCIPAL_NAME,
SEC_PRINCIPAL_LOCATION, and SEC_PRINCIPAL_PASSVAR, anayzestheir values, and then
determines whether the calling process has proven itsright to access the requested decryption
key. (Having access to a decryption key, or private key, is equivalent to possessing the
principal’sidentity.)

6. If the password associated with sECc_PRINCIPAL_PASSVAR matches the assigned password
for theprincipal specifiedin SEc_PRINCIPAL_NAME, themap_proof plug-in passesthe name,
location, and password of the principal to the pxi_init plug-in.

7. Theprki_init plug-in calls tpkey_open (3c) with the name, location, and password of the
principal as arguments. It returns a decryption key handle for the principal.

Each time you invoke tmloadcf to load the configuration, you are prompted to enter the
password for each of the decryption keys configured with sec_pPrRINCIPAL_PASSVAR. If you
want to avoid having to enter each password manually, you can write a script that automatically
entersthe passwords. The script must include a definition of each password variable, and it must
end with the following line:

tmloadcf -y ubbconfig name < /dev/null

No application process has permission to close adecryption key opened during ATMI application
booting. The decryption keysstay open until you runthe tmshutdown (1) command to shut down
the ATMI application.

Example UBBCONFIG Entries for Principal Names and Decryption Keys
*RESOURCES

SEC_PRINCIPAL_NAME "Tommy "

SEC_PRINCIPAL_LOCATION "/home/jhn/secsapp/cert/tommy.pvk"

Using Security in ATMI Applications 2-63

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

2-64

SEC_PRINCIPAL_PASSVAR "TOMMY_VAR"

*SERVERS

"TMQUEUE" SRVGRP="QUEGROUP" SRVID=1
CLOPT="-s secsdb:TMQUEUE"
SEC_PRINCIPAL_NAME= "TOUPPER"

SEC_PRINCIPAL_LOCATION="/home/jhn/secsapp/cert/TOUPPER.pvk"
SEC_PRINCIPAL_PASSVAR= "TOUPPER_VAR"

Failure Reporting and Auditing

Thistopic explains how the system manages errors found through digital signatures and message
encryption.

Digital Signature Error Handling

If message tampering is detected (that is, if the composite signature statusis either
TPSIGN_TAMPERED_MESSAGE Of TPSIGN_TAMPERED_CERT—See" Understanding the Composite
Signature Status’ on page 3-53), the system takes the following actions:

e Generatesauserlog (3c) message (severity ERROR)

e Discardsthe buffer asif it were never received by the process

If any individual signature associated with an expired certificate, revoked certificate, expired
signature, or postdated signature is detected, the system takes the following actions:

e Generatesauserlog () Message (severity WARN)

e Discardsthe buffer asif it were never received by the process unless the buffer’s
composite signature status is TPSIGN_OK OF TPSIGN_UNKNOWN

If aprocessthat requiresavalid digital signature (based on the STGNATURE_REQUIRED=Y Setting)
receives a message with the composite signature status TPSIGN_UNKNOWN, the system takes the
following actions:

e Generatesauserlog () Message (severity WARN)

e Discardsthe buffer asif it were never received by the process

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html

Administering Default Authentication and Authorization

Encryption Error Handling

If aprocessreceivesan encrypted message but does not possess an open decryption key matching
one of the message' s encryption envelopes, the system takes the following actions:

e Generatesauserlog (3c) message (severity ERROR)

e Discardsthe buffer asif it were never received by the process

If a process that requires encrypted input (based on the ENCRYPTION_REQUIRED=Y Setting)
receives an unencrypted message, the system takes the following actions:

e Generatesauserlog () Message (severity ERROR)

e Discardsthe buffer asif it were never received by the process

See Also
e “Public Key Security” on page 1-33
e “Public Key Implementation” on page 1-43
e “Security Administration Tasks’ on page 2-4
e “Security Interoperability” on page 1-54
e “Security Compatibility” on page 1-59

Administering Default Authentication and Authorization

Default authentication and authorization work in the same manner that authentication and
authorization have worked since they were first made avail able with the Oracle Tuxedo system.

Default authentication provides three levels of security: no authentication (NoNE), application
password (app_pw), and user-level authentication (user_auTh). Default authorization provides
two levels of security: optional access control list (acz) and mandatory access control list
(manpaToRY_AcL). Only when users are authenticated to join an ATMI application does the
access control list become active.

Designating a Security Level

Asthe administrator, you can use one of three ways to designate a security level for an ATMI
application: by editing the useconr1c configuration file, by changing the TM_m1B, or by using
the Oracle Administration Console.

Using Security in ATMI Applications 2-65

{DOCROOT}/rf3c/rf3c.html

2-66

Establishing Security by Editing the Configuration File
In your uBcoNFIG file, set the securRITY parameter to the appropriate value:

SECURITY {NONE | APP_PW | USER_AUTH | ACL | MANDATORY_ACL}

The default isNONE. If SECURITY IS Set to USER_AUTH, ACL, OF MANDATORY_ACL, then a
system-supplied authentication server named AuTHSVR isinvoked to perform per-user
authentication.

If you select any val ue other than noNE, make sure that the value of the apppIR variableisunique
for each ATMI application running on themasTer site. Multiple ATMI applications cannot share
the same application directory if security features are being used.

Establishing Security by Changing the TM_MIB

To designate a security level through the Tv_wm1B, you must assign avalueto the Ta_SECURITY
attributeinthe T_poma1n class. When an ATMI application isinactive, theadministrator can SET
thevalue of Ta_seEcUrRITY to any of the valuesthat are valid in uBecoNrF1G. To complete this
task, run the administrative interface tpadmcall (3c).

Establishing Security by Using the Oracle Administration Console

Y ou can also designate a security level through the Oracle Administration Console. The Oracle
Administration Console is a Web-based tool used to configure, monitor, and dynamically
reconfigure an ATMI application.

Configuring the Authentication Server

The Oracle Tuxedo server called auTHSVR provides asingle service, autasvce, which performs
authentication. autasvc is advertised by the auTusvr server as . . auTasvc when the security
level is set to ACL Or MANDATORY_ACL.

To add autusvc to an ATMI application, you need to define auTHsve as the authentication
service and AuTHSVR as the authentication server in the useconr1c file. For example:

*RESOURCES
SECURITY USER_AUTH
AUTHSVC AUTHSVC

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html

Administering Default Authentication and Authorization

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2 CLOPT="-A"

If you omit the parameter-value entry autsvc AUTHSVC, the system calls autasvc by default.

As another example:

*RESOURCES

SECURITY ACL
AUTHSVC . .AUTHSVC
*SERVERS

AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2 CLOPT="-A"

If you omit the parameter-value entry aAuTHsvC . .AUTHSVC, the system calls . . auTHSsvC by
default.

AUTHSVR may be replaced with an authentication server that implements logic specific to the
ATMI application. For example, acompany may want to devel op a custom authentication server
so that it can use the popular Kerberos mechanism for authentication.

To add a custom authentication service to an ATMI application, you need to define your
authentication service and server in the useconr1c file. For example:

*RESOURCES

SECURITY USER_AUTH
AUTHSVC KERBEROS
*SERVERS

KERBEROSSVR SRVGRP="group name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"
Notes:

e To usethe WebL ogic Server as your security database to authenticate Tuxedo
users, you must implement single point security administration using LAUTHSVR as
your authentication server. For information about r.auTHSVR and single point

Using Security in ATMI Applications 2-67

security administration with WebL ogic Server, refer to “Implementing Single Point
Security Administration” on page 4-1.

e To usethe LDAP repository as your security database to authenticate and authorize
Tuxedo users, you must implement extensible security administration using
XAUTHSVR as your authentication and authorization server. For information about
XAUTHSVR and extensible security administration, refer to xauTHsvVR (5) in File
Formats, Data Descriptions, MIBs, and System Processes Reference.

See Also

“How to Enable Application Password Security” on page 2-68
“How to Enable User-Level Authentication Security” on page 2-69
“Enabling Access Control Security” on page 2-73

“Default Authentication and Authorization” on page 1-45
“Security Administration Tasks’ on page 2-4

“Implementing Single Point Security Administration” on page 4-1

AUTHSVR (5) inthe Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

How to Enable Application Password Security

Default authentication offers an application password security level that you invoke by
specifying securRITY APP_PW inyour configuration file. Thislevel requires that every client
provide an application password as part of the process of joining the ATMI application. The
administrator defines a single password for the entire ATMI application and gives the password
only to authorized users.

2-68

To enable the app_pw security level, follow these steps.

1

Ensure that you are working on the ATMI application masTER machine and that the ATMI
application isinactive.

Set the securRITY parameter in the RESOURCES section of the uBBconF1G fileto app_pw.

Load the configuration by running tmloadcf (1). The tmloadcf command parses
UBBCONFIG and loadsthe binary Tuxconr1c fileto thelocation referenced by the Tuxconr1g
variable.

Using Security in ATMI Applications

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rfcm/rfcmd.html

How to Enable User-Level Authentication Security

4. The system prompts you for a password. The password you enter may be up to 30 characters
long. It becomes the password for the ATMI application and remainsin effect until you
changeit by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application through an
offline means such as telephone or | etter.

See Also

e “Default Authentication and Authorization” on page 1-45
e “Administering Default Authentication and Authorization” on page 2-65
e “Security Administration Tasks’ on page 2-4

How to Enable User-Level Authentication Security

Default authentication offers a user-level authentication security level that you invoke by
specifying SECURITY USER_AUTH in your configuration file. This security level requiresthat in
addition to the application password, each client must provide avalid username and user-specific
data, such as a password, to join the ATMI application. The per-user password must match the
password associated with the combination user-client name stored in afile named tpusr. The
checking of per-user password against the password and user-client namein tpusr iscarried out
by the authentication service autasvc, which is provided by the authentication server AuTHSVR.

To enable the user_auTa security level, follow these steps.
1. Set up the uBeconric file.

2. Set up the user and group files.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File

1. Ensurethat you are working on the ATMI application MasTER machine and that the ATMI
application isinactive.

2. Open uBBCONFIG With atext editor and add the following lines to the REsources and
SERVERS Sections:

*RESOURCES
SECURITY USER_AUTH
AUTHSVC AUTHSVC

Using Security in ATMI Applications 2-69

2-10

*SERVERS

AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" CaUSes tmboot (1) to pass only the default command-line options (invoked
by "-a") to auTHSVR When tmboot startsthe ATMI application. By default, AuTHSVR uses
the client user information in afile named tpusr to authenticate clients that want to join
the ATMI application. tpusr residesin the directory referenced by the first pathname
defined in the ATMI application’s apppIR variable.

3. Load the configuration by running tmloadcf (1). The tmloadcf command parses
UBBCONFIG and loadsthe binary Tuxconr1c fileto thelocation referenced by the Tuxconr1c
variable.

4. The system prompts you for a password. The password you enter may be up to 30 characters
long. It becomes the password for the ATMI application and remains in effect until you
change it by using the passwa command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application through an
offline means such as telephone or letter.

Setting Up the User and Group Files

auTHSVR and the access control checking feature available with the default authorization system
require auser file named tpusr, which contains alist of client users allowed to join the ATMI
application. tpusr ismaintained by the application administrator using the tpusradd (1),
tpusrdel (1), and tpusrmod (1) commands. The auTHSVR server takes as input the client user
information stored in the tpusr file; it uses thisinformation to authenticate clients that want to
jointhe ATMI application.

Thefollowing display isasample entry in the tpusr file.

user name password user identifier group identifier client name
[11 [[I T I

smith: 86V7BzZAdAwWrNVS : 9: 156: TPCLTNM, *: :

auTHSVR and the access control checking feature also require a group file named tpgrp, which
contains alist of groups associated with the client users allowed to join the ATMI application;

Using Security in ATMI Applications

{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

How to Enable User-Level Authentication Security

tpgrp iSmaintained by the application administrator using the tpgrpadd (1), tpgrpdel (1),
and tpgrpmod (1) commands.

AUTHSVC assigns an authenticated client user an application key, which contains auser identifier
and associated group identifier for the UsErR_AUTH, ACL, OF MANDATORY_ACL Security level. (See
“Application Key” on page 1-49 for more information about application keys.)

The following display is asample entry in the tpgrp file.

group name group identifier
[[T |

Administrators:: 156:

Asthe administrator, you must definelists of usersand groupsinthe tpusr and tpgrp files, both
of which are located in the directory referenced by the first path name defined in the ATMI
application’sarppir variable. Thefilesare colon-delimited, flat text files, readable and writable
only by the application’s administrator.

Converting System Security Data Files to Oracle Tuxedo User and Group Files

Y ou may already have files containing lists of usersand groups on your host system. Y ou can use
them asthe user and group filesfor your ATMI application, but only after converting them to the
format required by the Oracle Tuxedo system. To convert your files, run the tpaclcvt (1)
command, as shown in the following sample procedure. The sample procedure is written for a
UNIX host machine.

1. Ensurethat you are working on the ATMI application masTeER machine and that the ATMI
application isinactive.

2. To convert the /etc/password fileinto the format needed by the Oracle Tuxedo system,
enter the following command.
tpaclcvt -u /etc/password

This command creates the tpusr file and stores the converted datainit. If the tpusr file
already exists, tpaclcvt addsthe converted datato the file, but it does not add duplicate
user information to the file.

Note: For systems on which a shadow password file is used, you are prompted to enter a
password for each user in thefile.

3. Toconvert the /etc/group fileinto the format needed by the Oracle Tuxedo system, enter
the following command.

tpaclcvt -g /etc/group

Using Security in ATMI Applications 2-1

{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

2-12

This command creates the tpgrp file and stores the converted datain it. If the tpgrp file
aready exists, tpaclcvt addsthe converted datato the file, but it does not add duplicate
group information to thefile.

Adding, Modifying, or Deleting Users and Groups

The Oracle Tuxedo system requires that you maintain alist of your application usersin afile
named tpusr, and alist of groups, in afile named tpgrp. There are two methods of modifying
the entries in these files: by issuing commands or by changing the values of the appropriate
attributesin the ac1,_m1B.

Changing Entries for Users and Groups Through Commands

Y ou can add, modify, or delete entriesin the tpusr and tpgrp files at any time by running one
of the following commands.

Run... To... An Entry in This File
tpusradd (1) Add tpusr

tpusrmod (1) Modify

tpusrdel (1) Delete

tpgrpadd (1) Add tpgrp

tpgrpmod (1) Modify

tpgrpdel (1) Delete

To run any of these commands, follow these steps.

1. For aninactive ATMI application, make sure you are working from the application MASTER
machine. For an active ATMI application, you may work from any machine in the
configuration.

2. For specific instructions on running a command, see the entry for that command in Oracle
Tuxedo Command Reference.

Changing Entries for Users and Groups Through the ACL_MIB

If you prefer not to use the command-line interface, you can add, modify, or delete user entries
in tpusr by changing the appropriate attribute valuesin the T_acr.prINCIPAL classin the

Using Security in ATMI Applications

{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

Enabling Access Control Security

ACL_MIB(5). This method is more efficient than the command-line interface if you want to add
several user entries simultaneously, since tpusradd (1) alowsyou to add only one user at a
time.

Similarly, you can add, modify, or delete group entriesin tpgrp by changing the appropriate
attribute valuesin the T_acrcroup classintheacr_m1B (5). Thismethod is more efficient than
the command-line interface if you want to add several group entries simultaneously, since
tpgrpadd (1) alowsyou to add only one group at atime.

Of course, the easiest way to access the m1B is via the Oracle Administration Console.

See Also

e “Default Authentication and Authorization” on page 1-45
e “Administering Default Authentication and Authorization” on page 2-65
e “Security Administration Tasks’ on page 2-4

Enabling Access Control Security

Default authorization consists of an access control checking feature that determines which users
can execute aservice, post an event, or enqueue (or dequeue) a message on an application queue.
There are two levels of access control security: optional access control list (acr.) and mandatory
access control list (manpaTORY_AcL). Only when users are authenticated to join an ATMI
application does the access control list become active.

By using an access control list, an administrator can organize usersinto groups and associate the
groups with objects that the member users have permission to access. Access control is done at
the group level for the following reasons:

e System administration is simplified. It is easier to give a group of people accessto anew
servicethan it isto giveindividual users access to the service.

e Performance isimproved. Because access permission needs to be checked for each
invocation of an entity, permission should be resolved quickly. Because there are fewer
groups than users, it is quicker to search through alist of privileged groups than it isto
search through alist of privileged users.

The access control checking feature is based on three files that are created and maintained by the
application administrator:

e tpusr containsalist of users

Using Security in ATMI Applications 2-13

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

2-14

e tpgrp containsalist of groups

e tpacl containsalist of mappings of groups to application entities (such as services)
known as the access control list (ACL)

By parsing the client’s application key, which contains information identifying the client as a
valid user and valid group member, an entity (such as a service, event, or application queue) can
identify the group to which the user belongs; by checking the tpac1 file, an entity can determine
whether the client’ s group has access permission.

The application administrator, application operator, and processes or service requests running
with the privileges of the application administrator/operator are not subject to ACL permission
checking.

If user-level ACL entries are needed, they may beimplemented by creating agroup for each user,
and then mapping the group to the appropriate application entitiesin the tpacl file.

How to Enable Optional ACL Security

Default authentication offers an optional ACL (acL) security level that you invoke by specifying
SECURITY ACL inyour configuration file. Thissecurity level requiresthat each client provide an
application password, a username, and user-specific data, such as a password, to join the ATMI
application. If thereisno entry in the tpaci file associated with the target application entity, the
user is permitted to access the entity.

Thissecurity level enablesan administrator to configure accessfor only those resources that need
more security. That is, thereis no need to add entries to the tpac1 file for services, events, or
application queues that are open to everyone. Of course, if thereisan entry in the tpacl file
associated with thetarget application entity and auser attemptsto accessthat entity, the user must
be amember of agroup that is allowed to access that entity; otherwise, permission is denied.

To enable the acL security level, follow these steps.
1. Set uptheursconric file.

2. Setupthe ACL file.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File

1. Ensurethat you are working on the ATMI application MasTER machine and that the ATMI
application isinactive.

Using Security in ATMI Applications

Enabling Access Control Security

2. Open uBBcoNFIG With atext editor and add the following lines to the REsourcEs and
SERVERS Sections:

*RESOURCES

SECURITY ACL
AUTHSVC . .AUTHSVC
*SERVERS

AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" CaUSes tmboot (1) to pass only the default command-line options (invoked
by "-a") to auTHSVR When tmboot startsthe ATMI application. By default, AuTHSVR uses
the client user information in afile named tpusr to authenticate clients that want to join
the ATMI application. tpusr residesin the directory referenced by the first pathname
defined in the ATMI application’s apppIR variable.

3. Load the configuration by running tmloadcf (1). The tmloadcf command parses
UBBCONFIG and loadsthe binary Tuxconr1c fileto thelocation referenced by the Tuxconr1c
variable.

4. The system prompts you for a password. The password you enter may be up to 30 characters
long. It becomes the password for the ATMI application and remains in effect until you
change it by using the passwa command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application through an
offline means such as telephone or letter.

Setting Up the ACL File

The access control checking feature requires auser file named tpusr, agroup file named tpgrp,
and an ACL filenamed tpac1. The ACL file contains mappings of groupsto application entities.
An entity may be a service, event, or application queue.

Thefollowing display isasample entry in the tpac1 file.

entity name entity type group identifiers
[[T [|

TOLOWER : SERVICE: 156,281,282,305:

Asthe administrator, you must define the entriesin the tpac1 file, which islocated in the
directory referenced by the first pathname defined in the ATMI application’s appD1R Variable.

Using Security in ATMI Applications 2-15

{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

2-16

Thefileis acolon-delimited, flat text file, readable and writable only by the application’s
administrator.

There are two methods of modifying the ACL entriesin the tpac1 file: by issuing commands or
by changing the values of the appropriate attributesin the ac._m1B.

Changing ACL Entries Through Commands

Y ou can add, modify, or delete ACL entriesin the tpac1 file at any time by running one of the
following commands.

Run... To...
tpacladd (1) Add an entry
tpaclmod (1) Modify an entry
tpacldel (1) Delete an entry

To run any of these commands, follow these steps.

1. For aninactive ATMI application, make sure you are working from the application MASTER
machine. For an active ATMI application, you may work from any machinein the
configuration.

2. For specific instructions on running a command, see the entry for that command in Oracle
Tuxedo Command Reference.

Changing ACL Entries Through the ACL_MIB

If you prefer not to use the command-line interface, you can add, modify, or delete ACL entries
in tpacl by changing the appropriate attribute valuesinthe T_acr.peruM classintheacr._mIB (5).
This method is more efficient than the command-line interface if you want to add several ACL
entries simultaneously, since tpacladd (1) alowsyou to add only one ACL entry at atime.

Of course, the easiest way to access the m1s is via the Oracle Administration Console.

How to Enable Mandatory ACL Security

Default authentication offers a mandatory ACL security level that you invoke by specifying
SECURITY MANDATORY_ ACL inyour configuration file. This security level requires that each
client provide an application password, a username, and user-specific data, such as a password,

Using Security in ATMI Applications

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

Enabling Access Control Security

tojoin the ATMI application. If thereis no entry in the tpac1 file associated with the target
application entity, the client is not permitted to access the entity. In other words, an entry must
exist in the tpac1 file for every application entity that a client needs to access. For this reason,
thislevel is called mandatory.

Of course, if thereisan entry in the tpaci file associated with the target application entity and a
user attemptsto accessthat entity, the user must be amember of agroup that is allowed to access
that entity; otherwise, permissionis denied.

To enable the ManDATORY_AcT security level, follow these steps.
1. Set up the uBrconric file.

2. Setupthe ACL file.
Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File

1. Ensurethat you are working on the ATMI application masTER machine and that the ATMI
application isinactive.

2. Open usBconFIG With atext editor and add the following lines to the REsourcEs and
SERVERS Sections:

*RESOURCES

SECURITY MANDATORY_ACL
AUTHSVC . .AUTHSVC
*SERVERS

AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" CaAUSeES tmboot (1) to passonly the default command-line options (invoked
by "-ar) to auTHSVR When tmboot starts the ATMI application. By default, AuTHSVR USes
the client user information in afile named tpusr to authenticate clients that want to join
the ATMI application. tpusr residesin the directory referenced by the first pathname
defined in the ATMI application’s appDIR variable.

3. Load the configuration by running tmloadcf (1). The tmloadcf command parses
UBBCONFIG and loadsthe binary Tuxconr1g fileto thelocation referenced by the TuxconrFIc
variable.

Using Security in ATMI Applications 2-11

{DOCROOT}/rfcm/rfcmd.html
{DOCROOT}/rfcm/rfcmd.html

2-18

4. The system prompts you for a password. The password you enter may be up to 30 characters
long. It becomes the password for the ATMI application and remainsin effect until you
changeit by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application through an
offline means such as telephone or | etter.

Setting Up the ACL File
See " Setting Up the ACL File” on page 2-75.

See Also

e “Default Authentication and Authorization” on page 1-45
e “Administering Default Authentication and Authorization” on page 2-65
e “Security Administration Tasks’ on page 2-4

How to Enable Generic LDAP Based Security
Generic LDAP based security includes the user-level authentication and access control security.

With this security mechanism, authentication and authorization are performed by invoking
TUXEDO "..ATNSvC" and "..aTzsvc" administrative services. It providesflexibility for Oracle
Tuxedo user to store their security information in independent repository and access these
security information fromthe " . .aTnsvc" and . . aATzsvc" services. Oracle Tuxedo suppliesa
default implementation of xauTHSVR server which advertises these two administrative services.
With thisimplementation, the security information, including Tuxedo user ID, password, and
service access privilege, are stored in LDAP repositories.

