

Oracle® Outside In HTML Export
Developer’s Guide
Release 8.4.1
E12884-05

May 2013

Oracle Outside In HTML Export Developer's Guide, Release 8.4.1

E12884-05

Copyright © 2013 Oracle and/or its affiliates. All rights reserved.

Primary Author: Mike Manier

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of
the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered
to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo,
and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of
any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

iii

Contents

Preface ... xiii

1 Introduction

1.1 What’s New in Release 8.4.1.. 1-1
1.2 Architectural Overview ... 1-2
1.3 Definition of Terms... 1-2
1.4 Directory Structure ... 1-3
1.4.1 Installing Multiple SDKs .. 1-3
1.5 How to Use HTML Export .. 1-4
1.6 Copyright Information... 1-5

2 Windows Implementation Details

2.1 Installation ... 2-1
2.1.1 NSF Support ... 2-2
2.2 Libraries and Structure... 2-2
2.2.1 API DLLs... 2-2
2.2.2 Support DLLs ... 2-3
2.2.3 Engine Libraries ... 2-4
2.2.4 Filter and Export Filter Libraries ... 2-4
2.2.5 Premier Graphics Filters ... 2-5
2.2.6 Additional Files.. 2-5
2.3 The Basics ... 2-6
2.3.1 What You Need in Your Source Code .. 2-6
2.3.2 Options and Information Storage.. 2-6
2.3.3 Structure Alignment.. 2-7
2.3.4 Character Sets ... 2-7
2.3.5 Runtime Considerations ... 2-7
2.4 Default Font Aliases ... 2-7
2.5 Changing Resources ... 2-8

3 UNIX Implementation Details

3.1 Installation ... 3-1
3.1.1 NSF Support ... 3-2
3.2 Libraries and Structure... 3-2
3.2.1 API Libraries... 3-3

iv

3.2.2 Support Libraries ... 3-3
3.2.3 Engine Libraries ... 3-4
3.2.4 Filter and Export Filter Libraries ... 3-4
3.2.5 Premier Graphics Filters ... 3-5
3.2.6 Additional Files.. 3-5
3.3 The Basics ... 3-6
3.3.1 What You Need in Your Source Code .. 3-6
3.3.2 Information Storage... 3-6
3.4 Character Sets .. 3-7
3.5 Runtime Considerations .. 3-7
3.5.1 X Server Requirement ... 3-7
3.5.2 OLE2 Objects .. 3-8
3.5.3 Machine-Dependent Graphics Context .. 3-8
3.5.4 Signal Handling ... 3-8
3.5.5 Runtime Search Path and $ORIGIN.. 3-9
3.6 Environment Variables .. 3-9
3.7 Default Font Aliases .. 3-10
3.8 Changing Resources .. 3-12
3.9 HP-UX Compiling and Linking ... 3-12
3.9.1 HP-UX on RISC... 3-13
3.9.2 HP-UX on RISC (64 bit).. 3-13
3.9.3 HP-UX on Itanium (64 bit) .. 3-13
3.10 IBM AIX Compiling and Linking .. 3-13
3.10.1 IBM AIX (32-bit pSeries) .. 3-14
3.10.2 IBM AIX PPC (64-bit) ... 3-14
3.11 Linux Compiling and Linking ... 3-14
3.11.1 Library Compatibility .. 3-14
3.11.1.1 Motif Libraries.. 3-14
3.11.1.2 GLIBC and Compiler Versions .. 3-15
3.11.1.3 Other Libraries ... 3-15
3.11.2 Compiling and Linking.. 3-18
3.11.2.1 Linux 32-bit, including Linux PPC.. 3-18
3.11.2.2 Linux 64-bit... 3-18
3.11.2.3 Linux zSeries .. 3-18
3.12 Oracle Solaris Compiling and Linking ... 3-18
3.12.1 Oracle Solaris SPARC... 3-19
3.12.2 Oracle Solaris (SPARC) 64 ... 3-19
3.12.3 Oracle Solaris x86.. 3-20
3.12.4 Oracle Solaris x64.. 3-20
3.12.5 Oracle Solaris X Server Display Memory Issue.. 3-20
3.13 z/OS Compiling and Linking .. 3-20

4 Data Access Common Functions

4.1 Deprecated Functions... 4-1
4.2 DAInitEx... 4-2
4.3 DADeInit .. 4-2
4.4 DAOpenDocument ... 4-3

v

4.4.1 IOSPECLINKEDOBJECT Structure .. 4-4
4.4.2 IOSPECARCHIVEOBJECT Structure ... 4-4
4.5 DACloseDocument ... 4-5
4.6 DARetrieveDocHandle .. 4-5
4.7 DASetOption ... 4-5
4.8 DASetFileSpecOption... 4-6
4.9 DAGetOption .. 4-7
4.10 DAGetFileId... 4-7
4.11 DAGetFileIdEx .. 4-8
4.12 DAGetErrorString... 4-9
4.13 DAGetTreeCount .. 4-9
4.14 DAGetTreeRecord.. 4-10
4.14.1 SCCDATREENODE Structure.. 4-10
4.15 DAOpenTreeRecord .. 4-11
4.16 DASaveTreeRecord.. 4-11
4.17 DACloseTreeRecord .. 4-12
4.18 DASetStatCallback... 4-13
4.19 DASetFileAccessCallback ... 4-14

5 Export Functions

5.1 General Functions ... 5-1
5.1.1 EXOpenExport ... 5-1
5.1.2 EXCALLBACKPROC.. 5-3
5.1.3 EXCloseExport ... 5-3
5.1.4 EXRunExport.. 5-4
5.1.5 EXExportStatus .. 5-4
5.2 Annotation Functions... 5-5
5.2.1 EXHiliteText ... 5-6
5.2.1.1 HTML Export Usage Notes... 5-8
5.2.2 EXInsertText ... 5-9
5.2.3 EXHideText.. 5-11
5.2.3.1 EXANNOHIDETEXT Structure .. 5-11

6 Redirected IO

6.1 Using Redirected IO ... 6-1
6.2 Opening Files... 6-2
6.3 IOClose ... 6-3
6.4 IORead.. 6-3
6.5 IOWrite ... 6-4
6.6 IOSeek... 6-4
6.7 IOTell .. 6-5
6.8 IOGetInfo.. 6-5
6.8.1 IOGENSECONDARY and IOGENSECONDARYW Structures 6-8
6.8.2 File Types That Cause IOGETINFO_GENSECONDARY ... 6-9
6.9 IOSEEK64PROC / IOTELL64PROC ... 6-10
6.9.1 IOSeek64... 6-10

vi

6.9.2 IOTell64 .. 6-10

7 Callbacks

7.1 Callbacks Used In HTML Export.. 7-1
7.1.1 EX_CALLBACK_ID_CREATENEWFILE .. 7-1
7.1.1.1 EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW

Structures 7-4
7.1.2 EX_CALLBACK_ID_NEWFILEINFO .. 7-5
7.1.3 EX_CALLBACK_ID_ALTLINK... 7-5
7.1.4 EX_CALLBACK_ID_CUSTOMELEMENTLIST ... 7-5
7.1.5 EX_CALLBACK_ID_ENTERARCHIVE... 7-6
7.1.6 EX_CALLBACK_ID_GRAPHICEXPORTFAILURE... 7-7
7.1.7 EX_CALLBACK_ID_LEAVEARCHIVE... 7-8
7.1.8 EX_CALLBACK_ID_OEMOUTPUT... 7-9
7.1.9 EX_CALLBACK_ID_OEMOUTPUT_VER2... 7-9
7.1.10 EX_CALLBACK_ID_PROCESSELEMENTSTR ... 7-10
7.1.11 EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2 ... 7-10
7.1.12 EX_CALLBACK_ID_PROCESSLINK.. 7-11
7.1.12.1 Links That Reference Objects Using a Relative Path (HTML Export) 7-13
7.1.13 EX_CALLBACK_ID_REFLINK .. 7-13

8 Implementation Issues

8.1 Running in 24x7 Environments .. 8-1
8.2 Running in Multiple Threads or Processes ... 8-1
8.3 HTML Export Issues... 8-2
8.3.1 Relative URLs in Templates ... 8-2
8.3.1.1 Guarantee the References Are Good ... 8-2
8.3.1.2 Use Absolute URLs .. 8-2
8.3.1.3 Generate Complete URLs Using {## insert oem=}... 8-2
8.3.1.4 Use CGI and the <base> tag.. 8-3
8.3.1.5 Have HX copy the files using {## copy} .. 8-3
8.3.2 Browser Caching.. 8-4
8.3.3 Errors Returned by HTML Export .. 8-4
8.3.4 CSS Considerations .. 8-4
8.3.4.1 Customizing CSS Styles... 8-4
8.3.4.2 Style Names Used by HTML Export ... 8-4
8.3.4.3 Overriding HTML Export’s Styles ... 8-5
8.3.4.4 pragma.cssfile and {## link} .. 8-5
8.3.5 XML and HTML Export.. 8-6
8.3.5.1 The Sample XML Template... 8-6
8.3.6 XHTML and Well-Formed HTML .. 8-6
8.3.7 Archive Support... 8-7
8.3.7.1 Using Redirected IO with Archive Files ... 8-7
8.3.7.2 Temporary File Creation ... 8-7
8.3.7.3 Empty Directories in Archive Files .. 8-7
8.3.7.4 Finding the Total Number of Files in an Archive.. 8-7

vii

8.3.8 Positional Frames Support .. 8-7
8.3.9 Limitations of Multimedia File Support... 8-8

9 Sample Applications

9.1 Building the Samples on a Windows System ... 9-1
9.2 An Overview of the Sample Applications... 9-2
9.2.1 batch_process_hx ... 9-2
9.2.2 *sample .. 9-2
9.2.3 export (Windows Only) .. 9-2
9.2.3.1 The export Main Window ... 9-3
9.2.4 exsimple .. 9-3
9.2.5 exredir.. 9-4
9.2.6 extract_archive ... 9-4
9.2.7 hxanno ... 9-4
9.3 Accessing the SDK via a Java Wrapper ... 9-5
9.3.1 The ExJava Wrapper API.. 9-5
9.3.2 The C-Based Exporter Application ... 9-5
9.3.3 Compiling the Executables... 9-6
9.3.4 The ExportTest Sample Application ... 9-6
9.3.5 An Example Conversion Using the ExJava Wrapper... 9-6

10 Templates

10.1 What Is a Template? .. 10-1
10.2 The Included Sample Templates ... 10-3
10.3 The Document Tree and Its Elements ... 10-3
10.3.1 Leaf Elements .. 10-4
10.3.2 Repeatable Elements .. 10-5
10.3.3 Element Definitions .. 10-5
10.3.4 Default Nodes ... 10-16
10.4 Macro Reference... 10-16
10.4.1 Units: {## unit}, {## header}, and {## footer} ... 10-17
10.4.2 Insert Element: {## insert}.. 10-17
10.4.3 Conditional: {## if}, {## elseif}, and {## else} ... 10-21
10.4.4 Loop: {## repeat} ... 10-23
10.4.5 Linking with Structured Breaking: {## link} ... 10-24
10.4.6 Linking with Content Size Breaking: {## anchor} .. 10-26
10.4.7 Comment Put in the Output File: {## ignore} ... 10-27
10.4.8 Comment Not Put in the Output File: {## comment} .. 10-28
10.4.9 Including Other Templates: {## include}... 10-28
10.4.10 Setting Options Within the Template: {## option} ... 10-28
10.4.11 Copying Files: {## copy} (HTML Export Only) .. 10-30
10.4.12 Deprecated Template Macros (HTML Export Only)... 10-31
10.5 Breaking Documents by Structure... 10-31
10.5.1 Indexes and Structure-Based Breaking.. 10-33
10.6 Units - Breaking Documents by Content Size.. 10-35
10.6.1 A Sample Size Breaking Template ... 10-36

viii

10.6.2 Templates Without {## unit} Macros ... 10-37
10.6.3 Indexes and Size-Based Breaking... 10-37
10.7 Using Grids to Navigate Spreadsheet and Database Files... 10-38
10.7.1 Grid Support When Tables Are Not Available .. 10-39
10.8 Choosing a Template... 10-40
10.9 Unicode Templates .. 10-40

11 Template Tutorials

11.1 Template Comments ... 11-1
11.2 Tutorial 1: simple ... 11-2
11.3 Tutorial 2: toc1 .. 11-2
11.4 Tutorial 3: toc2 .. 11-3
11.5 Tutorial 4: unit .. 11-3
11.6 Tutorial 5: misc ... 11-3
11.7 Tutorial 6: grids1 .. 11-4
11.8 Tutorial 7: grids2 .. 11-4
11.9 Tutorial 8: xml .. 11-4
11.10 Tutorial 9: internal ... 11-5

A Copyrights and Licensing

A.1 Outside In HTML Export Licensing.. A-1

B HTML Export Options

B.1 HTML Export C/C++ Options .. B-1
B.1.1 Character Mapping... B-1
B.1.1.1 SCCOPT_DEFAULTINPUTCHARSET.. B-1
B.1.1.2 SCCOPT_EX_CHARBYTEORDER ... B-2
B.1.1.3 SCCOPT_EX_OUTPUTCHARACTERSET .. B-3
B.1.1.4 SCCOPT_UNMAPPABLECHAR.. B-5
B.1.2 Output .. B-6
B.1.2.1 SCCOPT_EX_CHANGETRACKING ... B-6
B.1.2.2 SCCOPT_EX_COLLAPSEWHITESPACE.. B-6
B.1.2.3 SCCOPT_EX_COMPLIANCEFLAGS... B-7
B.1.2.4 SCCOPT_EX_EXTRACTEMBEDDEDFILES ... B-8
B.1.2.5 SCCOPT_EX_FLAVOR... B-9
B.1.2.6 SCCOPT_EX_NOSOURCEFORMATTING... B-10
B.1.2.7 SCCOPT_EX_SHOWHIDDENSSDATA.. B-11
B.1.2.8 SCCOPT_EX_SHOWHIDDENTEXT.. B-11
B.1.2.9 SCCOPT_EX_SIMPLESTYLENAMES.. B-12
B.1.2.10 SCCOPT_RENDERING_PREFER_OIT .. B-13
B.1.3 Input Handling ... B-14
B.1.3.1 SCCOPT_FALLBACKFORMAT ... B-14
B.1.3.2 SCCOPT_FIFLAGS.. B-15
B.1.3.3 SCCOPT_FORMATFLAGS.. B-16
B.1.3.4 SCCOPT_SYSTEMFLAGS.. B-16
B.1.3.5 SCCOPT_IGNORE_PASSWORD.. B-17

ix

B.1.3.6 SCCOPT_LOTUSNOTESDIRECTORY .. B-17
B.1.3.7 SCCOPT_PARSEXMPMETADATA ... B-17
B.1.3.8 SCCOPT_PDF_FILTER_REORDER_BIDI.. B-18
B.1.3.9 SCCOPT_TIMEZONE... B-18
B.1.3.10 SCCOPT_HTML_COND_COMMENT_MODE.. B-19
B.1.3.11 SCCOPT_PDF_FILTER_DROPHYPHENS .. B-19
B.1.3.12 SCCOPT_ARCFULLPATH .. B-20
B.1.4 Layout... B-20
B.1.4.1 SCCOPT_EX_FALLBACKFONT .. B-20
B.1.4.2 SCCOPT_EX_FONTFLAGS ... B-21
B.1.4.3 SCCOPT_EX_GENBULLETSANDNUMS ... B-22
B.1.4.4 SCCOPT_EX_GRIDADVANCE .. B-23
B.1.4.5 SCCOPT_EX_GRIDCOLS .. B-24
B.1.4.6 SCCOPT_EX_GRIDROWS ... B-26
B.1.4.7 SCCOPT_EX_GRIDWRAP... B-27
B.1.4.8 SCCOPT_EX_JAVASCRIPTTABS... B-28
B.1.4.9 SCCOPT_EX_PAGESIZE.. B-29
B.1.4.10 SCCOPT_EX_PREVENTGRAPHICOVERLAP... B-30
B.1.4.11 SCCOPT_EX_TEMPLATE.. B-31
B.1.5 Compression.. B-32
B.1.5.1 SCCOPT_FILTERJPG.. B-32
B.1.5.2 SCCOPT_FILTERLZW.. B-33
B.1.6 Graphics ... B-34
B.1.6.1 SCCOPT_GIF_INTERLACED ... B-34
B.1.6.2 SCCOPT_GRAPHIC_HEIGHTLIMIT .. B-34
B.1.6.3 SCCOPT_GRAPHIC_OUTPUTDPI .. B-35
B.1.6.4 SCCOPT_GRAPHIC_SIZELIMIT.. B-36
B.1.6.5 SCCOPT_GRAPHIC_SIZEMETHOD... B-37
B.1.6.6 SCCOPT_GRAPHIC_TRANSPARENCYCOLOR .. B-37
B.1.6.7 SCCOPT_GRAPHIC_TYPE.. B-38
B.1.6.8 SCCOPT_GRAPHIC_WIDTHLIMIT.. B-39
B.1.6.9 SCCOPT_JPEG_QUALITY... B-40
B.1.7 Spreadsheet and Database File Rendering.. B-40
B.1.7.1 SCCOPT_EX_SHOWSPREADSHEETBORDER.. B-40
B.1.7.2 SCCOPT_EX_SSDBBORDER... B-41
B.1.7.3 SCCOPT_EX_SSDBROWCOLHEADINGS ... B-42
B.1.8 Page Rendering ... B-43
B.1.8.1 SCCOPT_WPEMAILHEADEROUTPUT... B-43
B.1.8.2 SCCOPT_MAILHEADERVISIBLE ... B-43
B.1.8.3 SCCOPT_MAILHEADERHIDDEN.. B-45
B.1.9 Font Rendering.. B-45
B.1.9.1 SCCOPT_DEFAULTPRINTFONT .. B-45
B.1.9.2 SCCOPT_PRINTFONTALIAS... B-46
B.1.10 Callbacks .. B-48
B.1.10.1 SCCOPT_EX_CALLBACKS... B-48
B.1.10.2 SCCOPT_EX_UNICODECALLBACKSTR... B-49
B.1.11 File System ... B-50

x

B.1.11.1 SCCOPT_IO_BUFFERSIZE .. B-50
B.1.11.2 SCCOPT_TEMPDIR .. B-51
B.1.11.3 SCCOPT_DOCUMENTMEMORYMODE ... B-53
B.1.11.4 SCCOPT_REDIRECTTEMPFILE... B-53
B.1.12 Template-Only Options ... B-54
B.1.12.1 EX_LINKTARGET... B-54
B.1.12.2 EX_LINKTARGETOVERRIDE .. B-55
B.1.13 Old Options ... B-55
B.1.13.1 Discontinued Options ... B-55
B.1.13.2 Option Name Changes ... B-56
B.1.13.3 #define Name Changes... B-56
B.2 HTML Export SOAP Options .. B-57
B.2.1 How Options Work .. B-57
B.2.2 Character Mapping... B-57
B.2.2.1 defaultInputCharset .. B-58
B.2.2.2 characterByteOrder ... B-58
B.2.2.3 outputCharacterSet ... B-59
B.2.2.4 unmappableCharacter .. B-61
B.2.3 Output .. B-62
B.2.3.1 altlink... B-62
B.2.3.2 showChangeTracking ... B-62
B.2.3.3 collapseWhiteSpace... B-62
B.2.3.4 compliance.. B-63
B.2.3.5 extractEmbeddedFiles... B-64
B.2.3.6 flavor.. B-64
B.2.3.7 noSourceFormatting.. B-66
B.2.3.8 showHiddenSpreadsheetData... B-67
B.2.3.9 showHiddenText ... B-67
B.2.3.10 simpleStyleNames ... B-68
B.2.3.11 preferOITRendering.. B-69
B.2.4 Input Handling ... B-70
B.2.4.1 fallbackFormat ... B-70
B.2.4.2 extendedTestForText... B-70
B.2.4.3 ignorePassword ... B-71
B.2.4.4 parseXMPMetaData .. B-71
B.2.4.5 reorderBIDI... B-72
B.2.4.6 skipLinkedImages ... B-72
B.2.4.7 timezone.. B-73
B.2.4.8 htmlCondCommentIE5On ... B-73
B.2.4.9 htmlCondCommentIE6On ... B-73
B.2.4.10 htmlCondCommentIE7On ... B-74
B.2.4.11 htmlCondCommentIE8On ... B-74
B.2.4.12 htmlCondCommentIE9On ... B-74
B.2.4.13 htmlCondCommentAllOn ... B-75
B.2.5 Layout... B-75
B.2.5.1 fallbackFont .. B-75
B.2.5.2 fontFlags.. B-75

xi

B.2.5.3 genBulletsAndNums... B-76
B.2.5.4 gridAdvance... B-77
B.2.5.5 gridCols... B-78
B.2.5.6 gridRows... B-80
B.2.5.7 gridWrap... B-81
B.2.5.8 javaScriptTabs .. B-81
B.2.5.9 pageSize .. B-82
B.2.5.10 preventGraphicOverlap.. B-84
B.2.5.11 template... B-85
B.2.6 Compression.. B-85
B.2.6.1 allowJPEG... B-85
B.2.6.2 allowLZW ... B-86
B.2.7 Graphics ... B-86
B.2.7.1 graphicGifInterlaced ... B-87
B.2.7.2 graphicHeightLimit... B-87
B.2.7.3 graphicOutputDPI... B-88
B.2.7.4 graphicSizeLimit.. B-89
B.2.7.5 graphicSizeMethod ... B-89
B.2.7.6 graphicTransparencyColor .. B-90
B.2.7.7 graphicType.. B-91
B.2.7.8 graphicWidthLimit.. B-91
B.2.7.9 graphicJpegQuality ... B-92
B.2.8 Spreadsheet and Database File Rendering.. B-92
B.2.8.1 showSpreadsheetBorder... B-92
B.2.8.2 spreadsheetBorders ... B-93
B.2.8.3 showSpreadsheetHeadings.. B-95
B.2.9 Page Rendering ... B-95
B.2.9.1 emailHeaderOutput .. B-95
B.2.10 Font Rendering.. B-96
B.2.10.1 defaultFont ... B-96
B.2.10.2 fontAlias.. B-96
B.2.11 File System ... B-97
B.2.11.1 fileAccess... B-97
B.2.11.2 readBufferSize.. B-97
B.2.11.3 memoryMappedInputSize ... B-98
B.2.11.4 tempBufferSize... B-98

Index

xii

xiii

Preface

HTML Export is part of Oracle’s family of Original Equipment Manufacturer (OEM)
technologies known as Outside In Technology, a powerful document viewing and
conversion technology that can access the information in more than 600 file formats.

Audience
This document is intended for software developers who are responsible for integrating
Oracle Outside In Technology into their applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, go to:

http://www.oracle.com/technetwork/indexes/documentation/index.ht
ml#middleware

and click on Outside In Technology.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

xiv

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Forward slashes (/) Forward slashes are used to separate the directory levels in a path to a
UNIX server, directory, or file. Forward slashes are also used to
separate parts of an Internet address. A forward slash will always be
included at the end of a UNIX directory name and might or might not
be included at the end of an Internet address.

Backward slashes (\) Backward slashes are used to separate the levels in a path to a
Windows server, directory, or file. A backward slash will always be
included at the end of a Windows server, directory, or file path.

<install_dir>/ This notation refers to the location on your system of the main product
installation directory.

Convention Meaning

1

Introduction 1-1

1Introduction

HTML Export allows an OEM to translate almost any document, spreadsheet,
presentation, or graphic into high quality HTML.

HTML Export’s primary goal is producing faithful representations of source files using
the HTML, GIF, JPEG and PNG formats. With a C API , the developer can set various
options that affect the content and structure of the output.

There may be references to other Outside In Technology SDKs within this manual. To
obtain complete documentation for any other Outside In product, see:

http://www.oracle.com/technetwork/indexes/documentation/index.html#middlew
are

and click on Outside In Technology.

This chapter includes the following sections:

■ Section 1.1, "What’s New in Release 8.4.1"

■ Section 1.2, "Architectural Overview"

■ Section 1.3, "Definition of Terms"

■ Section 1.4, "Directory Structure"

■ Section 1.5, "How to Use HTML Export"

■ Section 1.6, "Copyright Information"

1.1 What’s New in Release 8.4.1
■ The updated list of supported formats is linked from the page

http://www.outsideinsdk.com/. Look for the data sheet with the latest supported
formats.

■ The new SCCOPT_PDF_FILTER_DROPHYPHENS option controls whether or not
the PDF filter will drop hyphens at the end of a line.

■ The SCCOPT_RENDERING_PREFER_OIT is now available on the Linux x86-64
platform.

■ Support has been added to identify DICOM (Digital Imaging and
Communications in Medicine) files.

■ The following Microsoft Office formats are now supported: Microsoft Word 2011
for Mac, Microsoft Excel 2011 for Mac, Microsoft PowerPoint 2011 for Mac,
Microsoft Word 2013, Microsoft Excel 2013, Microsoft PowerPoint 2013, Microsoft
Outlook 2013.

Architectural Overview

1-2 Oracle Outside In HTML Export Developer's Guide

■ The following Adobe Creative Suite formats are now supported: Photoshop CS6,
Illustrator CS6, InDesign CS6.

■ Support has been added for Windows 8 and Windows 2012 Server on the
Windows x86-64 platform.

1.2 Architectural Overview
The basic architecture of Outside In technologies is the same across all supported
platforms.

1.3 Definition of Terms
The following terms are used in this documentation.

Filter/Module Description

Input Filter The input filters form the base of the architecture. Each one
reads a specific file format or set of related formats and sends
the data to OIT through a standard set of function calls.
There are more than 150 of these filters that read more than
600 distinct file formats. Filters are loaded on demand by the
data access module.

Export Filter Architecturally similar to input filters, export filters know
how to write out a specific format based on information
coming from the chunker module. The export filters
generate HTML, GIF, JPEG, and PNG.

Chunker The Chunker module is responsible for caching a certain
amount of data from the filter and returning this data to the
export filter.

Export The Export module implements the export API and
understands how to load and run individual export filters.

Data Access The Data Access module implements a generic API for access
to files. It understands how to identify and load the correct
filter for all the supported file formats. The module delivers
to the developer a generic handle to the requested file, which
can then be used to run more specialized processes, such as
the Export process.

Term Definition

Developer Someone integrating this technology into another technology
or application. Most likely this is you, the reader.

Source File The file the developer wishes to export.

Output File The file being written: HTML, CSS, JavaScript, GIF, JPEG,
and PNG.

Page A single text and its associated graphics to make a page of
output. Pages have suggested lengths, but the actual length
may be greater or smaller than the suggested value. Page
sizes count only the bytes of visible text in the document, not
markup.

Data Access Module The core of Outside In Data Access, in the SCCDA library.

Directory Structure

Introduction 1-3

1.4 Directory Structure
Each Outside In product has an sdk directory, under which there is a subdirectory for
each platform on which the product ships (for example, hx/sdk/hx_win-x86-32_sdk).
Under each of these directories are the following three subdirectories:

■ docs - Contains both a PDF and HTML version of the product manual.

■ redist - Contains only the files that the customer is allowed to redistribute. These
include all the compiled modules, filter support files, .xsd and .dtd files,
cmmap000.bin, and third-party libraries, like freetype.

■ sdk - Contains the other subdirectories that used to be at the root-level of an sdk
(common, lib (windows only), resource, samplefiles, and samplecode (previously
samples). In addition, one new subdirectory has been added, demo, that holds all
of the compiled sample apps and other files that are needed to demo the products.
These are files that the customer should not redistribute (.cfg files, exportmaps,
etc.).

In the root platform directory (for example, hx/sdk/hx_win-x86-32_sdk), there are
two files:

■ README - Explains the contents of the sdk, and that makedemo must be run in
order to use the sample applications.

■ makedemo (either .bat or .sh – platform-based) - This script will either copy (on
Windows) or Symlink (on Unix) the contents of …/redist into …/sdk/demo, so
that sample applications can then be run out of the demo directory.

1.4.1 Installing Multiple SDKs
If you load more than one OIT SDK, you must copy files from the secondary
installations into the top-level OIT SDK directory as follows:

■ docs – copy all subdirectories named “[product name]guide” into this directory.

■ redist – copy all binaries into this directory.

■ sdk – this directory has several subdirectories: common, demo, lib, resource,
samplecode, samplefiles. In each case, copy all of the files from the secondary
installation into the top-level OIT SDK subdirectory of the same name. If the

Data Access
Submodule (also
referred to as
"Submodule")

This refers to any of the Outside In Data Access modules,
including SCCEX (Export), but excluding SCCDA (Data
Access).

Note: HTML Export normally comes with only the SCCEX
Submodule.

Document Handle
(also referred to as
"hDoc")

A Document Handle is created when a file is opened using
Data Access (see Chapter 4, "Data Access Common
Functions"). Each Document Handle may have any number
of Subhandles.

Subhandle (also
referred to as "hItem")

Any of the handles created by a Submodule's Open function.
Every Subhandle has a Document Handle associated with it.
For example, the hExport returned by EXOpenExport is a
Subhandle. The DASetOption and DAGetOption functions
in the Data Access Module may be called with any
Subhandle or Document Handle. The
DARetrieveDocHandle function returns the Document
Handle associated with any Subhandle.

Term Definition

How to Use HTML Export

1-4 Oracle Outside In HTML Export Developer's Guide

top-level OIT SDK directory lacks any directories found in the directory being
copied from, just copy those directories over.

1.5 How to Use HTML Export
Here’s a step-by-step overview of how to export a source file to HTML.

1. Call DAIniExt to initialize the Data Access technology. This function needs to be
called only once per application. If using threading, then pass in the correct
ThreadOption.

2. Set any options that require a NULL handle type (optional). Certain options need
to be set before the desired source file is opened. These options are identified by
requiring a NULL handle type. They include, but aren’t limited to:

■ SCCOPT_FALLBACKFORMAT

■ SCCOPT_FIFLAGS

■ SCCOPT_TEMPDIR

■ SCCOPT_EX_CALLBACKS

■ SCCOPT_EX_UNICODECALLBACKSTR

■ SCCOPT_UNMAPPABLECHAR

3. Open the source file. DAOpenDocument is called to create a document handle that
uniquely identifies the source file. This handle may be used in subsequent calls to
the EXOpenExport function or the open function of any other Data Access
Submodule, and will be used to close the file when access is complete. This allows
the file to be accessed from multiple Data Access Submodules without reopening.

4. Set the Options. If you require option values other than the default settings, call
DASetOption to set options. Note that options listed in the Options chapter as
having "Handle Types" that accept VTHEXPORT may be set any time before
EXRunExport is called. For more information on options and how to set them, see
Section 4.7, "DASetOption."

5. Open a Handle to HTML Export. Using the document handle, EXOpenExport is
called to obtain an export handle that identifies the file to the specific export
product. This handle will be used in all subsequent calls to the specific export
functions. The dwOutputId parameter of this function is used to specify that the
output file type should be set to FI_HTML.

6. Make Any Required Calls to Annotation Functions. This is the point at which any
calls to annotation functions (such as EXHiliteText, EXInsertText or EXHideText)
should be made.

7. Export the File. EXRunExport is called to generate the output file(s) from the
source file.

8. Close the Handle to HTML Export. EXCloseExport is called to terminate the
export process for the file. After this function is called, the export handle will no
longer be valid, but the document handle may still be used.

9. Close the Source File. DACloseDocument is called to close the source file. After
calling this function, the document handle will no longer be valid.

10. Close HTML Export. DADeInit is called to de-initialize the Data Access
technology.

Copyright Information

Introduction 1-5

1.6 Copyright Information
The following notice must be included in the documentation, help system, or About
box of any software that uses any of Oracle’s executable code:

Outside In HTML Export © 1991, 2013 Oracle.

The following notice must be included in the documentation of any software that uses
Oracle’s TIF6 filter (this filter reads TIFF and JPEG formats):

The software is based in part on the work of the Independent JPEG Group.

Copyright Information

1-6 Oracle Outside In HTML Export Developer's Guide

2

Windows Implementation Details 2-1

2Windows Implementation Details

The Windows implementation of this software is delivered as a set of DLLs. For a list
of the currently supported platforms, see:

http://www.oracle.com/technetwork/indexes/documentation/index.html#middlew
are

Click on Outside In Technology, then click the Certification Information PDF.

The 64-bit version of sccvw.dll will not load on an AMD-64 system without Visual C++
runtime version 8 installed. This happens because the system is missing the
msvcr80.dll library, which is required. Users can download the required library from
the following location:

http://www.microsoft.com/downloads/details.aspx?FamilyId=90548130-4468-4BBC-
9673-D6ACABD5D13B&displaylang=en

This chapter includes the following sections:

■ Section 2.1, "Installation"

■ Section 2.2, "Libraries and Structure"

■ Section 2.3, "The Basics"

■ Section 2.4, "Default Font Aliases"

■ Section 2.5, "Changing Resources"

2.1 Installation
To install the demo version of the SDK, copy the contents of the ZIP archive (available
on the web site) to a local directory of your choice.

This product requires the Visual C++ libraries included in the Visual C++
Redistributable Package available from Microsoft. There are three versions of this
package (x86, x64, and IA64) for each corresponding version of Windows. These can be
downloaded from www.microsoft.com/downloads, by searching on the site for the
following packages:

■ vcredist_x86.exe

■ vcredist_x64.exe

■ vcredist_IA64.exe

The required download version is the "2005 SP1 Redistributable Package."

Outside In requires the msvcr80.dll redistributable module.

The installation directory should contain the following directory structure:

http://www.microsoft.com/downloads/details.aspx?FamilyId=90548130-4468-4BBC-9673-D6ACABD5D13B&displaylang=en

Libraries and Structure

2-2 Oracle Outside In HTML Export Developer's Guide

2.1.1 NSF Support
Notes Storage Format (NSF) files are produced by the Lotus Notes Client or the Lotus
Domino server. The NSF filter is the only Outside In filter that requires the native
application to be present to filter the input documents. Due to integration with an
outside application, NSF support will not work with redirected I/O, when an NSF file
is embedded in another file, or with IOTYPE_UNICODEPATH. Either Lotus Notes
version 8 or Lotus Domino version 8 must be installed on the same machine as OIT. A
32-bit version of the Lotus software must be used if you are using a 32-bit version of
OIT. A 64-bit version of the Lotus software must be used if you are using a 64-bit
version of OIT. On Windows, SCCOPT_LOTUSNOTESDIRECTORY should be set to
the directory containing the nnotes.dll. NSF support is only available on the Win32,
Win x86-64, Linux x86-32, and Solaris Sparc 32 platforms.

2.2 Libraries and Structure
The following is an overview of the files in the main installation directory for all five
Outside In export products.

2.2.1 API DLLs
These libraries implement the API. They should be linked with the developer’s
application. Files with a .lib extension are included in the SDK.

Directory Description

\docs Includes HTML and PDF versions of the manual you are
reading right now. Release notes contain more
up-to-the-minute information on product changes which
occurred after documentation production.

\redist Contains a working copy of the Windows version of the
technology.

\sdk\common Contains the C include files needed to build or rebuild the
technology.

\sdk\demo Contains the compiled executables of the sample
applications.

\sdk\lib Contains the library (.lib) files needed for the products.

\sdk\resource Contains localization resource files.

\sdk\samplecode Contains a subdirectory holding the source code for a sample
application.

\sdk\samplefiles Contains sample input files authored in a variety of popular
graphics, word processor, compression, spreadsheet and
presentation applications.

\sdk\template Contains a number of sample templates designed to exercise
HTML Export’s template language. Some templates consist
of multiple files. When this is the case, main.htm is the file to
which the SCCOPT_TEMPLATE option should point.

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

sccda.dll Data Access module X X X X X

sccex.dll Export module X X X X X

Libraries and Structure

Windows Implementation Details 2-3

The File ID Specification may not be used directly by any application or workflow
without it being separately licensed expressly for that purpose.

2.2.2 Support DLLs
The following libraries are used for support.

sccfi.dll File Identification
module (identifies
files based on their
contents).

X X X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

ccflex.dll A data model adapter
that converts from
stream model utilized
by Outside In filters to
the FlexionDoc Tree
model used as a basis
by XML Export.

X

libexpatw.dll A third-part XML
parser

X

ocemul.dll Output component
emulation module

X X X X X

ospdf.dll PDF generation module X

oswin*.dll Interface to the native
GDI implementation

oswin32.dll is the 32-bit
version, oswin64.dll is
the 64-bit version

X X X X

sccanno.dll The annotation module X X X

sccca.dll Content Access module
(provides organized
chunker data for the
developer)

X X X

sccch.dll Chunker (provides
caching of and access to
filter data for the export
engines)

X X X X X

sccdu.dll Display Utilities
module (includes text
formatting)

X X X X X

sccexind.dll The core engine for all
Search Export formats:
SearchText,
SearchHTML,
SearchML and PageML

X

sccfmt.dll Formatting module
(resolves numbers to
formatted strings)

X X X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Libraries and Structure

2-4 Oracle Outside In HTML Export Developer's Guide

2.2.3 Engine Libraries
The following libraries are used for display purposes.

2.2.4 Filter and Export Filter Libraries
The following libraries are used for filtering.

sccfut.dll Filter utility module X X X X X

sccind.dll Indexing engine. In
Search Export, it
handles common
functionality.

X X X X

scclo.dll Localization library (all
strings, menus, dialogs
and dialog procedures
reside here)

X X X X X

sccole2.dll OLE rendering module X X X X X

sccsd.dll Schema Definition
Module Manager
(brokers multiple
Schema Definition
Modules)

X

sccut.dll Utility functions,
including IO subsystem

X X X X X

sccxt.dll XTree module X

sdflex.dll Schema Definition
module (handles
conversion of XML
string names and
attribute values to
compact binary
representations and
vice versa)

X

wvcore.dll The GDI Abstraction
layer

X X X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

debmp.dll Raster rendering engine (TIFF,
GIF, BMP, PNG, PCX…)

X X

devect.dll Vector/Presentation rendering
engine (PowerPoint, Impress,
Freelance…)

X X X X

dess.dll Spreadsheet/Database (Excel,
Calc, Lotus 123…)

X X X

detree.dll Archive (ZIP, GZIP, TAR…) X X

dewp.dll Document (Word, Writer,
WordPerfect…)

X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Libraries and Structure

Windows Implementation Details 2-5

2.2.5 Premier Graphics Filters
The following are graphics filters.

2.2.6 Additional Files
The following files are also used.

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

vs*.dll Filters for specific file types (there
are more than 150 of these filters,
covering more than 600 file formats)

X X X X X

oitnsf.id Support file for the vsnsf filter. X X X X X

exgdsf.dll Export filter for GIF, JPEG, and
PNG graphics files

X X

eximg.dll Extended image conversion module X

exhtml.dll Export filter for HTML files X

exihtml.dll Export filter for SearchHTML X

exitext.dll Export filter for SearchText X

exixml.dll Export filters for XML files using
the SearchML schema

X

expage.dll Export filter for XML files using the
PageML schema

X

expagelayout.dll Page layout module X

exxml.dll XML Export module X

sccimg.dll Image conversion module X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

i*2.flt 30 .flt files (import
filters for premier
graphics formats)

X X X X X

isgdi32.dll Interface to
premier graphics
filters

X X X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

adinit.dat Support file for
the vsacd2 filter

X X X X X

cmmap000.bin Tables for
character mapping
(all character sets)

X X X X X

cmmap000.sbc Tables for
character mapping
(single-byte
character sets).
This file is located
in the /common
directory.

X X X X X

The Basics

2-6 Oracle Outside In HTML Export Developer's Guide

2.3 The Basics
The following is a discussion of some basic usage and installation features.

All the steps outlined in this section are used in the sample applications provided with
the SDK. Looking at the code for the exsimple sample application is recommended for
those wishing to see a real-world example of this process.

2.3.1 What You Need in Your Source Code
Any source code that uses this product should #include the file sccex.h and
#define WINDOWS and WIN32 or WIN64. For example, a Windows application might
have a source file with the following lines:

#define WINDOWS /* Will be automatically defined if your
compiler defines _WINDOWS */

#define WIN32
#include <sccex.h>

The developer’s application should be linked to the product DLLs through the
provided libraries.

2.3.2 Options and Information Storage
This software is based on the Outside In Viewer Technology (or simply "Viewer
Technology"). When using the Export products, a list of available filters and a list of
available display engines are built by the technology, usually the first time the product
runs. You do not need to ship these lists with your application. The lists are
automatically recreated if corrupted or deleted.

The files used to store this information are stored in an .oit subdirectory in
\Documents and Settings\user name\Application Data.

If an .oit directory does not exist in the user’s directory, the directory is created
automatically. The files are automatically regenerated if corrupted or deleted.

The files are:

■ *.f = Filter lists

■ *.d = Display Engine lists

■ *.opt = Persistent options

Some applications and services may run under a local system account for which there
is no users "application data" folder. The technology first does a check for an
environment variable called OIT_DATA_PATH. Then it checks for APPDATA, and
then LOCALAPPDATA. If none of those exist, the options files are put into the
executable path of the UT module.

cmmap000.dbc Identical to
cmmap000.bin,
but renamed for
clarity (.dbc =
double-byte
character). This
file is located in
the common
directory.

X X X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Default Font Aliases

Windows Implementation Details 2-7

These file names are intended to be unique enough to avoid conflict for any
combination of machine name and install directory. This allows the user to run
products in separate directories without having to reload the files above. The file
names are built from an 11-character string derived from the directory the Outside In
technology resides in and the name of the machine it is being run on. The string is
generated by code derived from the RSA Data Security, Inc. MD5 Message-Digest
Algorithm.

The software still functions if these lists cannot be created for some reason. In that
situation, however, significant performance degradation should be expected.

2.3.3 Structure Alignment
Outside In is built with 8-byte structure alignment. This is the default setting for most
Windows compilers. This and other compiler options that should be used are
demonstrated in the files provided with the sample applications in samples\win.

2.3.4 Character Sets
The strings passed in the Windows API are ANSI1252 by default.

To optimize performance on systems that do not require DBCS support, a second
character mapping bin file, that does not contain any of the DBCS pages, is now
included. The second bin file gives additional performance benefits for English
documents, but cannot handle DBCS documents. To use the new bin file, replace the
cmmap000.bin with the new bin file, cmmap000.sbc. For clarity, a copy of the
cmmap000.bin file (cmmap000.dbc) is also included. Both cmmap000.sbc and
cmmap000.dbc are located in the \sdk\common directory of the technology.

2.3.5 Runtime Considerations
The files used by the product must be in the same directory as the developer’s
executable.

2.4 Default Font Aliases
The technology includes the following default font alias map for Windows. The first
value is the original font, the second is the alias.

■ Chicago = Arial

■ Geneva = Arial

■ New York = Times New Roman

■ Helvetica = Arial

■ Helv = Arial

■ times = Times New Roman

■ Times = Times New Roman

■ Tms Roman = Times New Roman

■ itc zapfdingbats = Zapfdinbats

■ itc zapf dingbats = Zapfdinbats

Changing Resources

2-8 Oracle Outside In HTML Export Developer's Guide

2.5 Changing Resources
Outside In HTML Export ships with the necessary files for OEMs to change any of the
strings in the technology as they see fit.

Strings are stored in the lodlgstr.h file found in the resource directory. The file can be
edited using any text editor.

Once the changes have been made, the updated scclo.dll file can be rebuilt using the
following steps:

1. Compile the .res file:

rc /fo ".\scclo.res" /i "<path to header (.h) files folder>" /d "NDEBUG"
scclo.rc

2. Link the scclo.res file you've created with the scclo.obj file found in the resource
directory to create a new scclo.dll:

link /DLL /OUT:scclo.dll scclo.obj scclo.res

3. Embed the manifest (which is created in the \resource directory during step 2)
into the new DLL:

mt -manifest scclo.dll.manifest -outputresource:scclo.dll;2

If you are not using Microsoft Visual Studio, substitute the appropriate development
tools from your enviroment.

Note: Do not directly edit the scclo.rc file. Strings are saved with
their identifiers in lodlgstr.h. If a new scclo.rc file is saved, it will
contain numeric identifiers for strings, instead of their #define'd
names.

Note: Developers should make sure they have set up their
environment variables to build the library for their specific
architecture. For Windows x86_32, when compiling with VS 2005, the
solution is to run vsvars32.bat (in a standard VS 2005 installation, this
is found in C:\Program Files\Microsoft Visual Studio
8\Common7\Tools\). If this works correctly, you will see the
statement, "Setting environment for using Microsoft Visual Studio
2005 x86 tools." If you do not complete this step, you may have
conflicts that lead to unresolved symbols due to conflicts with the
Microsoft CRT.

Note: In previous versions of Outside In, it was possible to directly
edit the SCCLO.DLL using Microsoft Visual Studio. Outside In DLLs
are now digitally signed. Editing the signed DLL is not advisable.

3

UNIX Implementation Details 3-1

3UNIX Implementation Details

The UNIX implementation of the Export product set is delivered as a set of shared
libraries. For a list of the currently supported platforms, see:

http://www.oracle.com/technetwork/indexes/documentation/index.html#middlew
are

Click on Outside In Technology, then click the Certification Information PDF.

This chapter includes the following sections:

Section 3.1, "Installation"

Section 3.2, "Libraries and Structure"

Section 3.3, "The Basics"

Section 3.4, "Character Sets"

Section 3.5, "Runtime Considerations"

Section 3.6, "Environment Variables"

Section 3.7, "Default Font Aliases"

Section 3.8, "Changing Resources"

Section 3.9, "HP-UX Compiling and Linking"

Section 3.10, "IBM AIX Compiling and Linking"

Section 3.11, "Linux Compiling and Linking"

Section 3.12, "Oracle Solaris Compiling and Linking"

Section 3.13, "z/OS Compiling and Linking"

3.1 Installation
To install the demo version of the SDK, copy the tgz file corresponding to your
platform (available on the web site) to a local directory of your choice. Decompress the
tgz file and then extract from the resulting tar file as follows:

gunzip tgzfile
tar xvf tarfile

The installation directory should contain the following directory structure:

Libraries and Structure

3-2 Oracle Outside In HTML Export Developer's Guide

3.1.1 NSF Support
Notes Storage Format (NSF) files are produced by the Lotus Notes Client or the Lotus
Domino server. The NSF filter is the only Outside In filter that requires the native
application to be present to filter the input documents. Due to integration with an
outside application, NSF support will not work with redirected I/O nor will it work
when an NSF file is embedded in another file. Lotus Domino version 8 must be
installed on the same machine as OIT. The NSF filter is currently only supported on
the Win32, Win x86-64, Linux x86-32, and Solaris Sparc 32 platforms. SCCOPT_
LOTUSNOTESDIRECTORY is a Windows-only option and is ignored on Unix.

Additional steps must be taken to prepare the system. It is necessary to know the
name of the directory in which Lotus Domino has been installed. On Linux, this
default directory is /opt/ibm/lotus/notes/latest/linux. On Solaris, it is
/opt/ibm/lotus/notes/latest/sunspa.

■ In the Lotus Domino directory, check for the existence of a file called "notes.ini". If
the file "notes.ini" does not exist, create it in that directory and ensure that it
contains the following single line:

[Notes]

■ Add the Lotus Domino directory to the $LD_LIBRARY_PATH environment
variable.

■ Set the environment variable $Notes_ExecDirectory to the Lotus Domino
directory.

3.2 Libraries and Structure
On UNIX platforms the Outside In products are delivered with a set of shared
libraries. All libraries should be installed to a single directory. Depending upon your

Directory Description

/docs Includes HTML and PDF versions of the manual you are
reading right now.

/redist Contains a working copy of the UNIX version of the
technology.

/sdk/common Contains the C include files needed to build or rebuild the
technology.

/sdk/demo Contains the compiled executables of the sample
applications.

/sdk/resource Contains localization resource files. For more information,
see Section 3.8, "Changing Resources."

/sdk/samplecode Contains a subdirectory holding the source code for a sample
application. For more information, see Chapter 9, "Sample
Applications."

/sdk/samplefiles Contains sample input files authored in a variety of popular
graphics, word processor, compression, spreadsheet and
presentation applications.

/sdk/template Contains a number of sample templates designed to exercise
HTML Export’s template language. Some templates consist
of multiple files. When this is the case, main.htm is the file to
which the SCCOPT_TEMPLATE option should point.

Libraries and Structure

UNIX Implementation Details 3-3

application, you may also need to add that directory to the system's runtime search
path. For more information, see Section 3.6, "Environment Variables."

The following is a brief description of the included libraries and support files. In
instances where a file extension is listed as .*, the file extension varies for each UNIX
platform (sl on HP-UX, so on Linux and Solaris).

3.2.1 API Libraries
These libraries implement the API. They should be linked with the developer’s
application.

The File ID Specification may not be used directly by any application or workflow
without it being separately licensed expressly for that purpose.

3.2.2 Support Libraries
The following libraries are used for support.

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

libsc_da.* Data Access module X X X X X

libsc_ex.* Export module X X X X X

libsc_fi.* File Identification
module (identifies
files based on their
contents).

X X X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

liboc_emul.* Output component
emulation module

X X X X X

libos_gd.* The internal rendering GDI
implementation. 32-bit
Linux and Solaris Sparc
only.

X X X X

libos_xwin.* The native GDI
implementation

X X X X

libsc_anno.* The annotation module X X X

libsc_ca.* Content Access module
(provides organized
chunker data for the
developer)

X X X

libsc_ch.* Chunker (provides caching
of and access to filter data
for the export engines)

X X X X X

libsc_du.* Display Utilities module
(includes text formatting)

X X X X X

libsc_fmt.* Formatting module
(resolves numbers to
formatted strings)

X X X X X

libsc_fut.* Filter utility module X X X X X

Libraries and Structure

3-4 Oracle Outside In HTML Export Developer's Guide

3.2.3 Engine Libraries
The following libraries are used for display purposes.

3.2.4 Filter and Export Filter Libraries
The following libraries are used for filtering.

libex_gdsf must be linked with libsc_img.* at compile time. This forces the filter to be
dependent on libsc_img.* at runtime, even though that module may not be used
directly. If you want to reduce your application’s physical footprint, you can
experiment with unlinking libsc_img.*.

libsc_ind.* Indexing engine. In Search
Export, it handles common
functionality.

X X X X

libsc_lo.* Localization library (all
strings, menus, dialogs and
dialog procedures reside
here)

X X X X X

libsc_ut.* Utility functions, including
IO subsystem

X X X X X

libsc_xp.* XPrinter bridge X X X X

libwv_core.* The Abstraction layer X X X X X

libwv_gdlib.so The GDI rendering module.
32-bit Linux and Solaris
Sparc only.

X X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

libde_bmp.* Raster rendering engine (TIFF,
GIF, BMP, PNG, PCX…)

X X

libde_vect.* Vector/Presentation rendering
engine (PowerPoint, Impress,
Freelance…)

X X X X

libde_ss.* Spreadsheet/Database (Excel,
Calc, Lotus 123…)

X X X

libde_tree* Archive (ZIP, GZIP, TAR…) X X

libde_wp.* Document (Word, Writer,
WordPerfect…)

X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

libvs_*.* Filters for specific file types
(there are more than 150 of
these filters, covering more
than 600 file formats)

X X X X X

libex_gdsf.* Export filter for GIF, JPEG,
and PNG graphics files

X X

libsc_img.* Image conversion module X X X

libex_itext.* Export filter for SearchText X

libex_html.* Export filter for HTML files X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Libraries and Structure

UNIX Implementation Details 3-5

3.2.5 Premier Graphics Filters
The following are graphics filters.

3.2.6 Additional Files
The following files are also used.

libex_img.* Extended image conversion
module

X

libex_xml.* Export filter for XML files
using the Flexiondoc schema

X

libex_page.* Export filter for XML files
using the PageML schema

X

libex_
pagelayout.*

Page Layout module X

libex_ixml.* Export filters for XML files
using the SearchML schema

X

libex_ihtml.* Export filter for
SearchHTML

X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

i*2.flt These 30 .flt files
are the import
filters for premier
graphics formats

X X X X X

isunx2.flt Interface to
premier graphics
filters

X X X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

adinit.dat Support file for
the vsacad and
vsacd2 filters

X X X X X

cmmap000.bin Tables for
character mapping
(all character sets)

X X X X X

cmmap000.sbc Tables for
character mapping
(single-byte
character sets).
This file is located
in the /common
directory.

X X X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

The Basics

3-6 Oracle Outside In HTML Export Developer's Guide

3.3 The Basics
Sample applications are provided with the SDK. These applications demonstrate most
of the concepts described in this manual. For a complete description of the sample
applications, see Chapter 9, "Sample Applications."

3.3.1 What You Need in Your Source Code
Any source code that uses this product should #include the file sccex.h and
#define UNIX. For example, a 32-bit UNIX application might have a source file with
the following lines:

#define UNIX
#include <sccex.h>

and a 64-bit UNIX application might have a source file with the following lines:

#define UNIX
#define UNIX_64
#include <sccex.h>

HTML Export can generate many open files at the same time, thereby hitting
user/system-defined limits. There are two UNIX solutions to this:

■ Increase the maximum file count by using the ulimit console command. Consult
the UNIX man pages for your shell of choice (sh, ksh, bash) for the shell command
"ulimit."

■ Make a system call in the code (before calling export functions):

setrlimit(RLIMIT_NOFILE,...)

Consult the UNIX man pages for the system C function "setrlimit."

3.3.2 Information Storage
This software is based on the Outside In Viewer Technology (or simply "Viewer
Technology"). A file of default options is always created, and a list of available filters
and a list of available display engines are also built by the technology, usually the first

cmmap000.dbc Identical to
cmmap000.bin,
but renamed for
clarity (.dbc =
double-byte
character). This
file is located in
the common
directory.

X X X X X

libfreetype.so.6 TrueType font
rendering module
for the GD output
solution. 32-bit
Linux and Solaris
Sparc only.

X X X X X

oitnsf.id Support file for
the vsnsf filter.

X X X X X

Library Description
HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Runtime Considerations

UNIX Implementation Details 3-7

time the product runs (for UNIX implementations). You do not need to ship these lists
with your application.

Lists are stored in the $HOME/.oit directory. If the $HOME environment variable is
not set, the files are put in the same directory as the Outside In Technology. If a /.oit
directory does not exist in the user’s $HOME directory, the .oit directory is created
automatically by the technology. The files are automatically regenerated if corrupted
or deleted.

The files are:

■ *.f: Filter lists

■ *.d: Display engine list

■ *.opt: Persistent options

The technology does not actually use the list of default options created by the Viewer
Technology.

The filenames are intended to be unique enough to avoid conflict for any combination
of machine name and install directory. This is intended to prevent problems with
version conflicts when multiple versions of the Viewer Technology and/or other
Viewer Technology-based products are installed on a single system. The filenames are
built from an 11-character string derived from the directory the Outside In technology
resides in and the name of the machine it is being run on. The string is generated by
code derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm.

The products still function if these files cannot be created for some reason. In that
situation, however, significant performance degradation should be expected.

3.4 Character Sets
The strings passed in the UNIX API are ISO8859-1 by default.

To optimize performance on systems that do not require DBCS support, a second
character mapping bin file, that does not contain any of the DBCS pages, is now
included. The second bin file gives additional performance benefits for English
documents, but cannot handle DBCS documents. To use the new bin file, replace the
cmmap000.bin with the new bin file, cmmap000.sbc. For clarity, a copy of the
cmmap000.bin file (cmmap000.dbc) is also included. Both cmmap000.sbc and
cmmap000.dbc are located in the /sdk/common directory of the technology.

3.5 Runtime Considerations
The following is information to consider during run-time.

3.5.1 X Server Requirement

Access to a running X Windows server and the presence of Motif (or LessTif on Linux)
are required to convert from vector formats on UNIX systems. Examples of vector
graphics files include CAD drawings and presentation files such as Power Point 97
files. Bitmap graphic conversion (handled in XML Export by the libde_bmp.* engine)

Note: The X Server requirement can be eliminated by setting the
SCCOPT_RENDERING_PREFER_OIT option to TRUE.

Runtime Considerations

3-8 Oracle Outside In HTML Export Developer's Guide

does not require access to a running X Windows server. Examples of bitmap file
formats include GIF, JPEG, TIFF, and Windows BMP files.

A runtime check for the presence of X libraries is performed to accommodate system
with and without available X servers. This check looks on the system-specific library
path variable for the X libraries. If the X libraries are not found, this product does not
perform vector graphics conversion.

Be sure to set the $DISPLAY environment variable before running this product when
non-raster/vector graphic conversion is needed. This is especially important to
remember in situations such as CGI programs that start with a limited environment.

For example, when running the technology from a remote session, setting
DISPLAY=:0.0 tells the system to use the X Windows server on the console.

3.5.2 OLE2 Objects
Some documents that the developer is attempting to convert may contain embedded
OLE2 objects. There are platform-dependent limits on what the technology can do
with OLE2 objects. However, Outside In attempts to take advantage of the fact that
some documents accompany an OLE2 embedding with a graphic "snapshot," in the
form of a Windows metafile.

On all platforms, when a metafile snapshot is available, the technology uses it to
convert the object. When a metafile snapshot is not available on UNIX platforms, the
technology is unable to convert the OLE2 object.

3.5.3 Machine-Dependent Graphics Context
The system uses a machine configuration dependent graphics context to render some
images. The number of colors available in the systems graphics context is a
particularly important limiting factor. For example, if the video driver for a system
running Outside In is set up to display 256 colors, images produced on that system
would be limited to 256 colors.

■ For all vector image formats that HX converts, we require that the X11 display
support either 1 bit, 4 bits, 8 bits, 24 bits, or 32 bits.

■ If SCCOPT_RENDERING_PREFER_OIT = TRUE on UNIX then we're using
internal rendering of vector formats, and we don't use the X11 display.

■ Raster image formats when converted do not need the X11 display, so are not
sensitive to the bit depth of the display.

3.5.4 Signal Handling
These products trap and handle the following signals:

■ SIGABRT

■ SIGBUS

■ SIGFPE

■ SIGILL

■ SIGINT

Note: SCCOPT_RENDERING_PREFER_OIT is only supported on
Linux x86-32 and Solaris Sparc-32 platforms.

Environment Variables

UNIX Implementation Details 3-9

■ SIGSEGV

■ SIGTERM

Developers who wish to override our default handling of these signals should set up
their own signal handlers. This may be safely done after the developer's application
has called DAInitEx().

3.5.5 Runtime Search Path and $ORIGIN
Libraries and sample applications are all built with the $ORIGIN variable as part of
the binaries' runtime search path. This means that at runtime, OIT libraries will
automatically look in the directory they were loaded from to find their dependent
libraries. You don't necessarily need to include the technology directory in your LD_
LIBRARY_PATH or SHLIB_PATH.

As an example, an application that resides in the same directory as the OIT libraries
and includes $ORIGIN in its runtime search path will have its dependent OIT libraries
found automatically. You will still need to include the technology directory in your
linker's search path at link time using something like -L and possibly -rpath-link.

Another example is an application that loads OIT libraries from a known directory.
The loading of the first OIT library will locate the dependent libraries.

3.6 Environment Variables
Several environment variables may be used at run time. Following is a short summary
of those variables and their usage.

Note: The Java Native Interface (JNI) allows Java code to call and be
called by native code (C/C++ in the case of OIT). You may run into
problems if Java isn't allowed to handle signals and forward them to
OIT. If OIT catches the signals and forwards them to Java, the JVMs
will sometimes crash. OIT installs signal handlers when DAInitEx() is
called, so if you call OIT after the JVM is created, you will need to use
libjsig. Refer here for more information:

http://www.oracle.com/technetwork/java/javase/index-
137495.html

Note: This feature does not work on AIX and FreeBSD.

Variable Description

$LD_LIBRARY_PATH (FreeBSD,
HP-UX Itanium 64, Linux, Solaris)

$SHLIB_PATH (HP-UX RISC 32)

$LIBPATH (AIX, iSeries)

These variables help your system's dynamic
loader locate objects at runtime. If you have
problems with libraries failing to load, try
adding the path to the Outside In libraries to the
appropriate environment variable. See your
system's manual for the dynamic loader and its
configuration for details.

Note that for products that have a 64-bit
PA/RISC, 64-bit Solaris and Linux PPC/PPC64
distributable, they will also go under $LD_
LIBRARY_PATH.

Default Font Aliases

3-10 Oracle Outside In HTML Export Developer's Guide

3.7 Default Font Aliases
The technology includes the following default font alias map for UNIX platforms. The
first value is the original font, and the second is the alias.

■ 61 = Liberation Sans

■ Andale Mono = Liberation Sans

■ Courier = Liberation Sans

■ Courier New = Liberation Sans

■ Lucida Console = Liberation Sans

■ MS Gothic = Liberation Sans

■ MS Mincho = Liberation Sans

■ OCR A Extended = Liberation Sans

■ OCR B = Liberation Sans

■ Agency FB = Liberation Sans

■ Arial = Liberation Sans

■ Arial Black = Liberation Sans

■ Arial Narrow = Liberation Sans

■ Arial Rounded MT = Liberation Sans

■ Arial Unicode MS = Liberation Sans

■ Berline Sans FB = Liberation Sans

■ Calibri = Liberation Sans

■ Frank Gothic Demi = Liberation Sans

■ Frank Gothic Medium Cond = Liberation Sans

■ Franklin Gothic Book = Liberation Sans

■ Futura = Liberation Sans

■ Geneva = Liberation Sans

■ Gill Sans = Liberation Sans

$DISPLAY Must be set to point to a valid X Server to render
files, unless you plan to use the SCCOPT_
RENDERING_PREFER_OIT option. For more
information, see Section 3.5.1, "X Server
Requirement."

$GDFONTPATH Must be set if you intend to use the SCCOPT_
RENDERING_PREFER_OIT option. This
variable includes one or more paths to fonts for
use with Outside In’s internal graphics
rendering code.

$HOME Must be set to allow the system to write the
option, filter and display engine lists. For more
information, see Section 3.3.2, "Information
Storage."

Variable Description

Default Font Aliases

UNIX Implementation Details 3-11

■ Gill Sans MT = Liberation Sans

■ Lucida Sans Regular = Liberation Sans

■ Lucida Sans Unicode = Liberation Sans

■ Modern No. 20 = Liberation Sans

■ Tahoma = Liberation Sans

■ Trebuchet MS = Liberation Sans

■ Tw Cen MT = Liberation Sans

■ Verdana = Liberation Sans

■ Albany = Liberation Sans

■ Franklin Gothic = Liberation Sans

■ Franklin Demi = Liberation Sans

■ Franklin Demi Cond = Liberation Sans

■ Franklin Gothic Heavy = Liberation Sans

■ Algerian = Liberation Serif

■ Baskerville = Liberation Serif

■ Bell MT = Liberation Serif

■ Bodoni MT = Liberation Serif

■ Bodoni MT Black = Liberation Serif

■ Book Antiqua = Liberation Serif

■ Bookman Old Style = Liberation Serif

■ Calisto MT = Liberation Serif

■ Cambria = Liberation Serif

■ Centaur = Liberation Serif

■ Century = Liberation Serif

■ Century Gothic = Liberation Serif

■ Century Schoolbook = Liberation Serif

■ Elephant = Liberation Serif

■ Footlight MT Light = Liberation Serif

■ Garamond = Liberation Serif

■ Georgia = Liberation Serif

■ Goudy Old Style = Liberation Serif

■ Lucida Bright = Liberation Serif

■ MS Serif = Liberation Serif

■ New York = Liberation Serif

■ Palatino = Liberation Serif

■ Perpetua = Liberation Serif

■ Times = Liberation Serif

Changing Resources

3-12 Oracle Outside In HTML Export Developer's Guide

■ times = Liberation Serif

■ Times New Roman = Liberation Serif

3.8 Changing Resources
All of the strings used in the UNIX versions of Outside In products are contained in
the lodlgstr.h file. This file, located in the resource directory, can be modified for
internationalization and other purposes. Everything necessary to rebuild the resource
library to use the modified source file is included with the SDK.

