
Oracle® Fusion Middleware
API Gateway User Guide
11g Release 2 (11.1.2.1.0)

January 2013

Oracle API Gateway User Guide, 11g Release 2 (11.1.2.1.0)

Copyright © 1999, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and dis-
closure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or al-
lowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, per-
form, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered
to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the ap-
plicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, dis-
closure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Gov-
ernment contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in
FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or in-
tended for use in any inherently dangerous applications, including applications which may create a risk of personal injury.
If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their re-
spective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services. This docu-
mentation is in prerelease status and is intended for demonstration and preliminary use only. It may not be specific to the
hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or
damages incurred due to the use of this documentation.

The information contained in this document is for informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to
deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The develop-
ment, release, and timing of any features or functionality described in this document remains at the sole discretion of Or-
acle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of
Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Soft-
ware License and Service Agreement, which has been executed and with which you agree to comply. This document
and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated in-
to any contractual agreement with Oracle or its subsidiaries or affiliates.

Contents

1. Getting Started ...
1. Oracle API Gateway Overview ... 31

Overview .. 31
Integration .. 31
Performance ... 31
Governance .. 32
Security .. 32

2. Oracle API Gateway Architecture ... 34
Overview .. 34
Basic Architecture .. 34
Policy Development .. 35
API Gateway Administration ... 36
API Service Administration ... 36
System Administration ... 36
Managed Domain Architecture .. 36

3. Oracle API Gateway Concepts ... 40
Overview .. 40
Product Concepts ... 40

4. Starting the API Gateway Tools ... 46
Overview .. 46
Before you Begin .. 46
Launching API Gateway Manager .. 46
Starting Policy Studio .. 47
Getting Started Tutorial .. 47

5. Virtualizing a Service ... 48
Overview .. 48
Accessing the Example Service ... 48
Creating a Workspace in API Service Manager ... 49
Step 1—Basic Information .. 49
Step 2—Service Exposure ... 49
Step 3—Request Processing .. 49
Step 4—Routing ... 49
Step 5—Response Processing .. 49
Step 6—Monitoring ... 49
Step 7—Tags .. 50
Deploying to a Group .. 50
Accessing the Virtualized Service .. 50
Monitoring a Service ... 51

6. Monitoring Services ... 52
Overview .. 52
Enabling Monitoring .. 52
Viewing Real-time Monitoring .. 52
Viewing Message Traffic .. 53
Viewing Message Content .. 54
Viewing Performance Statistics ... 55
Detecting Malformed Messages .. 55
Monitoring System Data ... 56
Configuring Trace and Log Settings ... 57
Using Oracle API Gateway Analytics .. 57

7. Troubleshooting .. 58
Overview .. 58
Viewing API Gateway Trace Files .. 58

iii

Setting API Gateway Trace Levels ... 58
Configuring API Gateway Trace Files ... 59
Running Trace at DEBUG level ... 60
Running Trace at DATA level .. 61
Integrating Trace Output with Apache log4J ... 63
Configuring Logging Output .. 63
Configuring Log Level and Message ... 63
Getting Help .. 64

8. License Acknowledgments .. 65
Overview .. 65
Acknowledgments .. 65

9. Oracle Contact Details ... 66
Contact Details .. 66

2. Sample Policies ...
1. Configuring the Sample Policies ... 67

Overview .. 67
Enabling the Sample Services Interface .. 67
Configuring a Different Sample Services Interface ... 68
StockQuote Demo Service ... 68
Remote Host Settings ... 69

2. Conversion Sample Policy .. 71
Overview .. 71
REST to SOAP Policy ... 71
Running the Conversion Sample ... 72

3. Security Sample Policies .. 73
Overview .. 73
Signature Verification .. 73
Encryption and Decryption ... 74

4. Throttling Sample Policy ... 77
Overview .. 77
Throttling Policy ... 77
Running the Throttling Sample .. 77

5. Virtualized Service Sample Policy ... 79
Overview .. 79
Virtualized Service policies ... 79
Running the Virtualized Service Sample .. 83

6. Stress Testing with Send Request (SR) ... 84
Overview .. 84
Basic SR Examples .. 84
Advanced SR Examples .. 85
SR Arguments ... 85

7. Sending a Request with API Gateway Explorer ... 87
Overview .. 87
Creating a Request in API Gateway Explorer ... 87
Further Information ... 88

3. Managing API Services ...
1. Introduction to API Service Manager ... 89

Overview .. 89
Accessing API Service Manager .. 89
Deploying to a Group .. 89
Resetting your Configuration ... 90

2. Managing API Services .. 91
Overview .. 91
Virtualizing a Service in API Service Manager .. 91
Step 1—Basic Information .. 91
Step 2—Service Exposure ... 92
Step 3—Request Processing .. 92

Oracle® Fusion Middleware

iv

Step 4—Routing ... 92
Step 5—Response Processing .. 92
Step 6—Monitoring ... 93
Step 7—Tags .. 93
Deploying to a Group .. 94

4. Governance ..
1. Configuring Security Policies from WSDL Files .. 95

Overview .. 95
Importing a WSDL File .. 95
Configuring Policy Settings ... 96
Configuring Policy Filters ... 96
Editing a Policy .. 99
Removing Security Tokens ... 99
Further Information ... 101

2. Securing a Virtual Service using Policies .. 102
Overview .. 102
Importing a WSDL File .. 102
Configuring a Security Policy .. 103
Configuring Policy Settings ... 103
Configuring Policy Filters ... 103
Editing a Security Policy .. 105
Using WCF WS-Policies .. 105
Removing Security Tokens ... 107
Further Information ... 108

3. Configuring Policies Manually .. 109
Overview .. 109
Configuration ... 109

4. Configuring Global Policies ... 111
Overview .. 111
Global Policy Roles ... 111
Selecting a Global Policy ... 112
Configuring Global Policies in a Policy Shortcut Chain ... 113
Configuring Global Policies for a Service ... 115
Showing Global Policies .. 115

5. Configuring Policy Packages ... 117
Overview .. 117
Configuring a Policy Package ... 117
Applying a Policy Package ... 118
Applying a Policy Package to a Service ... 118

5. Managing Deployments ..
1. Getting Started with Managing Deployments ... 119

Overview .. 119
Connecting to a Server in the Policy Studio .. 119
Editing Server Configuration in the Policy Studio ... 119
Managing Deployments in the API Gateway Manager .. 120
Managing Admin Users in the API Gateway Manager .. 120
Configuring Policies in the Policy Studio .. 120

2. Deploying Configuration ... 121
Overview .. 121
Creating a Deployment Archive in the Policy Studio ... 121
Deploying a Deployment Archive in the Policy Studio ... 121
Deploying a Factory Configuration in the Policy Studio ... 122
Deploying a Currently Loaded Configuration in the Policy Studio .. 122
Deployment Summary in the Policy Studio ... 122
Deploying an Archive in API Gateway Manager .. 123
Deploying on the Command Line ... 123

3. Deploying the API Gateway in Multiple Environments ... 124

Oracle® Fusion Middleware

v

Overview .. 124
Configuring Environment Variables .. 124
Configuring Certificates as Environment Variables .. 125

4. Managing Admin Users .. 128
Overview .. 128
Admin User Privileges ... 128
Admin User Roles .. 128
Adding a New Admin User ... 129
Removing an Admin User .. 130
Resetting an Admin User Password ... 130
Managing Admin User Roles .. 130

5. Configuring Role-Based Access Control (RBAC) ... 131
Overview .. 131
Local Admin User Store ... 133
Access Control List ... 134
Configuring Users and Roles .. 135
Management Service Roles and Permissions ... 136

6. Using Active Directory for Authentication and RBAC of Management Services 139
Overview .. 139
Step 1: Create an Active Directory Group .. 139
Step 2: Create an Active Directory User .. 141
Step 3: Create an LDAP Connection .. 145
Step 4: Create an LDAP Repository ... 146
Step 5: Create a Test Policy for LDAP Authentication and RBAC ... 148
Step 6: Use the LDAP Policy to Protect Management Services .. 154
Adding an LDAP User with Limited Access to Management Services 154

7. Using OpenLDAP for Authentication and RBAC of Management Services 156
Overview .. 156
Step 1: Create an OpenLDAP Group for RBAC Roles .. 156
Step 2: Add RBAC Roles to the OpenLDAP RBAC Group ... 157
Step 3: Add Users to the OpenLDAP RBAC Group .. 160
Step 4: Create an LDAP Connection .. 161
Step 5: Create an OpenLDAP Repository .. 161
Step 6: Create a Test Policy for LDAP Authentication and RBAC ... 163
Step 7: Use the OpenLDAP Policy to Protect Management Services 169

6. General Configuration ...
1. Startup Instructions ... 170

Overview .. 170
Setting Passphrases ... 170
Starting the Node Manager ... 170
Starting the API Gateway ... 170
Connecting to the API Gateway ... 171

2. Connection Details .. 172
Overview .. 172
Connecting to a URL ... 172
Connecting to a File .. 173
Unlocking a Server Connection ... 173

3. Global Configuration .. 174
Overview .. 174
Server Configuration ... 174
API Gateway Settings ... 174
Web Services Repository ... 175
Processes ... 175
Policies .. 175
Certificates and Keys .. 176
API Gateway User Store .. 176
System Alerts .. 176

Oracle® Fusion Middleware

vi

External Connections .. 176
Caches .. 177
Black list and White list .. 177
Schema Cache .. 178
Scripts ... 178
Stylesheets ... 178
References ... 178

4. Server Configuration .. 180
Overview .. 180
Deploy ... 180

5. API Gateway Settings .. 181
Overview .. 181
Default Settings ... 181
Audit Log .. 181
Namespace ... 181
MIME/DIME .. 181
Traffic Monitor ... 181
Metrics ... 181
Session Settings .. 181
Cache .. 181
Access Log ... 182
Security Service Module .. 182
Kerberos .. 182
Tivoli .. 182

6. Policy Studio Preferences ... 183
Overview .. 183
Management Services ... 183
Policy Colors ... 183
Proxy Settings ... 183
Runtime Dependencies ... 184
Server Connection .. 184
SSL Settings ... 184
Status Bar ... 185
Trace Level ... 185
Web and XML .. 185
WS-I Settings .. 185

7. Policy Studio Viewing Options ... 187
Overview .. 187
Filtering the Tree .. 187
Configuring Viewing Options ... 187
Configuring the Policy Filter Palette .. 187

8. Web Service Repository ... 188
Overview .. 188
Testing WS-I Compliance ... 188
Registering the WSDL File ... 188
Loading the WSDL File .. 189
Selecting WSDL Operations ... 189
WS-Policy Options .. 189
Deploy Policy .. 190
Secure Virtual Service ... 190
WSDL Import Summary ... 190
What is Created? ... 191
Publishing the WSDL .. 192

9. Setting the Encryption Passphrase ... 193
Encryption Passphrase Overview .. 193
Setting the Group Passphrase in the Policy Studio .. 193
Entering the Group Passphrase in the Policy Studio .. 193
Specifying the Passphrase in a File or on Startup .. 194

Oracle® Fusion Middleware

vii

10. Default Settings .. 195
Overview .. 195
Settings .. 195

11. Namespace Settings .. 198
Overview .. 198
SOAP Namespace ... 198
Signature ID Attribute .. 198
WSSE Namespace ... 199

12. MIME/DIME Settings .. 200
Overview .. 200
Configuration ... 200

13. Session Settings ... 201
Overview .. 201
Configuration ... 201

14. Exporting API Gateway Configuration .. 202
Overview .. 202
What is Exported .. 202
Exporting Configuration Items ... 202
Exporting All API Gateway Configuration ... 203

15. Importing API Gateway Configuration .. 204
Overview .. 204
Importing Configuration ... 204
Viewing Differences .. 204
What is Imported .. 205

7. Reporting ..
1. Configuring the API Gateway for API Gateway Analytics ... 206

Overview .. 206
Connecting to the API Gateway ... 206
Configuring the Database Connection ... 206
Configuring the Database Logging ... 206
Configuring Monitoring Settings ... 207
Deploying to the API Gateway ... 207

2. Using Oracle API Gateway Analytics ... 208
Overview .. 208
Launching API Gateway Analytics .. 208
System ... 208
API Services ... 209
Remote Hosts .. 210
Clients ... 210
Audit Trail ... 211
Reports .. 211
Custom Reporting .. 211

3. Scheduled Reports .. 214
Overview .. 214
Database Configuration ... 214
Scheduled Reports Configuration .. 214
SMTP Configuration .. 214

4. Real-Time Monitoring Settings ... 216
Overview .. 216
Configuring Metrics Settings ... 216
Configuring Reports Settings .. 216

5. Configuring Traffic Monitoring .. 217
Overview .. 217
Configuration ... 217

6. Purging the Reports Database ... 219
Overview .. 219
Running the dbpurger Command ... 219

Oracle® Fusion Middleware

viii

Example Commands ... 219
8. API Gateway Instances ...

1. Configuring API Gateway Instances .. 221
Overview .. 221
Add Remote Host ... 221
Add HTTP Services .. 221
Add SMTP Services .. 221
Add File Transfer Services ... 221
Add Policy Execution Scheduler .. 221
Messaging System ... 221
FTP Poller .. 222
Directory Scanner ... 222
POP Client .. 222
TIBCO ... 222
API Gateway Settings ... 222
API Gateway Logging .. 222
Cryptographic Acceleration ... 222

2. Configuring HTTP Services ... 223
Overview .. 223
HTTP Services Groups .. 223
HTTP and HTTPS Interfaces .. 224
HTTPS Interfaces Only .. 226
Relative Paths ... 229
Web Service Resolvers ... 231
Static Content Provider .. 233
Servlet Applications .. 234
Management Services ... 235
Changing the Management Services Port .. 236

3. Configuring SMTP Services .. 237
Overview .. 237
Adding an SMTP Service ... 237
Adding an SMTP Interface ... 238
Configuring Policy Handlers for SMTP Commands .. 238
Adding an HELO/EHLO Policy Handler ... 239
Adding an AUTH Policy Handler .. 239
Adding a MAIL Policy Handler ... 240
Adding a RCPT Policy Handler .. 241
Adding a DATA Policy Handler .. 242
SMTP Authentication .. 242
SMTP Content-Transfer-Encoding ... 243
Deployment Example .. 244

4. File Transfer Service .. 248
Overview .. 248
General Configuration ... 248
File Upload ... 249
Secure Services ... 250
Commands ... 250
Access Control .. 251
Messages ... 251
Directory ... 251

5. Policy Execution Scheduling .. 253
Overview .. 253
Cron Expressions ... 253
Adding a Schedule ... 255
Adding a Policy Execution Scheduler .. 255

6. FTP Poller ... 256
Overview .. 256

Oracle® Fusion Middleware

ix

General Settings .. 256
Scan Details .. 256
Connection Type .. 257
FTP and FTPS Connections ... 257
FTPS Connections ... 257
SFTP Connections ... 258

7. Directory Scanner ... 259
Overview .. 259
Directory to Scan .. 259
Directory for Output .. 259
Completed Directory ... 260
Working Directory ... 260
Policy to Use ... 260

8. Packet Sniffers ... 261
Overview .. 261
Configuration ... 261

9. Messaging System .. 263
Overview .. 263
Configuring a JMS Service ... 263
Configuring a JMS Session .. 264
Configuring a JMS Consumer ... 264
Configuring the JMS Wizard ... 265

10. Remote Host Settings .. 266
Overview .. 266
General Settings .. 266
Address and Load Balancing Settings ... 267
Advanced Settings .. 267

11. Configuring an HTTP Watchdog ... 270
Overview .. 270
Configuration ... 270

12. Configuring Conditions for HTTP Interfaces .. 271
Overview .. 271
Requires Endpoint Condition .. 271
Requires Link Condition ... 272

13. POP Client ... 273
Overview .. 273
Configuration ... 273

14. TIBCO Integration ... 274
Overview .. 274
TIBCO Rendezvous Integration ... 274
TIBCO Enterprise Messaging Service Integration .. 274

15. Cryptographic Acceleration .. 275
Overview .. 275
General Configuration ... 275
Conversations for Crypto Engines .. 276

16. Cryptographic Acceleration Conversation: Request-Response .. 277
Conversations for Crypto Engines .. 277

17. TIBCO Rendezvous Daemon ... 278
Overview .. 278
Configuration ... 278

18. TIBCO Rendezvous Listener ... 280
Overview .. 280
Configuration ... 280

19. TIBCO Enterprise Messaging Service Consumer ... 281
Overview .. 281
Configuration ... 281

20. Oracle Security Service Module Settings (10g) .. 283
Overview .. 283

Oracle® Fusion Middleware

x

Prerequisites ... 283
Settings .. 284
Name Authority Definition ... 285
Further Information ... 285

9. Resources ..
1. Certificates and Keys ... 286

Overview .. 286
Viewing Certificates and Private Keys ... 286
Configuring an X.509 Certificate .. 286
Configuring a Private Key ... 287
Global Options ... 287
Managing Certificates and Keystores .. 288
Configuring Key Pairs .. 288
Configuring PGP Key Pairs .. 289

2. API Gateway Users ... 291
Overview .. 291
Users ... 291
Adding Users ... 291
Attributes .. 291
Groups ... 292
Adding Groups ... 292
Updating Users or Groups .. 292

3. Global Schema Cache ... 293
Overview .. 293
Adding Schemas to the Cache .. 293
Testing WSDL Files for WSI Compliance ... 293
Organizing Schemas with Schema Containers ... 294
Schema Validation .. 295

4. External Connections ... 296
Overview .. 296
Authentication Repository Profiles .. 296
Connection Sets ... 296
Database Connections .. 297
ICAP Servers .. 297
JMS Services .. 297
Kerberos Connections ... 297
LDAP Connections ... 298
OCSP Connections ... 298
Proxy Servers .. 298
RADIUS Clients ... 298
SiteMinder .. 298
SMTP Servers ... 299
SOA Security Manager .. 299
Syslog Servers .. 299
TIBCO ... 299
Tivoli .. 299
URL Connection Sets .. 300
XKMS Connections ... 300

5. Global Caches .. 301
Overview .. 301
Local Caches .. 301
Distributed Caches ... 302
Distributed Cache Settings ... 303
Example of Caching Response Messages ... 304

10. Attributes ..
1. Compare Attribute ... 307

Overview .. 307

Oracle® Fusion Middleware

xi

Configuration ... 307
2. Extract REST Request Attributes .. 308

Overview .. 308
Configuration ... 308

3. Extract WSS Timestamp ... 309
Overview .. 309
Configuration ... 309

4. Extract WSS UsernameToken ... 310
Overview .. 310
Configuration ... 310

5. Extract WSS Header .. 311
Overview .. 311
Configuration ... 311

6. Get Cookie .. 312
Overview .. 312
Configuration ... 312
Attribute Storage .. 312

7. Retrieve Attribute from Database .. 314
Overview .. 314
General Configuration ... 314
Database .. 314
Advanced ... 314

8. Retrieve Attributes from Directory Server ... 316
Overview .. 316
General Configuration ... 316
Database .. 316
Advanced ... 317

9. Retrieve Attribute from HTTP Header .. 318
Overview .. 318
Configuration ... 318

10. Insert SAML Attribute Assertion .. 319
Overview .. 319
General Configuration ... 319
Assertion Details .. 320
Assertion Location .. 320
Subject Confirmation Method .. 321
Advanced ... 323

11. Retrieve Attributes with JSON Path ... 325
Overview .. 325
Configuration ... 325
JSON Path Examples .. 325

12. Retrieve Attribute from Message ... 329
Overview .. 329
Configuration ... 329

13. Retrieve Attribute from SAML Attribute Assertion ... 330
Overview .. 330
Details ... 330
Trusted Issuers .. 331
Subject Configuration .. 331
Lookup Attributes ... 331

14. SAML PDP Attributes ... 333
Overview .. 333
Request Configuration ... 333
Response Configuration .. 335

15. Retrieve Attribute from User Store .. 336
Overview .. 336
General Configuration ... 336
Database .. 336

Oracle® Fusion Middleware

xii

Advanced ... 336
11. Authentication ...

1. Attribute Authentication .. 337
Overview .. 337
Configuration ... 337

2. Authenticate API Key ... 338
Overview .. 338
General Settings .. 338
API Key Settings .. 338
Advanced ... 339

3. CA SOA Security Manager Authentication .. 341
Overview .. 341
Agent Configuration .. 341
Message Details Configuration .. 342
XmlToolkit.properties File ... 342

4. HTML Form-based Authentication .. 344
Overview .. 344
General Settings .. 344
Session Settings .. 344

5. HTTP Basic Authentication ... 346
Overview .. 346
Configuration ... 346

6. HTTP Digest Authentication .. 348
Overview .. 348
Configuration ... 348

7. HTTP Header Authentication ... 349
Overview .. 349
Configuration ... 349

8. IP Address ... 350
Overview .. 350
Configuration ... 350
Configuring Subnet Masks ... 350

9. SAML Authentication ... 353
Overview .. 353
General Settings .. 354
Details ... 354
Trusted Issuers .. 354

10. SAML PDP Authentication ... 355
Overview .. 355
Request Configuration ... 355
Response Configuration .. 357

11. Insert SAML Authentication Assertion .. 358
Overview .. 358
General Configuration ... 358
Assertion Details .. 359
Assertion Location .. 359
Subject Confirmation Method .. 360
Advanced ... 362

12. Insert Timestamp .. 364
Overview .. 364
Configuration ... 364

13. Insert WS-Security Username Token ... 365
Overview .. 365
General Configuration ... 365
Credential Details ... 365
Advanced ... 366

14. Kerberos Client Authentication ... 367

Oracle® Fusion Middleware

xiii

Overview .. 367
Kerberos Client .. 367
Kerberos Token Profile .. 368

15. Kerberos Service Authentication ... 369
Overview .. 369
Kerberos Service .. 369
Kerberos Standard ... 369
Message Level .. 370
Transport Level .. 370
Advanced SPNEGO .. 370

16. Kerberos Configuration ... 371
Overview .. 371
Kerberos Configuration File - krb5.conf ... 371
Advanced Settings .. 371
Native GSS Library ... 372

17. Kerberos Clients ... 373
Overview .. 373
Ticket Granting Ticket Source ... 373
Kerberos Principal .. 374
Secret Key .. 374
Advanced Tab ... 375

18. Kerberos Services ... 377
Overview .. 377
Kerberos Endpoint Tab .. 377
Advanced Tab ... 378

19. Kerberos Principals .. 379
Overview .. 379
Configuration ... 379

20. Kerberos Keytab ... 381
Overview .. 381
Configuration ... 381

21. SAML Authentication XML-Signature Verification ... 383
Overview .. 383
Configuration ... 383

22. XML Signature Authentication .. 386
Overview .. 386
Configuration ... 386

23. SSL Authentication .. 388
Overview .. 388
Configuration ... 388

24. Security Token Service Client .. 389
Overview .. 389
Example Request ... 389
General Settings .. 390
Request Settings .. 390
Issue: POP Key ... 390
Issue: On Behalf Of Token ... 392
Issue: Token Scope and Lifetime ... 393
Validate: Target ... 394
Policies Settings ... 394
Routing .. 395
Response Settings ... 395
Advanced Settings .. 395

25. WS-Security Username Authentication .. 398
Overview .. 398
General Configuration ... 398
Token Validation .. 399
Token Verification via Repository ... 399

Oracle® Fusion Middleware

xiv

12. Authorization ...
1. Attributes ... 401

Overview .. 401
Configuration ... 401

2. Certificate Attributes .. 402
Overview .. 402
Configuration ... 402

3. RSA Access Manager Authorization .. 404
Overview .. 404
General Details .. 404
Connection Details ... 404
Authorization Details ... 405

4. Entrust GetAccess Authorization .. 406
Overview .. 406
GetAccess WS-Trust STS .. 406
GetAccess SAML PDP .. 406

5. Insert SAML Authorization Assertion ... 408
Overview .. 408
General Configuration ... 408
Assertion Details .. 408
Assertion Location .. 409
Subject Confirmation Method .. 410
Advanced ... 412

6. RBAC Filter ... 414
Overview .. 414
Configuration ... 414

7. SAML Authorization Assertion ... 415
Overview .. 415
General Settings .. 415
Details ... 415
Trusted Issuers .. 416
Optional Settings .. 416

8. SAML PDP Authorization .. 417
Overview .. 417
Request Configuration ... 417
Response ... 419

9. Tivoli Integration ... 420
Overview .. 420
Integration Architecture .. 420
Prerequisites ... 421
Global Tivoli Configuration ... 423
Tivoli Authorization ... 425
Tivoli Authentication .. 426
Tivoli Attribute Retrieval ... 427

10. Tivoli Authorization .. 429
Overview .. 429
Adding a Tivoli Client .. 429
Adding Users and Web Services to Tivoli .. 429
Configuring Tivoli Authorization ... 430
Tivoli Authentication Refresh .. 431

11. Retrieve Attributes from Tivoli .. 432
Overview .. 432
Configuration ... 432

12. CA SOA Security Manager Authorization .. 433
Overview .. 433
Configuration ... 433

13. SAML Authorization XML-Signature Verification ... 434

Oracle® Fusion Middleware

xv

Overview .. 434
Configuration ... 435

14. XACML Policy Enforcement Point ... 437
Overview .. 437
Example XACML Request .. 438
General Settings .. 438
XACML Settings ... 438
Routing Settings ... 441
Advanced Settings .. 442

13. CA SiteMinder ..
1. SiteMinder Certificate Authentication ... 443

Overview .. 443
Configuration ... 443

2. SiteMinder Session Validation ... 445
Overview .. 445
Configuration ... 445

3. SiteMinder Logout ... 447
Overview .. 447
Configuration ... 447

4. SiteMinder Authorization ... 448
Overview .. 448
Configuration ... 448

5. SiteMinder/SOA Security Manager Connection ... 449
Overview .. 449
SiteMinder and SOA Security Manager Connection Details ... 449
SOA Security Manager Connection Details Only ... 450

14. Certificates ...
1. Static CRL Certificate Validation ... 451

Overview .. 451
Configuration ... 452

2. Dynamic CRL Certificate Validation .. 453
Overview .. 453
Configuration ... 453

3. CRL LDAP Validation ... 454
Overview .. 454
Configuration ... 454

4. CRL Responder .. 455
Overview .. 455
Configuration ... 455

5. Create Thumbprint from Certificate ... 456
Overview .. 456
Configuration ... 456

6. Certificate Validity ... 457
Overview .. 457
Configuration ... 457

7. Find Certificate ... 458
Overview .. 458
Configuration ... 458

8. Extract Certificate Attributes .. 459
Overview .. 459
Generated Message Attributes .. 459
Configuration ... 461

9. Certificate Chain Check .. 462
Overview .. 462
Configuration ... 462

10. OCSP Certificate Validation ... 463
Overview .. 463

Oracle® Fusion Middleware

xvi

Configuration ... 463
11. OCSP Certificate Validation Connection ... 464

Overview .. 464
Configuration ... 464

12. Validate Server's Certificate Store ... 465
Overview .. 465
Configuration ... 465
Deployment Example .. 465

13. XKMS Certificate Validation ... 468
Overview .. 468
Configuration ... 468

14. XKMS Certificate Validation Connection ... 469
Overview .. 469
Configuration ... 469

15. Cache ..
1. Cache Attribute ... 470

Overview .. 470
Configuration ... 470

2. Create Key .. 471
Overview .. 471
Configuration ... 471

3. Is Cached? .. 472
Overview .. 472
Configuration ... 472

4. Removed Cached Attribute ... 473
Overview .. 473
Configuration ... 473

16. Content Filtering ..
1. ClamAV Anti-Virus .. 474

Overview .. 474
Configuration ... 474

2. Content Type Filtering .. 475
Overview .. 475
Allow or Deny Types ... 475
Configuring MIME/DIME Types ... 475

3. Content Validation ... 476
Overview .. 476
Manual XPath Configuration ... 476
XPath Wizard .. 477

4. HTTP Header Validation ... 478
Overview .. 478
Configuring HTTP Header Regular Expressions ... 478
Configuring Threatening Content Regular Expressions ... 479

5. ICAP Filter ... 481
Overview .. 481
Configuration ... 481
Example Policies .. 481
Further Information ... 482

6. McAfee Anti-Virus ... 483
Overview .. 483
Configuring a McAfee Anti-Virus Filter .. 483
Configuring Custom Options ... 484
Reporting Message Status ... 485
Loading McAfee Updates ... 485

7. Message Size .. 487
Overview .. 487
Configuration ... 487

Oracle® Fusion Middleware

xvii

8. Query String Validation .. 488
Overview .. 488
Request Query String .. 488
Configuring Query String Attribute Regular Expressions ... 488
Configuring Threatening Content Regular Expressions ... 490

9. Schema Validation .. 491
Overview .. 491
Schema to Use .. 491
Part of Message to Match .. 491
Advanced ... 492
Reporting Schema Validation Errors ... 494

10. JSON Schema Validation .. 496
Overview .. 496
Configuration ... 496
Generating a JSON Schema Using Jython .. 497

11. Sophos Anti-Virus .. 499
Overview .. 499
General Settings .. 499
Sophos Configuration Settings .. 499

12. Threatening Content .. 501
Overview .. 501
Scanning Details .. 501
MIME Types .. 501

13. Throttling ... 502
Overview .. 502
General Settings .. 502
Cache Settings .. 503
Using Multiple Throttling Filters ... 503

14. Validate Message Attributes .. 505
Overview .. 505
Configuring Message Attribute Regular Expressions .. 505
Threatening Content Regular Expressions ... 506

15. Validate REST Request .. 507
Overview .. 507
General Configuration ... 507
REST Request Parameter Restrictions ... 507

16. Validate Timestamp ... 510
Overview .. 510
Configuration ... 510

17. WS-SecurityPolicy Layout ... 512
Overview .. 512
Configuration ... 512

18. XML Complexity .. 513
Overview .. 513
Configuration ... 513

17. Conversion ...
1. Add HTTP Header ... 514

Overview .. 514
Configuration ... 514

2. JSON Add Node ... 515
Overview .. 515
Configuration ... 515
Examples ... 516

3. Add XML Node ... 522
Overview .. 522
General Configuration ... 522
Configure where to Insert the New Nodes .. 522

Oracle® Fusion Middleware

xviii

Node Source ... 522
Configure New Node Details ... 523
Attribute Node Details ... 523
Examples ... 523

4. Contivo Transformation .. 525
Overview .. 525
Configuration ... 525

5. Multipart Bodypart Conversion ... 526
Overview .. 526
Configuration ... 526

6. Create Cookie .. 527
Overview .. 527
Configuration ... 527

7. Create REST Request ... 528
Overview .. 528
Configuration ... 528

8. Set HTTP Verb ... 529
Overview .. 529
Configuration ... 529

9. Insert MTOM Attachment .. 530
Overview .. 530
Configuration ... 531

10. JSON to XML ... 532
Overview .. 532
Configuration ... 532
Examples ... 532

11. Extract MTOM Attachment .. 535
Overview .. 535
Configuration ... 536

12. Load File ... 537
Overview .. 537
Configuration ... 537

13. Remove Attachments ... 538
Overview .. 538
Configuration ... 538

14. Remove HTTP Header ... 539
Overview .. 539
Configuration ... 539

15. JSON Remove Node .. 540
Overview .. 540
Configuration ... 540
Examples ... 540

16. Remove XML Node ... 543
Overview .. 543
Configuration ... 543

17. Restore Message .. 544
Overview .. 544
Configuration ... 544

18. Store Message ... 545
Overview .. 545
Configuration ... 545

19. Set Message .. 546
Overview .. 546
Configuration ... 546

20. XSLT Transformation ... 547
Overview .. 547
Stylesheet Location .. 547
Stylesheet Parameters .. 547

Oracle® Fusion Middleware

xix

Advanced ... 547
21. XML to JSON ... 549

Overview .. 549
Configuration ... 549

18. Encryption ..
1. Generate Key ... 550

Overview .. 550
Configuration ... 550

2. PGP Decrypt .. 551
Overview .. 551
Configuration ... 551

3. PGP Encrypt .. 552
Overview .. 552
Configuration ... 552

4. SMIME Decryption .. 554
Overview .. 554
Configuration ... 554

5. SMIME Encryption .. 555
Overview .. 555
General Configuration ... 555
Recipients ... 555
Advanced ... 555

6. XML-Decryption .. 556
Overview .. 556
Configuration ... 556
Auto-generation using the XML Decryption Wizard .. 556

7. XML-Decryption Settings .. 557
Overview .. 557
XML Encryption Overview .. 557
Node(s) to Decrypt ... 559
Decryption Key .. 560
Options .. 560
Auto-generation using the XML Decryption Wizard .. 561

8. XML-Encryption .. 562
Overview .. 562
Configuration ... 562
Auto-generation using the XML Encryption Settings Wizard .. 562

9. XML-Encryption Settings .. 563
Overview .. 563
XML Encryption Overview .. 563
Encryption Key .. 565
Key Info .. 566
Recipients ... 569
What to Encrypt ... 571
Advanced ... 571
Auto-generation using the XML Encryption Settings Wizard .. 572

10. XML Encryption Wizard .. 573
Overview .. 573
Configuration ... 573

19. Integrity ..
1. XML Signature Generation .. 574

Overview .. 574
Signing Key ... 574
What to Sign ... 579
Where to Place Signature .. 584
Advanced ... 585
Additional ... 585

Oracle® Fusion Middleware

xx

Algorithm Suite .. 587
Options .. 588

2. XML Signature Verification .. 591
Overview .. 591
Signature Verification .. 591
What Must Be Signed .. 591
Advanced ... 592

3. PGP Sign .. 593
Overview .. 593
Configuration ... 593

4. PGP Verify .. 595
Overview .. 595
Configuration ... 595

5. SMIME Sign ... 597
Overview .. 597
Configuration ... 597

6. SMIME Verify ... 598
Overview .. 598
Configuration ... 598

20. Fault Handlers ..
1. Generic Error ... 599

Overview .. 599
General Configuration ... 599
Generic Error Contents .. 599

2. JSON Error .. 601
Overview .. 601
General Configuration ... 601
JSON Error Contents .. 601
Customized JSON Errors ... 603

3. SOAP Fault ... 604
Overview .. 604
SOAP Fault Format .. 604
SOAP Fault Contents .. 604
Customized SOAP Faults ... 605

21. Monitoring ..
1. System Alerting .. 608

Overview .. 608
Configuring an Alert Destination .. 608
Configuring an Alert Filter ... 612

2. Audit Log Settings ... 615
Overview .. 615
Configuring Log Output .. 615
Log to Text File .. 615
Log to XML File .. 616
Log to Database ... 616
Log to Local Syslog .. 617
Log to Remote Syslog ... 617
Log to System Console .. 617

3. Access Log Settings .. 618
Overview .. 618
Log Format ... 618
Configuring the Access Log .. 618

4. Log Level and Message ... 620
Overview .. 620
Configuration ... 620

5. Log Message Payload .. 622
Overview .. 622

Oracle® Fusion Middleware

xxi

Configuration ... 622
6. Log Access Filter .. 623

Overview .. 623
Log Format ... 623
Configuration ... 624

7. Service Level Agreement (SLA) Filter .. 625
Overview .. 625
Response Time Requirements .. 625
HTTP Status Requirements .. 626
Communications Failure Requirements ... 627
Select Alerting System .. 628

8. Set Service Context ... 629
Overview .. 629
Configuration ... 629

22. OAuth ..
1. API Gateway OAuth 2.0 Introduction ... 630

Overview .. 630
OAuth 2.0 Definitions .. 630
OAuth 2.0 Authentication Flows ... 630
Further Information ... 631

2. Configuring and Managing OAuth 2.0 .. 632
Overview .. 632
Enabling OAuth 2.0 Management .. 632
Pre-registered Client Applications .. 633
Managing Registered Clients .. 633
Sample Clients .. 635
Token Management .. 635
API Manager REST API ... 639
Database-Backed API Manager .. 641
OAuth Database Schemas ... 642
OpenSSL Commands ... 643
OAuth 2.0 Message Attributes ... 643

3. API Gateway OAuth 2.0 Authentication Flows ... 649
Overview .. 649
Authorization Code (or Web Server) Flow .. 649
Implicit Grant (or User Agent) Flow .. 654
Resource Owner Password Credentials Flow ... 658
Client Credentials Grant Flow ... 660
OAuth 2.0 JWT Flow ... 662
Revoke Token ... 664
Token Info Service .. 666

4. OAuth Access Token Information ... 669
Overview .. 669
Access Token Info Settings .. 669
Monitoring ... 669

5. Access Token using Authorization Code .. 671
Overview .. 671
Application Validation .. 671
Access Token .. 672
Monitoring ... 672

6. Access Token using Client Credentials .. 673
Overview .. 673
Application Validation .. 673
Access Token .. 673
Monitoring ... 674

7. Access Token using JWT ... 675
Overview .. 675

Oracle® Fusion Middleware

xxii

Application Validation .. 675
Access Token .. 675
Monitoring ... 676

8. Authorization Code Flow ... 677
Overview .. 677
Validation/Templates ... 677
Authz Code Details ... 678
Access Token Details .. 678
Monitoring ... 679

9. Authorize Transaction .. 680
Overview .. 680
Validation/Templates ... 680
Authz Code Details ... 680
Access Token Details .. 681
Monitoring ... 682

10. Refresh Access Token ... 683
Overview .. 683
Application Validation .. 683
Access Token .. 683
Monitoring ... 684

11. Resource Owner Credentials ... 685
Overview .. 685
Application Validation .. 685
Access Token .. 686
Monitoring ... 686

12. Revoke a Token .. 687
Overview .. 687
Revoke Token Settings .. 687
Monitoring ... 687

13. Validate Access Token ... 688
Overview .. 688
Configuration ... 688

23. Oracle Access Manager ..
1. Oracle Access Manager Authorization ... 689

Overview .. 689
Configuration ... 689

2. Oracle Access Manager Log in with Certificate .. 690
Overview .. 690
General Configuration ... 690
Resource Configuration ... 690
Session Configuration ... 690
OAM Access Server SDK Configuration .. 691

3. Logout from Oracle Access Manager SSO Session .. 692
Overview .. 692
Configuration ... 692

4. Oracle Access Manager SSO Token Validation ... 693
Overview .. 693
Configuration ... 693

24. Oracle Entitlements Server ...
1. Oracle Entitlements Server 10g Authorization ... 694

Overview .. 694
General .. 694
Settings .. 694
Application Context ... 695

2. Get Roles from Oracle Entitlements Server 10g ... 696
Overview .. 696
General .. 696

Oracle® Fusion Middleware

xxiii

Settings .. 696
Application Context ... 696

3. Oracle Entitlements Server 11g Authorization ... 697
Overview .. 697
Configuration ... 697

25. Resolvers ...
1. Relative Path Resolver ... 698

Overview .. 698
Configuration ... 698

2. SOAP Action Resolver ... 699
Overview .. 699
Configuration ... 699

3. Operation Name ... 700
Overview .. 700
Configuration ... 700

26. Routing ...
1. Getting Started with Routing Configuration ... 701

Overview .. 701
Proxy or Endpoint Server ... 701
Service Virtualization ... 701
Choosing the Correct Routing Filters .. 701
Case 1: Proxy without Service Virtualization ... 702
Case 2: Proxy with Service Virtualization ... 703
Case 3: Endpoint without Service Virtualization .. 704
Case 4: Endpoint with Service Virtualization ... 705
Case 5: Simple Redirect .. 706
Case 6: Routing on to an HTTP Proxy .. 707
Summary .. 708

2. Routing Wizard ... 710
Overview .. 710
Configuration ... 710

3. Call Internal Service .. 712
Overview .. 712
Configuration ... 712

4. Connection .. 713
Overview .. 713
General Configuration ... 713
Trusted Certificates ... 713
Client SSL Authentication ... 713
HTTP Authentication ... 713
Kerberos Authentication ... 713
Behavior ... 714
Advanced ... 715

5. Connect to URL .. 717
Overview .. 717
General Configuration ... 717
Trusted Certificates ... 717
Client SSL Authentication ... 717
HTTP Authentication ... 717
Kerberos Authentication ... 718
Behavior ... 718
Advanced ... 720
Request Details ... 721

6. Dynamic Router .. 722
Overview .. 722
Configuration ... 722

7. Extract Path Parameters ... 723

Oracle® Fusion Middleware

xxiv

Overview .. 723
Configuration ... 723
Required Input and Generated Output .. 724
Possible Outcomes ... 724

8. File Download .. 725
Overview .. 725
General Settings .. 725
File Details .. 725
Connection Type .. 725
FTP and FTPS Connections ... 726
FTPS Connections ... 726
SFTP Connections ... 726

9. File Upload .. 727
Overview .. 727
General Settings .. 727
File Details .. 727
Connection Type .. 728
FTP and FTPS Connections ... 728
FTPS Connections ... 728
SFTP Connections ... 729

10. HTTP Redirect .. 730
Overview .. 730
Configuration ... 730

11. HTTP Status Code .. 731
Overview .. 731
Configuration ... 731

12. Insert WS-Addressing .. 732
Overview .. 732
Configuration ... 732

13. Messaging System Filter ... 733
Overview .. 733
Request Settings .. 733
Response Settings ... 735

14. Read WS-Addressing ... 737
Overview .. 737
Configuration ... 737

15. Rewrite URL ... 738
Overview .. 738
Configuration ... 738

16. Save to File .. 739
Overview .. 739
Configuration ... 739

17. SMTP Routing .. 740
Overview .. 740
General Settings .. 740
Message Settings ... 740

18. Static Router .. 741
Overview .. 741
Configuration ... 741

19. TIBCO Rendezvous Routing .. 742
Overview .. 742
Configuration ... 742

20. TIBCO Enterprise Messaging Service Routing Filter ... 743
Overview .. 743
Connection ... 743
Request ... 743
Response ... 744

21. TIBCO Enterprise Messaging Service Connection .. 746

Oracle® Fusion Middleware

xxv

Overview .. 746
Configuration ... 746

22. Wait for Response Packets ... 748
Overview .. 748
Packet Sniffer Configuration ... 748
Sniffing Response Packets ... 749

23. Proxy Servers ... 750
Overview .. 750
Configuration ... 750

27. Security Services ...
1. DSS Signature Generation Service ... 751

Overview .. 751
Configuration ... 751

2. DSS Signature Verification .. 752
Overview .. 752
Configuration ... 752

3. Encrypt and Decrypt Web Services ... 753
Overview .. 753
Configuration ... 753

4. STS Web Service .. 754
Overview .. 754
Configuration ... 754

28. WS-Trust ...
1. Consume WS-Trust Message .. 755

Overview .. 755
Consume WS-Trust Message Types .. 755
Message Consumption .. 755
Advanced ... 756

2. Create WS-Trust Message .. 757
Overview .. 757
Create WS-Trust Message Type .. 757
Message Creation .. 757
RST Creation .. 758
RSTR Creation .. 758
Advanced Settings .. 758

29. Extensibility ...
1. Advanced Filter View ... 760

Overview .. 760
Configuration ... 760

2. Selecting Configuration Values at Runtime ... 761
Overview .. 761
Selector Syntax .. 761
Example Selector Expressions .. 762
Extracting Message Attributes ... 763

3. Key Property Stores .. 764
Overview .. 764
KPS Backing Data Stores .. 764
Configuring a Key Property Store ... 764

4. Scripting Language Filter .. 766
Overview .. 766
Writing a Script .. 766
Configuring a Script Filter ... 767
Adding a Script to the Library .. 767

5. Writing a Custom Filter using the Oracle API Gateway SDK ... 769
Overview .. 769
Policies, Filters, and Message Attributes ... 769
Oracle API Gateway SDK Overview ... 770

Oracle® Fusion Middleware

xxvi

Tutorial Prerequisites .. 770
Oracle API Gateway SDK Sample Overview .. 770
Step 1: Create the Typedocs .. 771
Step 2: Create the Filter Class .. 774
Step 3: Create Processor Class ... 776
Step 4: Create Policy Studio Classes .. 779
Step 5: Build Classes .. 785
Step 6: Load TypeDocs ... 786
Step 7: Construct a Policy .. 791
Step 8: Configure the SimpleFilter .. 793
Conclusion .. 797

30. Utility ...
1. Abort Filter ... 798

Overview .. 798
Configuration ... 798

2. Check Group Membership .. 799
Overview .. 799
Configuration ... 799
Possible Paths ... 799

3. Configuration Web Service .. 800
Overview .. 800

4. Copy/Modify Attributes ... 801
Overview .. 801
Configuration ... 801

5. Evaluate Expression .. 802
Overview .. 802
Configuration ... 802

6. Execute External Process ... 803
Overview .. 803
Configuration ... 803

7. False Filter .. 804
Overview .. 804
Configuration ... 804

8. HTTP Parser .. 805
Overview .. 805
Configuration ... 805

9. Insert BST ... 806
Overview .. 806
Configuration ... 806

10. Invoke Policy per Message Body .. 807
Overview .. 807
Configuration ... 807

11. Locate XML Nodes .. 808
Overview .. 808
Configuration ... 808

12. Pause Filter .. 810
Overview .. 810
Configuration ... 810

13. Policy Shortcut .. 811
Overview .. 811
Configuration ... 811

14. Policy Shortcut Chain ... 812
Overview .. 812
General Configuration ... 812
Add a Policy Shortcut .. 812
Edit a Policy Shortcut .. 813

15. Quote of the Day ... 814

Oracle® Fusion Middleware

xxvii

Overview .. 814
Configuration ... 814

16. Reflect Message Filter .. 815
Overview .. 815
Configuration ... 815

17. Reflect Message And Attributes Filter .. 816
Overview .. 816
Configuration ... 816

18. Remove Attribute .. 817
Overview .. 817
Configuration ... 817

19. Set Response Status ... 818
Overview .. 818
Configuration ... 818

20. Set Attribute ... 819
Overview .. 819
Configuration ... 819

21. String Replace Filter .. 820
Overview .. 820
Configuration ... 820

22. Switch on Attribute Value .. 821
Overview .. 821
Configuration ... 821
Adding a Switch Case ... 821

23. Time Filter ... 823
Overview .. 823
General Configuration ... 823
Basic Time Options ... 823
Advanced Time Options ... 824

24. Trace Filter .. 825
Overview .. 825
Configuration ... 825

25. True Filter .. 826
Overview .. 826
Configuration ... 826

31. Web Services ...
1. Web Service Filter ... 827

Overview .. 827
General Settings .. 827
Routing .. 827
Validation ... 827
Message Interception Points ... 828
WSDL .. 830
Monitoring ... 831

2. Return WSDL ... 832
Overview .. 832
Configuration ... 832

3. Set Web Service Context .. 833
Overview .. 833
Configuration ... 833

32. Common Configuration ..
1. Authentication Repository ... 834

Overview .. 834
Local Repositories .. 834
LDAP Repositories ... 834
CA SiteMinder Repositories .. 837
Database Repositories .. 838

Oracle® Fusion Middleware

xxviii

Entrust GetAccess Repositories .. 840
Oracle Access Manager Repositories ... 840
Oracle Entitlements Server 10g Repositories ... 842
RADIUS Repositories .. 842
RSA Access Manager Repositories .. 843
Tivoli Repositories .. 843

2. Certificate Chain Check .. 844
Overview .. 844
Configuration ... 844

3. Certificate Validation .. 845
Overview .. 845
Configuration ... 845
Configuring URL Groups .. 846

4. Compressed Content Encoding .. 848
Overview .. 848
Encoding of HTTP Responses .. 848
Encoding of HTTP Requests ... 848
Delimiting the End of an HTTP Message ... 848
Configuring Content Encoding ... 849
Further Information ... 850

5. Configuring Connection Groups ... 851
Overview .. 851
Configuring a Connection Group .. 851
Configuring a Connection ... 851

6. Configuring Cron Expressions ... 852
Overview .. 852
Creating a Cron Expression using the Time Tabs .. 852
Entering a Cron Expression .. 855
Testing the Cron Expression ... 855
Further Information ... 855

7. Database Connection .. 856
Overview .. 856
Configuring the Database Connection ... 856
Database Connection Pool Settings ... 857
Connection Validation ... 857
Test the Connection .. 857

8. Database Query ... 858
Overview .. 858
Configuration ... 858

9. Configuring ICAP Servers ... 860
Overview .. 860
General Settings .. 860
Server Settings .. 860
Security Settings .. 860
Advanced Settings .. 861
Further Information ... 861

10. Configuring LDAP Directories .. 862
Overview .. 862
General Configuration ... 862
Authentication Configuration ... 862
Testing the LDAP Connection ... 863
Additional JNDI Properties ... 864

11. RADIUS Clients .. 865
Overview .. 865
Configuration ... 865

12. SAML PDP Response XML-Signature Verification .. 866
Overview .. 866
Configuration ... 866

Oracle® Fusion Middleware

xxix

13. Signature Location ... 869
Overview .. 869
Configuration ... 869

14. SMTP Servers .. 872
Overview .. 872
Configuration ... 872

15. Configuring a Transparent Proxy .. 873
Overview .. 873
Configuring Transparent Proxy Mode for Incoming Interfaces .. 873
Configuring Transparent Proxy Mode for Outgoing Calls ... 873
Configuration Example .. 873

16. Retrieving WSDL Files from a UDDI Registry .. 876
Overview .. 876
UDDI: A Brief Introduction .. 876
UDDI Definitions .. 876
Configuring a Registry Connection ... 878
WSDL Search .. 878
Quick Search ... 879
Name Search .. 880
Advanced Search ... 880
Advanced Options .. 882
Publish ... 884

17. Connecting to a UDDI Registry ... 885
Overview .. 885
Configuring a Registry Connection ... 885
Securing a Connection to a UDDI Registry .. 886

18. Publishing WSDL Files to a UDDI Registry ... 888
Overview .. 888
Finding WSDL Files .. 888
Publishing WSDL Files .. 888
Step 1: Enter Virtualized Service Address and WSDL URL for Publishing in UDDI Registry 888
Step 2: View WSDL to UDDI Mapping Result ... 889
Step 3: Select a Registry for Publishing ... 890
Step 4: Select a Duplicate Publishing Approach .. 890
Step 5: Create or Search for Business .. 891
Step 6: Publish WSDL ... 892

19. LDAP User Search .. 893
Configure Directory Search .. 893

20. Configuring URL Groups ... 894
Overview .. 894
Configuration ... 894

21. What To Sign ... 895
Overview .. 895
ID Configuration ... 895
Node Locations .. 897
XPath Configuration .. 897
XPath Predicates ... 898
Message Attribute .. 898

22. Configuring XPath Expressions .. 899
Overview .. 899
Manual Configuration .. 899
XPath Wizard .. 900

33. Reference ...
Message Attribute Reference .. 902
Message Filter Reference .. 936
WS-Policy Reference .. 972
Glossary of Terms .. 975

Oracle® Fusion Middleware

xxx

Oracle API Gateway Overview
Overview

Oracle API Gateway is a comprehensive platform for managing, delivering, and securing Web APIs. It provides integra-
tion, acceleration, governance, and security for API and SOA-based systems. Oracle API Gateway is available on Win-
dows, Linux, and Solaris (for more details, see the Oracle API Gateway Installation and Configuration Guide). This topic
describes the high-level functionality available in the Oracle API Gateway.

Integration

Oracle API Gateway provides the following integration features:

Identity Management
Oracle API Gateway integrates with existing third-party Identity Management (IM) infrastructures to perform authentica-
tion and authorization of message traffic. For example, integration is provided with LDAP, Microsoft Active Directory, Or-
acle Access Manager, CA SiteMinder, Entrust GetAccess, IBM Tivoli Access Manager, RSA Access Manager, and other
IM products. The API Gateway also interoperates with leading integration products and platforms (for example, Microsoft
.NET, Oracle WebLogic, IBM WebSphere, and SAP NetWeaver).

Scalability
The API Gateway is designed to offer a highly flexible and scalable solution architecture. Administrators can deploy new
API Gateway instances as needed, and deploy the same or different policies across a group of API Gateway instances
as required. This enables administrators to apply polices at any point in their system. Policy enforcement points can be
distributed around the network, anywhere traffic is being passed.

Pluggable Pipeline
The API Gateway’s internal message-handling pipeline is extensible, enabling extra access control and content-filtering
rules to be added with ease. Customers do not have to wait for a full product release before receiving updates of support
for emerging standards and for additional adapters.

REST APIs
The API Gateway’s REST support enables you to make enterprise application data and operations available using Web
APIs. For example, you can convert a legacy SOAP service, and deploy it as a REST API to be consumed by mobile
apps. REST-to-SOAP conversion is easy to achieve using the API Gateway. It can expose REST APIs that map to
SOAP services, dynamically creating a SOAP request based on the REST API call.

Internationalization
The API Gateway includes support for multi-byte message data and a wide range of international languages and charac-
ter sets. For example, this includes requests in languages such as Chinese, German, French, Spanish, Danish, Serbian,
Russian, Japanese, Korean, Greek, Arabic, Hebrew, and so on. The API Gateway supports character sets such as UTF-
8, KO-I8, UTF-16, UTF-32, ISO-8859-1, EUC-JP, US-ASCII, ISO-8859-7, and so on.

Performance

Oracle API Gateway accelerates performance as follows:

Processing Offload
You can use the API Gateway to offload the heavy lifting of XML from application servers, and on to the network. This
frees up resources on application servers and enables applications to run faster. The patented high-performance core
XML Acceleration engine (VXA), coupled with hardware acceleration ensures wirespeed network performance.

VXA Platform
The core VXA engine is integrated into the API Gateway to accelerate the essential XML security primitives. This engine
provides XML processing at faster levels than those performed by common JAXP implementations in application servers
and other applications that sit downstream from the API Gateway. The VXA engine performs Document Object Model

31

(DOM) processing, XPath, JSON Path, XSLT conversion, and validation of XML and JSON.

Data Enrichment
The API Gateway can automatically populate content in XML and JSON documents from sources such as databases. By
putting this functionality on to the network infrastructure, data is automatically populated in messages before they reach
the consuming services. This simplifies and accelerates applications in ESBs and application servers.