Each client must provide a valid user name and user-specific password, to join the ATMI
application. The user password must match the password stored in LDAP repositories. Each
client must be granted with proper privilege before it can access Tuxedo services successfully.

To enable the LDAP based security with default xauTHsvr implementation, follow these steps.
Setting Up the UBBCONFIG File

Setting Up the XAUTHSVR Server Configuration File

Setting Up the LDAP Repository

E A

Setting Up the Authorization Cache

Using Security in ATMI Applications

Enabling Access Control Security

Instructions for these steps are provided in the following topics.

Setting Up the UBBCONFIG File

1. Open uBBCONFIG With atext editor.

2. IntherEsourcEes section, do the following:
a. Setthe securIiTY parameter to one of these values. USER_AUTH, ACL OF MANDATORY_ACL.
b. SettheoprIONS parameter to EXT_aa.

c. Do one of the following:

* |If the SECURITY parameter is set to ACI, Or MANDATORY_ACLAUTHSVC, Set AUTHSVC t0
. .AaUTHSVC, Which isthe service name advertised by the xauTHsVR server.

* If the sECURITY parameter is set to USER_AUTH, Set AUTHSVC t0 AUTHSVC, Which is
the service name advertised by the xauTHsVR server.

3. Set up xauTHSVR inthe sERVERS section.
The following is an example of configuration in UBBCONFIG:

* RESOURCES

SECURITY ACL

AUTHSVC . .AUTHSVC
OPTIONS EXT_AA
*SERVERS

XAUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y

Setting Up the XAUTHSVR Server Configuration File

XAUTHSVR server configuration fileis used for xautusvr to locate the LDAP repository. By
default, the configuration file named tpldap.xauth residesin $TUXDIR/udataobj directory.
Y ou can specify a customized location with "-f* option to XAUTHSVR Server. XAUTHSVR Server
allows you to store your authentication and authorization information in separate LDAP
repositories. Y ou can specify an ATN configuration file with "-n" option and "-z" option
respectively. All these configuration files share the same format.

Table 2-3 defines the xauTnsvR configuration file keywords.

Using Security in ATMI Applications 2-19

Table 2-3 XAUTHSVR Configuration File Keywords

Keyword Value Type Usage

FILE_VERSION numeric The configuration file version. The default is 1.
This should remainsin 1.

LDAP_VERSION numeric The LDAP protocol version. Valid values are 2
and 3. The default is 3.

BINDDN string The DN used to bind to an LDAP server. Usually
the DN represents a LDAP administrator. The
defaultis"cn=Admin".

The tpldapconf command can be used to
create BINDDN.

BASE string LDAP search base. The default is™”
ou=people, ou=aa, dc=mydomain", where
mydomain istheroot node of the authentication
or authorization security repository.

PASSWORD string The password for bind DN. Thisisarequired
keyword and the password is encrypted in clear
text.

The tpldapconf command can be used to
create the encrypted password.

LDAP_ADDR string A comma-separated list of LDAP address
containing hostnames and ports. The syntax is
[//]lhostname| :port]. The default value
for port is 7001. If LDAP_ADDR is not specified,
XAUTHSVR regards localhost: 7001 asthe
location to contact the LDAP server.

UID_KW string The keyword used in user unique identification
search in the authentication security repository.
The default valueis"uid".

2-80 Using Security in ATMI Applications

Enabling Access Control Security

Tahle 2-3 XAUTHSVR Configuration File Keywords

Keyword Value Type Usage

PWD_KW string The keyword used in user password search in the
authentication security repository. The default
valueis"userpassword".

MEMBEROF_KW string The keyword used in group membership search.
The default valueis "memberof".

Different LDAP servers use different key name
to identify the user's group membership. When
using OV D with virtual member plugin enabled,
the keyword is "memberof".

Setting Up the LDAP Repository

The security information in the LDAP repository follows below schema.

e inetOrgPerson: Thisobject class holds the entries that represent people. The definition
follows RFC 4519 & 2798 standard except that the attribute "uid" length islimited to up
to 30 characters. Each Oracle Tuxedo user is saved as an entry in this class. The
information including user identification and user password is used for user-level
authentication.

e groupOfUniqueNames: This object classes holds the entries that represents a set of named
objects including the information relevant to purpose or maintenance of the set. The
definition follows RFC 4519 standard. This class groups a list of users that can be granted
with certain sort of permissions. Groups can be nested. The permission granted to a parent
group also appliesto its child groups.

e Orcljaznpermission: Thisobject class holds the tuxedo permission object consisting of
the attributes shown in Table 2-4. This object consists of two parts. One is the permission,
which describes the resource types, target resource, and actions on the target resource. The
other is the assigned groups or users, which are granted with this permission.

Table 2-4 definesthe orcljaznpermission class attributes.

Using Security in ATMI Applications 2-81

2-82

Table 2-4 orcljaznpermission Class Attributes

Attribute Type Constraints Description

Cn String: Single-valued, Permission name
unique, required

Displayname String: String: Display name
Description String: String: Description
OrcldpsResourc String: Single valued Type name of the resource to
eTypeName be protected. To define a

Tuxedo service, this attribute
should be specified to

"SERVICE".
Orcljaznpermis String: Single valued Name of the resource to be
siontarget protected. To defineaTuxedo

service, this attribute should
be specified as the service

name.
Orcljaznpermis String: Single valued List of the assigned actions,
sionactions separated by comma

To define a Tuxedo service,
this attribute should be
specified to "EXECUTE".

Setting Up the Authorization Cache

In order to improve ATZ performance, the new ATZ mechanism introduces aroll-up cache, in
which privileges of specific user identifiers are stored, to every Tuxedo server. To meet various
ATZ requirements, the cache is configurable and flexible at each Tuxedo server level.

Three environment variables control the basic behaviors of the cache. After defining an ENvFILE
parameter for a specific server entry in TuxconrF1g, these environment variables can be defined
for each Tuxedo server entry in the SERVERS Section in UBBCONFIG.

TMATZPRIVILEGEMAX
It specifies the maximum number of privileges entries. When the privileges number inthe
cachereachesthisthreshold, the new entry replaces an old one. Remaining time-to-live of
privilegesis evauated for Tuxedo to choose the ™ most useless" entry inthe ATZ cache.

Using Security in ATMI Applications

Enabling Access Control Security

If this environment variableis set to 0, ATZ cachein Tuxedo server is disabled and all
ATZ requests are dispatched to ATZ service. If this environment variable is not defined
explicitly, the default valueis 100. The valid value range is from 0 to 32767. The size of
one privilege entry in the ATZ cache is 50 bytes or so.

TMATZRESOURCEMAX
It specifies the maximum number of resource entries which can be allocated for a specific
Tuxedo Server. When the resource number in the cache reaches this threshold, both the
resource and new privilege are not added into the cache and the subseguent access
requests to the resource are routed to the ATZ server until an available resource slot is
found. Tuxedo keeps a reference number to each resource entry occupied by the cached
privileges. When no privilege occupies the specific resource entry, it will be cleared from
the cache.
If thisenvironment variableisnot defined explicitly, thevalueis set to the current number
of advertised services. Meanwhile, the value of TMATZPRIVILEGEMAX Must be set bigger
than or equal to the value of TMATZRESOURCEMAX, Otherwise TMATZ PRIVILEGEMAX Will
be set to the equal value of TMATZRESOURCEMAX.
Thevalid valuerangeisfrom 0 to 32767. The size of oneresource entry inthe ATZ cache
is 148 bytes or so.
If thisenvironment variableis set to 0, the ATZ cachein Tuxedo server isdisabled and all
ATZ requests are dispatched to ATZ service.

TMATZEXP
It specifies the maximum lifetime of a specific privilegein minutes. When the lifetime of
aprivilege reaches this threshold, the privilege is removed from the cache. If this
environment variable of a Tuxedo server isset to 0, all privileges stored in the Tuxedo
server haveinfinite lifetime and never expire. If this environment variable is not defined
explicitly, the default value is 10. The valid value range is from 0 to 525600. 525600
indicates the privilege lifein cacheis 1 year.
The following sample demonstrates how to calcul ate the total memory size occupied by
an ATZ cache in a specific Tuxedo server.
Suppose there is a server accessing 10 /Q message queues, which correspond to 10
resource entries, and there are 100 potential usersinvoking services of this server, so we
assume TMATZRESOURCE vValueis 10 and MAX TMATZPRIVILEGEMAX Valueis 1000.
According to the occupied memory sizeformula: [Max resource entry] * [Resource entry
size] + [Max privilege entry]*[privilege entry size]
the result of above caseis:

(10* 148 + 1000*50)= 51480 (51 KB)

Using Security in ATMI Applications 2-83

See Also

e “Default Authentication and Authorization” on page 1-45

e “Administering Default Authentication and Authorization” on page 2-65

Using the Kerberos Authentication Plug-in

Kerberosisanetwork authentication protocol. It is designed to provide strong authentication for
client/server applications by using secret-key cryptography. The Kerberos authentication
protocol provides a mechanism for mutual authentication between a client and a server, or
between one server and another, before opening a network connection between them. The
protocol assumes that initial transactions between clients and servers take place on an open
network where most computers are not physically secure. It also assumes that packets traveling
along the network can be monitored and modified at will.

After using Kerberos to prove the identity of a client and server, their communications can be
encrypted to ensure privacy and dataintegrity. Refer to the See Also section for moreinformation
about Kerberos.

The following sections describe the K erberos authentication plug-in feature included in Tuxedo:
e Kerberos Plug-In
e Kerberos Plug-In Pre-configuration

e Kerberos Plug-In Configuration

Kerberos Plug-In

2-84

Tuxedo provides ageneral security framework that can be customized. Thisframework isfurther
enhanced with the inclusion of a Kerberos plug-in.

Kerberos Supported Platforms

Currently the Kerberos plug-in supports the following platforms:
o Microsoft Kerberos bundled with Windows 2000/2003 server
e KerberosV systems on HP-UX (PA-RISC) provided by HP
e KerberosV systems on Solaris 9 (SPARC) provided by Sun Microsystems

Using Security in ATMI Applications

Kerberos Plug-In Pre-configuration

Kerberos Plug-in Features

The Kerberos Plug-inis adynamic library that must be registered into the Tuxedo system, and a
Kerberos authentication server (kauTHSVR (5)). The Tuxedo implementation of the Kerberos
plug-in supports the following:

e Authentication between Tuxedo native client and server

e Full support of Tuxedo ACL security mechanism

Note: Authentication between the security protocols of Tuxedo workstation client and
workstation handler, authentication between two domain gateways and CORBA
components are not supported.

Kerberos Plug-In Pre-configuration

To use Kerberos authentication, you must make sure the following system requirements are set
up properly:

e Supported systems run well with the correct Kerberos settings
e User/service accounts are set correctly
e The Kerberos authentication server key tableis created correctly on UNIX

o Kerberosinteroperability between UNIX and Windowsiis set correctly and verified if a
heterogeneous (UNIX/Windows mixed) environment is needed.

Kerberos Plug-In Configuration

This section provides configuration information to get the Kerberos plug-in set up and running.
1. Configure the Kerberos Plug-in
2. Configure KAUTHSVR

3. Configure Tuxedo Native Client

Each of these steps are explained in more detail in the subsections that follow.

Configure the Kerberos Plug-in

Y ou must first register the Kerberos plug-in on UNIX and Windows platforms.

Using Security in ATMI Applications 2-85

{DOCROOT}/rf5/rf5.html

2-86

The Kerberos plug-in must be configured using the EPIF commands epi freg and epi fregedt.
These commands will automatically add the plug-in to the Tuxedo registry in UNIX and
Windows. For example:

Listing 2-2 UNIX Registration

epifreg -r -p krb5/atn -i engine/security/authentication -o SYSTEM -v 1.0 \
-f STUXDIR/lib/libkrb5atn.so \

-e krb5_plugin_entry \

-u KRB5_CONFIG=/etc/krb5.conf \

-u KRB5_KDC=/etc/krb5.kdc\

-u KAUTHSVRPRINC="krbauth@host.yourcomany.com"
epifregedt -s -k SYSTEM/interfaces/engine/security/authentication \

-a Selector=native/security/authentication \

-a native/security/authentication=krb5/atn

Listing 2-3 Windows Registration

epifreg -r -p krb5/atn -i engine/security/authentication -o SYSTEM -v 1.0 \
-f $TUXDIR%\bin\libkrb5atn.dll \
-e krb5_plugin_entry \
-u KAUTHSVRPRINC="krbauth/host.yourcomany.com@REALM"
epifregedt -s -k SYSTEM/interfaces/engine/security/authentication \
-a Selector=native/security/authentication \

-a native/security/authentication=krb5/atn

Notes: On aWindows platform, the plug-in xrRB5_coNFIG and KRB5_KDC parameters are not
required. These parameters are used on a UNIX platform to locate the Kerberos-related
configuration files. kauTasvrRPRINC specifies the principal name for the kauTHSVR
server and Tuxedo clients use it as the server principal name.

On UNIX platforms, the GSS format is used. Because Microsoft does not support
standard GSS name representation, the KAUTHSVRPRINC parameter must be given a
complete Kerberos realm name.

Using Security in ATMI Applications

Kerberos Plug-In Configuration

The name format isillustrated as follows:
e A UNIX Tuxedo client must use GSS format to access KAUTHSVR.

e A WindowsTuxedo client always uses the complete Kerberos realm name to
aCCeSS KAUTHSVR.

KAUTHSVRPRINC can also be set as an environment variable.

Restore Default Plug-in
The following commands restore the plug-in to its default state.

Listing 2-4 Restore Default Plug-In Settings

epifreg -r -p bea/native/atn \
-i engine/security/authentication \
-v 1.0 -f libtux.so -e _ep_dl_atnlcl
epifregedt -s -k SYSTEM/interfaces/engine/security/authentication \
-a Selector=native/security/authentication \

-a native/security/authentication=bea/native/atn

Note: InListing 2-4, 1ibtux.so isused asan example. Y ou must use the file name 1ibtux
plus your platform specific dynamic library extension.

Configure KAUTHSVR

KAUTHSVR iSaTuxedo server located in TuxpIR/bin directory and must be manually configured
in the uBBconr1c file. kauTHSVR authenticates client identity by validating the client security
token. It addresses the Tuxedo ACL mechanism when the security level is set above
"USER_AUTH" in the uBBCcONFIG file.

Thefollowing are examples of how kauTHsvR isconfigured intheuseconr1a filefor both UNIX
and Windows:

Listing 2-5 UNIX UBBCONFIG KAUTHSVR Configuration

*RESOURCES
IPCKEY 66666

Using Security in ATMI Applications 2-81

MASTER SITE1l

MODEL MP

SECURITY MANDATORY_ACL

*SERVERS

KAUTHSVR SRVGRP=SECGRP SRVID=100 GRACE=0 MAXGEN=2 CLOPT="-A -- -k

/etc/krbauth.kt -p krbauth@host.yourcomany.com"

Notes. The -k option allows you to provide the kauTasvr Kerberos key table file location.
The -p option indicates kauTHSVR principal name.

KAUTHSVR running on UNIX platforms must use the GSS format.

Listing 2-6 Windows UBBCONFIG KAUTHSVR Configuration

*RESOURCES

IPCKEY 66666
MASTER SITEl
MODEL MP
SECURITY MANDATORY_ACL
*SERVERS

KAUTHSVR SRVGRP=GROUP3 SRVID=100 GRACE=0 MAXGEN=2
SEC_PRINCIPAL_NAME="kauthsvc" SEC_PRINCIPAL_PASSVAR=test CLOPT="-A -- -p
krbauth/host.yourcomany.com@REALM"

Notes: The -p option indicates kauTHSVR principal name.

Instead of using the -k option, Windows platforms must use the following two
arguments:

2-88 Using Security in ATMI Applications

Kerberos Plug-In Configuration

e SEC_PRINCIPAL_NAME represents KAUTHSVR, it does not represent the server
principal name (which is represented by the -p option).

e SEC_PRINCIPAL_PASSVAR istheinterna password variable. It is not the true
password that is required when tmloadcf createsthe Tuxconric file. The
tmloadcf password input must be same as the kauTHSVR account password in a
Windows domain.

KAUTHSVR running on Windows platform must use the complete K erberos realm name.

Configure Tuxedo Native Client

To use the Tuxedo native client with Kerberos enabled, you must first obtain avalid ret from
the kbc using kinit or other similar commands.

No programming APIs are required. Also, if user_auTH is specified, the Tuxedo user nameis
not required in the tpusr file. However, auser nameisrequired for AcL and MANDATORY_ACL
security level.

Limitations

e Kerberos Plug-In only works on systems where the plug-in isinstalled and registered to
Tuxedo through epi £+ commands. If the Tuxedo administrator does not register the
libkrb5atn to Tuxedo, the default plug-in still works and the default Tuxedo security
mechanism takes effect. kauTasvr supports full function of auTasvr in addition to
Kerberos authentication.

e Evenif the Kerberos plug-in is configured on a system running WSH, the workstation
clients connected to this system use the Tuxedo default security mechanism. Thisis
because the protocol between workstation client and WSH is not affected using this
feature.

e Although CORBA native clients can take advantage of Kerberos support, we do not
support CORBA remote clients using Kerberos. I1SH will report an error when the
Kerberos plug-inisinstalled.

Note: Authentication between the security protocols of Tuxedo workstation client and
workstation handler, authentication between two domain gateways and CORBA
components are not supported.

See Also

® KAUTHSVR(5)

Using Security in ATMI Applications 2-89

{DOCROOT}/rf5/rf5.html

e Kerberos Introduction from MIT (tap://web.mit.edu/kerberos/wow/)

e Microsoft White Papers and Guide for Kerberos
(tap://mww.microsoft.com/windows2000/technol ogi es/security/kerberos/defaul t.asp)

e RFC 1510, Kerberos protocol (tap://www.ietf.org/raft/rfc1510.txt)
o RFC 2743, GSSAPI (tap://www.ietf.org/raft/rfc2743.txt)
e RFC 1509, GSSAPI, c-bindings.(http://www.ietf.org/raft/rfc1509.txt)

Using the Cert-C PKI Encryption Plug-in

The Cert-C based PKI (public key infrastructure) plug-in utilizes the public key encryption
algorithm to provide you with the ability to:

e sign - assign asignature to a Tuxedo typed buffer
e sedl - encrypt a Tuxedo typed buffer, and

e envelope - provide access to the user signature and encryption information associated with
the Tuxedo typed buffer

The following sections describe the Cert-C PKI encryption feature included in Tuxedo:
e Cert-C PKI Encryption Plug-In
e Cert-C PKI Encryption Plug-In Pre-configuration
e Cert-C PKI Encryption Plug-In Configuration

Cert-C PKI Encryption Plug-In

The Tuxedo Cert-C PKI encryption plug-in plug-in usesLDAP version 2 or higher asthe storage
mechanism for the publicly accessible user certificates. LDAPisacommonly used and deployed
network directory service.

Cert-C PKI Encryption Plug-In Pre-configuration

To use the Tuxedo Cert-C PKI encryption plug-in, you must make sure of the following system
requirements:

e Accessto aconfigured LDAP server

2-90 Using Security in ATMI Applications

http://web.mit.edu/kerberos/www/

Cert-C PKI Encryption Plug-In Configuration

o User certificates stored in the LDAP are entered in the following format: cn=user name

Cert-C PKI Encryption Plug-In Configuration

To use this plug-in, you must run a command script to configure Tuxedo in order to use this
plug-in as the default PKI1 plug-in.

The Tuxedo Cert-C plug-in utilizes four interface groups in the Tuxedo Security PIF and is
configured using PIF registry commands. The required interface groups are:

e Configure Certificate Lookup

e Configure Key Management

e Configure Certificate Parsing

e Configure Certificate Validation

In the Tuxedo environment, only user names are available in the plug-in at runtime. In order to
get the proper search information, it assumesthat acertificate storedintheLDAPwithacn=user
name entry is a Tuxedo user name.

Configure Certificate Lookup

Thisinterface group expects a user certificate to be located on an LDAP server and it has access
permission to read these certificates. The certificate lookup interface has four parameters that
must be configured. The parameters are described as follows:

ldapUserCertificate
LDAP server configuration parameter that identifies where the plug-in can obtain user
certificates. The network address for the LDAP host is specified in this parameter as a
string variable. It aso containsthe TCP LDAP port number. The syntax of this parameter
iSLDAP: URL. For example:

ldapUserCertificate=1dap://sagamore:389

Thisexampletellsthe Cert-C plug-in that the LDAP server islocated on amachine called
“sagamore”, and it is listening on port 389.

ldapBaseObject
LDAP server configuration parameter that identifiesthe base DN wherethe LDAP search
should start. For example:

ldapBaseObject="ou=Engineer Test,o0=ABC Company, c=US"

Using Security in ATMI Applications 2-91

Thisexampleinitiates asearch from the directory information tree "ou=Engineer Test,
o=ABC Company, c=US"

ldapFilterAttribute
LDAP server configuration parameter that identifies the search filter used in an LDAP
search when retrieving a certificate by subject name. This parameter isastring variable
and follows the same syntax as 1dapBaseDNAttribute. FOr example:

ldapFilterAttribute="cn"

This example tells the Cert-C plug-in to use "cn" as afilter.

ldapBaseDNAttribute
LDAP server configuration parameter that is used in an LDAP search to build the base
DN. This parameter is a string variable consisting of a comma-separated list of DN
attributes, such as ¢, 0. An optional blank space can follow the commas. For example:

ldapBaseDNAttribute="c, o, ou, cn"

This example tells the Cert-C plug-in to usethe "c", "o", "ou", "cn" attributes when
constructing the DN for a search.

OpenLDAP for X.509 Certificate Lookup

To enable OpenLDAP for X.509 certificate |ookup, execute the command shown in Listing 2-7
to modify Tuxedo PKI plug-in information:

Listing 2-7 OpenLDAP Command

epifreg -r -p security/BEA/certificate_lookup -i
engine/security/certificate_lookup -v 1.0 -f 'libplugin.<suffix>' -e
_ep_dl_certlookup -u
userCertificateLdap=1dap:/<ldap_host_name>:<ldap_port>/ -u
ldapBaseObject="'<your_ldap_base>' -u binaryCertificate='YES'.

Where:

e <suffix> isthe proper suffix for the shared library (for example, 1ibplugin.dil for
Windows, and 1ibplugin.so.71 for Solaris).

e ldap_host_name iSthe name of the host where the LDAP server isrunning

2-92 Using Security in ATMI Applications

Cert-C PKI Encryption Plug-In Configuration

e 1dap_port iSthe LDAP server port number (for example,
userCertificateLdap=1ldap:/cerebrum:389/).

e your_ ldap_base iSthe base of your LDAPDIT (for example,
ldapBaseObject="'ou=Accounting, o=ABC Company, c=US")

Note: You may also need to modify thebea_1ldap_filter.dat filewhichislocatedin
STUXDIR/udataobj/security.

Listing 2-8 displays afilter example.

Listing 2-8 Filter Example

"BEA_person_lookup"
nox "omo" (& (objectClass=inetOrgPerson) (cn=%v))" "username"
" (& (objectClass=inetOrgPerson) (cn=%v*))" "start of

username"

"BEA_issuer_lookup"

n *n n n

" (& (objectClass=certificationAuthority) (cn=%v) (sn=%v))" "exact match on

sn, cn"

Configure Key Management

Thelocation of the private key isthe only configuration parameter that must be specified for key
management interface.

decPassword

Optional parameter. It isastring variable that gives the Cert-C PKI encryption plug-in the
password to decrypt the private key wrapped in encrypted private key information format. For
example:

decPassword="abcl23"

The plug-in assumes the private key information file follows the "<subject_name>.epk"
naming scheme.