In addition to lodlgstr.h, the scclo.o object file is provided. This is necessary for the
linking phase of the build. A makefile has also been provided for building the library.
The makefile allows building on all of the UNIX platforms supported by Outside In. It
may be necessary to make minor modifications to the makefile so the system header
files and libraries can be found for compiling and linking.

Standard INCLUDE and LIB make variables are defined for each platform in the
makefile. Edit these variables to point to the header files and libraries on your
particular system. Other make variables are:

■ TECHINCLUDE: May need to be edited to point to the location of the Outside In
/common header files supplied with the SDK.

■ BUILDDIR: May need to be edited to point to the location of the makefile,
lodlgstr.h, and scclo.o (which should all be in the same directory).

After these variables are set, change to the build directory and type make. The libsc_lo
resource library is built and placed in the appropriate platform-specific directory. To
use this library, copy it into the directory where the Outside In product is stored and
the new, modified resource strings are used by the technology.

Menu constants are included in lomenu.h in the common directory.

3.9 HP-UX Compiling and Linking
The libsc_ex.sl and libsc_da.sl libraries are the only ones that must be linked with your
application. They can be loaded when your application starts by linking them directly
at compile time or they can be loaded dynamically by your application using library
load functions (for example, shl_load).

To use HTML Export’s annotation functions, you also must link to libsc_ca.sl,
requiring a separate license to Outside In Content Access or Search Export. Contact
your Outside In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if
vector graphics support is required. It is the application developer’s responsibility to
ensure that the needed functions from these libraries are present before the product
libraries are used.

The following are example command lines used to compile the sample application
exsimple from the /sdk/samplecode directory. The command lines are separated into
sections for HP-UX and HP-UX on Itanium. This command line is only an example.
The actual command line required on the developer’s system may vary. The example
assumes that the include and library file search paths for the technology libraries and
any required X libraries are set correctly. If they are not set correctly, the search paths
for the include and/or library files must be explicitly specified via the -I include file
path and/or -L library file path options, respectively, so that the compiler and linker can
locate all required files.

IBM AIX Compiling and Linking

UNIX Implementation Details 3-13

When using HTML Export, the libex_gdsf filter must link with libsc_img at compile
time. This forces the filter to be dependent on libsc_img at runtime, even though that
module may not be used directly. If you are looking to reduce your application’s
physical footprint, you can experiment with unlinking libsc_img.

3.9.1 HP-UX on RISC
cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c +DAportable -Ae
-I/usr/include -I../../common -L../../demo -L/usr/lib -lsc_ex -lsc_da
-Wl,+s,+b,'$ORIGIN'

3.9.2 HP-UX on RISC (64 bit)
cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c +DD64
-I/usr/include -I../../common -L../../demo -L/usr/lib/pa20_64 -DUNIX_64 -lsc_ex
-lsc_da -Wl,+s,+b,'$ORIGIN'

3.9.3 HP-UX on Itanium (64 bit)
cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c +DD64
-I../../common -L../../demo -lsc_ex -lsc_da -DUNIX_64 -Wl,+s,+b,'$ORIGIN'

3.10 IBM AIX Compiling and Linking
All libraries should be installed into a single directory and the directory must be
included in the system’s shared library path ($LIBPATH). $LIBPATH must be set and
must point to the directory containing the Outside In technology.

Outside In technology has been updated to increase performance, at a cost of using
more memory. It is possible that this increased memory usage may cause a problem on
AIX systems, which can be very conservative in the amount of memory they grant to
processes. If your application experiences problems due to memory limitations with
Outside In, you may be able to fix this problem by using the "large page" memory
model.

If you anticipate viewing or converting very large files with Outside In Technology, we
recommend linking your applications with the -bmaxdata flag. For example:

cc -o foo foo.c -bmaxdata:0x80000000

If you are currently seeing "illegal instruction" errors followed by immediate program
exit, this is likely due to not using the large data model.

To use the HTML Export annotation function, you must also link to libsc_ca.sl,
requiring a separate license to Outside In Content Access or Search Export. Contact
your Outside In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if
vector graphics support is required. It is the application developer’s responsibility to
ensure that the needed functions from these libraries are present before the product
libraries are used.

The following is an example command line used to compile the sample application
exsimple from the /sdk/samplecode directory. This command line is only an example.
The actual command line required on the developer’s system may vary. The example
assumes that the include and library file search paths for the technology libraries and
any required X libraries are set correctly. If they are not set correctly, the search paths
for the include and/or library files must be explicitly specified via the -I include file
path and/or -Llibrary file path options, respectively, so that the compiler and linker can

Linux Compiling and Linking

3-14 Oracle Outside In HTML Export Developer's Guide

locate all required files. Developers need to pass -brtl to the linker to list libraries in the
link command as dependencies of their applications.

When using HTML Export, the libex_gdsf filter must be linked with libsc_img at
compile time. This forces the filter to be dependent on libsc_img at runtime, even
though that module may not be used directly. If you are looking to reduce your
application’s physical footprint, you can experiment with unlinking libsc_img.

Developers may need to use the -qcpluscmt flag to allow C++ style comments.

3.10.1 IBM AIX (32-bit pSeries)
gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I../../common
-L../../demo -lsc_ex -lsc_da -DFUNCPROTO -Wl,-brtl

3.10.2 IBM AIX PPC (64-bit)
gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -maix64
-I../../common -L../../demo -lsc_ex -lsc_da -DUNIX_64 -DFUNCPROTO -Wl,-brtl

3.11 Linux Compiling and Linking
This section discusses issues involving Linux compiling and linking.

3.11.1 Library Compatibility
This section discusses Linux library compatibility issues.

3.11.1.1 Motif Libraries
Problems can be seen when using Export products and trying to convert graphics files.
For example, zero-byte graphics files are generated if the technology cannot find the
proper Motif library. You can check to see if this is the case by running the following
command:

ldd libos_xwin.so

This prints a list of the dependencies that this library has. If the line for the Motif
library is similar to the following then your system may not have a compatible Motif
library:

libXm.so.3 => not found

The solution is to install a compatible Motif library and use it to build your
application. Often, the installation discs for your particular Linux platform have the
proper libraries. If your installation discs do not have the libraries, instructions for
downloading a binary rpm can be found at http://rpmfind.net/linux/RPM.

If you are doing development, you must use the proper header files, as well.

The following is a list of the Motif library versions used by Oracle when building and
testing the Outside In binaries.

■ x86 Linux - OpenMotif v. 2.2.3

■ zSeries Linux - OpenMotif v. 2.2.3

■ Itanium Linux - OpenMotif v. 2.1.30

When using HTML Export, the libex_gdsf filter must be linked with libsc_img at
compile time. This forces the filter to be dependent on libsc_img at runtime, even

Linux Compiling and Linking

UNIX Implementation Details 3-15

though that module may not be used directly. If you want to reduce your application’s
physical footprint, you can experiment with unlinking libsc_img.

3.11.1.2 GLIBC and Compiler Versions
The following table indicates the compiler version used and the minimum required
version of the GNU standard C library needed for Outside In operation.

3.11.1.3 Other Libraries
In addition to libc.so.6, Outside In is dependent upon the following libraries:

■ libXm.so.3 (in particular, libXm.so.3.0.2 or newer, due to issues in OpenMotif 2.2.2)

■ libXt.so.6

■ libstdc++.so.5.0.5

■ libgcc_so.1

libgcc_s.so.1 was introduced with GCC 3.0, so any distribution based on a pre-GCC 3.0
compiler does not include libgcc_s.so.1.

The following table summarizes what is included with the RedHat and SUSE
distributions supported by Outside In and what needs to be added/modified to make
Outside In run on these systems. Developers may have trouble building with
libstdc++.so.5 versions before 5.0.5 due to unversioned symbols. Upgrade to 5.0.5 to
correct the problem.

3.11.1.3.1 Libraries on Linux Systems as Distributed (IA32)

Advanced Server 3.0

Distribution Compiler Version GLIBC Version

x86 Linux 3.3.2 libc.so.6 (2.3 or newer)

Itanium Linux 3.3.2 libc.so.6 (2.3 or newer)

zSeries Linux 3.3.6 libc.so.6 (2.3.2 or newer)

Included To be added

libc.so.6 version /lib/libc-2.3.2

libstdc++ /usr/lib/libstdc++.so.5.0.3

libgcc_s.so.1 /lib/libgcc_s.so-3.2.3-20030829.so.1

libXm.so.X libXm.so.2 (OpenMotif 2.1.30-8)

libXm.so.3.0.1 (OpenMotif 2.2.2-16)

Required to Use Outside In ■ Default system install has the proper libstdc++.so.5

■ Default system install includes libgcc_s.so.1

■ Update to >= libXm.so.3.0.2 (OpenMotif >=2.2.3)

■ Install X libraries

Linux Compiling and Linking

3-16 Oracle Outside In HTML Export Developer's Guide

Advanced Server 4.0

SUSE 8.1

SUSE 9.0

3.11.1.3.2 Libraries on Linux Systems as Distributed (IA64)

SUSE 8.1

Included To be added

libc.so.6 version /lib/libc-2.3.4

libstdc++ /usr/lib/libstdc++.so.6.0.3

libgcc_s.so.1 /usr/lib/libgcc_s.so-3.4.3-20041213.so.1

libXm.so.X libXm.so.2 (OpenMotif 2.1.30-11)

libXm.so.3.0.2 (OpenMotif 2.2.3-6)

Required to Use Outside In ■ Install libstdc++.so.5 (included with gcc 3.2 - 3.3.6)

■ Default system install includes libgcc_s.so.1

■ Install Motif 2.2.3 from distribution media

■ Install X libraries

Included To be added

libc.so.6 version /lib/libc.so.6 (GLIBC 2.2.5)

libstdc++ /usr/lib/libstdc++.so.5.0.0

libgcc_s.so.1 /lib/libgcc_s.so.1

libXm.so.X libXm.so.3.0.1

Required to Use Outside In ■ Default system install has proper libstdc++.so.5

■ Default system install has libgcc_so.1

■ Update to >= libXm.so.3.0.2 (OpenMotif >=2.2.3)

■ Install X libraries

Included To be added

libc.so.6 version /lib/libc.so.6 (GLIBC 2.3.4)

libstdc++ /usr/lib/libstdc++.so.5.0.6 + old libraries

libgcc_s.so.1 /lib/libgcc_s.so.1

libXm.so.X libXm.so.3.0.1

Required to Use Outside In ■ Default system install has proper libstdc++.so.5

■ Default system install has libgcc_so.1

■ Update to >= libXm.so.3.0.2 (OpenMotif >=2.2.3)

■ Install X libraries

Included To be added

libc.so.6 version /lib/libc.so.6 (GLIBC 2.2.5)

Linux Compiling and Linking

UNIX Implementation Details 3-17

SUSE 9.0

SUSE Linux Enterprise Server 8.0

Libraries on Linux PPC Systems

libstdc++ /usr/lib/libstdc++.so.5.0.0

libgcc_s.so.1 /lib/libgcc_s.so.1

libXm.so.X libXm.so.3.0.1

Required to Use Outside In ■ Default system install has proper libstdc++.so.5

■ Default system install has libgcc_so.1

■ Update to >= libXm.so.3.0.2 (OpenMotif >=2.2.3)

■ Install X libraries

Included To be added

libc.so.6 version /lib/libc.so.6 (GLIBC 2.3.4)

libstdc++ /usr/lib/libstdc++.so.5.0.6 + old libraries

libgcc_s.so.1 /lib/libgcc_s.so.1

libXm.so.X libXm.so.3.0.1

Required to Use Outside In ■ Default system install has proper libstdc++.so.5

■ Default system install has libgcc_so.1

■ Update to >= libXm.so.3.0.2 (OpenMotif >=2.2.3)

■ Install X libraries

Included To be added

libc.so.6 version /lib/libc.so.6.1 (GLIBC 2.2.6)

libstdc++ /usr/lib/libstdc++-libc6.2-2.so.3

/usr/lib/libstdc++.so.5.0.0

libgcc_s.so.1 /lib/libgcc_s.so.1

libXm.so.X libXm.so.3.0.1

Required to Use Outside In ■ Default system install has proper libstdc++.so.5.

■ Default system install has libgcc_so.1

■ Update to >= libXm.so.3.0.2 (OpenMotif >=2.2.3)

■ Install X libraries

SUSE Linux Enterprise
Server 10 PPC Support Information

libc.so.6 version /lib/libc.so.6 (GLIBC 2.3.4 or higher)

libstdc++ /usr/lib/libstdc++.so.6.0.8

libgcc_s.so.1 /lib/libgcc_s.so.1

libXm.so.X libXm.so.3

Included To be added

Oracle Solaris Compiling and Linking

3-18 Oracle Outside In HTML Export Developer's Guide

3.11.2 Compiling and Linking
The libsc_ex.so and libsc_da.so are the only libraries that must be linked with your
applications. They can be loaded when your application starts by linking them directly
at compile time or they can be loaded dynamically by your application using library
load functions (for example, dlopen).

To use HTML Export annotation functions, you must also link to libsc_ca.so, requiring
a separate license to Outside In Content Access or Search Export. Contact your
Outside In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if
vector graphics support is required. It is the application developer’s responsibility to
ensure that the needed functions from these libraries are present before the product
libraries are used.

The following are example command lines used to compile the sample application
exsimple from the /sdk/samplecode directory. This command line is only an example.
The actual command line required on the developer’s system may vary.

The example assumes that the include and library file search paths for the technology
libraries and any required X libraries are set correctly. If they are not set correctly, the
search paths for the include and/or library files must be explicitly specified via the -I
include file path and/or -L library file path options, respectively, so the compiler and
linker can locate all required files.

The -L/usr/X11R6/lib option is also available.

3.11.2.1 Linux 32-bit, including Linux PPC
gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c
-I/usr/local/include -I../../common -L../../demo -L/usr/local/lib -lsc_ex -lsc_da
-Wl,-rpath,../../demo -Wl,-rpath,'${ORIGIN}'

3.11.2.2 Linux 64-bit
gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c
-I/usr/local/include -I../../common -L../../demo -L/usr/local/lib -lsc_ex -lsc_da
-DUNIX_64 -Wl,-rpath,../../demo -Wl,-rpath,'${ORIGIN}'

3.11.2.3 Linux zSeries
gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c
-I/usr/local/include -I../../common -L../../demo -L/usr/local/lib -lsc_ex -lsc_da
-Wl,-rpath,../../demo -Wl,-rpath,'${ORIGIN}'

3.12 Oracle Solaris Compiling and Linking

Required to Use Outside In ■ Update to >= libXm.so.3 (OpenMotif >=2.2.2 < 2.2.3)

■ Default system install has proper libstdc++.so.6.0.8

■ Default system install has libgcc_so.1

■ Install X libraries

Note: These products do not support the "Solaris BSD" mode.

SUSE Linux Enterprise
Server 10 PPC Support Information

Oracle Solaris Compiling and Linking

UNIX Implementation Details 3-19

All libraries should be installed into a single directory. The libsc_ex.so, and libsc_da.so
libraries must be linked with your application. It can be loaded when your application
starts by linking them directly at compile time or they can be loaded dynamically by
your application using library load functions (for example, dlopen).

To use HTML Export annotation functions, you must link to libsc_ca.sl, requiring a
separate license to Outside In Content Access or Search Export. Contact your Outside
In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if
vector graphics support is required. It is the application developer’s responsibility to
ensure that the needed functions from these libraries are present before the product
libraries are used.

The following is an example command line used to compile the sample application
exsimple from the /sdk/samplecode directory. This command line is only an example.
The actual command line required on the developer’s system may vary. The example
assumes that the include and library file search paths for the technology libraries and
any required X libraries are set correctly. If they are not set correctly, the search paths
for the include and/or library files must be explicitly specified via the -I include file
path> and/or -L library file path options, respectively, so that the compiler and linker
can locate all required files.

When using HTML Export, the libex_gdsf filter must be linked with libsc_img at
compile time. This forces the filter to be dependent on libsc_img at runtime, even
though that module may not be used directly. If you want to reduce your application’s
physical footprint, you can experiment with unlinking libsc_img.

Developers may need to use the -xcc flag to allow C++ style comments.

3.12.1 Oracle Solaris SPARC
cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/include
-I/usr/dt/share/include -I../../common -L../../demo -L/usr/lib -L/lib -lsc_ex
-lsc_da -Wl,-R,../../demo -Wl,-R,'${ORIGIN}'

Note: When running the 32-bit SPARC binaries on Solaris 8 or 9 systems, you may see
the following error:

ld.so.1: simple: fatal: libm.so.1: version `SUNW_1.1.1' not found
(required by file ./libsc_vw.so)

This is due to a missing system patch. Please apply one of the following patches (or its
successor) to your system to correct.

■ For Solaris 8 - Patch 111721-04

■ For Solaris 9 - Patch 111722-04

3.12.2 Oracle Solaris (SPARC) 64
cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -xtarget=generic64
-I/usr/include -I/usr/dt/share/include -I../../common -L../../demo -L/usr/lib
-L/lib -lsc_ex -lsc_da -DUNIX_64 -Wl,-R,../../demo -Wl,-R,'${ORIGIN}'

z/OS Compiling and Linking

3-20 Oracle Outside In HTML Export Developer's Guide

3.12.3 Oracle Solaris x86

cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/include
-I/usr/dt/share/include -I../../common -L../../demo -L/usr/lib -L/lib -lsc_ex
-lsc_da -Wl,-R,../../demo -Wl,-R,'${ORIGIN}'

3.12.4 Oracle Solaris x64
cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -xtarget=native64
-I/usr/include -I/usr/dt/share/include -I../../common -L../../demo -L/usr/lib
-L/lib -lsc_ex -lsc_da -DUNIX_64 -Wl,-R,../../demo -Wl,-R,'${ORIGIN}'

3.12.5 Oracle Solaris X Server Display Memory Issue
On Solaris, the X Server does not free the memory for a display until the last close
display call is made on that display. This problem is limited strictly to the Oracle
Solaris OS and does not affect any other platforms, UNIX or otherwise. It also does not
affect HTML Export when graphics conversions are turned off.

This problem is most noticeable when doing large amounts of graphics processing,
when system memory usage can grow without bound. This memory can only be freed
by shutting down the X Windows display the user pointed the technology to use via
the DISPLAY environment variable. If that display is the "console" display, the user
must log out of the console in order to free the memory. Users may be able to avoid
this problem by choosing a display that they can close periodically.

3.13 z/OS Compiling and Linking
The libsc_ex.x and libsc_da.x libraries must be linked with your application. They can
be loaded when your application starts by linking them directly at compile time or
they can be loaded dynamically by your application using library load functions (for
example, dlopen).

To use HTML Export’s annotation functions, link to libsc_ca.x, which requires a
separate license to Outside In Content Access or Search Export. Contact your Outside
In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if
vector graphics support is required. It is the application developer’s responsibility to
ensure that the needed functions from these libraries are present before the product
libraries are used.

All libraries should be installed into a single directory and the directory must be
included in the system’s shared library path ($LIBPATH). $LIBPATH must be set and
must point to the directory containing the Outside In technology.

The following is an example command line used to compile the sample application
exsimple from the /sdk/samplecode directory. This command line is only an example.
The actual command line required on the developer’s system may vary. The example
assumes that the include and library file search paths for the technology libraries and
any required X libraries are set correctly. If they are not set correctly, the search paths
for the include and/or library files must be explicitly specified via the -I include file

Note: Your system will require Solaris patch 108436, which contains
the C++ library libCstd.so.1.

z/OS Compiling and Linking

UNIX Implementation Details 3-21

path and/or -L library file path options, respectively, so the compiler and linker can
locate all required files.

c89 -o ../exsimple/unix/exsimple -I/usr/include/X11 -I/usr/local/include
-I../../common -W 'c,ASCII,LANGLVL(ANSI,LONGLONG)' -D_ZOS_SOURCE -D_XOPEN_
SOURCE=500 -Wl,DLL,XPLINK -L../../demo -L/usr/local/lib -L/usr/local/lib/oivt
../../demo/libsc_fa.x ../../demo/libsc_ex.x ../../demo/libsc_da.x
../exsimple/unix/exsimple.c

z/OS Compiling and Linking

3-22 Oracle Outside In HTML Export Developer's Guide

4

Data Access Common Functions 4-1

4Data Access Common Functions

The Data Access module is common to all Outside In technologies. It provides a way to open a
generic handle to a source file. This handle can then be used in the functions described in this
chapter.

This chapter contains the following sections:

n Section 4.1, "Deprecated Functions"

n Section 4.2, "DAInitEx"

n Section 4.3, "DADeInit"

n Section 4.4, "DAOpenDocument"

n Section 4.5, "DACloseDocument"

n Section 4.6, "DARetrieveDocHandle"

n Section 4.7, "DASetOption"

n Section 4.8, "DASetFileSpecOption"

n Section 4.9, "DAGetOption"

n Section 4.10, "DAGetFileId"

n Section 4.11, "DAGetFileIdEx"

n Section 4.12, "DAGetErrorString"

n Section 4.13, "DAGetTreeCount"

n Section 4.14, "DAGetTreeRecord"

n Section 4.15, "DAOpenTreeRecord"

n Section 4.16, "DASaveTreeRecord"

n Section 4.17, "DACloseTreeRecord"

n Section 4.18, "DASetStatCallback"

n Section 4.19, "DASetFileAccessCallback"

4.1 Deprecated Functions
DAInit and DaThreadInit have both been deprecated. DAInitEx now replaces these two
functions. All new implementations should use DAInitEX, although the other two functions
will continue to be supported.

DAInitEx

4-2 Oracle Outside In HTML Export Developer's Guide

4.2 DAInitEx
This function tells the Data Access module to perform any necessary initialization it needs to
prepare for document access. This function must be called before the first time the application
uses the module to retrieve data from any document. This function supersedes the old DAInit
and DAThreadInit functions.

If the ThreadOption parameter is set to something other than DATHREAD_INIT_
NOTHREADS, then this function’s preparation includes setting up mutex function pointers to
prevent threads from clashing in critical sections of the technology’s code. The developer must
actually code the threads after this function has been called. DAInitEx should be called only
once per process and should be called before the developer's application begins the thread.

Prototype
DAERR DAInitEx(VTSHORT ThreadOption, VTDWORD dwFlags);

Parameters
n ThreadOption: can be one of the following values:

– DATHREAD_INIT_NOTHREADS: No thread support requested.

– DATHREAD_INIT_PTHREADS: Support for PTHREADS requested.

– DATHREAD_INIT_NATIVETHREADS: Support for native threading requested.
Supported only on Microsoft Windows platforms and Oracle Solaris.

n dwFlags: can be one or more of the following flags OR-ed together

– OI_INIT_DEFAULT: Options Load and Save are performed normally

– OI_INIT_NOSAVEOPTIONS: The options file will not be saved on exit

– OI_INIT_NOLOADOPTIONS: The options file will not be read during initialization.

Return Values
n DAERR_OK: If the initialization was successful. Otherwise, one of the other DAERR_

values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.3 DADeInit
This function tells the Data Access module that it will not be asked to read additional
documents, so it should perform any cleanup tasks that may be necessary. This function should
be called at application shutdown time, and only if the module was successfully initialized with
a call to DAInitEx.

Note: DAInitEx should only be called once per application, at application
startup time. Any number of documents can be opened for access between
calls to DAInitEx and DADeInit. If DAInitEx succeeds, DADeInit must be
called regardless of any other API calls.

Note: Multiple threads are supported for all Windows platforms and the
32-bit versions of Linux x86 and Solaris SPARC. Failed initialization of the
threading function will not impair other API calls. If threading isn't initialized
or fails, stub functions are called instead of mutex functions.

DAOpenDocument

Data Access Common Functions 4-3

Prototype
DAERR DADeInit();

Return Values
n DAERR_OK: If the de-initialization was successful. Otherwise, one of the other DAERR_

values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.4 DAOpenDocument
Opens a source file to make it accessible by one or more of the data access technologies. If
DAOpenDocument succeeds, DACloseDocument must be called regardless of any other API
calls.

The software now allows you to specify a file within an archive as the source for a conversion.
A "subdocument specification" has been defined that allows the caller to identify the item
within the archive that they wish to convert. The subdocument specification has the form
item.number, where number identifies a particular item within the archive (item numbers must
be non-zero, positive integers and the enumeration of items in the archive starts with "1").
Nested archives are supported, meaning that if the archived item is itself also an archive, you
can specify an item within it as the "true" target file. This is accomplished by appending
another number to the subdocument specification, delimited by another dot. For example, to
specify item number 3 within an archive, the subdocument specification is item.3. If item
number 3 is an archive file itself, and you wish to specify the fourth item within it, the
subdocument specification is item.3.4. Any level of nesting is supported, up to the maximum
length of a subdocument specification, which is DA_MAXSUBDOCSPEC.

For IO types other than IOTYPE_REDIRECT, the subdocument specification may be specified
as part of the file's path. This is accomplished by appending a question mark delimiter to the
path, followed by the subdocument specification. For example, to specify the third item within
the file c:\docs\file.zip, specify the path c:\docs\file.zip?item.3 in the call to
DAOpenDocument. DAOpenDocument always attempts to open the specification as a file first.
In the unlikely event there is a file with the same name (including the question mark) as a file
plus the subdocument specification, that file is opened instead of the archive item.

To take advantage of this feature when providing access to the input file using redirected IO, a
subdocument specification must be provided via a response to an IOGetInfo message,
IOGETINFO_SUBDOC_SPEC. To specify an item in an archive, first follow the standard
redirected IO methods to provide a BASEIO pointer to the archive file itself. To specify an item
within the archive, a redirected IO object must respond to the IOGETINFO_SUBDOC_SPEC
message by copying to the supplied buffer the subdocument specification of the archive item to
be opened. This message is received during the processing of DAOpenDocument.

Prototype
DAERR DAOpenDocument(

VTLPHDOC lphDoc,
VTDWORD dwSpecType,
VTLPVOID pSpec,
VTDWORD dwFlags);

Parameters
n lphDoc: Pointer to a handle that will be filled with a value uniquely identifying the

document to data access. The developer uses this handle in subsequent calls to data access
to identify this particular source file. This is not an operating system file handle.

n dwSpecType: Describes the contents of pSpec. Together, dwSpecType and pSpec describe
the location of the source file. Must be one of the following values:

DAOpenDocument

4-4 Oracle Outside In HTML Export Developer's Guide

– IOTYPE_ANSIPATH: Windows only. The pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32 and
Win64) file name conventions.

– IOTYPE_UNICODEPATH: Windows only. The pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64) file
name conventions.

– IOTYPE_UNIXPATH: UNIX platforms only. pSpec points to a NULL-terminated full
path name using the system default character set and UNIX path conventions. Unicode
paths can be accessed on UNIX platforms by using a UTF-8 encoded path with
IOTYPE_UNIXPATH.

– IOTYPE_REDIRECT: All platforms. The pSpec points to a developer-defined struct
that allows the developer to redirect the IO routines used to read the file. For more
information, see Chapter 6, "Redirected IO."

– IOTYPE_ARCHIVEOBJECT: All platforms. Opens an embedded archive object for
data access. The pSpec points to a structure IOSPECARCHIVEOBJECT (see
Section 4.4.2, "IOSPECARCHIVEOBJECT Structure") that has been filled with
values returned in a SCCCA_OBJECT content entry from Content Access.

– IOTYPE_LINKEDOBJECT: All platforms. Opens an object specified by a linked
object for data access. The pSpec points to a structure IOSPECLINKEDOBJECT (see
Section 4.4.1, "IOSPECLINKEDOBJECT Structure") that has been filled with values
returned in an SCCCA_BEGINTAG or SCCCA_ENDTAG with a subtype of
SCCCA_LINKEDOBJECT content entry from Content Access.

n pSpec: File location specification.

n dwFlags: The low WORD is the file ID for the document (0 by default). If you set the file
ID incorrectly, the technology fails. If set to 0, the file identification technology determines
the input file type automatically. The high WORD should be set to 0.

Return Values
n DAERR_OK: Returned if the open was successful. Otherwise, one of the other DAERR_

values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.4.1 IOSPECLINKEDOBJECT Structure
Structure used by DAOpenDocument.

Prototype
typedef struct IOSPECLINKEDOBJECTtag

{
VTDWORD dwStructSize;
VTSYSPARAM hDoc;
VTDWORD dwObjectId; /* Object identifier. */
VTDWORD dwType; /* Linked Object type */

/* (SO_LOCATORTYPE_*) */
VTDWORD dwParam1; /* parameter for DoSpecial call */
VTDWORD dwParam2; /* parameter for DoSpecial call */
VTDWORD dwReserved1; /* Reserved. */
VTDWORD dwReserved2; /* Reserved. */

} IOSPECLINKEDOBJECT, * PIOSPECLINKEDOBJECT;

4.4.2 IOSPECARCHIVEOBJECT Structure
Structure used by DAOpenDocument.

DASetOption

Data Access Common Functions 4-5

Prototype
typedef struct IOSPECARCHIVEOBJECTtag

{
VTDWORD dwStructSize;
VTDWORD hDoc; /* Parent Doc hDoc */
VTDWORD dwNodeId; /* Node ID */
VTDWORD dwStreamId;
VTDWORD dwReserved1; /* Must always be 0 */
VTDWORD dwReserved2; /* Must always be 0 */

} IOSPECARCHIVEOBJECT, * PIOSPECARCHIVEOBJECT;

4.5 DACloseDocument
This function is called to close a file opened by the reader that has not encountered a fatal error.

Prototype
DAERR DACloseDocument(

VTHDOC hDoc);

Parameters
n hDoc: Identifier of open document. Must be a handle returned by the DAOpenDocument

function.

Return Value
n DAERR_OK: Returned if close succeeded. Otherwise, one of the other DAERR_ values in

sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.6 DARetrieveDocHandle
This function returns the document handle associated with any type of Data Access handle.
This allows the developer to only keep the value of hItem, instead of both hItem and hDoc.

Prototype
DAERR DARetrieveDocHandle(

VTHDOC hItem,
VTLPHDOC phDoc);

Parameters
n hItem: Identifier of open document. May be the subhandle returned by the

DAOpenDocument or DAOpenTreeRecord functions in the data access submodule.
Passing in an hDoc created by DAOpenDocument for this parameter results in an error.

n phDoc: Pointer to a handle to be filled with the document handle associated with the
passed subhandle.

Return Value
n DAERR_OK: Returned if the handle in phDoc is valid. Otherwise, one of the other

DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.7 DASetOption
This function is called to set the value of a data access option.

DASetFileSpecOption

4-6 Oracle Outside In HTML Export Developer's Guide

Prototype
DAERR DASetOption(

VTHDOC hDoc,
VTDWORD dwOptionId,
VTLPVOID pValue,
VTDWORD dwValueSize);

Parameters
n hDoc: Identifier of open document. May be a VTHDOC returned by the

DAOpenDocument function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Setting an option for a
VTHDOC affects all subhandles opened under it, while setting an option for a subhandle
affects only that handle.

If this parameter is NULL, then setting the option affects all documents opened thereafter.
Once an option is set using the NULL handle, this option becomes the default option
thereafter. This parameter should only be set to NULL if the option being set can take that
value.

n dwOptionId: The identifier of the option to be set.

n pValue: Pointer to a buffer containing the value of the option.

n dwValueSize: The size in bytes of the data pointed to by pValue. For a string value, the
NULL terminator should be included when calculating dwValueSize.

Return Value
n DAERR_OK: Returned if DASetOption succeeded. Otherwise, one of the other DAERR_

values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.8 DASetFileSpecOption
This function is called to set the value of an option that takes a spec and spec type as
parameters. It is currently only implemented for use in setting the template option in HTML
Export. This function only needs to be used if the developer wishes to use Redirected IO on the
template files. It may be used to set the template option even if the developer does not wish to
use redirected IO, although DASetOption may also be used in this situation.

Prototype
DAERR DASetFileSpecOption(

VTHDOC hDoc,
VTDWORD dwOptionId,
VTDWORD dwSpecType,
VTLPVOID pSpec);

Parameters
n hDoc: Identifier of open document. May be a VTHDOC returned by the

DAOpenDocument function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Setting an option for a
VTHDOC affects all subhandles opened under it, while setting an option for a subhandle
affects only that handle.

n dwOptionId: The identifier of the option to be set. Currently only implemented for the
option SCCOPT_EX_TEMPLATE.

n dwSpecType: The spec type of the file. Should be set to one of the valid spec types.

DAGetFileId

Data Access Common Functions 4-7

n pSpec: File location specification.

Return Value
n DAERR_OK: Returned if DASetFileSpecOption succeeded. Otherwise, one of the other

DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.9 DAGetOption
This function is called to retrieve the value of a data access option. The results of a call to this
option are only valid if DASetOption has already been called on the option.

Prototype
DAERR DAGetOption(

VTHDOC hItem,
VTDWORD dwOptionId,
VTLPVOID pValue,
VTLPDWORD pSize);

Parameters
n hItem: Identifier of open document. May be a VTHDOC returned by the

DAOpenDocument function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Getting an option for a
VTHDOC gets the value of that option for that handle, which may be different than the
subhandle’s value.

n dwOptionId: The identifier of the option to be returned.

n pValue: Pointer to a buffer containing the value of the option.

n pSize: This VTDWORD should be initialized by the caller to the size of the buffer pointed
to by pValue. If this size is sufficient, the option value is copied into pValue and pSize is
set to the actual size of the option value. If the size is not sufficient, pSize is set to the size
of the buffer needed for the option and an error is returned.

Return Value
n DAERR_OK: Returned if DAGetOption was successful. Otherwise, one of the other

DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.10 DAGetFileId
This function allows the developer to retrieve the format of the file based on the technology’s
content-based file identification process. This can be used to make intelligent decisions about
how to process the file and to give the user feedback about the format of the file they are
working with.

Note: in cases where File ID returns a value of FI_UNKNOWN, then this function will apply
the Fallback Format before returning a result.

Prototype
DAERR DAGetFileId(

VTHDOC hDoc,
VTLPDWORD pdwFileId);

DAGetFileIdEx

4-8 Oracle Outside In HTML Export Developer's Guide

Parameters
n hDoc: Identifier of open document. May be a VTHDOC returned by the

DAOpenDocument function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, etc.).

n pdwFileId: Pointer to a DWORD that receives a file identification number for the file.
These numbers are defined in sccfi.h.

Return Value
n DAERR_OK: Returned if DAGetFileId was successful. Otherwise, one of the other

DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.11 DAGetFileIdEx
This function allows the developer to retrieve the format of the file based on the technology’s
content-based file identification process. This can be used to make intelligent decisions about
how to process the file and to give the user feedback about the format of the file they are
working with. This function has all the functionality of DAGetFileID and adds the ability to
return the raw FI value; in other words, the value returned by normal FI, without applying the
FallbackFI setting.

Prototype
DAERR DAGetFileIdEx(

VTHDOC hDoc,
VTLPDWORD pdwFileId,
VTDWORD dwFlags);

Parameters
n hDoc: Identifier of open document. May be a VTHDOC returned by the

DAOpenDocument function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, etc.).

n pdwFileId: Pointer to a DWORD that receives a file identification number for the file.
These numbers are defined in sccfi.h.

n dwFlags: DWORD that allows user to request specific behavior.

– DA_FILEINFO_RAWFI: This flag tells DAGetFileIdEx() to return the result of the
File Identification operation before Extended File Ident. is performed and without
applying the FallbackFI value.

Return Value
n DAERR_OK: Returned if DAGetFileIdEx was successful. Otherwise, one of the other

DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned. See the
following tables for examples of expected output depending on the value of various
options.

Values with RAWFI turned off

Input file type ExtendedFI FallbackID DAGetFileId DAGetFileIdEx

true binary off fallback value fallback value fallback value

true binary on fallback value fallback value fallback value

true text off fallback value fallback value fallback value

DAGetTreeCount

Data Access Common Functions 4-9

Values with RAWFI turned on

4.12 DAGetErrorString
This function returns to the developer a string describing the input error code. If the error string
returned does not fit the buffer provided, it is truncated.

VTVOID DAGetErrorString(
DAERR deError,
VTLPVOID pBuffer,
VTDWORD dwBufSize);

Parameters
n Error: Error code passed in by the developer for which an error message is to be returned.

n pBuffer: This buffer is allocated by the caller and is filled in with the error message by this
routine. The error message will be a NULL-terminated string.

n dwBufSize: Size of what pBuffer points to in bytes.

Return Value
n none

4.13 DAGetTreeCount
This function is called to retrieve the number of records in an archive file.

DAERR DAGetTreeCount(
VTHDOC hDoc,
VTLPDWORD lpRecordCount);

Parameters
n hDoc: Identifier of open document. May be a VTHDOC returned by the

DAOpenDocument function, or the subhandle returned by any of the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

n lpRecordCount: A pointer to a VTLPDWORD that is filled with the number of stored
archive records.

Return Value
n DAERR_OK: DAGetTreeCount was successful. Otherwise, one of the other DAERR_

values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

true text on fallback value 40XX 40XX

Input file type ExtendedFI FallbackID DAGetFileId DAGetFileIdEx

true binary off fallback value fallback value 1999

true binary on fallback value fallback value 1999

true text off fallback value fallback value 1999

true text on fallback value 40XX 1999

Input file type ExtendedFI FallbackID DAGetFileId DAGetFileIdEx

DAGetTreeRecord

4-10 Oracle Outside In HTML Export Developer's Guide

n DAERR_BADPARAM: The selected file does not contain an archive section, or the
requested record does not exist.

4.14 DAGetTreeRecord
This function is called to retrieve information about a record in an archive file.

DAERR DAGetTreeRecord(
VTHDOC hDoc,
PSCCDATREENODE pTreeNode);

Parameters
n hDoc: Identifier of open document. May be a VTHDOC returned by the

DAOpenDocument function, or the subhandle by any of the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

n pTreeNode: A pointer to a PSCCDATREENODE structure that is filled with information
about the selected record.

Return Values
n DAERR_OK: DAGetTreeRecord was successful. Otherwise, one of the other DAERR_

values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

n DAERR_BADPARAM: The selected file does not contain an archive section, or the
requested record does not exist.

n DAERR_EMPTYFILE: Empty file.

n DAERR_PROTECTEDFILE: Password protected or encrypted file.

n DAERR_SUPFILEOPENFAILS: Supplementary file open failed.

n DAERR_FILTERNOTAVAIL: The file’s type is known, but the appropriate filter is not
available.

n DAERR_FILTERLOADFAILED: An error occurred during the initialization of the
appropriate filter.

4.14.1 SCCDATREENODE Structure
This structure is passed by the OEM through the DAGetTreeRecord function. The structure is
defined in sccda as follows:

typedef struct SCCDATREENODEtag{
VTDWORD dwSize;
VTDWORD dwNode;
VTBYTE szName[1024];
VTDWORD dwFileSize;
VTDWORD dwTime;
VTDWORD dwFlags;
VTDWORD dwCharSet;
} SCCDATREENODE, *PSCCDATREENODE;

Parameters
n dwSize: Must be set by the OEM to sizeof(SCCDATREENODE).

n dwNode: The number of the record to retrieve information about. The first node is node 0.

n szName: A buffer to hold the name of the record.

n dwFileSize: Returns the file size, in bytes, of the requested record.

DASaveTreeRecord

Data Access Common Functions 4-11

n dwTime: Returns the timestamp of the requested record, in MS-DOS time.

n dwFlags: Returns additional information about the node. It can be a combination of the
following:

– SCCDA_TREENODEFLAG_FOLDER: Indicating that the selected node is a folder
and not a file.

– SCCDA_TREENODEFLAG_SELECTED: Indicating that the node is selected.

– SCCDA_TREENODEFLAG_FOCUS: Indicating that the node has focus.

– SCCDA_TREENODEFLAG_ENCRYPT: Indicating that the node is encrypted and
can not be decrypted.

– SCCDA_TREENODEFLAG_ARCKNOWNENCRYPT: indicating that the node is
encrypted with an unknown encryption and can not be decrypted.

– SCCDA_TREENODEFLAG_BUFFEROVERFLOW: the name of the node was too
long for the szName field.

n dwCharSet: Returns the SO_* (charsets.h) character set of the characters in szName. The
output character set is either the default native environment character set or Unicode if the
SCCOPT_SYSTEMFLAGS option is set to SCCVW_SYSTEM_UNICODE.

4.15 DAOpenTreeRecord
This function is called to open a record within an archive file and make it accessible by one or
more of the data access technologies.

Search Export Only: Search Export’s default behavior is to automatically open and process the
contents of an archive. Use DAOpenTreeRecord and SCCOPT_XML_SEARCHML_FLAGS
to change the default behavior if discrete processing of each document in an archive is desired.

DAERR DAOpenTreeRecord(
VTHDOC hDoc,
VTLPHDOC lphDoc,
VTDWORD dwRecord);

lphDoc is not a file handle.

Parameters
n hDoc: Identifier of open document. May be a VTHDOC returned by the

DAOpenDocument function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

n lphDoc: Pointer to a handle that is filled with a value uniquely identifying the document to
data access. The developer uses this handle in subsequent calls to data access to identify
this particular document.

n dwRecord: The record in the archive file to be opened.

Return Value
n DAERR_OK: Returned if DAOpenTreeRecord was successful. Otherwise, one of the other

DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.16 DASaveTreeRecord
This function is called to extract a record in an archive file to disk.

DAERR DASaveTreeRecord(

DACloseTreeRecord

4-12 Oracle Outside In HTML Export Developer's Guide

VTHDOC hDoc,
VTDWORD dwRecord,
VTDWORD dwSpecType,
VTLPVOID pSpec,
VTDWORD dwFlags);

Parameters
n hDoc: Handle that uniquely identifies the document to data access. This is not an operating

system file handle.

n dwRecord: The record in the archive file to be extracted.

n dwSpecType: Describes the contents of pSpec. Together, dwSpecType and pSpec describe
the location of the source file to which the file will be extracted. Must be one of the
following values:

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full path
name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32 and Win64)
filename conventions.

– IOTYPE_REDIRECT: Specifies that redirected I/O will be used to save the file.

– IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated full
path name using the Unicode character set and NTFS (Win32 and Win64) file name
conventions.

– IOTYPE_UNIXPATH: X Windows on UNIX platforms only. pSpec points to a
NULL-terminated full path name using the system default character set and UNIX
path conventions. Unicode paths can be accessed on UNIX platforms by using a
UTF-8 encoded path with IOTYPE_UNIXPATH.

n pSpec: File location specification. See the descriptions for individual dwSpecType values.

n dwFlags: Currently not used. Should be set to 0.

Return Values
n DAERR_OK: Returned if the save was successful. Otherwise, one of the other DAERR_

values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

n DAERR_UNSUPPORTEDCOMP: Unsupported Compression Encountered.

n DAERR_PROTECTEDFILE: The file is encrypted.

n DAERR_BADPARAM: The request option is invalid. The record is possibly a directory.

Otherwise, one of the other DAERR_ values in sccda.h is returned.

Currently, only extracting a single file is supported. There is a known limitation where files in a
Microsoft Binder file cannot be extracted.

4.17 DACloseTreeRecord
This function is called to close an open record file handle.

Search Export Only: Search Export’s default behavior is to automatically open and process the
contents of an archive. Use DACloseTreeRecord and SCCOPT_XML_SEARCHML_FLAGS
to change the default behavior if discrete processing of each document in an archive is desired.

DAERR DACloseTreeRecord(
VTHDOC hDoc);

DASetStatCallback

Data Access Common Functions 4-13

Parameters
n hDoc: Identifier of open record document.

Return Value
n DAERR_OK: Returned if DACloseTreeRecord was successful. Otherwise, one of the

other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.18 DASetStatCallback
This function sets up a callback that the technology will periodically call into to verify that the
file is still being processed. The customer can use this with a monitoring process to help
identify files that may be hung. Since this function will be called more frequently than other
callbacks, it is implemented as a separate function.

Use of the Status Callback Function
An application's status callback function will be called periodically by Outside In to provide a
status message. Currently, the only status message defined is OIT_STATUS_WORKING,
which provides a "sign of life" that can be used during unusually long processing operations to
verify that Outside In has not stopped working. If the application decides that it would not like
to continue processing the current document, it may use the return value from this function to
tell Outside In to abort.

The status callback function has two return values defined:

n OIT_STATUS_CONTINUE: Tells Outside In to continue processing the current document.

n OIT_STATUS_ABORT: Tells Outside In to stop processing the current document.

The following is an example of a minimal status callback function.

VTDWORD MyStatusCallback(VTHANDLE hUnique, VTDWORD dwID, VTSYSVAL
pCallbackData, VTSYSVAL pAppData)
{
 if(dwID == OIT_STATUS_WORKING)
 {
 if(checkNeedToAbort(pAppData))
 return (OIT_STATUS_ABORT);
 }

 return (OIT_STATUS_CONTINUE);
}

Prototype
DAERR DASetStatCallback(DASTATCALLBACKFN pCallback)

Parameters
n pCallback: Pointer to the callback function.

n dwID: Handle that indicates the callback status.

– OIT_STATUS_WORKING

– OIT_STATUS_CONTINUE

– OIT_STATUS_ABORT

n pCallbackData: Currently always NULL

DASetFileAccessCallback

4-14 Oracle Outside In HTML Export Developer's Guide

Return Values
n DAERR_OK: If successful. Otherwise, one of the other DAERR_ values in sccda.h or one

of the SCCERR_ values in sccerr.h is returned.

4.19 DASetFileAccessCallback
This function sets up a callback that the technology will call into to request information
required to open an input file. This information may be the password of the file or a support file
location.

Use of the File Access Callback
When the technology encounters a file that requires additional information to access its
contents, the application’s callback function will be called for this information. Currently, only
two different forms of information will be requested: the password of a document, or the file
used by Lotus Notes to authenticate the user information.

The status callback function has two return values defined:

n SCCERR_OK: Tells Outside In that the requested information is provided.

n SCCERR_CANCEL: Tells Outside In that the requested information is not available.

This function will be repeatedly called if the information provided is not valid (such as the
wrong password). It is the responsibility of the application to provide the correct information or
return SCCERR_CANCEL.

Prototype
DAERR DASetFileAccessCallback (DAFILEACCESSCALLBACKFN pCallback);

Parameters
n pCallback: Pointer to the callback function.

Return Values
n DAERR_OK: If successful. Otherwise, one of the other DAERR_ values defined in

sccda.h or one of the SCCERR_ values in sccerr.h is returned.

The callback function should be of type DAFILEACCESSCALLBACKFN. This function has
the following signature:

typedef VTDWORD (* DAFILEACCESSCALLBACKFN)(VTDWORD dwID, VTSYSVAL pRequestData,
VTSYSVAL pReturnData, VTDWORD dwReturnDataSize);

n dwID – ID of information requested:

n OIT_FILEACCESS_PASSWORD – Requesting the password of the file

n OIT_FILEACCESS_NOTESID – Requesting the Notes ID file location

n pRequestData – Information about the file.

typedef struct {
 VTDWORD dwSize; /* size of this structure */
 VTWORD wFIId; /* FI id of reference file */
 VTDWORD dwSpecType; /* file spec type */
 VTVOID *pSpec; /* pointer to a file spec */
 VTDWORD dwRootSpecType; /* root file spec type */
 VTVOID *pRootSpec; /* pointer to the root file spec */
 VTDWORD dwAttemptNumber; /* The number of times the callback has */
 /* already been called for the currently */

DASetFileAccessCallback

Data Access Common Functions 4-15

 /* requested item of information */
} IOREQUESTDATA, * PIOREQUESTDATA;

n pReturnData – Pointer to the buffer to hold the requested information – for OIT_
FILEACCESS_PASSWORD and OIT_FILEACCESS_NOTESID, the buffer is an array of
WORD characters.

n dwReturnDataSize – Size of the return buffer.

Note: Not all formats that use passwords are supported. Only Microsoft
Office binary (97-2003) and Microsoft Office 2007, Lotus NSF, PDF (with
RC4 encryption), Zip (with AES 128 & 256 bit, ZipCrypto) are currently
supported.

DASetFileAccessCallback

4-16 Oracle Outside In HTML Export Developer's Guide

5

Export Functions 5-1

5Export Functions

This chapter outlines the basic functions used to initiate the conversion of documents
using the product API.

This chapter contains the following sections:

■ Section 5.1, "General Functions"

■ Section 5.2, "Annotation Functions"

5.1 General Functions
The following functions are general functions used in most products:

■ Section 5.1.1, "EXOpenExport"

■ Section 5.1.2, "EXCALLBACKPROC"

■ Section 5.1.3, "EXCloseExport"

■ Section 5.1.4, "EXRunExport"

■ Section 5.1.5, "EXExportStatus"

5.1.1 EXOpenExport
This function is used to initiate the export process for a file that has been opened by
DAOpenDocument. If EXOpenExport succeeds, EXCloseExport must be called
regardless of any other API calls.

Prototype
SCCERR EXOpenExport(

VTHDOC hDoc,
VTDWORD dwOutputId,
VTDWORD dwSpecType,
VTLPVOID pSpec,
VTDWORD dwFlags,
VTSYSPARAM dwReserved,
VTLPVOID pCallbackFunc,
VTSYSPARAM dwCallbackData,

Note: SCCOPT_GRAPHIC_TYPE = FI_NONE must be set (via
DASetOption) before the call to EXOpenExport. Otherwise, the
SCCUT_FILTEROPTIMIZEDFORTEXT speed enhancement for the
PDF filter is not set. This will result in slower exports of PDFs when
graphic output is not required.

General Functions

5-2 Oracle Outside In HTML Export Developer's Guide

VTLPHEXPORT phExport);

phExport is not a file handle.

Parameters
■ hDoc: A handle that identifies the source file, created by DAOpenDocument.

HTML Export does this internally (when exporting graphics). Knowledge of this
should only affect OEMs under the most unusual of circumstances.

■ dwOutputId: File ID of the desired format of the output file. This value must be
set to FI_HTML or FI_MHTML.

■ dwSpecType: Describes the contents of pSpec. Together, dwSpecType and pSpec
describe the location of the initial output file. Must be one of the following values:

– IOTYPE_ANSIPATH: Windows only. The pSpec points to a NULL-terminated
full path name using the ANSI character set and FAT 8.3 (Win16) or NTFS
(Win32 and Win64) file name conventions.

– IOTYPE_UNICODEPATH: Windows only. The pSpec points to a
NULL-terminated full path name using the Unicode character set and NTFS
file name conventions.

– IOTYPE_UNIXPATH: UNIX platforms only. The pSpec points to a
NULL-terminated full path name using the system default character set and
UNIX path conventions. Unicode paths can be accessed on UNIX platforms by
using a UTF-8 encoded path with IOTYPE_UNIXPATH.

– IOTYPE_REDIRECT: All platforms. The pSpec may be NULL, and all file
information specified in the callback routine. This allows the developer to
redirect the IO routines used to write the files. For more information, see
Chapter 6, "Redirected IO."

■ pSpec: Initial output file location specification. This is either a pointer to a buffer
or NULL.

– If the pointer is not NULL, the file referred to by the pSpec is assumed to be
already open and the buffer’s contents are based on the value of the
dwSpecType parameter. See the descriptions for individual dwSpecType
values in the preceding list.

– Passing NULL indicates the developer will use the EX_CALLBACK_ID_
CREATENEWFILE callback to specify the initial output file instead of
specifying it here. When this parameter is NULL, the developer must handle
the EX_CALLBACK_ID_CREATENEWFILE callback or EXOpenExport
returns an error.

■ dwFlags: Must be set by developer to 0.

■ dwReserved: Reserved. Must be set by developer to 0.

Note: If you are using IOTYPE_UNICODEPATH as a file spec type,
if the calling application is providing an export callback function, you
should set the option SCCOPT_EX_UNICODECALLBACKSTR to
TRUE. Refer to the documentation on callbacks such as EX_
CALLBACK_ID_CREATENEWFILE and the
EXURLFILEIOCALLBACKDATAW structure for details

General Functions

Export Functions 5-3

■ pCallbackFunc: Pointer to a function of the type EXCALLBACKPROC. This
function is used to give the developer control of certain aspects of the export
process as they occur. For more information, see the definition for
EXCALLBACKPROC in Section 5.1.2, "EXCALLBACKPROC." This parameter
may be set to NULL if the developer does not wish to handle callbacks.

■ dwCallbackData: This parameter ispassed transparently to the function specified
by pCallbackFunc. The developer may use this value for any purpose, including
passing context information into the callback function.

■ phExport: Pointer to a handle that receives a value uniquely identifying the
document to the product routines. If the function fails, this value is set to
VTHDOC_INVALID.

Return Values
■ SCCERR_OK: If the open was successful. Otherwise, one of the other SCCERR_

values in sccerr.h is returned.

5.1.2 EXCALLBACKPROC
Type definition for the developer’s callback function.

Prototype
DAERR (DA_ENTRYMODPTR EXCALLBACKPROC)(

VTHEXPORT hExport,
VTSYSPARAM dwCallbackData,
VTDWORD dwCommandOrInfoId,
VTLPVOID pCommandOrInfoData);

Parameters
■ hExport: Export handle for the document. Must be a handle returned by the

EXOpenExport function.

■ dwCallbackData: This value is passed to EXOpenExport in the dwCallbackData
parameter.

■ dwCommandOrInfoId: Indicates the type of callback. For information about
supported callbacks, see Chapter 7, "Callbacks."

■ pCommandOrInfoData: Data associated with dwCommandOrInfoId. For
information about supported callbacks, see Chapter 7, "Callbacks."

Return Values
■ SCCERR_OK: Command was handled by the callback function.

■ SCCERR_BADPARAM: One of the function parameters was invalid.

■ SCCERR_NOTHANDLED: Callback function did not handle the command. This
return value must be the default for all values of dwCommandOrInfoId the
developer does not handle.

5.1.3 EXCloseExport
This function is called to terminate the export process for a file.

Prototype
SCCERR EXCloseExport(

General Functions

5-4 Oracle Outside In HTML Export Developer's Guide

VTHEXPORT hExport);

Parameters
■ hExport: Export handle for the document. Must be a handle returned by the

EXOpenExport function.

Return Values
■ SCCERR_OK: Returned if the close was successful. Otherwise, one of the other

SCCERR_ values in sccerr.h is returned.

5.1.4 EXRunExport
This function is called to run the export process.

Prototype
SCCERR EXRunExport(

VTHEXPORT hExport);

Parameters
■ hExport: Export handle for the document. Must be a handle returned by the

EXOpenExport function.

Return Values
■ SCCERR_OK: Returned if the export was successful. Otherwise, one of the other

SCCERR_ values in sccerr.h is returned.

5.1.5 EXExportStatus
This function is used to determine if there were conversion problems during an
export. It returns a structure that describes areas of a conversion that may not have
high fidelity with the original document.

Prototype
SCCERR EXExportStatus(VTHEXPORT hExport, VTDWORD dwStatusType, VTLPVOID pStatus)

Parameters
■ hExport: Export handle for the document.

■ dwStatusType: Specifies which status information should be filled in pStatus.

– EXSTATUS_SUBDOC – fills in the EXSUBDOCSTATUS structure (only
implemented in Search Export and XML Export)

– EXSTATUS_INFORMATION - fills in the EXSTATUSINFORMATION
structure.

■ pStatus: Either a pointer to a EXSUBDOCSTATUS or EXSTATUSINFORMATION
data structure depending on the value of dwStatusType.

Return Values
SCCERR_OK: Returned if there were no problems. Otherwise, one of the other
SCCERR_ values in sccerr.h is returned.

Annotation Functions

Export Functions 5-5

EXSUBDOCSTATUS Structure
The EXSUBDOCSTATUS structure is defined as follows:

typedef struct EXSUBDOCSTATUStag
{
VTDWORD dwSize; /* size of this structure */
VTDWORD dwSucceeded; /* number of sub documents that were converted */
VTDWORD dwFailed; /* number of sub documents that were not converted */
} EXSUBDOCSTATUS;

EXSTATUSINFORMATION Structure
The EXSTATUSINFORMATION structure is defined as follows:

typedef struct EXSTATUSINFORMATIONtag
{
VTDWORD dwVersion; /* version of this structure, currently
EXSTATUSVERSION1 */
VTBOOL bMissingMap; /* a PDF text run was missing the toUnicode table
*/
VTBOOL bVerticalText; /* a vertical text run was present */
VTBOOL bTextEffects; /* unsupported text effects applied (i.e.Word
Art)*/
VTBOOL bUnsupportedCompression; /* a graphic had an unsupported compression */
VTBOOL bUnsupportedColorSpace; /* a graphic had an unsupported color space */
VTBOOL bForms; /* a sub documents had forms */
VTBOOL bRightToLeftTables; /* a table had right to left columns */
VTBOOL bEquations; /* a file had equations*/
VTBOOL bAliasedFont; /* A font was missing, but a font alias was used
*/
VTBOOL bMissingFont; /* The desired font wasn’t present on the system
*/
VTBOOL bSubDocFailed; /* a sub document was not converted */
} EXSTATUSINFORMATION;

#define EXSTATUSVERSION1 0X0001

5.2 Annotation Functions
Annotations are a way to highlight, insert, or delete text in product output, without
modifying the original document.

The follow functions are described in this section:

■ Section 5.2.1, "EXHiliteText"

■ Section 5.2.2, "EXInsertText"

■ Section 5.2.3, "EXHideText"

Examples of ways annotations can be used by developers include:

■ highlighting search hits

■ inserting notes to comment on text in the original document

Note: When processing the main document, Search Export, HTML
Export, and XML Export never use fonts, so bAliasedFont and
bMissingFont will never report TRUE; however, when doing graphics
conversions XML Export and HTML Export may use fonts, so
bAliasedFont and bMissingFont may report TRUE.

Annotation Functions

5-6 Oracle Outside In HTML Export Developer's Guide

■ deleting sensitive information not intended for viewing

Other Outside In products are required to ascertain the proper character positions
where the developer wishes to make annotations. Currently, only Content Access and
the SearchML output format (available in Search Export) can be used to get these
positions. Although the Content Access module is included with the product, license
to use the Content Access API is not automatically granted with the purchase of the
Export software.

A separate license for Content Access or Search Export is required to enable use of any
of the annotation features that are supported by HTML Export. Contact your Outside
In sales representative for more information.

The following notes should be considered when using annotations:

■ Processing annotations slow down the conversion process to some extent.

■ While other products in the Outside In family support annotations, not all
products support all types of annotations.

■ The ACC acronym (Actual Character Count) is used in the following function
descriptions. ACCs represent the location of text in the source document data
stream. They represent a marker just before the location of text, and this marker is
zero-based.

This is why startACC parameters should be set to an ACC value that represents
the position just prior to the first character and endACC parameters should be set
to an ACC value that represents the position just past the last character in the
range. For this reason, users should make sure endACC values are 1 greater than
the ACC of the last character in the desired range of annotation.

■ Calling EXCloseExport causes all annotations set so far to be cleared.

5.2.1 EXHiliteText
This function allows the developer to change select text attributes on a range of
characters from the input document. For more information, see Section 5.2.1.1, "HTML
Export Usage Notes."

The colors set by this option can be overridden by the equivalent settings in the
ExInsertText function.

Prototype
DAERR EXHiliteText(

VTHEXPORT hExport,
PEXANNOHILITETEXT pHiliteText);

Parameters
■ hExport: Export handle for the document. Must be the handle returned by the

EXOpenExport() function.

■ pHiliteText: Pointer to a structure containing the information on what to highlight
and how to highlight it.

Structure
A C data structure defined in sccex.h as follows:

typedef struct EXANNOHILITETEXTtag
{

VTDWORD dwSize;

Annotation Functions

Export Functions 5-7

VTDWORD dwStartACC;
VTDWORD dwEndACC; /* Last char to highlight +1 */
VTLPBYTE pBookmark; /* HTML Export Only */
VTLPBYTE pHyperlink; /* HTML Export Only */
VTDWORD dwOptions;
SCCVWCOLORREF sForeground;
SCCVWCOLORREF sBackground;
VTWORD wCharAttr;
VTWORD wCharAttrMask;

} EXANNOHILITETEXT;

■ dwSize: Must be set by the developer to sizeof(EXANNOHILITETEXT).

■ dwStartACC: The ACC of the first character to be highlighted.

■ dwEndACC: ACC of the last character to be highlighted +1. Ranges for
annotations have their end point set one past the ACC of the last character in the
range. For example, to highlight a single character at ACC position 5,
dwStartACC would be set to 5, and dwEndACC would be set to 5+1=6.

■ pBookmark: (HTML Export only): The URL for an optional bookmark to be
included before the highlighted text. Specified as a URL encoded byte string. If set
to NULL, no bookmark is created.

■ pHyperlink: (HTML Export only): The URL for an optional hyperlink to be
created on the highlighted text. Specified as a URL encoded byte string. If set to
NULL, no hyperlink is created.

■ dwOptions: Flags that provide highlight options. The default is all flags set to off.
The valid flags are:

– SCCVW_USEFOREGROUND: Indicates that sForeground defines the
foreground text color to apply to highlights.

– SCCVW_USEBACKGROUND: Indicates that sBackground defines the
background text color to apply to highlights.

– SCCVW_USECHARATTR: Indicates that wCharAttr defines the character
attributes to apply to highlights.

– sForeground: Defines the foreground text color to be used if the SCCVW_
USEFOREGROUND flag is set in dwOptions. Set this value with the
SCCANNORGB(red, green, blue) macro. The red, green and blue values are
percentages of the color from 0-255 (with 255 being 100%). There is no default
value for this parameter -- if it is set, the color must be specified.

– sBackground: Defines the background text color to be used if the SCCVW_
USEBACKGROUND flag is set in dwOptions. Set this value with the
SCCANNORGB(red, green, blue) macro. The red, green and blue values are
percentages of the color from 0-255 (with 255 being 100%). There is no default
value for this parameter. If it is set, the color must be specified.

– wCharAttr: Defines the character attributes to use if SCCVW_
USECHARATTR is set in dwOptions. Only bits with the corresponding bits
set in wCharAttrMask are affected. To turn off all character attributes, set this
to SCCVW_CHARATTR_NORMAL (the default) and set wCharAttrMask to
-1. Otherwise, set this to any of the following character attributes OR-ed
together:

* SCCVW_CHARATTR_UNDERLINE

* SCCVW_CHARATTR_ITALIC

Annotation Functions

5-8 Oracle Outside In HTML Export Developer's Guide

* SCCVW_CHARATTR_BOLD

* SCCVW_CHARATTR_STRIKEOUT

* SCCVW_CHARATTR_SMALLCAPS: Not supported in HTML Export
unless a CSS flavor is selected.

* SCCVW_CHARATTR_OUTLINE: Not currently supported.

* SCCVW_CHARATTR_SHADOW: Not currently supported.

* SCCVW_CHARATTR_CAPS: Not currently supported.

* SCCVW_CHARATTR_SUBSCRIPT

* SCCVW_CHARATTR_SUPERSCRIPT

* SCCVW_CHARATTR_DUNDERLINE: Currently supported as single
underline in HTML Export.