Governance

Oracle API Gateway provides the following governance features:

Ease of Deployment
The API Gateway includes many features that speed up deployment. For example, certificates and private keys, neces-
sary for XML security functions, are issued on board. The API Gateway has a deny-by-default defense posture, to detect
and block unauthorized deployments of services. Policies can be re-applied across multiple endpoints using simple
menus. Policies can also be imported and exported as XML files. This minimizes time needed to replicate policies across
multiple API Gateways, or to move from a staging system to production environment.

Centralized Management
A web-based system management dashboard provides centralized control of API Gateways in your domain. API Gate-
way Manager provides quick and easy access to enable you to manage your API Gateways and services. For example,
you can use monitoring and a traffic log to monitor messages sent through API Gateways in your domain. All monitoring
data can be aggregated across multiple API Gateway instances in a group or domain.

The Oracle Policy Studio tool enables administrators to add security and management policies to the API Gateway, and
to manage policy versions across multiple API Gateways. This enables enterprise policy management to be brought un-
der centralized control, rather than be managed separately on each API Gateway.

Reporting
The Oracle API Gateway Analytics tool provides auditing and reporting on usage across all entry points and creates
comprehensive reports to meet operational and compliance requirements. Oracle API Gateway Analytics also provides
root cause analysis by identifying common failure points in multi-service transactions. If a service fails, and impacts the
transaction as a whole, API Gateway Analytics can detect this and generate alerts.

Traffic Throttling
The Oracle API Gateway protects services from unanticipated traffic spikes by smoothing out traffic. It also limits clients
to agreed service consumption levels in accordance with service usage agreements. This enables Oracle customers to
charge their clients for different levels of service usage.

Security

Oracle API Gateway includes the following security features:

Identity Mediation
Through its support for a wide range of security standards, Oracle API Gateway enables identity mediation between dif-
ferent identity schemes. For example, the API Gateway can authenticate external clients by username and password, but
then issue SAML tokens that are used for identity propagation to application servers.

API Management
The API Gateway enables you to secure Web APIs against attack and abuse. It also enables you to govern and meter
access to and usage of Web APIs. The API Gateway provides support for API management security standards such as
OAuth. This enables you to share private resources with third-party websites without needing to provide credentials.

Application-level Networking
The API Gateway routes data based on sender identity, content, and type. This enables messages to be sent to the ap-
propriate application in a secure manner. It also enables service virtualization, where services are exposed to clients with
virtual addresses to mask their actual addresses for security and application delivery. In this way, the API Gateway acts
as an important control point for network traffic by shielding endpoint services from direct access.

Oracle API Gateway Overview

32

Audit Trail
The API Gateway satisfies audit requirements by enabling service transactions to be archived in a tamper-proof store for
subsequent audit. Oracle also facilitates privacy compliance support by allowing sensitive information, such as customer
names, to be encrypted or stripped out of message traffic.

Oracle API Gateway Overview

33

Oracle API Gateway Architecture
Overview

This topic provides a high-level overview of the basic Oracle API Gateway product architecture, and describes its main
components and user roles. It also describes the highly scalable and reliable group-based architecture, which enables
you to manage API Gateways across your organization. For an introduction to product features and benefits, see the Or-
acle API Gateway Overview topic.

Note
Oracle API Gateway is available on Windows, Linux, and Solaris (for more details, see the Oracle API
Gateway Installation and Configuration Guide).

Basic Architecture

This section provides a simple high-level overview of the Oracle API Gateway architecture. The following diagram shows
the main components:

This diagram is a simplified view that includes clients, a single API Gateway, and enterprise services. However, you can
deploy multiple API Gateways to suit the needs of your distributed environment.

API Gateway
The API Gateway integrates, accelerates, governs, and secures Web API and SOA-based systems. For example, it can
perform application networking by routing traffic based on content and sender, and by performing message content
screening. The API Gateway applies policies to incoming messages by running message filters on requests. The API
Gateway supports a wide range of message transports, protocols, and formats (for example, XML, JSON, SOAP, REST,
HTTP, JMS, TIBCO, FTP, SMTP, POP, and so on). For more details on API Gateway features, see Oracle API Gateway
Overview.

In a typical deployment scenario, Oracle API Gateway components are deployed in the demilitarized zone (DMZ). The
connection between the client and the API Gateway is protected by a perimeter firewall, and the connection between the
API Gateway and the back-end service by a Network Address Translation (NAT) firewall.

Configuration and Management Tools
The following diagram shows a simplified view of the tools used to configure and manage the API Gateway:

34

These tools are described in the context of the main API Gateway user roles in the sections that follow.

Policy Development

A Oracle API Gateway policy developer typically performs the following tasks:

• Develops API Gateway policies and solution packs.
• Customizes and extends the API Gateway using scripting.
• Creates Java classes and/or custom filters using the API Gateway filter SDK.
• Uses the Policy Studio, API Gateway Explorer, and API Gateway Manager tools.

Policy Studio
Policy Studio is a policy development and configuration tool that enables policy developers to easily configure API Gate-
way policies and settings to control and protect deployed API services and Web services. For example, Policy Studio en-
ables you to create and assign policies, configure the full range of API Gateway configuration settings, and manage API
Gateway deployments. Policy Studio is typically installed on a separate machine from the API Gateway to enable remote
administration.

API Gateway Explorer
API Gateway Explorer is an API service and Web service test client used by policy developers to generate test mes-
sages, which are sent to the API Gateway and back to API Gateway Explorer. API Gateway Explorer supports both
REST-based and SOAP-based invocations, and is available as a separately installed tool.

Oracle API Gateway Architecture

35

API Gateway Administration

The API Gateway administrator typically performs the following tasks:

• Manages, monitors, and troubleshoots the API Gateway.
• Configures and manages the domain, group, and API Gateway hierarchy.
• Uses the API Gateway Manager tool.

For example, if a client presents an invalid SSL certificate, the API Gateway administrator needs to be alerted and works
with the client to address the issue. The API Gateway administrator also debugs transactions on a day-to-day basis. For
example, if a partner reports that his file is blocked, the API Gateway administrator uses traffic monitoring to find the
transaction and figure out what went wrong.

API Gateway Manager
API Gateway Manager is a centralized web-based dashboad that enables administrators to control and manage API
Gateways and groups in a domain. API Gateway Manager connects to the Node Manager on each host, and displays
aggregated monitoring data from multiple API Gateway instances. For example, this includes real-time statistics, traffic
log, log files, and alerts. You can view all monitoring data at the level of a domain, group, and API Gateway, depending
on which of these components are selected. For more details, see Starting the API Gateway Tools.

API Service Administration

The API service administrator typically performs the following tasks:

• Manages, monitors, and troubleshoots the API Services that are virtualized on the API Gateway.
• Has expertise of the services and APIs (what they do, and why they are used).
• Does not manage and troubleshoot the API Gateway, and does not have expertise of API Gateway operation.
• Uses the API Service Manager, traffic monitoring, and real-time monitoring components in API Gateway Manager

tool, and the Oracle API Gateway Analytics tool.

For example, the API service administrator is interested in who is using an API, its usage by time of day, how its usage
compares to other APIs (is it going up or down over time, are clients reaching their quotas, is it meeting its Service Level
Agreement (SLA), and so on).

Oracle API Gateway Analytics
Oracle API Gateway Analytics is a separately installed tool used by administrators to generate reports and charts based
on usage metrics for all services and API Gateways in a domain. API Gateway Analytics provides integration with data-
bases such as MySQL Server, MS SQL Server, and Oracle. API Gateway Analytics includes both real-time and historical
metrics. For example, the API service administrator can generate and store reports that monitor which authenticated cli-
ents are calling which API services over time.

System Administration

The system administrator typically performs the following tasks:

• Installs and monitors the API Gateway in a system and/or Virtual Machine (VM) production environment.
• Has expertise in the system/VM environment and the tools that the API Gateway runs in.
• Does not use API Gateway management tools.

Managed Domain Architecture

This section drills down to describe the API Gateway product architecture in more detail. It describes the API Gateway's
group-based domain architecture, which enables you to break down your projects into logical groups and manage config-
uration across your organization. This provides manageability and scalability, and enables you to perform load balancing

Oracle API Gateway Architecture

36

and failover across distributed deployments. This group-based architecture includes the following main components:

Domain
A domain is the set of all hosts running API Gateway instances, which are managed centrally by the API Gateway Man-
ager tool. A host is defined as a physical machine. A domain administration password is used to secure the domain’s
Certificate Authority private key.

Group
A group is a number of API Gateway instances (one or many) that all run the same configuration. API Gateways always
run in a group, and each API Gateway can only be a member of one group. You can deploy, manage, and monitor a
group of API Gateways using the Policy Studio and the browser-based API Gateway Manager.

A group normally runs across more than one physical host machine (see the following diagram). However, a group can
also include more than one API Gateway instance on the same host. Each API Gateway in the group runs the same con-
figuration. Each API Gateway has its own deployment descriptor file (envSettings.properties). This enables the
API Gateways in the group to use different host-specific settings as required (port bindings, certificates, and so on). A
group also has a deployment descriptor, which specifies settings values that are the same across the group but may dif-
fer in different environments. A standalone API Gateway runs in a group of one member (TEST GROUP in the diagram).

For example, you can use dedicated groups and API Gateway instances for high value services and to avoid potential
down time due to lower value services. This makes API Gateway upgrades and maintenance much easier. You can also
create dedicated API Gateway instances for specific API Gateway users or groups. When you create an API Gateway in-
stance, the newly created configuration files are stored separately from the API Gateway executables, which makes
them easier to maintain.

Note
You cannot deploy configuration to a single API Gateway instance, the deployment must occur at group
level to ensure that all API Gateways in the group are running the same configuration. API Gateway names
are unique in a group, and group names are unique in the domain.

Oracle API Gateway Architecture

37

Node Manager
The Node Manager is a server-side process that runs on each host in the domain, which manages and monitors the API
Gateway instances on that host. Only one Node Manager runs per host. Communication between the Node Manager
and the API Gateway is secured using SSL by default. The Policy Studio and the browser-based API Gateway Manager
are clients of the Node Manager.

The first Node Manager added in a domain is known as the Admin Node Manager. This is the Node Manager that the
user connects to using the API Gateway Manager, Policy Studio, or API Gateway Explorer clients. The Admin Node
Manager acts as the master Node Manager. It performs Role-Based Access Control (RBAC), and forwards requests to
other Node Managers when required. The Admin Node Manager also manages and deploys configuration to the API
Gateway instance(s) in a domain.

In addition, the Node Manager also supports process management (for example, starting and stopping API Gateway in-
stances) using system tools such as initd on UNIX and Service Control Manager on Windows.

Note
The Node Manager is not critical to the running of API Gateway instances, or to the business services pro-
tected by the API Gateway. If the Node Manager is not running, the API Gateway instances can still pro-
cess requests for business services. However, the Node Manager must be running to manage and monitor
the API Gateway, or to make updates to the API Gateway configuration. In addition, the Node Manager is

Oracle API Gateway Architecture

38

required to create API Gateway instances.

Tags
API Gateway instances can have associated tags. A tag is a form of metadata consisting of a case-sensitive key-value
pair. This enables you to create user-friendly names that help to organize, search, and browse API Gateway instances
using API Gateway Manager and Policy Studio. You can add tags when the API Gateway is created or updated. For ex-
ample, you could define a tag with key="QAStatus" and value=“Passed iteration one of performance
testing”.

Groups do not have tags. However, you can apply a tag at the group level, which simply creates the same tag for each
API Gateway in the Group. You cannot aggregate data based on tags. Tags are purely an internal client-side (API Gate-
way Manager and Policy Studio) tool, which can be used to search for API Gateways that match a specific tag value. In
the API Gateway Manager, you can use tags to search for API Gateways in a table view of the entire domain. Tags are
stored on disk in a configuration file specific to each API Gateway.

Further Information
For more details on API Gateway architecture and concepts, see Oracle API Gateway Concepts.

Oracle API Gateway Architecture

39

Oracle API Gateway Concepts
Overview

This topic explains the main concepts in the Oracle API Gateway architecture and shows examples of how they are dis-
played in the API Gateway management tools (Policy Studio, API Service Manager, and Policy Studio). For example,
these include concepts such as filters, policies, message attributes, and listeners.

Product Concepts

The main concepts in the Oracle API Gateway product architecture that are represented in the API Gateway manage-
ment tools are as follows:

Filter
A filter is an executable rule that performs a specific type of processing on a message. For example, the Message Size
filter rejects messages that are greater or less than a specified size. There are many categories of message filters avail-
able with the API Gateway, including authentication, authorization, content filtering, signing, and conversion. In the Policy
Studio, a filter is displayed as a block of business logic that forms part of an execution flow known as a policy.

Policy
A policy is a network of message filters in which each filter is a modular unit that processes a message. A message can
traverse different paths through the policy, depending on which filters succeed or fail. For example, this enables you to
configure policies that route messages that pass a Schema Validation filter to a back-end system, and route messages
that pass a different Schema Validation filter to a different system. A policy can also contain other policies, which en-
ables you to build modular reusable policies.

In the Policy Studio, the policy is displayed as a path through a set of filters. Each filter can have only one Success Path
and one Failure Path. You can use these success and failure paths to create sophisticated rules. For example, if the in-
coming data matches schema A, scan for attachments and route to service A, otherwise route to service B. You can con-
figure the colors used to display success paths and failure paths in the Policy Studio Preferences menu. You can also
specify to Show Link Labels (S or F).

The following example screen shot shows an example policy with success paths and a single failure path:

40

A policy must have a Start filter (in this example, Check against threats). Filters labeled End stop the execution of the
policy if the filter execution fails. A filter labeled Start/End indicates that the policy execution starts there, and that the
policy stops executing if this filter fails. A policy with a single filter labeled Start/End is also valid.

Message Attributes
Each filter requires input data and produces output data. This data is stored in message attributes, and you can access
their values in API Gateway configuration using a selector syntax (for example, ${attribute.name}). You can also
use specific filters to create your own message attributes, and to set their values. The full list of message attributes flow-
ing through a policy is displayed when you right-click the Policy Studio canvas, and select Show All Attributes. You can
also hover your mouse over a filter to see its inputs and outputs. The Trace filter enables you to trace message attribute
values at execution time.

The following example screen shot shows the attributes displayed when hovering over an HTTP Basic authentication fil-
ter:

Oracle API Gateway Concepts

41

If a filter requires an attribute as input that has not been generated in the previous execution steps, the filter is displayed
in a different color in the Policy Studio (default is red). You can configure the color used to display missing attributes in
the Policy Studio Preferences menu. Alternatively, you can also view all required attributes by right-clicking the canvas,
and selecting Show All Attributes.

A missing attribute may indicate a problem that you need to investigate (for example, in the chaining of filters or policies,
or that the policy can not run on its own). This is often the case for reusable filters, such as those displayed in the previ-
ous example.

At the policy level, you also can click the horizontal bar at the top of the Policy Studio canvas to show the list of all attrib-
utes required as input to the entire policy. If any attributes are generated by the policy, you can click a corresponding bar
at the bottom to see a list of generated attributes. The following example screen shot shows the attributes required by an
Authenticate policy:

Oracle API Gateway Concepts

42

Selector
A selector is a special syntax that enables API Gateway configuration settings to be evaluated and expanded at runtime
based on metadata (for example, in message attributes, a Key Property Store (KPS), or environment variables). For ex-
ample, the following selector returns the value of a message attribute:

${http.request.clientaddr}

Selectors are powerful a feature for System Integrators (SIs) and Independent Software Vendors (ISVs) when extending
the API Gateway to integrate with other systems. For more details on selectors, see Selecting Configuration Values at
Runtime.

Faults
When a SOAP transaction fails, you can use a SOAP fault to return error information to the SOAP client. By default, the
API Gateway returns a basic SOAP fault to the client when a message filter fails. You can add a SOAP Fault filter to a
policy to return more detailed error information to the client. For example, the previous example screen shot shows an
AuthenticationFaultHandler, which is a policy shortcut to the following fault handler policy:

Oracle API Gateway Concepts

43

Policy Shortcut
A policy shortcut enables you to create a link from one policy to another policy. For example, you could create a policy
that inserts security tokens into a message, and another that adds HTTP headers. You can then create a third policy that
calls the other two policies using Policy Shortcut filters.

A policy shortcut chain enables you to run a series of policies in sequence without needing to create a policy containing
policy shortcuts. In this way, you can create modular policies to perform certain specific tasks, such as authentication,
content filtering, returning faults, or logging, and then link these policies together in a sequence using a policy shortcut
chain. You can also use API Service Manager to automate the creation of a policy shortcut chain simply by dragging and
dropping existing policies into a composite policy.

Alerts
The API Gateway can send alert messages for specified events to various alerting destinations. System alerts are usu-
ally sent when a filter fails, but they can also be used for notification purposes. For example, the API Gateway can send
system alerts to the following destinations:

• Email Recipient
• Check Point Firewall-1 (OPSEC)
• Local Sylsog
• Remote Sylsog
• SNMP Network Management System
• Twitter
• Windows Event Log

You can configure alert destinations, and then add an Alert filter to a policy, specifying the appropriate alert destination.

Policy Container
A policy container is used to group similar policies together (for example, all authentication or logging policies), or
policies that relate to a particular service. A number of useful policies are provided in the Policy Library container (for
example, policies that return faults, and policies that block threatening content). You can add your own policies to this
container, and add your own policy containers to suit your requirements.

Policy Context
Policies can execute in a specified context. For example, you can set a context by associating a relative execution path
or listener with a policy. When a policy is called from another policy, the context is set to the calling policy name (for ex-
ample, Authenticate). In the Policy Studio, you can select a context from the Context drop-down list at the bottom of the
policy canvas. The Policy Studio then displays whether the attributes required for execution are available in that context.
The Context list includes all connected relative paths, listeners, Web Services, SMTP services, and policy shortcuts that
use the selected policy. Click the View navigator node button to display the selected context.

Oracle API Gateway Concepts

44

Process
A Process is an instance of the API Gateway capable of running on a host. You can use Policy Studio to configure and
deploy API Gateway Processes. You can configure various features at the Process level (for example, HTTP(S) inter-
faces, file transfer services, JMS services, and Remote Hosts).

Listeners
You can define different types of listeners and associate them with specific policies. For example, listeners include the
following types:

• HTTP/HTTPS
• Directory Scanner
• POP mail server connection
• JMS connection
• TIBCO RV/EMS connection

The API Gateway can be used to provide protocol mediation (for example, receiving a SOAP request over JMS, and
transforming it into a SOAP/HTTP request to a back-end service). For HTTP/HTTPS listeners, policies are linked to a rel-
ative path. Otherwise, policies are linked to the listener itself. You can associate a single policy with multiple listeners.

Remote Hosts
You can define a remote host when you need more control of the connection settings to a particular server. The available
connection settings include the following:

• HTTP version
• IP addresses
• Timeouts
• Buffers
• Caches

For example, by default, the API Gateway uses HTTP 1.1. You can force it to use HTTP 1.0 using Remote Host settings.
You must also define a Remote Host if you want to track real-time metrics for a particular host.

Servlet Applications
The API Gateway provides a Web server and servlet application server that can be used to host static content (for ex-
ample, documentation for your project), or servlets providing internal services. Static content or servlets can be accessed
from a policy using the Call Internal Service filter. This feature is not meant to replace an enterprise J2EE server, but
rather to enable you to write functionality using technology such as servlets.

Configuration Profile
A Configuration Profile contains the configuration information required to run the API Gateway. For example, a specific
Configuration Profile instance can store certificates, users, core policies and services, external connections, or listeners.
A Configuration Profile can have a number of versions, which are created by users. You can use the Policy Studio to de-
ploy Configuration Profile versions to API Gateway Processes, and to copy existing versions to create new Configuration
Profiles.

Service Virtualization
When you register an API service or Web Service, and deploy it to the API Gateway, the API Gateway virtualizes the ser-
vice. Instead of connecting to the service directly, clients connect through the API Gateway. The API Gateway can then
apply policies to messages sent to the destination service (for example, to enable security, monitoring, and acceleration).

Oracle API Gateway Concepts

45

Starting the API Gateway Tools
Overview

This topic shows the preliminary steps required before you begin working through the Getting Started tutorial. It explains
how to start the API Gateway, the web-based API Gateway Manager tools and the Policy Studio. Finally, this topic shows
the main steps in the Getting Started tutorial.

Before you Begin

Before you start the API Gateway tools, do the following:

Check System Requirements
You should ensure that your target machine and platform are supported.

Install the API Gateway and Policy Studio
If you have not already done so, see the Oracle API Gateway Installation and Configuration Guide.

Configure a Managed Domain
If you have not already created a domain, you can use the managedomain script to configure a domain. You should also
ensure that the Admin Node Manager is running.

Create the API Gateway Instance
If you have not already created a domain, you can use the managedomain script create the API Gateway Instance. For
more details, see the Oracle API Gateway Installation and Configuration Guide.

Launching API Gateway Manager

To access the web-based API Gateway Manager tools, perform the following steps:

Note
You must ensure that the Admin Node Manager is running before you can access the web-based API
Gateway Manager tools.

1. Enter the following URL:

https://HOST:8090/

HOST refers to the hostname or IP address of the machine on which the API Gateway is running (for example, ht-
tps://localhost:8090/).

2. Enter your user name and password. The default values are as follows:

User Name admin

Password changeme

3. Click the appropriate button in the API Gateway Manager screen in the browser. The Dashboard view is displayed
by default.

The API Gateway Manager includes the following main views:

46

• Dashboard: overall system health, message traffic summary, and topology (domain, hosts, API Gateways, and
groups).

• Monitoring: real-time monitoring of all the traffic processed by the API Gateway. Includes statistics at the system
level and for services invoked and remote hosts connected to.

• API Service Manager: enables you to manage API services, Web services, and policies (for example, virtualize ser-
vices, and assign policies to them).

• Traffic: a message log of the HTTP, HTTPS, JMS, and FTP traffic processed by the API Gateway.
• Logs: API Gateway trace log, audit log, and access log files.
• Events: API Gateway log points, alerts, and SLA alerts.
• Settings: Enables you to configure dynamic API Gateway logging.

Starting Policy Studio

To start Policy Studio, perform the following steps:

1. In your Policy Studio installation directory, enter the policystudio command.
2. In the Policy Studio, click a link to connect to the Admin Node Manager session.
3. In the Open Connection dialog, click OK to accept the default settings. For more details, see Connection Details.
4. The Oracle API Gateway instance is displayed in the Topology view.
5. In the Topology view, double-click the Oracle API Gateway process to load the configuration for the active API

Gateway.
6. If a passphrase has been set, enter it in the Enter Passphrase dialog, and click OK. Alternatively, if no passphrase

has been set, click OK.

Policy Studio enables you to perform the full range of API Gateway configuration and management tasks. This includes
tasks such as create and assign policies, import Services, optimize API Gateway configuration settings, and manage API
Gateway deployments. For more details on using the Policy Studio to manage API Gateway processes and configura-
tions, see Getting Started with Managing Deployments.

Getting Started Tutorial

When you have completed the preliminary steps, and started the API Gateway components, you can then start working
through the Getting Started Tutorial. This tutorial is based on a simple Apache Axis Service. It includes the following
main steps:

1. Virtualizing a Service
2. Monitoring Services
3. Troubleshooting

Starting the API Gateway Tools

47

Virtualizing a Service
Overview

This topic explains how to virtualize an example service using the web-based API Service Manager tool available in API
Gateway Manager. It uses a simple Google Search REST API service. This topic assumes you have already performed
all the steps described in Starting the API Gateway Tools.

Accessing the Example Service

The example Google Search REST API service is based on Asynchronous JavaScript and XML (AJAX). This service
supports an HTTP GET method, and returns a JSON-encoded response with an embedded status code. The following
URL shows an example Google Search method call:

http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=Einstein

The following example shows an extract from a corresponding JSON-encoded response:

{
"responseData": {

"results": [
{

"GsearchResultClass": "GwebSearch",
"unescapedUrl": "http://en.wikipedia.org/wiki/Albert_Einstein",
"url": "http://en.wikipedia.org/wiki/Albert_Einstein",
"visibleUrl": "en.wikipedia.org",
"cacheUrl": "http://www.google.com/search?q=cache:dx1QfR_DgCUJ:

en.wikipedia.org",
"title": "Albert Einstein - Wikipedia, the free encyclopedia",
"titleNoFormatting": "Albert Einstein - Wikipedia, the free encyclopedia",
"content": "Albert Einstein was a German theoretical physicist
who developed the theory of general relativity, effecting a revolution
in physics ...

},
....
{

"GsearchResultClass": "GwebSearch",
"unescapedUrl": "http://www.einstein.edu/",
"url": "http://www.einstein.edu/", "visibleUrl": "www.einstein.edu",
"cacheUrl": "http://www.google.com/search?q=cache:np0jSqbXd7EJ:
www.einstein.edu",

"title": "Einstein Healthcare Network | Hospitals in Philadelphia,
PA Area", "titleNoFormatting": "Einstein Healthcare Network | Hospitals
in Philadelphia, PA Area", "content": "Philadelphia's largest independent
Academic Medical Center with 7 hospitals in the Philadelphia & Montgomery
Area."

}
...

}
},
"responseDetails": null,
"responseStatus": 200

}

Important
The Google Search API service is provided for illustration only, and is not intended for production use. For
more details, see https://developers.google.com/web-search/terms

48

https://developers.google.com/web-search/terms

Creating a Workspace in API Service Manager

You must first create a workspace in API Service Manager as follows:

1. Click the API Service Manager button in the API Gateway Manager toolbar.
2. Select the group and API Gateway instance that you wish to use to virtualize the service (for example, the Group1

and APIServer1).
3. Click the Create button to create the workspace.
4. Enter the configuration passphrase (if one exists for this API Gateway instance), and click OK.
5. Click the Virtualize API Service button on the left in the toolbar of the API Services tab to launch the New API Ser-

vice wizard.

Step 1—Basic Information

The first step in the New API Service wizard is to specify the service URL. Perform the following steps:

1. Click No, my Service will be defined manually, and enter GoogleSearch in the Name field.
2. Enter the following URL in the Destination URL field:

http://ajax.googleapis.com/ajax/services/search/web?v=1.0

Alternatively, if you wish to virtualize service with a WSDL file, click Yes, I know a URL from which to get a WSDL,
and enter a WSDL URL for the service. For more details, see Managing API Services.

3. Click Next to specify how the service is exposed.

Step 2—Service Exposure

The second step in the wizard enables you to specify how the service is exposed. For example, this includes details such
as the protocol (HTTP), services group (Default Services), and relative path (/ajax/services/search/web). For
example, you may wish to virtualize a service on a different relative path. You can also click Show Details to view the
default port address.

Click Next to use the default values for the example service.

Step 3—Request Processing

The third step in the wizard enables you to specify policy packages used for request processing (for example, an OAuth
policy package for authentication). Click Next to use no request processing for the example service.

For more details on policy packages, see Configuring Policy Packages

Step 4—Routing

The fourth step in the wizard enables you to specify policy packages used for routing (for example, a JMS policy pack-
age). Click Next to use the Default URL-based Routing policy package for the example service.

Step 5—Response Processing

The fifth step in the wizard enables you to specify policy packages used for response processing (for example, a policy
package that removes sensitive information such as credit card details from the message). Click Next no response pro-
cessing for the example service.

Step 6—Monitoring

Virtualizing a Service

49

The sixth step in the wizard enables you to specify the monitoring options for the service. For example, these include
monitoring the service usage, usage per client, and client usage. By default, the authentication.subject.id mes-
sage attribute is used to identify the client. Click Next to use the default values for the example service.

Step 7—Tags

The final step in the wizard enables you to specify tags for this service. Tags are user-friendly names to help organize,
search, and browse API Gateways and services in API Gateway Manager and Policy Studio. Perform the following steps:

1. Click the green plus icon to add a tag.
2. Enter a Tag name (for example, Dept).
3. Enter a Value (for example, QA).
4. Click Finish.

The virtualized service is displayed on the API Services tab. For more details, see Managing API Services.

Deploying to a Group

When you have completed the steps in the wizard, you must deploy the updated configuration to a API Gateway group,
or a subset of API Gateways in a group. Perform the following steps:

1. Click Actions -> Deploy on the left in the API Services tab.
2. In the Deployment Wizard, select the group and API Gateway instance(s) to which you wish to deploy the current

working configuration, and click the Next.
3. Enter a comment for this deployment (for example, registering google search service).
4. Click Deploy.
5. Click Finish.

Note
Services virtualizeed using API Service Manager and deployed to the API Gateway can also be viewed in
the Policy Studio tree under the Business Services -> API Service Manager node. For details on using
Policy Studio to import services, see Web Service Repository.

Accessing the Virtualized Service

When you virtualize a service, and deploy it to the API Gateway, the API Gateway protects the service. This means that
instead of connecting to the service directly, clients connect through the API Gateway. The API Gateway can then apply
policies to messages sent to the destination service (for example, to enable security, routing, monitoring, or accelera-
tion).

Virtualizing a Service

50

When the virtualized service is deployed to the API Gateway, the published URL now uses the host and port of the API
Gateway. In the case of the example service, you can test the new URL on which the service is available to clients in
your browser. Using the default service exposure settings, the virtualized example service is availalbe on the following
URL path:

http://HOST:8080/ajax/services/search/web

where HOST is the machine on which the API Gateway is running.

Monitoring a Service

When you have virtualized the example Service, the next step is to monitor the service using the API Gateway Manager
monitoring tools. For details, see Monitoring Services.

Virtualizing a Service

51

Monitoring Services
Overview

This topic explains how to monitor example services using the API Gateway Manager monitoring tools. It assumes that
you have already performed the steps in the following topics:

1. Starting the API Gateway Tools
2. Virtualizing a Service

Enabling Monitoring

You must first ensure that traffic monitoring and real-time monitoring are enabled:

1. In the Policy Studio tree, select the Settings node, and select the Traffic Monitor tab at the bottom.
2. On the Traffic Monitor tab, ensure Enable Traffic Monitor is selected.
3. Select the Metrics tab at the bottom, and ensure Enable real time monitoring is selected.
4. Click the Deploy icon in the Policy Studio toolbar to deploy these settings to the API Gateway. Alternatively, press

F6.

Important
Traffic monitoring is required for the purposes of this demo. However, enabling traffic monitoring may have
a negative impact on performance. If you wish to maximize performance, you can disable these settings.
For more details, see Configuring Traffic Monitoring.

Viewing Real-time Monitoring

You can view a wide range of monitoring data in the API Service Manager. For example, this includes message status,
message traffic, filter execution path, message content, system, services, and remote hosts. You can view real-time
traffic monitoring summary data on the main Dashboard tab in the TRAFFIC section. The following example shows the
number of messages that have been passed by the API Gateway on to a service:

52

Each time you send test messages through the API Gateway to an example service (for example, using API Gateway
Explorer or the Send Request (SR) tool), the message status is displayed in the TRAFFIC section.

Viewing Message Traffic

You can use the traffic monitoring tools in API Gateway Manager for operational diagnostics and root cause analysis.
The Traffic view provides a web-based message log of the HTTP, HTTPS, JMS, and FTP traffic processed by the API
Gateway. You can perform tasks such as the following:

• Filter messages on a range of criteria (for example, transaction ID, service name, or remote host)
• Drill down to view message contents
• View performance statistics (for example, number of requests, average bytes sent, or average duration)

For example, you can click the Traffic button in the API Service Manager to view summary information for each mes-
sage sent to the API Gateway. Alternatively, you can click one of the summary charts displayed on the Dashboard (for
example, Messages passed or Messages failed). This displays the message traffic automatically filtered according to
your selection. The following simple example shows the details displayed on the Traffic tab for Messages passed by
the API Gateway:

Filtering Message Traffic

Monitoring Services

53

In the SELECTION pane on the left of the Traffic tab, you can click the Apply button to filter the messages displayed
based on a range of criteria. For example, the default filters include REQUEST FROM (Client or API Gateway), MAX
RESULTS PER SERVER, TRANSACTION STATUS, and TIME INTERVAL.

You can click Add Filter to search on different criteria (for example, Service Name, Remote Host, Authentication Sub-
ject, Transaction ID, and Operation). The API Gateway inserts a transaction ID in all HTTP and HTTPS traffic in a header
named X-CorrelationID. When you have selected your search criteria, click the Apply button.

Viewing Message Content

When you click a selected message listed on the Traffic tab, this displays the message filter execution path and the con-
tents of each request message and response message. The following example displays the message path for a simple
Google Search message:

The following example shows the corresponding message content for the selected message displayed below:

Monitoring Services

54

You can click Save Request or Save Response to download the message contents and save them to a file.

Viewing Performance Statistics

The Performance tab displays performance statistics for the HTTP and HTTPS traffic processed by the API Gateway.
For example, these include the number of requests, average bytes sent, and average duration. For example, the Per-
formance page is displayed as follows:

Filtering Performance Statistics
You can click the Apply in the left pane to filter the performance statistics displayed based on different criteria. By de-
fault, the statistics are grouped by path name, with a time interval of 1 day. You can select different criteria from the
GROUP BY and TIME INTERVAL lists. When you have selected your search criteria, click the Apply button.

Detecting Malformed Messages

Messages with malformed content or an incorrect relative path are blocked by the API Gateway and displayed on the
Dashboard tab in the TRAFFIC section as follows:

Monitoring Services

55

You can click the chart to display the list of failed messages automatically filtered on the Traffic tab. Click a message in
the list to display the filter execution path and message content. The following example shows the execution path of a
malformed message that has been blocked by the API Gateway:

Monitoring System Data

The Monitoring view enables you to monitor System, API Services, and Remote Host statistics. For example, on the
System tab, when you click a panel in the ALL SYSTEMS section at the top of the screen, a graph for the selected set-
ting is displayed below. The following example shows the graph displayed for the System CPU Avg (Max) setting selec-
ted on the right:

Monitoring Services

56

Configuring Trace and Log Settings

You can click the Settings button in the toolbar to configure trace, logging, and monitoring settings on-the-fly. These are
dynamic settings, so you do not need to refresh or deploy to the API Gateway. For example, the top-level SYSTEM SET-
TINGS enable you to specify whether inbound and outbound transactions, the policy path, and message trace are recor-
ded. You can also select an HTTP interface in the tree on the left to configure the INTERFACE SETTINGS, TRAFFIC
MONITORING SETTINGS, and interface trace level.

Select the API Gateway process on the left to configure the process trace level. Finally, you can also select a Relative
Path or Service on the left, and select the SERVICE SETTINGS, LOGGING LEVEL, or PAYLOAD LOGGING on the
right.

For more details on how to configure tracing for the API Gateway and logging for specific message filters. For details,
see the topic on Troubleshooting.

Using Oracle API Gateway Analytics

This tutorial shows how to monitor an example service using the monitoring tools provided with the API Gateway. Oracle
API Gateway Analytics is a separately installed component that enables you to monitor services and to generate reports
on the stored message traffic history in your domain. For more details, see Using Oracle API Gateway Analytics.

Monitoring Services

57

Troubleshooting
Overview

The Logs view in API Gateway Manager enables you to view and search the contents of API Gateway trace log, audit
log, and access log files. This topic explains how to configure tracing for the API Gateway, and how to configure logging
for message filters to provide an audit trail of message transactions.

Viewing API Gateway Trace Files

Each time the API Gateway starts up, by default, it outputs a trace file to the API Gateway trace directory (for example,
INSTALL_DIR\groups\group-2\server1\trace). The following example shows an extract from a default API
Gateway trace file:

INFO 15/Jun/2012:09:54:01.047 [1b10] Realtime monitoring enabled
INFO 15/Jun/2012:09:54:01.060 [1b10] Storing metrics in database disabled
INFO 15/Jun/2012:09:54:03.229 [1b10] cert store configured
INFO 15/Jun/2012:09:54:03.248 [1b10] keypairs configured
...

The trace file output takes the following format:

TraceLevel Timestamp [thread-id] TraceMessage

For example, the first line in the above extract is described as follows:

TraceLevel INFO

Timestamp 15/Jun/2012:09:54:01.047 (day:hours:
minutes:seconds:milliseconds)

Thread-id [1b10]

TraceMessage Realtime monitoring enabled

Setting API Gateway Trace Levels

The possible trace levels in order of least to most verbose output are as follows:

• FATAL

• ERROR

• INFO

• DEBUG

• DATA

where FATAL is the least verbose and DATA is the most verbose. The default trace level is INFO.

Setting Trace Levels
You can set the trace level using the following different approaches:

Startup trace When the Admin Node Manager is starting up, it gets its

58

trace level from the tracelevel attribute of the System-
Settings element in /sys-
tem/conf/nodemanager.xml. You can set the trace
level in this file if you need to diagnose boot up issues.

Default Settings trace When the API Gateway has started, it reads its trace level
from the Default Settings for the API Gateway process. To
set this trace level in the Policy Studio, click the Settings
node in the Policy Studio tree, select a Trace level from
the drop-down list.

Interface level trace You can configure an HTTP/HTTPS interface with a differ-
ent trace level to that specified in the Default Settings. For
example, the default API Gateway management port
(8090) has a trace level set to ERROR to ensure it is not too
verbose. To configure the trace level for an interface in the
Policy Studio, right-click the interface under the Listeners
node, select Edit, and select a Trace level from the drop-
down list.

Dynamic trace You can also change dynamic API Gateway trace levels
on-the-fly in API Gateway Manager. For more details, see
the section called “Configuring Trace and Log Settings”.

Configuring API Gateway Trace Files

By default, the most recent trace file is named servername.trc (for example, server1.trc). Older trace files are
versioned with the highest version number as oldest (for example, server1.trc.0, server1.trc.1 serv-
er1.trc.2, server1.trc.3, and so on).

You can configure the settings for trace file output in INSTALL_DIR/system/conf/trace.xml, which is included by
INSTALL_DIR/system/conf/nodemanager.xml. By default, trace.xml contains the following setting:

<FileRolloverTrace maxfiles="500" />

This setting means that the API Gateway writes trace output to nodemanager.trc in the trace directory of the API
Gateway installation. And the maximum number of files that the trace directory can contain is 500.

FileRolloverTrace Attributes
The FileRolloverTrace element can contain the following attributes:

filename File name used for trace output. Defaults to the trace-
component attribute read from the SystemSettings ele-
ment.

directory Directory where the trace file is written. Defaults to IN-
STALL_DIR/trace when not specified.

maxlen Maximum size of the trace file before it rolls over to a new
file. Defaults to 16 MB.

maxfiles Maximum number of files that the trace directory contains
for this filename. Defaults to the maximum integer value
(2147483647).

rollDaily Whether the trace file is rolled at the start of the day. De-
faults to true.

Troubleshooting

59

Writing Trace Output to Syslog
On UNIX and Linux, you can send API Gateway trace output to syslog. In your IN-
STALL_DIR/system/conf/trace.xml file, add a SyslogTrace element, and specify a facility. For example:

<SyslogTrace facility="local0"/>

Running Trace at DEBUG level

When troubleshooting, it can be useful to set to the trace level to DEBUG for more verbose output. When running a trace
at DEBUG level, the API Gateway outputs the status of every policy and filter that it processes into the trace file.

Debugging a Filter
The trace output for a specific filter takes the following format:

Filter name {
Trace for the filter is indented
to the following point to make it clear
to identify output from the filter

} status, in x milliseconds

The status is 0, 1, or 2, depending if the filter failed, succeeded, or aborted. For example, the result of an WS-Security
Username Token filter running successfully is as follows:

DEBUG 12:43:59:093 [11a4] run filter [WS-Security Username Token] {
DEBUG 12:43:59:093 [11a4] WsUsernameTokenFilter.invoke: Verify username and password
DEBUG 12:43:59:093 [11a4] WsAuthN.getWSUsernameTokenDetails:

Get token from actor=current actor
DEBUG 12:43:59:093 [11a4] Version handler - creating a new ws block
DEBUG 12:43:59:108 [11a4] Version handler - adding the ws element to the wsnodelist
DEBUG 12:43:59:108 [11a4] Version handler - number of ws blocks found:1
DEBUG 12:43:59:124 [11a4] No timestamp passed in WS block, no need to check timestamp
DEBUG 12:43:59:139 [11a4] WsAuthN.getWSUsernameTokenDetails: Check <Created> element

in token. Value=2010-08-06T11:43:43Z
DEBUG 12:43:59:139 [11a4] WS Nonce TimeStamp Max Size is 1000 and wsNonces cache is 4
DEBUG 12:43:59:139 [11a4] Add WS nonce for key [joe:2010-08-06T11:43:43Z].

New cache size [5].
DEBUG 12:43:59:155 [11a4] WsBasicAuthN.getUsername: Getting username
DEBUG 12:43:59:171 [11a4] WS-Security UsernameToken authN via CLEAR password
DEBUG 12:43:59:171 [11a4] VordelRepository.checkCredentials: username=joe
DEBUG 12:43:59:186 [11a4] } = 1, in 62 milliseconds

Debugging a policy
The trace output for a policy shows it running with all its contained filters, and takes the following format:

policy Name {
Filter 1{

Trace for the filter
} status, in x milliseconds
Filter 2{

Trace for the filter
} status, in x milliseconds

}

For example, the following extract shows a policy called when running a simple service:

DEBUG ... run circuit "/axis/services/urn:cominfo"...
DEBUG ... run filter [Service Handler for 'ComInfoServiceService'] {
DEBUG ... Set the service name to be ComInfoServiceService

Troubleshooting

60

DEBUG ... Web Service context already set to ComInfoServiceService
DEBUG ... close content stream
DEBUG ... Calling the Operation Processor Chain [1. Request from Client]...
DEBUG ... run filter [1. Request from Client] {
DEBUG ... run filter [Before Operation-specific Policy] {
DEBUG ... run circuit "WS-Security UsernameToken AuthN"...
DEBUG ... run filter [WS-Security Username Token] {

...
DEBUG ... } = 1, in 62 milliseconds
DEBUG"WS-Security UsernameToken AuthN" complete.
DEBUG ... } = 1, in 74 milliseconds
...

Debugging at Startup
When running a startup trace with a DEBUG level set in the SystemSettings, the API Gateway outputs the configura-
tion that it is loading. This can often help to debug any incorrectly configured items at start up, for example:

DEBUG 14:38:54:206 [1ee0] configure loadable module type RemoteHost, load order = 500000
DEBUG 14:38:54:206 [1ee0] RemoteHost {
DEBUG 14:38:54:206 [1ee0] ESPK: 1035
DEBUG 14:38:54:206 [1ee0] ParentPK: 113
DEBUG 14:38:54:206 [1ee0] Key Fields:
DEBUG 14:38:54:206 [1ee0] name: {csdwmp3308.wellsfargo.com}
DEBUG 14:38:54:206 [1ee0] port: {7010}
DEBUG 14:38:54:221 [1ee0] Fields:
DEBUG 14:38:54:221 [1ee0] maxConnections: {128}
DEBUG 14:38:54:268 [1ee0] turnMode: {off}
DEBUG 14:38:54:268 [1ee0] inputBufSize: {8192}
DEBUG 14:38:54:268 [1ee0] includeContentLengthRequest: {0}
DEBUG 14:38:54:268 [1ee0] idletimeout: {15000}
DEBUG 14:38:54:268 [1ee0] activetimeout: {30000}
DEBUG 14:38:54:268 [1ee0] forceHTTP10: {0}
DEBUG 14:38:54:268 [1ee0] turnProtocol: {http}
DEBUG 14:38:54:268 [1ee0] includeContentLengthResponse: {0}
DEBUG 14:38:54:268 [1ee0] addressCacheTime: {300000}
DEBUG 14:38:54:268 [1ee0] outputBufSize: {8192}
DEBUG 14:38:54:268 [1ee0] sessionCacheSize: {32}
DEBUG 14:38:54:268 [1ee0] _version: {1}
DEBUG 14:38:54:268 [1ee0] loadorder: {500000}
DEBUG 14:38:54:268 [1ee0] class: {com.vordel.dwe.NativeModule}
DEBUG 14:38:54:268 [1ee0] }

For details on setting trace levels and running a startup trace, see the section called “Setting API Gateway Trace Levels”.

Running Trace at DATA level

When the trace level is set to DATA, the API Gateway writes the contents of the messages that it receives and sends to
the trace file. This enables you to see what messages the API Gateway has received and sent (for example, to reas-
semble a received or sent message).

Note
On Windows, you can not rely on the console output because it truncates large messages.

Searching by Thread
Every HTTP request handled by the API Gateway is processed in its own thread, and threads can be reused when an
HTTP transaction is complete. You can see what has happened to a message in the API Gateway by following the trace
by thread ID. Because multiple messages can be processed by the API Gateway at the same time, it is useful to elimin-
ate threads that you are not interested in by searching for items that only match the thread you want.

Troubleshooting

61

You can do this using the search feature in the API Gateway Manager Logs view. Enter the thread you wish to search
for in the Only show lines with text textbox, and click Refresh. Alternatively, you can do this on the command line us-
ing vi by specifying the thread ID as a pattern to search for in the trace file. In this example, the thread ID is 145c:

:g!/145c/d

The following example shows the DATA trace when a message is sent by the API Gateway (message starts with snd): >

DATA 17:45:35:718 [145c] snd 1495: <POST /axis/services/urn:cominfo HTTP/
1.1Connection: closeContent-Length: 1295User-Agent: VordelSOAPAction:
""Via: 1.0 devsupport2 (Vordel)Host: devsupport2:7070Content-Type:
text/xml<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soap:Header>

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="Id-00000128d05aca81-00000000009d04dc-10">

<wsse:Username>joeuser</wsse:Username>
<wsse:Nonce EncodingType="utf-8">

gmP9GCjoe+YIuK1einlENA==
</wsse:Nonce>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-profile-1.0#PasswordText">

joepwd
</wsse:Password>
<wsu:Created>2010-05-25T16:45:30Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>

</soap:Header>
<soap:Body>

<ns1:getInfo xmlns:ns1="http://stock.samples">
<symbol xsi:type="xsd:string">CSCO</symbol>
<info xsi:type="xsd:string">address</info>

</ns1:getInfo>
</soap:Body>

</soap:Envelope>
>

The following example shows the DATA trace when a message is received by the API Gateway (message starts with
rcv):

DATA 17:45:35:734 [145c] rcv 557: <HTTP/1.0 200 OKSet-Cookie: 8Set-Cookie2:
8Content-Type:
text/xml; charset=utf-8<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
<soapenv:Body>

<ns1:getInfoResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/" xmlns:ns1="http://stock.samples">

<getInfoReturn xsi:type="xsd:string">San Jose, CA</getInfoReturn>
</ns1:getInfoResponse>

</soapenv:Body>
</soapenv:Envelope>

>

If you want to see what has been received by the API Gateway on this thread, run the following command:

Troubleshooting

62

:g!/145c] rcv/d

All snd and rcv trace statements start and end with < and > respectively. If you are assembling a message by hand
from the DATA trace, remember to remove characters. In addition, the sending and/or receiving of a single message may
span multiple trace statements.

Integrating Trace Output with Apache log4J

Apache log4j is included on the API Gateway classpath. This is because some third-party products that the API Gateway
interoperates with require log4j. The configuration for log4j is found in the API Gateway INSTALL_DIR/system/lib
directory in the log4j.properties file.

For example, to specify that the log4j appender sends output to the API Gateway trace file, add the following setting to
your log4j.properties file:

log4j.rootLogger=DEBUG, A1, Vordel
log4j.appender.Vordel=com.vordel.trace.VordelTraceAppender

Configuring Logging Output

The API Gateway provides detailed logging for specific message filters (for example, the request, the time of the request,
where the request was routed to, and the response returned to the client). You can configure logging to a number of dif-
ferent locations:

• Text file
• XML file
• Database
• Local syslog
• Remote syslog
• System console

To configure where logging information is sent, perform the following steps:

1. In the Policy Studio tree, select the Settings node.
2. Click the Audit Log tab at the bottom.
3. Specify the required settings on the appropriate tab (for example, Text File, Database, or XML File).
4. Click OK.
5. Click the Deploy button in the toolbar to deploy your settings to the API Gateway.

For details on configuring all the available options, see the topic on Audit Log Settings.

Configuring Log Level and Message

You can configure the log level and log message for a specific filter as follows:

1. In the Policy Studio tree, click a policy to display it in the canvas on the right (for example, WS-Security Username-
Token AuthN created in the Getting Started tutorial).

2. Double-click the WS-Security UsernameToken filter on the canvas to edit it.
3. Click Next to display the Log Level and Message screen.
4. Select the Fatal and Failure log levels for troubleshooting.
5. Specify any non-default log messages if required.

Troubleshooting

63

6. Click Finish.
7. Click the Deploy button in the toolbar to deploy your settings to the API Gateway.

For more details, see the Log Level and Message topic.

Further Details
For details on logging the message payload at any point in a policy, see the Log Message Payload topic. For details on
logging the access details of a message (for example, remote hostname, user login name, and authenticated user
name), see the Access Log Settings topic.

Getting Help

Context-sensitive help is available from the Policy Studio screens. Click the Help button on any screen to display the rel-
evant help page for that screen. If you require further information or assistance, please contact the Oracle Support Team
(see Oracle Contact Details).

Contacting Support
It is important to include as much information as possible when sending support emails to the Oracle Support team. This
helps to diagnose and solve the problem in a more efficient manner. The following information should be included with
any support query:

• Name and version of the product (for example, Oracle API Gateway 11.1.2.1.0).
• Details of patches that were applied to the product, if any.
• Platform on which the product is running.
• A clear (step-by-step) description of the problem or query.
• If you have encountered an error, the error message should be included in the email. It is also useful to include any

relevant trace files from the /trace directory of your product installation, preferably with the trace level set to DE-
BUG.

Troubleshooting

64

License Acknowledgments
Overview

Oracle API Gateway uses several third-party toolkits to perform specific types of processing. In accordance with the Li-
censing Agreements for these toolkits, the relevant acknowledgments are listed below.

Acknowledgments

Apache Software Foundation:
This product includes software developed by the Apache Software Foundation [http://www.apache.org/].

OpenSSL Project:
This product includes software developed by the OpenSSL Project [http://www.openssl.org/] for use in the OpenSSL
Toolkit.

Eric Young:
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

James Cooper:
This product includes software developed by James Cooper.

65

http://www.apache.org/
http://www.apache.org/
http://www.openssl.org/
http://www.openssl.org/

Oracle Contact Details
Contact Details

For online technical assistance, and a complete list of locations, primary service hours, and telephone numbers, contact
Oracle Technical Support at the following address:
https://support.oracle.com

66

https://support.oracle.com

Configuring the Sample Policies
Overview

This topic introduces and explains how to setup the example policies available in the samples directory of your API
Gateway installation. These include the following:

• Conversion: exposes a SOAP service over REST.
• Security:

• verifies the digital signature on the request and creates a signature on the response.
• decrypts the request and encrypts part of the response.

• Throttling: limits the number of calls for a service.
• Virtualized Service: combines threat protection, content-based routing (target a server according to request con-

tents), and message transformation.

Tip
If you are new to the API Gateway, you should first read the following topics to get familiar with the main
concepts and basic steps:

• Oracle API Gateway Architecture
• Oracle API Gateway Concepts
• Starting the API Gateway Tools

This guide assumes that you have already installed and started the API Gateway and Policy Studio. The API Gateway
Explorer client GUI testing tool is optional.

Enabling the Sample Services Interface

The HTTP interface for the sample policy services is disabled by default. To enable this interface in the Policy Studio,
perform the following steps:

1. In the navigation tree, select Listeners -> Oracle API Gateway -> Sample Services ->
*:${env.PORT_SAMPLE_SERVICES}.

2. Right-click, and select Edit to display the Configure HTTP Interface dialog.

67

3. Select the Enable interface setting.
4. Click OK.

Alternatively, you can also enable this HTTP interface using the web-based API Gateway Manager tool running on ht-
tp://HOST:8090, where HOST is the machine on which the Node Manager is running.

1. Click the Settings button in the API Gateway Manager toolbar.
2. Select the HTTP interface node under Sample Services on the left.
3. Select the Interface Enabled setting on the right.
4. Click the Apply button.

Note
Settings made in the web-based API Gateway Manager tool are dynamic settings only, which are not per-
sisted.

Configuring a Different Sample Services Interface

All sample policy services are defined in an HTTP Services group named Sample Services. This group uses an HTTP
interface running on the port specified in the ${env.PORT_SAMPLE_SERVICES} environment variable. This external en-
vironment variable is set to 8081 by default. If you wish to use a different port, you must configure this variable in the
INSTALL_DIR/conf/envSettings.props file. For example, you could add the following entry:

env.PORT.SAMPLE.SERVICES=8082

For more details on setting external environment variables, see the topic on Deploying the API Gateway in Multiple Envir-
onments.

StockQuote Demo Service

All sample policies use a demo service named StockQuote, which is implemented using a set of policies. This service
exposes two operations:

• getPrice: the policy for this operation uses a sample script to randomly calculate a quote value. Each call to get-
Price() returns a different value.

• update: returns an Accepted HTTP code (202).

The StockQuote service is exposed on the following relative paths:

• /stockquote/instance1

• /stockquote/instance2

These relative paths are used in the Virtualized Service sample for content-based routing.

Sample Service URL
A Connect to URL filter with the following URL is used to invoke the StockQuote service from each of the sample
policies:

http://stockquote.com/stockquote/instance1

Configuring the Sample Policies

68

The first part of this URL uses a Remote Host definition of stockquote.com. Remote Hosts are logical names that de-
couple the hostname in a URL from the server (or group of servers) that handles the request.

Remote Host Settings

In the Policy Studio, the Remote Host configuration is displayed under the process name (Oracle API Gateway) in
the navigation tree, and is named stockquote.com:80. To view its settings, right-click, and select Edit to view the Re-
mote Host Settings dialog:

On the General tab, the Remote Host is set to:

• Use HTTP 1.1.
• Use port 80 by default.
• Include the ContentLength header in the request to the back-end server.
• In case of an SSL connection, verify the Distinguished Name (DN) in the certificate presented by the server against

the server’s hostname.

