
[1]Oracle® Communications Billing Care
SDK Guide

Release 7.5

E61772-08

December 2019

Oracle Communications Billing Care SDK Guide, Release 7.5

E61772-08

Copyright © 2015, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documents ... xiii

1 Introduction to Customizing Billing Care

About Billing Care Customizations.. 1-1

2 About Billing Care Architecture

About Billing Care Architecture.. 2-1
About the Billing Care REST Framework... 2-2
About Open Source Libraries Used by Billing Care ... 2-3

3 About Billing Care SDK

About the Billing Care SDK... 3-1
About the references SDK Directory ... 3-1

Installing the Billing Care SDK .. 3-2

4 Setting Up the Development Environment

About the Billing Care Development Environment.. 4-1
Configuring NetBeans IDE for Billing Care Development ... 4-1

Downloading and Installing NetBeans IDE... 4-2
Configuring the NetBeans IDE Connection to WebLogic Server ... 4-2
Setting Up a Billing Care Customization Project... 4-2

Creating the Billing Care SDK Directory Structure ... 4-2
Create the Billing Care NetBeans IDE Project .. 4-4

5 Using an Exploded Archive during Customization

About Using an Exploded Archive ... 5-1
Configuring WebLogic Server to Use an Exploded Archive ... 5-1

Creating a Manifest for your Shared Library... 5-2
Rebuilding your Project after Creating the Manifest File ... 5-3

Creating a New Deployment Plan for Billing Care with your Shared Library......................... 5-3
Deploying your Shared Library on your Billing Care Domain... 5-4

iv

Redeploying Billing Care to Use your Shared Library... 5-5

6 Packaging and Deploying Customizations

About Packaging and Deploying Customizations for Production... 6-1
Creating Production Versions of the Manifest File and Deployment Plan 6-1
Using the Java jar Utility to Package Your Shared Library.. 6-2
Deploying the Shared Library .war .. 6-2
Redeploying Billing Care to Use Your Shared Library .. 6-3

7 Customizing Billing Care

About Billing Care Customization Concepts ... 7-1
About Billing Care Modules .. 7-1

About Views ... 7-2
About View Models ... 7-2
About Data Binding between Views and View Models... 7-2

About the customModules.properties File.. 7-2
About the Configuration.xml File... 7-3
About the Registry File ... 7-3

Managing Billing Care Modules Using the Registry File... 7-4
About Billing Care View Model JavaScript Framework ... 7-4

Access to the Open Account ... 7-4
Object IDs .. 7-5

About Error Handling in REST Operations.. 7-5
Invoking Error Handing in Customizations .. 7-5

About Custom Resource Authorization... 7-6
Performing Authorization in the Actions Menu ... 7-6
Performing Authorization on the UI... 7-6
Performing Authorization on the REST Framework .. 7-7
Using REST Authorization without Obligations... 7-7
Using REST Authorization with Obligations... 7-7

8 Editing the Billing Care Configuration File

About the Billing Care Configuration File.. 8-1
Creating a Custom Configuration File ... 8-1
Default Configuration File Entries ... 8-2

9 Customizing Billing Care Themes and Logo

About Billing Care Themes and Logo.. 9-1
About Customizing Billing Care Themes ... 9-1
Adding a New Theme.. 9-1
Overriding Themes .. 9-2
Setting Which Billing Care Theme to Use... 9-2
Changing the Default Logo .. 9-3

v

10 Customizing Billing Care Templates

About Billing Care Templates .. 10-1
Customizing Templates ... 10-3

Removing Columns from a Template .. 10-3
Adding Columns to a Template.. 10-4
Extending the REST Framework to Support New Column Fields .. 10-5
Creating a customModules.properties File ... 10-5

Example 1: Event Template Customization ... 10-6
Example 2: Event Template Customization with New Fields .. 10-8
Example 3: Newsfeed Template Customization ... 10-11
Example 4: Account Search Template Customization Using Custom Fields 10-14

11 Customizing the Billing Care Account Banner

About the Billing Care Account Banner ... 11-1
Customizing the Billing Care Account Banner ... 11-1

Creating Configuration Files for Account Banner Customization .. 11-2
Rearranging Account Banner Tiles .. 11-3
Removing Account Banner Tiles.. 11-3

12 Customizing the Billing Care Actions Menu

About the Billing Care Actions Menu... 12-1
Mapping Label and Description Key Values to the Resource Bundle 12-2

About Customizing the Actions Menu ... 12-2
Setting Up NetBeans IDE for Customizing the Actions Menu... 12-3

Removing Actions Menu Items .. 12-3
Removing an Existing Actions Menu Submenu... 12-3
Removing an Existing Actions Menu... 12-4

Rearranging Actions Menu Items .. 12-4
Rearranging Actions Menu Submenu Items... 12-4
Rearranging Actions Menu Items... 12-5

Renaming Actions Menu and Submenu Items ... 12-6
Renaming Actions Menu Submenu Items... 12-6
Renaming Actions Menu Items... 12-6

Adding Actions Menu Items... 12-6
Adding Action Menu Items in Payment Suspense .. 12-8

13 Customizing Account Creation Service Fields

About Customizing Account Creation .. 13-1
Creating Custom View Models .. 13-1

Extending the New Account Configuration View Model... 13-2
Creating a Custom Service Configuration View Model.. 13-3

Creating a Custom Service View Model HTML Template ... 13-4
Extending the Service Validator for Custom Fields ... 13-4
Configuring a Custom Module in the Registry... 13-5
Deploying Customizations.. 13-6

vi

14 Creating Custom Billing Care Credit Profiles

About Credit Profiles.. 14-1
Customizing Billing Care to Store Credit Profiles ... 14-1
Creating Custom Profile Storable Classes in BRM .. 14-1

Importing Credit Profile Class Definitions into BRM.. 14-2
Creating Credit Profile Objects Using Developer Center.. 14-2

Creating the Credit Profile Class and Field ... 14-2
Generating the Required JAR File and Infranet.properties ... 14-3

Extending the Billing Care Data Model with XSD and JSON Files.. 14-3
Adding the Required Files to the NetBeans Project ... 14-4

Updating the MANIFEST.MF File .. 14-4
Adding the Required View Module and Configuration Files .. 14-4
Adding the Required JAR and JSON Files .. 14-5

Deploying Customizations.. 14-5

15 Adding Custom Payment Types

About Custom Payment Types ... 15-1
Creating Custom Payment Types in BRM ... 15-1

Creating Custom Payment Type Event Subclasses.. 15-2
Updating the /config/paymenttool Object with Custom Payment Types 15-2
Updating the /config/payment Object with Custom Payment Type Event 15-3

Customizing Billing Care to Support Custom BRM Payment Types ... 15-4
Generating XSD and JSON Files for Custom Payment Types ... 15-4
Extending the Billing Care Data Model with XSD and JSON Files.. 15-4
Adding the XSD and JSON Files to NetBeans Project... 15-5
Enabling Custom Payment Types in Batch Payment Processing .. 15-5
Deploying Customizations.. 15-6

16 Customizing Billing Care Invoice Presentation

About Billing Care Invoice Presentation.. 16-1
Customizing Billing Care Invoice Presentation .. 16-1

Setting Up NetBeans IDE for Customizing Invoice Presentation .. 16-1
Presenting Invoices in a Dialog Box .. 16-2
Retrieving Invoices from Third-Party Repositories ... 16-3

17 Customizing Billing Care to Display Child Accounts

About Displaying Child Accounts... 17-1
Customizing Billing Care to Display Child Accounts ... 17-1
Customizing the Organization Hierarchy Screen ... 17-2
Creating Custom View Models .. 17-2
Creating Custom View Model HTML Templates... 17-3
Configuring a Custom Module in the Registry... 17-3
Adding the Data Model JAR File ... 17-4
Deploying Customizations.. 17-4

vii

18 Customizing Suspended Payment Allocations

About Suspended Payment Allocation... 18-1
Forbidding Partial Allocation of Suspended Payments .. 18-1
Creating a CustomPCMPaymentModule.java Class .. 18-2
Creating a Custom Payment Suspense View Model .. 18-2
Creating a customModule.properties File .. 18-2
Configuring a Custom Module in the Registry... 18-3
Deploying Customizations.. 18-3

19 Customizing Search Filter for Suspended Payments

About Suspended Payment Search Filter ... 19-1
Adding Search Criteria... 19-1
Creating a CustompaymentSuspenseSearch.xml File.. 19-2
Creating a CustomTemplatePaymentSuspenseWorker.java Class ... 19-3
Creating CustomPCMTemplateModule.java Class ... 19-3
Creating a customModule.properties File .. 19-4
Updating Registry ... 19-4
Updating customPaymentSuspenseSearchView.html .. 19-5
Updating View Model.. 19-5
Localizing New Criteria into Other Languages... 19-6
Creating Deployment Plan .. 19-6
Creating .war File .. 19-6

20 Exporting Billing Care Search Results

About Billing Care Search ... 20-1
Enabling Search Results Export with the SDK ... 20-1
Creating Custom Search Templates... 20-1
Creating Custom Search View Models ... 20-2
Configuring Custom Search Modules in the Registry... 20-2
Deploying Customizations.. 20-3

21 Searching for Accounts by Payment ID

About Account Searches in Billing Care ... 21-1
Adding a Payment ID Field to the Account Search Screen ... 21-1
Naming the Custom Account Search Template in the CustomConfigurations.xml File 21-2
Creating a Custom Account Search Template ... 21-2
Creating a Custom Account Search View Model .. 21-3
Creating a Custom Search View Model .. 21-4
Creating a Custom Router View Model.. 21-4
Creating a Custom Router Helper ... 21-4
Creating a Custom Account Search View Model HTML Template .. 21-5
Replacing the Default Method for Showing Recently Opened Accounts 21-5
Configuring a Custom Module in the Registry... 21-6
Creating a customized_en.xlf File Entry for Payment ID Search Field 21-6
Getting Payment Item POIDs from BRM... 21-7

viii

Deploying Customizations.. 21-8

22 Separating Event Adjustment Amount and Percentage Fields

About Event Adjustments using Amount and Percentage ... 22-1
Separating Amount and Percentage Fields .. 22-1

Creating Custom View Model to Separate Amount and Percentage Fields 22-1
Configuring the Custom View Model in the Registry... 22-2

23 Customizing Purchase Deal and Assets Action Menu

About Customizing Purchase Deal Configuration and Assets Action Menu 23-1
Customizing Purchase Deal Configuration ... 23-1

Extending the Data Model With the XSD and Java Class files... 23-2
Creating a Custom Purchase Deal Configuration View Model ... 23-3
Creating Custom Purchase Configure View Model HTML Templates 23-3

Customizing Assets Action Menu ... 23-4
Creating a Custom Asset View Model... 23-4
Creating Custom Asset View Model HTML Templates ... 23-4

Deploying Customizations.. 23-5

24 Customizing Reason Codes List in Event Adjustments

About Displaying Reason Codes ... 24-1
Customizing Reason Codes List in Event Adjustments .. 24-1

Creating the Custom Event Adjustment View Model... 24-2
Configuring the Custom Event Adjustment View Model in the Registry.............................. 24-2
Deploying Customizations .. 24-3

25 Customizing Billing Care to Display Only Event Adjustments

About Displaying Event Adjustments .. 25-1
Customizing Billing Care to Display Only Event Adjustments .. 25-1

Creating Custom View Models to Display Only Event Adjustments..................................... 25-2
Configuring Custom Bill and Bill Item View Models in the Registry..................................... 25-3

26 Limiting Event Adjustment Percentage Entered by CSRs

About Adjustments... 26-1
Limiting Event Adjustments Entered by CSRs ... 26-1

Updating CustomExtendAdjustmentModule.java Class.. 26-1
Creating CustomAdjustmentWorker.java Class .. 26-2
Creating a customized_en.xlf File Entry for the Error Message... 26-3

27 Disabling Event Adjustment Options Based on Roles

About Event Adjustment Options ... 27-1
Disabling Event Adjustment Options Based on User Roles .. 27-1

Creating a Custom View Model for Disabling Adjustment Options 27-2
Configuring the Custom View Model for Disabling Event Adjustment Options 27-4

ix

28 Restricting Debit and Credit Event Adjustment Options

About Debit and Credit Event Adjustments ... 28-1
Restricting Debit and Credit Adjustment for Events... 28-1

Creating a Custom View Model for Restricting Debit and Credit Adjustments 28-2
Configuring the Custom View Model for Disabling Event Adjustment Options 28-3

29 Setting Adjustment Limit for Event Adjustments

About Adjustment Limits.. 29-1
Setting Event Adjustment Limit for CSRs ... 29-1

Creating customAdjustmentResource.java Class... 29-2
Creating the Custom Event Adjustment View Model... 29-3
Configuring the Custom Event Adjustment View Model in the Registry.............................. 29-4

30 Filtering Bundles Available for Purchase

About Filtering Bundles .. 30-1
Filtering Bundles List in Billing Care ... 30-1

Creating CustomPCMSubscriptionModule.java Class.. 30-1
Creating CustomSubscriptionWorker.java Class ... 30-2
Updating the customModule.properties File.. 30-2

31 Restricting Additional Bundles Purchase Based on Roles

About Restricting Bundles .. 31-1
Restricting Bundles Based on Roles .. 31-1

Creating the Custom Bundle Selection View Model ... 31-2
Configuring the Custom Bundle Selection View Model in the Registry 31-2

32 Restricting Bundle Validity Based on Roles

About Restricting Bundle Validity .. 32-1
Restricting Bundle Validity .. 32-1

Creating CustomAccountResource.java Class.. 32-2
Creating a Custom Purchase View Model .. 32-4
Configuring the Custom Purchase View Model in the Registry.. 32-5

33 Making Notes Field Mandatory

Making Notes Mandatory for Additional Product Purchase.. 33-1
Creating a Custom Purchase Deal View Model ... 33-1
Configuring the Custom Purchase View Model in the Registry.. 33-2

Making Notes Mandatory for Event Adjustments ... 33-2
Creating a Custom Event Adjustment View Model .. 33-3
Configuring the Custom Event Adjustment View Model in the Registry.............................. 33-3

34 Filtering Start and End Dates for Additional Purchase

About Customizing Purchase Configuration .. 34-1
Filtering Start and End Date Options.. 34-1

x

Creating a Custom Purchase Deal Configuration View Model ... 34-1
Configuring the Custom Purchase Configuration View Model in the registry..................... 34-4

35 Customizing Billing Care to Disable Links in the Bills Tab

About Disabling Link to Child Accounts... 35-1
Disabling Links in the Bills Tab .. 35-1

Creating the Custom Event Adjustment View Model... 35-2
Configuring Custom Bill, Charges, and Payment Detail View Models in the Registry 35-5

36 Customizing Display of Assets Section

About Customizing Display of Assets Section ... 36-1
Hiding Bill Units in the Home Tab ... 36-1

Creating Custom Home Tab View Model to Hide Bill Units ... 36-1
Configuring the Custom Home Tab View Model in the Registry ... 36-2

Disabling Actions Menu in the Assets Section ... 36-3
Creating Custom View Model to Disable Actions Menu.. 36-3
Configuring the Custom Assets Section View Model in the Registry..................................... 36-4

Hiding the Service Icon in Assets Card .. 36-5

37 Customizing Bills Graph and Balances Sections

About Customizing Bills Graph and Balances Sections ... 37-1
Customizing Bills Graph Section... 37-1

Creating Custom Home Tab View Model ... 37-2
Creating Custom View Model HTML Template for Customizing Bills Graph 37-3
Configuring Custom View Models for Customizing Bills Graph in the Registry................. 37-3

Customizing Balances Section.. 37-4
Creating Custom View Model HTML Template for Customizing Balances Section 37-4
Configuring Custom View Model for Customizing Balances Section in the Registry 37-4

38 Opening Custom Views From Landing Page

About Customizing Landing Page... 38-1
Customizing the Landing Page... 38-1

Creating a Custom Landing Page View Model .. 38-1
Creating a Custom Landing Page View Model HTML Template ... 38-2

Opening Custom Views in Full Screen Mode ... 38-2
Creating a Custom Full Page View Model .. 38-3
Creating a Custom Full Page View Model HTML Template ... 38-3
Creating a Custom Router View Model... 38-3
Creating a Custom Router Helper ... 38-4
Configuring the Custom Full Page View Model in the Registry ... 38-4

Opening a Dialog Box From Landing Page.. 38-5
Creating a Custom Dialog View Model... 38-5
Creating a Custom Dialog View Model HTML Template .. 38-5
Configuring the Custom Dialog View Model in the Registry .. 38-6

xi

39 Enabling Authorization in Test Installations

About Enabling Authorization in Test Installations ... 39-1
Enabling Authorization in Test Installations .. 39-1
Modifying Default Authorization Policies .. 39-2
Adding Custom Authorization Resources and Actions... 39-3
Deploying Customizations.. 39-4

40 Customizing Billing Care Labels

About the Billing Care Resource Bundle ... 40-1
Customizing the Resource Bundle... 40-1

Creating a Custom XLF File... 40-1
Modifying Existing Labels ... 40-2
Adding New Labels .. 40-2
Creating Required JavaScript Files for Deployment.. 40-3

Localizing Billing Care into Other Languages .. 40-3

41 Embedding Billing Care Screens in External Applications

About Embeddable Billing Care Screens ... 41-1
Embedding Billing Care Screens ... 41-2

Understanding the index_embedded.html File.. 41-2
Configuring Your External Application to Access Billing Care... 41-4

Configuring Security for External Application Access.. 41-4

42 Extending and Creating Billing Care REST Resources

About Extending and Creating Billing Care REST Resources ... 42-1
About Billing Care Sample SDK REST Customizations .. 42-1
Extending REST Services... 42-2

xii

xiii

Preface

This guide describes how to customize and extend Oracle Communications Billing
Care.

Audience
This document is intended for developers and user interface designers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Communications
Billing Care documentation set:

■ Oracle Communications Billing Care Release Notes

■ Oracle Communications Billing Care Installation Guide

■ Oracle Communications Billing Care Java API Reference

■ Oracle Communications Billing Care Security Guide

xiv

1

Introduction to Customizing Billing Care 1-1

1Introduction to Customizing Billing Care

[2]This chapter provides an overview of supported Oracle Communications Billing Care
customizations.

About Billing Care Customizations
This guide includes information on Billing Care architecture, Billing Care SDK
contents, setting up the NetBeans IDE, and packaging and deploying your
customizations useful in understanding, performing, and implementing Billing Care
customizations. See the following chapters for information on each topic:

■ See "About Billing Care Architecture" for information on Billing Care’s
architecture.

■ See "About Billing Care SDK" for a list of SDK components used for customizing
Billing Care.

■ See "Setting Up the Development Environment" and "Using an Exploded Archive
during Customization" for information on setting up NetBeans IDE.

■ See "Packaging and Deploying Customizations" for information on how to
package and deploy your Billing Care customizations.

You customize Billing Care using the SDK and NetBeans IDE. Customizing Billing
Care requires an understanding of Java, JavaScript, CSS, XML, and working with
Oracle WebLogic Server web applications. See "Customizing Billing Care" for an
overview of Billing Care customization methods.

The SDK provides the ability to customize and configure Billing Care in the following
ways:

■ Using a configuration file to customize Billing Care behavior. See "Editing the
Billing Care Configuration File" for more information.

■ Customizing default or adding custom themes (skins) to Billing Care. See
"Customizing Billing Care Themes and Logo" for more information.

■ Customizing Billing Care event and newsfeed templates. See "Customizing Billing
Care Templates" for more information.

■ Customizing the Billing Care account banner. See "Customizing the Billing Care
Account Banner" for more information.

■ Customizing the Billing Care Actions menu. See "Customizing the Billing Care
Actions Menu" for more information.

■ Customizing Billing Care invoice presentation. See "Customizing Billing Care
Invoice Presentation" for more information.

About Billing Care Customizations

1-2 Billing Care SDK Guide

■ Customizing Billing Care screen labels and localization. See "Customizing Billing
Care Labels" for more information.

■ Extending the REST framework with custom operations. See "Extending and
Creating Billing Care REST Resources" for more information.

You create your customizations using NetBeans IDE and package them as a
customizations shared library that is deployed to the Billing Care domain. See "About
Billing Care Architecture" for more information on Billing Care architecture and where
the customizations shared library is deployed, and "Packaging and Deploying
Customizations" for more information on packaging and deploying your
customizations shared library in the Billing Care domain.

2

About Billing Care Architecture 2-1

2About Billing Care Architecture

[3]This chapter provides an overview of Oracle Communications Billing Care
architecture.

About Billing Care Architecture
Billing Care is an application deployed to an Oracle WebLogic Server domain.
Customizations are deployed to the same domain as a customizations shared library. A
Billing Care deployment plan, referencing this customizations shared library,
implements your customizations.

Users connect to Billing Care with a web browser where modules are presented for
performing billing and customer care operations. See "About Billing Care Modules" for
more information about modules.

Billing Care’s REST framework communicates with web browsers, and Oracle
Communications Billing and Revenue Management (BRM) using a connection pool to
the Connection Manager.

Figure 2–1 shows the described architecture in a topological view.

About Billing Care Architecture

2-2 Billing Care SDK Guide

Figure 2–1 Billing Care Topology

About the Billing Care REST Framework
The REST framework includes several modules used to perform billing and customer
care transactions with BRM. Each module consists of four tiers, each with its own set
of responsibilities:

■ The Resource tier manages RESTful client requests and responses.

■ The Module tier coordinates transformation of RESTful operations and payload
into BRM native formats.

■ The Worker tier contains methods for converting data between Billing Care and
BRM formats.

■ The PCM tier manages the connections between Billing Care and the BRM
Connection Manager.

Figure 2–2 shows the Billing Care REST framework tiers and a sample Account
module. The column on the left describes the tiers in general. The column on the right
provides a specific example of the tiers for the Account REST module where:

■ The Account Resource is the Resource tier.

■ The PCMAccountModule is the Module tier.

■ The AccountWorker is the Worker tier.

■ The PCM tier is represented as the same in both columns as connections to BRM
are shared by all resources.

About Billing Care Architecture

About Billing Care Architecture 2-3

Figure 2–2 Billing Care REST Framework

About Open Source Libraries Used by Billing Care
Billing Care is a web-based application built using the open source libraries listed in
Table 2–1. A description on how each library is used is provided. For more information
on each library, see the library specific documentation at the provided links.

Table 2–1 Open Source Libraries Used for Billing Care

Library Description

jQuery General purpose API and DOM manipulation. For more
information on jQuery, see:

https://jquery.com/

Underscore For inserting HTML pages (templates) into the application
(browser DOM). For more information on Underscore, see:

http://underscorejs.org/

RequireJS Dynamic loading of modules (JavaScript, HTML). For more
information on RequireJS, see:

http://underscorejs.org/

Knockout Provides data binding between JavaScript view models and
HTML views. Changes in the view are automatically reflected
in the view model, and vice versa. For more information on
Knockout, see:

http://knockoutjs.com/

Jersey Provides the basis for the REST web services. For more
information on Jersey, see:

https://jersey.java.net/

About Billing Care Architecture

2-4 Billing Care SDK Guide

3

About Billing Care SDK 3-1

3About Billing Care SDK

[4]This chapter provides an overview of the Oracle Communications Billing Care SDK
contents.

About the Billing Care SDK
The Billing Care SDK provides tools, libraries, and samples used to customize Billing
Care. You use the SDK with NetBeans IDE to set up a development environment for
customizing Billing Care. The SDK includes the directories listed in Table 3–1.

About the references SDK Directory
The references directory contains the default versions of the configuration and
metadata files used to customize Billing Care. You create new versions of many of the
files in this directory when customizing Billing Care. These custom files are packaged
in the customizations shared library you deploy to the Billing Care domain.

Table 3–2 lists the files included in the Billing Care SDK references directory.

Table 3–1 Billing Care SDK Directories

Directory Description

libs Contains the library jars required to customize Billing Care

references Contains the default versions of the configuration and metadata
files used to customize Billing Care. See "About the references
SDK Directory" for more information.

samples Contains code and configuration file samples used to assist you
in customizing Billing Care. Each sample includes a
README.txt file describing the implementation being shown
in the example.

Table 3–2 Billing Care SDK references Directory Files

File or Directory Description

ActionMenu.xml Contains the metadata describing the contents of the
Action menu in the main Billing Care toolbar. You work
with this file to add, remove, rename, or rearrange menu
entries. When customizing, create a
CustomActionMenu.xml file.

See "Customizing the Billing Care Actions Menu" for
more information.

Installing the Billing Care SDK

3-2 Billing Care SDK Guide

Installing the Billing Care SDK
Use the Billing Care installer (BillingCare_generic.jar), downloadable from the Oracle
Software Delivery Cloud, to install the Billing Care SDK and create the BillingCare_
SDK folder on your NetBeans IDE host. Alternatively, if you included the SDK when
installing Billing Care, copy the BillingCare_SDK folder from your Billing Care host
to your NetBeans IDE host.

See Oracle Communications Billing Care Installation Guide for more information on
downloading and running the Billing Care installer.

Configurations.xml Contains flags controlling the display of specific account
attributes, timeout values, and BRM-related ENUM
mappings When customizing, create a
CustomConfigurations.xml file.

BillingCareResources_en.xlf Contains all text labels in the application. You can use this
file to change labels in the application. When customizing,
create a customized_en.xlf file.

See "Customizing Billing Care Labels" for more
information.

eventtemplates Contains the metadata describing the fields displayed for
BRM events (associated with bill items).You work with
event templates to display data from custom usage events
or to alter the default template. When you create custom
event templates, you must prefix template names with
Custom.

See "Customizing Billing Care Templates" for more
information.

newsfeedtemplates Contains the metadata describing the data displayed in
the Newsfeed. You work with newsfeedtemplates to alter
the default templates. When you create custom event
templates, you must prefix template names with Custom.

See "Customizing Billing Care Templates" for more
information.

OESDataModel Contains the Oracle Entitlements Server (OES) seed data
describing the authorization policies and resources.

registry.js Contains the definitions for and association between
Billing Care views and viewmodels (HTML and
JavaScript). When customizing, create a
customRegistry.js file.

See "About the Registry File" for more information.

Table 3–2 (Cont.) Billing Care SDK references Directory Files

File or Directory Description

4

Setting Up the Development Environment 4-1

4Setting Up the Development Environment

[5]This chapter provides an overview of setting up your Integrated Development
Environment (IDE) for customizing Oracle Communications Billing Care.

About the Billing Care Development Environment
You customize Billing Care using an IDE configured to work with the Oracle
WebLogic Server domain on which Billing Care is deployed. Typically, you connect to
a development Billing Care domain, perform your customizations, test, and then
package and deploy your customizations as a shared library to your production Billing
Care domain. Billing Care references this customizations shared library when
rendering the user interface (UI) and performing Billing Care operations.

To increase efficiency during development and testing, use an exploded archive
deployment of your customizations. Exploded archive deployments enable WebLogic
Server to reference customized files on a local file system instead of a deployed
customizations shared library in the domain. Changes can be made to the referenced
files directly and seen in Billing Care without having to package and deploy a
customizations shared library each time changes are made. See "Using an Exploded
Archive during Customization" for more information on using exploded archives
during customization.

Oracle recommends NetBeans IDE for customizing Billing Care. The following
sections explain configuring NetBeans IDE for customizing Billing Care. For more
information on NetBeans IDE see:

https://netbeans.org/features/index.html

Configuring NetBeans IDE for Billing Care Development
To use NetBeans IDE for Billing Care customization, you must complete the following
tasks:

■ Downloading and Installing NetBeans IDE

■ Configuring the NetBeans IDE Connection to WebLogic Server

■ Setting Up a Billing Care Customization Project

Additional information on configuring NetBeans IDE with your WebLogic Server host
can be found in Developing an Enterprise Application for Oracle WebLogic Server at:

https://netbeans.org/kb/docs/web/jsf-jpa-weblogic.html

Configuring NetBeans IDE for Billing Care Development

4-2 Billing Care SDK Guide

Downloading and Installing NetBeans IDE
Download and install NetBeans IDE on the same server hosting your Billing Care
domain before configuring a connection to your Billing Care WebLogic server.

For detailed instructions, including additional software requirements, on downloading
and installing NetBeans IDE, see:

https://netbeans.org/community/releases/80/install.html

Configuring the NetBeans IDE Connection to WebLogic Server
After installing NetBeans IDE, you configure a connection to the running WebLogic
Server domain on which Billing Care is deployed. For information on installing Billing
Care and starting your domain see Oracle Communications Billing Care Installation
Guide.

To configure a NetBeans IDE connection to the Billing Care domain:

1. Start the NetBeans IDE.

2. Select the Services tab.

3. Right-click Servers and select Add Server.

4. In the Choose Server screen, select Oracle WebLogic Server. Provide a name in
the Name field and click Next.

5. In the Server Location screen, enter the path or browse to the wlserver folder of
the WebLogic Server installation containing the Billing Care domain, then click
Next.

6. In the Instance Properties screen, provide the path to the domain folder where
Billing Care is deployed in the Domain field.

7. Enter the Username and Password for your domain’s administrative user, then
click Finish.

NetBeans IDE configures the connection to the domain. Verify that the connection
is successful by expanding the Servers node in the Services tab. Your domain
should be listed.

Setting Up a Billing Care Customization Project
You perform customizations to Billing Care in a NetBeans IDE project containing the
Billing Care SDK. Complete the following required tasks to set up your Billing Care
customization project:

■ Creating the Billing Care SDK Directory Structure

■ Create the Billing Care NetBeans IDE Project

Creating the Billing Care SDK Directory Structure
The Billing Care customization NetBeans IDE project requires a specific directory
structure, described in Table 4–1, for proper packaging of the customizations shared
library you build and deploy to the Billing Care domain.

To create the required directory structure on your NetBeans IDE host:

1. Create a project directory (For example, myproject).

2. Within your project directory, create the following subdirectories listed in
Table 4–1.

Configuring NetBeans IDE for Billing Care Development

Setting Up the Development Environment 4-3

Table 4–1 Required Billing Care Customization Directories

Directory Description

myproject/web/css Location for required CSS files required by your
customizations.

myproject/web/custom Location for the customRegistry.js and
customModule.properties used when overriding
the default modules.

myproject/web/custom/jsons Location for any JSON files generated by the Data
Model Generator for custom UI elements.

myproject/web/custom/images Recommended location for image files referenced
in your HTML and CSS files.

myproject/web/custom/js Location for custom JavaScript files used by your
customizations. Each customization

myproject

/web/custom/js/templates/area/configure

where area is the customization type.

Location for custom html files used by your
customizations. Create a unique subdirectory in
this folder for each customization type. For
example, create an accountCreation folder for
customizations done to the account creation
HTML file.

myproject/web/custom/js/validations/area/configure

where area is the customization type.

Location for custom validation files used by your
customizations. Create a unique subdirectory in
this folder for each customization type. For
example, create an accountCreation folder for
customizations done to the account creation
JavaScript files.

myproject/web/custom/js/viewmodels/area/configure

where area is the customization type.

Location for custom view model files used by
your customizations. Create a unique subdirectory
in this folder for each customization type. For
example, create an accountCreation folder for
customizations done to the account creation view
model files.

myproject/web/lib You must copy the contents of the
BillingCare_SDK/libs folder into the
myproject/web/lib directory where myproject is
the project directory previously created. The
libs directory contains the jar files required
for customizing Billing Care provided by the
Billing Care installer. See "Installing the Billing
Care SDK" for information about installing the
SDK.

myproject/web/META-INF Location for the manifest file describing the name
and version of the shared library containing your
customizations.

myproject/web/resources/public/css Location of the overrides-login.css file where you
specify a custom logo image file for the Billing
Care login page.

myproject/web/resources/public/images Location where you copy your custom logo image
file used when overriding the default Oracle log
on the Billing Care login page.

myproject/web/resources/translation Location of your custom resource bundle.

Configuring NetBeans IDE for Billing Care Development

4-4 Billing Care SDK Guide

Create the Billing Care NetBeans IDE Project
After creating the Billing Care customization project directory structure and copying
the required jars into your myproject/web/lib directory, create a new project in
NetBeans IDE for your customizations.

To create a NetBeans IDE project for your Billing Care customizations:

1. Start the NetBeans IDE.

2. Select the Projects tab.

3. Right-click within the Projects tab and select New Project....

4. In the New Project window, select Java Web under Categories. Select Web
Application with Existing Sources under Projects.

5. Click Next.

6. In the Name and Location screen, enter the path or browse to the myproject folder
where myproject is the folder you previously created for your Billing Care
customizations. Specify a name and location in the Project Name and Project
Folder fields.

See "Creating the Billing Care SDK Directory Structure" for information on
creating your project folder.

7. Click Next.

myproject/web/WEB-INF/classes/com Location of the .class files compiled from any
custom Java code used in your customizations.
The directory structure in this directory reflects
the package name you use in your custom Java
code.

myproject/web/WEB-INF/classes/custom Location of the customModules.properties file.

myproject/web/WEB-INF/classes/custom/configurations Location where you place your
CustomConfigurations.xml and
CustomActionMenu.xml files.

myproject/web/WEB-INF/classes/custom/eventtemplates Location where you place your custom event
templates

myproject/web/WEB-INF/classes/custom/newsfeedtemplates Location where you place your custom newsfeed
templates

myproject/src Create custom Java files in the src directory, within
any Java Package you want.

However, any REST web services you create for
Billing Care must be placed within the
com.oracle.communications.brm.cc.ws package
(myproject/src/com/oracle/communications/brm/cc
/ws). This will ensure your REST web service can
be deployed within the customizations shared
library.

Company-specific subpackages are supported and
recommended, for example:

com.oracle.communications.brm.cc.ws.company

where company is your company’s name.

Table 4–1 (Cont.) Required Billing Care Customization Directories

Directory Description

Configuring NetBeans IDE for Billing Care Development

Setting Up the Development Environment 4-5

8. In the Server and Settings screen, select the WebLogic Server you previously
connected to NetBeans IDE.

See "Configuring the NetBeans IDE Connection to WebLogic Server" for more
information on configuring your NetBeans IDE connection to your Billing Care
domain.

9. Click Next.

10. In the Existing Sources and Libraries screen, verify the paths to your Web Page
Folder, WEB-INF Content, and Libraries Folder are correct.

11. Click Finish.

NetBeans IDE configures the new project. Verify that the project creation is
successful by confirming your project is listed in the Projects tab.

Configuring NetBeans IDE for Billing Care Development

4-6 Billing Care SDK Guide

5

Using an Exploded Archive during Customization 5-1

5Using an Exploded Archive during
Customization

[6]This chapter provides an overview on how to use an exploded archive when
customizing Oracle Communications Billing Care.

About Using an Exploded Archive
You deploy Billing Care customizations as a customizations shared library to the same
Oracle WebLogic Server domain where Billing Care is running. During customization,
Oracle recommends using an exploded archive containing your shared library. An
exploded archive represents your customizations in a local file system instead of a
packaged archive (.war).

Using an exploded archive of your customizations enables you to update your
customizations and automatically deploy them to the Billing Care domain without
having to package your customizations shared library after each change. Your Billing
Care customizations can be viewed by logging out and back in to Billing Care in the
web browser.

Use exploded archives during development and testing of your customizations. For
production instances of Billing Care, package your customizations as a .war file and
deploy this file using WebLogic Server administration tools to your Billing Care
domain. See "Packaging and Deploying Customizations" for more information on
packaging and deploying production customizations.

See "Creating Shared Java EE Libraries and Optional Packages" in Oracle Fusion
Middleware Developing Applications for Oracle WebLogic Server for more information on
using exploded archives with WebLogic Server.

Configuring WebLogic Server to Use an Exploded Archive
To use an exploded archive with WebLogic Server, configure your Billing Care domain
with the location of your previously created NetBeans IDE project. The project location
acts as the exploded archive of the customizations shared library and is used by Billing
Care to display your customizations.

Configure WebLogic Server to use your exploded archive shared library by completing
the following procedures:

■ Creating a Manifest for your Shared Library

■ Creating a New Deployment Plan for Billing Care with your Shared Library

■ Deploying your Shared Library on your Billing Care Domain

Configuring WebLogic Server to Use an Exploded Archive

5-2 Billing Care SDK Guide

■ Redeploying Billing Care to Use your Shared Library

Creating a Manifest for your Shared Library
WebLogic Server requires a manifest file (MANIFEST.mf) for your exploded archive.
The manifest includes information about the customizations shared library contained
in the exploded archive including the entries listed in Table 5–1.

See the following link for additional information on manifest files:

https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#JAR_
Manifest

To create a MANIFEST.mf file for your exploded archive:

1. Start NetBeans IDE.

2. Select the Files tab.

3. Expand the project directory to view the myproject/web/META-INF/ directory
where myproject is the previously created project directory.

4. Right-click the META-INF folder and select New.

5. Select Other.

6. Under Categories, select Other.

7. Under File Types, select Empty File.

8. Click Next.

9. In the File Name field, enter MANIFEST.MF.

10. Click Finish.

The MANIFEST.MF file is shown in the NetBeans IDE text editor.

11. Create your manifest file with the entries shown in Table 5–1. A sample manifest
file is shown in Example 5–1.

12. Click File, then Save.

Table 5–1 MANIFEST.mf Entries for Billing Care Customization

Entry Description

Manifest-Version Numerical version of the manifest file

Built-By Name of library builder

Specification-Title String that defines the title of the extension specification

Specification-Version String that defines the version of the extension specification

Implementation-Title String that defines the title of the extension implementation

Implementation-Version String that defines the version of the extension implementation

Implementation-Vendor String that defines the vendor of the extension implementation

Extension-Name String that defines a unique of the extension

Note: Oracle recommends you use Specification-Title and
Extension-Name values clearly identifying your shared library as a
development version.

https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#JAR_Manifest
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#JAR_Manifest

Configuring WebLogic Server to Use an Exploded Archive

Using an Exploded Archive during Customization 5-3

Example 5–1 Sample MANIFEST.MF File for Billing Care Customizations

Manifest-Version: 1.0
Built-By: Oracle
Specification-Title: BillingCareSDKDevelopment
Specification-Version: 1.0
Implementation-Title: Custom SDK WAR file for Billing Care
Implementation-Version: 1.0
Implementation-Vendor: Oracle
Extension-Name: BillingCareSDKDevelopment

Rebuilding your Project after Creating the Manifest File
Rebuild your Billing Care customization project in NetBeans IDE after creating and
saving your manifest file.

To rebuild your project in NetBeans IDE:

1. Click the Projects tab.

2. Right-click your project.

3. Select Clean and Build.

Creating a New Deployment Plan for Billing Care with your Shared Library
Create a new Billing Care deployment plan that includes your customizations shared
library. The deployment plan includes an entry for your customizations shared library
referencing the exploded archive NetBeans IDE project. When the Billing Care
application starts, the exploded archive contents are also loaded providing access to
your customizations.

See "Deployment Plans" in Oracle Fusion Middleware Developing Applications for Oracle
WebLogic Server for more information on deployment plans.

To create a new deployment plan:

1. Start NetBeans IDE.

2. Select the Files tab.

3. Right-click the myproject folder and select New.

4. Select Other.

5. Under Categories, select Other.

6. Under File Types, select Empty File.

7. Click Next.

8. In the File Name field, enter a name for your deployment plan with an .xml
extension. For example:

billingCareSDKDeploymentPlan.xml

9. Click Finish.

The deployment plan is shown in the NetBeans IDE text editor.

10. Create your deployment plan using the sample shown in Example 5–2.

Configuring WebLogic Server to Use an Exploded Archive

5-4 Billing Care SDK Guide

11. Click File, then Save.

Example 5–2 Sample Billing Care Customizations Deployment Plan

<?xml version="1.0" encoding="UTF-8"?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-plan
http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd"
global-variables="false">

<application-name>BillingCare.war</application-name>
<variable-definition>

<variable>
<name>Custom-ImplementationVersion</name>
<value xsi:nil="false">1.0</value>

</variable>
<variable>

<name>Custom-SpecificationVersion</name>
<value xsi:nil="false">1.0</value>

</variable>
<variable>

<name>Custom-LibraryName</name>
<value xsi:nil="false">BillingCareSDKDevelopment</value>

</variable>
<variable>

<name>Custom-ExactMatch</name>
<value xsi:nil="false">true</value>

</variable>
<variable>

<name>Custom-ContextPath</name>
<value />

</variable>
</variable-definition>
<module-override>

<module-name>BillingCare.war</module-name>
<module-type>war</module-type>
<module-descriptor external="true">

<root-element>weblogic-web-app</root-element>
<uri>WEB-INF/weblogic.xml</uri>
<variable-assignment>

<name>Custom-LibraryName</name>
<xpath>/weblogic-web-app/library-ref/library-name</xpath>

</variable-assignment>
</module-descriptor>

</module-override>
</deployment-plan>

Deploying your Shared Library on your Billing Care Domain
After creating your manifest file and new deployment plan for Billing Care, deploy the
exploded archive shared library to your Billing Care domain.

Note: Use the same string in the Custom-LibraryName element in
your deployment plan as the Extension-Name parameter in the
MANIFEST.MF file you previously created. For example, the string in
the sample files provided is:

BillingCareSDKDevelopment

Configuring WebLogic Server to Use an Exploded Archive

Using an Exploded Archive during Customization 5-5

To deploy your shared library to your Billing Care domain:

1. In your browser, navigate to the Administration Console of your Billing Care
domain.

2. Log in using administrative credentials for the Billing Care domain.

3. In Domain Structure, click Deployments.

4. Select the BillingCare deployment and click Stop, then Force Stop Now to stop
Billing Care.

5. In the Control tab, click Install in the Deployments table.

6. In the Path: field, enter (or browse to) the location of the web directory of your
NetBeans IDE project containing your Billing Care project. For example,
myproject/web, where myproject is the Billing Care project directory.

Confirm that the option for web is selected.

7. Click Next.

8. In the Choose targeting style screen, select Install this deployment as a library.

9. Click Next.

10. In the Optional Settings screen, enter the Name using the same string used in the
Custom-LibraryName element in your deployment plan and the Extension-Name
parameter in the MANIFEST.MF file you previously created. For example, the
string in the sample files provided is:

BillingCareSDKDevelopment

11. Click Next.

12. In the Review your choices and click Finish screen, click Finish.

Confirm in the Deployments screen that your customizations shared library is
deployed to your Billing Care domain as in an Active state.

Redeploying Billing Care to Use your Shared Library
After deploying the exploded archive as a customizations shared library, redeploy
Billing Care using the new deployment plan created in "Creating a New Deployment
Plan for Billing Care with your Shared Library". Redeploying Billing Care using the
new deployment plan configures Billing Care to use the exploded archive
customizations shared library in your NetBeans IDE project and restarts Billing Care.

After successful deployment, customize Billing Care by editing the configuration files
in the NetBeans IDE project.

To redeploy Billing Care:

1. In your browser, navigate to the Administration Console of your Billing Care
domain.

2. Log in using administrative credentials for the Billing Care domain.

3. In Domain Structure, click Deployments.

4. In the Control tab, select BillingCare in the Deployments table.

5. Click Update.

6. In the Update Application Assistant screen, select Redeploy this application
using the following deployment files:.

Configuring WebLogic Server to Use an Exploded Archive

5-6 Billing Care SDK Guide

7. For the Deployment plan path:, click Change Path.

8. Enter (or browse to) the location where your new deployment plan (for example,
the myproject folder) is and select the new deployment plan, then click Next.

9. In the Review your choices screen, click Finish.

Confirm in the Deployments screen that Billing Care redeploys successfully and is
in an Active state.

6

Packaging and Deploying Customizations 6-1

6Packaging and Deploying Customizations

[7]This chapter provides an overview on deploying Oracle Communications Billing Care
customizations to production Billing Care domains.

About Packaging and Deploying Customizations for Production
After testing and verifying your Billing Care customizations, create a packaged archive
(.war) file of your exploded archive shared library to deploy in your production Billing
Care domain. Using a .war containing your customizations enables you to quickly
deploy your customizations to multiple Billing Care instances.

Deploying customizations to production environments requires that you complete the
following procedures:

■ Creating Production Versions of the Manifest File and Deployment Plan

■ Using the Java jar Utility to Package Your Shared Library

■ Deploying the Shared Library .war

■ Redeploying Billing Care to Use Your Shared Library

Creating Production Versions of the Manifest File and Deployment Plan
Before running the jar command, create production versions of the manifest file and
deployment plan.

To create production manifest and deployment plan files:

1. In a terminal session, change directory to the myproject/web/META-INF directory,
where myproject is the NetBeans IDE project directory containing your Billing Care
customizations.

2. Create a copy of the MANIFEST.MF file in the myproject/build/web directory in
the myproject/web/META-INF directory named manfiest.txt.

3. Open the manifest.txt file in an editor.

4. Edit the values of the Custom-LibraryName and the Extension-Name parameters
to a string for your production shared library. For example:

BillingCareCustomizations

See "Creating a Manifest for your Shared Library" for more information on
creating a manifest file for your shared library.

5. Save and close the manifest.txt file.

6. Copy the edited manifest.txt file to the myproject/build/web directory.

Using the Java jar Utility to Package Your Shared Library

6-2 Billing Care SDK Guide

7. Create a copy of the deployment plan you created for your exploded archive
shared library deployment in "Creating a New Deployment Plan for Billing Care
with your Shared Library" named prodplan.xml. Use this deployment plan for
your production Billing Care deployments.

8. Edit the Custom-LibraryName element in prodplan.xml using the same string
you provided in step 4.

9. Save and close the prodplan.xml file.

Using the Java jar Utility to Package Your Shared Library
The jar command packages all of the required contents of your exploded archive
shared library into a .war file deployable in the Oracle WebLogic Server
Administration Console.

For more information on the Java jar utility see:

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jar.html

To create your BillingCareCustomizations.war using the jar utility:

1. In a terminal session, change directory to the myproject/build/web directory, where
myproject is the NetBeans IDE project directory containing your Billing Care
customizations.