* SCCVW_CHARATTR_WORDUNDERLINE

* SCCVW_CHARATTR_DOTUNDERLINE: Currently supported as single
underline.

■ wCharAttrMask: Defines which character attributes to change based on the
settings of the bits in wCharAttr. Uses the same bit flags defined above for
wCharAttr. Only attributes whose flag is set in this mask are modified to match
the state specified by wCharAttr. This mask provides a way to distinguish
between bits being set in wCharAttr because the developer wants to force a
change to the character attributes and bits in wCharAttr that the developer would
rather set to "inherit from the source document."

The following are real-world examples of these interactions (all examples assume
that SCCVW_USECHARATTR is set in dwOptions):

– Example 1: wCharAttr is set to SCCVW_CHARATTR_BOLD and
wCharAttrMask is set to SCCVW_CHARATTR_BOLD. This results in bold
being forced on in the annotation.

– Example 2: wCharAttr is set to SCCVW_CHARATTR_BOLD and
wCharAttrMask is set to 0. This results in bold being left the way it was in the
source document in the annotation.

– Example 3: wCharAttr is set to 0 and wCharAttrMask is set to SCCVW_
CHARATTR_BOLD. This results in bold being forced off in the annotation.

The default value for this is 0, meaning that all the flags in wCharAttr are
ignored.

Return Values
■ DAERR_OK: Returned if the annotation was successfully added. Otherwise, one

of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

5.2.1.1 HTML Export Usage Notes
Attributes that may be changed include foreground and background text color, as well
as various character level text attributes such as bold, italic and underline. The user
may also choose to insert a bookmark before the highlighted text. If the highlighted
text appears in a graphic created by HTML Export, then the bookmark is place
immediately before the tag for that graphic. The highlighted text may also be
turned into a hyperlink (this is not supported in HTML Export graphics conversions).

Annotation Functions

Export Functions 5-9

Source document text may appear in more than one place in the converted document,
for example in a template-created TOC as well as in the body of the document. Text in
the TOCs created by HTML Export's templates is not affected by this option. This is
because the TOC text has all text attributes and hyperlinks stripped out as part of the
TOC creation. Highlights appear in the document body content however, the same
way normal paragraph text is affected.

Highlights are not applied to text from the template.

5.2.2 EXInsertText
This function inserts a text string at a specified point in the document. The developer
may also change character attributes or foreground or background colors. These
settings override any provided by ExHiliteText.

In HTML Export, the developer may also choose to insert a bookmark before the
inserted text. If the inserted text appears in a graphic created by HTML Export, then
the bookmark is placed immediately before the tag for that graphic. The
inserted text may also be turned into a hyperlink (not supported in HTML Export
graphics conversions). Inserted text inherits the text attributes of the text that
immediately precedes it.

Prototype
DAERR EXInsertText(
VTHEXPORT hExport,
PEXANNOINSERTTEXT pInsertText);

Parameters
■ hExport: Export handle for the document. Must be the handle returned by the

EXOpenExport() function.

■ pInsertText: Pointer to a structure containing the information on the text to insert.

Structure
A C data structure defined in sccex.h as follows:

typedef struct EXANNOINSERTTEXTtag
{

VTDWORD dwSize;
VTDWORD dwTextACC;
VTLPWORD pText;
VTLPBYTE pBookmark; /* HTML Export Only */
VTLPBYTE pHyperlink; /* HTML Export Only */
VTDWORD dwOptions;
SCCVWCOLORREF sForeground;
SCCVWCOLORREF sBackground;
VTWORD wCharAttr;
VTWORD wCharAttrMask;

} EXANNOINSERTTEXT;

■ dwSize: Must be set by the OEM to sizeof(EXANNOINSERTTEXT).

■ dwTextACC: Place to insert the string pointed to by pText. The string is inserted
before the character normally at this ACC position. By default, the inserted string
inherits the text attributes of the character at this position in the input document.

■ pText: The text to be inserted. Specified as a Unicode string.

Annotation Functions

5-10 Oracle Outside In HTML Export Developer's Guide

■ pBookmark: The URL for an optional bookmark to be included before the inserted
text. Specified as a URL-encoded byte string. If set to NULL, no bookmark is
created.

■ pHyperlink: The URL for an optional hyperlink to be created on the inserted text.
Specified as a URL encoded byte string. If set to NULL, no hyperlink is created.

■ dwOptions: This parameter sets flags that provide highlight options. The default is
all flags off. The flags are:

– SCCVW_USEFOREGROUND: Indicates that sForeground defines the
foreground text color to apply to highlights.

– SCCVW_USEBACKGROUND: Indicates that sBackground defines the
background text color to apply to highlights.

– SCCVW_USECHARATTR: Indicates that wCharAttr defines the character
attributes to apply to highlights.

■ sForeground: Defines the foreground text color to be used if the SCCVW_
USEFOREGROUND flag is set in dwOptions. Set this value with the
SCCANNORGB(red, green, blue) macro. The red, green and blue values are
percentages of the color from 0-255 (with 255 being 100%). There is no default
value for this parameter -- if it is set, the color must be specified.

■ sBackground: Defines the background text color to be used if the SCCVW_
USEBACKGROUND flag is set in dwOptions. Set this value with the
SCCANNORGB(red, green, blue) macro. The red, green and blue values are
percentages of the color from 0-255 (with 255 being 100%). There is no default
value for this paramete. If it is set, the color must be specified.

■ wCharAttr: Defines the character attributes to use if SCCVW_USECHARATTR is
set in dwOptions. Only bits with the corresponding bits set in wCharAttrMask are
affected. To turn off all character attributes, set this to SCCVW_CHARATTR_
NORMAL (the default) and set wCharAttrMask to -1. Otherwise, set this to any of
the following character attributes OR-ed together:

– SCCVW_CHARATTR_UNDERLINE

– SCCVW_CHARATTR_ITALIC

– SCCVW_CHARATTR_BOLD

– SCCVW_CHARATTR_STRIKEOUT

– SCCVW_CHARATTR_SMALLCAPS: Not currently supported in Image
Export or PDF Export. Not supported in HTML Export unless a CSS flavor is
selected.

– SCCVW_CHARATTR_OUTLINE: Not currently supported.

– SCCVW_CHARATTR_SHADOW: Not currently supported.

– SCCVW_CHARATTR_CAPS: Not currently supported.

– SCCVW_CHARATTR_SUBSCRIPT: SCCVW_CHARATTR_SUPERSCRIPT

– SCCVW_CHARATTR_DUNDERLINE: Currently supported as single
underline.

– SCCVW_CHARATTR_WORDUNDERLINE: SCCVW_CHARATTR_
DOTUNDERLINE: Currently supported as single underline in HTML Export
due to limitations of HTML.

Annotation Functions

Export Functions 5-11

■ wCharAttrMask: Defines which character attributes to change based on the
settings of the bits in wCharAttr. Uses the same bit flags defined above for
wCharAttr. Only attributes whose flag is set in this mask are modified to match
the state specified by wCharAttr. This mask provides a way to distinguish
between bits being set in wCharAttr because the developer wants to force a
change to the character attributes, and bits in wCharAttr that the developer would
rather set to "inherit from the source document." The following are real-world
examples of these interactions (all examples assume that SCCVW_
USECHARATTR is set in dwOptions):

– Example 1: wCharAttr is set to SCCVW_CHARATTR_BOLD and
wCharAttrMask is set to SCCVW_CHARATTR_BOLD. This results in bold
being forced on in the annotation.

– Example 2: wCharAttr is set to SCCVW_CHARATTR_BOLD and
wCharAttrMask is set to 0. This results in bold being left the way it was in the
source document in the annotation.

– Example 3: wCharAttr is set to 0 and wCharAttrMask is set to SCCVW_
CHARATTR_BOLD. This results in bold being forced off in the annotation.

The default value for this is 0, meaning that all the flags in wCharAttr are ignored.

Return Values
■ DAERR_OK: The annotation was successfully added. Otherwise, one of the other

DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

5.2.3 EXHideText
This function removes the selected range of characters in the input document from the
output. Users may also choose to insert a bookmark before the hidden text. If the
hidden text appears in a graphic created by HTML Export, the bookmark is be placed
immediately before the tag for that graphic.

The hidden text does not appear in any form in the final converted document.

If all of the text from a paragraph that would normally form an entry in a
template-created TOC is deleted, then the entire TOC entry that would have otherwise
appeared will be missing from the converted document along with the corresponding
body text.

Prototype
SCCERR EXHideText(
VTHEXPORT hExport,
PEXANNOHIDETEXT pHideText)

Parameters
■ hExportL Export handle for the document. Must be the handle returned by the

EXOpenExport() function.

■ pHideText: Pointer to an EXANNOHIDETEXT structure containing the
information on the section of text to hide.

5.2.3.1 EXANNOHIDETEXT Structure
A C data structure defined in sccex.h as follows:

typedef struct EXANNOHIDETEXTtag
{

Annotation Functions

5-12 Oracle Outside In HTML Export Developer's Guide

VTDWORD dwSize;
VTDWORD dwStartACC;
VTDWORD dwEndACC; /* Last char to hide +1 */
VTLPCHAR pBookmark; /* HTML Export Only */

} EXANNOHIDETEXT;

■ dwSize: Must be set by the OEM to sizeof(EXANNOHIDETEXT).

■ dwStartACC: Position of the first character to be hidden.

■ dwEndACC: Position of the last character to be hidden, plus one.

■ pBookmark: The URL for an optional bookmark to be included before the
highlighted text. Specified as a URL encoded byte string. If set to NULL, no
bookmark is created.

Return Values
■ SCCERR_OK: Returned if the annotation was successfully added. Otherwise, one

of the other SCCERR_* values in sccerr.h is returned.

6

Redirected IO 6-1

6Redirected IO

Anywhere a file specification (dwSpecType and pSpec parameters) is passed to a
function in the product, the developer may use Redirected IO to completely take over
responsibility for the low level IO calls of that particular file. The source file template
files and all output files can be redirected in this way.

Redirected IO allows the developer great flexibility in the storage of, and access to,
converted documents. For example, documents may be stored on file systems not
supported natively by the software, or in a unique directory tree structure determined
by the type of file.

When using HTML Export, redirected IO can also be used in conjunction with
callbacks (discussed in Chapter 7, "Callbacks").

This chapter contains the following sections:

■ Section 6.1, "Using Redirected IO"

■ Section 6.2, "Opening Files"

■ Section 6.3, "IOClose"

■ Section 6.4, "IORead"

■ Section 6.5, "IOWrite"

■ Section 6.6, "IOSeek"

■ Section 6.7, "IOTell"

■ Section 6.8, "IOGetInfo"

■ Section 6.9, "IOSEEK64PROC / IOTELL64PROC"

6.1 Using Redirected IO
A developer can redirect the IO for an input or output file by providing a data
structure that contains pointers to custom IO routines for reading and writing. This
data structure is passed in place of a typical file specification. The developer must set
the dwSpecType parameter of the DAOpenDocument call to IOTYPE_REDIRECT
when the DAOpenDocument call is sent.

When dwSpecType is set this way, the pSpec element must contain a pointer to a
developer-defined data structure that begins with a BASEIO structure (defined in
baseIO.H). The BASEIO structure contains pointers to the basic IO functions for the IO
system such as Read, Seek, Tell, etc. The developer must initialize these function
pointers to their own functions that perform IO tasks. Beyond the BASEIO element,
the developer may place any data he or she likes. For instance, a developer's structure
may be similar to the following:

Opening Files

6-2 Oracle Outside In HTML Export Developer's Guide

typedef struct MYFILEtag
{

BASEIO sBaseIO; /* must be the first element */
VTDWORD dwMyInfo1;
VTDWORD dwMyInfo2;
.
.
.

} MYFILE;

Because the pSpec passed is essentially the "file handle" used by the software, the
developer can redirect the IO on a file-by-file basis while still exporting "regular"
disk-based files.

The BASEIO structure is defined as follows:

typedef struct BASEIOtag
{
 IOCLOSEPROC pClose;
 IOREADPROC pRead;
 IOWRITEPROC pWrite;
 IOSEEKPROC pSeek;
 IOTELLPROC pTell;
 IOGETINFOPROC pGetInfo;
 IOOPENPROC pOpen; /* pOpen *MUST* be set to NULL. */
#ifndef NLM
 IOSEEK64PROC pSeek64;
 IOTELL64PROC pTell64;
#endif
 VTVOID *aDummy[3];
} BASEIO, * PBASEIO;

The developer must implement the Close, Read, Write, Seek, Tell and GetInfo routines.
The Open routine must be set to NULL. The first parameter to each of these routines is
called hFile and is of the type HIOFILE. HIOFILE is simply the VTLPVOID to your
data structure that was passed in the pSpec parameter of the DAOpenDocument call.

The sample source code for a simple implementation of Redirected IO is in the
samples directory. This sample redirects the technology’s IO through the fopen, fgetc,
fseek, ftell and fclose run-time library routines.

6.2 Opening Files
The developer does not see a call to pOpen when using redirected IO. When IOTYPE_
REDIRECT is used, the structure passed in pSpec is defined to represent a file that is
already open. The software can immediately call the pRead, pSeek, pTell and pWrite
functions.

Files specified as using redirected IO must be open by the time they are handed off to
the software.

Important: Redirected IO does not cache the whole file. Seeks can
occur throughout the file during the course of conversion. If the
developer is implementing redirected IO on a slow or sequential link,
it is the developer's responsibility to cache the file locally.

IORead

Redirected IO 6-3

6.3 IOClose
Closes the file identified by hFile and cleans up all memory associated with the file.

If you dynamically allocate your own file structures (MYFILE in the preceding
discussion) it is required that the memory allocated be freed inside the call to IOClose
or sometime thereafter.

Prototype
IOERR IOClose(

HIOFILE hFile);

Parameters
■ hFile: Identifies the file to be closed. Should be cast into a pointer to your data

structure (MYFILE in the preceding discussion).

Return Values
■ IOERR_OK: Close was successful.

■ IOERR_UNKNOWN: Some error occurred on close.

6.4 IORead
Reads data from the current file position forward and resets the position to the byte
after the last byte read.

Prototype
IOERR IORead(

HIOFILE hFile,
VTBYTE * pData,
VTDWORD dwSize,
VTDWORD * pCount);

Parameters
■ hFile: Identifies the file to be read. Should be cast into a pointer to your data

structure (MYFILE in the preceding discussion).

■ pData: Points to the buffer into which the bytes should be read. Will be at least
dwSize bytes big.

■ dwSize: Number of bytes to read.

■ pCount: Points to the number of bytes actually read by the function. This value is
only valid if the return value is IOERR_OK.

Return Values
■ IOERR_OK: Read was successful. pCount contains the number of bytes read and

pData contains the bytes themselves.

■ IOERR_EOF: Read failed because the file pointer was beyond the end of the file at
the time of the read.

■ IOERR_UNKNOWN: Read failed for some other reason.

IOWrite

6-4 Oracle Outside In HTML Export Developer's Guide

6.5 IOWrite
Writes data from the current file position forward and resets the position to the byte
after the last byte written.

Prototype
IOERR IOWrite(

HIOFILE hFile,
VTBYTE * pData,
VTDWORD dwSize,
VTDWORD * pCount);

Parameters
■ hFile: Identifies the file where the data is to be written. Should be cast into a

pointer to your data structure (MYFILE in the preceding discussion).

■ pData: Points to the buffer from which the bytes should be written. It must be at
least dwSize bytes big. It is good practice to treat the data passed in by pData as
"read only." This helps prevent unexpected behavior elsewhere in the system.

■ dwSize: Number of bytes to write.

■ pCount: Points to the number of bytes actually written by the function. This value
is only valid if the return value is IOERR_OK.

Return Values
■ IOERR_OK: Write was successful, pCount contains the number of bytes written.

■ IOERR_UNKNOWN: Write failed for some reason.

6.6 IOSeek
Moves the current file position.

Prototype
IOERR IOSeek(

HIOFILE hFile,
VTWORD wFrom,
VTLONG lOffset);

Parameters
■ hFile: Identifies the file to be read. Should be cast into a pointer to your data

structure (MYFILE in the preceding discussion).

■ wFrom: One of the following values:

– IOSEEK_TOP: Move the file position lOffset bytes from the top (beginning) of
the file.

– IOSEEK_BOTTOM: Move the file position lOffset bytes from the bottom (end)
of the file.

– IOSEEK_CURRENT: Move the file position lOffset bytes from the current file
position.

■ lOffset: Number of bytes to move the file pointer. A positive value moves the file
pointer forward in the file and a negative value moves it backward. If a requested
seek value would move the file pointer before the beginning of the file, the file

IOGetInfo

Redirected IO 6-5

pointer should remain unchanged and IOERR_UNKNOWN should be returned.
Seeking past EOF is allowed. In that case IOERR_OK should be returned. IOTell
would return the requested seek position and IORead should return IOERR_EOF
and 0 bytes read.

Return Values
■ IOERR_OK: Seek was successful.

■ IOERR_UNKNOWN: Seek failed for some reason.

6.7 IOTell
Returns the current file position.

Prototype
IOERR IOTell(

HIOFILE hFile,
VTDWORD * pOffset);

Parameters
■ hFile: Identifies the file to be read. Should be cast into a pointer to your data

structure (MYFILE in the preceding discussion).

■ pOffset: Points to the current file position returned by the function.

Return Values
■ IOERR_OK: Tell was successful.

■ IOERR_UNKNOWN: Tell failed for some reason.

6.8 IOGetInfo
Returns information about an open file.

Prototype
IOERR IOGetInfo(

HIOFILE hFile,
VTDWORD dwInfoId,
VTVOID * pInfo);

Parameters
■ hFile: Identifies the file to be read. Should be cast into a pointer to your data

structure (MYFILE in the previous discussion).

■ dwInfoId: One of the following values:

– IOGETINFO_FILENAME: pInfo points to a string that should be filled with
the base file name (no path) of the open file (for example TEST.DOC). If you
do not know the file name, return IOERR_UNKNOWN. Certain file types
(such as DataEase) must know the original file name in order to open
secondary files required to correctly view the original file. If you return
IOERR_UNKNOWN, these file types do not convert. See Section 6.8.1,
"IOGENSECONDARY and IOGENSECONDARYW Structures."

– IOGETINFO_PATHNAME: pInfo points to a string that should be filled with
the fully qualified path name (including the file name) of the open file. For

IOGetInfo

6-6 Oracle Outside In HTML Export Developer's Guide

example, C:\MYDIR\TEST.DOC. If you do not know the path name, return
IOERR_UNKNOWN.

– IOGETINFO_PATHTYPE: pInfo points to a DWORD that should be filled with
the IOTYPE of the path returned by IOGETINFO_PATHNAME. For instance,
if you return a DOS path name in the Unicode character set, you should return
IOTYPE_UNICODEPATH. Even if redirected IO is in use, this should not be
set to IOTYPE_REDIRECT. The value should reflect the style of path to be
returned or any other values detailed in Section 5.1.1, "EXOpenExport.".

– IOGETINFO_ISOLE2STORAGE: Must return IOERR_FALSE. pInfo is not
used.

– IOGETINFO_GENSECONDARY: pInfo points to a structure of type
IOGENSECONDARY. Some file types require supporting files to be opened.
These supporting files may contain formatting information or extra data.
When using HTML Export, templates may link to other templates, and the
paths to those templates must be resolved. Correct handling of IOGETINFO_
GENSECONDARY is critical to the operation of the Outside In technology. For
a list of these file types, see Section 6.8.2, "File Types That Cause IOGETINFO_
GENSECONDARY."

Because the developer is in total control of the IO for the primary file, the
technology does not know how to generate a path to these secondary files or
even if the secondary files are accessible through the regular file system. The
IOGETINFO_GENSECONDARY call gives the developer a chance to resolve
this problem by generating a new IO specification for the secondary file in
question. The developer gets just the base file name (often embedded in the
original document or generated from the primary file’s name) of the
secondary file.

The developer may either use one of the standard Outside In IO types or
totally redirect the IO for the secondary file, as well. For more details, see
Section 6.8.1, "IOGENSECONDARY and IOGENSECONDARYW Structures."

– IOGETINFO_SUBDOC_SPEC: This message should be handled only if the
currently open file is an archive and a particular item within the archive is
intended to be specified as the input file in a call to DAOpenDocument. In this
case, pInfo points to a single-byte character string that should be filled with
the subdocument specification of an item within the open file. For example,
item.2 specifies item 2 within the archive file. When specifying a subdocument
specification, return IOERR_OK. Any other return values cause the results of
this message to be ignored.

– IOGETINFO_64BITIO: For redirected I/O that wishes to use 64-bit seek/tell
functions, your IOGetInfo function must respond IOERR_TRUE to this
dwInfoId. In addition, the pSeek64/pTell64 items in the baseio structure must
be valid pointers to the proper function types.

– IOGETINFO_DPATHNAME: pInfo points to a structure of type
DPATHNAME, which should be filled with the fully qualified path name
(including the file name) of the open file, for example, C:\MYDIR\TEST.DOC.
If you do not know the path name, return IOERR_UNKNOWN. The
dwPathLen element contains the size of the buffer pointed to by the pPath
element. If the buffer size is too small to contain the full path, modify
dwPathLen to be the correct size of the buffer required to hold the path name
in its IOTYPE character width including the NULL terminator and return
IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

IOGetInfo

Redirected IO 6-7

typedef struct DPATHNAMEtag
{
 VTDWORD dwPathLen;
 VTVOID *pPath;
} DPATHNAME, * PDPATHNAME;

Parameters

dwPathLen: Will be set to the number of bytes in the buffer pointed to by
pPath. If the size of the buffer is insufficient, reset this element to the number
of bytes required and return IOERR_INSUFFICIENTBUFFER.

pPath: Points to the buffer to be filled with the path name.

– IOGETINFO_GENSECONDARYDP: pInfo points to a structure of type
IOGENSECONDARYDP. The dwSpecLen element contains the size of the
buffer pointed to by the pSpec element. If the buffer size is too small to
contain the spec, modify dwSpecLen to be the correct size of the buffer
required to hold the path in its IOTYPE character width including the NULL
terminator and return IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

typedef struct IOGENSECONDARYDPtag
{
 VTDWORD dwSize;
 VTVOID * pFileName;
 VTDWORD dwSpecType;
 VTVOID * pSpec;
 VTDWORD dwSpecLen;
 VTDWORD dwOpenFlags;
} IOGENSECONDARYDP, * PIOGENSECONDARYDP;

Parameters

dwSize: Will be set to sizeof (IOGENSECONDARYDP)

pFileName: A pointer to a string representing the file name of the secondary
file that the technology requires. It is usually a name stored in the primary file
(such as MYSTYLE.STY for a Word for DOS file) or a name generated from the
primary file name. The primary file for a DataEase database has a .dba
extension. The secondary name is the same file name but with a .dbm
extension.

dwSpecType: The developer must fill this with the IOSPEC for the secondary
file.

pSpec: On entry, this pointer points to an array of bytes or may be NULL (see
dwSpecLen below). If the dwSpecType is set a regular IOTYPE such as
IOTYPE_ANSIPATH, the developer may fill this array with the path name or
structure required for that IOTYPE. If the developer is redirecting access to the
secondary file, then dwSpecType will be IOTYPE_REDIRECT and the
developer should replace pSpec with a pointer to a developer-defined
structure that begins with the BASEIO structure (see Section 6.1, "Using
Redirected IO").

The file is supposed to be opened by the OEM's redirected IO code by the time
they return the BASEIO struct. This is because the pOpen routine in the
BASEIO struct is supposed to be NULL.

IOGetInfo

6-8 Oracle Outside In HTML Export Developer's Guide

dwSpecLen: On entry, this is set to the size of the pSpec buffer. If the size of
the buffer is insufficient, replace the value with the number of bytes required
and return IOERR_INSUFFICIENTBUFFER.

dwOpenFlags: Set by the technology. A set of bit flags describing how the
secondary file should be opened. Multiple flags may be used by bitwise
OR-ing them together. The following flags are currently used:

 - IOOPEN_READ: The secondary file should be opened for read.

 - IOOPEN_WRITE: The secondary file should be opened for write. If the
specified file already exists, its contents are erased when this flag is set.

 - IOOPEN_CREATE: The secondary file should be created (if it does not
already exist) and opened for write.

Any other value should return IOERR_BADINFOID.

■ pInfo: The size of the pInfo buffer depends on the dwInfoId selected. For
IOGETINFO_FILENAME and IOGETINFO_PATHNAME, the buffer is of size
MAX_PATH characters (each character is either one byte or two, depending on
PATHTYPE). The IOGETINFO_PATHTYPE buffer is the size of a VTDWORD.

Return Values
■ IOERR_OK: GetInfo was successful.

■ IOERR_TRUE: Affirmative response from a true or false GetInfo.

■ IOERR_FALSE: Negative response from a true or false GetInfo.

■ IOERR_BADINFOID: dwInfoId can not be handled by this file type.

■ IOERR_INVALIDSPEC: The file spec is bad for this type.

■ IOERR_UNKNOWN: GetInfo failed for some other reason.

6.8.1 IOGENSECONDARY and IOGENSECONDARYW Structures
These structures are passed to the developer through the IOGetInfo function. They
allow the developer to tell the technology where a secondary file, needed by the
conversion process, is located.

The SpecType of the original file determines which of these two structures is used. If
the SpecType is IOTYPE_UNICODEPATH, IOGENSECONDARYW is used.
pFileName points to a Unicode string terminated with a NULL WORD. For all other
SpecTypes, IOGENSECONDARY is used and pFileName points to a string terminated
with a NULL BYTE.

When using HTML Export, consider the situation where the software must access a
secondary template file. In that case, the SpecType of the original template specified by
the option SCCOPT_EX_TEMPLATE determines which of the two structures is used.

The following is a C data structure defined in SCCIO.H:

typedef struct
{

VTDWORD dwSize;
VTLPBYTE pFileName;
VTDWORD dwSpecType;
VTLPVOID pSpec;
VTDWORD dwOpenFlags

} IOGENSECONDARY, * PIOGENSECONDARY;

IOGetInfo

Redirected IO 6-9

typedef struct
{

VTDWORD dwSize;
VTLPWORD pFileName;
VTDWORD dwSpecType;
VTLPVOID pSpec;
VTDWORD dwOpenFlags

} IOGENSECONDARYW, * PIOGENSECONDARYW;

Parameters
■ dwSize: Will be set to sizeof (IOGENSECONDARY) or

sizeof (IOGENSECONDARYW) (both of these values are the same).

■ pFileName: A pointer to a string representing the file name of the secondary file
that the technology requires. It is usually a name stored in the primary file (such as
MYSTYLE.STY for a Word for DOS file) or a name generated from the primary file
name. The primary file for a DataEase database has a .dba extension. The
secondary name is the same file name but with a .dbm extension.

■ dwSpecType: The developer must fill this with the IOSPEC for the secondary file.

■ pSpec: On entry, this pointer points to an array of 1024 bytes. If the dwSpecType is
set a regular IOTYPE such as IOTYPE_ANSIPATH, the developer may fill this
array with the path name or structure required for that IOTYPE. If the developer is
redirecting access to the secondary file, then dwSpecType will be IOTYPE_
REDIRECT and the developer should replace pSpec with a pointer to a
developer-defined structure that begins with the BASEIO structure (see
Section 6.1, "Using Redirected IO").

The file is supposed to be opened by the OEM's redirected IO code by the time
they return the BASEIO struct. This is because the pOpen routine in the BASEIO
struct is supposed to be NULL.

■ dwOpenFlags: Set by the technology. A set of bit flags describing how the
secondary file should be opened. Multiple flags may be used by bitwise OR-ing
them together. The following flags are currently used:

– IOOPEN_READ: The secondary file should be opened for read.

– IOOPEN_WRITE: The secondary file should be opened for write. If the
specified file already exists, its contents are erased when this flag is set.

– IOOPEN_CREATE: The secondary file should be created (if it does not already
exist) and opened for write.

6.8.2 File Types That Cause IOGETINFO_GENSECONDARY
The following file types cause IOGETINFO_GENSECONDARY:

■ Microsoft Word for DOS Versions 4, 5 and 6: Used to open and read the style sheet
file associated with the document. The filter degrades if the style sheet is not
present.

■ Harvard Graphics DOS 3.x: Used to open and read the individual slides within
ScreenShow and palette files. Files with the extension .ch3 are individual graphics
or slides that can be opened using no secondary files. Files with the extension .sy3
are ScreenShows that reference a list of .ch3 files via the secondary file mechanism.
There is also an optional palette file that can be referenced from a .ch3 file, but the
filter degrades if the palette file is not present.

IOSEEK64PROC / IOTELL64PROC

6-10 Oracle Outside In HTML Export Developer's Guide

■ R:Base: Used to open and read required schema file. The R:Base data files are
named ????2.rbf but the data is useless without the schema file named ????1.rbf.
There is also a ????3.rbf file associated with each database, but it is not used.

■ Paradox 4.0 and Above: Used to open and read memo field data file. Paradox uses
a separate file for all memo field data larger than 32 bytes.

■ DataEase: Used to open and read the data file. DataEase databases include a .dba
file that contains the schema (the file that the technology can identify as DataEase)
and a .dbm file that contains the actual data.

■ Templates (HTML Export): Any template that contains a {## link} will need to
open the linked files. Additionally, when the root template is opened using
redirected IO, each {## copy} macro in the template will result in a
IOGETINFO_GENSECONDARY call, as well.

6.9 IOSEEK64PROC / IOTELL64PROC
These functions are for seek/tell using 64-bit offsets. These functions are not used by
default. Rather, they are used if the IOGETINFO_64BITIO message returns IOERR_
TRUE. This is so redirected I/O using strictly 32-bit I/O is unaffected.

6.9.1 IOSeek64
Moves the current file position.

Prototype
IOERR IOSeek64(
HIOFILE hFile,
VTWORD wFrom,
VTOFF_T offset);

Parameters
The parameter information is the same as for IOSeek(). However, the size of the
VTOFF_T offset for IOSeek64() is 64-bit unlike the 32-bit offset in IOSeek().

6.9.2 IOTell64
Returns the current file position.

Prototype
IOERR IOTell64(
HIOFILE hFile,
VTOFF_T * pOffset);

Parameters
The parameter information is the same as for IOTell(). The only change is the use of a
pointer to a 64-bit parameter for returning the offset.

7

Callbacks 7-1

7Callbacks

Callbacks allow the developer to intervene at critical points in the export process. Read
more about the callback procedure and the EXOpenExport function call in Chapter 5,
"Export Functions." Each heading in this chapter is a possible value for the
dwCommandOrInfoId parameter passed to the developer’s callback.

The new SCCOPT_EX_CALLBACKS option allows developers to enable or disable
some or all of these callbacks. See the Options documentation for details.

This section describes callbacks set in EXOpenExport. A second callback function,
DASetStartCallback, can provide information about the progress of a file conversion.
For more details, see Chapter 4, "Data Access Common Functions."

7.1 Callbacks Used In HTML Export
The following callbacks apply to HTML Export:

■ Section 7.1.1, "EX_CALLBACK_ID_CREATENEWFILE"

■ Section 7.1.2, "EX_CALLBACK_ID_NEWFILEINFO"

■ Section 7.1.3, "EX_CALLBACK_ID_ALTLINK"

■ Section 7.1.4, "EX_CALLBACK_ID_CUSTOMELEMENTLIST"

■ Section 7.1.5, "EX_CALLBACK_ID_ENTERARCHIVE"

■ Section 7.1.6, "EX_CALLBACK_ID_GRAPHICEXPORTFAILURE"

■ Section 7.1.7, "EX_CALLBACK_ID_LEAVEARCHIVE"

■ Section 7.1.8, "EX_CALLBACK_ID_OEMOUTPUT"

■ Section 7.1.9, "EX_CALLBACK_ID_OEMOUTPUT_VER2"

■ Section 7.1.10, "EX_CALLBACK_ID_PROCESSELEMENTSTR"

■ Section 7.1.11, "EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2"

■ Section 7.1.12, "EX_CALLBACK_ID_PROCESSLINK"

■ Section 7.1.13, "EX_CALLBACK_ID_REFLINK"

7.1.1 EX_CALLBACK_ID_CREATENEWFILE
This callback is made any time a new output file needs to be generated. This gives the
developer the chance to execute routines before each new file is created.

It allows the developer to override the standard naming for a file or to redirect entirely
the IO calls for a file. This callback is made for all output files that are created.

Callbacks Used In HTML Export

7-2 Oracle Outside In HTML Export Developer's Guide

These include all output text and graphics files that are created. However, it does not
include the already open initial file passed to EXOpenExport, unless of course
redirected IO is in use with a pSpec of NULL.

If redirected IO is being used on output files, this callback must be implemented.

For this callback, the pCommandOrInfoData parameter points to a structure of type
EXFILEIOCALLBACKDATA:

typedef struct EXFILEIOCALLBACKDATAtag
{

HIOFILE hParentFile;
VTDWORD dwParentOutputId;
VTDWORD dwAssociation;
VTDWORD dwOutputId;
VTDWORD dwFlags;
VTDWORD dwSpecType;
VTLPVOID pSpec;
VTLPVOID pExportData;
VTLPVOID pTemplateName;

} EXFILEIOCALLBACKDATA;

■ hParentFile: Handle to the initial output file with which the new file is associated.
The dwAssociation describes the relationship. This handle is not intended for use
by the developer. Set by caller.

■ dwParentOutputId: Set by caller. The type of the parent file. This value is FI_
HTML.

■ dwAssociation: One of the following values:

– CU_ROOT: For the initial output file.

– CU_SIBLING: For new files that are not somehow owned by the parent file.
This can be additional HTML output files created as the result of template
directives.

– CU_CHILD: For new files (usually GIFs, JPEGs, or PNGs) that are embedded
in the parent file.

– CU_COPY: For files that are being copied as the result of a template
{## copy} macro.

The OEM should be aware that each time the {## copy} macro causes a file
to be copied, the EX_CALLBACK_ID_CREATENEWFILE callback is called. To
indicate the callback happened as a result of the {## copy} macro, the
dwAssociation field is set by HTML Export to CU_COPY. In addition, the
OEM should also be aware that the dwOutputId field will be set by HTML
Export to FI_UNKNOWN.

OEMs using {## copy} and redirected IO should be aware that copied files
are considered to be loosely associated with the template. As such, if
redirected IO is being used for the root template, HTML Export allows the
copied files to be handled through redirected IO, as well. For each {## copy}
instance, an IOGetInfo call is made, requesting IOGETINFO_
GENSECONDARY.

The IOGETINFO_GENSECONDARY call for redirected IO should have
opened the file to be copied, so this call is entirely informational in this
situation. The OEM may then return redirected IO information in the
IOGENSECONDARY/IOGENSECONDARYW structure, as needed. If
redirected IO is not needed for the file to be copied, HTML Export attempts to

Callbacks Used In HTML Export

Callbacks 7-3

open the file locally. OEMs should also be aware that {## copy} results in a
IOGENSECONDARY call with dwOpenFlags set to IOOPEN_WRITE.

dwAssociation used in conjunction with dwOutputId can be used to segregate
various types of files. For instance, the developer might want to place all GIFs in a
sub-directory named GRAPHICS. Set by caller.

■ dwOutputId: The type of the new file. This value is FI_HTML, FI_HTML_CSS, FI_
JAVASCRIPT, FI_GIF, FI_JPEGFIF or FI_PNG. The preceding graphics formats are
only valid when the technology is processing embedded graphics. When this
callback occurs as a result of the {## copy} template macro, this is FI_
UNKNOWN. Set by HTML Export.

■ dwFlags: Reserved

■ dwSpecType: IO specification type. For details about IO specifications, see
Section 4, "Data Access Common Functions."

This member in conjunction with pSpec allows the developer to choose any
location for the new file or even redirect its IO calls entirely. For more information,
see Chapter 6, "Redirected IO." When the developer receives this callback, the
value of this element is undefined. Must be set by developer if this callback
returns SCCERR_OK.

■ pSpec: This field holds the IO specification of the output file to be created. pSpec
points to a buffer that is 1024 bytes in size. If your application needs to set the
specification of the output file, it may do so by either writing new data into this
buffer, or by changing the value of pSpec to point to memory owned by your
application. If pSpec is set to a new value, then your application must ensure that
this memory stays valid for an appropriate length of time, at least until the next
callback message is received, or EXRunExport returns.

If the current export operation is using redirected IO, your application must create
a redirected IO data structure for the new file and set pSpec to point to it. This
pointer must stay valid until the structure's pClose function is called.

If your application sets dwSpecType to IOTYPE_UNICODEPATH, the
specification must contain UCS-2 encoded Unicode characters.

When the developer receives this callback, the bytes in the buffer pSpec points to
are undefined. Must be set by the developer if this callback returns SCCERR_OK.

■ pExportData: Pointer to data specific to the individual export. In this case, always
a pointer to either an EXURLFILEIOCALLBACKDATA structure or an
EXURLFILEIOCALLBACKDATAW structure. The
EXURLFILEIOCALLBACKDATAW struct is only used when the SCCOPT_
UNICODECALLBACKSTR option is set to TRUE. These two structures are
defined in Section 7.1.1.1, "EXURLFILEIOCALLBACKDATA /
EXURLFILEIOCALLBACKDATAW Structures." Set by caller.

■ pTemplateName: Pointer to a NULL-terminated string containing the name of the
template responsible for opening the new output file. If a template uses the
{## link} command, a new output file may be created to hold the linked-to
output. When this happens, this field contains the name of the template being
parsed in order to create the output. Whether this is a string of WORDs or BYTEs
is dependent on the SCCOPT_UNICODECALLBACKSTR option. If this option is
set to TRUE, it is a pointer to an array of WORDs. Otherwise, it is a pointer to an
array of BYTEs.

Because historically the SCCOPT_EX_TEMPLATE option was not set until after
the original output file had been opened, a change was made to allow this option

Callbacks Used In HTML Export

7-4 Oracle Outside In HTML Export Developer's Guide

to be set before the call to EXOpenExport. If this option is set before
EXOpenExport, the pTemplateName field is a valid string. Otherwise, it is NULL
for the original output file.

7.1.1.1 EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW
Structures
These are new, more generic names for the old EXHTMLFILEIOCALLBACKDATA
and EXHTMLFILEIOCALLBACKDATAW structures. The old names continue to be
supported indefinitely to maintain backwards compatibility.

The EXURLFILEIOCALLBACKDATA and EXURLFILEIOCALLBACKDATAW
structures are defined as follows:

typedef struct EXURLFILEIOCALLBACKDATAtag
{

VTDWORD dwSize;
VTBYTE szURLString[VT_MAX_URL];
VTDWORD dwFileID;

} EXURLFILEIOCALLBACKDATA;

typedef struct EXURLFILEIOCALLBACKDATAWtag
{

VTDWORD dwSize;
VTWORD wzURLString[VT_MAX_URL];
VTDWORD dwFileID;

} EXURLFILEIOCALLBACKDATAW;

■ dwSize: Set to sizeof(EXURLFILEIOCALLBACKDATA) or
sizeof(EXURLFILEIOCALLBACKDATAW).

■ szURLString / wzURLString: This parameter can be set by the developer to a new
URL that references the newly created file. This parameter is optional unless the
pSpec provided by the developer points to something that cannot be used as a
URL (as when using redirected IO, for example). In that case, this parameter must
be set.

This string is written into any output file that needs to reference the newly created
file, with appropriate conversions between single and double byte output. Because
this parameter is a URL, it is assumed to be URL encoded. When used in
conjunction with dwSpecType and pSpec, this parameter can be used to generate
almost any structure or location for the output files, including things like writing
the output files into a database and then using a CGI mechanism to retrieve them.

The current size limitation is 2048 characters. If the size exceeds this limit, the URL
will be truncated and rendered useless.

■ dwFileID: Set by the product. This is used as a unique identifier for each output
file generated. It may be used for an OEM-specific purpose. This identifier is
always set to zero when this callback is made as the result of a {## copy}
statement in the template.

Return Value
■ SCCERR_OK: dwSpecType, pSpec and szURLString (or wzURLString) have been

populated with valid values.

■ SCCERR_NOTHANDLED: Default naming should be used.

■ SCCERR_FILEOPENFAILED: Some error was encountered creating a new output.

Callbacks Used In HTML Export

Callbacks 7-5

7.1.2 EX_CALLBACK_ID_NEWFILEINFO
This informational callback is made just after each new file has been created. Like the
EX_CALLBACK_ID_CREATENEWFILE callback, the pExportData parameter points
to an EXURLFILEIOCALLBACKDATA or an EXURLFILEIOCALLBACKDATW
structure, but in this case the structure should be treated as read-only and the
dwSpecType, pSpec and szURLString (or wzURLString) will be filled in.

This callback occurs for every new file. If the developer has used the EX_CALLBACK_
ID_CREATENEWFILE notification to change the location of (or to set up redirected IO
for) the new file, the data structure echoes back the information set by the developer
during the EX_CALLBACK_ID_CREATENEWFILE callback.

Return Value
Must be either SCCERR_OK or SCCERR_NOTHANDLED. Return value is currently
ignored.

7.1.3 EX_CALLBACK_ID_ALTLINK
This callback is made when a {## anchor} macro that would be used for navigating
between output files cannot be resolved to a location in the set of output files. The two
cases that result in this callback are a "previous" link from the first output file, or a
"next" link from the last output file. Responding to this callback allows the endpoints
of the next/previous links in a set of output pages to point to locations outside of the
converted document itself.

This callback only occurs if the altlink= attribute is missing in the {## anchor}
statement or is invalid.

The pCommandOrInfoData parameter points to a structure of type
EXALTLINKCALLBACKDATA:

typedef struct EXALTLINKCALLBACKDATA
{

VTDWORD dwType;
VTLPVOID pAltURLStr;

}

■ dwType: Set by HTML Export to the type of link that couldn't be resolved, either
EX_ALTLINK_PREV or EX_ALTLINK_NEXT.

■ pAltURLStr: Set by HTML Export to a buffer of size 1024 bytes. The developer
should write to this buffer a null terminated string representing the URL to be
used as the alternate link. The character size of the string is based on the value of
the SCCOPT_UNICODECALLBACKSTR option.

If a buffer larger than 1024 bytes is required, the developer may assign this pointer
to a new buffer. In this case the new buffer must be guaranteed to exist until the
next callback message is received for the current hExport, or EXRunExport returns.

Unlike the other callbacks that use the SCCOPT_UNICODECALLBACKSTR option,
EX_CALLBACK_ID_ALTLINK does not have separate normal and wide structures.

7.1.4 EX_CALLBACK_ID_CUSTOMELEMENTLIST
This callback works in conjunction with the EX_CALLBACK_ID_
PROCESSELEMENTSTR_VER2 callback to allow the OEM to extend the template
document tree. The callback is made at the beginning of processing to get a pointer to
the list of OEM-defined custom elements. These elements are referenced from the

Callbacks Used In HTML Export

7-6 Oracle Outside In HTML Export Developer's Guide

template with {## insert element=}. When one of these elements is found in the
template, the EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2 callback is
triggered. If that callback returns SCCERR_NOTHANDLED, then the EX_
CALLBACK_ID_PROCESSELEMENTSTR callback is triggered. For more information,
see Section 7.1.12, "EX_CALLBACK_ID_PROCESSLINK."

The pCommandOrInfoData field is a pointer that is expected to be filled in with the
address of an array of NULL-terminated strings, where the last string is a NULL
string. This array is provided by the OEM and is not allocated or freed by HTML
Export. This list is used to determine if an unexpected element found in a template is
valid.

If the SCCOPT_UNICODECALLBACKSTR option is set to TRUE, it is assumed this
list contains Unicode strings. If the option is set to FALSE, it is assume the list contains
ASCII strings. Each string is limited to 64 characters in length (128 bytes for Unicode)
including NULL-terminator. Elements are case insensitive, as is the template language.

HTML Export only allows Unicode or 7bit ASCII for the custom element values when
this option is set.

An example of declaring the list of strings would be the following:

char * CustomElementList[] = {
"string1",
"string2",
"string3",
NULL,
};

Return Value
Must be either SCCERR_OK or SCCERR_NOTHANDLED. If SCCERR_OK is
returned, the pCommandOrInfoData field must contain a valid pointer.

7.1.5 EX_CALLBACK_ID_ENTERARCHIVE
This callback is made when the template begins the following construct:

{## link element=sections.current.decompressedfile}

This callback provides a way for the OEM to change the pSpec and dwSpecType used
for the output of the conversion of the archive entry. For the remainder of the
conversion of the archive entry, the default output file names generated by HTML
Export are based on the pSpec and dwSpecType returned here. By default, the OEM
may leave these unchanged and use names generated by HTML Export. The callback
also provides the OEM with information about the archive entry to be converted. This
information could be used for things such as putting the output of each archive entry
into a directory separate from the output of the original output file(s).

Important: Oracle reserves the right to add any string(s) to the list of
supported elements. It is therefore recommended that great care be
exercised when selecting element names. One method of reducing this
risk may be to use your company’s name in the element name
keyword. Due to this potential for future naming conflicts, the "oem="
mechanism is still the preferred method for generating callbacks based
on template elements.

Callbacks Used In HTML Export

Callbacks 7-7

When this callback happens, HTML Export internally recursively calls itself on the
target archive file entry. As such, any options set in the parent export are inherited by
the child export. However, any options set by the OEM or the templates while
processing is being done inside the child export, revert to their original settings upon
completion of the child export. In addition, any callbacks HTML Export would
normally make are percolated up from the child export to the OEM’s program. Note
that options cannot be set via this callback for child exports.

The pCommandOrInfoData parameter points to a structure of type
EXENTERARCHIVECALLBACKDATA:

typedef struct EXENTERARCHIVECALLBACKDATAtag
{

VTDWORD dwSpecType;
VTLPVOID pSpec;
VTLPWORD wzFullName;
VTDWORD dwItemNum;

} EXENTERARCHIVECALLBACKDATA;

■ dwSpecType: Describes the contents of pSpec. Together dwSpecType and pSpec
describe the location of the initial output file for the archive entry. A default value
is filled in by HTML Export based on the next output file name HTML Export
would normally use. Must be one of the values allowed for the dwSpecType
passed to EXOpenExport.

■ pSpec: File location specification for the first output file generated by the
conversion of the archive entry. This parameter is either a pointer to a buffer or
NULL. If the pointer is not NULL, the buffers contents are based on the value of
the dwSpecType parameter. See the descriptions under the individual
dwSpecTypes listed for EXOpenExport.

Passing NULL indicates the developer will use the EX_CALLBACK_ID_
CREATENEWFILE callback to specify the initial output file instead of specifying it
here. When this parameter is NULL, the developer must handle the EX_
CALLBACK_ID_CREATENEWFILE callback or EXOpenExport will return an
error. For more information, see Section 7.1.1, "EX_CALLBACK_ID_
CREATENEWFILE."

A default value is filled in by HTML Export based on the next output file name
HTML Export would normally use. In other words, if the original output file
created was main.htm, and main0001.htm - main0003.htm have been created, then
the first file created for the file in the archive is main0004.htm.

■ wzFullName: Filled in by HTML Export with a NULL-terminated Unicode string
representing the name of the file entry in the archive. This name includes any path
information provided in the archive file. Similar to sections.current.fullname in the
template language.

■ dwItemNum: The item number of the entry in the archive file. Similar to
sections.current.itemnum in the template language.

Return Value
Must be either SCCERR_OK or SCCERR_NOTHANDLED. The return value is
currently ignored.

7.1.6 EX_CALLBACK_ID_GRAPHICEXPORTFAILURE
This callback only occurs when an error is encountered exporting a graphic. It allows
the OEM to customize their handling of this type of error. This callback does not occur

Callbacks Used In HTML Export

7-8 Oracle Outside In HTML Export Developer's Guide

for graphics exports that are successful. It also does not occur for graphics that cannot
be converted due to the lack of an appropriate type of import filter. If the appropriate
import filter is not present, EXOpenExport returns SCCERR_NOFILTER.

The pCommandOrInfoData field points to a structure of type
EXGRAPHICEXPORTINFO:

typedef struct EXGRAPHICEXPORTINFOtag
{

HIOFILE hFile;
VTLPDWORD pXSize;
VTLPDWORD pYSize;
VTDWORD dwOutputId;
SCCERR ExportGraphicStatus;
VTLPDWORD pImageSize;

} EXGRAPHICEXPORTINFO;

■ hFile: A handle to the current graphic output file. An OEM can substitute their
own graphic by writing the desired graphic image to the beginning of the hFile
(via an IOSEEK (hFile, IOSEEK_TOP, 0L), etc. The export function closes the file
when control is returned from the callback. The contents of hFile on entry to the
callback handler are unpredictable.

■ pXSize/pYsize: Pointers to the dimensions of the image that would have been
exported. An OEM can set and use these values to control the image size
displayed by browsers. These dimensions are placed in the associated tag.

■ dwOutputId: The type of graphics file that was being created (FI_GIF, FI_JPEGFIF,
or FI_PNG).

■ ExportGraphicStatus: The error code from the operation that caused the graphic
image conversion to fail.

■ pImageSize: The maximum size for the image in bytes is filled in by HTML Export
here (0 = no limit). If this callback is handled, on return the OEM should set this
field to the size of the image the OEM created. This image should be no larger than
the maximum size HTML Export entered into this variable.

Return Value
The callback handler should return SCCERR_NOTHANDLED unless the OEM has
written an image to hFile in which case a value of SCCERR_OK should be returned.

7.1.7 EX_CALLBACK_ID_LEAVEARCHIVE
This callback is made when the template finishes the following:

{## link element=sections.current.decompressedfile}

Links of this nature are handled by Export internally as a recursive call to HTML
Export on the target archive file entry. As such, any errors returned by the conversion
of the {## link} target are not reflected in the error code returned by EXRunExport.
In addition, conversion of the target archive entry may fail, but export of the archive
file continues. This callback provides the error code generated by the conversion of the
archive file entry.

The pCommandOrInfoData parameter points to a structure of type
EXLEAVEARCHIVECALLBACKDATA:

typedef struct EXLEAVEARCHIVECALLBACKDATAtag
{

SCCERR ExportResult;

Callbacks Used In HTML Export

Callbacks 7-9

} EXLEAVEARCHIVECALLBACKDATA;

■ ExportResult

Filled in by HTML Export with SCCERR_OK or the error code generated by the
conversion of the archive file entry.

Return Value
Must be either SCCERR_OK or SCCERR_NOTHANDLED. The return value is
currently ignored.

7.1.8 EX_CALLBACK_ID_OEMOUTPUT
This callback has been deprecated. While this callback continues to be supported,
users are encouraged to use the new EX_CALLBACK_ID_OEMOUTPUT_VER2
callback. The new version supports mapping the output for this callback to the output
character set. This is especially important given that HTML Export sometimes
overrides the output character set indicated by the SCCOPT_EX_
OUTPUTCHARACTERSET option.

For now, HTML Export only makes this callback if EX_CALLBACK_ID_
OEMOUTPUT_VER2 returns SCCERR_NOTHANDLED.

7.1.9 EX_CALLBACK_ID_OEMOUTPUT_VER2
This callback is made in response to a {## insert oem=} macro inside a template
file. When this callback occurs, the developer may return a string to be inserted into
the output file. Multiple {## insert oem=} macros are differentiated by the value
of the "oem=" string. For example, {## insert oem=phone} could be used to
trigger this callback so that a phone number could be extracted from a database and
inserted into the output file at this point.

This callback differs from the EX_CALLBACK_ID_OEMOUTPUT callback in that it
correctly handles character mapping of the string to be inserted into the output file. It
does this by mapping the string pointed to in pwBuffer from the character set given by
dwCharset to the output character set used by HTML Export. This is especially
important given that HTML Export sometimes overrides the output character set
indicated by the SCCOPT_EX_OUTPUTCHARACTERSET option. With this callback,
the string pointed to in pwBuffer is mapped from the character set given by
dwCharset to the output character set used by HTML Export. The correctly mapped
character string is then written by HTML Export to the output file.

The EX_CALLBACK_ID_OEMOUTPUT callback is not made unless this callback
returns SCCERR_NOTHANDLED.

The pCommandOrInfoData parameter points to a structure of type
EXOEMOUTCALLBACKDATA_VER2:

typedef struct EXOEMOUTCALLBACKDATA_VER2tag
{

VTDWORD dwSize;
VTDWORD dwCharset;
VTDWORD dwLength;
VTLPVOID pOEMString;
VTLPWORD pwBuffer;

} EXOEMOUTCALLBACKDATA_VER2;

■ dwSize: sizeof(EXOEMOUTCALLBACKDATA_VER2)

Callbacks Used In HTML Export

7-10 Oracle Outside In HTML Export Developer's Guide

■ dwCharset: The character set of the string contained in pwBuffer. This may not be
set to SO_UTF8.

■ dwLength: The length of the string contained in pwBuffer.

■ pOEMString: Pointer to a Unicode string that represents the value of the oem
attribute of the {## insert} macro. For example, if the macro is {## insert
oem=phone}, pOEMString points to the NULL-terminated Unicode string
"phone."

■ pwBuffer: Pointer to the string which the OEM wants to insert. This is a WORD
buffer, and it is the OEM’s responsibility to convert their string to a
NULL-terminated WORD string regardless of the character set specified by
dwCharset. This means that single-byte character strings must be expanded into
one character per WORD.

For double-byte character set strings, the lead byte and trail byte should occupy
the same WORD value, with the lead byte in the high order byte of the WORD.

Return Value
Must be either SCCERR_OK or SCCERR_NOTHANDLED.

7.1.10 EX_CALLBACK_ID_PROCESSELEMENTSTR
This callback has been deprecated. While this callback continues to be supported,
users are encouraged to use the new EX_CALLBACK_ID_PROCESSELEMENTSTR_
VER2 callback. The new version supports mapping the output for this callback to the
output character set. This is especially important given that HTML Export sometimes
overrides the output character set indicated by the SCCOPT_EX_
OUTPUTCHARACTERSET option.

For now, HTML Export only makes this callback if the EX_CALLBACK_ID_
PROECESSSELEMENTSTR_VER2 callback returns SCCERR_NOTHANDLED.

7.1.11 EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2
This callback works in conjunction with the EX_CALLBACK_ID_
CUSTOMELEMENTLIST callback to allow the OEM to extend the template document
tree. The callback is made when a custom element is found in a template. A custom
element is verified by comparing it against the list of custom elements defined by the
EX_CALLBACK_ID_CUSTOMELEMENTLIST callback. For more information, see
Section 7.1.4, "EX_CALLBACK_ID_CUSTOMELEMENTLIST."

This callback differs from the EX_CALLBACK_ID_PROCESSELEMENTSTR callback
in that it correctly handles character mapping of the string to be inserted into the
output file. It does this by mapping the string pointed to in pwBuffer from the
character set given by dwCharset to the output character set used by HTML Export.
This is especially important given that HTML Export sometimes overrides the output
character set indicated by the SCCOPT_EX_OUTPUTCHARACTERSET option. With
this callback, the string pointed to in pwBuffer is mapped from the character set given
by dwCharset to the output character set used by HTML Export. The correctly
mapped character string is then written by HTML Export to the output file.

The EX_CALLBACK_ID_PROCESSELEMENTSTR callback will not be made unless
this callback returns SCCERR_NOTHANDLED.

The pCommandOrInfoData field points to a structure of type
EXCUSTOMELEMENTCALLBACKDATA_VER2:

Callbacks Used In HTML Export

Callbacks 7-11

typedef struct EXCUSTOMELEMENTCALLBACKDATA_VER2tag
{

VTDWORD dwSize;
VTDWORD dwCharset;
VTDWORD dwLength;
VTLPVOID pKeyStr;
VTLPVOID pElementStr;
VTLPWORD pwBuffer;

} EXCUSTOMELEMENTCALLBACKDATA_VER2;

■ dwSize: sizeof(EXCUSTOMELEMENTCALLBACKDATA_VER2)

■ dwCharset: The character set of the string contained in pwBuffer. This may not be
set to SO_UTF8.

■ dwLength: Set by the OEM to the number of characters, not bytes, in the string
contained in pwBuffer.

■ pKeyStr: Pointer to a string that represents the keyword value of the custom
element. The representation of the string is defined by the value set by the
SCCOPT_EX_UNICODECALLBACKSTR option. The keyword is the text
following the "=", up to the next separator character, either a space or a period.
This is the string used for determining if the element is a valid custom element,
based on the list of valid elements given by the EX_CALLBACK_ID_
CUSTOMELEMENTLIST callback. For example, if the macro is {## insert
element=phone help}, pKeyStr points to the NULL-terminated string "phone."

■ pElementStr: Pointer to a string that represents the keyword value of the custom
element. The representation of the string is defined by the value set by the
SCCOPT_EX_UNICODECALLBACKSTR option. This is the text after the keyword
up to the closing "}". This string may be NULL. For example, if the macro is
{## insert element=phone help}, pElementStr points to the
NULL-terminated string "help."

■ pwBuffer: Pointer to the string that the OEM wants to insert into the output file(s).
This is a WORD buffer, and it is the OEM’s responsibility to convert their string to
a NULL-terminated WORD string regardless of the character set specified by
dwCharset. This means that single-byte character strings must be expanded into
one character per WORD.

When HTML Export makes this callback, pwBuffer points to a buffer that is 512
WORDs in size. If this is not enough room, the OEM may set pwBuffer to point to
a different buffer allocated (and later freed) by the OEM. The OEM should NOT
free or realloc the buffer provided by HTML Export. In addition, the OEM’s buffer
must be valid until the next call from HTML Export is received, or EXRunExport
returns.

For double-byte character set strings, the lead byte and trail byte should occupy
the same WORD value, with the lead byte in the high order byte of the WORD.

Return Value
Must be either SCCERR_OK or SCCERR_NOTHANDLED.

7.1.12 EX_CALLBACK_ID_PROCESSLINK
Currently, this advanced callback is available only for links to images. It is made in
response to a link to a file or URL from inside the file being converted. It allows the
developer to choose how this link should be handled. There are essentially three ways
to deal with a link:

Callbacks Used In HTML Export

7-12 Oracle Outside In HTML Export Developer's Guide

1. The developer may request that the link be handled by having HTML Export
attempt to follow the link, convert it to the selected image type, and insert the
converted object (this is the default behavior).

2. The developer may have an image tag created which uses a specified string as the
source attribute (for example, as). The string can be the location
string of the actual link or one provided by the developer.

3. The developer may ignore the link altogether.

The pCommandOrInfoData parameter points to a structure of type
EXPROCESSLINKCALLBACKDATA:

typedef struct EXPROCESSLINKCALLBACKDATAtag
{

VTLPVOID pLocatorStr;
VTDWORD dwLocatorStrCharset;
VTDWORD dwObjectFileId;
VTDWORD dwAction;
VTDWORD dwLinkFlags;
VTHANDLE hReserved;

} EXPROCESSLINKCALLBACKDATA;

■ pLocatorStr: Pointer to a string containing the linked object location
information (such as a file path or URL). The buffer containing this string is
1024 bytes in size. The developer may use this buffer to change the object
location string or provide a new one.

If the developer wishes, the pointer can be changed to point to a buffer of the
developer’s choosing. However, if this is done, the pointer provided must be
valid until the next EX_CALLBACK_ID_PROCESSLINK callback is made, or
EXRunExport returns.

If the string is changed, it only has an effect if the developer is requesting that
it be used as the SRC parameter in the resultant image tag (for example,
dwAction = EX_ACTION_CREATELINK). The size of a character in the string
(BYTE or WORD) is resolved by the dwLocatorStrCharset field.

■ dwLocatorStrCharset: Character set of the string pointed to by pLocatorStr.
The value corresponds to the character set defines in vtchars.h. If the string
pointed to by pLocatorStr is changed, this value must also be changed if the
character set of the new string is different than the original.

■ dwObjectFileId: The type of the object pointed to by the link. The value
corresponds to the FI value defines found in sccfi.h. If the value is FI_NONE,
the linked object could not be found.

■ dwAction: Must be set by the callback routine. The value tells HTML Export
how to deal with this link and can be one of the following values:

– EX_ACTION_CONVERT: Default behavior occurs. HTML Export
attempts to follow the link, convert it to the selected image type, and
insert that object into the resultant output file.

– EX_ACTION_SKIP: The link is to be skipped. No image tag is to be
produced. SCCERR_OK must be returned in order for the value of this
field to have an effect.

■ hReserved: Field reserved for future use.

Callbacks Used In HTML Export

Callbacks 7-13

Return Value
Must be either SCCERR_OK or SCCERR_NOTHANDLED. If the return value is
anything other than SCCERR_OK, the default behavior will be performed.

7.1.12.1 Links That Reference Objects Using a Relative Path (HTML Export)
As of this release, there are three working directories associated with HTML Export:

■ The location of the document being converted

■ The location of the output directory

■ The location that contains the HTML Export technology

When a document being converted has a link to an object through a relative path,
some unexpected results may occur due to differences in these working directories.
Namely, a browser displaying the resultant HTML file if the relative path is not also
valid for the directory containing the HTML file will not find relative links processed
with the EX_ACTION_CREATELINK action. Furthermore, relative links processed
using the default action (EX_ACTION_CONVERT) will result in an output document
with image tags that reference empty files unless the relative path for the original
objects is also valid for the directory containing the HTML Export technology.

Some browsers do not recognize <drive>:\<path>\<file> as an absolute path. A
possible solution may be to use UNIX path notation instead if this is a problem
(/drive|/path/file).

7.1.13 EX_CALLBACK_ID_REFLINK
HTML Export's support for archive files includes the ability to generate links to items
within an archive. This is accomplished using the {## insert} element reflink.
Because the OEM’s application will later be the recipient of requests to open these
links, HTML Export provides a mechanism through which the OEM can specify
exactly how these links are to be written to the output file.

When creating a link to an item within an archive, HTML Export will use the EX_
CALLBACK_ID_REFLINK callback to provide the OEM with the subdocument
specification of the item within the archive. The OEM can then format the URL to be
used when writing this link to an output file. Then, upon receipt of a request to open
this link, the OEM’s application will be able to provide HTML Export with the
specification and subdocument specification needed to open the item within the
archive.

For example, when exporting the archive c:\docs\file.zip, the particular template
being used includes reflink insertions that generate links to each item within file.zip.
Each time HTML Export is about to write such a link to the output file, it will use the
callback function SCCEX_CALLBACK_ID_REFLINK to allow the OEM to format the
link. When the request to open the link is received by the application, the developer
will be able to provide the appropriate file and subdocument specifications to HTML
Export to resolve the link to the archive item.

If this callback is not handled, HTML Export will generate a default URL. The default
URL will be of the form NameOfArchiveFile?SubdocSpec. This callback is particularly
important to OEMs using redirected IO, since when redirected IO is in use, the default
URL generated by HTML Export is unlikely to be what is desired.

The pCommandOrInfoData parameter points to a structure of type
EXREFLINKCALLBACKDATA:

typedef struct EXREFLINKCALLBACKDATAtag
{

Callbacks Used In HTML Export

7-14 Oracle Outside In HTML Export Developer's Guide

VTLPSTR pSubdocSpec;
VTCHAR URL[VT_MAX_URL];
VTLPWORD wzFullName;

} EXREFLINKCALLBACKDATA;

■ pSubdocSpec: Filled in by HTML Export with a subdocument specification for the
current archive entry. The subdocument specification is a single-byte character
string that specifies the referenced item within the archive file. To resolve this link,
the subdocument specification should be provided (unmodified) to HTML Export
in a subsequent call to DAOpenDocument.