Remote Host Address Settings
On the Addresses tab, the Remote Host is set to send requests to localhost:${env.PORT_SAMPLE_SERVICES},
which resolves to localhost:8081 by default. You could also specify several servers in the Addresses list, and the
API Gateway would load balance the requests across servers in the same group using the specified algorithm.

Configuring the Sample Policies

69

For more details on these settings, see Remote Host Settings.

Configuring the Sample Policies

70

Conversion Sample Policy
Overview

The Conversion sample policy takes a REST-style request and converts it into a SOAP call. This topic describes the
REST to SOAP policy, and explains how to run this sample.

REST to SOAP Policy

The REST to SOAP policy is as follows:

The REST to SOAP policy performs the following tasks:

1. Extracts the information from the request (a message attribute is created for each query string and/or HTTP header).
2. Creates a SOAP message using the Set Message filter.
3. Sends the request to the StockQuote demo service.
4. Extracts the value of the stock from the response using XPath.
5. Creates a plain text response.

71

6. Sets the HTTP status code to 200.

Running the Conversion Sample

You can call the sample service using the Send Request (sr) command or the API Gateway Explorer GUI:

SR Command
Enter the following command:

sr http://HOSTNAME:8081/rest2soap?symbol=ABC

For more details, see the topic on Stress Testing with Send Request (SR).

API Gateway Explorer
Perform the following steps:

1. Specify the following URL in the Request Settings:

http://HOSTNAME:8081/rest2soap?symbol=ABC

2. Select GET as the verb.
3. Click the Run button.

For more details, see the topic on Sending a Request with API Gateway Explorer.

Conversion Sample Policy

72

Security Sample Policies
Overview

The security sample policies demonstrate digital signature verification and cryptographic operations (encryption and de-
cryption). This topic describes the sample policies, and explains how to run these samples.

Signature Verification

The Signature Verification sample policy sends a digitally signed version of the StockQuote request to the API Gate-
way. The message carries the signature into the Web Service header. A sample certificate/key pair (Samples Test
Certificate) is used to sign the message and verify the signature. Signature verification is used for authentication
purposes, and therefore an HTTP 403 error code is returned if a problem occurs.

Signature Verification Policy
The Signature Verification policy is as follows:

The Signature Verification policy performs the following tasks:

1. The signature contained in the request is verified. The signature must be located in a WS Security block.
2. If the verification is successful, the StockQuote demo service is invoked.
3. The response body is signed and returned to the client.
4. If the verification fails, an HTTP 403 error code is returned to the client.

Running the Signature Verification Sample
You can call the sample service using the Send Request (sr) command or the API Gateway Explorer GUI:

SR Command
Enter the following command:

sr -f INSTALL_DIR/samples/SamplePolicies/Security/SignatureVerification/Request.xml
http://localhost:8081/signatureverification

For more details, see the topic on Stress Testing with Send Request (SR).

API Gateway Explorer

73

Perform the following steps:

1. Specify the following URL in the Request Settings:

http://hostname:8081/signatureverification

2. Select POST as the Verb.
3. Click the Close button.
4. Select File -> Load, and browse to the following file as input for the request:

INSTALL_DIR/samples/SamplePolicies/Security/SignatureVerification/Request.xml

5. Click the Send Request button.

For more details, see the topic on Sending a Request with API Gateway Explorer.

Encryption and Decryption

This sample uses XML decryption on the request and applies encryption on the response. The sample policy includes a
Main policy, which chains together the calls that decrypt the request, the invocation of the back-end service, and the en-
cryption of the response.

Main Policy
The Main policy is as follows:

The Main policy performs the following tasks:

1. Decrypt Request is a policy shortcut, which invokes another policy that takes the inbound request and decrypts it.
2. The decrypted request is routed to the back-end service.
3. The Encrypt Response policy shortcut invokes a policy that encrypts the response from the back-end service.

Decrypt Policy
The Decrypt policy is as follows:

Security Sample Policies

74

The Encrypt policy performs the following tasks:

1. The decryption settings are defined: what to decrypt and which key to use.
2. The XML decryption is executed based on the defined settings.

Encrypt Policy
The Encrypt policy is as follows:

The Encrypt policy performs the following tasks:

1. The encryption settings are defined: what to encrypt, which symmetric key to use, which certificate to use, and how
to encrypt (algorithm and where to place the encryption information).

2. The XML encryption is executed based on the defined settings.

Running the Encryption and Decryption Sample
You can call the sample service using the Send Request (sr) command or the API Gateway Explorer GUI:

SR Command
Enter the following command:

sr -f INSTALL_DIR/samples/SamplePolicies/Security/Encryption/Request.xml
http://HOSTNAME:8081/encryption

For more details, see the topic on Stress Testing with Send Request (SR).

Security Sample Policies

75

API Gateway Explorer
Perform the following steps:

1. Specify the following URL in the Request Settings:

http://HOSTNAME:8081/encryption

2. Select POST as the Verb.
3. Click the Close button.
4. Select File -> Load, and browse to the following file as input for the request:

INSTALL_DIR/samples/SamplePolicies/Security/Encryption/Request.xml

5. Click the Send Request button.

For more details, see the topic on Sending a Request with API Gateway Explorer.

Security Sample Policies

76

Throttling Sample Policy
Overview

The Throttling sample policy is used to limit the number of calls for a service. This topic describes the Throttle policy,
and explains how to run this sample.

Throttling refers to restricting incoming connections and the number of messages to be processed. It can be applied to
XML, SOAP, REST, or any payload, request, or protocol. Traffic can be regulated for a single API Gateway or for a
cluster of API Gateways. You can apply traffic restrictions rules for a service, an operation, or even time of day. For ex-
ample, these restrictions can be applied depending on the service name, user identity, IP address, content from the pay-
load, protocol headers, and so on.

Throttling Policy

The Throttle policy is as follows:

The Throttle policy performs the following tasks:

1. The first filter checks whether the limit has been reached. The limit is set to 3 requests per 15 sec. The caller’s IP
address is used to track the consumer ID. The counter is kept in a local cache.

2. If the limit has been reached, an error message is created, and the response status code is set to 500.
3. If the authorized limit has not been reached, the back-end service is invoked, and the HTTP status code is set to

200.

Running the Throttling Sample

You can call the sample service using the Send Request (sr) command or the API Gateway Explorer GUI:

SR Command
Enter the following command:

sr -f
INSTALL_DIR/samples/SamplePolicies/Throttling/Request.xml http://HOSTNAME:8081/throttle

For more details, see the topic on Stress Testing with Send Request (SR).

API Gateway Explorer

77

Perform the following steps:

1. Specify the following URL in the Request Settings:

http://HOSTNAME:8081/throttle

2. Select POST as the verb.
3. Click the Close button.
4. Select File -> Load, and browse to the following file as input for the request:

INSTALL_DIR/samples/SamplePolicies/Throttling/Request.xml

5. Click the Send Request button.

For more details, see the topic on Sending a Request with API Gateway Explorer.

Throttling Sample Policy

78

Virtualized Service Sample Policy
Overview

The Virtualized Service sample policy is more advanced and combines the following features:

• Content filtering, XML complexity, and message size filters to block unwanted SOAP messages.
• Content filtering to block unwanted REST requests.
• Fault handling.
• Content-based routing.

This topic describes the policies displayed in the Sample Policies -> Web Services -> Virtualized StockQuote Service
policy container in the Policy Studio, and explains how to run this sample.

Virtualized Service policies

The Virtualized StockQuote Service sample policy container includes the following policies:

• Virtualized service main policy
• Threat protection policy
• Content-based routing policies
• Response transformation policy

Virtualized Service Main Policy
The Main Policy is as follows:

79

The Main Policy uses policy shortcuts to perform the following tasks:

1. The main fault handler relies on some variables to be initialized, which is performed as soon as the policy is entered.
2. The Threat Detection policy is applied to the incoming SOAP message and HTTP headers.
3. The symbol value is extracted from the incoming message, and used to decide whether the request should be sent

to one server instance or another.
4. The name of the instance that served the request is added to the response.
5. In case of errors, a global fault handler is invoked. This is used to return a custom error message to the user.

Threat Protection Policy
The Threat Protection policy is as follows:

Virtualized Service Sample Policy

80

The Threat Protection policy performs the following tasks:

1. The incoming request size (including attachments) is checked to be less than 1500 KB.
2. The complexity of the XML is checked in terms of number of nodes, attributes per node, or number of child nodes

per node.
3. XML and eventually HTTP headers are checked for threatening content such as SQL injection or XML processing in-

structions.
4. If any of these filters return an error, the corresponding error handler is called. The error handler is implemented as a

policy that sets the value of the error code and message for this error, and then re-throws the exception so that the
global fault handler catches it.

Content-based Routing Policies
The Route Based on Symbol Value policy extracts the contents of the symbol XML node and checks whether the first
letter’s value is between A-L or K-Z. Depending on the result, it routes the request to the first or second instance of the
StockQuote server. These servers are simulated by the following Relative Path URIs defined in the API Gateway:

• /stockquote/instance1

• /stockquote/instance2

The Route Based on Symbol Value policy is as follows:

Virtualized Service Sample Policy

81

The Route Based on Symbol Node policy performs the following tasks:

1. The value of the symbol node is extracted from the request using XPath. The result is placed in a message attribute
named message.symbol.value.

2. A Switch on attribute value filter is used to check the value of the message attribute (using a regular expression),
and a different policy is called to send the request to instance1 or instance2.

The Route to Instance1 policy is as follows:

The Route to Instance1 policy (called from the Switch filter) performs the following tasks:

1. Connects to the instance1 URI .
2. If successful, the instance name (instance1) is placed in a message attribute (stockquote.instance.name).

This is used later on to insert the instance name into the response.

The Route to Instance2 policy performs the same tasks but using the instance2 URI instead.

Response Transformation Policy
When the response is obtained from the back-end server, the Add Instance Name to Response policy changes it to in-
sert the instance name into a new XML node (instanceName). The Add Instance Name to Response policy is as fol-
lows:

Virtualized Service Sample Policy

82

This policy adds the instance name (the value of the stockquote.message.name message attribute) to the response,
using an Add XML node filter, as part of the SOAPbody. XPath is used to define where the new node must be added.

Running the Virtualized Service Sample

You can call the sample service using the Send Request (sr) command or the API Gateway Explorer GUI:

SR Command
Enter the following command:

sr -f INSTALL_DIR/samples/SamplePolicies/VirtualizedService/Request.xml
http://HOSTNAME:8081/main/stockquote

For more details, see the topic on Stress Testing with Send Request (SR).

API Gateway Explorer
Perform the following steps:

1. Specify the following URL in the Request Settings:

http://HOSTNAME:8081/main/stockquote

2. Select POST as the verb.
3. Click the Close button.
4. Select File -> Load, and browse to the following file as input for the request:

INSTALL_DIR/samples/SamplePolicies/VirtualizedService/Request.xml

5. Click the Send Request button.

For more details, see the topic on Sending a Request with API Gateway Explorer.

Virtualized Service Sample Policy

83

Stress Testing with Send Request (SR)
Overview

The API Gateway provides a command-line tool for stress testing named Send Request (SR). The SR tool is available in
the following directory of your API Gateway installation:

Windows INSTALL_DIR\Win32\lib

Solaris/Linux INSTALL_DIR/posix/lib

64-bit Linux INSTALL_DIR/Linux.x86_64/bin

The SR tool is also available from the root directory of the API Gateway Explorer installation.

Important
On Linux, the LD_LIBRARY_PATH environment variable must be set to the directory from which you are
running the SR tool.

On Linux and Solaris, you must use the vrun sr command. For example:

vrun sr http://testhost:8080/stockquote

Basic SR Examples

The following are some basic examples of using the SR command:

HTTP GET:

sr http://testhost:8080/stockquote

POST file contents (content-type inferred from file extension):

sr -f StockQuoteRequest.xml http://testhost:8080/stockquote

Send XML file with SOAP Action 10 times:

sr -c 10 -f StockQuoteRequest.xml http://testhost:8080/stockquote

Send XML file with SOAP Action 10 times in 3 parallel clients:

sr -c 10 -p 3 -f StockQuoteRequest.xml http://testhost:8080/stockquote

Send the same request quietly:

sr -c 10 -p 3 -qq -f StockQuoteRequest.xml http://testhost:8080/stockquote

Run test for 10 seconds:

84

sr -d 10 -qq -f StockQuoteRequest.xml http://testhost:8080/stockquote

POST file contents with SOAP Action:

sr -f StockQuoteRequest.xml -A SOAPAction:getPrice http://testhost:8080/stockquote

Advanced SR Examples

The following are some advanced examples of using the SR command:

Send form.xml to http://192.168.0.49:8080/healthcheck split at 171 character size, and trickle 200 millisecond
delay between each send with a 200 Content-Length header:

sr -h 192.168.0.49 -s 8080 -u /healthcheck -b 171 -t 200 -f form.xml
-a "Content-Type:application/x-www-form-urlenprogramlistingd" -a "Content-Length:200"

Send a multipart message to http://192.168.0.19:8080/test, 2 XML docs are attached to message:

sr -h 192.168.0.49 -s 8080 -u /test -{ -a Content-Type:text/xml -f soap.txt
-a Content-Type:text/xml -f attachment.xml -a Content-Type:text/xml -} -A c-timestamp:1234

Send only headers using a GET over one-way SSL running 10 parallel threads for 86400 seconds (1 day) using
super quiet mode:

sr -h 192.168.0.54 -C -s 8443 -u /nextgen -f test_req.xml -a givenName:SHViZXJ0
-a sn:RmFuc3dvcnRo -v GET -p10 -d86400 -qq

Send query string over mutual SSL presenting client certificate and key doing a GET running 10 parallel threads
for 86400 seconds (1 day) using super quiet mode:

sr -h 192.168.0.54 -C -s 8443 -X client.pem -K client.key
-u "https://localhost:8443/idp?TargetResource=http://vordel.test.com" -f test_req.xml
-v GET -p10 -d86400 -qq

Send zip file in users home directory to testhost on port 8080 with /zip URI, save the resulting response content
into the result.zip file, and do this silently:

sr -f ~/test.zip -h testhost -s 8080 -u /zip -a Content-Type:application/zip
-J result.zip -qq

SR Arguments

The main arguments to the SR command include the following:

Argument Description

--help List all arguments

-a attribute:value Set the HTTP request header (for example, -a Content-
Type:text/xml)

-c [request-count] Number of requests to send per process

-d [seconds] Duration to run test for

Stress Testing with Send Request (SR)

85

Argument Description

-f [content-filename] File to send as the request

-h [host] Name of destination host

-i [filename] Destination of statistics data

-l [file] Destination of diagnostic logging

-m Recycle SSL sessions (use multiple times)

-n Enable nagle algorithm for transmission

-o [output] Output statistics information every [milliseconds] (only with
-d)

-p [connections] Number of parallel client connections (threads) to simulate

-q , -qq, -qqq Quiet modes (quiet, very quiet, very very quiet)

-r Do not send HTTP Request line

-s [service] Port or service name of destination (default is 8080)

-t [milliseconds] Trickle: delay between sending each character

-u [uri] Target URI to place in request

-v [verb] Set the HTTP verb to use in the request (default is POST)

-w [milliseconds] Wait for [milliseconds] between each request

-x [chunksize] Chunk-encode output

-y [cipherlist] SSL ciphers to use (see OpenSSL manpage ciphers(1))

-z Randomize chunk sizes up to limit set by -x

-A attribute:value Set the HTTP request header (for example, -a Content-
Type:text/xml) in the outermost attachment

-B Buckets for response-time samples

-C enCrypt (use SSL protocol)

-I [filename] File for Input (received) data (- = stdout)

-K RSA Private Key

-L Line-buffer stdout and stderr

-M Multiplier for response-time samples

-N origiN for response-time samples

-O [filename] File for Output (sent) data (- = stdout)

-S [part-id] Start-part for multipart message

-U [count] reUse each connection for count requests

-V [version] Sets the HTTP version (1.0, 1.1)

-X X.509 client certificate

-Y [cipherlist] Show expanded form of [cipherlist]

[-{/-} Create multipart body (nestable: use -f for leaves)

Further Information
For a listing of all arguments, enter sr --help. For more information, and details on advanced use, see the srman-
page.pdf file in your sr installation directory.

Stress Testing with Send Request (SR)

86

Sending a Request with API Gateway Explorer
Overview

This topic describes how to create and send a request in the API Gateway Explorer test client GUI. You can start API
Gateway Explorer using the apigatewayexplorer command from the installation directory.

Creating a Request in API Gateway Explorer

To create a request, perform the following steps:

1. Click the down arrow button beside the green triangular Send Request button in the toolbar, and select Request
Settings:

2. In the Request Settings dialog, click the Add Request button on the left in the toolbar:

3. Enter the details for the request that you wish to execute in the Add Request Configuration dialog (for example:
http://localhost:8080/conversion). If the Request name matches URL setting is not selected, you can
supply a custom Request Name for this request.

87

4. Click OK to save the request configuration.
5. Select the request that you created in the Select Request Configuration menu:

6. In the main menu, select File -> Load Request, and browse to the file that you wish to use as input for this request.
For example, you can select the following file for the Virtualized Service sample:

INSTALL_DIR/samples/SamplePolicies/VirtualizedService/Request.xml

7. Click the green triangular Send Request button in the toolbar to send the request.

Further Information

For more details on using the API Gateway Explorer client GUI tool, see the API Gateway Explorer User Guide.

Sending a Request with API Gateway Explorer

88

Introduction to API Service Manager
Overview

API Service Manager is a web-based system administration tool available in API Gateway Manager. It provides quick
and easy access to enable you to manage your services and policies online. For example, you can perform tasks such
as the following:

• Managing API Services
• Deploying to a Group
• Resetting Configuration

Accessing API Service Manager

You can access API Service Manager from the web-based API Gateway Manager tool. For more details, see the section
called “Launching API Gateway Manager”.

Creating your API Service Manager Workspace
When you have successfully authenticated in API Gateway Manager, you must first create a workspace for your API
Gateway Manager working configuration:

1. Click the API Service Manager button in the API Gateway Manager toolbar.
2. Select the group and API Gateway instance that you wish to use (for example, Group1 and APIServer1).
3. Click the Create button to create the workspace.
4. Enter the configuration passphrase (if one exists for this API Gateway instance), and click OK This creates a work-

ing copy of the selected configuration in your workspace, and displays the main API Services tab.

You can have zero or one working configuration in your workspace at a time, and you can deploy a configuration at any
time to a group or a subset of API Gateways in a group. You can also reset the working configuration, or select a differ-
ent one from the list of available API Gateway groups and instances.

Note
Session management (login and logout) is tracked in the API Gateway Manager session. When you log out
of API Gateway Manager, your session expires. However, any updates that you have not yet deployed in
API Service Manager remain unchanged in your working configuration. This configuration is persisted in
your workspace and is available at your next login.

Deploying to a Group

To deploy configuration updates to a group of API Gateways or a subset of API Gateways in a group, perform the follow-
ing steps:

1. Click Actions -> Deploy on the left in the API Services tab.
2. In the Deployment Wizard, select the group and API Gateway instance(s) to which you wish to deploy the current

working configuration, and click the Next.
3. Enter a comment for this deployment (for example, registering google search service).
4. Click Deploy.
5. Click Finish.

89

Resetting your Configuration

To reset the current working configuration in API Service Manager, click Actions -> Discard on the left in the API Ser-
vices tab, and click OK. This brings you back to the list of available API Gateway configurations, where you can select
another configuration to create a new workspace.

Resetting the configuration resets the API Service Manager working configuration back to the currently deployed API
Gateway configuration. This enables you to discard any undeployed configuration updates, in your workspace, and to ob-
tain the latest deployed configuration updates from the Admin Node Manager.

Introduction to API Service Manager

90

Managing API Services
Overview

You can use the API Services tab in API Service Manager to virtualize services with the API Gateway. The Business
Services repository stores service URLs, definitions and related information such as XML schemas. Clients can query
this repository for service information (for example, URLs or WSDL files), and use it to send messages to the service
through the API Gateway.

When you virtualize a service in the repository, the API Gateway exposes a virtualized version of the service. The host
and port for the service are changed dynamically to point to the machine running the API Gateway. For example, the cli-
ent can then send a message to the virtualized service through the API Gateway, without knowing its real location. Some
policies are also automatically generated for the virtualized service. These include resolvers and connection filters, and
are hidden by default in API Service Manager.

You can also use the API Services tab to perform tasks such as assigning policy packages to a service, configuring
monitoring options, and assigning tags to help identify a service. A policy package is a sequence of modular, reusable
message filters, each of which processes a message in a particular way. For example, a typical policy might contain an
authentication filter (WS-Security UserNameToken), followed by several content-based filters (Schema Validation,
Threatening Content, and Message Size). If all configured filters run successfully, the message is routed on to the con-
figured destination.

Virtualizing a Service in API Service Manager

If you have not already done so, you must first perform the following steps to create a workspace in API Service Man-
ager:

1. Click the API Service Manager button in the API Gateway Manager toolbar.
2. Select the group and API Gateway instance that you wish to use to virtualize the service (for example, Group1) and

APIServer1.
3. Click the Create button to create the workspace.
4. Enter the configuration passphrase if one exists for this API Gateway instance, and click OK.
5. Click the Virtualize API Service button on the left in the toolbar of the API Services tab to launch the New API Ser-

vice wizard.

Step 1—Basic Information

The first step in the New API Service wizard enables you to virtualize a service with or without a Web Services Definition
Language (WSDL) file.

Virtualizing a REST API-based Service
To virtualize a REST API-based service without a WSDL file, perform the following steps:

1. Click No, my Service will be defined manually, and enter the details for your service, for example:
• Name: MyService
• Destination URL: http://www.example.com/my_service

2. Click Next to specify how service is exposed.

Virtualizing a Web Service
To virtualize an example Web service using the API Service Manager, perform the following steps:

1. Click Yes, I know a URL from which to get a WSDL, and enter a URL in the WSDL URL field, for example:

91

http://localhost:7070/axis/services/urn:xmltoday-delayed-quotes?wsdl

2. Click Next to view a WSDL import summary.
3. Click Next to specify how the service is exposed.

Step 2—Service Exposure

The second step in the wizard enables you to specify how the service is exposed. Perform the following steps:

1. Enter or select the protocol. Defaults to HTTP. You can also click Show Details to view the default port address
(${env.PORT.TRAFFIC} defaults to 8080).

2. Enter or select the services group. Defaults to Default Services.
3. Enter the relative path. Defaults to the path after the service domain name (for example, my_service). You may

wish to virtualize the service on a different relative path.
4. Click Next.

Step 3—Request Processing

The third step in the wizard enables you to specify policy packages used for request processing. (for example, an OAuth
policy package for authentication. Perform the following steps:

1. Click the green plus icon, and select a policy package from the list.
2. Select whether this policy package is Required or Optional. Defaults to Required.
3. Click the Edit Parameters icon to specify any policy parameters (for example, the value of a message attribute se-

lector such as ${http.request.uri}).
4. Repeat these steps to add more request processing policy packages.
5. Click Next when finished.

Note
You can use the Policy Studio to create reusabe policy packages that can be applied to services in API
Service Manager. For more details, see Configuring Policy Packages.

Step 4—Routing

The fourth step in the wizard enables you to specify policy packages used for routing (for example, JMS). Perform the
following steps:

1. Click the green plus icon, and select a policy package from the list.
2. Select whether this policy package is Required or Optional. Defaults to Required.
3. Click the Edit Parameters icon to specify any policy parameters (for example, the value of a message attribute se-

lector such as ${http.headers}).
4. Repeat these steps to add more routing policy packages.
5. Click Next when finished.

Step 5—Response Processing

The fifth step in the wizard enables you to specify policy packages used for response processing (for example, a policy
package that removes sensitive information such as credit card details from the message). Perform the following steps:

Managing API Services

92

1. Click the green plus icon, and select a policy package from the list.
2. Select whether this policy package is Required or Optional. Defaults to Required.
3. Click the Edit Parameters icon to specify any policy parameters (for example, the value of a message attribute se-

lector such as ${content.body}).
4. Repeat these steps to add more repsonse processing policy packages.
5. Click Next when finished.

Step 6—Monitoring

The sixth step in the wizard enables you to select the following monitoring options for the service:

• Monitor API Service usage:
Specifies whether to store message metrics for this service. This is selected by default.

• Monitor API Service usage per client:
Specifies whether to generate reports monitoring which authenticated clients are calling which services. This is se-
lected by default.

• Monitor client usage:
If you want to generate reports on authenticated clients, but are not interested in which services they are calling, se-
lect this option and deselect Monitoring service usage per client.

• Message Attribute:
Enter the message attribute to use to identify authenticated clients. The default authentication.subject.id at-
tribute stores the identifier of the authenticated user (for example, the username or user's X.509 Distinguished
Name).

Click Next when finished.

Step 7—Tags

The final step in the wizard enables you to specify tags for this service. Tags are user-friendly names to help organize,
search, and browse API Gateways and services in API Gateway Manager and Policy Studio. Perform the following steps:

1. Click the green plus icon to add a tag.
2. Enter a Tag name (for example, Dept).
3. Enter a Value (for example, QA).
4. Click Finish.

To view services by tag in API Gateway Manager, perform the following steps:

1. Click the Show Columns button on the right in the API Services toolbar.
2. Select the tag that you wish to display.
3. Click Apply to view tag in the list.

The virtualized service is displayed on the API Services tab:

Managing API Services

93

Deploying to a Group

When you have completed the steps in the wizard, you must deploy the updated configuration to a API Gateway group,
or a subset of API Gateways in a group, as follows:

1. Click Actions -> Deploy on the left in the API Services tab.
2. In the Deployment Wizard, select the group and API Gateway instance(s) to which you wish to deploy the current

working configuration, and click the Next.
3. Enter a comment for this deployment (for example, registering google search service).
4. Click Deploy.
5. Click Finish.

Note
Services virtualized using API Service Manager and deployed to the API Gateway can also be viewed in
the Policy Studio tree under the Business Services -> API Service Manager node. For details on using
Policy Studio to import services, see Web Service Repository.

Managing API Services

94

Configuring Security Policies from WSDL Files
Overview

When you import a WSDL file into the Web Services Repository to virtualize and secure a protected Web Service, the
Policy Studio automatically generates policies. For example, a Service Handler is created to control and validate re-
quests to the Web Service and responses from the Web Service. The information used to configure the Service Handler
is automatically taken from the operation definitions in the WSDL.

When clients must use message-level or transport-level security mechanisms to communicate with the Web Service, you
can include WS-Policy assertions in the WSDL. These policy assertions can then be referenced at the operation or end-
point level in the WSDL. For example, a given Web Service may require the client to sign sensitive parts of the message
and include a WS-Security UsernameToken to authenticate to the Web Service. You can include these policy require-
ments in the WSDL. Whenever a client retrieves the WSDL, it can automatically sign the relevant parts of the message
and insert a valid UsernameToken.

When you import a WSDL file containing WS-Policy assertions into the Web Services Repository, you can select the op-
erations that you want to protect as normal in the Import WSDL wizard. The Secure Virtual Service dialog enables you
to specify the policy that the API Gateway enforces on the messages that it receives from a client. For more details, see
Securing a Virtual Service using Policies.

In the Policy Configuration Settings wizard, you can configure specific filters to fulfill the security requirements spe-
cified by the policy assertions in the WSDL file. Most of these requirements are met without the need for human interven-
tion. However, a small number of filters require the administrator to configure specific fields. For example, when signing
or encrypting a message, you must specify the signing or encrypting key. When configuring the duration of a WS-
Security Timestamp, you may need to specify longer or shorter than the default of one hour. However, most of the in-
formation required to configure these filters is set automatically based on the policy assertions in the WSDL file.

Using WS-Policy assertions, the Policy Studio can automatically generate complicated policies that can then be used to
talk to the Web Services defined in the WSDL. The API Gateway then becomes the client or initiator of the Web Service,
and is responsible for making sure the requests it sends to the service adhere to the security constraints specified in the
policy:

In this way, administrators can configure complex policies to talk to secure Web Services with only a few clicks and min-
imal intervention. In addition, the API Gateway uses cryptographic acceleration to reduce the overhead associated with
running the cryptographic operations required to secure the message.

Importing a WSDL File

When you import the WSDL for a Web Service into the Web Services Repository, the API Gateway exposes a virtualized
version of this service. This involves changing the host and port where the Web Service is available to point to the ma-
chine running the API Gateway. In this way, a client can retrieve the WSDL for the virtualized Web Service from the API
Gateway without knowing its real location.

To import the WSDL file into the Web Service Repository, complete the following steps:

95

1. In the Policy Studio tree view, expand the Business Services -> Web Services Repository node, and select the
Web Services node.

2. Right-click the Web Services node, and select Register Web Service.
3. In the Load WSDL screen, browse to the location of the WSDL in the file system, enter the URL of the WSDL, or re-

trieve it from a UDDI (Universal Description, Discovery, and Integration) repository. Select as appropriate, and click
Next.

4. The operations defined in the WSDL and exposed by the Web Service are listed on the WSDL Operations screen.
Select the operations that you want to secure, and click Next.

5. You can also expose only the operations selected on the WSDL Operations screen in a slimmed down version of
the Web Service. Select Remove unselected operations from the WSDL to remove operations that you do not
want to secure from the virtualized service that is exposed to clients. Click Next to continue.

6. On the WS-Policy Options screen, if you wish to use a WS-Policy to secure the Web Service, select Secure this
virtualized service with a WS-Policy. This means that the Secure Virtual Service dialog is then displayed after
the Import WSDL wizard.

7. Ensure that Use the WS-Policy in the WSDL to connect securely to the back-end Web Service is selected. This
is enabled (and selected by default) only if the selected WSDL file includes WS-Policy information. Click Next to
continue.

8. Select the Relative Path where you want this service to be deployed (for example, Default Services).
9. Click Finish.

When you have completed the steps in the Import WSDL wizard, the Secure Virtual Service dialog is displayed. For
details, see Securing a Virtual Service using Policies.

Configuring Policy Settings

Depending on the type and number of WS-Policy assertions in the WSDL, the Policy Configuration Settings wizard
contains configuration screens for the filters used to implement the rules required by the assertions. The exact sequence
of screens differs depending on the assertions specified in the WSDL.

For example, if an sp:SamlToken assertion is specified, the wizard contains a screen for the Insert SAML Authentica-
tion Assertion filter. Only certain fields must be specified by the administrator on this filter screen, while the rest are
automatically populated based on the assertions and properties defined in the WSDL.

In the case of the Sign Message filter, the decision to use asymmetric or symmetric signatures is based on whether the
policy uses an asymmetric or symmetric binding. The layout rules are determined by the sp:Layout assertion. The di-
gest method, signature method, and key wrap algorithm (for symmetric signatures) are all populated automatically based
on the contents of the sp:AlgorithmSuite assertion. The KeyInfo section of the XML Signature can be taken from
various properties set in the WSDL. The parts of the message to be signed can be inferred from assertions such as
sp:SignedParts, sp:SignedElements, and SignedSupportingTokens.

The same is true for the XML Encryption Settings filter where the encryption algorithms and key types can all be taken
from the assertions in the WSDL. The ConfirmationMethod for SAML assertions can be inferred from the context of
the SamlToken assertion. For example, an sp:SamlToken that appears as a child of the
sp:SignedSupportingTokens assertion uses a sender-vouches confirmation method, whereas if it appears as a
child of an sp:EndorsingSupportingTokens assertion, the holder-of-key confirmation method can be assumed.

In the Policy Configuration Settings wizard, if the API Gateway has also been configured as the recipient for the client,
the Configure Recipient Security Settings screen is displayed first. For more details, see Securing a Virtual Service
using Policies. The Configure Initiator Security Settings screen is displayed next. This enables you to specify the re-
quired filter settings when the API Gateway is configured as the initiator for the Web Service.

Configuring Policy Filters

The following tables list the types of filters that are created, and which fields must be completed by the administrator in
the Configure Initiator Security Settings screen. For simplicity, the tables below list only the filters that require manual
input from the administrator.

Configuring Security Policies from WSDL Files

96

Insert WS-Security Timestamp

Field Name Description

Expires In You may want to specify a more appropriate lifetime for the
assertion (instead of the default one hour) by configuring
the various time period fields.

Sign Message

Field Name Description

Signing Key If the policy uses an asymmetric binding, on the Asymmet-
ric tab, click the Signing Key button, and select a key from
the Certificate Store to sign the message parts with. Altern-
atively, if the policy specifies a symmetric binding, on the
Symmetric tab, click the Signing Key button, and select a
key to wrap the symmetric signing key with.

Insert WS-Security Username

Field Name Description

Username Enter the username inserted into the WS-Security User-
nameToken block. By default, the name of the authentic-
ated user is used, which is stored in the authentica-
tion.subject.id message attribute. However, any
user-specified value can be entered in this field.

Password If the policy requires a password, the password for the user
entered above must be specified here. You can use the de-
fault authenticated user password by selecting the au-
thentication.subject.password message attribute.
Alternatively, you can enter any suitable password manu-
ally entered if necessary. The decision to use a Clear or
Digest password is taken from the corresponding policy
assertions.

Insert SAML Authentication Assertion

Field Name Description

Expire In Specify a suitable lifetime for the SAML assertion by con-
figuring the various time period fields.

Drift Time You may need to specify a drift time value to allow for a
time differential between the clock on the machine hosting
the API Gateway and the machine hosting your Web Ser-
vice.

Issuer Name Select the alias of the certificate from the Certificate Store
that you want to use to identify the issuer of the assertion.

Configuring Security Policies from WSDL Files

97

The alias name is used as the value of the Issuer attrib-
ute of the saml:Assertion element.

Holder of Key: Signing Key In cases where the sp:SamlToken appears as a child of
EndorsingSupportingTokens or an
InitiatorToken, the holder-of-key SAML confirma-
tion method is inferred. In this case, if an asymmetric bind-
ing is used, on the Asymmetric tab, specify a key from the
Certificate Store by clicking the Signing Key button. Al-
ternatively, if a symmetric binding is used in the policy, on
the Symmetric tab, specify a key to use to encrypt the
symmetric key with by clicking the Signing Key button.

Find Recipient Certificate for Encryption

Field Name Description

Certificate Store Select this option, and click the Select button to choose the
recipient's certificate from the Certificate Store. The public
key contained in this certificate is used to encrypt the mes-
sage parts so that only the recipient is able to decrypt them
using the corresponding private key.

Connect to URL

Field Name Description

Trusted Certificates To connect to an external Web Service over SSL, you need
to trust that Web Service's SSL certificate. You can do this
on the Trusted Certificates tab of the Connect to URL fil-
ter. Assuming you have already imported this certificate in-
to the Trusted Certificate Store, simply select it from the
list.

Client SSL Authentication If the Web Service requires the client to present an SSL
certificate to it during the SSL handshake, you must select
that certificate from the list on the Client SSL Authentica-
tion tab.

Note
This certificate must have a private key asso-
ciated with it that is also stored in the Certific-
ate Store.

Extract MTOM Content

Field Name Description

Configuring Security Policies from WSDL Files

98

XPath Location When the wsoma:OptimizedMimeSerialization WS-
MTOMPolicy assertion is specified in a policy, you must
configure an Extract MTOM Content filter. You need only
configure an XPath expression to point to the
base64-encoded element content that you want to extract
and create an MTOM type attachment for.

Editing a Policy

You may wish to edit a previously configured WS-Policy (for example, to change the signing key in the auto-generated
policy). You can do this by right-clicking the Web Service in the Policy Studio tree, and selecting Configure Initiator WS-
Policy or Configure Recipient WS-Policy. These menu options are described as follows:

Configure Initiator WS-Policy:
If you have already configured an initiator WS-Policy, you can edit its filters using this menu option. However, if there was
no WS-Policy in the imported WSDL file, you can not use this option. You can not add a WS-Policy to the Web Service
because that would break the contract between the API Gateway and the back-end Web Service. If the contract for the
Web Service changes (for example, a WS-Policy is applied to it at the back-end), you need to re-import the modified
WSDL to reflect the changes.

Configure Recipient WS-Policy:
If a recipient WS-Policy was configured when the WSDL file was imported into the Web Service Repository, you can edit
its filters using this option. If you did not configure a WS-Policy when importing the WSDL file (using the Secure Virtual
Service dialog), when you select this option, the Secure Virtual Service dialog is displayed. This enables you to select
a WS-policy to secure the service. The next time that you select the Configure Recipient WS-Policy option, you will edit
this policy.

Removing Security Tokens

When you import a WSDL file containing a WS-Policy into the Web Service Repository, the Remove All Security
Tokens filter is enabled in the Service Handler for the imported Web Service. You can view the configured policy by
double clicking the Service Handler, and selecting the Message Interception Points -> 2. User-defined Request
Hooks tab.

The Remove All Security Tokens policy ensures that the following security contexts are kept separate:

• Recipient security context: This is between the client and the API Gateway, and is determined by the WS-Policy se-
lected in the Secure Virtual Service dialog.

• Initiator security context: This is between the API Gateway and the back-end Web Service, and is determined by the
WS-Policy contained in the imported WSDL for the back-end Web Service.

The Remove All Security Tokens policy prevents tokens from one context passing over into the other context, which
could breach the security contract governing that context. This ensures that each security context receives a clean SOAP
message, on which it can then act to enforce the security requirements of the relevant WS-Policy. The following diagram
shows both security contexts and the Remove All Security Tokens policy:

Configuring Security Policies from WSDL Files

99

Initiator-side WS-Policy only
In this case, the WS-Policy is contained in the imported WSDL file. The WS-Policy defines the security contract between
the API Gateway and the back-end Web Service defined in the WSDL. On the request side, any security tokens sent by
the client to the API Gateway, which are out of scope of the initiator WS-Policy between the API Gateway and Web Ser-
vice, are removed before the API Gateway starts enforcing the initiator WS-Policy on the request, and before it sends the
request to the Web Service.

For example, if the client sends a wsu:Timestamp in the request message and the initiator policy stipulates that a
wsu:Timestamp must be sent by the API Gateway to the Web Service, two timestamps could be sent in the request,
which is invalid. This means that the timestamp and any other security tokens sent by the client to the API Gateway,
which may contradict the rules in the initiator contract (between the API Gateway and Web Service) must be stripped out
before the API Gateway starts adding security tokens to the message. This ensures that the message adheres to the ini-
tiator WS-Policy.

Similarly, any security tokens returned by the Web Service are only present because the Web Service complies with the
contract between the Web Service and the API Gateway. Therefore, any tokens returned by the Web Service are only in-
tended for use by the API Gateway. They are not intended for consumption by the client. In other words, the security
context is only between the API Gateway and the Web Service. If the Web Service returns a UsernameToken, it is con-
sumed by the API Gateway.

If a token must be returned to the client, this is a user-enforced rule, which is out of scope of the WS-Policy configuration
in the WSDL. If necessary, you can override the default behavior by removing the Remove All Security Tokens filter
from the Service Handler to allow the UsernameToken to be propagated to the client.

Initiator-side and Recipient-side WS-Policy
This occurs when you import a WSDL file that includes a WS-Policy (initiator case), and you also select a WS-Policy in
the Secure Virtual Service dialog (recipient case). This scenario includes both the recipient security context between
the client and the API Gateway, and the initiator security context between the API Gateway and the Web Service.

It is vital that these security contexts are kept separate because if tokens from one context pass over into the other con-
text, it is highly likely that the security contract for that context will be breached. For example, if the recipient contract
between the client and the API Gateway requires a UsernameToken, but the initiator contract between the API Gateway
and the Web Service requires a SAML token, the UsernameToken must not pass over into the initiator context and be
sent to the Web Service.

For more details on the Secure Virtual Service dialog (recipient case), see Securing a Virtual Service using Policies.

Important
The Remove All Security Tokens policy only applies when a WS-Policy is configured, and is not enabled
when a WS-Policy is not configured. In addition, any non-standard behavior that requires a security token

Configuring Security Policies from WSDL Files

100

to be propagated over to another security context can be handled by disabling the Remove All Security
Tokens policy in the Service Handler for the imported WSDL.

Further Information

For more details on configuring policies to protect your Web Services, see the following:

• Securing a Virtual Service using Policies
• Configuring Policies Manually
• Web Service Filter

The Web Services filter is the main filter generated when a WSDL file is imported into the Web Services Repository. It
contains all the routing information and links all the policies that are to be run on the request and response messages in-
to a logical flow.

Configuring Security Policies from WSDL Files

101

Securing a Virtual Service using Policies
Overview

You can specify a WS-Policy to enforce security between a client and the API Gateway. In this deployment scenario, the
API Gateway exhibits recipient-side WS-Policy behavior, where the API Gateway is the recipient, and the client is the ini-
tiator. The following architecture diagram shows where the recipient WS-Policy applies in a typical message flow
between a client and the API Gateway:

When you import a WSDL file into the Web Services Repository, you can select the operations that you want to secure in
the Import WSDL wizard. The Secure Virtual Service dialog then enables you to specify the policy that the API Gate-
way enforces on the messages that it receives from the client.

In the Policy Configuration Settings wizard, you can then configure specific fields in the filters that are necessary to ful-
fill the security requirements specified in the Secure Virtual Service dialog. Most of these requirements are met without
the need for human intervention. However, a small number of filters require the administrator to configure specific fields.
For example, when signing or encrypting a message, you must specify the signing or encrypting key. When configuring
the duration of a WS-Security Timestamp, you may need to specify longer or shorter than the default of one hour.
However, most of the information required to configure these filters is set automatically based on the selected WS-Policy.

Using policies in this way, the Policy Studio automatically generates the complicated policies that the API Gateway uses
to talk to the client. The API Gateway then becomes the recipient of the client, and is responsible for enforcing the selec-
ted policies on the messages that it receives from the client. The main advantage is that administrators can configure
complex policies to talk to clients in a secure manner with only a few clicks and minimal intervention.

Importing a WSDL File

When you import the WSDL for a Web Service into the Web Services Repository, the API Gateway exposes a virtualized
version of this service. This involves changing the host and port where the Web Service is available to point to the ma-
chine running the API Gateway. In this way, a client can retrieve the WSDL for the virtualized Web Service from the API
Gateway without knowing its real location.

To import the WSDL file into the Web Service Repository, complete the following steps:

1. In the Policy Studio tree view, expand the Business Services -> Web Services Repository node, and select the
Web Services node.

2. Right-click the Web Services node, and select Register Web Service.
3. In the Load WSDL screen, browse to the location of the WSDL in the file system, enter the URL of the WSDL, or re-

trieve it from a UDDI (Universal Description, Discovery, and Integration) repository. Select as appropriate, and click
Next.

4. The operations defined in the WSDL and exposed by the Web Service are listed on the WSDL Operations screen.
Select the operations that you want to secure, and click Next.

5. You can also expose only the operations selected on the WSDL Operations screen in a slimmed down version of
the Web Service. Select Remove unselected operations from the WSDL to remove operations that you do not
want to secure from the virtualized service that is exposed to clients. Click Next to continue.

102

6. On the WS-Policy Options screen, select Secure this virtualized service with a WS-Policy. The means that the
Secure Virtual Service dialog is displayed after the Import WSDL wizard.

7. If the WSDL file includes WS-Policy information, select Use the WS-Policy in the WSDL to connect securely to
the back-end Web Service. Click Next to continue.

8. Select the Relative Path where you want this service to be deployed (for example, Default Services).
9. Click Finish.

When you have completed the steps in the Import WSDL wizard, the Secure Virtual Service dialog is displayed.

Configuring a Security Policy

The Secure Virtual Service dialog enables you to specify the policy that the API Gateway enforces on the messages
that it receives from the client. To specify a policy, perform the following steps:

1. In the Secure Virtual Service dialog, in the Security Policy panel, select the API Gateway Policy from the drop-
down list. A description for the currently selected policy is displayed in the dialog. For details on all the available
policies, see the WS-Policy Reference.

2. In the Message-Level Policy panel, select a Request Policy from the drop-down list. The available policies are as
follows:
• Encrypt SOAP Body
• Sign SOAP Body
• Sign and Encrypt SOAP Body

3. Select a Response Policy from the drop-down list. The available policies are the same as for Request Policy.
4. Click OK.

The Policy Configuration Settings wizard is displayed. This enables you to set some of the fields in the filters that re-
quire human intervention (for example, the signing and encrypting key).

Configuring Policy Settings

Depending on the policy configured in the Secure Virtual Service dialog, the Policy Configuration Settings wizard dis-
plays configuration screens for the filters that implement the rules required by the configured policy. The exact sequence
of screens differs depending on the policy that is selected.

For example, if a policy with a SAML token is selected, the Validate SAML Authentication Assertion filter is displayed
instead of the Validate WS-Security UsernameToken filter. The effort in configuring these screens is minimal because
the information is taken automatically from the WS-Policy assertions. For example, the layout, signing, encryption, and
key wrapping algorithms, key referencing method, Username digest, and clear password are all automatically taken from
the WS-Policy assertions. This means that the administrator has only to configure a small number of settings. For ex-
ample, the signing key, encryption certificate, and Timestamp validity period).

The Configure Recipient Security Settings screen is first displayed in the wizard. This enables you to specify the re-
quired settings when the API Gateway is deployed as the recipient for the client. If your WSDL file includes WS-Policy
assertions, the Configure Initiator Security Settings screen is then displayed in the wizard. This screen enables you to
specify the required settings when the API Gateway is deployed as the initiator for the Web Service. For more details,
see Configuring Security Policies from WSDL Files.

Configuring Policy Filters

The following tables show examples of the types of filters that are created, and which fields must be completed by the
administrator in the Configure Recipient Security Settings screen. For simplicity, these tables list only filters that re-
quire manual input from the administrator.

Insert Timestamp Filter

Securing a Virtual Service using Policies

103

Field Name Description

Expires In You may want to specify a more appropriate lifetime for the
assertion (instead of the default one hour) by configuring
the various time period fields.

Signed Parts Outbound Filter

Field Name Description

Signing Key If the policy uses an asymmetric binding, on the Asymmet-
ric tab, click the Signing Key button, and select a key from
the Certificate Store to sign the message parts with. Altern-
atively, if the policy specifies a symmetric binding, on the
Symmetric tab, click the Signing Key button, and select a
key to wrap the symmetric signing key with.

Find Recipient Certificate for Encryption

Field Name Description

Certificate Store Click the Select button to choose the recipient's certificate
from the Certificate Store. The public key contained in this
certificate is used to encrypt the message parts so that only
the recipient is able to decrypt them using the correspond-
ing private key.

Validate SAML Authentication Assertion

Field Name Description

Drift Time You may need to specify a drift time value to allow for a
time differential between the clock on the machine hosting
the API Gateway and the machine hosting your Web Ser-
vice.

Trusted Issuers On the Trusted Issuers tab, click Add to specify the Dis-
tinguished Name of a SAML Authority whose certificate has
been added to the Certificate Store, and click OK. Repeat
this step to add more SAML Authorities to the list of trusted
issuers.

Configure SSL Certificate

Field Name Description

X.509 Certificate On the Network tab, click the X.509 Certificate button to
create or import an SSL certificate.

Securing a Virtual Service using Policies

104

SSL Server Name Identifier (SNI) On the Network tab, click the Add button to configure a
server name in the SSL Server Name Identifier (SNI) dia-
log. You can specify the server name in the Client re-
quests server name field. Click the Server assumes
identity button to import a Certificate Authority certificate
into the Certificate Store.

Mutual Authentication On the Mutual Authentication tab, select root Certificate
Authorities trusted for mutual authentication.

Insert MTOM Content

Field Name Description

XPath Location When the wsoma:OptimizedMimeSerialization WS-
MTOMPolicy assertion is specified in a policy, you must
configure an Insert MTOM Content filter. You need only
configure an XPath expression to point to the
base64-encoded element content that you want to insert
and create an MTOM type attachment for.

Editing a Security Policy

You may wish to edit a previously configured WS-Policy (for example, to change the signing key in the auto-generated
policy). You can do this by right-clicking the Web Service in the Policy Studio tree, and selecting Configure Initiator WS-
Policy or Configure Recipient WS-Policy. These menu options are described as follows:

Configure Initiator WS-Policy:
If you have already configured an initiator WS-Policy, you can edit its filters using this menu option. However, if there was
no WS-Policy in the imported WSDL file, you can not use this option. You can not add a WS-Policy to the Web Service
because that would break the contract between the API Gateway and the back-end Web Service. If the contract for the
Web Service changes (for example, a WS-Policy is applied to it at the back-end), you need to re-import the modified
WSDL to reflect the changes.

Configure Recipient WS-Policy:
If a recipient WS-Policy was configured when the WSDL file was imported into the Web Service Repository, you can edit
its filters using this option. If you did not configure a WS-Policy when importing the WSDL file (using the Secure Virtual
Service dialog), when you select this option, the Secure Virtual Service dialog is displayed. This enables you to select
a WS-policy to secure the service. The next time that you select the Configure Recipient WS-Policy option, you will edit
this policy.

Using WCF WS-Policies

The API Gateway provides four WS-Policies that are identical to those exposed by WCF (Windows Communication
Foundation) Web Services. When one of these policies is exposed by a virtual service in the API Gateway, the svcutil
.NET Web Services utility can consume the WS-Policy and auto-generate clients that communicate securely with the API
Gateway.

The security settings for a WCF Web Service are configured in its web.config file, in which the security element de-
termines the WS-Policy applied to the service. For example, the following extract from a WCF Web Service web.config
file shows the configuration:

Securing a Virtual Service using Policies

105

<customBinding>
binding name="MyCustomBinding">
<textMessageEncoding messageVersion="Soap11" />
<security defaultAlgorithmSuite="Basic256"

allowSerializedSigningTokenOnReply="true"
authenticationMode="MutualCertificate" requireDerivedKeys="false"
includeTimestamp="true" messageProtectionOrder="SignBeforeEncrypt"
messageSecurityVersion="WSSecurity10..."
requireSecurityContextCancellation="false">

</security>
</binding>

</customBinding>

In this example, the authenticationMode for a customBinding is set to MutualCertificate, which means that
messages sent to and from the Web Service must be signed and encrypted with mutual certificates. The following ex-
ample shows an example of the WCF wsHttpBinding configuration, which is less verbose: >

<wsHttpBinding>
<binding name="MyWsHttpBinding">
<security mode="Message">
<message clientCredentialType="Certificate" />

</security>
</binding>

</wsHttpBinding>

The following table shows how the WCF WS-policies provided with the API Gateway correspond to a particular configur-
ation of the security element in the WCF Web Service web.config file. As shown in the preceding examples, the
configuration settings are slightly different, depending on the WCF binding (customBinding or wsHttpBinding). The
following table shows the available settings:

WS-Policy Name WCF Binding Authentication Mode Security Mode Client Credential
Type

WCF MutualCertific-
ate Service

customBinding MutualCertificate

WCF UsernameFor-
Certificate Service

customBinding UserNameForCerti-
ficate

WCF UsernameOver-
Transport Service

customBinding UsernameForTrans-
port

WCF
BrokeredX509Authen
tication Service

wsHttpBinding Message Certificate

Important
If you intend to consume the WS-Policy exposed by the API Gateway with a WCF client, you should use
one of the WCF WS-Policies. All of these policies can be consumed seamlessly by the WCF svcutil util-
ity to auto-generate secure clients. While the other WS-Policies exposed by the API Gateway can be con-
sumed by svcutil, you need to make additional configuration changes to the auto-generated WCF client
to communicate securely with the API Gateway. For more details on making any necessary configuration
changes, see your WCF documentation.

Securing a Virtual Service using Policies

106

Removing Security Tokens

When you configure a recipient WS-Policy in the Secure Virtual Service dialog, the Remove All Security Tokens
policy is enabled in the Service Handler for the imported Web Service. You can view the configured policy by double
clicking the Service Handler, and selecting the Message Interception Points -> 2. User-defined Request Hooks tab.

The Remove All Security Tokens policy ensures that the following security contexts are kept separate:

• Recipient security context: This is between the client and the API Gateway, and is determined by the WS-Policy se-
lected in the Secure Virtual Service dialog.

• Initiator security context: This is between the API Gateway and the back-end Web Service, and is determined by the
WS-Policy contained in the imported WSDL for the back-end Web Service.

The Remove All Security Tokens policy prevents tokens from one context passing over into the other context, which
could breach the security contract governing that context. This ensures that each security context receives a clean SOAP
message, on which it can then act to enforce the security requirements of the relevant WS-Policy. The following diagram
shows both security contexts and the Remove All Security Tokens policy:

Recipient-side WS-Policy only
In this case, a recipient WS-Policy is configured in the Secure Virtual Service dialog to protect a virtual service exposed
by the API Gateway. The recipient WS-Policy defines the security contract between the client and the API Gateway. Any
security tokens sent by the client are intended for consumption by the API Gateway. They are not intended for the back-
end Web Service.

For example, the Web Service may not understand SAML, WS-Security, XML Signature, and so on, which may result in
a serialization error if these tokens are propagated to it. In addition, it would add unnecessary overhead to the message
to propagate security tokens to it. On the response side, the response that the API Gateway returns to the client must ad-
here to the selected recipient WS-Policy. For example, if the Web Service has returned a SAML Token (out of scope of
any WS-Policy requirements), this must not be returned to the client because it would breach the recipient WS-Policy.

Initiator-side and Recipient-side WS-Policy
This occurs when you import a WSDL file that includes a WS-Policy (initiator case), and you also select a WS-Policy in
the Secure Virtual Service dialog (recipient case). This scenario includes both the recipient security context between
the client and the API Gateway, and the initiator security context between the API Gateway and the Web Service.

It is vital that these security contexts are kept separate because if tokens from one context pass over into the other con-
text, it is highly likely that the security contract for that context will be breached. For example, if the recipient contract
between the client and the API Gateway requires a UsernameToken, but the initiator contract between the API Gateway
and the Web Service requires a SAML token, the UsernameToken must not pass over into the initiator context and be
sent to the Web Service.

Securing a Virtual Service using Policies

107

For more details on importing WSDL files that include WS-Policies (initiator case), see Configuring Security Policies from
WSDL Files.