2. Verify that the manifest.txt file from step 2 is in the directory.

3. Execute the following jar command to package the manifest.txt file and the
subfolders contained in of your myproject/web directory into a .war file:

jar cfm BillingCareCustomizations.war manifest.txt css custom js lib
resources WEB-INF

4. Verify that the BillingCareCustomizations.war is created.

Deploying the Shared Library .war
After creating your BillingCareCustomization.war and production deployment plan,
deploy the .war in your Billing Care domain.

To deploy your shared library in your Billing Care domain:

1. In your browser, navigate to the Administration Console of your Billing Care
domain.

2. Log in using administrative credentials for the Billing Care domain.

3. In Domain Structure, click Deployments.

4. Select the BillingCare deployment and click Stop, then Force Stop Now to stop
Billing Care.

5. In the Control tab, click Install in the Deployments table.

Note: Use the same string in the Custom-LibraryName element in
your deployment plan as the Extension-Name parameter in the
MANIFEST.MF file you previously created. For example, the string in
this procedure is:

BillingCareCustomizations

Redeploying Billing Care to Use Your Shared Library

Packaging and Deploying Customizations 6-3

6. In the Path: field, enter (or browse to) the location of the
BillingCareCustomization.war.

Confirm that the option for BillingCareCustomization.war is selected.

7. Click Next.

8. In the Choose targeting style screen, select Install this deployment as a library.

9. Click Next.

10. In the Optional Settings screen, enter the Name using the same string used in the
Custom-LibraryName element in your deployment plan and the Extension-Name
parameter in the MANIFEST.MF file you previously created. For example, the
string used in this chapter is:

BillingCareCustomizations

11. Click Next.

12. In the Review your choices and click Finish screen, click Finish.

Confirm in the Deployments screen that your shared library is deployed in your
Billing Care domain and is in an Active state.

Redeploying Billing Care to Use Your Shared Library
After deploying the BillingCareCustomizations.war, redeploy Billing Care using the
production deployment plan. Redeploying Billing Care using the production plan
restarts and configures Billing Care to use the .war shared library you previously
deployed.

To redeploy Billing Care:

1. In your browser, navigate to the Administration Console of your Billing Care
domain.

2. Log in using administrative credentials for the Billing Care domain.

3. In Domain Structure, click Deployments.

4. In the Control tab, select BillingCare in the Deployments table.

5. Click Update.

6. In the Update Application Assistant screen, select Redeploy this application
using the following deployment files:.

7. For the Deployment plan path:, click Change Path.

8. Enter (or browse to) the location where your production prodplan.xml
deployment plan is and select the production deployment plan.

9. Click Next.

10. In the Review your choices screen, click Finish.

Confirm in the Deployments screen that Billing Care redeploys successfully and is
in an Active state.

Redeploying Billing Care to Use Your Shared Library

6-4 Billing Care SDK Guide

7

Customizing Billing Care 7-1

7Customizing Billing Care

[8]This chapter provides an overview of Oracle Communications Billing Care
customization concepts.

About Billing Care Customization Concepts
You customize Billing Care by modifying or creating configuration files, Java classes,
JavaScript, html, and CSS. Customizations are performed in NetBeans IDE, packaged
into a customizations shared library using the Java jar utility, and deployed to the
Billing Care domain as a referenced shared library.

To customize Billing Care, you perform the following tasks:

■ Download and install the Billing Care SDK. See "Installing the Billing Care SDK"
for information.

■ Download and install NetBeans IDE. See "Setting Up the Development
Environment" for more information.

■ Configure a NetBeans IDE project for your customization. See "Setting Up a Billing
Care Customization Project" for more information.

■ Connect NetBeans IDE to your development Billing Care domain. See
"Configuring the NetBeans IDE Connection to WebLogic Server" for more
information.

■ Perform your customizations.

■ Package and deploy your customizations either as an exploded archive or web
application .war shared library to your Billing Care domain. See "Using an
Exploded Archive during Customization" and "Packaging and Deploying
Customizations" for more information.

■ Test your customizations.

■ Package production customizations in a .war file and deploy the shared library to
all of your Billing Care instances.

About Billing Care Modules
Billing Care is composed of unique functional modules. Each module includes an html
view and a JavaScript view model. Some modules may also contain a validation
definition specifying a module’s field validation rules.

Module definitions are configured in the registry file where a module’s view, view
model, and validation rules are defined. When you customize a Billing Care module,
you create a custom registry file (customRegistry.js) defining your module

About the customModules.properties File

7-2 Billing Care SDK Guide

configuration. See "About the Registry File" for more information.

About Views
A view is the visible, interactive manifestation of the view model, written in html. A
view is rendered by the web browser as the user interface (UI) for a module. It
displays information from the view model, triggers operations on the view model, and
updates itself when the data in the view model is changed.

About View Models
A view model is a JavaScript representation of the data and operations for your
module. A view model is independent of the controls (buttons, menus, fields) on your
page defined by your view html.

You can reuse a view model with multiple views because of this independence. For
example, UI interfaces for your customer service representatives (CSRs) and self-care
subscribers that expose similar functionality can use the same view model while using
unique views to provide different functions to each user depending on your business
requirements.

When you create a custom view model, you create the view model’s JavaScript file to
support any custom functionality you add to Billing Care. The JavaScript file is
referenced in your customRegistry.js and packaged and deployed in your Billing Care
domain as part of the customizations shared library.

About Data Binding between Views and View Models
Data is synchronized between views and view models within a module through use of
the Knockout open source library. Data attributes in the view model are exposed as
Knockout Observables. The various html elements in the view bind themselves to
these Observables so that updates in both the server and UI are reflected in the other.

About the customModules.properties File
Configure Billing Care to override the default module logic with your customizations
by creating a customModules.properties file in the
myproject/web/WEB-INF/classes/custom folder, where myproject is your NetBeans IDE
project folder containing your Billing Care customizations.

You can override the default Billing Care logic in the following modules by specifying
a customized alternative for each of the following module keys in
customModules.properties:

■ account

■ billing

■ subscription

■ search

■ payment

■ allocation

■ paymentmethod

■ adjustment

■ status

About the Registry File

Customizing Billing Care 7-3

■ writeoff

■ billunit

■ service

■ item

■ notes

■ dispute

■ collection

■ template

Each override you configure must contain an entry of the following format:

billingcare.rest.modulekey.module = com.company.module.custom

where:

■ modulekey is the module for which you are overriding default logic.

■ company is the name of the folder in your NetBeans IDE project myproject/src
directory structure where you place the source code for your overriding Java
classes.

■ custom is the subdirectory folder name in your NetBeans IDE project myproject/src
directory.

For example, if a company named samplecompany is overriding the default account
module with a custom account module named CustomAccountModule, use the
following entry in customModules.properties:

billingcare.rest.account.module = com.samplecompany.module.CustomAccountModule

This example assumes your custom module Java code is stored in the
myproject/src/com/samplecompany/modules directory.

See "Customizing Billing Care Templates" and "Extending and Creating Billing Care
REST Resources" for examples of when using a customModules.properties file are
required.

About the Configuration.xml File
The Configurations.xml file contains flags controlling the display of specific account
attributes, timeout values, and BRM-related ENUM mappings. See "Editing the Billing
Care Configuration File" for more information.

About the Registry File
The registry file (Registry.js) dynamically loads dependencies, which avoids the
inclusion of hard coded paths for dependencies in the Billing Care files. The registry
file provides a default configuration, which can be overwritten through the SDK.

To override the key and values of the Registry.js, create a customRegistry.js file with
the same given keys, but new values. Include only the entries that need to be over
ridden in the customRegistry.js file.

About Billing Care View Model JavaScript Framework

7-4 Billing Care SDK Guide

Managing Billing Care Modules Using the Registry File
The registry file is strictly a repository for describing a module. There is no logic
within the registry itself for invoking (displaying) the modules.

The following view model example shows the accountBanner module definition in the
default registry.js:

accountBanner: {
view: 'text!templates/home/accountBannerView.html',
viewmodel: 'viewmodels/home/accountBanner/AccountBannerViewModel'

}

Create a customRegistry.js file when:

■ Replacing the view, view model, or validation logic used for a particular Billing
Care module. For example, your business requires a different adjustment REST
operation from the default Billing Care operation, which also changes the fields
defined in the UI. You can create your own view model (and optional validation
rules) and then create a customRegistry.js to reference your files.

All elements within Billing Care that provide access to the edited module now
automatically use your custom module.

■ Adding custom modules to Billing Care. For example, you develop a new module
for a business requirement and add the module to Billing Care.

Because view models references retrieved through the registry are loaded using
RequireJS, they must conform to asynchronous module definition (AMD) format.

About Billing Care View Model JavaScript Framework
This section provides an overview of the Billing Care JavaScript framework used in
view models and how to use an account record key across modules.

Access to the Open Account
The current account record is key to most modules in Billing Care, and will be equally
important to any custom modules developed with the SDK. A view model
representing the open account can be accessed using the following JavaScript code:

globalAppContext.currentAccountViewModel

Note: The Billing Care view models are core elements of the modules
that form the body of the application (Home tab, Bills tab, assets,
News Feed) and Billing Care overlays (dialog boxes).

Common functionality/behavior across the overlays in Billing Care,
including validation, data saving, and navigation between the pages
within the overlay has been captured in a reusable overlay view
model that you should use when you create a custom overlay. This
helps ensure that your module behaves similar to the rest of Billing
Care.

About Error Handling in REST Operations

Customizing Billing Care 7-5

Object IDs
Objects in the BRM database contain a unique identifier called a POID. The Billing
Care REST framework refers to these identifiers as references or refs. Table 7–1 displays
a POID and its equivalent reference ID.

There are reference IDs throughout the Billing Care data model. POIDs are used when
interacting with BRM opcode input and output parameter lists (FLists), but reference
IDs are used in the JavaScript layer.

The POID format is not suitable for a web application, so the REST framework
provides two static utility methods (restIdFromPoid and poidFromRestId) for
converting a POID to/from its own REST format. Sample syntax on calling the
methods is provided below:

String BRMUtility.restIdFromPoid(String poid);
Poid BRMUtility.poidFromRestId(String restId);

About Error Handling in REST Operations
Error handling is a crucial aspect of Billing Care REST customization, and it has
multiple benefits, for example:

■ Indicating the exact error to the application user

■ Helping the application developer to debug the issues.

The default Billing Care REST operations return an ErrorInfo object with error code
and error message in case of any exception. The error object contains the following
components:

■ errorCode - A key used to retrieve a localized error message from the Billing Care
resource bundle.

■ errorMessage - The raw error message from the Billing Care REST layer.

■ isValidationError - A true value indicates the error is the result of a BRM
validation issue (for example, an invalid country is specified).

Invoking Error Handing in Customizations
Invoke method buildErrorInfo() in ExceptionHelper.java to build the ErrorInfo object
and return the error object to the caller of the REST services when extending the
Billing Care REST framework with custom classes.

The method buildErrorInfo() in ExceptionHelper.java takes error code, error message
as mandatory arguments and optional parameters like response status, boolean value
to indicate validation error, flist containing error parameters and list of error
parameters in the order mentioned.

Table 7–1 Example POID and Reference ID

POID Reference ID

0.0.0.1 /service/email12345 0.0.0.1+-service-email+12345

Note: A custom error code must start from the 70000 series. For
example, 70001, 70002, and so on.

About Custom Resource Authorization

7-6 Billing Care SDK Guide

By default, buildErrorInfo() builds and returns error info object with a boolean value
of false for isValidationError attribute and http response status of BAD REQUEST
(400).

About Custom Resource Authorization
Your customizations may require authorization configuration in Oracle Entitlements
Server (OES). See "Securing WebLogic Resources" in Oracle Fusion Middleware
Administrator’s Guide for Oracle Entitlements Server for more information about
configuring resource authorizations in OES and Oracle Communications Billing Care
Security Guide for information on securing your Billing Care installation.

The following sections provide general guidelines on how to perform authorization
for protected resources.

Performing Authorization in the Actions Menu
ActionsMenu.xml contains the tags <permission-key> and <action-key> to authorize
menus.

For more information, see "Customizing the Billing Care Actions Menu".

Performing Authorization on the UI
To perform authorization on custom UI resources:

1. Define new ResourceTypes, Resources, and corresponding actions in the OES
Server.

2. Add the new ResourceType to CustomConfigurations.xml.

For example, use the following definition when creating two new ResourceTypes
that control both your custom REST API (MyCustomRESTResourceType) and your
custom views (MyCustomViewResourceType):

<keyvals>
<key>authorizationResourceTypes</key>

<value>MyCustomRESTResourceType, MyCustomViewResourceType</value>
<desc>Add comma separated OES Resource Types(values) for

authorization.
Define these resource types in OES.

Please note that the key should not be changed here.
</desc>
</keyvals>

3. Use the Billing Care JavaScript utility functions listed in Table 7–2 when
performing authorization on UI resources:

Table 7–2 Billing Care JavaScript Utility Functions

Resource Description

util.getAllResourceGrants() Gets all resource grants for UI authorization.

util.getGrantedActionsByResource(r
esourceName)

Gets granted actions for the given resourceName.

For example:

util.getGrantedActionsByResource(’PaymentResour
ce);

About Custom Resource Authorization

Customizing Billing Care 7-7

Performing Authorization on the REST Framework
To perform authorization on the REST framework:

1. Define ResourceTypes,Resources and corresponding actions in OES Server

2. In the REST resource operation that requires authorization, call
EnforcementUitl.checkAccess() by passing required subject,Application
Name,Action,Resource Type,Resource,Error and optional UIRequestValue objects
as parameters.

UIRequestValue parameters are optional and used for handling obligations.

Using REST Authorization without Obligations
To use REST authorization without obligations:

Subject subject = Security.getCurrentSubject();

// create new error object

EnforcementError error = new EnforcementError(20020,"You are not authorized to
save credit profile");

EnforcementUtil.checkAccess(subject,
EnforcementConstants.APPLICATION,"make","CreditProfileResourceType","CreditProfile
Resource",error);

Using REST Authorization with Obligations
To use REST authorization with obligations:

Subject subject = Security.getCurrentSubject();
// create new error objects

EnforcementError ERROR_MIN_AMOUNT_LIMIT = new EnforcementError(20014, "The amount
fall short of your authorized limit.");
EnforcementError ERROR_MAX_AMOUNT_LIMIT = new EnforcementError(20015, "The amount
exceeds your authorized limit.");
UIRequestValue minCurrencyLimit = new UIRequestValue("Minimum Currency Adjustment
Amount",
adjustment.getAmount(), ConstraintOperator.LESS_THAN,
ERROR_MIN_AMOUNT_LIMIT);
//If entered amount(UI value) is greater than OES 'max currency adjustment limit'
then throw error

util.isGrantedResourceAction(action,
resourceName)

Checks whether the given action is granted for the
given resource.

For example:

util.isGrantedResourceAction(’Make’;’PaymentRes
ource’)

Note: EnforcementUitl.checkAccess() returns a ‘ErrorInfo’ object
with status 401 Unauthorized when there is no grant on the requested
resource for the specified action.

Table 7–2 (Cont.) Billing Care JavaScript Utility Functions

Resource Description

About Custom Resource Authorization

7-8 Billing Care SDK Guide

UIRequestValue maxCurrencyLimit = new UIRequestValue("Maximum Currency Adjustment
Amount",
adjustment.getAmount(), ConstraintOperator.GREATER_THAN,
ERROR_MAX_AMOUNT_LIMIT);

8

Editing the Billing Care Configuration File 8-1

8Editing the Billing Care Configuration File

[9]This chapter explains how to customize the Oracle Communications Billing Care
interface by creating a custom version of the Configurations.xml file.

About the Billing Care Configuration File
The Configurations.xml file controls the following elements of Billing Care:

■ Mappings that determine what values are displayed for module keys. See
Table 8–1.

■ Flags for showing or hiding module elements. See Table 8–2.

■ Threshold values for connection timeouts and pagination. See Table 8–3.

■ Registry values that determine how Billing Care renders modules. See Table 8–4.

■ Keyval categories displayed in the newsfeed. See Table 8–5.

Creating a Custom Configuration File
To change default behavior, create a CustomConfigurations.xml file, and package it in
the customizations shared library that you deploy to the Billing Care domain.

To create a CustomConfigurations.xml file:

1. Copy the SDK_home/BillingCare_SDK/references/Configurations.xml file to the
myproject/web/custom/configurations directory.

Where

■ SDK_home is the directory in which you installed the Billing Care SDK.

■ myproject is your NetBeans IDE Billing Care customizations project.

2. Open CustomConfigurations.xml in an editor, and edit the entries you want to
change.

For a list of the default configuration file entries, see "Default Configuration File
Entries".

3. Save and close the file.

4. Include the CustomConfigurations.xml file when you package your
customizations shared library for deployment to your Billing Care domain.

For more information on packaging and deploying your customizations, see
"Packaging and Deploying Customizations".

Default Configuration File Entries

8-2 Billing Care SDK Guide

Default Configuration File Entries

The following tables show the default values in the Configurations.xml file.

Table 8–1 lists the configurable mappings and their default values.

Table 8–1 Mapping Values in Configuration File

Configuration Key and
Description Default Values Types

account.contact.phone.types

Phone types displayed in the
Account Profile overlay.

Permits adding, rearranging,
and renaming the phone
types.

<mapping>
<key>account.contact.phone.types</key>
<map>

<id>1</id>
<key>HOME</key>

</map>
<map>

<id>2</id>
<key>WORK</key>

</map>
<map>

<id>3</id>
<key>FAX</key>

</map>
<map>

<id>4</id>
<key>PAGER</key>

</map>
<map>

<id>5</id>
<key>MOBILE</key>

</map>
<map>

<id>6</id>
<key>POP</key>

</map>
<map>

<id>7</id>
<key>SUPPORT</key>

</map>
<desc></desc>

</mapping>

id: Number.

key: String (must match
appropriate key in the
Billing Care resource
bundle).

account.contact.types

Contact types displayed in
the Account Profile overlay.

Permits adding, rearranging,
and renaming the contact
types.

<mapping>
<key>account.contact.types</key>
<map>

<id>1</id>
<key>PRIMARY</key>

</map>
<map>

<id>2</id>
<key>ADDITIONAL</key>

</map>
<map>

<id>3</id>
<key>ACCOUNTHOLDER</key>

</map>
<desc></desc>

</mapping>

id: Number.

key: String (must match
appropriate key in the
Billing Care resource
bundle).

Default Configuration File Entries

Editing the Billing Care Configuration File 8-3

account.customer.types

Customer types displayed in
the Account Profile overlay.

Permits adding, rearranging,
and renaming the customer
types.

<mapping>
<key>account.customer.types</key>
<map>

<id>1</id>
<key>PLATINUM</key>

</map>
<map>

<id>2</id>
<key>GOLD</key>

</map>
<map>

<id>3</id>
<key>SILVER</key>

</map>
<map>

<id>4</id>
<key>BRONZE</key>

</map>
<desc></desc>

</mapping>

id: Number.

key: String (must match
appropriate key in the
Billing Care resource
bundle).

Table 8–1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

8-4 Billing Care SDK Guide

account.locale.mapping

Because browser and BRM
language codes are different,
this configuration acts like a
mapping.

<mapping>
<key>account.locale.mapping</key>
<map>

<id>cs</id>
<key>cz</key>

</map>
<map>

<id>bg</id>
<key>bg_BG</key>

</map>
<map>

<id>hr</id>
<key>hr_HR</key>

</map>
<map>

<id>sl</id>
<key>sl_SI</key>

</map>
<map>

<id>nb</id>
<key>no</key>

</map>
<map>

<id>nn</id>
<key>no_NY</key>

</map>
<map>

<id>sv</id>
<key>sve</key>

</map>
<map>

<id>en_GB</id>
<key>en_UK</key>

</map>
<map>

<id>he</id>
<key>iw_IL</key>

</map>
<desc></desc>

</mapping>

id: String that represents
the browser language.

key: String that represents
the BRM language (BRM
locale value).

Table 8–1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

Editing the Billing Care Configuration File 8-5

account.status.types

Status types displayed in the
Account Status overlay and
the account banner.

Permits rearranging and
renaming the status types.

<mapping>
<key>account.status.types</key>
<map>

<id>10100</id>
<key>ACTIVE</key>

</map>
<map>

<id>10102</id>
<key>INACTIVE</key>

</map>
<map>

<id>10103</id>
<key>CLOSED</key>

</map>
<desc></desc>

</mapping>

id: Number.

key: String (must match
appropriate key in the
Billing Care resource
bundle).

Table 8–1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

8-6 Billing Care SDK Guide

account.taxExemptions.types

Tax exemption types
displayed in the Tax Setup
overlay.

Permits adding, rearranging,
and renaming the tax
exemptions.

Note: Make sure BRM
supports the tax exemption
when you add a new type.

<mapping>
<key>account.taxExemptions.types</key>
<map>

<id>0</id>
<key>FEDERAL</key>

</map>
<map>

<id>1</id>
<key>STATE</key>

</map>
<map>

<id>2</id>
<key>COUNTRY</key>

</map>
<map>

<id>3</id>
<key>CITY</key>

</map>
<map>

<id>4</id>
<key>SECONDARY_COUNTRY</key>

</map>
<map>

<id>5</id>
<key>SECONDARY_CITY</key>

</map>
<map>

<id>6</id>
<key>TERRITORY</key>

</map>
<map>

<id>7</id>
<key>SECONDARY_STATE</key>

</map>
<map>

<id>8</id>
<key>DISTRICT</key>

</map>
<map>

<id>9</id>
<key>SECONDARY_FEDERAL</key>

</map>
<desc></desc>

</mapping>

id: Number.

key: String (must match
appropriate key in the
Billing Care resource
bundle).

Table 8–1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

Editing the Billing Care Configuration File 8-7

billUnit.accountingTypes

Accounting types in the Bill
Unit overlay.

Permits adding, rearranging,
and renaming the accounting
types.

Note: By default, BRM
supports only balance
forward and open item
accounting. Before adding an
accounting type, do the
necessary customizations in
BRM.

<mapping>
<key>billUnit.accountingTypes</key>
<map>

<id>1</id>
<key>OPEN_ITEM</key>

</map>
<map>

<id>2</id>
<key>BALANCE_FORWARD</key>

</map>
<desc></desc>

</mapping>

id: Number.

key: String (must match
appropriate key in the
Billing Care resource
bundle).

billUnit.billingFrequencyIn
Months

Billing frequency in the Bill
Unit overlay.

Permits adding, rearranging,
and renaming the billing
frequency.

Example: An SDK developer
can add "6 months" as an
option in the drop-down.

<mapping>
<key>billUnit.billingFrequencyInMonths</key

>
<map>

<id>1</id>
<key>MONTHLY</key>

</map>
<map>

<id>2</id>
<key>BI_MONTHLY</key>

</map>
<map>

<id>3</id>
<key>QUARTERLY</key>

</map>
<map>

<id>12</id>
<key>ANNUAL</key>

</map>
<desc></desc>

</mapping>

id: Number.

key: String (must match
appropriate key in the
Billing Care resource
bundle).

billUnit.correctiveInvoice
Type

Corrective invoice types
supported for bill units.

<mapping>
<key>billUnit.correctiveInvoiceType</key>
<map>

<id>0</id>
<key>REPLACEMENT_INVOICE</key>

</map>
<map>

<id>4</id>
<key>CORRECTIVE_INVOICE</key>

</map>
<desc></desc>

</mapping>

id: Number.

key: String (must match
appropriate key in the
Billing Care resource
bundle).

Table 8–1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

8-8 Billing Care SDK Guide

payment.debit.accountTypes

Direct debit accounting types
displayed in the Payment
Setup, Make Payment, and
Bill Unit overlays.

Permits adding, rearranging,
and renaming the direct debit
types.

Note: Adding an accounting
type to Billing Care also
requires customizations in
BRM.

<mapping>
<key>payment.debit.accountTypes</key>
<map>

<id>1</id>
<key>ACCOUNT_TYPE_CHECKING</key>

</map>
<map>

<id>2</id>
<key>ACCOUNT_TYPE_SAVINGS</key>

</map>
<map>

<id>3</id>
<key>ACCOUNT_TYPE_CORPORATE</key>

</map>
<desc></desc>

</mapping>

id: Number.

key: String (must match
appropriate key in the
Billing Care resource
bundle).

paymentMethods.invoice.
deliverPreferTypes

Invoice delivery preferences
in the Payment Setup and Bill
Unit overlays.

Permits adding, rearranging,
and renaming the delivery
preferences.

Note: BRM supports the key
FAX with the ID 2 as a
preference type. You can add
this mapping to the
CustomConfigurations.xml
file.

<mapping>
<key>paymentMethods.invoice.deliverPreferTy

pes</key>
<map>

<id>0</id>
<key>EMAIL</key>

</map>
<map>

<id>1</id>
<key>POSTAL</key>

</map>
<desc></desc>

</mapping>

id: Number.

key: String (must match
appropriate key in the
Billing Care resource
bundle).

product.customization.
delayed.reasons

Reasons for product or
discount activation delays.

<mapping>
<key>product.customization.delayed.reasons<

/key>
<map>

<id>2</id>
<key>WAITING_FOR_NETWORK_

CONFIGURATION</key>
</map>
<map>

<id>4</id>
<key>WAITING_FOR_MAINTENANCE</key>

</map>
<map>

<id>1</id>
<key>WAITING_FOR_INSTALLATION</key>

</map>
<desc></desc>

</mapping>

id: Number.

key: String (must match
appropriate key in the
Billing Care resource
bundle).

Table 8–1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

Editing the Billing Care Configuration File 8-9

Table 8–2 lists the configurable flags and their default values:

serviceTypes.icons

Service icons to display in the
asset cards.

An icon exists for account
products and for GSM
services.

If no icon is provided for a
service, the default icon is
used.

The image can be placed in
any folder but must be in the
WAR file.

Optimum image dimension is
116 x 116 pixels.

<mapping>
<key>serviceTypes.icons</key>
<map>

<id>serviceIp</id>
<key>resources/images/star-shape.png</ke

y>
</map>
<map>

<id>serviceEmail</id>
<key>resources/images/star-shape.png</ke

y>
</map>
<map>

<id>accountProduct</id>
<key>resources/images/hexagon-shape.png<

/key>
</map>
<map>

<id>serviceTelcoGsm</id>
<key>resources/images/audio-call.png</ke

y>
</map>
<map>

<id>defaultService</id>
<key>resources/images/star-shape.png</ke

y>
</map>
<desc></desc>

</mapping>

id: String.

key: Icon associated with
the specified service.

Table 8–2 Flags in Configuration File

Configuration Key and
Description Default Values Types

accountbanner.show
currencycode

Flag that determines
whether the ISO currency
code (such as USD) is
displayed in the account
banner.

<flags>
<key>accountbanner.showcurrencycode</key>
<value>false</value>
<desc></desc>

</flags>

key: String.

value: Boolean.

If the value is true, the code
is displayed.

Default value is false.

account.contact.show
salutation

Flag that determines
whether the salutation
field is displayed in the
account profile, the
account banner, and all
dialog titles.

<flags>
<key>account.contact.showsalutation</key>
<value>false</value>
<desc></desc>

</flags>

key: String.

value: Boolean.

If the value is true, the field
is displayed.

Default value is false.

Table 8–1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

8-10 Billing Care SDK Guide

Table 8–3 lists the configurable thresholds and their default values:

batch.payments.auto
process

Flag that determines
whether batch payment
files uploaded in the UI
are automatically
processed.

<flags>
<key>batch.payments.autoprocess</key>
<value>false</value>
<desc></desc>

</flags>

key: String.

value: Boolean.

If the value is true, the files
are automatically
processed.

Default value is false.

billinvoice.use.modal
dialog

Flag that determines
whether invoices viewed
in Billing Care are display
in a dialog box.

<flags>
<key>billinvoice.use.modaldialog</key>
<value>false</value>
<desc></desc>

</flags>

key: String.

value: Boolean.

If the value is true, invoices
are display in a dialog box.

Default value is false.

graph.notes.indicators

Flag that determines
whether notes indicators
are displayed on top of
graphs.

When accounts have lots
of activity or lots of notes,
too many indicators may
be shown. Setting this
value to false enables you
to remove the indicators,
reducing visual clutter.

<flags>
<key>graph.notes.indicators</key>
<value>true</value>
<desc></desc>

</flags>

key: String.

value: Boolean.

If the value is false, the
indicators are not
displayed.

Default value is true.

Table 8–3 Thresholds in Configuration File

Configuration Key and
Description Default Values Types

accountsearch.limit

Number of account search
results shown by default.
The number of search
results shown can be
increased or decreased by
editing the value field.

Note: The limit set for the
account search results
must be a non-zero
positive integer.

<thresholds>
<key>accountsearch.limit</key>
<value>50</value>
<desc>

</desc>
</thresholds>

key: String.

value: Number.

assets.servicetypes.size

Maximum number of
service types shown by
default in Assets section.
Additional service types
can be shown by clicking a
Show More link.

<thresholds>
<key>assets.servicetypes.size</key>
<value>6</value>
<desc></desc>

</thresholds>

key: String.

value: Number.

Table 8–2 (Cont.) Flags in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

Editing the Billing Care Configuration File 8-11

balances.services.size

Maximum number of
services shown by default
in Balances section.
Additional services can be
shown by clicking a Show
More link.

<thresholds>
<key>balances.services.size</key>
<value>4</value>
<desc></desc>

</thresholds>

key: String.

value: Number.

batch.payments.threshold

Maximum percentage of
payments in a batch that
can be suspended. If this
value is exceeded, batch
processing stops.

<thresholds>
<key>batch.payments.threshold</key>
<value>50</value>
<desc></desc>

</thresholds>

key: String.

value: Number.

creditcard.alert.expiry
days

Number of days before
credit card expiration that
an alert is shown in the
card tile in Make Payment
and Payment Setup
overlays.

<thresholds>
<key>creditcard.alert.expirydays</key>
<value>60</value>
<desc></desc>

</thresholds>

key: String.

value: Number.

package.alert.expirydays

Number of days before
expiration a package can
be purchased during
account creation or add-on
package purchase.

<thresholds>
<key>package.alert.expirydays</key>
<value>60</value>
<desc></desc>
</thresholds>

key: String.

value: Number.

pagination.size

Maximum number of
records initially displayed
in a table on a page.

For example, if 150 records
exist, only the first 50 are
initially displayed. When
you click Show More, the
next 50 are retrieved and
appended to the initial
results. Clicking Show
More one more time
retrieves the final 50. All
150 records are now
displayed.

<thresholds>
<key>pagination.size</key>
<value>50</value>
<desc></desc>

</thresholds>

key: String.

value: Number.

Table 8–3 (Cont.) Thresholds in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

8-12 Billing Care SDK Guide

Table 8–4 lists the configurable registry keys and their default values:

paymentsuspense.
pagination.size

Maximum number of
records initially displayed
in a table on a page in the
payment suspense search
results.

For example, if 50 records
exist, only the first 25 are
initially retrieved and
displayed. To see all the
records, you must click
Show More.

<thresholds>
<key>paymentsuspense.pagination.size</key>
<value>25</value>
<desc></desc>

</thresholds>

key: String.

value: Number.

pcm.connection.timeout

Maximum number of
milliseconds in which an
opcode must return results
before the connection
times out.

If you change this value,
you must restart the server
to reinitialize the
connection pool.

<thresholds>
<key>pcm.connection.timeout</key>
<value>15000</value>
<desc></desc>

</thresholds>

key: String.

value: Number.

recent.records.size

Maximum number of
recently opened accounts
displayed in the Search
overlay.

<thresholds>
<key>recent.records.size</key>
<value>5</value>
<desc></desc>

</thresholds>

key: String.

value: Number.

session.timeout.advance
warningtime

Advance warning time for
session time out in
seconds.

<thresholds>
<key>session.timeout.advancewarningtime</ke

y>
<value>60</value>
<desc></desc>

</thresholds>

key: String.

value: Number.

roles.batchsize

Maximum number of roles
that can be retrieved in a
batch when a search
operation is performed to
find roles; for example,
roles with permissions to
manage suspended
payments.

Note: There will be no
visible changes to the UI
for any change made for
role batch size retrieval.

<thresholds>
<key>roles.batchsize</key>
<value>100</value>
<desc></desc>

</thresholds>

key: String.

value: Number.

Table 8–3 (Cont.) Thresholds in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

Editing the Billing Care Configuration File 8-13

Table 8–4 Registry Entries in Configuration File

Configuration Key and
Description Default Values Types

accountBannerSections

Sections displayed in the
account banner.

Permits rearranging (by
modifying the order of the
registry keys), deleting, and
adding sections.

See "Customizing the Billing
Care Account Banner".

<keyvals>
<key>accountBannerSections</key>
<value>accountBannerContact,accountBannerAc

countInfo,accountBannerCollections,accountBanne
rBillUnits,accountBannerVIPInfo</value>

<desc></desc>
</keyvals>

key: String.

value: Comma-separated
strings.

accountCreation.package
List

Name of the package list
containing the packages
displayed during account
creation. Default is CSR.

To enable Billing Care to
display a different package
list, replace the default
package list name with one
of the following package list
names:

■ default, which displays
packages from the
default-new package list

■ Any custom package list
name

If no package list name is
specified, packages from the
default-new package list are
displayed.

<keyvals>
<key>accountCreation.packageList</key>
<value>CSR</value>
<desc></desc>

</keyvals>

key String.

value: String.

Default Configuration File Entries

8-14 Billing Care SDK Guide

accountCreation.tabs

Account creation framework
configuration used to render
train stops and labels for the
footer.

The key is also used as a
registry entry to fetch views
or view models for the
corresponding train stops.

<keyvals>
<key>accountCreation.tabs</key>
<value>

[{"key": "generalInfo", "value":{
"label":"PROFILE",
"msg":"COMPLETE_PROFILE_THEN",
"title":"PROFILE_SHORT_DESCRIPTION"
}

},
{"key": "accountCreationSelect",

"value":{
"label":"SELECT",
"msg":"SELECT_THEN"
}

},
{"key": "accountCreationConfigure",

"value": {
"label" : "CONFIGURE",
"msg" : "COMPLETE_CONFIGURATION_

THEN",
"title": "CONFIGURE_SHORT_

DESCRIPTION"
}

},
{"key": "accountCreationPay", "value": {

"label" : "PAY",
"msg" : "COMPLETE_PAYMENTINFORMATION_

THEN",
"title": "PAY_SHORT_DESCRIPTION"

}
}]
</value>
<desc></desc>

</keyvals>

key: String.

value: String.

accountCreation.tags
Mapping

Mapping for tagging a
package.

<keyvals>
<key>accountCreation.tagsMapping</key>
<value>[{"key": ".*GSM.*|.*[Mm]obile.*",

"value":"Mobile"},
{"key": ".*[Cc]able.*",

"value":"Cable,TV"},
{"key":

".*[Ff]iber.*|.*[Ww]eb.*|.*GPRS.*", "value":
"Internet"},

{"key": ".*[Cc]orporate.*", "value":
"Corporate"},

{"key": ".*[Tt]ax.*", "value": "Tax"},
{"key": "*", "value": "Uncategorized"}]

</value>
<desc></desc>

</keyvals>

key: String.

value: Regular
expression.

The key is a regular
expression to match the
package name or
Uncategorized, and the
value is the tag name.

If a package name
matches the regular
expression, it is tagged
with the corresponding
tags.

Packages that do not
match mapping rules are
categorized under the "*"
pattern value.

Table 8–4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

Editing the Billing Care Configuration File 8-15

authorizationResourceTypes

Custom authorization
resource types.

The resource types should be
defined in OES.

<keyvals>
<key>authorizationResourceTypes</key>
<value></value>
<desc></desc>

</keyvals>

key String.

value: Comma-separated
string.

Note: The key should
not be changed here.

batchPaymentsDateFormat

Format of batch payment
date.

The default format supports
the following date formats:

23-December-16

23-December-2016

To abbreviate the month,
change MMMM to MMM,
which supports the following
date formats:

23-Dec-16

23-Dec-2016

To use four digits instead of
two for the date, change y to
yyyy.

<keyvals>
<key>batchPaymentsDateFormat</key>
<value>d-MMMM-y</value>
<desc></desc>

</keyvals>

key: String.

value: String.

batchPaymentsDirectory
Name

Batch payment parent
directory name.

<keyvals>
<key>batchPaymentsDirectoryName</key>
<value>BatchPaymentFiles</value>
<desc></desc>

</keyvals>

key: String.

value: String.

batchPaymentsTabs

List of tabs displayed in the
batch payments page.

<keyvals>
<key>batchPaymentsTabs</key>
<value>[{"id": "active", "label":

"ACTIVE"},{"id": "history", "label":
"HISTORY"}]</value>

<desc></desc>
</keyvals>

id: String.

key: String.

Table 8–4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

8-16 Billing Care SDK Guide

batchPaymentTypes

Supported batch payment
types.

By default, the following
payment types are
supported:

■ Cash

■ Check

■ Failed

■ Interbank transfer

■ Postal order

■ Wire transfer

<keyvals>
<key>batchPaymentTypes</key>
<value>[{"type": "Cash Payment

Batch","code": "10011","templateName":"cash_
payment_template.pit"},{"type": "Check Payment
Batch","code": "10012","templateName":"check_
payment_template.pit"},{"type": "Wire-Transfer
Payment Batch","code":
"10013","templateName":"wire-transfer_payment_
template.pit"},{"type": "Inter Bank Payment
order Payment Batch","code":
"10014","templateName":"interbankpayorder_
payment_template.pit"},{"type": "Postal order
Payment Batch","code":
"10015","templateName":"postalorder_payment_
template.pit"},{"type": "Failed Payment
Batch","code": "10017","templateName":"failed_
payment_template.pit"}]</value>

<desc></desc>
</keyvals>

key: String.

value: String (includes
payment type, payment
ID, and the name of a
template file (.pit) for
batch processing).

brmserver.timezone

The BRM server time zone
configuration to display all
the dates in Billing Care
according to the BRM server
time zone.

If the value is empty, then the
client time zone is
considered. For example:
+0430

<keyvals>
<key>brmserver.timezone</key>
<value>+0000</value>
<desc></desc>

</keyvals>

key: String.

value: String.

cssFiles

All available CSS files.

"activeTheme" : true
represents the active theme.

<keyvals>
<key>cssFiles</key>
<value>{"availablethemes": [{"name"

:"css/theme_.css" ,"activeTheme" : true},
{"name" :"css/theme_default.css", "activeTheme"
: false}]}</value>

<desc></desc>
</keyvals>

key: String.

value: Boolean.

financialSetup.tabs

Used to configure the page
navigator.

Order of each entry is the
order in which the tabs are
shown.

<keyvals>
<key>financialSetup.tabs</key>
<value>[{"key": "paymentMethods",

"editable": false,
"subcontent":[{"key":"newPaymentMethod",
"editable": true}, {"key":"editPaymentMethod",
"editable": true}]}
,{"key":"billUnits","editable":
false,"subcontent":[{"key":"newBillUnit",
"editable": true},{"key": "editBillUnit",
"editable": true}]},{"key": "taxSetup",
"editable": true}]</value>

<desc></desc>
</keyvals>

key: String.

value: Boolean.

"editable": true shows
the Apply or Cancel link
with a save message
after saving.

"editable": false shows
the Close button.

Table 8–4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

Editing the Billing Care Configuration File 8-17

organizationHierarchyTypes

Organization hierarchy types
include the name, ID, and
icon.

<keyvals>
<key>organizationHierarchyTypes</key>
<value>

[
{"key": "site",

"value":{"name":"SITE","value":
1,"icon":"resources/images/site.png"}},

{"key": "legalEntity",
"value":{"name":"LEGAL_ENTITY","value":
2,"icon":"resources/images/legal-entity.png"}},

{"key": "billingAccount", "value":
{"name" : "BILLING_ACCOUNT","value": 3,"icon" :
"resources/images/billing-account.png"}},

{"key": "serviceAccount", "value":
{"name" : "SERVICE_ACCOUNT","value": 4,"icon" :
"resources/images/service-accounts.png"}}

]
</value>
<desc></desc>

</keyvals>

key: String.

value: Complex array
containing type, ID, and
an icon.

paymentsuspense.excluded
paymenttypes

Comma-separated list of
payment types excluded
from the payment suspense
flow.

By default, credit card and
direct debit payment types
(that is, 10003, 10005) are
excluded because they are
BRM-initiated.

<keyvals>
<key>paymentsuspense.excludedpaymenttypes</

key>
<value>10003,10005</value>
<desc></desc>

</keyvals>

key: String.

value: String.

Table 8–4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

8-18 Billing Care SDK Guide

paymentSuspense.reason
Mapping

Mapping for two-tier
suspense reason filtering.

The key is a regular
expression to match the
detailed reason description,
and the value is the
higher-level reason.

If a reason description
matches the regular
expression, the reason is
grouped with corresponding
higher-level reasons.
Otherwise, it is grouped
under Uncategorized.

If an icon property is
available in a resource path,
corresponding grouped
payments are shown with it.
Otherwise, uncategorized
icons are shown by default.

Note: The "*" key should be
the last entry in the value
because it is the broadest
group.

<keyvals>
<key>paymentSuspense.reasonMapping</key>
</value>[

{"key": ".*[Tt]echnical.*",
"value":"Technical", "icon":
"resources/images/unable-to-process-icon.png"}

,
{"key": ".*[Bb]usiness.*",

"value":"Business", "icon":
"resources/images/business-rule-match-icon.png"
}

,
{"key": ".*[Mm]ultiple.*", "value":

"Unable to Process", "icon":
"resources/images/unable-to-process-icon.png"}

,
{"key": "*", "value": "Unclassified",

"icon":
"resources/images/unable-to-process-icon.png"}

]</value>
<desc></desc>

</keyvals>

key: Regular expression.

value: String.

paymentTypes

Registry keys for rendering
payment type views in the
Bill Unit screen, Payment
Methods screen, and Make
Payment dialog box.

This is also used for
retrieving localized values
from XLF files.

Though paymentTypes has
an entry for invoice, when
this is used in the Make
Payment dialog box, invoice
payments are ignored while
the payment method view is
rendered.

Note: Do not change these
values unless you are
removing a payment type
not used in your
environment.

<mapping>
<key>paymentTypes</key>
<map>

<id>10003</id>
<key>creditCard</key>

</map>
<map>

<id>10005</id>
<key>directDebit</key>

</map>
<map>

<id>10001</id>
<key>invoice</key>

</map>
<desc></desc>

</mapping>

id: Number.

key: String (must match
appropriate key in the
Billing Care resource
bundle).

Table 8–4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

Editing the Billing Care Configuration File 8-19

purchase.bundleTags
Mapping

Mapping for tagging the
bundle.

<keyvals>
<key>purchase.bundleTagsMapping</key>
<value>[{"key": ".*GSM.*|.*[Mm]obile.*",

"value":"Mobile"},
{"key": ".*[Cc]able.*",

"value":"Cable,TV"},
{"key":

".*[Ff]iber.*|.*[Ww]eb.*|.*GPRS.*", "value":
"Internet"},

{"key": ".*[Cc]orporate.*", "value":
"Corporate"},

{"key": ".*[Tt]ax.*", "value": "Tax"},
{"key": ".*[Dd]iscount*.", "value":

"Discounts"},
{"key": ".*[Ii]nternet*.", "value":

"Internet"},
{"key": "*", "value": "Uncategorized"}]

</value>
<desc></desc>

</keyvals>

key: Regular expression.

value: String.

The key is a regular
expression to match the
bundle name or
Uncategorized, and the
value is the tag name.

If a bundle name
matches the regular
expression, the bundle is
tagged with the
corresponding tags.

Bundles that do not
match mapping rules are
categorized under the "*"
pattern value.

purchase.packageList

Name of the package list
containing the packages
displayed during purchase of
an add-on package. Default
is default.

To enable Billing Care to
display a different package
list, replace the default
package list name with one
of the following package list
names:

■ CSR, which displays
packages from the
default-new package list

■ Any custom package list
name

If no package list name is
specified, packages from the
default-new package list are
displayed.

<keyvals>
<key>purchase.packageList</key>
<value>default</value>
<desc></desc>

</keyvals>

key: String.

value: String.

Default value is default.

Other possible value is
CSR.

If the package list name
is not specified, packages
from the default-new list
are displayed.

Table 8–4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

8-20 Billing Care SDK Guide

Table 8–5 lists the configurable keyval categories and their default values:

purchase.tabs

Product catalog framework
configuration used to render
the train stops and labels for
the footer.

The keys are also used as
registry entries to fetch views
or view models for the
corresponding train stops.

<keyvals>
<key>purchase.tabs</key>
<value>
[

{"key": "purchaseSelection", "value":{
"label":"SELECT",
"msg":"SELECT_PURCHASE",
"title":"SELECT_SHORT_DESCRIPTION"
}

}
,

{"key": "purchaseConfiguration",
"value": {

"label" : "CONFIGURE",
"msg" : "COMPLETE_CONFIGURATION_

THEN",
"title": "CONFIGURE_SHORT_

DESCRIPTION",
"disabled": true
}

}
]
</value>
<desc></desc>

</keyvals>

key: String.

value: Complex string
containing a label,
message, and title.

search.options <keyvals>
<key>search.options</key>
<value>[{"searchTemplateKey":

"accountSearch", "searchTemplateName":"SEARCH_
OPTION_ACCOUNTS", "defaultSearch":
true}]</value>

<desc></desc>
</keyvals>

key: String.

value: String.

searchTemplateKey acts as
the value of the search
drop-down option.

The value of
searchTemplateKey (that is,
accountSearch) acts as
the search template
name

The searchTemplateName
value corresponds to the
text of the search
drop-down option.

The value of
searchTemplateName (that
is, SEARCH_OPTION_
ACCOUNTS)
corresponds to a key in
the resource bundle.