Using Security in ATMI Applications 2-93

2-94

Note: decPassword and privateKeyDir can be overridden by using the tpkey_open (3c)
identity_proof and location parameters.

privateKeyDir

A string variable parameter in file URL format. It indicatesthe default location of the private key.
For example:

privateKeyDir=file:///c:\home\certs\

This example tells the Cert-C PKI encryption plug-in to look for a private key in the
c:\home\certs directory. The private key can be abinary file that conformswith PKCS#8. It
must have a . pvt Or . epk extension.

If the password isgiven inthe "decpassword" path or tpkey_open (..., identity_proof,
...), thenthe . epk file will be searched first, if not found then it will try .pvt file. If the
password is not given in the "decpassword" path Or tpkey_open(..., identity_proof,

...),thenonly .pvt fileissearched.

Configure Certificate Parsing

No special configuration parameter is needed to utilize the certificate parsing interface. It is
initialized automatically.

Note: Certificates must be X.509-compatible in DER format.

Configure Certificate Validation

This interface group allows the Cert-C PKI encryption plug-in to examine a certificate and to
determineitsvalidity based on trusted certificate authorities, chains of trust, certificaterevocation
list. There are two configuration parameters associated wither certificate validation:

caCertificateFile

A string variable configuration parameter in file urz, format. It pointsto asingle certificate whose
public key istrusted by the user. The certificate can be self-signed. If the certificate chain
validates this trusted certificate the certificate is deemed a“good” certificate.For example:

Note: Thereisonly one certificate validation chain level. That is, al user certificates areissued
directly by the root ca configured in cacertificateFile.

caCertificateFile=file:///c:\home\certs\root.cer

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html

Cert-C PKI Encryption Plug-In Configuration

This example indicates that the trusted root certificate is located at directory called
c:\home\certs andisnamed root . cer.

criFile

A string variable configuration parameter in file urL format. It pointsto asingle crw that isto be
used to verify the resulting certificate path; in another word, it determines whether the certificate
in question is being revoked by itsissuer or not. For example:

crlFile=file:///c:\home\certs\revoke.crl

This exampleindicates which crr is used to determineif the certificate has not been revoked by
itsissuer.

Sample Registry Command File

The following is a sample command for modifying the Tuxedo registry database on a Windows
platform using the Cert-C PKI encryption plug-in.

Note: OnaUNIX platform, you must:

e usethefile name 1ibcertctux plusyour platform specific dynamic library
extension instead of certctux.d11 used in Windows. For example:

Solaris; 1ibcertctux.so.71
HP-UX: 1libcertctux.sl

e changethefile urr to UNIX format

Listing 2-9 Sample Command for Modifying Tuxedo Registry Database on Windows

REM LR I I I R Rk kI kR S I S IR R Rk kI kI

REM ** Modify Validation Interface **

REM RS R RS SRR RS SRR R SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S DTS
epifreg -r -p bea/cert-c/certificate_validation -i
engine/security/certificate_validation -v 1.0 -f certctux.dll -e
_ep_dl_certc_validate_certificate -u
caCertificateFile=file:///c:\home\certs\root.cer -u
crlFile=file:///c:\home\certs\revoke.crl

epifreg -s -k SYSTEM/impl/bea/valfile -a
InterceptionSeqg=bea/cert-c/certification _validation

epifregedt -s -k SYSTEM/interfaces/engine/security/certificate_validation

Using Security in ATMI Applications 2-95

2-96

-a DefaultImpl=bea/valfile

REM EE R R R I e I I I I S R R R I I R R R R I I R I R R I I S I I I I R I

REM ** Modify Lookup Interface **

REM EE R S I S I S I S S I I S I I S I I S I I

epifreg -r -p bea/cert-c/certificate_lookup -i
engine/security/certificate_lookup -v 1.0 -f certctux.dll -e
_ep_dl_certc_certificate_lookup -u ldapUserCertificate=1ldap://sagamore:389
-u ldapBaseObject="ou=Engineer Test,o0=ABC Company,c=US" -u
ldapFilterAttribute="cn" -u ldapBaseDNAttribue="c,o0,ou,cn"

epifregedt -s -k SYSTEM/interfaces/engine/security/certificate_lookup -a
DefaultImpl=bea/cert-c/certificate_lookup

REM EE R R R I I R I I R I S R I R I I R I R R R I R I R R R R I R S I I I I S I

REM ** Modify Key Management Interface **

REM EE R S I S I S I S S I I S I I S S I I kS

epifreg -r -p bea/cert-c/key_management -i engine/security/key_management
-v 1.0 -f certctux.dll -e _ep_dl_certc_key management -u

privateKeyDir=file:///c:\home\certs\

epifregedt -s -k SYSTEM/interfaces/engine/security/key_management -a
DefaultImpl=bea/cert-c/key_management

REM EE R R I I I I I S R R R I I R R R R R R I R R R R R R I R I I I I I R I

REM ** Modify Certificate Parsing Interfaces **
REM EE R S I S I S S I S I I S S S I S I I

epifreg -r -p bea/cert-c/certificate_parsing -i
engine/security/certificate_parsing -v 1.0 -f certctux.dll -e
_ep_dl_certc_certificate_parsing

epifregedt -s -k SYSTEM/interfaces/engine/security/certificate_parsing -a
DefaultImpl=bea/cert-c/certificate_parsing

Limitations

e The "cn attribute of distinguished name is used as key for certificate lookup, so the DN
must contains the "cn=" attribute.

e There are two possible placesto put anamein an X.509 v3 KC:

Using Security in ATMI Applications

Cert-C PKI Encryption Plug-In Configuration

— Oneisthe subject field in the base PKC, often called the Distinguished Name or DN
field.

— Theother isthe subjectal tName extension. This plug-in does not support
subjectAltName extension.

Note: Wildcards used in a name are not supported. Empty subject fields are not allowed.

e Thefollowing tpkey getinfo () atributes cannot retrieve ENCRYPT_ALG,
ENCRYPT_BITS, SIGNATURE_ALG, Of SIGNATURE_BITS information using the Cert-C PKI
encryption plug-in:

— TPKEY_SIGNATURE: cannot retrieve ENCRYPT_ALG, ENCRYPT_BITS

— TPKEY_ENCRYPT: cannot retrieve SIGNATURE_BITS

TPKEY_AUTOSIGN: Cannot refrieve ENCRYPT_ALG, ENCRYPT_BITS
— TPKEY_AUTOENCRYPT: Cannot retrieve SIGNATURE_BITS

Note: TPKEY DECRYPT: Can retrieve ENCRYPT ALG, ENCRYPT BITS, SIGNATURE_ALG, OF
SIGNATURE_BITS information

TPKEY_AUTOSIGN | TPKEY_DECRYPT: Can retrieve ENCRYPT_ALG, ENCRYPT_BITS,
SIGNATURE_ALG, Of SIGNATURE_BITS information

See Also

tpkey_open(3c)

Using Security in ATMI Applications 2-91

{DOCROOT}/rf3c/rf3c.html

2-98 Using Security in ATMI Applications

Programming Security

The following sections describe how to build security for your Oracle Tuxedo ATMI application
into your code.

e What Programming Security Means
e Programming an ATMI Application with Security
e Writing Security Code So Client Programs Can Join the ATMI Application

e Writing Security Code to Protect Data Integrity and Privacy

What Programming Security Means

Programming security isthetask of writing security code for A pplication-to-Transaction Monitor
Interface (ATMI) applications. In addition to the code that expresses the logic of the program,
application programmers use ATMI to link their application code with the Oracle Tuxedo
transaction monitor. The ATMI programming interfaces enable communication among
application clients and servers running under the control of the Oracle Tuxedo transaction
monitor. C and COBOL implementations of the ATMI are available.

As shown in Figure 3-1, application programmers have access to the ATMI functions for
authenticating users and controlling user access, and for incorporating public key encryption
techniques into their applications. Also shown is the absence, at the application level, of ATMI
functionsfor auditing or link-level encryption. Auditing is accessed at the Oracle Tuxedo system
level, and link-level encryption is configured by the application administrator.

Using Security in ATMI Applications 3-1

Figure 3-1 Programming Oracle Tuxedo Security

ATMI Applications

ATMI for Clients to
Join Application

}

ATMI for Public Key
Security

}

Oracle Tuxedo Library

Public Ke
Authentication Authorization Securityy

ATMI Security

SSL Link-Level
Encryption Encryption

Plug-in Interface

Default Default Default
Authentication —‘ Authorization —‘ Auditing —‘

Custom | Custom | Custom

3-2

Security Plug-ins

See Also

e “Programming an ATMI Application with Security” on page 3-3
e “What Security Means’ on page 1-2
e “What Administering Security Means’ on page 2-2

Using Security in ATMI Applications

Default
Public Key Security
Custom

Programming an ATMI Application with Security

Programming an ATMI Application with Security

The Oracle Tuxedo system offers various ATMI functions for different security needs.

If You Are Writing Security Code for . . . Then You Use the ATMI Functions Availahle
for...

Client programs so that clientscanjoin a Clientsjoining an ATMI application, which

ATMI application and access application in turn invoke system-level callsto the

services. authentication and authorization plug-ins.

Both client and server programsto protectthe Public key security, which supports

integrity and privacy of the data they end-to-end digital signing and data
exchange. encryption.
See Also

e “Setting Up the Programming Environment” on page 3-3

Setting Up the Programming Environment

To be able to write security code, an application programmer needs:
e Accessto Oracle Tuxedo libraries and commands

e Read and execute permissions on the directories and filesin the Oracle Tuxedo system
directory structure

To obtain access to the required libraries and commands, you must set the TUXCONFIG, TUXDIR,
APPDIR, and other environment variablesin your environment. For details, see*How to Set Y our
Environment” on page 1-2 in Administering an Oracle Tuxedo Application at Run Time.

The application administrator is responsible for setting the permissions on directories and files.
See your administrator to get the permissions you need.

See Also
e “Writing Security Code So Client Programs Can Join the ATMI Application” on page 3-4

e “Writing Security Code to Protect Data Integrity and Privacy” on page 3-14

Using Security in ATMI Applications 3-3

Writing Security Code So Client Programs Can Join the
ATMI Application

Client programs are responsible for gathering data from outside the application or computer,
bundling the data into messages, and forwarding the messages to servers for processing. Client
programs are made available to usersthrough devices such as automatic teller machines (ATMSs),
data entry terminals, and graphics devices.

For default authentication and authori zation, application security may be set to one of fivelevels.
At the lowest level, no authentication is performed. At the highest level, an access control
checking feature determines which users can execute a service, post an event, or enqueue (or
degueue) a message on an application queue. Setting the security level for an ATMI application
is the responsibility of the application administrator.

An application programmer needsto perform two tasks so that aclient program can join an ATMI
application:

o Get the security datafor the specific client process

e Passthat datato the Oracle Tuxedo system

The following pseudo-code in Listing 3-1 summarizes the operation of a basic client program.
The security-related statements are highlighted in bold.

Listing 3-1 Pseudo-code for a Client

main ()

call tpchkauth() to check security level of ATMI application
get usrname, cltname
prompt for application password
prompt for per-user password
allocate a TPINIT buffer
place initial client identification into TPINIT buffer
call tpinit() to enroll as a client of the ATMI application
allocate buffer
do while true {
place user input in buffer

send service request

34 Using Security in ATMI Applications

Getting Security Data

receive reply
pass reply to user }

leave application

Most of the statements in the preceding listing are implemented by ATMI functionsin either C
or COBOL. The preceding listing shows only the C language implementation.

A client program written in C uses tpinit (3c) to comply with the level of security set for the
ATMI application and to join the application. Theargument to tpinit () isapointer to aTPINIT
buffer. To perform the same tasksin a COBOL application, a client program calls
TPINITIALIZE (3cbl), Specifying a pointer to a TPINFDEF-REC record as an argument.

See Also
e “Getting Security Data’ on page 3-5
e “Joining the ATMI Application” on page 3-7

e “Writing Clients’ on page 4-1 in Programming an Oracle Tuxedo ATMI Application Using
C and Programming an Oracle Tuxedo ATMI Application Using COBOL

e tpinit (3c) in Oracle Tuxedo ATMI C Function Reference

e TPINITIALIZE (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference
e “Administering Public Key Security” on page 2-48

e “Administering Authorization” on page 2-34

o “Default Authentication and Authorization” on page 1-45

e “Programming an ATMI Application with Security” on page 3-3

Getting Security Data

For general-purpose client programs that are written to work with a variety of applications, the
Oracle Tuxedo system provides an ATMI function that enables aclient to determine the level of
security required by the ATMI application that the client istrying to join. This ATMI function,
implemented as tpchkauth (3¢) for Cand TecukAUTH (3cbl) for COBOL, isdesigned to work
with ATMI applications using default authentication and authorization. The tpchkauth () and

Using Security in ATMI Applications 3-5

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

3-6

TPCHKAUTH () functions can also be used in ATMI applications in which custom authentication
and/or authorization is used. How they are used, however, depends on how the custom security
features areimplemented. For the most part, this discussion focuses on default authentication and
authorization.

An application programmer writing in C uses tpchkauth () to check the ATMI application’s
security level before calling tpinit (3c), so that the client program can prompt for the
application password and the user authentication data needed for the tpinit () call;
tpchkauth () iscaled without arguments.

An application programmer writing in COBOL uses TpcHKAUTH () for the same purpose before
calling TPINITIALIZE (3cbl). The syntax and functionality of TPCHKAUTH (3cbl) and
TPINITIALIZE (3cbl) arethe sameasthose of tpchkauth (3¢) and tpinit (3¢).

The tpchkauth () function (or TPCHKAUTH () routine) returns one of the following values.

TPNOAUTH
Nothing is required beyond the normal operating system login and file permission
security. TpNOAUTH is returned for security level NONE.

TPSYSAUTH
An application password is required. The client program should prompt the user to
provide the password, and should put it in the password field of the TpIn1T buffer for C,
or TPINFDEF-REC record for COBOL. TpsysauTH isreturned for security level app_puw.

The application administrator informs users of the application password, and the
application programmer writes client-program code to prompt users for the application
password and to put the user-supplied password, as plain text, in the password field of the
TPINIT buffer or TPINFDEF-REC record. The password should not be displayed on the
user’s screen.

Oracle Tuxedo system-supplied client programs, such asud, wud (1), prompt for an
application password. ud () alowsfielded buffersto beread from standard input and sent
to aservice.

TPAPPAUTH
The application password is required. The client is expected to provide a value to be
passed to the authentication service in the data field of the reinzT buffer for C, or the
TPINFDEF-REC record for COBOL. TrarpauTH iSreturned for security level user_auTH,
ACL, Of MANDATORY_ACL.

The application programmer writes client-program code to furnish additional information
for the application authentication service, which is provided by the autasvr server for

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

Joining the ATMI Application

default authentication and authorization. authsvr is configured by the administrator to
validate the per-user authentication information with client and usernames, indicating
whether the client program is allowed to join the ATMI application.

See Also

e “Joining the ATMI Application” on page 3-7

e “Writing Clients’ on page 4-1 in Programming an Oracle Tuxedo ATMI Application Using
C and Programming an Oracle Tuxedo ATMI Application Using COBOL

e tpinit (3c) and tpchkauth (3c) inthe Oracle Tuxedo ATMI C Function Reference

e TPINITIALIZE (3cbl) and TPCHKAUTH (3cbl) inthe Oracle Tuxedo ATMI COBOL
Function Reference

o “Default Authentication and Authorization” on page 1-45

e “Programming an ATMI Application with Security” on page 3-3

Joining the ATMI Application

In asecure ATMI application, it is necessary to pass security information to the Oracle Tuxedo
systemviaarpIiniT buffer for C, or arpInFDEF-REC record for COBOL. The TrinTT buffer is
aspecia typed buffer used by a client program to pass client identification and authentication
information to the system asthe client attemptsto jointhe ATMI application. The TPINFDEF-REC
record serves the same purpose in a COBOL application.

TPINIT isdefined intheatmi . h header file, and TpINFDEF-REC iSdefined in the COBOL copy
file. They have the following structures.

Using Security in ATMI Applications 3-7

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

TPINIT Structure

TPINFDEF-REC Structure

char usrname [MAXTIDENT+2] ;
char cltname [MAXTIDENT+2] ;
char passwd [MAXTIDENT+2] ;
char grpname [MAXTIDENT+2] ;
long flags;

long datalen;

long data;

Note: MAXTIDENT may contain up to 30

characters.

05 USRNAME PIC X(30)

05 CLTNAME PIC X(30)

05 PASSWD PIC X(30)

05 GRPNAME PIC X(30).

05 NOTIFICATION-FLAG PIC S9(9) COMP-5.
88 TPU-SIG VALUE 1
88 TPU-DIP VALUE 2.
88 TPU-IGN VALUE 3.

05 ACCESS-FLAG PIC S9(9) COMP-5.
88 TPSA-FASTPATH VALUE 1.
88 TPSA-PROTECTED VALUE 2.

05 DATLEN PIC S9(9) COMP-5.

Thefieldsin the TeINIT buffer/ TPINFDEF-REC record are described in Table 3-1.

Table 3-1 Fields in TPINIT Buffer/ TPINFDEF-REC Record

TPINIT Fiel

ds TPINFDEF-REC Fields

Description

usrname

USRNAME

Username.* A null-terminated string of up to 30
characters.

The username represents the caller; writers of client
programs might use the same login names used to
log in to the host operating system.

cltname

CLTNAME

Client name.* A null-terminated string of up to 30
characters.

The client name represents the client program;
writers of client programs might use thisfield to
indicate the job function or role of the user when
executing the client program.

* Thisfield isrequired for the USER_AUTH, ACL, and MANDATORY_ACL security levels provided by default
authentication and authorization.

** The binary equivalent of the UBBCONF IG file; created using tmloadcf (1).

**x Usually auser password.

3-8

Using Security in ATMI Applications

Joining the ATMI Application

Table 3-1 Fields in TPINIT Buffer/ TPINFDEF-REC Record (Continued)

TPINIT Fields TPINFDEF-REC Fields

Description

passwd PASSWD

Application password.* A null-terminated string of
up to eight characters.

tpinit () or TPINITIALIZE () validatesthis
password by comparing it to the configured
application password stored in the TUXCONFIG
filex=*

grpname GRPNAME

Group name. A null-terminated string of up to 30
characters. Thisfield is not related to security.

Thegroup nameallowsaclient to be associated with
aresource manager group that is defined in the
UBBCONFIG file.

flags NOTIFICATION-FLAG
TPU-SIG

TPU-DIP
TPU-IGN
ACCESS-FLAG
TPSA-FASTPATH
TPSA-PROTECTED

Notification and access flags. Thisfield is not
related to security.

Theflag settings specify the notification mechanism
and system access mode to be used for the client.
Selections override (with some exceptions) the
values set in the RESOURCES section of the
UBBCONFIG file.

datalen DATALEN

Length of the user-specific data*** that follows.*

To get asize valuefor thisfield, writers of client
programs written in C can call TPINITNEED with
the number of bytes of user-specific dataexpected to
be sent. TPINITNEED isamacro provided in the
atmi . h header file.

data N/A

User-specific data*** of no fixed length.*

tpinit () or TPINITIALIZE () forwardsthe
user-specific data to the authentication server for
validation. For default authentication, the
authentication server iS AUTHSVR.

* Thisfield isrequired for the USER_AUTH, ACL, and MANDATORY_ACL security levels provided by default

authentication and authorization.

** The binary equivalent of the UBBCONF IG file; created using tmloadcf (1).

*** Usually auser password.

Using Security in ATMI Applications 3-9

3-10

Theclient program calls tpalloc (3c) to alocate aTpiNiT buffer. The following sample code
in Listing 3-2 prepares to pass eight bytes of application-specific datato tpinit () and enables
the client to join an ATMI application.

Listing 3-2 Allocating a TPINIT Buffer and Joining an ATMI Application

TPINIT *tpinfo;

if ((tpinfo = (TPINIT *)tpalloc("TPINIT", (char *)NULL,
TPINITNEED(8))) == (TPINIT *)NULL) {
Error Routine

tpinit (tpinfo) /* join an ATMI application */

When aWorkstation client callsthe tpinit () function or the TPINITIALIZE () routinetojoin
an ATMI application, the following major events occur.

1

3.

Theinitiator Workstation client and the target workstation listener (WSL) exchange
link-level encryption (LLE) min-max valuesto be used to set up LLE on the link between the
initiator Workstation client and the target WSH. LLE isdescribed in “Link-Level
Encryption” on page 1-22.

The initiator Workstation client and target WSH authenticate one another through the
exchange of security tokens. For default authentication, asuccessful authentication endswith
the transfer of client security data from the TpINIT buffer or TPINFDEF-REC record to the
target WSH.

After asuccessful authentication, the initiator Workstation client sends another buffer to the
target WSH containing the values of the usrname, c1tname, and f1ags fields, to ensure that
the target WSH receives thisinformation for the authenticated Workstation client.

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html

Joining the ATMI Application

When a native client callsthe tpinit () function or the TPINITIALIZE () routinetojoinan

ATMI application, only authentication occurs. In essence, the native client authenticates with
itself.

Transferring the Client Security Data

Listing 3-2 demonstratethe transfer of datafrom the repinzT buffer for aWorkstation client. The
transfer of data from the TpINFDEF-REC record is similar to what is shown in the figure.

Using Security in ATMI Applications 3-11

Figure 3-2 Transferring Data from the TPINIT Buffer for a Workstation Client

Workstation Client — Application Client Running on Workstation Machine
TPINIT Buffer

usrname | cltname | passwd

grpname

flags | datalen | data

W

\ ‘ i)
_ Callepinit () Information Sent for Default Authentication
i 1 —>
, ! usrname | clthame | grpname | flags | datalen | data
: l Information Sent for Custom Authentication
: 1 —>| usrname | datalen | data custom data
Oracle Tuxedo Library 41 Workstation Handler (WSH)
usrname, passwd Credentials
datalen, (encrypt) +
data < > >
. ! . \—‘ ! . ! . ! .
1. Call “acquire 2. Call “initiate Network Link 3. Call “accept 4. Call “get 5. Call “get
credentials” security context” security context” authorization token” auditing token”
Function Function Function Function Function

ATMI Security o

il

ATMI Security .

Authentication Plug-in

H H

Authentication Plug-in

Note: The authorization procedure shown in the preceding figure is essentially the same for a
native client attempting to join an ATMI application except that no network link or WSH
isinvolved. A native client authenticates with itself.

3-12

Using Security in ATMI Applications

Joining the ATMI Application

In the preceding diagram, notice that the information sent to the Oracle Tuxedo system differs
between default and custom authenti cation. For default authentication, the valuesof the c1tname,
grpname, and flags fields are delivered to the default authentication plug-in at the Workstation
client by a means other than through the plug-in interface. However, for custom authentication,
writers of client programs can include these values as well as any other values they so choosein
the variable length data field.

For a Workstation client and assuming default authentication, the authentication plug-in at the
Workstation client uses the passwd/ passwp field to encrypt the information when transmitting
theinformation over the network. The encryption algorithm used is 56-bit DES, where DESisan
acronym for the Data Encryption Standard. The authentication plug-in at the target WSH usesthe
application password stored in the Tuxconr1c fileto decrypt theinformation. For anative client,
the system simply compares the passwd/ passwp field with the application password stored in
the TuxconrF1g file.

Note: At the Workstation client, the passwd/ passwp field is delivered to the authentication
plug-in by ameans other than through the authentication plug-ininterface. At the WSH,
the application password in the Tuxconr1c fileis delivered to the authentication plug-in
through the authentication plug-in interface during application booting.