Important
The Remove All Security Tokens policy only applies when a WS-Policy is configured, and is not con-
figured when a WS-Policy is not used. In addition, any non-standard behavior that requires a security token
to be propagated over to another security context can be handled by disabling the Remove All Security
Tokens policy in the Service Handler for the imported WSDL.

Further Information

For more details on configuring policies to protect your Web Services, see the following:

• Configuring Security Policies from WSDL Files
• Configuring Policies Manually
• Web Service Filter

The Web Services filter is the main filter generated when a WSDL file is imported into the Web Services Repository. It
contains all the routing information and links all the policies that are to be run on the request and response messages in-
to a logical flow.

Securing a Virtual Service using Policies

108

Configuring Policies Manually
Overview

In cases where a Web Services definition is not available in a Web Services Description Language (WSDL) file, the
policy used to protect a Web Service must be configured manually. The steps outlined in this tutorial describe how to do
this.

However, the recommended way to configure a policy to protect a Web Service is to import the WSDL file for that ser-
vice. If WS-Policy information is contained in the WSDL file, the policy assertions can also be used to produce a complex
policy with minimum effort for administrators.

If your Web Service has WSDL-based definitions, see the following:

• Securing a Virtual Service using Policies
• Configuring Security Policies from WSDL Files

Configuration

The following steps outline how to manually create a policy to protect a Web Service and then test it.

Step 1: Create the Policy
To create a policy manually, complete the following steps:

1. Right-click the Policies node in the tree view of the Policy Studio, and select the Add Policy menu option.
2. Enter a suitable name (for example TestPolicy) for the new policy in the Name field, and click the OK button. The

new policy is now visible in the tree view.
3. Click the new policy in the tree view to start configuring the filters for the policy. You can easily configure the policy

by dragging the required filters from the filter palette on the right of the Policy Studio, and dropping them on to the
policy canvas.

4. Most policies attempt to check characteristics of the message, such as message size and format, and attempt to au-
thenticate and/or authorize the sender of the message. When the message successfully passes all configured filters,
it is usually routed on to the protected Web Service.

5. For demonstration purposes, this topic creates a simple policy consisting of two filters. The first filter checks the size
of the message, and the second echoes the request message back to the client if it is below a certain size.

6. Expand the Content Filtering category of filters from the filter palette, and drag and drop the Message Size filter on
to the canvas.

7. Enter 10 in the At least field and 1000 in the At most field to make sure that only messages between 10 bytes and
1000 bytes are reflected back to the client. Select all other defaults, and click the Finish button.

8. Right-click the newly added filter, and select the Set as Start menu option to indicate that this is the first filter to be
executed in this policy. The icon for the filter changes to indicate that it is the start of the policy.

9. Open the Utilities category of filters, and drag the Reflect filter onto the canvas. Drop it on to the previously con-
figured Message Size filter. Select the defaults for the Reflect filter, and click the Finish button.

10. Because you dropped the Reflect filter on to the Message Size filter, both filters are automatically linked with a suc-
cess path. This means that if the first filter runs successfully, the next filter on the success path is executed. To link
in more filters, add the filters to the canvas, and click the Success Path button at the top of the palette. Click the first
filter followed by the second filter in the success path to link both filters.

11. You can also configure failure paths for filters in the same way. Failure paths are followed when the checks con-
figured in the filter fail.

109

This completes the configuration of the simple policy.

Step 2: Create a New Relative Path
You must now create a Relative Path on the Oracle API Gateway Process, which maps incoming requests on a particu-
lar URI to the new policy. Complete the following steps to do this:

1. In the tree view of the Policy Studio, right-click the Default Services node, which can be found under the Oracle
API Gateway node under the Listeners node. Select the Add Relative Path menu option.

2. On the Configure Relative Path dialog, enter a suitable URI (for example, TestPolicy) on which you want to re-
ceive requests that are to be processed by the new policy.

3. To map requests received on this URI to our new policy, select the /TestPolicy policy from the list of policies in
the tree. Click the OK button when finished.

Step 3: Deploy to the API Gateway
Before the new configuration changes can take effect, you must deploy them to the API Gateway. You can do this by
clicking the Deploy button on the right of the toolbar. Alternatively, press the F6 key.

Important
You must deploy to the server after making configuration changes. When deploying to the API Gateway,
the Policy Studio sends a deployment request to the server. If necessary, you can configure the socket
timeout value for this connection in the Policy Studio Preferences dialog. Enter the timeout value in milli-
seconds in the Server Socket Connection Timeout field. For more details, see Policy Studio Preferences.

Step 4: Test the Policy
You can use the tool of your choice (for example, Oracle API Gateway Explorer) to send SOAP requests to the new
policy. You should send requests of different sizes to the following URL, assuming a default installation of the API Gate-
way running on the local machine:
http://localhost:8080/TestPolicy
Request messages that fall between the configured size are reflected to the client. Those fall outside of the configured
are blocked, and a SOAP Fault is returned to the client.

Step 5: Next Steps
Try running more complicated checks on request messages by adding new filters to the TestPolicy. Try also adding
failure paths to the original Message Size filter to handle messages that fall outside of the 10-1000 byte range.

Use the Help button on each filter screen to find out more about the configuration fields that are available on each
screen.

Configuring Policies Manually

110

Configuring Global Policies
Overview

Global policies enable you to label policies with specific roles in the API Gateway configuration. For example, you can la-
bel a specific policy such as XML Threat Policy as a Global Request policy. This policy can be executed globally on
the request path for all messages passing through the API Gateway. Using a global policy in this way enables you to use
the same policy on all requests, and for multiple services. It also means that you can change the labeled global policy to
a different policy without needing to rewire any existing policies.

For example, using a Policy Shortcut Chain filter in a policy enables you to delegate to one or more policies to perform
specific tasks, before continuing execution of the remaining filters in the current policy. Using this approach to encapsu-
late specific functionality in a policy facilitates modularity and reusability when designing API Gateway policies. This en-
ables you to build up a policy library of reusable routines over time.

Each shortcut in a Policy Shortcut Chain points to a specific policy, which is called at each point in the execution chain.
However, consider a policy whose role is to be called first in all message handling contexts before any context-specific
policies are run, and call this the run-first role. To realize this, you must create a Policy Shortcut Chain with a link to the
run-first policy as its first entry, the context-specific policy as its second link, and so on.

One of the shortcomings of this approach is that if you have set up a large number of Policy Shortcut Chain filters, each
calling the run-first policy, and you need to change the run-first policy globally, you must update each Policy Shortcut
Chain filter individually to point to the newly designated run-first policy. Similarly, if you wish to ignore the run-first Policy
globally, you must remove the first entry in each filter.

Global policies enable you to label a specific policy in terms of its role. You can delegate to the policy using its label in-
stead of a specific link to the policy. This indirection using a label makes it very easy to globally change which policy is
delegated to, merely by moving the label from one policy to another. Each filter that refers to the policy using its label
now resolves the label to the new policy without needing to change the filter configuration. Similarly, if the label is not ap-
plied to a specific policy, nothing is executed for this link.

Global Policy Roles

The following global policy roles have a reserved label and a specific meaning in the API Gateway policy framework:

Role Label Description

Global Request Policy system.policy.request Executed globally for all messages
passing through the API Gateway on
the request path.

Global Response Policy system.policy.response Executed globally for all messages
passing through the API Gateway on
the response path.

Global Fault Handler Policy system.policy.faulthandler If any policy aborts during execution, or
a top-level policy fails and has not spe-
cified a Fault Handler filter, this policy
is executed instead of the internal
SOAP Fault filter.

You can select specific policies with these roles under the Policies node in the Policy Studio tree. You can then create
links to these roles when creating a Policy Shortcut Chain. These steps are explained in the next sections.

111

Selecting a Global Policy

To select a global policy, right-click a policy under the Policies node, and select one or more global policies (for ex-
ample, Set as Global Request Policy, Set as Global Response Policy, or Set as Global Fault Handler Policy).
These policies are executed globally for all messages passing through the API Gateway.

The following example shows the XML Threat Policy set as the Global Request Policy. The policy node labeled for the
specific role is displayed with a globe icon:

When you have selected the policy for a specific role, you can then reference the labeled policy in a Policy Shortcut
Chain filter, or at the service level in a Relative Path or Web Service Resolver. Referencing a labeled policy is different
from referencing a specific policy directly. Referencing a policy directly involves selecting a specific policy to execute in
the chain. Referencing a labeled policy means selecting a filter by its label only.

The main advantage of this approach is that you can configure a policy to run in a policy shortcut chain in a specific role,
and then select a different policy as the global policy for that role. All references to the global policy label in the various
shortcut chain filters are changed to use the newly selected policy, without requiring you to modify each policy shortcut
chain filter individually to explicitly point to a different policy.

Selecting another policy in a global role deselects the previously selected policy. The following example shows the
Health Check set in the global role, and the XML Threat Policy policy is no longer selected:

Configuring Global Policies

112

Important
You can not select a policy for a specific role if, in doing so, you create a loop in the policies. For example,
if a Policy Shortcut Chain filter has a reference to a labeled policy, and the filter’s parent policy is marked
as the labeled policy, the filter would call back to itself in a loop. This error is caught, and a trace line is out-
put to the Policy Studio Console view.

Configuring Global Policies in a Policy Shortcut Chain

When adding a policy shortcut in a Policy Shortcut Chain filter, you can select to call a labeled policy instead of select-
ing a specific policy. The following example from the Add a new Shortcut to a Policy dialog shows adding a shortcut to
the Global Request Policy (Health Check) policy label:

Configuring Global Policies

113

Then if you select a different policy as the request policy in the Policy Studio tree, when you subsequently view this
shortcut in the chain filter, you see that the details for the shortcut have changed. The following example from the Edit
the Shortcut to the Policy dialog shows the policy label changed to Global Request Policy (XML Threat Policy).

For more details on configuring these screens, see the Policy Shortcut Chain filter.

Important
If you remove a label from a policy by deselecting it in the Policy Studio tree, any reference to that labeled
policy is not called when evaluating the shortcut in the chain, irrespective of whether the Evaluate this
shortcut when executing the chain checkbox is selected (the Active status column in the table view).
This corresponds with the behavior for a specific policy in the chain. If a link to a policy is not set for a short-
cut, the link is not evaluated.

In this example, the table shows that the shortcut is configured to point to the labeled policy, but the label does not re-
solve to a policy (for example, it is unspecified because there is no policy in the specified role):

Configuring Global Policies

114

Configuring Global Policies for a Service

Under the Listeners node, you can also configure global policies at the service level to run on a specific Relative Path or
Web Service Resolver when messages are received by the API Gateway. A Relative Path binds a policy to a specific rel-
ative path location (for example /healthcheck). A Web Service Resolver maps messages destined for a specific Web
Service to a Service Handler or Web Service Filter.

You can configure a global policy at the service level to run as part of a policy chain invoked when incoming messages
are received by the API Gateway. The following example shows the Global Request Policy configured to run first on the
/healthcheck relative path:

For more details on how to configure a global policy for a service, see the section called “Relative Paths” and the section
called “Web Service Resolvers” in the Configuring HTTP Services topic.

Showing Global Policies

To view the currently configured global policies, right-click the Policies root tree node, and select Show Global Policies.
This displays all currently configured global policies in the context menu, for example:

Configuring Global Policies

115

Note
If there are no global policies configured, the Show Global Policies menu item is not available.

Configuring Global Policies

116

Configuring Policy Packages
Overview

In some cases, you may need to convert a policy into a modular, reusable piece of functionality that can be called from
other policies. For example, if you have created a complicated policy that creates a WS-Security Username, inserts it into
the message, and subsequently creates an XML Signature over the token and SOAP body. Depending on the ultimate
recipient for this message, the content may need to be signed using slightly different settings. One service may require
one set of algorithms to be used (for example, a <sp:Basic128/> Algorithm Suite in WS-SecurityPolicy). While another
policy may require a different set of algorithms (for example, <sp:Basic256/>).

Similarly, subtle differences in the security requirements of services may require the token and signature to be generated
using different configurations. For example:

• Use a basic or digest password for the UsernameToken

• Insert a <dsig:CarriedKeyName> into the XML-Signature
• Create an enveloped or enveloping signature
• Include a <wsse:BinarySecurityToken>

• Use one signing key over another
• Sign different parts of the message

If you need to create separate policies to implement such nuances, the task of interoperating with different vendor ser-
vices can become arduous, and involves creating several complicated policies where each may only differ in one field in
a given filter. To avoid this duplication, you can create a policy package that inserts the WS-Security UsernameToken
into the message and generates the XML-Signature. However, instead of explicitly configuring fields mentioned above
(for example, enveloped or enveloping signature, include a <wsse:BinarySecurityToken>, and the signing key to
use), the policy package can use selectors for these fields, which are configured dynamically at runtime instead of static-
ally at design time. For more details, see Selecting Configuration Values at Runtime.

The policy package advertises that it requires certain configuration details to be called generically from other policies. For
example, it would typically require the key to sign the message. By templating the signing policy as a policy package, and
making it available to call from other policies like any other filter, the caller must set the signing key for the policy pack-
age to use. In this way, two distinct policies that require a signed UsernameToken can call the same policy package. By
using selectors to pass in different signing keys, messages are signed using the appropriate key for each calling policy.

When a policy has been configured as a policy package, it is displayed in the Policy Studio filter palette, and you can
drag and drop it into any policy that requires the functionality encapsulated in the package. You must configure any fields
required by the policy package when it is dragged and dropped on to the canvas of another policy.

Configuring a Policy Package

To configure a policy as a policy package in the Policy Studio, perform the following steps:

1. Right-click the policy in the Policy Studio tree on the left, and select Policy Package -> Create.
2. Specify the following settings on the General tab:

• Palette Category
Enter the filter palette category in which to display the policy package (for example, Monitoring).

• Palette Icon
Enter the path to the palette icon to display the policy package (for example,
C:\Oracle\apigateway\icons\monitor.ico).

3. The Input tab lists all required message attributes for the policy package. You can enter user-friendly names for
each attribute to be displayed in the Policy Activation filter for the policy package (for example, HTTP Headers for
the http.headers attribute).

117

4. The Output tab lists the generated message attributes for the policy package. To add a generated attribute, click
Add, and enter the following details:
• Expression

Enter the selector expression for the attribute (for example, ${content.body}).
• Attribute Type

Enter the message attribute type (for example, com.vordel.mime.Body).
• Output Attribute Name

Enter the message attribute generated by the policy package (for example, content.body).
5. When finished, click OK.
6. Click the Deploy button in the toolbar to deploy the newly created policy package to the API Gateway.

Applying a Policy Package

When a policy is configured as a policy package, it is available for reuse in the Policy Studio filter palette. Draging and
droping the policy package on to the policy canvas displays the Policy Activation Filter screen for that policy package.
This enables you to specify any required message attributes and filter-level monitoring settings.

Specifying Required Attributes
The Required Attributes tab enables you to set the configuration fields required by the policy package (for example,
those configured with selectors for dynamic configuration). Click Add to specify the following fields:

• Required Attribute
Enter the name of the required attribute for display (for example, HTTP Header).

• Raw Attribute Name
Enter the message attribute name (for example, http.headers).

• Attribute Type
Enter the message attribute type (for example, com.vordel.mime.HeaderSet).

• Value/Selector
Enter a message attribue value or selector (for example, ${http.headers}).

Specifying Monitoring Settings
The Traffic Monitor tab enables you to set filter-level monitoring settings. You can configure the following fields:

• Record outbound transactions
Select whether to record outbound message transactions sent from the API Gateway to remote hosts. This is en-
abled by default.

• Record policy path
Select whether to record the policy path for the message transaction, which shows the filters that the message
passes through. This is enabled by default.

• Trace level
Select the filter trace level from the list. Defaults to INFO.

Applying a Policy Package to a Service

The reusabe policy packages created in Policy Studio can also be applied to services in API Service Manager. When you
deploy the newly created policy package to the API Gateway, it becomes available for selection in the New API Service
wizard in the API Service Manager. For more details, see the topic on Managing API Services.

Configuring Policy Packages

118

Getting Started with Managing Deployments
Overview

When connected to the Admin Node Manager server, you can deploy configurations to API Gateway instances running in
groups in a domain. In the Policy Studio, the Topology view enables you to edit the configuration of currently running
API Gateway instances. You can update the downloaded configuration, and deploy it to the server, where it can be re-
loaded later. You can deploy modified configuration to multiple API Gateway instances managed by Policy Studio. You
can also create groups and API Gateway instances.

The web-based API Gateway Manager enables you to deploy configurations to API Gateway instances running in groups
in a domain, to create groups and API Gateway instances, and to manage Admin Users. In this way, Policy Studio and
the API Gateway Manager play a key role in an operational Service Oriented Architecture (SOA). These tools enable
policy developers and administrators to centrally manage the policies that are enforced at all nodes throughout the net-
work.

Connecting to a Server in the Policy Studio

Before starting Policy Studio, you should first ensure that the Admin Node Manager and the server instance that you
wish to connect to have been started. For more details, see Startup Instructions.

When the Policy Studio starts up, click a link to a server to display the Open Connection dialog. You can use this dialog
to specify Connection Details (for example, host, port, user name, and password) or to specify Saved Sessions. If you
wish to connect to the server using a non-default URL, click Advanced, and enter the URL. The default Admin Node
Manager URL is:

https://localhost:8090/api

Alternatively, you can connect to a server configuration file by clicking the Open File button. For more details on con-
necting using a server URL, configuration file, or deployment archive, see Connection Details.

Note
You must connect to the Admin Node Manager server to deploy API Gateway configuration or manage
multiple API Gateway instances in your network.

When the connection to the server has been made, the Topology view is displayed. This displays the list of server in-
stances currently managed by the Admin Node Manager in the Policy Studio, and enables you to manage the configura-
tion for server instances.

Editing Server Configuration in the Policy Studio

The Topology view lists all available instances in each group. Double-click an instance name in the list to load its active
configuration. Alternatively, right-click an instance name, and select Edit Configuration. The active server configuration
is loaded and displayed in the following format: InstanceName [HostName:Port] (for example, test_server
[roadrunner.acme.com:8085]).

When an active server configuration is loaded, its services are displayed under the Listeners node in the Policy Studio
tree on the left. Expand one of the top-level nodes in the tree to display additional details (for example, Business Ser-
vices, External Connections, Resources, Libraries, or Settings).

When editing an active server configuration, you can deploy updates using the Deploy button in the toolbar
(alternatively, press F6).

119

Managing Deployments in the API Gateway Manager

In the web-based API Gateway Manager tool, the TOPOLOGY section on the Dashboard tab enables you to create
groups and API Gateway instances, and to deploy configuration. For details on how to access the API Gateway Man-
ager, see the section called “Launching API Gateway Manager”.

The API Service Manager tab in the API Gateway Manager enables you to manage your services and policies online.
You must first create your API Service Manager workspace. For more details, see Introduction to API Service Manager.
You can then use the API Service Manager to virtualize API services. For more details, see Managing API Services.

Managing Admin Users in the API Gateway Manager

You can add new Admin Users to enable role-based access to the API Gateway configuration managed by the Policy
Studio and API Gateway Manager. The default admin user has access to all API Gateway features in the Policy Studio
and API Gateway Manager, and can view and modify all API Gateway configurations.

To add or remove Admin Users, click the Settings -> Admin Users tab in the API Gateway Manager. For more details,
see Managing Admin Users.

For more details on role-based access, see Configuring Role-Based Access Control (RBAC).

Configuring Policies in the Policy Studio

You can use Policy Studio to manage the configuration of your policies, which can then be deployed to running instances
of Oracle API Gateways.

For details on configuring the full range of message filters (for example, for Authentication, Authorization, or Content Fil-
tering), see the Table of Contents for this guide. For details on general configuration topics, see Chapter 6, General Con-
figuration.

Getting Started with Managing Deployments

120

Deploying Configuration
Overview

A deployment archive is a .fed file that contains API Gateway configuration. For example, this includes a Certificate
Store, User Store, Core Configuration, External Connections and Listeners. Such a collection of configuration is also
known as a configuration assembly. Using a deployment archive to deploy an assembly enables you to edit configuration
offline, and then deploy elsewhere later on a specified process. For more details, see the section called “Creating a De-
ployment Archive in the Policy Studio”.

A configuration property is a name-value pair that identifies a specific configuration assembly. Specifying a property as-
sociates metadata with the corresponding configuration profiles in that assembly. For example, the Name property with a
value of Default Factory Configuration associated with a default installation. Assigning properties to an config-
uration also enables you to edit configuration offline, and deploy later on a specified process.

You can use the Policy Studio to create deployment archives. You can also use the Policy Studio to deploy an existing
deployment archive, factory configuration, or working configuration on selected API Gateway instances. You can also
use the API Gateway Manager to deploy a deployment archive in your Web browser. Alternatively you can use the man-
agedomain script to create and deploy deployment archives on the command line.

Creating a Deployment Archive in the Policy Studio

Currently Loaded Configuration
To create a deployment archive (.fed file) for a currently loaded API Gateway configuration, perform the following steps:

1. In the main menu, select File -> Save Deployment Archive.
2. Enter values for the appropriate configuration properties (Name, Description, and Version).
3. If you wish to create any additional properties (for example, Department), click the green plus button on the right,

and enter a property value (for example, Engineering).
4. Click OK.
5. Enter a filename for the .fed file, and click Save.

API Gateway Group View
To create a deployment archive in the API Gateway Group view, perform the following steps:

1. Right-click a server in the tree, and select Save Deployment Archive.
2. Browse to a directory in the dialog.
3. Click OK. The file is saved to the specified directory (for example,

c:\temp\5c3b2a3c-23a5-4261-87cb-eca150f0a037.fed.
4. Click OK.

To view and modify configuration properties in the API Gateway Group view, perform the following steps:

1. Right-click a server in the tree, and select View/Modify Properties.
2. Enter values for the appropriate configuration properties (Name, Description, and Version).
3. If you wish to create additional properties (for example, Department), click the green plus button on the right, and

enter a property value (for example, Engineering).
4. Click Update Configuration Properties.
5. Click OK.

Deploying a Deployment Archive in the Policy Studio

121

To deploy an existing deployment archive (.fed file) in the API Gateway Group view, perform the following steps:

1. Click the Deploy button in the toolbar.
2. In the Select the servers(s) you wish to deploy to section, select a server group from the list, and select the serv-

er instance(s) in the box below.
3. In the Select the configuration you wish to deploy section, select I wish to deploy an existing archive.
4. In the Location of Archive field, click Browse, and select the .fed file.
5. Click Deploy to upload the archive to the Admin Node Manager and deploy to the selected server(s).
6. When the archive has deployed, click Finish.

Deploying a Factory Configuration in the Policy Studio

To deploy a default factory configuration in the API Gateway Group view, perform the following steps:

1. Click the Deploy button in the toolbar.
2. In the Select the servers(s) you wish to deploy to section, select a server group from the list, and select the serv-

er instance(s) in the box below.
3. In the Select the configuration you wish to deploy section, select I wish to deploy a factory configuration.
4. Click Deploy to deploy the configuration to the selected server(s).

Deploying a Currently Loaded Configuration in the Policy Studio

To deploy a currently loaded configuration in the Policy Studio, perform the following steps:

1. Click the Deploy button on the right in the toolbar.
2. In the Select the servers(s) you wish to deploy to section, select a server group from the list, and select the serv-

er instance(s) in the box below.
3. Enter values for the appropriate configuration properties (Name, Description and/or Version).
4. If you wish to create any additional properties (for example, Department), click the green plus button on the right,

and enter a property value (for example, Engineering).
5. Click Deploy.

Deployment Summary in the Policy Studio

When the Deployment Results screen is displayed, the deployment starts, and deployment to each server occurs se-
quentially. Feedback is provided using icons in the Task column, and text in the Status column. When the configuration
has deployed, click Finish.

Canceling Deployments
You can cancel deployments by clicking the Cancel button. Feedback is provided in the Status column. You cannot can-
cel a deployment when it has started. The wizard performs the cancellation at the end of the current deployment, with all
remaining deployments being cancelled.

Deployment Errors
Client-side and server-side errors can occur. Client-side errors are displayed in the System Trace in the Console view.
If any server-side deployment errors occur during the deployment process, you can review these in the Deployment Er-
ror Log view. This is displayed at the bottom of the screen when you click Finish, and lists any errors that occur for each
process. The corresponding Console Deployment Log is also available in the Console view.

Redeploying
When you have deployed a configuration to one or more processes, you can click back through the wizard to change
your selections and redeploy, without needing to exit and relaunch the wizard.

Deploying Configuration

122

Deploying an Archive in API Gateway Manager

You can use the API Gateway Manager in a Web browser to deploy an existing deployment archive to a group of API
Gateways. Perform the following steps:

1. In the Topology view, right-click the API Gateway, and select Deploy.
2. Browse to the deployment archive to be deployed.
3. Choose the Group and API Gateways to which you wish to deploy the archive.
4. Select Deploy in the wizard, and the deployment archive is deployed to the selected API Gateways.

Deploying on the Command Line

You can create and deploy a deployment archive using the managedomain script in the following directory:

Windows INSTALL_DIR\Win32\bin

UNIX/Linux INSTALL_DIR/posix/bin

The deployment options in the managedomain script are as follows:

18) Deploy to a group
19) List deployment information
20) Create deployment archive
21) Download deployment archive
22) Update deployment archive properties

Deploying Configuration

123

Deploying the API Gateway in Multiple Environments
Overview

You can specify configuration values in the API Gateway on a per-environment basis using environment variables in the
envSettings.props file. For example, you can specify the port on which the API Gateway listens for HTTP traffic with
different values depending on the environment in which the API Gateway is deployed.

The environment variable settings in the envSettings.props file are external to the API Gateway core configuration.
The API Gateway runtime settings are determined by a combination of external environment variable settings and core
configuration polices. This mechanism provides a simple and powerful approach for configuring the API Gateway to work
across multiple environments.

The envSettings.props file is located in the conf directory of your API Gateway installation, and is read each time
the API Gateway starts up. Environment variable values specified in the envSettings.props file are displayed as en-
vironment variable selectors in the Policy Studio (for example, ${env.PORT.TRAFFIC}) For more details on selectors,
see Selecting Configuration Values at Runtime.

Configuring Environment Variables

The envSettings.props file enables you to externalize configuration values and set them on a per-environment basis.
This section shows the configuration syntax used, and shows some example values in this file.

Environment Variable Syntax
If the API Gateway configuration contains a selector with a format of ${env.X}, where X is any string (for example, My-
CustomSetting), the envSettings.props file must contain an equivalent name-value pair with the following format:

env.MyCustomSetting=MyCustomValue

When the API Gateway starts up, every occurrence of the ${env.MyCustomSetting} selector is expanded to the
value of MyCustomValue. For example, by default, the HTTP port in the server configuration is set to
${env.PORT.TRAFFIC}. Specifying a name-value pair of env.PORT.TRAFFIC=8080 in the envSettings.props
file results in the server opening up port 8080 at start up.

Example Settings
The following simple example shows some environment variables set in the envSettings.props file:

default port the API Gateway listens on for HTTP traffic
env.PORT.TRAFFIC=8080

default port the API Gateway listens on for management/configuration HTTP traffic
env.PORT.MANAGEMENT=8090

The following example screenshot shows the corresponding ${env.PORT.TRAFFIC} selector displayed in the Config-
ure HTTP Interface dialog. At runtime, this is expanded to the value of the env.PORT.TRAFFIC environment variable
specified in the envSettings.props file:

124

Important
All entries in the envSettings.props file use the env. prefix, and the corresponding selectors specified
in the Policy Studio use the ${env.*) syntax. If you update the envSettings.props file, you must re-
start or deploy the API Gateway for updates to be applied to the currently running API Gateway configura-
tion.

Configuring Certificates as Environment Variables

You can also use the envSettings.props file to bind a reference to a server host-specific SSL certificate to a specific
deployment.

Example Syntax:
The following entry shows an example of the environment variable syntax used to specify a server host-specific certific-
ate:

env.serverCertificate=${system.prefix.cert}MY_ALIASED_CERT_NAME

Alternatively, the following entry shows the syntax when the alias is the same as the Distinguished Name:

env.serverCertificate=${system.prefix.cert}CN=MY_HOST

Example Settings
When the env.serverCertificate variable is specified in the envSettings.props file, the X.509 Certificate field
in the Configure HTTPS Interface dialog can then reference its value using the ${env.serverCertificate} select-
or. The following example screenshot shows the corresponding ${env.serverCertificate} selector specified at the
bottom of the Select Certificate dialog, which is displayed by pressing the X.509 Certificate button:

Deploying the API Gateway in Multiple Environments

125

The following example screenshot then shows the ${env.serverCertificate} selector referenced in X.509 Certi-
ficate field:

Deploying the API Gateway in Multiple Environments

126

Important
In the envSettings.props file, you must specify commas using \\ escape characters. For example:

env.serverCertificate=${system.prefix.cert}CN=
linux-test-desktop\\,OU=QA\\,O=Saturn Inc.\\,L=Dublin\\,ST=Dublin\\,C=IE

Deploying the API Gateway in Multiple Environments

127

Managing Admin Users
Overview

When logging into the Policy Studio or API Gateway Manager, you must enter the user credentials stored in the local Ad-
min User store to connect to the API Gateway server instance. Admin Users are responsible for managing API Gateway
instances using the API Gateway management APIs. You can manage Admin Users by clicking the Settings -> Admin
Users tab in the API Gateway Manager.

Note
Admin Users provide access to the API Gateway configuration management features available in the Policy
Studio and API Gateway Manager. Whereas API Gateway Users provide access to the messages and ser-
vices protected by the API Gateway. For more details, see the API Gateway Users topic.

Admin User Privileges

After installation, a single Admin User is defined in the API Gateway Manager with a username of admin. Admin User
rights in the system include the following:

• Add another Admin User.
• Delete another Admin User.
• Update an Admin User.
• Reset Admin User passwords.

Important
An Admin User cannot delete itself.

Removing the Default Admin User
If you wish to remove the default Admin User, perform the following steps:

1. Add another Admin User.
2. Log in as the new Admin User.
3. Delete the default Admin User.

The Admin Users tab displays all existing Admin Users. You can use this tab to add, update, and delete Admin Users.
These tasks are explained in the sections that follow.

Admin User Roles

The API Gateway uses Role-Based Access Control (RBAC) to restrict access to authorized users based on their as-
signed roles in a domain. Using this model, permissions to perform specific system operations are assigned to specific
roles only. This simplifies system administration because users do not need to be assigned permissions directly, but in-
stead acquire them through their assigned roles.

For example, the default Admin User (admin) has the following user roles:

• Policy Developer

• API Server Administrator

128

• API Service Developer

• KPS Administrator

User Roles and Privileges
User roles have specific tools and privileges assigned to them. These define who can use which tools to perform what
tasks. The user roles provided with the API Gateway assign the following privileges to Admin Users with these roles:

Role Tool Privileges

Policy Developer Policy Studio Download, edit, deploy, version, and
tag a configuration.

API Service Developer API Service Manager Perform create, read, update, delete
(CRUD) operations, and deploy API
services. No access to other API Gate-
way Manager tabs.

API Service Administrator API Service Manager Read-only list of API services. No ac-
cess to other API Gateway Manager
tabs.

API Server Administrator API Gateway Manager Read/write access to API Gateway
Manager. No access to API Service
Manager tab.

API Server Operator API Gateway Manager Read-only access to API Gateway
Manager. No access to API Service
Manager tab.

Deployer Deployment scripts Deploy a new configuration.

KPS Administrator KPS Web UI Perform CRUD operations on data in a
Key Property Store (KPS).

Note
A single Admin User typically has multiple roles. For example, in a development environment, a policy de-
veloper Admin User would typically have the following roles:

• Policy Developer

• API Service Developer

• API Server Administrator

Adding a New Admin User

Complete the following steps to add a new Admin User to the system:

1. Click the Settings -> Admin Users tab in the API Gateway Manager.
2. Click the Create button.
3. In the Create New Admin User dialog, enter a name for the User in the Username field.
4. Enter a user password in the Password field.
5. Re-enter the user password in the Confirm Password field.
6. Select roles for the user from the list of available roles (for example, Policy Developer and/or API Server

Administrator).

Managing Admin Users

129

7. Click Create.

Removing an Admin User

To remove an Admin User, select it in the Username list, click the Delete button. The Admin User is removed from the
list and from the local Admin User store.

Resetting an Admin User Password

You can reset an Admin User password as follows:

1. Select the Admin User in the Username list.
2. Click the Edit button.
3. Enter and confirm the new password in the Password and Confirm Password fields.
4. Click OK.

Managing Admin User Roles

You can manage the roles that are assigned to specific Admin Users as follows:

1. Select the Admin User in the Username list.
2. Click the Edit button.
3. Select the user roles that you wish to enable for this Admin User in the dialog (for example, Policy Developer

and/or API Server Administrator).
4. Click OK.

Editing Roles
To add or delete specific roles, you must edit the available roles in the adminUsers.json and acl.json files in the
conf directory of your API Gateway installation. For full details on managing roles, see the topic on Configuring Role-
Based Access Control (RBAC).

Managing Admin Users

130

Configuring Role-Based Access Control (RBAC)
Overview

Role-Based Access Control (RBAC) enables you to restrict system access to authorized users based on their assigned
roles. Using the RBAC model, permissions to perform specific system operations are assigned to specific roles, and sys-
tem users are granted permission to perform specific operations only through their assigned roles. This simplifies system
administration because users do not need to be assigned permissions directly, and instead acquire them through their
assigned roles.

The API Gateway uses the RBAC permissions model to ensure that only users with the assigned role can access parts
of the Management Services exposed by the Admin Node Manager. For example, this includes access to traffic monitor-
ing data or making a configuration change by deploying to a group of API Gateways. The following diagram shows an
overview of the RBAC model in the API Gateway:

131

API Gateway Manager
The web-based API Gateway Manager tool (https://localhost:8090) is a centralized dashboard for managing and
monitoring the API Gateway, and is controlled by RBAC. Users connecting to this URL with different roles results in dif-
ferent features being displayed.

For example, a user with the API Service Administrator or API Service Developer role can access the API
Service Manager tool. However, users in the Policy Developer, API Gateway Operator, or Deployer roles can-
not access the API Service Manager tool.

For more details on the tools and privileges assigned to specific user roles, see the topic on Managing Admin Users.

Protected Management Services
The Admin Node Manager exposes a number of REST Management Services, which are all protected by RBAC. For ex-
ample, the exposed services and the associated tools that use them include the following:

Protected Service Tool Description

Traffic Monitoring Service API Gateway Manager Displays HTTP, HTTPS, JMS, and
FTP message traffic processed by the
API Gateway.

API Service Manager API API Gateway Manager Enables users to virtualize REST APIs
and SOAP Services on the API Gate-
way.

Configuration Service API Gateway Manager Adds and removes tags on the API
Gateway.

Topology API API Gateway Manager Accesses and configures API Gateway
domains.

Static Content Resources API Gateway Manager Manages UI elements in a browser.

Deployment API Policy Studio Deploys configurations to the API
Gateway.

KPS Service Policy Studio Manages a Key Property Store.

User Roles
User access to Management Services is determined by their role(s). Each role has a defined set of Management Ser-
vices that it can access. A Management Service is defined by the URI used to access it, for example:

Role Name Service Name API Type Example URI

API Gateway Operator Topology API REST /api/topology/hosts

API Gateway Adminis-
trator

Deployment API REST /
api/
router/ser-
vice/in-
stance-
1/deployment/domain/d
eployments

API Service Adminis-
trator

Static Content Resource Static /

For full details on the default roles that have access to each Management Service, see the section called “Management

Configuring Role-Based Access Control (RBAC)

132

Service Roles and Permissions”.

Local Admin User Store

By default, all the user credentials are stored in a local Admin User store in the following file:

INSTALL_DIR/conf/adminUsers.json

INSTALL_DIR is the directory where the API Gateway is installed as Admin Node Manager.

The following shows an example file:

{
"version" : 1,
"adminUserPasswords" : {
"user-1" : "Y2hhbmdlbWU="

},
"productVersion" : "7.1.0",
"adminUsers" : [{
"name" : "admin",
"id" : "user-1",
"roles" : ["role-1", "role-4", "role-6", "role-7"]

}],
"adminUserRoles" : [{
"name" : "API Server Administrator",
"id" : "role-1"

}, {
"name" : "API Server Operator",
"id" : "role-2"

}, {
"name" : "API Service Administrator",
"id" : "role-3"

}, {
"name" : "API Service Developer",
"id" : "role-4"

}, {
"name" : "Deployer",
"id" : "role-5"

}, {
"name" : "KPS Administrator",
"id" : "role-6"

}, {
"name" : "Policy Developer",
"id" : "role-7"

}],
"uniqueIdCounters" : {
"User" : 2,
"Role" : 8

}
}

The credentials from this file are used to authenticate and perform RBAC on all accesses to the Management Services.
This store holds the user credentials, so their passwords can be verified, and also holds their roles. Credentials and as-
sociated roles can also be retrieved from an LDAP Directory Server (for example, Microsoft Active Directory or Open-
LDAP).

For details on configuring an LDAP repository, see the following topics:

• Using Active Directory for Authentication and RBAC of Management Services
• Using OpenLDAP for Authentication and RBAC of Management Services

Configuring Role-Based Access Control (RBAC)

133

Access Control List

The Access Control List file (acl.json) is located in the conf directory of your API Gateway installation. This file lists
each role and the Management Services that each role may access. By default, this file defines the following roles:

• API Service Developer

• API Service Administrator

• API Gateway Administrator

• API Gateway Operator

• KPS Administrator

• Policy Developer

• Deployer

The default admin user is assigned the API Service Developer, API Gateway Administrator, KPS Admin-
istrator, and Policy Developer roles by default, which together allow access to everything. For full details on the
Management Services that each role has access to, and the URIs that must be listed in the acl.json file to have ac-
cess to them, see the table in the section called “Management Service Roles and Permissions”.

Important
The roles defined in the acl.json file should exist in the user store used to authenticate the users and
load their roles and/or groups. The default roles are defined in the local Admin User store, which is used to
control access to the Management Services using the Protect Management Interfaces policy. If a different
user store is used (for example, an LDAP repository), the LDAP groups should be listed in the acl.json
and adminUsers.json files .

Access Control List File Format
Each role entry in the acl.json file has the following format:

"role-name" : [<list_of_permission_names>]

The permissions consist of operations that are defined by HTTP methods and URIs:

“permission-name” : { <list_of_operation_names> }
“operation-name” : {

"methods" : [<list of HTTP Methods>],
"paths" : [<list of path-names>]

}

“path-name” : {
"path" : <URI>

}

This file entry format is described as follows:

• The permissions line is repeated for each permission the role has. To determine which permissions should be listed
for each Management Service, see the table in the section called “Management Service Roles and Permissions”.

• You can place a wildcard (*) at the end of the path field. For example, see the path for dojo resources in the
example that follows. This means the role has access to all URIs that start with the URI content that precedes the *.

• In some cases, you must protect a Management Service by specifying a query string after the URI. Exact matches
only are supported for query strings.

Example Access Control List File

Configuring Role-Based Access Control (RBAC)

134

The following example shows the roles and permissions to URIs:

"paths" : {
"root" : { "path" : "/" },
"emc pages" : { "path" : "/emc/*" },
"site images" : { "path" : "/images/*" },
"dojo resources" : { "path" : "/dojo/*" },
....
}

},

"operations" : {
"emc_read_web" : {
"methods" : ["GET"],
"paths" : ["emc pages", "dojo resources"]
},

"common_read_web" : {
"methods" : ["GET"],
"paths" : ["root", "site images"]
},
....

},

"permissions" : {
"emc" : ["common_read_web", "emc_read_web"],
"config" : ["configuration"],
"deploy" : ["deployment", "management"],
"api_service_manager" : ["servicemanager",
"servicemanager.read", "management"],
"api_service_manager_modify" : ["servicemanager.modify",
"configuration"]
...

},

“roles” : {
"API Service Administrator" : ["emc", "mgmt",
"api_service_manager"],
"Policy Developer" : ["deploy", "config", "ps"]

}

Configuring Users and Roles

You can use the API Gateway Manager to configure the users and roles in the local Admin User store. Click the Settings
-> Admin Users to view and modify user roles (assuming you have a role that allows this). This screen is displayed as
follows:

Configuring Role-Based Access Control (RBAC)

135

Managing User Roles
When you click Create to create a new user, you can select the roles to assign to the that new user. New users are not
assigned a default role. While users that are replicated from an LDAP repository do not require a role to be assigned to
them. You can click Edit to changed the roles assigned to a selected user.

Adding a New Role to the User Store
When you add a new role to the Admin User store, you must modify the available roles in the adminUsers.json and
acl.json files in the conf directory of your Admin Node Manager installation. You must add the new role to the roles
section of the acl.json file, which lists all the permissions that the new role may have.

Important
You must update the acl.json before you add the roles to the Admin User store. The RBAC policy object
automatically reloads the acl.json file each time you add or remove a role in the Policy Studio.

When you update the acl.json file, you must restart the Admin Node Manager to reload the acl.json
file. However, the Admin Node Manager does not need to be rebooted or refreshed if a user’s roles
change.

For more details on managing user roles, see the topic on Managing Admin Users.

Management Service Roles and Permissions

You can use the following table for reference purposes when making changes to the acl.json file. It defines each Man-
agement Service, and the default roles that have access to them. It also lists the URIs that must be listed in the
acl.json to have access to the Management Service.

Management Service Default Roles Permissions

API Gateway Manager (ht-
tps://localhost:8090) • API Gateway Administrator

• API Gateway Operator
• API Service Developer
• API Service Administrator

• emc

• mgmt

Configuring Role-Based Access Control (RBAC)

136

Management Service Default Roles Permissions

API Service Manager (read-only ac-
cess) • API Gateway Administrator • emc

• mgmt

• api_service_manager

API Service Manager (write access)
• API Gateway Developer • emc

• mgmt

• api_service_manager

• api_service_manager_modif
y

API Gateway Manager Dashboard
• API Gateway Administrator • emc

• mgmt

• mgmt_modify

• dashboard

• dashboard_modify

• deploy

• config

API Gateway Manager Dashboard
(read-only access) • API Gateway Operator • emc

• mgmt

• dashboard

• dashboard_modify

API Gateway Manager Monitoring
• API Gateway Administrator
• API Gateway Operator

• emc

• mgmt

• monitoring

• events

• traffic_monitor

• settings

• settings_modify

• logs

API Gateway Manager Traffic
• API Gateway Administrator
• API Gateway Operator

• emc

• mgmt

• traffic_monitor

API Gateway Manager Logs
• API Gateway Administrator
• API Gateway Operator

• emc

• mgmt

• logs

Configuring Role-Based Access Control (RBAC)

137

Management Service Default Roles Permissions

API Gateway Manager Events
• API Gateway Administrator
• API Gateway Operator

• emc

• mgmt

• monitoring

• events

API Gateway Manager Settings
• API Gateway Administrator • emc

• mgmt

• mgmt_modify

• settings

• settings_modify

API Gateway Manager Settings
(read-only access) • API Gateway Operator • emc

• mgmt

• settings

Documentation
• API Gateway Administrator
• API Gateway Operator
• API Service Developer
• API Service Administrator

• emc

• mgmt

KPS
• KPS Administrator • mgmt

• kps

Policy Studio
• Policy Developer • mgmt

• deploy

• config

• ps

• ps_tagging

API Server Configuration Deployment
• API Gateway Administrator
• Policy Developer
• Deployer

• mgmt

• deploy

• config

Configuration API
• Policy Developer • ps

• ps_tagging

Configuring Role-Based Access Control (RBAC)

138

Using Active Directory for Authentication and RBAC of
Management Services
Overview

This topic explains how to use Local Directory Access Protocol (LDAP) to authenticate and perform Role-Based Access
Control (RBAC) of Management Services. You can use the sample Protect Management Interfaces (LDAP) policy in-
stead of the Protect Management Interfaces policy. This means that an LDAP repository is used instead of the local
Admin User store for authentication and RBAC of users attempting to access Management Services. This topic de-
scribes how to configure the server to use an example Microsoft Active Directory LDAP repository.

Note
To access the policies and settings described in this topic, you must have the Show Management Ser-
vices setting enabled in the Preferences in the Policy Studio.

Step 1: Create an Active Directory Group

To create a new user group in Active Directory, perform the following example steps:

1. Click Start -> Administrative Tools -> Active Directory Users and Computers.
2. On the Users directory, right-click, and select New -> Group.
3. Enter the Group name (for example, GatewayAdministrators).

139

You can view the new group using an LDAP Browser. For example:

Using Active Directory for Authentication and RBAC of Management Services

140

Step 2: Create an Active Directory User

You will most likely be unable to create an admin user with a password of changeme because this password is not
strong enough to be accepted by Active Directory. Using Active Directory Users and Computers, perform the following
steps:

1. On the Users directory, right-click, and select New -> User.
2. Enter a user name (for example, admin).

Using Active Directory for Authentication and RBAC of Management Services

141

3. Click Next.
4. Enter a password (for example, Oracle123).
5. Select User cannot change password and Password never expires.
6. Ensure User must change password at next logon is not selected.
7. Click Next.
8. Click Finish.

Using Active Directory for Authentication and RBAC of Management Services

142

Adding the User to the Group
To make the user a member of the group using Active Directory Users and Computers, perform the following steps:

1. Select the GatewayAdministrators group, right-click, and select Properties.
2. Click the Members tab.
3. Click Add.
4. Click Advanced.
5. Click Find Now.
6. Select the admin user.
7. Click OK.

Using Active Directory for Authentication and RBAC of Management Services

143

You can view the new user using an LDAP Browser. For example:

Using Active Directory for Authentication and RBAC of Management Services

144

Note
The memberOf attribute points to the Active Directory group. The user has an instance of this attribute for
each group they are a member of.

Step 3: Create an LDAP Connection

To create an new LDAP Connection, perform the following steps:

1. In the Policy Studio, select Open File , and select the Admin Node Manager configuration file (for example, IN-
STALL_DIR\apigateway\conf\fed\configs.xml.

2. In the Policy Studio tree, select External Connections -> LDAP Connections.
3. Right-click, and select Create an LDAP Connection.
4. Complete the fields in the dialog as appropriate. The specified User Name should be an LDAP administrator that

has access to search the full directory for users. For example:

Using Active Directory for Authentication and RBAC of Management Services

145

5. Click Test Connection to ensure the connection details are correct.

Step 4: Create an LDAP Repository

To create an new LDAP Repository, perform the following steps:

1. In the Policy Studio tree, select External Connections -> Authentication Repository Profiles -> LDAP Reposit-
ories.

2. Right-click, and select Add a new Repository.
3. Complete the following fields in the dialog:

Repository Name Enter an appropriate name for the repository.

LDAP Directory Use the LDAP directory created in the section called “Step
3: Create an LDAP Connection”.

Base Criteria Enter the LDAP node that contains the users (for example,
see the LDAP Browser screen shot in the section called
“Step 2: Create an Active Directory User”).

Using Active Directory for Authentication and RBAC of Management Services

146

User Search Attribute Enter cn. This is the username entered at login time (in this
case, admin).

Authorization Attribute Enter distinguishedName. This is the username
entered at login time (admin). The authentica-
tion.subject.id message attribute is set to the value
of this LDAP attribute (for example,
CN=admin,CN=Users,DC=kerberos3,DC=qa,DC=vor
del,DC=com. The authentication.subject.id is
used as the base criteria in the filter that loads the LDAP
groups (the user’s roles). This enables you to narrow the
search to a particular user node in the LDAP tree. For more
details, see the Retrieve Attributes from Directory Serv-
er filter in the section called “Step 5: Create a Test Policy
for LDAP Authentication and RBAC”.

Connecting to Other LDAP Repositories
This topic uses Microsoft Active Directory as an example LDAP repository. Other LDAP repositories such as Oracle Dir-

Using Active Directory for Authentication and RBAC of Management Services

147

ectory Server (formerly iPlanet and Sun Directory Server) and OpenLDAP are also supported. For an example of query-
ing an Oracle Directory Server repository, see the Retrieve Attributes from Directory Server filter in the section called
“Step 5: Create a Test Policy for LDAP Authentication and RBAC”. For details on using OpenLDAP, see Using Open-
LDAP for Authentication and RBAC of Management Services.

Step 5: Create a Test Policy for LDAP Authentication and RBAC

To avoid locking yourself out of the Policy Studio, you can create a test policy for LDAP authentication and RBAC, which
is invoked when a test URI is called on the server (and not a Management Services URI). For an example policy, select
Policies -> Management Services -> Sample LDAP Policies -> Protect Management Interfaces (LDAP) when the
Admin Node Manager configuration is loaded.

Create the Test Policy
Perform the following steps:

1. Select Open File and load the Admin Node Manager configuration file in the Policy Studio. For example:

INSTALL_DIR/apigateway/conf/fed/configs.xml

2. Right-click the Policies node in the tree view of the Policy Studio, and select Add Policy.
3. Enter a suitable name (for example Test Policy) for the new policy in the Name field, and click OK.
4. Click the new policy in the tree to start configuring the policy filters. You can configure the policy by dragging the re-

quired filters from the filter palette on the right, and dropping them on to the policy canvas.

For more details, see the topic on Configuring Policies Manually.

Configure the Test Policy
Configure the test policy with the following filters:

Using Active Directory for Authentication and RBAC of Management Services

148

Scripting Language Filter
This includes the following settings:

The Scripting Language Filter performs the following tasks:

• Returns true if the Node Manager is the Admin Node Manager and passes control to the HTTP Basic Authentica-
tion filter.

• Otherwise, calls the Call Internal Service (no RBAC) filter without adding the authentication.subject.role
and authentication.subject.id HTTP headers.

Call Internal Service (no RBAC) Filter
This filter is called without adding any HTTP headers as follows:

Using Active Directory for Authentication and RBAC of Management Services

149

HTTP Basic Authentication Filter
This filter uses the LDAP repository configured in the section called “Step 4: Create an LDAP Repository”, and includes
the following settings:

The HTTP Basic Authentication filter performs the following tasks:

• Connects to the LDAP directory using the connection details specified in the LDAP directory.
• Finds the user using the specified base criteria and search filter.
• If the user is found, verifies the user's name and password against the LDAP repository by performing a bind.
• If authentication fails, always throws a 401. This allows retry for browser users.

Using Active Directory for Authentication and RBAC of Management Services

150

• The distinguishedName (DName) is held in the authentication.subject.id message attribute. This is
specified by the Authorization Attribute field in the LDAP repository configuration.

• The user’s roles (LDAP groups) are not available yet.

Retrieve Attributes from Directory Server Filter
This filter uses the LDAP directory configured in the section called “Step 3: Create an LDAP Connection”, and includes
the following settings:

The Retrieve Attributes from Directory Server filter performs the following tasks:

Using Active Directory for Authentication and RBAC of Management Services

151

• Using the user’s DName as the search start point, find the user’s memberOf attribute, and load the LDAP groups for
the user.

• If the user is in one group, the group name is contained in the user.memberOf message attribute. If the user is in
multiple (n) LDAP groups, the group names are held in user.memberOf.1...user.memberOf.n message attrib-
utes.

Alternatively, the following screen shows an example of querying an Oracle Directory Server repository, where the query
returns the authenticated user’s groups instead of the user object:

You should be able to query any LDAP directory in this way. Assuming that the user’s groups or roles can be retrieved as
attributes of an object, the query does not need to be for the user object.

RBAC Filter
This filter includes a the following setting:

Using Active Directory for Authentication and RBAC of Management Services

152

The RBAC filter performs the following tasks:

• Reads the roles from the user.memberOf.* message attribute. It understands the meaning of the wildcard, and
loads the roles as required. It creates a string version of the roles, and places it in the authentica-
tion.subject.role message attribute for consumption by the Call Internal Service filter, which receives the
roles as an HTTP header value.

• Determines which Management Service URI is currently being invoked.
• Returns true if one of the roles has access to the Management Service currently being invoked, as defined in the

acl.json file.
• Otherwise, returns false and the Return HTTP Error 403: Access Denied (Forbidden) policy is called. This mes-

sage content of this filter is shown when a valid user has logged into the browser, but their role(s) does not give
them access to the URI they have invoked. For example, this occurs if a new user is created and they have not yet
been assigned any roles.

Test the Policy Configuration
To test this policy configuration, perform the following steps:

1. Update the acl.json file with the new LDAP group as follows:

"CN=GatewayAdministrators,CN=Users,DC=kerberos3,DC=qa,DC=vordel,DC=com" : [
"emc", "mgmt", "mgmt_modify", "dashboard", "dashboard_modify", "deploy",
"config", "monitoring", "events", "traffic_monitor", "settings",
settings_modify", "logs" "api_service_manager", "api_service_manager_modify",
"ps", "ps_tagging"]

2. Update the adminUsers.json file with the new role as follows:

{
"name" : "CN=GatewayAdministrators,CN=Users,DC=kerberos3,DC=qa,DC=vordel,DC=com",
"id" : "role-8"

}

And increase the number of roles, for example:

"uniqueIdCounters" : {
"Role" : 9,
"User" : 2

},

3. In the Policy Studio tree, select Listeners -> Node Manager -> Add HTTP Services, and enter a service name (for
example, LDAP Test).

4. Right-click the HTTP service, and select Add Interface -> HTTP.
5. Enter an available port to test the created policy (for example, 8888), and click OK.
6. Right-click the HTTP service, and select Add Relative Path.
7. Enter a relative path (for example, /test).

Using Active Directory for Authentication and RBAC of Management Services

153

8. Set the Path Specify Policy to the Protect Management Interfaces (LDAP) policy, and click OK.
9. Close the connection to the Admin Node Manager file, and restart the Admin Node Manager so it loads the updated

configuration.
10. Use API Gateway Explorer to call http://localhost:8080/test.
11. Enter the HTTP Basic credentials (for example, username admin and password Oracle123). If authentication is

passed, the Admin Node Manager should return an HTTP 404 code (not found).