Table 8–4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description Default Values Types

Default Configuration File Entries

Editing the Billing Care Configuration File 8-21

Table 8–5 Keyvals in Configuration File

Configuration Key and
Description Default Value Type

newsfeed.categories <keyvals>
<key>newsfeed.categories</key>
<value>[{"key":"ALL","newsfeedTypes":

"ADJUSTMENT:true, NCR_ADJUSTMENT:true, OPEN_
DISPUTE:true, CLOSED_DISPUTE:true,
WRITEOFF:true, REFUND:true, COLLECTIONS:true,
PAYMENT:true, PAYMENT_REVERSAL:true, PAYMENT_
METHOD_ASSIGNMENT_CHANGE:true, PAYINFO:true,
NAMEINFO:true, ACCT_STATUS:true, BILLINFO:true,
BILLINFO_CREATED:true, BILLINFO_DELETED:true,
DEFERRED:true, SRVC_STATUS:true, SRV_TO_
DEV:true, PURCHASE:true, CANCEL:true,
CORRECTIVE_BILL:true, RECURRING_CHARGE:true,
BILL_ISSUED:true, BILL_ISSUED_MID_CYCLE:true,
ONE_TIME_CHARGE:true", "selected":
true},{"key": "AR", "newsfeedTypes":
"ADJUSTMENT:true, NCR_ADJUSTMENT:true, OPEN_
DISPUTE:true, CLOSED_DISPUTE:true,
WRITEOFF:true, REFUND:true,
COLLECTIONS:true"},{"key":"PAYMENTS","newsfeedT
ypes": "PAYMENT:true, PAYMENT_REVERSAL:true,
PAYMENT_METHOD_ASSIGNMENT_CHANGE:true,
PAYINFO:true"},{"key":"CHARGES","newsfeedTypes"
: "PURCHASE:true, CANCEL:true, CORRECTIVE_
BILL:true, RECURRING_CHARGE:true, BILL_
ISSUED:true, BILL_ISSUED_MID_CYCLE:true, ONE_
TIME_
CHARGE:true"},{"key":"ACCOUNT","newsfeedTypes":
"NAMEINFO:true, ACCT_STATUS:true,
DEFERRED:true, SRVC_STATUS:true, SRV_TO_
DEV:true, BILLINFO:true, BILLINFO_CREATED:true,
BILLINFO_DELETED:true"}]</value>

<desc></desc>
</keyvals>

key: String.

value: String (must match
appropriate key in the
Billing Care resource
bundle).

See "Customizing Billing
Care Templates".

Default Configuration File Entries

8-22 Billing Care SDK Guide

9

Customizing Billing Care Themes and Logo 9-1

9Customizing Billing Care Themes and Logo

[10]This chapter provides an overview on customizing Oracle Communications Billing
Care’s appearance using themes and changing the login screen logo.

About Billing Care Themes and Logo
Billing Care includes two theme cascading style sheet (CSS) that determine the Billing
Care look and feel. CSS enables you to alter Billing Care’s appearance (for example,
colors and fonts) for your business needs. By default, theme_alta.css is enabled. An
alternative theme named theme_default.css is also included. An entry in the registry
file specifies which CSS file Billing Care uses.

Additionally, override CSS files can be used to change the appearance of specific
elements in Billing Care when needed. For example, the Billing Care login page uses a
CSS that specifies the displayed logo graphic file. See "Changing the Default Logo" for
more information on using a custom logo.

The Billing Care SDK includes sample CSS files named customTheme.css and
override.css in the SDK_home/BillingCare_SDK/samples/Themes/css directory, where
SDK_home is the directory where you installed the SDK. Use these files when creating
custom themes and overrides to change the Billing Care look and feel.

About Customizing Billing Care Themes
You can customize Billing Care in the following ways:

■ Adding a New Theme

■ Overriding Themes

■ Setting Which Billing Care Theme to Use

Adding a New Theme
Add a new theme to Billing Care by creating a new CSS file and including it in your
customizations shared library. The SDK includes a sample custom theme named
customTheme.css in the SDK_home/BillingCare_SDK/samples/Themes/css directory,

Note: The theme_default.css and theme_alta.css files are not
included in the Billing Care SDK. To retrieve these files for
customization, set the desired theme using the registry file, then view
and download the CSS using your browsers development tools.

Overriding Themes

9-2 Billing Care SDK Guide

where SDK_home is the directory where you installed the SDK. Use this sample theme
when creating your custom theme.

To add a new theme:

1. Create a new CSS file (for example, mytheme.css)

2. Copy your custom CSS file to the myproject/web/css directory where myproject is
the NetBeans IDE project directory containing your Billing Care customizations.

3. Set Billing Care to use your custom theme in the registry file and deploy your
custom theme to your Billing Care domain. See "Setting Which Billing Care Theme
to Use" for instructions on specifying a theme in the registry and deploying your
theme in the Billing Care domain.

Overriding Themes
You can override styles and add styles to the existing theme’s CSS file. Billing Care
applies the registry’s configured theme first, then applies any override theme
modifications. The SDK includes a sample override CSS file named override.css in the
SDK_home/BillingCare_SDK/samples/Themes/css directory, where SDK_home is the
directory where you installed the SDK.

To override and add styles to an existing theme:

1. Write a CSS file that overrides styles or adds styles (for example, theme_
custom.css).

2. In the customRegistry.js file, add an entry under cssFiles for your override CSS
file in the others parameter as shown in Example 9–1. See "About the Registry File"
for more information on how to create a custom registry file.

Example 9–1 Theme Override Registry File Example

var CustomRegistry= {
cssFiles: {
themeCss: 'css/theme_default.css', //switching among the existing
themes
others: ['css/theme_custom.css'] //then overriding/adding to
it }

};

3. Copy your override CSS file to the myproject/web/css directory where myproject is
the NetBeans IDE project directory containing your Billing Care customizations.

4. Confirm Billing Care is configured to use your custom theme and overrides in the
registry file and deploy your overrides to the Billing Care domain. See "Setting
Which Billing Care Theme to Use" for instructions on specifying a theme in the
registry and deploying your theme to the Billing Care domain.

Setting Which Billing Care Theme to Use
Switch between themes by adding an entry in customRegistry.js using the same key as
used in Registry.js, which points to the required theme's CSS file. See "About the
Registry File" for information on creating the customRegistry.js file and including it in
your shared library for deployment to your Billing Care domain.

Example 9–2 shows the entry in the registry file where a custom theme is specified.

Changing the Default Logo

Customizing Billing Care Themes and Logo 9-3

Example 9–2 Billing Care Theme Registry Entry

var CustomRegistry= {
cssFiles: {
themeCss: 'css/theme_default.css'
}
};

To switch Billing Care themes:

1. Create a customRegistry.js file in a text editor. See "About the Registry File" for
more information on how to create a custom registry file.

2. Update the customRegistry.js file specifying your CSS file in the themeCss entry.

3. Save and close the file.

4. Do one of the following:

■ If you are using an exploded archive for your shared library, log out of and
back into Billing Care to see the new theme. See "About Using an Exploded
Archive" for more information about using exploded archives.

■ Package your customizations shared library and deploy it to your Billing Care
domain. Redeploy Billing Care and login to see the new theme. See
"Packaging and Deploying Customizations" for more information on
packaging and deploying your customizations.

Changing the Default Logo
By default, Billing Care displays the Oracle logo on the login page and in the header
section that appears after you login.

To change the default logo:

1. Copy your custom logo into the myproject/web/resources/public/images directory,
where myproject is the NetBeans IDE project directory containing your Billing Care
customizations.

2. To change the default logo that appears on the login page, do the following:

a. Using the NetBeans IDE text editor, create an overrides-login.css file in the
myproject/web/resources/public/css directory.

Ensure that the overrides-login.css file contains the location and size of your
custom logo image file as shown in Example 9–3.

Example 9–3 Sample overrides-login.css File

/**
This is the CSS where an SDK developer can do out of box logo header changes.
Below example shows how to override the oracle logo that comes with
default Billing Care package.

**/
#logoHeader{

height: auto;
}
.logo-oracle {

background: url("../images/imagefile") no-repeat;!important;
margin: -3px 24px 0 12px;
width: 100px;
height: 80px;
float: left;

Changing the Default Logo

9-4 Billing Care SDK Guide

}

where imagefile references your custom logo image file located in your NetBeans
project.

b. Adjust the margin, width, height, and float values in overrides-login.css so
that your image renders properly.

c. Save and close the file.

3. To change the default logo in the header section that appears after you login, do
the following:

a. Using the NetBeans IDE text editor, create an overrides.css file in the
myproject/web/css directory.

b. Add the entries as shown in Example 9–3.

c. Change the following entry:

background: url("../images/imagefile") no-repeat;!important;

To this:

background: url(""../../resources/public/images/imagefile") no-repeat
!important;

where imagefile references your custom logo image file located in your
NetBeans project.

d. Adjust the margin, width, height, and float values in overrides.css so that
your image renders properly.

e. Save and close the file.

4. Do one of the following:

■ If you are using an exploded archive for your shared library, log out of and
back into Billing Care to see the new theme. See "About Using an Exploded
Archive" for more information about using exploded archives.

■ Package your customizations shared library and deploy it to your Billing Care
domain. Redeploy Billing Care and login to see the new theme. See
"Packaging and Deploying Customizations" for more information on
packaging and deploying your customizations.

10

Customizing Billing Care Templates 10-1

10Customizing Billing Care Templates

[11]This chapter provides an overview of customizing Oracle Communications Billing
Care account search, event and Newsfeed templates.

About Billing Care Templates
Templates define which columns Billing Care displays in account search, event, and
Newsfeed results tables and enable you to add and remove displayed data depending
on your business requirements. Event templates are specific to the Oracle Billing and
Revenue Management (BRM) /event storable class. You may use one or more event
templates depending on the supported events in BRM. A single template determines
the displayed columns in the Newsfeed, and displays data from the /newsfeed
storable class. The account search template is defined in the accountSearch.xml file.

See "Understanding Flists and Storable Classes" and "Creating Custom Fields and
Storable Classes" in Oracle Communications Billing and Revenue Management Developer’s
Guide for more information on BRM storable classes.

Templates can specify both BRM data in storable classes, and data from external
sources. If the data you want to display is not provided by default storable classes
available in Billing Care, extend the REST framework to retrieve the required data.

A template file contains four types of elements. Each <columnHeader> defined in the
template file contains a corresponding storable class <column> data definition of the
type of data contained in the column. The <filter> elements define search fields
available to the user to filter displayed data. The <sortbyFields> elements specifies
field sorting behavior.

Table 10–1 lists the <columnHeader> properties in a template file.

Table 10–1 <columnHeader> Properties in Template Files

Property Description

alignment String specifying how to align column text with a cell

icon Boolean specifying if an image icon is used in the header

label String used as column header label

resizable Boolean specifying if the column width is resizable by user

sortable Boolean specifying if the results table is sortable by the column

tooltip String used for hover over tool tip for the column

visible Boolean specifying if the column is visible

width Width of column specified as percentage

About Billing Care Templates

10-2 Billing Care SDK Guide

Table 10–2 lists the <column> properties in a template file. See the
genericTemplate.xml file included in the SDK_home/BillingCare_
SDK/references/eventtemplates, where SDK_home is the Billing Care SDK installation
directory, for an example of how column properties are specified.

Table 10–3 lists the <filter> properties in a template file. Each filter contains one or
more <criteria> definitions using the properties listed.

Table 10–2 <column> Properties in Template Files

Property Description

column name Specifies the ID used to map between the column header and
column definitions.

fields Specifies the BRM fields that will be displayed in the column.

format Specifies the format of the text to be displayed. Used exclusively
when type is text.

formula Optional. If specified, the formula is applied on the specified
<field> entries. Can be useful to perform math with multiple
fields and display the calculated result.

styles Specifies the CSS style for the data in a given column.

type Specifies the data type of the column. Billing Care performs
formatting appropriate to the data type. Supported data types
include:

■ id

■ date

■ time

■ currency

■ text

■ image

■ multi

■ Boolean

■ enum

■ duration

■ phoneNumber

types Used when type is multi, this enables you to specify the data
types of the specified fields

Note: The filter definition applies only to events templates.

Table 10–3 <filter> Properties in Template Files

Property Description

fieldGroups Groups listed <criteria> together into a single filter.

groupLabel Specifies the name of the grouped <criteria>.

groupOperator Supports AND and OR values for setting the exclusivity of the
grouped <criteria> when filtering results.

inputType Specifies the type of data used in <criteria>.

visible Boolean specifying if a <criteria> is visible in Billing Care.

Customizing Templates

Customizing Billing Care Templates 10-3

Table 10–4 lists the <sortbyFields> properties in a template file.

Customizing Templates
You customize the columns displayed for events and in the Newsfeed by creating
custom template files and including these templates, and any required Java code
extensions, in your deployed customizations shared library.

The Billing Care SDK includes the default templates used by Billing Care in the SDK_
home/BillingCare_SDK/references/eventtemplates and SDK_home/BillingCare_
SDK/references/newsfeedtemplates directories, where SDK_home is the directory in
which you installed the SDK. The account search template is defined in the SDK_
home/BillingCare_SDK/references/accountSearch.xml file.

The SDK_home/BillingCare_SDK/samples/SDKTemplatesCustomization directory
includes sample templates for customized events and the Newsfeed, and sample Java
code for extending the REST framework to retrieve additional data. Use these samples
as guidelines when creating custom templates and REST extensions. A README.txt
file is provided with additional detail on creating custom templates.

Customize Event and Newsfeed templates by:

■ Removing Columns from a Template

■ Adding Columns to a Template

■ Extending the REST Framework to Support New Column Fields

■ Creating a customModules.properties File

Example procedures for customizing templates are provided in the following reference
sections at the end of this chapter:

■ Example 1: Event Template Customization

■ Example 2: Event Template Customization with New Fields

■ Example 3: Newsfeed Template Customization

Removing Columns from a Template
Remove unwanted events and Newsfeed columns from displaying in Billing Care by
either deleting the column entries from the template file for or setting the visible
property for the column to false.

To remove a column from an event or Newsfeed template and prevent the column
from displaying in Billing Care:

1. Make a copy of a default event or Newsfeed template in your
myproject/web/WEB-INF/classes/custom/eventtemplates or
myproject/web/WEB-INF/classes/custom/newsfeedtemplates, where myproject is
the directory for your NetBeans IDE customization project. Preface the template
name with Custom. For example, to customize the template for the

Table 10–4 <sortbyFields> Properties in Template Files

Property Description

defaultSort Specifies the default sorting behavior.

sortingOrder Specifies either ascending or descending sort order.

sortingPriority Lists the fields and priority (by order listed) used to sort
displayed results

Customizing Templates

10-4 Billing Care SDK Guide

/event/delayed/session/telco/gsm/sms event, use CustomserviceTelcoGsmSms_
eventDelayedSessionTelcoGsm.xml.

2. Open your template file in a text editor.

3. Do one of the following:

■ Remove both the <columnHeader> and storable class <column> elements from
your template for the column you want to remove.

■ Set the <columnHeader> visible property to false for the column you want to
hide.

4. Save and close the file.

5. Do one of the following:

■ If you are using an exploded archive for your shared library, log out of and
back into Billing Care to verify your updated template. See "About Using an
Exploded Archive" for more information about using exploded archives.

■ Package your customizations shared library and deploy it to your Billing Care
domain. Redeploy Billing Care and login to verify your updated template. See
"Packaging and Deploying Customizations" for more information on
packaging and deploying your customizations.

Adding Columns to a Template
Add columns in an events or the Newsfeed template for display in Billing Care by
adding elements for the new columns in a template file. The new columns can contain
BRM fields in the /event or /newsfeed storable classes or custom classes. Custom
/event classes require extension of the REST framework to retrieve required data for
display.

To add additional columns in a template and display the column in Billing Care:

1. Make a copy of a default event or Newsfeed template (or create a template for a
custom event) in your myproject/web/WEB-INF/classes/custom/eventtemplates or
myproject/web/WEB-INF/classes/custom/newsfeedtemplates, where myproject is
the directory for your NetBeans IDE customization project. Preface the template
name with Custom. For example, to customize the template for the
/event/delayed/session/telco/gsm/sms event, use CustomserviceTelcoGsmSms_
eventDelayedSessionTelcoGsm.xml.

2. Open your template file in a text editor.

3. Add both the <columnHeader> and storable class <column> elements from your
template for the new column you want to add.

4. Save and close the file.

5. If necessary, extend the REST framework to retrieve any data unavailable in the
default storable classes. See "Extending the REST Framework to Support New
Column Fields" for more information on extending the REST framework.

6. If necessary, create a customModules.properties entry specifying when Billing
Care should override a module’s default logic with your customizations. See
"Creating a customModules.properties File" for more information.

7. Do one of the following:

■ If you are using an exploded archive for your shared library, log out of and
back into Billing Care to verify your updated template. See "About Using an
Exploded Archive" for more information about using exploded archives.

Customizing Templates

Customizing Billing Care Templates 10-5

■ Package your customizations shared library and deploy it to your Billing Care
domain. Redeploy Billing Care and login to verify your updated template. See
"Packaging and Deploying Customizations" for more information on
packaging and deploying your customizations.

Extending the REST Framework to Support New Column Fields
Create custom Java classes to retrieve and display new fields for columns you add.
The following procedure provides an overview of the required classes. See the
following examples for sample classes:

■ Example 2: Event Template Customization with New Fields

■ Example 3: Newsfeed Template Customization

To add custom fields to an event template and customize the REST framework to
support the new field:

1. Create a custom event template in your NetBeans IDE customization project. See
"Adding Columns to a Template" for more information.

2. Create a custom event worker Java class in myproject/src/com/company/templates
to retrieve the data for the new field, where company is a folder named for your
company, that extends from
com.oracle.communications.brm.cc.modules.pcm.workers.TemplateEventWorke
r.

3. Create a custom event template factory Java class in
myproject/src/com/company/templates to return an instance of your custom worker
from step 2.

4. Create a custom template module class in myproject/src/com/company/templates to
return an instance of your custom event template factory from step 3.

5. Compile your custom Java classes using NetBeans IDE.

6. Add your customization files to your NetBeans IDE project (myproject):

■ Add the customModule.properties in the
myproject/web/WEB-INF/classes/custom folder.

■ Add the custom template file in the
myproject/web/WEB-INF/classes/custom/eventtemplates folder.

7. Right-click your NetBeans IDE project and select Clean and Build.

8. Package and deploy your custom templates to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

9. Verify your changes in Billing Care.

Creating a customModules.properties File
Configure an entry in the customModules.properties file for each Billing Care module
where you override default logic with your customizations. See "About the
customModules.properties File" for more information on specifying custom module
behavior in customModules.properties.

Example 1: Event Template Customization

10-6 Billing Care SDK Guide

Example 1: Event Template Customization

This example includes changing the events template for SMS usage. In this example
procedure:

■ The new field rum_name is added to show the value of the BRM PIN_FLD_RUM_
NAME field. RUM refers to the ratable usage metric in BRM.

■ The existing field destination_network is removed.

To customize the events template with the stated changes:

1. Create a CustomserviceTelcoGsmSms_eventDelayedSessionTelcoGsm.xml
template file in the myproject/web/custom/eventtemplates folder by copying the
default serviceTelcoGsmSms_eventDelayedSessionTelcoGsm.xml available in
the SDK_home/BillingCare_SDK/references/eventtemplates folder.

2. Add new <columnHeader> and <column> elements to
CustomserviceTelcoGsmSms_eventDelayedSessionTelcoGsm.xml.

Add the <columnHeader> in the <column> in the appropriate location. For example,
if you add the <columnHeader> as the fifth element, make sure you add the
<column> as the fifth column element.

<columnHeader name="rum_name">
<label>Rum Name</label>
<width>10%</width>
<visible>true</visible>
<sortable>false</sortable>
<tooltip>Rum Name of the event</tooltip>
<resizable>true</resizable>
<alignment>center</alignment>

</columnHeader>
……..
<column name="rum_name">

<type>text</type>
<fields>rumName</fields>

</column>

3. Remove the existing destination_network column from the template by
removing the <columnHeader> and <column> elements named destination_
network as shown:

<columnHeader name="destination_network">
<label>DESTINATION_NETWORK</label>
<width>10%</width>
<visible>true</visible>
<sortable>true</sortable>
<tooltip>DESTINATION_NETWORK_HINT</tooltip>
<resizable>true</resizable>
<alignment>left</alignment>

</columnHeader>
……..

<column name="destination_network">
<type>text</type>
<styles>template-subtle-text</styles>
<fields>telcoInfo.destinationNetwork</fields>
<types>string</types>

</column>

Example 1: Event Template Customization

Customizing Billing Care Templates 10-7

4. Save your template file.

5. Add your customization files to your NetBeans IDE project folder (myproject), by
adding the custom template file in the
myproject/web/WEB-INF/classes/custom/eventtemplates folder.

6. Right-click your NetBeans IDE project and select Clean and Build.

7. Package and deploy your custom templates to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

8. Verify your changes in Billing Care.

Example 2: Event Template Customization with New Fields

10-8 Billing Care SDK Guide

Example 2: Event Template Customization with New Fields

This example shows how to customize the REST code to support a new field. In this
example procedure:

■ A custom template is created with new <columnHeader> and <column> elements to
display a new column called adjustments.

■ The destination_network column is removed from the template.

■ Required custom Java classes are coded to retrieve the new data for display in
Billing Care

To add and delete fields in the event template and customize the REST code to support
the new field:

1. Create a CustomserviceTelcoGsmSms_eventDelayedSessionTelcoGsm.xml
template file in the myproject/web/custom/eventtemplates folder by copying the
default serviceTelcoGsmSms_eventDelayedSessionTelcoGsm.xml available in
the SDK_home/BillingCare_SDK/references/eventtemplates folder.

2. Add a new <columnHeader> and <column> for Event Adjustments to the XML file.

Make sure you add the <columnHeader> and <column> in the appropriate location.
For example if you have added the <columnHeader> as the fifth element, make
sure you add the <column> as the fifth column element.

<columnHeader name="adjustments">
<label>Event Adjustments</label>
<width>10%</width>
<visible>true</visible>
<sortable>false</sortable>
<tooltip>Event Adjustments</tooltip>
<resizable>true</resizable>
<alignment>left</alignment>

</columnHeader>
……..

<column name="adjustments">
<type>currency</type>
<format>{0}</format>
<fields>accountObj</fields>
<fields>id</fields>

</column>

3. Remove the existing destination_network column from the template by
removing the <columnHeader> and <column> elements named destination_
network as shown:

<columnHeader name="destination_network">
<label>DESTINATION_NETWORK</label>
<width>10%</width>
<visible>true</visible>
<sortable>true</sortable>
<tooltip>DESTINATION_NETWORK_HINT</tooltip>
<resizable>true</resizable>
<alignment>left</alignment>

</columnHeader>
……..

<column name="destination_network">
<type>text</type>

Example 2: Event Template Customization with New Fields

Customizing Billing Care Templates 10-9

<styles>template-subtle-text</styles>
<fields>telcoInfo.destinationNetwork</fields>
<types>string</types>

</column>

4. Save your template file.

5. To add custom logic to retrieve the data needed for the adjustments column, create
a custom TemplateMyCustomEventWorker class.

In this example, a new BRM opcode AR_RESOURCE_AGGREGATION is called to
retrieve the adjustment made for an event, which overrides the
processFieldForColumnName() method of the default TemplateEventWorker
class. If the column name is adjustments, then the opcode AR_RESOURCE_
AGGREGATION is called:

public class TemplateMyCustomEventWorker extends TemplateEventWorker{

@Override
protected void processFieldForColumnName(ColumnarRecord.Entries.Cells viCol,
String storableClassType, FList flist, ColumnarRecord.Entries row, String
field, Object value) throws Exception {
if ("adjustments".equalsIgnoreCase(viCol.getName())) {

if (field.equals("id")) {
Poid acctPoid =flist.get(FldAccountObj.getInst());
Poid eventPoid =flist.get(FldPoid.getInst());
FList inputFlist = new FList();
inputFlist.set(FldPoid.getInst(),acctPoid);
inputFlist.set(FldPoid.getInst(),acctPoid);
FList eventInfo = new FList();
eventInfo.set(FldPoid.getInst(),eventPoid);
inputFlist.setElement(FldEvents.getInst(), 0, eventInfo);
FList outFlist = opcode(PortalOp.AR_RESOURCE_AGGREGATION,

inputFlist);
BigDecimal adjustAmount = getAdjustmenAmount(outFlist);

viCol.getArgs().add(adjustAmount.toString());
}

}else {
super.processFieldForColumnName(viCol, storableClassType, flist,

row, field, value);
}

}
private BigDecimal getAdjustmenAmount(FList flist) throws

EBufException {
BigDecimal amountAdjustValue = new BigDecimal(0);
if (flist.hasField(FldResults.getInst())) {

SparseArray resultsArray = flist.get(FldResults.getInst());
Enumeration results = resultsArray.elements();
while (results.hasMoreElements()) {

FList balFlist = (FList) results.nextElement();
if (balFlist.hasField(FldAdjusted.getInst()) &&

balFlist.hasField(FldResourceId.getInst())) {
Integer resourceId =

balFlist.get(FldResourceId.getInst());
if (BEIDManager.isCurrency(resourceId)) {

amountAdjustValue =
balFlist.get(FldAdjusted.getInst());

break;
}

}
}

Example 2: Event Template Customization with New Fields

10-10 Billing Care SDK Guide

}
return amountAdjustValue;

}
}

6. Create a custom CustomTemplateFactory class and override its getTemplate()
method to return the TemplateMyCustomEventWorker class (instead of the
default TemplateEventWorker.java class):

public class CustomTemplateFactory extends TemplateFactory {

@Override
public TemplateBaseWorker getTemplateWorker(String templateType){

if(BillingCareConstants.EVENT.equalsIgnoreCase(templateType)){
return new TemplateMyCustomEventWorker();

}else {
return super.getTemplateWorker(templateType);

}
}

}

7. Create a custom template module class by extending the PCMTemplateModule
class to override the getTemplate() method to return the new
CustomTemplateFactory:

public class CustomPCMTemplateModule extends PCMTemplateModule {
@Override

protected TemplateFactory getTemplateFactoryInstance(){
return new CustomTemplateFactory();
}

}

8. In the NetBeans IDE, create a new Java project with all the mentioned Java files
and XML files in the appropriate folders and include the jars required to compile
and build the project.

9. Add your customization files to your NetBeans IDE project folder (myproject):

■ Add an entry in the customModule.properties in the
myproject/web/WEB-INF/classes/custom folder to override the default
template module as follows:

billingcare.rest.template.module=com.company.modules.CustomPCMTempla
teModule

where company is the company name used in your myproject/src directory.

■ Add the custom template file in the
myproject/web/WEB-INF/classes/custom/eventtemplates folder.

10. Right-click your NetBeans IDE project and select Clean and Build.

11. Package and deploy your custom templates to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

12. Verify your changes in Billing Care.

Example 3: Newsfeed Template Customization

Customizing Billing Care Templates 10-11

Example 3: Newsfeed Template Customization

The following procedure shows how to customize the Newsfeed template by
providing an example of adding a new column named billStatus. In this example
procedure:

■ A custom template is created with new <columnHeader> and <column> elements to
display a new column called billStatus.

■ Required custom Java classes are coded to retrieve the new data for display in
Billing Care

To add a field in the Newsfeed template and customize the REST code to support the
new field:

1. Create a Customnewsfeed.xml template file in the
myproject/web/custom/newsfeedtemplates folder by copying the default
newsfeed.xml available in the SDK_home/BillingCare_
SDK/reference/newsfeedtemplates folder.

2. Add a new <columnHeader> and <column> in the XML file Customnewsfeed.xml.

In this example, the field object is added as a BRM field to retrieve the billStatus
of a /bill object.

<columnHeader name="billStatus">
<label>Bill Status</label>
<width>10%</width>
<visible>true</visible>
<sortable>false</sortable>
<tooltip>Status of the Bill</tooltip>
<resizable>true</resizable>
<alignment>left</alignment>

</columnHeader>
……..
<column name="billStatus">

<type>text</type>
<fields>object</fields>

</column>

3. Save your template file.

4. Create a custom TemplateMyCustomNewsfeedWorker class to add custom logic
to retrieve the data needed for the billStatus column.

In this example, a new BRM opcode PCM_OP_READ_READS opcode is used to
retrieve the status of a bill object, then overrides the
processFieldForColumnName() method of the TemplateNewsfeedWorker class.
This method checks if the column name is billStatus. If so, then the method gets
the FLD_DUE amount by calling the opcode PCM_OP_READ_READS.

public class TemplateMyCustomNewsfeedWorker extends TemplateNewsFeedWorker {
@Override
protected void processFieldForColumnName(ColumnarRecord.Entries.Cells

viCol, String storableClassType, FList flist, ColumnarRecord.Entries row,
String field, Object value) throws Exception {

if ("billStatus".equalsIgnoreCase(viCol.getName())) {
if (flist.hasField(FldObject.getInst())) {
String billType = null;
billType = flist.get(FldObject.getInst()).getType();
if (billType != null &&

Example 3: Newsfeed Template Customization

10-12 Billing Care SDK Guide

billType.equalsIgnoreCase("/bill")) {
FList billDueinputFList = new FList();
billDueinputFList.set(FldPoid.getInst(),

flist.get(FldObject.getInst()));
billDueinputFList.set(FldDue.getInst());
FList billDueOutputFList = opcode(PortalOp.READ_FLDS,

billDueinputFList);
BigDecimal billDue =

billDueOutputFList.get(FldDue.getInst());
if (!billDue.equals(BigDecimal.ZERO)) {
viCol.getArgs().add("Pending");
return;

} else {
viCol.getArgs().add("Paid");
return;

}
}

}else {
viCol.getArgs().add("");

}
}else {

super.processFieldForColumnName(viCol, storableClassType, flist,
row, field, value);

}
}

}

5. Create a custom CustomTemplateFactory Java class and override the
getTemplate() method to return the TemplateMyCustomNewsfeedWorker Java
class (instead of the default TemplateNewsfeedWorker Java class).

public class CustomTemplateFactory extends TemplateFactory {

@Override
public TemplateBaseWorker getTemplateWorker(String templateType){

if(BillingCareConstants.NEWSFEED.equalsIgnoreCase(templateType)){
return new TemplateMyCustomNewsfeedWorker();

} else {
return super.getTemplateWorker(templateType);

}
}

}

6. Create a custom template module class by extending the PCMTemplateModule
Java class and overriding its getTemplate() method:

public class CustomPCMTemplateModule extends PCMTemplateModule {

@Override
protected TemplateFactory getTemplateFactoryInstance(){

return new CustomTemplateFactory();
}

}

7. In the NetBeans IDE, create a new Java project with all the mentioned Java files
and XML files in the appropriate folders and include the jars required to compile
and build the project.

8. Add your customization files to your NetBeans IDE project folder (myproject):

Example 3: Newsfeed Template Customization

Customizing Billing Care Templates 10-13

■ Add the customModule.properties in the
myproject/web/WEB-INF/classes/custom folder.

■ Add the custom template file in the
myproject/web/WEB-INF/classes/custom/eventtemplates folder.

9. Right-click your NetBeans IDE project and select Clean and Build.

10. Package and deploy your custom templates to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

11. Verify your changes in Billing Care.

Example 4: Account Search Template Customization Using Custom Fields

10-14 Billing Care SDK Guide

Example 4: Account Search Template Customization Using Custom Fields

The following procedure shows how to customize the account search template by
providing an example of adding a new custom field named PO Number. In this example
procedure:

■ A custom template, customAccountSearch.xml, is created with new custom field
criteria nxtFldPoNumber to add the PO Number field in the account search screen.

■ Required JAR and Infranet.Properties files are generated to retrieve the new data
for displaying the field and searching the accounts in Billing Care.

To add a field in the account search template and customize the REST code to support
the new field:

1. Create the customAccountSearch.xml file in the
myproject/web/custom/searchtemplates folder by copying the default
accountSearch.xml available in the SDK_home/BillingCare_SDK/reference folder.

2. Define the new field criteria in the filter element in the customAccountSearch.xml
file:

<criteria name="nxtFldPoNumber">
<label></label>
<inputType>Text</inputType>
<width>125</width>
<placeHolder>PO_NUMBER_UC</placeHolder>
<fieldKey>acctinfo.NxtFldPoNumber</fieldKey>
<storableClass>/profile/acct</storableClass>
<visible>true</visible>

</criteria>

3. Save the file in your NetBeans IDE project.

4. Create a custom account search view model containing the nxtFldPoNumber search
filter by using the sample customAccountSearch.js file in the SDK_
home/BillingCare_
SDK/samples/AccountSearchCustomization/web/custom/js/viewmodels/search
directory.

5. Configure the custom account search view model in the customRegistry.js file. For
example:

var CustomRegistry = {
customAccountSearch: {

viewModel: '../custom/js/viewmodels/search/customAccountSearch'
}

6. Generate the custom field source and update the Infranet.properties file in the
home directory of the Billing Care WebLogic Server administrative user. See
"Generating the Required JAR File and Infranet.properties" for more information.

7. Add the custom field library to your NetBeans IDE project folder by copying the
customfields.jar file to the myproject/web/lib directory.

Note: The package name in the JAR file must be same as the custom
field package name in the Infranet.properties file.

Example 4: Account Search Template Customization Using Custom Fields

Customizing Billing Care Templates 10-15

8. Package and deploy your custom templates to your Billing Care domain. See
"Packaging and Deploying Customizations" for more information.

Example 4: Account Search Template Customization Using Custom Fields

10-16 Billing Care SDK Guide

11

Customizing the Billing Care Account Banner 11-1

11Customizing the Billing Care Account Banner

[12]This chapter provides an overview of customizing the Oracle Communications Billing
Care Account Banner.

About the Billing Care Account Banner
The Account Banner displays the following default set of views as tiles in the Billing
Care interface listed in Table 11–1.

Each tile displays the information from the Billing Care module responsible for the
type of data. For example, the accountBannerContact tile displays data from the
account module.

The accountBannerSections key in the Billing Care registry file contains the list of
tiles to display in the Account Banner.

Customizing the Billing Care Account Banner
Customize the Account Banner tiles by:

■ Rearranging Account Banner Tiles

■ Removing Account Banner Tiles

Creating custom tiles requires the creation of the resources required by the tile. For
example, you may need to create a custom module, or view model and possibly CSS,
to display custom tile information correctly. See "About Billing Care Modules" for
more information on Billing Care modules and the resources you need to create when
using custom tiles.

The Billing Care SDK includes sample Account Banner customizations, including a
README.txt file explaining the samples, in the SDK_home/samples/AccountBanner
directory, where SDK_home is the directory where you installed the Billing Care SDK.
Use these samples when developing your own Account Banner customizations.

Table 11–1 Default Billing Care Account Banner Tiles

Tile Registry Key Description

accountBannerContact Displays account contact information

accountBannerAccountInfo Displays account information such as plan and status

accountBannerCollections Displays account collections information

accountBannerBillUnits Displays a summary of account bill unit information

accountBannerVIPInfo Displays account VIP status if applicable

Customizing the Billing Care Account Banner

11-2 Billing Care SDK Guide

Creating Configuration Files for Account Banner Customization
The Account Banner tiles displayed, and their display order, are defined in the Billing
Care configuration file, Configurations.xml. This file includes key values specifying
which tiles to display, and their order, in the accountBannerSections key as shown in
Example 11–1.

Example 11–1 Configurations.xml accountBannerSections Sample

<configuration
key="accountBannerSections"><value>accountBannerContact,accountBannerAccountInfo,a
ccountBannerCollections,accountBannerBillUnits,accountBannerVIPInfo</value>

</configuration>

Each value represents a tile and is a key in the default registry file, registry.js. The
registry.js file defines views and view models. For example, Example 11–2 shows the
view definition in the registry for the accountBannerVIPInfo tile.

Example 11–2 registry.js Account Banner Tile Entry Sample

accountBannerVIPInfo: {
view: 'text!templates/home/accountBanner/vipInfoView.html'

}

The Billing Care SDK includes the default configuration file (Configurations.xml) and
the default registry file (registry.js) in the SDK_home/BillingCare_SDK/references
directory where SDK_home is the location where you installed the SDK.

To customize the Account Banner, you create a custom version of the Billing Care
configuration file named CustomConfigurations.xml, and a custom version of the
registry file named customRegistry.js. The custom configuration file specifies your
tiles to display and their display order. The custom registry file includes view and
view model definitions for each tile you want to display.

To customize the account banner:

1. Copy the default Configurations.xml file from SDK_HOME/BillingCare_
SDK/references to a custom configuration file named CustomConfigurations.xml
in your myproject/web/WEB-INF/classes/custom/configurations directory, where
myproject is your NetBeans IDE project containing your Billing Care
customizations.

2. Copy the default registry.js file from SDK_HOME/BillingCare_SDK/references to
a custom registry file named customRegistry.js in your myproject/web/custom
directory, where myproject is your NetBeans IDE project containing your Billing
Care customizations.

3. Edit the accountBannerSections key in the CustomConfigurations.xml file with
your customizations as described in the following sections.

4. If adding new tiles, define the view and view model for your new tiles in the
customRegistry.js file.

5. Add your customization files to your NetBeans IDE project (myproject):

■ Add the CustomConfigurations.xml file in the
myproject/web/WEB-INF/custom/configurations folder.

■ Add the customRegistry.js file in the myproject/web/custom/ folder.

■ Add any new view html files to support your custom tile in the
myproject/web/custom folder.

Removing Account Banner Tiles

Customizing the Billing Care Account Banner 11-3

■ Add any new JavaScript to support your custom view model in the
myproject/web/js directory.

■ Add any new CSS to support your custom view in the myproject/web/css
directory. Custom CSS must be properly configured in the registry to override
the default CSS. See "Overriding Themes" for more information on overriding
the default CSS.

6. Right-click your NetBeans IDE project and select Clean and Build.

7. Package and deploy your Account Banner customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

8. Verify your changes in Billing Care.

Rearranging Account Banner Tiles
The tile display order in the Account Banner is defined by the order of the listed values
in the accountBannerSections key in the CustomConfigurations.xml file.

To rearrange the tile order in the Account Banner:

1. Open the CustomConfigurations.xml file in your
myproject/web/WEB-INF/custom/configurations directory, where myproject is your
NetBeans IDE project containing your Billing Care customizations with an editor.

2. Edit the accountBannerSections key in the CustomConfigurations.xml file listing
the Account Banner tiles in the order you want displayed in Billing Care.

For example, if you want the accountBannerVIPInfo tile to be displayed first
change the following accountBannerSections key value from:

<value>accountBannerAccountInfo,accountBannerContact,accountBannerCollections,
accountBannerBillUnits,accountBannerVIPInfo</value>

to:

<value>accountBannerVIPInfo,
accountBannerAccountInfo,accountBannerContact,accountBannerCollections,account
BannerBillUnits</value>

3. Save and close your CustomConfigurations.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your Account Banner customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Removing Account Banner Tiles
The tiles displayed in the Account Banner are defined by the included values in the
accountBannerSections key in the CustomConfigurations.xml file.

To remove a tile from the Account Banner:

1. Open the CustomConfigurations.xml file in your
myproject/web/WEB-INF/classes/custom/configurations directory, where myproject

Removing Account Banner Tiles

11-4 Billing Care SDK Guide

is your NetBeans IDE project containing your Billing Care customizations with an
editor.

2. Edit the accountBannerSections key in the CustomConfigurations.xml file,
removing the Account Banner tiles you do not want displayed in Billing Care.

For example, to remove the accountBannerVIPInfo tile, change the following
accountBannerSections key value from:

<value>accountBannerAccountInfo,accountBannerContact,accountBannerCollections,
accountBannerBillUnits,accountBannerVIPInfo</value>

to:

<value>accountBannerAccountInfo,accountBannerContact,accountBannerCollections,
accountBannerBillUnits</value>

3. Save and close your CustomConfigurations.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your Account Banner customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

12

Customizing the Billing Care Actions Menu 12-1

12Customizing the Billing Care Actions Menu

[13]This chapter provides an overview of customizing the Oracle Communications Billing
Care Actions menu.

About the Billing Care Actions Menu
The Billing Care Actions menu is defined in XML format. Example 12–1 shows a
sample portion of the XML Actions menu definition file. The <menu> tags represent a
menu, and the <item> tags inside <menu> tags represent the submenus of that menu.

Example 12–1 Sample Portion of the Actions Menu Definitions XML File

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<menu-definition xmlns="http://xmlns.oracle.com/cgbu/schemas/BusinessObjs">

<menu id="menu-general">
<header-key>actions_menu.ACCOUNT</header-key>
<contents>

<item id="menu-item-account-profile">
<label-key>actions_menu.ACCOUNT_PROFILE</label-key>
<description-key>actions_menu.ACCOUNT_PROFILE_SHORT_

DESCRIPTION</description-key>
<!--"permission-key" and "action-key" are used for

enabling/disabling menu using Authorization
The corresponding values should not be modified.
This applies to every entry in the xml

-->
<permission-key>AccountResource</permission-key>
<action-key>View</action-key>
<version>1.0</version>

</item>
<item id="menu-item-account-status">

<label-key>actions_menu.ACCOUNT_STATUS</label-key>
<description-key>actions_menu.ACCOUNT_STATUS_SHORT_

DESCRIPTION</description-key>
<permission-key>AccountResource</permission-key>
<action-key>Transition</action-key>
<version>1.0</version>

</item>
</contents>

</menu>
<menu id="menu-pay">

<header-key>actions_menu.PAYMENTS</header-key>
<contents>

<item id="menu-item-make-payment">
<label-key>actions_menu.MAKE_PAYMENT</label-key>

About Customizing the Actions Menu

12-2 Billing Care SDK Guide

<description-key>actions_menu.MAKE_PAYMENT_SHORT_
DESCRIPTION</description-key

<permission-key>PaymentResource</permission-key>
<action-key>Make</action-key>
<version>1.0</version>

</item>
<item id="menu-item-allocate-payment">

<label-key>actions_menu.ALLOCATE</label-key>
<description-key>actions_menu.ALLOCATE_SHORT_

DESCRIPTION</description-key>
<permission-key>PaymentResource</permission-key>
<action-key>Allocate</action-key>
<version>1.0</version>

</item>
</contents>

</menu>
</menu-definition>

The following Actions menu element definitions are provided to assist you with
customizing the Actions menu:

■ action-key holds the action value for the corresponding resource (for example,
Make, Allocate, and so on).

■ contents.item.label-key represents the resource bundle key for entries within the
submenus.

■ description-key represents a submenu description that appears below a menu
label.

■ header-key represents the resource bundle key for the entries in the Actions menu
(Account, Payments, and so on) and the header within the submenus.

■ id is used as the element ID for the menus and anchor links representing the menu
entries. This may be useful for the associated JavaScript code that you can write
for custom menu entries.

■ label-key represents the menu label.

■ permission-key reflects the authorization key that controls access to the menu
entry. This is used to hold the resource value (for example, PaymentResource,
AdjustmentResource, and so on).

Mapping Label and Description Key Values to the Resource Bundle
The label-key and description-key values use either the text string included within the
tag, or a referenced value mapped to the Billing Care resource bundle. When mapping
these keys to the resource bundle, use the following format:

actions_menu.trans-unit ID

where trans-unit ID represents the label defined in the resource bundle. See
"Customizing Billing Care Labels" for more information on customizing the resource
bundle for your environment.

About Customizing the Actions Menu
You can customize the Actions menu by completing the following procedures:

■ Removing Actions Menu Items

■ Rearranging Actions Menu Items

Removing Actions Menu Items

Customizing the Billing Care Actions Menu 12-3

■ Renaming Actions Menu and Submenu Items

■ Adding Actions Menu Items

The Billing Care SDK includes a sample Actions menu customization in the SDK_
home/BillingCare_SDK/samples/ActionMenu directory, where SDK_home is the
directory where you installed the SDK. Use this sample to assist you in customizing
the Actions menu.

Setting Up NetBeans IDE for Customizing the Actions Menu
Customizing Billing Care Actions menu requires creating a custom XML configuration
file (CustomActionMenu.xml). This file contains the configuration for your custom
menu structure.

To customize Billing Care invoice presentation:

1. Copy the default ActionMenu.xml file from SDK_HOME/BillingCare_
SDK/references to a custom file named CustomActionMenu.xml in your
myproject/web/WEB-INF/custom/configurations directory, where myproject is your
NetBeans IDE project containing your Billing Care customizations.