After a successful authentication of a Workstation client, the tpinit () function endswith the

sending of another buffer to the WSH containing the values of theusrname, c1tname, and flags
fields, to ensure that the WSH receives thisinformation for the authenticated Workstation client.
Similarly, the TpINITIALIZE () routine endswith the sending of another buffer containing the
same information. A custom authentication plug-in might not send this information to the WSH
during the authentication procedure, and the WSH needs thisinformation for reporting purposes,
that is, during an invocation of the tmadmin (1) printclient (pclt) command.

When aWorkstation or native client passesthe security check, it may initiate service requests and
receivereplies.

Calling a Service Request Before Joining the ATMI
Application

If aclient calls aservice request (or any ATMI function) before invoking tpinit () or
TPINITIALIZE () and assuming the securiTy configuration for thetarget ATMI applicationis
not set or is set to NoNE, the Oracle Tuxedo system automatically invokes tpinit ()/
TPINITIALIZE () With anurL parameter. This behavior has the following consequences:

e The TpINIT/ TPINFDEF-REC feature cannot be used.

Using Security in ATMI Applications 3-13

e Default values are used for client naming, unsolicited notification type, and system access
mode.

e The client cannot be associated with a resource manager group.

e An application password cannot be specified.

If aclient calls aservice request (or any ATMI function) beforeinvoking tpinit () or
TPINITIALIZE () and assuming the securiTy configuration for the target ATMI applicationis
set to APP_PW, USER_AUTH, ACL, Of MANDATORY_ACL, the Oracle Tuxedo system regjects the
service reguest.

See Also

e “Writing Clients’ on page 4-1 in Programming an Oracle Tuxedo ATMI Application Using
C and Programming an Oracle Tuxedo ATMI Application Using COBOL

e tpinit(3c) and tpalloc (3c) inthe Oracle Tuxedo ATMI C Function Reference
e TPINITIALIZE (3cbl) inthe Oracle Tuxedo ATMI COBOL Function Reference

e “Default Authentication and Authorization” on page 1-45

e “Programming an ATMI Application with Security” on page 3-3

Writing Security Code to Protect Data Integrity and
Privacy

3-14

Public key security comprises end-to-end digital signing and data encryption. Both features are
supported by Oracle Tuxedo ATMI functions. ATMI applications protected by public key
security are much safer for use across the Internet than programsin which thistype of security is
not used.

The capabilities that make end-to-end digital signing and data encryption possible are
message-based digital signature and message-based encryption. Both capabilities are built upon
the PKCS-7 standard, which is one of a set of Public-Key Cryptography Standards (PKCS)
developed by RSA Laboratoriesin cooperation with several other leading communications
companies.

M essage-based digital signature ensures dataintegrity and non-repudiation by having the sending
party bind proof of itsidentity to a specific message buffer. Message-based encryption protects

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

Writing Security Code to Protect Data Integrity and Privacy

the confidentiality of messages; only parties for whom messages are intended can decrypt and
read them.

Because the unit of digital signing and encryption isan ATMI message buffer, both capabilities
are compatible with existing ATMI programming interfaces and communication paradigms. It is
possible for a message buffer to be both signed and encrypted. Thereis no required relationship
between the number of digital signaturesand the number of encryption envel opes associated with
amessage buffer.

Note: Each encryption envelope identifies arecipient of the message, and containsinformation
needed by the recipient to decrypt the message.

ATMI Interface for Public Key Security

The ATMI interface for public key security isacompact set of functions used to:
e Open and close key resources
e View and change key optional parameters
e Sign and seal (encrypt) message buffers
e Accessthe digital signature and encryption information associated with a message buffer

e Convert atyped message buffer into an exportable, machine-independent string
representation, which includes the generation of any digital signatures or encryption
envelopes associated with the buffer

The ATMI interfaces for public key security are availablein both C and COBOL
implementations. The ATMI COBOL language binding, however, does not support message
buffers; thus, explicit signature, encryption, and query operations on individual buffers cannot be
used inaCOBOL application. However, key management interfaces do havea COBOL language
binding, which enables signature generation in the auTos1eN mode and encryption-envelope
generation in the auroencryPT mode. All operations related to automatic signature verification
or automatic decryption apply to COBOL client and server processes.

Note: The COBOL TrrEYDEF record is used to manage public-private keys for performing
message-based digital signature and encryption operations. See “COBOL Language
ATMI Return Codesand Other Definitions” intheintroduction part of the Oracle Tuxedo
ATMI COBOL Function Reference for a description of the TpkEYDEF record.

Table 3-2 and Table 3-3 summarize the ATMI interfaces for public key security. Each function
is also documented in the Oracle Tuxedo ATMI C Function Reference and the Oracle Tuxedo
ATMI COBOL Function Reference.

Using Security in ATMI Applications 3-15

Table 3-2 C Functions in ATMI Interface for Public Key Security

Use This Function

To...

tpkey_open (3c)

Open akey handle for digital signature generation, message encryption, or message
decryption. Keys are represented and manipulated via handles. A handle has data
associated with it that is used by the ATMI application to locate or access the item
named by the handle.

A key may play one or more of the following roles:

Signature Generation

The key identifies the calling process as being authorized to generate adigital
signature under the principal’ sidentity. (A principal may be a person or a
process.) Calling tpkey_open () with the principal’s name and either the
TPKEY_SIGNATURE Or TPKEY_AUTOSIGN flag returns a handle to the
principal’s private key and digital certificate.

Signature Verification

The key represents the principal associated with a digital signature. Signature
verification doesnot requireacall to tpkey_open () ; the verifying process uses
thepublickey specifiedinthedigital certificate accompanying thedigitally signed
message to verify the signature.

Encryption

The key represents the intended principal of an encrypted message. Calling
tpkey_open () with the principal’ s name and either the TPKEY_ENCRYPT of
TPKEY_AUTOENCRYPT flag returns ahandleto the principal’s public key viathe
principal’ s digital certificate.

Decryption

The key identifies the calling process as being authorized to decrypt a private
message for theintended principal. Calling tpkey_open () withtheprincipa’s
name and the TPKEY_DECRYPT flag returns a handle to the principal’s private
key and digital certificate.

3-16 Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html

Writing Security Code to Protect Data Integrity and Privacy

Tahle 3-2 C Functions in ATMI Interface for Public Key Security (Continued)

Use This Function

To...

tpkey_getinfo (3c)

Get information associated with akey handle. Some information is specific to a
cryptographic service provider, but the following set of attributes is supported by all
providers:

* PRINCIPAL
The name of the principal associated with the specified key (key handle). A
principal may be a person or a process, depending on how an application
developer sets up public key security. Any principal specified inan ATMI
application’ SUBBCONF IG file using the SEC_PRINCIPAL_NAME parameter
become the identity of one or more system processes. (See “ Specifying Principal
Names’ on page 2-11 and “Initializing Decryption Keys Through the Plug-ins” on
page 2-56 for more detail.)

* PKENCRYPT_ALG
An ASN.1 Distinguished Encoding Rules (DER) object identifier of the public
key algorithm used by the key for public key encryption. See the
tpkey_getinfo (3¢) reference page for details.

* PKENCRYPT_BITS
The key length of the public key algorithm (RSA modulus size). The value must
be within the range of 512 to 2048 bits, inclusive.

* SIGNATURE_ALG
AnASN.1DER object identifier of thedigital signature agorithm used by the key
for digital signature. Seethe tpkey_getinfo (3c) reference page for details.

* SIGNATURE_BITS
The key length of the digital signature algorithm (RSA modulus size). The value
must be within the range of 512 to 2048 bits, inclusive.

* ENCRYPT_ALG
An ASN.1 DER object identifier of the symmetric key agorithm used by the key
for bulk data encryption. Seethe tpkey_getinfo (3c) reference page for
details.

* ENCRYPT_BITS
The key length of the symmetric key algorithm. The value must be within the
range of 40 to 128 hits, inclusive.

* DIGEST_ALG
An ASN.1 DER object identifier of the message digest algorithm used by the key
for digital signature. Seethe tpkey_getinfo (3c) reference page for details.

* PROVIDER
The name of the cryptographic service provider.

* VERSION
The version number of the cryptographic service provider’'s software.

Using Security in ATMI Applications 3-17

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

Tahle 3-2 C Functions in ATMI Interface for Public Key Security (Continued)

Use This Function

To...

tpkey_setinfo (3c)

Set optiona attribute parameters associated with akey handle. A core set of key
handle attributes isidentified in the preceding description of tpkey_getinfo ().
Other attributes, specific to a certain cryptographic service provider, may also be
available.

tpkey_close (3c)

Close apreviously opened key handle. A key handle may be opened explicitly using
tpkey_open (), or implicitly (automatically) using tpenvelope ().

tpsign(3c)

Mark atyped message buffer for digital signature. The public key software generates
the digital signature just before the message is sent.

tpseal (3c)

Mark atyped message buffer for encryption. The public key software encrypts the
message just before the message is sent.

tpenvelope (3c)

Accessthe digital signature and encryption information associated with atyped
message buffer. tpenvelope () returns status information about the digital
signatures and encryption envel opes attached to a particular message buffer. It also
returns the key handle associated with each digital signature or encryption envelope.
The key handle for adigital signature identifies the signer, and the key handle for an
encryption envelope identifies the recipient of the message.

tpexport (3c)

Convert atyped message buffer into an exportable, machine-independent
(externalized) string representation. tpexport () generatesany digital signaturesor
encryption envelopes associated with a typed message buffer just before it converts
that buffer into an externalized string representation.

An externalized string representation can be transmitted between processes, machines,
or domains through any communication mechanism. It can be archived on permanent
storage.

tpimport (3c)

Convert an externalized string representation back into a typed message buffer.
During the conversion, tpimport () decryptsthe message, if necessary, and verifies
any associated digital signatures.

3-18 Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

Writing Security Code to Protect Data Integrity and Privacy

Table 3-3 COBOL Routines in ATMI Interface for Public Key Security

Use This Routine ...

To...

TPKEYOPEN (3cbl)

Open akey handle for digital signature generation, message encryption, or message
decryption. Keys are represented and manipulated via handles. A handle has data
associated with it that is used by the ATMI application to locate or access theitem
named by the handle.

A key may play one or more of the following roles:

Signature Generation

The key identifies the calling process as being authorized to generate adigital
signature under the principal’ sidentity. (A principal can be a person or a
process.) Calling TPKEYOPEN () with the principal’s name and the
TPKEY-SIGNATURE and TPKEY-AUTOSIGN Settings returns a handle to the
principal’ s public key and enables signature generation in AUTOSIGN mode. The
public key software generates and attaches the digital signature to the message
just before the message is sent.

Signature Verification

The key represents the principal associated with adigital signature. Signature
verification does not requireacall to TPKEYOPEN () ; the verifying process uses
the public key specified in the digital certificate accompanying the digitally
signed message to verify the signature.

Encryption

The key represents the intended principal of an encrypted message. Calling
TPKEYOPEN () with the principal’s name and the TPKEY-ENCRYPT and
TPKEY-AUTOENCRYPT Settings returns a handle to the principal’ s public key
(viathe principal’sdigital certificate) and enables encryption in AUTOENCRYPT
mode. The public key software encrypts the message and attaches an encryption
envelope to the message; the encryption envel ope enables the receiving process
to decrypt the message.

Decryption

The key identifies the calling process as being authorized to decrypt a private
message for the intended principal. Calling TPXEYOPEN () with the principal’s
name and the TPKEY-DECRYPT setting returns a handle to the principal’s
private key and digital certificate.

Using Security in ATMI Applications 3-19

Tahle 3-3 COBOL Routines in ATMI Interface for Public Key Security (Continued)

Use This Routine . .. To...

TPKEYGETINFO (3cbl) Get information associated with akey handle. Some information is specific to a
cryptographic service provider, but the following set of attributesis supported by all
providers:

e PRINCIPAL
The name of the principal associated with the specified key (key handle). A
principal may be a person or a process, depending on how an ATMI application
developer sets up public key security. Any principal specifiedinan ATMI
application’sUBBCONF IG file using the SEC_ PRINCIPAL_NAME parameter
become theidentity of one or more system processes. (See“ Specifying Principal
Names’ on page 2-11 and “Initializing Decryption Keys Through the Plug-ins’
on page 2-56 for more detail.)

* PKENCRYPT_ALG
An ASN.1 Distinguished Encoding Rules (DER) object identifier of the public
key algorithm used by the key for public key encryption. See the
TPKEYGETINFO (3cbl) reference page for details.

* PKENCRYPT_ BITS
The key length of the public key agorithm (RSA modulus size). The value must
be within the range of 512 to 2048 bits, inclusive.

* SIGNATURE_ALG
AnASN.1DER object identifier of thedigital signaturea gorithm used by the key
for digital signature. Seethe TPKEYGETINFO (3cbl) reference pagefor details.

* SIGNATURE_BITS
Thekey length of thedigital signature algorithm (RSA modulussize). Thevalue
must be within the range of 512 to 2048 bits, inclusive.

* ENCRYPT_ALG
AnASN.1DER object identifier of the symmetric key a gorithm used by the key
for bulk data encryption. See the TPKEYGETINFO (3cbl) reference page for
details.

e ENCRYPT_BITS
The key length of the symmetric key algorithm. The value must be within the
range of 40 to 128 hits, inclusive.

* DIGEST ALG
AnASN.1DER object identifier of the message digest a gorithm used by the key
for digital signature. See the TPKEYGETINFO (3cbl) reference page for
details.

* PROVIDER
The name of the cryptographic service provider.
* VERSION
The version number of the cryptographic service provider’s software.

3-20 Using Security in ATMI Applications

Tahle 3-3

Writing Security Code to Protect Data Integrity and Privacy

COBOL Routines in ATMI Interface for Public Key Security (Continued)

Use This Routine . .. To...

TPKEYSETINFO (3cbl) Setoptional attribute parameters associated with akey handle. A core set of key

handle attributes isidentified in the preceding description of TPKEYGETINFO ().
Other attributes, specific to a certain cryptographic service provider, may also be
available.

TPKEYCLOSE (3cbl) Close a key handle previously opened using TPKEYOPEN () .

Recommended Uses of Public Key Security

Use tpkey_close () torelease key handles used for digital signature generation or for
data decryption as soon as they are no longer needed.

To inhibit replay attacks, generate digital signatures only on message buffers that contain
detailsidentifying a specific operation. For example, a buffer that contains the message
“Your deposit is confirmed” is dangerously vague. An attacker who intercepts such a
message can easily reuse it. On the other hand, a message that contains many
operation-specific detailsis much safer. An attacker who intercepts a message such as the
one that follows will not be able to reuse it easily: “John Smith’s deposit of $100.00,
account 987654321, confirmation code 123456789, 7/31/2001, is confirmed.”

See Also

“Sending and Receiving Signed Messages’ on page 3-22

“Sending and Receiving Encrypted Messages’ on page 3-33

“Examining Digital Signature and Encryption Information” on page 3-50
“Externalizing Typed Message Buffers’ on page 3-57

“Public Key Security” on page 1-32

“Administering Public Key Security” on page 2-48

“Programming an ATMI Application with Security” on page 3-3

Using Security in ATMI Applications 3-21

Sending and Receiving Signed Messages

3-22

Message-based digital signature provides end-to-end authentication and message integrity
protection. For adiagram that illustrates how it works, seethefigure“ ATMI PKCS-7 End-to-End
Digital Signing” on page 1-37.

To add adigital signature to an ATMI message buffer, the originating process or user signsthe
message buffer. This signature contains a cryptographically secure checksum of the message
buffer’s content and a timestamp based on the signer’slocal clock.

Any party with access to the message buffer can verify that the signing party’s signatureis
authentic, that the message buffer content is unchanged, and that the timestamp iswithin a
configured tolerance of the verifier'slocal clock. In addition, time-independent verification by a
third party guarantees non-repudiation: the originating process or user cannot later deny
authorship or claim the message was altered.

Writing Code to Send Signed Messages

Figure 3-3 provides the procedure for writing code to send signed messages.

Using Security in ATMI Applications

Figure 3-3 Procedure for Sending Signed Messages

(Start)

\4

Sending and Receiving Signed Messages

(Continue

A4

1. Open key handle for signer to receive
a key handle to signer’s private key and
digital certificate.

tpkey_ open ()

6. Send message in buffer by calling
tpsend (), tpcall(),...

tpsend()

A

2. (Optional): Get information about
signer’s key handle.

tpkey_getinfol()

v

3. (Optional): Change information
associated with signer’s key handle.

tpkey_setinfo ()

A4

4. Allocate a typed message buffer and
put message in buffer.

tpalloc ()

Just before message is sent, public key
software performs the following tasks:

1. Encodes message buffer data, buffer
type string, and buffer subtype string.

2. Adds timestamp from local system'’s
clock.

3. Computes hash value using message
digest algorithm.

4. Encrypts hash value, using signer’'s
private key and digital signature
algorithm, to create a digital signature.

5. Attaches timestamp, digital signature
(encrypted hash value), signer’s digital
certificate, message digest algorithm,
and digital signature algorithm to
message.

A4

A4

5. Mark the message buffer for digital
signature, thus attaching a copy of the
signer’s key handle to the message buffer.

tpsign()

7. Close signer’s key handle to release
key handle and all resources associated
with it.

tpkey_close()

A4

(Continue

\4
End

For details about these steps and insight into how the system signs a message buffer, see the

following topics.

Using Security in ATMI Applications 3-23

3-24

Step 1: Opening a Key Handle for Digital Signature

Call the tpkey_open (3¢) function or TPKEYOPEN (3cbl) routine to make the private key and
the associated digital certificate of the signer availableto the originating process. The private key
is highly protected, and possession of it is equivalent to possessing the signer’ s identity.

In order to access the signer’ s private key, the originating process must proveits right to act as
the signer. Proof requirements depend on the implementation of the public key plug-in interface.
The default public key implementation requires a secret password from the calling process.

When the originating process calls tpkey_open () to open the key handle, it specifies either the
TPKEY_SIGNATURE Of TPKEY_AUTOSIGN flag to indicate that the handle will be used to digitally
sign amessage buffer. Typically, a client makes this call after calling tpinit (), and aserver
makes this call as part of initializing through tpsvrinit ().

Opening a key handle with the TpxEY_auTos1cN flag enables automatic signature generation:
subsequently, the originating process signs message buffers automatically whenever they are
sent. Using the TprEY_auTos1cN flag is beneficial for three reasons:

e Lesswork isrequired from application programmers because fewer ATMI calls are
required when operating in a secure ATMI application.

e Existing ATMI applications can leverage digital signature technology with minimal coding
changes.

e The possibility of programming errors that might result in an unsigned buffer being sent
over an insecure network is reduced.

Listing 3-3 shows how to open asigner’ skey handle. TpxEY isaspecia datatype defined in the
atmi . h header file.

Listing 3-3 Opening a Signer’s Key Handle Example

main(argc, argv)
int argc;

char *argvl[];
#endif

{
TPKEY sdo_key;

char *sdo_location;

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html

Sending and Receiving Signed Messages

if (tpkey_open (&sdo_key, “sdo”, sdo_location,
NULL, 0, TPKEY_SIGNATURE) == -1) {
(void) fprintf (stderr, “tpkey_open sdo failed
tperrno=%d(%s) \n”, tperrno, tpstrerror (tperrno)) ;

exit (1) ;

Step 2 (Optional): Getting Key Handle Information

Y ou may want to get information about asigner’ s key handle to establish the validity of the key.
Todo so, call the tpkey getinfo (3c¢) function or TPKEYGETINFO (3cbl) routine. While some
of the information returned may be specific to a cryptographic service provider, a core set of
attributes is common to all providers.

The default public key implementation supports the following signature modes for computing
signatures on a message huffer:

e MD5 message digest algorithm with RSA public key signature

e SHA-1 message digest algorithm with RSA public key signature

The message digest algorithm is controlled by the pTcesT_aLG key attribute, and the public key
signature is controlled by the steNATURE_ALG Key attribute. Public key sizes from 512 to 2048
bits are supported, to allow awide range of safety and performance options. The public key size
is controlled by the sTeNATURE_BITS key attribute.

Thedefault public key implementation recognizesonly thosedigital certificate signaturesthat are
created with these algorithm and key size choices.

Listing 3-4 shows how to get information about a signer’s key handle.

Using Security in ATMI Applications 3-25

{DOCROOT}/rf3c/rf3c.html

Listing 3-4 Getting Information About a Signer’s Key Handle Example

main (argc, argv)
int argc;

char *argvl[];
#endif

{
TPKEY sdo_key;
char principal_name[PNAME_LEN] ;
long pname_len = PNAME_LEN;

if (tpkey_getinfo(sdo_key, “PRINCIPAL",
principal_name, &pname_len, 0) == -1) {
(void) fprintf (stdout, “Unable to get information
about principal: %d(%s)\n”,

tperrno, tpstrerror (tperrno));

exit (1) ;

Step 3 (Optional): Changing Key Handle Information

To set optional attributes associated with a signer’ s key handle, call the tpkey_setinfo(3c)
function or TPKEYSETINFO (3cbl) routine. Key handle attributes vary, depending on the
cryptographic service provider.

The following example code shows how to change information associated with asigner’s key
handle.

3-26 Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html

Sending and Receiving Signed Messages

Listing 3-5 Changing Information Associated with a Signer’s Key Handle Example

main (argc, argv)
int argc;

char *argvl[];
#endif

{
TPKEY sdo_key;
static const unsigned char shal_objid[] = {
0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, Oxla
Yi

if (tpkey_setinfo(sdo_key, “DIGEST_ ALG”, (void *) shal_objid,
sizeof (shal_objid), 0) == -1) {
(void) fprintf (stderr, “tpkey_setinfo failed
tperrno=%d(%$s)\n”,
tperrno, tpstrerror (tperrno));

return(l) ;

Step 4: Allocating a Buffer and Putting a Message in the Buffer

To alocate atyped message buffer, call the tpalloc (3¢) function. Then put a message in the
buffer.

Step 5: Marking the Buffer for Digital Signature

To mark, or register, the message buffer for digital signature, call the tpsign (3¢) function. By
calling this function, you attach a copy of the signer’s key handle to the message buffer. If you
open the key with the TrrEY_auTOos1cN flag, each message that you send is automatically

Using Security in ATMI Applications 3-21

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

3-28

marked for digital signature without an explicit call to tpsign () ; signature parametersare stored
and associated with the buffer for later use.

Note: In COBOL applications, use the AuTosIGN settings member to create adigital signature.
See TPKEYOPEN (3cbl) .

The following example code shows how to mark a message buffer for digital signature.

Listing 3-6 Marking a Message Buffer For Digital Signature Example

main(argc, argv)
int argc;

char *argvl[];
#endif

{
TPKEY sdo_key;
char *sendbuf, *rcvbuf;

if (tpsign(sendbuf, sdo_key, 0) == -1) {
(void) fprintf(stderr, “tpsign failed tperrno=%d(%s)\n”,
tperrno, tpstrerror (tperrno));
tpfree(rcvbuf) ;
tpfree (sendbuf) ;
tpterm() ;
(void) tpkey_close(sdo_key, 0);
exit(1l);

Using Security in ATMI Applications

Sending and Receiving Signed Messages

Step 6: Sending the Message

After the message buffer has been marked for digital signature, transmit the message buffer using
one of the following C functions or COBOL routines:

— tpcall() Or TPCALL
— tpbroadcast () Of TPBROADCAST
— tpconnect () OF TPCONNECT

— tpenqueue () OF TPENQUEUE

- tpforward()

— tpnotify () OFf TPNOTIFY
— tppost () OF TPPOST

— tpreturn () OFf TPRETURN

— tpsend() OF TPSEND

Step 7: Closing the Signer’s Key Handle

Cdl the tpkey_close(3c) function or TPKEYCLOSE (3cbl) routine to release the signer’s key
handle and all resources associated with it.