Important
Do not use the Admin Users tab in the API Gateway Manager to manage user roles because these are
managed in LDAP.

Step 6: Use the LDAP Policy to Protect Management Services

If the authentication and RBAC filters pass, you can now use this policy to protect the management interfaces. To ensure
that you do not lock yourself out of the server, perform the following steps:

1. Make a copy of the conf/fed directory contents from the server installation, and put it into a directory accessible
from the Policy Studio.

2. Make another backup copy of the conf/fed directory, which will remain unmodified.
3. In the Policy Studio, select File -> Open, and browse to configs.xml in the first copy of the fed directory.
4. Under the Listeners -> Management Services node, select the / and the /configuration/deployments relat-

ive paths, and set the Path Specify Policy to the Protect Management Interfaces (LDAP) policy.
5. Remove the previously created LDAP Test HTTP Services.
6. Close the connection to the file.
7. Copy the fed directory back to the Admin Node Manager’s conf directory.
8. Reboot the Admin Node Manager.
9. Start the Policy Studio, and connect to the Admin Node Manager using admin and password Oracle123 (the

LDAP user credentials). You should now be able to edit API Gateway configurations as usual.

Adding an LDAP User with Limited Access to Management Services

You can add an LDAP user with limited access to Management Services. For example, assume there is already a user
named Fred defined in Active Directory. Fred has the following DName:

CN=Fred,CN=Users,DC=kerberos3,DC=qa,DC=vordel,DC=com

Fred belongs to an existing LDAP group called TraceAnalyzers. He can also belong to other LDAP groups that have
no meaning for RBAC in the API Gateway. The TraceAnalyzers LDAP group has the following DName:

CN=TraceAnalyzers,CN=Users,DC=kerberos3,DC=qa,DC=vordel,DC=com

The user Fred should be able to read server trace files in a browser. No other access to Management Services should
be given to Fred.

Adding Limited Access Rights
You must perform the following steps to allow Fred to view the trace files:

1. Add the following entry in the roles section in the acl.json file:

"CN=TraceAnalyzers,CN=Users,DC=kerberos3,DC=qa,DC=vordel,DC=com" :
["emc", "mgmt", "logs"]

Using Active Directory for Authentication and RBAC of Management Services

154

2. Update the adminUsers.json file with the new role as follows:

{
"name" : "CN=TraceAnalyzers,CN=Users,DC=kerberos3,DC=qa,DC=vordel,DC=com",
"id" : "role-8"

}]

And increase the number of roles, for example:

"uniqueIdCounters" : {
"Role" : 9,
"User" : 2

},

3. Restart the Admin Node Manager so that the acl.json and adminUsers.jsonfile updates are picked up.
4. Enter the following URL in your browser:

http://localhost:8090/

5. Enter user credentials for Fred when prompted in the browser.
6. The API Gateway Manager displays a Logs tab enabling access to the trace files that Fred can view.

Note
Fred is not allowed to access the server APIs used by the Policy Studio. If an attempt is made to connect
to the server using the Policy Studio with his credentials, an Access denied error is displayed. No other
configuration is required to give user Fred the above access to the Management Services. Other users in
the same LDAP group can also view trace files without further configuration changes because the LDAP
group is already defined in the acl.json file.

Using Active Directory for Authentication and RBAC of Management Services

155

Using OpenLDAP for Authentication and RBAC of
Management Services
Overview

This topic explains how to use Local Directory Access Protocol (LDAP) to authenticate and perform Role-Based Access
Control (RBAC) of Management Services. You can use the sample Protect Management and Interfaces (LDAP) policy
instead of the Protect Management Interfaces policy. This means that an LDAP repository is used instead of the local
Admin User store for authentication and role-based access control (RBAC) of users attempting to access the Manage-
ment Services. This topic describes how to reconfigure the server to use OpenLDAP as the LDAP repository, and to use
the Apache Directory Studio as an LDAP browser.

Prerequisites
This example assumes that you already have configured connection to the OpenLDAP server and setup your organiza-
tion groups and users that you wish to use to perform RBAC. For example:

• LDAP URL: ldap://openldap.qa.oracle.com:389
• User: cn=admin,o=Vordel Ltd.,l=Dublin 4,st=Dublin,C=IE

• Password: oracle

Important
To access the policies and settings described in this topic, you must have the Show Management Ser-
vices setting enabled in the Preferences in the Policy Studio.

Step 1: Create an OpenLDAP Group for RBAC Roles

To create a new user group in OpenLDAP, perform the following steps:

1. Select the cn=admin,o=Vordel Ltd.,l=Dublin 4,st=Dublin,C=IE directory.
2. Right-click, and select New -> New Entry.
3. Select Create entry from scratch.
4. Click Next.
5. Add an organizationalUnit object class.
6. Click Next.
7. Set the Parent to o=Vordel Ltd.,l=Dublin 4,st=Dublin,C=IE.
8. Set the RDN to ou = RBAC.
9. Click Next.
10. Click Finish.

156

You can view the new group using an LDAP Browser. For example:

Step 2: Add RBAC Roles to the OpenLDAP RBAC Group

You must add the following default RBAC roles to the ou=RBAC,o=Vordel Ltd.,l=Dublin 4,st=Dublin,C=IE
group to give the LDAP users appropriate access to the API Gateway Management Services:

• API Service Developer

• API Service Administrator

• API Gateway Administrator

• API Gateway Operator

• KPS Administrator

Using OpenLDAP for Authentication and RBAC of Management Services

157

• Policy Developer

• Deployer

These RBAC roles are located in the roles section of the acl.json file.

Adding Roles to the RBAC Directory
To add these RBAC roles to the OpenLDAP RBAC group, perform the following steps:

1. Select the cn=admin,o=Vordel Ltd.,l=Dublin 4,st=Dublin,C=IE directory.
2. Right-click, and select New -> New Entry.
3. Select Create entry from scratch.
4. Click Next.
5. Add a groupOfNames object class.
6. Click Next.
7. Set the Parent to ou=RBAC,o=Vordel Ltd.,l=Dublin 4,st=Dublin,C=IE.
8. Set the RDN to ou = Policy Developer.
9. Click Next.
10. In the DN Editor dialog, set admin as first member of the following group: cn=admin,ou=R&D,o=Vordel

Ltd.,l=Dublin 4,st=Dublin,c=IE. You can change the member Distinguished Name at any time.
11. Click OK.
12. Click Finish.

You can view the role in the OpenLDAP group in an LDAP Browser. For example:

Using OpenLDAP for Authentication and RBAC of Management Services

158

Adding Other Roles to the RBAC Directory
You can repeat these steps to add other roles to the RBAC directory. Alternatively, you can copy the Policy De-
veloper entry, and paste it into the RBAC directory, renaming the entry with required RBAC role name. For example:

Note
You should have the RBAC directory ready to add members to the role entries. By default, the admin user
(“cn=admin,ou=R&D,o=Vordel Ltd.,l=Dublin 4,st=Dublin,c=IE”) is already a member of the
role entries.

Using OpenLDAP for Authentication and RBAC of Management Services

159

The following example shows the added roles:

Now you can add new users to the RBAC role entries. The member attribute value should contain the user Distinguished
Name. This is explained in the next section.

Step 3: Add Users to the OpenLDAP RBAC Group

To add a user to the OpenLDAP RBAC group, perform the following steps:

1. Select the required RBAC group (for example, cn=API Server Administrator) to view the group details.
2. Right-click the list of group attributes, and select New Attribute.
3. Enter member in the attribute type.

4. Click Finish.
5. In the DN Editor dialog, enter the user Distinguished Name (for example, cn=joe.bloggs,o=Vordel

Ltd.,l=Dublin 4,st=Dublin,c=IE).
6. Click OK.

Using OpenLDAP for Authentication and RBAC of Management Services

160

The cn=joe.bloggs,o=Vordel Ltd.,l=Dublin 4,st=Dublin,c=IE new user has been added to the RBAC API
Server Administrator role.

Step 4: Create an LDAP Connection

To create an new LDAP Connection, perform the following steps:

1. In the Policy Studio, select Open File , and select the Admin Node Manager configuration file (for example, IN-
STALL_DIR\apigateway\conf\fed\configs.xml).

2. In the Policy Studio tree, select External Connections -> LDAP Connections.
3. Right-click, and select Create an LDAP Connection.
4. Complete the fields in the dialog as appropriate. For example:

Note
The specified User Name should be an LDAP administrator that has access to search the full directory
for users.

5. Click Test Connection to ensure the connection details are correct.

Step 5: Create an OpenLDAP Repository

To create an new OpenLDAP Repository, perform the following steps:

Using OpenLDAP for Authentication and RBAC of Management Services

161

1. In the Policy Studio tree, select External Connections -> Authentication Repository Profiles -> LDAP Reposit-
ories.

2. Right-click, and select Add a new Repository.
3. Complete the following fields in the dialog:

Repository Name Enter an appropriate name for the repository.

LDAP Directory Use the LDAP directory created in the section called “Step
4: Create an LDAP Connection”.

Base Criteria Enter the LDAP node that contains the users (for example,
see the LDAP Browser screen in the section called “Step 3:
Add Users to the OpenLDAP RBAC Group”).

User Search Attribute Enter cn. This is the username entered at login time (in this
case, admin).

Authorization Attribute Enter cn. The authentication.subject.id message
attribute is set to the value of this LDAP attribute (for ex-
ample, cn=admin,ou=R&D,o=Vordel Ltd.,l=Dublin
4,st=Dublin,c=IE. The authentica-
tion.subject.id is used as the base criteria in the filter
used to load the LDAP groups (the user’s roles). This al-
lows you to narrow the search to a particular user node in
the LDAP tree. For more details, see the Retrieve Attrib-
utes from Directory Server filter in the section called
“Step 6: Create a Test Policy for LDAP Authentication and
RBAC”.

Using OpenLDAP for Authentication and RBAC of Management Services

162

Connecting to Other LDAP Repositories
This topic uses OpenLDAP as an example LDAP repository. Other LDAP repositories such as Oracle Directory Server
(formerly iPlanet and Sun Directory Server) and Microsoft Active Directory are also supported. For details on using a Mi-
crosoft Active Directory repository, see Using Active Directory for Authentication and RBAC of Management Services.
For an example of querying an Oracle Directory Server repository, see the Retrieve Attributes from Directory Server
filter in the section called “Step 5: Create a Test Policy for LDAP Authentication and RBAC”.

Step 6: Create a Test Policy for LDAP Authentication and RBAC

To avoid locking yourself out of the Policy Studio, you can create a test policy for LDAP authentication and RBAC, which
is invoked when a test URI is called on the server (and not a Management Services URI). For an example policy, select
Policies -> Management Services -> Sample LDAP Policies -> Protect Management Interfaces (LDAP) when the
Admin Node Manager configuration is loaded.

Create the Test Policy
Perform the following steps:

1. Select Open File and load the Admin Node Manager configuration file in the Policy Studio. For example:

INSTALL_DIR/apigateway/conf/fed/configs.xml

2. Right-click the Policies node in the tree view of the Policy Studio, and select Add Policy .

Using OpenLDAP for Authentication and RBAC of Management Services

163

3. Enter a suitable name (for example Test Policy) for the new policy in the Name field, and click the OK button.
The new policy is now visible in the tree view.

4. Click the new policy in the tree view to start configuring the filters for the policy. You can easily configure the policy
by dragging the required filters from the filter palette on the right of the Policy Studio, and dropping them on to the
policy canvas.

For more details, see the topic on Configuring Policies Manually.

Configure the Test Policy
Configure the test policy with the following filters:

Scripting Language Filter
This includes the following settings:

Using OpenLDAP for Authentication and RBAC of Management Services

164

The Scripting Language Filter performs the following tasks:

• Returns true if the Node Manager is the Admin Node Manager and passes control to the HTTP Basic Authentica-
tion filter.

• Otherwise, calls the Call Internal Service (no RBAC) filter without adding the authentication.subject.role
and authentication.subject.id HTTP headers.

Call Internal Service (no RBAC) Filter
This filter is called without adding any HTTP headers as follows:

Using OpenLDAP for Authentication and RBAC of Management Services

165

HTTP Basic Authentication Filter
This filter uses the LDAP repository configured in the section called “Step 5: Create an OpenLDAP Repository”, and in-
cludes the following settings:

The HTTP Basic Authentication filter performs the following tasks:

• Connects to the LDAP directory using the connection details specified in the LDAP directory.
• Finds the user using the specified base criteria and search filter.
• If the user is found, verifies the user's name and password against the LDAP repository by performing a bind.
• If authentication fails, always throws a 401. This allows retry for browser users.
• The distinguishedName (DName) is held in the authentication.subject.id message attribute. This is

Using OpenLDAP for Authentication and RBAC of Management Services

166

specified by the Authorization Attribute field in the LDAP repository configuration.
• The user’s roles (LDAP groups) are not available yet.

Retrieve Attributes from Directory Server Filter
This filter uses the LDAP directory configured in the section called “Step 4: Create an LDAP Connection”, and includes
the following settings:

The Retrieve Attributes from Directory Server filter performs the following tasks:

• Using the user’s DName as the search start point, finds the user’s cn attribute, and loads the LDAP groups for the
user.

• If the user is in one group, the group name is contained in the user.cn message attribute. If the user is in multiple
(n) LDAP groups, the group names are contained in user.cn.1...user.cn.n message attributes.

RBAC Filter
This filter includes a the following setting:

Using OpenLDAP for Authentication and RBAC of Management Services

167

The RBAC filter performs the following tasks:

1. Reads the roles from the user.cn.* message attribute. It understands the meaning of the wildcard, and loads the
roles as required. It creates a string version of the roles, and places it in the authentication.subject.role
message attribute for consumption by the Call Internal Service filter, which receives the roles as an HTTP header
value.

2. Determines which Management Service URI is currently being invoked.
3. Returns true if one of the roles has access to the Management Service currently being invoked, as defined in the

acl.json file.
4. Otherwise, returns false and calls the Return HTTP Error 403: Access Denied (Forbidden) policy. The message

content of this filter is shown when a valid user has logged into the browser, but their role(s) does not give them ac-
cess to the URI they have invoked. For example, this occurs if a new user is created and they have not yet been as-
signed any roles.

Call Internal Service Filter
This filter includes a the following settings:

The Call Internal Service filter sends the message to the internal service with the following additional HTTP headers:

• authentication.subject.role

• authentication.subject.role

Using OpenLDAP for Authentication and RBAC of Management Services

168

Note
The authentication.subject.id message attribute is specified using
${authentication.subject.orig.id} because authentication.subject.id holds the full
DName, and the cn only needs to be passed to the services.

Test the Policy Configuration
To test this policy configuration, perform the following steps:

1. In the Policy Studio tree, select Listeners -> Node Manager -> Add HTTP Services, and enter a service name (for
example, LDAP Test).

2. Right-click the HTTP service, and select Add Interface -> HTTP.
3. Enter an available port to test the created policy (for example, 8888), and click OK.
4. Right-click the HTTP service, and select Add Relative Path.
5. Enter a relative path (for example, /test).
6. Set the Path Specify Policy to the Protect Management Interfaces (LDAP) policy, and click OK.
7. Close the connection to the Admin Node Manager file and reboot the Admin Node Manager so it loads the updated

configuration.
8. Use API Gateway Explorer to call http://localhost:8080/test.
9. Enter the HTTP Basic credentials (for example, username admin and password Oracle123). If authentication is

passed, the Admin Node Manager should return an HTTP 404 code (not found).

Step 7: Use the OpenLDAP Policy to Protect Management Services

If the authentication and RBAC filters pass, you can now use this policy to protect the management interfaces. To ensure
that you do not lock yourself out of the server, perform the following steps:

1. Make a copy of the conf/fed directory contents from the server installation, and put it into a directory accessible
from the Policy Studio.

2. Make another backup copy of the conf/fed directory, which will remain unmodified.
3. In the Policy Studio, select File -> Open, and browse to configs.xml in the first copy of the fed directory.
4. Under the Listeners -> Management Services node, select the / and the /configuration/deployments relat-

ive paths, and set the Path Specify Policy to the Protect Management Interfaces (LDAP) policy.
5. Remove the previously created LDAP Test HTTP Services.
6. Close the connection to the file.
7. Copy the fed directory back to the Admin Node Manager’s conf directory.
8. Reboot the Admin Node Manager.
9. Start the Policy Studio, and connect to the Admin Node Manager using admin with its LDAP password (for example,

Oracle123). You should now be able to edit API Gateway configurations as usual.

Using OpenLDAP for Authentication and RBAC of Management Services

169

Startup Instructions
Overview

This topic describes how to start the Node Manager and API Gateway on all platforms in console mode . It also de-
scribes how to start the Policy Studio. For details on launching API Service Manager in your browser, see Introduction to
API Service Manager. For details on API Gateway components and concepts, see the Oracle API Gateway Architecture.

Setting Passphrases

By default, data is stored unencrypted in the API Gateway configuration store. However, you can encrypt certain sensit-
ive information, such as passwords and private keys using a passphrase. When the passphrase has been set, this en-
crypts the API Gateway configuration data. You must enter the passphrase when connecting to the API Gateway config-
uration data (for example, using the Policy Studio, or when the API Gateway starts up). For more details on configuring
this passphrase, see Setting the Encryption Passphrase.

Starting the Node Manager

The following instructions describe how to start the Node Manager on the command line in console mode on Windows
and UNIX systems:

Windows
Complete the following steps to start the Node Manager on a Windows system:

1. Open a DOS prompt at the /Win32/bin directory of your API Gateway installation.
2. Run the nodemanager.bat file.
3. If you are using an encryption passphrase, you are prompted for this passphrase. Enter the correct encryption pass-

phrase, and press Return. For more details, see Setting the Encryption Passphrase.

Linux/Solaris
To start the API Gateway and the Policy Studio on Linux/Solaris systems, complete the following instructions:

1. Open a shell at the /posix/bin directory of your API Gateway installation.
2. Run the nodemanager.sh file, for example:

prompt# ./nodemanager

3. If you are using an encryption passphrase, you are prompted for this passphrase. Enter the correct encryption pass-
phrase and press Return. For more details, see Setting the Encryption Passphrase.

Starting the API Gateway

The following instructions describe how to start the API Gateway on the command line in console mode on Windows and
UNIX systems:

Windows
Complete the following steps to start the API Gateway on a Windows system:

1. Open a DOS prompt at the /Win32/bin directory of your API Gateway installation.
2. Use the startinstance command to start the API Gateway, for example:

startinstance -n "my_server" -g "my_group"

170

3. If you are using an encryption passphrase, you are prompted for this passphrase. Enter the correct encryption pass-
phrase, and press Return. For more details, see Setting Passphrases.

4. When the API Gateway has successfully started up, you can run the policystudio.exe file from your Policy Stu-
dio installation directory.

5. When the Policy Studio is starting up, you are prompted for connection details for the API Gateway. For more de-
tails, see Connecting to the API Gateway.

Linux/Solaris
To start the API Gateway and the Policy Studio on Linux/Solaris systems, complete the following instructions:

1. Open a shell at the /posix/bin directory of your API Gateway installation.
2. Use the startinstance command to start the API Gateway, for example:

startinstance -n "my_server" -g "my_group"

Note
You must ensure that the startinstance file has execute permissions.

3. If you are using an encryption passphrase, you are prompted for this passphrase. Enter the correct encryption pass-
phrase and press Return. For more details, see Setting Passphrases.

4. When the API Gateway has successfully started up, run the policystudio.sh file in your Policy Studio installation
directory. For example:

prompt# cd /usr/home/policystudio
prompt# ./policystudio

5. When the Policy Studio is starting up, you are prompted for connection details for the API Gateway.

Tip
You can enter the startinstance command without any arguments to display the servers registered on
the machine. For example:

INSTALL_DIR\Win32\bin>startinstance

usage: "startinstance [[-n instance-name -g group-name [instance-args]] |
[directory-location [instance-args]]]"

The API Gateway instances listed below are available to run on this machine
as follows:

startinstance -n "server1" -g "group1"
startinstance -n "server2" -g "group2"

Connecting to the API Gateway

When starting up the Policy Studio, you are prompted for details on how to connect to the API Gateway. These include
details such as the server session, host, port, user name, and password. The default connection URL is:

https://HOST:8090/api

where HOST points to the IP address or hostname of the machine on which the API Gateway is running. For more inform-
ation on configuring these settings, see Connection Details.

Startup Instructions

171

Connection Details
Overview

You can use the Policy Studio to manage API Gateway, Admin Node Manager, and API Gateway Analytics servers. The
Open Connection dialog enables you to connect to a server URL, and the Open File dialog enables you to connect to a
server configuration file (.xml) or deployment archive (.fed) . By default, the Policy Studio connects to a server URL.
This topic describes how to connect using a server URL, configuration file, or deployment archive.

Connecting to a URL

The server exposes a deployment service to its underlying configuration data. This enables Policy Studios running on dif-
ferent machines to that on which the server is installed to manage policies remotely. To connect to the deployment ser-
vice of a running server, select File -> Connect to server from the main menu, or the equivalent button in the toolbar.
Configure the following fields on the Open Connection dialog:

Saved Sessions:
Select the session that you wish to use from the drop-down list. You can edit a session name by entering a new name
and clicking Save. You can also add or remove saved sessions using the appropriate button.

Connection Details
The Connection Details section enables you to specify the following settings:

Host:
Specify the host to connect to in this field. The default is localhost.

Port:
Specify the port to connect on in this field. The default Admin Node Manager port is 8090.

Use SSL:
Specify whether to connect securely over SSL. This is selected by default.

User Name:
The deployment service is protected by HTTP Basic authentication. You must provide a user name and password so that
the Policy Studio can authenticate to the server. By default, the server User Store contains an admin user with a
changeme password, which can be used in this case. You can change this user's details using the Authentication Re-
pository interface.

Password:
Specify the password for the user. The password for the default admin user is changeme.

Advanced
Click Advanced to specify the following setting:

URL:
Enter the URL of the deployment service exposed by the server. For example, the default Admin Node Manager URL is
https://localhost:8090/api, where HOST points to the IP address or host name of the machine on which the API
Gateway is running. You can also connect to the API Gateway Analytics server URL. The default server URL addresses
are as follows:

Component Address

Admin Node Manager https://localhost:8090/api

API Gateway Analytics ht-
tp://localhost:8040/configuration/deploymen
ts/DeploymentService

172

Important
To manage API Gateways in your network, you must connect to the Admin Node Manager server URL.

Connecting to a File

Because the server configuration data is stored in XML files, you can specify that the Policy Studio connects directly to a
file. You can connect to a server configuration file (.xml) or a deployment archive (.fed). For more details, see Deploy-
ing Configuration.

To connect to a file, select File -> Open file from the main menu, or click the Open file link on the welcome page. Com-
plete the following fields on the Open File dialog:

File:
Enter or browse to the location of a server configuration file (for example, IN-
STALL_DIR\groups\group-2\conf\378fd412-4e14-4924-b666-b974adf19642\configs.xml). Alternatively,
enter or browse to the location of a deployment archive (.fed).

Passphrase Key:
All sensitive server configuration data (password, keys, and so on) can be encrypted using a passphrase. If you wish to
do this, enter a password in this field when connecting. You must use this password thereafter when connecting to the
server.

Unlocking a Server Connection

You can also use the Open File dialog to unlock a connection to a server. This is for emergency use when you have
changed configuration that results in you being locked out from the Management Services on port 8090. In this case,
you have misconfigured the authentication filter in the Protect Management Interfaces policy. For example, if you cre-
ated and deployed an LDAP connection without specifying the correct associated user accounts, and are now unable to
connect to the Admin Node Manager.

To unlock a server connection, perform the following steps:

1. Download all the files in the server's conf/fed directory to the machine on which the Policy Studio is installed.
2. Start the Policy Studio.
3. Connect to the configs.xml file that you downloaded from the server in step 1 (for details, see the section called

“Connecting to a File”).
4. Change the configuration details as required (for example, specify the correct user account details for the LDAP con-

nection under the External Connections node).
5. Upload the files back to the server's conf/fed directory.
6. Connect to the server URL in the Policy Studio.

For more details on Management Services, see Policy Studio Preferences.

Connection Details

173

Global Configuration
Overview

For convenience, the Policy Studio displays various global configuration options. For example, it includes libraries of
users, X.509 certificates, and schemas that can be added globally and then referenced in filters and policies. This avoids
the need to reconfigure details over and over again (for example, each time a schema or certificate is used).

The following global configuration options are available in the Policy Studio, each of which are discussed briefly in the
sections below:

• Server Configuration
• API Gateway Settings
• Web Services Repository
• Processes
• Policies
• Certificates and Keys
• API Gateway Users
• Alerts
• External Connections
• Caches
• Black list
• White list
• Schema Cache
• Scripts
• Stylesheets

Server Configuration

You can manage the server configuration for the API Gateway using the Server menu option in the Policy Studio main
menu. This includes deploying the server configuration.

For more details, see the Server Configuration topic.

API Gateway Settings

You can configure the underlying configuration settings for the API Gateway using the Settings node in the Policy Studio
tree. This includes the following tabs:

• Default Settings
• Audit Log
• Namespace
• MIME/DIME
• Traffic Monitor
• Metrics
• Control Log
• Cache
• Access Log
• Security Service Module
• Kerberos

174

• Tivoli

For more details, see the API Gateway Settings topic.

Web Services Repository

The easiest way to secure a Web Service with the API Gateway is to import the WSDL (Web Services Description Lan-
guage) file for the service using the Policy Studio. This creates a Service Handler for the Web Service, which is used to
control and validate requests to the Web Service and responses from the Web Service.

The WSDL file is also added to the Web Services Repository, making sure to update the URL of the Web Service to
point at the machine on which the API Gateway is running instead of that on which the Web Service is running. Con-
sumers of the Web Service can then query the API Gateway for the WSDL file for the Web Service. The consumer then
knows to route messages to the API Gateway instead of attempting to route directly to the Web Service, which most
likely will not be available on a public IP address.

The Web Services Repository offers administrators a very simple way of securing a Web Service with minimal impact on
consumers of that service. Because of this, the Web Services Repository should be used as the primary method of set-
ting up policies within the Policy Studio. For more information on using the Repository to setup policies, see the Web
Service Repository tutorial.

Processes

A Process represents a single running instance of the API Gateway. It enables you to configure at least two interfaces:
one for public traffic, and a second for listening for and serving configuration data. The configuration interface should
rarely need to be updated. However, it is likely that you will want to add several HTTP interfaces. For example, you may
want to add an HTTP interface and an SSL-enabled HTTPS interface.

Furthermore, you can also add features such as the following at the Process level:

• Remote hosts to control connection settings to a server.
• SMTP interfaces to configure email relay
• File transfer services for FTP, FTPS, and SFTP
• Policy execution schedulers to run policies at regular time intervals
• JMS listeners to listen for JMS messages
• Packet sniffers to inspect packets at the network level for logging and monitoring
• FTP pollers to retrieve files to be processed by polling a remote file server.
• Directory scanners to scan messages dumped to the file system

Because the API Gateway can read messages from HTTP, SMTP, FTP, JMS, or a directory, this enables it to perform
protocol translation. For example, the API Gateway can read a message from a JMS queue, and then route it on over
HTTP to a Web Service. Similarly, the API Gateway can read XML messages that have been put into a directory on the
file system using FTP, and send them to a JMS messaging system, or route them over HTTP to a back-end system.

For more information on configuring processes, see the Configuring API Gateway Instances tutorial.

Policies

A policy is made up of a sequence of modular, reusable message filters, each of which processes the message in a par-
ticular way. There are many categories of filters available, including authentication, authorization, content filtering, rout-
ing, and many more. For example, a typical policy might contain an authentication filter, followed by several content-
based filters (for example, Schema Validation, Threatening Content, Message Size, XML Complexity, and so on), and
provided all configured filters run successfully, the message is routed on to the configured destination.

A policy can be thought of as a network of message filters. A message can traverse different paths through the network

Global Configuration

175

depending on what filters succeed or fail. This enables you to configure policies that, for example, route messages that
pass one Schema Validation filter to one back-end system, and route messages that pass a different Schema Validation
filter to a different system.

You can use Policy Containers to help manage your policies. These are typically used to group together a number of
similar policies (for example, all authentication policies) or to act as an umbrella around several policies that relate to a
particular policy (for example, all policies for the getQuote Web Service). A number of useful policies that ship with the
API Gateway are found in the Policy Library Policy Container. This container is pre-populated with policies to return
various types of faults to the client and policies to block certain types of threatening content, among others. You can also
add your own policies to this container, and create your own Policy Containers as necessary to suit your own require-
ments.

Certificates and Keys

The API Gateway must be able to trust X.509 certificates to establish SSL connections with external servers, validate
XML Signatures, encrypt XML segments for certain recipients, and for other such cryptographic operations. Similarly, a
private key is required to carry out certain other cryptographic operations, such as message signing and decrypting data.

The Certificate Store contains all the certificates and keys that are considered to be trusted by the API Gateway. Certi-
ficates can be imported into or created by the Certificate Store. You can also assign a private key to the public key stored
in a certificate, by importing the private key, or by generating one using the provided interface.

For more information on importing and creating certificates and keys, see the Certificates and Keys topic.

API Gateway User Store

Users are mainly used for authentication purposes in the API Gateway. In this context, the User Store acts as a reposit-
ory for user information against which users can be authenticated. You can also store user attributes for each user or
user group. For example, you can then use these attributes when generating SAML attribute assertions on behalf of the
user.

The API Gateway Users topic contains more details on how to create users, user groups, and attributes.

System Alerts

The API Gateway can send system alerts to various error reporting systems in the case of a policy error (for example,
when a request is blocked by a policy). Alerts can be sent to a Windows Event Log, local syslog, remote syslog, OPSEC
firewall, SNMP NMS, Twitter, or email recipient.

For more details on how to configure the API Gateway to send these alerts, see the System Alerting topic.

External Connections

The API Gateway can leverage your existing identity management infrastructure and avoid maintaining separate silos of
user information. For example, if you already have a database full of user credentials, the API Gateway can authenticate
requests against this database, rather than using its own internal user store. Similarly, the API Gateway can authorize
users, lookup user attributes, and validate certificates against third-party identity management servers.

You can add each connection to an external system as a global External Connection in the Policy Studio so that it can
be reused across all filters and policies. For example, if you create a policy that authenticates users against an LDAP dir-
ectory and then validates an XML signature by retrieving a public key from the same LDAP directory, it makes sense to
create a global External Connection for that LDAP directory. You can then select the LDAP Connection in both the au-
thentication and XML signature verification filters, rather than having to reconfigure it in both filters.

For example, you can use the External Connections interface to configure global connections such as the following:

• Authentication Repository Profiles

Global Configuration

176

• Database Connections
• ICAP Servers
• JMS Services
• Kerberos Services
• LDAP Connections
• OCSP Connections
• Proxy Servers
• Radius Clients
• SiteMinder Connections
• TIBCO Connections
• Tivoli Connections
• XKMS Connections

You can also use External Connections in cases where you want to configure a group of related URLs. This is most use-
ful in cases where you want to round-robin between a number of related URLs to ensure high availability. When the API
Gateway is configured to use a URL Connection Set (instead of just a single URL), it round-robins between the URLs in
the set.

For more information on configuring External Connections and Connection Sets, see the External Connections topic.

Caches

You can configure the API Gateway to cache responses from a back-end Web Service. For example, if the API Gateway
receives two successive identical requests it can (if configured) take the response for this request from the cache instead
of routing the request on to the Web Service and asking it to generate the response again.

As a result, excess traffic is diverted from the Web Service making it more responsive to requests for other services. The
API Gateway is saved the processing effort of routing identical requests unnecessarily to the Web Service, and the client
benefits from the far shorter response time.

You can configure local caches for each running instance of the API Gateway. If you have deployed multiple API Gate-
ways throughout your network, you can configure a distributed cache where cache events on one cache are replicated
across all others. For example, if a response message is cached at one instance of the API Gateway, it is added to all
other caches.

For more details on how to configure the API Gateway to use local and distributed caches, see the Global Caches topic.

Black list and White list

The White list is a global library of regular expressions that can be used across several different filters. For example, the
Validate HTTP Headers, Validate Query String, and Validate Message Attributes filters all use regular expressions
from the White list to ensure that various parts of the request contain expected content.

The White list is pre-populated with regular expressions that can be used to identify common data formats, such as al-
phanumeric characters, dates, email addresses, IP addresses, and so on. For example, if a particular HTTP header is
expected to contain an email address, the Email Address expression from the library can be run against the HTTP
header to ensure that it contains an email address as expected. This is yet another way that the API Gateway can en-
sure that only the correct data reaches the Web Service.

While the White list contains regular expressions to identify valid data, the Black list contains regular expressions that
are used to identify common attack signatures. For example, this includes expressions to scan for SQL injection attacks,
buffer overflow attacks, ASCII control characters, DTD entity expansion attacks, and many more.

You can run various parts of the request message against the regular expressions contained in the Black list library. For
example, the HTTP headers, request query string, and message (MIME) parts can be scanned for SQL injection attacks

Global Configuration

177

by selecting the SQL-type expressions from the Black list. The Threatening Content filter also uses regular expres-
sions from the Black list to identify attack signatures in request messages.

For more details on running regular expressions, see the following topics:

• HTTP Header Validation
• Query String Validation
• Validate Message Attributes
• Threatening Content

Schema Cache

The Schema Cache contains the XML Schemas that the API Gateway can use to validate incoming requests against.
The Schema Validation filter validates the format of an incoming message against a schema from the cache. This en-
sures that only messages of the correct format are processed by the target system.

In the Policy Studio navigation tree, you can access the global Schema Library by selecting Resources -> Schemas.
Select a child node to view or edit its contents. To add a schema or schema container, right-click the Scripts node, and
select the appropriate option. For more details on importing XML Schemas into the cache, and using containers organize
schemas, see the Global Schema Cache topic.

When you have imported your XML schemas, see the Schema Validation tutorial for instructions on how to validate XML
messages against the schemas in the cache.

Scripts

The Scripts Library contains the JavaScript and Groovy scripts that the API Gateway can use to interact with the mes-
sage as it is processed. For example, you use these scripts with the Scripting Filter to get, set, and evaluate specific
message attributes.

In the Policy Studio navigation tree, you can access the global Scripts Library by selecting Resources -> Scripts. Select
a child node to view or edit its contents. To add a script, right-click the Scripts node, and select Add Script.

For more details on using the Scripts Library dialog to add scripts, and on configuring the API Gateway to use scripts,
see the topic on the Scripting Language Filter.

Stylesheets

The Stylesheet Library contains the XSLT stylesheets that the API Gateway can use to transform incoming request mes-
sages. The XSLT Transformation filter enables you convert the contents of a message using these stylesheets. For ex-
ample, an incoming XML message that adheres to a specific XML schema can be converted to an XML message that
adheres to a different schema before it is sent to the destination Web Service.

In the Policy Studio navigation tree, you can access the global Stylesheet Library by selecting Resources ->
Stylesheets. Select a child node to view or edit its contents. To add a stylesheet, right-click the Stylesheets node, and
select Add Stylesheet.

For more details on using the Stylesheet Library dialog to add stylesheets, and on configuring the API Gateway to use
XSLT stylesheets, see the topic on the XSLT Transformation filter.

References

References can occur between API Gateway configurations items (for example, a policy might include a reference to an
external connection to a database). You can view references between configuration items in the Policy Studio by right-
clicking an item, and selecting Show All References. References are displayed in a tab at the bottom of the screen.

The Show All References option is enabled only for items that have references to other items. For an example in a de-

Global Configuration

178

fault API Gateway installation, right-click External Connections -> LDAP Connections -> Sample Active Directory
Connection, and select Show all References. Showing all references is useful for impact analysis (for example, before
upgrading or migrating), and is a general navigation aid.

Global Configuration

179

Server Configuration
Overview

You can manage the server configuration for the API Gateway using the Server menu option in the Policy Studio main
menu. You can also use the Deploy button in the toolbar. The following menu options are available.

Deploy

When you make changes to a filter or policy using the Policy Studio, you must deploy to the API Gateway for the
changes to take affect. You can use the Server -> Deploy menu option, or the Deploy button in the toolbar. Alternat-
ively, you can press F6. If the server is processing a number of messages when the deploy command is issued, all of the
messages are processed using the existing policy. New messages are queued until this batch of messages is completely
processed. When the new policy data has been stored and loaded by the server, the queued messages are processed
using the new policy.

Important
To deploy to the API Gateway, the Policy Studio sends a deployment request to the API Gateway. If neces-
sary, you can configure the socket timeout value for this connection in the Policy Studio Preferences dia-
log, available from Window -> Preferences. For more details, see Policy Studio Preferences.

180

API Gateway Settings
Overview

You can configure the underlying settings for the API Gateway using the Tasks -> Manage Settings menu option in the
Policy Studio main menu, or the Settings node in the Policy Studio tree. This topic describes the tabs available at the
bottom of the Settings screen. You can save the settings on each tab by clicking the Save Settings icon at the top right
of the tab.

Default Settings

The Default Settings entered in this screen are applied to all instances of the API Gateway that use this particular con-
figuration. For example, you can change the trace level, timeouts, cache sizes, and other such global information. For
more details, see Default Settings.

Audit Log

The Audit Log settings enable you to configure the default logging behavior of the API Gateway. For example, you can
configure the API Gateway to log to a database, text or XML file, local or remote UNIX syslog, or the system console. For
more details, see the topic on Audit Log Settings.

Namespace

The Namespace settings are used to determine the versions of SOAP, Web Services Security (WSSE) and Web Ser-
vices Utility (WSU) that the API Gateway supports. For more details, see Namespace Settings.

MIME/DIME

The API Gateway can filter MIME messages based on the content types (or MIME types) of the individual parts of the
message. The MIME/DIME settings list the default MIME types that the API Gateway can filter on. These types are then
used by the Content Types filter to determine which MIME types to block or allow through to the back end Web Service.
For more details, see MIME/DIME Settings.

Traffic Monitor

The Traffic Monitor settings enable you to configure the web-based Traffic Monitor tool and its message traffic log. For
example, you can configure where the data is stored and what message transaction details are recorded in the log. For
more details, see Configuring Traffic Monitoring.

Metrics

The Metrics settings enable you to configure statistics about the messages that the API Gateway processes in a data-
base. The API Gateway Analytics monitoring tool can then poll this database, and produce charts and graphs showing
how the API Gateway is performing. For more details, see Real-Time Monitoring Settings.

Session Settings

The Session Settings enable you to configure session management settings for the selected cache. For example, you
can configure the period of time before expired sessions are cleared from the default HTTP Sessions cache. For more
details, see the Session Settings topic.

Cache

If you have deployed several API Gateways throughout your network, you should configure a distributed cache. In a dis-
tributed cache, each cache is a peer in a group and needs to know where all the other peers in the group are located.

181

The Cache Settings enable you to configure settings for peer listeners and peer discovery. For more details, see the
Global Caches.

Access Log

The Access Log records a summary of all request and response messages that pass through the API Gateway. For ex-
ample, this includes details such as the remote hostname, username, date and time, first line of the request message,
HTTP status code, and number of bytes. For details on configuring these settings per API Gateway, see the Access Log
Settings topic. For details on configuring the the Access Log at the service level, see the topic on Configuring HTTP Ser-
vices.

Security Service Module

You can configure the API Gateway to act as an Oracle Security Service Module (SSM) to enable integration with Oracle
Entitlements Server 10g. The API Gateway acts as a Java SSM, which delegates to Oracle Entitlements Server 10g. For
example, you can authenticate and authorize a user for a particular resource against an Oracle Entitlements Server 10g
repository. For more details, see the Oracle Security Service Module Settings (10g) topic.

Important
Oracle SSM is required for integration with Oracle OES 10g only. Oracle SSM is not required for integration
with Oracle OES 11g.

Kerberos

You can configure Kerberos settings such as the Kerberos configuration file to the API Gateway, which contains informa-
tion about the location of the Kerberos Key Distribution Center (KDC), encryption algorithms and keys, and domain
realms. You can also configure options for APIs used by the Kerberos system, such as the Generic Security Services
(GSS) and Simple and Protected GSSAPI Negotiation (SPNEGO) APIs. For more details, see the Kerberos Configura-
tion topic.

Tivoli

You can configure how the API Gateway Process connects to an instance of an IBM Tivoli Access Manager server. Each
API Gateway process can connect to a single Tivoli server. For more details, see the Global Configuration section in the
Tivoli Integration topic.

API Gateway Settings

182

Policy Studio Preferences
Overview

The Preferences dialog enables you to configure a range of options for the Policy Studio. For example, you can config-
ure the level at which the Policy Studio traces diagnostic output, customize the look-and-feel of the Policy Studio, or con-
figure the timeout for the Policy Studio connection to the API Gateway. Each of the available settings is discussed in the
following sections.

Management Services

The Admin Node Manager and Oracle API Gateway Analytics expose certain interfaces that are used for management
purposes only, and should be edited only under strict advice from the Oracle Support team. By default, the Management
Services policies and interfaces, interfaces and server process are hidden from view in the Policy Studio tree. You can
display them by selecting the Show Management Services option in this dialog.

When this option is selected, you can view the Management Services policy container in the tree under the Policies
node. The Management Services HTTP interfaces are also displayed under the Listeners node under the server pro-
cess. For more details, see the section called “Management Services” in the Configuring HTTP Services topic.

Important
You should only modify Management Services under strict advice and supervision from the Oracle Sup-
port team.

Policy Colors

The Policy Colors settings enable you to customize the look-and-feel of the Policy Canvas in the Policy Studio. For ex-
ample, you can change the colors of the following components:

• Policy Background:
Changes the background color of the Policy Canvas.

• Missing Attribute:
You can right-click the Policy Canvas, and select Show All Attributes from the context menu. When this is selec-
ted, each filter displays the list of required and generated message attributes that are relevant for that filter. If a re-
quired attribute has not been generated by a previous filter in the policy, the attribute is highlighted in a different col-
or (red by default). You can change this color by selecting an appropriate color using this setting.

• Success Path:
You can change the color of the Success Path link using this setting.

• Failure Path:
Similarly, you can change the color of the Failure Path link here.

• Show Link Labels:
If this option is selected, a Success Path is labeled with the letter S, while a Failure Path is labeled F.

Proxy Settings

You can specify global proxy settings that apply only when downloading WSDL, XSD, and XSLT files from the Policy
Studio. These include the following settings:

Proxy Setting Description

Host Host name or IP address of the proxy server.

Port Port number on which to connect to the proxy server.

183

Proxy Setting Description

Username Optional user name when connecting to the proxy server.

Password Optional password when connecting to the proxy server.

You can also specify individual proxy servers under the External Connections node in the Policy Studio tree. These are
different from the global proxy settings in the Preferences because you can specify these proxy servers at the filter level
(in the Connection and Connect To URL filters). For more details, see the Proxy Servers topic.

Runtime Dependencies

The Runtime Dependencies setting enables you to add JAR files to the Policy Studio classpath. For example, if you
write a custom message filter, you must add its JAR file, and any third-party JAR files that it uses, to the Runtime De-
pendencies list.

Click Add to select a JAR file to add to the list of dependencies, and click Apply when finished. A copy of the JAR file is
added to the plugins directory in your Policy Studio installation.

Important
You must restart the Policy Studio and the server for these changes to take effect.

Server Connection

When an update is made to a configuration setting in the Policy Studio, the update is stored locally until you deploy it to
the API Gateway. After making one or more configuration updates, you can deploy to the API Gateway by selecting
Server -> Deploy in the main menu. Alternatively, you can click the Deploy button in the toolbar, or press F6.

The updated configuration is then pushed to the API Gateway, which finishes processing any current messages before
flushing its cached policy configurations. The new configuration is then stored and loaded. Any subsequent messages re-
ceived by the API Gateway then use the new configuration.

When deploying to the API Gateway, the Policy Studio sends a deployment request to the server. If necessary, you can
configure the socket timeout value for this connection in the Policy Studio Preferences dialog. Enter the timeout value in
milliseconds in the Server Socket Connection Timeout field.

SSL Settings

The SSL Settings enable you to specify what action is taken when an unrecognized server certificate is presented to the
client. This allows the Policy Studio to connect to SSL services without a requirement to add a certificate to its JVM certi-
ficate store.

Configure one of the following options:

Prompt User When you try to connect to SSL services, you are promp-
ted with a dialog. If you choose to trust this particular serv-
er certificate displayed in the dialog, it is stored locally, and
you are not prompted again.

Trust All All server certificates are trusted.

Keystore Enter or browse to the location of the Keystore that con-
tains the authentication credentials sent to a remote host
for mutual SSL, and enter the appropriate Keystore Pass-

Policy Studio Preferences

184

word.

Status Bar

The Show Status Bar setting enables you to specify whether the applications status bar is displayed at the bottom of the
Policy Studio screen. For example, this status bar displays details such as the currently selected tree node on the left,
and details such as the heap size on the right. You can also use the status bar to run garbage collection by clicking the
trash icon on the right. This status bar is enabled by default.

Trace Level

You can set the level at which the Policy Studio logs diagnostic output by selecting the appropriate level from the Tra-
cing Level drop-down list. Diagnostic output is written to a file in the /logs directory of your Policy Studio installation.
You can also select Window -> Show View -> Console in the main menu to view the trace output in the Console win-
dow at the bottom of the screen. The default trace level is INFO.

Web and XML

The Web and XML settings enable you to configure a range of options that affect how XML files are treated in the Policy
Studio.

XML Files
This includes the following options:

Creating or saving files Specifies a line delimiter (for example, Mac, Unix, Win-
dows, or No translation).

Creating files Specifies a file suffix (xml), and the type of encoding (for
example, ISO 10646/Unicode(UTF-8)).

Validating files Configures whether to warn when no grammar is specified.

Source
This includes the following options:

Formatting Specifies a range of formatting options (for example, line
width, line breaks, and indentation).

Content assist Specifies whether to make suggestions and which strategy
to use (for example, Lax or Strict).

Grammar constraints Specifies whether to use inferred grammar in the absence
of DTD/Schema.

Syntax Coloring
These settings enable you to associate specific colors with specific XML syntax elements (for example, attribute names,
comment delimiters, or processing instruction content).

WS-I Settings

Policy Studio Preferences

185

Before importing a WSDL file that contains the definition of a Web Service into the Web Services Repository, you can
test the WSDL file for compliance with the Web Service Interoperability (WS-I) Basic Profile. The WS-I Basic Profile con-
tains a number of Test Assertions that describe rules for writing WSDL files for maximum interoperability with other
WSDL authors, consumers, and other related tools.

The WS-I Settings are described as follows:

WS-I Setting Description

WS-I Tool Location Use the Browse button to specify the full path to the Java
version of the WS-Interoperability Testing tools (for ex-
ample, C:\Program
Files\WSI_Test_Java_Final_1.1\wsi-test-tool
s). The WS-I testing tools are used to check a WSDL file
for WS-I compliance. You can download them from
www.ws-i.org [http://www.ws-i.org].

Results Type Select the type of WS-I test results that you wish to view in
the generated report from the drop-down list. You can se-
lect from all, onlyFailed, notPassed, or notInfo.

Message Entry Specify whether message entries should be included in the
report using the checkbox (selected by default).

Failure Message Specify whether the failure message defined for each test
assertion should be included in the report using the check-
box (selected by default).

Assertion Description Specify whether the description of each test assertion
should be included in the report using the checkbox
(unselected by default).

Verbose Output Specify whether verbose output is displayed in the Policy
Studio console window using the checkbox (unselected by
default). To view the console window, select Window ->
Show Console from the Policy Studio main menu.

For details on running the WS-I Testing Tools, see the Web Service Repository or Global Schema Cache topics.

Policy Studio Preferences

186

http://www.ws-i.org
http://www.ws-i.org

Policy Studio Viewing Options
Overview

You can filter the Policy Studio navigation tree on the left of the screen to display specified tree nodes only. You can click
the Options link at the bottom of the tree to display additional viewing options. These enable you to configure whether
management services and tree node configuration types are displayed in the tree. Finally, you can configure how the
Policy Studio policy filter palette is displayed on the right of the screen when editing policies.

Filtering the Tree

To filter the tree by a specific node name, enter the name in the text box above the tree. When you enter a name (for ex-
ample, SOAP Schema), the tree is filtered automatically, and all occurrences are displayed in the tree.

Filtering the tree is especially useful in cases where many policies have been configured in the Policy Studio, and you
wish to find a specific tree node (for example, a schema filter named Check against SOAP Schema).

Configuring Viewing Options

When you click the Options link at the bottom left of the navigation tree, you can configure the following viewing option:

Show Types:
Select this option to show the Type column in the Policy Studio navigation tree. The shows the type of each node in the
tree (for example, HTTP Service or Remote Host. This option is not selected by default. When this option is selected, you
can use the Filter by type setting.

Configuring the Policy Filter Palette

When editing policies, you can configure how the Policy Studio policy filter palette is displayed on the right of the screen.
Right-click the filter palette, and select from the following options:

Layout:
Specifies how the filters are displayed in each category in the palette. By default, the filters are displayed in a list. Select
one of the following options from the context menu:

• Columns
• List
• Icons Only
• Details

Customize:
The Customize Palette dialog enables you to customize each of the items displayed in the filter palette. Select a node in
the tree on the left to display what can be customized on the right. For example, you can edit a filter name and descrip-
tion, specify whether it is hidden, and add tags to help searches. In addition, you can use the buttons above the tree to
add or delete new category drawers or separators. You can also move a selected category drawer up or down in the
palette.

Settings:
The Palette Settings dialog enables you to customize settings such as fonts, layout, and category drawer options (for
example, close each drawer automatically when there is not enough room on the screen).

Restore Palette Defaults:
Restores all the palette settings from a default API Gateway installation.

187

Web Service Repository
Overview

The Web Services Repository stores information about Web Services whose definitions have been imported using
Policy Studio or API Service Manager. The WSDL files that contain these Web Services definitions are stored together
with their related XML Schemas. Clients of the Web Service can then query the repository for the WSDL file, which they
can use to build and send messages to the Web Service using the API Gateway.

When you import WSDL files into the repository, this auto-generates a Service Handler that is used to control and valid-
ate requests to the Web Service and responses from the Web Service. You can import the WSDL file from the file sys-
tem, a URL, or from a UDDI registry. You can also test the WSDL file for compliance with Web Services Interoperability
(WS-I) standards. This topic describes how to test for WS-I compliance, how to import a Web Service definition into the
repository, and shows what is created at each step.

Testing WS-I Compliance

Before importing the WSDL file, you can check it for compliance with the WS-I Basic Profile. The Basic Profile consists of
a set of assertions and guidelines on how to ensure maximum interoperability between different implementations of Web
Services. For example, there are recommendations on what style of SOAP to use (document/literal), how schema
information is included in WSDL files, and how message parts are defined to avoid ambiguity for consumers of WSDL
files.

The Policy Studio uses the Java version of the WS-Interoperability Testing Tools to test imported WSDL files for compli-
ance with the recommendations in the Basic Profile. A report is generated showing which recommendations have passed
and which have failed. While you can still import a WSDL file that does not comply with the Basic Profile, there is no cer-
tainty that consumers of the Web Service can use it without encountering problems.

Important
Before you run the WS-I compliance test, you must ensure that the Java version of the Interoperability
Testing Tools is installed on the machine on which the Policy Studio is running. You can download these
tools from www.ws-i.org [http://www.ws-i.org].

To configure the location of the WS-I testing tools, select Window -> Preferences from the Policy Studio main menu. In
the Preferences dialog, select the WS-I Settings, and browse to the location of the WS-I testing tools. You must specify
the full path to these tools (for example, C:\Program Files\WSI_Test_Java_Final_1.1\wsi-test-tools). For
more details on configuring WS-I settings, see the Policy Studio Preferences topic.

Running the WS-I Compliance Test
To run the WS-I compliance test on a WSDL file, perform the following steps:

1. Select Tools -> Run WS-I Compliance Test from the Policy Studio main menu.
2. In the Run WS-I Compliance Test dialog, browse to the WSDL File or specify the WSDL URL.
3. Click OK. The WS-I Analysis tools run in the background in Policy Studio.

The results of the compliance test are displayed in your browser in a WS-I Profile Conformance Report. The overall
result of the compliance test is displayed in the Summary. The results of the WS-I compliance tests are grouped by type
in the Artifact: description section. For example, you can access details for a specific port type, operation, or message
by clicking the link in the Entry List table. Each Entry displays the results for the relevant WS-I Test Assertions.

Registering the WSDL File

188

http://www.ws-i.org
http://www.ws-i.org

The Web Services Repository is displayed under the Business Services node in the Policy Studio tree. WSDL files
are imported into Web Service Groups, which provide a convenient way of keeping groups of related Web Service defini-
tions together. You can import a WSDL file into the default group by right-clicking the Web Services node, and selecting
Register Web Service.

Alternatively, you can add a new Web Services group by right-clicking the default Web Services group, or the Web Ser-
vices Repository node, and selecting Add a new Web Services group. When the new group is added, you can right-
click it in the tree, and select Register Web Service.

Loading the WSDL File

In the Import WSDL wizard, the Load WSDL screen enables you to choose the WSDL location from the following op-
tions:

• File system
• URL
• UDDI registry

Select the appropriate option depending on the location of the WSDL that you wish to import. If you wish to retrieve a
WSDL file from a UDDI directory, see the Retrieving WSDL Files from a UDDI Registry topic.

Click Next.

Selecting WSDL Operations

The WSDL Operations screen of the wizard displays all operations defined in the WSDL file. The Relative Path, Bind-
ing, and Namespace of each operation are also displayed. Select the operations that you wish to create policy resolvers
for. The Policy Studio uses the Web Service location, SOAP operation, and SOAP Action specified in the WSDL to cre-
ate Relative Path, SOAP Operation, and SOAP Action policy resolving filters in the Service Handler.

Use the Remove unselected operations from the WSDL checkbox to specify whether the Policy Studio removes unse-
lected operations from the WSDL file stored in the repository. As a result, removed operations are not exposed to clients
that download the WSDL file for the Web Service.