2. Customize the Actions menu using the CustomActionMenu.xml file as described
in the following sections.

3. Save and close the CustomActionMenu.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your invoice presentation customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Removing Actions Menu Items
Use the following procedures to remove Actions menu items:

■ Removing an Existing Actions Menu Submenu

■ Removing an Existing Actions Menu

Removing an Existing Actions Menu Submenu
To remove an existing Actions menu submenu:

1. Open the CustomActionMenu.xml file in an editor.

2. Delete the corresponding <item> element in CustomActionMenu.xml for the
submenu you want to remove.

For example, to remove Account Status from Account menu, remove the
following <item> element:

<item id="menu-item-account-status">
<label-key>actions_menu.ACCOUNT_STATUS</label-key>
<permission-key>AccountResource</permission-key>
<action-key>Transition</action-key>
<version>1.0</version>

</item>

3. Save and close the CustomActionMenu.xml file.

Rearranging Actions Menu Items

12-4 Billing Care SDK Guide

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your invoice presentation customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Removing an Existing Actions Menu
To remove an existing menu:

1. Open the CustomActionMenu.xml file in an editor.

2. Delete the corresponding <menu> block for the menu you want to remove.

For example, to remove the Account menu, remove the following <menu> element:

<menu id="menu-general">
<header-key>actions_menu.ACCOUNT</header-key>
<contents>

<item id="menu-item-account-profile">
<label-key>actions_menu.ACCOUNT_PROFILE</label-key>
<!--"permission-key" and "action-key" are used for

enabling/disabling menu using Authorization
The corresponding values should not be modified.
This applies to every entry in the xml

-->
<permission-key>AccountResource</permission-key>
<action-key>View</action-key>
<version>1.0</version>

</item>
<item id="menu-item-account-status">

<label-key>actions_menu.ACCOUNT_STATUS</label-key>
<permission-key>AccountResource</permission-key>
<action-key>Transition</action-key>
<version>1.0</version>

</item>
</contents>

</menu>

3. Save and close to CustomActionMenu.xml file.

4. Package and deploy your invoice presentation customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

5. Verify your changes in Billing Care.

Rearranging Actions Menu Items
Use the following procedures to remove Actions menu items:

■ Rearranging Actions Menu Submenu Items

■ Rearranging Actions Menu Items

Rearranging Actions Menu Submenu Items
To rearrange Actions menu submenu items:

Rearranging Actions Menu Items

Customizing the Billing Care Actions Menu 12-5

1. Open the CustomActionMenu.xml file in an editor.

2. Change the order of corresponding submenu <item> tags.

For example, to get Account Status first and then Account Profile second in the
Account menu:

<menu id="menu-general">
<header-key>actions_menu.ACCOUNT</header-key>
<contents>

<!-- Account status comes first -->
<item id="menu-item-account-status">

<label-key>actions_menu.ACCOUNT_STATUS</label-key>
<permission-key>AccountResource</permission-key>
<action-key>Transition</action-key>
<version>1.0</version>

</item>
<item id="menu-item-account-profile">

<label-key>actions_menu.ACCOUNT_PROFILE</label-key>
<!--"permission-key" and "action-key" are used for

enabling/disabling menu using Authorization
The corresponding values should not be modified.
This applies to every entry in the xml

-->
<permission-key>AccountResource</permission-key>
<action-key>View</action-key>
<version>1.0</version>

</item>
</contents>

</menu>

3. Save and close to CustomActionMenu.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your invoice presentation customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Rearranging Actions Menu Items
To rearrange Actions menu items:

1. Open the CustomActionMenu.xml file in an editor.

2. Change the order of corresponding <menu> tags to the order you want the menus
to be displayed.

For example, to get Payments as the first menu and Account as the second menu:

<menu id="menu-pay">
<!--content of Payments menu -->

</menu>
<menu id="menu-general">

<!--content of Account menu -->
</menu>

3. Save and close to CustomActionMenu.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

Renaming Actions Menu and Submenu Items

12-6 Billing Care SDK Guide

5. Package and deploy your invoice presentation customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Renaming Actions Menu and Submenu Items
Use the following procedures to rename Actions menu items:

■ Renaming Actions Menu Submenu Items

■ Renaming Actions Menu Items

Renaming Actions Menu Submenu Items
To rename an Actions menu submenu item:

1. Open the CustomActionMenu.xml file in an editor.

2. Change the value of <label-key> for the submenu item you want to rename.

3. Save and close to CustomActionMenu.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your invoice presentation customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Renaming Actions Menu Items
To rename an Actions menu item:

1. Open the CustomActionMenu.xml file in an editor.

2. Change the value of <header-key> for the menu item you want to rename. Note
the header key for the menu changed.

3. Save and close to CustomActionMenu.xml file.

4. Find the header key in the resource bundle and follow the steps in "Customizing
the Resource Bundle" to rename the Actions menu Items.

5. Right-click your NetBeans IDE project and select Clean and Build.

6. Package and deploy your invoice presentation customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

7. Verify your changes in Billing Care.

Adding Actions Menu Items
Adding Actions menu and submenu items requires adding new <menu> and <item>
elements in your CustomActionMenu.xml file and creating a custom view model to
support your new menus and submenus.

To add Actions menu or submenu items:

Adding Actions Menu Items

Customizing the Billing Care Actions Menu 12-7

1. Open the CustomActionMenu.xml file in an editor.

2. Add new <menu> and <item > elements as required under the <!-- existing
content remains --> comment.

For example:

<!-- Custom block to be added in the CustomActionsMenu.xml -->
<menu id="menu-pay">

<header-key>actions_menu.PAYMENTS</header-key>
<contents>

<!-- existing content remains -->
<!-- Add a new menu item under payments -->
<item id="menu-item-new-custom-item">

<label-key>New Custom Menu Item</label-key>
<permission-key>PaymentResource</permission-key>
<!-- If we are not using ant existing action-key, this

NewCustomActionKey must be configured in the OES environment -->
<action-key>NewCustomActionKey</action-key>
<version>1.0</version>

</item>
</contents>

</menu>

3. Create a new custom view model file to support the new Actions menu items you
created (for example, customMenuViewModel.js) in the myproject/web/js
directory where myproject is the NetBeans IDE project containing your Billing Care
customizations.

4. Write and bind click events in the custom view model file using the same ids that
you used in the CustomActionMenu.xml file:

$('#menu-item-new-custom-item').click(function(e){
//implementation goes here.

});

5. If your menu or submenu additions require custom logic, extend Billing Care
using the SDK to support the required functions. See "Extending and Creating
Billing Care REST Resources" for more information on extending Billing Care.

6. Copy the default registry.js file from SDK_HOME/BillingCare_SDK/references to
a custom registry file named customRegistry.js in your myproject/web/custom
directory, where myproject is your NetBeans IDE project containing your Billing
Care customizations. This file contains the module definition using your custom
view model (JavaScript).

7. Add the definition for your custom view model in the customRegistry.js file,
located in your myproject/web/custom directory.

For example:

var CustomRegistry = {
customActionMenus: {

viewmodel: 'viewmodels/customMenuViewModel'
}

};

8. Right-click your NetBeans IDE project and select Clean and Build.

9. Package and deploy your invoice presentation customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

Adding Action Menu Items in Payment Suspense

12-8 Billing Care SDK Guide

10. Verify your changes in Billing Care.

Adding Action Menu Items in Payment Suspense
The Payment Suspense action menu can be customized with additional menu items.
To add custom Payment Suspense action menu items use the same procedure
described in "Adding Actions Menu Items".

The Billing Care SDK includes a sample Payment Suspense Actions menu
customization in the SDK_home/BillingCare_
SDK/samples/PaymentSuspenseDetailsActionsMenu directory, where SDK_home is
the directory where you installed the SDK. Use this sample to assist you in
customizing the Payment Suspense Actions menu.

13

Customizing Account Creation Service Fields 13-1

13Customizing Account Creation Service Fields

[14]This chapter provides an overview on adding custom fields to Oracle
Communications Billing Care account creation for capturing required service
configuration information.

About Customizing Account Creation
Users create new subscriber accounts by clicking New Account on the Billing Care
home page. New accounts require creating new subscriber profiles, selecting offers,
and configuring services and payments. Your offers may require additional fields for
capturing custom service configuration attributes during account creation.

Use the Billing Care SDK to customize new account service configuration to capture
such information. For example, use the SDK to add fields for capturing mailbox
message limits to set when configuring a messaging service. The SDK includes a
sample for adding fields to account creation in SDK_home/BillingCare_
SDK/samples/AccountCreation_CustomizeServices where SDK_home is the Billing
Care SDK installation directory.

Adding custom service configuration fields requires:

1. Creating Custom View Models

2. Creating a Custom Service View Model HTML Template

3. Extending the Service Validator for Custom Fields

4. Configuring a Custom Module in the Registry

5. Deploying Customizations

Creating Custom View Models
Billing Care renders account creation screens using view models that define graphical
elements including service configuration fields. See "About View Models" for a
description of view models. Adding additional fields for account creation requires:

■ Extending the New Account Configuration View Model

■ Creating a Custom Service Configuration View Model

Both view models must be included in your NetBeans IDE project in the
myproject/web/custom/viewmodels/accountCreation/configure folder where myproject
is the base directory of your Net Beans IDE project. See "Setting Up the Development
Environment" for more information on setting up your project.

Creating Custom View Models

13-2 Billing Care SDK Guide

Extending the New Account Configuration View Model
Billing Care uses NewAccountConfigureViewModel.js during account creation to
identify configurable services. This file selects a registry key based on the service being
configured and maps this registry key to a module (view, view model, and validator)
configuration defined in the registry. Billing Care then renders the appropriate service
configuration screen based on the mapped module during account creation.

Adding additional fields to capture during service configuration requires extending
NewAccountConfigureViewModel.js with additional registry keys for custom
services. This enables Billing Care to select the correct registry key defining the custom
service configuration.

A sample CustomNewAccountConfigureViewModel.js file is provided in the SDK_
home/BillingCare_SDK/samples/AccountCreation_
CustomizeServices/web/custom/js/viewmodels/accountCreation/configure directory
where SDK_home is the Billing Care SDK installation directory.

To extend NewAccountConfigureViewModel.js:

1. Create a CustomNewAccountConfigureViewModel.js file in
myproject/web/custom/js/viewmodels/area/configure where myproject is the folder
containing your NetBeans IDE project and area is the customization type.

2. Define new registry keys that map to Oracle Communications Billing and Revenue
Management (BRM) service types. Example 13–1 shows an additional registry key
definition for /service/email.

Example 13–1 Sample New Account Configure View Model

define(['knockout', 'underscore',
'viewmodels/accountCreation/configure/NewAccountConfigureViewModel'], function(ko,
_, NewAccountConfigureViewModel) {

function CustomNewAccountConfigureViewModel() {
NewAccountConfigureViewModel.apply(this, arguments);

var self = this;

/**
* Get registryKey for service type from the activePageKey.
* @param {type} apKey
* @returns {String}
*/
self.getRegistryKeyForServiceType = function(apKey){

var registryKey = null;
if(apKey != null && apKey.indexOf("/service/telco") !== -1){

registryKey = "telcoServiceConfiguration";
}else if(apKey != null && apKey.indexOf("/service/email") !== -1){

registryKey = "emailServiceConfiguration";
}
return registryKey;

};

}

CustomNewAccountConfigureViewModel.prototype = new
NewAccountConfigureViewModel();

return CustomNewAccountConfigureViewModel;
});

3. Save the file in your NetBeans IDE project.

Creating Custom View Models

Customizing Account Creation Service Fields 13-3

Creating a Custom Service Configuration View Model
Billing Care uses a service configuration view model to define what fields to capture
during service configuration. The fields defined in the service configuration view
model are bound in the HTML file used to render the service configuration screen. You
must create a custom service configuration view model to capture additional fields
during account creation for any custom services.

A sample CustomEmailServiceConfigurationViewModel.js file is provided in the
SDK_home/BillingCare_SDK/samples/AccountCreation_
CustomizeServices/web/custom/js/viewmodels/accountCreation/configure directory
where SDK_home is the Billing Care SDK installation directory. This sample defines
three mailbox attributes usable for a custom messaging service. Use this sample to
create a custom service configuration view model for defining the fields required by
your service.

To create a custom service configuration view model defining the additional fields you
need to capture:

1. Create a CustomServiceConfigurationViewModel.js file in
myproject/web/custom/js/viewmodels/area/configure where myproject is the folder
containing your NetBeans IDE project and area is the customization type.

2. Define the new fields required for capture in this file.

3. Define the BRM service type using the @class property in the self.isValid function
in this file. Table 13–1 contains the supported services.

Table 13–1 Supported @class Services

Service

com.oracle.communications.brm.cc.model.ServiceEmailType

com.oracle.communications.brm.cc.model.ServiceBroadbandType

com.oracle.communications.brm.cc.model.ServiceDataType

com.oracle.communications.brm.cc.model.ServiceLdapType

com.oracle.communications.brm.cc.model.ServiceMmsType

com.oracle.communications.brm.cc.model.ServiceEmailType

com.oracle.communications.brm.cc.model.ServiceProviderType

com.oracle.communications.brm.cc.model.ServiceSpcontentType

com.oracle.communications.brm.cc.model.ServiceInstantchatType

com.oracle.communications.brm.cc.model.ServicePsmcontentproviderType

com.oracle.communications.brm.cc.model.ServiceContentproviderType

com.oracle.communications.brm.cc.model.ServiceConfchatType

com.oracle.communications.brm.cc.model.ServiceProviderProdType

com.oracle.communications.brm.cc.model.ServiceInternettvType

com.oracle.communications.brm.cc.model.ServiceAdminClientType

com.oracle.communications.brm.cc.model.ServiceCableType

com.oracle.communications.brm.cc.model.ServiceVideochatType

com.oracle.communications.brm.cc.model.ServiceCloudType

com.oracle.communications.brm.cc.model.ServiceStreamType

Creating a Custom Service View Model HTML Template

13-4 Billing Care SDK Guide

4. Save the file in your NetBeans IDE project.

Creating a Custom Service View Model HTML Template
Billing Care uses an HTML view file to render the service configuration screen during
account creation. You must create a custom service view model HTML template to
display any additional fields during service configuration. The template file contains
the additional fields defined in the custom service configuration view model created in
"Creating a Custom Service Configuration View Model".

A sample customEmailServiceConfigView.html file is provided in the SDK_
home/BillingCare_SDK/samples/AccountCreation_
CustomizeServices/web/custom/js/templates/accountCreation/configure directory
where SDK_home is the Billing Care SDK installation directory. This sample defines
how to render three mailbox attributes usable for a custom messaging service and the
data binding values. Use this sample to create a custom service configuration HTML
template for displaying the fields required by your service.

To create a custom service configuration HTML template for rendering the additional
fields you need to capture:

1. Create a CustomServiceConfigView.html file in
myproject/web/custom/js/templates/area/configure where myproject is the folder
containing your NetBeans IDE project and area is the customization type.

2. Define the new fields in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Extending the Service Validator for Custom Fields
Billing Care uses a JavaScript-based validator for validating field entry in the service
configuration screen during account creation. You must create a custom field validator
for any additional fields you add in your HTML template to assure that entered values
are properly formatted. The registry key entry that defines the custom module
includes the validator JavaScript file.

com.oracle.communications.brm.cc.model.ServiceTelephonyType

com.oracle.communications.brm.cc.model.ServiceContentType

com.oracle.communications.brm.cc.model.ServicePcmClientType

com.oracle.communications.brm.cc.model.ServiceIpType

com.oracle.communications.brm.cc.model.ServiceSsgType

com.oracle.communications.brm.cc.model.ServiceFaxType

om.oracle.communications.brm.cc.model.ServiceSettlementType

com.oracle.communications.brm.cc.model.ServiceVpdnType

com.oracle.communications.brm.cc.model.ServiceTelcoType

com.oracle.communications.brm.cc.model.ServiceTelcoVoipType

com.oracle.communications.brm.cc.model.ServiceTelcoGprsType

com.oracle.communications.brm.cc.model.ServiceTelcoGsmType

Table 13–1 (Cont.) Supported @class Services

Service

Configuring a Custom Module in the Registry

Customizing Account Creation Service Fields 13-5

A sample CustomEmailServiceFieldsValidatory.js file is provided in the SDK_
home/BillingCare_SDK/samples/AccountCreation_
CustomizeServices/web/custom/js/validations/accountCreation/configure directory
where SDK_home is the Billing Care SDK installation directory. This sample defines the
required format of each custom field and the error message that appears if the user
enters an incorrect format. Use this sample to create a custom service fields validator
for your service.

To create a custom service fields validator:

1. Create a CustomServiceFieldsValidator.js file in
myproject/web/custom/js/validations/area/configure where myproject is the folder
containing your NetBeans IDE project and area is the customization type.

2. Define the required field validations in this file.

3. Save the file in your NetBeans IDE project.

Configuring a Custom Module in the Registry
After creating the required custom view models, HTML template, and validator, create
a custom account creation module entry in the customRegistry.js file to use when
creating a new account. Billing Care uses the custom account creation module instead
of the default entry during account creation and renders the service configuration
screen containing your custom fields.

A sample customRegistry.js file is provided in the SDK_home/BillingCare_
SDK/samples/AccountCreation_CustomizeServices/web/custom directory where
SDK_home is the Billing Care SDK installation directory. This sample defines the
custom account creation module containing the previously referenced sample view
models, HTML template, and validator.

To create a custom account creation module entry in the customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom/ where myproject is the
folder containing your NetBeans IDE project.

2. Define the custom account creation module in this file. Example 13–2 shows a
definition of the custom account creation module in the registry using the SDK
samples.

Example 13–2 Sample Custom Account Creation Module Registry Entry

var CustomRegistry = {
accountCreationConfigure: {

viewmodel:
'../custom/js/viewmodels/accountCreation/configure/CustomNewAccountConfigureViewMo
del',

emailServiceConfiguration:{
view:

'text!../custom/templates/accountCreation/configure/customEmailServiceConfigView.h
tml',

viewmodel:
'../custom/js/viewmodels/accountCreation/configure/CustomEmailServiceConfiguration
ViewModel',

validator:
'../custom/js/validations/accountCreation/configure/CustomEmailServiceFieldsValida
tor'

}
}

}

Deploying Customizations

13-6 Billing Care SDK Guide

;

3. Save the file in your NetBeans IDE project.

Deploying Customizations
Package and deploy your customizations using one of the methods described in
"Using an Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

14

Creating Custom Billing Care Credit Profiles 14-1

14Creating Custom Billing Care Credit Profiles

[15]This chapter provides an overview on customizing Oracle Communications Billing
Care to store subscriber credit profiles.

About Credit Profiles
Billing Care uses credit profiles to store subscriber information related to credit
worthiness including social security numbers and credit scores. By default, Billing
Care does not store or display credit profile information. You customize Billing Care to
display credit profile information stored in Oracle Communications Billing and
Revenue Management (BRM) using the SDK.

Customizing Billing Care to Store Credit Profiles
Support for credit profiles requires customizations in both BRM and Billing Care.

To add credit profile support in Billing Care:

1. Create the required credit profile objects in BRM either by importing the sample
configuration provided by the SDK, or manually creating the objects using Oracle
Communications Billing and Revenue Management Developer Center. See
"Creating Custom Profile Storable Classes in BRM" for more information.

2. Generate the required XSD and JSON files using the Data Model Generator utility.
See "Extending the Billing Care Data Model with XSD and JSON Files" for more
information.

3. Add the generated XSD and JSON files, and Java JAR file to your NetBeans IDE
project. See "Adding the Required Files to the NetBeans Project" for more
information.

4. Deploy your custom payment type projects to your application server. See
"Deploying Customizations" for more information.

The Billing Care SDK includes a sample credit profile customization in the SDK_
home/BillingCare_SDK/samples/EndToEndUseCase directory, where SDK_home is the
directory where you installed the SDK. The credit profile sample stores only the social
security number and credit score. Extend the sample with additional fields if required
by your business. Use this sample to assist you in customizing Billing Care with credit
profile support

Creating Custom Profile Storable Classes in BRM
Credit profile support requires creating the credit profile object in the BRM database
where Billing Care stores subscriber credit profile data. The SDK sample includes a

Creating Custom Profile Storable Classes in BRM

14-2 Billing Care SDK Guide

PODL file containing the credit profile object definitions which can be imported into
BRM using the pin_deploy utility. Alternatively, you can create the required objects
manually using Developer Center.

To create the credit profile object in the BRM database, select one of the following
methods:

■ Importing Credit Profile Class Definitions into BRM

■ Creating Credit Profile Objects Using Developer Center

Importing Credit Profile Class Definitions into BRM
To import the sample PODL definition file into BRM:

1. Copy the credit_profileObj.podl file located in SDK_home/BillingCare_
SDK/samples/EndToEndUseCase/BRM_CreditProfileObject , where SDK_home
is the directory where you installed the SDK, to your BRM _HOME/test folder,
where BRM_HOME is the home directory of your BRM installation.

2. Run the following command:

pin_deploy create credit_ProfileObj.podl

3. Start Developer Center.

4. Open the Class Browser and verify that the /profile/credit_check object is present.

The SDK sample includes a pre-compiled JAR file that must be added to your
NetBeans IDE project for Billing Care to use the new credit profile class. This JAR is
located in the SDK_home/BillingCare_
SDK/samples/EndToEndUseCase/web/WEB-INF/lib folder.

Creating Credit Profile Objects Using Developer Center
Use Developer Center to manually create the credit profile object and fields in BRM.
See "Creating the Credit Profile Class and Field" for more information on using
Developer Center to create the required object and fields.

If you choose to create the credit profile class manually, you must use the Generate
Custom Fields Source utility to create source files containing the new custom fields.
Compile these source files into a JAR file and add the JAR file to your NetBeans IDE
project. See "Generating the Required JAR File and Infranet.properties" for more
information on generating the required JAR file.

Creating the Credit Profile Class and Field
Create the credit profile object and fields in BRM using Developer Center. This section
provides a high level overview of the process including a general overview on how to
create and update the required objects. For detailed information on using the
Developer Center to create a custom credit profile see "Creating Custom Fields and
Storable Classes" in Oracle Communications Billing and Revenue Management Developer’s
Guide.

To create the credit profile class:

1. Start Developer Center.

2. Open the Class Browser.

3. Create the /profile/credit_check class.

4. Commit the new class.

Extending the Billing Care Data Model with XSD and JSON Files

Creating Custom Billing Care Credit Profiles 14-3

To create the required fields for the new credit profile class:

1. Open the Storable Class Editor.

2. Create the following required fields listed in Table 14–1 for the credit profile class:

3. Commit the subclass changes to the database.

To add the created fields to the new credit profile class:

1. Open the Class Browser.

2. Select the /profile/credit_check class.

3. Add the fields listed in Table 14–1 to the credit profile class:

4. Commit the subclass changes to the database.

Generating the Required JAR File and Infranet.properties
To create the required JAR containing the compiled credit profile Java source code:

1. Open the Class Browser.

2. Select the /profile/credit_check class.

3. Select File, then Generate Custom Fields Source. See "Making Custom Fields
Available to Your Applications" in Oracle Communications Billing and Revenue
Management Developer’s Guide for more information on this utility.

The utility generates the required Java class files and the
InfranetPropertiesAdditions.properties file.

4. Copy the contents of the InfranetPropertiesAdditions.properties file into the
Infranet.properties file located in the home directory of the Billing Care WebLogic
Server administrative user.

5. Compile the Java class files into a JAR file named Custom.jar. Include the SDK_
home/BillingCare_SDK/lib/pcm.jar, where SDK_home is the location of your SDK
installation, in the classpath option when compiling.

Extending the Billing Care Data Model with XSD and JSON Files
The Billing Care SDK includes a Data Model Generator utility for generating the
required XSD and JSON files containing the credit profile definitions. The Data Model
Generator is located in the SDK_home/BillingCare_SDK/samples/data_model_
generator directory, where SDK_home is the directory where you installed the SDK.

Table 14–1 /profile/credit_check Class Fields

Field Type

PIN_FLD_CREDIT_INFO SUBSTRUCT

PIN_FLD_SSN STRING

PIN_FLD_CREDIT_SCORE INT

Adding the Required Files to the NetBeans Project

14-4 Billing Care SDK Guide

To create the required XSD and JSON files for credit profile:

1. Open a command-line interface on the system where the Billing Care SDK is
installed.

2. Change to the SDK_home/BillingCare_SDK/samples/data_model_generator
directory.

3. Run the DatamodelGenerator.bat (Windows) or DataModelGenerator.sh (Linux)
script to generate the XSD and JSON files.

The Data Model Generator outputs the extensionDataModel.jar containing the XSD
files and an XSD file containing the definition of your custom payment type. Add
these files to your NetBeans IDE project. See "Adding the Required Files to the
NetBeans Project" for more information on adding the files to your project.

Adding the Required Files to the NetBeans Project
The EndToEndUseCase sample includes sample customized JavaScript view modules
(views, view models, validators, and HTML view template files) for Billing Care to
properly render the credit profile in the account banner. Additionally, the sample also
includes customized Action Menu and Configuration XML files enabling the entry and
display of credit profile fields.

Sample JavaScript and configuration files can be customized to your needs. See "About
Billing Care Modules" for more information on customizing view modules. See
"Customizing the Billing Care Actions Menu" and "Editing the Billing Care
Configuration File" for more information about customizing the configuration files.

The following sections indicate the locations for where the sample files should be
added in your NetBeans IDE project. Place customized versions of the view module or
configuration files in the same locations. See "Setting Up a Billing Care Customization
Project" for more information on creating the proper project directory structure.

Updating the MANIFEST.MF File
To update the NetBeans IDE project MANIFEST.MF file:

1. Open the project’s MANEFEST.MF file and append the contents of the SDK_
home/BillingCare_SDK/samples/EndToEndUseCase/src/conf/MANIFEST.MF,
where SDK_HOME is the home directory of your SDK installation, to the end of
the file.

2. Save the file.

Adding the Required View Module and Configuration Files
To add the sample view module and configuration files to your NetBeans IDE project:

Note: The Data Model Generator utility requires an
Infranet.properties file configured with BRM connection information
in the local user’s home directory. The utility connects to the BRM
system defined in this file to retrieve the object configuration before
generating the required XSD and JSON files. See "Copying
Configuration File to the Domain Administrative User’s Home
Directory" in Oracle Communications Billing Care Installation Guide for
more information.

Deploying Customizations

Creating Custom Billing Care Credit Profiles 14-5

■ Copy the files located in SDK_home/BillingCare_
SDK/samples/EndToEndUseCase/, where SDK_HOME is the home directory of
your SDK installation, into their corresponding NetBeans IDE project directories.
For example, copy the SDK_home/BillingCare_
SDK/samples/EndToEndUseCase/web/custom directory to your
myproject/web/custom directory where myproject is your NetBeans IDE project
directory.

Adding the Required JAR and JSON Files
To add required JAR files to your NetBeans IDE project:

1. Copy the extensionDataModel.jar and Custom.jar to your Billing Care
customization NetBeans IDE project myproject/web/lib directory where myproject is
the project directory of your Billing Care customizations NetBeans IDE project.

2. Copy the JSON file to myproject/web/custom/jsons where myproject is the project
directory of your Billing Care customizations NetBeans IDE project.

Deploying Customizations
Package and deploy your customizations using one of the methods described in
"Using an Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Deploying Customizations

14-6 Billing Care SDK Guide

15

Adding Custom Payment Types 15-1

15Adding Custom Payment Types

[16]This chapter provides an overview on adding custom payment types, configured in
Oracle Communications Billing and Revenue Management (BRM), to Oracle
Communications Billing Care.

About Custom Payment Types
Billing Care supports the following default payment types:

■ Credit Card

■ Debit Card

■ Cash

■ Check

■ Wire-Transfer

■ Interbank Payment Order

■ Postal Order

BRM supports the creation of custom payment types, such as cryptocurrency, required
by your business. Use the SDK to customize Billing Care to support custom payment
types configured in your BRM. Adding custom BRM payment types to Billing Care
enables the payment type to be selected when creating new accounts, adding payment
methods, or processing manual payments.

Creating Custom Payment Types in BRM
Create custom BRM payment types using the Oracle Communications Billing and
Revenue Management Developer Center. This section provides a high level overview
of the process including a general overview on how to create and update the required
objects and classes. For detailed information on using the Developer Center to create
custom payment types see "Creating Custom Fields and Storable Classes" in Oracle
Communications Billing and Revenue Management Developer’s Guide.

To create a custom payment type in BRM:

1. Create the custom payment type payment and reversal event subclasses. See
"Creating Custom Payment Type Event Subclasses" for more information.

2. Update the BRM /config/paymenttool object with the required custom payment
fields. See "Updating the /config/paymenttool Object with Custom Payment
Types" for more information.

Creating Custom Payment Types in BRM

15-2 Billing Care SDK Guide

3. Update the BRM /config/payment object with the custom payment type payment
and reversal events. See "Updating the /config/payment Object with Custom
Payment Type Event" for more information.

Creating Custom Payment Type Event Subclasses
To create the custom payment type event subclasses:

1. Start Developer Center.

2. Open the Class Browser.

3. Select the /event/billing/payment, /event/billing/reversal, and
/event/billing/refund classes sequentially.

4. Create the following new subclasses in the above classes:

■ /event/billing/payment/external

■ /event/billing/reversal/external

■ /event/billing/refund/external

■ /event/billing/payment/external/payment_type

■ /event/billing/reversal/external/payment_type

■ /event/billing/refund/external/payment_type

where payment_type is the name of your custom payment type.

5. Commit the new subclasses.

To add the required fields to the new custom payment type subclasses:

1. Select the /event/billing/payment/external/payment_type class.

2. Add the required fields for the custom payment type to the payment subclass. For
example, if you are creating a new check payment type, add the PIN_FLD_
CHECK_ID field.

3. Commit the subclass changes to the database.

4. Select the /event/billing/reversal/external/payment_type class.

5. Add the required fields for the custom payment type to the reversal subclass. For
example, if you are creating a new check payment type, add the PIN_FLD_
CHECK_ID field.

6. Select the /event/billing/refund/external/payment_type class.

7. Add the required fields for the custom payment type to the refund subclass. For
example, if you are creating a new check payment type, add the PIN_FLD_
CHECK_ID field.

8. Commit the subclass changes to the database.

Updating the /config/paymenttool Object with Custom Payment Types
Billing Care uses the /config/paymenttool object configuration to determine each
payment type’s required fields. Update this object with the required fields for your
custom payment type after creating the subclasses.

To update the /config/paymenttool object:

1. In the Object Browser, select /config/paymenttool.

Creating Custom Payment Types in BRM

Adding Custom Payment Types 15-3

2. Find the /config/paymenttool object with a FLD_NAME value of PaymentTool
payment Types: Default.

3. Copy the /config/paymenttool object into the Opcode Work Bench.

4. Add the required custom payment type fields to the object. Example 15–1 shows a
sample flist for a new payment type with ID 11000 named External Check. This
payment type has a new field called PIN_FLD_CHECK_ID.

Example 15–1 Sample /config/paymenttool fields for External Check Payment Type

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/paymenttool 8398 0
0 PIN_FLD_PAY_TYPES ARRAY [11000] allocated 2, used 2
1 PIN_FLD_NAME STR [0] "External Check"
1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [0] allocated 4, used 4
2 PIN_FLD_BATCH_TYPE INT [0] 0
2 PIN_FLD_COLUMN_NAME STR [0] "check_No"
2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_CHECK_ID"
2 PIN_FLD_PURPOSE INT [0] 0
1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [1] allocated 4, used 4
2 PIN_FLD_BATCH_TYPE INT [0] 1
2 PIN_FLD_COLUMN_NAME STR [0] "check_No"
2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_CHECK_ID"
2 PIN_FLD_PURPOSE INT [0] 1

5. Use WRITE_FLDS with flag=32 to update the object with the new fields for your
custom payment type.

Updating the /config/payment Object with Custom Payment Type Event
BRM stores payment events in the /config/payment object. Update this object with the
new payment, reversal, and refund events you created for custom payment type.

To update the /config/payment object:

1. In the Object Browser, select /config/payment.

2. Copy the /config/payment object into the Opcode Work Bench.

3. Add the required custom payment events to the object. Example 15–2 shows a
sample flist for a new /event/billing/payment/external/check and
/event/billing/refund/external/check events.

Example 15–2 Sample /config/paymenttool fields for External Check Payment Type

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/payment 200 0
0 PIN_FLD_PAY_TYPES ARRAY [11000] allocated 4, used 4
1 PIN_FLD_PAYINFO_TYPE STR [0] "/payinfo"
1 PIN_FLD_PAYMENT_EVENT_TYPE STR [0]
"/event/billing/payment/external/check"
1 PIN_FLD_REFUND_EVENT_TYPE STR [0]
"/event/billing/refund/external/check"
1 PIN_FLD_OPCODES ARRAY [0] allocated 4, used 4
2 PIN_FLD_EVENT_TYPE STR [0] ""
2 PIN_FLD_FLAGS INT [0] 0
2 PIN_FLD_NAME STR [0] "PCM_OP_INVALID"
2 PIN_FLD_OPCODE INT [0] 0
1 PIN_FLD_OPCODES ARRAY [1] allocated 4, used 4
2 PIN_FLD_EVENT_TYPE STR [0] ""
2 PIN_FLD_FLAGS INT [0] 0
2 PIN_FLD_NAME STR [0] "PCM_OP_INVALID"
2 PIN_FLD_OPCODE INT [0] 0

Customizing Billing Care to Support Custom BRM Payment Types

15-4 Billing Care SDK Guide

1 PIN_FLD_OPCODES ARRAY [2] allocated 4, used 4
2 PIN_FLD_EVENT_TYPE STR [0] ""
2 PIN_FLD_FLAGS INT [0] 0
2 PIN_FLD_NAME STR [0] "PCM_OP_INVALID"
2 PIN_FLD_OPCODE INT [0] 0

4. Use WRITE_FLDS with flag=32 to update the object with the new fields for your
custom payment type.

5. Stop and start your BRM services.

Customizing Billing Care to Support Custom BRM Payment Types
The Billing Care SDK includes a sample custom payment type customization in the
SDK_home/BillingCare_SDK/samples/CustomPaymentMethodType directory, where
SDK_home is the directory where you installed the SDK. Use this sample to assist you
in customizing Billing Care with custom payment types.

Generating XSD and JSON Files for Custom Payment Types
Customizing Billing Care Actions menu requires creating a custom XML configuration
file (CustomActionMenu.xml). This file contains the configuration for your custom
menu structure.

To customize Billing Care invoice presentation:

1. Copy the default ActionMenu.xml file from SDK_HOME/BillingCare_
SDK/references to a custom file named CustomActionMenu.xml in your
myproject/web/WEB-INF/custom/configurations directory, where myproject is your
NetBeans IDE project containing your Billing Care customizations.

2. Customize the Actions menu using the CustomActionMenu.xml file as described
in the following sections.

3. Save and close the CustomActionMenu.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your invoice presentation customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Extending the Billing Care Data Model with XSD and JSON Files
The Billing Care SDK includes a Data Model Generator utility for generating the
required XSD and JSON files containing the custom payment type definitions. The
Data Model Generator is located in the SDK_home/BillingCare_SDK/samples/data_
model_generator directory, where SDK_home is the directory where you installed the
SDK. Use this sample to assist you in customizing Billing Care with custom payment
types.

Enabling Custom Payment Types in Batch Payment Processing

Adding Custom Payment Types 15-5

To create the required XSD and JSON files for your custom payment type:

1. Open a command-line interface on the system where the Billing Care SDK is
installed.

2. Change to the SDK_home/BillingCare_SDK/samples/data_model_generator
directory.

3. Run the DatamodelGenerator.bat (Windows) or DataModelGenerator.sh (Linux)
script to generate the XSD and JSON files.

The Data Model Generator outputs the extensionDataModel.jar containing the XSD
files and an XSD file containing the definition of your custom payment type. Add
these files to your NetBeans IDE project. See "Adding the XSD and JSON Files to
NetBeans Project" for more information on adding the files to your project.

Adding the XSD and JSON Files to NetBeans Project
To add the extensionDataModel.jar containing the XSD files for your custom payment
type, and the JSON files created by the Data Model Generator:

1. Add the extensionDataModel.jar to your Billing Care customization NetBeans
IDE project using the NetBeans Library Manager.

2. Copy the JSON file to myproject/web/custom/jsons where myproject is the project
directory of your Billing Care customizations NetBeans IDE project.

3. Deploy your custom payment type customizations. See "Deploying
Customizations" for more information.

Enabling Custom Payment Types in Batch Payment Processing
Batch payment files using custom payment types require the creation of a template file
(.pit) before processing by Billing Care. Default template files are provided in SDK_
HOME/BillingCare_SDK/references/paymentbatchtemplates, where SDK_home is the
directory where you installed the SDK. Use a default template to create a template file
supporting your custom payment types.

To create a custom payment type template file for batch processing:

1. Copy an existing default template file from the SDK references directory.

2. Rename the file for your custom payment type.

3. Open the file in a text editor.

4. Update the template file by customizing the sections described in Table 15–1 as
needed. You must provide a unique Batch Name for your custom payment type
batch file. Example 15–3 shows sample template file for a custom external
payment batch.

Note: The Data Model Generator utility requires an
Infranet.properties file configured with BRM connection information
in the local user’s home directory. The utility connects to the BRM
system defined in this file to retrieve the object configuration before
generating the required XSD and JSON files. See "Copying
Configuration File to the Domain Administrative User’s Home
Directory" in Oracle Communications Billing Care Installation Guide for
more information.

Deploying Customizations

15-6 Billing Care SDK Guide

5. Copy the custom payment type batch file into the

Middleware_home/BatchPaymentTemplates

where Middleware_home is the home directory of the Oracle WebLogic Server
installation where Billing Care is installed. This is the default location for
unprocessed batch payment files. The Billing Care installation enables you to
specify an alternative location. Confirm with your administrator to determine
where your templates folder is located.

Example 15–3 Sample Custom External Check Payment Batch Template File

Modifying this file is not recommended.
[Import]
Batch Name External Check Payment Batch
Data Type0
Start Row1
[Delimiter]
Comma0
Consecutive0
Other0
Semicolon0
Space0
MultiSpaces0
Tab1
OtherSep
Qualifier\"
[Link]
[Header]
ImportHeaderData0
HeaderStart Row1
HeaderEnd Row1
[Header Link]
[Footer]
ImportFooterData0
FooterStart Row1
FooterEnd Row1
[Footer Link]

Deploying Customizations
Package and deploy your customizations using one of the methods described in
"Using an Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Table 15–1 Configurable Fields in Batch Payment Template File

Section Description

Import Contains the Batch Name, Data Type, and Start Row fields used
to identify the batch type, data type, and file row to start
processing at.

Delimiter Contains a list of supported delimiters. Set the delimiter used in
your custom payment type batch file by changing the value of
the proper delimiter to 1. By default, the delimiter is set to Tab.

Header Contains fields used to specify whether to import the file
header, and the header start and end rows.

Footer Contains fields used to specify whether to import the file footer,
and the footer start and end rows.

16

Customizing Billing Care Invoice Presentation 16-1

16Customizing Billing Care Invoice Presentation

[17]This chapter provides an overview of customizing how Oracle Communications
Billing Care retrieves and presents invoices for display.

About Billing Care Invoice Presentation
Billing Care retrieves invoices from external invoice repositories, such as Oracle
Business Intelligence Publisher (BIP), and displays the supported invoice formats (for
example, PDF and html) in the web browser. When a user views an invoice, Billing
Care retrieves the invoice identifier for the active bill unit from Oracle
Communications Billing and Revenue Management (BRM) and sends a request to the
invoice repository to present the invoice document.

By default, BRM integrates with BIP for generating and storing PDF invoices of
customer bill units retrievable in Billing Care. See "Designing and Generating Invoices
in Oracle Business Intelligence Publisher 11g" in Oracle Communications Billing and
Revenue Management Designing and Generating Invoices for more information on this
integration.

Customizing Billing Care Invoice Presentation
Customize Billing Care invoice presentation in the following ways using the Billing
Care SDK:

■ Presenting Invoices in a Dialog Box

■ Retrieving Invoices from Third-Party Repositories

The Billing Care SDK includes sample invoice presentation customizations in the
SDK_HOME/BillingCare_SDK/samples/InvoiceRepository directory, where SDK_
home is the directory where you installed the SDK. Use the samples as guidelines for
developing your own customizations.

Setting Up NetBeans IDE for Customizing Invoice Presentation
Customizing Billing Care invoice presentation requires overriding default view model
(BillInvoiceViewModel.js) behavior and adding the custom JavaScript to the
customizations shared library deployed to the Billing Care domain. See "About Billing
Care Modules" for more information on how view models use JavaScript to perform
functions.

See "Setting Up the Development Environment" for information on setting up
NetBeans IDE. See "Packaging and Deploying Customizations" for more information
on packaging and deploying your invoice presentation changes.

Presenting Invoices in a Dialog Box

16-2 Billing Care SDK Guide

To customize Billing Care invoice presentation:

1. Create a customModules.properties file in your
myproject/web/WEB-INF/classes/custom/ directory, where myproject is your
NetBeans IDE project containing your Billing Care customizations. This file will
contain a reference to the location of the custom Java classes you create.

2. Copy the default registry.js file from SDK_HOME/BillingCare_SDK/references to
a custom registry file named customregistry.js in your myproject/web/custom
directory, where myproject is your NetBeans IDE project containing your Billing
Care customizations. This file contains the billInvoice module definition using
your custom view model (JavaScript).

3. Customize invoice presentation by creating the Java classes and necessary
resources (JavaScript view model) as described in the following sections.

4. Add your customization files to your NetBeans IDE project (myproject). Add new
JavaScript to support your custom view model in the
myproject/web/js/viewmodels/billinvoice directory.

5. Right-click your NetBeans IDE project and select Clean and Build.

6. Package and deploy your invoice presentation customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

7. Verify your changes in Billing Care.

Presenting Invoices in a Dialog Box
The default invoice presentation displays PDF invoices in an iframe (inline frame)
within the active Billing Care browser window. Billing Care also supports presentation
of invoices in a dialog box.

To present invoices in a dialog box:

1. In a text editor, open your CustomConfigurations.xml file. This file contains
configuration entries for Billing Care behavior. See "Creating a Custom
Configuration File" for more information on creating a custom configuration file in
your NetBeans IDE project.

2. Set the value for the billinvoice.use.modaldialog flag to true as shown:

<flags>
<key>billinvoice.use.modaldialog</key>
<value>false</value>
<desc>If value is true then displays the bill invoice in a modal
dialog.</desc>

</flags>

3. Save the configuration file.

4. Do one of the following:

■ If you are using an exploded archive for your shared library, log out of and
back into Billing Care to see the new theme. See "About Using an Exploded
Archive" for more information about using exploded archives.

■ Package your customizations shared library and deploy it to your Billing Care
domain. Redeploy Billing Care and login to see the new theme. See
"Packaging and Deploying Customizations" for more information on
packaging and deploying your customizations.

Retrieving Invoices from Third-Party Repositories

Customizing Billing Care Invoice Presentation 16-3

5. Verify your changes in Billing Care.

Retrieving Invoices from Third-Party Repositories
By default, Billing Care retrieves invoices from BIP. The logic to retrieve an invoice
identifier for the active bill unit and request the PDF invoice from BIP are contained in
the PCMBillModule class. This class contains the following methods:

■ getInvoicePDF(String id)

Contains the code to invoke the worker method to retrieve Invoice ID and
template name from bill Id passed from BRM.

■ runReport (String invoiceId,String templateName)

This method is called from the getInvoicePDF method. It contains the code to
retrieve the PDF invoice from BIP using the invoice id and template name by
calling the BI Publisher web service.

To use an invoice repository other than BIP, override the getInvoicePDF and runReport
methods in the PCMBillModule class.

The override implementation was depend on how your invoice repository’s API for
retrieving and sending invoices to external clients. A simple REST example is included
in the SDK and includes:

■ A sample Java class (CustomPCMBillModule.java), which extends runReport to
connect to a basic local invoice file system repository. This class is located in the
SDK_HOME/BillingCare_SDK/samples/InvoiceRepository/rest/src/com/oracle
directory.

■ A test resource Java class to use with CustomPCMBillModule.java, which
provides a local file PDF for retrieval. This class is located in the SDK_
HOME/BillingCare_
SDK/samples/InvoiceRepository/TestResource/src/com/oracle directory.

To retrieve an invoice from a repository other than BIP:

1. Create a CustomPCMBillModule.java file in the myproject/src/ directory, where
myproject is your NetBeans IDE project containing your Billing Care
customizations, to override the original PCMBillModule.

Use the sample provided in the SDK as an example. Your implementation will
depend on your invoice repository’s API.

2. Compile your custom classes using NetBeans IDE.

3. Add your customization files to your NetBeans IDE project (myproject):

■ Add an entry in the customModule.properties in the
myproject/web/WEB-INF/classes/custom folder to override the default billing
module as follows:

billingcare.rest.billing.module=com.company.modules.CustomPCMBillMod
ule

where company is the company name used in your myproject/src directory.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your invoice presentation customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

Retrieving Invoices from Third-Party Repositories

16-4 Billing Care SDK Guide

6. Verify your changes in Billing Care.

17

Customizing Billing Care to Display Child Accounts 17-1

17Customizing Billing Care to Display Child
Accounts

[18]This chapter describes how to customize Oracle Communications Billing Care to
display child accounts in the Organization Hierarchy screen of the parent account.

About Displaying Child Accounts
By default, Billing Care does not display the list of child accounts from the parent
account.

However, you can customize Billing Care to display the list of child accounts in the
Organization Hierarchy screen of the parent account by using the Billing Care SDK.
This lets you view the list of child accounts and also navigate to the child accounts
from the parent account.

You can view the list of child accounts by clicking the Show Children link in the
Organization Hierarchy screen of the parent account.

Customizing Billing Care to Display Child Accounts
This section provides a high level overview of the process on how to customize Billing
Care to display the list of child accounts in the Organization Hierarchy screen.

To customize Billing Care to display child accounts:

1. Create a java class to retrieve the child accounts from Oracle Communications
Billing and Revenue Management (BRM) and display them from the Organization
Hierarchy screen of the parent account. See "Customizing the Organization
Hierarchy Screen" for more information.

2. Create custom view models to define the display of the Organization Hierarchy
screen. See "Creating Custom View Models" for more information.

3. Create custom view model HTML templates to display the link to the child
accounts in the Organization Hierarchy screen of the parent account. See "Creating
Custom View Model HTML Templates" for more information.

4. Create a customRegistry.js file configuring Billing Care to use the custom view
models created in step 2. See "Configuring a Custom Module in the Registry" for
more information.

5. Add the data model JAR file to your NetBeans IDE project. See "Adding the Data
Model JAR File" for more information.

6. Deploy your customization to your Billing Care domain. See "Deploying
Customizations" for more information.

Customizing the Organization Hierarchy Screen

17-2 Billing Care SDK Guide

Customizing the Organization Hierarchy Screen
Customize the Organization Hierarchy screen by creating a custom resource class
containing the logic to retrieve and display all the child accounts for a parent account.

To customize the Organization Hierarchy screen:

1. Create a CustomHierarchyResource.java file in
myproject/projectname/src/java/com/rest/sdk, where myproject is the folder
containing your NetBeans IDE project, using the sample shown in Example 17–1.

You can extend the REST framework to call BRM opcodes (for example, PCM_OP_
SEARCH) to retrieve the child account details from BRM by using account
numbers. See "Extending and Creating Billing Care REST Resources" for more
information about extending the REST framework.