How the System Generates a Digital Signature

Just before a message buffer is sent, the public key software digitally signs the message. If a
signed buffer is transmitted more than once, the software generates a new signature for each
communication. This process makes it possible to modify a message buffer after marking the
buffer to be digitally signed.

The public key software generates a digital signature by performing the following three-step
procedure.

1. digest{message buffer_data+ buffer_type string + buffer_subtype_string] = hashl
2. digest[hashl + local_timestamp + PKCS-7_message type] = hash2

3. {hash2}signer's private key = encrypted_hash2 = digital_signature

The notation digest[something] means that a hash value has been computed for something using
amessage digest algorithm—in this case, MD5 or SHA-1. The notation { something} key means
that something has been encrypted or decrypted using key. In this case, the computed hash value
is encrypted using the signer’s private key.

Using Security in ATMI Applications 3-29

{DOCROOT}/rf3c/rf3c.html

Signature Timestamp

A digital signature includes atimestamp from the local system’s clock. Inclusion of such a
timestamp ensures that any tampering with the timestamp value will be detected when the
recipient verifies the signature. In addition, a copy of the timestamp accompanies the digitally
signed message when the message is routed to its destination.

Time resolution is to the second. Timestamps are stored in PKCS-9 signingTime format.

Multiple Signatures

More than one signature can be associated with a message buffer, which means that any number
of signers can sign amessage buffer in parallel. A signer can beaperson or aprocess. Each signer
signs the message buffer using his, her, or its private key.

Different signatures may be based on different message digest or digital signature algorithms. If
two signers use the same message digest and digital signature algorithm, the hash value is
computed for only one of them.

Signed Message Content

A digitally signed message buffer is represented in the PKCS-7 format asaversion 1
SignedData content type. The signedbata content type, as used by the Oracle Tuxedo system,
consists of the following items:

e One or more digital signatures, each with its own set of signer-specific information, such
as.

— Signer’s X.509v3 certificate
— Message digest and digital signature algorithm identifiers
— Timestamp based on the local clock

e Message content, which is a composite of message buffer data, buffer type string, and
buffer subtype string represented in the Oracle Tuxedo encoded format. The encoded
format allows a message buffer’s signature to be verified on any machine architecture.

As shown in Figure 3-4, the message content is enveloped by signedpata content type.

3-30 Using Security in ATMI Applications

Sending and Receiving Signed Messages

Figure 3-4 SignedData Content Type

SignedData Content Type
(Signing Operation—Contains Digital Signatures and Associated Signer-Specific Information)

TUXBUF Content Type

(Message Content—Contains Composite Encoded Data)

How a Signed Message Is Received

No ATMI application codeis needed to receive asigned message buffer. The public key software
automatically verifies the attached digital signatures and passes the message to the receiving
process.

Upon receiving a signed message buffer, the public key software, operating on behalf of the
receiving process, performs the following tasks.

1

Reads the digital signature information attached to the received message, including the
signer’s digital certificate, message digest algorithm, digital signature algorithm, and
signature timestamp.

Decrypts the attached digital signature (encrypted hash value) using the signer’s public key
(found in the signer’s digital certificate) and the digital signature algorithm.

Recomputes the hash value for the received message, as shown in the following two-step
procedure.

a. digestfmessage buffer_data + buffer_type string + buffer_subtype string] = hashl
b. digest[hashl + received_timestamp + PKCS-7_message _type] = hash2

The notation digest[something] means that a hash value has been computed for something
using a message digest algorithm—in this case, MD5 or SHA-1.

Compares the recomputed hash value with the received hash value; if the two are not
identical, discards the message buffer.

Comparesthereceived timestamp with thelocal system’sclock; if thetimestamp isnot within
a configured tolerance, discards the message buffer.

Using Security in ATMI Applications 3-31

3-32

6. If the message buffer successfully passes the checks performed in Steps 4 and 5, the public
key software decodes the message buffer data, buffer type string, and buffer subtype string,
and then passes the message to the receiving process. This step reverses the encoding
performed by the originating process. (The Oracle Tuxedo encoded format allows a message
buffer’s signature to be verified on any machine architecture.)

Note: If none of the attached digital signatures can be verified, the receiving process does not
receive the message buffer. Moreover, the receiving process has no knowledge of the
message buffer.

Verifying Digital Signatures

The public key software automatically verifies digital signatures whenever a signed message
buffer enters a client process, server process, or any system process that needs to access the
content of the message buffer. If asystem processisacting asaconduit (that is, if it isnot reading
the content of the message), then the attached digital signatures need not be verified. Bridges and
workstation handlers (WSHs) are examples of system processes acting as conduits.

The signature timestamp is based on an unsynchronized clock, and therefore cannot be fully
trusted, especiadly if the signature is performed on a PC or personal workstation. However, a
server may reject requests with timestamps that are too old or dated too far into the future. The
capability to reject arequest based on the timestamp provides a measure of protection against
replay attacks.

Verifying and Transmitting an Input Buffer’s Signatures

If a message buffer is passed to an ATMI function (such as tpacall ()) asaninput parameter,
the public key software verifies any signatures previously attached to the message and then
forwards the message. This behavior enables a secure, verified transfer of information with
signatures from multiple processes.

If aserver modifies areceived message buffer and then forwards the buffer, the original signature
isno longer valid. In this case, the public key software detects the invalid signature and silently
discardsit. For an example of the process, see “Discarding an Input Buffer’s Encryption
Envelopes’ on page 3-47.

Replacing an Output Buffer’s Signatures

If amessage buffer is passed to an ATMI function (such as tpgetreply ()) asan output
parameter, the public key software deletes any signature information associated with the buffer.
Thisinformationincludesany pending signaturesand signaturesfrom previous uses of the buffer.
(A pending signature is a signature that is registered with a message buffer.)

Using Security in ATMI Applications

Sending and Receiving Encrypted Messages

New signature information might be associated with the new buffer content after successful
completion of this operation.

See Also

“Sending and Receiving Encrypted Messages’ on page 3-33

“Examining Digital Signature and Encryption Information” on page 3-50
“Externalizing Typed Message Buffers’ on page 3-57

“Public Key Security” on page 1-32

“Administering Public Key Security” on page 2-48

“Programming an ATMI Application with Security” on page 3-3

Sending and Receiving Encrypted Messages

Message-based encryption provides end-to-end data privacy. For adiagram that illustrates how
it works, seethe figure“ATMI PKCS-7 End-to-End Encryption” on page 1-42.

A message isencrypted just beforeit leaves the originating process, and remains encrypted until
it isreceived by the final destination process. It is opaque at al intermediate transit points
(including operating system message queues, system processes, and disk-based queues) and
during network transmission over inter-server network links.

Writing Code to Send Encrypted Messages

Figure 3-5 provides the procedure for writing code to send encrypted messages.

Using Security in ATMI Applications 3-33

3-34

Figure 3-5 Procedure for Sending Encrypted Messages

(Start

A4

Continue

A 4

1. Open key handle for target recipient to
receive a key handle to recipient’s digital
certificate.

tpkey_open ()

6. Send message in buffer by calling
tpsend (), tpcall(),...

tpsend ()

A4

2. (Optional): Get information about
encryption key handle.

tpkey_getinfo ()

A4

3. (Optional): Change information
associated with encryption key handle.

tpkey_setinfo ()

A4

4. Allocate a typed message buffer and
put message in buffer.

tpalloc ()

Just before message is sent, public key
software performs the following tasks:

1. Encodes message buffer data, buffer
type string, and buffer subtype string.

2. Generates digital signatures (if any).

3. Compresses message and digital
signatures (if any) using Deflate
compression algorithm.

4. Encrypts compressed message and
digital signatures (if any) using
random session key and symmetric
key algorithm.

5. Encrypts session key using recipient’s
public key (found in recipient’s digital
certificate) and public key algorithm.

6. Includes encrypted session key and

recipient’s name in a digital
encryption envelope.

7. Attaches encryption envelope to
encrypted message.

\ 4

A4

5. Mark the message buffer for encryp-
tion, thus attaching a copy of the encryp-
tion key handle to the message buffer.

tpseal ()

7. Close encryption key handle to
release key handle and all resources
associated with it.

tpkey_close()

v

(Continue)

Using Security in ATMI Applications

End

Sending and Receiving Encrypted Messages

For details about these steps and insight into how the system encrypts a message buffer, see the
following topics.

Step 1: Opening a Key Handle for Encryption

Call the tpkey_open (3c) function or TPKEYOPEN (3cbl) routineto makethe digital certificate
of the target recipient available to the originating process. The target recipient might be aclient,
aservice, aserver group, a gateway group, a server machine, or an entire domain of servers.

When the originating process calls tpkey_open () to open the key handle, it specifies either the
TPKEY_ENCRYPT Of TPKEY_AUTOENCRYPT flag to indicate that the handle will be used to encrypt
amessage buffer. Typicaly, aclient makesthis call after calling tpinit (), and aserver makes
this call as part of initializing through tpsvrinit ().

Opening a key handle with the TpxEY_auToENCRYPT flag enables automatic encryption:
subsequently, the originating process encrypts message buffers automatically whenever they are
sent. Using the TprEY_auToENCRYPT flag is beneficial for three reasons:

e Lesswork isrequired from application programmers because fewer ATMI calls are
required when operating in a secure ATMI application.

e Existing ATMI applications can leverage encryption technology with minimal coding
changes.

e The possibility of programming errors that might result in an unencrypted (plaintext) buffer
being sent over an insecure network is reduced.

Listing 3-7 shows how to open an encryption key handle. TekeyY isaspecial datatype definedin
the atmi . h header file.

Listing 3-7 Opening an Encryption Key Handle Example

main(argc, argv)
int argc;

char *argvl[];
#endif

{
TPKEY tu_key;

Using Security in ATMI Applications 3-35

{DOCROOT}/rf3c/rf3c.html

3-36

if (tpkey_ open (&tu_key, “TOUPPER”, NULL,

NULL, 0, TPKEY_ENCRYPT) == -1) {

(void) fprintf (stderr, “tpkey_open tu failed
tperrno=%d(%s) \n”, tperrno, tpstrerror (tperrno)) ;

exit (1) ;

Step 2 (Optional): Getting Key Handle Information

Y ou may want to get information about an encryption key handle to establish the validity of the
key. To do so, call the tpkey_getinfo (3c) function or TPKEYGETINFO (3cbl) routine. While
some of the information returned may be specific to a cryptographic service provider, a core set
of attributesis common to all providers.

The default public key implementation supports three algorithms for bulk data encryption of
message content:

e DES (DES-CBC)—a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It
provides 56-bit keys (8 parity bits are stripped from the full 64-bit key) and is exportable
outside the United States. (DES stands for the Data Encryption Standard.)

o 3DES (two-key triple-DES)—a 128-bit block cipher run in Encrypt-Decrypt-Encrypt
(EDE) mode. 3DES provides two 56-bit keys (in effect, a112-hit key) and is not
exportable outside the United States.

e RC2—avariable key-size block cipher with akey size range of 40 to 128 bits. It is faster
than DES and is exportable with a key size of 40 bits. A 56-bit key sizeis allowed for
foreign subsidiaries and overseas offices of United States companies. In the United States,
RC2 can be used with keys of virtually unlimited length, but the public key software
restricts the key length to 128 bits. (RC2 stands for Rivest’s Cipher 2.)

Encryption strength is controlled by the encrypT_BITS key attribute, and the algorithm is
controlled by the ENcrypPT_aLc key attribute. When an agorithm with fixed key length is set in
ENCRYPT_ALG, the value of ENcrRYPT_BITS isautomatically adjusted to match.

Listing 3-8 shows how to get information about an encryption key handle.

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html

Sending and Receiving Encrypted Messages

Listing 3-8 Getting Information About an Encryption Key Handle Example

main (argc, argv)
int argc;

char *argvl[];
#endif

{
TPKEY tu_key;
char principal_name [PNAME_LEN] ;
long pname_len = PNAME_LEN;

if (tpkey_getinfo (tu_key, “PRINCIPAL”,
principal_name, &pname_len, 0) == -1) {
(void) fprintf (stdout, “Unable to get information
about principal: %d(%s)\n”,

tperrno, tpstrerror (tperrno));

exit (1) ;

Step 3 (Optional): Changing Key Handle Information

To set optional attributes associated with an encryption key handle, call the
tpkey_setinfo (3c) function or TPREYSETINFO (3cbl) routine. Key handle attributes vary,
depending on the cryptographic service provider.

Listing 3-9 shows how to change information associated with an encryption key handle.

Using Security in ATMI Applications 3-37

{DOCROOT}/rf3c/rf3c.html

3-38

Listing 3-9 Changing Information Associated with an Encryption Key Handle Example

main (argc, argv)
int argc;

char *argvl[];
#endif

{
TPKEY tu_key;
static const unsigned char rc2_objid[] = {
0x06, 0x08, 0Ox2a, 0x86, 0x48, 0x86, O0xf7, 0x0d, 0x03, 0x02
Yi

if (tpkey_setinfo(tu_key, “ENCRYPT_ALG”, (void *) rc2_objid,
sizeof (rc2_objid), 0) == -1) {
(void) fprintf (stderr, “tpkey_setinfo failed
tperrno=%d(%$s)\n”,
tperrno, tpstrerror (tperrno));

return(l) ;

Step 4: Allocating a Buffer and Putting a Message in the Buffer

To alocate atyped message buffer, call the tpalloc (3¢) function. Then put a message in the
buffer.

Step 5: Marking the Buffer for Encryption

Tomark, or register, the message buffer for encryption, call thetpseal (3¢) function. By calling
this function, you attach a copy of the encryption key handle to the message buffer. If you open
the key with the TprkEY_AUuTOENCRYPT flag, each message that you send is automatically marked
for encryption without an explicit call to tpseal ().

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

Sending and Receiving Encrypted Messages

Note: In COBOL applications, use the AUTOENCRYPT Settings member to encrypt a message
buffer. See TPKEYOPEN (3cbl) .

Listing 3-10 shows how to mark a message buffer for encryption.

Listing 3-10 Marking a Message Buffer for Encryption Example

main (argc, argv)
int argc;
char *argvl[];
#endif
{
TPKEY tu_key;
char *sendbuf, *rcvbuf;

if (tpseal (sendbuf, tu_key, 0) == -1) {
(void) fprintf (stderr, “tpseal failed tperrno=%d(%s)\n”,
tperrno, tpstrerror (tperrno));
tpfree(rcvbuf) ;
tpfree (sendbuf) ;
tpterm() ;
(void) tpkey_close(tu_key, 0);
exit (1) ;

Step 6: Sending the Message

After the message buffer has been marked for encryption, transmit the message buffer using one
of the following C functions or COBOL routines:

— tpcall() OF TPCALL

Using Security in ATMI Applications 3-39

3-40

— tpbroadcast () Of TPBROADCAST
— tpconnect () OF TPCONNECT

— tpenqueue() O TPENQUEUE

- tpforward()

— tpnotify () OF TPNOTIFY

— tppost () OF TPPOST

— tpreturn() OrF TPRETURN

— tpsend () OF TPSEND

Step 7: Closing the Encryption Key Handle

Call the tpkey close(3c) function or TPKEYCLOSE (3cbl) routine to release the encryption
key handle and all resources associated with it.

How the System Encrypts a Message Buffer

Just before a message buffer is sent, the public key software encrypts the message and attaches
an encryption envelope; the encryption envelope enables the target recipient to decrypt the
message. |f a sealed buffer is transmitted more than once, encryption is performed for each
transmission. This process makesit possible to modify amessage buffer after marking the buffer
to be encrypted.

The public key software encrypts the content of the message buffer and generates an encryption
envelope for the recipient of the encrypted message by performing the following two-step
procedure.

1. {message buffer_data+ buffer_type string + buffer_subtype string} session _key =
encrypted_message

2. {session key}recipient’s public_key = encrypted session key =
encryption_envelope for_recipient

The notation { something} key means that something has been encrypted or decrypted using key.
In Step 1, amessage buffer is encrypted using the session key, and in step 2, the session key is
encrypted using the recipient’s public key.

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html

Sending and Receiving Encrypted Messages

Multiple Message Recipients

More than one encryption envelope can be associated with a message buffer, which means that
multiple recipients, with different private keys, can receive and decrypt an encrypted message. A
recipient can be a person or a process. When amessage is encrypted for multiple recipients, it is
encrypted only once, but the session key is encrypted with the public key of each recipient. All
encryption envelopes are attached to the encrypted message.

If several encryption envelopes are associated with one message buffer, al of them must use the
same symmetric key algorithm and the same key size for that algorithm.

Encrypted Message Content

An encrypted message buffer isrepresented in the PK CS-7 format asaversion 0 EnvelopedData
content type. The Envelopedpata content type, as used by the Oracle Tuxedo system, consists
of the following items:

e A list of recipients (in plaintext) that can be read by any ATMI process

Encryption envelopes for one or more recipients

Public key algorithm (and any associated parameters) under which the session key was
encrypted

Symmetric key algorithm (and any associated parameters) under which the bulk data was
encrypted

Encrypted bulk data, which is a composite of message buffer data, buffer type string,
buffer subtype string, and digital signatures (if any) that have undergone the following
transformations:

— Conversion of the message buffer data, buffer type string, and buffer subtype string into
the Oracle Tuxedo encoded format to form the composite encoded data. (The Oracle
Tuxedo encoded format allows a message buffer to be decrypted on any machine
architecture.)

— Compression of the composite encoded data and digital signatures (if any) using the
Deflate compression algorithm to form the composite compressed data.

— Encryption of the composite compressed data under arandomly generated session key
and symmetric key algorithm (identified earlier in thislist) to form the encrypted bulk
data.

Using Security in ATMI Applications 3-41

3-42

Figure 3-6 showsthe envelope hierarchy for the Envelopedpata content type. The signedbata
content type is part of the hierarchy only if the message to which it belongs has one or more
associated digital signatures.

Figure 3-6 EnvelopedData Content Type

EnvelopedData Content Type
(Encrypting Operation)

CompressedData Content Type
(Compressing Operation)

SignedData Content Type
(Signing Operation)

TUXBUF Content Type

(Message Content)

As shown in the preceding figure, a message buffer may be both signed and encrypted. No
relationship is required between the number of digital signatures and the number of encryption
envel opes associated with a message buffer.

When both processes are performed on a message buffer, signatures are generated first, on
unencrypted data. The number of attached signatures and the identity of signing parties are then
obscured by the bulk data encryption.

Note: A suitabledecryption key must be available to access message data before signatures can
be verified.

Writing Code to Receive Encrypted Messages

The procedure for writing code to receive encrypted messages consists of the following steps.

1. Cdll tpkey_open () to open akey handle for the target recipient. tpkey_open returns akey
handle to the recipient’s private key and digital certificate.

Using Security in ATMI Applications

Sending and Receiving Encrypted Messages

2. (Optiona): Call tpkey_getinfo () to get information about the decryption key handle.

3. (Optiondl): Call tpkey_setinfo () tochangeinformation associated with the decryption key
handle.

4. Cal tpkey_close () to closethe decryption key handle. tpkey_close () releasesthe key
handle and all resources associated with it.

For details about these steps and insight into how the system decrypts a message buffer, see the
following topics.

Step 1: Opening a Key Handle for Decryption

Cdll the tpkey_open (3¢) function or TPKEYOPEN (3cbl) routine to make the private key and
the associated digital certificate of the target recipient available to the receiving process. The
receiving process might be aclient, aservice, aserver group, agateway group, a server machine,
or an entire domain of servers.

An application administrator can configure the ATMI application’s urBconF1c file such that
decryption key handles are opened automatically when the ATMI application isbooted. No more
than one decryption key handle per server may be used with this method. See “Initializing
Decryption Keys Through the Plug-ins” on page 2-56 for details.

If an ATMI application is not configured to open a decryption key handle for the receiving
process during booting, the receiving process initiates its own tpkey_open () cal. Or, if the
receiving process wants to open another decryption key handle, the receiving process makes an
additiona tpkey_open () call.

In order to access the target recipient’ s private key, the receiving process must prove itsright to
act as the target recipient. Proof requirements depend on the implementation of the public key
plug-in interface. The default public key implementation requires a secret password from the
calling process.

When the receiving process calls tpkey_open () t0 open the key handle, it specifiesthe
TPKEY_DECRYPT flag to indicate that the handle will be used to decrypt a message buffer.
Typically, aclient makes this call after calling tpinit (), and aserver makesthis call as part of
initializing through tpsvrinit ().

Listing 3-11 shows how to open adecryption key handle. TereyY isaspecial datatype definedin
the atmi . h header file.

Using Security in ATMI Applications 3-43

{DOCROOT}/rf3c/rf3c.html

Listing 3-11 Opening a Decryption Key Handle Example

TPKEY tu_key;
tpsvrinit (argc, argv)
int argc;

char **argv;

#endif

{

char *tu_location;

if (tpkey_open (&tu_key, “TOUPPER”, tu_location,
NULL, 0, TPKEY_DECRYPT) == -1) {
userlog (“Unable to open private key: %d(%s)”,
tperrno, tpstrerror (tperrno)) ;
return(-1)

}

Step 2 (Optional): Getting Key Handle Information

Y ou may want to get information about a decryption key handle to establish the validity of the
key. To do so, call the tpkey_getinfo (3c) function or TPKEYGETINFO (3cbl) routine. While
some of the information returned may be specific to a cryptographic service provider, a core set
of attributesis common to all providers.

Listing 3-12 shows how to get information about a decryption key handle.

3-44 Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html

Sending and Receiving Encrypted Messages

Listing 3-12 Getting Information About a Decryption Key Handle Example

TPKEY tu_key;

tpsvrinit (argc, argv)

int argc;

char **argv;

#endif

{
char principal_name [PNAME_LEN] ;
long pname_len = PNAME_LEN;

if (tpkey_getinfo(tu_key, “PRINCIPAL”,
principal_name, &pname_len, 0) == -1) {
(void) fprintf (stdout, “Unable to get information
about principal: %d(%s)\n”,

tperrno, tpstrerror (tperrno));

exit (1) ;

Step 3 (Optional): Changing Key Handle Information

To set optional attributes associated with a decryption key handle, call the tpkey_setinfo (3c)
function or TPKEYSETINFO (3cbl) routine. Key handle attributes vary, depending on the
cryptographic service provider.

Listing 3-13 shows how to change information associated with a decryption key handle.

Using Security in ATMI Applications 3-45

{DOCROOT}/rf3c/rf3c.html

3-46

Listing 3-13 Changing Information Associated with a Decryption Key Handle Example

TPKEY tu_key;
tpsvrinit (argc, argv)
int argc;
char **argv;
#endif
{

TM32U mybits = 128;

if (tpkey_setinfo(tu_key, “ENCRYPT_BITS”, &mybits,
sizeof (mybits), 0) == -1) {
(void) fprintf (stderr, “tpkey_setinfo failed
tperrno=%d(%s)\n”,
tperrno, tpstrerror (tperrno));

return(l) ;

Step 4: Closing the Decryption Key Handle

Call the tpkey_close (3c) function or TPKEYCLOSE (3cbl) routineto release the decryption
key handle and all resources associated with it.

How the System Decrypts a Message Buffer

The public key software automatically decrypts an encrypted message buffer whenever it enters
an Oracle Tuxedo client process, server process, or any system process that needs to access the
content of the message buffer. For automatic decryption to succeed, the receiving process must
have opened a decryption key (type TPKEY_DECRYPT) corresponding to arecipient identified in
one of the attached encryption envelopes.