■ URL: Filled in by the OEM with the complete URL that HTML Export should use
in response to the {## insert}. This URL will later be returned to the OEM’s
application when the link is used. The OEM will need to interpret this URL and
use it to provide the file and subdocument specifications to DAOpenDocument
during the export of the subdocument. This URL will not be modified or encoded
by HTML Export, but written to the output file exactly as you specify. Therefore,
the string returned is expected to be URL encoded. Since URLs are 7-bit ASCII, the
value passed in here is a NULL-terminated, single-byte character string.

■ wzFullName: This parameter is populated with the value of the
sections.x.fullname template element, which is the full name (including path,
where applicable) of the file in the archive.

Return Value
■ SCCERR_OK: If the OEM is providing the URL for HTML Export to use.

■ SCCERR_NOTHANDLED: If HTML Export should generate the URL to be used.

8

Implementation Issues 8-1

8Implementation Issues

This chapter covers some issues specific to using the Export products.

This chapter includes the following sections:

■ Section 8.1, "Running in 24x7 Environments"

■ Section 8.2, "Running in Multiple Threads or Processes"

■ Section 8.3, "HTML Export Issues"

8.1 Running in 24x7 Environments
To ensure robust 24x7 performance in server applications embedding the different
export products, it is strongly recommended that the technology be run in a process
separate from the server's primary process.

The file filtering technology underlying the technology represents almost a quarter of a
million lines of code. This code is expected to robustly deal with any stream of bytes,
of any length (any file), in all cases. Oracle has dedicated, and continues to dedicate,
significant effort into making this technology extremely robust. However, in real world
situations, expect that some small number of malformed files may force the filters into
unstable states. This generally results in either a memory exception (which can be
trapped and recovered from gracefully), infinite loop or a wild pointer that causes the
filter to write into memory that is part of the same process but does not belong to the
filter. In the latter situation, this wild pointer condition cannot be trapped.

On the desktop this is not a significant problem since the number of files being dealt
with is relatively small. In a 24x7 server environment, however, a wild pointer can be
extremely disruptive to the server process and produce serious problems. The best
solution for dealing with this problem is to run any application that reads complex file
formats in a separate process. This solution protects the application from the
susceptibility of filtering technology to the unknown quality of input files.

It must be stressed that files that lead to wild pointers or infinite loops occur very
infrequently, usually as a result of a third-party conversion process or beta versions of
applications. Oracle is committed to addressing these issues and to updating and
expanding its testing tools and corpus of documents to proactively minimize this
"garbage in-garbage out" problem.

8.2 Running in Multiple Threads or Processes
On certain platforms, export products may be run in a multithreaded or
multiprocessing application. The thing to remember when doing so is that each thread
must go through all the steps listed in Chapter 1, "Introduction."

HTML Export Issues

8-2 Oracle Outside In HTML Export Developer's Guide

8.3 HTML Export Issues
The following implementation issues apply to HTML Export.

8.3.1 Relative URLs in Templates
Consider the following:

<html>
<body>
<p></p>
{## insert element=sections.1.body}
</body></html>

In most reasonable implementations of HTML Export, the output files will probably be
stored in a totally different location than the template files. In this scenario, the output
files produced will have a reference to image.gif, which the browser will assume has
the same path as the output files. However, image.gif is usually placed in the directory
where the template file is located. This is a problem for anything referenced in the
template using a relative URL. There are several possible solutions to this problem.

8.3.1.1 Guarantee the References Are Good
If the developer knows exactly which files all of the templates reference, the correct
files (such as image.gif) can be moved to or located in the output directory(s). This
solution requires the developer to have exact knowledge of the contents of the
templates and may propagate the same set of files into many output locations.

8.3.1.2 Use Absolute URLs
The developer can design templates to contain absolute URLs to any referenced files.
The template fragment in the example would then look something like this:

<html>
<body>
<p></p>
{## insert element=sections.1.body}
</body>
</html>

This solution has the drawback that the output files are tied to a certain domain,
requiring the developer to generate templates separately for each customer.

8.3.1.3 Generate Complete URLs Using {## insert oem=}
The developer can design templates to contain {## insert oem=} macros in front of
each reference and use the callback this generates to fill in the complete URL. The
template in the example would then look something like this.

<html>
<body>
<p></p>
{## insert element=sections.1.body}
</body>
</html>

The major drawback to this solution is the difficulty in generating templates like this
using HTML editor tools such as HotMetalPro or FrontPage.

HTML Export Issues

Implementation Issues 8-3

8.3.1.4 Use CGI and the <base> tag
At first glance, the base tag may seem an easy way out of this problem. The developer
can simply add it to all the templates as follows:

<html>
<body>
<base href="http://www.outsideinsdk.com/templates/">
<p></p>
{## insert element=sections.1.body}
</body>
</html>

However, in this solution the source file may contain graphics (such as embedded
graphics in documents) that HTML Export must generate a separate GIF, JPEG, or
PNG file to produce. This file is stored by default in the same directory as the initial
output file, so the output file might look like this.

<html>
<body>
<base href="http://www.outsideinsdk.com/templates/">
<p></P>
This is a document.
This is a document.
Below is a graphic.

</body>
</html>

This output file will not work because the base tag makes the browser look for the file
output.gif in the http://www.oracle.com/templates/ directory, which is not in the
same location as the output file.

Some applications may use HTML Export in such a way that all the output files are
accessed through CGI or a CGI-like construct (NSAPI, ISAPI, Java Servlet, etc.). For
instance, some developers may wish to use the EX_CALLBACK_ID_
CREATENEWFILE callback to store all the output files in a database instead of a file
system. If such redirection is already going on and the developer is not relying on the
standard relative URL to absolute URL translation that takes place in the browser, then
the base tag is irrelevant to the links generated by HTML Export and the whole thing
will work. The output file in this case might be similar to this:

<html>
<body>
<base href="http://www.outsideinsdk.com/templates/">
<p></p>
This is a document.
This is a document.
Below is a graphic.

</body>
</html>

8.3.1.5 Have HX copy the files using {## copy}
The developer can have the template copy files to to the output directory by using the
{## copy} macro. The example template would then be similar to this:

<html>
<body>
{## copy file=image.gif}
<p></p>

HTML Export Issues

8-4 Oracle Outside In HTML Export Developer's Guide

{## insert element=sections.1.body}
</body>
</html>

The drawback to this solution is that separate copies of the file being copied will be
placed in the output directory of EVERY conversion using the template. These
redundant copies waste disc space and increase conversion times.

8.3.2 Browser Caching
In the process of building and debugging templates, the developer is likely to run the
same source file through HTML Export repeatedly with slightly different templates.
Depending on how the developer is naming the output files, this may have a tendency
to produce the same set of file names repeatedly. In this scenario, especially if the
output is being read directly from a file system instead of a Web server, browsers will
have the tendency to show the old cached results instead of the new ones. The rule of
thumb is: "If it looks like bad output, click Refresh on every frame before deciding
whether it’s a problem with the template or the software." It may be simpler to empty
and turn off caching in your browser while creating and testing your templates.

8.3.3 Errors Returned by HTML Export
The errors that are returned by HTML Export are defined in the file common/sccerr.h.
Errors may be added to this list or otherwise changed in future releases. To help
minimize the impact of these changes, developers are encouraged to use the
#defines for the errors rather than refer to errors by their numeric value.

8.3.4 CSS Considerations
The following information describes issues to consider when using Cascading Style
Sheets.

8.3.4.1 Customizing CSS Styles
One of the most powerful features of Cascading Style Sheets is the ability to override
the styles suggested in various ways. HTML Export has designed its CSS support to
permit users to override the style sheets that it produces. This in turn allows the user
to help blend documents from many authors into a collection that has a more unified
look.

In order to override styles, one first needs to understand the style names that can
appear in the HTML created by HTML Export, and where they are placed in the
output. Styles can be overridden if new style definitions with names that match those
generated by HTML Export are placed in the template files after the generated styles.
See the documentation for the template elements pragma.cssfile or
pragma.embeddedcss to understand how to control where generated styles will be
placed in the HTML output.

8.3.4.2 Style Names Used by HTML Export
Style names are taken from the original style names in the source document.
Unfortunately there is an inherent limitation in the style names the CSS standard
permits. That standard only permits the characters [a-z][A-Z][0-9] and "-". Source
document style names do not necessarily have this restriction. In fact they may even
contain Unicode characters at times. For this reason, the original style names may need
to be modified to conform to this standard. To avoid illegal style names, HTML Export
performs the following substitutions on all source style names:

HTML Export Issues

Implementation Issues 8-5

1. If the character is a "-", then it is replaced with "--".

2. If the character is not one of the remaining characters ([a-z][A-Z][0-9]), then it is
replaced by "-xxxx" where "xxxx" is the Unicode value of the character in
hexadecimal.

3. Otherwise the character appears in the style name normally.

An example of one of the most common examples of this substitution is that spaces in
style names are replaced with "-0020". For a more complete example of this character
substitution in style names, consider the source style name My Special H1-Style!. This
would be transformed to My-0020Special-0020H1--Style-0021.

While admittedly this system lacks a certain aesthetic, it avoids the problem of how
the document looks when the browser receives duplicate or invalid style names.
Developers should also appreciate the simplicity of the code needed to parse or create
these style names. Users who would prefer more human-readable style names should
use the SCCOPT_EX_SIMPLESTYLENAMES option.

In addition, HTML Export sometimes creates special character attribute-only versions
of styles. These have the same name as the style they are based on with "--Char"
appended to the end. These styles differ from their original counterparts in that they
contain no block level CSS. This more general solution replaces the solution
implemented in versions 7.1 and earlier which created "--List" styles to solve a subset
of this problem. This was done to work around limitations in some browsers.

8.3.4.3 Overriding HTML Export’s Styles
Once style names are understood, it is possible to override the .css file produced by
HTML Export. In the template used to export files, follow the reference to
pragma.cssfile or pragma.embeddedcss with style definitions that match the names of
those styles you wish to redefine. This is possible only if you are aware of the
stylenames that will be found in the input document(s) to be exported.

Remember that many file formats allow styles to be based on other previously defined
styles. HTML Export supports this by nesting styles. In this way each nested style
inherits and may override items defined in the styles that surround it.

8.3.4.4 pragma.cssfile and {## link}
If an external .css file is being generated, one {## insert
element=pragma.cssfile} statement should appear at the top of each HTML
template file used for the export. It should be remembered that the {## link}
statement may be used to trigger the creation of additional HTML files. As a result,
each {## link}ed template will typically contain a <link> to the .css file generated.

It is possible, though, to {## link} to a template that does not have any {##}
statements that would need to reference the .css file. In that case, the <link> to the .css
file may safely be omitted. For example, consider a template that has only two {##}
statements, both {## links (perhaps to put the results into two separate <frame>s).
This template file would not need a <link> to the .css file.

Generally, only one .css file will be generated, regardless of how many HTML files are
produced by HTML Export (although certain input file types, such as archives, result
in output with several .css files). It is also worth repeating here that the <link> to the
.css file must occur in the <head> of the document and each resulting HTML file may
have only one <head>.

HTML Export Issues

8-6 Oracle Outside In HTML Export Developer's Guide

8.3.5 XML and HTML Export
In order for an XML parser to be able to read HTML, the HTML must be well formed.
HTML Export can now produce HTML that can be parsed by an XML parser. For more
details on how to do this and what constitutes well-formed HTML, see Section 8.3.6,
"XHTML and Well-Formed HTML."

While others may be willing to stretch the definition of what XML is, Oracle does not
currently claim that HTML Export produces true XML. However, it is true that HTML
Export produces HTML that can be parsed by an XML parser. Thus by using an
appropriate template, the HTML produced by HTML Export may be wrapped in
XML.

8.3.5.1 The Sample XML Template
To demonstrate how to wrap the output of HTML Export in XML, a sample XML
template is included in the HTML Export SDK that produces XML from the output of
HTML Export. When using the sample XML template there are some important things
to keep in mind.

■ The output file name must have an .xml extension. This extension is not important
to HTML Export. It is important to some browsers however.

■ The .xsl file must be in the same directory as the output .xml file. There is nothing
special about the .xsl file and it does not affect HTML Export in any way.

■ As of this writing, Microsoft Internet Explorer 5.0 is the only major browser that is
capable of rendering the resulting .xml file.

8.3.6 XHTML and Well-Formed HTML
HTML Export is able to produce output that is XHTML compliant and well formed. In
order to have this happen, the SCCOPT_EX_COMPLIANCEFLAGS option must have
either the SCCEX_CFLAG_STRICT_DTD or the SCCEX_CFLAG_WELLFORMED
flags set. Further discussion of XHTML and well-formed HTML in this chapter assume
that one of these flags has been used.

The XHTML 1.0 W3C recommendation lists three types of XHTML compliance,
Transitional, Frameset and Strict. HTML Export is compliant with both XHTML
Transitional and XHTML Frameset. When using HTML Export to produce XHTML it
is important to remember that the template being used must be XHTML compliant.

The output of HTML Export has been tested to ensure that it is well formed when one
of the proper flags is set in the SCCOPT_EX_COMPLIANCEFLAGS option. This is
meaningless, however, unless the template used by HTML Export is also well formed.
To assist with creating well-formed templates, here is a list of common problems that
cause documents to not be well formed:

1. All tags must be properly nested.

2. All tags that are opened must also be closed. This includes tags that are not
normally thought of as needing closing tags, including <meta>, <link>, <frame>,
<hr> and
 tags.

3. Everything after an equals sign must be in double quotes. So
is OK, but is not.

4. In order for to appear in a document, a <!DOCTYPE> statement must be in
the HTML. Since HTML Export cannot know if the template included the
<!DOCTYPE> statement, when the SCCEX_CFLAG_STRICT_DTD flag is set,
 is always used instead of .

HTML Export Issues

Implementation Issues 8-7

5. Characters in the range 0x80 - 0xFF are to be written in the form &#xxx;.

6. The only three character codes less than 0x20 allowed in a document are \t, \n
and \r.

7. All attributes of a tag must be followed by "=value." Thus the "nowrap" in <table
nowrap> is not well formed. HTML Export uses <table nowrap="nowrap">
instead.

8.3.7 Archive Support
The following information pertains to archive support in HTML Export.

8.3.7.1 Using Redirected IO with Archive Files
When using redirected IO with input archive files, the OEM must be sure to fully
support the IOGetInfo call. It is used by HTML Export to obtain the name of the
archive. To that string, HTML Export appends the ItemNum value for use as a default
value when creating the reflink template element. HTML Export also executes a call to
IOGetInfo to implement pragma.sourcefilename.

8.3.7.2 Temporary File Creation
Whenever HTML Export needs to access data in a document in an archive file, it
extracts the contents of that archived file to a temporary file on the disk. Users should
be aware that this might pose a security threat if someone has access to the disk of the
machine running HTML Export. This is an issue even when using redirected IO.

Users of redirected IO should also be aware that the pSpec/dwSpecType are set to the
values for the temporary files. As a result, redirected IO is cut out of the picture and
the redirected IO "file" is closed.

Temporary files are created in two cases. The first is when DAOpenDocument is called
on an entry in an archive. The second is when the following code is used to extract and
convert a file in the archive file:

{## link element=sections.current.decompressedfile}
Please see the Options Guide for more information about Temporary Files.

8.3.7.3 Empty Directories in Archive Files
Entries for directories that do not contain files are allowed. Such entries will be
considered to have ItemNums, but not section numbers. Thus, when looping
(unsorted) through sections in an archive, there may be gaps in the ItemNums seen.
These gaps correspond to directories that do not contain files.

8.3.7.4 Finding the Total Number of Files in an Archive
In order to determine the total number of files in an archive, write a template that
retrieves number=sections.count. The number of sections is equal to the number of
files in the archive, not the number of entries in the archive file.

8.3.8 Positional Frames Support
HTML Export uses DHTML to position objects with greater accuracy. However, only
two types of object positioning are supported: paragraph anchored objects and page
anchored objects. The following are notes about this initial support for positional
frames:

HTML Export Issues

8-8 Oracle Outside In HTML Export Developer's Guide

■ HTML Export generates paragraph objects separately from page objects, even if it
appears that they should be placed in the same location.

■ Transparency is not supported when separate graphics items are placed on top of
one another. The SCCOPT_EX_PREVENTGRAPHICOVERLAP option does not
apply to these graphics. The graphics will appear relative to where the anchor
point is, not relative to the text in the document. Additionally, HTML Export does
not support certain graphics effects, such as rotation or stretching.

■ The SCCOPT_EX_GRAPHICOUTPUTDPI option must be set properly to achieve
best results.

■ In some cases, HTML Export will produce output with inaccurately placed objects
when the input document features positional frame objects. We are implementing
this feature despite these occasional errors, as this end result is no worse than the
end result when handling positional frame objects in earlier versions of HTML
Export (the graphics would be placed in a long column).

■ This feature only works in the 4.0 versions of HTML.

8.3.9 Limitations of Multimedia File Support
Support for the multimedia file type is rather limited at this time. Currently, only one
filter uses it (the id3 filter), which only supports MP3 files. From these files, only text
properties may be extracted. The named properties are:

■ property.title

■ property.album

■ property.artist

All other properties must be accessed via the property.all or property.others macros.
Since only text properties are supported, no embeddings (album cover graphics) are
available.

At this time, the body and title parts of these files are not supported. An example of
the unsupported body content would be the actual musical content of an MP3 file.
While title is not supported, property.title is, provided the information is present in
the source document. If a template attempts to insert sections.x.body, sections.x.title,
or any of their aliases or sub nodes, nothing will be inserted.

9

Sample Applications 9-1

9Sample Applications

Each of the sample applications included in this SDK is designed to highlight a specific
aspect of the technology’s functionality. We ship built versions of these sample
applications. The compiled executables should be in the root directory where the
product is installed.

The following copyright applies to all sample applications shipped with this product:

Copyright © Oracle 1993, 2013

All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute the Sample
Applications (and/or any modified version) in any way you find useful, provided
that you agree that Oracle has no warranty obligations or liability for any Sample
Application files.

This chapter includes the following sections:

■ Section 9.1, "Building the Samples on a Windows System"

■ Section 9.2, "An Overview of the Sample Applications"

■ Section 9.3, "Accessing the SDK via a Java Wrapper"

9.1 Building the Samples on a Windows System
Microsoft Visual Studio project files are provided for building each of the sample
applications. For 32-bit versions of Windows, versions of the project files are provided
for Visual Studio 6 (.dsp files) and Visual Studio 2005 (.vcproj files).

Because .vcproj files may not pick up the right compiler on their own, you need to
make sure that you are building with the Win64 configuration in Visual Studio 2005.
For 64-bit versions of Windows, only the Visual Studio 2005 versions are available.

The project files for the sample applications can be found in the samplecode\win
subdirectory of the Outside In SDK.

For specific information about building the sample applications on your UNIX OS, see
Chapter 3, "UNIX Implementation Details."

Note: To use Transformation Server, you will need to set the
TSROOT variable to the location of the Transformation Server
installed SDK. For example, for a Linux version of Transformation
Server, you would set:
TSROOT=/user/jsmith/ts/ts_linux-x86-32_sdk/sdk.

An Overview of the Sample Applications

9-2 Oracle Outside In HTML Export Developer's Guide

9.2 An Overview of the Sample Applications
Here’s a quick tour of the sample applications provided with this product. Not all of
the sample applications are provided for both the Windows and UNIX platforms. See
the heading of each application's subsection for clarification.

9.2.1 batch_process_hx
batch_process_ca demonstrates running HTML Export in a separate process on
multiple input files. It also allows the timing of each run.

The application is executed from the command line and takes several possible
parameters:

batch_process_hx -f inputfile -o outputfile or [-d inputdir -o outputdir]
[-i iterations] [-q[2]] [-b]

■ -f specifies the name of a single input file.

■ -d specifies the name of an input directory of files.

■ -o specifies the name of an output file if -f is being used, or the name of an output
directory if -d is being used.

■ -i is an optional parameter specifying the number of iterations to perform.

■ -q and -q2 diminish the output to the screen.

■ -b increases the amount of content in the output including processing tags and
sub-documents.

9.2.2 *sample
The name of this sample application varies according to product (hxsample for HTML
Export).

The following is a basic implementation that uses the default settings for every option.

hxsample Inputfile Outputfile template

You can use the option template parameter and specify a template to override the
default option settings.

This sample is provided for instructional value rather than functionality. As an
exercise, you may want to try changing the SCCOPT_GRAPHIC_TYPE option so it
outputs a different graphic type.

9.2.3 export (Windows Only)
This application was designed to facilitate the testing of the software and should not
be assumed to be of commercial quality.

The application allows the user to run a single source file. The user can choose the
source file, an output file and set the various options.

Important: No default options are set at initial runtime. The time the
software is used, click the Options button and set the options. Failure
to do this generates export errors.

An Overview of the Sample Applications

Sample Applications 9-3

9.2.3.1 The export Main Window
The following figure shows the Main Window for the export application.

Figure 9–1 export Main Window for HTML Export

The Main Window is composed of several elements, discussed here.

■ Output Format menu: This menu allows the user to select the type of output to
generate. An entry for the format(s) you license will appear in this drop-down
menu

■ Options button: This opens up a new dialog with one or more tabs exposing the
options for the selected product.

■ Source document field: This is the document to be exported. Click the Browse
button to pick the source file, or type in the path name.

■ ’Export to’ Field: This is the initial resulting output file. Type in a file name or click
the Browse button to choose a file. Other output files are named based on the one
chosen here.

■ Delete button: Clicking this button deletes all files generated by the last export,
listed in the Status: field. This is useful when multiple output files are produced
because the default naming rules do not overwrite an existing file. If you run
Export over and over again with the same output file name, you can produce a
large number of files. Clicking Delete before each export solves this problem.

■ ’After Export, view output file with default application’ checkbox: If the export
was successful, checking this box launches the initial output file in the application
associated with the output flavor's default extension.

■ Export button: Click this button to start the export process once you’ve
determined the export settings.

■ Exit button: Close the Export application.

9.2.4 exsimple
This simple command line driven program allows the user to run a single source file
through the software. The user can choose the source file, an output file and set the
various options.

To run the program, type:

exsimple in_file out_file config_file

An Overview of the Sample Applications

9-4 Oracle Outside In HTML Export Developer's Guide

■ in_file is the input file to be converted

■ out_file is the output location

■ config_file is the configuration file that sets the conversion options. If no
configuration file is specified, default.cfg in the current directory is used.

The configuration file is a text file used to set the conversion options. We recommend
reading through the configuration file for more information about valid options and
their values (use of invalid options results in exsimple not producing output).

Follow these instructions to set configurable options.

■ Set the following configuration options before running the software:

– outputid: This is the output ID (corresponding to the dwOutputId parameter
of the EXOpenExport function). It is required and must not be commented out.

– template: This corresponds to the SCCOPT_EX_TEMPLATE option, and
indicates the template file to be used. If this option is not set, HTML Export
uses the internal standard template.

9.2.5 exredir
This sample application is based on the exsimple sample application. It is designed to
demonstrate how to use redirected IO and callbacks when using the software. It takes
the same arguments and command line structure as exsimple and the same
configuration files can be used. For more information, see Section 9.2.4, "exsimple."

9.2.6 extract_archive
extract_archive demonstrates using the DATree API to extract all nodes in an archive.

The application is executed from the command line and takes two parameters, the
name of the input file and the name of an output directory for the extracted files:

extract_archive input_file output_directory

9.2.7 hxanno
This sample application is provided more for the instructional value its sample code
offers than for the functionality it provides when executed. It primarily works as an
example of how to integrate Content Access with HTML Export. This particular
application does search hit highlighting. However, the general principles of how to get
ACC text positions from Content Access should be evident from perusing the source
code.

This command takes the following parameters:

■ InputFile

■ OutputFIle

■ HiliteString

The following sample command line demonstrates this command:

hxanno InputFile OutputFile HiliteString

A license for Content Access or Search Export is required to enable use of any of the
annotation features supported by HTML Export. Contact your Outside In sales
representative for more information.

Accessing the SDK via a Java Wrapper

Sample Applications 9-5

9.3 Accessing the SDK via a Java Wrapper
The ExJava Java wrapper, working in tandem with the exporter sample application,
provides a working example of one method of interfacing with Oracle's C-based SDK
products from a Java application. Export.jar is a Java API wrapper used by a Java
application to control the exporter executable and set conversion options. exporter is a
C-based executable which performs conversions using the modules in the Outside In
SDK.

The exporter executable should be placed in the root directory of the Outside In SDK
being used. If more than one Outside In SDK is being used, the contents of each SDK
should be unpacked to the same root directory. Export.jar should be placed
somewhere in your classpath.

On UNIX systems this sample application must be run from the directory containing
the Outside In technology.

Java version 1.3.1 or higher is required to run this sample application.

9.3.1 The ExJava Wrapper API
The JavaDocs documentation for the Java API is provided in the
/sdk/samplecode/ExJava/docs directory. Conversion options are set using the
ExportProperties.

Additionally, the appropriate .cfg file for the ExportTest sample application found in
the Examples/ExportTest directory may provide further insight as to what properties
are available and how they correspond to options and values for options.

The Export.jar and its source code can be found in the Java API directory. Place
Export.jar somewhere in your classpath. In order to use the ExportTest sample
application (which demonstrates how a Java application can use the ExJava API)
without modifying your system configuration or the ExJava sample application, you
should place the Export.jar file in the root directory of the Outside In SDK product you
are using.

9.3.2 The C-Based Exporter Application
This is a standalone executable that runs out of process from the Java API. The Java
API controls the conversion through command line parameters that are passed to the
executable. After the conversion completes, the executable returns a conversion status
code to the Java API. The command line parameters are base-64 encoded to allow for
the use of Unicode encoded paths.

As the exporter executable is a C-based application, you will need to make sure the
Java API can find the version of exporter appropriate for the platform you are using.
Generally, and specifically for the purpose of using the ExportTest sample application,
the correct executable should be copied to the root directory of the Oracle export SDK
product you are using.

A compiled version of the C exporter program is included in the SDK with the rest of
the Outside In binaries. The source for exporter is located in the
/sdk/samplecode/ExJava/exporter directory.

The current implementation of ExJava may not produce an error if it cannot find the
exporter application. This known issue may be corrected in a future version of ExJava.

Accessing the SDK via a Java Wrapper

9-6 Oracle Outside In HTML Export Developer's Guide

9.3.3 Compiling the Executables
A Microsoft Visual Studio 6.0 project file and a UNIX makefile are provided in
Exporter/Win and Exporter/Unix, respectively, so that you can modify the Exporter
executable or compile it for a platform other than those for which compiled versions of
exporter are provided. If you unpacked the ExJava package into the root directory of
one of Oracle's export SDK products, you should be able to use the Visual Studio
Project and makefile as is. Otherwise, you will need to edit them in order to provide
paths to the Oracle export SDK include and library files.

If you are compiling ExJava for use on the Solaris platform, make sure your LD_
LIBRARY_PATH contains the Outside In SDK path before trying to build the Exporter
module.

9.3.4 The ExportTest Sample Application
ExportTest is an example of how a Java developer could use the ExJava wrapper to use
one of the Outside In SDKs. The following is a list of the components that should be
placed in the root directory of the Outside In SDK you are using in order to run this
sample application:

1. Export.jar (from the Java API directory)

2. Exporter module for the platform you wish to use (located in the
/sdk/samplecode/ExJava/Exporter/Win or
/sdk/samplecode/ExJava/Exporter/Unix directory, depending on which
platform you are using)

3. hx.cfg (also in Examples/ExportTest directory)

4. If you are running ExportTest on a UNIX system, make sure to edit the .cfg file so
it reflects the correct name of the exporter module you renamed.

5. ExportTest.jar (also in Examples/ExportTest directory)

6. The appropriate batch file to run the ExportTest application (ExportTest.bat for
Windows and ExportTest.sh for UNIX, both located in the Examples/ExportTest
directory)

Once these files are properly copied, execute the batch file with the name/path of an
input file to convert, the name for the base output file and the name of the
configuration file to use for setting conversion options.

ExportTest.jar uses the contents of the configuration file to determine what
option/value pairs it should use when doing the conversion. It is not necessary to use
a configuration file when developing your own application if you so choose not to.

9.3.5 An Example Conversion Using the ExJava Wrapper
This is a simple outline of the steps for using the ExJava wrapper on a Windows
system to convert a Word document called MyWordDoc.Doc. For information about
properly setting up your environment to use the Outside In SDK in a UNIX system,
see Chapter 3, "UNIX Implementation Details."

1. Edit the .cfg file and make sure outputid is set to the FI* value appropriate for the
Outside In product you've licensed. Alter any other parameters in the .cfg file as
needed then save the file.

2. Execute the following command. The sample command below assumes HTML as
the export type. Change this type accordingly:

ExportTest.bat myworddoc.doc output.html hx.cfg

10

Templates 10-1

10Templates

Much of the power, flexibility and complexity of Export products are realized through
its use of templates to drive the export process. Templates give the developer (or the
developer’s customer) flexibility in the visual and navigational properties of the
resulting output. Templates also isolate the HTML Export code from the ever-changing
face of HTML and its associated plug-ins, components and scripting languages.

The template macros and the elements they reference are so tightly intertwined that
discussing one without the other is almost impossible. Before either is read in-depth, it
is recommended that the reader skim Section 10.2, "The Included Sample Templates,"
and Section 10.4, "Macro Reference."

This chapter includes the following sections:

■ Section 10.1, "What Is a Template?"

■ Section 10.2, "The Included Sample Templates"

■ Section 10.3, "The Document Tree and Its Elements"

■ Section 10.4, "Macro Reference"

■ Section 10.5, "Breaking Documents by Structure"

■ Section 10.6, "Units - Breaking Documents by Content Size"

■ Section 10.7, "Using Grids to Navigate Spreadsheet and Database Files"

■ Section 10.8, "Choosing a Template"

■ Section 10.9, "Unicode Templates"

10.1 What Is a Template?
A template is simply an HTML file that may include a special macro language. This
language allows the template writer to insert, repeat through, condition on, and link to
various elements in the source document.

The following is the code for a very simple template:

{## unit}{## header}
<html>
<body>
{## /header}
<p>Here is the document you requested.
{## insert element=property.title} by
{## insert element=property.author}</p>
<p>Below is the document itself</p>
{## insert element=body}

What Is a Template?

10-2 Oracle Outside In HTML Export Developer's Guide

{## footer}

</body>
</html>
{## /footer}{## /unit}
{## unit}{## header}
<html>
<body>
{## /header}
<p>Here is the document you requested.
{## insert element=property.title} by
{## insert element=property.author}</p>

<p>Below is the document itself</p>
{## insert element=body}
{## footer}
</body>
</html>
{## /footer}{## /unit}

The {## unit}, {## /unit}, {## header}, {## /header}, {## footer} and {## /footer} macros
can be ignored for the moment. Their purpose is described in Section 10.6, "Units -
Breaking Documents by Content Size."

The remainder of the file is a regular HTML with the exception of three macros in the
form {## insert element=xxx}. HTML Export uses this template plus the source file to
create its output. To accomplish this, HTML Export reads through the template file,
writing it byte for byte to the output file unless character mapping is performed on the
template (for an explanation of template character mapping, see Section 10.9, "Unicode
Templates"). This continues until the template contains a properly formatted macro.
HTML Export reads the macro and executes the macro’s command. Usually this
means inserting an HTML version of some element from the source file into the output
file. HTML Export then continues reading the template and executing macros until the
end of the template file is reached.

In the previous example, the first {## insert} macros use the element syntax (described
in Section 10.4, "Macro Reference") to insert the title of the document. The second
macro inserts the author of the document and the third macro inserts the entire body
of the document. The resulting HTML might look like this (HTML that is the result of
a macro is in bold):

<html>
<body>
<p>Here is the document you requested.</p>
<p>A Poem by Phil Boutros</p>
<p>Below is the document itself</p>
<p>Roses are red</p>
<p>Violets are blue</p>
<p>I’m a programmer</p>
<p>and so are you</p>
</body>
</html>

The Document Tree and Its Elements

Templates 10-3

10.2 The Included Sample Templates
By default, the templates included with HTML Export convert files of type PR into
images that are always 640 pixels wide. Users who wish to change this setting will
need to edit the templates to remove the ## option macro that sets this limit.

When you install HTML Export, a template directory is created that contains sample
templates. These templates (with the exception of those in the tutorial directory) are
tailored for publishing and indexing applications, and they are completely brandable.
To brand a template, you can alter its .CSS file so that the template’s color scheme
matches your company’s color scheme. You can also overwrite the existing logo.gif file
with your company’s logo. Some of the template directories contain readme.txt files
that contain more information about modifying those templates.

The following is a list of templates contained in this directory:

■ \template\HTML Export\standard: The standard template features convenient
navigation elements, including a table of contents and a preview window, to help
users quickly access a document’s information.

■ \template\HTML Export\navigation: The navigation template has many of the
same features as the standard template, such as convenient navigation elements,
and adds a drop-down table of contents.

■ \template\HTML Export\newsletter: The newsletter template supports all
document types except archives. It displays the content in a style similar to a news
web site. The table of contents contains each top level heading (the "Heading 1"
style). When a user clicks these hyperlinks, the corresponding section’s content
fills the main window.

■ \template\HTML Export\noframes: The noframes template displays an entire
document in a single frame, with table-of-contents style navigation. It is ideal for
use in the most straightforward publishing applications.

■ \template\HTML Export\tableofcontents: The tableofcontents template is simpler
than the standard or the navigation templates, and contains fewer navigation
elements. It shows a table of contents on the left side of the screen, and the selected
document content on the right.

■ \template\HTML Export\textonly: The textonly template is designed for use by
developers wishing to convert documents for inclusion in an index for a search
engine. It should not be used in publishing applications. All of the document’s
elements, including properties, headers and footers, are converted.

■ \template\HTML Export\tutorial: This is a directory of templates containing
comment text intended to help users interested in more thoroughly understanding
the HTML Export template language.

10.3 The Document Tree and Its Elements
HTML Export uses the concept of a document tree to make various pieces and
attributes of the source file individually addressable from within a template. The
nodes of the document tree are used to generate a path to a specific element in the tree.
A period is used to separate the nodes in this path. For example, the path of the author
property of a document is property.author. There are two types of elements: leaf
elements and repeatable elements.

The Document Tree and Its Elements

10-4 Oracle Outside In HTML Export Developer's Guide

Figure 10–1 The Document Tree

10.3.1 Leaf Elements
Leaf elements are single identifiable pieces of the source file, like the author property
(property.author) or the preface of the document (body.contents.preface). This type of

The Document Tree and Its Elements

Templates 10-5

element is a valid target for inserting, testing and linking using the {## insert}, {## if}
and {## link} macros. The last node in this type of path must be a valid leaf node in the
document tree. Valid leaf nodes are shown in italics.

10.3.2 Repeatable Elements
Repeatable elements have multiple instances associated with them, like the footnotes
in a document (sections.1.footnotes). This type of element may not be directly inserted,
tested or linked to but its instances may be looped through using the {## repeat}
macro. The last node in this type of path must be a valid repeatable node in the
document tree. Valid repeatable nodes are shown in bold.

Some templates use {## repeat} loops to generate one output file per repeatable
element. For example, a template may render a presentation file as a group of output
files, with one output file for each slide. When an input file contains an exceptionally
large number of sections, it is possible for an operating system to run out of file
handles. See your operating system’s documentation or system administrator to find
out how many open file handles are allowed. To avoid this extremely rare problem, set
a value for the maxreps attribute of the {## repeat} macro or configure the operating
system to allow more file handles.

10.3.3 Element Definitions
The following is a list of all elements and a short description of each (for a description
of valid values for x, see Section 10.5.1, "Indexes and Structure-Based Breaking"):

■ sheets

Type: Repeatable

Description: See sections later in this list.

■ slides

Type: Repeatable

Description: See sections later in this list.

■ sections

Type: Repeatable

Description: Sections are used to represent the highest level of abstraction within
the source file. In general, word processor documents will have only one section,
the document itself. Spreadsheets have one section for each sheet or chart.
Presentations have one section for each slide. Archives have one section for each
item in the archive. Graphics generally have one section but may have more as in a
multi-page TIFF. For convenience and readability, sheets and slides are
synonymous with sections.

■ sections.x.body

Type: Leaf

Description: This element represents the main textual area of the source file.

For word processing documents, it includes the entire document excluding
footnote, endnotes, headers, footers and annotations. (Footnote/endnote
references are always included automatically in the body. If the template includes
footnotes/endnotes, then these references provide a link to the note. Annotation
references are not placed in the body unless the template includes annotations, in
which case they provide links to the annotations.)

The Document Tree and Its Elements

10-6 Oracle Outside In HTML Export Developer's Guide

For emails, this is the message itself.

For spreadsheets, it includes the entire sheet.

For graphics, it includes any text that actually appears as text in the file format.

For multimedia files, the body does not exist at this time.

For archive formats, the meaning is arctype-specific. When arctype is file, this is
the summation (as needed):

sections.x.path +

the directory separator character being used +

sections.x.basename

Note that sections only exist for entries in the archive file that have files associated
with them. In particular, entries in the archive file that are for directories are
ignored.

Also note that directory separators are OS-dependent. For example, Windows uses
back slashes (\) and allows forward slashes (/), UNIX uses the forward slash, and
Macs use a colon (:). The directory separator being used depends on how the
directory separator is coded in the archive file.

When arctype is message, cal, task or journal, this is the subject of the file. When
arctype is contact, this is the name of the contact. When arctype is note, this is the
contents of the note. When arctype is attach, this is the filename of the attachment
or a link to the extracted and converted attachment. When arctype is fieldsfile, this
is the list of fields.

This element is empty when the input file is a multimedia file.

■ sections.x.to

Type: Leaf

Description: "To" addresses from an email or email archive.

■ sections.x.from

Type: Leaf

Description: "From" addresses from an email or email archive.

■ sections.x.cc

Type: Leaf

Description: "CC" addresses from an email or email archive.

■ sections.x.content

Type: Leaf

Description: Same as sections.x.decompressedfile. For archive files, the meaning is
arctype-specific. When arctype is file, the file in the archive is extracted and
converted. For all other arctypes, this is the contents of the item.

Note that this element may not be inserted into a document. If it is used with the
{##insert} template macro, a template error will be returned.

■ sections.x.image

Type: Leaf

The Document Tree and Its Elements

Templates 10-7

Description: This element represents a graphic image of the content of the section.
It is valid only for bitmap, drawing, chart and presentation sections.

■ sections.x.bodyorimage

Type: Leaf

Description: This element exists to make it easy to build templates that handle a
range of section types. In word processor documents, spreadsheet and database
sections, and archive elements, bodyorimage is synonymous with body. In bitmap,
drawing, multimedia, chart and presentation sections, bodyorimage is
synonymous with image. For multimedia files, bodyorimage does not exist at this
time.

■ sections.x.type

Type: Leaf

Description: This element is normally used only for query purposes, but it may be
inserted as well. For further details on how to use this in an {## if} macro, see
Section 10.4.3, "Conditional: {## if}, {## elseif}, and {## else}."

■ sections.x.arctype

Type: Leaf

Description: For archive formats, this describes what kind of archive. Currently
defined archive types include:

file

message

contact

cal

note

task

journal

attach

fieldsfile

■ sections.x.fullname

Type: Leaf

Description: This is the full name (including path, if applicable) of a file in an
archive if the arctype for the archive is file. For archive formats, this is
synonymous with body. For all other formats, it is not defined.

■ sections.x.basename

Type: Leaf

Description: For archive formats where the arctype is file, this is the file name for
the item in the archive without any path info. This element is undefined for all
other input file types.

■ sections.x.title

Type: Leaf

Description: Same as sections.x.body.title. For word processor documents, this
element is the text marked with the title style. This may be different than the

The Document Tree and Its Elements

10-8 Oracle Outside In HTML Export Developer's Guide

property.title. For archive files, this is the same as sections.x.body. For all other
types, this element will be the "name" of the section. For example, if the source file
is a spreadsheet, this element will be the name of the sheet as it appears on the
spreadsheet application’s navigation tabs.

For archive formats, this is synonymous with body.

For email and email archive sections, this is the subject of the subject field of the
email.

For multimedia files, this does not exist at this time.

■ sections.x.path

Type: Leaf

Description: For archive files where the arctype is file, this is any path information
provided for the current archive item. Does not include a trailing directory
separator character. This element may be the empty string (" "). This element is
undefined for all other input file types.

■ sections.x.itemnum

Type: Leaf

Description: For archive formats, this is the (unsorted) entry number of the current
file in the archive. The first entry is itemnum one ("1"), not zero ("0"). All entries in
archive files have an associated itemnum. However, not all entries in archive files
have an associated section number. This is because archive entries for directories
are skipped when sections are generated by HTML Export. Therefore, inserting
this element is not functionally equivalent to {## insert number=sections.x.value}.
This element is undefined for all other input file types.

■ sections.x.reflink

Type: Leaf

Description: For archive formats, this is a URL composed of

the input file name

+

the subdocument spec for the archive entry

The intent of this element is to provide a string that can be passed to
DAOpenDocument in a future export to a specific entry in the archive file
currently being exported. The target of the reflink is not necessarily converted into
HTML. In this usage scenario:

1. The original export is run producing the reflink.

2. The user clicks on the reflink in the output document

3. The OEM’s program interprets the reflink and passes it to a
DAOpenDocument. It then runs HTML Export and serves the output back to
the user.

Users of redirected IO should also note that they must handle the IOGetInfo call
for IOGETINFO_PATHNAME. It must return a path name for the archive file that
HTML Export can use to build the reflink. In addition, the calling program will
need to be able to correctly interpret the resultant reflink to be sure it can
subsequently be passed to a future call to DAOpenDocument.

This element is undefined for all other input file types.

The Document Tree and Its Elements

Templates 10-9

■ sections.x.decompressedfile

Type: Leaf

Description: For archive formats, this extracts the file in the archive and converts
it. Note that this element may not be inserted into a document. If it is used with
{## insert}, a template error will be returned.

This element is undefined for non-archive input file types.

For archive formats, this is arctype-specific. When arctype is file, the file is
converted to the designated output format. When arctype is message, this is the
contents of the email. When arctype is contact, this is the contents of the contact
info. When arctype is cal, this is the contents of the calendar entry. When arctype is
note, this is the contents of the note. When arctype is task, this is the contents of
the task. When arctype is journal, this is the contents of the journal entry. When
arctype is attach, this is the contents of the attachment. When arctype is fieldsfile,
this is the list of fields.

■ sections.x.size

Type: Leaf

Description: This applies to all archive types except those of type fieldslist.

This is the uncompressed file size of the entry in the archive.

This element is undefined for all other input file types.

■ sections.x.date

Type: Leaf

Description: For archive formats, this is arctype-specific. When arctype is file, this
is the file modification time stamp for this entry in the archive. When arctype is
message, this is the time the message was last modified. When arctype is cal, this
is the start time/date of the event. When arctype is task, this is the due date for the
task. When arctype is journal, this is the start time. When arctype is attach, this is
the date of the attachment. This value is undefined for the contact and note
arctypes.

For email sections, this is the submitted time field from the email.

This element is undefined for archives of type fieldsfile.

■ sections.x.mailfields

Type: Repeatable

Description: For email sections, this is used to iterate through the complete set of
fields available in emails. This includes all of the named fields (like sections.x.date)
as well as fields that are not explicitly named (like "bcc"). This is undefined for all
other section types.

■ sections.x.mailfields.x.body

Type: Leaf

Description: For email sections, this element is the value of a field from the email.
This is undefined for all other section types.

■ sections.x.mailfields.x.name

Type: Leaf

Description: For email sections, this element is the name of a field from the email.
This is undefined for all other section types.

The Document Tree and Its Elements

10-10 Oracle Outside In HTML Export Developer's Guide

■ sections.x.body.title

Type: Leaf

Description: For word processor documents, this element is the text marked with
the title style. This may be different than the property.title.

For archive formats, this is synonymous with body.

For multimedia formats, this does not exist at this time.

For all other document types, this element will be the "name" of the section. For
example, if the source file is a spreadsheet, this element will be the name of the
sheet as it appears on the spreadsheet application’s navigation tabs.

■ sections.x.body.contents

Type: Leaf

Description: For word processor documents, this is the same as sections.x.body.
This is to maintain backwards compatibility with templates written before
sections.x.body.title was legal for word processor documents, a feature added in
the 7.0 release.

For multimedia files, this does not exist at this time.

For all other document types, this is the same as the body minus the title, if a title
exists.

■ sections.x.body.contents.preface

Type: Leaf

Description: Text between the top of the body and the first heading.

■ sections.x.body.contents.headings

Type: Repeatable

Description: Headings are labels in a word processor document inserted by the
author to give a document structure (for further details of headings, see
Section 10.5, "Breaking Documents by Structure"). HTML Export reads this
structure and, through the use of the headings element, allows the developer to
access it.

■ sections.x.body.contents.headings.x.body…

Type: Leaf with Leafs and Repeatables below

Description: Under each heading, the structure of a complete document from body
down is repeated. For more information on how these elements map to parts of a
document, see Section 10.5, "Breaking Documents by Structure."

■ sections.x.body.contents.headings.x.footnotes…

Type: Repeatable with Leafs below

Description: Only footnotes contained in this heading.

■ sections.x.body.contents.headings.x.endnotes…

Type: Repeatable with Leafs below

Description: Only endnotes contained in this heading.

■ sections.x.body.contents.headings.x.annotations…

Type: Repeatable with Leafs below

The Document Tree and Its Elements

Templates 10-11

Description: Only annotations contained in this heading.

■ sections.x.grids

Type: Repeatable

Description: Only valid for spreadsheet and database formats. This permits access
to the "grids" inside a section or sheet of a spreadsheet or database file.

■ sections.x.grids.x.body

Type: Repeatable

Description: Only valid for spreadsheet and database formats. This permits access
to the "grids" inside a section or sheet of a spreadsheet or database file.

■ sections.x.arcfields

Type: Repeatable

Description: All of the supported fields in the archive including the named fields
such as sections.x.date and sections.x.basename. Each arcfield is a name/value
pair.

■ sections.x.arcfields.x.body

Type: Leaf

Description: Value of the data for a given field in an archive file. Not defined for
non-archive files.

■ sections.x.arcfields.x.name

Type: Leaf

Description: Name of the data field from an archive file. Not defined for
non-archive files.

■ sections.x.footnotes

Type: Repeatable

Description: All footnotes.

■ sections.x.footnotes.x.body

Type: Leaf

Description: The complete footnote reference and content text.

■ sections.x.footnotes.x.reference

Type: Leaf

Description: The reference number for the footnote.

■ sections.x.footnotes.x.content

Type: Leaf

Description: The content text for the footnote.

■ sections.x.endnotes…

Type: Repeatable with Leafs below

Description: Same definitions as footnotes.

■ sections.x.annotations

Type: Repeatable

The Document Tree and Its Elements

10-12 Oracle Outside In HTML Export Developer's Guide

Description: All annotations. In templates, the term "annotations" refers to
annotations made inside an authoring application (for example, "comments" in a
Microsoft Word document) and do not refer to the annotations created via the
Export Annotation API.

■ sections.x.annotations.x.body

Type: Leaf

Description: The complete annotation reference and content text.

■ sections.x.annotations.x.reference

Type: Leaf

Description: The reference text for the annotation.

■ sections.x.annotations.x.content

Type: Leaf

Description: The content text for the annotation.

■ sections.x.slidenotes

Type: Repeatable

Description: All slide notes.

It should be noted that exporting the slide notes will slow down the conversion
process for PowerPoint files.

■ sections.x.slidenotes.x.body

Type: Leaf

Description: The notes for the current slide.

Developers are encouraged to write slide notes at the end of the output file for
performance reasons (PowerPoint files keep slide notes at the end of the file, not
next to each slide). Not doing so will slow conversion, as the technology will be
forced to perform excessive seeking in the input file.

■ sections.x.slidenotes.x.reference

Type: Leaf

Description: The slide note text for the annotation.

■ sections.x.slidenotes.x.content

Type: Leaf

Description: The content text for the slide note.

■ sections.x.headers

Type: Repeatable

Description: All headers.

■ sections.x.headers.x.body

Type: Leaf

Description: Text of the header.

■ sections.x.footers

Type: Repeatable

The Document Tree and Its Elements

Templates 10-13

Description: All footers.

■ sections.x.footers.x.body

Type: Leaf

Description: Text of the footer.

■ property.all

Type: Repeatable

Description: This permits access to all properties including those specifically
accessible through property elements described in this table, and includes both the
" name" and the " body" of the property. The properties supported depend on file
format. See the Outside In Content Access Developer Guide for a list of possible
predefined properties. Some file formats also allow for additional user-definable
properties.

At this time, only properties may be extracted from multimedia files.

■ property.all.x.name

Type: Leaf

Description: Descriptive name for the property.

■ property.all.x.body

Type: Leaf

Description: Text of the property.

■ property.album

Type: Leaf

Description: Album property of the source file. Valid only for multimedia files.

■ property.artist

Type: Leaf

Description: Artist property of the source file. Valid only for multimedia files.

■ property.author

Type: Leaf

Description: Author property of the source file.

■ property.title

Type: Leaf

Description: Title property of the source file.

■ property.subject

Type: Leaf

Description: Subject property of the source file.

■ property.keywords

Type: Leaf

Description: Keywords property of the source file.

■ property.comment

Type: Leaf

The Document Tree and Its Elements

10-14 Oracle Outside In HTML Export Developer's Guide

Description: Comment property of the source file.

■ property.others

Type: Repeatable

Description: This permits access to all properties not specifically accessible
through property elements described in this table, and includes both the "name"
and the " body" of the property. The other properties supported depend on file
format. See the Outside In Content Access Developer Guide for a list of possible
predefined properties. Some file formats also allow for additional user-definable
properties.

At this time, only properties may be extracted from multimedia files.

■ property.others.x.name

Type: Leaf

Description: Descriptive name for the property.

■ property.others.x.body

Type: Leaf

Description: Text of the property.

■ pragma.charset

Type: Leaf

Description: The text string associated with the character set of the characters that
HTML Export is generating. In order for HTML Export to correctly code the
character set into the output it generates, all templates should include a <meta>
tag that uses the {## insert} macro as follows:

<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset={## insert
element=pragma.charset}" />

If the template does not include this line, the user will have to manually select the
correct character set in their browser.

■ pragma.cssfile

Type: Leaf

Description: This element is used to insert the name of the Cascading Style Sheet
(CSS) file into HTML documents. This name is typically used in conjunction with
an HTML <link> tag to reference styles contained in the CSS file generated by
HTML Export.

When used with the {## insert} macro, this pragma will generate the URL of the
CSS file that is created. This macro must be used with {# insert} inside every
template file that inserts contents of the source file and when the selected HTML
flavor supports CSS. The CSS file will only be created if the selected HTML flavor
supports CSS.

When used with the {## if} macro, the conditional will be true if the selected
HTML flavor supports Cascading Style Sheets or not.

NOTE: If CSS is required for the output, the following code must be used:

{## if element=pragma.embeddedcss}

or

{## if element=pragma.cssfile}

The Document Tree and Its Elements

Templates 10-15

However, HTML Export does not differentiate between the two, as the choice of
using embedded CSS vs. external CSS is the template author’s decision and the
author may even wish to mix the two in the output.

An example of how to use this pragma that works when exporting either CSS or
non-CSS flavors of HTML would be as follows:

{## if element=pragma.cssfile}

<link rel="stylesheet"

href="{## insert

element=pragma.cssfile}">

</link>

{## /if}

■ pragma.embeddedcss

Type: Leaf

Description: This element is used to insert CSS style definitions in a single block in
the <head> of the document.

When used with the {## insert} macro, this pragma will insert the block of CSS
style definitions needed for use later in the file. This macro must be used inside
every output HTML file where {## insert} is used to insert document content.

When used with the {## if} macro, the conditional will be true if the selected
HTML flavor supports CSS.

NOTE: If CSS is required for the output,the following code must be used:

{## if element=pragma.embeddedcss}

or

{## if element=pragma.cssfile}

However, HTML Export does not differentiate between the two, as the choice of
using embedded CSS vs. external CSS is the template author’s decision and the
author may even wish to mix the two in the output.

If a style is used anywhere in the input document, that style will show up in the
embedded CSS generated for all the output HTML files generated for the input
file. Consider a template that splits its output into multiple HTML files. In this
example, the input file contains the "MyStyle" style. It does not matter if during
the conversion only one output HTML file actually references the "MyStyle" style.
The "MyStyle" style definition will still show up in the embedded CSS for all the
output files, including those files that never reference this style.

■ pragma.jsfile

Type: Leaf

Description: This element is used to insert the name of the JavaScript file into
HTML documents. This name is typically used in conjunction with an HTML
<script> tag to reference JavaScript contained in the .js file generated by HTML
Export.

When used with the {## insert} macro, this pragma will generate the URL of the
JavaScript file that is created. This macro must be used with {## insert} inside
every template file that inserts contents of the source file when:

The selected HTML flavor supports JavaScript.

Macro Reference

10-16 Oracle Outside In HTML Export Developer's Guide

The javaScriptTabs option has been set to true.

The JavaScript file will only be created if the selected HTML flavor supports
JavaScript.

When used with the {## if} macro, the conditional will depend upon whether the
selected HTML flavor supports JavaScript or not.

■ pragma.sourcefilename

Type: Leaf

Description: The name of the source document being exported. Note that this does
not include the path name. When exporting documents inside of archive files, this
is the name of the file inside the archive. For example, if the first file inside of
archive.zip is myfile.doc, then exporting archive.zip?item.1 would use myfile.doc
as the pragma.sourcefilename.

10.3.4 Default Nodes
For convenience, certain nodes in an element path may be skipped because they
represent the obvious default behavior. These nodes include the sections node
(sections.current.body.title is equivalent to body.title), and the body and contents
nodes (body.contents.headings.1.body is equivalent to headings.1.body). Please note
that these nodes may not be skipped if they are the last node in the path
(headings.1.body is not equivalent to headings.1). For further examples, see
Section 10.5, "Breaking Documents by Structure."

10.4 Macro Reference
Macros are commands to HTML Export within the template. Despite their casual
similarity to HTML tags, they are not bound by any of the rules tags would usually
follow inside an HTML file. Macros may appear anywhere in the template file, except
inside another macro.

In the documentation and examples, the pieces of a macro are always shown delimited
by spaces, however semicolons may also delimit them. This option was added to
accommodate certain editors. In these editors, URLs entered into dialog boxes may not
have non-quoted spaces. This makes it difficult or impossible to use the {## link} macro
in these situations.

For example:

{## insert element=sections.1.body}

may also be written

{##;insert;element=sections.1.body}

Note that template macro string parameters and options support sprintf style escaped
characters. This means that characters such as \x22, \r and %% are supported. Also
note that most template attribute values may be quoted. The exception is template
element strings, which may not be quoted at this time.

For example:

{## anchor aref="next"
format="Next
\r\n"}

Macro Reference

Templates 10-17

10.4.1 Units: {## unit}, {## header}, and {## footer}
If a template file is going to make use of the {## unit} macro at all, a {## unit} macro
must be the first macro in the template file. It delimits the beginning and end of each
unit. Unit boundaries are used when determining where to break the document when
breaking based on content size.

A unit consists of a header, a footer (both of which are optional), and a body (which
may be empty). To ensure that the header is the first item in the template and the
footer is the last item, text between the {## unit} tag and the {## header} tag will be
ignored, as will text between the {## /footer} tag and the {## /unit} tag, including
whitespace. The header and footer of a unit will be output in every page containing
that unit, enclosing that portion of the unit’s body that is able to fit in a particular
page. The entire template is a unit that may contain additional units.

An overview of using units in templates with examples is provided in Section 10.6,
"Units - Breaking Documents by Content Size."

Syntax
{## unit [BREAK]}

[{## header}
any HTML

{## /header}]

any HTML

[{## footer}
any HTML

{## /footer}]
{## /unit}

Attributes
BREAK

This optional attribute of the unit macro will force page actions in HTML Export and
non-page actions in other export products. It forces a break (page break in HTML
Export) before inserting the unit contents unless doing so would cause the body of the
first page to be empty. One situation where this attribute would be useful would be to
force a page break between each section of a document, perhaps to get one
presentation slide per page.

The {## unit} macro and its BREAK attribute are ignored when SCCOPT_EX_
PAGESIZE or pagesize (Transformation Server) is set to zero.

It is sometimes important to make sure that a break does not occur in the midst of text
that is intended to be on the same page. To prevent breaks like this from occurring,
enclose the text that should be kept on the same page inside a nested {## unit}{##
header} pair. For example, to prevent a page break from occurring while a link is being
created, the template author might write something like the following:

{## unit}{## header}
Link
{## /header}{## /unit}

10.4.2 Insert Element: {## insert}
This macro inserts an element of the source document into the output file at the
current location.

Macro Reference

10-18 Oracle Outside In HTML Export Developer's Guide

Syntax
{## insert [ELEMENT=element [WIDTH=width] [HEIGHT=height]
[SUPPRESS=suppress] [TRUNCATE=truncate]] | [NUMBER=number]
[URLENCODE]}

Attributes
ELEMENT

This attribute describes which part of the source document should be placed in the
output file at the location of the macro. For the possible values for this attribute, see
Section 10.2, "The Included Sample Templates."

Note the name of the element being inserted may not be enclosed in quotes.

Example:

{## insert element=sections.1.body}

WIDTH

This optional attribute defines the width in pixels of the element being inserted. It is
currently only valid for the image element. If the WIDTH attribute is not present but
the HEIGHT attribute is, the width of the image will be calculated automatically based
on the shape of the element. If both the WIDTH and HEIGHT attributes are not
present, the image’s original dimensions are used. If the image’s original dimensions
are unknown, the defaults assume a HEIGHT and WIDTH of 200.

Example:

{## insert element=slides.1.image width=400}

HEIGHT

This optional attribute defines the height in pixels of the element being inserted. It is
currently only valid for the image element. If the HEIGHT attribute is not present, but
the WIDTH attribute is, the height of the image will be calculated automatically based
on the shape of the element.

Example:

{## insert element=slides.1.image height=400}

SUPPRESS

This optional attribute allows certain things to be suppressed from the output. This is
very useful if elements need to be inserted in contexts where HTML is not appropriate,
such as passing information to Java applets, ActiveX controls or populating parts of a
form.

Possible values are as follows:

■ TAGS: All HTML tags will be suppressed from the output of the element, however
the text may still contain HTML character codes like " or {

For embedded graphics such as those found in word processing sections and
spread sheets, both the URL and the tag will be suppressed. Because there
would be no way to access the resulting converted embedded graphic, conversion
of the graphic is not performed.

Example:

<form method="POST">
<input type="text" size="20" name="author" value="{## insert

element=property.author suppress=tags}">

Macro Reference

Templates 10-19

</form>

■ BOOKMARKS: Turns off all bookmarks in the inserted section. Bookmarks
automatically precede many inserted elements so that other template elements
may link to them. suppress=bookmarks is provided to prevent problems with
nested <a> tags. Note that this represents a subset of the suppression behavior
provided by suppress=tags.

■ INVALIDXMLTAGCHARS :Drops from the output all characters that are not
allowed in XML tag names. This is designed to allow template authors to {##
insert} custom document property names inside angle brackets ("<" and ">") to
create XML tags. Most characters in Unicode and its subset character sets may be
used as part of XML tag names. Illegal tag characters include "control" characters
such as line feed and carriage return. Additionally, there are special rules for what
characters can be the first character in a tag name. See the XML specification for a
description of legal tag name characters.

Example:

{## repeat sections.property.others}
<{## insert element=property.others.current.name

suppress=invalidxmltagchars}>
<{## insert element=property.others.current.body

suppress=invalidxmltagchars}>
</{## insert element=property.others.current.name

suppress=invalidxmltagchars}>
{/## repeat}

produces something similar to the following:

<MyProperty>PropertyValue</MyProperty>

TRUNCATE

When set, this attribute forces a maximum length in characters for the inserted
element. This allows elements to be truncated rather than broken across pages when
the page size option is in use. Truncated elements will end with the truncation
identifier which is "…" (three periods). All elements that have a truncate value will be
no more than the specified number of characters in length including the length of the
truncation identifier. In HTML Export, elements are inserted in their entirety if no
truncation size is specified. The value of this attribute must be greater than or equal to
5 characters. In other products, elements are simply specified.

An example of a situation where element truncation is useful is to limit the size of
entries when building a table of contents.

The TRUNCATE attribute implies suppression of tags for the insert. It also auto
applies the no source formatting option for the insert.

Note that the TRUNCATE attribute cannot be used with custom elements, because the
custom element definition precludes the existence of any other attributes to {## insert}.

The TRUNCATE attribute has three special aspects to its behavior when grids are
being inserted:

■ When truncation is in effect, the truncation size refers to the number of characters
of content in each cell - not the number of characters in the grid as a whole.

■ While truncation normally causes all markup tags to be suppressed, when grids
are in use, the table tags are retained (assuming that the output flavor supports
tables).

Macro Reference

10-20 Oracle Outside In HTML Export Developer's Guide

■ Users are reminded that only one grid size may be selected for each spreadsheet
sheet or database inserted. The size of the grid will be based in part on the
TRUNCATE value if one or both the grid dimensions are not specified and the
SCCOPT_EX_PAGESIZE or pageSize option (Transformation Server) is in use. In
this situation, if a grid from a single sheet is inserted in more than one place in the
template, and there are differing TRUNCATE values, then the grid dimensions
will be based on the largest TRUNCATE value specified.

NUMBER

This attribute allows the developer to retrieve the total instance count or the current
index value of any repeatable element. This can be very useful for writing JavaScript,
BasicScript, etc. Four special keywords ("count", "countb0", "value" and "valueb0")
don’t appear in the document tree but can be used as nodes in the following special
cases:

■ count / countb0: When appended to a repeating element and used with the
NUMBER attribute, these nodes allow the developer to insert a text representation
of the number of instances of the given repeatable element. count gives the count
assuming the first index is 1 and countb0 gives it assuming the first index is 0. For
example, if a presentation has three slides, the following template fragment:

<p>{## insert number=slides.count}</p>
<p>{## insert number=slides.countb0}</p>

will produce the following text:

<p>3</p>
<p>2</p>

■ value / valueb0: When appended to a repeating element and used with the
NUMBER attribute these nodes allow the developer to insert a text representation
of the current value of the index of the given repeatable element. value gives the
count assuming the first index is 1 and valueb0 gives it assuming the first index is
0. For example, if the current value of the index on slides is 2, the following
template fragment:

<p>{## insert number=slides.current.value}</p>
<p>{## insert number=slides.current.valueb0}</p>

will produce the following text:

<p>2</p>
<p>1</p>

URLENCODE

This optional attribute causes the inserted element to be URL encoded. As such, it is
ignored unless it is specified as part of an insert that contains a file name. The
following elements may be URL encoded:

■ pragma.sourcefilename

■ pragma.cssfile

■ pragma.embeddedcss

■ pragma.jsfile (HTML Export only)

In addition, the following elements will be URL encoded when the section type is
"Archive" or "AR":

■ sections.x.fullname

Macro Reference

Templates 10-21

■ sections.x.basename

■ sections.x.body

■ sections.x.title

■ sections.x.reflink

For all other {## insert}s, this attribute is ignored. As such, OEMs should note that
HTML Export does not modify any URLs coming out of the input documents being
converted. These URLs continue to be passed through as is. This attribute is also
ignored if the URL was created using the EX_CALLBACK_ID_CREATENEWFILE
callback. Such URLs are assumed to already be URL encoded.