Important
When a request is made to the API Gateway for WSDL that has been imported into the Web Services Re-
pository, it changes the address of the Web Service specified in the location attribute of the
<soap:address> element to point to the machine on which the API Gateway is running, instead of the
machine hosting the Web Service. This means when a client downloads WSDL for the Web Service, it
routes messages through the API Gateway instead of sending messages directly to the Web Service,
which is typically not available on a public IP address. For more details, see the section called “Publishing
the WSDL”.

Click Next.

WS-Policy Options

Configure the following options on this screen:

Secure this virtualized service with a WS-Policy
Specifies whether to use a WS-Policy to secure the Web Service being virtualized by the API Gateway. When this setting
is selected, the Secure Virtual Service dialog is displayed after the Import WSDL wizard. This dialog enables you to
configure a WS-Policy that the API Gateway enforces on messages that it receives from the client. This setting is unse-
lected by default.

Web Service Repository

189

Use the WS-Policy in the WSDL to connect securely to the back-end Web Service
When the WSDL file includes WS-Policy information, this setting specifies whether to use this WS-Policy to connect se-
curely to the Web Service. This setting is enabled (and selected by default) only if the selected WSDL file includes WS-
Policy information.

Click Next.

Deploy Policy

The final screen in the wizard enables you to select where to deploy the newly created policy (or policies). The Deploy
Policy screen displays a list of all available Services and their corresponding Relative Paths. Select a Relative Path un-
der which the policy is deployed. All requests arriving on the selected path are dispatched to the newly created policy.

Click Finish.

Secure Virtual Service

When you click Finish in the wizard, the Secure Virtual Service dialog is displayed. This enables you to specify policies
to enforce security between a client and the API Gateway. For more details, see Securing a Virtual Service using
Policies.

In addition, if the imported WSDL file contains WS-Policy assertions, you are prompted to configure settings to enforce
security between the API Gateway and the Web Service. For more details, see Configuring Security Policies from WSDL
Files.

WSDL Import Summary

When you have finished configuring security policies, the Summary dialog displays details on the imported WSDL file.
For example, this includes the location of the WSDL file, and a tab for each Web Service virtualized by the API Gateway.
Each tab includes the path to the Web Service that is published by the API Gateway.

WSDL Import Summary Options
The Summary dialog also enables you to configure the following options on the tab for each Web Service:

Validation If you wish to use a dedicated validation policy for all mes-
sages sent to the Web Service, select this checkbox, and
click the browse button to configure a policy in the dialog.
For example, this enables you to delegate to a custom val-
idation policy used by multiple Web Services.

Routing If you wish to use a dedicated routing policy to send all
messages on to the Web Service, select this checkbox,
and click the browse button to configure a policy in the dia-
log. For example, this enables you to delegate to a custom
routing policy used by multiple Web Services.

WSDL Access Options Select whether to make the WSDL for this Web Service
available to clients. Allow the API Gateway to publish
WSDL to clients is selected by default. The published
WSDL represents a virtualized view of the Web Service.
Clients can retrieve the WSDL from the API Gateway, gen-
erate SOAP requests, and send them to the API Gateway,
which routes them on to the Web Service. For more details,
see the section called “Publishing the WSDL”.

Web Service Repository

190

These options enable you to configure the underlying auto-generated Service Handler (Web Service Filter) without hav-
ing to navigate to it in the Policies tree. These are the most commonly modified Web Service Filter options after import-
ing a WSDL file. Changes made in the Summary dialog are visible in the underlying Web Service Filter. For more de-
tails, see the Web Service Filter topic.

You can also access these options under the Listeners node after the WSDL file has been imported. Right-click the ap-
propriate Web Service Resolver node, and select Quick-Edit Policy to display a dialog that enables you to configure
these options.

What is Created?

What is created when you import the WSDL file depends on whether you configured a policy to enforce security between
the client and the API Gateway, and whether the WSDL file contains any WS-Policy annotations. However, assuming
that the default options are selected in the WSDL Import wizard, the following list summarizes what is created by the
wizard:

Web Service
A new Web Service tree node is created for each imported WSDL file in the Policies tree. This tree node contains the
WSDL file, together with any imported resources, such as other WSDL files or schema files. Click the new Web Service
node to view the list of imported WSDL files and XML Schemas. The Schemas are listed by namespace. You can view
the imported WSDL file by clicking the location of the WSDL file under the Web Service node. If you have selected to re-
move unselected operations from the WSDL, these operations are removed from the stored WSDL.

Web Service Resolver
A new Web Service Resolver node is created for each imported Web Service in the Services tree view. The Web Ser-
vice Resolver is used to identify messages destined for this Web Service, and to map them to the Service Handler (Web
Service Filter) for the Web Service.

Service Handler
A Service Handler for the Web Service is created under the generated policy in the Policies tree. This is used to control
and validate requests to the Web Service and responses from the Web Service. The Service Handler is named after the
Web Service (for example, Service Handler for 'HelloWorldService'). The Service Handler is a Web Service Filter,
and is used to control the following:

• Routing
• Validation
• Message request/response processing
• WSDL options
• Monitoring options

For more details, see the Web Service Filter topic.

Policy Container
A container for the newly generated policies is created under the Generated Policies node in the Policies tree. The new
container is named after the service (for example, Web Services.HelloWorldService).

Policy
A policy for the Web Service is created in the generated policy container. The policy name includes the relative path to
the service (for example, /HelloWorldService/HelloWorld). Clients can specify WSDL on a request query string to re-
trieve the WSDL file (for example, http://localhost:8080/HelloWorldService/HelloWorld?WSDL). For more
details, see the section called “Publishing the WSDL”.

Security Policies
If you decided to configure a WS-policy to enforce security between the client and the API Gateway (as described earlier
in the section called “Secure Virtual Service”), or if the imported WSDL file contains WS-Policy assertions, a number of
additional policies are automatically created in the generated policy container. These generated policies include the fil-

Web Service Repository

191

ters required to generate and/or validate the relevant security tokens (for example, SAML tokens, WS-Security User-
name tokens, and WS-Addressing headers). These policies perform the necessary cryptographic operations (for ex-
ample, signing/verifying and encryption/decryption) to meet the security requirements of the specified policies.

Publishing the WSDL

When the WSDL has been imported into the Web Services Repository, it can be retrieved by clients. In effect, by im-
porting the WSDL into the repository, you are publishing the WSDL. In this way, consumers of the services defined in the
WSDL can learn how to communicate with those services by retrieving the WSDL for those services. However, to do this,
the location of the service must be changed to reflect the fact that the API Gateway now sits between the client and the
defined service.

For example, assume that the WSDL file states that a particular service resides at ht-
tp://www.example.com/services/myService:

<service name="myService">
<port binding="SoapBinding" name="mySample">
<wsdl:address location="http://www.example.com/services/myService"/>

</port>
</service>

When deployed behind the API Gateway, this URL is no longer accessible to consumers of the service. Because of this,
clients must send SOAP messages through the API Gateway to access the service. In other words, they must now ad-
dress the machine hosting the API Gateway instead of that directly hosting the service.

When the WSDL file has been published to the repository, clients can retrieve it. However, when returning the WSDL to
the client, the API Gateway dynamically changes the value of the location attribute in the service element in the
WSDL file to point to the machine on which the API Gateway resides. The details regarding the physical location of the
Web Service are preserved in the Connection filters, responsible for routing messages on to the service.

Assuming that the API Gateway is running on port 8080 on a machine called SERVICES, the location specified in the ex-
ported WSDL file is changed to the following:

<service name="myService">
<port binding="SoapBinding" name="mySample">
<wsdl:address location="http://SERVICES:8080/services/myService"/>

</port>
</service>

When the modified WSDL file is distributed to the client, it now routes messages to the machine hosting the API Gateway
instead of attempting to directly access the Web Service.

Accessing the WSDL
For the client to access this modified WSDL file, the Policy Studio provides a WSDL retrieval facility whereby clients can
query the Web Services Repository for the WSDL file for a particular Web Service. To do this, the client must pass the
name WSDL on the query string to the Relative Path mapped to the policy for this Web Service.

For example, if the policy is deployed under http://SERVICES:8080/services/getQuote, the client can retrieve
the WSDL for this Web Service by sending a request to http://SERVICES:8080/services/getQuote?WSDL.
When the client has a copy of the updated WSDL file, it knows how to create correctly formatted messages for the ser-
vice, and more importantly, it knows to route messages to the API Gateway rather than to the Web Service directly.

Publishing to UDDI
For details on how to publish a WSDL file registered in the Web Services Repository to a UDDI directory, see the Pub-
lishing WSDL Files to a UDDI Registry topic.

Web Service Repository

192

Setting the Encryption Passphrase
Encryption Passphrase Overview

By default, API Gateway configuration data is stored unencrypted. However, you can encrypt certain sensitive informa-
tion, such as passwords and private keys, using a passphrase. When the passphrase has been set (and the data has
been encrypted with it), you must enter the passphrase when connecting to the API Gateway with the Policy Studio, or
when the API Gateway is starting up, so that the encrypted data can be decrypted. This passphrase is set at the API
Gateway group level.

Warning
It is crucial that you remember the passphrase when you change it. Failure to remember the passphrase
results in the loss of private key data.

This topic describes how to specify the group passphrase when connecting to the API Gateway with the Policy Studio, in
your API Gateway configuration file, or when the API Gateway is starting up. It also describes how to change the group
passphrase when it has been set initially.

Setting the Group Passphrase in the Policy Studio

You can use the the Policy Studio topology view to set the group passphrase to encrypt the data. This is the table dis-
played when you connect to the Admin Node Manager. To change the passphrase, right-click the API Gateway group
name in the table (for example, QuickStart Group), and select Change Passphrase.

Complete the following fields on the Change Group Passphrase dialog:

Old Passphrase:
Enter the old passphrase that you wish to change in this field. Alternatively, you can leave this field blank if you are set-
ting the passphrase for the first time.

New Passphrase:
Enter the new passphrase.

Confirm New Passphrase:
Re-enter the new passphrase to confirm it.

Entering the Group Passphrase in the Policy Studio

When you have set the encryption passphrase for the API Gateway configuration data, you must specify this passphrase
every time that you connect to the API Gateway in the Policy Studio. You can enter it in the Passphrase field of the
Open File dialog, which is displayed when connecting to a configuration file. Alternatively, you can enter it in the Enter
Passphrase dialog, which is displayed before editing an active server configuration.

Note
The different roles of the Passphrase and the Password fields are as follows:

Passphrase Used to decrypt sensitive data (for example, private keys)
that have already been encrypted. Not required by default,
and only needed if you have set the group passphrase in
Policy Studio.

193

Password Used to authenticate to the API Gateway's management in-
terface using HTTP basic authentication when opening a
connection to a server. Required by default.

Specifying the Passphrase in a File or on Startup

For the API Gateway to read (decrypt) encrypted data from its configuration, it must be primed with the passphrase key.
You can do this using the Policy Studio, as explained in the previous section. You can also specify the passphrase dir-
ectly in a configuration file, or prompt for it at startup.

Specifying the Node Manager Passphrase in a Configuration File
You can specify a passphrase directly in the Node Manager's configuration file. Open the following file in your API Gate-
way installation:

INSTALL_DIR/system/conf/nodemanager.xml

This file contains values for general system settings, such as the server name and trace level, and also (if required) the
passphrase key to use to decrypt encrypted API Gateway configuration data.

Typically, the passphrase is only entered directly in the file if the server must be started as a Windows service or UNIX
daemon. In this case, the administrator cannot enter the passphrase manually when the server is starting. To avoid this,
you must enter the passphrase in the configuration file. You should specify the passphrase as the value of the secret
attribute as follows, where "myPassphrase" is the encryption passphrase:

secret="myPassphrase"

Specifying the API Gateway Passphrase in a Configuration File
You can also specify the passphrase for individual API Gateway instances created using the managedomain script. To
do this, specify the secret attribute in the service.xml file for your API Gateway instance. For example:

INSTALL_DIR/groups/group-id/instance-id/conf/service.xml

Prompting for the Passphrase on Server Startup
If you do not wish to specify the passphrase directly in the Node Manager or API Gateway configuration file, and do not
need to start as a Windows service or UNIX daemon, you can configure the Node Manager or API Gateway to prompt
the administrator for the passphrase on the command line when starting up. To do this, enter the "(prompt)" special
value for the secret attribute as follows:

secret="(prompt)"

Important
If you use this option, you must take care to remember the encryption passphrase. Failure to use the cor-
rect passphrase results in loss of private key data, and may prevent the API Gateway from functioning cor-
rectly.

For more details, see the Oracle API Gateway Installation and Configuration Guide.

Setting the Encryption Passphrase

194

Default Settings
Overview

The Default Settings screen enables you to set several global configuration settings to optimize the behavior of the API
Gateway for your environment.

To configure the Default Settings, in the Policy Studio main menu, select Tasks -> Manage Settings -> Default Set-
tings. Alternatively, in the Policy Studio tree, select the Settings node, and click the Default Settings tab.

After changing any settings, you must deploy to the API Gateway for the changes to be enforced. You can do this in the
Policy Studio main menu by selecting Server -> Deploy. Alternatively, click the Deploy button in the toolbar, or press F6.

Settings

You can configure the following settings in the Default Settings screen:

Setting Description

Trace Level Enables you to set the trace level for the API Gateway at
runtime. Select the appropriate option from the Trace
Level drop-down list. Defaults to INFO.

Active Timeout When the API Gateway receives a large HTTP request, it
reads the request off the network when it becomes avail-
able. If the time between reading successive blocks of data
exceeds the Active Timeout specified in milliseconds, the
API Gateway closes the connection. This guards against a
host closing the connection in the middle of sending data.
For example, if the host's network connection is pulled out
of the machine while in the middle of sending data to the
API Gateway. When the API Gateway has read all the
available data off the network, it waits the Active Timeout
period before closing the connection. Defaults to 30000
milliseconds.

Note
You can configure this setting on a per-host
basis using the Remote Hosts interface.

Date Format Configures the format of the date for the purposes of tra-
cing, logging, and reporting. Defaults to MM.dd.yyyy
HH:mm:ss,SSS. For more information, see ht-
tp://java.sun.com/j2se/1.4.2/docs/api/java/
text/SimpleDateFormat.html

Cache Refresh Interval Configures the number of seconds that the server caches
data loaded from an external source (external database,
LDAP directory, and so on) before refreshing the data from
that source. The default value is 5 seconds. If you do not
wish any caching to occur, set this value to 0.

Idle Timeout The API Gateway supports HTTP 1.1 persistent connec-
tions. The Idle Timeout specified in milliseconds is the
time that the API Gateway waits after sending a message
over a persistent connection before it closes the connec-
tion. Typically, the host tells the API Gateway that it wants

195

Setting Description

to use a persistent connection. The API Gateway acknow-
ledges this instruction and decides to keep the connection
open for a certain amount of time after sending the mes-
sage to the host. If the connection is not reused within the
Idle Timeout period, the API Gateway closes the connec-
tion. Defaults to 15000 milliseconds.

Note
You can configure this setting on a per-host
basis using the Remote Hosts interface.

LDAP Service Provider Specifies the service provider used for looking up an LDAP
server (for example,
com.sun.jndi.ldap.LdapCtxFactory). The provider
is typically used to connect to LDAP directories for certific-
ate and attribute retrieval.

Maximum Memory per Request The maximum amount of memory allocated to each re-
quest.

Note
You can configure this setting on a per-host
basis using the Remote Hosts interface.

Realm Specifies the realm for authentication purposes.

Schema Pool Size Sets the size of the Schema Parser pool.

Server Brand Specifies the branding to be used in the API Gateway.

SSL Session Cache Specifies the number of idle SSL sessions that can be kept
in memory. You can use this setting to improve perform-
ance because the slowest part of establishing the SSL con-
nection is cached. A new connection does not need to go
through full authentication if it finds its target in the cache.
Defaults to 32. If there are more than 32 simultaneous SSL
sessions, this does not prevent another SSL connection
from being established, but means that no more SSL ses-
sions are cached. A cache size of 0 means no cache, and
no outbound SSL connections are cached.

Token Drift Time Specifies the number of seconds drift allowed for WS-
Security tokens. This is important in cases where the API
Gateway is checking the date on incoming WS-Security
tokens. It is likely that the machine on which the token was
created is out-of-sync with the machine on which the API
Gateway is running. The drift time allows for differences in
the respective machine clock times.

Allowed number of operations to limit XPath trans-
forms

Specifies the total number of node operations permitted in
XPath transformations. Complex XPath expressions (or
those constructed together with content to produce expens-
ive processing) might lead to a denial-of-service risk. De-
faults to 4096.

Input Encodings Click the browse button to specify the HTTP content en-

Default Settings

196

Setting Description

codings that the API Gateway can accept from peers. The
available content encodings include gzip and deflate.
For more details, see the topic on Compressed Content
Encoding.

Output Encodings Click the browse button to specify the HTTP content en-
codings that the API Gateway can apply to outgoing mes-
sages. The available content encodings include gzip and
deflate. For more details, see the topic on Compressed
Content Encoding.

Server's SSL cert's name must match name of reques-
ted server

Ensures that the certificate presented by the server
matches the name of the host address being connected to.
This prevents host spoofing and man-in-the-middle attacks.
This setting is enabled by default.

Send desired servername to server during TLS negoti-
ation

Specifies whether to add a field to outbound TLS/SSL calls
that shows the name that the client used to connect. For
example, this can be useful if the server handles several
different domains, and needs to present different certific-
ates depending on the name that the client used to con-
nect.

Default Settings

197

Namespace Settings
Overview

The API Gateway exposes global settings that enable you to configure which versions of the SOAP and WSSE specifica-
tions it supports. You can also specify which attribute is used to identify the XML Signature referenced in a SOAP mes-
sage.

To configure the namespace settings, in the Policy Studio tree, select the Settings node, and click the Namespace tab
at the bottom of the screen. Alternatively, in the Policy Studio main menu, select Tasks -> Manage Settings ->
Namespace.

SOAP Namespace

The SOAP Namespace tab can be used to configure the SOAP namespaces that are supported by the API Gateway. In
a similar manner to the way in which the API Gateway handles WSSE namespaces, the API Gateway will attempt to
identify SOAP messages belonging to the listed namespaces in the order given in the table.

The default behavior is to attempt to identify SOAP 1.1 messages first, and for this reason, the SOAP 1.1 namespace is
listed first in the table. The API Gateway will only attempt to identify the message as a SOAP 1.2 message if it can't be
categorized as a SOAP 1.1 message first.

Signature ID Attribute

The Signature ID Attribute tab allows you to list the supported attributes that can be used by the API Gateway to identi-
fy a Signature reference within an XML message.

An XML-signature <signedInfo> section may reference signed data via the URI attribute. The URI value may contain
an id that identifies data in the message. The referenced data will hold the "URI" field value in one of its attributes.

By default, the server uses the Id attribute for each of the WSSE namespaces listed above to locate referenced signed
data. The following sample XML Signature illustrates the use of the Id attribute:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<dsig:Signature id="Sample" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:SignedInfo>
...
<dsig:Reference URI="#Oracle:sLmDCph3tGZ10">

...
</dsig:Reference>

</dsig:SignedInfo>
....

</dsig:Signature>
</soap:Header>
<soap:Body>
<getProduct wsu:Id="Oracle:sLmDCph3tGZ10"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">
<Name>SOA Test Client</Name>
<Company>Company</Company>
</getProduct>

</soap:Body>
</soap:Envelope>

It is clear from this example that the Signature reference identified by the URI attribute of the <Reference> element
refers to the nodeset identified with the Id attribute (the <getProduct> block).

Because different toolkits and implementations of the XML-Signature specification can use attributes other than the Id

198

attribute, the API Gateway allows the user to specify other attributes that should be supported in this manner. By default,
the API Gateway supports the Id, ID, and AssertionID attributes for the purposes of identifying the signed content
within an XML Signature.

However you can add more attributes by clicking the Add button and adding the attribute in the interface provided. The
priorities of attributes can be altered by clicking the Up and Down buttons. For example, if most of the XML Signatures
processed by the API Gateway use the ID attribute, this attribute should be given the highest priority.

WSSE Namespace

The WSSE Namespace tab is used to specify the WSSE (and corresponding WSSU) namespaces that are supported by
the API Gateway.

The API Gateway attempts to identify WS Security blocks belonging to the WSSE namespaces listed in this table. It first
attempts to locate Security blocks belonging to the first listed namespace, followed by the second, then the third, and so
on until all namespaces have been utilized. If no Security blocks can be found for any of the listed namespaces, the mes-
sage will be rejected on the grounds that the API Gateway does not support the namespace specified in the message.
To add a new namespace, click the add button.

Note
Every WSSE namespace has a corresponding WSSU namespace. For example, the following WSSE and
WSSU namespaces are inextricably bound:

WSSE Namespace ht-
tp://schemas.xmlsoap.org/ws/2003/06/secext

WSSU Namespace ht-
tp://schemas.xmlsoap.org/ws/2003/06/utility

First, enter the WSSE namespace in the Name field. Then enter the corresponding WSSU namespace in the WSSU
Namespace field.

Namespace Settings

199

MIME/DIME Settings
Overview

The MIME/DIME settings list a number of default common content types that are used when transmitting MIME mes-
sages. You can configure the API Gateway's Content Type filter to accept or block messages containing specific MIME
types. Therefore, the contents of the MIME types library act as the set of all MIME types that the API Gateway can filter
messages with.

All of the MIME types listed in the table are available for selection in the Content Type filter. For example, you can con-
figure this filter to accept only XML-based types, such as application/xml, application/*+xml, text/xml, and
so on. Similarly, you can block certain MIME types (for example, application/zip, application/octet-stream,
and video/mpeg). For more details on configuring this filter, see the Content Type Filtering filter topic.

Configuration

To configure the MIME/DIME settings, in the Policy Studio main menu, select Tasks -> Manage Settings ->
MIME/DIME. Alternatively, in the Policy Studio tree, select the Settings node, and click the MIME/DIME tab at the bot-
tom of the screen.

The MIME/DIME settings screen lists the actual MIME types on the left column of the table, together with their corres-
ponding file extensions (where applicable) in the right column.

To add a new MIME type, click the Add button. In the Configure MIME/DIME Type dialog, enter the new content type in
the MIME or DIME Type field. If the new type has a corresponding file extension, enter this extension in the Extension
field. Click the OK button when finished.

Similarly, you can edit or delete existing types using the Edit and Delete buttons.

200

Session Settings
Overview

The Session Settings tab enables you to configure session management settings for the selected cache. For example,
you can configure the period of time before expired sessions are cleared from the HTTP Sessions cache, which
(selected by default).

To configure session settings, select the Settings node in the Policy Studio tree, and click the Session Settings tab at
the bottom of the screen. Alternatively, in the Policy Studio main menu, select Tasks -> Manage Settings -> Session
Settings.

Configuration

Configure the following session settings:

Cache:
Specifies the cache that you wish to configure. Defaults to HTTP Sessions. To configure a different cache, click the
button on the right, and select the cache to use. The list of currently configured caches is displayed in the tree.

To add a cache, right-click the Caches tree node, and select Add Local Cache or Add Distributed Cache. Alternat-
ively, you can configure caches under the Libraries node in the Policy Studio tree. For more details, see the topic on
Global Caches.

Clear Expired Sessions Period:
Enter the number of seconds before expired sessions are cleared from the selected cache. Defaults to 60.

201

Exporting API Gateway Configuration
Overview

You can export API Gateway configuration data by right-clicking a Policy Studio tree node (for example, policy or policy
container), and selecting the relevant export menu option (for example, Export Policy). The configuration is exported to
an XML file, which you can then import into a different API Gateway configuration. This is useful if you have configured
the API Gateway in a testing environment and wish to move this configuration to a live production environment. By ex-
porting configuration data from a test environment, and importing into a production environment, you can effectively mi-
grate your API Gateway configuration. This is the recommended way to export API Gateway configuration data, and en-
ables you to manage references between configuration components.

For details on importing configuration data, see Importing API Gateway Configuration.

What is Exported

You can export API Gateway configuration items by right-clicking a node in the Policy Studio tree. For example, this in-
cludes the following Policy Studio tree nodes:

• Policies
• Policy Containers
• Schemas
• Alerts
• Caches
• Regular Expressions (White List)
• Attacks (Black List)
• Users
• Certificates
• Relative Paths
• Remote Hosts
• Database Connections

In addition, you can also export configuration items that are associated with the selected tree node. For example, this in-
cludes referenced policies, MIME types, regular expressions, schemas, and remote hosts. For details on exporting addi-
tional configuration items, see the next section.

Exporting Configuration Items

To export API Gateway configuration items, perform the following steps:

1. Right-click a Policy Studio tree node (for example, policy or policy container), and select the relevant menu option
(for example, Export Policy).

2. The first screen in the export wizard is a read-only screen that displays the configuration items to be exported. The
Exporting tree displays the selected tree node (in this case, policy), which is exported by default. The following
configuration items will also be exported tree includes additional referenced items that are also exported by de-
fault along with the policy (for example, MIME types, regular expressions, and schemas).

3. You can click Finish if this selection suits your requirements. Otherwise, click Next to refine the selection.
4. In the next screen, you can select optional configuration items for export. The Additional configuration items that

may be exported tree on the left includes dependent items that are not exported by default. For example, these in-
clude the following:
• Outbound references: configuration items directly referenced out from the export set to other configuration

stores (for example, Certificates, Users, or External Connections).

202

• Inbound references: configuration items in other configuration stores that directly reference items in the export
set.

• Associated configuration directly related to the export set (for example, Remote Hosts or Relative Paths).
5. To add an item for export, select it in the Additional configuration that may be exported tree on the left, and click

Add.
6. To remove an item for export, select it in the Additional configuration that will be exported tree on the right, and

click Remove.

Note
The original set of items in the Additional configuration that will be exported tree cannot be re-
moved. Only items added from the Additional configuration that may be exported tree can be re-
moved.

7. By default, items displayed in the Additional configuration that may be exported tree are scoped to direct refer-
ences to the export set (inbound, outbound, and associated). You can select Display additional configuration that
depends on items to be exported to recursively add references to this tree when additional configuration items are
added to the export set.

8. Click OK to export the selected configuration.

Referenced Policies
When exporting a policy or policy container, by default, any policies referenced by the policy are included for export and
displayed in the Additional configuration that will be exported list.

Exporting All API Gateway Configuration

To export all API Gateway configuration data, perform the following steps:

1. Click Export Configuration button in the Policy Studio toolbar.
2. In the Save As dialog, specify a file name, and click Save to export the entire API Gateway configuration data to a

file. This includes all references between configuration components.

Exporting API Gateway Configuration

203

Importing API Gateway Configuration
Overview

You can import configuration data into your API Gateway configuration (for example, policies, certificates, and users).
This is useful if you have configured the API Gateway in a testing environment and want to move this configuration to a
live production environment. By exporting configuration data from a test environment, and importing into a production en-
vironment, you can effectively migrate your API Gateway configuration. This is the recommended way to import API
Gateway configuration data, and enables you to manage references between configuration components.

For details on exporting configuration data, see Exporting API Gateway Configuration.

Importing Configuration

To import API Gateway configuration data, perform the following steps:

1. Click the Import Configuration button in the Policy Studio toolbar.
2. Browse to the location of the XML file that contains the previously exported configuration data that you wish to im-

port.
3. Select the XML file, and click Open.
4. If a passphrase was set on the configuration from which the data was previously exported, enter it in the Enter

Passphrase dialog, and click OK.
5. In the Import Configuration dialog, all configuration items are selected for import by default. If you do not wish to

import specific items, unselect them in the tree. For more details, see Viewing Differences.
6. Click OK to import the selected configuration items.
7. The selected configuration items are imported into your API Gateway configuration and displayed in the Policy Stu-

dio tree. For example, any imported policies and containers are displayed under the Policies node.

Important
Be careful when deselecting configuration nodes for import. Unselecting certain nodes may make the im-
ported configuration inconsistent by removing supporting configuration.

Viewing Differences

The Import Configuration dialog displays the differences between the existing stored configuration data (destination)
and the configuration data to be imported (source). Differences are displayed in the tree as follows:

Addition Exists in the source Configuration being imported but not in
the destination Configuration. Displayed as a green plus
icon.

Deletion Exists in the destination Configuration but not in the source
Configuration being imported. Displayed as a red minus
icon.

Conflict Exists in both Configurations but is not the same. Dis-
played as a yellow warning icon.

If you select a particular node in the Import Configuration tree, the Differences Details panel at the bottom of the

204

screen shows details for this Configuration entity (for example, added or removed fields). In the case of conflicts,
changed fields are highlighted. Some Configuration entities also contain references to other entities. In this case, an icon
is displayed for the field in the Difference Details panel. If you double-click a row with an icon, you can drill down to view
further Difference Details dialogs for those entities.

What is Imported

When configuration data is imported, some configuration items are imported in their entirety. For example, if the contents
of a particular policy are different, the entire policy is replaced (new filters are added, missing filters are removed, and
conflicting filters are overwritten). In addition, if a complex filter differs in its children, child items are removed and added
as required (for example, WS Filter, Web Service, User, and so on). Other imports are additive only. For example, im-
porting a single certificate does not remove the certificates already in the destination Certificate store. All references to
other policies are also maintained during import.

Important
Although importing some configuration items removes child items by default, you can deselect child nodes
to keep existing child items. However, you should take care to avoid inconsistencies. The default selection
applies in most cases.

Importing API Gateway Configuration

205

Configuring the API Gateway for API Gateway Analytics
Overview

This topic explains how to configure the API Gateway to store message metrics in the same reports database used by
Oracle API Gateway Analytics. It also includes how to configure database logging and monitoring settings.

Important
To view API Gateway metrics in Oracle API Gateway Analytics, you must configure the API Gateway for
use with Oracle API Gateway Analytics.

Prerequisites
This topic assumes that you have already installed and configured Oracle API Gateway Analytics using the steps de-
scribed in the Oracle API Gateway Installation and Configuration Guide.

Connecting to the API Gateway

To connect to the API Gateway in Policy Studio, perform the following steps:

1. Ensure the Admin Node Manager and API Gateway are running. For more details, see Startup Instructions.
2. On the Policy Studio welcome page, click the Admin Node Manager server session to make a connection.
3. Specify your connection details (host, port, user name, and password). The default connection URL is:

https://localhost:8090/api

where HOST points to the IP address or hostname of the machine on which the API Gateway is running. For more
details, see Connection Details.

4. In the API Gateway topology view, double-click the API Gateway instance to load its configuration.

Configuring the Database Connection

To configure the database connection, perform the following steps:

1. Expand the External Connections -> Database Connections node in the Policy Studio tree.
2. Right-click the Default Database Connection tree node, and select Edit.
3. Configure the database connection to point to the same reports database created when API Gateway Analytics was

installed. For more details, see Database Connection.

You can verify that your database connection is configured correctly by clicking the Test Connection button on the Con-
figure Database Connection dialog. You can also view the contents of your server .trc file in the IN-
STALL_DIR/trace directory. For more details on tracing, see Troubleshooting.

Configuring the Database Logging

To configure the database logging settings, perform the following steps:

1. In the Policy Studio tree view, select the Settings node.
2. Select the Audit Log tab at the bottom, select the Database tab, select Enable logging to database.
3. Select the Default Database Connection from the drop-down list if appropriate. Alternatively, select a database

connection that you have configured. You must ensure that your database connection points to the same reports

206

database configured when API Gateway Analytics was installed. For more details, see Database Connection.

Note
If you wish to write the contents of message requests and responses to the database, you must configure
the Log Message Payload filter for the relevant policies (for example, at the start and end of the policy).
For more details, see Log Message Payload.

Configuring Monitoring Settings

To configure the API Gateway to monitor traffic and store message metrics in the reports database, perform the following
steps:

1. In the Policy Studio tree, select the Settings node, and select the Metrics tab at the bottom of the screen.
2. Ensure Enable real time monitoring is selected.
3. In the Reports settings panel, select Store real time monitoring data for charts/reports, and specify the data-

base connection that points to the reports database.
4. If you wish to enable monitoring of traffic per API Gateway, select the Traffic Monitor tab at the bottom of the

screen, and ensure Enable Traffic Monitor is selected.

Important
Enabling traffic monitoring has a negative impact on performance. If you wish to maximize performance, do
not enable this setting. For more details, see Configuring Traffic Monitoring.

Deploying to the API Gateway

You must deploy these configuration changes to the API Gateway. Click the Deploy button in the toolbar, or press F6.
The API Gateway now sends audit trail and message metrics data to the reports database. This database is then queried
by API Gateway Analytics to produce reports showing system health, service usage, clients, message size and volume,
and so on.

Note
These monitoring settings are API Gateway instance-wide. You can also send metrics data to the database
at the interface level. Right-click the HTTP Services Group (for example, Default Services), and select
Edit. To monitor traffic for this Services Group, ensure that Include in real-time monitoring is selected.
Similarly, you can disable monitoring for this Services Group by unselecting this setting.

Configuring the API Gateway for API Gateway Analytics

207

Using Oracle API Gateway Analytics
Overview

Oracle API Gateway Analytics monitors, records, and reports on the history of message traffic between API Gateway in-
stances and various services, remote hosts, and clients running in a managed domain. You can use API Gateway Ana-
lytics to monitor traffic and perform root cause analysis at the level of the domain, API Gateway instance, service, remote
host, and client. You can also filter the display based on any selected time period. For example, this defaults to the last 7
days, but you can specify any date range.

This topic describes how to use the views available in the Oracle API Gateway Analytics web-based interface to monitor
your domain. It assumes that you have already performed the steps described in Configuring the API Gateway for API
Gateway Analytics.

Launching API Gateway Analytics

To launch API Gateway Analytics, perform the following steps:

1. Start the API Gateway Analytics server using the oaganalytics script in the /bin directory of your API Gateway
Analytics installation.

2. Using the default port, connect to the API Gateway Analytics interface in a browser at the following URL:

http://HOST:8040/

where HOST points to the IP address or hostname of the machine on which API Gateway Analytics is installed.
3. Log in using the default admin user with password changeme. You can edit this user in Policy Studio using the

Users interface from the Policy Studio tree view.

System

In the API Gateway Analytics System view, click a panel in the ALL SYSTEMS section at the top to display graph for the
selected system-level metrics below. For example, the available metrics include the following:

• Successes
• Failures
• Exceptions
• Active
• Memory Used (Avg)
• Disk Used (%)

The following example shows messages successfully sent displayed in a simple domain with two API Gateway in-
stances:

208

The table at the bottom shows all the API Gateway instances that are sending monitored traffic to protected services, cli-
ents, and remote hosts in your domain. You can click a API Gateway instance in the table to drill down and view graphs
for the selected instance (for example, SYSTEM - Test Server). You can click the Back button at the top right to return
to the ALL SYSTEMS view.

Note
Each of the API Gateway instances must already be configured to store message metrics in the same data-
base that API Gateway Analytics is configured to read from. This enables API Gateway Analytics to obtain
the API Gateway metrics and logs from the database for display. For more details, see the chapter on con-
figuring the database in the Oracle API Gateway Installation and Configuration Guide.

API Services

The API Services view shows metrics for services that are virtualized by API Gateway instances in your domain. You
can virtualize services using the web-based API Service Manager tool and the Oracle Policy Studio. For details, see
Managing API Services.

In the API Services view, click a panel in the ALL API SERVICES section at the top to display graph for the selected
service-level metric below. For example, the available metrics include the following:

• Messages

Using Oracle API Gateway Analytics

209

• Successes
• Failures
• Exceptions
• Processing Time (Min)
• Processing Time (Max)
• Processing Time (Avg)

The table at the bottom shows all the services protected by API Gateway instances in your domain. You can click a ser-
vice in the table to drill down and view graphs for the selected service (for example, API SERVICE - Google Search).
You can click the Back button at the top right to return to the ALL API SERVICES view.

Note
A service must have been sent a message before it is displayed in the API Services view.

Remote Hosts

The Remote Hosts view displays metrics for all the remote hosts that have been configured in your domain. It shows de-
tails such as the number of message transactions that have been sent to this remote host, together with the total number
of bytes sent to and received from this host.

In the Remote Hosts view, click a panel in the ALL REMOTE HOSTS section at the top to display graph for the selected
remote host metric below. For example, the available metrics include the following:

• Transactions
• Volume Bytes (In)
• Volume Bytes (Out)
• Response Time (Min)
• Response Time (Max)
• Response Time (Avg)

The table at the bottom shows all the remote hosts connected to by API Gateway instances in your domain. You can
click a remote host in the table to drill down and view graphs for the selected remote host (for example, REMOTE HOST
- stockquote.com:80). This also displays which services have been connecting to the remote host. You can click the
Back button at the top right to return to the ALL REMOTE HOSTS view.

Clients

This Clients view displays metrics for all clients that have been authenticated for services in your domain. In the Clients
view, click a panel in the ALL CLIENTS section at the top to display graph for the selected clients metric below. For ex-
ample, the available metrics include the following:

• Messages
• Successes
• Failures
• Exceptions

The table at the bottom shows all clients that have been authenticated for services in your domain. You can click a client
in the table to drill down and view graphs for the selected client (for example, CLIENT - test.client). This also displays
which services have been connected to by the client. You can click the Back button at the top right to return to the ALL
CLIENTS view.

Using Oracle API Gateway Analytics

210

Audit Trail

The Audit Trail view enables you to filter the audit log messages generated by API Gateway instances in your domain.
You can filter log messages by clicking the Search button on the right in the toolbar. The Query Editor enables you to
create a query to filter log messages by details such as time period, severity level, filter type, filter name, and log mes-
sage text. When you have added your search criteria, click Search at the bottom to run the query. You can also save the
query for later use.

When you click Search, the log messages that match the search criteria specified in the query are displayed in the table.
For example, the details displayed in the table include the log message text, API Gateway name, alerts, and time. You
can also double-click an item in the list for more details (for example, transaction ID, filter category, and filter name).

Reports

API Gateway Analytics uses message metrics stored in the centralized database by the API Gateway instances running
in your domain. The API Gateway stores metrics for the virtualized services that it exposes, and for the services, and cli-
ent and remote host connections that it protects. API Gateway Analytics can generate usage reports and charts based
on this data, and display them in the Reports view.

You can create reports by selecting the appropriate button in the API Gateway Analytics toolbar, and clicking the Sched-
ule Report button. For example, to generate reports on API Services, perform the following steps:

1. Click the API Services button in the API Gateway Analytics toolbar.
2. Click the Schedule Report button at the top left.
3. Complete the following fields:

Schedule Select when to schedule the report. Defaults to Now.

Time If you do not select to run the report now, select the time of
day to run the report.

On If you do not select to run the report now or daily, select the
day of week on which to run the report.

From Select the period of time for the report. Defaults to Last 7
days.

Email Enter the email address to which to send the report.

4. Click Create.

Similarly, you can follow the same sequence of steps to generate reports in the System, Remote Hosts, and Clients
views.

Custom Reporting

Oracle API Gateway Analytics enables you to configure custom reports to provide flexible reporting to suit various re-
quirements. This includes viewing any available metric for each target report type, grouping metrics, and filtering metrics.

Custom Report Types
Custom reporting enables you to produce the following types of reports:

• API service usage
• API service usage for selected API service(s)
• Client usage
• Client usage for selected API service(s)

Using Oracle API Gateway Analytics

211

• Client(s) that used an API service
• API service(s) that a client used

Grouping and Filtering Metrics
Custom reporting enables you to group by or filter by any or all of the following:

• Client Name
• Service Name
• Instance Name
• Group Name

Note
The group-by mechanism only applies to the data table below the report chart. The chart remains the
same.

These filtering and grouping mechanisms enable you to answer questions such as Client(s) that used an API Service,
or API service(s) that a client used. For example, to show clients that used WebService1, you can create a custom
report that groups by Client Name and filters where Service Name is WebService1.

Defining Custom Reports
Oracle API Gateway Analytics enables you to define custom report names, the metrics to be displayed and charted, and
what to display on drill through. For example, the following screen shows a custom report named OAuth Authorization,
which is grouped by Service Name, and filtered by service name beginning with OAuth.

Using Oracle API Gateway Analytics

212

Using Oracle API Gateway Analytics

213

Scheduled Reports
Overview

You can schedule reports to run on a regular basis, and have the results emailed to the user in PDF format. These re-
ports include summary values at the top (for example, the number of requests, SLA breaches, alerts triggered, and
unique clients in a specified week) followed by a table of services, and their aggregated usage data (for example, the
number of requests on each service).

The report data is for the configured current week of the report, which is compared to the week before. You can set the
configured current week of the report to be the actual current calendar week or any prior week (provided there is corres-
ponding data in the database).

To configure scheduled reports, right-click the Listeners -> Oracle API Gateway Analytics node in the Policy Studio
tree, and select Database Archive.

Database Configuration

Click the browse button the right, and select a pre-configured database connection in the dialog. This setting defaults to
the Default Database Connection. To add a new database connection, right-click the Database Connections
node, and select Add DB connection. You can also edit or delete existing nodes by right-clicking and selecting the ap-
propriate option. Alternatively, you can add database connections under the External Connections node in the Policy
Studio tree view. For more details on creating database connections, see the Database Connection topic.

Scheduled Reports Configuration

You can configure the following settings for scheduled reports:

Enable Report Generation:
Select whether to enable scheduled reports in PDF format. When selected, by default, this runs a scheduled weekly re-
port on Monday morning at 0:01. For details on configuring a different time schedule, see the next setting. This setting is
not selected by default.

When Enable Report Generation is enabled, you can configure the following settings on the Report Generator Pro-
cess tab:

Connect to API Gateway Analytics as User:
Enter the username and password used to connect to the report generator process. Defaults to the values entered using
the configureserver script (for example, admin/changeme).

Output:
Enter the directory used for the generated report files in the Output Directory field, or click Choose to browse to the dir-
ectory. Defaults to the directory entered using the configureoaganalytics script (for example, c:\temp\reports).
You can also select to Do not delete report files after emailing. This setting is not selected by default.

SMTP Configuration

When Enable Report Generation is enabled, you can configure the following settings on the SMTP tab. These settings
default to those entered using the configureoaganalytics script.

Email Recipient (To):
Enter the recipient of the automatically generated email (for example, user@mycorp.com). Use a semicolon-separated
list of email addresses to send reports to multiple recipients.

Email Sender (From):
The generated report emails appear from the sender email address specified here (for example, no-

214

reply@mycorp.com).

Note
Some mail servers do not allow relaying mail when the sender in the From field is not recognized by the
server.

SMTP Server Settings:
Specify the following fields:

Outgoing Mail Server (SMTP) Specify the SMTP server used to relay the report email (for
example, smtp.gmail.com).

Port Specify the SMTP server port to connect to. Defaults to
port 25.

Connection Security Select the connection security used to send the report
email (SSL, TLS, or NONE). Defaults to NONE.

Log on Using:
If you are required to authenticate to the SMTP server, specify the following fields:

User Name: Enter the user name for authentication.

Password: Enter the password for the user name specified.

Scheduled Reports

215

Real-Time Monitoring Settings
Overview

You can configure real-time monitoring settings at the API Gateway process level. For example, these enable you to spe-
cify monitoring of the message content. API Service Manager and API Gateway Analytics use this data to display graph-
ical reports in their web-based interfaces. In addition, for API Gateway Analytics, you can also specify the database to
which the Process writes metrics data.

Configuring Metrics Settings

To configure real-time monitoring settings, select the Settings node in the Policy Studio tree, and click the Metrics tab at
the bottom. The following fields are available on the Metrics tab.

Enable real time monitoring:
This enables real-time monitoring globally for the API Gateway. This setting must be selected to monitor traffic processed
by the API Gateway, and is enabled by default. To disable real-time monitoring, disable this setting.

Important
Enabling real-time monitoring has a negative impact on performance. If you wish to maximize performance,
disable this setting.

Configuring Reports Settings

Store real time monitoring data for charts/reports:
If you wish real-time monitoring data to be written to a database, select this setting. This enables the following fields.

Use the following database:
Click the button on the right to select a database in which you wish to store the metrics data. If you have already con-
figured the database connection, you can select it in the tree. To add a database connection, right-click the Database
Connections tree node, and select Add DB Connection. Alternatively, you can add database connections under the
External Connections node in the Policy Studio tree view. For more information on configuring database connections,
see the Database Connection topic.

Note
API Gateway Analytics must be configured to read metrics data from the database that the API Gateway is
configured to write the metrics data to. For more details, see the chapter on configuring the database in the
Oracle API Gateway Installation and Configuration Guide.

Store specified message attribute values:
Select this setting to store the values of specified messages attributes in the database. Click the Add button, enter the
appropriate message attribute name in the Value field, and click OK. Repeat to add multiple message attributes.

When the specified message attributes are present in a message running through the API Gateway, their values are then
stored the database. For example, you could specify my.example.attribute to be stored in the database. Then for
any message running through the API Gateway that has the my.example.attribute attribute set, the message ID,
attribute name, and the value (for example, My example message subject) are stored in database. You could then
use this information to view reports for messages with specific message subjects or IDs.

CPU, Memory, Disk polling interval:
Specifies the interval in seconds when polling CPU use, free memory, and disk settings used in system monitoring. De-
faults to 3 seconds.

216

Configuring Traffic Monitoring
Overview

The Traffic Monitor settings enable you to configure the traffic monitoring available in the web-based API Service Man-
ager tool. For example, you can configure where the data is stored and what message transaction details are recorded in
the message traffic log.

To access the Traffic Monitor settings, click the Settings node in the Policy Studio tree, and select the Traffic Monitor
tab at the bottom of the screen. To access traffic monitoring in API Service Manager, go to http://localhost:8090,
and click the Traffic button in the toolbar. For more details, see the topic on Monitoring Services.

Important
Traffic monitoring may have a negative impact on performance. If you wish to maximize performance, you
can disable traffic monitoring.

Configuration

You can configure the following Traffic Monitor settings:

Enable Traffic Monitor:
Select whether to enable the web-based Traffic Monitor tool. This is enabled by default.

Data Directory:
Enter the directory that stores the traffic monitoring data files and database (data.sdb). Enter the location relative to the
directory in which the API Gateway is installed. Defaults to conf/opsdb.d. If this directory and/or the database do not
exist when the API Gateway starts up, they are recreated automatically.

Data Persistence Settings:
You can configure the following data persistence settings:

Record inbound transactions Select whether to record inbound message transactions re-
ceived by the API Gateway. This is enabled by default.

Record outbound transactions Select whether to record outbound message transactions
sent from the API Gateway to remote hosts. This is en-
abled by default.

Record policy path Select whether to record the policy path for the message
transaction, which shows the filters that the message
passes through. This is enabled by default.

Record trace Select whether to record the trace output for the message
transaction. This is enabled by default.

Note
These settings are global for all traffic passing through the API Gateway. You can override these persist-
ence settings at the port level when configuring an HTTP or HTTPS interface. For more details, see Config-
uring HTTP Services.

217

Data Expiry Settings:
You can configure the following data expiry settings:

Max. database entries Enter the maximum number of rows stored in the traffic
monitoring database. Defaults to 1000000 rows.

Max. database size Enter the maximum size of the traffic monitoring database
file, and select the database size units from the list. De-
faults to 1 GB.

Purge data older than Enter the period of time to store data, and select the time
units from the list. Data older than the specified time is
purged from the database. Defaults to 5 days.

Configuring Traffic Monitoring

218

Purging the Reports Database
Overview

You can use the dbpurger command to connect to your reports database and to purge old data. This command also
enables you to retain a specified amount of data, and to archive all data.

For details on configuring the connection to your reports database, see the API Gateway Installation and Configuration
Guide.

Running the dbpurger Command

You can run the dbpurger command from the following directory:

Windows REPORTER_INSTALL\oaganalytics\Win32\bin

Linux/UNIX REPORTER_INSTALL/oaganalytics/posix/bin

Command Options
You can specify the following options to the dbpurger command:

Option Description

-h, --help Displays help message and exits.

-p PASSPHRASE, --passphrase=PASSPHRASE Specifies the configuration passphrase (leave blank for
zero length).

--dbname=DBNAME Specifies the database name (mutually exclusive with
dburl, dbuser, and dbpass options).

--dburl=DBURL Specifies the database URL.

--dbuser=DBUSER Specifies the database user.

--dbpass=DBPASS Specifies the database passphrase.

--archive Archive all data.

--out=OUT Archive all data in the specified directory.

--purge Purge data from the database. You must also specify the -
-retain option.

--retain=RETAIN Specifies the amount of data to retain (for example,
30days, 1month, or 1year). You must specify this option
with the --retain option.

Example Commands

This section shows examples of running dbpurger in default interactive mode and of specifying command-line options.

Running dbpurger in Interactive Mode
The following example shows the output when running the dbpurger command in interactive mode. This example
archives all data, retains three months of data, and purges older data from the database:

219

>dbpurger
Choosing: Default Database Connection
Archive database (Y, N) [N]: y
Archive path [./archive]:
Purge an amount of data from the database (Y, N) [N]: y
Amount of data to retain (e.g. 1year, 3months, 7days) [3months]:
Wrote archive: .\archive\process_groups.xml
Wrote archive: .\archive\processes.xml
Wrote archive: .\archive\metric_types.xml
Wrote archive: .\archive\audit_log_sign.xml
Wrote archive: .\archive\time_window_types.xml
Wrote archive: .\archive\audit_log_points.xml
Wrote archive: .\archive\audit_message_payload.xml
Wrote archive: .\archive\transaction_data.xml
Wrote archive: .\archive\metric_groups.xml
Wrote archive: .\archive\metric_group_types.xml
Wrote archive: .\archive\metrics_alerts.xml
Wrote archive: .\archive\metrics_data.xml
Purging data older than: Wed Jun 27 15:26:00 BST 2012
Purging table: audit_log_sign... deleted 0 rows
Purging table: transaction_data... deleted 0 rows
Purging table: audit_message_payload... deleted 7 rows
Purging table: audit_log_points... deleted 16 rows
Purging table: metrics_alerts... deleted 4 rows
Purging table: metrics_data... deleted 703 rows

Specifying Command-Line Options to dbpurger
The following example shows the output when specifying options the dbpurger command. This example retains 30
days of data, and purges older data from the database:

dbpurger.bat --dburl=jdbc:mysql://127.0.0.1:3306/reports --dbuser=root
--dbpass=fred --purge --retain=30days

Purging the Reports Database

220

Configuring API Gateway Instances
Overview

This topic shows how to configure a running instance of the API Gateway. You can configure the options described in the
following sections on the API Gateway instance in the Policy Studio tree.

Add Remote Host

Remote Host settings configure the way in which the API Gateway routes to another host machine. For example, if a
destination server may not fully support HTTP 1.1, you can configure Remote Host settings for the server to optimize the
way in which the API Gateway sends messages to it. Similarly, if the server requires an exceptionally long timeout, you
can configure this in the Remote Host settings. For more details, see the Remote Host Settings topic.

Add HTTP Services

You can add a container for HTTP-related services, including HTTP and HTTPS Interfaces, Directory Scanners, Static
Content Providers, Servlet Applications, and Packet Sniffers.

HTTP Services act as a container for all HTTP-related interfaces to the API Gateway's core messaging pipeline. You can
configure HTTP and HTTPS interfaces to accept plain HTTP and SSL messages respectively. A Relative Path interface
is available to map requests received on a particular URI or path to a specific policy. The Static Content Provider inter-
face can retrieve static files from a specified directory, while the Servlet Application enables you to deploy servlets under
the service. Finally, the Packet Sniffer interface can read packets directly of the network interface, assemble them into
HTTP messages, and dispatch them to a particular policy. The Configuring HTTP Services topic explains how to config-
ure the available HTTP Interfaces.

Add SMTP Services

Simple Mail Transfer Protocol (SMTP) support enables the API Gateway to receive email and to act as a mail relay. The
API Gateway can accept email messages using the SMTP protocol, and forward them to a mail server. You can also
configure optional policies for specific SMTP commands (for example, HELO/EHLO and AUTH). The Configuring SMTP
Services topic explains how to configure SMTP services, interfaces, and handler policies.

Add File Transfer Services

You can configure the API Gateway to listen for remote clients that connect to it as a file server. This enables the API
Gateway to apply configured policies on transferred files (for example, for schema validation, threat detection or preven-
tion, routing, and so on). The API Gateway supports File Transfer Protocol (FTP), FTP over SSL (FTPS), and Secure
Shell FTP (SFTP). The File Transfer Service topic explains how to configure the API Gateway as a file transfer service.

Add Policy Execution Scheduler

Policy Execution Scheduling enables you to schedule the execution of any policy on a specified date and time in a recur-
ring manner. The API Gateway provides a pre-configured library of schedules to select from. You can also add your own
schedules to the library. The Policy Execution Scheduling topic explains how to add a policy execution schedule, and
how to add schedules.

Messaging System

You can configure the API Gateway to read JMS messages from a JMS queue or topic, run them through a policy, and
then route onwards to a Web Service or JMS queue or topic.

The API Gateway can consume a JMS queue or topic as a means of passing XML messages to its core message pro-
cessing pipeline. When the message has entered the pipeline, it can be validated against all authentication, authoriza-

221

tion, and content-based message filters. Having passed all configured message filters, it can be routed to a destination
Web Service over HTTP, or it can be dropped back on to a JMS queue or topic using the Messaging System Connec-
tion filter. For more details, see the Messaging System topic.

FTP Poller

The FTP Poller enables you to query and retrieve files by polling a remote file server. When files are retrieved, they can
be passed into the API Gateway core message pipeline for processing. For example, this is useful in cases where an ex-
ternal application drops files on to a remote file server, which can then be validated, modified, or routed on over HTTP or
JMS by the API Gateway. For more details, see the FTP Poller topic.

Directory Scanner

The Directory Scanner reads XML files from a specified directory and dispatches them to a selected policy. This en-
ables you to search a local directory for XML files, which can then be fed into a security policy for validation. Typically,
XML files are FTP-ed or saved to the file system by another application. The API Gateway can then pick these files up,
run the full array of authentication, authorization, and content-based filters on the messages, and then route them over
HTTP or JMS to a back-end system. For more details, see the Directory Scanner topic.