Example 17–1 Sample CustomHierarchyResource.java Class

/**
* Sample REST Web Service with basic examples.
*
*/
@Path("hierarchy")
public class CustomHierarchyResource {

/**
* sample rest API
* @return String
*/
@Path("/children/{id}")
@GET
@Produces({"application/xml", "application/json"})
public String getChildAccountsInHierarchy(@PathParam("id") String id) {

logger.entering("CustomHierarchyResource",
"getChildAccountsInHierarchy");

try {
//method implementation to fetch child accounts goes here. Refer to
documentation for more details.

System.out.println("Custom Hierarchy Resource "+id);
} catch (ApplicationException e) {

ExceptionHelper.handleException(e);
}
logger.exiting("CustomHierarchyResource",

"getChildAccountsInHierarchy");
return id;

}
}

2. Save the file in your NetBeans IDE project.

3. Copy the file to com.oracle.communications.brm.cc.ws package
(myproject/src/com/oracle/communications/brm/cc/ws).

Creating Custom View Models
Billing Care uses view model to define the display of the Organization Hierarchy
screen. You must create the custom view models,
CustomOrganizationHierarchyViewModel and
ShowAllChildrenOverlayViewModel, containing overrides for the default
Organization Hierarchy screen. See "About View Models" for more information about
Billing Care view models.

Configuring a Custom Module in the Registry

Customizing Billing Care to Display Child Accounts 17-3

The sample customOrganization HierarchyViewModel.js and
showAllChildrenOverlayViewModel.js files are provided in the SDK_
home/BillingCare_SDK/samples/web/custom/js/viewmodel directory. Use the
samples to create the custom view models for displaying child accounts.

To create custom view models:

1. Create the customOrganization HierarchyViewModel.js and
showAllChildrenOverlayViewModel.js files in the
myproject/web/custom/js/viewmodels/area/configure directory, where area is the
customization type.

2. Save the files in your NetBeans IDE project.

Creating Custom View Model HTML Templates
Billing Care uses the HTML view files to customize the Organization Hierarchy screen
view. You must create view model HTML templates to display the Show Children
link. The template files contain the additional fields defined in the
customOrganizationHierarchyViewModel.js and
showAllChildrenOverlayViewModel.js created in "Creating Custom View Models".

The sample customOrganizationHierarchyView.html and
showAllChildrenOverlayView.html files are provided in the SDK_home/BillingCare_
SDK/samples/web/custom/js/templates/ directory. Use these samples to create the
HTML templates for customizing the Organization Hierarchy screen.

To create custom view model HTML templates:

1. Create customOrganizationHierarchyView.html and
showAllChildrenOverlayView.html files in the
myproject/web/custom/js/templates/area/configure directory.

2. Define the new fields in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Configuring a Custom Module in the Registry
Create a custom organization hierarchy module entry in your customRegistry.js file
for displaying child accounts from the parent account. Billing Care uses the custom
module instead of the default entry and renders the Organization Hierarchy screen
containing your custom fields. See "About the Registry File" for more information.

To create a custom module entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/.

2. Define the custom organization hierarchy module in this file. Example 17–2 shows
a definition of the custom organization hierarchy module in the registry using the
SDK samples.

Example 17–2 Sample Custom Organization Hierarchy Registry Entry

var CustomRegistry = {

organizationHierarchy: {
view: 'text!templates/customOrganizationHierarchyView.html',
viewModel: 'viewmodel/CustomOrganizationHierarchyViewModel',
removeFromHierarchyOverlayView:

Adding the Data Model JAR File

17-4 Billing Care SDK Guide

'text!templates/organizationHierarchy/overlays/removeFromHierarchyOverlayView.html
',

removeFromHierarchyOverlayViewModel:
'overlayviewmodels/organizationHierarchy/RemoveFromHierarchyOverlayViewModel',

showAllChildrenOverlayView:
'text!templates/showAllChildrenOverlayView.html',

showAllChildrenOverlayViewModel:
'viewmodel/ShowAllChildrenOverlayViewModel'

}
};

3. Save the file in your NetBeans IDE project.

Adding the Data Model JAR File
To add the data model JAR file to your NetBeans IDE project, copy the
extensionDataModel.jar from SDK_home/BillingCare_SDK/libs to your Billing Care
customization NetBeans IDE project (myproject/web/lib).

Deploying Customizations
Package and deploy your customizations using one of the methods described in
"Using an Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

18

Customizing Suspended Payment Allocations 18-1

18Customizing Suspended Payment Allocations

[19]This chapter describes how to customize partial suspended payments allocation
behavior in Oracle Communications Billing Care.

About Suspended Payment Allocation
Oracle Communications Billing and Revenue Management (BRM) automatically
suspends subscriber payments that do not meet certain criteria when the optional
Suspense Manager is installed. For example, BRM suspends payments made to
unidentifiable bill numbers.

Payments administrators use Billing Care to correct payments for either automatic or
manual allocation to the intended bill or account. By default, Billing Care enables
either partial or complete allocation of a suspended payment to a subscriber’s bill or
account. See "Working with Suspended Payments" in Oracle Communications Billing
Care Online Help for more information on using Billing Care to manage suspended
payments.

Forbidding Partial Allocation of Suspended Payments
You can forbid partial allocation of suspended payments using the Billing Care SDK if
your business policies require only complete allocation of suspended payments.
Billing Care will reject attempted allocations of any suspended payment amount that
does not match the amount of the entire suspended payment.

The SDK includes a sample for configuring Billing Care to reject partial suspended
payment allocation in SDK_home/BillingCare_
SDK/samples/partialSuspenseAllocation where SDK_home is the Billing Care SDK
installation directory. Use this sample as an example on how to configure Billing Care
to enable only complete allocation of suspended payments.

To forbid the partial allocation of suspended payments in Billing Care:

1. Create a java class that prevents partial allocation of suspended payments in
Billing Care. See "Creating a CustomPCMPaymentModule.java Class" for more
information.

2. Create a custom payment suspense view model to override the default Billing
Care allocation behavior. See "Creating a Custom Payment Suspense View Model"
for more information.

3. Create a customModule.properties file configuring Billing Care to override the
default payment module logic with the custom payment module created in step 1.
See "Creating a customModule.properties File" for more information.

Creating a CustomPCMPaymentModule.java Class

18-2 Billing Care SDK Guide

4. Create a customRegistry.js file configuring Billing Care to use the custom
payment suspense view model created in step 4. See "Configuring a Custom
Module in the Registry" for more information.

5. Deploy your customizations to your application server. See "Deploying
Customizations" for more information.

Creating a CustomPCMPaymentModule.java Class
Configure Billing Care to forbid partial allocation of suspended payments by creating
a custom payment module class containing logic to reject partial allocations.

A sample CustomPCMPaymentModule.java file is provided in the SDK_
home/BillingCare_
SDK/samples/partialSuspenseAllocation/src/java/custom/com/rest/sdk directory
where SDK_home is the Billing Care SDK installation directory. This sample contains
logic forbidding partial suspended payment allocation.

To create a custom payment module class:

1. Create a CustomPCMPaymentModule.java file in myproject/src/com/rest/sdk
where myproject is the folder containing your NetBeans IDE project.

2. Save the file in your NetBeans IDE project.

Creating a Custom Payment Suspense View Model
Billing Care uses a payment suspense view model to define suspended payment
allocation behavior. You must create a custom payment suspense view model
containing overrides for the openAllocationOverlayForSuspense and autoAllocate
functions.

See "About View Models" for more information about Billing Care view models.

A sample CustomPaymentSuspenseAllocationViewModel.js file is provided in the
SDK_home/BillingCare_
SDK/samples/partialSuspenseAllocation/web/custom/js/viewmodel directory where
SDK_home is the Billing Care SDK installation directory. This sample contains the
necessary override functions to forbid partial suspended payment allocation. Use this
sample to create a custom payment suspense view model.

To create a custom payment suspense view model with partial suspended payment
override functions:

1. Create a CustomPaymentSuspenseAllocationViewModel.js file in
myproject/web/custom/js/viewmodels/area/configure where myproject is the folder
containing your NetBeans IDE project and area is the customization type.

2. Save the file in your NetBeans IDE project.

Creating a customModule.properties File
After creating the required custom payment suspense model create a custom module
entry in the customRegistry.js file to use when allocating suspended payments. Billing
Care uses the custom payment suspense module instead of the default entry during
suspended payment allocation and prevents partial allocations.

A sample customModules.properties file is provided in the SDK_home/BillingCare_
SDK/samples/partialSuspenseAllocation/src/java/custom directory where SDK_home

Deploying Customizations

Customizing Suspended Payment Allocations 18-3

is the Billing Care SDK installation directory. This sample contains an override entry
for using the previously created custom payment module.

See "About the customModules.properties File" for more information on the
customModules.properties file.

To create a custom payment suspense override in the customModule.properties file:

1. Create a customModule.properties file in myproject/web/WEB-INF/classes/custom
where myproject is the folder containing your NetBeans IDE project.

2. Specify the custom payment module override in the file. Example 18–1 shows an
example of an override where the custom class is located in the
./custom/com/rest/sdk/CustomPCMPaymentModule directory relative to the
location of the customModule.properties file.

Example 18–1 Sample Custom Payment Suspense customModules.properties Entry

billingcare.rest.payment.module=custom.com.rest.sdk.CustomPCMPaymentModule

3. Save the file in your NetBeans IDE project.

Configuring a Custom Module in the Registry
After creating the required custom payment suspense view model, create a custom
module entry in the customRegistry.js file to use when allocating suspended
payments. Billing Care uses the custom payment suspense module instead of the
default entry during suspended payment allocation and prevents partial allocations.

A sample customRegistry.js file is provided in the SDK_home/BillingCare_
SDK/samples/partialSuspenseAllocation/web/custom directory where SDK_home is
the Billing Care SDK installation directory. This sample defines the custom payment
suspense module containing the previously created custom payment suspense view
model.

To create a custom payment suspense module entry in the customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom/ where myproject is the
folder containing your NetBeans IDE project.

2. Define the custom payment suspense module in this file. Example 18–2 shows a
definition of the custom account creation module in the registry using the SDK
samples.

Example 18–2 Sample Custom Payment Suspense Module Registry Entry

var CustomRegistry = {
paymentSuspenseAllocation: {

viewmodel:
'../custom/js/viewmodel/CustomPaymentSuspenseAllocationViewModel'

}
};
3. Save the file in your NetBeans IDE project.

Deploying Customizations
Package and deploy your customizations using one of the methods described in
"Using an Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Deploying Customizations

18-4 Billing Care SDK Guide

19

Customizing Search Filter for Suspended Payments 19-1

19Customizing Search Filter for Suspended
Payments

[20]This chapter describes how to customize the search filter to find suspended payments
in Oracle Communications Billing Care.

About Suspended Payment Search Filter
Oracle Communications Billing and Revenue Management (BRM) automatically
suspends subscriber payments that do not include sufficient information to associate
the payment with an account. For example, BRM suspends payments made to
unidentifiable accounts or incorrect bill numbers.

You can use the Payment filter to find suspended payments. To narrow your
suspended payment search results, use the filters provided under Payment, Suspense,
and Account groups. Each search group has a set of default search criteria. See the
discussion about working with suspended payments in Oracle Communications
Billing Care Online Help for more information on searching suspended payments.

Adding Search Criteria
Search filter includes groups and criteria. You can add custom criteria to the following
groups to customize search filter:

■ Payment

■ Suspense

■ Account

To add search criteria to search groups:

1. Create a template with new search criteria. See "Creating a
CustompaymentSuspenseSearch.xml File" for more information.

2. Create a java class file to add custom logic. See "Creating a
CustomTemplatePaymentSuspenseWorker.java Class" for more information.

3. Create a custom template module class file to override default search criteria. See
"Creating CustomPCMTemplateModule.java Class" for information.

4. Create a properties file to mention the custom Template Module class. See
"Creating a customModule.properties File" for more information.

5. Add an entry in the registry to override the out-of-the-box view and filter files. See
"Updating Registry" for more information.

Creating a CustompaymentSuspenseSearch.xml File

19-2 Billing Care SDK Guide

6. Add new criteria for payment suspense search to the interface. See "Updating
customPaymentSuspenseSearchView.html" for more information.

7. Edit view model to handle new criteria. See "Updating View Model" for more
information.

8. Localize the new criteria to other languages. See "Localizing New Criteria into
Other Languages" for more information.

9. Create a deployment plan for your customizations. See "Creating Deployment
Plan" for more information.

10. Create a .war file to deploy your customizations. See "Creating .war File" for more
information.

Creating a CustompaymentSuspenseSearch.xml File
Create a copy of the default template paymentSuspenseSearch.xml file and add new
search criteria to the filter section of the file.

To create a custom payment suspense search template:

1. Copy paymentSuspenseSearch.xml file from SDK_
home/BillingCareSDK/references/paymentsuspensetemplates directory to
myproject/projectname/src/java/custom/paymentsuspensetemplates directory,

where:

■ SDK_home is the Billing Care SDK installation directory

■ myproject is the folder containing your NetBeans IDE project

■ projectname is the name of your custom project. For example,
SuspenseSearchFilter.

2. Rename the copied XML file to CustompaymentSuspenseSearch.xml.

3. Edit CustompaymentSuspenseSearch.xml and add the new search criteria in the
filter section of the XML file. Example 19–1 shows an example of adding bank
account criteria to the filter.

4. Save the file in your NetBeans IDE project.

Example 19–1 Sample Search Criteria in CustompaymentSuspenseSearch.xml

<filter>
………
………
………
<criteria name="bankAccountNo">

<inputType>Text</inputType>
<fieldKey>checkInfo.bankAccountNo</fieldKey>
<storableClass>/event/billing/payment</storableClass>

</criteria>……..
……..
……
</filter>

Note: Ensure the storable class for new criteria is base class. In this
example, base class is /event/billing/payment. Do not add the
subclass directly, such as /event/billing/payment/check.

Creating CustomPCMTemplateModule.java Class

Customizing Search Filter for Suspended Payments 19-3

Creating a CustomTemplatePaymentSuspenseWorker.java Class
Create a custom template worker class containing logic to search suspense payments
based on new criteria. A sample CustomTemplatePaymentSuspenseWorker.java file
is provided in the SDK_
home/BillingCareSDK/samples/PaymentSuspenseSearchFilter
/src/java/custom/com/rest/sdk directory.

To create a custom payment suspense worker class:

1. Create a CustomTemplatePaymentSuspenseWorker.java file in
myproject/projectname/src/java/com/rest/sdk.

2. Override buildPaymentSuspenseInputFList and constructFilterForInputFlist as
shown in the sample CustomTemplatePaymentSuspenseWorker.java file.

3. Add the custom storable classes for the payment based on the new payment
criteria subclass. Example 19–2 shows an example of adding bank account criteria
to the filter.

Example 19–2 Sample Custom Payment Suspense Storable Class

if (strKey.contains("cashInfo")) {
if (!storableClass.equals("") &&

!storableClass.equals("/cash")) {
return null;

}
storableClass = "/cash";

4. Save the file in your NetBeans IDE project.

Creating CustomPCMTemplateModule.java Class
Create a custom template module class and override the getRecordsForTemplate()
method.

To create a custom template module class:

1. Create CustomPCMTemplateModule.java file in
myproject/projectname//src/java/com/rest/sdk.

2. Override the getRecordsForTemplate() method as shown in Example 19–3.

Example 19–3 Override getRecordsForTemplate()

@Override
public List<ColumnarRecord> getRecordsForTemplate(String templateType, String

id, String secondaryId, int offset, int limit, SearchCriterias searchCriteria,
List<GenericTemplate.SortbyFields> sortByFields) {

PortalContext ctx = null;
try {

BaseOps baseOps = getBaseOps();
if (baseOps instanceof PCMBaseOps) {

ctx = BRMUtility.getConnection();
((PCMBaseOps) baseOps).setContext(ctx);

}
3. Call CustomTemplatePaymentSuspenseWorker.java class as shown in

Example 19–4.

Creating a customModule.properties File

19-4 Billing Care SDK Guide

Example 19–4

if (templateType.equalsIgnoreCase("paymentsuspensesearch")) {
templateWorker = new CustomTemplatePaymentSuspenseWorker();

}

4. Save the file in your NetBeans IDE project.

Creating a customModule.properties File
Create a custom module property file to override the default module logic with your
customizations.

To create a custom module property file:

1. Create customModule.properties file in myproject/projectname/src/java/custom.

2. Add the following entry:

billingcare.rest.template.module = com.rest.sdk.CustomPCMTemplateModule

3. Save the file in your NetBeans IDE project.

Updating Registry
After creating the required custom view model, add a custom module entry in the
customRegistry.js file to include the new criteria to the filter. Use the correct registry
key to add the custom module in the customRegistry.js file.

The available registry keys are:

■ paymentFilter

■ suspenseFilter

■ accountFilter

To add an entry in the customRegistry.js file:

1. Edit the customRegistry.js file in myproject/projectname/web/custom.

2. Add an entry as shown in Example 19–5. In this example, the customRegistry
contains accountFilter registry key because the new criteria is added to account
group of filter section.

Example 19–5 Sample Custom Payment Suspense Module Registry Entry to Filter
Accounts

var CustomRegistry = {
paymentSuspenseSearch: {
view:

'text!../custom/templates/paymentSuspense/customPaymentSuspenseSearchView.html',
accountFilter:

'custom/viewmodels/paymentSuspense/customPaymentSuspenseSearchAccountFilterViewMod
el.js'

}
};

3. Save the file in your NetBeans IDE project.

Updating View Model

Customizing Search Filter for Suspended Payments 19-5

Updating customPaymentSuspenseSearchView.html
Customize customPaymentSuspenseSearchView.html to add a new criteria for
payment suspense search.

To add new criteria for payment suspense search in the
customPaymentSuspenseSearchView.html file:

1. Edit the customPaymentSuspenseSearchView.html file in
myproject/projectname/web/custom/templates/paymentSuspense.

2. Add new criteria for payment suspense search as shown in Example 19–6.

3. Save the file in your NetBeans IDE project.

Example 19–6 Sample Custom Payment Suspense Search View Criteria

<div class="oj-row filter-header">
<div class="oj-col oj-lg-12">

<label id="payment-filter-bank-account-number-label"
data-bind="text: bankAccountNoHeading, attr: {'for':
'selected-bill-account-number'}"
class="payment-suspense-search-filter-label"></label>

</div>
</div>
<div class="oj-row">

<div class="oj-col oj-lg-12">
<div id="selected-bank-account-number"

class="items-wrapper" data-bind="foreach: bankAccountNo">
<div class="token-item">

<span data-bind="text: $data, attr: {title:
$data}">

<i class="icon" tabindex="0" data-bind="click:
$parent.removeBankAccountNo, event: { keyup :
$parent.removeBankAccountNoOnEnterOrSpace} "></i>

</div>
</div>

</div>
</div>

Updating View Model
Update the view model to handle new criteria. For example, update
CustomPaymentSuspenseSearchAccountFilterViewModel.js to handle new criteria
in account group. If a criteria is added to suspense or payment group then update the
corresponding custom view model.

The available filter view models are:

■ PaymentSuspenseSearchPaymentFilterViewModel

■ PaymentSuspenseSearchSuspenseFilterViewModel

■ PaymentSuspenseSearchAccountFilterViewModel

To update a view model:

1. Go to myproject/projectname/web/custom/viewmodels/paymentSuspense.

2. Edit view model to handle new criteria as shown in Example 19–7:

Localizing New Criteria into Other Languages

19-6 Billing Care SDK Guide

Example 19–7 Sample Custom Payment Suspense Search Account Filter View Model

define(['jquery', 'knockout',
'viewmodels/paymentSuspense/PaymentSuspenseSearchAccountFilterViewModel'

],
function ($, ko,PaymentSuspenseSearchAccountFilterViewModel) {

function customPaymentSuspenseSearchAccountFilterViewModel() {
PaymentSuspenseSearchAccountFilterViewModel.apply(this,

arguments);
….
..}
3. Save the file in your NetBeans IDE project.

Localizing New Criteria into Other Languages
Localize the new criteria headings and label into other languages. See "Customizing
the Resource Bundle" for more information.

Creating Deployment Plan
Create a production deployment plan named plan.xml for your production Billing
Care deployment. See "Packaging and Deploying Customizations" for more
information.

Creating .war File
Create a .war file containing your customizations to deploy to multiple Billing Care
instances. See "Packaging and Deploying Customizations" for more information.

Note: The reset and sync functions should be available in all view
models. Entries present in each function are dependent on the search
criteria. You can change the name of the function and entries as per
search criteria.

20

Exporting Billing Care Search Results 20-1

20Exporting Billing Care Search Results

[21]This chapter provides an overview on enabling exporting of Oracle Communications
Billing Care accounts, events, and payments search results to PDF using the SDK.

About Billing Care Search
Billing Care provides search functionality for querying accounts, subscriber events,
and payments. By default, Billing Care search results cannot be exported. Results are
viewable only in the Billing Care application.

Enabling Search Results Export with the SDK
The SDK provides the ability to expose an embedded export link on Billing Care
search results screens. Use the SDK to enable export links in the Billing Care search
screens.

The Billing Care SDK includes sample search results export implementation in the
SDK_HOME/BillingCare_SDK/samples/SaveSearchResults directory, where SDK_
home is the directory where you installed the SDK. Use the samples as a guideline for
enabling search results export.

To enable search results export to PDF in Billing Care:

1. Create custom search templates with the element saveResults set to true to enable
the Export link. See "Creating Custom Search Templates" for more information.

2. Create custom search view models containing the savetoFile function. See
"Creating Custom Search View Models" for more information.

3. Create a customRegistry.js file configuring Billing Care to use the custom search
view models created in step 2. See "Configuring Custom Search Modules in the
Registry" for more information.

4. Deploy your customizations to your application server. See "Deploying
Customizations" for more information.

Creating Custom Search Templates
Each Billing Care search screen (accounts, events, and payments) uses a template that
defines what information to display. By default, the saveResults element is set to false
in each search template which hides the Export link. To enable the Export link in each
search screen, you must create custom search templates for each search screen you
want to enable export for in your NetBeans IDE project.

Creating Custom Search View Models

20-2 Billing Care SDK Guide

See "Customizing Billing Care Templates" for more information on customizing
templates.

The SDK includes sample accounts, events, and payments search templates in SDK_
home/BillingCare_SDK/samples/SaveSearchResults/src/java/custom where SDK_
home is the Billing Care SDK installation directory. Use this sample as an example on
how to configure Billing Care to enable only complete allocation of suspended
payments.

To enable the search screen Export link Billing Care:

1. Create custom template files for each search screen using the SDK samples in
myproject/src/custom where myproject is the folder containing your NetBeans IDE
project.

2. In each search screen XML template file set the saveResults element to true.

3. Save the file in your NetBeans IDE project.

Creating Custom Search View Models
Billing Care uses search view models to define search screen behavior. You must create
custom accounts, events, and payments view models containing the savetoFile
function to enable search results export to PDF.

See "About View Models" for more information about Billing Care view models.

The following sample view models in the SDK_home/BillingCare_
SDK/samples/SaveSearchResults/web/js/viewmodels directory, where SDK_home is
the Billing Care SDK installation directory, contain the savetoFile function required to
enable search results export:

■ CustomEventsViewModel.js

■ CustomPaymentSuspenseSearchViewModel.js

■ CustomSearchViewModel.js

Use the sample view models to create your custom models.

To create a custom search view models with enabled Export links:

1. Create the required custom search view model JavaScript files in
myproject/web/custom/js/viewmodels/area/configure where myproject is the folder
containing your NetBeans IDE project and area is the customization type (for
example, search).

2. Include the savetoFile function in your custom search view models.

3. Save the file in your NetBeans IDE project.

Configuring Custom Search Modules in the Registry
After creating the required custom search view models, create custom module entries
in the customRegistry.js file to use when using Billing Care search screens. Billing
Care uses the custom search modules instead of the default entries when searching.

A sample customRegistry.js file is provided in the SDK_home/BillingCare_
SDK/samples/SaveSearchResults/web/custom directory where SDK_home is the
Billing Care SDK installation directory. This sample defines the custom search
modules containing the search results export functionality.

To create custom search module entries in the customRegistry.js file:

Deploying Customizations

Exporting Billing Care Search Results 20-3

1. Create a customRegistry.js file in myproject/web/custom/ where myproject is the
folder containing your NetBeans IDE project.

2. Define the custom search modules in this file. Example 20–1 shows a definition of
custom modules for accounts, events, and payments module in the registry using
the SDK samples.

Example 20–1 Sample Custom Search Modules Registry Entry

var CustomRegistry = {
search: {

viewmodel: 'viewmodels/CustomSearchViewModel'
},
events: {

viewmodel: 'viewmodels/CustomEventsViewModel'
},
paymentSuspenseSearch: {

viewModel: 'viewmodels/CustomPaymentSuspenseSearchViewModel'
}

};

3. Save the file in your NetBeans IDE project.

Deploying Customizations
Package and deploy your customizations using one of the methods described in
"Using an Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Deploying Customizations

20-4 Billing Care SDK Guide

21

Searching for Accounts by Payment ID 21-1

21Searching for Accounts by Payment ID

[22]This chapter explains how to customize the Oracle Communications Billing Care
account search screen to support searches by Payment ID.

About Account Searches in Billing Care
The Billing Care account search screen includes multiple fields on which searches can
be performed. For example, you can search for accounts by entering account numbers,
last names, or addresses in designated fields on the screen. The default account search
screen does not, however, support searches by payment ID.

Adding a Payment ID Field to the Account Search Screen
To enable users to search for accounts by payment ID, you can add a Payment ID field
to the account search screen.

To add a Payment ID field to the Billing Care account search screen:

1. Specify the name of the custom account search template in the
CustomConfigurations.xml file. See "Naming the Custom Account Search
Template in the CustomConfigurations.xml File".

2. Create the custom account search template containing the payment ID search
criteria. See "Creating a Custom Account Search Template".

3. Create a custom account search view model to override the default Billing Care
account search behavior. See "Creating a Custom Account Search View Model".

4. Create a custom search view model to display the related payment details when
an account is opened from the results of a search based on payment ID. See
"Creating a Custom Search View Model".

5. Create a custom router view model to accept a query parameter and route to a
custom router helper function when users search for an account by payment ID.
See "Creating a Custom Router View Model".

6. Create a custom router helper to add a function that displays the related payment
details when an account is opened from the results of a search based on payment
ID. See "Creating a Custom Router Helper".

7. Create the account search view model HTML template to display the new
Payment ID search field. See "Creating a Custom Account Search View Model
HTML Template".

8. Replace the default method for listing the most recently opened account in the
account search screen. See "Replacing the Default Method for Showing Recently

Naming the Custom Account Search Template in the CustomConfigurations.xml File

21-2 Billing Care SDK Guide

Opened Accounts".

9. Create a customRegistry.js file configuring Billing Care to use the custom account
search view model created in step 3. See "Configuring a Custom Module in the
Registry".

10. Create a customized_en.xlf file containing a localizable value for the new
Payment ID search field in the Billing Care account search screen. See "Creating a
customized_en.xlf File Entry for Payment ID Search Field".

11. Configure Billing Care to get the appropriate payment item Portal object ID
(POID) from BRM when users search for an account by payment ID. See "Getting
Payment Item POIDs from BRM".

Naming the Custom Account Search Template in the
CustomConfigurations.xml File

Before creating a custom search template to search for accounts by payment ID, you
must specify the template’s name in the custom Billing Care configuration file.

To name the custom account search template in the CustomConfigurations.xml file:

1. If your system does not have a CustomConfigurations.xml file, create the file. See
"Creating a Custom Configuration File".

2. Open the CustomConfigurations.xml file in an editor.

3. In the file’s search.options key, specify a name for your custom account search
template.

Example 21–1 shows the search.options key with My Custom Search specified as
the search template name:

Example 21–1 CustomConfigurations.xml search.options Key with "My Custom Search"
as Search Template Name

[{"searchTemplateKey": "accountSearch", "searchTemplateName":"SEARCH_OPTION_
ACCOUNTS", "defaultSearch": false},{"searchTemplateKey": "CustomAccountSearch",
"searchTemplateName":"My Custom Search", "defaultSearch": true}]

4. Set the default search option using the defaultSearch attribute.

5. Save the file in your NetBeans IDE project.

Creating a Custom Account Search Template
The Billing Care account search screen uses a template that defines what search fields
to display. To add the Payment ID field in the account search screen, you must create a
custom account search template containing the Payment ID field in the filter element
in your NetBeans IDE project.

For more information on customizing templates, see "Customizing Billing Care
Templates".

Note: By default, the CustomConfigurations.xml file is in the
myproject/web/custom/configurations/ directory, where myproject is
your NetBeans IDE Billing Care customizations project.

Creating a Custom Account Search View Model

Searching for Accounts by Payment ID 21-3

When creating your custom account search template, use the reference
accountSearch.xml template file located in the SDK_home/BillingCare_
SDK/references directory, where SDK_home is the directory in which you installed the
Billing Care SDK.

To create an account search template with the Payment ID field:

1. Create a custom account search template file for the account search screen by
using the reference example in myproject/src/custom.

Use a descriptive name for your file such as CustomAccountSearch.xml.

2. Define the Payment ID criteria in the filter element.

Example 21–2 shows the code to add for the Payment ID filter.

Example 21–2 Payment ID Filter

<criteria name="paymentID">
<label></label>
<inputType>Text</inputType>
<width>245</width>
<placeHolder>PAYMENTID</placeHolder>
<fieldKey>payment.transId</fieldKey>
<storableClass>eventBillingPayment</storableClass>
<visible>true</visible>

3. Add a column in the CustomAccountSearch.xml file to store payment item
POIDs, which are used to open the appropriate payment details overlay for
accounts returned by searches based on payment IDs.

Example 21–3 shows the code to add for the payment item POID column.

Example 21–3 Payment Item POID Column

<column name="eventId">
<type>text</type>
<fields>itemObj</fields>

</column>
<columnHeader name="eventId">

<label>EVENT_ID_UC</label>
<width>15%</width>
<visible>true</visible>
<sortable>false</sortable>
<tooltip>EVENT_ID_UC</tooltip>
<resizable>false</resizable>
<alignment>left</alignment>

</column>

4. Save the file in your NetBeans IDE project.

Creating a Custom Account Search View Model
Billing Care uses an account search view model to define account search behavior.

Create a custom account search view model containing the Payment ID search filter
by using the sample customAccountSearch.js file in the Billing Care SDK. This sample
contains the override functions to add payment ID criteria to the custom account
search template.

To create a custom account search view model:

Creating a Custom Search View Model

21-4 Billing Care SDK Guide

1. Copy the SDK_home/BillingCare_
SDK/samples/AccountSearchCustomization/web/custom/js/viewmodels/search/
customAccountSearch.js file to the
myproject/web/custom/js/viewmodels/area/configure directory.

where area is the customization type (for example, accountSearch for
customizations done to account search view model files).

2. Include the customAccountSearch.js file when you package your customizations
shared library for deployment to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

Creating a Custom Search View Model
Billing Care uses a search view model to open an account from the results of an
account search.

Create a custom search view model to support searches based on payment IDs by
using the sample customSearchViewModel.js file in the Billing Care SDK. This
sample contains code that displays the payment details overlay when an account is
opened from the results of a search based on a payment ID.

To create a custom search view model:

1. Copy the SDK_home/BillingCare_
SDK/samples/AccountSearchCustomization/web/custom/js/viewmodels/custom
SearchViewModel.js file to the
myproject/web/custom/js/viewmodels/area/configure directory.

2. Include the customSearchViewModel.js file when you package your
customizations shared library for deployment to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

Creating a Custom Router View Model
Billing Care uses a router view model to route patterns to a function.

Create a custom router view model to support searches based on payment IDs by
using the sample customRouterViewModel.js file in the Billing Care SDK. This
sample contains code that overrides the default open account router URL to accept a
payment item POID as a query parameter when an account search is based on a
payment ID.

To create a custom router view model:

1. Copy the SDK_home/BillingCare_
SDK/samples/AccountSearchCustomization/web/custom/js/viewmodels/custom
RouterViewModel.js file to the
myproject/web/custom/js/viewmodels/area/configure directory.

2. Include the customRouterViewModel.js file when you package your
customizations shared library for deployment to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

Creating a Custom Router Helper
In Billing Care, a router helper routes the router view model request to a function that
opens an account.

Replacing the Default Method for Showing Recently Opened Accounts

Searching for Accounts by Payment ID 21-5

Create a custom router helper to support searches based on payment IDs by using the
sample customRouterHelper.js file in the Billing Care SDK. This sample contains code
that routes the router view model request to a function that displays the related
payment details when an account is opened from the results of a search based on
payment ID.

To create a custom router helper:

1. Copy the SDK_home/BillingCare_
SDK/samples/AccountSearchCustomization/web/custom/js/routers/customRout
erHelper.js file to the myproject/web/custom/js/viewmodels/area/configure
directory.

2. Include the customRouterHelper.js file when you package your customizations
shared library for deployment to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

Creating a Custom Account Search View Model HTML Template
Billing Care uses an HTML view file to render the account search screen during. You
must create a custom account search view model HTML template to display the
Payment ID search field.

A sample customAccountSearch.html file is provided in the SDK_home/BillingCare_
SDK/samples/AccountSearchCustomization/web/custom/templates/search directory.
Use this sample to create a custom account search HTML template for displaying the
Payment ID search field and the required data binding.

To create a custom account search HTML template for rendering the Payment ID field:

1. Create a customAccountSearch.html file in the
myproject/web/custom/js/templates/area/configure directory.

2. Define the Payment ID field in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Replacing the Default Method for Showing Recently Opened Accounts
When you open an account from the default search results and then return to the
search screen, the recently opened account is listed at the bottom of the screen.

To continue listing the most recently opened account after customizing the account
search template, replace the RecentRecordsModel.js file in your NetBeans IDE Billing
Care customizations project with the sample customRecentRecordsModel.js file. This
sample contains an updated method that supports the recently opened account feature
in the custom account search flow.

To replace the default method for showing recently opened accounts:

1. Copy the SDK_home/BillingCare_
SDK/samples/AccountSearchCustomization/web/custom/js/viewmodels/custom
RecentRecordsModel.js file to the
myproject/web/custom/js/viewmodels/area/configure directory.

2. Include the customRecentRecordsModel.js file when you package your
customizations shared library for deployment to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

Configuring a Custom Module in the Registry

21-6 Billing Care SDK Guide

Configuring a Custom Module in the Registry
After creating the required custom account search view model, create a custom
module entry in the customRegistry.js file to use when searching for accounts. Billing
Care uses the custom account search module instead of the default entry when
rendering the account search screen.

A sample registry.js file is provided in the SDK_home/BillingCare_SDK/references
directory, where SDK_home is the directory in which you installed the Billing Care
SDK. Use this sample to create the customRegistry.js file containing your custom
account search module.

To create a custom account search module entry in a customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom by copying the reference
registry file.

2. Define the custom account search module referencing the custom view model and
HTML template previously created.

Example 21–4 shows a definition of the custom account creation module in the
registry.

Example 21–4 Sample Custom Account Search Module Registry Entry

var CustomRegistry = {
customAccountSearch: {

view : 'text!../custom/templates/search/customAccountSearch.html',
viewModel: '../custom/js/viewmodels/search/customAccountSearch'

}
search: {
viewModel: '../custom/js/viewmodels/customSearchViewModel'

}
router: {
viewModel: '../custom/js/viewmodels/customRouterViewModel'

}
recentRecords: {
recentRecordsModel: '../../../custom/js/viewmodels/customRecentRecordsModel'

}
};

3. Save the file in your NetBeans IDE project.

Creating a customized_en.xlf File Entry for Payment ID Search Field
You must provide a localized English entry for the Payment ID search field in the
customized_en.xlf file to provide a translatable text string in Billing Care.

For more information on the customized_en.xlf file and how to add a new entry, see
"Customizing Billing Care Labels".

Example 21–5 shows a sample entry for the Payment ID field to add in the
customized_en.xlf file.

Example 21–5 Sample Payment ID XLF Entry

<trans-unit id="PAYMENT_ID_UC" translate="yes">
<source>Payment ID</source>

<target>Payment ID</target>
<note from="dev">

Comments for file

Getting Payment Item POIDs from BRM

Searching for Accounts by Payment ID 21-7

</note>
</trans-unit>

Getting Payment Item POIDs from BRM
When users search for an account by payment ID, Billing Care must get the payment
item POID so that it can display the appropriate payment details when the account is
opened.

To configure Billing Care to get payment item POIDs from BRM:

1. Add a customModules.properties file containing the following entry to the
myproject/web/WEB-INF/classes/custom directory:

billingcare.rest.template.module = rest.CustomPCMTemplateModule

This entry instructs Billing Care to load the CustomPCMTemplateModule class
instead of the default PCMTemplateModule class.

The SDK_home/BillingCare_
SDK/samples/AccountSearchCustomization/src/java/custom/customModule.pro
perties sample file contains this entry, where SDK_home is the directory in which
you installed the Billing Care SDK.

For more information about the custom module properties file, see "About the
customModules.properties File".

2. Create a custom PCMTemplateModule Java class named
CustomPCMTemplateModule and override its getRecordsForTemplate() method
to return the TemplateMyCustomAccountSearchWorker Java class instead of the
default TemplateAccountSearchWorker Java class.

For a sample of the required override code, see the SDK_home/BillingCare_
SDK/samples/AccountSearchCustomization/src/java/rest/CustomPCMTemplate
Module.java sample class.

For more information, see "Customizing Billing Care Templates".

3. Create a custom template worker Java class named
TemplateMyCustomAccountSearchWorker that gets the corresponding payment
item POID from BRM when users search for accounts by payment ID.

For a sample of the required override code, see the SDK_home/BillingCare_
SDK/samples/AccountSearchCustomization/src/java/rest/TemplateMyCustomA
ccountSearchWorker.java sample class.

For more information, see "Customizing Billing Care Templates".

Note: Save the custom class in the rest folder containing the sample
class.

Note: Save the custom class in the rest folder containing the sample
class.

Deploying Customizations

21-8 Billing Care SDK Guide

Deploying Customizations
Package and deploy your customizations by using one of the methods described in
"Using an Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

22

Separating Event Adjustment Amount and Percentage Fields 22-1

22Separating Event Adjustment Amount and
Percentage Fields

[23]This chapter describes how to customize Oracle Communications Billing Care Event
Adjustment dialog box to separate the event adjustment amount and percentage
fields.

About Event Adjustments using Amount and Percentage
In Billing Care, you can use either the amount or percentage field in the Event
Adjustment dialog box to adjust the amount and tax.

You can separate the amount and percentage fields in the Event Adjustment dialog
box, and make them independent of each other by using the Billing Care SDK. When
you enter a value in one field, for example amount, the other field percentage gets
disabled, and vice versa.

For more information, see "Separating Amount and Percentage Fields".

Separating Amount and Percentage Fields
This section provides a high-level overview of the process on how to customize Billing
Care to separate the amount and percentage fields in the Event Adjustment dialog box.

To separate amount and percentage fields:

1. Create custom view model to define the display of the Event Adjustment dialog
box. See "Creating Custom View Model to Separate Amount and Percentage
Fields" for more information.

2. Create a customRegistry.js file configuring Billing Care to use the custom view
model created in step 1. See "Configuring the Custom View Model in the Registry"
for more information.

3. Package and deploy your customization to your Billing Care domain using one of
the methods described in "Using an Exploded Archive during Customization" or
"Packaging and Deploying Customizations".

Creating Custom View Model to Separate Amount and Percentage Fields
Billing Care uses the view model to define the display of the Event Adjustment dialog
box. You must create the custom view model, CustomEventAdjustmentViewModel,
containing overrides for the default Event Adjustment dialog box. See "About View
Models" for more information about Billing Care view models.

To create custom view model to separate amount and percentage fields:

Separating Amount and Percentage Fields

22-2 Billing Care SDK Guide

1. Create the CustomEventAdjustmentViewModel.js file in the
myproject/web/custom/viewmodels/ARActions/adjustments directory, where
myproject is the folder containing your NetBeans IDE project.

2. Open the CustomEventAdjustmentViewModel.js file using a text editor and add
the code as shown in Example 22–1.

Example 22–1 Sample code to separate amount and percentage fields in the Event
Adjustment dialog box

define(['jquery', 'knockout',
'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'],

function ($, ko, EventAdjustmentViewModel) {

function CustomEventAdjustmentViewModel() {
EventAdjustmentViewModel.apply(this, arguments);
self = this;
self.percentValue = 0;
self.amountValue = 0;

self.adjustmentPercentage = ko.observable(0).extend({notify:
"always"}).extend({numeric: 2});

self.amountStateController = ko.computed(function () {
if ((Number(self.adjustmentAmount()) === 0) &&

(Number(self.adjustmentPercentage()) === 0)) {
self.enablePercentage(true);
self.enableAmount(true);

} else if (Number(self.adjustmentPercentage()) === 0) {
self.enablePercentage(false);
self.enableAmount(true);

} else {
self.enablePercentage(true);
self.enableAmount(false);

}
});

}
CustomEventAdjustmentViewModel.prototype = new

EventAdjustmentViewModel();
return CustomEventAdjustmentViewModel;

});
3. Save the file in your NetBeans IDE project.

Configuring the Custom View Model in the Registry
Create a custom entry in your customRegistry.js file. Billing Care uses the custom
model instead of the default entry and renders the Event Adjustment dialog box
containing your custom fields. See "About the Registry File" for more information.

To configure the custom view model in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom view model in this file. See Example 22–2.

Example 22–2 Sample Event Adjustment Dialog Box registry entry

eventAdjustment: {
viewmodel:

'custom/viewmodels/ARActions/adjustments/CustomEventAdjustmentViewModel'
}

3. Save the file in your NetBeans IDE project.

23

Customizing Purchase Deal and Assets Action Menu 23-1

23Customizing Purchase Deal and Assets Action
Menu

[24]This chapter describes how to customize Oracle Communications Billing Care
purchase deal configuration and assets action menu display.

About Customizing Purchase Deal Configuration and Assets Action Menu
You configure new or additional deals added to an account by clicking Configure in
the Purchase Catalogue screen. Your deals may require additional fields for capturing
custom configuration attributes during the purchase.

You can customize Billing Care to add custom fields for configuring the deal purchase
and display the newly added custom fields in the assets action menu by using the
Billing Care SDK.

For more information, see the following:

■ Customizing Purchase Deal Configuration

■ Customizing Assets Action Menu

Customizing Purchase Deal Configuration
The Billing Care SDK includes the sample SDK in the SDK_home/BillingCare_
SDK/samples/PurchaseDealAndAssetsActionMenuCustomization directory, where
SDK_home is the directory where you installed the SDK. Extend the sample with
additional fields if required by your business. Use this sample to assist you in
customizing the deal purchase configuration in Billing Care.

To customize the purchase deal configuration:

1. Extend the Billing Care data model by creating the custom data model JAR file (for
example,customDataModel.jar) and add the JAR file to your Billing Care
customization NetBeans IDE project. See "Extending the Data Model With the XSD
and Java Class files" for more information.

2. Create custom purchase configuration view models to override the default
purchase configuration flow. See "Creating a Custom Purchase Deal Configuration
View Model" for more information.

3. Create a custom view model HTML template to display the fields in the Configure
screen during deal purchase. See "Creating Custom Purchase Configure View
Model HTML Templates" for more information.

4. Deploy your custom payment type projects to your application server. See
"Deploying Customizations" for more information.

Customizing Purchase Deal Configuration

23-2 Billing Care SDK Guide

Extending the Data Model With the XSD and Java Class files
To extend the data model with the XSD and Java class files:

1. Create the customPurchaseBundle.xsd file by using the sample
customPurchaseBundle.xsd file in the SDK_home/BillingCare_
SDK/samples/PurchaseDealAndAssetsActionMenuCustomization/customSche
ma/ directory. The sample customPurchaseBundle.xsd file includes the following
custom fields: productDescription and overridingAmount.

2. Create the jaxb_bindings.xml file by using the sample jaxb_bindings.xml file in
the SDK_home/BillingCare_
SDK/samples/PurchaseDealAndAssetsActionMenuCustomization/customSche
ma/ directory.

3. Generate a JAXB class from the schema by using XJC (XJC is available as part of
Java):

xjc path_of_XSD_file -p package_path -b bindings_file

where:

■ path_of_XSD_file is the path to the customPurchaseBundle.xsd file.

■ package_path is the path to the Billing Care package.

■ bindings_file is the path to the jaxb_bindings.xml file.

For example:

xjc . -p com.oracle.communications.brm.cc.model -b jaxb_bindings.xml

The customPurchaseBundle.java file is created in the directory in which the jaxb_
bindings.xml and customPurchaseBundle.xsd files are stored.

4. Create a Java class file by running the following command:

javac java_file_Path -cp path to dataModel.jar

where path to dataModel.jar is the path to the dataModel.jar available in Billing
Care.

For example:

javac com\oracle\communications\brm\cc\model* -cp ..\..\lib\dataModel.jar

The CustomPurchaseBundle.class file is generated.

5. Do one of the following:

■ If you already have a customized data model JAR file, add the
CustomPurchaseBundle.class to that JAR file.

■ If the customized data model JAR is not available, create a
customDataModel.jar by running the following command:

jar -cf customDataModel.jar com*

Note: It is assumed that the jaxb_bindings.xml and
customPurchaseBundle.xsd files are available in the same directory in
which the customPurchaseBundle XSD schema is stored.

Customizing Purchase Deal Configuration

Customizing Purchase Deal and Assets Action Menu 23-3

6. Copy the customized data model jar file (for example,customDataModel.jar) to
your Billing Care customization NetBeans IDE project myproject/web/lib directory
where myproject is the project directory of your Billing Care customizations
NetBeans IDE project.

Creating a Custom Purchase Deal Configuration View Model
Billing Care uses the PurchaseConfigurationViewModel and PurchaseViewModel to
define the purchase configuration flow for the deal purchase. You must create these
view models containing the override functions.