A Note on Inserting Properties
Because of the special ways that properties are used in documents, property strings are
inserted into the output files a little differently than other {## insert} macros. First, the
property is always inserted as if the SCCOPT_EX_NOSOURCEFORMATTING or
noSourceFormatting (Transformation Server) option were set. This prevents formatting
characters such as newlines from interfering with the property strings. Second, the
property is always inserted as if the template specified suppress=tags. This provides
the template writer with maximum control over how property strings are presented.

10.4.3 Conditional: {## if}, {## elseif}, and {## else}
These macros allow areas of the template to be used or ignored based on information
about an element of the source file.

Syntax
{## if ELEMENT=element [CONDITION=Exists|NotExists]
[VALUE=value]}

any HTML
{## /if}

or

{## if ELEMENT=element [[CONDITION=Exists|NotExists] |
[VALUE=value]]}

any HTML
{## else}

any HTML
{## /if}

or

{## if ELEMENT=element [[CONDITION=Exists|NotExists] |
[VALUE=value]]}

any HTML
{## elseif ELEMENT=element [[CONDITION=Exists|NotExists] |
[VALUE=value]]}}

any HTML
{## else}

any HTML
{## /if}

Note that multiple instances of {## elseif} may be used after {## if}. In addition, {##
else} is not required when using {## elseif}.

Macro Reference

10-22 Oracle Outside In HTML Export Developer's Guide

Attributes
ELEMENT

This attribute describes which part of the source file should be tested. For the possible
values for this attribute, see Section 10.3, "The Document Tree and Its Elements." If
neither the CONDITION nor VALUE attribute exists, the element is tested for
existence.

CONDITION

Defines the condition the element is tested for, possible values are Exists and
NotExists.

VALUE

Defines the values the element should be tested against. The VALUE attribute is
currently valid only for the sections.x.type element for testing of the type of a section
of the source file. Possible values include:

■ ar: Archive

■ bm: Bitmap

■ ch: Chart

■ db: Database

■ dr: Drawing

■ em: Email

■ mm: Multimedia

■ pr: Presentation

■ ss: Spreadsheet

■ wp: Word processor document

Example 1:

{## if element=property.comment}
<p>Comment property exists</p>

{## else}
<p><i>Comment property does not exist</i></p>

{## /if}

{## if element=sections.1.type value=wp}
<p>The source file is a word processor file</p>

{## /if}

{## if element=sections.1.type value=ss}
<p>Spreadsheet</p>

{## elseif element=sections.1.type value=ar}
<p>Archive</p>

{## elseif element=sections.1.type value=ch}
<p>Chart</p>

{## else}
<p>Not ss, ar, or ch</p>

{## /if}

Example 2:

{## if element=sections.current.type value=pr
condition=notexists}
<p>We can do something here for all document types

Macro Reference

Templates 10-23

other than presentations.</p>
{## else}

<p>This is used only for presentations.</p>
{## /if}

10.4.4 Loop: {## repeat}
This macro allows an area of the template to be repeated, once for each occurrence of
an element.

Syntax
{## repeat ELEMENT=element [MAXREPS=maxreps] [SORT=sort]}

any HTML
{## /repeat}

Attributes
ELEMENT

This attribute describes which part of the source file should be repeated on. It must be
a repeatable element. For the possible values for this attribute, see Section 10.3, "The
Document Tree and Its Elements."

When using HTML Export, any HTML may be defined between the {## repeat} macro
and its closing {## /repeat} macro. This HTML will be repeated once for each instance
for the element specified. In addition, the index variable current may be used in any
other {##} macro as the element-index of the element being repeated. For instance, the
following HTML in the template will produce a list of the footnotes in a document:

<html>
<body>
<p>Here are the footnotes</p>
{## repeat element=footnotes}

{## insert element=footnotes.current.body}
{## /repeat}
<p>No more footnotes</p>
</body>
</html>

Similarly, the following HTML in the template will insert the names of all the items in
an archive:

{## repeat element=sections}
{## insert element=sections.current.fullname}

{## /repeat}

MAXREPS

This attribute limits the total number of loops the repeat statement may make to the
value specified. It is useful for preventing exceptionally large documents from
producing an unwieldy amount of output.

SORT

This optional attribute defines whether to sort the output or not. This attribute is
ignored if the input file is not an archive file of arctype file. All sorts are done based on
the character encoding of the values in the input file. The sorts are also case insensitive
at this time. Valid values of the sort attribute are:

■ fullname: Sort by sections.current.fullname

■ basename: Sort by sections.current.basename

Macro Reference

10-24 Oracle Outside In HTML Export Developer's Guide

■ none: No sorting is done. This is the default.

10.4.5 Linking with Structured Breaking: {## link}
This macro generates a relative URL to a piece of the document produced by HTML
Export. Normally this URL would then be encapsulated by the template with HTML
anchor tags to create a link. {## link} is particularly powerful when used within a {##
repeat} loop.

Syntax
{## link ELEMENT=element [TOP]}

or

{## link TEMPLATE=template}

or

{## link ELEMENT=element TEMPLATE=template [TOP]}

Attributes
ELEMENT

Defines the element that is the target for the link. The URL that the {## link} macro
generates will point to the first instance of this element in the output file. If this
attribute is not present, the resulting URL will link to any output file that was
produced with the specified template. If such a file does not exist, the specified
template will be used to generate a file.

Remember that each element has one or more index values, some of which may be
variables. An example of this type of index variable is the "current" in
sections.current.body. Use of {## link} affects the value of those index variables, which
may cause subtle side effects in the behavior of the linked template file. For a
description of how {## link} affects the index of inserted elements, see Section 10.5.1,
"Indexes and Structure-Based Breaking."

TEMPLATE

The name of a template file which must exist in the same directory as the original
template file. If this attribute is not present, the current template will be used. If an
element was specified in the {## link}, then the template must contain a {## insert}
statement using that element.

It is important to note that while the template language is normally case insensitive,
the case of the template file names specified here is important. The file name specified
for the template is passed as is to the operating system. On operating systems such as
UNIX, if the wrong case is given for the template file name, the template file will not
be found and an error will be returned.

TOP

This attribute is only meaningful if an element is specified in the {## link} command.
When this attribute exists, the generated URL will not contain a bookmark, and
therefore the resulting link will always jump to the top of the HTML file (HTML
Export) or file containing the specified element. This is useful if the top of the template
has navigation or other information that the developer would like the user to see.

Macro Reference

Templates 10-25

{## link} Usage Scenarios
Using the first syntax shown at the beginning of this section, a URL for the element
bookmark is inserted in the document. Normally this syntax is used to create
intradocument links to aid navigation. An example would be creating a link to the
next section of the document.

In the second syntax, a URL is created to an output file generated by the specified
template. This template is run on the same source document, but may extract different
parts of the document. Normally, in this syntax, the "main" template contains a link to
a second HTML file. This second file is generated using the template specified by the
{## link} command and contains other document elements. As an example, the "main"
template could produce a file containing the body of the document and a link to the
second HTML file, which contains the footnotes and endnotes.

The third and most powerful syntax also produces the URL of a file generated by the
specified template. This template is then expected to contain an insertion of the
specified element. Normally this syntax is used with repeatable elements. It allows the
author to generate multiple output files with sequential pieces of the document. As
such it provides a way to break large documents up into smaller, more readable pieces.
An example of where this syntax would be used is a template that generates a "table of
contents" in one HTML file (perhaps a separate HTML frame). The entries in the table
are then links to other HTML files generated by different templates.

Note that a {## link} statement which specifies a template does not always result in a
new file being created. New files are only created if the target of the link does not exist
yet. So if for example two {## link} statements specify the same element and template,
only one HTML file is produced and the same URL will be used by both {## link}
statements.

{## link} Archive File Example
The following template generates a list of links to all the extracted and converted files
from the source archive file (represented by decompressedFile in the following
example):

{## repeat element=sections}
<p><a href="{## link
element=sections.current.decompressedFile}">
{## insert Element=sections.current.fullname}</p>

{## /repeat}

{## link} Presentation File Example
The following example (template.htm) uses the first syntax to generate a set of HTML
files, one for each slide in a presentation. Each slide will include links to the previous
and next slides and the first slide. Note the use of {## if} macros so the first and last
slides do not have Previous and Next links respectively:

template.htm

<html>
<body>
{## insert element=slides.current.image width=300}
<hr />
{## if element=slides.previous.image}

<p>
previous</p>
{## /if}
{## if element=slides.next.image}

<p><a href={## link element=

Macro Reference

10-26 Oracle Outside In HTML Export Developer's Guide

slides.next.image}>Next</p>
{## /if}
</body>
</html>

Due to the side effects of {## link} using the element attribute, there can be some
confusion over what values "current", "previous" and "next" have when each {## link}
is processed. To better illustrate how this template works, consider running it on a
presentation that contains three slides:

First Output File

Because no template is specified in the {## link} statements, template.htm is (re)used as
the template for all {## link} statements. For the first slide, nothing interesting happens
until slides.next is encountered. Because slides.current is 1 in this case, slides.next
refers to slides.2 and the {## link} is performed on slides.2.image. This {## link} fills in
the anchor tag with the URL for the output file containing the second slide. Because no
file containing slides.2 exists, {## link} opens a new file.

Second Output File

For the second slide the template is rerun. slides.current now refers to slides.2,
slides.previous refers to slides.1 and slides.next refers to slides.3. The {## insert}
statement will insert the second slide.

The {## if} statement referring to slides.previous succeeds. Because the file containing
slides.1 already exists, no additional file is created. The anchor tag will be filled in with
the URL for the first output file.

The {## if} statement referring to slides.next also succeeds and the anchor tag will be
filled in with the URL for the output file containing the third slide. Because no file
containing slides.3 exists, {## link} opens a new file.

Third Output File

For the third slide the template is rerun. slides.current now refers to slides.3 and
slides.previous refers to slides.2. slides.next refers to slides.4, which does not exist. The
{## insert} statement will insert the third slide.

The {## if} statement referring to slides.previous succeeds. Because the file containing
slides.2 already exists, no additional file is created. The anchor tag will be filled in with
the URL for the second output file.

The {## if} statement referring to slides.next fails. At this point processing is essentially
complete.

10.4.6 Linking with Content Size Breaking: {## anchor}
This macro generates a relative URL to a piece of the document produced by HTML
Export when doing document breaking based on content size.

Syntax
{## anchor AREF=type [STEP=stepval] FORMAT="anchorfmt" [ALTLINK="element"]
[ALTTEXT="text"]}

Attributes
AREF

Indicates the relation of the target of the link to the current file. Allowable values for
this attribute are:

Macro Reference

Templates 10-27

■ InsertStart: First page of the inserted element

■ InsertEnd: Last page of the inserted element

■ Next: Next page in the inserted element

■ Prev: Previous page in the inserted element

■ FirstFile: First page created for the entire document

■ LastFile: Last page created for the entire document

STEP

This attribute is used to insert a link to "fast forward/rewind" through the output
pages. This attribute may only be used if AREF is "next" or "prev". It is specified as a
non-zero positive integer. For example, to insert a link to skip ahead 5 pages in a
document, the following statement could be used:

{## unit aref="next" step="5"
format="<p>Next</p>"}

If not specified, the default value of "step" is one (1), which corresponds to the
next/previous page. This attribute has no meaning when aref equals "insertstart",
"insertend", "firstfile" or "lastfile".

FORMAT

This is an sprintf style format string specifying the text to output as the link. HTML
Export replaces the %url format specifier with the target URL into the format string.
For example:

{## anchor aref="next"
format="Next
\r\n"}

ALTLINK

An attribute used to specify the target of the anchor if it cannot be resolved based on
the anchor type. For example, the final file of a breakable element has no "next" file,
and thus would resolve to nothing. However, if the altlink attribute is specified, the
anchor will be generated using a URL to the first file found containing the specified
element.

Note that no EX_CALLBACK_ID_ALTLINK callback will be made if an EX_
CALLBACK_ID_ALTLINK attribute is specified in the {## anchor} statement.

For example:

{## anchor aref=next format="Next"
altlink=headings.next.body}

ALTTEXT

Text to be output if the anchor cannot be resolved. If this attribute is not specified, no
text will be output if the anchor target does not exist. For example:

{## anchor aref=next format="Next"
alttext="Next"}

10.4.7 Comment Put in the Output File: {## ignore}
This macro causes {##} statements in an area of the template file to be ignored by the
template parser. Any text between the {## ignore} and {## /ignore} tags will be written
to the output file as-is. This macro allows {##} statements in an area of the template to
be commented out for debugging purposes, or to actually write out the text of another

Macro Reference

10-28 Oracle Outside In HTML Export Developer's Guide

{##} macro. However, the browser will parse any HTML tags inside the ignored block
and the text will be formatted accordingly. This macro can ignore all {##} macros
except for an {## /ignore} macro. No escape sequence has been implemented for this
purpose. As a result, {## ignore} statements cannot be nested. If they are nested, a run
time template parser error will occur.

Syntax
{## ignore}

any HTML or other {##} macros
{## /ignore}

To fully comment out a section of the template, surround the {## ignore} statements
with HTML comments.

For example:

<!--{## ignore} everything between here and
the end HTML comment will be commented out.
{/## ignore}-->

10.4.8 Comment Not Put in the Output File: {## comment}
The {## comment} macro allows the template writer to include comments in the
template without including them in the final output files. {## comment} provides the
functionality of {## ignore}, but the text inside the {## comment} block is not rendered
to the output files and is not included in page size calculations. Like {## ignore}, {##
comment} macros may not be nested.

Syntax
{## comment}

any HTML or other {##} macros
{## /comment}

10.4.9 Including Other Templates: {## include}
This command allows other templates to be inserted into the current template. It
works in a manner similar to the C/C++ # include directive.

Syntax
{## include TEMPLATE=template}

Attributes
TEMPLATE

This attribute gives the name of the template to insert.

10.4.10 Setting Options Within the Template: {## option}
This macro sets an option to a given value. All {## option} statements are executed in
the order in which they are encountered. Remember when using this template macro
that the {## unit} tag must be the first template macro in any template.

Options set in the template have template scope. This means that, for example, if a {##
link} macro references another template, options in the referenced template are not
affected by the option settings from the parent template. Similarly, when the files
contained in an archive file are converted, Export recursively calls itself to perform the
exports of the child documents in the archive. Each child document is converted using

Macro Reference

Templates 10-29

a copy of the parent template, and that copy does not inherit the option values from
the parent template.

The strings used to specify options from inside templates correspond to the option
names. See the Options documentation for more details.

Options set using {## option} in the template are not inherited by the exports
performed on files within archives. Each child export receives a fresh copy of all
option values as originally set with DASetOption.

Remember that setting an option in the template overrides any option value set by an
application within the scope of the template.

See Appendix B, "HTML Export Options" for a description of how to treat a hyperlink
in a Word input document, using the {## option} in the template.

Syntax
{## option OPTION=value}

The supported OPTION attributes and their values are listed in a table in the
"Attributes" section that follows.

Attributes
OPTION

■ SCCOPT_GRAPHIC_TYPE: gif, jpeg, bmp, png, none, fi_gif, fi_jpegfif, fi_bmp, fi_
png, fi_none

■ SCCOPT_GIF_INTERLACED: 0, 1, TRUE, FALSE

■ SCCOPT_JPEG_QUALITY: Integer from 1 to 100

■ SCCOPT_GRAPHIC_SIZEMETHOD: SCCGRAPHIC_QUICKSIZING ,
SCCGRAPHIC_SMOOTHSIZING, SCCGRAPHIC_
SMOOTHGRAYSCALESIZING

■ SCCOPT_GRAPHIC_OUTPUTDPI: Integer from 0 to 2400

■ SCCOPT_GRAPHIC_SIZELIMIT :Integer greater than or equal to zero.

■ SCCOPT_GRAPHIC_WIDTHLIMIT: Integer greater than or equal to zero.

■ SCCOPT_GRAPHIC_HEIGHTLIMIT: Integer greater than or equal to zero.

■ SCCOPT_EX_FONTFLAGS: SUPPRESS_SIZE, SUPPRESS_COLOR, SUPPRESS_
SIZECOLOR, SUPPRESS_FACE, SUPPRESS_SIZEFACE, SUPPRESS_
COLORFACE, SUPPRESS_ALL, SUPPRESS_NONE

■ SCCOPT_EX_GRIDROWS: Integer greater than or equal to zero.

Note: Some of the Outside In Viewer Technology's import filters can
be optimized to ignore certain types of graphics. To take advantage of
this optimization, the option must be set before EXOpenExport is
called. Setting this option via the template will happen after
EXOpenExport is called, and will therefore not invoke this
optimization. The only way to get the benefits of this optimization is
to use DASetOption for the SCCOPT_GRAPHIC_TYPE set to FI_
NONE. This is described in Section B.1.6.7, "SCCOPT_GRAPHIC_
TYPE."

Macro Reference

10-30 Oracle Outside In HTML Export Developer's Guide

■ SCCOPT_EX_GRIDCOLS: Integer greater than or equal to zero.

■ SCCOPT_EX_GRIDADVANCE: DOWN, ACROSS

■ SCCOPT_EX_GRIDWRAP: TRUE, FALSE

■ EX_LINKTARGET: _self, _top, _blank, _parent

■ EX_LINKTARGETOVERRIDE: fallback, override

■ EX_TOC: use_original_document

10.4.11 Copying Files: {## copy} (HTML Export Only)
The {## copy} macro is used to copy extra, static files into the output directory along
with the output from the converted document. For example, if a template author has
added a company logo that was not in the original input document, {## copy} can be
used to make it a part of the converted output document. Other examples include
graphics used to mimic "buttons" for navigation, outside CSS files, or a piece of Java
code to be run.

Syntax
{## copy FILE=file}

Attributes
FILE

This is the name of the file to be copied. If a relative path name is specified as part of
the file, then it must be relative to the directory containing the root template file.

For example:

{## copy FILE=uparrow.gif}

The {## copy} macro may occur anywhere inside a template. If the {## copy} is inside a
{## if}, then the {## copy} will only be executed if the condition is TRUE. In {## repeat}
loops, the {## copy} will only be performed if the loop is executed one or more times.
In addition, if the {## repeat} loops more than once, HTML Export detects this and the
{## copy} is executed only once.

As its name suggests, the {## copy} macro is a straight file copy. Therefore, no
conversions are performed as part of the copy. For example, graphics formats are not
changed and graphics are not resized. Template authors should also remember to use
{## graphic} when graphics and other files are copied so that space will be created for
the external graphic in the text buffer size calculations.

Because the only action HTML Export takes is to copy the requested file, it is up to the
template author to make use of the copied file at another point in the template. For
example, a graphic file may be copied and then the template can use an tag
which references the copied graphic. The following snippet of template code would do
this:

{## copy FILE=Picture.JPG
{## graphic PATH=Picture.JPG}

The OEM should also know that if the file copy fails, HTML Export will continue and
no error will be reported back to the OEM.

Breaking Documents by Structure

Templates 10-31

10.4.12 Deprecated Template Macros (HTML Export Only)
Previous releases of HTML Export used different macro syntax where template macros
were expected to start with {Inso} rather than {##}. In addition some words that had
been abbreviated must now be spelled out ("insert" instead of "ins"). The old syntax
will continue to be supported for the foreseeable future. However, it has been
deprecated. The old Inso macros and their new equivalents are as follows:

■ {insoins} is now {## insert}

■ {insoif} ... {/insoif} is now {## if} ... {## /if}

■ {insoelseif} ... {/insoelseif} is now {## elseif} ... {## /elseif}

■ {insoelse} ... {/insoelse} is now {## else} ... {## /else}

■ {insoignore} ... {/insoignore} is now {## ignore} ... {## /ignore}

■ {insolink} is now {## link}

■ {insorep} ... {/insorep} is now {## repeat} ... {## /repeat}

It should be noted that templates may not mix the old style of Inso macro in with the
new {##} style in the same template.

It should also be noted that no new or future features that export will include support
the old syntax. Thus for example, the old syntax has not been extended to include
support for the new {## unit} macros.

10.5 Breaking Documents by Structure
One of the most powerful features of the template architecture is the ability to break
long word processor documents up into logical pieces and create powerful navigation
aids to access them.

To understand how this is done, the developer must first understand the document
tree as it relates to word processor documents. The somewhat complex graphic that
follows attempts to show how the elements in the tree relate to a real-world document.

Breaking Documents by Structure

10-32 Oracle Outside In HTML Export Developer's Guide

Figure 10–2 Correlation between Element Tree and Document

The following are some examples of elements and the data they would produce if run
against the document shown in the preceding image. Note the omission of the default
nodes body and contents in the second two examples:

■ body.contents.headings.2.body.title: would produce "Present Day."

■ body.contents.headings.2.body.contents.headings.1.body.title: would produce
"Commercial."

■ body.contents.preface: would produce "The History of Flight" and the text below
it, up to but not including "Introduction."

Breaking Documents by Structure

Templates 10-33

■ headings.2.headings.1.headings.3.title: would produce "McDonnell-Douglas."

■ headings.2.headings.1.headings.3.contents: would produce the text below
"McDonnell-Douglas" but above "Military."

Breaking documents requires that HTML Export understand the logical divisions in
the structure of a document. Currently the only formats that can give HTML Export
this information in an unambiguous manner are Microsoft Word 95 and higher and
WordPerfect 6.0 and higher. In these formats, the breaking information is available if
the author placed Table of Contents information in the document. Refer to the
appropriate software manual for information on the necessary procedure for including
this information. That is not to say that the document must have a TOC, only that the
information to build one must be present.

It should be noted that some word processing formats, including Microsoft Word 2002
(XP), allow users to specify TOC entries in multiple ways. HTML Export only supports
two of these methods if the TOC is specified through:

■ Applied heading styles: Yes

■ Custom styles with outline levels: Yes

■ Outline level applied as a paragraph attribute: No

■ TOC entries: No

Additionally, if a heading style is applied to text inside a table in the original
document, HTML Export will not break on that heading. This is because HTML Export
will not break within tables.

The sample templates that ship with the HTML Export SDK use document breaking
extensively and are probably the best way to understand the uses of the
structure-based breaking feature.

10.5.1 Indexes and Structure-Based Breaking
All repeatable nodes have an associated index variable that at any given time in the
export process has a current value. For elements that contain repeatable nodes as part
of their path, the instance of the repeatable element must be specified by using a
number or one of several index variable keywords. The possible values for this index
variable (referred to as x in Section 10.3.3, "Element Definitions") are as follows:

■ A whole number (integer). HTML Export indexes begin counting with 1 (not 0).

■ current

■ next

■ previous

■ first

■ last

For numeric values, the number is simply inserted as another node in the path. For
example, slides.1.image references the first slide in a presentation and footnotes.2.body
references the second footnote in a document.

Elements that cannot be guaranteed to be within the document to which the template
is applied should not be explicitly referenced. For example, referencing sections.4.body
may result in unexpected behavior in documents that have less than 4 sections.
Requesting a non-existent element won’t cause an error in HTML Export; the insertion
will just be ignored. However, if other HTML surrounding the insertion depends on
the results of the insert, the output may be invalid HTML.

Breaking Documents by Structure

10-34 Oracle Outside In HTML Export Developer's Guide

The current, next, previous, first and last keywords are fairly self-explanatory. For
example, slides.current.image references the current slide and slides.next.image refers
to the next slide. When the template is processed, the current, next, previous, first and
last variables are replaced with the appropriate index value.

next and previous do not change the value of the index, as was the case in versions of
HTML Export prior to the 1.2 release. As a result, the only places where the index is
changed are inside of a {## repeat} loop and as the result of a {## link} statement. For
more information, see Section 10.4.4, "Loop: {## repeat}," Section 10.4.5, "Linking with
Structured Breaking: {## link}," and Section 10.5, "Breaking Documents by Structure."

{## repeat…}

The initial value of the index variable for any given repeatable element typically is 1.
For {## repeat} loops, the index is incremented with each iteration. Termination of a {##
repeat} loop resets the counter to its initial value. Actually, it is more accurate to say
that the scope of the index is the repeat loop.

The following template fragment uses current in a repeat loop, which outputs all the
footnotes in the source file:

{## repeat element=footnotes}
{## insert element=footnotes.current.body}
{## /repeat}

When a template containing a repeat statement is the target of a {## link} statement
that specifies the element to be used as the repeat element, the initial value of the index
will be determined by the {## link} processing.

{## link…}

The {## link} statement does not affect the index variable in the context of the current
template. The {## link} statement can only affect index variables when both an element
and a template are specified. In this case only the index variables in the target for the
specified element are affected.

If the element specified in the {## link} contains a next or previous keyword, the value
of current in the target file will be affected. The initial value of current in the target will
be the value of (current in the source)+1 for next. Similarly, previous has the effect of
decrementing the value of current.

The following example uses a single template file and the {## link} macro to create a
set of HTML files, one for each slide in a presentation. The {## link} does the dual job
of driving the generation of the HTML files and providing a "next" link for navigation.
Notice the use of the next keyword in the {## if} macro that checks to see if there is a
next slide:

{## unit}
<html>
<body>
<!-- insert the current slide -->
{## insert element=slides.current.image width=300}
<hr />
<!-- Is there a next slide? -->
{## if element=slides.next.image}

<!-- If yes, generate a URL to an HTML file containing
the next slide. The HTML file is generated using
the current template (because there is no template
attribute). While generating the new HTML file, the
value of the index on slides will be its current
value plus 1 once control returns to this template,

Units - Breaking Documents by Content Size

Templates 10-35

the value of the index on slides is unchanged. -->
<p><a href="{## link element=
slides.next.image}">Next</p>

{## else}
<!-- If no, create a link to the HTML containing the

first slide. -->
<p><a href="{## link element=
slides.1.image}">First</p>

{## /if}
</body>
</html>
{## /unit}

10.6 Units - Breaking Documents by Content Size
HTML Export has a system for breaking up documents. In addition to being able to
break documents according to their structure, template writers can now break
documents based on the amount of content to be placed in each output file or "page."
Documents can even be broken based on both their structure and content size.

To break documents by content size, two things must be done. First, the SCCOPT_EX_
PAGESIZE (pageSize with Transformation Server) option must be set (see the Options
documentation for details). The second thing that must be done is that the template
used must be equipped with the {## unit} construct.

The basic idea behind the unit template construct is to tell Export what things should
be repeated on every "page" and what pieces should only be shown once. In other
words, the unit template construct provides a mechanism for grouping template text
and document elements. Unit boundaries are used when determining where to break
the document when spanning pages.

Here are some examples of the kinds of things the template author might want to
appear on every page:

■ The <meta> tag inserting the output document character set.

■ A company copyright message.

■ Navigational elements to link the previous/next pages together.

Typical examples of things that wouldn’t go on every page would be:

■ The actual content of the document.

■ Structural navigational elements like the links for a table of contents.

A unit consists of a header, a footer (both of which are optional), and a body. Items that
are to be repeated at the beginning or end of every unit should be placed in the header
or footer respectively.

A unit is delimited by the {## unit} template macro. Similarly, the {## header} and {##
footer} template macros delimit the header and footer respectively. The body is
everything that is left between the header and the footer. The {## unit} macro must be
the first macro in the template. The body frequently contains nested units. The body
may be empty.

To ensure that the header is the first item in the template and the footer is the last item,
text between the {## unit} tag and the {## header} tag will be ignored, as will text
between the {## /footer} tag and the {## /unit} tag, including whitespace. The header
and footer of a unit will be output in every page containing that unit, enclosing that
portion of the unit's body that is able to fit in a particular page. The entire template is a
unit that may contain additional units.

Units - Breaking Documents by Content Size

10-36 Oracle Outside In HTML Export Developer's Guide

10.6.1 A Sample Size Breaking Template
By way of example, let’s take another look at the very simple template from
Section 10.1, "What Is a Template?" To make things more interesting, let’s insert the
character set into the template with a <meta> tag. Let’s also insert some better
navigation to improve movement between the pages. The modified version of the
template is as follows:

{## unit}{## header}
<html><head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html;
charset={## insert element=pragma.charset}" /></head>
<body>
{## anchor aref="prev" format="<p>Prev</p>"}
{## /header}
<p>Here is the document you requested.
{## insert element=property.title} by
{## insert element=property.author}</p>

<p>Below is the document itself</p>
{## insert element=body}
{## footer}
{## anchor aref="next" format="<p>Next</p>"}
</body>
</html>
{## /footer}{## /unit}

A very small value (about 20 characters) is used for the page size option. The resulting
HTML might look like this (HTML that is the result of a macro is in bold):

file1.htm
<html><head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=
us-ASCII"/></head>
<body>
<p>Here is the document you requested.</p>
<p>A Poem by Phil Boutros</p>
<p>Next</p>
</body>
</html>

file2.htm
<html><head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ASCII" /></head>
<body>
<p>Next</p>
<p>Below is the document itself</p>
<p>Roses are red</p>
<p>Violets are blue</p>
<p>Prev</p>
</body>
</html>

file3.htm
<html><head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ASCII" /></head>
<body>
<p>Prev</p>
<p>I’m a programmer</p>

Units - Breaking Documents by Content Size

Templates 10-37

<p>and so are you</p>
</body>
</html>

There are several things to note:

■ The page size option value does not apply to the text from the template, only the
text inserted from the source document. Each page contains roughly 20 characters
of visible input document text.

■ The {## insert} of the character set is part of the {## header} and therefore is
inserted into all the output pages.

■ Text from the body of the unit is inserted sequentially. Thus "as is" template text
such as the line "<p>Below is the document itself</p>" is only inserted once.

■ The {## anchor} tags only insert links to the previous/next page if there actually is
a previous/next page. Thus the first page does not have a link to the non-existent
previous page.

■ Finally, the output of the document is split according to the page breaking rules.

10.6.2 Templates Without {## unit} Macros
The {## unit} macro is only required in templates that are designed to break pages
based on size using the SCCOPT_EX_PAGESIZEpageSize option. An example of a
template that would not perform any size-based breaking is one that defines an HTML
<frame>, but does not include any document content. Another example where
size-based breaking might not be desired is a table of contents page, even though a
table of contents page does contain document content.

A template that does not conform to the {## unit} format is a not a size-based breaking
template. Support for this type of template will continue for the indefinite future. The
template will be considered to not be a size-based breaking template if the first macro
tag encountered is something other than {## unit}. This means that there cannot be any
{## unit}, {## header} or {## footer} macros later in the template. The value of the
SCCOPT_EX_PAGESIZEpageSize option will be ignored for this type of template.

10.6.3 Indexes and Size-Based Breaking
All repeatable nodes have an associated index variable. For information about using
index variable keywords such as "Next" and "Last," see Section 10.5.1, "Indexes and
Structure-Based Breaking." In addition to those index variable keywords, repeatable
grid elements have four additional keywords. They are:

■ up

■ down

■ left

■ right

These keywords may only appear immediately after the grids node in the document
tree. For example grids.up.body is legal, but sections.left.grids.1.body is not. Use of
these keywords is otherwise self-explanatory.

Note too that individual grids are only addressable relative to each other. In other
words, while it is possible to specify the "up" grid, it is not possible to arbitrarily
specify a grid directly (for example., "5, 7").

Using Grids to Navigate Spreadsheet and Database Files

10-38 Oracle Outside In HTML Export Developer's Guide

10.7 Using Grids to Navigate Spreadsheet and Database Files
In order to support spreadsheets (and database files, though they are not as common),
a new template-based navigation concept known as a "grid" has been introduced.
Grids offer a way to consistently navigate a spreadsheet or database in an intuitive
fashion.

Grids can be used to present the output of large spreadsheets in smaller pieces, so that
less scrolling is necessary. It can also be used to help prevent the HTML versions of
large spreadsheets from overwhelming browsers, potentially causing them to lock up.
Grids can also be used to halt processing of large spreadsheets before they waste too
much CPU time.

To use grids, the template author should use the new grid template element (see
Section 10.3.3, "Element Definitions"). Grids may only be used in templates that have
been enabled with the {## unit} template macro. It is also important to set the
grid-related options. See the Options documentation for details).

The grid support has some important limitations:

1. The output file format and flavor are expected to supports tables, although this is
not required.

2. Grids are only used when converting spreadsheets and database input files. Grids
are not available for word processing files at this time.

3. Due to size constraints, grid support works best if the contents of the cells in the
input file do not make use of a lot of formatting (bold, special fonts, text color,
etc.).

To further explain the grid system, consider a multi-sheet spreadsheet workbook as an
example. Each sheet in the spreadsheet workbook is broken into a collection of grids.
Each grid has a fixed maximum size and is a rectangular portion of the spreadsheet.
The size of the grid is specified as a number of spreadsheet cells. For example,
consider the following 7x10 spreadsheet:

Figure 10–3 7x10 Spreadsheet

If the OEM wanted to break it up into 3x4 grids, 9 grids would be produced as shown
in the following diagrams:

Using Grids to Navigate Spreadsheet and Database Files

Templates 10-39

Figure 10–4 3x4 Grids

Normally, all grids have the same number of cells. The exception is that grids at the
right or bottom edge of the spreadsheet may be smaller than the normal size. Grids
will never be larger than the requested size. For this reason, grids can easily be
navigated by using "up", "down", "left" or "right". One thing that grids cannot do is
address individual cells in a spreadsheet (except, of course, in the degenerate case of a
grid whose size is 1 x 1).

HTML Export does not force deck/page breaks between each grid. Therefore, if the
template writer wants to limit each deck/page to only one grid, they should force the
break in the template.

10.7.1 Grid Support When Tables Are Not Available
Not all output flavors supported by HTML Export support the creation of tables. If the
output flavor does not support tables, HTML Export will still support grids. However,
HTML Export’s normal non-table output will be what is presented in grid form. For
example, if "[A1]" represents the contents of cell A1, then we would export the
following for a grid of size (2x2):

If grids.1.body is:

[A1]

[A2]

[B1]

[B2]

then grids.right.body is:

[C1]

[C2]

[D1]

[D2]

and grids.down.body is:

Choosing a Template

10-40 Oracle Outside In HTML Export Developer's Guide

[A3]

[A4]

[B3]

[B4]

10.8 Choosing a Template
Through the use of templates, HTML Export users have infinite flexibility in the way
they can present converted documents. Users typically use one of the following four
strategies to select a template:

1. The simplest method is to use the internal template, which is built into HTML
Export. This is the template used when the SCCOPT_EX_TEMPLATE (using
Transformation Server, template) option is not set. This template produces a very
basic, rudimentary presentation of the input document. The template is an
external approximation of this internal document.

2. There are also sample templates shipped with HTML Export. These templates are
designed to meet different needs for HTML Export users (polished navigation,
simple HTML for document indexing engines, etc.).

3. With a bit more effort, the user can modify one of the sample templates shipped
with HTML Export. Simple changes, such as adding graphics or static text, should
be easily accomplished by someone with a willingness to experiment with these
templates.

4. Advanced users may choose to write a template of their own design, customized
specifically to their needs. Such templates can incorporate elements from a wide
range of Web standards, such as Java. Needless to say, users who go this route
should have strong technical skills at the outset. They should begin the process of
creating templates by reading through this chapter in its entirety and looking at
the template tutorial.

10.9 Unicode Templates
For non-Unicode templates, the content of the template is copied byte for byte to the
output files as needed. Of particular note is the fact that no character mapping takes
place on the text in the template file. However, this can create problems when the
source input document overrides the requested SCCOPT_EX_
OUTPUTCHARACTERSET (using Transformation Server, outputCharacterSet) option
setting. To solve this problem, users may use templates written in Unicode.

In order for HTML Export to know that a template is encoded in Unicode, the
template file must begin with the Unicode Byte Order Mark (BOM). All files beginning
with the BOM are assumed to be encoded in Unicode. HTML Export automatically
converts Unicode templates to the output character set as needed.

11

Template Tutorials 11-1

11Template Tutorials

Before you begin this tutorial, it is recommended that you read and familiarize
yourself with Chapter 10, "Templates."

When you install this product, a set of tutorial templates in HTML format are installed
in templates\html\tutorial (HTML Export) or template\export\tutorial directory
(Transformation Server). These templates include in-depth commentary explaining
how they work. Aspiring template authors should examine the comments within these
templates to gain a fuller understanding of how to implement the template language.

This chapter includes the following sections:

■ Section 11.1, "Template Comments"

■ Section 11.2, "Tutorial 1: simple"

■ Section 11.3, "Tutorial 2: toc1"

■ Section 11.4, "Tutorial 3: toc2"

■ Section 11.5, "Tutorial 4: unit"

■ Section 11.6, "Tutorial 5: misc"

■ Section 11.7, "Tutorial 6: grids1"

■ Section 11.8, "Tutorial 7: grids2"

■ Section 11.9, "Tutorial 8: xml"

■ Section 11.10, "Tutorial 9: internal"

11.1 Template Comments
The template comments are contained within {## comment} macro statements, which
are themselves contained within standard HTML comment tags. The {## comment}
macro is used in the tutorial templates to prevent the software from writing the
template comments to the output file when these templates are used. The HTML
comment tags are included so that all comments will be highlighted when the
template is open in a syntax-coloring editor. The HTML comment tags are also useful
for masking the macros from HTML editors such as Microsoft FrontPage. A side effect
of adding the HTML comment tags outside of the {## comment} macros is that any
output generated using these templates will contain empty comment tags.

The following is an example of one of the comments in the templates:

<!--{## comment}
 To tell the browser what character set the HTML file is
 using, add a <meta> tag with the "content" attribute and
 use the {## insert} macro to insert the pragma.charset

Tutorial 1: simple

11-2 Oracle Outside In HTML Export Developer's Guide

 element. Export will insert the name of the character set
 specified by the SCCOPT_EX_OUTPUTCHARACTERSET
 (Transformation Server: outputCharacterSet) option.
{## /comment}-->

The macro statements in the tutorial templates are formatted for readability. Because
the product does not ignore template whitespace, output generated from these
templates contains whitespace wherever there were macros in the templates. When
using {## repeat} loops, the amount of whitespace added to the output can be
substantial. Browsers ignore this whitespace, so from a viewing standpoint, it should
not be an issue. However, if you are concerned with file size or readability of the
output HTML, you should format the macros to minimize the amount of whitespace,
which includes both spaces and carriage returns.

The following sections offer an overview of these tutorial templates. The order in
which they are discussed is a recommended sequence for examining the templates and
learning about the template language and its implementation.

The actual template file is a .htm file and it is generally named based on the directory
in which it is found (i.e., the simple template is the file simple.htm in the
\tutorial\simple directory). However, if a template references other files within the
same directory, the primary template file for that directory is always called main.htm
(for examples, see Section 11.4, "Tutorial 3: toc2").

11.2 Tutorial 1: simple
The simple template, as its name implies, produces a simple, single-page rendition of
the source document without a table of contents.

This template is an introduction to the following techniques:

■ The use of templates in general

■ Simple inserts of document pieces

■ The character set selection mechanism

■ Use of CSS files

■ Using the {## repeat} macro

■ Setting the title of the HTML output file based on the input file’s content

11.3 Tutorial 2: toc1
Files generated with the toc1 template are similar to those produced with the simple
template. However, the toc1 template also creates a simple table of contents (TOC) that
displays hyperlink headers up to two levels deep at the start of the file. Clicking on a
header moves the browser to the corresponding section.

This template is an introduction to the following techniques:

■ Generating a simple TOC

■ Using {## link} to create internal links

■ Conditional statements based on input file type

■ A more extensive introduction to elements in the Document Tree

■ Integration of macros with HTML

Tutorial 5: misc

Template Tutorials 11-3

11.4 Tutorial 3: toc2
This template creates a TOC in a separate frame to the left of the body text of the
document. As in the output generated when using the toc1 template, the TOC is two
levels deep. As is the case with the toc1 template, the headers shown in the TOC frame
are hyperlinks to the sections they reference. However, when these hyperlinks are
activated, the browser displays the relevant section of the document in the frame to the
right of the TOC frame.

The other thing to note about this template is that it is the first in the tutorial that
references other templates. The primary template file, main.htm, uses {## link}
statements to reference the other template files in the toc2 directory. The process of
evaluating the {## link} statements generates the remaining output files for the
document.

For the purposes of this tutorial, start by reading the comments in the main.htm file
and then read the comments in the referenced templates when they are discussed
within main.htm.

This template is an introduction to the following techniques:

■ Using the {## option} macro

■ {## link} statements involving elements, templates, or both elements and templates

■ Archive files processed using this template output such that the archived file
names appear as links in the TOC frame (left) that point to that file’s content,
which appears in the body frame (right)

11.5 Tutorial 4: unit
The unit template is capable of breaking a document into multiple output files based
on size. The size of the output files is determined by the value in the SCCOPT_EX_
PAGESIZE (Transformation Server: pageSize) option.

This template is an introduction to the following techniques:

■ Using the {## unit}, {## header}, and {## footer} macros

■ Using {## anchor} for navigation

■ Using the truncate attribute of the {## insert} macro

■ Archive files processed using this template output such that the archived file
names appear as links in the TOC frame (left) that point to that file’s content,
which appears in the body frame (right)

11.6 Tutorial 5: misc
This tutorial template covers a variety of template features not covered in the
preceding tutorials. It is an introduction to the following techniques:

■ JavaScript tab implementation

■ Use of the step attribute to provide "fast-forward/rewind" capability

■ Use of the {## copy} macro to copy files into the output directory (in this case, a .gif
image) (Embedded and standalone versions only)

■ Processing the input document by iterating through the Document Tree, providing
a unique look into how the Document Tree handles the different parts of a
document

Tutorial 6: grids1

11-4 Oracle Outside In HTML Export Developer's Guide

■ Using the{## graphic} macro

■ Using the{## include} macro

Transformation Server users should note that this template uses the {## copy} macro.
This macro is not recognized by Transformation Server and is ignored when
encountered in a template.

11.7 Tutorial 6: grids1
The grids1 directory contains a template that demonstrates one method for breaking
spreadsheet or database files based on size.

The grids1.htm template creates multiple output files that maintain the spatial
relationships of the original file. In other words, depending on how many rows and
columns make up a grid (set by the SCCOPT_EX_GRIDROWS (Transformation Server:
gridRows) and SCCOPT_EX_GRIDCOLS (Transformation Server: gridCols) options, or
in the template itself using {## option gridrows=value} or {## option gridcols=value}
statements), the template will create multiple files that can be navigated using links in
an "up/down/left/right" navigation table. For example, in a spreadsheet that is 10
columns by 10 rows with a grid defined as 5 columns by 5 rows, the main section of
the output document will have links to view the grids to the right (the next 5 columns)
and down (the next 5 rows). The "up" and "left" navigation links will be inactive in the
main section.

11.8 Tutorial 7: grids2
The grids2 directory contains another template that demonstrates an alternate method
for breaking spreadsheet or database files based on size to the one used by the grids1
template.

The grids2.htm template creates multiple output files, but instead of maintaining the
spatial relationships of the original file, it simply adds "next" or "previous" links,
where applicable, above or below the currently displayed section of the document.
Whether the "next" and "previous" links traverse from left to right or up and down
through the grid is determined by the setting in the SCCOPT_EX_GRIDADVANCE
(Transformation Server: gridAdvance) option.

11.9 Tutorial 8: xml
This template exports documents with its pieces labeled with XML tags. In order to
use this template, the output "flavor" option must be set to a non-CSS enabled flavor of
HTML, such as HTML 3.0. Additionally, the output from this template can only be
viewed in a browser or application that can handle XSL (for example, Microsoft
Internet Explorer 5.0 or higher). The ie5.xsl file in the template directory is a style sheet
required when viewing the output from this template.

It should be noted that although the output from this template is functional, Oracle’s
Outside In XML Export product provides far more robust XML conversion than can be
achieved using this template. Please contact Oracle for more information about XML
Export if converting documents to XML is a priority for you.

Transformation Server users should note that this template uses the {## copy} macro.
This macro is not recognized by Transformation Server and is ignored when
encountered in a template.

Tutorial 9: internal

Template Tutorials 11-5

11.10 Tutorial 9: internal
The internal template produces output that is essentially identical to the output
created when no template is specified during an export.

Tutorial 9: internal

11-6 Oracle Outside In HTML Export Developer's Guide

A

Copyrights and Licensing A-1

ACopyrights and Licensing

This appendix provides a comprehensive overview of all copyright and licensing
information for Outside In HTML Export.

A.1 Outside In HTML Export Licensing
The Programs (which include both the software and documentation) contain
proprietary information; they are provided under a license agreement containing
restrictions on use and disclosure and are also protected by copyright, patent, and
other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you
find any problems in the documentation, please report them to us in writing. This
document is not warranted to be error-free. Except as may be expressly permitted in
your license agreement for these Programs, no part of these Programs may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose.

If the Programs are delivered to the United States Government or anyone licensing or
using the Programs on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related
documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the
Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the
extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical,
or other inherently dangerous applications. It shall be the licensee's responsibility to
take all appropriate fail-safe, backup, redundancy and other measures to ensure the
safe use of such applications if the Programs are used for such purposes, and we
disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle
Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

Outside In HTML Export Licensing

A-2 Oracle Outside In HTML Export Developer's Guide

The Programs may provide links to web sites and access to content, products, and
services from third parties. Oracle is not responsible for the availability of, or any
content provided on, third-party web sites. You bear all risks associated with the use of
such content. If you choose to purchase any products or services from a third party, the
relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of
the agreement with the third party, including delivery of products or services and
warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with
any third party.

Portions relating to XServer copyright 1990, 1991 Network Computing Devices, 1987
Digital Equipment Corporation and the Massachusetts Institute of Technology.

Portions of this software are copyright © 1996-2002 The FreeType Project
(www.freetype.org). All rights reserved.

Portions copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 by Cold Spring
Harbor Laboratory. Funded under Grant P41-RR02188 by the National Institutes of
Health.

Portions copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 by Boutell.Com, Inc.

Portions relating to GD2 format copyright 1999, 2000, 2001, 2002 Philip Warner.

Portions relating to PNG copyright 1999, 2000, 2001, 2002 Greg Roelofs.

Portions relating to PNG Copyright 1995-1996 Jean-loup Gailly and Mark Adler

Portions relating to PNG Copyright 1998, 1999 Glenn Randers-Pehrson, Tom Lane,
Willem van Schaik, John Bowler, Kevin Bracey, Sam Bushell, Magnus Holmgren, Greg
Roelofs, Tom Tanner, Andreas Dilger, Dave Martindale, Guy Eric Schalnat, Paul
Schmidt, Tim Wegner

Portions relating to gdttf.c copyright 1999, 2000, 2001, 2002 John Ellson
(ellson@graphviz.org).

Portions relating to gdft.c copyright 2001, 2002 John Ellson (ellson@graphviz.org).

Portions relating to JPEG and to color quantization copyright 2000, 2001, 2002, Doug
Becker and copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, Thomas
G. Lane. This software is based in part on the work of the Independent JPEG Group.
See the file README-JPEG.TXT for more information.

Portions relating to WBMP copyright 2000, 2001, 2002 Maurice Szmurlo and Johan Van
den Brande.

Portions relating to GIF Copyright 1987, by Steven A. Bennett.

Permission has been granted to copy, distribute and modify gd in any context without
fee, including a commercial application, provided that this notice is present in
user-accessible supporting documentation.

This does not affect your ownership of the derived work itself, and the intent is to
assure proper credit for the authors of gd, not to interfere with your productive use of
gd. If you have questions, ask. "Derived works" includes all programs that utilize the
library. Credit must be given in user-accessible documentation.

This software is provided "AS IS." The copyright holders disclaim all warranties, either
express or implied, including but not limited to implied warranties of merchantability
and fitness for a particular purpose, with respect to this code and accompanying
documentation.

Outside In HTML Export Licensing

Copyrights and Licensing A-3

Although their code does not appear in gd 2.0.4, the authors wish to thank David
Koblas, David Rowley, and Hutchison Avenue Software Corporation for their prior
contributions.

UnRAR - free utility for RAR archives

License for use and distribution of FREE portable version

The source code of UnRAR utility is freeware. This means:

1. All copyrights to RAR and the utility UnRAR are exclusively owned by the author -
Alexander Roshal.

2. The UnRAR sources may be used in any software to handle RAR archives without
limitations free of charge, but cannot be used to re-create the RAR compression
algorithm, which is proprietary. Distribution of modified UnRAR sources in separate
form or as a part of other software is permitted, provided that it is clearly stated in the
documentation and source comments that the code may not be used to develop a RAR
(WinRAR) compatible archiver.

3. The UnRAR utility may be freely distributed. No person or company may charge a
fee for the distribution of UnRAR without written permission from the copyright
holder.

4. THE RAR ARCHIVER AND THE UNRAR UTILITY ARE DISTRIBUTED "AS IS".
NO WARRANTY OF ANY KIND IS EXPRESSED OR IMPLIED. YOU USE AT YOUR
OWN RISK. THE AUTHOR WILL NOT BE LIABLE FOR DATA LOSS, DAMAGES,
LOSS OF PROFITS OR ANY OTHER KIND OF LOSS WHILE USING OR MISUSING
THIS SOFTWARE.

5. Installing and using the UnRAR utility signifies acceptance of these terms and
conditions of the license.

6. If you don't agree with terms of the license you must remove UnRAR files from your
storage devices and cease to use the utility.

JasPer License Version 2.0

Copyright (c) 2001-2006 Michael David Adams

Copyright (c) 1999-2000 Image Power, Inc.

Copyright (c) 1999-2000 The University of British Columbia

All rights reserved.

Permission is hereby granted, free of charge, to any person (the"User") obtaining a
copy of this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

1. The above copyright notices and this permission notice (which includes the
disclaimer below) shall be included in all copies or substantial portions of the
Software.

2. The name of a copyright holder shall not be used to endorse or promote products
derived from the Software without specific prior written permission.

THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS
LICENSE. NO USE OF THE SOFTWARE IS AUTHORIZED HEREUNDER EXCEPT
UNDER THIS DISCLAIMER. THE SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

Outside In HTML Export Licensing

A-4 Oracle Outside In HTML Export Developer's Guide

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE. NO ASSURANCES ARE
PROVIDED BY THE COPYRIGHT HOLDERS THAT THE SOFTWARE DOES NOT
INFRINGE THE PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS OF ANY
OTHER ENTITY. EACH COPYRIGHT HOLDER DISCLAIMS ANY LIABILITY TO
THE USER FOR CLAIMS BROUGHT BY ANY OTHER ENTITY BASED ON
INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR OTHERWISE. AS A
CONDITION TO EXERCISING THE RIGHTS GRANTED HEREUNDER, EACH
USER HEREBY ASSUMES SOLE RESPONSIBILITY TO SECURE ANY OTHER
INTELLECTUAL PROPERTY RIGHTS NEEDED, IF ANY. THE SOFTWARE IS NOT
FAULT-TOLERANT AND IS NOT INTENDED FOR USE IN MISSION-CRITICAL
SYSTEMS, SUCH AS THOSE USED IN THE OPERATION OF NUCLEAR
FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION SYSTEMS, AIR
TRAFFIC CONTROL SYSTEMS, DIRECT LIFE SUPPORT MACHINES, OR
WEAPONS SYSTEMS, IN WHICH THE FAILURE OF THE SOFTWARE OR SYSTEM
COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL
OR ENVIRONMENTAL DAMAGE ("HIGH RISK ACTIVITIES"). THE COPYRIGHT
HOLDERS SPECIFICALLY DISCLAIM ANY EXPRESS OR IMPLIED WARRANTY OF
FITNESS FOR HIGH RISK ACTIVITIES.

B

HTML Export Options B-1

BHTML Export Options

Options are parameters affecting the behavior of an export or transformation. This
chapter presents both the C/C++ and SOAP options relevant to the HTML Export
product.

While default values are provided, users are encouraged to set all options for a
number of reasons. In some cases, the default values were chosen to provide
backwards compatibility. In other cases, the default values were chosen arbitrarily
from a range of possibilities.

One reason that users may want to avoid using the default value for an option is that
the default value may change from one release to the next. This is because as standards
evolve over time, defaults may be updated to reflect the current status of the
technology.

B.1 HTML Export C/C++ Options
These options are available to the developer when using the export engine.

Options are set using the DASetOption call. It is recommended that developers
familiarize themselves with all of the options available.

Options may be Local, in which case they only affect the handle for which they are set,
or Global, in which case they automatically affect all handles associated with the hDoc
and must be set before the call to DAOpenDocument.

Of course some options are more important than others. Casual users of this API
should focus on the following (in rough order of importance):

■ Section B.1.2.5, "SCCOPT_EX_FLAVOR"

■ Section B.1.6.7, "SCCOPT_GRAPHIC_TYPE"

■ Section B.1.4.11, "SCCOPT_EX_TEMPLATE"

■ Section B.1.1.3, "SCCOPT_EX_OUTPUTCHARACTERSET"

B.1.1 Character Mapping
This section discusses character mapping options.

B.1.1.1 SCCOPT_DEFAULTINPUTCHARSET
This option is used in cases where Outside In cannot determine the character set used
to encode the text of an input file. When all other means of determining the file's
character set are exhausted, Outside In will assume that an input document is encoded
in the character set specified by this option. This is most often used when reading

HTML Export C/C++ Options

B-2 Oracle Outside In HTML Export Developer's Guide

plain-text files, but may also be used when reading HTML or PDF files. The possible
character sets are listed in charsets.h.

When "extended test for text" is enabled (see Section B.1.3.2, "SCCOPT_FIFLAGS"),
this option will still apply to plain-text input files that are not identified as EBCDIC or
Unicode.

This option supersedes the SCCOPT_FALLBACKFORMAT option for selecting the
character set assumed for plain-text files. For backwards compatibility, use of
deprecated character-set -related values is still currently supported for SCCOPT_
FALLBACKFORMAT, though internally such values will be translated into equivalent
values for the SCCOPT_DEFAULTINPUTCHARSET. As a result, if an application were
to set both options, the last such value set for either option will be the value that takes
effect.

Handle Types
NULL, VTHDOC

Scope
Global

Data Type
VTDWORD

Default
■ CS_SYSTEMDEFAULT: Query the operating system.

Data
The data types are listed in charsets.h.

B.1.1.2 SCCOPT_EX_CHARBYTEORDER
This option determines the byte order of Unicode characters in the output files when
Unicode is chosen as the output character set.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
One of the following values:

■ SCCEX_CHARBYTEORDER_BIGENDIAN: Big-Endian byte ordering is common
on RISC and Motorola processors. The ISO 10646 standard, the Unicode Standard
and the W3C recommend Big-Endian Unicode. It also corresponds to network
byte order.

■ SCCEX_CHARBYTEORDER_LITTLEENDIAN: Little Endian is common on Intel
processors.

HTML Export C/C++ Options

HTML Export Options B-3

■ SCCEX_CHARBYTEORDER_TEMPLATE: This value will cause the output to use
the byte ordering used in the main template file, if the template is written in
Unicode. If the template is not written in Unicode, Big-Endian byte order is used.

Default
SCCEX_CHARBYTEORDER_TEMPLATE

B.1.1.3 SCCOPT_EX_OUTPUTCHARACTERSET
This option allows the developer to specify which character set should be used in the
output file. The technology will then translate or "map" characters from the input
document's character set to the output character set as needed. Naturally, export
process does not translate content from one language to another. This character
mapping is also clearly limited by the need for the character to be in both the input
and the output character sets. If a character cannot be mapped, the character will show
up in the output as the "unmappable character." The default unmappable character
used is the asterisk (*). The character used may be changed by setting the SCCOPT_
UNMAPPABLECHAR option. If the resulting output contains an excessive number of
asterisks, selecting a more appropriate output character set should improve the
situation.

The technology reserves the right to override this option. The option will be
overridden if ANSI Double-Byte Character Set (DBCS) characters are detected in the
source document and a single-byte character set is chosen as the output character set.
If the option is overridden, this change will affect the entire output document. The
technology uses the first DBCS character set it finds in the document as the basis for its
decision about which output character set to choose as its override.

Note that special character set override rules apply when the input document uses the
HWP (Hangul 97) filter. For these documents, the output character set will be forced to
SO_ANSI949 (euc-kr) unless the user has selected euc-kr, Unicode or UTF-8 output.
These override rules do not apply to the HWP2 (Hangul 2002) filter, as it uses Unicode
exclusively.

Source documents in Unicode will not override this option. This is especially
important to remember as some important file formats store text in Unicode including
Microsoft Office.

The markup standards currently supported by HTML Export limit documents to a
single character set. That character set is specified in an output file using the
CONTENT attribute of the <meta> tag. This limits what the technology can do with
documents that have multiple character sets. In general, documents that are a mix of a
single Asian language and English characters will translate correctly (although with
some possible loss of non-alphanumeric characters) if the appropriate DBCS, UTF-8 or
Unicode output character set is selected. This is because most DBCS character sets
include the standard 7-bit Latin 1 characters. Documents that contain more than one
DBCS character set or a DBCS character set and a non-English character set (such as
Cyrillic) may not export with all the character glyphs intact unless Unicode or UTF-8 is
used.

Source documents that contain characters from many character sets will look best only
when this option is set to Unicode or UTF-8. This is because the Unicode and UTF-8
character sets contain almost all characters for the most common languages.

While the W3C recommends using Unicode, there is a downside to it at this time. Not
all systems have the appropriate fonts needed for using Unicode or UTF-8. Many
editors do not understand these character sets, as well. In fact, while HTML Export can
read Unicode source documents, it cannot read UTF-8 source documents. In addition,

HTML Export C/C++ Options

B-4 Oracle Outside In HTML Export Developer's Guide

there are some differences in the way browsers interpret the byte order of 2-byte
Unicode characters. For additional details about the byte ordering issue, see
Section B.1.1.2, "SCCOPT_EX_CHARBYTEORDER."

An additional HTML browser idiosyncrasy affects the Netscape 4.0 – 6.0 browsers.
While these browsers properly render Unicode HTML, they seem to be unable to read
.css files that are written in Unicode. For this reason, if the output character set is
Unicode and the HTML flavor (described in Section B.1.2.5, "SCCOPT_EX_FLAVOR")
being generated is Netscape 4.0 or the common 4.0 flavor, the associated .css file will
be written in UTF-8.

In order for HTML Export to correctly place the character set into the output file it
generates, all templates should include a statement that uses the {## insert} macro
to insert the character set into the document, as in the following example:

<meta HTTP-EQUIV="Content-Type" CONTENT="text/html;
charset={## insert element=pragma.charset}" />

If the template does not include this line, the user may have to manually select the
correct character set in the user's browser.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
One of the following values:

Value Description

CS_DOS_437 U.S.

CS_DOS_737 Greek

CS_DOS_850 Latin-1

CS_DOS_852 Latin-2

CS_DOS_855 Cyrillic

CS_DOS_857 Turkish

CS_DOS_860 Portuguese

CS_DOS_863 French Canada

CS_DOS_865 Denmark, Norway-DAT

CS_DOS_866 Cyrillic

CS_DOS_869 Greece

CS_WINDOWS_874 Thailand

CS_WINDOWS_932 Japanese

CS_WINDOWS_936 Chinese GB

HTML Export C/C++ Options

HTML Export Options B-5

Default
■ CS_WINDOWS_1252

B.1.1.4 SCCOPT_UNMAPPABLECHAR
This option selects the character used when a character cannot be found in the output
character set. This option takes the Unicode value for the replacement character. It is
left to the user to make sure that the selected replacement character is available in the
output character set.

Note that when exporting to the 4.0 and higher flavors, HTML Export will not have
any unmappable characters in its HTML. Instead, it will write the unmapped character
out in &#....; notation using the decimal representation of the character's Unicode
value. Newer browsers support this representation and will convert it to the
appropriate character if it is available in the font being used. If the character is not
available in that font, the browser's unmappable character symbol (typically a
rectangular box) will be seen. Also note that there may still be unmapped characters in
text rendered to graphics. This is because the graphic file is generated by HTML
Export at conversion time rather than being rendered by the browser.

Care should be taken in choosing which character to use for the unmappable character.
The character should be one that will create minimal confusion between those
characters that were correctly mapped, and characters that were unmapped. Not only
does such confusion make reading the document more difficult, it can cause additional

CS_WINDOWS_949 Korea (Wansung)

CS_WINDOWS_950 Hong Kong, Taiwan

CS_WINDOWS_1250 Windows Latin 2 (Central Europe)

CS_WINDOWS_1251 Windows Cyrillic (Slavic)

CS_WINDOWS_1252 Windows Latin 1 (ANSI)

CS_WINDOWS_1253 Windows Greek

CS_WINDOWS_1254 Windows Latin 5 (Turkish)

CS_WINDOWS_1255 Windows Hebrew

CS_WINDOWS_1256 Windows Arabic

CS_WINDOWS_1257 Windows Baltic

CS_UNICODE Unicode

CS_UTF8 UTF-8

CS_ISO8859_1 Latin-1 - this is a subset of Windows 1252

CS_ISO8859_2 Latin-2

CS_ISO8859_3 Latin-3

CS_ISO8859_4 Latin-4

CS_ISO8859_5 Cyrillic

CS_ISO8859_6 Arabic

CS_ISO8859_7 Greek

CS_ISO8859_8 Hebrew

CS_ISO8859_9 Turkish

Value Description

HTML Export C/C++ Options

B-6 Oracle Outside In HTML Export Developer's Guide

problems as well. For example, if the unmappable character is also a character in the
name of a font being used in the output, HTML Export may become unable to use that
font. In general, letters and numbers make poor choices for the value of this option.

Handle Types
VTHDOC

Scope
Local

Data Type
VTWORD

Data
The Unicode value for the character to use.

Default
■ 0x002a = "*"

B.1.2 Output
This section describes output options.

B.1.2.1 SCCOPT_EX_CHANGETRACKING
The setting for this option determines whether or not change tracking information in
input documents will be written into the output via the <ins> and HTML tags.
When the option is set to FALSE, no change tracking information will be written into
the output. When set to TRUE, the <ins> and tags will be used as appropriate.

Previous versions of HTML Export included change tracking text in comments.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTBOOL

Default
FALSE

B.1.2.2 SCCOPT_EX_COLLAPSEWHITESPACE
This is an advanced option that casual users of HTML Export may safely ignore.

When set, this option deletes whitespace from the output document. Two types of
whitespace are removed: redundant whitespace characters and vertical whitespace.
This option is intended for situations where bandwidth and screen space are limited.

The HTML standard specifies that the browser will collapse a sequence of whitespace
characters into a single whitespace character. Therefore, having HTML Export remove

HTML Export C/C++ Options

HTML Export Options B-7

these redundant whitespace characters has no effect on the final view of the document.
Removing them benefits the document in reducing the overall size of the output files
generated and thereby saves bandwidth and decreases file transmission times. While
HTML Export makes an effort to remove as much redundant whitespace as possible,
there will be cases where some extra spacing appears in the output.

Removing vertical whitespace, on the other hand, does affect the look of the document
in the browser. When possible, HTML Export preserves vertical spacing between
elements. However, when this option is set, vertical whitespace is removed, resulting
in a more compact view.

Please note that the collapse white space option does not affect whitespace coming
from the template.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTBOOL

Data
One of the following values:

■ TRUE: Whitespace is removed.

■ FALSE: Whitespace is left intact.