POP Client

The POP Client enables you to poll a POP mail server to read email messages from it, and pass them into a policy for
processing. For more details, see the POP Client topic.

TIBCO

You can configure a TIBCO Rendezvous® Listener or a TIBCO Enterprise Messaging Service™ Consumer. For more de-
tails, see the following topics:

• TIBCO Rendezvous Listener
• TIBCO Enterprise Messaging Service Consumer

API Gateway Settings

You can configure per-instance global configuration settings by clicking the Settings node in the Policy Studio tree. For
more details on configuring API Gateway instance settings, see the API Gateway Settings topic.

API Gateway Logging

You can configure a API Gateway instance to log messages to a database, file system, GUI Console, log files, or UNIX
syslog. A Log Viewer for examining log entries is also available. For more details, see the topic on Audit Log Settings .

Cryptographic Acceleration

The API Gateway can leverage the OpenSSL Engine API to offload complex cryptographic operations (for example, RSA
and DSA) to a hardware-based cryptographic accelerator, and to act as an extra layer of security when storing private
keys on a Hardware Security Module (HSM).

The API Gateway uses OpenSSL to perform cryptographic operations, such as encryption and decryption, signature
generation and validation, and SSL tunneling. OpenSSL exposes an Engine API, which enables you to plug in alternative
implementations of some or all of the cryptographic operations implemented by OpenSSL. OpenSSL can, when con-
figured appropriately, call the engine's implementation of these operations instead of its own. For more information on
configuring the API Gateway to use an OpenSSL engine, see the Cryptographic Acceleration topic.

Configuring API Gateway Instances

222

Configuring HTTP Services
Overview

The API Gateway uses HTTP Services to handle traffic from various HTTP-based sources. The following list summarizes
the list of available HTTP Services:

HTTP Interfaces
HTTP Interfaces are used in the API Gateway to define the ports and IP addresses on which the API Gateway instance
listens for incoming requests. You can also add HTTPS Interfaces and select the SSL certificate to use to authenticate to
clients, and the certificates that are considered trusted for establishing SSL connections with clients.

Relative Path
While HTTP and HTTPS Interfaces open sockets and listen for traffic, you can configure Relative Paths so that when a
request is received on that path, the API Gateway instance can map it to a specific policy, or chain of policies.

Static Content Provider
You can use a Static Content Provider to serve static HTTP content from a particular directory. In this case, the API
Gateway instance is effectively acting as a Web Server.

Servlet Applications
The API Gateway instance can act as a servlet container, which enables you to drop servlets into the HTTP Services
configuration. This should only be used by developers with very specific requirements and under strict advice from the
Oracle support team.

Packet Sniffer
Finally, you can add a Packet Sniffer to intercept network packets from the client, assemble them into complete HTTP
messages, and log these messages to an audit trail. Because the Packet Sniffer operates at the network layer (unlike an
HTTP-based traffic monitor at the application layer), the packets are intercepted transparently to the client. This means
that the Packet Sniffer is a passive service, which is typically used for management and monitoring instead of general
policy enforcement. For more details, see Packet Sniffers.

HTTP Services Groups

An HTTP Services Group is a container around one or more HTTP Services. Usually, an HTTP Services Group is con-
figured for a particular type of HTTP Service. For example, it is typical to have an HTTP Interfaces Group that con-
tains the configured HTTP Interfaces, and another Static Providers Group to manage Static Content Providers.
While organizing HTTP Services by type eases the task of managing Services, the API Gateway is flexible enough to en-
able administrators to organize Services into Groups according to whatever scheme best suits their requirements.

This section describes a scenario where HTTP Services Groups can prove useful. It first describes an HTTP Service
Group that handles HTTP traffic, and then shows how you can use a second SSL Service Group to process SSL traffic
on a separate channel.

HTTP Interfaces and Relative Paths
HTTP Services Groups should consist of at least one HTTP Interface together with at least one Relative Path. The HTTP
Interface determines which TCP port the API Gateway instance listens on, while you can use the Relative Path to map a
request received on a particular path (request URI) to specific policies. You can add several HTTP Interfaces to the
Groups, in which case requests received on any one of the opened ports are processed in the same manner. For ex-
ample, http://[HOST]:8080/test and http://[HOST]:8081/test requests can both be processed by the same
policy (mapped to the /test Relative Path).

Similarly, you can add multiple Relative Paths to this HTTP Services Group, where each Path is bound to a specific
policy or chain of policies. For example, if a request is made to http://[HOST]:8080/a, it is processed by Policy A;
whereas if a request is made to http://[HOST]:8080/b, it is handled by Policy B. As a side-effect of this configura-
tion, requests made to the other Interface are also processed by the same policy, meaning that a request made to ht-

223

tp://[HOST]:8081/b is also handled by Policy B.

Effectively, this means that the Relative Paths configured under the HTTP Services Group are bound to all HTTP Inter-
faces configured for that Group. If you have two Interfaces listening on ports 8080 and 8081, requests to ht-
tp://[HOST]:8080/a and http://[HOST]:8081/a are handled identically by the API Gateway instance.

Example HTTP Service Group
What happens if you want to distinguish between receiving requests on the two different ports? For example, you want
requests to http://[HOST]:443/a to be processed by an SSL Validation policy, while requests for ht-
tp://[HOST]:8080/a to be handled by a standard Schema Validation policy.

The addition of a new HTTP Services Group can resolve this issue. The new SSL HTTP Services Group opens a
single HTTPS Interface that listens on port 443, and is configured with a Relative Path of /a to handle requests on this
path. The configuration is summarized in the following table:

Services Group HTTP Port Relative Path Policy

HTTP Services Group 8080 /a Schema Validation Policy

SSL HTTP Services
Group

443 /a SSL Validation Policy

With this configuration, when you receive a request on http://[HOST]:8080/a, it is handled by the Schema Valida-
tion Policy. But when you get a request to the SSL port on http://[HOST]:443/a it is processed by the SSL Valida-
tion Policy. Using HTTP Services Groups in this way, you can configure the API Gateway instance to dispatch requests
received on the same path (for example, /a) to different policies depending on the port on which the request was accep-
ted.

Default HTTP Service Groups
By default, the API Gateway ships with pre-configured HTTP Services Groups (for example, Default Services and
Management Services). By default, Management Services are not displayed in the Policy Studio, but can be dis-
played using the Preferences menu. The Default Services Group contains some general purpose default policies
for use with an out-of-the-box installation of the API Gateway. In addition to the pre-configured Service Groups, you can
add new HTTP Services Groups when you wish to dispatch requests to different policies, based on the port on which the
requests are received. For more details on the default Management Services Group, see the section called
“Management Services”.

Adding an HTTP Service Group
To add a Service Group, right-click the API Gateway instance, and select the Add HTTP Services menu option. Enter a
name for the group in the HTTP Services dialog. If you want to monitor traffic processed by this Service Group using API
Gateway Analytics, select the Include in real time monitoring checkbox. For details on configuring the API Gateway to
store real-time monitoring data, which can be used to produce graphical reports in a web-based interface, see the Real-
Time Monitoring Settings.

When a Service Group has been created, the following types of HTTP Services can be associated with it.

HTTP and HTTPS Interfaces

An HTTP Interface defines the address and port that the API Gateway instance listens on. There are two types of Inter-
face: HTTP and HTTPS. The HTTP interface handles standard non-authenticated HTTP requests, while the HTTPS in-
terface can accept mutually authenticated SSL connections.

To create an HTTP Interface, under the HTTP Service Group (for example, Default Services) in the Policy Studio
tree, right-click Ports, and select Add HTTP or Add HTTPS.

Configuring Network Settings

Configuring HTTP Services

224

The following fields on the Network tab are common to both the HTTP Interface and HTTPS Interface dialogs, and
must be configured for both types of interface:

Port:
The port number that the API Gateway instance listens on for incoming HTTP requests.

Address:
The IP address or host of the network interface on which the API Gateway instance listens. For example, you can config-
ure the instance to listen on port 80 on the external IP address of a machine, while having a Web server running on the
same port but on the internal IP address of the same machine. By entering *, the instance listens on all interfaces avail-
able on the machine hosting the API Gateway.

Protocol:
Select the Internet Protocol version that this Interface uses. You can select IPv4, IPv6, or both of these protocol ver-
sions. Defaults to IPv4.

Trace level:
The level of trace output. The possible values in order of least verbose to most verbose output are:

• FATAL

• ERROR

• INFO

• DEBUG

• DATA

The default trace level is read from the system settings.

Enable interface:
Deselect this setting to disable this HTTP interface. This setting is enabled by default.

Configuring Traffic Monitor Settings
The fields on the Traffic Monitor tab are common to both the HTTP Interface and HTTPS Interface dialogs. To override
the system-level settings at the HTTP or HTTPS interface level, select Override settings for this port, and configure
the following options:

Record inbound transactions Select whether to record inbound message transactions re-
ceived by the API Gateway. This is enabled by default.

Record outbound transactions Select whether to record outbound message transactions
sent from the API Gateway to remote hosts. This is en-
abled by default.

Record policy path Select whether to record the policy path for the message
transaction, which shows the filters that the message
passes through. This is enabled by default.

Record trace Select whether to record the trace output for the message
transaction. This is enabled by default.

For more details, see Configuring Traffic Monitoring.

Configuring Advanced Settings
The following fields on the Advanced tab are common to both the HTTP Interface and HTTPS Interface dialogs, and
must be configured for both types of interface:

Backlog:

Configuring HTTP Services

225

When the API Gateway instance is busy handling concurrent requests, the operating system can accept additional in-
coming connections. In such cases, a backlog of connections can build up while the operating system waits for the in-
stance to finish handling current requests.

The specified Backlog value is the maximum number of connections that the API Gateway instance allows the operating
system to accept and queue up until the instance is ready to read them. There is a trade off: the larger the backlog, the
larger the memory usage; the smaller the backlog, the greater the potential for dropped connections.

Idle Timeout:
The API Gateway supports the use of HTTP 1.1 persistent connections. The Idle Timeout is the time that the API Gate-
way instance waits after sending a response over a persistent connection before it closes the connection. Defaults to
60000 milliseconds (60 seconds).

Typically, a client tells the instance that it wants to use a persistent connection. The instance acknowledges this instruc-
tion and decides to keep the connection open for a certain amount of time after sending the response to the client. If the
client does not reuse the connection by sending up another request within the Idle Timeout period, the instance closes
the connection.

Active Timeout:
When the API Gateway instance receives a large HTTP request, it reads the request off the network as it becomes avail-
able. If the time between reading successive blocks of data exceeds the Active Timeout, the instance closes the con-
nection. Defaults to 60000 milliseconds (60 seconds).

This guards against a client closing the connection while in the middle of sending data. Imagine the client's network con-
nection is pulled out of the machine while in the middle of sending data to the instance. When the instance has read all
the available data off the network, it waits the Active Timeout period of time before closing the connection.

Maximum Memory per Request:
The maximum amount of memory that the API Gateway instance allocates to each request, not including the HTTP body.

Input Encodings:
Click the browse button to specify the HTTP content encodings that the API Gateway can accept from peers. The avail-
able content encodings include gzip and deflate. By default, the content encodings configured in the Default Set-
tings are used. You can override this setting at the HTTP interface level and in the Remote Host Settings. For more de-
tails, see the topic on Compressed Content Encoding.

Output Encodings:
Click the browse button to specify the HTTP content encodings that the API Gateway can apply to outgoing messages.
The available content encodings include gzip and deflate. By default, the content encodings configured in the De-
fault Settings are used. You can override this setting at the HTTP interface level and in the Remote Host Settings. For
more details, see the topic on Compressed Content Encoding.

Transparent Proxy - allow bind to foreign address:
Enables the use of the API Gateway as a transparent proxy on Linux systems with the TPROXY kernel option set. When
selected, the value in the Address field can specify any IP address, and incoming traffic for the configured address/port
combinations is handled by the API Gateway. For more details and an example, see Configuring a Transparent Proxy.

Configuring Conditions for an HTTP Interface
You can configure the API Gateway to bring down an active HTTP Interface if certain conditions fail to hold. For example,
the HTTP Interface can be brought down if a Remote Host is not available or if a physical network interface on the ma-
chine on which the API Gateway is running loses connectivity to the network.

For more information on configuring conditions for HTTP Interfaces, see the Configuring Conditions for HTTP Interfaces
help page.

HTTPS Interfaces Only

You must complete the same fields for an HTTPS Interface on the Network tab as for an HTTP Interface, with the addi-
tion of the following setting:

Configuring HTTP Services

226

X.509 Certificate:
Click the X.509 Certificate button to select the certificate that the API Gateway uses to authenticate itself to clients dur-
ing the SSL handshake. The list of certificates currently stored in the Certificate Store is displayed. Select a single certi-
ficate from this list.

Configuring Mutual Authentication Settings
You can configure clients to authenticate to the API Gateway on the Mutual Authentication tab. The following options
are available:

• Ignore Client Certificates
The API Gateway ignores client certificates if they are presented during the SSL handshake.

• Accept Client Certificates
Client certificates are accepted when presented to the API Gateway, but clients that do not present certificates are
not rejected.

• Require Client Certificates
The API Gateway only accepts connections from clients that present a certificate during the SSL handshake.

Client certificates are typically issued by a Certificate Authority (CA). In most cases, the CA includes a copy of its certific-
ate in the client certificate so that consumers of the certificate can decide whether or not to trust the client based on the
issuer of the certificate.

It is also possible that a chain of CAs were involved in issuing the client certificate. For example, a top-level organization-
wide CA (for example, Company CA) may have issued department-wide CAs (for example, Sales CA, QA CA, and so
on), and each department CA would then be responsible for issuing all department members with a client certificate. In
such cases, the client certificate may contain a chain of one or more CA certificates.

Maximum depth of client certificate chain:
You can use this field to configure how many CA certificates in a chain of one or more are trusted when validating the cli-
ent certificate. By default, only one issuing CA certificate is used, and this certificate must be checked in the list of trusted
root certificates. If more than one certificate is used, only the top-level CA must be considered trusted, while the interme-
diate CA certificates are not.

Root Certificate Authorities trusted for mutual authentication:
Select the root CA certificates that the API Gateway considers trusted when authenticating clients during the SSL hand-
shake. Only certificates signed by the CAs selected here are accepted.

Configuring Advanced SSL Settings
You can complete the following settings on the Advanced (SSL) tab:

Check that the SSL certificate's Subject CN resolves to network address:
When this setting is selected the API Gateway attempts to resolve the SSL certificate's Subject Common Name (CN) to
the network address configuring the SSL interface. If the Subject CN cannot be resolved to the network address, a
warning is output in the error traces. This setting is selected by default. You can deselect this setting to disable checking
the certificate's Subject CN.

SSL Server Name Identifier (SNI):
You can specify the hostnames that are requested by clients in the SSL Server Name Identifier (SNI) table. SNI is an
optional TLS feature whereby the client indicates to the server the hostname used to resolve the server's address. This
enables a server to present different certificates for clients to ensure the correct site is contacted.

For example, the server IP address is 192.168.0.1. The DNS is consulted by clients to resolve a hostname to an ad-
dress, and the server address is contacted using TCP/IP. If both www.acme.com and www.anvils.com resolve to
192.168.0.1, without SNI, the server does not know which hostname the client uses to resolve the address, because it
is not party to the client's DNS name resolution. The server may be able to certify itself as either service, but when the
connection is established, it does not know which hostname the client connects to.

With SNI, the client provides the name of the host (for example, www.anvils.com) in the initial SSL exchange, before

Configuring HTTP Services

227

the server presents its certificate in its distinguished name (for example, CN=www.anvils.com). This enables the server
to certify itself correctly as providing a service for the client's requested hostname.

To specify an SNI, perform the following steps:

1. Click the Add button to configure a server hostname in the SSL Server Name Identifier (SNI) dialog.
2. Specify the server hostname in the Client requests server name field.
3. Click the Server assumes identity button to import a Certificate Authority certificate into the Certificate Store.
4. Click OK.

Ciphers:
You can specify the ciphers that the server supports in the Ciphers field. The server selects the highest strength cipher
(that is also supported by the client) from this list as part of the SSL handshake. For more information on the syntax of
this setting, see the OpenSSL documentation [http://www.openssl.org/docs/apps/ciphers.html].

SSL session cache size:
Specifies the number of idle SSL sessions that can be kept in memory. Defaults to 32. If there are more than 32 simul-
taneous SSL sessions, this does not prevent another SSL connection from being established, but means that no more
SSL sessions are cached. A cache size of 0 means no cache, and no outbound SSL connections are cached.

Tip
You can use this setting to improve performance because it caches the slowest part of establishing the SSL
connection. A new connection does not need to go through full authentication if it finds its target in the
cache.

At DEBUG level or higher, the API Gateway outputs trace when an entry goes into the cache, for example:

DEBUG 09:09:12:953 [0d50] cache SSL session 11AA3894 to support.acme.com:443

If the cache is full, the output is as follows:

DEBUG 09:09:12:953 [0d50] enough cached SSL sessions 11AA3894 to
support.acme.com:443 already

Ephemeral DH key parameters:
The Diffie Hellman (DH) key agreement algorithm is used to negotiate a shared secret between two SSL peers. This en-
ables two parties without prior knowledge of each other to jointly establish a shared secret key over an insecure commu-
nication channel. The Ephemeral DH key parameters setting specifies the parameters used to generate the DH keys.

When DH key parameters are not specified, the SSL client uses the public RSA key in the server's certificate to encrypt
data sent to the SSL server, and establish a shared secret with the server. However, if the RSA key is ever discovered,
any previously recorded encrypted conversations can be decrypted. DH key agreement offers Perfect Forward Secrecy
(PFS) because there is no such key to be compromised.

There are two options when setting the DH parameters: you can enter a number (for example, 512), and the server auto-
matically generates DH parameters with a prime number of the correct size. Alternatively, you can paste the Base64 en-
coding of an existing serialized DH parameters file. You can use standard DH parameters based on known good prime
numbers. OpenSSL ships with the dh512.pem and dh1024.pem files. For example, you can set the DH parameters to
the following Base64-encoded string in pdh512.pem:

-----BEGIN DH PARAMETERS-----
MEYCQQD1Kv884bEpQBgRjXyEpwpy1obEAxnIByl6ypUM2Zafq9AKUJsCRtMIPWakXUGfnHy9iUsiGSa6q6Jew1X
pKgVfAgEC
-----END DH PARAMETERS-----

Configuring HTTP Services

228

http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html

The DH parameters setting is required if the server is using a DSA-keyed certificate, but also has an effect when using
RSA-based certificates. DH (or similar) key agreement is required for DSA-based certificates because DSA keys cannot
be trivially used to encrypt data like RSA keys can.

SSL Protocol Options:
You can configure the following SSL protocol options:

Option Description

Use EDH key once only Creates a new key from the DH parameters for every SSL
session. This is not strictly necessary if you are sure about
the quality of the prime number in the DH key parameters.
When using well-known DH parameters like the example
above, you can safely leave this option unselected.
However, given a bad prime number in the parameters,
gathering enough key exchanges from a single DH key can
allow an eavesdropper to work out the DH key used. Se-
lecting this option slows down the SSL session establish-
ment and has a negative impact on performance.

Do not use the SSL v1 protocol Specifies not to use SSL v1 to avoid any weaknesses in
this protocol. This option is not selected by default.

Do not use the SSL v2 protocol Specifies not to use SSL v2 to avoid any weaknesses in
this protocol. This option is not selected by default.

Do not use the SSL v3 protocol Specifies not to use SSL v3 to avoid any weaknesses in
this protocol. This option is not selected by default.

Do not use the TLS v1 protocol Specifies not to use TLS v1 to avoid any weaknesses in
this protocol. This option is not selected by default.

Prefer local cipher preferences over client's proposal When choosing a cipher during the SSL/TLS handshake,
the client's preferences are selected by default from the list
of ciphers supported by the client and the server. When
this option is selected, the server's preferences are used
instead. This option is not selected by default. For more de-
tails on ciphers, see the OpenSSL documentation [ht-
tp://www.openssl.org/docs/apps/ciphers.html]

Relative Paths

A Relative Path binds policies to a specific relative path location (for example /healthcheck). When the API Gateway
receives a request on this relative path, it invokes the specified policies. For details on how to configure policies, see
Chapter 4, Governance.

To configure a Relative Path for a given HTTP Service Group, under the Service Group in the tree view, right-click
Paths, and select Add Relative Path. Alternatively, you can also click the Add Relative Path button at the bottom of the
policy canvas beside the Context drop-down list. Complete the following settings on the Configure Relative Path dia-
log:

Enable this path resolver:
You can specify whether to enable listening on the specified path. This is enabled by default.

Policies:
On the Policies tab, specify the relative path and the policies that are called. The API Gateway invokes the selected

Configuring HTTP Services

229

http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html

policies when it receives a request on the specified path. You can specify a single policy or a chain of policies. Policies
are called in the order displayed on this tab. Complete the following fields:

When a request arrives that matches the path: Enter a relative path (for example, /test) for the selected
HTTP Service Group. Requests received on this relative
path are processed by the policies selected on this tab.

Global Request Policy If a global request policy is configured, when you select this
setting, the global request policy is called first in the policy
chain. For more details, see Configuring Global Policies.

Path Specific Policy To configure a path-specific policy, select the checkbox,
and click the browse button to select a policy from the dia-
log. You can search for a specific policy by entering its
name in the text box, and the policy tree is filtered automat-
ically. The Path Specific Policy field is auto-populated
with the currently selected policy when the dialog is
launched using the Add Relative Path button at the bot-
tom of the policy canvas.

Global Response Policy If a global response policy is configured, when you select
this setting, the global response policy is called last in the
policy chain. For more details, see Configuring Global
Policies.

When you select multiple policies to form a policy chain, the behavior is the same as for a policy shortcut chain filter.
Policies are only evaluated when selected, and when the policy can be reached. If any reachable policy fails, the chain
fails, and no more policies are evaluated.

Audit Settings:
The Audit Settings tab enables you to configure the logging level for all filters executed on the relative path, and to con-
figure when message payloads are logged.

You can configure the following Logging Level settings on all filters executed on the specified relative path:

Logging Level Description

Fatal Logs Fatal log points that occur on all filters executed.

Failure Logs Failure log points that occur on all filters executed.
This is the default logging level.

Success Logs Success log points that occur on all filters executed.

For more details on logging levels, and on how to configure logging for a specific filter, see the Log Level and Message
topic.

You can configure the following Payload Logging settings on the specified relative path:

Payload Logging Description

On receive request from client Log the message payload when a request arrives from the
client.

On send response to client Log the message payload before the response is sent back
to the client.

Configuring HTTP Services

230

On send request to remote server Log the message payload before the request is sent using
any Connection or Connect to URL filters deployed in
any policies executed.

On receive response from remote server Log the message payload when the response is received
using any Connection or Connect to URL filters deployed
in any policies executed.

For details on how to log message payloads at any point in a specific policy, see the Log Message Payload topic.

Select the Include in server access log records setting if you wish to add this relative path to the API Gateway Access
Log. This enables the Access Log at the service level. This setting is not selected by default. For more details, see the
topic on Access Log Settings.

HTTP Method:
The HTTP Method tab enables you to configure an accepted HTTP Method (for example, POST). The default is *, which
means that all HTTP Methods are accepted. You can override the default behavior, and select an appropriate HTTP
method for the relative path from the list.

You can configure multiple HTTP methods on paths of the same name. This enables you to call different policies for dif-
ferent HTTP methods, as shown in the following example:

In this example, the /test path is configured three times, each using a different HTTP Method as follows:

• If a GET request is sent to the API Gateway on the /test path, the Test1 policy is executed.
• If a POST request is sent, the Test2 policy is executed.
• If any other type of request is sent (for example, DELETE, PUT, and so on), the Test3 policy is executed.

Web Service Resolvers

A Web Service Resolver is used to identify messages destined for a Web Service, and to map them to the Service
Handler (Web Service Filter) for that Web Service. When you import a WSDL file, a new Web Service Resolver node is
created for each imported Web Service in the Services tree view. You can edit the Web Service Resolver settings by
right-clicking this tree node, and selecting Edit.

Configuring HTTP Services

231

The following settings are available in the Web Service Resolver dialog:

Enable this web service resolver:
Specify whether to enable this Web Service resolver. This is enabled by default.

Name:
You can edit the name of the Web Service Resolver.

Web Service:
Click the browse button to select a Web Service to resolve to. Defaults to the Web Service imported into the Web Ser-
vices Repository when this resolver was created.

Policy:
On the Policy tab, select the path and the policies to use for the Web Service. You can specify a single policy or a chain
of policies. Policies are called in the order displayed on this tab. The global request policy, the policy automatically gener-
ated when the WSDL file is imported, and the global response policy are all selected in a chain by default. Complete the
following fields:

matches the paths in the WSDL: Select this option if you want the Web Service Resolver to
use the paths specified in the WSDL file. This is the de-
fault.

matches this path: Select this option if you want to specify a different path
from the WSDL file, and enter the path.

Global Request Policy If a global request policy is configured, when you select this
setting, the global request policy is called first in the policy
chain. For more details, see Configuring Global Policies.

Path Specific Policy To configure a path-specific policy, select the checkbox,
and click the browse button to select a policy from the dia-
log.

Global Response Policy If a global response policy is configured, when you select
this setting, the global response policy is called last in the
policy chain. For more details, see Configuring Global
Policies.

Policies are only evaluated when selected, and when the policy can be reached. If any selected policy fails, the chain
fails, and no more policies are evaluated.

Audit:
The Audit tab enables you to configure the logging level for all filters executed on the Web Service, and to configure
when message payloads are logged. The default logging level for all filters on the Web Service is Failure. These log-
ging settings are the same as those already described for the Audit tab used for the Relative Path. For more details, see
Relative Paths.

Editing Service Handler Options
You also edit options for the Service Handler for the Web Service. Right-click the Web Service Resolver node, and se-
lect Quick-Edit Policy to display a dialog that enables you to configure the following options:

Validation If you wish to use a dedicated validation policy for all mes-
sages sent to the Web Service, select this checkbox, and
click the browse button to configure a policy in the dialog.
For example, this enables you to delegate to a custom val-
idation policy used by multiple Web Services.

Configuring HTTP Services

232

Routing If you wish to use a dedicated routing policy to send all
messages on to the Web Service, select this checkbox,
and click the browse button to configure a policy in the dia-
log. For example, this enables you to delegate to a custom
routing policy used by multiple Web Services.

WSDL Access Options Select whether to make the WSDL for this Web Service
available to clients. The Allow the API Gateway to pub-
lish WSDL to clients checkbox is selected by default. The
published WSDL represents a virtualized view of the Web
Service. Clients can retrieve the WSDL from the API Gate-
way, generate SOAP requests, and send them to the API
Gateway, which routes them on to the Web Service.

These options enable you to configure the underlying auto-generated Service Handler (Web Service Filter) without nav-
igating to it in the Policies tree. These are the most commonly modified Web Service Filter options after importing a
WSDL file. Changes made in this dialog are visible in the underlying Web Service Filter. For more details, see the Web
Service Filter topic.

Static Content Provider

A Static Content Provider can be used in conjunction with an HTTP Interface to serve static content from a specified dir-
ectory. A relative path is associated with each Static Content Provider so that requests received on this path are dis-
patched directly to the Provider and are not mapped to a Policy in the usual manner.

For example, you can configure a Static Content Provider to serve content from the c:\docs folder (on a Windows sys-
tem) when it receives requests on the relative path /docs.

To add a Static Content Provider, right-click the Service Group under the API Gateway instance, and select the Static
Content Provider menu option. Complete the following fields on the General tab:

Relative Path:
Enter the path that you want to receive requests for static content on.

Content Directory:
Enter or browse to the location of the directory that you want to serve static content from.

Index File:
Enter the name of the file that you want to use as the index file for content retrieved from the directory specified in the
field above. This file is retrieved by default if no resource is explicitly specified in the request URI. For example, if the cli-
ent requests http://[HOST]:8080/docs (with only a relative path specified as opposed to a specific resource), the
file specified here will be retrieved. This file must exist in the directory specified in the previous field.

Allow Directory Listings:
If this option is selected, the Static Content Provider returns full directory listings for requests specifying a relative path
only. For example, if this option is selected, and if a request is received for http://[HOST]:8080/docs/samples,
the list of directories under this directory is returned, assuming that this directory exists on the file system. This option
can be turned off to prevent attacks where a hacker can send up different request URIs in the hope that the server re-
turns some information about the directory structure of the server.

HTTP Method:
The HTTP Method tab enables you to configure an accepted HTTP Method (for example, POST). The default is *, which
means that all HTTP Methods are accepted. You can override the default behavior, and select an appropriate HTTP
method for this resolver from the list.

Configuring HTTP Services

233

Servlet Applications

Developers may wish to write their own Java servlets and deploy them under the API Gateway to serve HTTP traffic.
Conversely, they may wish to remove some of the default servlets from the out-of-the-box configuration (for example, to
remove the ability to view logging remotely). This pairing down of unwanted functionality may be required to further lock
down the machine on which the API Gateway is running.

Note
Adding and removing Servlet Applications should be performed only by developers with very specific re-
quirements and under strict guidance from the Oracle Support team. These instructions simply outline how
to configure the fields on the dialogs used to set up Servlet Applications. For more detailed instructions,
please contact the Oracle Support Team (see Oracle Contact Details).

There are a few default Servlet Applications available under the Management Services group. By default, this services
group is not displayed, but can be displayed using the Preferences dialog in the Policy Studio. For example, the /
configuration/ Servlet Application updates configuration information for the API Gateway.

Warning
Deleting any of these Servlet Applications may prevent the API Gateway from functioning correctly. Default
Servlet Applications should only be deleted under strict supervision of the Oracle Support team.

To add a new Servlet Application, right-click the Services Group that you wish to add the servlet to, and select Add Ser-
vlet Application. Configure the following fields on the Servlet Application dialog:

Relative Path:
Enter the servlet context in this field. You can add multiple servlets under this context, where each servlet is mapped to a
unique URI.

Session Timeout:
Enter the timeout in seconds after which an inactive session is closed. Click OK.

HTTP Method:
The HTTP Method tab enables you to configure an accepted HTTP Method (for example, POST). The default is *, which
means that all HTTP Methods are accepted. You can override the default behavior, and select an appropriate HTTP
method for this resolver from the list.

The new Servlet Application now appears in the Policy Studio tree view. To add a new servlet, right-click the new Servlet
Application, and select Add Servlet. Configure the following fields on the Servlet dialog:

URI:
The path entered here maps incoming requests on a particular request URI to the Java servlet class entered in the field
below. This path must be unique across all Servlets that are added under this Servlet Application (servlet context).

Class:
Enter the fully qualified class name of the servlet class. This class can be added to the server runtime by adding the JAR,
class file, or package hierarchy to the [VINSTDIR]/ext/lib folder, where VINSTDIR points to the root of your API
Gateway installation.

Read Timeout:
Specify the time in seconds that the servlet should wait before closing an idle connection.

Servlet Properties:
You can configure properties for each servlet by clicking the Add button, and entering a name and value in the fields
provided on the Properties dialog.

Configuring HTTP Services

234

Management Services

The Management Services group exposes a number of services used by the Admin Node Manager and Oracle API
Gateway Analytics for remote configuration and monitoring. By default, this group is not displayed in the Policy Studio
tree view. However, you can view it by selecting the Window -> Preferences main menu option, and selecting Show
Management Services. Click the Apply button to view the services. This setting also displays the Management Ser-
vices under the Policies node in the Policy Studio tree view.

By default, the Management Services group consists of the following:

HTTP Interface:
By default, the Admin Node Manager exposes all its management services on port 8090 so that they can be configured
remotely. At startup, the Policy Studio can connect to this port to read and write API Gateway configuration data. By de-
fault, the Oracle API Gateway Analytics exposes all its management services on port 8040. For more details, see the
section called “Changing the Management Services Port”.

Relative Path: /
The / Relative Path is mapped to a default management policy called Protect Management Interface, which is available
under the Management Services Policy Container. This policy performs HTTP Basic Authentication and passes control
to the Call Internal Service filter. This is a special filter that dispatches a message to a Servlet Application or Static Con-
tent Provider based on the path on which the request was received.

For example, with the default configuration, assume that a request is received on ht-
tp://localhost:8090/configuration. The following steps summarize the request processing cycle:

1. When a Relative Path of / is configured, it matches all incoming requests, and requests are dispatched to whatever
policy the Relative Path is mapped to. In this case, the Relative Path is mapped to the Protect Management Inter-
face policy, and so the request is passed to this policy.

2. The Protect Management Interface policy performs HTTP basic authentication on the originator of the request. Au-
thentication is necessary because all configuration operations are considered privileged operations and should only
be carried out by those with the authority to do so. If the originator can be successfully authenticated, the Call In-
ternal Service filter is invoked.

3. The Call Internal Service filter is a special filter that passes messages to a Servlet Application or Static Content
Provider. In this case, because the message is received on the management interface (port 8090), the filter attempts
to match the Relative Path on which the request was received against all the Servlets and Content Providers con-
figured in the same Services Group as this interface.

4. The configured Servlets and Content Providers for the Management Services group include /configuration/
and /api/. Because the request is received on the /configuration/ path, this matches the /configuration/
Servlet Application, which is invoked.

Servlet Application: /configuration/
The Policy Studio running on a different host to the API Gateway can connect to this URL to remotely configure the API
Gateway. For example if the API Gateway is running on a host called SERVER, the Policy Studio can connect to ht-
tp://SERVER:8090/configuration/ on startup so that it can remotely configure policies running at the API Gate-
way on the SERVER host.

Important
Changing the Interfaces, Relative Path, Servlet Applications, or Static Content Provider exposed under the
Management Services group may prevent the Admin Node Manager from functioning correctly. Because
of this, the Management Services group is hidden by default, and should only be modified under strict su-
pervision from the Oracle Support team.

Configuring HTTP Services

235

Changing the Management Services Port

The default Management Services port used by the Admin Node Manager is 8090. To specify a different port, perform
the following steps:

1. In the Policy Studio main menu, select Window -> Preferences, and ensure that the Show Management Services
setting is selected.

2. Under the Listeners node in the Policy Studio tree, right-click the Management Services HTTP Interface, and se-
lect Edit.

3. Specify an updated value in the Port field (for example, 8091), and click OK.
4. Click the Deploy button in the Policy Studio toolbar, or press F6 to deploy the update.
5. Restart Policy Studio. You must restart Policy Studio when Management Services are updated.
6. Use the updated port number in the URL to reconnect Policy Studio (for example, https://HOST:8091/api).

Important
Management Services apply to the Admin Node Manager and Oracle API Gateway Analytics only. You
should only modify Management Services under strict advice and supervision from the Oracle Support
team.

Configuring HTTP Services

236

Configuring SMTP Services
Overview

The API Gateway provides support for Simple Mail Transfer Protocol (SMTP), which enables the API Gateway to receive
email and to act as a mail relay. The API Gateway can accept incoming email messages using the SMTP protocol, and
then forward them on to a configured mail server. You can also use the Policy Studio to configure optional policies for
specific SMTP commands (for example, HELO/EHLO, AUTH, MAIL FROM, and so on).

When an SMTP command is configured in the Policy Studio, each time the SMTP command is accepted by the API
Gateway, the appropriate policy is executed. When the policy completes successfully, the SMTP conversation resumes.
This topic shows how to configure SMTP services, interfaces, and handler policies using the Policy Studio.

Adding an SMTP Service

To add an SMTP service to enable the API Gateway to accept SMTP connections, perform the following steps in the
Policy Studio:

1. Under the Listeners node in the tree, select a Process node (for example, the default Oracle API Gateway).
2. Right-click, and select Add SMTP Services.
3. In the SMTP Services dialog, specify a unique name for the SMTP service in the Name field.
4. In the Outgoing Server Settings section, complete the following settings:

Host Host name or IP address of the remote mail server. This is
the server to which the API Gateway forwards incoming
SMTP commands (for example, smtp.gmail.com). You
can also specify a mail server running locally on the same
machine as the API Gateway using an address of local-
host or 127.0.0.1.

Port Port on which to connect to the remote mail server. De-
faults to port 25.

5. In the Security section, complete the following settings:

Connection Security Select the type of security used for the connection to the
remote mail server. Defaults to None. Other possible val-
ues are SSL and STARTTLS.

Trusted Certificates Use this tab to select the trusted CA certificates used in the
security handshake for the connection to the remote mail
server. This field is mandatory if SSL or STARTTLS con-
nection security is selected.

Client SSL Authentication Use this tab to specify the trusted client certificates used in
the security handshake for the connection to the remote
mail server. This field is optional if SSL or STARTTLS con-
nection security is selected.

Advanced Use this tab to specify a list of ciphers to use during the se-
curity handshake for the connection to the remote mail
server. Defaults to DEFAULT. For more details, see the
OpenSSL ciphers manpage. This field is optional if SSL or
STARTTLS connection security is selected.

237

6. In the Authentication section, complete the following settings:

Username Specify the username used to authenticate the API Gate-
way with a remote SMTP server using the AUTH SMTP
command. For more details, see the section on SMTP Au-
thentication.

Password Specify the password used to authenticate the API Gate-
way with a remote SMTP server using the AUTH SMTP
command. For more details, see the section on SMTP Au-
thentication.

7. Select the Include in real time monitoring checkbox to monitor the SMTP services using the API Gateway real-
time monitoring and API Gateway Analytics tools.

8. Click OK. This creates a tree node for the SMTP service under the selected process in the Services tree.

Adding an SMTP Interface

When you have configured the outbound SMTP protocol, you must then set up an inbound interface to accept client con-
nections. You can choose from the following interface types:

TCP Non-secure connection. All traffic is sent in-the-clear.

SSL SSL handshake is performed at connection time, so the en-
tire SMTP conversation is secure.

STARTTLS Initial connection is in the clear. The API Gateway advert-
ises STARTTLS during the initial SMTP HELO/EHLO hand-
shake. If the client supports this, it can send a STARTTLS
command to the API Gateway, which in turn promotes con-
nection security, and upgrades the connection to SSL/TLS.

Because the SSL and STARTTLS interface types have the potential to be secure (STARTTLS starts off non-secure, but
can be upgraded during the SMTP conversation), a common configuration screen is used for both protocols in the Policy
Studio.

To configure an inbound interface, perform the following steps in the Policy Studio:

1. Under the Listeners node in the tree, select the SMTP node under the Process.
2. Right-click, and select Add Interface -> interface type (TCP, SSL, or STARTTLS).
3. Complete the settings on the relevant dialog. For full details on these settings, see the Configuring HTTP Services

topic.
4. Click OK.

Configuring Policy Handlers for SMTP Commands

You can use the Policy Studio to configure optional policy handlers for each of the following SMTP commands:

• HELO/EHLO

• AUTH

• MAIL FROM

Configuring SMTP Services

238

• RCPT TO

• DATA

The next sections explain how to configure policy handlers for each command.

Adding an HELO/EHLO Policy Handler

The HELO/EHLO policy handler is invoked when a HELO/EHLO SMTP command is received from a client. This handler
enables you to modify the HELO/EHLO greeting and the client domain. You can configure the greeting message sent
back to the client from the API Gateway during the HELO/EHLO handshake as required. You can also configure a policy
to replace the value of smtp.helo.greeting. The domain specified by the connected client in the HELO/EHLO com-
mand can be modified before forwarding on to the remote mail server. You can also configure a policy to replace the
value of smtp.helo.domain.

To configure a policy handler for the HELO/EHLO command, perform the following steps:

1. Under the Listeners node in the tree, select the SMTP node under the Process.
2. Right-click, and select Add Policy Handler -> HELO/EHLO.
3. In the Configure HELO Host dialog, specify the Greeting to be sent back to the client as part of the HELO/EHLO

handshake. Defaults to Hello ${smtp.helo.domain}.
4. In the Policy tree, select the policy that you wish to handle the HELO/EHLO command.
5. Click OK.

Message attributes
The following message attributes are generated during processing:

Message Attribute Description

smtp.helo.domain The domain specified by the connecting client in its HELO/
EHLO SMTP command.

smtp.helo.greeting The HELO greeting to be sent back to the client after
HELO/EHLO processing is performed. The default value is:
Hello ${smtp.helo.domain}.

monitoring.enabled true if monitoring is enabled for the protocol, otherwise
false.

message.monitoring.enabled true if message-monitoring is enabled for the protocol,
otherwise false.

Adding an AUTH Policy Handler

The AUTH policy handler is invoked when an AUTH SMTP command is received from a client. You can use the AUTH
handler to run a policy to perform user authentication checks. For example, during the Authentication phase of the SMTP
conversation, the client-supplied username and password can be verified against an Authentication Repository using a
policy containing an Attribute Authentication filter. For details on possible authentication scenarios, see the section on
SMTP Authentication.

To configure a policy handler for the AUTH command, perform the following steps:

1. Under the Listeners node in the tree, select the SMTP node under the Process.
2. Right-click, and select Add Policy Handler -> AUTH.
3. In the Configure AUTH dialog, in the Policy tree, select the policy that you wish to handle the AUTH command.

Configuring SMTP Services

239

4. Click OK.

Message attributes
The following message attributes are generated during processing:

Message Attribute Description

authentication.subject.id The username supplied by the client.

authentication.subject.password The password supplied by the client.

monitoring.enabled true if monitoring is enabled for the protocol, otherwise
false.

message.monitoring.enabled true if message-monitoring is enabled for the protocol,
otherwise false.

Adding a MAIL Policy Handler

The MAIL policy handler is invoked when a MAIL FROM SMTP command is received from a client. Emails can be rejec-
ted based on wildcard matching of the supplied sender address in the MAIL FROM SMTP command. For example, email
addresses containing GMAIL.COM (fromAddress of *@gmail.com) as the domain could be accepted using a simple
True filter. Whereas, email addresses containing YAHOO.COM (fromAddress of *@yahoo.com) could be rejected using
a simple False filter.

To configure a policy handler for the MAIL FROM command, perform the following steps:

1. Under the Listeners node in the tree, select the SMTP node under the Process.
2. Right-click, and select Add Policy Handler -> MAIL.
3. In the Configure MAIL Address dialog, you must specify the From Address. This is an email address used to filter

addresses specified in the MAIL FROM SMTP command. You can specify this as a wildcard. The following are some
example values:

From Address Description

* Runs the policy for any email address received.

*@gmail.com Runs the policy for all email addresses with the
gmail.com domain.

S*@oracle.* Runs the policy for all email addresses with any oracle
domain, and beginning with the letter s.

The policy selection is performed on a best-match basis.
4. In the Policy tree, select the policy that you wish to handle the MAIL FROM command.
5. Click OK.

You can configure multiple MAIL handlers so that different policies are executed, depending on the received mail ad-
dress.

Message attributes
The following message attributes are generated during processing:

Configuring SMTP Services

240

Message Attribute Description

smtp.mail.from The email address specified in the MAIL FROM SMTP
command received from the client.

monitoring.enabled true if monitoring is enabled for the protocol, otherwise
false.

message.monitoring.enabled true if message-monitoring is enabled for the protocol,
otherwise false.

Adding a RCPT Policy Handler

The RCPT policy handler is invoked when a RCPT TO SMTP command is received from a client. You can use this hand-
ler to filter addresses specified in the RCPT TO SMTP command. Recipients can be rejected based on wildcard matching
of the supplied recipient address in the RCPT SMTP command. For example, recipient addresses containing GMAIL.COM
(toAddress of *@gmail.com) as the domain could be accepted using a simple True filter. Whereas, addresses con-
taining YAHOO.COM (toAddress of *@yahoo.com) could be rejected using a simple False filter. You can configure mul-
tiple RCPT handlers so that different policies are executed, depending on the received email address.

To configure a policy handler for the RCPT TO command, perform the following steps:

1. Under the Listeners node in the tree, select the SMTP node under the Process.
2. Right-click, and select Add Policy Handler -> RCPT.
3. In the Configure Recipient Address dialog, you must specify the To Address. This is an email address used to fil-

ter addresses specified in the RCPT TO SMTP command. You can specify this as a wildcard. The following are
some example values:

To Address Description

* Runs the policy for any email address received.

*@oracle.com Runs the policy for all email addresses with the or-
acle.com domain.

d*@yahoo.* Runs the policy for all email addresses with any yahoo do-
main, and beginning with the letter d.

The policy selection is performed on a best-match basis.
4. In the Policy tree, select the policy that you wish to handle the MAIL FROM command.
5. Click OK.

Message attributes
The following message attributes are generated during processing:

Message Attribute Description

smtp.rcpt.to The email address specified in the RCPT TO SMTP com-
mand received from the client.

monitoring.enabled true if monitoring is enabled for the protocol, otherwise
false.

message.monitoring.enabled true if message-monitoring is enabled for the protocol,
otherwise false.

Configuring SMTP Services

241

Adding a DATA Policy Handler

The DATA policy handler is invoked when a DATA SMTP command is received from a client. For example, for emails
that contain SOAP/XML content, you can add an XML signature to the XML data, stored in the content.body message
attribute, using an XML Signature Generation filter. For emails containing attachments, the attached mail data can be
run through one of the API Gateway anti-virus filters. Alternatively, you can use SMIME Encrypt or SMIME Decrypt fil-
ters to encrypt or decrypt emails (including attachments) passing through the API Gateway. You can also digitally sign
emails using an SMIME Sign filter, or verify signatures on already digitally signed emails using an SMIME Verify filter.

To configure a policy handler for the DATA command, perform the following steps:

1. Under the Listeners node in the tree, select the SMTP node under the Process.
2. Right-click, and select Add Policy Handler -> DATA.
3. In the Policy tree, select the policy that you wish to handle the DATA command.
4. Click OK.

Message attributes
The following message attributes are added during processing:

Message Attribute Description

content.body The stream representing the body of the mail.

Note
The content.body does not include MIME
headers.

monitoring.enabled true if monitoring is enabled for the protocol, otherwise
false.

message.monitoring.enabled true if message monitoring is enabled for the protocol,
otherwise false.

SMTP Authentication

The SMTP protocol supports Extended SMTP (ESMTP) PLAIN authentication. The following matrix shows the possible
authentication scenarios and actions based on the SMTP Services configuration:

Scenario AUTH Handler AUTH User-
name and
Password

Mail Server ad-
vertises AUTH

API Gateway
advertises AU-
TH

Proxy client
AUTH

Authenticate
API Gateway
to Server

1 No No No No No No

2 No No Yes Yes Yes No

3 No Yes No No No No

4 No Yes Yes No No Yes

5 Yes No No Yes No No

6 Yes No Yes Yes No No

7 Yes Yes No Yes No No

Configuring SMTP Services

242

Scenario AUTH Handler AUTH User-
name and
Password

Mail Server ad-
vertises AUTH

API Gateway
advertises AU-
TH

Proxy client
AUTH

Authenticate
API Gateway
to Server

8 Yes Yes Yes Yes No Yes

These authentication scenarios are described as follows:

1. No authentication username and password are specified so the API Gateway does not attempt to authenticate with
the server. The server does not support authentication anyway. The mail server does not advertise authentication so
the API Gateway does not advertise AUTH to the client. The client authentication is not proxied because the server
does not support it.

2. No authentication username and password are specified so the API Gateway does not attempt to authenticate with
the server. The server does not support authentication anyway. The mail server advertises AUTH, so the API Gate-
way advertises AUTH to the client. No AUTH handler is configured, so the client authentication details are proxied to
the server.

3. Same as 1 above.
4. The authentication username and password are specified so the API Gateway authenticates with the server. The

mail server advertises AUTH, but because a username and password are specified, the API Gateway does not ad-
vertise AUTH to the client because the API Gateway authenticates with the server using the configured credentials.
This also implies no client authentication proxying.

5. No authentication username and password are specified so the API Gateway does not attempt to authenticate with
the server. The server does not support authentication anyway. AUTH handler configured, which implies the API
Gateway performs authentication, so advertise AUTH to the client.

6. Same as 5 above.
7. AUTH handler configured, which implies the API Gateway performs authentication, so advertise AUTH to the client.

No proxying occurs because the API Gateway performs the authentication. No authentication is performed with the
server because the server does not support it.

8. AUTH advertised to the client because the API Gateway performs authentication (and the mail server supports it).
AUTH handler configured, which implies the API Gateway performs authentication. No proxying occurs because the
API Gateway performs the authentication. Authentication is performed with the server because the server supports
AUTH and a username and password is configured.

SMTP Content-Transfer-Encoding

The SMTP protocol supports automatic Content-Transfer-Encoding/Decoding. For DATA SMTP commands, the content
of the incoming mail body may be encoded. To enable policy filters to view and/or manipulate the raw body data, the
contents are automatically decoded before policy execution, and re-encoded afterwards (before being forwarded on to
the configured outbound mail server).

Supported encodings
The following encodings are supported:

• Base64
• 7-bit
• 8-bit
• quoted-printable
• binary

However, Base64 is the only encoding that results in decoding/re-encoding of the mail data.

Configuring SMTP Services

243

Multi-part MIME content, generally used for sending attachments in SMTP, is also supported. Each separate body in the
multi-part is checked for a Content-Transfer-Encoding, and the decoding/re-encoding is performed as appropriate.

Deployment Example

This section provides a step-by-step example of how to configure and deploy SMTP services using the API Gateway. In
this example, the API Gateway acts as a relay between a Thunderbird email client and the Google Gmail service.

Configuring the API Gateway SMTP Services
The API Gateway connects to the Gmail STARTTLS interface, which is available at smtp.gmail.com, and listening on
port 587. To configure the SMTP Services, perform the following steps in the Policy Studio:

1. Under the Listeners node in the tree, select a Process node (for example, the default Oracle API Gateway).
2. Right-click, and select Add SMTP Services.
3. Enter smtp.gmail.com for the Host.
4. Enter 587 for the Port.
5. Select STARTTLS from the Connection Security drop-down list. This is selected because smtp.gmail.com:587

exposes the Gmail STARTTLS SMTP interface.
6. Because STARTTLS has the potential to be upgraded to a secure connection, you must also select some Trusted

Certificates.
7. Accept all other defaults, and click OK to add the SMTP services.

Configuring the SMTP Client Interface
To configure a STARTTLS client interface, perform the following steps in the Policy Studio:

1. Right-click the SMTP Services node, and select Add Interface -> STARTTLS.
2. Enter a Port (for example, 8026). This is the port on which the API Gateway’s incoming SMTP traffic is accepted.

You can enter any port that is not already in use.
3. Because STARTTLS has the potential to be upgraded to a secure connection, you must configure a trusted certific-

ate. Click the X.509 Certificate button.
4. Select a certificate in the Select Certificate dialog.
5. Click OK to return to the Configure STARTTLS Interface dialog.
6. When the certificate has been configured, accept all other defaults, and click OK to add the incoming STARTTLS in-

terface.

When the SMTP services and STARTTLS client interface have been configured, you must deploy the changes to the API
Gateway.

Configuring Thunderbird Client Settings
This example uses Thunderbird as the email client. However, you can use any standard email client that supports SMTP.
Thunderbird is available as a free download from http://www.mozillamessaging.com/.

To configure a STARTTLS outgoing server in your Thunderbird client, perform the following steps:

1. Launch the Thunderbird email client.
2. From the main menu, select Tools -> Account Settings.
3. Expand the Local Folders tree node in the left pane.
4. Select the Outgoing Server node to create a new outgoing server configuration.
5. Click Add to display the SMTP Server dialog.
6. Enter Oracle API Gateway [STARTTLS] in the Description field.
7. Enter localhost (or the IP Address of the machine on which the API Gateway service is running) in the Server

Name field.

Configuring SMTP Services

244

http://www.mozillamessaging.com/

8. Enter 8026 in the Port field. This will send SMTP traffic to the STARTTLS interface configured above, so the ports
must match.

9. Select STARTTLS from the Connection security drop-down list. Traffic on this connection may be upgraded to se-
cure during the SMTP conversation.

10. Select Normal Password from the Authentication method drop-down list. This indicates that Authentication will
be performed.

11. Enter a valid Gmail user-name for the User Name.
12. Click OK to add the new outgoing server configuration.

Configuring Certificates in Thunderbird
To enable Thunderbird to successfully negotiate the STARTTLS conversation with the API Gateway, you must import a
CA certificate into Thunderbird. This is also because a certificate was already generated and imported into the API Gate-
way when configuring its STARTTLS client interface.

To configure a STARTTLS outgoing server in your Thunderbird client, perform the following steps:

1. From the Thunderbird main menu, select Tools -> Options.
2. Select the Certificates tab.
3. Click the View Certificates button, to display the Certificate Manager dialog.
4. Click Import, and import the appropriate CA certificate.
5. Click OK when finished.

Testing the STARTTLS Client Interface
To test the STARTTLS client interface using Thunderbird, perform the following steps:

1. Launch the Thunderbird email client, and create a new mail message.
2. Enter a valid Gmail address in the To field.
3. Enter API Gateway Test as the Subject.
4. Enter This mail has been sent using Oracle API Gateway in the mail body.
5. To specify the appropriate outgoing mail server, select Tools -> Account Settings from the main menu.
6. Select Oracle API Gateway [STARTTLS] - localhost from the Outgoing Server drop-down list.
7. Click OK.
8. Send the mail.

The following example from the API Gateway trace shows the SMTP commands that occur. Commands marked in bold
text shows traffic from the Thunderbird client to the API Gateway and vice versa. Commands marked in bold italics
shows traffic from the API Gateway to the Gmail server at smtp.gmail.com:587, and vice versa.