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html

Sending and Receiving Encrypted Messages

Upon receiving an encrypted message, the public key software, operating on behalf of the
receiving process, performs the following tasks.

1. Readsthe target recipient’s name on the attached encryption envelope.

2. Torecover the session key, decrypts the recipient’s encryption envel ope using the recipient’s
private key and the public key algorithm.

Decrypts the message using the recovered session key and the symmetric key agorithm.
Uncompresses the message.

Verifies digital signaturesif any. (See “How a Signed Message Is Received” on page 3-31.)

o g ~ W

If the message buffer successfully passes the check performed in step 5, the public key
software decodes the message buffer data, buffer type string, and buffer subtype string, and
then passes the plaintext message to the receiving process. This step reverses the encoding
performed by the originating process. (The Oracle Tuxedo encoded format allows a message
buffer to be decrypted on any machine architecture.)

Note: If none of the attached digital signatures can be verified or the message buffer cannot be
decrypted, the receiving process does not receive the message buffer. Moreover, the
receiving process has no knowledge of the message buffer.

If asystem processisacting asaconduit (that is, if it is not reading the content of the message),
then the message need not be decrypted. Bridges and workstation handlers (WSHSs) are examples
of system processes acting as conduits.

The WSH isaspecia example of aconduit. If aWSH is configured for data-dependent routing,
it needsto read the received message buffer to determine how to route the buffer. The public key
software makes a copy of the received message buffer, decrypts the copy, and then passes the
decrypted copy to the WSH. The WSH analyzes the decrypted copy to determine how to route
the buffer, and then routes the original message buffer unchanged to the appropriate server. (For
more detail about the interaction between data-dependent routing and public key security, see
“Compeatibility/Interaction with Data-dependent Routing” on page 1-61.)

Discarding an Input Buffer’s Encryption Envelopes

If a message buffer is passed to an ATMI function (such as tpacall ()) asan input parameter,
the public key software discards any encryption envelopes previoudy attached to the message.
This behavior prevents the target recipients for the original message from receiving any
maodifications made by an intermediate process.

As an example of this process, consider the scenario shown in Figure 3-7.

Using Security in ATMI Applications 3-41

Figure 3-7 Forwarding a Signed and Encrypted Message Example

Workstation

Client
= > WSH > Server
[\ \\
Employee (Data-dependent Routing) Manager Purchasing
Decrypt, Read, Decrypt, Read, Sign, Seal, Decrypt &
Encrypt Message & Forward Encrypted Message & Forward Encrypted Message Read Message
EnvelopedData EnvelopedData EnvelopedData EnvelopedData
Encrypt Env 3 Encrypt Env 3
Encrypt Env 2 Encrypt Env 2 Encrypt Env 2
Encrypt Env 1 Encrypt Env 1 Encrypt Env 1
= = =
Message Message Message Message

A server process named Manager receives a signed and encrypted message buffer from a client
process named Employee, decrypts and reads the received message buffer, signs and seasit for
a service named purchasing, and then forwards the message to Purchasing.

Thefollowing is a detailed description of how this operation is performed.

1. Theworkstation handler (WSH) receives the signed and encrypted message buffer from the
employee and forwardsit asis.

The WSH processis configured for data-dependent routing, which is briefly described in
“How the System Decrypts a Message Buffer” on page 3-46. The public key software uses
adecryption key previously opened for the WSH process to decrypt a copy of the received
message buffer, and then passes the decrypted copy to the WSH. After analyzing the
decrypted copy, the WSH routes the received message buffer to the Manager processasis.

If the WSH processis hot configured for data-dependent routing, the Employee process
does not need to tpseal () the message buffer for the WSH process, and the WSH process
does not need to open a decryption key.

Regardless of how it is configured, the WSH does not verify digital signatures.

3-48 Using Security in ATMI Applications

Sending and Receiving Encrypted Messages

2. When the message buffer arrives at the Manager process, the public key software;

a. Decrypts the message buffer using a decryption key previously opened for the Manager
process.

b. Verifiesthe employee’'s signature.

c. Passesthe message without digital signature or encryption information to the Manager.

When a process receives a message buffer, it receives only the message content. Any
digital signatures or encryption envel opes associated with the message buffer are not
included.

3. ThewManager cals tpenvelope () repeatedly to find out about the digital signature and
encryption information associated with the message buffer. tpenvelope () returns:

— Digital signature information, including the signer’s public key and a digital-signature
status of TPSIGN_OK

— Encryption information, including the public keys of the WSH process and the
Manager Process itself

4. ThemManager callstpkey_getinfo () withthesigner’'spublic key asan argument, to obtain
more information about the signer, including the signer’s principal name.

5. If the Mmanager determines that the signer is aknown employee and that the employee’s
request (as stated in the message content) isvalid, the Manager proceeds as follows.

a Cadlstpsign () to mark the message buffer for digital signature by the Manager.
a. Cdlstpseal () to mark the message buffer to be encrypted for Purchasing.

b. Callstpforward () (or some other function used to transmit data) to send the message to
Purchasing.

Just before the message is transmitted, the public key software performs the following tasks.
Generates a digital signature for the Manager.
Verifies the employee's digital signature.

Encrypts the message content and associated digital signatures.

E A

Creates an encryption envelope for purchasing.

Using Security in ATMI Applications 3-49

Replacing an Output Buffer’s Encryption Envelopes

If amessage buffer is passed to an ATMI function (such as tpgetrply ()) asan output
parameter, the public key software del etes any encryption information associ ated with the buffer.
Thisinformation includes any pending seals, or seals from previous uses of the buffer. (A
pending seal isarecipient’s seal that is registered with a message buffer.)

New encryption information might be associated with the new buffer content after successful
completion of the operation.

See Also

e “Examining Digital Signature and Encryption Information” on page 3-50
o “Externalizing Typed Message Buffers’ on page 3-57

e “Public Key Security” on page 1-32

e “Administering Public Key Security” on page 2-48

e “Programming an ATMI Application with Security” on page 3-3

Examining Digital Signature and Encryption Information

3-50

The public key software maintains the order in which:

e Digital-signature registration requests and digital signatures are attached to a message
buffer

e Encryption registration requests and encryption envelopes are attached to a message buffer

A processobtainsthisinformation by calling the tpenvelope () functionwith thetarget message
buffer as an argument. tpenvelope () isdescribed onthe tpenvelope (3c) reference pagein
the Oracle Tuxedo ATMI C Function Reference.

There may be multiple occurrences of digital-signature registration requests, digital signatures,
encryption registration requests, and encryption envel opes associated with amessage buffer. The
occurrences are stored in sequence, with the first item at the zero position and subsequent items
in consecutive positions. The occurrence input parameter for tpenvelope () indicates which
item is being requested. When the value of occurrence isbeyond the position of the last item,
tpenvelope () failswith the TPENOENT error condition. A process can examine al items by
caling tpenvelope () repeatedly until TPENOENT iS returned.

Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html

Examining Digital Signature and Encryption Information

In an originating process, digital signature and encryption information is generally in a pending
state, waiting until the message is sent. In areceiving process, digital signatures have already
been verified, and encryption and decryption have already been performed.

What Happens When an Originating Process Calls
tpenvelope

When an originating process calls tpenvelope () With the originating message buffer as an
argument, tpenvelope () reports:

e Any digital signature request explicitly registered with the message buffer as being in the
TPSIGN_PENDING State. The originating process explicitly registers adigital signature
request by calling the tpsign (3¢) function.

e Any digital signature request implicitly registered with the message buffer as also being in
the TPsIGN_PENDING State. The originating processimplicitly registers adigital signature
request by calling tpkey_open (3¢) with the TPkEY_auTosIcn flag specified.

e Any encryption (seal) request explicitly registered with the message buffer as being in the
TPSEAL_PENDING State. The originating process explicitly registers an encryption request
by calling the tpseal (3¢) function.

e Any encryption (seal) request implicitly registered with the message buffer as also being in
the TPsEAL_PENDING state. The originating process implicitly registers an encryption
request by calling tpkey_open () with the TPkEY_AUTOENCRYPT flag specified.

In additiontothe status, tpenvelope () returnsthekey handle associated with adigital signature
or encryption registration request. A processcan call the tpkey_getinfo (3c) function with the
key handle as an argument, to get more information about the key handle.

What Happens When a Receiving Process Calls tpenvelope

When a process receives a message buffer, it receives only the message content. Any digital
signatures or encryption envelopes associated with the message buffer are not included. The
receiving process must call tpenvelope () to obtain information about any attached digital
signatures or encryption envelopes.

When areceiving process calls tpenvelope () With the received message buffer asan argument,
tpenvelope () reports:

e Any digital signature attached to the message buffer. A digital signature has one of the
following states:

Using Security in ATMI Applications 3-51

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

3-52

TPSIGN_OK
Digital signature has been verified.
TPSIGN_TAMPERED_MESSAGE

Digital signature is not valid because the content of the message buffer has been
altered.

TPSIGN_TAMPERED_CERT

Digital signatureis not valid because the signer’s digital certificate has been altered.
TPSIGN_REVOKED_CERT

Digital signature is not valid because the signer’s digital certificate has been revoked.
TPSIGN_POSTDATED

Digital signatureis not valid because its timestamp is too far into the future.
TPSIGN_EXPIRED_CERT

Digital signatureis not valid because the signer’s digital certificate has expired.
TPSIGN_EXPIRED

Digital signatureis not valid because its timestamp is too old.

TPSIGN_UNKNOWN

Digital signatureis not valid because the signer’s digital certificate was issued by an
unknown Certification Authority (CA).

e Any encryption envelope attached to the message buffer. An encryption envelope has one
of the following states:

TPSEAL_OK
Encryption envelopeisvalid.
TPSEAL_TAMPERED_CERT

Encryption envelope is not valid because the target recipient’s digital certificate has
been altered. (Target recipient will not receive the message buffer.)

TPSEAL_REVOKED_CERT

Encryption envelope is not valid because the target recipient’s digital certificate has
been revoked. (Target recipient will not receive the message buffer.)

TPSEAL_EXPIRED_CERT

Encryption envelope is not valid because the target recipient’s digital certificate has
expired. (Target recipient will not receive the message buffer.)

Using Security in ATMI Applications

Examining Digital Signature and Encryption Information

— TPSEAL_UNKNOWN

Encryption envelope is not valid because the target recipient’s digital certificate was
issued by an unknown CA. (Target recipient will not receive the message buffer.)

In addition to the status, tpenvelope () returnsthekey handle associated with adigital signature
or encryption envelope. A process can call the tpkey_getinfo (3c) function with the key
handle as an argument, to get more information about the key handle.

If areceiving process calls tpsign () to register adigital signature request after receiving the
message buffer, tpenvelope () reportsthe status of the registration as TPSIGN_PENDING.
Similarly, if areceiving process calls tpseal () to register an encryption (sea) request after
receiving the message buffer, tpenvelope () reportsthe status of the registration as
TPSEAL_PENDING.

If areceiving process modifies the content of a signed message buffer after receiving it, the
attached signatures are no longer valid. Asaresult, tpenvelope () cannot verify the signatures,
and reports a signature status of TPSTGN_TAMPERED_MESSAGE.

Understanding the Composite Signature Status

For a message buffer with multiple digital signatures, the public key software calls an internal
function eguivalent to tpenvelope () to examine the state of each digital signature. Then, by
observing certain rules, the public key software forms acomposite signature status. The rulesfor
forming a composite signature status are shown in Table 3-4.

Table 3-4 Composite Signature Status

If Any Status Is . . . And There Is No Status of . . . Then the Composite Status Is . . .
TPSIGN_TAMPERED_MESSAGE A TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT TPSIGN_TAMPERED_MESSAGE TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT TPSIGN_TAMPERED_MESSAGE TPSIGN_REVOKED_CERT

TPSIGN_TAMPERED_CERT

TPSIGN_POSTDATED TPSIGN_TAMPERED_MESSAGE TPSIGN_POSTDATED
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT

Using Security in ATMI Applications 3-53

{DOCROOT}/rf3c/rf3c.html

Table 3-4 Composite Signature Status (Continued)

If Any Statusls . ..

And There Is No Status of . . .

Then the Composite Status Is . . .

TPSIGN_EXPIRED_CERT

TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED

TPSIGN_EXPIRED_CERT

TPSIGN_OK

TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT

TPSIGN_OK

TPSIGN_EXPIRED

TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT
TPSIGN_OK

TPSIGN_EXPIRED

TPSIGN_UNKNOWN

TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT
TPSIGN_OK
TPSIGN_EXPIRED

TPSIGN_UNKNOWN

Any incoming message buffer without a composite signature status of TPSIGN_OK or
TPSIGN_UNKNOWN isdiscarded asif it were never received. If the SIGNATURE_REQUIRED
parameter isset to v (yes) inthe ATMI application’ sueeconF1a file, then any incoming message
buffer without a composite signature status of TpsIeN_ox isdiscarded asif it were never
received. See “Enforcing the Signature Policy for Incoming Messages’ on page 2-50 for more

detail.

An exception to the handling of signed message buffers described in the previous paragraph is
the tpimport (3c) function. The tpimport (3c¢) function delivers an incoming message buffer
regardless of the composite signature status.

3-54 Using Security in ATMI Applications

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

Examining Digital Signature and Encryption Information

Example Code for tpenvelope

Listing 3-14 shows how to use tpenvelope () to examinethe digital signature and encryption

information associated with a message buffer.

Listing 3-14 Using tpenvelope Example

main(argc, argv)
int argc;

char *argvl[];
#endif

{
TPKEY tu_key;
TPKEY sdo_key;
TPKEY output_key;
char *sendbuf, *rcvbuf;
int ret;
int occurrence = 0;
long status;
char principal_name [PNAME_LEN] ;
long pname_len = PNAME_LEN;

int found = 0;

output_key = NULL;
ret = tpenvelope(rcvbuf, 0, occurrence, &output_key,
&status, NULL, O0);
while (ret != -1) {
if (status == TPSIGN_OK) {
if (tpkey_getinfo (output_key, “PRINCIPAL”,
principal_name, &pname_len, 0) == -1) {
(void) fprintf (stdout, “Unable to get information
about principal: %d(%s)\n”,
tperrno, tpstrerror (tperrno)) ;
tpfree(sendbuf) ;
tpfree(rcvbuf) ;

Using Security in ATMI Applications

tpterm() ;
(void) tpkey_close(tu_key, 0);
(void) tpkey_close(sdo_key, 0);
(void) tpkey_close(output_key, 0);
exit (1) ;
}
/* Do not forget to free resources */
(void) tpkey_close(output_key, 0);
output_key = NULL;
found = 1;
break;
}
/* Do not forget to free resources */
(void) tpkey_close(output_key, 0);
output_key = NULL;
occurrence++;
ret = tpenvelope(rcvbuf, 0, occurrence, &output_key,
&status, NULL, O0);

See Also
e “Externalizing Typed Message Buffers’ on page 3-57
e “Public Key Security” on page 1-32
e “Administering Public Key Security” on page 2-48
e “Programming an ATMI Application with Security” on page 3-3

Externalizing Typed Message Buffers

An externalized representation is a message buffer that does not include any ATMI header
information that is normally added to a message buffer just before the buffer istransmitted. An

3-56 Using Security in ATMI Applications

Externalizing Typed Message Buffers

externalized representation of a signed message buffer enables “ pass through” transmission of
signed data and long-term storage of the signed buffer for non-repudiation. It also enables an
encrypted message buffer to be transported through intermediate processes without accessto a
decryption key.

How to Create an Externalized Representation

An ATMI process converts atyped message buffer into an externalized representation by calling
the tpexport (3c) function. Pending signatures associated with a message buffer are generated
at thetime tpexport () iscaled, just asif the buffer were being transmitted to another process
by an ATMI function. Similarly, pending seals associated with amessage buffer are generated at
thetime tpexport () iscaled, just asif the buffer were being transmitted to another process by
an ATMI communication function.

The externalized representation of a message buffer is stored in the PKCS-7 format, whichisa
binary format. If astring format is required, the calling process must call tpexport () with the
TPEX_STRING flag specified.

Note: The ability to create an externalized representation of atyped message buffer is not
unique to public key security. A process may call tpexport () to externalize atyped
message buffer regardless of whether amessage buffer is marked for digital signature or
encryption.

How to Convert an Externalized Representation

A receiving process callsthe tpimport (3¢) function to convert the externalized representation
of amessage buffer into atyped message buffer. The tpimport () function also performs
decryption, if necessary, and verifies any associated digital signatures.

Example Code for tpexport and tpimport

Listing 3-15 shows how to use tpexport () to convert atyped message buffer into an
externalized representation, and how to use tpimport () to convert the externalized
representation back into atyped message buffer.

Listing 3-15 Using tpexport and tpimport Example

static void hexdump _ ((unsigned char *, long));
#define MAX_BUFFER 80000

Using Security in ATMI Applications 3-57

{DOCROOT}/rf3c/rf3c.html
{DOCROOT}/rf3c/rf3c.html

3-58

main(argc, argv)

int argc;

char *argvl[];

#endif

{
char *databuf;
char exportbuf[MAX BUFFER];
long exportbuf_size = 0;
char *importbuf = NULL;
long importbuf_size = 0;
int go_on = 1;

exportbuf_size = 0;
)

while (go_on == {
if (tpexport (databuf, 0, exportbuf, &exportbuf_size, 0)
== -1) {
if (tperrno == TPELIMIT) {
printf (“*%d tperrno is TPELIMIT, exportbuf_size=%1d\n”,
_ _LINE_ , exportbuf_size);
if (exportbuf_size > MAX_ BUFFER) {
return(l) ;
}
}
else {
printf (“tpexport (%3d) failed: tperrno=%d(%s)\n”,
_ LINE_ , tperrno, tpstrerror (tperrno)) ;
return(l) ;
}
}
else {
go_on = 0;
}

Using Security in ATMI Applications

Externalizing Typed Message Buffers

hexdump ((unsigned char *) exportbuf, (long) exportbuf_size);
(tpimport (exportbuf, exportbuf_size, &importbuf,

0) == -1) {

failed:
tpstrerror (tperrno)) ;

if

&importbuf_size,
printf (“tpimport (%d)

_ LINE__, tperrno,

tperrno=%d(%$s) \n”,

return (1) ;

See Also
e “Public Key Security” on page 1-32
e “Administering Public Key Security” on page 2-48
e “Programming an ATMI Application with Security” on page 3-3

Using Security in ATMI Applications

3-59

3-60 Using Security in ATMI Applications

CHAPTERo

Implementing Single Point Security
Administration

Thefollowing sections explain how to implement single point security administration for Tuxedo
and WebL ogic Server from the Tuxedo point of view:

e What Single Point Security Administration Means
e Setting up LAUTHSVR as the Authentication Server
e Setting up GAUTHSVR as the Authentication Server

Note: Before setting up single point security, be sure you are familiar with the Tuxedo security
architecture and requirements. Y ou may aso want to coordinate this effort with your
WebL ogic or LDAP Administrator.

What Single Point Security Administration Means

If you have both Tuxedo and WebL ogic Server deployed in your environment, then you have to
manage two sets of security information. Single point security administration allows you to
leverage the WebL ogic Server security to manage your security database by eliminating user and
group information from Tuxedo. Y ou can use WebL ogic Server as your security database to
authenticate Tuxedo users.

Note: The Tuxedo ACL information will continueto reside in Tuxedo and is not currently
integrated with WebL ogic Server 7.0.

If you are specifying SECURITY=ACL Of SECURITY=MANDATORY_ACL in the RESOURCES
section of theuseconr1a file, then you must continueto maintain tpgrp and tpaci files
in Tuxedo.

Using Security in ATMI Applications 4-1

The single point security administration feature leverages the enhanced WebL ogic Server 7.0
security and the LDAP to alow single point security administration. Y ou can maintain user
security information in WebL ogic Server embedded L DAP server and use the WebL ogic Server
Console to administer the security information from a single system. Y ou must modify the
UBBCONFIG file to enable single point security.

Single Point Security Administration Tasks

To set up single point security, you must provide the Tuxedo security information to the

WebL ogic Server-embedded LDAP server. Thisincludes migrating or setting up the Tuxedo user
(UID) and group (GID) information in WebL ogic Server LDAP server so that authentication can
be successful. For Tuxedo UID and GID values to be available to WebL ogic Server, you must
use the tpmigldap utility, modify the tpusr file manually with atext editor, or enter the user
information viathe WebL ogic Administration Console.

Note: TheWebL ogic Administration Console may be the method used when adding one or two
users after the security database is set up. For efficiency and time management, you may
prefer using the tpmigldap utility or the tpusr file asagenera rule.

Single point security administration consists of the following tasks:
e Setting up LAUTHSVR as the Authentication Server
e Using tpmigldap to Migrate User Information to WebL ogic Server
e “Setting up GAUTHSVR as the Authentication Server”
e “Using tpmigldif to Migrate User Information”

e Adding New Tuxedo User Information

See Also

e Security information for WebL ogic Server 8.1at the following URL :
http://e-docs.bea.com/wls/docs81/security.html

Setting up LAUTHSVR as the Authentication Server

LAUTHSVR isa System /T provided server that offers the authentication service while the user
security information islocated in WebL ogic Server. To enable the single security administration
feature, you must configure LauTHSVR as the authentication server. At runtime, the LaUTHSVR

4-2 Using Security in ATMI Applications

Setting up LAUTHSVR as the Authentication Server

will retrieve the user information from the WebL ogic Server-embedded LDAP and authenticate
users. |f the authentication is successful, an appkey is returned to the user, otherwise,
authentication fails.

Note: Tuxedo 10 and greater allows you to configure WebL ogic authentication using a more
general authentication server, cautusvr (which can be used along with LauTHSVR Or
replaceit).

For more cauTrsVR information, see “ Setting up GAUTHSVR as the Authentication
Server” on page 4-16 and GAUTHSVR (5), in the Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.

To defineLauTHSVR asthe authentication server, you must definethefollowing parametersin the
UBBCONFIG file:

® SECURITY must be set to USER_AUTH, ACL, OF MANDATORY_ACL in the RESOURCES Section.

e LAUTHSVR must be specified in the sErRvERS section.

Note: If LauTasvr cannot find avalid configuration file or thefile does not exist, it will log
an error messagein USERLOG and fail to boot. The default LauTHSVR configuration
fileis $TUXDIR/udataobj/tpldap and is provided with the product.

LAUTHSVR Command Line Interface

The LauTHSVR isthe LDAP-based authentication server for Tuxedo. It requires a configuration
file, that by default is $TUXDIR/udataobj/tpldap. YOU Can create your Own LAUTHSVR
configuration file or use the default tp1dap file that is available with the product.

The command line interface syntax for L.auTHsVR is asfollows:

-f full_ pathname
Specifies the full pathname of the LauTasvR configuration file.

Note: If -£ option is omitted, the default L.auTHSVR configuration file tpldap is used.

The following example instructs L.auTHSVR to use the default configuration file, tpidap, inthe
$TUXDIR/udataobj directory.

LAUTHSVR SRVGRP=GROUP1 SRVID=2 CLOPT="-A-"

In the following example, LAUTHSVR usesthe myauthsvr.conf configuration filein the
/home/tuxedo/bankapp directory.

LAUTHSVR SRVGRP=GROUP1l SRVID=2
CLOPT="-A-- -f/home/tuxedo/bankapp/myauthsvr.conf”

Using Security in ATMI Applications 4-3

{DOCROOT}/rf5/rf5.html

Setting Up the LAUTHSVR Configuration File

LAUTHSVR Supports an input configuration file that contains information such as bind DN and an
unencrypted password for bind DN. This configuration fileis a plain text file and can be edited
using any text editor and must be protected by the system using file permissions. By default the
configuration file, named tpidap, islocated in $TUXDIR /udataobj directory. Y ou can
overwritethisfilein the command linefor LauTusvr. The LauTHsvr configuration file contains
keyword and value pairs as defined in Table 4-1.