Default
FALSE

B.1.2.3 SCCOPT_EX_COMPLIANCEFLAGS
This option allows the developer to force the output to be compliant with a given
standard. Currently, only DTD and well-formed compliance are supported. The option
takes the form of a set of bit flags for toggling the available options. Flags are off by
default and are turned on by bitwise OR-ing them together.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
Any of the following flags bitwise OR-ed together:

■ SCCEX_CFLAG_STRICT_DTD: Set to enforce strict DTD compliance in the HTML
written. The resulting HTML will be well formed. This means that an XML parser

HTML Export C/C++ Options

B-8 Oracle Outside In HTML Export Developer's Guide

can parse it. In addition, "safe" HTML tags normally written by HTML Export are
turned off when this flag is set. For more information about "safe" tags, see
Section B.1.2.5, "SCCOPT_EX_FLAVOR."

Especially when using older HTML flavors, use of this flag somewhat diminishes
the fidelity of the view of the output document compared to the original
document. In addition to other changes to the output, setting this flag also has the
same effect as setting the SCCOPT_EX_PREVENTGRAPHICOVERLAP option to
TRUE.

This flag should not be used with the SCCEX_CFLAG_WELLFORMED flag. If
they are both set, this flag will override the well-formed flag.

Most users will probably want to use the SCCEX_CFLAG_WELLFORMED flag
instead of this flag.

■ SCCEX_CFLAG_WELLFORMED: Set to force the HTML written to be well
formed. This means that an XML parser can parse it. This option differs from the
SCCEX_CFLAG_STRICTDTD flag in that it allows "safe" tags. This flag should not
be used with the SCCEX_CFLAG_STRICTDTD flag. If they are both set, the strict
DTD flag will override this flag. For most users, this flag is recommended over the
use of the SCCEX_CFLAG_STRICTDTD flag as it produces well formed, XHTML
compliant HTML without the penalties imposed by the strict DTD flag.

Default
■ 0: All flags turned off.

B.1.2.4 SCCOPT_EX_EXTRACTEMBEDDEDFILES
This option controls the extraction of attached documents in the input document.
When set to SCCEX_EXTRACT_BINARY, the attachment will be extracted in its native
format, allowing it to be read by the authoring application. When set to SCCEX_
EXTRACT_CONVERT, the attachment will be extracted as HTML. When set to
SCCEX_EXTRACT_OFF, the attachment will be ignored. The SCCEX_EXTRACT_
BINARY option is not compatible with MHTML, and therefore embeddings will
always be converted when exporting to MHTML unless SCCOPT_EX_
EXTRACTEMBEDDEDFILES is set to SCCEX_EXTRACT_OFF.

This option is only valid for UUE, MIME and MSG files and not for general purpose
file attachments.

Data Size
VTDWORD

Handle Types
VTHDOC, VTHEXPORT

Data
■ SCCEX_EXTRACT_OFF: Embeddings are skipped.

■ SCCEX_EXTRACT_CONVERT: Embeddings are converted.

■ SCCEX_EXTRACT_BINARY: Embeddings are extracted in their native file format.

Default
SCCEX_EXTRACT_OFF

HTML Export C/C++ Options

HTML Export Options B-9

B.1.2.5 SCCOPT_EX_FLAVOR
Each Web browser forms a de facto HTML standard. This is because each browser has
a unique collection of HTML tags and tag attributes it does or does not support. Thus,
there are a large number of browser-based variations on the official HTML standards
that are referred to here as "flavors" of HTML.

This option allows the developer to tailor the output generated to a specific browser or
for a specific minimum browser. This allows HTML Export to produce the best
possible rendering of the source document given the tags available in the target flavor.
It also gives the OEM the ability to specify which standard their product will adhere
to, rather than having that standard be dictated by HTML Export.

HTML Export currently supports a large number of flavors. While some flavors are
targeted at specific browsers, other flavors are designed for a more abstract target. The
"generic" and "HTML 2.0" flavors provide "lowest common denominator" flavors. The
HTML produced by these flavors is very simple and should work in almost any
browser. The primary difference between these two flavors is that the generic flavor
supports tables and the HTML 2.0 flavor does not.

At other times, it is desirable to have the ability to create HTML that simply supports
"the major x.0 and later browsers." For this purpose, there are the "greatest common
denominator" flavors. They are the "3.0" and "4.0" flavors. The "3.0" flavor should be
used to create HTML that will look good in Netscape Navigator 3.0 or later and in
Microsoft Internet Explorer 3.0 or later. The "4.0" flavor is defined to look good in
Netscape Navigator 4.0 or later and in Microsoft Internet Explorer 4.0 or later. Note
that upon examining the capabilities of these browsers after the 4.0 versions, it was
determined that while they offer many new features, they do not have any .html or
.css extensions that are useful to HTML Export at this time.

Naturally, support for a particular HTML flavor does not mean that HTML Export will
generate all the tags and tag attributes that flavor supports. There are many tags and
attributes that cannot sensibly be used in an automated conversion setting. Such tags
require more information about the author's intent than is available in the source
document.

Exporting a document to a particular HTML flavor also does not mean that the
resulting HTML will be limited to only the tags and tag attributes supported by that
flavor. In many cases, HTML Export will write out extra "safe" tags to the document,
unless SCCOPT_EX_COMPLIANCEFLAGS has the SCCEX_CFLAG_STRICT_DTD
flag set. The target browser will safely ignore this extra HTML. However, should the
converted document be viewed in a more sophisticated browser, this extra information
will be used to produce a more accurate view of the document.

What support for a particular HTML flavor does mean is that the HTML generated
will look as good as possible when viewed in the appropriate browser.

Note that support for the following flavors have been deprecated and now
automatically map to SCCEX_FLAVOR_GENERICHTML:

■ SCCEX_FLAVOR_MO21

■ SCCEX_FLAVOR_NS11

■ SCCEX_FLAVOR_NS20

■ SCCEX_FLAVOR_MS15

■ SCCEX_FLAVOR_MS20

HTML Export C/C++ Options

B-10 Oracle Outside In HTML Export Developer's Guide

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
One of the following values (flavors marked with "(CSS)" require a separate or
embedded .css file to be created as part of the document conversion):

■ SCCEX_FLAVOR_GENERICHTML: General purpose, simple HTML support that
should look good in any browser that supports tables.

■ SCCEX_FLAVOR_HTML20: HTML 2.0. Based on the official HTML 2.0 standard,
this provides minimal HTML support and per that standard, it does not support
tables.

■ SCCEX_FLAVOR_HTML30: Should look good in both Netscape Navigator 3.0 or
later and Microsoft Internet Explorer 3.0 or later.

■ SCCEX_FLAVOR_HTML40: Should look good in both Netscape Navigator 4.0 or
later and Microsoft Internet Explorer 4.0 or later (CSS).

■ SCCEX_FLAVOR_NS30: Netscape Navigator 3.0

■ SCCEX_FLAVOR_NS40: Netscape Navigator 4.0 (CSS)

■ SCCEX_FLAVOR_MS30: Microsoft Internet Explorer 3.0. Note that while this
flavor has limited CSS support, it does not create a separate or embedded .css file.

■ SCCEX_FLAVOR_MS40: Microsoft Internet Explorer 4.0 (CSS)

Default
■ SCCEX_FLAVOR_HTML40

B.1.2.6 SCCOPT_EX_NOSOURCEFORMATTING
This is an advanced option that casual users may safely ignore.

This option turns off writing of characters that are produced strictly to make the
output more readable and visually appealing. Currently, those formatting characters
are limited to newlines, carriage returns and spaces. This option is of benefit primarily
to users who perform special automated processing on the text produced by the
technology. For these users, even benign non-markup text not originally in the source
document constitutes a source of extra headaches for their processing. Setting this
option excludes all formatting characters from appearing in the generated markup.

It is important to note the things that setting this option does not do:

■ While setting this option will make it very difficult for a human to read the
generated markup in a text editor, it does not affect the browser's rendering of the
document.

■ This option does not affect the contents of the .css files since they do not contain
any text from the source document.

HTML Export C/C++ Options

HTML Export Options B-11

■ The option does not affect spaces or newlines copied from the template as the
contents of the templates are already under the control of the customer.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTBOOL

Data
One of the following values:

■ TRUE: Do not output formatting characters.

■ FALSE: Include formatting characters in the output.

Default
■ FALSE

B.1.2.7 SCCOPT_EX_SHOWHIDDENSSDATA
The setting for this option determines whether or not hidden data (hidden columns,
rows or sheets) in a spreadsheet will be included in the output. When set to FALSE
(the default), the hidden elements are not written. When set to TRUE, they are placed
in the output in the same manner as regular spreadsheet data.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTBOOL

Data
■ TRUE: Allow hidden data to be placed in the output.

■ FALSE: Prevent hidden data from being placed in the output.

Default
FALSE

B.1.2.8 SCCOPT_EX_SHOWHIDDENTEXT
This option will force HTML Export to place all hidden text in line with surrounding
text.

Please note that enabling this option will not display hidden cells, hidden rows or
hidden sheets in spreadsheet documents. Also note that when graphic documents
(such as faxes) are processed by OCR software and converted to PDF, the optically

HTML Export C/C++ Options

B-12 Oracle Outside In HTML Export Developer's Guide

recognized text may be rendered as a layer of hidden text behind the original image. In
order to properly export such PDF documents, this option must be enabled.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTBOOL

Data
■ TRUE: Allow hidden text to be placed in the output.

■ FALSE: Prevent hidden text from being placed in the output.

Default
FALSE

B.1.2.9 SCCOPT_EX_SIMPLESTYLENAMES
This option is for use by people who intend to read or change the CSS style names
generated by HTML Export.

By default, HTML Export creates unique style names based on the style names used in
the original document. Unfortunately, there is an inherent limitation in the style names
the CSS standard permits. That standard only permits the characters [a-z][A-Z][0-9]
and "-". Source document style names do not necessarily have this restriction. In fact
they may even contain Unicode characters at times. For this reason, the original style
names may need to be modified to conform to this standard. To avoid illegal style
names, HTML Export performs the following substitutions on all source style names:

1. If the character is a "-", then it is replaced with "--".

2. If the character is not one of the remaining characters ([a-z][A-Z][0-9]), then it is
replaced by "-xxxx" where "xxxx" is the Unicode value of the character in
hexadecimal.

3. Otherwise the character appears in the style name normally.

An example of one of the most common examples of this substitution is that spaces in
style names are replaced with "-0020". For a more complete example of this character
substitution in style names, consider the source style name My Special H1-Style!. This
would be transformed to:

My-0020Special-0020H1--Style-0021

While admittedly this system lacks a certain aesthetic, it avoids the problem of how
the document looks when the browser receives duplicate or invalid style names.
Developers should also appreciate the simplicity of the code needed to parse or create
these style names.

In addition, HTML Export will sometimes create special character attribute-only
versions of styles. These have the same name as the style they are based on with
"--Char" appended to the end. These styles differ from their original counterparts in
that they contain no block level CSS. This more general solution replaces the solution

HTML Export C/C++ Options

HTML Export Options B-13

implemented in versions 7.1 and earlier which created "--List" styles to solve a subset
of this problem. This was done to work around limitations in some browsers.

Because of these CSS limitations, the SCCOPT_EX_SIMPLESTYLENAMES option was
created. Setting this option to TRUE causes HTML Export to generate style names that
are easy to read but are not guaranteed to be unique. It does this by discarding all
characters in the original style name that are not legal in CSS style names. As one
would expect, this may lead to naming collisions.

An example of a naming collision caused by setting this option can be seen if you look
at source document styles named MyStyle and My $ Style. When exported with this
option, both would become MyStyle. This in turn may generate confusion when
viewing the document in the browser. This is because the browser will look upon the
second style as being a redefinition of the first.

With the option set to FALSE this is not a problem. The two styles would be converted
to MyStyle and My-0020-0024-0020Style respectively. Because the style names are
unique, the browser will not see the second style as a redefinition of the first.

As this contrived example indicates, naming collisions should be rare for most U.S.
documents.

If a style name consists of nothing but illegal characters, HTML Export will create a
style name for it. This style name is of the form UnnamedStyleX where X is a count of
styles encountered so far that did not have style names for one reason or another. This
behavior is expected to be very common when converting international documents in
languages that are not based on 7-bit ASCII.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTBOOL

Data
One of the following values:

■ TRUE: Generate names that may not be unique, but are easy to read.

■ FALSE: Generate unique style names that are difficult to read.

Default
FALSE

B.1.2.10 SCCOPT_RENDERING_PREFER_OIT
This option is only valid on 32-bit and 64-bit Linux (Red Hat and Suse), Solaris Sparc,
IBM AIX and HP-UX RISC platforms.

When this option is set to TRUE, the technology will attempt to use its internal
graphics code to render fonts and graphics. When set to FALSE, the technology will
render images using the operating system's native graphics subsystem (X11 on
UNIX/Linux platforms). Note that this option only works when at least one of the
appropriate output solutions is present. For example, if the UNIX $DISPLAY variable
does not point to a valid X Server, but the OSGD and/or WV_GD modules required

HTML Export C/C++ Options

B-14 Oracle Outside In HTML Export Developer's Guide

for the Outside In output solution exist, Outside In will default to the Outside In
rendering code. The option will fail if neither of these output solutions is present.

It is important for the system to be able to locate useable fonts when this option is set
to TRUE. Only TrueType fonts (*.ttf or *.ttc files) are currently supported. To ensure
that the system can find them, make sure that the environment variable
GDFONTPATH includes one or more paths to these files. If the variable
GDFONTPATH can't be found, the current directory is used. If fonts are called for and
cannot be found, HTML Export will exit with an error. Also note that when copying
Windows fonts to a UNIX system, the font extension for the files (*.ttf or *.ttc) must be
lowercase, or they will not be detected during the search for available fonts. Oracle
does not provide fonts with any Outside In product.

Handle Types
NULL, VTHDOC

Scope
Global

Data Type
VTBOOL

Data
One of the following values:

■ TRUE: Use the technology's internal graphics rendering code to produce bitmap
output files whenever possible.

■ FALSE: Use the operating system's native graphics subsystem.

Default
FALSE

B.1.3 Input Handling
This section describes input handling options.

B.1.3.1 SCCOPT_FALLBACKFORMAT
This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are
generally identified by process of elimination, for example, when a file isn't identified
as having been created by a known application, it is treated as a plain-text file.

This option must be set for an hDoc before any subhandle has been created for that
hDoc.

A number of values that were formerly allowed for this option have been deprecated.
Specifically, the values that selected specific plain-text character sets are no longer to
be used. Instead, applications should use the SCCOPT_DEFAULTINPUTCHARSET
option for such functionality.

Handle Types
NULL, VTHDOC

HTML Export C/C++ Options

HTML Export Options B-15

Scope
Global

Data Type
VTDWORD

Data
The high VTWORD of this value is reserved and should be set to 0, and the low
VTWORD must have one of the following values:

■ FI_TEXT: Unidentified file types will be treated as text files.

■ FI_NONE: Outside In will not attempt to process files whose type cannot be
identified. This will include text files. When this option is selected, an attempt to
process a file of unidentified type will cause Outside In to return an error value of
DAERR_FILTERNOTAVAIL (or SCCERR_NOFILTER).

Default
■ FI_TEXT

B.1.3.2 SCCOPT_FIFLAGS
This option affects how an input file's internal format (application type) is identified
when the file is first opened by the Outside In technology. When the extended test flag
is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or
Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot
guarantee complete accuracy (which would require the inspection of every single byte
in a file to eliminate false positives.)

Handle Types
NULL, VTHDOC

Scope
Global

Data Type
VTDWORD

Data
One of the following values:

■ SCCUT_FI_NORMAL: This is the default value. When this is set, standard file
identification behavior occurs.

■ SCCUT_FI_EXTENDEDTEST: If set, the File Identification code will run an
extended test on all files that are not identified.

Default
■ SCCUT_FI_NORMAL

HTML Export C/C++ Options

B-16 Oracle Outside In HTML Export Developer's Guide

B.1.3.3 SCCOPT_FORMATFLAGS
This option allows the developer to set flags that enable options that span multiple
export products.

Handle Types
VTHDOC

Scope
Local

Data Type
VTDWORD

Data
■ SCCOPT_FLAGS_ALLISODATETIMES: When this flag is set, all Date and Time

values are converted to the ISO 8601 standard. This conversion can only be
performed using dates that are stored as numeric data within the original file.

■ SCCOPT_FLAGS_STRICTFILEACCESS: When an embedded file or URL can't be
opened with the full path, OIT will sometimes try and open the referenced file
from other locations, including the current directory. When this flag is set, it will
prevent OIT from trying to open the file from any location other than the fully
qualified path or URL.

■ 0: All flags turned off

Default
0: All flags turned off

B.1.3.4 SCCOPT_SYSTEMFLAGS
This option controls a number of miscellaneous interactions between the developer
and the Outside In Technology.

Handle Type
VTHDOC

Scope
Local

Data Type
VTDWORD

Data
■ SCCVW_SYSTEM_UNICODE: This flag causes the strings in SCCDATREENODE

to be returned in Unicode.

Default
0

HTML Export C/C++ Options

HTML Export Options B-17

B.1.3.5 SCCOPT_IGNORE_PASSWORD
This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should
prompt for a password if it handles password-protected files.

As of Release 8.4.0, only the PST and MDB Filters support this option.

Scope
Global

Data Type
VTBOOL

Data
■ TRUE: Ignore validation of the password

■ FALSE: Prompt for the password

Default
FALSE

B.1.3.6 SCCOPT_LOTUSNOTESDIRECTORY
This option allows the developer to specify the location of a Lotus Notes or Domino
installation for use by the NSF filter. A valid Lotus installation directory must contain
the file nnotes.dll.

Handle Types
NULL

Scope
Global

Data Type
VTLPBYTE

Data
A path to the Lotus Notes directory.

Default
If this option isn't set, then OIT will first attempt to load the Lotus library according to
the operating system's PATH environment variable, and then attempt to find and load
the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

B.1.3.7 SCCOPT_PARSEXMPMETADATA
Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
parsing of the XMP data into normal OIT document properties. Enabling this option

Note: Please see section 2.1.1 for NSF support on Win x86-32 or Win
x86-64 or section 3.1.1 for NSF support on Linux x86-32 or Solaris
Sparc 32.

HTML Export C/C++ Options

B-18 Oracle Outside In HTML Export Developer's Guide

may cause the loss of some regular data in premium graphics filters (such as
Postscript), but won't affect most formats (such as PDF).

Handle Types
VTHDOC

Scope
Local

Data Type
VTBOOL

Data
■ TRUE: This setting enables parsing XMP.

■ FALSE: This setting disables parsing XMP.

Default
FALSE

B.1.3.8 SCCOPT_PDF_FILTER_REORDER_BIDI
This option controls whether or not the PDF filter will attempt to reorder bidirectional
text runs so that the output is in standard logical order as used by the Unicode 2.0 and
later specification. This additional processing will result in slower filter performance
according to the amount of bidirectional data in the file.

Handle Types
VTDOC, NULL

Scope
Global

Data Type
VTDWORD

Data
■ SCCUT_FILTER_STANDARD_BIDI

■ SCCUT_FILTER_REORDERED_BIDI

Default
SCCUT_FILTER_STANDARD_BIDI

B.1.3.9 SCCOPT_TIMEZONE
This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values. This option
will not affect dates that are stored as text.

Note: This option does not apply for spreadsheet files.

HTML Export C/C++ Options

HTML Export Options B-19

Handle Types
NULL, VTHDOC

Scope
Global

Data Type
VTLONG

Data
Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify SCC_TIMEZONE_
USENATIVE.

Default
■ 0: GMT time

B.1.3.10 SCCOPT_HTML_COND_COMMENT_MODE
Some HTML includes a special type of comment that will be read by particular
versions of browsers or other products. This option allows you to control which of
those comments are included in the output.

Handle Type
VTHDOC

Scope
Local

Data Type
VTDWORD

Data
■ One or more of the following values OR-ed together:

■ HTML_COND_COMMENT_NONE: Don't output any conditional comments.
Note: setting any other flag will negate this.

■ HTML_COND_COMMENT_IE5: include the IE 5 comments

■ HTML_COND_COMMENT_IE6: include the IE 6 comments

■ HTML_COND_COMMENT_IE7: include the IE 7 comments

■ HTML_COND_COMMENT_IE8: include the IE 8 comments

■ HTML_COND_COMMENT_IE9: include the IE 9 comments

■ HTML_COND_COMMENT_ALL: include all conditional comments including the
versions listed above and any other versions that might be in the HTML.

B.1.3.11 SCCOPT_PDF_FILTER_DROPHYPHENS
This option controls whether or not the PDF filter will drop hyphens at the end of a
line. Since most PDF-generating tools create them as generic dashes, it's impossible for
Outside In to know if the hyphen is a syllable hyphen or part of a hyphenated word.

HTML Export C/C++ Options

B-20 Oracle Outside In HTML Export Developer's Guide

When this option is set to TRUE, all hyphens at the end of lines will be dropped from
the extracted text.

Handle Types
VTHDOC

Scope
Local

Data Type
VTBOOL

Data
■ TRUE: This setting drops hyphens from the end of all lines.

■ FALSE: This setting retains hyphens at the end of all lines.

Default
FALSE

B.1.3.12 SCCOPT_ARCFULLPATH
In the Viewer and rendering products, this option tells the archive display engine to
show the full path to a node in the szNode field in response to a SCCVW_
GETTREENODE message. It also causes the name fields in DAGetTreeRecord and
DAGetObjectInfo to contain the full path instead of just the archive node name.

Data Type
VTBOOL

Data
■ TRUE: Display the full path.

■ FALSE: Do not display the path.

Default
FALSE

B.1.4 Layout
This section describes layout options.

B.1.4.1 SCCOPT_EX_FALLBACKFONT
Determines what font will be used when the font specified by the document is not
available.

Currently this option is only used in certain situations where a CSS flavor of HTML is
in use. Specifically, this option helps to avoid problems in some browsers where

Note: When this option is TRUE, the character counts for the
extracted text may not match the counts used for rendering where the
hyphens are required for rendering. This will affect annotations in
rendering APIs.

HTML Export C/C++ Options

HTML Export Options B-21

symbol fonts like Wingdings are used for the bullets in lists, and the body of the list is
in a font the browser cannot find. In this case, specifying a fallback font prevents the
browser from using/cascading the Wingdings font into the text of the list when the
browser cannot find the font specified for the list text.

To turn off the fallback font, this option must be explicitly set to an empty string ("").
While turning off the fallback font is not recommended, it will result in a minor
reduction in the size of the HTML and CSS generated.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
SCCUTFALLBACKFONT structure

Data
The name of the fallback font and the character set of that font.

Default
If this option is not set, "Arial" is used as the default fallback font.

B.1.4.1.1 SCCUTFALLBACKFONT Structure

typedef struct
{
 VTLPVOID pName;
 VTWORD wType;
} SCCUTFALLBACKFONT, * LPSCCUTFALLBACKFONT;

Parameters
■ pName: Points to the name of the font. The font name may be up to SCCUT_

MAXFALLBACKFONTLEN characters in length including the NULL terminator.

■ wType: Specifies if the string pointed to by pName is string of single or
double-byte characters. To specify the fallback font name with a single-byte
character string, set wType to SCCEX_FALLBACKFONT_SINGLEBYTE. Set
wType to SCCEX_FALLBACKFONT_DOUBLEBYTE to specify the font name with
a double-byte character string.

B.1.4.2 SCCOPT_EX_FONTFLAGS
This option is used to turn off specified font-related markup in the output. Naturally, if
the requested output flavor or other option settings prevent markup of the specified
type from being written, this option cannot be used to turn it back on. However,
specifying the size, color and font face of characters may all be suppressed by bitwise
OR-ing together the appropriate combination of flags in this option.

Handle Types
VTHDOC, VTHEXPORT

HTML Export C/C++ Options

B-22 Oracle Outside In HTML Export Developer's Guide

Scope
Local

Data Type
DWORD

Data
Zero or more of the following flags bitwise OR-ed together:

■ SCCEX_FONTFLAGS_SUPPRESSSIZE: Turns off any character-sizing information
supported in the output flavor. As an example, this flag could be useful when
exporting presentation files where the author specified a very large font.

■ SCCEX_FONTFLAGS_SUPPRESSCOLOR: Suppresses specifying the color of text.
This is particularly useful for exports of documents containing white text.

■ SCCEX_FONTFLAGS_SUPPRESSFACE: Prevents the technology from requesting
a specific font (e.g. "Arial", "Courier", etc.) name for text. This can be useful if the
template author feels that the original document font is not likely to be available to
those who are viewing the converted document.

Default
■ 0: No font information is suppressed.

B.1.4.3 SCCOPT_EX_GENBULLETSANDNUMS
Turning this option on causes the technology to generate list numbers and/or bullets
as needed rather than using list markup tags. While this violates the spirit of what
markup languages should do, it does cause the browsers to render the lists in a way
that is more faithful to the original look of the document. An example of a list that
does not view well with this option turned off is the following:

Figure B–1 List Example

This is an example of how today's most popular browsers would render the preceding
list:

Figure B–2 Browser-rendered List

This is due to the way browsers render tags. The HTML standards currently do
not allow any way to specify outline style list numbering.

HTML Export C/C++ Options

HTML Export Options B-23

One limitation when using this option is that standard list indentation may not be
possible due to the limits of the selected output HTML flavor. At this time, only the
HTML flavors where CSS is available support the kind of hanging indents normally
associated with lists.

If a bullet character needs to be generated, Unicode character 0x2022 will be used.
Note that many character sets do not contain this character, so the unmappable
character ("*") would be used in that case.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTBOOL

Data
One of the following values:

■ TRUE: Generate list item numbers and bullets.

■ FALSE: Use list markup tags.

Default
■ FALSE

B.1.4.4 SCCOPT_EX_GRIDADVANCE
Options related to grids have no effect on the output unless a template that has been
enabled with the {## unit} template macro is in use.

This option allows the developer to specify how the "previous" and "next"
relationships will work between grids. As such, it is only useful when a grid-enabled
template has been selected with the SCCOPT_EX_TEMPLATE option.

Setting this option to SCCEX_GRIDADVANCE_ACROSS causes the grids.next.body
template element to traverse the input spreadsheet or database by rows:

Figure B–3 Traverse Input By Rows

Setting this option to SCCEX_GRIDADVANCE_DOWN causes the grids.next.body
template element to traverse the input spreadsheet or database by columns:

HTML Export C/C++ Options

B-24 Oracle Outside In HTML Export Developer's Guide

Figure B–4 Traverse Input By Columns

This option has no effect on up/down or left/right navigation.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
One of the following values:

■ SCCEX_GRIDADVANCE_ACROSS: To traverse by rows.

■ SCCEX_GRIDADVANCE_DOWN: To traverse by columns.

Default
SCCEX_GRIDADVANCE_DOWN

B.1.4.5 SCCOPT_EX_GRIDCOLS
Options related to grids have no effect on the output unless a template that has been
enabled with the {## unit} template macro is in use.

This option allows the developer to specify the number of columns that each template
"grid" (applicable only to spreadsheet or database files) should contain. As such, it is
only useful when a grid-enabled template has been selected with the SCCOPT_EX_
TEMPLATE option.

Setting this option to zero ("0") means that no limit is placed on the number of columns
in the grid. However, the settings of the SCCOPT_EX_PAGESIZE, SCCOPT_EX_
GRIDCOLS and SCCOPT_EX_GRIDROWS options must all be taken into account
when determining the actual dimensions of the grids used during an export. The
following table describes the interaction of these options when a template is using
grids:

Table B–1 Determining Grid Dimensions

Grid Row/Col Value Page Size is 0 Page Size is not 0

Grid Rows and Grid Cols are
both 0.

The entire spreadsheet is
exported.

The grid size is determined
based on the Page Size.

Grid Rows is 0. Grid Cols is
not 0 or the default value.

The table is broken into grids
that are Grid Cols wide. Each
grid contains all rows.

The number of rows in the
grid are determined by the
Page Size.

HTML Export C/C++ Options

HTML Export Options B-25

Also note that once the grid size has been established for a sheet in a spreadsheet or
database, the sheet cannot be re-exported with different grid dimensions. The sheet
may be re-exported, however, if grids are disabled using sections.current.body.

Size calculations are performed using approximations. It is expected that each cell in
the grid will contain roughly 10 characters of content. Therefore, the number of cells in
the grid will be roughly the page size divided by 10. Setting the SCCOPT_EX_
PAGESIZE option will not cause content to be truncated if it exceeds the 10 characters
of content expected in a given cell. Note that the pageSize option is never used to force
a grid to break into pages. Thus, once the grid dimensions have been established, no
page breaking is performed on the grid.

The default value for this option was chosen to prevent problems with large
spreadsheets, which can consume conversion time while creating unmanageable
output. Together with the default grid rows option value, the default grid dimensions
represent the largest table size HTML Export can produce that will not result in
browsers locking up when they try to read the file.

The solution to this large spreadsheet problem depends on whether or not page
breaking is in effect:

■ If page breaking is being used, use the maxreps attribute of the {## repeat}
macro to prevent large files from becoming unmanageable.

■ If page breaking is NOT being used, spreadsheets should be exported by inserting
only the first grid of the spreadsheet (grids.1.body). Don't use a {## repeat}
loop to get all the grids. Test for the existence of a second grid (grids.2.body). If
this grid exists, then have the template write out a message indicating that the
spreadsheet's contents were truncated on export.

Implementing support for spreadsheets in this manner rather than by inserting
sections.current.body improves performance only when outputting very large
spreadsheets. In these special cases, only the first grid is exported, resulting in
significant performance savings. This savings also has the side benefit of producing an
output file that most Web browsers will have little trouble displaying.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Grid Rows is not 0 or the
default value. Grid Cols is 0.

The table is broken into grids
that are Grid Rows wide. Each
grid contains all columns.

The number of columns in the
grid are determined by the
Page Size.

Grid Rows and Grid Cols are
both not set to 0 or their
default values.

The table is broken into grids
of the requested size.

The table is broken into grids
of the requested size.

Grid Rows and Grid Cols are
both set to their default
values.

The table is broken into grids
of the default size.

The table is broken into grids
of the default size.

Table B–1 (Cont.) Determining Grid Dimensions

Grid Row/Col Value Page Size is 0 Page Size is not 0

HTML Export C/C++ Options

B-26 Oracle Outside In HTML Export Developer's Guide

Data Type
VTDWORD

Data
Number of columns in the grid. Use "0" (zero) to not limit the number of columns in
the grid.

Default
■ EX_GRIDCOLS_DEFAULT: The default value for this setting is currently 100, but

it is subject to change.

B.1.4.6 SCCOPT_EX_GRIDROWS
Options related to grids have no effect on the output unless a template that has been
enabled with the {## unit} template macro is in use.

This option allows the developer to specify the number of rows that each template
"grid" (applicable only to spreadsheet or database files) should contain. As such, it is
only useful when a grid-enabled template has been selected with the SCCOPT_EX_
TEMPLATE option.

Setting this option to zero ("0") means that no limit is placed on the number of rows in
the grid. However, the settings of the SCCOPT_EX_PAGESIZE, SCCOPT_EX_
GRIDCOLS and SCCOPT_EX_GRIDROWS options must all be taken into account
when determining the actual dimensions of the grids used during an export.

Also note that once the grid size has been established for a sheet in a spreadsheet or
database, the sheet cannot be re-exported with different grid dimensions. The sheet
may be re-exported, however, if grids are disabled using sections.current.body.

Size calculations are performed using approximations. It is expected that each cell in
the grid will contain roughly 10 characters of content. Therefore, the number of cells in
the grid will be roughly the page size divided by 10. Setting the pageSize option will
not cause content to be truncated if it exceeds the 10 characters of content expected in a
given cell. Note that the pageSize option is never used to force a grid to break into
pages. Thus, once the grid dimensions have been established, no page breaking is
performed on the grid.

The default value for this option was chosen to prevent problems with large
spreadsheets, which can consume conversion time while creating unmanageable
output. Together with the default grid columns option value, the default grid
dimensions represent the largest table size HTML Export can produce that will not
result in browsers locking up when they try to read the file.

The solution to this large spreadsheet problem depends on whether or not page/deck
breaking is in effect:

■ If page breaking is being used, use the maxreps attribute of the {## repeat}
macro to prevent large files from becoming unmanageable.

■ If page breaking is NOT being used, spreadsheets should be exported by inserting
only the first grid of the spreadsheet (grids.1.body). Don't use a {## repeat}
loop to get all the grids. Test for the existence of a second grid (grids.2.body). If
this grid exists, then have the template write out a message indicating that the
spreadsheet's contents were truncated on export.

Implementing support for spreadsheets in this manner rather than by inserting
sections.current.body improves performance only when inputting very large
spreadsheets. In these special cases, only the first grid is exported, resulting in

HTML Export C/C++ Options

HTML Export Options B-27

significant performance savings. This savings also has the side benefit of producing an
output file that most Web browsers will have little trouble displaying.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
Number of rows in the grid. Use "0" (zero) to not limit the number of rows in the grid.

Default
■ EX_GRIDROWS_DEFAULT: The default value for this setting is currently 5000,

but it is subject to change.

B.1.4.7 SCCOPT_EX_GRIDWRAP
Options related to grids have no effect on the output unless a template that has been
enabled with the {## unit} template macro is in use.

This option allows the developer to specify how the "previous" and "next"
relationships will work between grids at the edges of the spreadsheet or database. As
such, it is only useful when a grid-enabled template has been selected with the
SCCOPT_EX_TEMPLATE option.

This option is best explained by example. Consider a spreadsheet that has been broken
into 9 grids by HTML Export as follows:

Figure B–5 Spreadsheet Broken into Grids

■ If this option is set to TRUE, then the grids.next.body value after Grid 3 will be
Grid 4. Likewise, the grids.previous.body value before Grid 4 will be Grid 3.

■ If this option is set to FALSE, then the grids.next.body after Grid 3 will not exist as
far as template navigation is concerned. Likewise, the grids.previous.body before
Grid 4 will not exist as far as template navigation is concerned.

In other words, this option specifies whether the "previous" and "next" relationships
"wrap" at the edges of the spreadsheet or database.

Handle Types
VTHDOC, VTHEXPORT

HTML Export C/C++ Options

B-28 Oracle Outside In HTML Export Developer's Guide

Scope
Local

Data Type
VTDWORD

Data
■ TRUE: To continue past the edge of the spreadsheet.

■ FALSE: To stop at the edge of the spreadsheet.

Default
TRUE

B.1.4.8 SCCOPT_EX_JAVASCRIPTTABS
Tab support is available by setting this option to TRUE. When active, this option uses
JavaScript to calculate tab stops and position blocks of text accordingly. Potential side
effects of this include delays in loading the pages in the browser and seeing the text
initially with no whitespace at all followed by a pause and then all of the tabs popping
into place. In addition, this support is limited to only left tabs.

In order to take advantage of this option the following additional steps must be taken:

1. The template must contain a <script> tag. Something similar to the following code
fragment is recommended:

{## if element=pragma.jsfile}
<script language="Javascript1.2" src="{## insert
element=pragma.jsfile}"></script>
{## /if}

2. The template must also run the DoTabStops routine in the <body> of the HTML. A
span tag used to define the value of oneinch should follow this. Something similar
to the following code snippet is recommended to accomplish this:

{## if element=pragma.jsfile}
 <body onload="DoTabStops()">

{## else}
 <body>
{## /if}

3. A flavor of HTML that supports CSS must be used.

4. The user's browser must support JavaScript and this support must be enabled.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTBOOL

HTML Export C/C++ Options

HTML Export Options B-29

Data
One of the following values:

■ TRUE: Use JavaScript to create tabs.

■ FALSE: No tab support.

Default
■ FALSE

B.1.4.9 SCCOPT_EX_PAGESIZE
This option sets a suggested page size for the output generated. This means that the
text of the document is broken up into "pages" of approximately the requested size.
Each page is stored as a separate output file.

This feature is particularly useful when converting documents that are poorly
structured. Many documents lack the kind of style information HTML Export
normally uses to break the document into pieces based on things like headings. By
setting this option, the exported document can be presented as a set of more
manageable pieces rather than a single giant output file. It is also useful with
documents that are structured but have large pieces in the structure.

If page breaking is activated (set to a non-zero value), HTML Export will buffer the
entire output document in memory during conversion. Conversion times and memory
requirements will increase accordingly in this case.

The size specified by this option is given in characters of text. Only text inserted from
the input document is counted in the page size. Thus, "as is" text from the template is
not counted against the page size. Also, markup tags are not counted in the page size.
In addition, some template inserts are normally used as attributes to markup tags, and
as such they are not counted in page size calculations no matter how they are actually
used. Those template inserts are:

■ pragma.charset

■ pragma.jsfile

■ pragma.cssfilename

■ sections.x.itemnum

■ sections.x.reflink

A page size of zero ("0") indicates that this option is turned off and no page breaking is
done.

When this option is turned on, the page breaking rules are as follows:

■ Hard page breaks in the document always trigger a page break. Soft page breaks
are ignored.

■ A page break may be specified in the template with the {## unit break}
macro.

■ A page boundary will never be created in the middle of a paragraph. As many
paragraphs as possible will be written without exceeding the requested page size.
Page sizes are not hard limits on content however. One situation where the page
size could be exceeded would be if a single paragraph exceeds the page size.

■ When grid-enabled templates are in use, the exported grids are not broken based
on the setting of this option. However, this option may affect the size of grids

HTML Export C/C++ Options

B-30 Oracle Outside In HTML Export Developer's Guide

generated. FOr more information, see Section B.1.4.5, "SCCOPT_EX_GRIDCOLS,"
or Section B.1.4.6, "SCCOPT_EX_GRIDROWS."

■ Use of this option will not cause the contents of cells within a grid to be truncated.

■ When grids are not in effect, spreadsheets and databases will be broken based on
page size. For these section types, checks for page breaks will be made after each
full row from the spreadsheet or database is written.

It is up to the template author to then connect these pieces with the appropriate links.
In order to use this option, the template must be equipped to use the {## unit}
syntax.

Note that templates enabled with the {## unit} syntax may be mixed with
templates that do not contain {## unit} macros. In this case, page breaking will only
occur in the template that is enabled with {## unit} macros. An example of where
this would be desirable is a "table of contents" template that uses two sub templates to
each fill in the contents of a frame. The frame containing the actual table of contents
could avoid being broken into pages by not containing any {## unit} macros. The
frame containing the actual document contents could then support paging by using
{## unit} macros.

Handle Types
VTHDOC, VTHEXPORT

Data Type
VTDWORD

Data
Approximate page size in characters.

Default
■ 0: No page size limit.

B.1.4.10 SCCOPT_EX_PREVENTGRAPHICOVERLAP
Most browsers support flowing text around images. Unfortunately, even the most
popular browsers also have bugs in their support for this feature that occasionally
result in document elements overlapping. This option allows users of HTML Export to
choose if they would rather have text flowing around graphics or if they are willing to
sacrifice that feature in order to prevent browser overlap bugs.

When this option is turned on (set to TRUE), HTML Export prevents browsers from
causing graphic overlap problems by surrounding all tags with <div> tags. The
overlap problems occur most frequently when the browser is displaying a document
that has a mix of left- and right-aligned graphics in close proximity to each other.
Resizing the browser window horizontally will sometimes expose this problem if it
does not appear initially.

Because these browser bugs are infrequently seen, this option is turned off (set to
FALSE) by default. However, setting this option to FALSE does not guarantee that text
will be able to flow around graphics in the browser the same way it does in the
original document. There are two problems which can prevent this from occurring.

The first problem is that when objects are placed using positional frames.
Unfortunately, most new word processing formats do this automatically. When
positional frames are used, each object exists in its own frame. HTML Export converts

HTML Export C/C++ Options

HTML Export Options B-31

each frame as a single paragraph. Therefore, the objects are written one after the other
even if they were originally placed side by side in the source document.

The second problem is associated with image alignment. For some images, HTML
Export is unable to obtain the alignment of the image, so the alignment of the
paragraph it is contained in is used instead. The reason HTML Export uses this
alignment, which is not necessarily 100% correct, is because without adding "align=" in
the tag, text does not wrap around images in browsers.

Also note that setting this option to FALSE will have no effect if the SCCEX_CFLAG_
STRICTDTD flag of the SCCOPT_EX_COMPLIANCEFLAGS option is set. This is
because <div> tags are not allowed inside <p> tags, so HTML Export cannot use
<div> tags to prevent graphics from overlapping.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTBOOL

Data
■ TRUE: Allow text flow around graphics.

■ FALSE: Prevent browser image overlap problems.

Default
FALSE

B.1.4.11 SCCOPT_EX_TEMPLATE
This option allows the developer to specify the template file that the technology uses
to generate its output.

There are two ways to specify the template. One method is to set the SCCOPT_EX_
TEMPLATE option with DASetOption. The other is to set it using
DASetFileSpecOption. The second method is for use with redirected IO and/or
Unicode with template files. Developers should use DASetOption or
DASetFileSpecOption to set this option, but not both. The following two sections
describe both methods.

B.1.4.11.1 Using DASetOption to Specify the Template You can use DASetOption to specify
the template.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
This is the size of the buffer containing a NULL-terminated string.

HTML Export C/C++ Options

B-32 Oracle Outside In HTML Export Developer's Guide

Data
A complete path to the template file in the local file system or a pointer to a
developer-defined data structure to be used for redirected IO.

Default
If no template file is specified, a standard template is used.

B.1.4.11.2 Using DASetFileSpecOption to Specify the Template You can use
DASetFileSpecOption to specify the template.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Parameters
■ dwSpecType: The spec type of the file. Should be set to one of the valid spec types.

■ pSpec: File location specification.

Default
If no template is specified, a standard template is used.

B.1.5 Compression
This section pertains to compression options.

B.1.5.1 SCCOPT_FILTERJPG
This option can disable access to any files using JPEG compression, such as JPG
graphic files or TIFF files using JPEG compression, or files with embedded JPEG
graphics. Attempts to read or write such files when this option is enabled will fail and
return the error SCCERR_UNSUPPORTEDCOMPRESSION if the entire file is JPEG
compressed, and grey boxes for embedded JPEG-compressed graphics.

The following is a list of file types affected when this option is disabled:

■ JPG files

■ Postscript files containing JPG images

■ PDFs containing JPEG images

Note that the setting for this option overrides the requested output graphic format
when there is a conflict. In the case of HTML Export, the output graphic type is set to
FI_NONE in these situations.

Handle Types
VTHDOC, HEXPORT

Scope
Local

HTML Export C/C++ Options

HTML Export Options B-33

Data Type
VTDWORD

Data
■ SCCVW_FILTER_JPG_ENABLED: Allow access to files that use JPEG compression

■ SCCVW_FILTER_JPG_DISABLED: Do not allow access to files that use JPEG
compression

Default
SCCVW_FILTER_JPG_ENABLED

B.1.5.2 SCCOPT_FILTERLZW
This option can disable access to any files using Lempel-Ziv-Welch (LZW)
compression, such as .GIF files, .ZIP files or self-extracting archive (.EXE) files
containing "shrunk" files. Attempts to read or write such files when this option is
enabled will fail and return the error SCCERR_UNSUPPORTEDCOMPRESSION if the
entire file is LZW compressed, and grey boxes for embedded LZW-compressed
graphics.

The following is a list of file types affected when this option is disabled:

■ GIF files

■ TIF files using LZW compression

■ PDF files that use internal LZW compression

■ TAZ and TAR archives containing files that are identified as FI_UNIXCOMP

■ ZIP and self-extracting archive (.EXE) files containing "shrunk" files

■ Postscript files using LZW compression

Although this option can disable access to files in ZIP or EXE archives stored using
LZW compression, any files in such archives that were stored using any other form of
compression will still be accessible.

The setting for this option overrides the requested output graphic format when there is
a conflict. In the case of HTML Export, the output graphic type is set to FI_NONE in
these situations.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
■ SCCVW_FILTER_LZW_ENABLED: LZW compressed files will be read and

written normally.

■ SCCVW_FILTER_LZW_DISABLED: LZW compressed files will not be read or
written.

HTML Export C/C++ Options

B-34 Oracle Outside In HTML Export Developer's Guide

Default
SCCVW_FILTER_LZW_ENABLED

B.1.6 Graphics
This section discusses graphics options.

B.1.6.1 SCCOPT_GIF_INTERLACED
This option allows the developer to specify interlaced or non-interlaced GIF output.
Interlaced GIFs are useful when graphics are to be downloaded over slow Internet
connections. They allow the browser to begin to render a low-resolution view of the
graphic quickly and then increase the quality of the image as it is received. There is no
real penalty for using interlaced graphics.

This option is only valid if the graphicType option is set to FI_GIF.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTBOOL

Data
One of the following values:

■ TRUE: Produce interlaced GIFs.

■ FALSE: Produce non-interlaced GIFs.

Default
TRUE

B.1.6.2 SCCOPT_GRAPHIC_HEIGHTLIMIT
This is an advanced option that casual users of this technology may safely ignore. It
allows a hard limit to be set for how tall in pixels an exported graphic may be. Any
images taller than this limit will be resized to match the limit. It should be noted that
regardless whether the SCCOPT_GRAPHIC_WIDTHLIMIT option is set or not, any
resized images will preserve their original aspect ratio.

Note that this option differs from the behavior of setting the height of graphics by
using HEIGHT= in a {## insert} statement in the template in two ways:

1. This option sets an upper limit on the image height. Images larger than this limit
will be reduced to the limit value. However, images smaller than this height will
not be enlarged when using this option. Setting the height using the height
attribute in the template causes all non-embedded images to be reduced or
enlarged to be of the specified height.

2. This option works for embedded images as well as non-embedded images. Setting
a height using HEIGHT= in a {## insert} statement in the template causes
only non-embedded images to be of the specified height.

HTML Export C/C++ Options

HTML Export Options B-35

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
The maximum height of the output graphic in pixels. A value of zero is equivalent to
SCCGRAPHIC_NOLIMIT, which causes this option to be ignored.

Default
■ SCCGRAPHIC_NOLIMIT: No absolute height limit specified.

B.1.6.3 SCCOPT_GRAPHIC_OUTPUTDPI
This is an advanced option that casual users of this technology may safely ignore.

While this option is used to help compute table sizes, it is primarily a graphics option.
Early browsers and versions of the HTML standard limit the specification of image
sizes to dimensions in pixels. For images in particular, this is somewhat natural as GIF,
JPEG, and PNG are bitmap formats whose sizes are defined in pixels. However, many
of the source graphics and tables converted by HTML Export specify their size in
physical units such as inches or centimeters, and there is no way for HTML Export to
know how big a pixel is on the target device for the converted document. In fact, a
single document may ultimately be viewed on many devices, each with a different
number of pixels or dots per inch (DPI). Knowing this information can be important. If
graphics are converted to be too small, image detail will be lost. Conversely, if the
graphics are converted to be too large, files will take longer to download than is
desired.

This option allows the user to specify the output graphics device's resolution in DPI
and only applies to images whose size is specified in physical units (in/cm). For
example, consider a 1" square, 100 DPI graphic that is to be rendered on a 50 DPI
device (SCCOPT_GRAPHIC_OUTPUTDPI is set to 50). In this case, the size of the
resulting WBMP, TIFF, BMP, JPEG, GIF, or PNG will be 50 x 50 pixels.

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is
defined as 0, can be used to suppress any dimensional changes to an image. In other
words, a 1" square, 100 DPI graphic will be converted to an image that is 100 x 100
pixels in size. This value indicates that the DPI of the output device is not important. It
extracts the maximum resolution from the input image with the smallest exported
image size.

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the
creation of extremely large images. Be aware that there may be limitations in the
system running this technology that could result in undesirably large bandwidth
consumption or an error message. Additionally, an out of memory error message will
be generated if system memory is insufficient to handle a particularly large image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the
technology to use the DPI settings already present in raster images, but will use the
current screen resolution as the DPI setting for any other type of input file.

HTML Export C/C++ Options

B-36 Oracle Outside In HTML Export Developer's Guide

For some output graphic types, there may be a discrepancy between the value set by
this option and the DPI value reported by some graphics applications. The
discrepancy occurs when the output format uses metric units (DPM, or dots per meter)
instead of English units (DPI, or dots per inch). Depending on how the graphics
application performs rounding on meters to inches conversions, the DPI value
reported may be 1 unit more than expected. An example of a format which may
exhibit this problem is PNG.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
The DPI to use when exporting graphic images. The maximum value allowed is
SCCGRAPHIC_MAX_SANE_BITMAP_DPI, which is currently defined to be 2400 DPI.

Default
■ SCCGRAPHIC_DEFAULT_OUTPUT_DPI: Currently defined to be 96 dots per

inch.

B.1.6.4 SCCOPT_GRAPHIC_SIZELIMIT
This option is used to set the maximum size of the exported graphic in pixels. It may
be used to prevent inordinately large graphics from being converted to equally
cumbersome output files, thus preventing bandwidth waste.

SCCOPT_GRAPHIC_SIZELIMIT takes precedence over all other options and settings
that affect the size of a converted graphic. For example, if the template specifies image
dimensions that exceed this size, those dimensions will be used only to calculate the
aspect ratio of the final image. The image's dimensions will be restricted to produce a
graphic no larger than this limit allows.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
The total number of pixels in the output graphic. A value of zero ("0"), which is
equivalent to SCCGRAPHIC_NOLIMIT, causes this option to be ignored.

Default
■ SCCGRAPHIC_NOLIMIT: Option is turned off.

HTML Export C/C++ Options

HTML Export Options B-37

B.1.6.5 SCCOPT_GRAPHIC_SIZEMETHOD
This option determines the method used to size graphics. The developer can choose
among three methods, each of which involves some degree of trade off between the
quality of the resulting image and speed of conversion.

Using the quick sizing option results in the fastest conversion of color graphics,
though the quality of the converted graphic will be somewhat degraded. The smooth
sizing option results in a more accurate representation of the original graphic, as it
uses anti-aliasing. Antialiased images may appear smoother and can be easier to read,
but rendering when this option is set will require additional processing time. The
grayscale only option also uses antialiasing, but only for grayscale graphics, and the
quick sizing option for any color graphics.

The smooth sizing option does not work on images which have a width or height of
more than 4096 pixels.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
One of the following values:

■ SCCGRAPHIC_QUICKSIZING: Resize without antialiasing

■ SCCGRAPHIC_SMOOTHSIZING: Resize using antialiasing

■ SCCGRAPHIC_SMOOTHGRAYSCALESIZING: Resize using antialiasing for
grayscale graphics only (no antialiasing for color graphics)

Default
SCCGRAPHIC_SMOOTHSIZING

B.1.6.6 SCCOPT_GRAPHIC_TRANSPARENCYCOLOR
This option allows the user to set the color used as the "transparency color" in the
output graphic file. Naturally, this option is only used when the selected output
graphic file format supports transparency (GIF and PNG only). If the option is not set,
the default behavior is to use the same color value that the input file used as the
transparency color.

Use the SCCVWRGB(r, g, b) macro to create the color value to pass to this option. The
red, green and blue values are percentages of the color from 0-255 (with 255 being
100%). Note that this macro should be used to set a variable of type
SCCVWCOLORREF and that variable should then be passed to the set option routine
(instead of trying to use the macro as part of the set option call directly).

Since there is no way to "unset" an option once it has been set, the developer may set
the option to SCCGRAPHIC_DEFAULTTRANSPARENCYCOLOR if they wish to
revert to the default behavior.

HTML Export C/C++ Options

B-38 Oracle Outside In HTML Export Developer's Guide

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
SCCVWCOLORREF

Data
An RGB color value created with the SCCVWRGB(r, g, b) macro.

Default
■ SCCGRAPHIC_DEFAULTTRANSPARENCYCOLOR: Use the same transparency

color as the source document.

B.1.6.7 SCCOPT_GRAPHIC_TYPE
This option allows the developer to specify the format of the graphics produced by the
technology.

■ When setting this option, remember that the JPEG file format does not support
transparency.

■ Though the GIF file format supports transparency, it is limited to using only one of
its 256 available colors to represent a transparent pixel ("index transparency").

■ PNG supports many types of transparency. The PNG files written by HTML
Export are created so that various levels of transparency are possible for each
pixel. This is achieved through the implementation of an 8-bit "alpha channel".

There is a special optimization that HTML Export can make when this option is set to
FI_NONE. Some of the Outside In Viewer Technology's import filters can be optimized
to ignore certain types of graphics. To take advantage of this optimization, the option
must be set before EXOpenExport is called.

It should be noted that unpredictable and potentially undesirable output will occur if
this option is set to FI_NONE when EXOpenExport is called and the template then
attempts to use the {## option} macro to turn graphics back on. Users who wish to
turn graphics on and off from the template should set this option after the call to
EXOpenExport.

The settings for options in Compression (see Section B.1.5, "Compression") may force
an override of the value for this option.

Handle Types
VTHDOC, VTHEXPORT

Note: SCCOPT_GRAPHIC_TYPE = FI_NONE must be set (via
DASetOption) before the call to EXOpenExport. Otherwise, the
SCCUT_FILTEROPTIMIZEDFORTEXT speed enhancement for the
PDF filter is not set. This will result in slower exports of PDFs when
graphic output is not required.

HTML Export C/C++ Options

HTML Export Options B-39

Scope
Local

Data Type
VTDWORD

Data
One of the following values:

■ FI_GIF: GIF graphics

■ FI_JPEGFIF: JPEG graphics

■ FI_PNG:

■ FI_NONE: Graphic conversion will be turned off

Default
FI_JPEGFIF

B.1.6.8 SCCOPT_GRAPHIC_WIDTHLIMIT
This is an advanced option that casual users of this technology may safely ignore. It
allows a hard limit to be set for how wide in pixels an exported graphic may be. Any
images wider than this limit will be resized to match the limit. It should be noted that
regardless whether the SCCOPT_GRAPHIC_HEIGHTLIMIT option is set or not, any
resized images will preserve their original aspect ratio.

Note that this option differs from the behavior of setting the width of graphics by
using WIDTH= in a {## insert} statement in the template in two ways:

1. This option sets an upper limit on the image width. Images larger than this limit
will be reduced to the limit value. However, images smaller than this width will
not be enlarged when using this option. Setting the width using the width
attribute in the template causes all non-embedded images to be reduced or
enlarged to be of the specified width.

2. This option works for embedded images as well as non-embedded images. Setting
a width using WIDTH= in a {## insert} statement in the template causes only
non-embedded images to be of the specified width.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
The maximum width of the output graphic in pixels. A value of zero is equivalent to
SCCGRAPHIC_NOLIMIT, which causes this option to be ignored.

Default
■ SCCGRAPHIC_NOLIMIT: No absolute width limit specified.

HTML Export C/C++ Options

B-40 Oracle Outside In HTML Export Developer's Guide

B.1.6.9 SCCOPT_JPEG_QUALITY
This option allows the developer to specify the lossyness of JPEG compression. The
option is only valid if the graphicType option is set to FI_JPEGFIF.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
A value from 1 to 100, with 100 being the highest quality but the least compression,
and 1 being the lowest quality but the most compression.

Default
100

B.1.7 Spreadsheet and Database File Rendering
This section pertains to spreadsheets and database options.

B.1.7.1 SCCOPT_EX_SHOWSPREADSHEETBORDER
This option has been deprecated beginning with the 8.2 version of the product. Please
use the SCCOPT_EX_SSDBROWCOLHEADINGS and SCCOPT_EX_SSDBBORDER
options instead.

This option affects database files the same way it affects spreadsheets.

This option allows users to speed up the conversion of large, sparse spreadsheets by
turning off the table borders HTML Export generates by default (TRUE is the default
setting for this option). Setting this option to FALSE turns off table border generations,
reducing the amount of HTML written and enabling rowspan and colspan table tag
attributes so that empty cells can be skipped. For large, mostly empty spreadsheets,
this can result in greatly reduced conversion time and output file size(s). The output
appears in a format similar to that used by the original application when printing the
file.

The default is to show borders (option set to TRUE). This prevents problems with most
browsers, which tend to render the text in a way that makes adjacent cells hard to
distinguish. This output appears in a browser in a format similar to that used by the
original application when displaying the file on-screen.

This option must be set to the default value when the output format does not support
tables.

When the option is set to FALSE, the following caveats apply:

■ If the spreadsheet being processed stores data by row (such as Microsoft Excel
spreadsheets) rather than by column (such as Quattro files), additional
optimizations are possible. The technology will use colspan to shrink the output
when two or more adjacent cells in a row are empty. When two or more adjacent
rows are completely empty, they are ignored and not included in the output.

HTML Export C/C++ Options

HTML Export Options B-41

■ Note that if there are merged cells in the input document, the technology will not
produce perfectly optimized output. Instead, rowspan and colspan will not be
used to compress empty cells until after the merged cells are processed.

■ This option disables the creation of Row and Column headings ("1", "2", "3" / "A",
"B", "C").

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTBOOL

Default
TRUE

B.1.7.2 SCCOPT_EX_SSDBBORDER
This option supersedes some of the functionality from the now discontinued
SCCOPT_EX_SHOWSPREADSHEETBORDER option.

This option determines how borders will be handled for spreadsheet and database
files.

There are three valid values for this option:

SCCEX_SSDBBORDERS_CREATEIFMISSING: If a CSS output flavor is in use, this
forces borders to be created if none are present in the (entire) table. By default, most
apps do not include borders when creating these types of files. When needed, HTML
Export will generate thin borders between cells. Otherwise, the borders specified in the
table are used.

Using borders makes it easier to read the output data by preventing values from
running together when there is not much space between cells. This output appears in a
browser in a format similar to that used by the original application when displaying
the file on-screen.

The behavior of this setting matches the old default border behavior of the
discontinued SCCOPT_EX_SHOWSPREADSHEETBORDER option.

If a CSS output flavor is not in use, then borders are put around all cells no matter how
the input document is formatted. This is because individual cell border information
may not be specified in HTML without CSS.

This is the default behavior for this option.

■ SCCEX_SSDBBORDERS_OFF: This setting forces the borders always to be off,
regardless of borders specified in the source document. This option setting does
not distinguish between CSS and non-CSS output flavors being used. Turning
borders off has the following advantages:

– It allows HTML Export to use optimizations that speed up the conversion of
large, sparse files. It does this by enabling rowspan and colspan table tag
attributes to be used to span empty cells. It also reduces the amount of HTML
needed to be written for individual cells. For large, mostly empty
spreadsheets, this can result in greatly reduced conversion time and output

HTML Export C/C++ Options

B-42 Oracle Outside In HTML Export Developer's Guide

file size(s). The output appears in a format similar to that used by the original
application when printing the file.

– For left aligned text and data cells, a special optimization has been made to
merge those cells with any empty cells on the right.

The following caveats apply to the optimization:

– If the spreadsheet being processed stores data by row (such as Microsoft Excel
spreadsheets with portrait page orientation) rather than by column (such as
Quattro files), additional optimizations are possible. The technology will use
colspan to shrink the output when two or more adjacent cells in a row are
empty. When two or more adjacent rows are completely empty, the rows are
skipped, and the row height of the next non-empty row is increased.

– Note that if there are merged cells in the input document, the technology will
not produce perfectly optimized output. Instead, colspan will not be used to
compress empty cells until after the merged cells are processed.

– The behavior of this option setting matches the old border behavior of the now
discontinued SCCOPT_EX_SHOWSPREADSHEETBORDER option when it
was set to FALSE. However, this option does not disable the creation of Row
and Column headings ("1", "2", "3" / "A", "B", "C"). To do that, use the new
SCCOPT_EX_SSDBROWCOLHEADINGS option.

– If the current row has frames in it, we will not span those cells.

■ SCCEX_SSDBBORDERS_USESOURCE: If a CSS output flavor is being used, then
this value sets the borders according to what is specified in the source document.

If a CSS output flavor is not in use, then borders are put around all cells no matter
how the input document is formatted. This is because individual cell border
information may not be specified in HTML without CSS.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
■ SCCEX_SSDBBORDERS_CREATEIFMISSING: Use source document borders. If no

borders are in the table, automatically create borders.

■ SCCEX_SSDBBORDERS_OFF: Do not write any table borders.

■ SCCEX_SSDBBORDERS_USESOURCE: Use source document borders.

Default
■ SCCEX_SSDBBORDERS_CREATEIFMISSING

B.1.7.3 SCCOPT_EX_SSDBROWCOLHEADINGS
When this option is set to TRUE, row and column headings ("1", "2", "3" / "A", "B", "C")
are included in the output for spreadsheet and database files. When set to FALSE, no
row and column headings are created. The default for this option is TRUE.

HTML Export C/C++ Options

HTML Export Options B-43

This option supersedes some of the functionality from the now discontinued
SCCOPT_EX_SHOWSPREADSHEETBORDER option.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
VTDWORD

Data
■ TRUE: Show row and column headings.

■ FALSE: Do not show row or column headings.

Default
■ TRUE

B.1.8 Page Rendering
This section discusses page rendering options.

B.1.8.1 SCCOPT_WPEMAILHEADEROUTPUT
This option controls rendering of email headers.

Scope
Global

Data Type
VTDWORD

Data
One of these values:

■ SCCUT_WP_EMAILHEADERSTANDARD: Displays "To," "From," "Subject," "CC,"
"BCC," "Date Sent," and "Attachments" header fields only. The filter outputs any
fields not listed above as hidden fields, so they will not display.

■ SCCUT_WP_EMAILHEADERNONE: Displays no email header fields.

■ SCCUT_WP_EMAILHEADERALL: Displays all available email headers.

Default
SCCUT_WP_EMAILHEADERSTANDARD

B.1.8.2 SCCOPT_MAILHEADERVISIBLE
Along with SCCOPT_MAILHEADERHIDDEN, these options exist to allow the
developer fine-grained control over what email headers are rendered. These options
modify which email headers are displayed, and are based on the most recent setting of
SCCOPT_WPEMAILHEADEROUTPUT. To implement a fully customized set of email
headers for display, your code should first set the SCCOPT_

HTML Export C/C++ Options

B-44 Oracle Outside In HTML Export Developer's Guide

WPEMAILHEADEROUTPUT option to select a baseline set of headers, then use these
options to selectively add or remove headers from that set.

Setting a header to be visible means that it will be rendered when that header is found
in a document of the appropriate type. Selected headers that are not present in the
input file will not have any corresponding output created for them (no 'empty' headers
will be created). Setting a header to be hidden means that it will not be rendered for
the document types specified.

Scope
Global

Data Type
SCCUTEMAILHEADERINFO structure

SCCUTEMAILHEADERINFO structure
This structure is used by the SCCOPT_WPMAILHEADERVISIBLE/SCCOPT_
WPMAILHEADERHIDDEN options to specify the headers to show or hide.

typedef struct SCCUTEMAILHEADERINFOtag
{
 VTDWORD dwHeaderID;
 VTDWORD dwSubtypeID;
 VTWORD wsMimeHeaderName[SCCUT_MAIL_NAMELENGTH];
 VTWORD wsMimeHeaderLabel[SCCUT_MAIL_NAMELENGTH];
} SCCUTEMAILHEADERINFO, *PSCCUTEMAILHEADERINFO;

Parameters:

■ dwHeaderID

Either the ID of a predefined email header field, found in sccca.h (for example
SCCCA_MAIL_TO), or an identifer between NONSTANDARD_HEADER_ID_
BASE and NONSTANDARD_HEADER_ID_TOP for tracking a user-defined
header.