The PurchaseConfigurationViewModel contains the
processBundlePurchasePayload() function, which captures the values entered in the
custom fields in the Configure page and adds it to the accountModel as array. The
PurchaseViewModel contains the purchaseBundle() function, which retrieves the
data and calls the Custom REST Resource. The CustomAccountResource handles the
custom REST call by accepting the customPurchaseBundle from the user interface.

See "About View Models" for more information about Billing Care view models.

The sample CustomPurchaseConfigurationViewModel.js and
CustomPurchaseViewModel.js files are provided in the SDK_home/BillingCare_
SDK/samples/PurchaseDealAndAssetsActionMenuCustomization/web/custom/vie
wmodels directory. These samples contain the necessary override functions to add
custom fields for purchase deal configuration. Use these samples to create the custom
purchase deal configuration view models.

To create the purchase deal configuration view models with the override functions:

1. Create a CustomPurchaseConfigurationViewModel.js file in
myproject/web/custom/viewModels directory, where myproject is the folder
containing your NetBeans IDE project.

2. Create a CustomPurchaseViewModel.js file in
myproject/web/custom/viewModels directory.

3. Save the files in your NetBeans IDE project.

Creating Custom Purchase Configure View Model HTML Templates
Billing Care uses an HTML view file to render the Configure screen in the purchase
flow. You must create a custom purchase configuration view model HTML template to
display any additional fields during new or additional deals purchase configuration.
The template file contains the additional fields defined in the custom purchase
configuration view model created in "Creating a Custom Purchase Deal Configuration
View Model".

A sample purchaseConfigureAdditionalFieldsView.html file is provided in the SDK_
home/BillingCare_
SDK/samples/PurchaseDealAndAssetsActionMenuCustomization directory. This
sample defines how to render additional attributes for the purchase configuration. Use
this sample to create a custom purchase configuration HTML template for displaying
the additional fields required for the deal purchase configuration.

To create a purchase configuration HTML template for rendering the additional fields
you need to capture:

1. Create a purchaseConfigureAdditionalFieldsView.html file in
myproject/web/custom/templates directory.

2. Define the new fields in HTML required for rendering in this file.

Customizing Assets Action Menu

23-4 Billing Care SDK Guide

3. Save the file in your NetBeans IDE project.

Customizing Assets Action Menu
The Billing Care SDK includes the sample SDK in the SDK_home/BillingCare_
SDK/samples/PurchaseDealAndAssetsActionMenuCustomization directory. Use
this sample to assist you in customizing the assets action menu to display the newly
added custom fields for purchasing deals in Billing Care.

To customize the assets action menu:

1. Create a custom asset view model to override the default assets action menu view.
See "Creating a Custom Asset View Model" for more information.

2. Create custom view model HTML templates for customizing the assets action
menu. See "Creating Custom Asset View Model HTML Templates" for more
information.

3. Deploy your custom payment type projects to your application server. See
"Deploying Customizations" for more information.

Creating a Custom Asset View Model
Billing Care uses AssetViewModel to define the assets action menu. You must create a
custom asset view model containing the override editProductParams() function. The
editProductParams() function renders links for each product in the assets card to edit
the product details.

See "About View Models" for more information about Billing Care view models.

The sample CustomAssetViewModel.js is provided in the SDK_home/BillingCare_
SDK/samples/PurchaseDealAndAssetsActionMenuCustomization/web/custom/vie
wmodels directory. This sample contains the necessary overrides for the default assets
action menu. Use this sample to create the custom view models for retrieving and
displaying the custom fields in the assets action menu.

To create the asset view model with the override functions:

1. Create a CustomAssetViewModel.js file in myproject/web/custom/viewModels
directory, where myproject is the folder containing your NetBeans IDE project.

2. Save the file in your NetBeans IDE project.

Creating Custom Asset View Model HTML Templates
Billing Care uses an HTML view file to customize the assets action menu view. You
must create a custom asset view model HTML template to display any custom fields
that you added for the deal purchase configuration. The template file contains the
additional fields defined in the custom asset view model created in "Creating a
Custom Asset View Model".

The sample editProductParametersView.html and
customAssetsActionMenuOptions.html files are provided in the SDK_
home/BillingCare_
SDK/samples/PurchaseDealAndAssetsActionMenuCustomization directory. The
editProductParametersView.html file defines how to render the additional attributes
when the custom Change Product Parameters entry is selected from the assets action
menu. The customAssetsActionMenuOptions.html file defines the assets action menu
options to be displayed. Use these samples to create the custom asset view HTML
templates for customizing the assets action menu.

Deploying Customizations

Customizing Purchase Deal and Assets Action Menu 23-5

In the sample customAssetsActionMenuOptions.html file, the custom menu entry to
be displayed is added in the <!-- Custom Menu Entry for Assets Action Menu SDK :
START --> section. In the sample editProductParametersView.html file, the product
parameters for the custom menu are listed in the "<!-- Dialog Contents for the Product
Parameters : Added for Assets Actions Menu SDK : START -->" section.

To create a asset view HTML template:

1. Create a editProductParametersView.html file in myproject/web/custom/templates
directory.

2. Define the new fields in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

4. Create a customAssetsActionMenuOptions.html file in
myproject/web/custom/templates directory.

5. Define the new fields in HTML required for rendering in this file.

6. Save the file in your NetBeans IDE project.

Deploying Customizations
Package and deploy your customizations using one of the methods described in
"Using an Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Deploying Customizations

23-6 Billing Care SDK Guide

24

Customizing Reason Codes List in Event Adjustments 24-1

24Customizing Reason Codes List in Event
Adjustments

[25]This chapter provides an overview of customizing the Oracle Communications Billing
Care Event Adjustments dialog box to display specific reason codes.

About Displaying Reason Codes
By default, all the reason codes configured for adjustments are displayed in the Event
Adjustment dialog box. When you perform adjustments for events, you can select a
reason code from this list to specify the reason for the adjustment.

Customizing Reason Codes List in Event Adjustments
You can customize the Event Adjustment dialog box using Oracle Entitlements Server
(OES) to display only specific reason codes in the list.

To customize the reason codes list displayed in the Event Adjustments dialog box:

1. Define a new ResourceType and Resource for reason codes in the OES Server. For
example, ReasonCodeResourceType, ReasonCodeResource.

2. Define the reason codes as corresponding actions for the ResourceType in the OES
Server.

You can specify Reason ID as the action name when you define the actions.

3. Add the new ResourceType to the CustomConfigurations.xml file. For example:

<keyvals>
<key>authorizationResourceTypes</key>
<value>ReasonCodeResourceType</value>
<desc>Add comma separated OES Resource Types(values) for authorization.
Also these resource types should be defined in OES.
Please note that the key should not be changed here.
</desc>
</keyvals>

4. Create a custom view model to define the display of Event Adjustment dialog box.
See "Creating the Custom Event Adjustment View Model" for more information.

5. Create a customRegistry.js file to configure Billing Care to use the custom view
model that you created in step 4. See "Configuring the Custom Event Adjustment
View Model in the Registry" for more information.

6. Deploy your custom payment type projects to your application server. See
"Deploying Customizations" for more information.

Customizing Reason Codes List in Event Adjustments

24-2 Billing Care SDK Guide

Creating the Custom Event Adjustment View Model
Billing Care uses view model to define the display of the screens in Billing Care. You
must create the custom view model, CustomEventAdjustmentViewModel, containing
the details to customize the display of reason codes in the Event Adjustment dialog
box.

See "About View Models" for more information about Billing Care view models.

To create the custom event adjustment view model:

1. Create the customEventAdjustmentViewModel.js file in
myproject/web/custom/viewmodels directory, where myproject is the folder
containing your NetBeans IDE project.

2. Add the following code in the customEventAdjustmentViewModel.js file using a
text editor:

define(['jquery', 'knockout',
'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'

],
function($, ko, EventAdjustmentViewModel) {

function customEventAdjustmentViewModel() {
EventAdjustmentViewModel.apply(this, arguments);
self = this;
self.notesReasonCodes = ko.computed(function() {

if (self.domainId() !== null) {
self.selectedReasonCode("");
reasonCodes =

Configurations.getReasonCodes(self.domainId());
filterReasonCodes = [];
for (i = 0; i < reasonCodes.length; i++) {

if(util.isGrantedResourceAction(reasonCodes[i].ReasonID,
"ReasonCodeResource")){ //Use newly created resource here

filterReasonCodes.push(reasonCodes[i]);
}

}
}
return filterReasonCodes;

});
}

customEventAdjustmentViewModel.prototype = new EventAdjustmentViewModel();
return customEventAdjustmentViewModel;

});

3. Save the file in your NetBeans IDE project.

Configuring the Custom Event Adjustment View Model in the Registry
After creating the required custom view model, create a custom view model entry in
the customRegistry.js file. Billing Care uses the custom event adjustment view model
instead of the default event adjustment view model during adjustments and renders
the Event Adjustment dialog box containing your customization.

To create the custom event adjustment view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom event adjustment view model in this file. For example:

eventAdjustment: {
viewmodel: 'custom/viewmodels/customEventAdjustmentViewModel.js'

Customizing Reason Codes List in Event Adjustments

Customizing Reason Codes List in Event Adjustments 24-3

}

3. Save the file in your NetBeans IDE project.

Deploying Customizations
Package and deploy your customizations using one of the methods described in
"Using an Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Customizing Reason Codes List in Event Adjustments

24-4 Billing Care SDK Guide

25

Customizing Billing Care to Display Only Event Adjustments 25-1

25Customizing Billing Care to Display Only Event
Adjustments

[26]This chapter describes how to customize Oracle Communications Billing Care to
display only event adjustments in the Bills section for performing adjustments.

About Displaying Event Adjustments
By default, Billing Care display all the adjustment options, such as bill, item, and
event, for performing adjustments. However, you can customize Billing Care to
display only the list of event adjustment options and hide bill and item adjustment
options by using the Billing Care SDK. This lets you perform only event adjustments
for the selected account.

Customizing Billing Care to Display Only Event Adjustments
You can customize Billing Care using Oracle Entitlements Server (OES) to display only
event adjustments for performing adjustments.

To customize Billing Care to display only event adjustments:

1. Create a custom ResourceType and Resource for event adjustments in the OES
server. For example, AdjustmentResourceType, AdjustmentResource.

2. Define Make as the corresponding action for the custom ResourceType in the OES
server.

3. Add the new ResourceType to the CustomConfigurations.xml file. For example:

<keyvals>
<key>authorizationResourceTypes</key>
<value>AdjustmentResourceType</value>
<desc>Add comma separated OES Resource Types(values) for
authorization.
Also these resource types should be defined in OES.
Please note that the key should not be changed here.
</desc>
</keyvals>

See "Editing the Billing Care Configuration File" for customization of
configurations.xml.

4. Create custom view models containing overrides to hide bill and item
adjustments. See "Creating Custom View Models to Display Only Event
Adjustments" for more information.

Customizing Billing Care to Display Only Event Adjustments

25-2 Billing Care SDK Guide

5. Create a customRegistry.js file configuring Billing Care to use the custom view
models that you created. See "Configuring Custom Bill and Bill Item View Models
in the Registry" for more information.

6. Deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Creating Custom View Models to Display Only Event Adjustments
Billing Care uses view model to define the display of the Item Adjustment, Bill
Adjustment, and Event Adjustment dialog boxes. You must create the custom view
models, customBillItemChargesViewModel and customBillChargesViewModel,
containing overrides to hide bill and item adjustments.

See "About View Models" for more information about Billing Care view models.

To create custom view models to display only event adjustments:

1. Create the customBillItemChargesViewModel.js and
customBillChargesViewModel.js files in the
myproject/web/custom/js/viewmodels directory, where myproject is the folder
containing your NetBeans IDE project.

2. Add the following code in the customBillItemChargesViewModel.js file using a
text editor:

define(['jquery', 'knockout',

'viewmodels/billMainPanel/BillItemChargesViewModel'
],

function($, ko, BillItemChargesViewModel) {
function CustomBillItemChargesViewModel() {

BillItemChargesViewModel.apply(this, arguments);
self = this;
self.showARActionMenu = function(data, event) {

self.__proto__.showARActionMenu(data,event);

// write custom action name and resource. Item adjustment
can be hide by not granting make permission to customResource.

if (!util.isGrantedResourceAction("make",
"customResource")){

$("#billItemFlyoverNewAdjustment").hide();
}

};
}
CustomBillItemChargesViewModel.prototype = new

BillItemChargesViewModel();
return CustomBillItemChargesViewModel;

});

3. Save the file in your NetBeans IDE project.

4. Add the following code in the customBillChargesViewModel.js file using a text
editor:

define(['jquery', 'knockout',
'viewmodels/billtab/BillChargesViewModel'

],
function($, ko, BillChargesViewModel) {

function customBillChargesViewModel() {

Customizing Billing Care to Display Only Event Adjustments

Customizing Billing Care to Display Only Event Adjustments 25-3

BillChargesViewModel.apply(this, arguments);
$(function() {

var myVar = setInterval(function() {
if ($('#adjustbillListMenu').length > 0)
{

// write custom action name and resource. Bill
adjustment

//can be hide by not granting make permission to
customResource.

if (!util.isGrantedResourceAction("make",
"customResource")) {

$('#adjustbillListMenu').remove();

if
($("#actionsmenu").next().children("li.ui-menu-item").length < 1) {

$("#actionsmenu").children("span").remove();
}

clearInterval(myVar);
}

}, 20);

});

}
customBillChargesViewModel.prototype = new

BillChargesViewModel();
return customBillChargesViewModel;

});

5. Save the file in your NetBeans IDE project.

Configuring Custom Bill and Bill Item View Models in the Registry
After creating customBillItemChargesViewModel and
customBillChargesViewModel view models, create custom view model entries in the
customRegistry.js file to use when performing adjustments. Billing Care uses the
custom bill tab view model and bill item charges view model instead of the default
entries when rendering the Adjustments screen.

To create custom view model entries in a customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the entries referencing the custom view models in this file. For example:

billTab: {

billChargesViewModel:'custom/js/viewmodels/customBillChargesViewModel.js'

},

billItemCharges: {

viewmodel: 'custom/js/viewmodels/customBillItemChargesViewModel.js'
}

3. Save the file in your NetBeans IDE project.

Customizing Billing Care to Display Only Event Adjustments

25-4 Billing Care SDK Guide

26

Limiting Event Adjustment Percentage Entered by CSRs 26-1

26Limiting Event Adjustment Percentage Entered
by CSRs

[27]This chapter describes how to limit the event adjustment percentage entered by
customer service representatives (CSRs) using the Oracle Communications Billing
Care SDK.

About Adjustments
Typically, CSRs perform the adjustments to satisfy an unhappy customer or correct a
problem. For example, a CSR might give an adjustment when the entire monthly fee is
charged for a service that was unavailable for a few days. You customize Billing Care
to limit the percentage of event adjustment allowed for a CSR by using the SDK and
Oracle Entitlements Server (OES) policies.

Limiting Event Adjustments Entered by CSRs
To limit the event adjustment percentage entered by a CSR:

1. Add an obligation for the OES authorization policy; for example, Maximum
Adjustment Amount Percentage. For more information on adding obligations, see
Oracle Fusion Middleware Administrator’s Guide for Oracle Entitlements Server.

2. Update the CustomExtendAdjustmentModule.java class file to override the
default event adjustment flow. See "Updating
CustomExtendAdjustmentModule.java Class" for more information.

3. Create a custom adjustment worker class to add custom logic. See "Creating
CustomAdjustmentWorker.java Class" for more information.

4. Create or update the customized_en.xlf file to add an error code and message for
limiting adjustments. See "Creating a customized_en.xlf File Entry for the Error
Message" for more information.

Updating CustomExtendAdjustmentModule.java Class
Update the CustomExtendAdjustmentModule.java class to override the adjustEvent
() method.

To update the CustomExtendAdjustmentModule.java Class:

1. Open the CustomExtendAdjustmentModule.java file in
myproject/projectname/src/java/com/rest/sdk.

2. Override the adjustEvent () method as shown in this example:

Limiting Event Adjustments Entered by CSRs

26-2 Billing Care SDK Guide

@Override
public void adjustEvent(AdjustmentEvent adjustEvent) {
CustomAdjustmentWorker worker = new CustomAdjustmentWorker();
boolean isAllowed;

isAllowed = worker.isAllowedForAdjustment(adjustEvent);
if (isAllowed) {
super.adjustEvent(adjustEvent);
} else {
ExceptionHelper.buildErrorInfo(70001,
"More than allowed Percentage", Response.Status.BAD_REQUEST);
}
}

3. Save the file in your NetBeans IDE project.

Creating CustomAdjustmentWorker.java Class
Create a custom template worker class containing logic to calculate the percentage of
adjustment allowed and limit the adjustment amount entered by a CSR in Billing Care
if it is more than the percentage allowed.

To create the CustomAdjustmentWorker.java Class:

1. Create the CustomAdjustmentWorker.java file in
myproject/projectname/src/java/com/rest/sdk.

2. Extend AdjustmentWorker as shown in this example:

public class CustomAdjustmentWorker extends AdjustmentWorker {

/*
*Check if the amount is more than allowed percentage
*/

public boolean isAllowedForAdjustment(AdjustmentEvent adjustEvent){
boolean isAllowed = true;

//Get total amount available for adjustment from BRM
BigDecimal availableAmountForAdjustment =
getAvailableAmountForEventAdjustment(adjustEvent);

//String configured as obligation in OES Admin
String obligationString = "Maximum Adjustment Amount Percentage";
Subject subject = Security.getCurrentSubject();
String action = "Make";
Map<String, String> env = new HashMap<>(0);
Map<String, String> obligationNameValueMap = new HashMap<>();
Integer obligationPer = 0;

//Getting obligation allowed percentage value from OES
String resourceString = "BillingCare" + "/" +
"AdjustmentCurrencyResourceType" + "/" + "AdjustmentResource";
try {
PepResponse response =
PepRequestFactoryImpl.getPepRequestFactory().newPepRequest(subject, action,
resourceString, env).decide();
Map<String, Obligation> obligations = response.getObligations();
for (String name : obligations.keySet()) {
obligationNameValueMap = obligations.get(name).getStringValues();
obligationPer =

Limiting Event Adjustments Entered by CSRs

Limiting Event Adjustment Percentage Entered by CSRs 26-3

Integer.parseInt(obligationNameValueMap.get(obligationString));
break;
}

} catch (PepException ex) {
Logger.getLogger(AdjustmentWorker.class.getName()).log(Level.SEVERE, null,
ex);
}

//Calculate the allowed amount using obligationPer retrieved from OES and
availableAmountForAdjustment retrieved from BRM
double allowedAmountInDouble = (obligationPer *
availableAmountForAdjustment.doubleValue()) / 100;
BigDecimal allowedAmount = new BigDecimal(allowedAmountInDouble);

//If amount is greater than allowed amount return false
//Note: Please handle the decimal case as per the requirement if only first
2 decimal needed etc..

if(adjustBill.getAmount().compareTo(allowedAmount)==1)
{
isAllowed=false;
}

return isAllowed;

}

3. Save the file in your NetBeans IDE project.

Creating a customized_en.xlf File Entry for the Error Message
You must provide a localized English entry for the new adjustment error code and
message in the customized_en.xlf file to provide a translatable text string in Billing
Care. For more information on the customized_en.xlf file and how to add a new entry,
see "Customizing Billing Care Labels".

This example shows a sample entry for the error code and message to add in the
customized_en.xlf file:

<?xml version="1.0" encoding="utf-8" ?>
<xliff version="1.0">

<file original="test_en.js" source-language="EN-US"
target-language="EN-US" datatype="JavaScript">

<header/>
<body>

<group id="errors" restype="errors">
<trans-unit id="70001" translate="yes">

<source>More than allowed Percentage.</source>
<target>More than allowed Percentage.</target>

</trans-unit>
</group>

</body>

Note: The JAR files required for this customization are available in
the SDK_home/BillingCare_SDK/libs directory, where SDK_home is
the directory where you installed the SDK.

Limiting Event Adjustments Entered by CSRs

26-4 Billing Care SDK Guide

</file>
</xliff>

Note: For custom error codes, the series must start from 70000; for
example, 70001,70002, and so on.

27

Disabling Event Adjustment Options Based on Roles 27-1

27Disabling Event Adjustment Options Based on
Roles

[28]This chapter describes how to customize Oracle Communications Billing Care to
support disabling of event adjustment options based on customer service
representatives (CSRs) roles.

About Event Adjustment Options
By default, the following options in the Event Adjustment dialog box are enabled and
CSRs can select these options to adjust events:

■ Adjust amount and tax

■ Adjust amount only

■ Adjust tax only

CSRs can also backdate an adjustment if required. You can customize Billing Care
using the SDK to disable the adjustment and backdate options based on the user roles.

Disabling Event Adjustment Options Based on User Roles
You can customize the Event Adjustment dialog box using the SDK and Oracle
Entitlements Server (OES) to disable or enable the event adjustment options.

To disable the event adjustment or backdate options in the Event Adjustments dialog
box:

1. Define a new ResourceType and Resource for event adjustment options in the OES
server. For example, EventAdjustmentResourceType, EventAdjustmentResource.

2. Define the following as corresponding actions for the ResourceType in the OES
server as required:

■ AmountAndTax

■ AmountOnly

■ TaxOnly

■ backDateEventAdjustment

3. Associate the new Resource to the new ResourceType in the OES server.

4. Add the new ResourceType to the CustomConfigurations.xml file. For example:

<keyvals>
<key>authorizationResourceTypes</key>

Disabling Event Adjustment Options Based on User Roles

27-2 Billing Care SDK Guide

<value>EventAdjustmentResourceType</value>
<desc>Add comma separated OES Resource Types(values) for authorization.
Also these resource types should be defined in OES.
Please note that the key should not be changed here.
</desc>
</keyvals>

5. Create a custom view model to disable the options in the Event Adjustment dialog
box based on the user role. See "Creating a Custom View Model for Disabling
Adjustment Options" for more information.

6. Create a customRegistry.js file to configure Billing Care to use the custom view
model that you created. See "Configuring the Custom View Model for Disabling
Event Adjustment Options" for more information.

7. Deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Creating a Custom View Model for Disabling Adjustment Options
Billing Care uses view model to define the display of the screens in Billing Care. You
must create or update the custom view model, customEventAdjustmentViewModel,
and add the details to customize the display of event adjustment or backdate options
in the Event Adjustment dialog box.

See "About View Models" for more information about Billing Care view models.

To create a custom model for disabling event adjustment or backdate options:

1. Create or update the customEventAdjustmentViewModel.js file in
myproject/web/custom/viewmodels directory, where myproject is the folder
containing your NetBeans IDE project.

2. To disable the amount and tax adjustment options based on the user role, add the
following code in the customEventAdjustmentViewModel.js file using a text
editor:

define(['jquery',
'underscore',
'knockout',
'knockout-mapping',
'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'

],
function ($, _, ko, komapping, EventAdjustmentViewModel) {

function CustomEventAdjustmentViewModel() {
EventAdjustmentViewModel.apply(this, arguments);

$(function() {
var myVar= setInterval(function() {

if($('#lblAdjustAmountAndTax').length>0)
{

if(!util.isGrantedResourceAction('AmountAndTax','EventAdjustmentResource'))
{

$('#lblAdjustAmountAndTax').parent().hide();
}

Disabling Event Adjustment Options Based on User Roles

Disabling Event Adjustment Options Based on Roles 27-3

if(!util.isGrantedResourceAction('AmountOnly','EventAdjustmentResource'))
{

$('#lblAdjustAmountOnly').parent().hide();
}

if(!util.isGrantedResourceAction('TaxOnly','EventAdjustmentResource'))
{

$('#lblAdjustTaxOnly').parent().hide();
}
clearInterval(myVar);

}

}, 20);

});

}
customViewModel.prototype = new EventAdjustmentViewModel();
return CustomEventAdjustmentViewModel;

});

3. To disable the backdate option based on the user role, add the following code in
the customEventAdjustmentViewModel.js file using a text editor:

define(['jquery', 'knockout',
'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'

],
function($, ko, EventAdjustmentViewModel) {

function CustomEventAdjustmentViewModel() {
EventAdjustmentViewModel.apply(this, arguments);
$(function() {

var myVar1 = setInterval(function() {
if ($('#eventAdjustmentEffectiveDate').length > 0)
{

if
(!util.isGrantedResourceAction("backDateEventAdjustment", "customResource"))
{

$('#eventAdjustmentEffectiveDate').attr('disabled', true);

$("#eventAdjustmentEffectiveDate").next("img").off("click")
}
clearInterval(myVar1);

}
}, 40);

});
}
CustomEventAdjustmentViewModel.prototype = new

EventAdjustmentViewModel();
return CustomEventAdjustmentViewModel;

});

4. Save the file in your NetBeans IDE project.

Disabling Event Adjustment Options Based on User Roles

27-4 Billing Care SDK Guide

Configuring the Custom View Model for Disabling Event Adjustment Options
After creating or updating the required custom view model, ensure that the custom
event adjustment view model entry is created in the customRegistry.js file. Billing
Care uses the custom event adjustment view model instead of the default event
adjustment view model during adjustments and renders the Event Adjustment dialog
box containing your customization.

To create the custom event adjustment view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom event adjustment view model entry in this file. For example:

eventAdjustment: {
viewmodel: 'custom/viewmodels/customEventAdjustmentViewModel.js'

}

3. Save the file in your NetBeans IDE project.

28

Restricting Debit and Credit Event Adjustment Options 28-1

28Restricting Debit and Credit Event Adjustment
Options

[29]This chapter describes how to customize Oracle Communications Billing Care to
restrict debit and credit adjustment options in the Event Adjustment dialog box based
on user roles.

About Debit and Credit Event Adjustments
To perform debit or credit event adjustments, you enter the adjustment amount in the
Adjustment field in the Event Adjustment dialog box. For credit adjustment, you enter
a positive amount or percentage. For debit adjustment or to increase the amount due,
you enter a negative amount. You can restrict the debit or credit event adjustments
based on user roles by customizing Billing Care using the SDK and Oracle
Entitlements Server (OES) authorization policy.

Restricting Debit and Credit Adjustment for Events
You can customize the Event Adjustment dialog box using OES to restrict the debit
and credit adjustment options for events based on user roles.

To customize debit and credit adjustment options in the Event Adjustment dialog box:

1. Define a new ResourceType in the OES Server. For example,
AdjustmentActionResourceType.

2. Define the debit and credit options as corresponding actions for the ResourceType
in the OES Server.

3. Add the new ResourceType to the CustomConfigurations.xml file. For example:

<keyvals>
<key>authorizationResourceTypes</key>
<value>AdjustmentActionResourceType</value>
<desc>Add comma separated OES Resource Types(values) for authorization.
Also these resource types should be defined in OES.
Please note that the key should not be changed here.
</desc>
</keyvals>

4. Create a custom view model to define the display of the Event Adjustment dialog
box. See "Creating a Custom View Model for Restricting Debit and Credit
Adjustments" for more information.

5. Create a customRegistry.js file to configure Billing Care to use the custom view
model that you created. See "Configuring the Custom View Model for Disabling

Restricting Debit and Credit Adjustment for Events

28-2 Billing Care SDK Guide

Event Adjustment Options" for more information.

6. Deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Creating a Custom View Model for Restricting Debit and Credit Adjustments
Billing Care uses view model to define the display of the screens in Billing Care. You
must create or update the custom view model, CustomEventAdjustmentViewModel,
and add the details containing the logic to check if the adjustment is a debit or credit
adjustment and determine if that adjustment is allowed for the specific user role.

See "About View Models" for more information about Billing Care view models.

To create a custom model for customizing debit and credit event adjustment options:

1. Create or update the customEventAdjustmentViewModel.js file in
myproject/web/custom/viewmodels directory, where myproject is the folder
containing your NetBeans IDE project.

2. Add the following code in the customEventAdjustmentViewModel.js file using a
text editor:

define(['jquery', 'knockout',
'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'

],
function($, ko, EventAdjustmentViewModel) {

function customEventAdjustmentViewModel() {
EventAdjustmentViewModel.apply(this, arguments);
self = this;
self.isValid = function () {

var actionName;
if (self.adjustmentAmount().indexOf(')') > -1)

actionName = "Debit"; // write debit action name
created in OES

else
actionName = "Credit"; // write credit action name

created in OES
if (self.note.isValid() && self.validator &&

self.validator.form()) {
//Write resourcename which include credit and debit actions

if (!util.isGrantedResourceAction(actionName,
"customResource"))

{
alert(actionName + " adjustment is not allowed");
return false;

}
return true;

}
return false;

};
}
customViewModel.prototype = new EventAdjustmentViewModel();
return customEventAdjustmentViewModel;

});

3. Save the file in your NetBeans IDE project.

Restricting Debit and Credit Adjustment for Events

Restricting Debit and Credit Event Adjustment Options 28-3

Configuring the Custom View Model for Disabling Event Adjustment Options
After creating or updating the required custom view model, ensure that the custom
event adjustment view model entry is created in the customRegistry.js file. Billing
Care uses the custom event adjustment view model instead of the default event
adjustment view model during adjustments and renders the Event Adjustment dialog
box containing your customization.

To create the custom event adjustment view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom event adjustment view model entry in this file. For example:

eventAdjustment: {
viewmodel: 'custom/viewmodels/customEventAdjustmentViewModel.js'

}

3. Save the file in your NetBeans IDE project.

Restricting Debit and Credit Adjustment for Events

28-4 Billing Care SDK Guide

29

Setting Adjustment Limit for Event Adjustments 29-1

29Setting Adjustment Limit for Event
Adjustments

[30]This chapter provides an overview of customizing the Oracle Communications Billing
Care to set the maximum adjustment limit based on the currency resources used for
event adjustments.

About Adjustment Limits
Typically, customer service representatives (CSRs) perform the adjustments by
providing the adjustment amount to be applied for the customer. You can set an
adjustment limit for a CSR to control the adjustment amount entered by the CSR. For
event adjustments, you can customize Billing Care to set the maximum adjustment
limit allowed for a CSR based on the currency resources used for the adjustments. For
example, you can set an adjustment limit of $10 for USD and 5 euro for EUR for a CSR
to perform event adjustments.

Setting Event Adjustment Limit for CSRs
To set the event adjustment limit for a CSR:

1. If not already created, create a custom ResourceType and Resource (for example,
AdjustmentResourceType, AdjustmentResource) with the adjustment action in the
OES Server and add the ResourceType to the CustomConfigurations.xml file. See
"Creating a Custom Configuration File" for more information.

2. Add an obligation (for example, Maximum Adjustment Limit) in the custom
adjustment resource with a string (for example, 840, the currency code for US
dollars) for a policy using OES. For more information on adding obligations, see
Oracle Fusion Middleware Administrator’s Guide for Oracle Entitlements Server.

3. Set the maximum adjustment limit you want to allow for the CSR for a currency
resource as the obligation value in the OES Server. For example, $10 for USD.

4. Create a custom REST resource to validate the adjustment amount entered in the
Event Adjustment dialog box. See "Creating customAdjustmentResource.java
Class" for more information.

5. Create or update the customEventAdjustmentViewModel.js class file to override
the default event adjustment flow. See "Creating the Custom Event Adjustment
View Model" for more information.

6. Configure the custom view model entry in the customRegistry.js file to use the
custom view model that you created or updated. See "Configuring the Custom
Event Adjustment View Model in the Registry" for more information.

Setting Event Adjustment Limit for CSRs

29-2 Billing Care SDK Guide

7. Deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

8. Verify the changes in Billing Care by doing the following:

a. Log into Billing Care as a CSR who has adjustments action granted and
maximum adjustment limit set.

b. In the Events dialog box, select events and click Adjust.

The Event Adjustment dialog box appears.

c. Select an adjustment option and enter the adjustment amount you want to
adjust.

If the amount entered is less than the obligation value, the specified amount is
adjusted. If the amount entered is more than the obligation value, an error
message is displayed. For example, "For this currency you have exceed Max
adjustment limit."

Creating customAdjustmentResource.java Class
You can override the existing event adjustment flow with your customization by using
REST resources. Create a custom resource Java class to validate the event adjustment
amount against the obligation value.

To create a customAdjustmentResource.java Class:

1. Create the customAdjustmentResource.java class file in
myproject/projectname/src/java/com/oracle/communications/brm/cc/ws/account,
where myproject is your NetBeans IDE Billing Care customizations project and
projectname is the name of your custom project.

2. Add the following code in the customAdjustmentResource.java class file using a
text editor:

//Create a custom REST with class named as "customAdjustmentResource"
// Add method "adjustEvent" which takes parameter "AdjustmentEvent"
//This custom REST validates entered amount to adjust with the obligation and
then calls the OOTB REST resource.
@Path("customadjustment")
public class CustomAdjustmentResource {

@Context
HttpServletRequest servletRequest;

@Path("/event")
@POST
@Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public void eventAdjustment(AdjustmentEvent adjustEvent) throws

JSONException, IOException {

UIRequestValue maxAdjustmentLimit = new
UIRequestValue(adjustEvent.getResourceId().toString(),

adjustEvent.getAmount(), ConstraintOperator.GREATER_THAN,
new EnforcementError(40010,"For this currency you have

exceed Max adjustment limit."));
//Checks if user is not super csr and UI value is greater than OES

obligation value and throws error "For this currency you have exceed Max
limit."

if (!EnforcementUtil.isResourceGranted(servletRequest, subject,

Setting Event Adjustment Limit for CSRs

Setting Adjustment Limit for Event Adjustments 29-3

"BillingCare", EnforcementConstants.SUPERUSER_RESOURCE)) {
EnforcementUtil.checkAccess(subject, "BillingCare", "adjustment",
"AdjustmentResourceType","AdjustmentResource",
new EnforcementError(20000, "You do not have permission to perform an

adjustment."), maxAdjustmentLimit);
}
}

/*
*After validating maximum validity end month criteria invoke out of the

box code to perform adjustment.
*/

}

3. Save the file in your NetBeans IDE project.

Creating the Custom Event Adjustment View Model
Billing Care uses view model to define the display of the screens in Billing Care. You
must create or update the custom view model, CustomEventAdjustmentViewModel,
containing the details to set the adjustment limit for CSRs performing event
adjustments.

See "About View Models" for more information about Billing Care view models.

To create the custom event adjustment view model:

1. Create or update the customEventAdjustmentViewModel.js file in
myproject/web/custom/viewmodels directory, where myproject is the folder
containing your NetBeans IDE project.

2. Add the following code in the customEventAdjustmentViewModel.js file using a
text editor:

define(['knockout', 'jquery', 'underscore',
Registry.accountCreation.wizardBase,
'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'],

function (ko, $, _, WizardBaseViewModel, EventAdjustmentViewModel) {
customEventAdjustmentViewModel.prototype = new

WizardBaseViewModel();
function customEventAdjustmentViewModel() {

EventAdjustmentViewModel.apply(this, arguments);
var self = this;

self.persistData = function (eventAdjustmentObj) {
var ajaxDef = $.ajax({

type: "POST",
url: baseURL + "/customadjustment/event/",
data: ko.toJSON(eventAdjustmentObj),
contentType: "application/json; charset=utf-8",
dataType: "json",
processData: false

});

ajaxDef.done(function (completeResponse) {

});
ajaxDef.fail(function (errorThrown) {

alert(errorThrown.responseJSON.errorMessage);

Setting Event Adjustment Limit for CSRs

29-4 Billing Care SDK Guide

});
return ajaxDef;

};

}

return customEventAdjustmentViewModel;
});

3. Save the file in your NetBeans IDE project.

Configuring the Custom Event Adjustment View Model in the Registry
After creating the required custom view model, create a custom event adjustment view
model entry in the customRegistry.js file. Billing Care uses the custom event
adjustment view model instead of the default event adjustment view model during
adjustments and renders the Event Adjustment dialog box containing your
customization.

To create the custom event adjustment view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom event adjustment view model entry in this file. For example:

eventAdjustment: {
viewmodel: 'custom/viewmodels/customEventAdjustmentViewModel.js'

}

3. Save the file in your NetBeans IDE project.

30

Filtering Bundles Available for Purchase 30-1

30Filtering Bundles Available for Purchase

[31]This chapter describes how to customize Oracle Communications Billing Care to filter
the bundles displayed in the Purchase Catalogue screen.

About Filtering Bundles
In BRM, the PCM_OP_CUST_POL_GET_DEALS opcode enables you to retrieve a
customized list of bundles from the BRM database for customer purchase. Similarly,
you can retrieve the bundles from the BRM database and filter the list of bundles
available for purchase in Billing Care by using the Billing Care SDK. For example, you
can customize Billing Care to display only the manually added discount bundles in
the bundles list.

Filtering Bundles List in Billing Care
To filter the bundles list in Billing Care:

1. Create a custom template model to override the default subscription flow. See
"Creating CustomPCMSubscriptionModule.java Class" for more information.

2. Create a custom template worker class to add custom logic to the subscription
flow. See "Creating CustomSubscriptionWorker.java Class" for more information.

3. Add your customization files to your NetBeans IDE project. See "Updating the
customModule.properties File" for more information.

4. Deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Creating CustomPCMSubscriptionModule.java Class
Create a custom subscription module class, CustomPCMSubscriptionModule.java,
and override the getBundles() method.

To create the CustomPCMSubscriptionModule.java class:

1. Create the CustomPCMSubscriptionModule.java class file in
myproject/projectname/src/java/com/rest/sdk, where myproject is the folder
containing your NetBeans IDE project and projectname is the name of your custom
project.

2. Override the getBundles() method in the CustomPCMSubscriptionModule.java
class file as shown in this example:

@Override public BundleList getBundles(String id, String expand) {

Filtering Bundles List in Billing Care

30-2 Billing Care SDK Guide

//method code
}

3. Save the file in your NetBeans IDE project.

Creating CustomSubscriptionWorker.java Class
Create a custom template worker class containing logic to retrieve and filter the
bundles available for purchase.

To create the CustomSubscriptionWorker.java class:

1. Create the CustomSubscriptionWorker.java class file in
myproject/projectname/src/java/com/rest/sdk.

2. Override the following methods as appropriate:

■ convertToInputFListToGetBundleList(). This method takes the service type
as input and returns the input flist. For example, you can pass
"0.0.0.1+-service-email+62503" as an input to retrieve only the bundles that are
associated with the service type, email.

■ invokeOpcodeToGetBundleList(). This method takes the flist returned by the
convertToInputFListToGetBundleList() method as input and triggers the
PCM_OP_CUST_POL_GET_DEALS opcode to return the output flist.

■ convertToOutputFListToGetBundleList(). This method takes the flist
returned by the invokeOpcodeToGetBundleList() method and a flag that
indicates whether charge or discount offers to be retrieved as input and
returns the list of bundles associated with the service type.

3. Save the file in your NetBeans IDE project.

Updating the customModule.properties File
Create or update the custom module property file to override the default subscription
module logic with your customizations.

To update the custom module property file:

1. Open the customModule.properties file in myproject/projectname/src/java/custom.

2. Add the following entry:

billingcare.rest.subscription.module=com.rest.sdk.CustomPCMSubscriptionModule

3. Save the file in your NetBeans IDE project.

31

Restricting Additional Bundles Purchase Based on Roles 31-1

31Restricting Additional Bundles Purchase
Based on Roles

[32]This chapter describes how to customize Oracle Communications Billing Care to
restrict the purchase of additional bundles based on user roles or permissions.

About Restricting Bundles
By default, Billing Care displays all the bundles (/deal objects) retrieved from the BRM
database in the Purchase Catalogue screen. Customer service representatives (CSRs)
can select these bundles for purchase. You can customize Billing Care to display the
additional bundles displayed in the Purchase Catalogue screen based on the CSRs role
or permission.

Restricting Bundles Based on Roles
You can customize the Purchase Catalogue screen using the Billing Care SDK and
Oracle Entitlements Server (OES) to display bundles for additional purchase based on
CSR roles or permissions.

To restrict bundles displayed for additional purchase:

1. Define a new ResourceType and Resource for bundles in the OES Server. For
example, DealNameResourceType, DealNameResource.

2. Add the new ResourceType to the CustomConfigurations.xml file. For example:

<keyvals>
<key>authorizationResourceTypes</key>
<value>DealnameResourceType</value>
<desc>Add comma separated OES Resource Types(values) for authorization.
Also these resource types should be defined in OES.
Please note that the key should not be changed here.
</desc>
</keyvals>

3. Create a custom view model to define the display of bundles in Purachse
Catalogue screen. See "Creating the Custom Bundle Selection View Model" for
more information.

4. Create a customRegistry.js file to configure Billing Care to use the custom view
model that you created. See "Configuring the Custom Bundle Selection View
Model in the Registry" for more information.

Restricting Bundles Based on Roles

31-2 Billing Care SDK Guide

5. Deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying
Customizations"

Creating the Custom Bundle Selection View Model
Billing Care uses view model to define the display of the screens in Billing Care. You
must create the custom view model, CustomBundleSectionViewModel, containing
the details to customize the display of bundles in the Purchase Catalogue screen for
additional purchase.

See "About View Models" for more information about Billing Care view models.

To create the custom bundle selection view model:

1. Create the customBundleSectionViewModel.js file in
myproject/web/custom/viewmodels/purchase directory, where myproject is the
folder containing your NetBeans IDE project.

2. Add the following code in the customBundleSectionViewModel.js file using a
text editor:

define(['knockout', 'jquery', 'underscore',
Registry.accountCreation.wizardBase,
'viewmodels/purchase/BundleSelectionViewModel'],

function(ko, $, _, WizardBaseViewModel, BundleSelectionViewModel) {
customBundleSelectionViewModel.prototype = new

WizardBaseViewModel();
function customBundleSelectionViewModel(params) {

BundleSelectionViewModel.apply(this, arguments);
var self = this;

self.filterDealsList = function(loadedData) {
1. call the function

util.getGrantedActionsByResource("DealNameResource") and store its return
value in an array (eg. arr).

2. make a set and store array in set .
3. run a loop from var i =0 to i =

loadedData.bundle.length and check the
value of loadedData.bundle[i].name in set.

4. if value is not present in set then remove it from
loadedData.bundle also.

5. return the modified loadedData .
};

}
return customBundleSelectionViewModel;

});

3. Save the file in your NetBeans IDE project.

Configuring the Custom Bundle Selection View Model in the Registry
After creating the required custom view model, create a custom bundle selection view
model entry in the customRegistry.js file. Billing Care uses the custom bundle
selection module instead of the default view model during additional purchase and
renders the Purchase Catalogue screen containing your customization.

To create the custom bundle selection view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

Restricting Bundles Based on Roles

Restricting Additional Bundles Purchase Based on Roles 31-3

2. Define the custom event adjustment module in this file. For example:

purchaseSelection: {
bundleviewmodel:

'custom/viewmodels/purchase/customBundleSectionViewModel.js'
}

3. Save the file in your NetBeans IDE project.

Restricting Bundles Based on Roles

31-4 Billing Care SDK Guide

32

Restricting Bundle Validity Based on Roles 32-1

32Restricting Bundle Validity Based on Roles

[33]This chapter provides an overview of customizing Oracle Communications Billing
Care to restrict the validity or end date set by the customer service representatives
(CSRs) while purchasing additional products or services.

About Restricting Bundle Validity
Typically, CSRs set the validity or end date of a product or service in a bundle (/deal
object) during purchase. For additional purchases, you can customize Billing Care to
restrict the validity or end date set by the CSR based on the CSR's role by using the
OES policies and the Billing Care SDK.

For example, for an additional discount purchased from a bundle, you can allow a
CSR with super user role to set an end date up to a maximum of 12 months and a CSR
with basic role to set an end date only up to a maximum of 6 months.

Restricting Bundle Validity
You can customize the Purchase Catalogue screen using OES policies to restrict the
end date set by CSRs for additional purchases.

To restrict bundle validity:

1. Define a new ResourceType and Resource in the OES Server for restricting bundle
validity. For example, DealResourceType, DealResource.

2. Define purchase as the corresponding action for the ResourceType in the OES
Server.

3. Associate the new resource that you created to a CSR who has permission to
purchase products or services.

4. Add the new ResourceType to the CustomConfigurations.xml file. For example:

<keyvals>
<key>authorizationResourceTypes</key>
<value>DealResourceType</value>
<desc>Add comma separated OES Resource Types(values) for authorization.
Also these resource types should be defined in OES.
Please note that the key should not be changed here.
</desc>
</keyvals>

5. To set the validity allowed for a CSR, add an obligation with a string (for example,
maximum validity end month) for a policy using OES and set a numeric value to
the string (for example, 6).

Restricting Bundle Validity

32-2 Billing Care SDK Guide

6. Create a custom REST resource for validating the end date entered in the Purchase
Catalogue screen. See "Creating CustomAccountResource.java Class" for more
information.

7. Create a custom view model to override the default additional purchase logic with
your customization. See"Creating a Custom Purchase View Model" for more
information.

8. Create a customRegistry.js file to configure Billing Care to use the custom view
model that you created. See "Configuring the Custom Purchase View Model in the
Registry" for more information.

9. Deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

10. Verify your changes in Billing Care by doing the following:

a. Log into Billing Care as a CSR who has the permission to purchase products or
services and obligation to validate end date during purchase.

b. Purchase an additional charge or discount offer. For more information, see the
Billing Care Online Help.

c. In the Configure screen, enter a end date for the purchased offer.

If the end date exceeds the end date specified in the obligation associated with the
CSR, an error is displayed. If it matches or less than the end date in the obligation,
CSR is allowed to configure the offer.

Creating CustomAccountResource.java Class
Create a custom resource Java class to get the list of all customized charge offers and
discount offers in Billing Care and validate their end dates.

To create the customAccountResource.java class:

1. Create the CustomAccountResource.java file in
myproject/projectname/src/java/com/oracle/communications/brm/cc/ws/account,
where myproject is your NetBeans IDE Billing Care customizations project and
projectname is the name of your custom project.

2. Add the following code in the CustomAccountResource.java file using a text
editor:

//This custom REST validates the deal end month with the obligation and then
calls the OOTB REST resource.