Syntax Requirements for LAUTHSVR Configuration File

Although the default values for the LauTHsvR configuration file are usually sufficient, a system
administrator may choose to configure it with different names. Therefore, you should be aware
of the following requirements for the LauTHSVR configuration file:

e The Lautusvr configuration fileisaplain text file.

e Keyword order does not matter; however, there must be at least one space character
between the keyword and its value.

e Comments begin with the pound symbol (#). Text after the # isignored.

e The upper limit of aline is 255 characters. If aline exceeds this upper limit, it will be
truncated.

e The bind DN must have privileges to access the LDAP database (usualy thisisthe LDAP
administrator).

Note: Before an administrator can set up and use the Tuxedo LDAP-based security
authentication server, the administrator must change the LDAP administrator
password through the WebL ogic Administration Console.

LAUTHSVR Configuration File Keywords
Table 4-1 defines the LauTasvVR configuration file keywords.

Note: The only required keyword in the LauTnsvr configuration file is passworp, which
specifies the password for bind DN. All other keywords are optional.

4-4 Using Security in ATMI Applications

Table 4-1 LAUTHSVR Configuration File Keywords

Setting up LAUTHSVR as the Authentication Server

Keyword Value Type

Usage

FILE_VERSION numeric

The configuration file version. This should
awaysbe 1. Thedefaultis 1.

LDAP_VERSION numeric

The LDAP protocol version. Valid valuesare2 or
3. The default is 3.

BINDDN string

The DN used to bind to an LDAP server, usualy
the DN for the LDAP administrator. The default
is“cn=admin”.

LDAPsearchbase. Thedefaultis” ou=people,
ou=myrealm, dc=mydomain”, where
myrealmisthe name of the security realm and
mydomain isthe name of the WebL ogic Server
domain.

UID string

The userid attribute that is used to logon to
WebL ogic Server and Tuxedo. The default is

uid.

PASSWORD string

The password for bind DN. Thisisarequired
keyword and the password isin clear text format.

LDAP_ADDR string

A comma separated list of WebL ogic hostnames
and ports. The syntax is

[//]1hostname| :port] [, [//]1hostname|
:port]...]1.Thedefault valuefor portis7001.
If LDAP_ADDR is not specified, LAUTHSVR
assumes localhost:7001 isthelocation to
contact the LDAP server.

For more information about specifying multiple
network addresses, refer to “Using Multiple
Network Addresses for High Availability.”

Using Security in ATMI Applications 4-5

Tahle 4-1 LAUTHSVR Configuration File Keywords

Keyword Value Type

Usage

EXPIRE numeric

A numeric value that represents the number of
seconds the cached entry is available in the local
process memory. A value other than zero will
enable caching. A value of zero specifiesno
caching. The default is zero.

For more information about enabling caching,
refer to “Using Multiple Network Addresses for
High Availability.”

SRCH_ORDER string

Valid values are LDAP or LOCAL, or both
separated by acomma. If you specify LOCAL, the
search order will usethe tpusr file. The default
iSLDAP.

For more information about database search
order, refer to “ Configuring the Database Search
Order.”

LOCAL_FILE string

The full pathname of the tpusr fileto beused if
LOCAL search order is enabled. The default value
iSSAPPDIR/tpusr.

For more information about database search
order, refer to “ Configuring the Database Search
Order.”

Note: If adirectory path is specified other than
the default $APPDIR/ tpusr, thefile
must be generated using Tuxedo MIB or
tpusradd command lineutility. Failure
to do this may cause authentication
failure.

WLS_DOMAIN string

The WebL ogic Server domain name. The default
vaueis mydomain.

WLS_REALM string

The WebL ogic Server security realm name. The
default ismyrealm.

ADM_GROUP string

The WebL ogic Server administrator group name.
The defaultisAdministrators.

4-6 Using Security in ATMI Applications

Tahle 4-1 LAUTHSVR Configuration File Keywords

Setting up LAUTHSVR as the Authentication Server

Keyword Value Type Usage
OP_GROUP string The WebL ogic Server operators group name. The
default isoperators.
TUX_UID_KW string The keyword used in the description to identify
the Tuxedo userid. The default is TUXEDO_UID.
TUX_GID_KW string The keyword used in the description to identify

the Tuxedo group ID. The default is
TUXEDO_GID.

Example LAUTHSVR Configuration File

Listing 4-1 shows an example of aLauTHSVR configuration file.

Listing 4-1 Example LAUTHSVR Configuration File

#

Tuxedo LDAP Authentication Server configuration file.

#

created: Thu May 26 15:36:59 2002

#

FILE_VERSION
LDAP_VERSION

BINDDN
BASE

UID
PASSWORD
LDAP_ADDR
EXPIRE
SRCH_ORDER
WLS_DOMAIN
WLS_REALM
ADM_GROUP
OP_GROUP
TUX_UID_KW

cn=Admin

ou=people, ou=myrealm, dc=mydomain
uid

secret
//PLUTO:7001,//Saturn:7001
0

LDAP

mydomain

myrealm

Administrators

Operators

TUXEDO_UID

Using Security in ATMI Applications

41

TUX_GID_KW TUXEDO_GID
end of file

WARNING: Because the passworp for the LDAP administrator isin clear text, itis
recommended that the system administrator guards this file with correct access
permission.

Example UBBCONFIG Using LAUTHSVR

Listing 4-2 shows an example UBBCONFIG file with securITY Set to acL, and LAUTHSVR
defined.

Listing 4-2 Example UBBCONFIG File Using LAUTHSVR

*RESOURCES
IPCKEY 51002
MASTER sitel

MAXACCESSERS 50
MAXSERVERS 20
MAXSERVICES 20

MODEL SHM

LDBAL N
BLOCKTIME 10
SECURITY ACL
AUTHSVC " . .AUTHSVC"
*MACHINES

DEFAULT:

APPDIR="/home/tuxedo/application"
TUXCONFIG="/home/tuxedo/application/TUXCONFIG"
TUXDIR="/home/tuxedo/tux81l"
Serverl LMID=sitel
MAXWSCLIENTS=20

*GROUPS

4-8 Using Security in ATMI Applications

Setting up LAUTHSVR as the Authentication Server

GROUP1 LMID=sitel GRPNO=1
GROUP2 LMID=sitel GRPNO=2
GROUP3 LMID=sitel GRPNO=3
GROUP4 LMID=sitel GRPNO=4
*SERVERS
DEFAULT:

CLOPT="-A" RESTART=N MAXGEN=5
LAUTHSVR SRVGRP=GROUP1 SRVID=10
CLOPT="-A -- -F /home/tuxedo/application/lauthsvr.conf "
DMADM SRVGRP=GROUP2 SRVID=20
GWADM SRVGRP=GROUP3 SRVID=30
GWTDOMAIN SRVGRP=GROUP3 SRVID=31
Simpserv SRVGRP=GROUP4 SRVID=40
*SERVICES
TOUPPER

Using Multiple Network Addresses for High Availability

It is possible to configure more than one network address for a WebL ogic Server domain. This
may be afavorable configuration in order to provide high availability for user authentication. The
user security information is replicated to all WebL ogic Server-embedded LDAP serversin a
WebL ogic domain. n.auTHSVR can only connect to one server at atime; however, when anetwork
error occurs, LAUTHSVR Will try to connect to the next available address.

To configure multiple network addresses for LauTHSVR, use the L.oap_appr keyword in the
LAUTHSVR configuration file. The order in which the hostnames are specified isthe order inwhich
LAUTHSVR Will try to connect. To use caching during authentication, specify the EXPIRE
keyword. The value in this keyword will determine the number of seconds the cached entry is
available in thelocal process memory.

Note: Itisnot required to have WebL ogic Server available when you boot Tuxedo using
tmboot; however, without the availability of at least one WebL ogic Server, LAUTHSVRS
ability to authenticate usersis limited.

Without the availability of WebL ogic Server, you can boot Tuxedo and authenticate
users using SRCH_ORDER LOCAL. In this case, the user authentication is verified against

Using Security in ATMI Applications 4-9

4-10

the tpusr file. For more information about search order, refer to “ Configuring the
Database Search Order” on page 4-10.

Example LAUTHSVR Configuration of Multiple Network Addresses
The following example specifies multiple network addresses in the L.oar_appr keyword.

LDAP_ADDR //Pluto:8000,//Saturn,Jupiter

The previous example specifiesthree WebL ogic Server hostnames. Thefirst server runs on Pluto
and uses address 8000. The second server runs on Saturn and uses the default address 7001. The
third server runs on Jupiter and also uses the default address 7001.

Configuring the Database Search Order

By default the LauTHSVR authentication server will search the user information in the WebL ogic
Server-embedded LDAP server. To enable the use of the tpusr file in the database search, you
must specify r.ocar in the srca_orpeR keyword. The order that the comma separated values are
defined in the srcu_orDER keyword will specify the order in which LauTHsVR searches for user
information. LauTHsVR Will search the LDAP server or the tpusr file or both (according to the
order of the values specified).

If there are two or more srCH_ORDER entries specified in the LauTasvr configuration file, only
thelast entry takeseffect. Inthis case awarning messageislogged inuserrLoc aswell. A warning
message also resultsif you specify avalue other than Lpap or L.ocaL in the SRCH_ORDER
keyword. In this case, theinvalid entry is discarded and the default value or a previous valid
SRCH_ORDER entry is used.

Example LAUTHSVR Configuration for Database Search Order

The following example specifies that L.auTHSVR should search the WebL ogic Server-embedded
LDAP server first for user information. If the user information is not found in the LDAP server,
then LauTHsVR should look in the tpusr file.

SRCH_ORDER LDAP, LOCAL

The following example specifies that LauTasvR should search the tpusr file first for user
information. If the user information is not found in the tpusr file, then n.auTasvR should look in
the WebL ogic Server-embedded LDAP server for the information.

SRCH_ORDER LOCAL, LDAP

The following example specifies that r.auTHsVR should search the tpusr file only for user
information.

Using Security in ATMI Applications

Setting up LAUTHSVR as the Authentication Server

SRCH_ORDER LOCAL

See Also

e “LAUTHSVR(5)" and “GAUTHSVR(5)” in the Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.

Using tpmigldap to Migrate User Information to WebLogic
Server

Y ou should use the tpmigldap command utility to migrate Tuxedo user and group information
to WebL ogic Server.

Assigning New Passwords for the tpusr File

Before migrating the user and group information, the administrator must assign new passwords
for each user so the migration can be successful. This step is required because the passwordsin
the tpusr file are encrypted with one-way encryption; therefore, it isimpossible to retrieve the
original password from the file.

There are two ways to handle this password situation:

e Madify the tpusrfile.

You can modify the tpusr file using atext editor and change the user password for each
user in thefile. The password field is the second field in the tpusr file. The field delimiter
isacolon (:). Each user takes up alinein the tpusrfile.

The following example:

TuxedoUserl :ADdg0w8nfGMag:6001:601: TPCLTNM, *: :
TuxedoUser2:0Yg2s6FjbvuU2:6002:601: TPCLTNM, *: :

could be modified to:

TuxedoUserl:UserlPassword:6001:601:TPCLTNM, *: :
TuxedoUser2:User2Password:6002:601: TPCLTNM, *: :

e Usethe - £ option with the tpmigldap utility to define a default password for al users.

If a-f option is used, then the argument that follows will be used as a substitute for the
password field in the tpusr file for every user in thefile.

The following example command:

tpmigldap -f userpassword -c

Using Security in ATMI Applications 4-1

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html

will cause “userpassword” to be assigned to every user in the tpusr file. After the
migration, all users will have to use “ userpassword” as their password in order to join the
Tuxedo application.

tpmigldap Command Line Options
Table 4-2 definesthe command line optionsfor the t pmig1dap utility. The order of the command

line options does not matter.

Note: The tpmigldap command requiresthe use of -w or -c so the user or group can be added
to the WebL ogic Server-embedded L DAP database.

Table 4-2 tpmigldap Command Line Options

Command Line Option Argument Default Value Usage

Option

-h hostname localhost Hostname of WebL ogic Server.

P port 7001 Port number for WebL ogic Server
Administration Console.

-d domain mydomain WebL ogic Server domain name.

r ream myrealm WebL ogic Server security realm name.

-1 TUXEDO_UID TUXEDO_UID The keyword string for Tuxedo UID that the

keyword string administrator wants to use in the WebLogic

Server user “description” attribute.

-e TUXEDO_GID TUXEDO_GID The keyword string for Tuxedo GID that the

keyword string administrator wants to use in the WebLogic

Server user “description”.

-f user password No default. The default user password for every user in the
tpusr file.

-b binddn cn=Admin LDAP connection bind DN.

w password No default. The password for bind DN.

-c Not applicable. No default. A prompt for entering a password for bind DN.

-u full path name SAPPDIR/ tpusr Thefull directory path for the tpusrfile.

-9 SAPPDIR/ tpgrp Thefull directory path for the tpgrpfile.

full path name

4-12 Using Security in ATMI Applications

Setting up LAUTHSVR as the Authentication Server

See Also

e “tpmigldap(1)” in the Oracle Tuxedo Command Reference

Adding New Tuxedo User Information

There are two methods for adding new user and group information to the single security LDAP
database;

e Add new information to the tpusxr text file and then specify the updated file when using
the migration utility tpmigldap. Refer to “Adding New User Information in tpusr or
tpgrp” on page 4-13.

e Use the WebL ogic Administration Console to add user or group information. Refer to
“Adding New User Information Using the WebL ogic Administration Console” on
page 4-13.

Note: Using the WebL ogic Administration Console may not be efficient for adding large
numbers of usersto the LDAP database. In the case of adding several users, you may
want to use the tpmigldap utility.

Adding New User Information in tpusr or tpgrp
To add new user information to the single point security L DAP database:

1. Useyour existing tpusr fileand tpgrp file to add the new user and group information. Be
sure to use the same format previously defined in thefile. Be sureto use clear text passwords
to add to the LDAP database.

2. Runthe tpmigldap utility using the -u option and specify the updated tpusrfileand the -g
option and specify the updated tpgrp file. For example:

tpmigldap -u $SAPPDIR/tpusr -g SAPPDIR/tpgrp

Adding New User Information Using the WebLogic Administration Console

To add new user information to the single point security L DAP database using the WebL ogic
Administration Console:

1. Accessthe WebL ogic Administration Console and select security —Realms— myrealm
where myrealm represents the LDAP security realm.

Using Security in ATMI Applications 4-13

{DOCROOT}/rfcm/rfcmd.html

4-14

2 b Select Users
GSewers
DC\usters
GMachmes
t'DepIuymems
@ Dsenvices e/Configure a new User...
EIGEE:ICUHW
B Real
Gl éamrsrsealm Filter By: Filter
Users
D?LTSES User Description Provider Locked
DDDMO:T:EES weblogic |weblogic DefaultAuthenticator i}
Brass titin ' TUX_UID=2501 TUX_GID=601 DefaultAuthenticator 8
haddock TUX_UID=2502 TUX_GID=602 | DefaultAuthenticator 1]
david | TUX_UID=2503 TUX_GID=603 DefaultAuthenticator [}
DOM1 | Tuxedo TDOM1 DefaultAuthenticator [}
DOM2 TUXEDO TDOM2 DefaultAuthenticator [}
calculus | TUX_UID=2504 TUX_GID=604 | DefaultAuthenticator 1]
{ | 0
QApp\etnavapp\etstarted ‘ | | (25 Localinfranet 4

2. Click Configure anew User... and access the General tab.

Using Security in ATMI Applications

@ Console
B @mydumam

t|Machines
tlDep\uyments
Senices
B DSecum\f
B DRea\ms
g Bmyrea\m
E|Users
EIGruups
DRDlES
DPruviders
DDnmam LogFillers
Tasks

001

Setting up LAUTHSVR as the Authentication Server

Yol're

B Jseners m GI’OUpS ‘ Details ‘
Doiusters

Name:

Description:

Password:

Confirm Password:

Enter the user information:

Ithnmpsun

The login name for this user.

|TUX_UID=2504 TUX_GID=601

A short description of this user. For example,
the user's full name.

LLLL LR]

The password associated with the login
name for this user.

R

The password associated with the login
name for this user,

[o

In the Name field specifies the user name.

In the Description field specify the Tuxedo UID and GID valuesasastring in the

following syntax:

<TUXEDO UID KEYWORD>=<decimal value>
<TUXEDO GID KEYWORD>=<decimal value>

where by default, the TUXEDO UID KEYWORD IS TUXEDO_UID and TUXEDO GID KEYWORD
by default is TuxEpo_c1D. For example:

TUXEDO_UID=2504 TUXEDO_GID=601.

In the Password field, specify the password for the user. Then confirm the password by
entering the password again in the Confirm Password field.

3. Click Apply to update the LDAP database with the new user information.

Using Security in ATMI Applications 4-15

Setting up GAUTHSVR as the Authentication Server

4-16

GAUTHSVR iSa System /T provided server usage is similar to LauTHSVR, but with the following
differences:

e GAUTHSVR Can access user security information located in awide variety of LDAP servers
(for example, WebL ogic, OpenL DAP, Netscape/l Planet, Microsoft Active Directory, Z/OS
LDAP, and so on), using LDAP (Lightweight Directory Access Protocol).

Note: Y ou can aso configure WebL ogi ¢ authentication using LAUTHSVR. GAUTHSVR can be
used along with an existing r.auTHSVR OF replace it.

For more L.auTHSVR information, see“ Setting up LAUTHSVR asthe Authentication
Server” onpage 4-2and “LAUTHSVR(5),” inthe Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.

® CAUTHSVR Syntax does not support multiple network addresses for high availability. For
more information, see “Using Multiple Network Addresses for High Availability” on

page 4-9.

e GaUTHSVR does not support user security information stored in aloca file. For more
information, see “Configuring the Database Search Order” on page 4-10.

To enable the single security administration feature, cauTHsVR must be configured as the
authentication server. cauTHSVR authenticates user security information against Lpap server. It
returns appkey if SECURITY iS Set to ACL Or MANDATORY_ACL when authentication success.

To configure cauTHSVR as the authentication server, you must define the following parameters
in the uBBconF1G file:

e SECURITY must be set to USER_AUTH, ACL, Of MANDATORY_ACL in the RESOURCES Section.

e GAUTHSVR Must be specified in the sErVERS section.

Note: If caurnsvr cannot find avalid configuration file or thefile doesnot exit, it will log
an error message in USERL OG and fail to boot. The default cauTrsvRr configuration
fileis $TUXDIR/udataobj/tpgauth and is provided with the product.

GAUTHSVR Command Line Interface

GAUTHSVR is an LDAP-based authentication server for Tuxedo. It requires a configuration file,
that by default is $TuxDIR/udataobj/tpgauth.

The command line interface syntax for cauTHsVR is asfollows:

Using Security in ATMI Applications

{DOCROOT}/rf5/rf5.html

Setting up GAUTHSVR as the Authentication Server

-f config
Specifiesthe full pathname of the cauTusvr configuration file.

-0 gaconfig.xml
Specifies the full pathname of the cauTrsvR internal configuration file generated from
customer configuration file specified by -£ option. The default valueis
$APPDIR/gaconfig.xml.

-k gakey.dat
Specifiesthefull pathname of thecauTrsvr internal configuration file generated fromthe
configuration file (specified in the - £ option). The default value is $APPDIR/gakey.dat.

Verbose mode. Logs more detailed messages to ULOG.

The following example instructs cauTHSVR to use the default configurationfile, tpgauth, inthe
$TUXDIR/udataobj/tpgauth directory.

GAUTHSVR SRVGRP=GROUP1 SRVID=2 CLOPT="-A --"

In the following example, GauTHSVR use the myauthsvr.conf configuration filein the
/home/tuxedo/bankapp directory.

GAUTHSVR SRVGRP=GROUP1 SRVID=2
CLOPT="-A -- -f/home/tuxedo/bankapp/myauthsvr.conf”

GAUTHSVR Updates the generated xmr. file if tpgauth is newer than the generated xmr. and key
files. Only changed or newly added tpgauth items are updated in the generated xwur. file.

Note: If thexmr and key fileare not present when cautasvr isbooted, cauTHsVR createsthem
automatically.

Setting Up the GAUTHSVR Configuration File

GAUTHSVR supports an input configuration file that contains information such asbind DN and an
unencrypted password for bind DN. This configuration fileis a plain text file and can be edited
using any text editor and must be protected by the system using file permissions. By default the
configuration file, named tpgauth, islocated in $TUXDIR/udataobj/tpgauth directory. You
can overwrite thisfile in the command line for cauTnsvr. Table 4-3 lists keywords and value
pairs contained in the cauTusvr configuration file.

Using Security in ATMI Applications 4-11

Syntax Requirements for GAUTHSVR Configuration File

Although the default values for the cauTasvr configuration file are usually sufficient, you can
choose to configure it with different names. Therefore, you should be aware of the following
requirements for the cauTasvr configuration file:

e ThecauTtHsvr configuration fileisaplain text file.

e Keywords are case-sensitive, but their order does not matter. The keyword format is
“keyword=value”.

e Blank lines or lines starting with a # sign are treated as comments, and are ignored.
e The upper limit of alineis 255 characters. If aline exceeds this upper limit, it is truncated.

e Theprrincipal must have privileges to access the LDAP database (usualy the LDAP
administrator).

GAUTHSVR Configuration File Keywords

GAUTHSVR keywords are divided into three groups:. basic, advanced, and LDAP schema.
Table 4-3, Table 4-4, and Table 4-5 define the cauTasvr configuration file keywords
accordingly.

Table 4-3 Basic GAUTHSVR Configuration File Keywords

Configuration Keyword Value Type Description

UserCacheExpire numeric A numeric value that represents the number of

seconds the cached entry is available in the
local process memory. A value other than zero
will enable caching. A value of zero specifies
no caching.

The default valueis 0.

UserCacheSize numeric Maximum number of entries for user cache

where one entry isrequired for each user. A 0
value of zero specifies no limit.

The default valueis 0 (indicating no limit).

SYSADM string The user name for the Tuxedo SY SADM.
SYSop string The user name for the Tuxedo SY SOP.
4-18 Using Security in ATMI Applications

Setting up GAUTHSVR as the Authentication Server

Tahle 4-3 Basic GAUTHSVR Configuration File Keywords (Continued)

Configuration Keyword Value Type Description

Host string The host name or |P address of the LDAP
server.
The default valueis localhost.

port numeric The port number on which the LDAP server is
listening.
The default valueis 389 .

Principal The Distinguished Name (DN) of the LDAP
user that is used to connect to the LDAP server.

Credential The credential (generally a password) used to
authenticate the LDAP user that is defined in
the Principal attribute.

RetrieveUIDANAGID boolean Specifies whether the UID and GID

information are retrieved from the LDAP
server. It must besetto t rue when SECURITY
iSACL Or MANDATORY_ACL.

Thedefault valueis false.

Table 4-4 Advanced GAUTHSVR Configuration File Keywords

Configuration Keyword Value Type Description
TuxedoUIDKey string Used to identify the Tuxedo UID.
The default value is TUXEDO_UID.
TuxedoGIDKey string Used to identify the Tuxedo GID
The default value is TUXEDO_GID.
ConnectTimeout numeric The maximum number of seconds to wait for

the LDAP connection to beestablished. If setto
0, there is no maximum time limit.

The default valueis 0.

Using Security in ATMI Applications 4-19

Table 4-4 Advanced GAUTHSVR Configuration File Keywords (Continued)

Configuration Keyword Value Type

Description

ConnectionRetryLimit numeric

The number of times to attempt to connect to
theLDAP server if theinitial connection failed.