■ dwSubTypeID

The type(s) of documents in which to either show or hide this header. These can
be joined with a bitwise OR operator. Available subtypes are:

SCCUT_MAILTYPE_EMAIL

SCCUT_MAILTYPE_JOURNAL

SCCUT_MAILTYPE_CONTACT

SCCUT_MAILTYPE_NOTE

SCCUT_MAILTYPE_APPOINTMENT

SCCUT_MAILTYPE_TASK

SCCUT_MAILTYPE_POST

SCCUT_MAILTYPE_DISTROLIST

■ wsMimeHeaderName

A Unicode string containing the value of a user-specified MIME header name.
This value is only used when the dwHeaderId field contains a user-defined ID
value between NONSTANDARD_HEADER_ID_BASE and NONSTANDARD_
HEADER_ID_TOP.

HTML Export C/C++ Options

HTML Export Options B-45

■ wsMimeHeaderLabel

Unicode string that will be used as the label for a user-defined MIME header. This
value is only used for user-defined headers.

Default
Not used

B.1.8.3 SCCOPT_MAILHEADERHIDDEN
Along with SCCOPT_MAILHEADERHIDDEN, these options exist to allow the
developer fine-grained control over what email headers are rendered. These options
modify which email headers are displayed, and are based on the most recent setting of
SCCOPT_WPEMAILHEADEROUTPUT. To implement a fully customized set of email
headers for display, your code should first set the SCCOPT_
WPEMAILHEADEROUTPUT option to select a baseline set of headers, then use these
options to selectively add or remove headers from that set.

Setting a header to be visible means that it will be rendered when that header is found
in a document of the appropriate type. Selected headers that are not present in the
input file will not have any corresponding output created for them (no 'empty' headers
will be created). Setting a header to be hidden means that it will not be rendered for
the document types specified.

Scope
Global

Data Type
See SCCUTEMAILHEADERINFO structure under SCCOPT_MAILHEADERVISIBLE

Default
Not used

B.1.9 Font Rendering
This section discusses font rendering options.

B.1.9.1 SCCOPT_DEFAULTPRINTFONT
This is an advanced option that casual users of HTML Export may ignore.

This option sets the font to use when the chunker-specified font is not available on the
system. It is also the font used when the font in an embedding is not available on the
system performing the conversion.

This option only affects the conversion of vector graphic images. It does not affect in
any way the tags used for text markup in the output.

Note: Support for user-defined MIME headers is intended to allow
Outside In to selectively display MIME headers that are not included
in the predefined set of email headers known to Outside In. It is likely
that most developers using Outside In will not need to specify
user-defined MIME headers. Knowledge of the particular MIME
headers present in the input email files is necessary in order to take
advantage of this capability.

HTML Export C/C++ Options

B-46 Oracle Outside In HTML Export Developer's Guide

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
SCCVWFONTSPEC Structure

B.1.9.1.1 SCCVWFONTSPEC Structure This structure is used by various options to
specify a font.

SCCVWFONTSPEC is a C data structure defined in sccvw.h as follows:

typedef struct
 {
 VTTCHAR szFace[40];
 VTWORD wHeight;
 VTWORD wAttr;
 VTWORD wType;
 } SCCVWFONTSPEC, * LPSCCVWFONTSPEC;

Parameters
■ szFace: The name of the font. For example, "Helvetica Compressed." The default is

"Arial", however this default is constrained by the fonts available on the system.

■ wHeight: Size of the font in half points. For example, a value of 24 will produce a
12-point font. This size is only applied when the font size is not known. The
default is 10-point, however this default is constrained by the font sizes available
on the system. Please note that this only affects the size of fonts in embedded
vector images in the rare case where a default font size is not specified in the
embedding.

■ wAttr: The attributes of the font. This parameter is used primarily by the Outside
In Viewer Technology and is currently ignored by HTML Export.

■ wType: Should be set to 0.

B.1.9.2 SCCOPT_PRINTFONTALIAS
This is an advanced option that casual users of HTML Export may ignore.

This option sets or gets printer font aliases according to the SCCVWFONTALIAS
structure.

This option only affects the conversion of vector graphic images when the font
specified in the original document is not available on the system doing the conversion.
It does not affect in any way the tags used for text markup in the output.

Handle Types
VTHDOC, VTHEXPORT

Scope
Local

Data Type
The SCCVWFONTALIAS structure.

HTML Export C/C++ Options

HTML Export Options B-47

B.1.9.2.1 SCCVWFONTALIAS Structure This structure is used in the SCCOPT_
PRINTFONTALIAS option.

SCCVWFONTALIAS is a C data structure defined in sccvw.h as follows:

typedef struct SCCVWFONTALIAS
 {
 VTDWORD dwSize;
 VTDWORD dwAliasID;
 VTDWORD dwFlags;
 VTWORD szwOriginal[SCCVW_FONTNAMEMAX];
 VTWORD szwAlias[SCCVW_FONTNAMEMAX];
 } SCCVWFONTALIAS;

Parameters
■ dwSize: Must be set by the developer to sizeof(SCCVWFONTALIAS).

■ dwAliasID: ID of the aliasing in the current list of aliases.

■ dwFlags: The usage of these flags depends on whether this structure is being used
with the DASetOption or DAGetOption message. It should be set to one of the
following:

– SCCVW_FONTALIAS_COUNT (DAGetOption)dwAliasID will be filled with
the count of current font aliases for that device.

– SCCVW_FONTALIAS_ALIASNAME (DASetOption): The alias of szwAlias
for szwOriginal will be used when szwOriginal is not available on the device.
When a font alias is added to the list, this can affect the alias count. If an alias
already exists for szwOriginal, the new szwAlias will replace it.

– SCCVW_FONTALIAS_ALIASNAME (DAGetOption): szwAlias will be filled
if there is an alias in the alias list for the font in szwOriginal on that device.

– SCCVW_FONTALIAS_GETALIASBYID (DAGetOption): szwAlias and
szwOriginal will be filled by the technology for the alias in the numbered slot
identified by the ID.

– SCCVW_FONTALIAS_GETALIASID (DAGetOption): dwAliasID will be set
for the font in szwOriginal. If none exists, the dwAliasID will be 0xFFFFFFF.

– SCCVW_FONTALIAS_REMOVEALIASBYID (DASetOption): The alias in that
slot will be removed if one exists. When a font alias is removed from the list,
this can affect the other alias IDs.

– SCCVW_FONTALIAS_REMOVEALIASBYNAME (DASetOption): The alias
for the font szwOriginal will be removed from the alias list if one exists. When
a font alias is removed from the list, this can affect the other alias IDs.

– SCCVW_FONTALIAS_REMOVEALL (DASetOption): The alias list will be
cleared out and the count will be zero.

– SCCVW_FONTALIAS_USEDEFAULTS (DASetOption): This clears the
existing alias list and sets it to a list of default aliases that is variable by
platform.

■ szwOriginal: This represents the original name of a font that will be mapped when
this font is not available. This name should be a Unicode string.

■ szwAlias: This represents the new name of a font that will be used as a
replacement for the unmapped font named in szwOriginal. This name should be a
Unicode string.

HTML Export C/C++ Options

B-48 Oracle Outside In HTML Export Developer's Guide

Data
The technology assumes the following default mappings. The first value is the
szwOriginal Value, the second is the szwAlias Value.

■ Chicago = Arial

■ Geneva = Arial

■ New York = Times New Roman

■ Helvetica = Arial

■ Helv = Arial

■ times = Times New Roman

■ Times = Times New Roman

■ Tms Roman = Times New Roman

■ Symbol = Symbol

■ itc zapfdingbats = Zapfdingbats

■ itc zapf dingbats = Zapfdingbats

B.1.10 Callbacks
This section discusses callback options.

B.1.10.1 SCCOPT_EX_CALLBACKS
This is an advanced option that casual users of HTML Export may ignore.

This option is used to disable callbacks being made from HTML Export. Callbacks that
are disabled will behave as if they were made and the developer had returned
SCCERR_NOTHANDLED.

The option takes a VTDWORD field of flags. When the flag is set, the callback is
enabled. By default, all callbacks are enabled. You can activate multiple callbacks by
bitwise OR-ing them together. You can also disable multiple callbacks by bitwise &-ing
the SCCEX_CALLBACKFLAG_ALLENABLED value with the one's complement of
the corresponding callback flags. The following #defines are to be used for enabling
the various callbacks:

Flag Associated Callbacks

SCCEX_CALLBACKFLAG_CREATENEWFILE EX_CALLBACK_ID_CREATENEWFILE

SCCEX_CALLBACKFLAG_NEWFILEINFO EX_CALLBACK_ID_NEWFILEINFO

SCCEX_CALLBACKFLAG_PROCESSLINK EX_CALLBACK_ID_PROCESSLINK

SCCEX_CALLBACKFLAG_CUSTOMELEMENT EX_CALLBACK_ID_CUSTOMELEMENTLIST

EX_CALLBACK_ID_PROCESSELEMENTSTR

EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2

SCCEX_CALLBACKFLAG_
GRAPHICEXPORTFAILURE

EX_CALLBACK_ID_GRAPHICEXPORTFAILURE

SCCEX_CALLBACKFLAG_OEMOUTPUT EX_CALLBACK_ID_OEMOUTPUT

EX_CALLBACK_ID_OEMOUTPUT_VER2

SCCEX_CALLBACKFLAG_ALTLINK EX_CALLBACK_ID_ALTLINK

HTML Export C/C++ Options

HTML Export Options B-49

In addition, the following two special values are available:

■ SCCEX_CALLBACKFLAG_ALLDISABLED: Disables the receipt of all callbacks.
Additionally, bitwise OR-ing this value with one or more flags enables the
corresponding callbacks. For example, SCCEX_CALLBACKFLAG_ALTLINK |
SCCEX_CALLBACKFLAG_CREATENEWFILE enables the ALTLINK and
CREATENEWFILE callbacks, but disables all others.

■ SCCEX_CALLBACKFLAG_ALLENABLED: Enables the receipt of all callbacks.
Additionally, bitwise &-ing this value with the one's complement of one or more
flags disables the corresponding callbacks. For example, SCCEX_
CALLBACKFLAG_ALLENABLED& (~SCCEX_CALLBACKALTLINK &
~SCCEX_CALLBACKFLAG_CREATENEWFILE) disables the ALTLINK and
CREATENEWFILE callbacks, but enables all others.

Handle Types
VTHDOC

Scope
Local

Data Type
VTDWORD

Data
One or more of the valid flags, bitwise OR-ed together

Default
■ SCCEX_CALLBACKFLAG_ALLENABLED: All callbacks are available to the

developer.

B.1.10.2 SCCOPT_EX_UNICODECALLBACKSTR
This option determines the format of strings used in the callback functions. For those
structures that contain a field of type BYTE or LPBYTE, a comparable structure has
been added which has a similar field of type WORD or LPWORD. These structures
will have the same name as the original structure, with the addition of a "W" at the
end.

When this option is set to TRUE, any time a callback uses a structure with a string, it
will use the new structure. Also, any strings that the callback function returns will be
expected to follow the same guidelines. If the option is set to FALSE, all callbacks will
use single-byte character strings.

For example, if this option is set to TRUE, and the EX_CALLBACK_ID_
CREATENEWFILE callback is called, the pExportData parameter to the callback will
point to an EXURLFILEIOCALLBACKDATAW structure. If the option is set to FALSE,
the pCommandOrInfoData parameter will point to an
EXURLFILEIOCALLBACKDATA structure.

SCCEX_CALLBACKFLAG_ARCHIVE EX_CALLBACK_ID_ENTERARCHIVE

EX_CALLBACK_ID_LEAVEARCHIVE

EX_CALLBACK_ID_REFLINK

Flag Associated Callbacks

HTML Export C/C++ Options

B-50 Oracle Outside In HTML Export Developer's Guide

This option should be set before EXOpenExport is called.

Handle Types
VTHDOC

Scope
Local

Data Type
VTBOOL

Data
One of the following values:

■ TRUE: Use Unicode strings in callbacks.

■ FALSE: Do not use Unicode strings in callbacks.

Default
FALSE

B.1.11 File System
This section pertains to file system options.

B.1.11.1 SCCOPT_IO_BUFFERSIZE
This set of three options allows the user to adjust buffer sizes to tailor memory usage
to the machine's ability. The numbers specified in these options are in kilobytes. These
are advanced options that casual users of HTML Export may ignore.

Handle Type
NULL, VTHDOC

Scope
Global

Data Type
SCCBUFFEROPTIONS structure

Data
A buffer options structure

B.1.11.1.1 SCCBUFFEROPTIONS Structure

typedef struct SCCBUFFEROPTIONStag
{
 VTDWORD dwReadBufferSize; /* size of the I/O Read buffer
 in KB */
 VTDWORD dwMMapBufferSize; /* maximum size for the I/O
 Memory Map buffer in KB */
 VTDWORD dwTempBufferSize; /* maximum size for the memory-
 mapped temp files in KB */
 VTDWORD dwFlags; /* use flags */

HTML Export C/C++ Options

HTML Export Options B-51

} SCCBUFFEROPTIONS, *PSCCBUFFEROPTIONS;

Parameters
■ dwReadBufferSize: Used to define the number of bytes that will read from disk

into memory at any given time. Once the buffer has data, further file reads will
proceed within the buffer until the end of the buffer is reached, at which point the
buffer will again be filled from the disk. This can lead to performance
improvements in many file formats, regardless of the size of the document.

■ dwMMapBufferSize: Used to define a maximum size that a document can be and
use a memory-mapped I/O model. In this situation, the entire file is read from
disk into memory and all further I/O is performed on the data in memory. This
can lead to significantly improved performance, but note that either the entire file
can be read into memory, or it cannot. If both of these buffers are set, then if the file
is smaller than the dwMMapBufferSize, the entire file will be read into memory; if
not, it will be read in blocks defined by the dwReadBufferSize.

■ dwTempBufferSize: The maximum size that a temporary file can occupy in
memory before being written to disk as a physical file. Storing temporary files in
memory can boost performance on archives, files that have embedded objects or
attachments. If set to 0, all temporary files will be written to disk.

■ dwFlags

– SCCBUFOPT_SET_READBUFSIZE 1

– SCCBUFOPT_SET_MMAPBUFSIZE 2

– SCCBUFOPT_SET_TEMPBUFSIZE 4

To set any of the three buffer sizes, set the corresponding flag while calling
dwSetOption.

Default
The default settings for these options are:

■ #define SCCBUFOPT_DEFAULT_READBUFSIZE 2: A 2KB read buffer.

■ #define SCCBUFOPT_DEFAULT_MMAPBUFSIZE 8192: An 8MB memory-map
size.

■ #define SCCBUFOPT_DEFAULT_TEMPBUFSIZE 2048: A 2MB temp-file limit.

Minimum and maximum sizes for each are:

■ SCCBUFOPT_MIN_READBUFSIZE 1: Read one Kbyte at a time.

■ SCCBUFOPT_MIN_MMAPBUFSIZE 0: Don't use memory-mapped input.

■ SCCBUFOPT_MIN_TEMPBUFSIZE 0: Don't use memory temp files

■ SCCBUFOPT_MAX_READBUFSIZE 0x003fffff, SCCBUFOPT_MAX_
MMAPBUFSIZE 0x003fffff, SCCBUFOPT_MAX_TEMPBUFSIZE 0x003fffff: These
maximums correspond to the largest file size possible under the 4GB DWORD
limit.

B.1.11.2 SCCOPT_TEMPDIR
From time to time, the technology needs to create one or more temporary files. This
option sets the directory to be used for those files.

It is recommended that this option be set as part of a system to clean up temporary
files left behind in the event of abnormal program termination. By using this option

HTML Export C/C++ Options

B-52 Oracle Outside In HTML Export Developer's Guide

with code to delete files older than a predefined time limit, the OEM can help to
ensure that the number of temporary files does not grow without limit.

Handle Types
NULL, VTHDOC

Scope
Global

Data Type
SCCUTTEMPDIRSPEC structure

B.1.11.2.1 SCCUTTEMPDIRSPEC Structure This structure is used in the SCCOPT_
TEMPDIR option.

SCCUTTEMPDIRSPEC is a C data structure defined in sccvw.h as follows:

typedef struct SCCUTTEMPDIRSPEC
{
 VTDWORD dwSize;
 VTDWORD dwSpecType;
 VTBYTE szTempDirName[SCCUT_FILENAMEMAX];
} SCCUTTEMPDIRSPEC, * LPSCCUTTEMPDIRSPEC;

There is a limitation in the current release. dwSpecType describes the contents of
szTempDirName. Together, dwSpecType and szTempDirName describe the location of
the source file. The only dwSpecType values supported at this time are:

■ IOTYPE_ANSIPATH: Windows only. szTempDirName points to a
NULL-terminated full path name using the ANSI character set and FAT 8.3
(Win16) or NTFS (Win32 and Win64) file name conventions.

■ IOTYPE_UNICODEPATH: Windows only. szTempDirName points to a
NULL-terminated full path name using the Unicode character set and NTFS file
name conventions. Note that the length of the path name is limited to SCCUT_
FILENAMEMAX bytes, or (SCCUT_FILENAMEMAX / 2) double-byte Unicode
characters.

■ IOTYPE_UNIXPATH: X Windows on UNIX platforms only. szTempDirName
points to a NULL-terminated full path name using the system default character set
and UNIX path conventions.

Specifically not supported at this time is IOTYPE_REDIRECT.

Users should also note that temporary files created by the technology are not subject to
callbacks (such as EX_CALLBACK_ID_CREATENEWFILE) normally made when files
are created.

Parameters
■ dwSize: Set to sizeof(SCCUTTEMPDIRSPEC).

■ dwSpecType: IOTYPE_ANSIPATH, IOTYPE_UNICODEPATH, or IOTYPE_
UNIXPATH

Note: This option will be ignored if SCCOPT_REDIRECTTEMPFILE
is set.

HTML Export C/C++ Options

HTML Export Options B-53

■ szTempDirName: The path to the directory to use for the temporary files. Note
that if all SCCUT_FILENAMEMAX bytes in the buffer are filled, there will not be
space left for file names.

Default
The system default directory for temporary files. On UNIX systems, this is the value of
environment variable $TMP. On Windows systems, it is the value of environment
variable %TMP%.

B.1.11.3 SCCOPT_DOCUMENTMEMORYMODE
This option determines the maximum amount of memory that the chunker may use to
store the document’s data, from 4 MB to 1 GB. The more memory the chunker has
available to it, the less often it needs to re-read data from the document.

Handle Types
NULL, VTHDOC

Scope
Global

Data Type
VTDWORD

Parameters
■ SCCDOCUMENTMEMORYMODE_SMALLEST 1 - 4MB

■ SCCDOCUMENTMEMORYMODE_SMALL 2 - 16MB

■ SCCDOCUMENTMEMORYMODE_MEDIUM 3 - 64MB

■ SCCDOCUMENTMEMORYMODE_LARGE 4 - 256MB

■ SCCDOCUMENTMEMORYMODE_LARGEST 5 - 1 GB

Default
SCCDOCUMENTMEMORYMODE_SMALL 2 - 16MB

B.1.11.4 SCCOPT_REDIRECTTEMPFILE
This option is set when the developer wants to use redirected IO to completely take
over responsibility for the low level IO calls of the temp file.

Handle Types
NULL, VTHDOC

Scope
Global (not persistent)

Data Type
VTLPVOID: pCallbackFunc

Function pointer of the redirect IO callback.

Redirect call back function:

HTML Export C/C++ Options

B-54 Oracle Outside In HTML Export Developer's Guide

typedef
{
 VTDWORD (* REDIRECTTEMPFILECALLBACKPROC)
 (HIOFILE *phFile,
 VTVOID *pSpec,
 VTDWORD dwFileFlags);

There is another option to handle the temp directory, SCCOPT_TEMPDIR. Only one of
these two can be set by the developer. The SCCOPT_TEMPDIR option will be ignored
if SCCOPT_REDIRECTTEMPFILE is set. These files may be safely deleted when the
Close function is called.

B.1.12 Template-Only Options
The options discussed in this section are only settable via the {## option} macro in
the template.

B.1.12.1 EX_LINKTARGET
Support for this option is limited to MIcrosoft Word documents.

Some input documents contain links. Template authors may have a preference for how
the browser should select which frame or window to open those source document
links in. This option allows the template author to do so by specifying a value to use
for the target attribute of the links HTML Export generates in these cases. This single
target value will be applied to all such links encountered in the source document. It
does not affect the links generated by HTML Export for navigation generated because
of template macros.

If this option is not set, then no target attribute will be included in links from the
source document.

The value of the target attribute is expected to be able to be inserted by HTML Export
directly into the output of the conversion. Under some circumstances, however, HTML
Export may need to perform character mapping from the template to the output
character set:

■ Templates written in a SBCS for conversions to DBCS will pad the text to form
WORD sized characters, but will not perform any character mapping. In the
unlikely event that this poses a problem, users should write their templates in
UTF-8 or Unicode.

■ Templates written in Unicode for conversions will do character mapping to the
appropriate output character set.

For example, consider a document that contains a link to www.outsideinsdk.com. The
template author wishes to change the browser's default behavior from opening the
link in the current window to opening the link in a new window. Therefore, the
template writer sets this option to _blank with the following line in the template:

{## option EX_LINKTARGET=_blank}

HTML Export will then generate the following link to the Oracle web page when the
document is converted (HTML related to text formatting has been removed for
clarity):

www.outsideinsdk.com

The following are valid values for the target= attribute in HTML:

HTML Export C/C++ Options

HTML Export Options B-55

■ _blank: The user agent should load the designated document in a new, unnamed
window.

■ _self: The user agent should load the document in the same frame as the element
that refers to this target.

■ _parent: The user agent should load the document into the immediate FRAMESET
parent of the current frame. This value is equivalent to _self if the current frame
has no parent.

■ _top: The user agent should load the document into the full, original window
(thus canceling all other frames). This value is equivalent to _self if the current
frame has no parent.

The default is for this option not to be set. In that case, no target= attribute will be
generated for links from the source document.

B.1.12.2 EX_LINKTARGETOVERRIDE
Link target attribute values may be specified in both the source document and in the
template via the EX_LINKTARGET template-only option. This option determines how
to resolve such conflicts.

The option has two settings (neither is case-sensitive):

■ Fallback: The value specified in the EX_LINKTARGET option is a fallback to use
when the source document does not specify a link target attribute value. This is
the default setting for this option if it is not set.

■ Override: The value specified in the EX_LINKTARGET option will always be
used, overriding any link target attribute value(s) specified by the source
document.

Sample usage:

{## option EX_LINKTARGET="_self"}

{## option EX_LINKTARGETOVERIDE="Override"}

This option is ignored if the EX_LINKTARGET option has not been set.

The default for this option is to not be set. In that case, the value specified by the EX_
LINKTARGET option is used as a fallback.

B.1.13 Old Options
As the HTML Export product family continues to evolve, it has sometimes become
necessary to change options that are no longer supported. In addition, the names of
some of the options and option values have also been changed to help create a more
consistent API. In all cases, the old names and options will continue to compile. Old
options will simply cease to have an effect on output. Old option and value names are
mapped to the new names. OEMs are encouraged to use the new names wherever
possible.

B.1.13.1 Discontinued Options
The following options have been discontinued. For the foreseeable future, HTML
Export will continue to support calls to set these options. While setting these options
will not cause an error, they will have no effect on the output produced by HTML
Export.

HTML Export C/C++ Options

B-56 Oracle Outside In HTML Export Developer's Guide

B.1.13.1.1 SCCOPT_GIF_SPLASHPALETTE Introduced in the 1.1.0 release. The option has
been discontinued due to performance enhancements in the HTML Export 1.1.1
release that made the fast, but lower quality setting for this option unnecessary.
Superior quality palettes are now generated so quickly that there is no need to
generate lower quality palettes.

B.1.13.2 Option Name Changes
While the old option names will continue to be supported for the foreseeable future,
OEMs are encouraged to use the new names for options and their values from this
point forward. The following is a list of old names and their new counterparts:

B.1.13.3 #define Name Changes
The following #define names have been changed. The old #defines will continue to be
supported for the foreseeable future. However, OEMs are encouraged to use the new
names for options and their values from this point forward. What follows is a list of
old names and their new counterparts:

Old Name New Name

SCCOPT_CHARBYTEORDER SCCOPT_EX_CHARBYTEORDER

SCCOPT_GRAPHICSIZEMETHOD SCCOPT_GRAPHIC_SIZEMETHOD

SCCOPT_HTML_FLAGS SCCOPT_EX_COMPLIANCEFLAGS

SCCOPT_HTML_FLAVOR SCCOPT_EX_FLAVOR

SCCOPT_HTML_
GENBULLETSANDNUMS

SCCOPT_EX_GENBULLETSANDNUMS

SCCOPT_HTML_GRAPHICTYPE SCCOPT_GRAPHIC_TYPE

SCCOPT_HTML_
OUTPUTCHARACTERSET

SCCOPT_EX_OUTPUTCHARACTERSET

SCCOPT_HTML_SIMPLESTYLENAMES SCCOPT_EX_SIMPLESTYLENAMES

SCCOPT_HTML_TEMPLATE SCCOPT_EX_TEMPLATE

SCCOPT_NO_SOURCEFORMATTING SCCOPT_EX_NOSOURCEFORMATTING

SCCOPT_OUTPUTCHARACTERSET SCCOPT_EX_OUTPUTCHARACTERSET

SCCOPT_SIMPLESTYLENAMES SCCOPT_EX_SIMPLESTYLENAMES

SCCOPT_UNICODECALLBACKSTR SCCOPT_EX_UNICODECALLBACKSTR

Old Name New Name

SCCHTML_FLAG_STRICTDTD SCCEX_CFLAG_STRICTDTD

SCCHTML_FLAG_WELLFORMED SCCEX_CFLAG_WELLFORMED

SCCOPT_CHARBYTEORDER_
BIGENDIAN

SCCEX_CHARBYTEORDER_
BIGENDIAN

SCCOPT_CHARBYTEORDER_
LITTLEENDIAN

SCCEX_CHARBYTEORDER_
LITTLEENDIAN

SCCOPT_CHARBYTEORDER_
TEMPLATE

SCCEX_CHARBYTEORDER_TEMPLATE

SCCOPT_EX_FALLBACKFONT_
SINGLEBYTE

SCCEX_FALLBACKFONT_SINGLEBYTE

HTML Export SOAP Options

HTML Export Options B-57

B.2 HTML Export SOAP Options
These options are available to the developer when using the export engine through the
Transformation Server API.

This section details the Web Services implementation of options in Transformation
Server. However, there are links to API-specific information for the C and JAVA client
interfaces to the technology within each of the following sections.

B.2.1 How Options Work
An option is defined by an identifier and an associated value. The identifier
(hOptions) indicates what particular option is being specified. The option value data
must be in a form that conforms to the set of supported data types.

Note that it is not necessarily an error to specify options that are not understood by the
export engine, but some transformation engines may require that certain options be
specified.

Of course some options are more important than others. Casual users of this API
should focus on the following (in rough order of importance):

■ Setting the Output Flavor (Section B.2.3.6, "flavor")

■ Setting the Graphic Type (Section B.2.7.7, "graphicType")

■ Setting the Output Character Set (Section B.2.2.3, "outputCharacterSet")

B.2.2 Character Mapping
This section discusses character mapping options.

SCCOPT_EX_FALLBACKFONT_
DOUBLEBYTE

SCCEX_FALLBACKFONT_
DOUBLEBYTE

SCCHTML_FLAVOR_GENERIC SCCEX_FLAVOR_GENERICHTML

SCCHTML_FLAVOR_20 SCCEX_FLAVOR_HTML20

SCCHTML_FLAVOR_30 SCCEX_FLAVOR_HTML30

SCCHTML_FLAVOR_40 SCCEX_FLAVOR_HTML40

SCCHTML_FLAVOR_MO21 SCCEX_FLAVOR_MO21

SCCHTML_FLAVOR_NS11 SCCEX_FLAVOR_NS11

SCCHTML_FLAVOR_NS20 SCCEX_FLAVOR_NS20

SCCHTML_FLAVOR_NS30 SCCEX_FLAVOR_NS30

SCCHTML_FLAVOR_NS40 SCCEX_FLAVOR_NS40

SCCHTML_FLAVOR_MS15 SCCEX_FLAVOR_MS15

SCCHTML_FLAVOR_MS20 SCCEX_FLAVOR_MS20

SCCHTML_FLAVOR_MS30 SCCEX_FLAVOR_MS30

SCCHTML_FLAVOR_MS40 SCCEX_FLAVOR_MS40

Old Name New Name

HTML Export SOAP Options

B-58 Oracle Outside In HTML Export Developer's Guide

B.2.2.1 defaultInputCharset
This option is used in cases where Outside In cannot determine the character set used
to encode the text of an input file. When all other means of determining the file's
character set are exhausted, Outside In will assume that an input document is encoded
in the character set specified by this option. This is most often used when reading
plain-text files, but may also be used when reading HTML or PDF files.

When the "extended test for text" is enabled (see Section B.2.4.2,
"extendedTestForText"), this option will still apply to plain-text input files that are not
identified as EBCDIC or Unicode.

This option supersedes the fallbackFormat option for selecting the character set
assumed for plain-text files. For backwards compatibility, use of deprecated
character-set -related values is still currently supported for fallbackFormat, though
internally such values will be translated into equivalent values for the
defaultInputCharset. As a result, if an application were to set both options, the last
such value set for either option will be the value that takes effect.

Data Type
DefaultInputCharSet

Data
The SOAP representation of the character set to use, from the values in
defaultInputCharSetEnum.

B.2.2.2 characterByteOrder
This option determines the byte order of Unicode characters in the output files when
Unicode is chosen as the output character set.

Data Type
CharacterByteOrderEnum

Data
One of the following values:

■ big-endian: Big-Endian byte ordering is common on RISC and Motorola
processors. The ISO 10646 standard, the Unicode Standard and the W3C
recommend Big-Endian Unicode. It also corresponds to network byte order.

■ little-endian: Little Endian is common on Intel processors.

■ template-order: This value will cause the output to use the byte ordering used in
the main template file, if the template is written in Unicode. If the template is not
written in Unicode, Big-Endian byte order is used.

Default
template-order

Links
■ C Client Implementation: OIT_CharacterByteOrderEnum

■ JAVA Client Implementation: CharacterByteOrderEnum

HTML Export SOAP Options

HTML Export Options B-59

B.2.2.3 outputCharacterSet
This option allows the developer to specify which character set should be used in the
output file. The technology will then translate or "map" characters from the input
document's character set to the output character set as needed. Naturally, export
process does not translate content from one language to another. This character
mapping is also clearly limited by the need for the character to be in both the input
and the output character sets. If a character cannot be mapped, the character will show
up in the output as the "unmappable character." The default unmappable character
used is the "*" character. The character used may be changed by setting the
unmappableCharacter option. If the resulting output contains an excessive number of
these "*" characters, selecting a more appropriate output character set should improve
the situation.

The technology reserves the right to override this option. The option will be
overridden if ANSI Double-Byte Character Set (DBCS) characters are detected in the
source document and a single-byte character set is chosen as the output character set.
If the option is overridden, this change will affect the entire output document. The
technology uses the first DBCS character set it finds in the document as the basis for its
decision about which output character set to choose as its override.

Note that special character set override rules apply when the input document uses the
HWP (Hangul 97) filter. For these documents, the output character set will be forced to
EUC-KR unless the user has selected euc-kr, Unicode or UTF-8 output. These override
rules do not apply to the HWP2 (Hangul 2002) filter, as it uses Unicode exclusively.

Source documents in Unicode will not override this option. This is especially
important to remember as some important file formats store text in Unicode including
Microsoft Office.

The markup standards currently supported by HTML Export limit documents to a
single character set. That character set is specified in an output file using the
CONTENT attribute of the <meta> tag. This limits what the technology can do with
documents that have multiple character sets. In general, documents that are a mix of a
single Asian language and English characters will translate correctly (although with
some possible loss of non-alphanumeric characters) if the appropriate DBCS, UTF-8 or
Unicode output character set is selected. This is because most DBCS character sets
include the standard 7-bit Latin 1 characters. Documents that contain more than one
DBCS character set or a DBCS character set and a non-English character set (such as
Cyrillic) may not export with all the character glyphs intact unless Unicode or UTF-8 is
used.

While the W3C recommends using Unicode, there is a downside to it at this time. Not
all systems have the appropriate fonts needed for using Unicode or UTF-8. Many
editors do not understand these character sets, as well. In fact, while HTML Export can
read Unicode source documents, it cannot read UTF-8 source documents. In addition,
there are some differences in the way browsers interpret the byte order of 2-byte
Unicode characters. For additional details about the byte ordering issue, see
Section B.2.2.2, "characterByteOrder."

An additional HTML browser idiosyncrasy affects the Netscape 4.0 – 6.0 browsers.
While these browsers properly render Unicode HTML, they seem to be unable to read
.css files that are written in Unicode. For this reason, if the output character set is
Unicode and the HTML flavor (described in Section B.2.3.6, "flavor") being generated
is Netscape 4.0 or the common 4.0 flavor, the associated .css file will be written in
UTF-8.

HTML Export SOAP Options

B-60 Oracle Outside In HTML Export Developer's Guide

In order for HTML Export to correctly place the character set into the output file it
generates, all templates should include a statement that uses the {## insert} macro
to insert the character set into the document, as in the following example:

<meta HTTP-EQUIV="Content-Type" CONTENT="text/html;
charset={## insert element=pragma.charset}" />

If the template does not include this line, the user may have to manually select the
correct character set in the user's browser.

Data Type
CharacterSetEnum

Data
One of the following values:

Value Text used in <META…> tag Description

ISO-8859-1 iso-8859-1 Latin-1 - this is a subset of Windows 1252

ISO-8859-2 iso-8859-2 Latin-2

ISO-8859-3 iso-8859-3 Latin-3

ISO-8859-4 iso-8859-4 Latin-4

ISO-8859-5 iso-8859-5 Cyrillic

ISO-8859-6 iso-8859-6 Arabic

ISO-8859-7 iso-8859-7 Greek

ISO-8859-8 iso-8859-8 Hebrew

ISO-8859-9 iso-8859-9 Turkish

x-Mac-roman x-mac-roman Mac Roman

x-Mac-ce x-mac-ce Mac CE

x-Mac-Greek x-mac-greek Mac Greek

x-Mac-Cyrillic x-mac-cyrillic Mac Cyrillic

x-Mac-Turkish x-mac-turkish Mac Turkish

GB2312 gb2312 Simplified Chinese

Big5 big5 Traditional Chinese

Shift_JIS Shift_JIS Japanese

KOI8-R koi8-r Russian

windows-1250 x-cp1250 Eastern Europe

windows-1251 x-cp1251 Cyrillic

windows-1252 windows-1252 Western - Windows 1252

windows-1253 windows-1253 Greek

windows-1254 windows-1254 Turkish

windows-1255 windows-1255 Hebrew

windows-1256 windows-1256 Arabic

windows-1257 windows-1257 Baltic

HTML Export SOAP Options

HTML Export Options B-61

Default
■ windows-1252

Links
■ C Client Implementation: TS_CharacterSetEnum

■ JAVA Client Implementation: CharacterSetEnum

B.2.2.4 unmappableCharacter
This option selects the character used when a character cannot be found in the output
character set. This option takes the Unicode value for the replacement character. It is
left to the user to make sure that the selected replacement character is available in the
output character set.

Note that when exporting to the 4.0 and higher flavors, HTML Export will not have
any unmappable characters in its HTML. Instead, it will write the unmapped character
out in &#....; notation using the decimal representation of the character's Unicode
value. Newer browsers support this representation and will convert it to the
appropriate character if it is available in the font being used. If the character is not
available in that font, the browser's unmappable character symbol (typically a
rectangular box) will be seen. Also note that there may still be unmapped characters in
text rendered to graphics. This is because the graphic file is generated by HTML
Export at conversion time rather than being rendered by the browser.

Care should be taken in choosing which character to use for the unmappable character.
The character should be one that will create minimal confusion between those
characters that were correctly mapped, and characters that were unmapped. Not only
does such confusion make reading the document more difficult, it can cause additional
problems as well. For example, if the unmappable character is also a character in the
name of a font being used in the output, HTML Export may become unable to use that
font. In general, letters and numbers make poor choices for the value of this option.

Data Type
xsd:unsignedShort

Data
The Unicode value for the character to use.

Default
■ 0x002a = "*"

EUC-KR euc-kr Korean Hangul KSC 5601-1987 Wansung

EUC-JP euc-jp Japanese EUC

ISO-2022-JP iso-2022-jp JIS (Japanese)

windows-874 windows-874 Thai

UTF-8 UTF-8 UTF-8 (a Unicode variant)

ISO-10646-UCS-2 ISO-10646 Unicode

Value Text used in <META…> tag Description

HTML Export SOAP Options

B-62 Oracle Outside In HTML Export Developer's Guide

Links
■ C Client Implementation: XSD_unsignedShort

■ JAVA Client Implementation: UnsignedShort

B.2.3 Output
This section discusses output options.

B.2.3.1 altlink
The option takes the form of a data structure that contains two ts:stringData structures;
one for the "prev" link and one for the "next" link. These values are used in the
transformation process when it is creating multiple output files that link to and from
each other. The "prev" altlink is used for the link-to-previous-item in the first output
file. The "next" altlink is used for the link-to-next link on the last page of output.

Data Type
AltLink

Data
The altlink option is a complexType data structure composed of ts:stringData values.
The values are links to the "prev" and "next" output files.

Default
These strings are empty by default.

Links
■ C Client Implementation: OIT_AltLink

■ JAVA Client Implementation: AltLink

B.2.3.2 showChangeTracking
The setting for this option determines whether or not change tracking information in
input documents will be written into the output via the <ins> and HTML tags.
When the option is set to false, no change tracking information will be written into the
output. When set to true, the <ins> and tags will be used as appropriate.

Previous versions of HTML Export included change tracking text in comments.

Data Type
xsd:boolean

Default
false

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.3.3 collapseWhiteSpace
This is an advanced option that casual users of HTML Export may safely ignore.

HTML Export SOAP Options

HTML Export Options B-63

When set, this option deletes whitespace from the output document. Two types of
whitespace are removed: redundant whitespace characters and vertical whitespace.
This option is intended for situations where bandwidth and screen space are limited.

The HTML standard specifies that the browser will collapse a sequence of whitespace
characters into a single whitespace character. Therefore, having HTML Export remove
these redundant whitespace characters has no effect on the final view of the document.
Removing them benefits the document in reducing the overall size of the output files
generated and thereby saves bandwidth and decreases file transmission times. While
HTML Export makes an effort to remove as much redundant whitespace as possible,
there will be cases where some extra spacing appears in the output.

Removing vertical whitespace, on the other hand, does affect the look of the document
in the browser. When possible, HTML Export preserves vertical spacing between
elements. However, when this option is set, vertical whitespace is removed, resulting
in a more compact view.

Please note that the collapse white space option does not affect whitespace coming
from the template.

Data Type
xsd:boolean

Data
One of the following values:

■ true Whitespace is removed.

■ false: Whitespace is left intact.

Default
false

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.3.4 compliance
This option allows the developer to force the output to be compliant with a given
standard. Currently, only DTD and well-formed compliance are supported. The option
takes the form of a set of bit flags for toggling the available options. Flags are off by
default and are turned on by bitwise OR-ing them together.

Data Type
ComplianceEnum

Data
Any of the following flags:

■ strictDTD: Set to enforce strict DTD compliance in the HTML written. The
resulting HTML will be well formed. This means that an XML parser can parse it.
In addition, "safe" HTML tags normally written by HTML Export are turned off
when this flag is set. For more information about "safe" tags, see Section B.2.3.6,
"flavor."

HTML Export SOAP Options

B-64 Oracle Outside In HTML Export Developer's Guide

Especially when using older HTML flavors, use of this flag somewhat diminishes
the fidelity of the view of the output document compared to the original
document. In addition to other changes to the output, setting this flag also has the
same effect as setting the preventGraphicOverlap option to true.

This flag should not be used with the well-formed flag. If they are both set, this
flag will override the well-formed flag.

Most users will probably want to use the well-formed flag instead of this flag.

■ well-formed: Set to force the HTML written to be well formed. This means that an
XML parser can parse it. This option differs from the strictDTD flag in that it
allows "safe" tags. This flag should not be used with the strictDTD flag. If they are
both set, the strict DTD flag will override this flag. For most users, this flag is
recommended over the use of the strictDTD flag as it produces well formed,
XHTML compliant HTML without the penalties imposed by the strict DTD flag.

■ none: All flags turned off.

Default
■ none

Links
■ C Client Implementation: OIT_ComplianceEnum

■ JAVA Client Implementation: ComplianceEnum

B.2.3.5 extractEmbeddedFiles
This option controls the extraction of embedded documents in the input document.
When set to extractFiles, the embedding will be extracted in its native format, allowing
it to be read by the authoring application. When set to convertFiles, the embedding
will be extracted as HTML. When set to ignoreFiles, the embedding will be ignored.

This option is only valid for UUE, MIME and MSG files and not for general purpose
file attachments.

Data
■ ignoreFiles: Embeddings are skipped.

■ convertFiles: Embeddings are converted.

■ extractFiles: Embeddings are extracted in their native file format.

Default
ignoreFiles

Links
■ C Client Implementation: OIT_ExtractEmbeddedFilesEnum

■ JAVA Client Implementation: ExtractEmbeddedFilesEnum

B.2.3.6 flavor
Each Web browser forms a de facto HTML standard. This is because each browser has
a unique collection of HTML tags and tag attributes it does or does not support. Thus,
there are a large number of browser-based variations on the official HTML standards
that are referred to here as "flavors" of HTML.

HTML Export SOAP Options

HTML Export Options B-65

This option allows the developer to tailor the output generated to a specific browser or
for a specific minimum browser. This allows HTML Export to produce the best
possible rendering of the source document given the tags available in the target flavor.
It also gives the OEM the ability to specify which standard their product will adhere
to, rather than having that standard be dictated by HTML Export.

HTML Export currently supports a large number of flavors. While some flavors are
targeted at specific browsers, other flavors are designed for a more abstract target. The
"generic" and "HTML 2.0" flavors provide "lowest common denominator" flavors. The
HTML produced by these flavors is very simple and should work in almost any
browser. The primary difference between these two flavors is that the generic flavor
supports tables and the HTML 2.0 flavor does not.

At other times, it is desirable to have the ability to create HTML that simply supports
"the major x.0 and later browsers." For this purpose, there are the "greatest common
denominator" flavors. They are the "3.0" and "4.0" flavors. The "3.0" flavor should be
used to create HTML that will look good in Netscape Navigator 3.0 or later and in
Microsoft Internet Explorer 3.0 or later. The "4.0" flavor is defined to look good in
Netscape Navigator 4.0 or later and in Microsoft Internet Explorer 4.0 or later. Note
that upon examining the capabilities of these browsers after the 4.0 versions, it was
determined that while they offer many new features, they do not have any .html or
.css extensions that are useful to HTML Export at this time.

Naturally, support for a particular HTML flavor does not mean that HTML Export will
generate all the tags and tag attributes that flavor supports. There are many tags and
attributes that cannot sensibly be used in an automated conversion setting. Such tags
require more information about the author's intent than is available in the source
document.

Exporting a document to a particular HTML flavor also does not mean that the
resulting HTML will be limited to only the tags and tag attributes supported by that
flavor. In many cases, HTML Export will write out extra "safe" tags to the document,
unless compliance (see Section B.2.3.4, "compliance") has the strictDTD flag set. The
target browser will safely ignore this extra HTML. However, should the converted
document be viewed in a more sophisticated browser, this extra information will be
used to produce a more accurate view of the document.

What support for a particular HTML flavor does mean is that the HTML generated
will look as good as possible when viewed in the appropriate browser.

Data Type
FlavorEnum

Data
One of the following values. Note that the flavors marked with "(CSS)" indicate that
the flavor in question requires the creation of a separate or embedded .css file as part
of the document conversion.

Value Description

generic-html General purpose, simple HTML support that should look good in any
browser that supports tables.

html2.0 HTML 2.0. Based on the official HTML 2.0 standard, this provides
minimal HTML support and per that standard, it does not support
tables.

html3.0 Should look good in both Netscape Navigator 3.0 or later and
Microsoft Internet Explorer 3.0 or later.

HTML Export SOAP Options

B-66 Oracle Outside In HTML Export Developer's Guide

Default
■ html4.0

Links
■ C Client Implementation: OIT_FlavorEnum

■ JAVA Client Implementation: FlavorEnum

B.2.3.7 noSourceFormatting
This is an advanced option that casual users may safely ignore.

This option turns off writing of characters that are produced strictly to make the
output more readable and visually appealing. Currently, those formatting characters
are limited to newlines, carriage returns and spaces. This option is of benefit primarily
to users who perform special automated processing on the text produced by the
technology. For these users, even benign non-markup text not originally in the source
document constitutes a source of extra headaches for their processing. Setting this
option excludes all formatting characters from appearing in the generated markup.

It is important to note the things that setting this option does not do:

■ While setting this option will make it very difficult for a human to read the
generated markup in a text editor, it does not affect the browser's rendering of the
document.

■ This option does not affect the contents of the .css files since they do not contain
any text from the source document.

■ The option does not affect spaces or newlines copied from the template as the
contents of the templates are already under the control of the customer.

Data Type
xsd:boolean

Data
One of the following values:

■ true: Do not output formatting characters.

■ false: Include formatting characters in the output.

Default
■ false

html4.0 Should look good in both Netscape Navigator 4.0 or later and
Microsoft Internet Explorer 4.0 or later (CSS).

netscape3.0 Netscape Navigator 3.0

netscape4.0 Netscape Navigator 4.0 (CSS)

internetExplorer3.0 Microsoft Internet Explorer 3.0. Note that while this flavor has limited
CSS support, it does not create a separate or embedded .css file.

internetExplorer4.0 Microsoft Internet Explorer 4.0 (CSS)

Value Description

HTML Export SOAP Options

HTML Export Options B-67

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.3.8 showHiddenSpreadsheetData
The setting for this option determines whether or not hidden data (hidden columns,
rows or sheets) in a spreadsheet will be included in the output. When set to false (the
default), the hidden elements are not written. When set to true, they are placed in the
output in the same manner as regular spreadsheet data.

Data Type
xsd:boolean

Data
■ true: Allow hidden data to be placed in the output.

■ false: Prevent hidden data from being placed in the output.

Default
false

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.3.9 showHiddenText
This option will force HTML Export to place all hidden text in line with surrounding
text.

Please note that enabling this option will not display hidden cells, hidden rows or
hidden sheets in spreadsheet documents. Also note that when graphic documents
(such as faxes) are processed by OCR software and converted to PDF, the optically
recognized text may be rendered as a layer of hidden text behind the original image. In
order to properly export such PDF documents, this option must be enabled.

Data Type
xsd:boolean

Data
■ true: Allow hidden text to be placed in the output.

■ false: Prevent hidden text from being placed in the output.

Default
false

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

HTML Export SOAP Options

B-68 Oracle Outside In HTML Export Developer's Guide

B.2.3.10 simpleStyleNames
This option is for use by people who intend to read or change the CSS style names
generated by HTML Export.

By default, HTML Export creates unique style names based on the style names used in
the original document. Unfortunately, there is an inherent limitation in the style names
the CSS standard permits. That standard only permits the characters [a-z][A-Z][0-9]
and "-". Source document style names do not necessarily have this restriction. In fact
they may even contain Unicode characters at times. For this reason, the original style
names may need to be modified to conform to this standard. To avoid illegal style
names, HTML Export performs the following substitutions on all source style names:

1. If the character is a "-", then it is replaced with "--".

2. If the character is not one of the remaining characters ([a-z][A-Z][0-9]), then it is
replaced by "-xxxx" where "xxxx" is the Unicode value of the character in
hexadecimal.

3. Otherwise the character appears in the style name normally.

An example of one of the most common examples of this substitution is that spaces in
style names are replaced with "-0020". For a more complete example of this character
substitution in style names, consider the source style name My Special H1-Style!. This
would be transformed to:

My-0020Special-0020H1--Style-0021

While admittedly this system lacks a certain aesthetic, it avoids the problem of how
the document looks when the browser receives duplicate or invalid style names.
Developers should also appreciate the simplicity of the code needed to parse or create
these style names.

In addition, HTML Export will sometimes create special character attribute-only
versions of styles. These have the same name as the style they are based on with
"--Char" appended to the end. These styles differ from their original counterparts in
that they contain no block level CSS. This more general solution replaces the solution
implemented in versions 7.1 and earlier which created "--List" styles to solve a subset
of this problem. This was done to work around limitations in some browsers.

Because of these CSS limitations, the simpleStyleNames (see Section B.2.3.10,
"simpleStyleNames") option was created. Setting this option to true causes HTML
Export to generate style names that are easy to read but are not guaranteed to be
unique. It does this by discarding all characters in the original style name that are not
legal in CSS style names. As one would expect, this may lead to naming collisions.

An example of a naming collision caused by setting this option can be seen if you look
at source document styles named MyStyle and My $ Style. When exported with this
option, both would become MyStyle. This in turn may generate confusion when
viewing the document in the browser. This is because the browser will look upon the
second style as being a redefinition of the first.

With the option set to false this is not a problem. The two styles would be converted to
MyStyle and My-0020-0024-0020Style respectively. Because the style names are unique,
the browser will not see the second style as a redefinition of the first.

As this contrived example indicates, naming collisions should be rare for most U.S.
documents.

If a style name consists of nothing but illegal characters, HTML Export will create a
style name for it. This style name is of the form UnnamedStyleX where "X" is a count
of styles encountered so far that did not have style names for one reason or another.

HTML Export SOAP Options

HTML Export Options B-69

This behavior is expected to be very common when converting international
documents in languages that are not based on 7-bit ASCII.

Data Type
xsd:boolean

Data
One of the following values:

■ true: Generate names that may not be unique, but are easy to read.

■ false: Generate unique style names that are difficult to read.

Default
false

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.3.11 preferOITRendering
This option is only valid on 32-bit Linux (Red Hat and Suse) and Solaris Sparc
platforms.

When this option is set to true, the technology will attempt to use its internal graphics
code to render fonts and graphics. When set to false, the technology will render images
using the operating system's native graphics subsystem (X11 on UNIX/Linux
platforms). Note that this option only works when at least one of the appropriate
output solutions is present. For example, if the UNIX $DISPLAY variable does not
point to a valid X Server, but the OSGD and/or WV_GD modules required for the
Outside In output solution exist, Outside In will default to the Outside In rendering
code. The option will fail if neither of these output solutions is present.

It is important for the system to be able to locate useable fonts when this option is set
to true. Only TrueType fonts (*.ttf or *.ttc files) are currently supported. To ensure that
the system can find them, make sure that the environment variable GDFONTPATH
includes one or more paths to these files. If the variable GDFONTPATH can't be found,
the current directory is used. If fonts are called for and cannot be found, HTML Export
will exit with an error. Also note that when copying Windows fonts to a UNIX system,
the font extension for the files (*.ttf or *.ttc) must be lowercase, or they will not be
detected during the search for available fonts. Oracle does not provide fonts with any
Outside In product.

If preferOITRendering is set in a particular instance of tsagent, it cannot be changed in
that agent until the agent is terminated.

Data Type
xsd:boolean

Data
One of the following values:

■ true: Use the technology's internal graphics rendering code to produce bitmap
output files whenever possible.

HTML Export SOAP Options

B-70 Oracle Outside In HTML Export Developer's Guide

■ false: Use the operating system's native graphics subsystem.

Default
false

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.4 Input Handling
This section discusses input handling options.

B.2.4.1 fallbackFormat
This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are
generally identified by process of elimination, for example, when a file isn't identified
as having been created by a known application, it is treated as a plain-text file.

A number of values that were formerly allowed for this option have been deprecated.
Specifically, the values that selected specific plain-text character sets are no longer to
be used. Instead, applications should use the defaultInputCharset option for such
functionality.

Data Type
FallbackFormatEnum

Data
One of the following values:

■ fallbackToText: Unidentified file types will be treated as text files.

■ noFallbackFormat: Outside In will not attempt to process files whose type cannot
be identified. This will include text files. When this option is selected, an attempt
to process a file of unidentified type will cause Outside In to return an error value
of SCCERR_UNSUPPORTEDFORMAT.

Default
■ ASCII-8

Links
■ C Client Implementation: OIT_FallbackFormatEnum

■ JAVA Client Implementation: FallbackFormatEnum

B.2.4.2 extendedTestForText
This option affects how an input file's internal format (application type) is identified
when the file is first opened by the Outside In technology. When the extended test flag
is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or
Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot
guarantee complete accuracy (which would require the inspection of every single byte
in a file to eliminate false positives.)

HTML Export SOAP Options

HTML Export Options B-71

Data Type
xsd:boolean

Data
One of the following values:

■ false: This is the default value. When this is set, standard file identification
behavior occurs.

■ true: If set, the File Identification code will run an extended test on all files that are
not identified.

Default
■ false

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.4.3 ignorePassword
This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should
prompt for a password if it handles password-protected files.

As of Release 8.4.0, only the PST and MDB Filters support this option.

Data Type
xsd:boolean

Data
■ true: Ignore validation of the password

■ false: Prompt for the password

Default
false

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.4.4 parseXMPMetaData
Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
parsing of the XMP data into normal OIT document properties. Enabling this option
may cause the loss of some regular data in premium graphics filters (such as
Postscript), but won't affect most formats (such as PDF).

Data Type
xsd:boolean

HTML Export SOAP Options

B-72 Oracle Outside In HTML Export Developer's Guide

Data
■ true: This setting enables parsing XMP.

■ false: This setting disables parsing XMP.

Default
false

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.4.5 reorderBIDI
This option controls whether or not the PDF filter will attempt to reorder bidirectional
text runs so that the output is in standard logical order as used by the Unicode 2.0 and
later specification. This additional processing will result in slower filter performance
according to the amount of bidirectional data in the file.

Data Type
xsd:boolean

Data
■ true: The PDF filter uses standard ordering.

■ false: The PDF filter will attempt to reorder bidirectional text runs.

Default
false

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.4.6 skipLinkedImages
This option allows the developer to choose how links to images in input files should
be handled.The developer may request that the link be handled in one of two different
ways:

■ Have HTML Export attempt to follow the link, convert it to the selected image
type, and insert the converted object into the output (this is the default behavior).

■ Ignore the link altogether.

When set to true, this option will skip linked images when processing output files. If
set to false, linked images will be converted and included in the output.

Data Type
xsd:boolean

Data
■ true: Skip linked images

■ false: Include linked images in the output

HTML Export SOAP Options

HTML Export Options B-73

Default
false

Links
C Client Implementation: XSD_boolean

JAVA Client Implementation: Boolean

B.2.4.7 timezone
This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values (e.g., most
dates in spreadsheet cells). This option will not affect dates that are stored as text.

Data Type
xsd:int

Data
Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify the numeric value
of 61440 (0xF000 in hexadecimal).

Default
■ 0: GMT time

Links
■ C Client Implementation: XSD_int

■ JAVA Client Implementation: Integer

B.2.4.8 htmlCondCommentIE5On
This option allows you to display content customized for Internet Explorer 5.

Data Type
xsd_boolean

Default
0: off

Links
C Client Implementation: VTBOOL

JAVA Client Implementation: boolean

B.2.4.9 htmlCondCommentIE6On
This option allows you to display content customized for Internet Explorer 6.

Note: This option does not apply for spreadsheet files.

HTML Export SOAP Options

B-74 Oracle Outside In HTML Export Developer's Guide

Data Type
xsd_boolean

Default
0: off

Links
C Client Implementation: VTBOOL

JAVA Client Implementation: boolean

B.2.4.10 htmlCondCommentIE7On
This option allows you to display content customized for Internet Explorer 7.

Data Type
xsd_boolean

Default
0: off

Links
C Client Implementation: VTBOOL

JAVA Client Implementation: boolean

B.2.4.11 htmlCondCommentIE8On
This option allows you to display content customized for Internet Explorer 8.

Data Type
xsd_boolean

Default
0: off

Links
C Client Implementation: VTBOOL

JAVA Client Implementation: boolean

B.2.4.12 htmlCondCommentIE9On
This option allows you to display content customized for Internet Explorer 9.

Data Type
xsd_boolean

Default
0: off

Links
C Client Implementation: VTBOOL

JAVA Client Implementation: boolean

HTML Export SOAP Options

HTML Export Options B-75

B.2.4.13 htmlCondCommentAllOn
This option allows you to display all conditional comments.

Data Type
xsd_boolean

Default
0: off

Links
C Client Implementation: VTBOOL

JAVA Client Implementation: boolean

B.2.5 Layout
This section discusses layout options.

B.2.5.1 fallbackFont
Determines what font will be used when the font specified by the document is not
available.

Currently this option is only used in certain situations where a CSS flavor of HTML is
in use. Specifically, this option helps to avoid problems in some browsers where
symbol fonts like Wingdings are used for the bullets in lists, and the body of the list is
in a font the browser cannot find. In this case, specifying a fallback font prevents the
browser from using/cascading the Wingdings font into the text of the list when the
browser cannot find the font specified for the list text.

To turn off the fallback font, this option must be explicitly set to an empty string ("").
While turning off the fallback font is not recommended, it will result in a minor
reduction in the size of the HTML and CSS generated.

Data Type
stringData

Data
The name of the fallback font and the character set of that font.

Default
If this option is not set, "Arial" is used as the default fallback font.

Links
■ C Client Implementation: TS_stringData

■ JAVA Client Implementation: StringData

B.2.5.2 fontFlags
This option is used to turn off specified font-related markup in the output. Naturally, if
the requested output flavor or other option settings prevent markup of the specified
type from being written, this option cannot be used to turn it back on. However,
specifying the size, color and font face of characters may all be suppressed by bitwise
OR-ing together the appropriate combination of flags in this option.

HTML Export SOAP Options

B-76 Oracle Outside In HTML Export Developer's Guide

Data Type
FontFLags

Data
The FontFlags option is a complexType data structure composed of the following
Boolean variables, which may be switched on or off in any combination:

■ suppressSize: When switched on, turns off any character-sizing information
supported in the output flavor. As an example, this flag could be useful when
exporting presentation files where the author specified a very large font.

■ suppressColor: When switched on, suppresses specifying the color of text. This is
particularly useful for exports of documents containing white text.

■ suppressFace: When switched on, prevents the technology from requesting a
specific font (e.g. "Arial", "Courier", etc.) name for text. This can be useful if the
template author feels that the original document font is not likely to be available to
those who are viewing the converted document.

Default
All flags set to false, in which case no font information is suppressed.

Links
■ C Client Implementation: OIT_FontFlags

■ JAVA Client Implementation: FontFlags

B.2.5.3 genBulletsAndNums
Turning this option on causes the technology to generate list numbers and/or bullets
as needed rather than using list markup tags. While this violates the spirit of what
markup languages should do, it does cause the browsers to render the lists in a way
that is more faithful to the original look of the document. An example of a list that
does not view well with this option turned off is the following:

Figure B–6 List Example

This is an example of how today’s most popular browsers would render the preceding
list:

Figure B–7 Browser-rendered List

HTML Export SOAP Options

HTML Export Options B-77

This is due to the way browsers render tags. The HTML standards currently do
not allow any way to specify outline style list numbering.

One limitation when using this option is that standard list indentation may not be
possible due to the limits of the selected output HTML flavor. At this time, only the
HTML flavors where CSS is available support the kind of hanging indents normally
associated with lists.

If a bullet character needs to be generated, Unicode character 0x2022 will be used.
Note that many character sets do not contain this character, so the unmappable
character (“*”) would be used in that case.

Data Type
xsd:boolean

Data
One of the following values:

■ true: Generate list item numbers and bullets.

■ false: Use list markup tags.

Default
■ false

Links
C Client Implementation: XSD_boolean

JAVA Client Implementation: Boolean

B.2.5.4 gridAdvance
Options related to grids have no effect on the output unless a template that has been
enabled with the {## unit} template macro is in use.

This option allows the developer to specify how the "previous" and "next"
relationships will work between grids. As such, it is only useful when a grid-enabled
template has been selected with the template (see Section B.2.5.11, "template") option.

Setting this option to advanceAcross causes the grids.next.body template element to
traverse the input spreadsheet or database by rows:

Figure B–8 Traverse Input By Rows

Setting this option to advanceDown causes the grids.next.body template element to
traverse the input spreadsheet or database by columns:

HTML Export SOAP Options

B-78 Oracle Outside In HTML Export Developer's Guide

Figure B–9 Traverse Input By Columns

Data Type
GridAdvanceEnu

Data
One of the following values:

■ advanceAcross: To traverse by rows.

■ advanceDown: To traverse by columns.

Default
■ advanceDown

Links
■ C Client Implementation: OIT_GridAdvanceEnum

■ JAVA Client Implementation: GridAdvanceEnum

B.2.5.5 gridCols
Options related to grids have no effect on the output unless a template that has been
enabled with the {## unit} template macro is in use.

This option allows the developer to specify the number of columns that each template
"grid" (applicable only to spreadsheet or database files) should contain. As such, it is
only useful when a grid-enabled template has been selected with the template (see
Section B.2.5.11, "template") option.

Setting this option to zero ("0") means that no limit is placed on the number of columns
in the grid. However, the settings of the pageSize, gridCols and gridRows options
must all be taken into account when determining the actual dimensions of the grids
used during an export. The following table describes the interaction of these options
when a template is using grids:

Grid Row/Col Value Page Size is 0 Page Size is not 0

Grid Rows and Grid Cols are
both 0.

The entire spreadsheet is
exported.

The grid size is determined
based on the Page Size.

Grid Rows is 0. Grid Cols is
not 0 or the default value.

The table is broken into grids
that are Grid Cols wide. Each
grid contains all rows.

The number of rows in the
grid are determined by the
Page Size.

Grid Rows is not 0 or the
default value. Grid Cols is 0.

The table is broken into grids
that are Grid Rows wide. Each
grid contains all columns.

The number of columns in the
grid are determined by the
Page Size.

Grid Rows and Grid Cols are
both not set to 0 or their
default values.

The table is broken into grids of the requested size.

HTML Export SOAP Options

HTML Export Options B-79

Also note that once the grid size has been established for a sheet in a spreadsheet or
database, the sheet cannot be re-exported with different grid dimensions. The sheet
may be re-exported, however, if grids are disabled using sections.current.body.

Size calculations are performed using approximations. It is expected that each cell in
the grid will contain roughly 10 characters of content. Therefore, the number of cells in
the grid will be roughly the page size divided by 10. Setting the pageSize option will
not cause content to be truncated if it exceeds the 10 characters of content expected in a
given cell. Note that the pageSize option is never used to force a grid to break into
pages. Thus, once the grid dimensions have been established, no page breaking is
performed on the grid.

The default value for this option was chosen to prevent problems with large
spreadsheets, which can consume conversion time while creating unmanageable
output. Together with the default grid rows option value, the default grid dimensions
represent the largest table size HTML Export can produce that will not result in
browsers locking up when they try to read the file.

The solution to this large spreadsheet problem depends on whether or not page
breaking is in effect:

■ If page breaking is being used, use the maxreps attribute of the {## repeat}
macro to prevent large files from becoming unmanageable.

■ If page breaking is NOT being used, spreadsheets should be exported by inserting
only the first grid of the spreadsheet (grids.1.body). Don't use a {## repeat}
loop to get all the grids. Test for the existence of a second grid (grids.2.body). If
this grid exists, then have the template write out a message indicating that the
spreadsheet's contents were truncated on export.