@Path("customaccounts")
public class CustomAccountResource {

@Context
HttpServletRequest servletRequest;

@Path("{id}/custombundle")
@POST
@Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public void purchaseCustomizedBundle(@PathParam("id") String id,

CustomizedBundleForPurchase custbundle) throws JSONException, IOException {

/*
* Get the list of all CustomizedChargeOffers using

Restricting Bundle Validity

Restricting Bundle Validity Based on Roles 32-3

getCustomizedChargeOffers() method of CustomizedBundleForPurchase class.
*/
List <CustomizedChargeOffers> custoffer =
custbundle.getCustomizedChargeOffers();

List <CustomizedDiscountOffers> custDistOffer =
custbundle.getCustomizedDiscountOffers();
/*

* Iterate through each charge offer and get the purchaseEnd months and
validate the same against OES obligation
*/
for (CustomizedChargeOffers i : custoffer)
{
purchaseEnd=i.getPurchaseEnd();
months=purchaseEnd.getUnitSettings().getOffset();

UIRequestValue maxValidityEndMonthLimit = new UIRequestValue("Maximum
validity end month",
new BigDecimal(months), ConstraintOperator.GREATER_THAN,

new EnforcementError(40002,"Maximum validity end month exceeded"));

//Checks if user is not super csr and UI value is greater than OES
obligation value and throws error "Maximum validity end month exceeded"
if (!EnforcementUtil.isResourceGranted(servletRequest, subject,
"BillingCare", EnforcementConstants.SUPERUSER_RESOURCE)) {

EnforcementUtil.checkAccess(subject, "BillingCare", "Purchase",
"DealResourceType","DealResource",
error, maxValidityEndMonthLimit);
}
}

Repeat the above validations for all the discount offers as well by
iterating through custDistOffer.
/*
*After validating maximum validity end month criteria invoke out of the
box code to perform purchase.In below steps
*we have used jersey clients to achieve the same.
*/

1. Create a new Jersey Client
2. Create a webresource passing the baseURI (
host:port/bc/webresources/v1.0/accounts/id/bundle).
3. Convert custbundle java object to json object.

String scheme = servletRequest.getScheme(); // http or https
String serverName = servletRequest.getServerName(); // hostname.com
int serverPort = servletRequest.getServerPort(); // port
String BASE_URI = scheme + " + serverName + ":" + serverPort +
"/bc/webresources/v1.0/accounts/";
Client client = Client.create();
ObjectMapper mapper = new ObjectMapper();
String jsonInString = mapper.writeValueAsString(custbundle);
JSONObject object = new JSONObject(jsonInString);

javax.servlet.http.Cookie[] cookies=servletRequest.getCookies();
WebResource webResource2 = client.resource(BASE_URI).path(id).path("bundle");

WebResource.Builder webresourceBuilder =
webResource2.accept(MediaType.APPLICATION_JSON);

Restricting Bundle Validity

32-4 Billing Care SDK Guide

Cookie cookieObject =null;

for(javax.servlet.http.Cookie cookie: cookies)
{

if(cookie.getName().contains("JSESSIONID"))
{

cookieObject = new Cookie(cookie.getName(),cookie.getValue());

webresourceBuilder.cookie(cookieObject);
}

}
webresourceBuilder.post(ClientResponse.class, object);
}
}

3. Save the file in your NetBeans IDE project.

Creating a Custom Purchase View Model
Billing Care uses view model to define the display of the screens in Billing Care. You
must create or update the custom view model, CustomPurcahseViewModel, and add
the details containing the logic to validate the end date for offers and allow purchase.

See "About View Models" for more information about Billing Care view models.

To create a custom purchase view model:

1. Create or update the customPurchaseViewModel.js file in
myproject/web/custom/viewmodels directory.

2. Add the following code in the customPurchaseViewModel.js file using a text
editor:

define(['knockout',
'jquery',
'underscore',
Registry.accountCreation.wizardBase,
'viewmodels/purchase/PurchaseViewModel',
Registry.purchase.wizardView,
'viewmodels/purchase/PurchaseCatalogue'
],
function (ko, $, _, WizardBaseViewModel, PurchaseViewModel,

wizardTempl, PurchaseCatalogue) {

CustomPurchaseViewModel.prototype = new WizardBaseViewModel();

function CustomPurchaseViewModel(title, content, messages) {
WizardBaseViewModel.apply(this, arguments);
PurchaseViewModel.apply(this, arguments);
var self = this;

self.sharedData = {};
self.purchaseCatalogue = new PurchaseCatalogue();
self.purchaseBundle = function (stepObj) {

var id = self.sharedData.selectedServiceId ||

globalAppContext.currentAccountViewModel().account().id();
var urlToFetch = baseURL + "/customaccounts/" + id +

Restricting Bundle Validity

Restricting Bundle Validity Based on Roles 32-5

"/custombundle";
var data =

ko.toJSON(self.purchaseCatalogue.bundlePurchaseData);
util.showBusyCursor();
var ajaxDef = $.ajax({

type: "POST",
url: urlToFetch,
data: data,
contentType: "application/json; charset=utf-8",
dataType: "json",
processData: false

});
ajaxDef.done(function (completeResponse) {

self.updateStatus(stepObj, 'confirmation');
EventNotifier.assetsUpdated.dispatch("all");
EventNotifier.billUnitsUpdated.dispatch();
self.isInProgress(false);
util.resetCursor();
self.close();

});
ajaxDef.fail(function (errorThrown) {

alert(util.getLocalizedValue(purchasePackage,
"UNABLE_TO_PURCHASE_BUNDLE"));

self.updateStatus(stepObj, 'error');
self.isInProgress(false);
util.resetCursor();

});
return ajaxDef;

};
}
return CustomPurchaseViewModel;

});

3. Save the file in your NetBeans IDE project.

Configuring the Custom Purchase View Model in the Registry
After creating the required custom view model, create a custom purchase view model
entry in the customRegistry.js file. Billing Care uses the custom purchase view model
instead of the default view model during additional product purchase and renders the
Purchase Add on Deal Confirmation screen containing your customization.

To create the custom purchase view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom event adjustment view model entry in this file. For example:

purchaseConfiguration: {
viewmodel: 'custom/viewModels/purchase/customPurchaseViewModel.js'

}

3. Save the file in your NetBeans IDE project.

Restricting Bundle Validity

32-6 Billing Care SDK Guide

33

Making Notes Field Mandatory 33-1

33Making Notes Field Mandatory

[34]This chapter describes how to make the Notes field mandatory for additional product
purchase and event adjustments.

To make the Notes field mandatory, see the following:

■ Making Notes Mandatory for Additional Product Purchase

■ Making Notes Mandatory for Event Adjustments

Making Notes Mandatory for Additional Product Purchase
You can make the Notes field on the Purchase Add on Deal Confirmation screen
mandatory by customizing the screen using the Billing Care SDK.

To make the Notes field mandatory:

1. Create a custom view model to override the default view of the Purchase Add on
Deal Confirmation screen. See "Creating a Custom Purchase Deal View Model" for
more information.

2. Create a customRegistry.js file to configure Billing Care to use the custom view
model that you created. See "Configuring the Custom Purchase View Model in the
Registry" for more information.

3. Deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Creating a Custom Purchase Deal View Model
Billing Care uses view model to define the display of the screens in Billing Care. You
must create or update the custom view model, CustomPurcahseViewModel, and add
the details containing the logic to make the Notes field mandatory.

See "About View Models" for more information about Billing Care view models.

To create a custom purchase deal view model:

1. Create or update the customPurchaseViewModel.js file in
myproject/web/custom/viewmodels directory, where myproject is the folder
containing your NetBeans IDE project.

2. Add the following code in the customPurchaseViewModel.js file using a text
editor:

define(['jquery', 'knockout',
'viewmodels/purchase/PurchaseConfigurationViewModel'],

function ($, ko, PurchaseConfigurationViewModel) {

Making Notes Mandatory for Event Adjustments

33-2 Billing Care SDK Guide

function CustomPurchaseViewModel() {
PurchaseConfigurationViewModel.apply(this, arguments);
self = this;

self.isValid = function () {
$("#enterNotesTextArea").attr('name',

'enterNotesWithoutReason');
if (self.note.isValid() && self.note.validator &&

self.note.validator.form() && self.note.comments.comment()) {
return true;

}
return false;

};
}
CustomPurchaseViewModel.prototype = new

PurchaseConfigurationViewModel();
return CustomPurchaseViewModel;

});

3. Save the file in your NetBeans IDE project.

Configuring the Custom Purchase View Model in the Registry
After creating the required custom view model, create a custom purchase view model
entry in the customRegistry.js file. Billing Care uses the custom purchase view model
instead of the default view model during additional product purchase and renders the
Purchase Add on Deal Confirmation screen containing your customization.

To create the custom purchase view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom event adjustment module in this file. For example:

purchaseConfiguration: {
viewmodel: 'custom/viewmodels/customPurchaseViewModel.js'

}

3. Save the file in your NetBeans IDE project.

Making Notes Mandatory for Event Adjustments
You can make the Notes field in the Event Adjustment dialog box mandatory by
customizing the dialog box using the Billing Care SDK.

To make the Notes field mandatory:

1. Create a custom view model to override the default view of the Event Adjustment
dialog box. See "Creating a Custom Event Adjustment View Model" for more
information.

2. Create a customRegistry.js file to configure Billing Care to use the custom view
model that you created. See "Configuring the Custom Event Adjustment View
Model in the Registry" for more information.

3. Deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Making Notes Mandatory for Event Adjustments

Making Notes Field Mandatory 33-3

Creating a Custom Event Adjustment View Model
Billing Care uses view model to define the display of the screens in Billing Care. You
must create or update the custom view model, CustomEventAdjustmentViewModel,
and add the details containing the logic to make the Notes field mandatory.

See "About View Models" for more information about Billing Care view models.

To create the custom event adjustment view model:

1. Create the customEventAdjustmentViewModel.js file in
myproject/web/custom/viewmodels directory, where myproject is the folder
containing your NetBeans IDE project.

2. Add the following code in the customEventAdjustmentViewModel.js file using a
text editor:

define(['jquery', 'knockout',
'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'

],
function($, ko, EventAdjustmentViewModel) {

function customViewModel() {
EventAdjustmentViewModel.apply(this, arguments);
self = this;
self.isValid = function() {

/**
* Here "if(isGranted)" condition is added for

authorization.
* create customAction in resource and use it in below function
* util.isGrantedResourceAction("customAction", "NoteResource");
*
* Use below line directly without "if(isGranted)" condition if OES

enforcement is not needed
* $("#enterNotesTextArea").attr('name',

'enterNotesWithoutReason');
*

*/
var isGranted =

util.isGrantedResourceAction("customAction", "NoteResource");
if (isGranted) {

$("#enterNotesTextArea").attr('name',
'enterNotesWithoutReason');

}
if (self.note.isValid() && self.validator &&

self.validator.form()) {
return true;

}
return false;

};
}
customViewModel.prototype = new EventAdjustmentViewModel();
return customViewModel;

});

3. Save the file in your NetBeans IDE project.

Configuring the Custom Event Adjustment View Model in the Registry
After creating the required custom view model, create a custom event adjustment
model entry in the customRegistry.js file. Billing Care uses the custom event

Making Notes Mandatory for Event Adjustments

33-4 Billing Care SDK Guide

adjustment view model instead of the default event adjustment view model during
adjustments and renders the Event Adjustment dialog box containing your
customization.

To create the custom event adjustment module entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom event adjustment module in this file. For example:

eventAdjustment: {
viewmodel: 'custom/viewmodels/customEventAdjustmentViewModel.js'

}

3. Save the file in your NetBeans IDE project.

34

Filtering Start and End Dates for Additional Purchase 34-1

34Filtering Start and End Dates for Additional
Purchase

[35]This chapter provides an overview of customizing the Oracle Communications Billing
Care to filter Purchase, Recurring (cycle), and Usage start and end dates displayed
during additional purchase configuration.

About Customizing Purchase Configuration
You configure new or additional products or services added to an account by clicking
Configure in the Purchase Catalogue screen. In the Configure screen, multiple start
and end date options are displayed for configuring activation, recurring cycles, and
usage of the selected product or service.

You can customize Billing Care to filter these start and end date options to display
only calendar days for the start date and the number of months for the end date by
using the Billing Care SDK. You can also hide the Recurring (cycle) and Usage
sections by using the Billing Care SDK.

Filtering Start and End Date Options
You can customize the purchase configuration screen using the Billing Care SDK to
display only the specific start and end date options for activation, recurring fees, and
usage of the selected additional product or service.

To filter start and end date options:

1. Create a custom purchase configuration view model to override the default
purchase configuration flow. See "Creating a Custom Purchase Deal Configuration
View Model" for more information.

2. Configure the custom purchase configuration view model entry in the
customRegistry.js file to use the custom view model that you created. See
"Configuring the Custom Purchase Configuration View Model in the registry" for
more information.

3. Deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Creating a Custom Purchase Deal Configuration View Model
Billing Care uses view model to define the display of the screens in Billing Care. You
must create or update the custom view model,

Filtering Start and End Date Options

34-2 Billing Care SDK Guide

CustomPurchaseConfigurationViewModel, and add the details containing the logic
to filter Purchase, Recurring (cycle), and Usage start and end dates.

See "About View Models" for more information about Billing Care view models.

To create a custom purchase deal configuration view model:

1. Create the customPurchaseConfigurationViewModel.js file in
myproject/web/custom/viewmodels directory, where myproject is the folder
containing your NetBeans IDE project.

2. Add the following code in the customPurchaseConfigurationViewModel.js file
using a text editor:

define(['knockout',
'jquery',
'underscore',
Registry.accountCreation.wizardBase,
Registry.accountCreationConfigure.purchaseConfiguration.validator,
'viewmodels/accountCreation/configure/PurchaseConfigurationViewModel',
'ojs/ojcore', 'ojs/ojknockout', 'ojs/ojdatetimepicker',

'ojs/ojcheckboxset', 'knockout-extension'],
function (ko, $, _, WizardBaseViewModel,

ProductCustomizationValidator, PurchaseConfigurationViewModel, oj) {
function CustomPurchaseConfigurationViewModel() {

PurchaseConfigurationViewModel.apply(this, arguments);
...
...

}
CustomPurchaseConfigurationViewModel.prototype = new

PurchaseConfigurationViewModel();
return CustomPurchaseConfigurationViewModel;

}
);

// Below observable arrays hold the options to be shown in the Product
Configuration Screen
// Each entry in the Observable Array is stored as an Object which has
three attributes
// label : the text which will be shown in the UI dropdown
// value : this attribute stores the value of the option used in viewmodel
to create the JSON to be sent to REST
// disable : this attribute tells the dropdown whether it will be enabled
to click or not
// The SUPERSET for the dropdown options in OOTB is below.
// ([
// {label: util.getLocalizedValue(productCustomization, 'TODAY'),
value:TODAY,disable: ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization, 'NEVER'),
value:NEVER,disable: ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'WHEN_PURCHASE_ACTIVATION_BEGINS'),value:WHEN_PURCHASE_ACTIVATION_BEGINS,
disable: ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'CALENDAR_DAY'),value:CALENDER_DAY, disable: ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'DELIMITER_OPTION'),value:'-1', disable: ko.observable(true)},
// {label: util.getLocalizedValue(productCustomization,
'CYCLES_AFTER_ACTIVATION'),value:CYCLES_AFTER_ACTIVATION, disable:
ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'MONTHS_AFTER_ACTIVATION'),value:MONTHS_AFTER_ACTIVATION, disable:

Filtering Start and End Date Options

Filtering Start and End Dates for Additional Purchase 34-3

ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'DAYS_AFTER_ACTIVATION'),value:DAYS_AFTER_ACTIVATION, disable:
ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'HOURS_AFTER_ACTIVATION'),value:HOURS_AFTER_ACTIVATION, disable:
ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'MINUTES_AFTER_ACTIVATION'),value:MINUTES_AFTER_ACTIVATION, disable:
ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'SECONDS_AFTER_ACTIVATION'),value:SECONDS_AFTER_ACTIVATION, disable:
ko.observable(false)}
//]);
// The values which are used in VM for JSON creation are :
// NOTE : do not override these variables
// var TODAY = "today";
// var CALENDAR_DAY = "calendar-day";
// var NEVER = "never";
// var SECONDS_AFTER_ACTIVATION = "seconds";
// var MINUTES_AFTER_ACTIVATION = "minutes";
// var DAYS_AFTER_ACTIVATION = "days";
// var HOURS_AFTER_ACTIVATION = "hours";
// var MONTHS_AFTER_ACTIVATION = "months";
// var CYCLES_AFTER_ACTIVATION = "cycles";
// var
WHEN_PURCHASE_ACTIVATION_BEGINS="when-purchase-activation-begins";

self.productActivationDateOptions - observable array which should be
overridden dropdown options for Product Activation

self.productDeactivationDateOptions - observable array which should be
overridden dropdown options for Product De-activation

self.productStartCycleDateOptions - observable array which should be
overridden dropdown options for Cycle/Recurring Start

self.productStopCycleDateOptions - observable array which should be
overridden dropdown options for Cycle/Recurring Stop

self.productStartUsageDateOptions - observable array which should be
overridden dropdown options for Usage Start

self.productStopUsageDateOptions - observable array which should be
overridden dropdown options for Usage Stop

3. Modify the following entries in the file as required to filter the date options
displayed in the Configure screen:

■ productActivationDateOptions

■ productDeactivationDateOptions

■ productStartCycleDateOptions

■ productStopCycleDateOptions

■ productStartUsageDateOptions

■ productStopUsageDateOptions

For example, if product deactivation list in the Configure screen has to be
modified to include only CYCLES_AFTER_ACTIVATION and MONTHS_AFTER_
ACTIVATION options, override the productDeactivationDateOptions entry in
the file to include only these options:

self.productDeactivationDateOptions = ko.observableArray([
{label: util.getLocalizedValue(productCustomization,

Filtering Start and End Date Options

34-4 Billing Care SDK Guide

'CYCLES_AFTER_ACTIVATION'), value: 'cycles', disable: ko.observable(false)},
{label: util.getLocalizedValue(productCustomization,

'MONTHS_AFTER_ACTIVATION'), value: 'months', disable: ko.observable(false)},
]);

4. (Optional) To hide the complete Recurring (cycle) section, set the
showProductConfigureCycleSection entry in the file to false:

self.showProductConfigureCycleSection = ko.observable(false);

5. (Optional) To hide the complete Usage section, set the
showProductConfigureUsageSection entry in the file to false:

self.showProductConfigureUsageSection = ko.observable(false);

// BRM mandates that -
// Cycle/Usage START is always greater than or equal to Purchase START
// Cycle/Usage END is always less than or equal to Purchase END
// If Cycle/Usage section is hidden, then their START and END must be set

same
// as that of Purchase START and END
// Override Cycle/Usage variables as below to map it to Purchase

self.cycleStart = ko.computed(function(){
return self.purchaseStart();

});
self.cycleEnd = ko.computed(function(){

return self.purchaseEnd();
});
self.cycleEndRelativeValue = ko.computed(function(){

return self.purchaseDeactivationRelativeValue();
});
self.usageStart = ko.computed(function(){

return self.purchaseStart();
});
self.usageEnd = ko.computed(function(){

return self.purchaseEnd();
});
self.usageEndRelativeValue = ko.computed(function(){

return self.purchaseDeactivationRelativeValue();
});

6. Save the file in your NetBeans IDE project.

Configuring the Custom Purchase Configuration View Model in the registry
After creating the required custom view model, create a custom purchase
configuration view model entry in the customRegistry.js file. Billing Care uses the
custom purchase configuration view model instead of the default view model during
additional product purchase and renders the Configure screen containing your
customization.

To create the custom purchase configuration view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom event adjustment module in this file. For example:

accountCreationConfigure: {
purchaseConfiguration:

{
viewmodel:

Filtering Start and End Date Options

Filtering Start and End Dates for Additional Purchase 34-5

"custom/viewmodels/CustomPurchaseConfigurationViewModel.js"
},

},

3. Save the file in your NetBeans IDE project.

Filtering Start and End Date Options

34-6 Billing Care SDK Guide

35

Customizing Billing Care to Disable Links in the Bills Tab 35-1

35Customizing Billing Care to Disable Links in
the Bills Tab

[36]This chapter describes how to customize Oracle Communications Billing Care to
disable the Charges not related to services link and the link to child accounts in the
Bills tab, My Charges area, and Payment Details dialog box.

About Disabling Link to Child Accounts
By default, Billing Care displays the link to child accounts in the Bills tab, My Charges
area, and Payment Details dialog box to navigate to the child accounts and the
Charges not related to services link in the My Charges area to view the account-level
charges.

However, you can customize Billing Care to disable these links displayed in the parent
account by using the Billing Care SDK.

Disabling Links in the Bills Tab
You can customize Billing Care using the Billing Care SDK to disable the following:

■ Link to the child accounts in the Bills tab and Payment Details dialog box.

■ Charges not related to services link in the My Charges area in the Bills tab.

To customize Billing Care to disable links in the Bills tab:

1. Create a custom ResourceType and Resource in the OES server for disabling links.
For example, BillsResourceType, BillsResource.

2. Define the corresponding action for the custom ResourceType in the OES server.

You can specify Reason ID as the action name when you define the actions.

3. Add the new ResourceType to the CustomConfigurations.xml file. For example:

<keyvals>
<key>authorizationResourceTypes</key>
<value>BillsResourceType</value>
<desc>Add comma separated OES Resource Types(values) for authorization.
Also these resource types should be defined in OES.
Please note that the key should not be changed here.
</desc>
</keyvals>

4. Create custom view models containing overrides to hide the link in the Bills tab.
See "Creating the Custom Event Adjustment View Model" for more information.

Disabling Links in the Bills Tab

35-2 Billing Care SDK Guide

5. Create a customRegistry.js file configuring Billing Care to use the custom view
models that you created. See "Configuring Custom Bill, Charges, and Payment
Detail View Models in the Registry" for more information.

6. Deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Creating the Custom Event Adjustment View Model
Billing Care uses view model to define the display of the Bills tab, My Charges area,
and Payment Details dialog box. You must create or update the custom view models,
CustomPaymentDetailsViewModel , CustomBillDetailsViewModel, and
CustomBillChargesViewModel, containing overrides to disable Charges not related
to services link and link to child accounts in these screens.

See "About View Models" for more information about Billing Care view models.

To create custom view models to disable links in the Bills tab:

1. Create or update the customPaymentDetailsViewModel.js ,
customBillDetailsViewModel.js , and customBillChargesViewModel.js files in
myproject/web/custom/viewmodels directory, where myproject is the folder
containing your NetBeans IDE project.

2. To disable link to child accounts, do the following:

a. Add the following code in the customPaymentDetailsViewModel.js file
using a text editor:

define(['jquery', 'knockout',
'viewmodels/payment/allocations/PaymentDetailsViewModel'

],
function($, ko, PaymentDetailsViewModel) {

function customPaymentDetailsViewModel() {
PaymentDetailsViewModel.apply(this, arguments);
$(function() {

var myVar = setInterval(function() {
if ($("strong:contains(Associated to)").length >

0)
{

if
(!util.isGrantedResourceAction("parentAccountLink", "customResource")){

$("strong:contains(Associated
to)").each(function() {

$(this).next().off("click");
});

}
clearInterval(myVar);

}
}, 20);

});
}

customPaymentDetailsViewModel.prototype = new
PaymentDetailsViewModel();

return customPaymentDetailsViewModel;
});

b. Save the file in your NetBeans IDE project.

c. Add the following code in the customBillDetailsViewModel.js file using a
text editor:

Disabling Links in the Bills Tab

Customizing Billing Care to Disable Links in the Bills Tab 35-3

define(['jquery', 'knockout',
'viewmodels/billtab/BillDetailsViewModel'

],
function($, ko, BillDetailsViewModel) {

function customBillDetailsViewModel() {
BillDetailsViewModel.apply(this, arguments);
$(function() {

var myVar = setInterval(function() {
if ($("a#childAccountLink").length > 0)
{

if
(!util.isGrantedResourceAction("parentAccountLink", "customResource")) {

$("a#childAccountLink").each(function(index)
{

$(this).off("click");
});

}
clearInterval(myVar);

}
}, 20);

});
}
customBillDetailsViewModel.prototype = new

BillDetailsViewModel();
return customBillDetailsViewModel;

});

d. Save the file in your NetBeans IDE project.

e. Add the following code in the customBillChargesViewModel.js file using a
text editor:

define(['jquery', 'knockout',
'viewmodels/billtab/BillChargesViewModel'

],
function($, ko, BillChargesViewModel) {

function customBillChargesViewModel() {
BillChargesViewModel.apply(this, arguments);
$(function() {

var myVar = setInterval(function() {
if ($('#adjustbillListMenu').length > 0)
{

if
(!util.isGrantedResourceAction("parentAccountLink", "customResource")) {

if ($("a#parentAccountLink").length > 0) {

$("a#parentAccountLink").off("click");
});

}
clearInterval(myVar);

}
}, 20);

});
}
customBillChargesViewModel.prototype = new

BillChargesViewModel();
return customBillChargesViewModel;

});

Disabling Links in the Bills Tab

35-4 Billing Care SDK Guide

f. Save the file in your NetBeans IDE project.

3. To disable Charges not related to services link in the My Charges area, do the
following:

a. Update the code in the customBillChargesViewModel.js file using a text
editor as shown below:

define(['jquery', 'knockout',
'viewmodels/billtab/BillChargesViewModel'

],

function($, ko, BillChargesViewModel) {
function customBillChargesViewModel() {

BillChargesViewModel.apply(this, arguments);
$(function() {

var myVar = setInterval(function() {
if ($('#adjustbillListMenu').length > 0 ||

$("a#parentAccountLink").length >
0)

{

if
(!util.isGrantedResourceAction("parentAccountLink", "customResource")) {

if ($("a#parentAccountLink").length > 0) {

$("a#parentAccountLink").off("click");
});

}
clearInterval(myVar);

}
}, 20);

});
$(function() {

var myVar = setInterval(function() {
if ($('#accountChargesHeader').length > 0)

{
if (!util.isGrantedResourceAction("otherCharges",

"customResource")){
$('#accountChargesHeader').remove();
$('#accountCharges').remove();

}
clearInterval(myVar);

}
}, 40);

});

$(function() {
var myVar = setInterval(function() {

if ($('#otherAccountChargesHeader').length > 0)
{

if (!util.isGrantedResourceAction("otherCharges",
"customResource")){

$('#otherAccountChargesHeader').remove();
$('#otherAccountCharges').remove();

Disabling Links in the Bills Tab

Customizing Billing Care to Disable Links in the Bills Tab 35-5

}
clearInterval(myVar);

}
}, 40);

});
}
customBillChargesViewModel.prototype = new

BillChargesViewModel();
return customBillChargesViewModel;

});

b. Save the file in your NetBeans IDE project.

c. Add the following code in the customBillDetailsViewModel.js file using a
text editor:

self.openChildAccount = function(data, event) {
if (!util.isGrantedResourceAction("parentAccountLink",

"customResource")) {
return false;

}
self.__proto__.openChildAccount(data, event);

};

d. Save the file in your NetBeans IDE project.

Configuring Custom Bill, Charges, and Payment Detail View Models in the Registry
After creating or updating the CustomPaymentDetailsViewModel ,
CustomBillDetailsViewModel, and CustomBillChargesViewModel view models,
create the custom view model entries in the customRegistry.js file to use the custom
view models when displaying bill, charges, and payment details. Billing Care uses the
custom bill tab, bill charges, and payment details view models instead of the default
entries when displaying the bills, charges, and payment details.

To create the bill tab, bill charges, and payment details view model entries in the
registry:

1. Create a customRegistry.js file in myproject/web/custom.

2. Define the entries referencing the custom view models in this file. For example:

billTab: {

billChargesViewModel:
'custom/js/viewmodel/customBillChargesViewModel.js'

billDetailsViewModel:
'custom/js/viewmodels/CustomBillDetailsViewModel.js'

}

allocatePaymentDetails: {
viewmodel: 'custom/js/viewmodels/CustomPaymentDetailsViewModel.js'

}
3. Save the file in your NetBeans IDE project.

Disabling Links in the Bills Tab

35-6 Billing Care SDK Guide

36

Customizing Display of Assets Section 36-1

36Customizing Display of Assets Section

[37]This chapter describes how to customize Oracle Communications Billing Care Assets
section in the Home tab.

About Customizing Display of Assets Section
In Billing Care, the Assets section in the Home tab displays the services and related
charge offers and discount offers purchased for an account. Each service is displayed
in an Asset card. You can view details of the assets of all bill units by clicking Bill Unit
(All). You can also click an Asset card’s Action menu and select Show Asset Details to
view more information about the asset.

You can perform the following in the Assets section by using the Billing Care SDK:

■ Hiding Bill Units in the Home Tab

■ Disabling Actions Menu in the Assets Section

■ Hiding the Service Icon in Assets Card

Hiding Bill Units in the Home Tab
This section provides a high-level overview of the process on how to customize the
Home tab in Billing Care to hide individual Bill Unit area and Show Bill Units in case
of multiple bill units.

To customize Billing Care to hide bill units in the home tab:

1. Create custom view model to define the display of the Home tab. See "Creating
Custom Home Tab View Model to Hide Bill Units" for more information.

2. Create a customRegistry.js file configuring Billing Care to use the custom view
model created in step 1. See "Configuring the Custom Home Tab View Model in
the Registry" for more information.

3. Package and deploy your customization to your Billing Care domain using one of
the methods described in "Using an Exploded Archive during Customization" or
"Packaging and Deploying Customizations".

Creating Custom Home Tab View Model to Hide Bill Units
Billing Care uses the view model to define the display of the Home tab. You must
create the custom view model, CustomHomeTabViewModel, containing overrides for
the default Home tab. See "About View Models" for more information about Billing
Care view models.

Hiding Bill Units in the Home Tab

36-2 Billing Care SDK Guide

To create custom home tab view model to hide bill units:

1. Create the customHomeTabViewModel.js file in the
myproject/web/custom/js/viewmodels/homeTab directory, where myproject is the
folder containing your NetBeans IDE project.

2. Open the customHomeTabViewModel.js file using a text editor and add the code
as shown in Example 36–1.

Example 36–1 Sample code to hide Bill Units in the Home tab

define([
'jquery',
'underscore',
'knockout',
Registry.base.viewmodel,
'viewmodels/hometab/HomeTabViewModel'

],
function ($, _, ko, BaseViewModel, HomeTabViewModel) {

function customHomeTabViewModel() {
HomeTabViewModel.apply(this, arguments);
var self = this;

$(function() {

if(util.checkEmbeddedHtml()){

var myVar = setInterval(function() {

if($('#allBillUnits').is(":visible"))
{
$("#allBillUnits").remove();
clearInterval(myVar);

}
if($('#billUnits_all').is(":visible"))

{
$("#billUnits_all").remove();
clearInterval(myVar);

}
if($('#showHide').is(":visible"))

{
$("#showHide").remove();
clearInterval(myVar);

}
}, 20);
}

});
}

customHomeTabViewModel.prototype = new HomeTabViewModel();
return customHomeTabViewModel;

});

3. Save the file in your NetBeans IDE project.

Disabling Actions Menu in the Assets Section

Customizing Display of Assets Section 36-3

Configuring the Custom Home Tab View Model in the Registry
Create a custom entry in your customRegistry.js file. Billing Care uses the custom
model instead of the default entry and renders Home tab containing your custom
fields. See "About the Registry File" for more information.

To configure the custom home tab view model in the registry:

1. Create a customRegistry.js file in the myproject/web/custom/ directory.

2. Define the custom view model in this file. See Example 36–2.

Example 36–2 Sample hiding Bill Units in the Home tab registry entry

homeTab: {
viewmodel: 'custom/js/viewModels/hometab/customHomeTabViewModel.js'

}
3. Save the file in your NetBeans IDE project.

Disabling Actions Menu in the Assets Section
This section provides a high-level overview of the process on how to customize Billing
Care to disable the Actions menu in the Assets section.

To disable Actions menu in the Assets section:

1. Create custom view model to define the disabling of the Actions menu in the
Assets section. See "Creating Custom View Model to Disable Actions Menu" for
more information.

2. Create a customRegistry.js file configuring Billing Care to use the custom view
model created in step 1. See "Configuring the Custom Assets Section View Model
in the Registry" for more information.

3. Package and deploy your customization to your Billing Care domain using one of
the methods described in "Using an Exploded Archive during Customization" or
"Packaging and Deploying Customizations".

Creating Custom View Model to Disable Actions Menu
Billing Care uses the view model to define the disabling of the Actions menu in the
Assets section. You must create the custom view model, CustomAssetViewModel,
containing overrides for the default Actions menu. See "About View Models" for more
information about Billing Care view models.

To create custom view model to disable Actions menu:

1. Create the customAssetViewModel.js file in the
myproject/web/custom/js/viewmodels/customerAssets directory.

2. Open the customAssetViewModel.js file in a text editor and add the code as
shown in Example 36–3.

Example 36–3 Sample code to disable Actions menu in the Assets section

define(['ojs/ojcore', 'ojtranslations/nls/ojtranslations',
'ojs/ojvalidation', 'ojs/ojdatetimepicker',

'jquery',
'underscore',
'knockout',
'knockout-mapping',
Registry.base.viewmodel,

Disabling Actions Menu in the Assets Section

36-4 Billing Care SDK Guide

'viewmodels/customerAssets/AssetViewModel',
Registry.balances.bindings

],
function (oj, delojt, delojv, delojdatepicker, $, _, ko, komapping,

BaseViewModel, AssetViewModel) {

function customAssetViewModel() {
AssetViewModel.apply(this, arguments);
var self = this;

if(util.checkEmbeddedHtml()){

self.disableActionsMenu(true);

//Override OOTB showOfferDetails method()

self.showOfferDetails = function () {

self.isOfferDetailsVisible(true);
self.disableActionsMenu(true);
var assetsCardArray = [];
if (sessionStorage.getItem("assetsCards") !== null) {

assetsCardArray =
JSON.parse(sessionStorage.getItem("assetsCards"));

}
assetsCardArray.push(self.assetCard);
sessionStorage.setItem("assetsCards",

JSON.stringify(assetsCardArray));

};
}

}

customAssetViewModel.prototype = new AssetViewModel();

return customAssetViewModel;
});

3. Save the file in your NetBeans IDE project.

Configuring the Custom Assets Section View Model in the Registry
Create a custom entry in your customRegistry.js file. Billing Care uses the custom
model instead of the default entry and renders the Assets section containing your
custom fields. See "About the Registry File" for more information.

To configure the custom Assets section view model in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom view model in this file. See Example 36–4.

Example 36–4 Sample Assets section Registry Entry

customerAssets: {
containedViewModel:

'custom/js/viewModels/customerAssets/customAssetViewModel.js'
}

Hiding the Service Icon in Assets Card

Customizing Display of Assets Section 36-5

3. Save the file in your NetBeans IDE project.

Hiding the Service Icon in Assets Card
To hide the service icon in Assets card:

1. Copy the SDK_home/BillingCare_SDK/references/Configurations.xml file to the
myproject/web/custom/configurations directory, where SDK_home is the directory
in which you installed the Billing Care SDK.

2. Open the copied file using a text editor and remove the serviceTypes.icons key
values.

For more information, see "Editing the Billing Care Configuration File".

3. Save and close the file.

4. Open the customAssetViewModel.js file using a text editor in the
myproject/web/custom/js/viewmodels/customerAssets directory, and add the code
as shown in Example 36–5.

Example 36–5 Sample code to hide service icons

define(['ojs/ojcore', 'ojtranslations/nls/ojtranslations',
'ojs/ojvalidation', 'ojs/ojdatetimepicker',

'jquery',
'underscore',
'knockout',
'knockout-mapping',
Registry.base.viewmodel,
'viewmodels/customerAssets/AssetViewModel',
Registry.balances.bindings

],
function (oj, delojt, delojv, delojdatepicker, $, _, ko, komapping,

BaseViewModel, AssetViewModel) {
function customAssetViewModel() {

AssetViewModel.apply(this, arguments);
var self = this;

if(util.checkEmbeddedHtml()){

$(function () {
var myVar = setInterval(function () {

if
($('.customerAssets-workspace-card-header-icon').is(":visible"))

{

$(".customerAssets-workspace-card-header-ic
on").remove();

clearInterval(myVar);
}

}, 20);

var myVar1 = setInterval(function () {

if
($('.custmerAssets-workspace-card-header-fromplan').is(":visible"))

Hiding the Service Icon in Assets Card

36-6 Billing Care SDK Guide

{

$(".custmerAssets-workspace-card-header-fromplan").css({"margin-top": "20px",
"margin-left": "10px"});

clearInterval(myVar1);

}
}, 20);

});
}
}

customAssetViewModel.prototype = new AssetViewModel();

return customAssetViewModel;
});

5. Save the file in your NetBeans IDE project.

6. Create a custom entry in your customRegistry.js file. Billing Care uses the custom
model instead of the default entry and renders the Assets section containing your
custom fields. See "Configuring the Custom Assets Section View Model in the
Registry".

7. Package and deploy your customization to your Billing Care domain using one of
the methods described in "Using an Exploded Archive during Customization" or
"Packaging and Deploying Customizations".

37

Customizing Bills Graph and Balances Sections 37-1

37Customizing Bills Graph and Balances
Sections

[38]This chapter describes how to customize the Bills Graph and Balances sections in the
Oracle Communications Billing Care Home tab.

About Customizing Bills Graph and Balances Sections
The Bills Graph and Balance sections in the Home tab display the graphic overview of
the account or the bill unit information and balances respectively.

You can customize the Bills Graph and Balances sections based on your requirements
by using the Billing Care SDK. For example, you can override the complete Bills Graph
and Balances sections with your custom Bills Graph and Balances sections.

For more information, see the following:

■ Customizing Bills Graph Section

■ Customizing Balances Section

Customizing Bills Graph Section
This section provides a high-level overview of the process on how to customize the
Bills Graph section in the Home tab.

To customize the Bills Graph section:

1. Create a custom view model to define the override for the default Home tab. See
"Creating Custom Home Tab View Model" for more information.

2. Create a custom view model to define the override for the Bills Graph section
based on your requirement; for example, CenterViewModel.js, in the
myproject/web/custom/viewmodels directory, where myproject is the folder
containing your NetBeans IDE project. See "About View Models" for more
information on creating the view models.

3. Create a custom view model HTML template for overriding the Bills Graph
section. See "Creating Custom View Model HTML Template for Customizing Bills
Graph".

4. Create a customRegistry.js file configuring Billing Care to use the custom view
models created in step 1 and 2. See "Configuring Custom View Models for
Customizing Bills Graph in the Registry" for more information.

Customizing Bills Graph Section

37-2 Billing Care SDK Guide

5. Package and deploy your customization to your Billing Care domain using one of
the methods described in "Using an Exploded Archive during Customization" or
"Packaging and Deploying Customizations".

Creating Custom Home Tab View Model
Billing Care uses the view model to define the display of the Home tab. You must
create the custom view model, CustomHomeTabBillUnitsViewModel, containing
overrides for the default Home tab. See "About View Models" for more information
about Billing Care view models.

To create a custom home tab view model:

1. Create the CustomHomeTabBillUnitsViewModel.js file in the
myproject/web/custom/viewmodels/homeTab directory.

2. Open the CustomHomeTabBillUnitsViewModel.js file using a text editor and
add the code as shown in Example 37–1.

Example 37–1 Sample code to create custom Home tab

define([
'jquery',
'underscore',
'knockout',
'knockout-mapping',
Registry.base.viewmodel,
'viewmodels/hometab/HomeTabBillUnitsViewModel'

],
function ($, _, ko, komapping, BaseViewModel, HomeTabBillUnitsViewModel)

{
function CustomHomeTabBillUnitsViewModel() {
HomeTabBillUnitsViewModel.apply(this, arguments);
var self = this;

/* This function overrides OOTB renderGraph function to replace the
Bills graph and balances

* section from the desired custom view.
*/
self.renderGraph = function () {

/* This is the function which renders the custom View model (
referred to CenterSectionViewModel in the CustomRegistry)

* replacing the bills graph section.
*/
self.renderCenterSection();

/* This is the function which renders the custom View (referred
to customView in the CustomRegistry balances entry)

* replacing the OOTB balances section.
*/
self.renderBalances();

};

self.renderCenterSection = function(){
// The centerSection is the CustomRegistry entry which refers to the

Custom section replacing OOTB Bills Graph Section.
require([CustomRegistry.centerSection.viewmodel,

CustomRegistry.centerSection.view],

Customizing Bills Graph Section

Customizing Bills Graph and Balances Sections 37-3

function (CurrentViewModel, page) {
var template = _.template(page);
// HTML id where the Bills and Graph is attach to DOM is

"chartContent"
// The custom view needs to be attached to same place for

replacing OOTb Bills Graph section
var mainDiv = document.getElementById("chartContent");
$(mainDiv).empty();
var viewElem = $(mainDiv).get(0);
ko.cleanNode(viewElem);
$(mainDiv).append(template);
var currentVM = new CurrentViewModel();
// This initialize method will contain basic steps to render

the CustomViewModel
currentVM.initialize();
ko.applyBindings(currentVM, viewElem);

});
};
}
CustomHomeTabBillUnitsViewModel.prototype = new

HomeTabBillUnitsViewModel();
return CustomHomeTabBillUnitsViewModel;

}
);
3. Save the file in your NetBeans IDE project.

Creating Custom View Model HTML Template for Customizing Bills Graph
Billing Care uses an HTML view file to customize the Bills Graph section in the Home
tab. The template file contains the override for the Bills Graph section as defined in the
custom view model specified in step 2 in "Customizing Bills Graph Section".

To create a custom view model HTML template for customizing the Bills Graph
section:

1. Create the centerView.html file in myproject/web/custom/templates directory.

2. Define the override for the center section of the Home tab in the centerView.html
file in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Configuring Custom View Models for Customizing Bills Graph in the Registry
Create custom entries in your customRegistry.js file. Billing Care uses the custom
view models instead of the default entries and renders the custom Bills Graph section
in the Home tab. See "About the Registry File" for more information.

To configure the custom view model entries to customize the Bills Graph section in the
registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom view models in this file. See Example 37–2.

Example 37–2 Sample registry entries for customizing the Bills Graph section

var CustomRegistry = {
homeTabBillUnits: {
viewmodel: 'custom/viewmodels/homeTab/CustomHomeTabBillUnitsViewModel.js' //

CustomViewModel which will handle replacing of the OOTB Hometab bills graph
with custom view

Customizing Balances Section

37-4 Billing Care SDK Guide

},
centerSection : {
view: 'text!../custom/templates/centerView.html', // This is the custom

view which would replace the OOTB bills graph section
viewmodel: 'custom/viewmodels/CenterViewModel.js' // This is the custom

view model which handles rendering of custom view replacing the OOTB bills
graph section
}

};
3. Save the file in your NetBeans IDE project.

Customizing Balances Section
This section provides a high-level overview of the process on how to customize the
Balances section in the Home tab.

To customize the Balances section:

1. Create a custom view model to define the override for the Balances section based
on your requirement; for example, CustomBalancesViewModel.js, in the
myproject/web/custom/viewmodels directory. See "About View Models" for
information on creating the view models.

2. Create a custom Balances view model HTML Template. See "Creating Custom
View Model HTML Template for Customizing Balances Section".

3. Create a customRegistry.js file configuring Billing Care to use the custom view
model created in step 1. See "Configuring Custom View Model for Customizing
Balances Section in the Registry" for more information.

4. Package and deploy your customization to your Billing Care domain using one of
the methods described in "Using an Exploded Archive during Customization" or
"Packaging and Deploying Customizations".

Creating Custom View Model HTML Template for Customizing Balances Section
Billing Care uses an HTML view file to customize the Balances section in the Home
tab. The template file contains the override for the Balances section as defined in the
custom view model specified in step 1 in "Customizing Balances Section".

To create a custom view model HTML template for customizing Balances section:

1. Create the customBalancesView.html file in myproject/web/custom/templates
directory.

2. Define the override for the Balances section in the customBalancesView.html file
in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Configuring Custom View Model for Customizing Balances Section in the Registry
Create a custom entry in your customRegistry.js file. Billing Care uses the custom
view model instead of the default entry and renders the Balances section in the Home
tab. See "About the Registry File" for more information.

To configure custom view model to customize the Balances section in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom view model in this file. See Example 37–3.

Customizing Balances Section

Customizing Bills Graph and Balances Sections 37-5

Example 37–3 Sample registry entry for customizing the Balances section

var CustomRegistry = {
balances: {
view: 'text!../custom/templates/customBalancesView.html', // This is the custom

view which would replace the OOTB balances section
viewmodel: 'custom/viewmodels/CustomBalancesViewModel.js' // This is the custom

view model which handles rendering of custom view replacing the OOTB balances
section
},

};
3. Save the file in your NetBeans IDE project.

Customizing Balances Section

37-6 Billing Care SDK Guide

38

Opening Custom Views From Landing Page 38-1

38Opening Custom Views From Landing Page

[39]This chapter provides an overview of how to open custom views (in the full screen
mode) or dialog boxes from the landing page.

About Customizing Landing Page
Billing Care displays the default views or pages, such as Account Details and Payment
Suspense Details in full screen mode. You can customize Billing Care to open custom
views or pages from the landing page in full screen mode by using the Billing Care
SDK and routers. You can also open a custom dialog box from the landing page by
using the Billing Care SDK.

For more information, see the following:

■ Opening Custom Views in Full Screen Mode

■ Opening a Dialog Box From Landing Page

Customizing the Landing Page
You must customize the landing page to add custom buttons for opening a custom
view or dialog box.

To customize the landing page:

1. Create a custom landing page view model for extending the default landing page.
See "Creating a Custom Landing Page View Model" for more information.

2. Create a custom landing page view model HTML template for displaying custom
buttons on the landing page. See "Creating a Custom Landing Page View Model
HTML Template" for more information.

Creating a Custom Landing Page View Model
Billing Care uses a landing page view model to define the buttons displayed in the
landing page. The buttons defined in the landing page view model are bound in the
HTML file used to render the landing page. You must create a custom landing page
view model to capture custom buttons.