The default valueis 1.

ResultsTimeLimit numeric

The maximum number of millisecondsto wait
for results beforetiming out. If setto 0, thereis
no maximum time limit.

The default valueis 0.

SSLEnabled boolean

Specifies that SSL is used to connect to the
LDAP server.

The default valueis false.

KeepAliveEnabled boolean

Specifies whether to prevent LDAP
connections from timing out or not.

The default valueis false.

ParallelConnectDelay numeric

The number of seconds to delay when making
concurrent attempts to connect to multiple
servers.

If set to 0, connection attempts are serialized.
An attempt ismadeto connect to thefirst server
inthelist. The next entry inthelist istried only
if the attempt to connect to the current host
fails. This might cause your application to
block for unacceptably long timeif ahost is
down. If set to greater than O, another
connection setup thread is started after this
number of delay seconds has passed.

The default valueis 0.

FollowReferrals boolean

Specifies whether referrals are automatically
followed within the LDAP Directory or not.

If setto false, areferral exception issent
when referrals are encountered during LDAP
requests.

The default valueis true.

4-20 Using Security in ATMI Applications

Setting up GAUTHSVR as the Authentication Server

Table 4-4 Advanced GAUTHSVR Configuration File Keywords (Continued)

Configuration Keyword Value Type Description

BindAnonymouslyOnReferrals boolean Specifiesto anonymously bind when following
referrals within the LDAP directory. If set to
false, then the current Principal and
Credential are used.

The default valueis false.

UseZOSRACF boolean Specifies whether the LDAP server is z/0S
RACF LDAP server.

Thedefault valueis false

ControlFlag string Specifies how Tuxedo LDAP Authentication
provider fitsinto the login sequence.

The Control Flag determines how the login
seguence uses the Authentication provider.

A REQUIRED vdue specifies this
LoginModule must succeed. Even if it fails,
authentication proceeds down the list of
LoginModules for the configured
Authentication providers. This setting is the
default.

A REQUISITE value specifies this
LoginModule must succeed. If other
Authentication providers are configured and
this LoginM odul e succeeds, authentication
proceeds down the list of LoginModules.
Otherwise, control is return to the application.

A SUFFICIENT value specifiesthis
LoginModule need not succeed. If it does
succeed, return control to the application. If it
fails and other Authentication providers are
configured, authentication proceeds down the
LoginModule list.

An OPTIONAL value specifies this
LoginModule need not succeed. Whether it
succeeds or fails, authentication proceeds
down the LoginModule list.

The default value iSREQUIRED.

Using Security in ATMI Applications 41

Table 4-5 LDAP Schema Configuration File Keywords

Configuration Keyword

Value Type

Description

UserObjectClass

string

The LDAP object class that stores users
The default isperson.

UserBaseDN

string

The base distinguished name (DN) of the tree
in the LDAP directory that contains users.

The default value is ou=people,
o=example.com

UserFromNameFilter

string

An LDAP search filter for finding auser given
the name of the user.

The default value is
(& (cn=%u) (objectclass=person))

UserSearchScope

string

Specifieshow deep inthe LDAP directory tree
to search for users. Valid values are "subtree,
onelevel".

Thedefault valueis subtree.

UserUIDAttrName

string

Theattribute name of an LDAP user object that
specifiesthe UID of the user or the UID and
GID of the user in afixed format.

The default valueisuserid.

UIDAttrValueType

string

Specifies the value type of the uid attribute for
the LDAP user object. Legal valuesinclude
"UID, UIDANdGID".

The default valueisUID.

UserGroupAttrNames

string

The attribute names of an LDAP user object
that specify the groupsthe user belongsto. This
attribute can contain three types of values:
GID, group CN and group DN. One type of
value for each configuration. More names are
separated by comma.

The default valueisusergroups.

4-22 Using Security in ATMI Applications

Tahle 4-5 LDAP Schema Configuration File Keywords (Continued)

Setting up GAUTHSVR as the Authentication Server

Configuration Keyword

Value Type

Description

GroupAttrValueType

string

Specifies the value type of the group attributes
for the LDAP user object. Legal valuesinclude
"GID, group CN,and group DN".

The default valueis GID.

GroupBaseDN

string

The base distinguished name (DN) of the tree
in the LDAP directory that contains groups.

The default value is ou=groups,
o=example.com.

GroupFromNameFilter

string

An LDAP search filter for finding a group
given the name of the group.

The default value is
(& (cn=%g) (objectclass=groupofuni
quenames)) .

StaticGroupObjectClass

string

The name of the LDAP object class that stores
static groups

The default valueisgroupofuniquenames

GroupSearchScope

string

Specifieshow deep inthe LDAP directory tree
to search for groups. Valid values are "subtree,
onelevel"

The default valueis subtree.

GroupGIDAttrName

string

The attribute of aLDAP group object that
specifies the GID of the group

The default value is groupid.

Example GAUTHSVR Configuration File

Listing 4-3 shows acauTasvr configuration file for WebLogic Server example. Please refer to

this example when configuring other LDAP servers.

Using Security in ATMI Applications 4-23

4-24

Listing 4-3 Example WebLogic GAUTHSVR Configuration File

Tuxedo LDAP Authentication Server configuration file.

created: Thu May 26 15:36:59 2002
end of file

H*+ FH= H H FF

Tuxedo configuration

UserCacheExpire = 600

UserCacheSize = 16384
SYSADM = sysadm
SYSOP = SysSop

LDAP server configuration
Host = server.bea.com
Port = 7001

Principal = cn=Admin

Credential= weblogic

UserObjectClass = person

UserBaseDN = ou=people, ou=myrealm, dc=examples
UserFromNameFilter = (& (uid=%u) (objectclass=person))
UserUIDAttrName = description
UserGroupAttrNames=wlsMemberOf

RetrieveUIDAndGID = true

UIDAttrValueType = UIDAndGID

WARNING: Because the passworp for the LDAP administrator isin clear text, itis
recommended that the system administrator guards this file with correct access
permission.

Example UBBCONFIG Using GAUTHSVR

Listing 4-4 shows an example UBBCONFIG file with securITY Set to acL, and GAUTHSVR
defined.

Using Security in ATMI Applications

Setting up GAUTHSVR as the Authentication Server

Listing 4-4 Example UBBCONFIG File Using GAUTHSVR

UBBCONFIG
*SERVER

GAUTHSVR SVRGRP="SYSGRP" SVRID=100
CLOPT="-A -- -f ${APPDIR}/tpgauth"
ENVFILE="${APPDIR}/tpgauth.env"

See Also

e “GAUTHSVR(5)” and “LAUTHSVR(5)” in the Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference

Using tpmigldif to Migrate User Information

You can use the tpmigldif command utility to migrate Tuxedo user and group information to
LDAPserversin LDAP Interchange Format (LDIF). In order to use tpmigldi £, you must create
amigration template.

Using tpmigldif Command Line Options

Table 4-6 lists the command line options for the tpmigldif utility. The order of the command
line options does not matter.

Table 4-6 tpmigldif Command Line Options

Command Line

Option Option Argument Default Value Usage
-t user|group user Specifies migration type.
-f

template filename tpusr-templat Specifiesthetemplate file name.
e (when type
is user), or
tpgrp-templat
e (when type is
group)

Using Security in ATMI Applications 4-25

{DOCROOT}/rf5/rf5.html
{DOCROOT}/rf5/rf5.html

Table 4-6 tpmigldif Command Line Options (Continued)

Command Line
Option Option Argument Default Value Usage

o (output filename) console/stdou Specifiesthe output file name.
t

full path name tpusr Thefull directory path for the tpuszr file.

full path name tpgrp The full directory path for the tpgrp file.

4-26

tpusr and tpgrp File Format
Listing 4-5 shows a tpusr file with five fields separated by a colon:

name:password (encrypted) :user id:group id:client name::

Listing 4-5 Example tpusr File

userl:EI4xxxjrCc:16668:601:TPCLTNM, client::
user2:EI4xxxjrCc:16669:602:TPCLTNM, client: :

Listing 4-6 shows a tpgrp file with three fields separated by a colon:

name: :group id:

Listing 4-6 Example tpgrp File

groupl::601:
group2::602:

Assigning New Passwords for the tpusr File (Optional)

Before migrating the user and group information, the administrator could assign new passwords
for each user so the generated L DIF output contains correct password for each user. Thisstepis
required because the passwords in the tpusr file are encrypted with one-way encryption;
therefore, it isimpossible to retrieve the original password from thefile.

Using Security in ATMI Applications

Setting up GAUTHSVR as the Authentication Server

Using atext-editor, there are two methods you can use to modify tpusr file passwords:

e Moadify the tpusr file password field to change the user password for each user in the file.
The password field is the second field in the tpusr file. Each user is entered on a separate
lineinthe tpusr file. Seelisting Listing 4-5, for original tpusr file example.

userl:pwdl:16668:601:TPCLTNM,client::
user2:pwd2:16669:602: TPCLTNM, client:

e Add anew password to thelast tpusr filefield

userl:ETI4dxxxjrCc:16668:601:TPCLTNM, client: :pwdl:
user2:EI4dxxxjrCc:16669:602:TPCLTNM, client: :pwd2:

Creating a Migration Template

The migration template is atext file used by the tpmigidai f command utility to translate the
tpusr Of tpgrp fileinto an LDIF output file.

Listing 4-7 shows a tpusr-template Migration file example. <¢n> refersto atpusr filefield,
wheren starts at 1.

Note: Use<sgn> for group field in tpgrp file for given user.

Listing 4-7 tpusr-template

dn: CN=<%1>,CN=Users,DC=tuxdev,DC=bea, dc=com

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: user

cn: <%1>

description: Tuxedo User, TUXEDO_UID=<%3> TUXEDO_GID=<%4>

password: <%7>

Listing 4-8 shows the LDIF output from the tpusr-template.

Using Security in ATMI Applications 4-21

4-28

Listing 4-8 LDIF Output

dn: CN=userl, CN=Users,DC=tuxdev,DC=bea,dc=com

objectclass:
objectclass:
objectclass:

objectclass:

cn: userl

description:

top
person
organizationalPerson

user

Tuxedo User, TUXEDO_UID=16668 TUXEDO_GID=601

password: pwdl

dn: CN=user2,CN=Users,DC=tuxdev, DC=bea, dc=com

objectclass:
objectclass:
objectclass:

objectclass:

cn: user?2

description:

top
person
organizationalPerson

user

Tuxedo User, TUXEDO_UID=16669 TUXEDO_GID=602

password: pwd2

Supported LDAP Server Template Example

Tuxedo provides an example template for supported LDAP servers. Thefilesarelisted in

Table 4-7.

Table 4-7 Supported LDAP Server Template Example'

GAUTHSVR User Migration Group Migration
LDAP Server Configuration Template Template
WebL ogic Server tpgauth tpusr-template tpgrp-template
Active Directory? tpgauth-ad tpusr-template-ad tpgrp-template-ad
I Planet tpgauth-iplanet tpusr-template-iplanet tpgrp-template-iplanet
Z/OS LDAP, with tpgauth-racf tpusr-templ ate-racf tpgrp-template-racf
RACF backend®

Using Security in ATMI Applications

Setting up GAUTHSVR as the Authentication Server

1. All files are available under $TUXDIR/udataohj;

2. For Active Directory user’s password cannot be added on creation. For help on how
to change or reset it, please refer to Microsoft support document,
http://support.microsoft.com/kb/269190, http://support.microsoft.com/kb/263991, etc;
3. Two things need to be done to activate Z/OS RACF account after migration: i) reset
the password by z/OS administrator; and ii) logon with the account to change its
password.

See Also

e tpmigldif (1) inthe Oracle Tuxedo Command Reference

Using Security in ATMI Applications 4-29

{DOCROOT}/rfcm/rfcmd.html

4-30 Using Security in ATMI Applications

	Oracle® Tuxedo
	12c Release 1 (12.1.1)

	Oracle Tuxedo Using Security in ATMI Applications, 12c Release 1 (12.1.1)
	Introducing ATMI Security
	What Security Means
	Security Plug-ins
	ATMI Security Capabilities
	Operating System (OS) Security
	Authentication
	Authentication Plug-in Architecture
	Understanding Delegated Trust Authentication
	Establishing a Session
	Getting Authorization and Auditing Tokens
	Replacing Client Tokens with Server Tokens
	Implementing Custom Authentication

	Authorization
	Authorization Plug-in Architecture
	How the Authorization Plug-in Works
	Default Authorization
	Custom Authorization

	Implementing Custom Authorization

	Auditing
	Auditing Plug-in Architecture
	How the Auditing Plug-in Works
	Default Auditing
	Custom Auditing

	Implementing Custom Auditing

	Link-Level Encryption
	How LLE Works
	Encryption Key Size Negotiation
	Determining Min-Max Values
	Finding a Common Key Size

	Backward Compatibility of LLE
	Interoperating with Release 6.5 Oracle Tuxedo Software
	Interoperating with Pre-Release 6.5 Oracle Tuxedo Software

	WSL/WSH Connection Timeout During Initialization
	LLE Installation and Licensing

	SSL Encryption
	How the SSL Protocol Works
	Requirements for Using the SSL Protocol
	Encryption Key Size Negotiation
	Determining Min-Max Values
	Finding a Common Key Size

	Backward Compatibility of SSL
	WSL/WSH Connection Timeout During Initialization
	Supported Cipher Suites
	SSL Installation and Licensing

	Public Key Security
	PKCS-7 Compliant
	Supported Algorithms for Public Key Security
	Public Key Algorithms
	Digital Signature Algorithms
	Symmetric Key Algorithms
	Message Digest Algorithms

	Message-based Digital Signature
	Digital Certificates
	Certification Authority
	Certificate Repositories
	Public-Key Infrastructure

	Message-based Encryption
	Public Key Implementation
	Public Key Initialization
	Key Management
	Certificate Lookup
	Certificate Parsing
	Certificate Validation
	Proof Material Mapping
	Implementing Custom Public Key Security
	Default Public Key Implementation

	Default Authentication and Authorization
	Client Naming
	User-Client Names
	Application Key

	User, Group, and ACL Files
	Optional and Mandatory ACLs

	Security Interoperability
	Interoperating with Pre-Release 7.1 Software
	Interoperability for Link-Level Encryption
	Interoperability for SSL Encryption
	Interoperability for Public Key Security

	Security Compatibility
	Mixing Default/Custom Authentication and Authorization
	Mixing Default/Custom Authentication and Auditing
	Compatibility Issues for Public Key Security
	Compatibility/Interaction with Data-dependent Routing
	Compatibility/Interaction with Threads
	Compatibility/Interaction with the EventBroker
	Compatibility/Interaction with /Q
	Compatibility/Interaction with Transactions
	Compatibility/Interaction with Domain Gateways
	Compatibility/Interaction with Other Vendors’ Gateways

	Denial-of-Service (DoS) Defense
	Limited/Restricted Connection Numbers
	Setting Up Connection Limitations/Restrictions
	UBBCONFIG File
	Messages

	Message Sanity Check
	Message Authentication Code (MAC) Usage
	Performance Impact

	Setting up Message Authentication Code (MAC) Usage
	DMCONFIG File Configuration
	MIB Configuration

	Password Pair Protection

	Administering Security
	What Administering Security Means
	Security Administration Tasks
	Setting the Oracle Tuxedo Registry
	Purpose of the Oracle Tuxedo Registry
	Registering Plug-ins

	Configuring an ATMI Application for Security
	Editing the Configuration File
	Changing the TM_MIB
	Using the Oracle Administration Console

	Setting Up the Administration Environment
	Administering Operating System (OS) Security
	Recommended Practices for OS Security

	Administering Authentication
	Specifying Principal Names
	How System Processes Acquire Credentials
	Why System Processes Need Credentials
	Example UBBCONFIG Entries for Principal Names

	Mandating Interoperability Policy
	Establishing an Identity for an Older Client
	How the WSH Establishes an Identity for an Older Client
	How the Domain Gateway Establishes an Identity for an Older Client
	How the Server Establishes an Identity for an Older Client

	Summarizing How the CLOPT -t Option Works
	Example UBBCONFIG Entries for Interoperability

	Establishing a Link Between Domains
	Example DMCONFIG Entries for Establishing a Link

	Setting ACL Policy
	Impersonating the Remote Domain Gateway
	Example DMCONFIG Entries for ACL Policy

	Setting Credential Policy
	Administering Authorization
	Administering Link-Level Encryption
	Understanding LLE min and max Values
	How to Configure LLE on Workstation Client Links
	How to Configure LLE on Bridge Links
	How to Configure LLE on tlisten Links
	How to Configure LLE on Domain Gateway Links

	Administering SSL Encryption
	Understanding SSL min and max Values
	How to Configure SSL on Workstation Client Links
	How to Configure SSL on Bridge Links
	How to Configure SSL on tlisten Links
	How to Configure SSL on Domain Gateway Links
	Development Process for the SSL Protocol
	Creating an Oracle Wallet
	Creating an Oracle Wallet with orapki
	Creating an Oracle Wallet with openssl

	Runtime Creation of an Oracle Wallet
	Use of the TUXCREATEWALLET Environment Variable
	Debugging SSL Connection Problems
	Enabling NZ Tracing
	Connection Establishment Log Message
	Displaying the Contents of an Oracle Wallet
	Obtaining NZ Error Code Information

	Administering Public Key Security
	Recommended Practices for Public Key Security
	Assigning Public-Private Key Pairs
	Setting Digital Signature Policy
	Setting a Postdated Limit for Signature Timestamps
	Setting a Predated Limit for Signature Timestamps
	Enforcing the Signature Policy for Incoming Messages
	How the EventBroker Signature Policy Is Enforced
	How the /Q Signature Policy Is Enforced
	How the Remote Client Signature Policy Is Enforced

	Setting Encryption Policy
	Enforcing the Encryption Policy for Incoming Messages
	How the EventBroker Encryption Policy Is Enforced
	How the /Q Encryption Policy Is Enforced
	How the Remote Client Encryption Policy Is Enforced

	Initializing Decryption Keys Through the Plug-ins
	Failure Reporting and Auditing
	Digital Signature Error Handling
	Encryption Error Handling

	Administering Default Authentication and Authorization
	Designating a Security Level
	Establishing Security by Editing the Configuration File
	Establishing Security by Changing the TM_MIB
	Establishing Security by Using the Oracle Administration Console

	Configuring the Authentication Server

	How to Enable Application Password Security
	How to Enable User-Level Authentication Security
	Setting Up the UBBCONFIG File
	Setting Up the User and Group Files
	Converting System Security Data Files to Oracle Tuxedo User and Group Files
	Adding, Modifying, or Deleting Users and Groups

	Enabling Access Control Security
	How to Enable Optional ACL Security
	Setting Up the UBBCONFIG File
	Setting Up the ACL File

	How to Enable Mandatory ACL Security
	Setting Up the UBBCONFIG File
	Setting Up the ACL File

	How to Enable Generic LDAP Based Security
	Setting Up the UBBCONFIG File
	Setting Up the XAUTHSVR Server Configuration File
	Setting Up the LDAP Repository
	Setting Up the Authorization Cache

	Using the Kerberos Authentication Plug-in
	Kerberos Plug-In
	Kerberos Supported Platforms
	Kerberos Plug-in Features

	Kerberos Plug-In Pre-configuration
	Kerberos Plug-In Configuration
	Configure the Kerberos Plug-in
	Restore Default Plug-in

	Configure KAUTHSVR
	Configure Tuxedo Native Client
	Limitations
	See Also

	Using the Cert-C PKI Encryption Plug-in
	Cert-C PKI Encryption Plug-In
	Cert-C PKI Encryption Plug-In Pre-configuration
	Cert-C PKI Encryption Plug-In Configuration
	Configure Certificate Lookup
	Configure Key Management
	decPassword
	privateKeyDir

	Configure Certificate Parsing
	Configure Certificate Validation
	caCertificateFile
	crlFile

	Sample Registry Command File
	Limitations
	See Also

	Programming Security
	What Programming Security Means
	Programming an ATMI Application with Security
	Setting Up the Programming Environment
	Writing Security Code So Client Programs Can Join the ATMI Application
	Getting Security Data
	Joining the ATMI Application
	Transferring the Client Security Data
	Calling a Service Request Before Joining the ATMI Application

	Writing Security Code to Protect Data Integrity and Privacy
	ATMI Interface for Public Key Security
	Recommended Uses of Public Key Security

	Sending and Receiving Signed Messages
	Writing Code to Send Signed Messages
	Step 1: Opening a Key Handle for Digital Signature
	Step 2 (Optional): Getting Key Handle Information
	Step 3 (Optional): Changing Key Handle Information
	Step 4: Allocating a Buffer and Putting a Message in the Buffer
	Step 5: Marking the Buffer for Digital Signature
	Step 6: Sending the Message
	Step 7: Closing the Signer’s Key Handle
	How the System Generates a Digital Signature

	How a Signed Message Is Received
	Verifying Digital Signatures
	Verifying and Transmitting an Input Buffer’s Signatures
	Replacing an Output Buffer’s Signatures

	Sending and Receiving Encrypted Messages
	Writing Code to Send Encrypted Messages
	Step 1: Opening a Key Handle for Encryption
	Step 2 (Optional): Getting Key Handle Information
	Step 3 (Optional): Changing Key Handle Information
	Step 4: Allocating a Buffer and Putting a Message in the Buffer
	Step 5: Marking the Buffer for Encryption
	Step 6: Sending the Message
	Step 7: Closing the Encryption Key Handle
	How the System Encrypts a Message Buffer

	Writing Code to Receive Encrypted Messages
	Step 1: Opening a Key Handle for Decryption
	Step 2 (Optional): Getting Key Handle Information
	Step 3 (Optional): Changing Key Handle Information
	Step 4: Closing the Decryption Key Handle
	How the System Decrypts a Message Buffer

	Examining Digital Signature and Encryption Information
	What Happens When an Originating Process Calls tpenvelope
	What Happens When a Receiving Process Calls tpenvelope
	Understanding the Composite Signature Status
	Example Code for tpenvelope

	Externalizing Typed Message Buffers
	How to Create an Externalized Representation
	How to Convert an Externalized Representation
	Example Code for tpexport and tpimport

	Implementing Single Point Security Administration
	What Single Point Security Administration Means
	Single Point Security Administration Tasks

	Setting up LAUTHSVR as the Authentication Server
	LAUTHSVR Command Line Interface
	Setting Up the LAUTHSVR Configuration File
	Syntax Requirements for LAUTHSVR Configuration File
	LAUTHSVR Configuration File Keywords
	Example LAUTHSVR Configuration File

	Example UBBCONFIG Using LAUTHSVR
	Using Multiple Network Addresses for High Availability
	Example LAUTHSVR Configuration of Multiple Network Addresses

	Configuring the Database Search Order
	Using tpmigldap to Migrate User Information to WebLogic Server
	Assigning New Passwords for the tpusr File
	tpmigldap Command Line Options

	Adding New Tuxedo User Information
	Adding New User Information in tpusr or tpgrp
	Adding New User Information Using the WebLogic Administration Console

	Setting up GAUTHSVR as the Authentication Server
	GAUTHSVR Command Line Interface
	Setting Up the GAUTHSVR Configuration File
	Syntax Requirements for GAUTHSVR Configuration File
	GAUTHSVR Configuration File Keywords
	Example GAUTHSVR Configuration File

	Example UBBCONFIG Using GAUTHSVR
	Using tpmigldif to Migrate User Information
	Using tpmigldif Command Line Options
	tpusr and tpgrp File Format
	Creating a Migration Template

	Supported LDAP Server Template Example