Implementing support for spreadsheets in this manner rather than by inserting
sections.current.body improves performance only when outputting very large
spreadsheets. In these special cases, only the first grid is exported, resulting in
significant performance savings. This savings also has the side benefit of producing an
output file that most Web browsers will have little trouble displaying.

Data Type
xsd:unsignedInt

Data
Number of columns in the grid. Use "0" (zero) to not limit the number of columns in
the grid.

Default
■ 100: This value is subject to change.

Links
■ C Client Implementation: XSD_unsignedInt

■ JAVA Client Implementation: UnsignedInt

Grid Rows and Grid Cols are
both set to their default
values.

The table is broken into grids of the default size.

Grid Row/Col Value Page Size is 0 Page Size is not 0

HTML Export SOAP Options

B-80 Oracle Outside In HTML Export Developer's Guide

B.2.5.6 gridRows
Options related to grids have no effect on the output unless a template that has been
enabled with the {## unit} template macro is in use.

This option allows the developer to specify the number of rows that each template
"grid" (applicable only to spreadsheet or database files) should contain. As such, it is
only useful when a grid-enabled template has been selected with the template option.

Setting this option to zero ("0") means that no limit is placed on the number of rows in
the grid. However, the settings of the pageSize, gridCols and gridRows options must
all be taken into account when determining the actual dimensions of the grids used
during an export.

Also note that once the grid size has been established for a sheet in a spreadsheet or
database, the sheet cannot be re-exported with different grid dimensions. The sheet
may be re-exported, however, if grids are disabled using sections.current.body.

Size calculations are performed using approximations. It is expected that each cell in
the grid will contain roughly 10 characters of content. Therefore, the number of cells in
the grid will be roughly the page size divided by 10. Setting the pageSize option will
not cause content to be truncated if it exceeds the 10 characters of content expected in a
given cell. Note that the pageSize option is never used to force a grid to break into
pages. Thus, once the grid dimensions have been established, no page breaking is
performed on the grid.

The default value for this option was chosen to prevent problems with large
spreadsheets, which can consume conversion time while creating unmanageable
output. Together with the default grid columns option value, the default grid
dimensions represent the largest table size HTML Export can produce that will not
result in browsers locking up when they try to read the file.

The solution to this large spreadsheet problem depends on whether or not page/deck
breaking is in effect:

■ If page breaking is being used, use the maxreps attribute of the {## repeat}
macro to prevent large files from becoming unmanageable.

■ If page breaking is NOT being used, spreadsheets should be exported by inserting
only the first grid of the spreadsheet (grids.1.body). Don't use a {## repeat}
loop to get all the grids. Test for the existence of a second grid (grids.2.body). If
this grid exists, then have the template write out a message indicating that the
spreadsheet's contents were truncated on export.

Implementing support for spreadsheets in this manner rather than by inserting
sections.current.body improves performance only when inputting very large
spreadsheets. In these special cases, only the first grid is exported, resulting in
significant performance savings. This savings also has the side benefit of producing an
output file that most Web browsers will have little trouble displaying.

Data Type
xsd:unsignedInt

Data
Number of rows in the grid. Use "0" (zero) to not limit the number of rows in the grid.

Default
■ 5000: This value is subject to change.

HTML Export SOAP Options

HTML Export Options B-81

Links
■ C Client Implementation: XSD_unsignedInt

■ JAVA Client Implementation: UnsignedInt

B.2.5.7 gridWrap
Options related to grids have no effect on the output unless a template that has been
enabled with the {## unit} template macro is in use.

In other words, this option specifies whether the "previous" and "next" relationships
"wrap" at the edges of the spreadsheet or database. As such, it is only useful when a
grid-enabled template has been selected with the template option.

This option is best explained by example. Consider a spreadsheet that has been broken
into 9 grids by HTML Export as follows:

Figure B–10 Spreadsheet Broken Into Grids

If this option is set to true, then the grids.next.body value after Grid 3 will be Grid 4.
Likewise, the grids.previous.body value before Grid 4 will be Grid 3.

If this option is set to false, then the grids.next.body after Grid 3 will not exist as far as
template navigation is concerned. Likewise, the grids.previous.body before Grid 4 will
not exist as far as template navigation is concerned.

In other words, this option specifies whether the “previous” and “next” relationships
“wrap” at the edges of the spreadsheet or database.

Data Type
xsd:boolean

Data
■ true: To continue past the edge of the spreadsheet.

■ false: To stop at the edge of the spreadsheet.

Default
true

Links
C Client Implementation: XSD_boolean

JAVA Client Implementation: Boolean

B.2.5.8 javaScriptTabs
Tab support is available by setting this option to true. When active, this option uses
JavaScript to calculate tab stops and position blocks of text accordingly. Potential side
effects of this include delays in loading the pages in the browser and seeing the text

HTML Export SOAP Options

B-82 Oracle Outside In HTML Export Developer's Guide

initially with no whitespace at all followed by a pause and then all of the tabs popping
into place. In addition, this support is limited to only left tabs.

In order to take advantage of this option the following additional steps must be taken:

1. The template must contain a <script> tag. Something similar to the following code
fragment is recommended:

{## if element=pragma.jsfile}
<script language="Javascript1.2" src="{## insert
element=pragma.jsfile}"></script>
{## /if}

2. The template must also run the DoTabStops routine in the <body> of the HTML. A
span tag used to define the value of oneinch should follow this. Something similar
to the following code snippet is recommended to accomplish this:

{## if element=pragma.jsfile}
 <body onload="DoTabStops()">

{## else}
 <body>
{## /if}

3. A flavor of HTML that supports CSS must be used.

4. The user's browser must support JavaScript and this support must be enabled.

Data Type
xsd:boolean

Data
One of the following values:

■ true: Use JavaScript to create tabs.

■ false: No tab support.

Default
■ false

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.5.9 pageSize
This option sets a suggested page size for the output generated. This means that the
text of the document is broken up into "pages" of approximately the requested size.
Each page is stored as a separate output file.

This feature is particularly useful when converting documents that are poorly
structured. Many documents lack the kind of style information HTML Export
normally uses to break the document into pieces based on things like headings. By
setting this option, the exported document can be presented as a set of more
manageable pieces rather than a single giant output file. It is also useful with
documents that are structured but have large pieces in the structure.

HTML Export SOAP Options

HTML Export Options B-83

If page breaking is activated (set to a non-zero value), HTML Export will buffer the
entire output document in memory during conversion. Conversion times and memory
requirements will increase accordingly in this case.

The size specified by this option is given in characters of text. Only text inserted from
the input document is counted in the page size. Thus, "as is" text from the template is
not counted against the page size. Also, markup tags are not counted in the page size.
In addition, some template inserts are normally used as attributes to markup tags, and
as such they are not counted in page size calculations no matter how they are actually
used. Those template inserts are:

■ pragma.charset

■ pragma.jsfile

■ pragma.cssfilename

■ sections.x.itemnum

■ sections.x.reflink

A page size of zero ("0") indicates that this option is turned off and no page breaking is
done.

When this option is turned on, the page breaking rules are as follows:

■ Hard page breaks in the document always trigger a page break. Soft page breaks
are ignored.

■ A page break may be specified in the template with the {## unit break}
macro.

■ A page boundary will never be created in the middle of a paragraph. As many
paragraphs as possible will be written without exceeding the requested page size.
Page sizes are not hard limits on content however. One situation where the page
size could be exceeded would be if a single paragraph exceeds the page size.

■ When grid-enabled templates are in use, the exported grids are not broken based
on the setting of this option. However, this option may affect the size of grids
generated.

■ Use of this option will not cause the contents of cells within a grid to be truncated.

■ When grids are not in effect, spreadsheets and databases will be broken based on
page size. For these section types, checks for page breaks will be made after each
full row from the spreadsheet or database is written.

It is up to the template author to then connect these pieces with the appropriate links.
In order to use this option, the template must be equipped to use the {## unit}
syntax.

Note that templates enabled with the {## unit} syntax may be mixed with
templates that do not contain {## unit} macros. In this case, page breaking will only
occur in the template that is enabled with {## unit} macros. An example of where
this would be desirable is a "table of contents" template that uses two sub templates to
each fill in the contents of a frame. The frame containing the actual table of contents
could avoid being broken into pages by not containing any {## unit} macros. The
frame containing the actual document contents could then support paging by using
{## unit} macros.

Data Type
xsd:unsignedInt

HTML Export SOAP Options

B-84 Oracle Outside In HTML Export Developer's Guide

Data
Approximate page size in characters.

Default
■ 0: No page size limit.

Links
■ C Client Implementation: XSD_unsignedInt

■ JAVA Client Implementation: UnsignedInt

B.2.5.10 preventGraphicOverlap
Most browsers support flowing text around images. Unfortunately, even the most
popular browsers also have bugs in their support for this feature that occasionally
result in document elements overlapping. This option allows users of HTML Export to
choose if they would rather have text flowing around graphics or if they are willing to
sacrifice that feature in order to prevent browser overlap bugs.

When this option is turned on (set to true), HTML Export prevents browsers from
causing graphic overlap problems by surrounding all tags with <div> tags. The
overlap problems occur most frequently when the browser is displaying a document
that has a mix of left- and right-aligned graphics in close proximity to each other.
Resizing the browser window horizontally will sometimes expose this problem if it
does not appear initially.

Because these browser bugs are infrequently seen, this option is turned off (set to false)
by default. However, setting this option to false does not guarantee that text will be
able to flow around graphics in the browser the same way it does in the original
document. There are two problems which can prevent this from occurring.

The first problem is that when objects are placed using positional frames.
Unfortunately, most new word processing formats do this automatically. When
positional frames are used, each object exists in its own frame. HTML Export converts
each frame as a single paragraph. Therefore, the objects are written one after the other
even if they were originally placed side by side in the source document.

The second problem is associated with image alignment. For some images, HTML
Export is unable to obtain the alignment of the image, so the alignment of the
paragraph it is contained in is used instead. The reason HTML Export uses this
alignment, which is not necessarily 100% correct, is because without adding "align=" in
the tag, text does not wrap around images in browsers.

Also note that setting this option to false will have no effect if the strictDTD flag of the
compliance option is set. This is because <div> tags are not allowed inside <p> tags, so
HTML Export cannot use <div> tags to prevent graphics from overlapping.

Data Type
xsd:boolean

Data
■ true: Allow text flow around graphics.

■ false: Prevent browser image overlap problems.

Default
false

HTML Export SOAP Options

HTML Export Options B-85

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.5.11 template
This option allows the developer to specify the template file that the technology uses
to generate its output.

Data Type
IOSpec

Data
A file location specification. The following are the currently valid IOSpec values:

■ path: A file-system path to a file.

■ url: A URL to a file.

■ redirect: A spec that can be opened by an open function that is supplied by the
caller. This type is only supported when the calling application is using the C/C++
or Java client API.

Default
If no template is specified, a standard template is used.

Links
■ C Client Implementation: TS_IOSpec

■ JAVA Client Implementation: IOSpec

B.2.6 Compression
This section discusses compression options.

B.2.6.1 allowJPEG
This option can disable access to any files using JPEG compression, such as JPG
graphic files or TIFF files using JPEG compression, or files with embedded JPEG
graphics. Attempts to read or write such files when this option is enabled will fail and
return the error SCCERR_UNSUPPORTEDCOMPRESSION if the entire file is JPEG
compressed, and grey boxes for embedded JPEG-compressed graphics.

The following is a list of file types affected when this option is disabled:

■ JPG files

■ Postscript files containing JPG images

■ PDFs containing JPEG images

Note that the setting for this option overrides the requested output graphic format
when there is a conflict. In the case of HTML Export, the output graphic type is set to
noGraphics in these situations.

Data Type
xsd:boolean

HTML Export SOAP Options

B-86 Oracle Outside In HTML Export Developer's Guide

Data
■ true: Allow access to files that use JPEG compression

■ false: Do not allow access to files that use JPEG compression

Default
true

B.2.6.2 allowLZW
This option can disable access to any files using Lempel-Ziv-Welch (LZW)
compression, such as .GIF files, .ZIP files or self-extracting archive (.EXE) files
containing "shrunk" files. Attempts to read or write such files when this option is
enabled will fail and return the error SCCERR_UNSUPPORTEDCOMPRESSION if the
entire file is LZW compressed, and grey boxes for embedded LZW-compressed
graphics.

The following is a list of file types affected when this option is disabled:

■ GIF files

■ TIF files using LZW compression

■ PDF files that use internal LZW compression

■ TAZ and TAR archives containing files that are identified as FI_UNIXCOMP

■ ZIP and self-extracting archive (.EXE) files containing "shrunk" files

■ Postscript files using LZW compression

Although this option can disable access to files in ZIP or EXE archives stored using
LZW compression, any files in such archives that were stored using any other form of
compression will still be accessible.

The setting for this option overrides the requested output graphic format when there is
a conflict. In the case of HTML Export, the output graphic type is set to noGraphics in
these situations.

Data Type
xsd:boolean

Data
■ true: LZW compressed files will be read and written normally.

■ false: LZW compressed files will not be read or written.

Default
true

Links
C Client Implementation: XSD_boolean

JAVA Client Implementation: Boolean

B.2.7 Graphics
This section discusses graphics options.

HTML Export SOAP Options

HTML Export Options B-87

B.2.7.1 graphicGifInterlaced
This option allows the developer to specify interlaced or non-interlaced GIF output.
Interlaced GIFs are useful when graphics are to be downloaded over slow Internet
connections. They allow the browser to begin to render a low-resolution view of the
graphic quickly and then increase the quality of the image as it is received. There is no
real penalty for using interlaced graphics.

This option is only valid if the graphicType option is set to FI_GIF.

Data Type
xsd:boolean

Data
One of the following values:

■ true: Produce interlaced GIFs.

■ false: Produce non-interlaced GIFs.

Default
true

Links
C Client Implementation: XSD_boolean

JAVA Client Implementation: Boolean

B.2.7.2 graphicHeightLimit
This is an advanced option that casual users of this technology may safely ignore. It
allows a hard limit to be set for how tall in pixels an exported graphic may be. Any
images taller than this limit will be resized to match the limit. It should be noted that
regardless of whether the graphicWidthLimit option is set or not, any resized images
will preserve their original aspect ratio.

Note that this option differs from the behavior of setting the height of graphics by
using HEIGHT= in a {## insert} statement in the template in two ways:

1. This option sets an upper limit on the image height. Images larger than this limit
will be reduced to the limit value. However, images smaller than this height will
not be enlarged when using this option. Setting the height using the height
attribute in the template causes all non-embedded images to be reduced or
enlarged to be of the specified height.

2. This option works for embedded images as well as non-embedded images. Setting
a height using HEIGHT= in a {## insert} statement in the template causes only
non-embedded images to be of the specified height.

Data Type
xsd:unsignedInt

Data
The maximum height of the output graphic in pixels. A value of zero causes this
option to be ignored.

HTML Export SOAP Options

B-88 Oracle Outside In HTML Export Developer's Guide

Default
■ 0: No absolute height limit specified.

Links
■ C Client Implementation: XSD_unsignedInt

■ JAVA Client Implementation: UnsignedInt

B.2.7.3 graphicOutputDPI
This is an advanced option that casual users of this technology may safely ignore.

While this option is used to help compute table sizes, it is primarily a graphics option.
Early browsers and versions of the HTML standard limit the specification of image
sizes to dimensions in pixels. For images in particular, this is somewhat natural as GIF,
JPEG, and PNG are bitmap formats whose sizes are defined in pixels. However, many
of the source graphics and tables converted by HTML Export specify their size in
physical units such as inches or centimeters, and there is no way for HTML Export to
know how big a pixel is on the target device for the converted document. In fact, a
single document may ultimately be viewed on many devices, each with a different
number of pixels or dots per inch (DPI). Knowing this information can be important. If
graphics are converted to be too small, image detail will be lost. Conversely, if the
graphics are converted to be too large, files will take longer to download than is
desired.

This option allows the user to specify the output graphics device's resolution in DPI
and only applies to images whose size is specified in physical units (in/cm). For
example, consider a 1" square, 100 DPI graphic that is to be rendered on a 50 DPI
device (graphicOutputDPI is set to 50). In this case, the size of the resulting WBMP,
TIFF, BMP, JPEG, GIF, or PNG will be 50 x 50 pixels.

You may also specify the value 0 for the DPI, which will cause the output image to be
created with identical pixel dimensions as the original input image, without
consideration for physical measurements of image size.

Setting this option to 0 may result in the creation of extremely large images. Be aware
that there may be limitations in the system running this technology that could result in
undesirably large bandwidth consumption or an error message. Additionally, an out of
memory error message will be generated if system memory is insufficient to handle a
particularly large image.

Also note that the 0 setting will force the technology to use the DPI settings already
present in raster images, but will use the current screen resolution as the DPI setting
for any other type of input file.

For some output graphic types, there may be a discrepancy between the value set by
this option and the DPI value reported by some graphics applications. The
discrepancy occurs when the output format uses metric units (DPM, or dots per meter)
instead of English units (DPI, or dots per inch). Depending on how the graphics
application performs rounding on meters to inches conversions, the DPI value
reported may be 1 unit more than expected. An example of a format which may
exhibit this problem is PNG.

Data Type
xsd:unsignedInt

HTML Export SOAP Options

HTML Export Options B-89

Data
The DPI to use when exporting graphic images. The maximum value allowed is 2400
DPI.

Default
■ 96: 96 dots per inch.

Links
■ C Client Implementation: XSD_unsignedInt

■ JAVA Client Implementation: UnsignedInt

B.2.7.4 graphicSizeLimit
This is an advanced option that casual users of HTML Export may safely ignore.

This option is used to set the maximum size of the exported graphic in pixels. It may
be used to prevent inordinately large graphics from being converted to equally
cumbersome output files, thus preventing bandwidth waste.

graphicSizeLimit takes precedence over all other options and settings that affect the
size of a converted graphic. For example, if the template specifies image dimensions
that exceed this size, those dimensions will be used only to calculate the aspect ratio of
the final image. The image's dimensions will be restricted to produce a graphic no
larger than this limit allows.

Data Type
xsd:unsignedInt

Data
The total number of pixels in the output graphic. A value of zero ("0") causes this
option to be ignored.

Default
■ 0: Option is turned off.

Links
■ C Client Implementation: XSD_unsignedInt

■ JAVA Client Implementation: UnsignedInt

B.2.7.5 graphicSizeMethod
This option determines the method used to size graphics. The developer can choose
among three methods, each of which involves some degree of trade off between the
quality of the resulting image and speed of conversion.

Using the quick sizing option results in the fastest conversion of color graphics,
though the quality of the converted graphic will be somewhat degraded. The smooth
sizing option results in a more accurate representation of the original graphic, as it
uses anti-aliasing. Antialiased images may appear smoother and can be easier to read,
but rendering when this option is set will require additional processing time. The
grayscale only option also uses antialiasing, but only for grayscale graphics, and the
quick sizing option for any color graphics.

HTML Export SOAP Options

B-90 Oracle Outside In HTML Export Developer's Guide

The smooth sizing option does not work on images which have a width or height of
more than 4096 pixels.

Data Type
GraphicSizeMethodEnum

Data
One of the following values:

■ quick: Resize without antialiasing

■ smooth: Resize using antialiasing

■ smoothGray: Resize using antialiasing for grayscale graphics only (no antialiasing
for color graphics)

Default
smooth

Links
■ C Client Implementation: OIT_GraphicSizeMethodEnum

■ JAVA Client Implementation: GraphicSizeMethodEnum

B.2.7.6 graphicTransparencyColor
This option allows the user to set the color used as the "transparency color" in the
output graphic file. Naturally, this option is only used when the selected output
graphic file format supports transparency (GIF and PNG only). If the option is not set,
the default behavior is to use the same color value that the input file used as the
transparency color.

Use the SCCVWRGB(r, g, b) macro to create the color value to pass to this option. The
red, green and blue values are percentages of the color from 0-255 (with 255 being
100%). Note that this macro should be used to set a variable of type xsd:unsignedInt
and that variable should then be passed to the set option routine (instead of trying to
use the macro as part of the set option call directly).

Since there is no way to "unset" an option once it has been set, the developer may set
the option to -1 if they wish to revert to the default behavior.

Data Type
xsd:unsignedInt

Data
An RGB color value created with the SCCVWRGB(r, g, b) macro.

Default
■ -1: Use the same transparency color as the source document.

Links
■ C Client Implementation: XSD_unsignedInt

■ JAVA Client Implementation: UnsignedInt

HTML Export SOAP Options

HTML Export Options B-91

B.2.7.7 graphicType
This option allows the developer to specify the format of the graphics produced by the
technology.

When setting this option, remember that the JPEG file format does not support
transparency.

Though the GIF file format supports transparency, it is limited to using only one of its
256 available colors to represent a transparent pixel ("index transparency").

PNG supports many types of transparency. The PNG files written by HTML Export
are created so that various levels of transparency are possible for each pixel. This is
achieved through the implementation of an 8-bit "alpha channel".

There is a special optimization that HTML Export can make when this option is set to
noGraphics. Some of the Outside In Viewer Technology's import filters can be
optimized to ignore certain types of graphics.

It should be noted that unpredictable and potentially undesirable output will occur if
this option is set to noGraphics when a transformation is initiated and the template
then attempts to use the {## option} macro to turn graphics back on.

The settings for options in Compression may force an override of the value for this
option.

Data Type
GraphicTypeEnum

Data
One of the following values:

■ gif: GIF graphics

■ jpeg: JPEG graphics

■ png: PNG graphics

■ noGraphics: Graphic conversion will be turned off

Default
jpeg

Links
■ C Client Implementation: OIT_GraphicTypeEnum

■ JAVA Client Implementation: GraphicTypeEnum

B.2.7.8 graphicWidthLimit
This is an advanced option that casual users of this technology may safely ignore. It
allows a hard limit to be set for how wide in pixels an exported graphic may be. Any
images wider than this limit will be resized to match the limit. It should be noted that
regardless of whether the graphicHeightLimit option is set or not, any resized images
will preserve their original aspect ratio.

Note that this option differs from the behavior of setting the width of graphics by
using WIDTH= in a {## insert} statement in the template in two ways:

1. This option sets an upper limit on the image width. Images larger than this limit
will be reduced to the limit value. However, images smaller than this width will

HTML Export SOAP Options

B-92 Oracle Outside In HTML Export Developer's Guide

not be enlarged when using this option. Setting the width using the width
attribute in the template causes all non-embedded images to be reduced or
enlarged to be of the specified width.

2. This option works for embedded images as well as non-embedded images. Setting
a width using WIDTH= in a {## insert} statement in the template causes only
non-embedded images to be of the specified width.

Data Type
xsd:unsignedInt

Data
The maximum width of the output graphic in pixels. A value of zero causes this option
to be ignored.

Default
■ 0: No absolute width limit specified.

Links
■ C Client Implementation: XSD_unsignedInt

■ JAVA Client Implementation: UnsignedInt

B.2.7.9 graphicJpegQuality
This option allows the developer to specify the lossyness of JPEG compression. The
option is only valid if the graphicType option is set to jpeg.

Data Type
xsd:unsignedInt

Data
A value from 1 to 100, with 100 being the highest quality but the least compression,
and 1 being the lowest quality but the most compression.

Default
100

Links
■ C Client Implementation: XSD_unsignedInt

■ JAVA Client Implementation: UnsignedInt

B.2.8 Spreadsheet and Database File Rendering
This section discusses spreadsheet and database options.

B.2.8.1 showSpreadsheetBorder
This option has been deprecated beginning with the 8.2 version of the product. Please
use the showSpreadsheetHeadings and spreadsheetBorders options instead.

This option affects database files the same way it affects spreadsheets.

HTML Export SOAP Options

HTML Export Options B-93

This option allows users to speed up the conversion of large, sparse spreadsheets by
turning off the table borders HTML Export generates by default (true is the default
setting for this option). Setting this option to false turns off table border generations,
reducing the amount of HTML written and enabling rowspan and colspan table tag
attributes so that empty cells can be skipped. For large, mostly empty spreadsheets,
this can result in greatly reduced conversion time and output file size(s). The output
appears in a format similar to that used by the original application when printing the
file.

The default is to show borders (option set to true). This prevents problems with most
browsers, which tend to render the text in a way that makes adjacent cells hard to
distinguish. This output appears in a browser in a format similar to that used by the
original application when displaying the file on-screen.

This option must be set to the default value when the output format does not support
tables.

When the option is set to false, the following caveats apply:

■ If the spreadsheet being processed stores data by row (such as Microsoft Excel
spreadsheets) rather than by column (such as Quattro files), additional
optimizations are possible. The technology will use colspan to shrink the output
when two or more adjacent cells in a row are empty. When two or more adjacent
rows are completely empty, they are ignored and not included in the output.

■ Note that if there are merged cells in the input document, the technology will not
produce perfectly optimized output. Instead, rowspan and colspan will not be
used to compress empty cells until after the merged cells are processed.

■ This option disables the creation of Row and Column headings ("1", "2", "3" / "A",
"B", "C").

Data Type
xsd:boolean

Default
true

Links
■ C Client Implementation: XSD_boolean

■ JAVA Client Implementation: Boolean

B.2.8.2 spreadsheetBorders
This option supersedes some of the functionality from the now discontinued
showSpreadsheetBorder option.

This option determines how borders will be handled for spreadsheet and database
files.

There are three valid values for this option:

■ createBorderIfMissing: If a CSS output flavor is in use, this forces borders to be
created if none are present in the (entire) table. By default, most apps do not
include borders when creating these types of files. When needed, HTML Export
will generate thin borders between cells. Otherwise, the borders specified in the
table are used.

HTML Export SOAP Options

B-94 Oracle Outside In HTML Export Developer's Guide

Using borders makes it easier to read the output data by preventing values from
running together when there is not much space between cells. This output appears
in a browser in a format similar to that used by the original application when
displaying the file on-screen.

The behavior of this setting matches the old default border behavior of the
discontinued showSpreadsheetBorder option.

If a CSS output flavor is not in use, then borders are put around all cells no matter
how the input document is formatted. This is because individual cell border
information may not be specified in HTML without CSS.

This is the default behavior for this option.

■ bordersOff: This setting forces the borders always to be off, regardless of borders
specified in the source document. This option setting does not distinguish between
CSS and non-CSS output flavors being used. Turning borders off has the following
advantages:

– It allows HTML Export to use optimizations that speed up the conversion of
large, sparse files. It does this by enabling rowspan and colspan table tag
attributes to be used to span empty cells. It also reduces the amount of HTML
needed to be written for individual cells. For large, mostly empty
spreadsheets, this can result in greatly reduced conversion time and output
file size(s). The output appears in a format similar to that used by the original
application when printing the file.

– For left aligned text and data cells, a special optimization has been made to
merge those cells with any empty cells on the right.

The following caveats apply to the optimization:

– If the spreadsheet being processed stores data by row (such as Microsoft Excel
spreadsheets with portrait page orientation) rather than by column (such as
Quattro files), additional optimizations are possible. The technology will use
colspan to shrink the output when two or more adjacent cells in a row are
empty. When two or more adjacent rows are completely empty, the rows are
skipped, and the row height of the next non-empty row is increased.

– Note that if there are merged cells in the input document, the technology will
not produce perfectly optimized output. Instead, colspan will not be used to
compress empty cells until after the merged cells are processed.

– The behavior of this option setting matches the old border behavior of the now
discontinued showSpreadsheetBorder option when it was set to FALSE.
However, this option does not disable the creation of Row and Column
headings ("1", "2", "3" / "A", "B", "C"). To do that, use the new
showSpreadsheetHeadings option.

– If the current row has frames in it, we will not span those cells.

■ useSourceBorders: If a CSS output flavor is being used, then this value sets the
borders according to what is specified in the source document.

If a CSS output flavor is not in use, then borders are put around all cells no matter
how the input document is formatted. This is because individual cell border
information may not be specified in HTML without CSS.

Data Type
SpreadSheetBordersEnum

HTML Export SOAP Options

HTML Export Options B-95

Data
■ createBorderIfMissing: Use source document borders. If no borders are in the

table, automatically create borders.

■ bordersOff: Do not write any table borders.

■ useSourceBorders: Use source document borders.

Default
■ createBorderIfMissing

B.2.8.3 showSpreadsheetHeadings
When this option is set to true, row and column headings ("1", "2", "3" / "A", "B", "C")
are included in the output for spreadsheet and database files. When set to false, no row
and column headings are created. The default for this option is true.

This option supersedes some of the functionality from the now discontinued
showSpreadsheetBorder option.

Data Type
xsd:boolean

Data
■ true: Show row and column headings.

■ false: Do not show row or column headings.

Default
■ true

B.2.9 Page Rendering
This section discusses page rendering options.

B.2.9.1 emailHeaderOutput
This option controls display of email headers in the output.

Data Type
EmailHeaderOutputEnum

Data
One of these values:

■ emailHeaderStandard: Displays "To," "From," "Subject," "CC," "BCC," "Date Sent,"
and "Attachments" header fields only. The filter outputs any fields not listed above
as hidden fields, so they will not display.

■ emailHeaderAll: Displays all available email headers.

■ emailHeaderNone: Displays no email headers.

Default
emailHeaderStandard

HTML Export SOAP Options

B-96 Oracle Outside In HTML Export Developer's Guide

Links
■ C Client Implementation: OIT_EmailHeaderOutputEnum

■ JAVA Client Implementation: EmailHeaderOutputEnum

B.2.10 Font Rendering
This section discusses font rendering options.

B.2.10.1 defaultFont
This is an advanced option that casual users of HTMLExport may ignore.

This option sets the font to use when the chunker-specified font is not available on the
system. It is also the font used when the font in an source file embedding is not
available on the system performing the conversion.

This option only affects the conversion of vector graphic images. It does not affect in
any way the tags used for text markup in the output.

Data Type
The DefaultFont option is a complexType data structure composed of two elements.
The elements are as follows:

Parameters
■ fontName: An xsd:string value indicating tThe name of the font. For example,

"Helvetica Compressed." The default is "Arial", however this default is constrained
by the fonts available on the system.

■ height: An xsd:unsignedShort value indicating the size of the font in half points.
For example, a value of 24 will produce a 12-point font. This size is only applied
when the font size is not known. The default is 10-point, however this default is
constrained by the font sizes available on the system. Please note that this only
affects the size of fonts in embedded vector images in the rare case where a default
font size is not specified in the embedding.

Links
■ C Client Implementation: OIT_DefaultFont

■ JAVA Client Implementation: DefaultFont

B.2.10.2 fontAlias
This is an advanced option that casual users of HTML Export may ignore.

This option sets or gets printer font aliases. For example, Chicago=Arial forces Chicago
to be output as Arial.

This option only affects the conversion of vector graphic images when the font
specified in the original document is not available on the system doing the conversion.
It does not affect in any way the tags used for text markup in the output.

Data Type
xsd:string

Data
The xsd:string value takes the form of font=alias, as in this example:

HTML Export SOAP Options

HTML Export Options B-97

Chicago=Arial

The technology assumes the following default mappings. The first value is the font
name, the second is the alias name.

■ Chicago = Arial

■ Geneva = Arial

■ New York = Times New Roman

■ Helvetica = Arial

■ Helv = Arial

■ times = Times New Roman

■ Times = Times New Roman

■ Tms Roman = Times New Roman

■ Symbol = Symbol

■ itc zapfdingbats = Zapfdingbats

■ itc zapf dingbats = Zapfdingbats

Links
■ C Client Implementation: XSD_string

■ JAVA Client Implementation: String

B.2.11 File System
This section discusses file system options.

B.2.11.1 fileAccess
This option supplies information to OIT when information is required to open an
input file. This information may be the password of the file or a support file location.

Further information about how Transformation Server implements this option will be
forthcoming.

B.2.11.2 readBufferSize
Used to define the number of bytes that that will read from disk into memory at any
given time. Once the buffer has data, further file reads will proceed within the buffer
until the end of the buffer is reached, at which point the buffer will again be filled
from the disk. This can lead to performance improvements in many file formats,
regardless of the size of the document.

Data Type
xsd:unsignedInt

Data
The size of the buffer in kilobytes.

Default
2

HTML Export SOAP Options

B-98 Oracle Outside In HTML Export Developer's Guide

Links
■ C Client Implementation: XSD_unsignedInt

■ JAVA Client Implementation: UnsignedInt

B.2.11.3 memoryMappedInputSize
Used to define a maximum size that a document can be and use a memory-mapped
I/O model. In this situation, the entire file is read from disk into memory and all
further I/O is performed on the data in memory. This can lead to significantly
improved performance, but note that either the entire file can be read into memory, or
it cannot. If both of these buffers are set, then if the file is smaller that the
dwMMapBufferSize, the entire file will be read into memory, if not, it will be read in
blocks defined by the dwReadBufferSize.

Data Type
xsd:unsignedInt

Data
The size of the buffer in kilobytes.

Default
8192

Links
■ C Client Implementation: XSD_unsignedInt

■ JAVA Client Implementation: UnsignedInt

B.2.11.4 tempBufferSize
The maximum size that a temporary file can occupy in memory before being written
to disk as a physical file. Storing temporary files in memory can boost performance on
archives, files that have embedded objects or attachments. If set to 0, all temporary
files will be written to disk.

Data Type
xsd:unsignedInt

Data
The size of the buffer in kilobytes.

Default
2048

Links
■ C Client Implementation: XSD_unsignedInt

■ JAVA Client Implementation: UnsignedInt

Index-1

Index

Symbols
#define Name Changes, B-56
$DISPLAY, 3-8
$HOME, 3-10
$LD_LIBRARY_PATH, 3-9
$LIBPATH, 3-9
$ORIGIN, 3-9
$SHLIB_PATH, 3-9

A
allowJPEG, B-85
allowLZW, B-86
altlink, B-62
Annotation Functions, 5-5
Architectural Overview, 1-2

B
batch_process_hx, 9-2

C
Callbacks, 7-1, B-48
C/C++ Options, B-1
CGI programs, 3-8
Character Mapping, B-1, B-57
collapseWhiteSpace, B-62
colors available, 3-8
compliance, B-63
Compression, B-32, B-85
Copyright, 1-5

D
DACloseDocument, 4-5
DACloseTreeRecord, 4-12
DADeInit, 4-2
DAGetErrorString, 4-9
DAGetFileId, 4-7
DAGetFileIdEx, 4-8
DAGetOption, 4-7
DAGetTreeCount, 4-9
DAGetTreeRecord, 4-10
DAInitEx, 4-2
DAOpenDocument, 4-3

DAOpenTreeRecord, 4-11
DARetrieveDocHandle, 4-5
DASaveTreeRecord, 4-11
DASetFileAccessCallback, 4-14
DASetFileSpecOption, 4-6, B-32
DASetOption, 4-5, B-31
DASetStatCallback, 4-13
Data Access Common Functions, 4-1
Default Font Aliases, 2-7, 3-10
defaultFont, B-96
defaultInputCharset, B-58
Deprecated Functions, 4-1
Deprecated Template Macros, 10-31
Directory Structure, 1-3
Discontinued Options, B-55

E
emailHeaderOutput, B-95
environment variables, 3-9

$DISPLAY, 3-8
$HOME, 3-10
$LD_LIBRARY_PATH, 3-9
$LIBPATH, 3-9
$SHLIB_PATH, 3-9

EX_CALLBACK_ID_ALTLINK, 7-5
EX_CALLBACK_ID_CUSTOMELEMENTLIST, 7-5
EX_CALLBACK_ID_ENTERARCHIVE, 7-6
EX_CALLBACK_ID_

GRAPHICEXPORTFAILURE, 7-7
EX_CALLBACK_ID_LEAVEARCHIVE, 7-8
EX_CALLBACK_ID_NEWFILEINFO, 7-5
EX_CALLBACK_ID_OEMOUTPUT, 7-9
EX_CALLBACK_ID_OEMOUTPUT_VER2, 7-9
EX_CALLBACK_ID_PROCESSELEMENTSTR, 7-10
EX_CALLBACK_ID_PROCESSELEMENTSTR_

VER2, 7-10
EX_CALLBACK_ID_PROCESSLINK, 7-11
EX_CALLBACK_ID_REFLINK, 7-13
EX_LINKTARGET, B-54
EX_LINKTARGETOVERRIDE, B-55
EXCALLBACKPROC, 5-3
EXCloseExport, 5-3
EXExportStatus, 5-4
EXOpenExport, 5-1
export, 9-2

Index-2

Main Window, 9-3
Export Functions, 5-1
ExportTest, 9-6
exredir, 9-4
EXRunExport, 5-4
exsimple, 9-3
extendedTestForText, B-70
extract_archive, 9-4
extractEmbeddedFiles, B-64

F
fallbackFont, B-75
fallbackFormat, B-70
File System, B-50, B-97
fileAccess, B-97
flavor, B-64
Font Rendering, B-45, B-96
fontAlias, B-96
fontFlags, B-75

G
genBulletsAndNums, B-76
graphic types, 3-7
graphicGifInterlaced, B-87
graphicHeightLimit, B-87
graphicJpegQuality, B-92
graphicOutputDPI, B-88
Graphics, B-34, B-86
graphicSizeLimit, B-89
graphicSizeMethod, B-89
graphicTransparencyColor, B-90
graphicType, B-91
graphicWidthLimit, B-91
gridAdvance, B-77
gridCols, B-78
gridWrap, B-81

H
How to Use HTML Export, 1-4
HP-UX on Itanium (64 bit), 3-13
HP-UX on RISC, 3-13
HP-UX on RISC (64 bit), 3-13
HTML Export Options, B-1
htmlCondCommentAllOn, B-75
htmlCondCommentIE5On, B-73
htmlCondCommentIE6On, B-73
htmlCondCommentIE7On, B-74
htmlCondCommentIE8On, B-74
htmlCondCommentIE9On, B-74
hxanno, 9-4
hxsample, 9-2

I
IBM AIX (32-bit pSeries), 3-14
IBM AIX PPC (64-bit), 3-14
ignorePassword, B-71
Implementation Issues, 8-1

Input Handling, B-14, B-70
Introduction, 1-1
IOClose, 6-3
IOGENSECONDARY and IOGENSECONDARYW

Structures, 6-8
IOGetInfo, 6-5
IOGETINFO_GENSECONDARY, 6-9
IORead, 6-3
IOSeek, 6-4
IOSPECARCHIVEOBJECT Structure, 4-4
IOSPECLINKEDOBJECT Structure, 4-4
IOTell, 6-5
IOWrite, 6-4

J
Java Wrapper, 9-5
javaScriptTabs, B-81

L
Layout, B-20, B-75
Licensing, A-1
Linux

Compiling and Linking, 3-18
GLIBC and Compiler Versions, 3-15
Libraries on Linux Systems as Distributed

(IA64), 3-17
Library Compatibility, 3-14
Motif Libraries, 3-14

Linux 32-bit, including Linux PPC, 3-18
Linux 64-bit, 3-18
Linux zSeries, 3-18

M
Machine-dependant, 3-8
memoryMappedInputSize, B-98

N
noSourceFormatting, B-66
NSF Support, 2-2, 3-2

O
Old Options, B-55
OLE2, 3-8
Oracle Solaris (SPARC) 64, 3-19
Oracle Solaris SPARC, 3-19
Oracle Solaris X Server Display Memory Issue, 3-20
Output, B-6, B-62
outputCharacterSet, B-59

P
Page Rendering, B-43, B-95
pageSize, B-82
parseXMPMetaData, B-71
preferOITRendering, B-69
preventGraphicOverlap, B-84

Index-3

Q
query folders, 3-7

R
readBufferSize, B-97
reorderBIDI, B-72
Running in 24x7 Environments, 8-1
Running in Multiple Threads or Processes, 8-1
Runtime Search Path, 3-9

S
Sample Applications, 9-1
SCCDATREENODE Structure, 4-10
SCCOPT_ARCFULLPATH, B-20
SCCOPT_DEFAULTINPUTCHARSET, B-1
SCCOPT_DEFAULTPRINTFONT, B-45
SCCOPT_DOCUMENTMEMORYMODE, B-53
SCCOPT_EX_CALLBACKS, B-48
SCCOPT_EX_CHANGETRACKING, B-6
SCCOPT_EX_CHARBYTEORDER, B-2
SCCOPT_EX_COLLAPSEWHITESPACE, B-6
SCCOPT_EX_COMPLIANCEFLAGS, B-7
SCCOPT_EX_EXTRACTEMBEDDEDFILES, B-8
SCCOPT_EX_FALLBACKFONT, B-20
SCCOPT_EX_FLAVOR, B-9
SCCOPT_EX_FONTFLAGS, B-21
SCCOPT_EX_GENBULLETSANDNUMS, B-22
SCCOPT_EX_GRIDADVANCE, B-23
SCCOPT_EX_GRIDCOLS, B-24
SCCOPT_EX_GRIDROWS, B-26
SCCOPT_EX_GRIDWRAP, B-27
SCCOPT_EX_JAVASCRIPTTABS, B-28
SCCOPT_EX_NOSOURCEFORMATTING, B-10
SCCOPT_EX_OUTPUTCHARACTERSET, B-3
SCCOPT_EX_PAGESIZE, B-29
SCCOPT_EX_PREVENTGRAPHICOVERLAP, B-30
SCCOPT_EX_SHOWHIDDENSSDATA, B-11
SCCOPT_EX_SHOWHIDDENTEXT, B-11
SCCOPT_EX_SHOWSPREADSHEETBORDER, B-40
SCCOPT_EX_SIMPLESTYLENAMES, B-12
SCCOPT_EX_SSDBBORDER, B-41
SCCOPT_EX_SSDBROWCOLHEADINGS, B-42
SCCOPT_EX_TEMPLATE, B-31
SCCOPT_EX_UNICODECALLBACKSTR, B-49
SCCOPT_FALLBACKFORMAT, B-14
SCCOPT_FIFLAGS, B-15
SCCOPT_FILTERJPG, B-32
SCCOPT_FILTERLZW, B-33
SCCOPT_FORMATFLAGS, B-16
SCCOPT_GIF_INTERLACED, B-34
SCCOPT_GIF_SPLASHPALETTE, B-56
SCCOPT_GRAPHIC_HEIGHTLIMIT, B-34
SCCOPT_GRAPHIC_OUTPUTDPI, B-35
SCCOPT_GRAPHIC_SIZELIMIT, B-36
SCCOPT_GRAPHIC_SIZEMETHOD, B-37
SCCOPT_GRAPHIC_

TRANSPARENCYCOLOR, B-37
SCCOPT_GRAPHIC_TYPE, B-38

SCCOPT_GRAPHIC_WIDTHLIMIT, B-39
SCCOPT_HTML_COND_COMMENT_MODE, B-19
SCCOPT_IGNORE_PASSWORD, B-17
SCCOPT_IO_BUFFERSIZE, B-50
SCCOPT_JPEG_QUALITY, B-40
SCCOPT_LOTUSNOTESDIRECTORY, B-17
SCCOPT_MAILHEADERHIDDEN, B-45
SCCOPT_MAILHEADERVISIBLE, B-43
SCCOPT_PARSEXMPMETADATA, B-17
SCCOPT_PDF_FILTER_DROPHYPHENS, B-19
SCCOPT_PDF_FILTER_REORDER_BIDI, B-18
SCCOPT_PRINTFONTALIAS, B-46
SCCOPT_REDIRECTTEMPFILE, B-53
SCCOPT_RENDERING_PREFER_OIT, B-13
SCCOPT_SYSTEMFLAGS, B-16
SCCOPT_TEMPDIR, B-51
SCCOPT_TIMEZONE, B-18
SCCOPT_UNMAPPABLECHAR, B-5
SCCOPT_WPEMAILHEADEROUTPUT, B-43
SCCVWFONTALIAS Structure, B-47
SCCVWFONTSPEC Structure, B-46
showChangeTracking, B-62
showHiddenSpreadsheetData, B-67
showHiddenText, B-67
showSpreadsheetBorder, B-92
showSpreadsheetHeadings, B-95
simpleStyleNames, B-68
skipLinkedImages, B-72
SOAP Options, B-57
Solaris x64, 3-20
Solaris x86, 3-20
Spreadsheet and Database File Rendering, B-40,

B-92
spreadsheetBorders, B-93
Status Callback Function, 4-13

T
tempBufferSize, B-98
template, B-85
Template Comments, 11-1
Template-Only Options, B-54

U
UNIX

API Libraries, 3-3
Changing Resources, 3-12
Character Sets, 3-7
Engine Libraries, 3-4
Environment Variables, 3-9
Filter and Export Filter Libraries, 3-4
HP-UX Compiling and Linking, 3-12
IBM AIX Compiling and Linking, 3-13
Information Storage, 3-6
Installation, 3-1
Libraries and Structure, 3-2
Linux Compiling and Linking, 3-14
OLE2, 3-8
Oracle Solaris Compiling and Linking, 3-18

Index-4

Premier Graphics Filters, 3-5
Runtime Considerations, 3-7
Signal Handling, 3-8
Support Libraries, 3-3
z/OS Compiling and Linking, 3-20

Unix
X server, 3-7

UNIX Implementation Details, 3-1
unmappableCharacter, B-61
Using Redirected IO, 6-1

V
vector graphics, 3-7, 3-8
video driver, 3-8

W
What’s New in Release 8.4.1, 1-1
Windows

API DLLs, 2-2
Changing Resources, 2-8
Character Sets, 2-7
Engine Libraries, 2-4
Filter and Export Filter Libraries, 2-4
Installation, 2-1
Libraries and Structure, 2-2
Options and Information Storage, 2-6
Premier Graphics Filters, 2-5
Support DLLs, 2-3

Windows Implementation Details, 2-1

	Contents
	Preface
	1 Introduction
	1.1 What’s New in Release 8.4.1
	1.2 Architectural Overview
	1.3 Definition of Terms
	1.4 Directory Structure
	1.4.1 Installing Multiple SDKs

	1.5 How to Use HTML Export
	1.6 Copyright Information

	2 Windows Implementation Details
	2.1 Installation
	2.1.1 NSF Support

	2.2 Libraries and Structure
	2.2.1 API DLLs
	2.2.2 Support DLLs
	2.2.3 Engine Libraries
	2.2.4 Filter and Export Filter Libraries
	2.2.5 Premier Graphics Filters
	2.2.6 Additional Files

	2.3 The Basics
	2.3.1 What You Need in Your Source Code
	2.3.2 Options and Information Storage
	2.3.3 Structure Alignment
	2.3.4 Character Sets
	2.3.5 Runtime Considerations

	2.4 Default Font Aliases
	2.5 Changing Resources

	3 UNIX Implementation Details
	3.1 Installation
	3.1.1 NSF Support

	3.2 Libraries and Structure
	3.2.1 API Libraries
	3.2.2 Support Libraries
	3.2.3 Engine Libraries
	3.2.4 Filter and Export Filter Libraries
	3.2.5 Premier Graphics Filters
	3.2.6 Additional Files

	3.3 The Basics
	3.3.1 What You Need in Your Source Code
	3.3.2 Information Storage

	3.4 Character Sets
	3.5 Runtime Considerations
	3.5.1 X Server Requirement
	3.5.2 OLE2 Objects
	3.5.3 Machine-Dependent Graphics Context
	3.5.4 Signal Handling
	3.5.5 Runtime Search Path and $ORIGIN

	3.6 Environment Variables
	3.7 Default Font Aliases
	3.8 Changing Resources
	3.9 HP-UX Compiling and Linking
	3.9.1 HP-UX on RISC
	3.9.2 HP-UX on RISC (64 bit)
	3.9.3 HP-UX on Itanium (64 bit)

	3.10 IBM AIX Compiling and Linking
	3.10.1 IBM AIX (32-bit pSeries)
	3.10.2 IBM AIX PPC (64-bit)

	3.11 Linux Compiling and Linking
	3.11.1 Library Compatibility
	3.11.1.1 Motif Libraries
	3.11.1.2 GLIBC and Compiler Versions
	3.11.1.3 Other Libraries

	3.11.2 Compiling and Linking
	3.11.2.1 Linux 32-bit, including Linux PPC
	3.11.2.2 Linux 64-bit
	3.11.2.3 Linux zSeries

	3.12 Oracle Solaris Compiling and Linking
	3.12.1 Oracle Solaris SPARC
	3.12.2 Oracle Solaris (SPARC) 64
	3.12.3 Oracle Solaris x86
	3.12.4 Oracle Solaris x64
	3.12.5 Oracle Solaris X Server Display Memory Issue

	3.13 z/OS Compiling and Linking

	4 Data Access Common Functions
	4.1 Deprecated Functions
	4.2 DAInitEx
	4.3 DADeInit
	4.4 DAOpenDocument
	4.4.1 IOSPECLINKEDOBJECT Structure
	4.4.2 IOSPECARCHIVEOBJECT Structure

	4.5 DACloseDocument
	4.6 DARetrieveDocHandle
	4.7 DASetOption
	4.8 DASetFileSpecOption
	4.9 DAGetOption
	4.10 DAGetFileId
	4.11 DAGetFileIdEx
	4.12 DAGetErrorString
	4.13 DAGetTreeCount
	4.14 DAGetTreeRecord
	4.14.1 SCCDATREENODE Structure

	4.15 DAOpenTreeRecord
	4.16 DASaveTreeRecord
	4.17 DACloseTreeRecord
	4.18 DASetStatCallback
	4.19 DASetFileAccessCallback

	5 Export Functions
	5.1 General Functions
	5.1.1 EXOpenExport
	5.1.2 EXCALLBACKPROC
	5.1.3 EXCloseExport
	5.1.4 EXRunExport
	5.1.5 EXExportStatus

	5.2 Annotation Functions
	5.2.1 EXHiliteText
	5.2.1.1 HTML Export Usage Notes

	5.2.2 EXInsertText
	5.2.3 EXHideText
	5.2.3.1 EXANNOHIDETEXT Structure

	6 Redirected IO
	6.1 Using Redirected IO
	6.2 Opening Files
	6.3 IOClose
	6.4 IORead
	6.5 IOWrite
	6.6 IOSeek
	6.7 IOTell
	6.8 IOGetInfo
	6.8.1 IOGENSECONDARY and IOGENSECONDARYW Structures
	6.8.2 File Types That Cause IOGETINFO_GENSECONDARY

	6.9 IOSEEK64PROC / IOTELL64PROC
	6.9.1 IOSeek64
	6.9.2 IOTell64

	7 Callbacks
	7.1 Callbacks Used In HTML Export
	7.1.1 EX_CALLBACK_ID_CREATENEWFILE
	7.1.1.1 EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW Structures

	7.1.2 EX_CALLBACK_ID_NEWFILEINFO
	7.1.3 EX_CALLBACK_ID_ALTLINK
	7.1.4 EX_CALLBACK_ID_CUSTOMELEMENTLIST
	7.1.5 EX_CALLBACK_ID_ENTERARCHIVE
	7.1.6 EX_CALLBACK_ID_GRAPHICEXPORTFAILURE
	7.1.7 EX_CALLBACK_ID_LEAVEARCHIVE
	7.1.8 EX_CALLBACK_ID_OEMOUTPUT
	7.1.9 EX_CALLBACK_ID_OEMOUTPUT_VER2
	7.1.10 EX_CALLBACK_ID_PROCESSELEMENTSTR
	7.1.11 EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2
	7.1.12 EX_CALLBACK_ID_PROCESSLINK
	7.1.12.1 Links That Reference Objects Using a Relative Path (HTML Export)

	7.1.13 EX_CALLBACK_ID_REFLINK

	8 Implementation Issues
	8.1 Running in 24x7 Environments
	8.2 Running in Multiple Threads or Processes
	8.3 HTML Export Issues
	8.3.1 Relative URLs in Templates
	8.3.1.1 Guarantee the References Are Good
	8.3.1.2 Use Absolute URLs
	8.3.1.3 Generate Complete URLs Using {## insert oem=}
	8.3.1.4 Use CGI and the <base> tag
	8.3.1.5 Have HX copy the files using {## copy}

	8.3.2 Browser Caching
	8.3.3 Errors Returned by HTML Export
	8.3.4 CSS Considerations
	8.3.4.1 Customizing CSS Styles
	8.3.4.2 Style Names Used by HTML Export
	8.3.4.3 Overriding HTML Export’s Styles
	8.3.4.4 pragma.cssfile and {## link}

	8.3.5 XML and HTML Export
	8.3.5.1 The Sample XML Template

	8.3.6 XHTML and Well-Formed HTML
	8.3.7 Archive Support
	8.3.7.1 Using Redirected IO with Archive Files
	8.3.7.2 Temporary File Creation
	8.3.7.3 Empty Directories in Archive Files
	8.3.7.4 Finding the Total Number of Files in an Archive

	8.3.8 Positional Frames Support
	8.3.9 Limitations of Multimedia File Support

	9 Sample Applications
	9.1 Building the Samples on a Windows System
	9.2 An Overview of the Sample Applications
	9.2.1 batch_process_hx
	9.2.2 *sample
	9.2.3 export (Windows Only)
	9.2.3.1 The export Main Window

	9.2.4 exsimple
	9.2.5 exredir
	9.2.6 extract_archive
	9.2.7 hxanno

	9.3 Accessing the SDK via a Java Wrapper
	9.3.1 The ExJava Wrapper API
	9.3.2 The C-Based Exporter Application
	9.3.3 Compiling the Executables
	9.3.4 The ExportTest Sample Application
	9.3.5 An Example Conversion Using the ExJava Wrapper

	10 Templates
	10.1 What Is a Template?
	10.2 The Included Sample Templates
	10.3 The Document Tree and Its Elements
	10.3.1 Leaf Elements
	10.3.2 Repeatable Elements
	10.3.3 Element Definitions
	10.3.4 Default Nodes

	10.4 Macro Reference
	10.4.1 Units: {## unit}, {## header}, and {## footer}
	10.4.2 Insert Element: {## insert}
	10.4.3 Conditional: {## if}, {## elseif}, and {## else}
	10.4.4 Loop: {## repeat}
	10.4.5 Linking with Structured Breaking: {## link}
	10.4.6 Linking with Content Size Breaking: {## anchor}
	10.4.7 Comment Put in the Output File: {## ignore}
	10.4.8 Comment Not Put in the Output File: {## comment}
	10.4.9 Including Other Templates: {## include}
	10.4.10 Setting Options Within the Template: {## option}
	10.4.11 Copying Files: {## copy} (HTML Export Only)
	10.4.12 Deprecated Template Macros (HTML Export Only)

	10.5 Breaking Documents by Structure
	10.5.1 Indexes and Structure-Based Breaking

	10.6 Units - Breaking Documents by Content Size
	10.6.1 A Sample Size Breaking Template
	10.6.2 Templates Without {## unit} Macros
	10.6.3 Indexes and Size-Based Breaking

	10.7 Using Grids to Navigate Spreadsheet and Database Files
	10.7.1 Grid Support When Tables Are Not Available

	10.8 Choosing a Template
	10.9 Unicode Templates

	11 Template Tutorials
	11.1 Template Comments
	11.2 Tutorial 1: simple
	11.3 Tutorial 2: toc1
	11.4 Tutorial 3: toc2
	11.5 Tutorial 4: unit
	11.6 Tutorial 5: misc
	11.7 Tutorial 6: grids1
	11.8 Tutorial 7: grids2
	11.9 Tutorial 8: xml
	11.10 Tutorial 9: internal

	A Copyrights and Licensing
	A.1 Outside In HTML Export Licensing

	B HTML Export Options
	B.1 HTML Export C/C++ Options
	B.1.1 Character Mapping
	B.1.1.1 SCCOPT_DEFAULTINPUTCHARSET
	B.1.1.2 SCCOPT_EX_CHARBYTEORDER
	B.1.1.3 SCCOPT_EX_OUTPUTCHARACTERSET
	B.1.1.4 SCCOPT_UNMAPPABLECHAR

	B.1.2 Output
	B.1.2.1 SCCOPT_EX_CHANGETRACKING
	B.1.2.2 SCCOPT_EX_COLLAPSEWHITESPACE
	B.1.2.3 SCCOPT_EX_COMPLIANCEFLAGS
	B.1.2.4 SCCOPT_EX_EXTRACTEMBEDDEDFILES
	B.1.2.5 SCCOPT_EX_FLAVOR
	B.1.2.6 SCCOPT_EX_NOSOURCEFORMATTING
	B.1.2.7 SCCOPT_EX_SHOWHIDDENSSDATA
	B.1.2.8 SCCOPT_EX_SHOWHIDDENTEXT
	B.1.2.9 SCCOPT_EX_SIMPLESTYLENAMES
	B.1.2.10 SCCOPT_RENDERING_PREFER_OIT

	B.1.3 Input Handling
	B.1.3.1 SCCOPT_FALLBACKFORMAT
	B.1.3.2 SCCOPT_FIFLAGS
	B.1.3.3 SCCOPT_FORMATFLAGS
	B.1.3.4 SCCOPT_SYSTEMFLAGS
	B.1.3.5 SCCOPT_IGNORE_PASSWORD
	B.1.3.6 SCCOPT_LOTUSNOTESDIRECTORY
	B.1.3.7 SCCOPT_PARSEXMPMETADATA
	B.1.3.8 SCCOPT_PDF_FILTER_REORDER_BIDI
	B.1.3.9 SCCOPT_TIMEZONE
	B.1.3.10 SCCOPT_HTML_COND_COMMENT_MODE
	B.1.3.11 SCCOPT_PDF_FILTER_DROPHYPHENS
	B.1.3.12 SCCOPT_ARCFULLPATH

	B.1.4 Layout
	B.1.4.1 SCCOPT_EX_FALLBACKFONT
	B.1.4.2 SCCOPT_EX_FONTFLAGS
	B.1.4.3 SCCOPT_EX_GENBULLETSANDNUMS
	B.1.4.4 SCCOPT_EX_GRIDADVANCE
	B.1.4.5 SCCOPT_EX_GRIDCOLS
	B.1.4.6 SCCOPT_EX_GRIDROWS
	B.1.4.7 SCCOPT_EX_GRIDWRAP
	B.1.4.8 SCCOPT_EX_JAVASCRIPTTABS
	B.1.4.9 SCCOPT_EX_PAGESIZE
	B.1.4.10 SCCOPT_EX_PREVENTGRAPHICOVERLAP
	B.1.4.11 SCCOPT_EX_TEMPLATE

	B.1.5 Compression
	B.1.5.1 SCCOPT_FILTERJPG
	B.1.5.2 SCCOPT_FILTERLZW

	B.1.6 Graphics
	B.1.6.1 SCCOPT_GIF_INTERLACED
	B.1.6.2 SCCOPT_GRAPHIC_HEIGHTLIMIT
	B.1.6.3 SCCOPT_GRAPHIC_OUTPUTDPI
	B.1.6.4 SCCOPT_GRAPHIC_SIZELIMIT
	B.1.6.5 SCCOPT_GRAPHIC_SIZEMETHOD
	B.1.6.6 SCCOPT_GRAPHIC_TRANSPARENCYCOLOR
	B.1.6.7 SCCOPT_GRAPHIC_TYPE
	B.1.6.8 SCCOPT_GRAPHIC_WIDTHLIMIT
	B.1.6.9 SCCOPT_JPEG_QUALITY

	B.1.7 Spreadsheet and Database File Rendering
	B.1.7.1 SCCOPT_EX_SHOWSPREADSHEETBORDER
	B.1.7.2 SCCOPT_EX_SSDBBORDER
	B.1.7.3 SCCOPT_EX_SSDBROWCOLHEADINGS

	B.1.8 Page Rendering
	B.1.8.1 SCCOPT_WPEMAILHEADEROUTPUT
	B.1.8.2 SCCOPT_MAILHEADERVISIBLE
	B.1.8.3 SCCOPT_MAILHEADERHIDDEN

	B.1.9 Font Rendering
	B.1.9.1 SCCOPT_DEFAULTPRINTFONT
	B.1.9.2 SCCOPT_PRINTFONTALIAS

	B.1.10 Callbacks
	B.1.10.1 SCCOPT_EX_CALLBACKS
	B.1.10.2 SCCOPT_EX_UNICODECALLBACKSTR

	B.1.11 File System
	B.1.11.1 SCCOPT_IO_BUFFERSIZE
	B.1.11.2 SCCOPT_TEMPDIR
	B.1.11.3 SCCOPT_DOCUMENTMEMORYMODE
	B.1.11.4 SCCOPT_REDIRECTTEMPFILE

	B.1.12 Template-Only Options
	B.1.12.1 EX_LINKTARGET
	B.1.12.2 EX_LINKTARGETOVERRIDE

	B.1.13 Old Options
	B.1.13.1 Discontinued Options
	B.1.13.2 Option Name Changes
	B.1.13.3 #define Name Changes

	B.2 HTML Export SOAP Options
	B.2.1 How Options Work
	B.2.2 Character Mapping
	B.2.2.1 defaultInputCharset
	B.2.2.2 characterByteOrder
	B.2.2.3 outputCharacterSet
	B.2.2.4 unmappableCharacter

	B.2.3 Output
	B.2.3.1 altlink
	B.2.3.2 showChangeTracking
	B.2.3.3 collapseWhiteSpace
	B.2.3.4 compliance
	B.2.3.5 extractEmbeddedFiles
	B.2.3.6 flavor
	B.2.3.7 noSourceFormatting
	B.2.3.8 showHiddenSpreadsheetData
	B.2.3.9 showHiddenText
	B.2.3.10 simpleStyleNames
	B.2.3.11 preferOITRendering

	B.2.4 Input Handling
	B.2.4.1 fallbackFormat
	B.2.4.2 extendedTestForText
	B.2.4.3 ignorePassword
	B.2.4.4 parseXMPMetaData
	B.2.4.5 reorderBIDI
	B.2.4.6 skipLinkedImages
	B.2.4.7 timezone
	B.2.4.8 htmlCondCommentIE5On
	B.2.4.9 htmlCondCommentIE6On
	B.2.4.10 htmlCondCommentIE7On
	B.2.4.11 htmlCondCommentIE8On
	B.2.4.12 htmlCondCommentIE9On
	B.2.4.13 htmlCondCommentAllOn

	B.2.5 Layout
	B.2.5.1 fallbackFont
	B.2.5.2 fontFlags
	B.2.5.3 genBulletsAndNums
	B.2.5.4 gridAdvance
	B.2.5.5 gridCols
	B.2.5.6 gridRows
	B.2.5.7 gridWrap
	B.2.5.8 javaScriptTabs
	B.2.5.9 pageSize
	B.2.5.10 preventGraphicOverlap
	B.2.5.11 template

	B.2.6 Compression
	B.2.6.1 allowJPEG
	B.2.6.2 allowLZW

	B.2.7 Graphics
	B.2.7.1 graphicGifInterlaced
	B.2.7.2 graphicHeightLimit
	B.2.7.3 graphicOutputDPI
	B.2.7.4 graphicSizeLimit
	B.2.7.5 graphicSizeMethod
	B.2.7.6 graphicTransparencyColor
	B.2.7.7 graphicType
	B.2.7.8 graphicWidthLimit
	B.2.7.9 graphicJpegQuality

	B.2.8 Spreadsheet and Database File Rendering
	B.2.8.1 showSpreadsheetBorder
	B.2.8.2 spreadsheetBorders
	B.2.8.3 showSpreadsheetHeadings

	B.2.9 Page Rendering
	B.2.9.1 emailHeaderOutput

	B.2.10 Font Rendering
	B.2.10.1 defaultFont
	B.2.10.2 fontAlias

	B.2.11 File System
	B.2.11.1 fileAccess
	B.2.11.2 readBufferSize
	B.2.11.3 memoryMappedInputSize
	B.2.11.4 tempBufferSize

	Index