A sample landingPageExtensionViewModel.js file is provided in the SDK_
home/BillingCare_
SDK/samples/LandingPageCustomizations/web/custom/js/viewmodels/home
directory where SDK_home is the Billing Care SDK installation directory. This sample
defines the custom buttons and methods to open custom views or pages (in full screen
mode) and dialog boxes from the landing page. Use this sample to extend the landing

Opening Custom Views in Full Screen Mode

38-2 Billing Care SDK Guide

page view model for defining the custom views, pages, or dialog boxes required by
your service.

To create a custom landing page view model:

1. Create a landingPageExtensionViewModel.js file in the
myproject/web/custom/js/viewmodels/home directory, where myproject is the
folder containing your NetBeans IDE project.

2. Define the custom buttons as required.

3. Save the file in your NetBeans IDE project.

Creating a Custom Landing Page View Model HTML Template
Billing Care uses an HTML view file to render the landing page. You must create a
custom landing page view model HTML template to display the custom buttons for
opening custom views, pages, or dialog boxes. The template file contains the custom
buttons as defined in the custom landing page view model created in "Creating a
Custom Landing Page View Model".

A sample landingPageExtensionView.html file is provided in the SDK_
home/BillingCare_
SDK/samples/LandingPageCustomizations/web/custom/templates/home directory.
This sample defines how to render the custom buttons in the landing page. Use this
sample to create a custom landing page HTML template for opening the custom views
or dialog boxes from the landing page.

To create a custom landing page view model HTML template:

1. Create a landingPageExtensionView.html file in the
myproject/web/custom/js/templates/home directory.

2. Define the custom buttons in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Opening Custom Views in Full Screen Mode
You can add custom views or pages and directly open them from the landing page in
the full screen mode.

To open custom views in full screen mode:

1. Create a custom landing page view model and custom landing page view model
HTML template for displaying custom buttons on the landing page. See
"Customizing the Landing Page" for more information.

2. Create a custom view model to define your custom view or page. See "Creating a
Custom Full Page View Model" for more information.

3. Create a custom view model HTML template to render your custom view or page
in the full screen mode. See "Creating a Custom Full Page View Model HTML
Template" for more information.

4. Create a custom router view model to call the custom router helper when users
click the custom button that you created. See "Creating a Custom Router View
Model" for more information.

5. Create a custom router helper to add router-specific functions that display the
custom view in full screen mode when users click the custom button. See
"Creating a Custom Router Helper" for more information.

Opening Custom Views in Full Screen Mode

Opening Custom Views From Landing Page 38-3

6. Create a customRegistry.js file to configure Billing Care to use the custom view
models that you created. See "Configuring the Custom Full Page View Model in
the Registry" for more information.

7. Package and deploy your customizations using one of the methods described in
"Using an Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Creating a Custom Full Page View Model
Billing Care uses the view model to define the fields to capture in your custom view or
page. The fields defined in the view model are bound in the HTML file used to render
the custom view or page. You must create a custom view model to define your custom
view or page.

A sample customFullPageViewModel.js file is provided in the SDK_
home/BillingCare_
SDK/samples/LandingPageCustomizations/web/custom/js/viewmodels/customFull
Page directory. Use this sample to extend the default view model for defining the
custom view or page required by your service.

To create a custom full page view model:

1. Create a customFullPageViewModel.js file in the
myproject/web/custom/js/viewmodels/customFullPage directory.

2. Define the custom fields in this file as required.

3. Save the file in your NetBeans IDE project.

Creating a Custom Full Page View Model HTML Template
Billing Care uses an HTML view file to render your custom view or page. You must
create a custom full page view model HTML template to display the custom view or
page in the full screen mode. The template file contains the custom fields as defined in
the custom full page view model created in "Creating a Custom Full Page View
Model".

A sample customFullPageView.html file is provided in the SDK_home/BillingCare_
SDK/samples/LandingPageCustomizations/web/custom/templates/customFullPage
directory. Use this sample to create a custom full page HTML template for rendering
the custom views or pages you want to view in the full screen mode.

To create a custom full page view model HTML template:

1. Create a customFullPageView.html file in the
myproject/web/custom/js/templates/customFullPage directory.

2. Define the custom fields in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Creating a Custom Router View Model
Billing Care uses a router view model to call the route helper, a set of router-specific
functions, to complete the routing request. You can define these functions to open the
custom view or page in the full screen mode.

You can use the sample customRouterViewModel.js file in the SDK_
home/BillingCare_

Opening Custom Views in Full Screen Mode

38-4 Billing Care SDK Guide

SDK/samples/LandingPageCustomizations/web/custom/js/viewmodels/router
directory to create your router view model.

To create a custom router view model:

1. Create a customRouterViewModel.js file in the
myproject/web/custom/js/viewmodels/router directory.

2. Define the functions for opening the custom view or page in the full screen mode
as required.

3. Save the file in your NetBeans IDE project.

Creating a Custom Router Helper
You must create a custom router helper to view your custom views or pages in the full
screen mode. You can use the sample customRouterHelper.js file in the SDK_
home/BillingCare_
SDK/samples/LandingPageCustomizations/web/custom/js/viewmodels/router
directory to create your router helper.

To create a custom router helper:

1. Create a customRouterHelper.js file in the
myproject/web/custom/js/viewmodels/router directory.

2. Define the functions for opening the custom view or page in the full screen mode
as required.

3. Save the file in your NetBeans IDE project.

Configuring the Custom Full Page View Model in the Registry
After creating the required custom view model, create a custom module entry in the
customRegistry.js file to use when opening the custom views or pages. Billing Care
uses the custom view model instead of the default entry when rendering the specific
screen.

A sample customRegistry.js file is provided in the SDK_home/BillingCare_
SDK/samples/LandingPageCustomizations/web/custom directory. Use this sample to
create the customRegistry.js file containing your custom view model.

To create a custom view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom by copying the reference
registry file.

2. Define the custom view models in the file. For example:

var CustomRegistry = {
landingPageView: {

viewExtension:
'text!custom/../../custom/templates/home/landingPageExtensionView.html',

viewmodel:
'../custom/js/viewmodels/home/LandingPageExtensionViewModel'

},
router: {

viewmodel: '../custom/js/viewmodels/router/customRouterViewModel'
},

customFullPage: {
view:

'text!../custom/templates/customFullPage/customFullPageView.html',
viewmodel:

Opening a Dialog Box From Landing Page

Opening Custom Views From Landing Page 38-5

'../custom/js/viewmodels/customFullPage/customFullPageViewModel'
}

};

3. Save the file in your NetBeans IDE project.

Opening a Dialog Box From Landing Page
You can open a custom dialog box by clicking the custom button on the landing page.

To open a custom dialog box from the landing page:

1. Create a custom landing page view model and custom landing page view model
HTML template for displaying custom button on the landing page. See
"Customizing the Landing Page" for more information.

2. Create a custom dialog view model to define your custom dialog box. See
"Creating a Custom Dialog View Model" for more information.

3. Create a custom dialog view model HTML template for rendering your custom
dialog box. See "Creating a Custom Dialog View Model HTML Template" for more
information.

4. Create a customRegistry.js file to configure Billing Care to use the custom view
model that you created. See "Configuring the Custom Dialog View Model in the
Registry" for more information.

5. Package and deploy your customizations using one of the methods described in
"Using an Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Creating a Custom Dialog View Model
Billing Care uses the view model to define the fields to capture in your custom dialog
box. The fields defined in the view model are bound in the HTML file used to render
the custom dialog box. You must create a custom view model to define your custom
dialog box.

A sample customDialogViewModel.js file is provided in the SDK_home/BillingCare_
SDK/samples/LandingPageCustomizations/web/custom/js/viewmodels/customDial
ogView directory. Use this sample to extend the default view model for defining the
custom dialog box required by your service.

To create a custom dialog view model:

1. Create a customDialogViewModel.js file in the
myproject/web/custom/js/viewmodels/customDialogView directory.

2. Define the custom fields in this file as required.

3. Save the file in your NetBeans IDE project.

Creating a Custom Dialog View Model HTML Template
Billing Care uses an HTML view file to render your custom dialog box. You must
create a custom dialog view model HTML template to display the custom dialog box
in the full screen mode. The template file contains the custom fields as defined in the
custom dialog view model created in "Creating a Custom Dialog View Model".

A sample customDialogView.html file is provided in the SDK_home/BillingCare_
SDK/samples/LandingPageCustomizations/web/custom/templates/customDialogVi

Opening a Dialog Box From Landing Page

38-6 Billing Care SDK Guide

ew directory. Use this sample to create a custom dialog HTML template for rendering
the custom dialog box you want to view from the landing page.

To create a custom dialog view model HTML template:

1. Create a customDialogView.html file in the
myproject/web/custom/js/templates/customDialogView directory.

2. Define the custom fields in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Configuring the Custom Dialog View Model in the Registry
After creating the required custom view model, create a custom module entry in the
customRegistry.js file to use when opening the custom dialog box. Billing Care uses
the custom view model instead of the default entry when rendering the specific screen.

A sample customRegistry.js file is provided in the SDK_home/BillingCare_
SDK/samples/LandingPageCustomizations/web/custom directory. Use this sample to
create the customRegistry.js file containing your custom view model.

To create a custom dialog view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom by copying the reference
registry file.

2. Define the custom view models in the file. For example:

var CustomRegistry = {
landingPageView: {

viewExtension:
'text!custom/../../custom/templates/home/landingPageExtensionView.html',

viewmodel:
'../custom/js/viewmodels/home/LandingPageExtensionViewModel'

},
customDialogView: {

view:
'text!../custom/templates/customDialogView/customDialogView.html',

viewmodel:
'../custom/js/viewmodels/customDialogView/customDialogViewModel'

}
};

3. Save the file in your NetBeans IDE project.

39

Enabling Authorization in Test Installations 39-1

39Enabling Authorization in Test Installations

[40]This chapter describes how to enable authorization in a Oracle Communications
Billing Care test installation.

About Enabling Authorization in Test Installations
You use authorization to grant users the privileges appropriate for their job functions,
while denying access to other functionality. Billing Care uses Oracle Entitlement
Server (OES) to handle all authorization tasks.

By default, Billing Care test installations are installed without OES. The authorization
feature is also disabled in the test installations. This enables the testing Billing Care
instances to connect directly to your BRM system using the native WebLogic server
user management. For more information, see the discussion about installing Billing
Care for testing in Oracle Communications Billing Care Installation Guide.

However, if you want to test authorization in your Billing Care test installation
without installing OES, you can enable authorization in Billing Care by using the
Billing Care SDK. See "Enabling Authorization in Test Installations".

Enabling Authorization in Test Installations
This section provides a high level overview of the process on how to enable
authorization in a Billing Care test installation by using the Billing Care SDK.

The Billing Care SDK includes a sample OES manager (CustomOESManager) in the
SDK_home/BillingCare_SDK/samples directory, where SDK_home is the directory
where you installed the SDK. This sample contains the necessary configuration to
enable authorization. Use this sample to enable authorization in the Billing Care test
installation.

To enable authorization in the Billing Care test installation:

1. Using the SDK_home/BillingCare_SDK/samples/CustomOESManager directory,
create a NetBeans IDE project with the same folder structure of the

Important: Use the Billing Care SDK to enable authorization only in
your test or development installation. Do not use this customization in
production installations.

To enable authorization in a production installation, see the discussion
about production installations in Oracle Communications Billing Care
Installation Guide.

Modifying Default Authorization Policies

39-2 Billing Care SDK Guide

CustomOESManager directory. See "Create the Billing Care NetBeans IDE Project"
for more information.

2. (Optional) Modify the default authorization policies in your
CustomConfigurations.xml file. See "Modifying Default Authorization Policies"
for more information.

3. (Optional) Add custom authorization resources or actions in your
CustomConfigurations.xml file. See "Adding Custom Authorization Resources
and Actions" for more information.

4. Deploy your customizations to your Billing Care domain. See "Deploying
Customizations" for more information.

Modifying Default Authorization Policies
To modify default authorization policies:

1. In a text editor, open the
myproject/src/java/custom/configurations/CustomConfigurations.xml file, where
myproject is the NetBeans IDE project that you created using the sample OES
manager.

2. Search for the authorizationJSON key in the file:

<keyvals>
<key>authorizationJSON</key>
<value>[{"extension":null,"resourceName":"SuperUserResource","granted

Actions":[],"deniedActions":["ANY"]},...
</value>
<desc>...</desc>

</keyvals>

3. Change the default actions for the authorization resources in the authorizationJSON

key value as required. For example:

To authorize the logged in user to perform adjustments, change the actions for the
adjustment resource as shown in the following example:

{"extension":null,"resourceName":"AdjustmentResource","grantedActions":["Alloc
ate","Make"],"deniedActions":[]}

To deny the logged in user to perform adjustments, change the actions for the
adjustment resource as shown in the following example:

{"extension":null,"resourceName":"AdjustmentResource","grantedActions":[],"den
iedActions":["Allocate","Make"]}

See the discussion about Billing Care authorization resources in Oracle
Communications Billing Care Security Guide for more information on the default
authorization resources and actions supported in Billing Care.

4. Change or add transaction limits (obligations) for authorization by doing the
following:

a. Search for the transaction limit mapping in the file. For example:

<mapping>
<key>weblogic</key>
<map>

<id>Maximum Currency Adjustment Amount</id>
<key>4</key>

</map>

Adding Custom Authorization Resources and Actions

Enabling Authorization in Test Installations 39-3

...
<desc>Obligation mapping for user. If there are multiple users for

which obligation has to be mapped replicate the mapping section change the
key to the username to which obligation is required.

Also edit the obligation values as per requirement. Note that the
obligation field that is the id should be as per BillingCare
documentation.

</desc>
</mapping>

b. Change transaction limit values for authorizing users as required. For
example, to authorize the weblogic user to make payment only up to $50,
change the maximum payment amount value under the weblogic key to 50 in
the mapping:

<key>weblogic</key>
<map>

<id>Maximum Payment Amount</id>
<key>50</key>

</map>

c. (Optional) Add new transaction limits for authorizing users as required. See
the discussion about policies on transaction limits in Oracle Communications
Billing Care Security Guide for the list of transaction limits supported in Billing
Care.

5. Save and close the file.

Adding Custom Authorization Resources and Actions
To add custom authorization resources and actions:

1. In a text editor, open the
myproject/src/java/custom/configurations/CustomConfigurations.xml file, where
myproject is the NetBeans IDE project that you created using the sample OES
manager.

2. Search for the authorizationJSON key in the file:

<keyvals>
<key>authorizationJSON</key>
<value>[{"extension":null,"resourceName":"SuperUserResource","granted

Actions":[],"deniedActions":["ANY"]},...
</value>
<desc>...</desc>

</keyvals>

3. Add custom authorization resources and actions in the authorizationJSON key
value as required. For example, to authorize the logged in user to view invoices,
add the authorize resource and action as shown in the following example:

{"extension":null,"resourceName":"InvoiceImageResource","grantedActions":["Vie
w"],"deniedActions":[]}

Note: Do not change the mapping ID for the transaction limit; for
example, Maximum Currency Adjustment Amount.

Deploying Customizations

39-4 Billing Care SDK Guide

4. Save and close the file.

See "About Custom Resource Authorization" for more information.

Deploying Customizations
Package and deploy your customizations using one of the methods described in
"Using an Exploded Archive during Customization" or "Packaging and Deploying
Customizations".

Note: Ensure that the key value structure is the same.

When you migrate from the Billing Care test installation to the
production installation, make sure that the custom resources are
added in OES.

40

Customizing Billing Care Labels 40-1

40Customizing Billing Care Labels

[41]This chapter provides an overview of customizing Oracle Communications Billing
Care labels.

About the Billing Care Resource Bundle
Billing Care uses an XML Localization Interchange File Format (XLF) file resource
bundle for customization of Billing Care labels and localization. The default English
language XLF file (BillingCareResources_en.xlf) is available in the SDK_
home/BillingCare_SDK/references folder, where SDK_home is the directory where you
installed the SDK. This file contains Billing Care key-value mappings for Billing Care
labels, organized into functional group elements.

Customizing the Resource Bundle
Customize the Billing Care labels by creating a custom XLF file containing your label
values. After creating your XLF file, use the orai18n-js.jar, included in the Billing Care
SDK, to generate the required JavaScript files for the customizations shared library
deployed in the Billing Care domain.

The following XLF customizations are supported:

■ Modifying Existing Labels

■ Adding New Labels

Creating a Custom XLF File
Label customizations are configured in a custom XLF file.

To create a custom XLF file:

1. Create the customized_en.xlf file in your myproject/web/resources/translation/
directory, where myproject is your NetBeans IDE project containing your Billing
Care customizations.

2. Open the customized_en.xlf file in an editor and add the following text:

<?xml version="1.0" encoding="utf-8" ?>
<xliff version="1.0">
<file original="test_en.js" source-language="EN-US" target-language="EN-US"
datatype="JavaScript">
<header/>
<body>
</body>
</file>

Customizing the Resource Bundle

40-2 Billing Care SDK Guide

</xliff>

Modifying Existing Labels
Modify an existing label by adding a group element in your custom XLF file
containing <trans-unit> elements for the labels you are changing. <trans-unit>
elements specify the source and target of a label to modify. For more information on
the <trans-unit> element, see:

http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#trans-unit

Example 40–1 shows a sample <trans-unit> element.

Example 40–1 Sample trans-unit Element for Modifying an Existing Label

<group id="common" restype="common">
<trans-unit id="INVALID_VALUE" translate="yes">

<source>Invalid MODIFIED</source>
<target>Invalid MODIFIED</target>

</trans-unit>
</group>

To modify existing labels:

1. In the body section of the customized_en.xlf file, add a group element with the
same name as the label you want to update (for example, common).

2. Add a <trans-unit> element using the same label name as the default label you
are modifying.

3. Add the new custom label (for example, Invalid MODIFIED).

4. Save your customized_en.xlf file.

Adding New Labels
Add new labels by adding a custom_extensions group containing your new labels in
your customized_en.xlf file.

Example 40–2 shows a sample new <group> element.

Example 40–2 Sample group Element for Adding New Label

<group>
<group id=”custom_extensions” restype=”sdk”>
<trans-unit id="TEST_CUSTOM" translate="yes">
<source>Custom New Value</source>
<target>Custom New Value</target>
</trans-unit>
</group>

To add a new label:

1. Add a new <group> element with a custom_extensions <group id> value in your
customized_en.xlf file inside the <body> element. See the BillingCareResources_
en.xlf file for group element examples.

2. Add the new labels inside your <group> element.

Note: The <group id> must be custom_extensions.

Localizing Billing Care into Other Languages

Customizing Billing Care Labels 40-3

3. Save your customized_en.xlf file.

Creating Required JavaScript Files for Deployment
After completing your label customizations, generate the required JavaScript files to
add to your customizations shared library deployed to the Billing Care domain.

To generate the required JavaScript files:

1. Add the customized_en.xlf and default CustomerCareResrouces_en.xlf files to
the myproject/web/resources/translation folder, where myproject is the NetBeans
IDE project folder containing your Billing Care customizations.

2. Open a shell or command window, and change directory to the
myproject/web/resources/translation folder.

3. Enter the following command using an absolute path to the orai18n-js.jar.

java –jar full_path/orai18n-js.jar –from XLF –to JS -file
BillingCareResources_en.xlf Customized_en.xlf

where full_path is the directory where orail8n-js.jar is stored. This jar is included
in the SDK_home/BillingCare_SDK/libs directory.

Two JavaScript files are created. One file contains the default resources of Billing
Care, and the other file contains your customizations.

4. Delete the BillingCareResources_en.xlf file.

5. Package and deploy your resource bundle customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Localizing Billing Care into Other Languages
Billing Care can use an alternative language labels through translation of the
BillingCareResources_en.xlf file into another language. For example, create a file
named BillingCareResources_is.xlf file to localize Billing Care in Icelandic.

To configure Billing Care with an alternative language localization:

1. Translate the BillingCareResources_en.xlf file into a version specific to the
language you are enabling. For example, create a file named
BillingCareResources_XX.xlf where XX is the two character language code you
are enabling.

2. Copy the BillingCareResources_XX.xlf file to the
myproject/web/resources/translation directory where myproject is your NetBeans
IDE project directory containing your Billing Care customizations.

3. Run the conversion utility using the orail8n-js.jar to create the JavaScript for the
language you are enabling using the following command:

java -jar full_path/orai18n-js.jar -from XLF -to JS -file
CustomerCareResources_XX.xlf

where full_path is the directory where orail8n-js.jar is stored. This jar is included
in the SDK_home/BillingCare_SDK/libs directory.

Localizing Billing Care into Other Languages

40-4 Billing Care SDK Guide

4. Package and deploy your resource bundle customizations to your Billing Care
domain.

For more information, see "Packaging and Deploying Customizations".

5. Verify your changes in Billing Care.

41

Embedding Billing Care Screens in External Applications 41-1

41Embedding Billing Care Screens in External
Applications

[42]This chapter provides an overview on embedding Oracle Communications Billing
Care screens in external applications such as customer relationship management
(CRM) applications or online account management interfaces.

About Embeddable Billing Care Screens
Billing Care supports embedding screens into CRM applications and online account
management interfaces using inline frames (iframe) or pop-up windows. Embedding
screens gives external applications direct access to Billing Care functionality without
requiring complex integration.

Subscriber information stored in your Oracle Communications Billing and Revenue
Management (BRM) system, and Billing Care account management screens, can be
displayed in external applications without creating custom interfaces for retrieving
such data or performing account management actions.

Use this functionality to expose Billing Care screens in your application’s business
workflow. For example, configure your CRM application to display the Billing Care
payments interface when adding a new payment type for a subscriber.

The following Billing Care screens can be exposed and embedded in external
applications:

■ Account Adjustment

■ Account Profile

■ Account Status

■ Account Transactions Graph

■ Account Transactions Table

■ Billing Information

■ Financial Setup (including Payment Methods)

■ Make a Payment

■ Payments Summary

■ Purchased Products

■ Write Off Account

■ Purchase Package/Purchase Deal

Embedding Billing Care Screens

41-2 Billing Care SDK Guide

See the relevant chapter in the Billing Care Online Help for more information on each
screen and what account actions can be performed.

Embedding Billing Care Screens
Embedding Billing Care screens in external applications requires the following:

■ Understanding the index_embedded.html File

■ Configuring Your External Application to Access Billing Care

You can embed Billing Care screens in test installations not using Oracle Identity and
Access Management (IAM) when developing your external application integration.
User authentication and resource authorization are not required with test installations.
Billing Care displays the requested screen without requiring credentials. See "About
Test Installations" and "Configuring WebLogic Server for a Test Installation" in Oracle
Communications Billing Care Installation Guide for more information on test installations.

Production Billing Care installations require IAM. An external application and its
users must be authenticated and authorized by Billing Care before embedded screens
can be displayed. See "Configuring Security for External Application Access" for
information on embedding Billing Care screens in external applications in production
installations.

Understanding the index_embedded.html File
External applications call the index_embedded.html file when retrieving a Billing
Care screen for display. By default, Billing Care exposes this file without additional
configuration on the application server.

This file contains the information required by Billing Care to render the requested
screen properly for the queried account. External applications send Billing Care an
index_embedded.html URL request containing a unique query string for the required
screen, and the account or bill numbers for the subscriber using the following format:

https://host:port/bc/index_embedded.html#query_string

where:

■ host is the Billing Care application host.

■ port is the port on which Billing Care is listening on.

■ query_string is the string containing the desired embeddable screen and account
and bill details. You can use either account ID or account number, and bill ID or
bill number in the request.

If you are using account ID and bill ID in the request, the query_string format is:

Screen?accountId=BRM_db#+-account+AccountID&billId=BRM_db+-bill+Bill#

where:

– Screen is the requested screen for the queried account.

– BRM_db# is the BRM database number containing the queried account or bill.

– AccountID is the unique BRM subscriber account ID to query.

– Bill# is the bill number to query when requesting bill-related screens.

For example, to request the Billing Information overlay for the BRM bill number
0.0.0.1-1115086, owned by the BRM account number 0.0.0.1-1117902, use the following
URL request:

Embedding Billing Care Screens

Embedding Billing Care Screens in External Applications 41-3

https://example.com:7001/bc/index_
embedded.html#overlay/billDetails?accountId=0.0.0.1+-account+1117902&billI
d=0.0.0.1+-bill+1115086

If you are using account number and bill number in the request, the query_string
format is:

Screen?accountId=AccountNumber&billId=BillNumber

For example, to request the Billing Information overlay for the BRM bill number
B1-8839, owned by the BRM account number 123456, use the following URL request:

https://example.com:7001/bc/index_
embedded.html#overlay/billDetails?accountId=123456&billId=B1-8839

Table 41–1 lists the URL request strings used to call each embeddable Billing Care
screen.

Note: Embedded screens do not include the Billing Care application
banner, search functionality, or Actions menu.

Table 41–1 Sample URL Request Query Strings for Embeddable Billing Care Screens

Screen Sample URL Query String Used by External Application

Account Adjustment https://example.com:7001/bc/index_
embedded.html#overlay/accountAdjustment?accountId=BRM_
db+-account+AccountID

Account Profile https://example.com:7001/bc/index_
embedded.html#overlay/generalInfo?accountId=BRM_db+-account+AccountID

Account Status https://example.com:7001/bc/index_
embedded.html#overlay/accountStatusChange?accountId=BRM_
db+-account+AccountID

Account Transactions
Table

https://example.com:7001/bc/index_embedded.html#newsfeed?accountId=BRM_
db+-account+AccountID

Account Transactions
Graph

https://example.com:7001/bc/index_
embedded.html#billUnitGraph?accountId=BRM_db+-account+AccountID

Billing Information https://example.com:7001/bc/index_
embedded.html#/billDetails?accountId=BRM_
db+-account+AccountID&billId=0.0.0.1+-bill_POID

If only the account ID is passed then the Bill in progress bill is shown. If any specific
bill must shown, the bill id must be passed.

Financial Setup https://example.com:7001/bc/index_
embedded.html#overlay/paymentMethods?accountId=BRM_db+-account+AccountID

Make a Payment https://example.com:7001/bc/index_
embedded.html#overlay/makePayment?accountId=BRM_db+-account+AccountID

Payments Summary https://example.com:7001/bc/index_
embedded.html#newsfeed/payments?accountId=BRM_db+-account+AccountID

Purchased Products https://example.com:7001/bc/index_
embedded.html#customerAssets?accountId=BRM_db+-account+AccountID

Write Off Account https://example.com:7001/bc/index_
embedded.html#overlay/writeOffAccount?accountId=BRM_db+-account+AccountID

Purchase
Package/Purchase Deal

https://example.com:7001/bc/index_
embedded.html#overlay/purchase?accountId=BRM_db+-account+AccountID

Configuring Security for External Application Access

41-4 Billing Care SDK Guide

Configuring Your External Application to Access Billing Care
Configure external applications to request an embeddable Billing Care screen by
creating a link on the application’s screen, from where users initiate the request. For
example, create a clickable text, image, or button on your application’s screen with an
html href attribute containing the embeddable screen overlay listed in Table 41–1.

Example 41–1 contains sample html code for a text link which opens the Account
Status screen in a new window.

Example 41–1 Sample Account Status Screen Link Code

<a href ="http://example.com:7001/bc/index_
embedded.html#overlay/accountStatusChange?accountId=0.0.0.1+-account+1117902"
onclick="openWindow(this.href);

return false;">Click to open Account status Dialog

Configuring Security for External Application Access
Production Billing Care installations use Oracle Identity and Access Management
(IAM) for authenticating users using single sign on (SSO) and authorizing access to
Billing Care screens and resources. You must configure the required authentication
and authorization policies in IAM before embedding Billing Care screens in external
applications in production environments. Doing so enables embedded screens to be
displayed without requiring Billing Care user credentials and ensures that a failed
permissions error message is not displayed in the embedded screen.

Billing Care enforces a single security configuration of user access and resource
permissions for both the native Billing Care application and any embedded screens
exposed within external applications.

See "Billing Care Pre-Installation Tasks" in Oracle Communications Billing Care
Installation Guide for more information on installing the required IAM components for
a secure Billing Care installation, and "Implementing Billing Care Security" in Oracle
Communications Billing Care Security Guide for more information on how to configure
authentication and authorization for external users and applications.

Note: With configured IAM, Billing Care returns an error message if
the user or external application does not have the correct permissions
to access or view the requested embedded screen. For example, if the
external user or application has not been configured with access to the
Billing Care payments resource the following error message error
message is displayed:

You do not have permission to make payments

42

Extending and Creating Billing Care REST Resources 42-1

42Extending and Creating Billing Care REST
Resources

[43]This chapter provides an overview of extending the Oracle Communications Billing
Care REST framework and creating new REST resources for use with Billing Care.

About Extending and Creating Billing Care REST Resources
Billing Care supports extending the REST framework and creating new REST
resources as required by your business needs. The following customizations are
supported:

■ Manipulating Workflow

For example, customizing Billing Care to invoke different Oracle Communications
Billing and Revenue Management (BRM) opcodes, either for data retrieval or
persistence. A typical scenario is a customer who has created a custom opcode
similar to one provided by Oracle but with alternate business logic that cannot not
otherwise be provided through the associated policy opcode. An alternate scenario
might involve invocation of an API from an application other than BRM.

■ Payload Manipulation

For example, manipulating or inspecting the payload before invocation of an
opcode. An example scenario involves a web service that returns an error
condition after validating the payload, before invoking the opcode. Another
scenario might involve custom logic applied to the data before submission of a
payload to BRM.

■ Creating a new REST resource

For example, a new REST resource used by a customized module to retrieve
additional data for display.

About Billing Care Sample SDK REST Customizations
The Billing Care SDK contains the following example REST customizations located in
the SDK_home/BillingCare_SDK/samples/REST_Scenarios/src/com/rest/sdk where
SDK_home is the directory where you installed the SDK:

■ To call a new opcode in a customized module, refer to
CustomNewOpCodeBillUnitModule.java and CustomBillUnitWorker.java.

■ To modify data sent to BRM, refer to CustomPaymentModule.java.

■ To alter the application logic or support subclassing ready to use module classes,
refer to CustomExtendAdjustmentModule.java.

Extending REST Services

42-2 Billing Care SDK Guide

For more information on invoking BRM opcodes through the Java API, see "About the
PCM API" in Oracle Communications Billing and Revenue Management Developer’s Guide
and Oracle Communications Billing Care Java API Reference.

Extending REST Services
To extend REST services:

1. Create the Java classes and necessary resources (views, view models, CSS,
validations) in the appropriate myproject/src/package directory for your
implementation (for example, myproject/src/com/company/billingcare where
company is the name of your company).

You can implement new functionality, override existing functionality, or add
functionality by extending the Billing Care classes (from the jars added to
classpath).

2. Compile the new Java classes.

3. Create a customModules.properties file in your
myproject/web/WEB-INF/classes/custom/ directory, where myproject is your
NetBeans IDE project containing your Billing Care customizations. This file will
contain a reference to the location of the custom Java classes you create. See
"About the customModules.properties File" for more information about specifying
module overrides with customModules.properties.

4. Copy the default registry.js file from SDK_HOME/BillingCare_SDK/references to
a custom registry file named customRegistry.js in your myproject/web/custom
directory, where myproject is your NetBeans IDE project containing your Billing
Care customizations. This file contains the module definitions for your custom
view models (JavaScript). See "About the Registry File" for more information on
using a custom registry file.

5. Add your customization files to your NetBeans IDE project (myproject):

■ Add any JavaScript to support your custom view models in the
myproject/web/js directory.

6. Right-click your NetBeans IDE project and select Clean and Build.

7. Package and deploy your customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

8. Verify your changes in Billing Care.

Note: Any REST resources/services you create for Billing Care must be
placed within the com.oracle.communications.brm.cc.ws package
(myproject/src/com/oracle/communications/brm/cc/ws). This will ensure
your REST resource/service can be deployed within the customizations
shared library.

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents

	1 Introduction to Customizing Billing Care
	About Billing Care Customizations

	2 About Billing Care Architecture
	About Billing Care Architecture
	About the Billing Care REST Framework
	About Open Source Libraries Used by Billing Care

	3 About Billing Care SDK
	About the Billing Care SDK
	About the references SDK Directory

	Installing the Billing Care SDK

	4 Setting Up the Development Environment
	About the Billing Care Development Environment
	Configuring NetBeans IDE for Billing Care Development
	Downloading and Installing NetBeans IDE
	Configuring the NetBeans IDE Connection to WebLogic Server
	Setting Up a Billing Care Customization Project
	Creating the Billing Care SDK Directory Structure
	Create the Billing Care NetBeans IDE Project

	5 Using an Exploded Archive during Customization
	About Using an Exploded Archive
	Configuring WebLogic Server to Use an Exploded Archive
	Creating a Manifest for your Shared Library
	Rebuilding your Project after Creating the Manifest File

	Creating a New Deployment Plan for Billing Care with your Shared Library
	Deploying your Shared Library on your Billing Care Domain
	Redeploying Billing Care to Use your Shared Library

	6 Packaging and Deploying Customizations
	About Packaging and Deploying Customizations for Production
	Creating Production Versions of the Manifest File and Deployment Plan
	Using the Java jar Utility to Package Your Shared Library
	Deploying the Shared Library .war
	Redeploying Billing Care to Use Your Shared Library

	7 Customizing Billing Care
	About Billing Care Customization Concepts
	About Billing Care Modules
	About Views
	About View Models
	About Data Binding between Views and View Models

	About the customModules.properties File
	About the Configuration.xml File
	About the Registry File
	Managing Billing Care Modules Using the Registry File

	About Billing Care View Model JavaScript Framework
	Access to the Open Account
	Object IDs

	About Error Handling in REST Operations
	Invoking Error Handing in Customizations

	About Custom Resource Authorization
	Performing Authorization in the Actions Menu
	Performing Authorization on the UI
	Performing Authorization on the REST Framework
	Using REST Authorization without Obligations
	Using REST Authorization with Obligations

	8 Editing the Billing Care Configuration File
	About the Billing Care Configuration File
	Creating a Custom Configuration File
	Default Configuration File Entries

	9 Customizing Billing Care Themes and Logo
	About Billing Care Themes and Logo
	About Customizing Billing Care Themes
	Adding a New Theme
	Overriding Themes
	Setting Which Billing Care Theme to Use
	Changing the Default Logo

	10 Customizing Billing Care Templates
	About Billing Care Templates
	Customizing Templates
	Removing Columns from a Template
	Adding Columns to a Template
	Extending the REST Framework to Support New Column Fields
	Creating a customModules.properties File

	Example 1: Event Template Customization
	Example 2: Event Template Customization with New Fields
	Example 3: Newsfeed Template Customization
	Example 4: Account Search Template Customization Using Custom Fields

	11 Customizing the Billing Care Account Banner
	About the Billing Care Account Banner
	Customizing the Billing Care Account Banner
	Creating Configuration Files for Account Banner Customization

	Rearranging Account Banner Tiles
	Removing Account Banner Tiles

	12 Customizing the Billing Care Actions Menu
	About the Billing Care Actions Menu
	Mapping Label and Description Key Values to the Resource Bundle

	About Customizing the Actions Menu
	Setting Up NetBeans IDE for Customizing the Actions Menu

	Removing Actions Menu Items
	Removing an Existing Actions Menu Submenu
	Removing an Existing Actions Menu

	Rearranging Actions Menu Items
	Rearranging Actions Menu Submenu Items
	Rearranging Actions Menu Items

	Renaming Actions Menu and Submenu Items
	Renaming Actions Menu Submenu Items
	Renaming Actions Menu Items

	Adding Actions Menu Items
	Adding Action Menu Items in Payment Suspense

	13 Customizing Account Creation Service Fields
	About Customizing Account Creation
	Creating Custom View Models
	Extending the New Account Configuration View Model
	Creating a Custom Service Configuration View Model

	Creating a Custom Service View Model HTML Template
	Extending the Service Validator for Custom Fields
	Configuring a Custom Module in the Registry
	Deploying Customizations

	14 Creating Custom Billing Care Credit Profiles
	About Credit Profiles
	Customizing Billing Care to Store Credit Profiles
	Creating Custom Profile Storable Classes in BRM
	Importing Credit Profile Class Definitions into BRM
	Creating Credit Profile Objects Using Developer Center
	Creating the Credit Profile Class and Field
	Generating the Required JAR File and Infranet.properties

	Extending the Billing Care Data Model with XSD and JSON Files
	Adding the Required Files to the NetBeans Project
	Updating the MANIFEST.MF File
	Adding the Required View Module and Configuration Files
	Adding the Required JAR and JSON Files

	Deploying Customizations

	15 Adding Custom Payment Types
	About Custom Payment Types
	Creating Custom Payment Types in BRM
	Creating Custom Payment Type Event Subclasses
	Updating the /config/paymenttool Object with Custom Payment Types
	Updating the /config/payment Object with Custom Payment Type Event

	Customizing Billing Care to Support Custom BRM Payment Types
	Generating XSD and JSON Files for Custom Payment Types
	Extending the Billing Care Data Model with XSD and JSON Files
	Adding the XSD and JSON Files to NetBeans Project
	Enabling Custom Payment Types in Batch Payment Processing
	Deploying Customizations

	16 Customizing Billing Care Invoice Presentation
	About Billing Care Invoice Presentation
	Customizing Billing Care Invoice Presentation
	Setting Up NetBeans IDE for Customizing Invoice Presentation

	Presenting Invoices in a Dialog Box
	Retrieving Invoices from Third-Party Repositories

	17 Customizing Billing Care to Display Child Accounts
	About Displaying Child Accounts
	Customizing Billing Care to Display Child Accounts
	Customizing the Organization Hierarchy Screen
	Creating Custom View Models
	Creating Custom View Model HTML Templates
	Configuring a Custom Module in the Registry
	Adding the Data Model JAR File
	Deploying Customizations

	18 Customizing Suspended Payment Allocations
	About Suspended Payment Allocation
	Forbidding Partial Allocation of Suspended Payments
	Creating a CustomPCMPaymentModule.java Class
	Creating a Custom Payment Suspense View Model
	Creating a customModule.properties File
	Configuring a Custom Module in the Registry
	Deploying Customizations

	19 Customizing Search Filter for Suspended Payments
	About Suspended Payment Search Filter
	Adding Search Criteria
	Creating a CustompaymentSuspenseSearch.xml File
	Creating a CustomTemplatePaymentSuspenseWorker.java Class
	Creating CustomPCMTemplateModule.java Class
	Creating a customModule.properties File
	Updating Registry
	Updating customPaymentSuspenseSearchView.html
	Updating View Model
	Localizing New Criteria into Other Languages
	Creating Deployment Plan
	Creating .war File

	20 Exporting Billing Care Search Results
	About Billing Care Search
	Enabling Search Results Export with the SDK
	Creating Custom Search Templates
	Creating Custom Search View Models
	Configuring Custom Search Modules in the Registry
	Deploying Customizations

	21 Searching for Accounts by Payment ID
	About Account Searches in Billing Care
	Adding a Payment ID Field to the Account Search Screen
	Naming the Custom Account Search Template in the CustomConfigurations.xml File
	Creating a Custom Account Search Template
	Creating a Custom Account Search View Model
	Creating a Custom Search View Model
	Creating a Custom Router View Model
	Creating a Custom Router Helper
	Creating a Custom Account Search View Model HTML Template
	Replacing the Default Method for Showing Recently Opened Accounts
	Configuring a Custom Module in the Registry
	Creating a customized_en.xlf File Entry for Payment ID Search Field
	Getting Payment Item POIDs from BRM
	Deploying Customizations

	22 Separating Event Adjustment Amount and Percentage Fields
	About Event Adjustments using Amount and Percentage
	Separating Amount and Percentage Fields
	Creating Custom View Model to Separate Amount and Percentage Fields
	Configuring the Custom View Model in the Registry

	23 Customizing Purchase Deal and Assets Action Menu
	About Customizing Purchase Deal Configuration and Assets Action Menu
	Customizing Purchase Deal Configuration
	Extending the Data Model With the XSD and Java Class files
	Creating a Custom Purchase Deal Configuration View Model
	Creating Custom Purchase Configure View Model HTML Templates

	Customizing Assets Action Menu
	Creating a Custom Asset View Model
	Creating Custom Asset View Model HTML Templates

	Deploying Customizations

	24 Customizing Reason Codes List in Event Adjustments
	About Displaying Reason Codes
	Customizing Reason Codes List in Event Adjustments
	Creating the Custom Event Adjustment View Model
	Configuring the Custom Event Adjustment View Model in the Registry
	Deploying Customizations

	25 Customizing Billing Care to Display Only Event Adjustments
	About Displaying Event Adjustments
	Customizing Billing Care to Display Only Event Adjustments
	Creating Custom View Models to Display Only Event Adjustments
	Configuring Custom Bill and Bill Item View Models in the Registry

	26 Limiting Event Adjustment Percentage Entered by CSRs
	About Adjustments
	Limiting Event Adjustments Entered by CSRs
	Updating CustomExtendAdjustmentModule.java Class
	Creating CustomAdjustmentWorker.java Class
	Creating a customized_en.xlf File Entry for the Error Message

	27 Disabling Event Adjustment Options Based on Roles
	About Event Adjustment Options
	Disabling Event Adjustment Options Based on User Roles
	Creating a Custom View Model for Disabling Adjustment Options
	Configuring the Custom View Model for Disabling Event Adjustment Options

	28 Restricting Debit and Credit Event Adjustment Options
	About Debit and Credit Event Adjustments
	Restricting Debit and Credit Adjustment for Events
	Creating a Custom View Model for Restricting Debit and Credit Adjustments
	Configuring the Custom View Model for Disabling Event Adjustment Options

	29 Setting Adjustment Limit for Event Adjustments
	About Adjustment Limits
	Setting Event Adjustment Limit for CSRs
	Creating customAdjustmentResource.java Class
	Creating the Custom Event Adjustment View Model
	Configuring the Custom Event Adjustment View Model in the Registry

	30 Filtering Bundles Available for Purchase
	About Filtering Bundles
	Filtering Bundles List in Billing Care
	Creating CustomPCMSubscriptionModule.java Class
	Creating CustomSubscriptionWorker.java Class
	Updating the customModule.properties File

	31 Restricting Additional Bundles Purchase Based on Roles
	About Restricting Bundles
	Restricting Bundles Based on Roles
	Creating the Custom Bundle Selection View Model
	Configuring the Custom Bundle Selection View Model in the Registry

	32 Restricting Bundle Validity Based on Roles
	About Restricting Bundle Validity
	Restricting Bundle Validity
	Creating CustomAccountResource.java Class
	Creating a Custom Purchase View Model
	Configuring the Custom Purchase View Model in the Registry

	33 Making Notes Field Mandatory
	Making Notes Mandatory for Additional Product Purchase
	Creating a Custom Purchase Deal View Model
	Configuring the Custom Purchase View Model in the Registry

	Making Notes Mandatory for Event Adjustments
	Creating a Custom Event Adjustment View Model
	Configuring the Custom Event Adjustment View Model in the Registry

	34 Filtering Start and End Dates for Additional Purchase
	About Customizing Purchase Configuration
	Filtering Start and End Date Options
	Creating a Custom Purchase Deal Configuration View Model
	Configuring the Custom Purchase Configuration View Model in the registry

	35 Customizing Billing Care to Disable Links in the Bills Tab
	About Disabling Link to Child Accounts
	Disabling Links in the Bills Tab
	Creating the Custom Event Adjustment View Model
	Configuring Custom Bill, Charges, and Payment Detail View Models in the Registry

	36 Customizing Display of Assets Section
	About Customizing Display of Assets Section
	Hiding Bill Units in the Home Tab
	Creating Custom Home Tab View Model to Hide Bill Units
	Configuring the Custom Home Tab View Model in the Registry

	Disabling Actions Menu in the Assets Section
	Creating Custom View Model to Disable Actions Menu
	Configuring the Custom Assets Section View Model in the Registry

	Hiding the Service Icon in Assets Card

	37 Customizing Bills Graph and Balances Sections
	About Customizing Bills Graph and Balances Sections
	Customizing Bills Graph Section
	Creating Custom Home Tab View Model
	Creating Custom View Model HTML Template for Customizing Bills Graph
	Configuring Custom View Models for Customizing Bills Graph in the Registry

	Customizing Balances Section
	Creating Custom View Model HTML Template for Customizing Balances Section
	Configuring Custom View Model for Customizing Balances Section in the Registry

	38 Opening Custom Views From Landing Page
	About Customizing Landing Page
	Customizing the Landing Page
	Creating a Custom Landing Page View Model
	Creating a Custom Landing Page View Model HTML Template

	Opening Custom Views in Full Screen Mode
	Creating a Custom Full Page View Model
	Creating a Custom Full Page View Model HTML Template
	Creating a Custom Router View Model
	Creating a Custom Router Helper
	Configuring the Custom Full Page View Model in the Registry

	Opening a Dialog Box From Landing Page
	Creating a Custom Dialog View Model
	Creating a Custom Dialog View Model HTML Template
	Configuring the Custom Dialog View Model in the Registry

	39 Enabling Authorization in Test Installations
	About Enabling Authorization in Test Installations
	Enabling Authorization in Test Installations
	Modifying Default Authorization Policies
	Adding Custom Authorization Resources and Actions
	Deploying Customizations

	40 Customizing Billing Care Labels
	About the Billing Care Resource Bundle
	Customizing the Resource Bundle
	Creating a Custom XLF File
	Modifying Existing Labels
	Adding New Labels
	Creating Required JavaScript Files for Deployment

	Localizing Billing Care into Other Languages

	41 Embedding Billing Care Screens in External Applications
	About Embeddable Billing Care Screens
	Embedding Billing Care Screens
	Understanding the index_embedded.html File
	Configuring Your External Application to Access Billing Care

	Configuring Security for External Application Access

	42 Extending and Creating Billing Care REST Resources
	About Extending and Creating Billing Care REST Resources
	About Billing Care Sample SDK REST Customizations
	Extending REST Services