DEBUG 14:46:46:546 [14b4] incoming call on interface *:8026 from 127.0.0.1:1487
DEBUG 14:46:46:546 [14b4] new connection 08133248, settings source incoming interface
(force 1.0=no, idleTimeout=60000, activeTimeout=60000)
DATA 14:46:46:546 [14b4] snd 0018: <220 doejOracle>
DATA 14:46:46:562 [14b4] rcv 18: <EHLO [127.0.0.1]>
DEBUG 14:46:46:562 [14b4] 080BE260: new connection cache set SMTP Client
DEBUG 14:46:46:562 [159c] idle connection monitor thread running
DEBUG 14:46:46:562 [14b4] new endpoint smtp.gmail.com:587
DEBUG 14:46:46:640 [14b4] Resolved smtp.gmail.com:587 to:
DEBUG 14:46:46:640 [14b4] 209.85.227.109:587
DEBUG 14:46:46:718 [14b4] connected to 209.85.227.109:587
DEBUG 14:46:46:718 [14b4] new connection 08135BA0, settings source service-wide
defaults (force 1.0=no, idleTimeout=15000, activeTimeout=30000)
DATA 14:46:46:765 [14b4] rcv 44: <220 mx.google.com ESMTP v11sm7979387weq.40>
DATA 14:46:46:765 [14b4] snd 0018: <ehlo [127.0.0.1]>
DATA 14:46:46:812 [14b4] rcv 125: <250-mx.google.com at your service, [87.198.245.194]

Configuring SMTP Services

245

250-SIZE 35651584
250-8BITMIME
250-STARTTLS
250 ENHANCEDSTATUSCODES>
DATA 14:46:46:812 [14b4] snd 0010: <starttls>
DATA 14:46:46:843 [14b4] rcv 30: <220 2.0.0 Ready to start TLS>
DEBUG 14:46:46:843 [14b4] push SSL protocol on to connection
DEBUG 14:46:46:906 [14b4] No SSL host name provided: using default certificate for
interface
DEBUG 14:46:46:906 [14b4] verifyCert: preverify=1, depth=2, subject /C=US/O=Equifax/
OU=Equifax Secure Certificate Authority, issuer /C=US/O=Equifax/OU=Equifax Secure
Certificate Authority
DEBUG 14:46:46:906 [14b4] ca cert? 1
DEBUG 14:46:46:906 [14b4] verifyCert: preverify=1, depth=1, subject /O=Google
Inc/CN=Google Internet Authority, issuer /C=US/O=Equifax/OU=Equifax Secure Certificate
Authority
DEBUG 14:46:46:906 [14b4] verifyCert: preverify=1, depth=0, subject
/C=US/ST=California/L=Mountain View/O=Google Inc/CN=smtp.gmail.com,
issuer /C=US/O=Google Inc/CN=Google Internet Authority
DEBUG 14:46:46:952 [14b4] negotiated SSL cipher "RC4-MD5",session 00000000 (not reused)
DATA 14:46:46:952 [14b4] snd 0018: <ehlo [127.0.0.1]>
DATA 14:46:46:999 [14b4] rcv 140: <250-mx.google.com at your service, [87.198.245.194]
250-SIZE 35651584
250-8BITMIME
250-AUTH LOGIN PLAIN XOAUTH
250 ENHANCEDSTATUSCODES>
DATA 14:46:46:999 [14b4] snd 0109: <250-OracleAPI Gateway Hello [127.0.0.1]
250-SIZE 35651584
250-8BITMIME
250-STARTTLS
250 ENHANCEDSTATUSCODES>
DEBUG 14:46:46:999 [14b4] delete transaction 0B95D2C0 on connection 08133248
DATA 14:46:46:999 [14b4] rcv 10: <STARTTLS>
DATA 14:46:46:999 [14b4] snd 0014: <220 Go ahead>
DEBUG 14:46:46:999 [14b4] push SSL protocol on to connection
DEBUG 14:46:46:999 [14b4] Servername CB: SSL host name: localhost, not in host map -
using default certificate for interface
DEBUG 14:46:47:031 [14b4] negotiated SSL cipher "AES256-SHA", session 00000000
(not reused)
DATA 14:46:47:031 [14b4] rcv 18: <EHLO [127.0.0.1]>
DATA 14:46:47:031 [14b4] snd 0018: <ehlo [127.0.0.1]>
DATA 14:46:47:077 [14b4] rcv 140: <250-mx.google.com at your service, [87.198.245.194]
250-SIZE 35651584
250-8BITMIME
250-AUTH LOGIN PLAIN XOAUTH
250 ENHANCEDSTATUSCODES>
DATA 14:46:47:077 [14b4] snd 0124: <250-OracleAPI Gateway Hello [127.0.0.1]
250-SIZE 35651584
250-8BITMIME
250-AUTH LOGIN PLAIN XOAUTH
250 ENHANCEDSTATUSCODES>
DEBUG 14:46:47:077 [14b4] delete transaction 0B95D2C0 on connection 08133248
DATA 14:46:47:077 [14b4] rcv 41: <AUTH PLAIN ADGzaHllaDe0SHF1ex2r82Su555=>
DATA 14:46:47:077 [14b4] snd 0041: <auth PLAIN ADGzaHllaDe0SHF1ex2r82Su555=>
DATA 14:46:47:718 [14b4] rcv 20: <235 2.7.0 Accepted>
DATA 14:46:47:718 [14b4] snd 0020: <235 2.7.0 Accepted>
DATA 14:46:47:718 [14b4] rcv 45: <MAIL FROM:<john.doe@oracle.com> SIZE=444>
DATA 14:46:47:718 [14b4] snd 0036: <mail from:<john.doe@oracle.com>>
DATA 14:46:47:765 [14b4] rcv 33: <250 2.1.0 OK v11sm7979387weq.40>
DATA 14:46:47:765 [14b4] snd 0033: <250 2.1.0 OK v11sm7979387weq.40>
DATA 14:46:47:765 [14b4] rcv 30: <RCPT TO:<test@gmail.com>>
DATA 14:46:47:765 [14b4] snd 0030: <rcpt to:<test@gmail.com>>
DATA 14:46:47:812 [14b4] rcv 33: <250 2.1.5 OK v11sm7979387weq.40>
DATA 14:46:47:812 [14b4] snd 0033: <250 2.1.5 OK v11sm7979387weq.40>
DATA 14:46:47:812 [14b4] rcv 6: <DATA>
DATA 14:46:47:812 [14b4] snd 0006: <data>

Configuring SMTP Services

246

DATA 14:46:48:609 [14b4] rcv 34: <354 Go ahead v11sm7979387weq.40>
DATA 14:46:48:609 [14b4] snd 0008: <354 OK>
DATA 14:46:48:609 [14b4] rcv 447: <Message-ID: <4CB85B46.4060205@oracle.com>
Date: Fri, 15 Oct 2010 14:46:46 +0100
From: John Doe <john.doe@oracle.com>
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.9.2.9) Gecko/20100915
Thunderbird/3.1.4
MIME-Version: 1.0
To: test@gmail.com
Subject: API Gateway Test
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

This mail has been sent via Oracle API Gateway

.>
DATA 14:46:48:609 [14b4] snd 0442: <Message-ID: <4CB85B46.4060205@oracle.com>
Date: Fri, 15 Oct 2010 14:46:46 +0100
From: John Doe <john.doe@oracle.com>
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.9.2.9) Gecko/20100915
Thunderbird/3.1.4
MIME-Version: 1.0
To: test@gmail.com
Subject: API Gateway Test
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

This mail has been sent via Oracle API Gateway>
DATA 14:46:48:609 [14b4] snd 0005: <.>
DATA 14:46:49:874 [14b4] rcv 44: <250 2.0.0 OK 1287150409 v11sm7979387weq.40>
DATA 14:46:49:874 [14b4] snd 0044: <250 2.0.0 OK 1287150409 v11sm7979387weq.40>
DEBUG 14:46:49:874 [14b4] delete transaction 0B95D2C0 on connection 08133248
DATA 14:46:49:874 [14b4] rcv 6: <QUIT>
DATA 14:46:49:874 [14b4] snd 0006: <quit>
DATA 14:46:49:921 [14b4] rcv 49: <221 2.0.0 closing connection v11sm7979387weq.40>
DEBUG 14:46:49:921 [14b4] delete transaction 08040BD8 on connection 08135BA0
DATA 14:46:49:921 [14b4] snd 0049: <221 2.0.0 closing connection v11sm7979387weq.40>
DEBUG 14:46:49:921 [14b4] delete transaction 0B95D2C0 on connection 08133248
DEBUG 14:46:49:921 [14b4] delete connection 08133248, current transaction 00000000

Configuring SMTP Services

247

File Transfer Service
Overview

The API Gateway can act as a file transfer service that listens on a port for remote clients to connect to it. The API Gate-
way file transfer service supports the following protocols:

• FTP: File Transfer Protocol
• FTPS: FTP over Secure Sockets Layer (SSL)
• SFTP: Secure Shell (SSH) File Transfer Protocol

For all file transfer protocols, you must configure a file upload policy and an authentication policy. For FTP and FTPS,
you must configure a password authentication policy. While for SFTP, you can configure a password authentication
policy or a public key authentication policy. The API Gateway can also restrict access to the server based on IP address.

When a file transfer service is configured, users are presented with a personal file system view when they log in. The
root of this file system is specified in a configurable request directory. Any files they upload are processed by the file up-
load policy. If this policy succeeds, the output of the policy is stored in a configurable response directory. If the policy
fails, the original file is moved to a configurable quarantine directory.

Configuring a file transfer service can be useful when integrating with Business-to-Business (B2B) partner destinations or
with legacy systems. For example, instead of making drastic changes to either system, the other system can upload files
to the API Gateway. The added benefit is that the file transfer can be controlled and secured using API Gateway policies
designed to suit system needs.

General Configuration

You can configure the following settings in the General section:

Name:
Enter an appropriate name for the file transfer service.

Service Type:
Select the file transfer protocol type for this service from the drop-down list (ftp, ftps, or sftp). Defaults to ftp.

Implicit:
This setting applies to FTPS only. When selected, security is automatically enabled as soon as the remote client makes
a connection to the file transfer service. No clear text is passed between the client and server at any time. In this case,
the file transfer service defines a specific port for the remote client to use for secure connections (990). This setting is not
selected by default.

Explicit:
This setting applies to FTPS only. When selected, the remote client must explicitly request security from the file transfer
server, and negotiate the required security. If the client does not request security, the file transfer server can allow the cli-
ent to continue insecure or refuse and/or limit the connection. This setting is selected by default.

Binding Address:
Enter a network interface to bind to. Defaults to *, which means bind to all available network interfaces on the host on
which the API Gateway is installed. You can enter an IP address to bind to a specific network interface.

Port:
Enter a file transfer port to listen on for remote clients to connect to. Defaults to 21.

248

Note
The API Gateway must execute with superuser privileges to bind to a port number less than 1024 on Linux
and Solaris.

File Upload

You can configure the following settings in the File Upload section:

Request Directory:
Specifies the directory into which files and directories are uploaded. Defaults to
${environment.VINSTDIR}/file-transfer/in/.

Delete File on Successful Response:
Select whether to delete the uploaded files from the Request Directory when successfully processed. This setting is not
selected by default.

Response Directory:
Specifies the name of the directory into which files output by the API Gateway processing of uploaded files are placed if
the File Upload policy returns true. Defaults to out. The original files remain in the Request Directory.

Response Suffix:
Specifies the filename suffix that is appended to the output files in the Response Directory. Defaults to .resp.${id},
which enables a unique suffix to be appended to the files.

Quarantine Directory:
Specifies the directory into which the uploaded files are moved if the File Upload policy returns false, or an exception is
thrown. Defaults to quarantine.

Important
The response and quarantine directories can be relative or absolute. Relative directories reside under the
request directory. The user can manage the uploaded files using their file transfer session (for example, by
accessing API Gateway file processing results). Absolute directories must reside outside of the request dir-
ectory. The user cannot view or manage uploaded files using their file transfer session. Specifying absolute
directories hides API Gateway file processing from the user.

In this way, the request directory can be seen as the user's home directory for the duration of the connection. Therefore,
anything created under the same home directory is visible to the user. However, if the response is created outside this
directory (for example, in /tmp/response), the files are not visible to the user.

Specifying a File Upload Policy
For all file transfer protocols, you must specify a File Upload policy. This enables files and directories to be uploaded to
a user subdirectory of the Request Directory. For example, files uploaded by user fred are placed in
${environment.VINSTDIR}/file-transfer/in/persistent/fred. The specified policy is then invoked with
the raw file data. If this policy returns true, the output is placed in the corresponding Response Directory. If this policy
returns false or an exception is thrown, the uploaded file is moved to the Quarantine Directory.

To specify a File Upload policy, perform the following steps:

1. Click the Add button to display the dialog.
2. In the Pattern field, select or enter a regular expression to match against the filename. For example, the following

expression means that the configured policy is run against these files types only:

([^\s]+(\.(?i)(xml|xhtml|soap|wsdl|asmx))$)

File Transfer Service

249

3. In the Policy field, click the browse button on the right to select a policy, and click OK.
4. Click OK to display the configured pattern and policy in the table.

Message Attributes
The File Upload policy uses the following message attributes:

• content.body: Raw message file content.
• file.src.name: Filename of the uploaded file.
• file.src.path: Full file path of the uploaded file.

Secure Services

On the Secure Services tab, you can configure the following Client Authentication policies:

Password Authentication Policy:
For FTP and FTPS, you must configure a Password Authentication Policy. Click the browse button on the right to se-
lect a configured policy. This policy uses the authentication.subject.id and authentica-
tion.subject.password message attributes, which store the username and password entered by the client user.

Public Key Authentication Policy:
For SFTP, you can configure a Public Key Authentication Policy and/or Password Authentication Policy. Click the
browse button on the right to select a configured policy. This policy uses the authentication.subject.id and au-
thentication.subject.public.key message attributes, which store the username and public key used by the cli-
ent.

You can configure the following Server Authentication settings:

Server Certificate:
For FTPS or SFTP, click the Signing Key button to specify a server certificate. You can select a certificate in the dialog,
or click to create or import a certificate. The selected certificate must contain a private key. For more details, see the Cer-
tificates and Keys topic. Alternatively, you can specify a certificate to bind to at runtime using an environment variable se-
lector (for example, ${env.serverCertificate}). For more details, see Deploying the API Gateway in Multiple En-
vironments.

Server Key Pair:
For SFTP, click the button on the right, and select a previously configured key pair that the file transfer service must
present from the tree. To add a key pair, right-click the Key Pairs node, and select Add. Alternatively, you can import
key pairs under the Certificates and Keys node in the Policy Studio tree. For more details, see the topic on Certificates
and Keys.

Commands

For FTP and FTPS, the Commands tab enables you to specify commands that can be enabled for this service (other
FTP and FTPS commands are enabled by default). The following commands are specified in the table:

• DELE: Allow user to delete files
• PASV: Support passive mode
• REST: Support restart mode
• RMD: Allow user to remove directories
• STOU: Support unique filename

To enable an existing command, click Edit, select Enabled, and click OK. The command is displayed as enabled in the
table.

File Transfer Service

250

Adding New Commands
To add a new command, perform the following steps:

1. Click the Add button to display the dialog.
2. Enter the command Name (for example, STAT).
3. Select the file transfer protocol Type from the drop-down list (for example, ftp or ftp(s)).
4. Enter the command Description.
5. Select whether the command is Enabled.
6. Click OK to display the new command in the table.

Supported Commands
For a full list of supported commands, see http://mina.apache.org/ftpserver/ftp-commands.html [ht-
tp://mina.apache.org/ftpserver/ftp-commands.html]

Access Control

The Access Control tab enables you to restrict or block access to the file transfer service based on IP address. All IP
addresses are allowed by default.

Restrict Access to the following IP Ranges:
To restrict access to specified IP addresses, perform the following steps:

1. Click the Add button to display the dialog.
2. Enter an IP Address (for example, 192.168.0.16).
3. Enter a Net Mask for the specified IP address. For example, if you wish to restrict access to the specified IP address

only, enter 255.255.255.255. Alternatively, you can restrict access to a range of IP addresses by entering a value
such as 255.255.255.253, which restricts access to 192.168.0.16, 192.168.0.17, and 192.168.0.18.

4. Click OK to display the IP address details in the table.

Block Access to the following IP Ranges:
To block access to specified IP addresses, perform the following steps:

1. Click the Add button to display the dialog.
2. Enter an IP Address (for example, 192.168.0.16).
3. Enter a subnet Mask for the specified IP address. For example, if you wish to block access to the specified IP ad-

dress only, enter 255.255.255.255. Alternatively, you can block access to a range of IP addresses by entering a
value such as 255.255.255.253, which blocks access to 192.168.0.16, 192.168.0.17, and 192.168.0.18.

4. Click OK to display the IP address details in the table.

Messages

For FTP and FTPS, the you can specify a welcome message and a goodbye message on the Messages tab. These are
output to the user at the start and at the end of each session:

Welcome Message:
Enter a short welcome text message for the file transfer service (for example, Connected to FTP Test
Service...).

Goodbye Message:
Enter a short goodbye text message for the file transfer service (for example, Leaving FTP Test Service...).

Directory

File Transfer Service

251

http://mina.apache.org/ftpserver/ftp-commands.html
http://mina.apache.org/ftpserver/ftp-commands.html
http://mina.apache.org/ftpserver/ftp-commands.html

You can configure the following settings on the Directory tab:

Directory Type:
Select one of the following directory types:

• Persistent: This is a sharable directory created per user, which persists between connections (for example,
${environment.VINSTDIR}/file-transfer/in/persistent/fred). This is the default directory type.

• Transient: This is an isolated directory created per connection, which is destroyed after the connection (for ex-
ample, ${environment.VINSTDIR}/file-transfer/in/2/fred).

Note
Some clients, notably FileZilla, generate multiple client connection sessions. For these clients, files up-
loaded in one session will not be available in the viewing session.

Directory expiry in seconds:
Specifies how long the directory remains on the system. Defaults to 3600 seconds (1 hour). A setting of 0 seconds
means that the directory never expires.

Directory expiry check period in seconds:
Specifies how often the API Gateway checks to see if a directory has expired. Defaults to 1800 seconds (30 minutes). A
setting of 0 seconds means that it never checks.

File Transfer Service

252

Policy Execution Scheduling
Overview

You can configure a policy execution scheduler at the level of the API Gateway process. This enables you to schedule
the execution of any policy on a specified date and time in a recurring manner. The API Gateway provides a pre-
configured library of schedules to select from when creating a policy execution scheduler. You can also add your own
schedules to the globally available library in the Policy Studio.

You can use policy execution scheduling in any policy (for example, to perform a message health check). This feature is
also useful when polling a service to enforce a Service Level Agreement (for example, to ensure the response time is
less than 1000 ms, and if not, to send an alert).

Cron Expressions

In the Policy Studio, policy execution schedules are based on cron expressions. A cron expression is a string that spe-
cifies a time schedule for triggering an event (for example, executing a policy). It consists of six required fields and one
optional field, each separated by a space, which together specify when to trigger the event. For example, the following
expression specifies to run at 10:15am every Monday, Tuesday, Wednesday, Thursday, and Friday in 2011:

0 15 10 ? * MON-FRI 2011

Syntax
The following table shows the syntax used for each field:

Field Values Special Characters

Seconds 0-59 , - * /

Minutes 0-59 , - * /

Hours 0-23 , - * /

Day of Month 1-31 , - * ? / L W

Month 1-12 or JAN-DEC , - * /

Day of Week 1-7 or SUN-SAT , - * ? / L #

Year (optional) empty or 1970-2199 , - * /

Special Characters
The special characters are explained as follows:

Special Character Description

, Separates values in a list (for example, MON,WED,SAT
means Mondays, Wednesdays, and Saturdays only).

- Specifies a range of values (for example, 2011-2015
means every year between 2011 and 2015 inclusive).

* Specifies all values of the field (for example, every minute).

? Specifies no value in the Day of Month and Day of Week
fields. This enables you to specify a value in one field, but
not in the other.

/ Specifies time increments (for example, in the Minutes

253

Special Character Description

field, 0/15 means minutes 0, 15, 30, and 45, while 5/15
means minutes 5, 20, 35, and 50). Specifying * before the
/ is the same as specifying 0 as the start value. The /
character enables you to turn on every nth value in the set
of values for the specified field. For example, 7/6 in the
month field only turns on month 7, and does not mean
every 6th month.

L Specifies the last value in the Day of Month and Day of
Week fields. In the Day of Month field, this means the last
day of the month (for example, January 31, or February 28
in non-leap years). In the Day of Week field, when used
alone, this means 7 or SAT. When used after another
value, it means the last XXX day of the month (for example,
5L means the last Thursday of the month). When using the
L character, do not specify lists or ranges because this can
give confusing results.

W Specifies the weekday (Monday-Friday) nearest the given
day. For example, 15W means the nearest weekday to the
15th of the month. If the 15th is a Saturday, the trigger fires
on Friday 14th. If the 15th is a Sunday, it fires on Monday
16th. If the 15th is a Tuesday, it fires on Tuesday 15th.
However, if you specify 1W, and the 1st is a Saturday, the
trigger fires on Monday 3rd to avoid crossing the month
boundary. You can only specify the W character for a single
day, and not a range or list of days.

Specifies the nth XXX weekday of the month in the Day of
Week field. For example, a value of FRI#2 means the
second Friday of the month. However, if you specify #5,
and there are not 5 of the specified Day of the Week in the
month, no policy is run that month. When the # character is
specified, there can only be one expression in the Day of
Week field (for example, 2#1,6#4 is not valid because
there are two expressions).

Examples
The following are some of the cron expressions provided in the Schedule Library in the Policy Studio:

Cron Expression Description

0 15 10 ? * * Run at 10:15am every day.

0 15 10 ? * 6L 2011-2015 Run at 10:15am on every last Friday of every month during
the years 2011, 2012, 2013, 2014, and 2015.

0 15 10 ? * 6#3 Run at 10:15am on the third Friday of every month.

0 0 10 1,15 * ? Run at 10am on the 1st and 15th days of the month.

0 10,44 14 ? 3 WED Run at 2:10pm and at 2:44pm every Wednesday in the
month of March.

0,30 * * ? * SAT,SUN Run every 30 seconds but only on Weekends (Saturday
and Sunday).

0 0/5 14,18 * * ? Run every 5 minutes starting at 2pm and ending at 2:55pm,

Policy Execution Scheduling

254

Cron Expression Description

and every 5 minutes starting at 6pm and ending at 6:55pm,
every day.

0 0-5 14 * * ? Run every minute starting at 2pm and ending at 2:05pm,
every day.

Important
Please note the following:

• Support for specifying both a Day of Week and a Day of Month value is not complete. You must use
the ? or * character in one of these fields.

• Overflowing ranges with a larger number on the left than the right are supported (for example, 21-2 for
9pm until 2am , or OCT-MAR). However, overuse may cause problems with daylight savings (for ex-
ample, 0 0 14-6 ? * FRI-MON).

Adding a Schedule

To add a schedule to the globally available library in the Policy Studio, perform the following steps:

1. Select the Libraries -> Schedules node in the tree.
2. Click the Add button at the bottom of the Schedules screen.
3. In the Schedules dialog, enter a Name (for example, Run every 30 seconds).
4. Enter a Cron expression (for example, 0/30 * * * * ?). Alternatively, click the browse button to select an ex-

pression in Cron dialog. For more details, see the topic on Configuring Cron Expressions.
5. Click OK.

You can also edit or delete a selected schedule using the appropriate button.

Adding a Policy Execution Scheduler

To add a policy execution scheduler in the Policy Studio, perform the following steps:

1. Select the Listeners node on the left.
2. Right-click the Process node (for example, the default Oracle API Gateway), and select Add policy execution

scheduler.
3. Click the button next to the Schedule field, select a cron expression in the dialog, and click OK.
4. Click the button next to the Policy field, select a policy in the dialog, and click OK. You can search for a specific

policy by entering its name in the text box, and the policy tree is filtered automatically.
5. Click OK.

Policy Execution Scheduling

255

FTP Poller
Overview

The FTP Poller enables you to query and retrieve files to be processed by polling a remote file server. When the files are
retrieved, they can be passed into the API Gateway core message pipeline for processing. For example, you can use the
FTP Poller in cases where an external application drops files on to a remote file server, which can then be validated,
modified, and potentially routed on over HTTP or JMS by the API Gateway.

This kind of protocol mediation can be useful when integrating with Business-to-Business (B2B) partner destinations or
with legacy systems. For example, instead of making drastic changes to either system, the API Gateway can download
the files from the remote file server, and then route them on over HTTP to another back-end system. The added benefit
is that messages are exposed to the full compliment of message processing filters available in the API Gateway. This en-
sures that only properly validated messages are routed on to the target system.

The FTP Poller supports the following file transfer protocols:

• FTP: File Transfer Protocol
• FTPS: FTP over Secure Sockets Layer (SSL)
• SFTP: Secure Shell (SSH) File Transfer Protocol

To add a new FTP Poller, in the Policy Studio tree, under the Listeners node, right-click the process name (for example,
Oracle API Gateway), and select FTP Poller -> Add. This topic describes how to configure the fields on the FTP
Poller Settings dialog.

General Settings

This filter includes the following general settings:

Name:
Enter a descriptive name for this FTP Poller.

Enable:
Select whether this FTP Poller is enabled. This is selected by default.

Host:
Enter the host name of the file transfer server to connect to.

Port:
Enter the port on which to connect to the file transfer server. Defaults to 20.

User name:
Enter the username to connect to the file transfer server.

Password:
Specify the password for this user.

Scan Details

The fields configured in the Scan details section determine when to scan, where to scan, and what files to scan:

Poll every (ms):
Specifies how often in milliseconds the API Gateway scans the specified directory for new files. Defaults to 60000. To
optimize performance, it is good practice to poll often to prevent the number of files from building up.

256

Look in directory:
Enter the full path of the directory to scan for new files.

For files that match the pattern:
Specifies to scan only for files based on a pattern in a regular expression. For example, if you wish to scan only for files
with a particular file extension (for example, .xml), enter an appropriate regular expression. Defaults to the following ex-
pression:

([^\s]+(\.(?i)(xml|xhtml|soap|wsdl|asmx))$)

Process file with following policy:
Click the browse button to select the policy to process each file with. For example, this policy may perform tasks such as
validation, threat detection, content filtering, or routing over HTTP or JMS.

Delete file when complete:
Select whether to delete each processed file when complete. This is selected by default.

Establish new session for each file found:
Select whether to establish a new file transfer session for each file found. This is selected by default.

Connection Type

The fields configured in the Connection Type section determine the type of file transfer connection. Select the connec-
tion type from the drop-down list:

• FTP - File Transfer Protocol
• FTPS - FTP over SSL
• SFTP - SSH File Transfer Protocol

FTP and FTPS Connections

The following general settings apply to FTP and FTPS connections:

Passive transfer mode:
Select this option to prevent problems caused by opening outgoing ports in the firewall relative to the file transfer server
(for example, when using active FTP connections). This is selected by default.

File Type:
Select ASCII mode for sending text-based data or Binary mode for sending binary data over the connection. Defaults to
ASCII mode.

FTPS Connections

The following security settings apply to FTPS connections only:

SSL Protocol:
Enter the SSL protocol used (for example, SSL or TLS). Defaults to SSL.

Implicit:
When this option is selected, security is automatically enabled as soon as the FTP Poller client makes a connection to
the remote file transfer service. No clear text is passed between the client and server at any time. In this case, the client
defines a specific port for the remote file transfer service to use for secure connections (990). This option is not selected
by default.

Explicit:
When this option is selected, the remote file transfer service must explicitly request security from the FTP Poller client,

FTP Poller

257

and negotiate the required security. If the file transfer service does not request security, the client can allow the file trans-
fer service to continue insecure or refuse and/or limit the connection. This option is selected by default.

Trusted Certificates:
To connect to a remote file server over SSL, you must trust that server's SSL certificate. When you have imported this
certificate into the Certificate Store, you can select it on the Trusted Certificates tab.

Client Certificates:
If the remote file server requires the FTP Poller client to present an SSL certificate to it during the SSL handshake for
mutual authentication, you must select this certificate from the list on the Client Certificates tab. This certificate must
have a private key associated with it that is also stored in the Certificate Store.

SFTP Connections

The following security settings apply to SFTP connections only:

Present following key for authentication:
Click the button on the right, and select a previously configured key to be used for authentication from the tree. To add a
key, right-click the Key Pairs node, and select Add. Alternatively, you can import key pairs under the Certificates and
Keys node in the Policy Studio tree. For more details, see the topic on Certificates and Keys.

SFTP host must present key with the following finger print:
Enter the fingerprint of the public key that the SFTP host must present (for example,
43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8).

FTP Poller

258

Directory Scanner
Overview

The Directory Scanner enables you to scan a specified directory on the filesystem for files containing XML messages.
When the messages have been read, they can be passed into the core message pipeline, where the full collection of
message processing filters can act on them.

The Directory Scanner is typically used in cases where an external application is dropping XML files (perhaps by FTP) on
to the file system so that they can be validated, modified, and potentially routed onwards over HTTP or JMS. Alternat-
ively, they can simply be stored to another directory where the application can pick them up again.

This sort of protocol mediation is very useful in cases where legacy systems are involved. Instead of making drastic
changes to the legacy system by adding an HTTP engine, for example, the API Gateway can be used to pull the files
from the file system, and then route them on over HTTP to another back-end system. The added benefit is that mes-
sages are exposed to the full compliment of message processing filters made available by the API Gateway. This en-
sures that only properly validated messages are routed on to the target system.

To add a new Directory Scanner, in the Policy Studio tree, under the Listeners node, right-click the name of the Process
(for example, Oracle API Gateway), and select the Directory Scanner -> Add menu option. This topic describes
how to configure the fields on the Directory Scanner Settings dialog.

Directory to Scan

The fields configured in this section determine what files to scan, where to scan for them, and when to scan.

Name:
Enter or browse to the directory that the API Gateway scans for XML files.

File Name Pattern:
If you wish to scan only for files based on some pattern, you can specify the pattern as a regular expression. For ex-
ample, if you wish to scan only for files with a particular file extension, such as .xml, you can enter a regular expression
such as the following:

^[a-zA-Z\s]*.xml

Similarly, if a particular naming scheme is used when dropping the files into the configured directory, you can enter a reg-
ular expression to scan only for these files. For example, the following regular expression scans only files named using a
yyyy-mm-dd date format:

^(\d{4})[- /.]((1[012])|(0?[1-9]))[- /.]((3[01])|([012]?[1-9])|([12]0))$

Poll Rate:
The poll rate entered in milliseconds determines how often the API Gateway scans the directory for new XML files.

Directory for Output

When the Directory Scanner has finished scanning the files it moves them to another directory to avoid processing them
again. The fields configured in this section determine where processed files are placed and what they are called.

Name:
Enter the name of the directory to place the processed files. This may be the response from the Web Service (after the
policy has routed it onwards and received a response), or a modified message in cases where the policy has inserted a
security token into the message, or converted the message (for example, using XSLT).

259

File Prefix:
If you would like to save processed files into the directory above with a prefix added to the filename, enter the prefix here.
For example, you may want to prepend _PROCESSED to all processed files.

File Suffix:
Similarly, you can add a suffix to the output files by entering the suffix in this field.

Completed Directory

Processed files are removed from the source directory and placed into this directory post-processing to avoid re-
processing the same files over and over again.

Working Directory

Files are moved to the temporary directory specified here during processing. This is necessary in cases where the poll
rate is quite low, and there is a chance that the file may be scanned again before it is processed fully and moved to the
completed directory.

Policy to Use

The messages in the scanned XML files are passed into the policy selected here. If the policy routes messages to a Web
Service, the response from the service is placed in the output directory specified above. Similarly, if the policy modifies
the request, for example, by signing it or adding a security token to it, the updated message is also placed in the output
directory.

Directory Scanner

260

Packet Sniffers
Overview

Packet Sniffers are a type of Passive Service. Rather than opening up a TCP port and actively listening for requests, the
Packet Sniffer passively reads raw data packets off the network interface. The Sniffer assembles these packets into com-
plete messages that can then be passed into an associated policy.

Because the Packet Sniffer operates passively (does not listen on a TCP port) and, therefore, completely transparently to
the client, it is most useful for monitoring and managing Web Services. For example, the Sniffer can be deployed on a
machine running a Web Server acting as a container for Web Services. Assuming that the Web Server is listening on
TCP port 80 for traffic, the Packet Sniffer can be configured to read all packets destined for port 80 (or any other port, if
necessary). The packets can then be marshalled into complete HTTP/SOAP messages by the Sniffer and passed into a
policy that logs the message to a database, for example.

Important
On Linux and Solaris platforms, the API Gateway must be started by the root user to gain access to the raw
packets.

Configuration

Since Packet Sniffers are mainly for use as passive monitoring agents, they are usually created within their own HTTP
Service Group. For example, you can create a new Service Group for this purpose by right-clicking on the Process, se-
lecting the Add HTTP Services menu option, and entering Packet Sniffer Group on the HTTP Services dialog.

We can then add a Relative Path Service to this Group by right-clicking the Packet Sniffer Group, and selecting the
Add Relative Path menu option. Enter a path in the field provided, and select the policy that you want to dispatch mes-
sages to when the Packet Sniffer detects a request for this path (after it assembles the packets). For example, if the Rel-
ative Path is configured as /a, and the Packet Sniffer assembles packets into a request for this path, the request will be
dispatched to the policy selected in the Relative Path Service.

Finally, you can add the Packet Sniffer by right-clicking the Packet Sniffer Group node, selecting Packet Sniffer, and
then the Add menu option. Complete the following fields on the Packet Sniffer dialog:

Device to Monitor:
Enter the name or identifier of the network interface that the Packet Sniffer will monitor. The default entry is any.

Important
This setting is only valid on UNIX. On UNIX-based systems, network interfaces are usually identified using
names like eth0, eth1, and so on. On Windows, these names are more complicated (for example,
\Device\NPF_{00B756E0-518A-4144 ... }.

Filter:
The Packet Sniffer can be configured to only intercept certain types of packets. For example, it can ignore all UDP pack-
ets, only intercept packets destined for port 80 on the network interface, ignore packets from a certain IP address, listen
for all packets on the network, and so on.

The Packet Sniffer uses the libpcap library filter language to achieve this. This language has a complicated but powerful
syntax that allows you to filter what packets are intercepted and what packets are ignored. As a general rule, the syntax
consists of one or more expressions combined with conjunctions, such as and, or, and not. The following table lists a
few examples of common filters and explains what they filter:

261

Filter Expression Description

port 80 Capture only traffic for the HTTP Port (80).

host 192.168.0.1 Capture traffic to and from IP address 192.168.0.1.

tcp Capture only TCP traffic.

host 192.168.0.1 and port 80 Capture traffic to and from port 80 on IP address
192.168.0.1.

tcp portrange 8080-8090 Capture all TCP traffic destined for ports from 8080 through
to 8090.

tcp port 8080 and not src host 192.168.0.1 Capture all TCP traffic destined for port 8080 but not from
IP address 192.168.0.1.

The default filter of tcp captures all TCP packets arriving on the network interface. For more information on how to con-
figure filter expressions like these, please refer to the tcpdump man page available from ht-
tp://www.tcpdump.org/tcpdump_man.html.

Promiscuous Mode:
When listening in promiscuous mode, the Packet Sniffer captures all packets on the same Ethernet network, regardless
of whether or not the packets are addressed to the network interface that the Sniffer is monitoring.

Packet Sniffers

262

http://www.tcpdump.org/tcpdump_man.html
http://www.tcpdump.org/tcpdump_man.html

Messaging System
Overview

A messaging system is a loosely coupled, peer-to-peer facility where clients can send messages to, and receive mes-
sages from any other client. In a messaging system, a client sends a message to a messaging agent. The recipient of
the message can then connect to the same agent and read the message. However, the sender and recipient of the mes-
sage do not need to be available at the same time to communicate (for example, unlike HTTP). The sender and recipient
need only know the name and address of the messaging agent to talk to.

The Java Messaging System (JMS) is an implementation of such a messaging system. It provides an API for creating,
sending, receiving, and reading messages. Java-based applications can use it to connect to other messaging system im-
plementations. A JMS provider can deliver messages synchronously or asynchronously, which means that the client can
fire and forget messages or wait for a response before resuming processing. Furthermore, the JMS API ensures different
levels of reliability in terms of message delivery. For example, it can ensure that the message is delivered once and only
once, or at least once.

The API Gateway uses the JMS API to connect to other messaging systems that expose a JMS interface, including Or-
acle WebLogic Server, IBM MQSeries, JBoss Messaging, TIBCO EMS, IBM WebSphere Server, and Progress Son-
icMQ. As a consumer of a JMS queue or topic, the API Gateway can read XML messages and pass them into a policy
for validation. These messages can then be routed on over HTTP or dropped on to another JMS queue or topic.

Important
You must add the JMS provider's JAR files to the API Gateway classpath for this feature to function cor-
rectly. Copy the provider JAR files to the INSTALL_DIR/ext/lib folder, where INSTALL_DIR points to
the root of your API Gateway installation.

Configuring a JMS Service

You can configure a global JMS service under the External Connections node in Policy Studio by right-clicking the JMS
Services node, and selecting Add a JMS Service. The details entered in the JMS Service dialog are used by the API
Gateway to drop messages on to a JMS queue or topic. The Messaging System Connection filter uses JMS Services
configured here to do this.

Alternatively, you can configure a JMS service at the Process level, and configure the API Gateway to consume a JMS
queue or topic. Right-click the Process under the Listeners node in the Policy Studio, and select JMS Wizard.

Configure the following fields on the JMS Service dialog:

Name:
Enter a descriptive name for the JMS Provider in the Name field.

Provider URL:
Enter the URL of the JMS provider (for example, jnp://localhost:1099).

Initial Context Factory:
The API Gateway uses a connection factory to create a connection with a JMS provider. A connection factory encapsu-
lates a set of connection configuration parameters that have been defined by the administrator. For example, the initial
context factory class for the JBoss application server is org.jnp.interfaces.NamingContextFactory.

Connection Factory:
Enter the name of the connection factory to use when connecting to the JMS provider. The name of the connection fact-
ory is vendor-specific. For example, the connection factory used for the JBoss application server is
org.jnp.interfaces:javax.jnp.

263

Username:
If a user name is required to connect to this JMS provider, enter it in this field.

Password:
Enter the password for this user.

Custom Message Properties:
You can add JNDI context settings by clicking the Add button, and adding name and value properties in the fields.

When the JMS Service has been configured, you can configure the API Gateway to drop messages on to a queue or top-
ic exposed by this service by selecting it from the JMS Service field on the Messaging System Connection filter dialog
when configuring a policy. For more details, see the Messaging System Filter topic.

You can also configure JMS sessions for the newly added JMS Service at the Process level. For more details, see the
next section.

Configuring a JMS Session

JMS services have JMS sessions, which can be shared by multiple JMS consumers, or used by a single JMS consumer
only. To configure a JMS session, right-click the Process under the Listeners node in the Policy Studio tree, and select
Messaging System -> Add JMS Session. Alternatively, you can configure a JMS session using the JMS Wizard.

Configure the following fields on the JMS Session screen:

Service
Select a pre-configured JMS Service from the drop-down list. For more details, see the section called “Configuring a JMS
Service”.

Allow Duplicates
Typically, a JMS session operates in auto mode, meaning that messages received by the session are automatically ac-
knowledged to guarantee once-only message delivery. By selecting the Allow Duplicates checkbox, you are configuring
the JMS session to operate in duplicates okay mode. This means that messages are acknowledged lazily by the JMS
session with the result that duplicate messages are possible. If messages are not automatically acknowledged, the client
has no way of telling whether the JMS consumer received the message, and so may re-send the message. Running in
this mode reduces the overhead associated with the guarantee of once-only message delivery offered by auto mode.

Listener Count
Specify the number of listeners permitted for this JMS session. Defaults to 1. If the volume of messages arriving at the
queue is more than a single thread can process, you can increase the number of threads listening on the queue by in-
creasing the listener count.

Configuring a JMS Consumer

You can configure multiple JMS consumers under a single JMS session, which share that session. Alternatively, you can
configure a single JMS consumer per JMS session. Consumers sharing a JMS session access that session serially.
Each consumer blocks until a response (if any) is received. Consumers with their own session do not encounter this
problem, which may improve performance.

You can configure JMS consumers using the JMS Wizard, or by right-clicking an existing JMS session, and selecting
Add JMS Consumer.

Configure the following fields on the JMS consumer screen:

Source:
Enter the name of the queue or topic from which you want to consume JMS messages.

Selector:
The entered expression specifies the messages that the consumer is interested in receiving. Using a selector, the task of

Messaging System

264

filtering the messages is performed by the JMS provider instead of by the consumer. The selector is a string that spe-
cifies an expression whose syntax is based on the SQL-92 conditional expression syntax. The Process only receives
messages whose headers and properties match the selector.

Extraction Method:
Specify how to extract the data from the JMS message from the drop-down list:

• Create a content.body attribute based on the SOAP over JMS draft specification (the default)
• Insert the JMS message directly into the attribute named below
• Populate the attribute below with the value inferred from message type to Java

Attribute Name:
The name of the message attribute that holds the data extracted from the JMS message. Defaults to the jms.message
message attribute.

Policy:
Select the appropriate policy to run on the JMS message after it has been consumed by the API Gateway.

Send Response to Configured Destination:
Specifies whether the API Gateway sends a reply to the response queue named in the incoming message (in the
ReplyTo header). This option is selected by default. Deselecting this option means that the API Gateway never sends a
reply to the response queue named in the ReplyTo header.

Configuring the JMS Wizard

You can use the JMS Wizard to configure a Process to consume JMS messages from a JMS queue or topic. When a
message has been consumed by the API Gateway, it can be dispatched to a specified policy where the full compliment
of message filters can run on the message. The message can then be routed onwards over HTTP or dropped back on to
a JMS queue or topic.

To launch the JMS Wizard, right-click the Process under the Listeners node in the Policy Studio tree, and select Mes-
saging System -> JMS Wizard. The wizard includes the following configuration screens:

JMS Service Provider
The first screen in the wizard enables you to configure connection details to the JMS provider that produces the JMS
messages that are consumed by the API Gateway. For details on configuring the fields on this screen, see the section
called “Configuring a JMS Service”.

JMS Session Configuration
The second screen in the wizard enables you to configure the Allow Duplicates option for the JMS session that is es-
tablished with the JMS provider. For details on configuring this option, see the section called “Configuring a JMS Ses-
sion”.

JMS Consumer Configuration
The third screen in the wizard enables you to configure JMS consumer settings. For details on configuring the fields on
this screen, see the section called “Configuring a JMS Consumer”.

Messaging System

265

Remote Host Settings
Overview

You can use the Remote Host Settings to configure the way in which the API Gateway connects to a specific external
server or routing destination. For example, typical use cases for configuring Remote Hosts with the API Gateway are as
follows:

• Allowing the API Gateway to send HTTP 1.1 requests to a destination server when that server supports HTTP 1.1.
• Resolving inconsistencies in the way the destination server supports HTTP.
• Mapping a hostname to a specific IP address or addresses (for example, if a DNS server is unreliable or unavail-

able).
• Setting the timeout, session cache size, input/output buffer size, and other connection-specific settings for a destina-

tion server (for example, if the destination server is particularly slow, you can set a longer timeout).
• Stop accepting inbound connections on the HTTP Interface when the API Gateway loses connectivity to the remote

host.

You can add Remote Hosts per-process by right-clicking the Process in the Policy Studio tree view, and selecting Add
Remote Host. The tabs in the Remote Host Settings configuration screen are described in the next sections.

General Settings

You can configure the following settings on the General tab:

Host Name:
The host name or IP address of the Remote Host to connect to. If the host name entered in a Static Router filter
matches this host name, the connection-specific settings configured on the Remote Host dialog are used when connect-
ing to this host. This also includes any IP addresses listed on the Addresses tab, which override the default network
DNS server mappings, if configured.

Port:
The TCP port on the Remote Host to connect to.

Maximum Connections:
The maximum number of connections to open to a Remote Host. If the maximum number of connections has already
been established, the API Gateway Process waits for a connection to drop or become idle before making another re-
quest. The default maximum is 128 connections.

Allow HTTP 1.1:
The API Gateway uses HTTP 1.0 by default to send requests to a Remote Host. This prevents any anomalies if the des-
tination server does not fully support HTTP 1.1. If the API Gateway is routing on to a Remote Host that fully supports HT-
TP 1.1, you can use this setting to enable the API Gateway to use HTTP 1.1.

Include Content Length in Request:
When this option is selected, the API Gateway includes the Content-Length HTTP header in all requests to this Remote
Host.

Include Content Length in Response:
When this option is selected, if the API Gateway receives a response from this Remote Host that contains a Content-
Length HTTP header, it returns this length to the client.

Send Server Name Indication TLS extension to server:
Adds a field to outbound TLS/SSL calls that shows the name that the client used to connect. For example, this can be
useful if the server handles several different domains, and needs to present different certificates depending on the name
the client used to connect.

266

Verify server's certificate matches requested hostname:
Ensures that the certificate presented by the server matches the name of the remote host being connected to. This pre-
vents host spoofing and man-in-the-middle attacks. This setting is selected by default.

Address and Load Balancing Settings

You can configure the following settings on the Addresses and Load Balancing tab:

Addresses to use instead of DNS lookup:
You can add a list of IP addresses that the API Gateway uses instead of attempting a DNS lookup on the host name
provided. This is useful in cases where a DNS server is not available or is unreliable. By default, connection attempts are
made to the listed IP addresses on a round-robin basis.

For example, if a Static Router filter is configured to route to www.webservice.com, it first checks if any Remote
Hosts have been configured with a Host Name entry matching www.webservice.com. If it finds a Remote Host with
matching Host Name, it resolves the hostname to the IP addresses listed here. In addition, it uses all the connection-specif-
ic settings configured on the Remote Host dialog when routing messages to these IP addresses. If it can not find a
matching host, the Static Router filter uses whatever DNS server has been configured for the network on which the API
Gateway is running.

To add a list of IP addresses for a Remote Host, perform the following steps:

1. In the Addresses to use instead of DNS lookup box, select a priority group (for example, Highest Priority).
2. Click Add.
3. Enter an IP address or server name in the Configure IP Address dialog.
4. Click OK.
5. Repeat these steps to add more IP addresses as appropriate.

Load balancing:
The Load Balancing Algorithm drop-down box enables you to specify whether load balancing is performed on a simple
round-robin basis or weighted by response time. Simple Round Robin is the default algorithm. Connection attempts are
made to the listed IP addresses on a round-robin basis in each priority group. The Weighted by response time al-
gorithm compares the request/reply response times for the server address in each priority group. This is the simplest way
of estimating the relative load of the address. This algorithm works as follows:

1. The address with the least response time is selected to send the next message to.
2. If the address fails to send the message, it ignores that address for a period of time and selects another address in

the same way.
3. If all addresses in a given group fail to accept a connection, addresses in the next group in ascending order of prior-

ity are used in the same way.
4. Only when all addresses in all priorities have failed to accept connections is delivery of the message abandoned,

and an error raised.

The response times used by this algorithm decline over time. You can specify the rate of exponential decline by specify-
ing a Period to wait before response time is halved. The default is 10,000 ms (10 sec). This enables addresses that
were heavily loaded for a period of time to eventually resume accepting messages after the load subsides. For example,
server A takes 100 ms to reply, and the other servers in the same priority group reply in 25 ms. A Period to wait before
response time is halved of 10,000 ms (10 sec) means that after 20 seconds server A is retried along with the other
servers. In this case, the response time has been halved twice (100 ms / 2 / 2 = 25 ms).

Advanced Settings

The options available on the Advanced tab are used when creating sockets for connecting to the Remote Host. Default
values are provided for all fields, which should only be modified under advice from the Oracle Support Team (see Oracle

Remote Host Settings

267

Contact Details).

You can configure the following configuration options on the Advanced tab:

Active Timeout:
When the API Gateway receives a large HTTP request, it reads the request off the network when it becomes available. If
the time between reading successive blocks of data exceeds the Active Timeout, the API Gateway closes the connec-
tion. This prevents a Remote Host from closing the connection while sending data. Defaults to 30000 milliseconds (30
seconds). For example, the Remote Host's network connection is pulled out of the machine while sending data to the API
Gateway. When the API Gateway has read all the available data off the network, it waits the Active Timeout period be-
fore closing the connection.

Idle Timeout:
The API Gateway supports HTTP 1.1 persistent connections. The Idle Timeout is the time that API Gateway waits after
sending a message over a persistent connection to the Remote Host before it closes the connection. Defaults to 15000
milliseconds (15 seconds). Typically, the Remote Host tells the API Gateway that it wants to use a persistent connection.
The API Gateway acknowledges this, and keeps the connection open for a specified period of time after sending the
message to the host. If the connection is not reused by within the Idle Timeout period, the API Gateway closes the con-
nection.

Input Buffer Size:
The maximum amount of memory allocated to each request.

Output Buffer Size:
The maximum amount of memory allocated to each response.

Cache Addresses For:
The period of time to cache addressing information after it has been received from the naming service (for example,
DNS).

SSL Session Cache Size:
Specifies the size of the SSL session cache for connections to the remote host. This controls the number of idle SSL
sessions that can be kept in memory. Defaults to 32. If there are more than 32 simultaneous SSL sessions, this does not
prevent another SSL connection from being established, but means that no more SSL sessions are cached. A cache size
of 0 means no cache, and no outbound SSL connections are cached.

Tip
You can use this setting to improve performance because it caches the slowest part of establishing the SSL
connection. A new connection does not need to go through full authentication if it finds its target in the
cache.

At DEBUG level or higher, the API Gateway outputs trace when an entry goes into the cache, for example:

DEBUG 09:09:12:953 [0d50] cache SSL session 11AA3894 to support.acme.com:443

If the cache is full, the output is as follows:

DEBUG 09:09:12:953 [0d50] enough cached SSL sessions 11AA3894 to
support.acme.com:443 already

Input Encodings:
Click the browse button to specify the HTTP content encodings that the API Gateway can accept from peers. The avail-
able content encodings include gzip and deflate. By default, the content encodings configured the Default Settings
are used. You can override this setting at the Remote Host and HTTP interface levels. For more details, see the topic on
Compressed Content Encoding.

Remote Host Settings

268

Output Encodings:
Click the browse button to specify the HTTP content encodings that the API Gateway can apply to outgoing messages.
The available content encodings include gzip and deflate. By default, the content encodings configured the Default
Settings are used. You can override this setting at the Remote Host and HTTP interface levels. For more details, see
the topic on Compressed Content Encoding.

Configuring Watchdogs

You can configure an HTTP Interface to shut down based on certain conditions. One such condition is dependent on the
API Gateway being able to contact a particular back-end Web Service running on a Remote Host. To do this, you can
configure an HTTP Watchdog for a Remote Host to poll the endpoint. If the endpoint cannot be reached, the HTTP Inter-
face is shut down.

To configure the API Gateway to shut down an HTTP Interface based on the availability of a Remote Host, perform the
following steps:

1. Configure an HTTP Watchdog for the Remote Host.
2. Configure a Requires Endpoint condition on the HTTP Interface.
3. When configuring this condition, select the Remote Host configured in step 1 (the host with the associated Watch-

dog).

Note
When Load Balancing is configured as Weighted by response time, and Remote Host Watchdogs are
configured, the watch dog polling also contributes to the load balancing calculations.

For more information on adding a watchdog to a Remote Host, see Configuring an HTTP Watchdog. For more informa-
tion on adding Conditions to an HTTP Interface, see Configuring Conditions for HTTP Interfaces.

Remote Host Settings

269

Configuring an HTTP Watchdog
Overview

An HTTP Watchdog can be added to a Remote Host configuration in order to periodically poll the Remote Host to check
its availability. The idea being that if the Remote Host becomes unavailable for some reason, a HTTP Interface can be
brought down and will stop accepting requests. Once the Remote Host comes back online, the HTTP Interface will be
automatically started up and will start accepting requests again.

To learn more about the reasons for shutting down an HTTP Interface if certain conditions do not hold, please refer to the
help page on Configuring Conditions for HTTP Interfaces.

To configure an HTTP Watchdog, right-click a previously configured Remote Host in the tree view of the Policy Studio
and select th Watchdog -> Add menu option. Configure the following sections on the Configure HTTP Watchdog dia-
log.

Configuration

Valid HTTP Response Code Ranges:
You can use this section to specify the HTTP response codes that you will regard as proof that the Remote Host is avail-
able. For example, if a 200 OK HTTP response is received for the poll request, the Remote Host can be considered
available.

To specify a range of HTTP status codes, click the Add button and enter the Start and End of the range of HTTP re-
sponse codes in the fields provided. An exact response code can be specified by entering the response code in both
fields, e.g. "200".

HTTP Request for Polling:
The fields in this section allow you to configure the type and URI of the HTTP request to use to poll the Remote Host
with. The default option is to use the Options HTTP command with a URI of "*", which is typically used to retrieve status
information about the HTTP server.

If you wish to use an alternative HTTP request to poll the Remote Host, select an HTTP request method from the Meth-
od dropdown and then specify the URI to use in the URI field.

Remote Host Polling:
The settings in this section determine when and how the HTTP Watchdog polls the Remote Host. The Poll Frequency
determines how often the Watchdog is to send the polling request to the Remote Host.

By default, the Watchdog uses "real" HTTP requests to the Remote Host to determine its availability. In other words, if
the API Gateway is sending a batch of requests to the Remote Host it will use the response codes from these requests to
decide whether or not the Remote Host is up. Therefore, the Watchdog effectively "polls" the Remote Host by sending
real HTTP requests to it.

If you want to configure the Watchdog to send poll requests during periods when it is not sending requests to and receiv-
ing responses from the Remote Host, you should select the Poll if up checkbox. In this case the Watchdog will use "real"
HTTP requests to poll the Remote Host as long as it is sending them, but will start sending "test" poll requests when it is
not sending HTTP requests to the Remote Host in order to test its availability.

Important
When a Remote Host is deemed to be down (an "invalid" HTTP response code was received) the Watch-
dog will continue to poll it at the configured Poll Frequency until it comes back up again (until a "valid" HT-
TP response code is received).

270

Configuring Conditions for HTTP Interfaces
Overview

In certain cases, it may be desirable to pull down the HTTP Interface that accepts traffic for the API Gateway. For ex-
ample, if the back-end Web Service is unavailable or if the physical interface on the machine loses connectivity to the
network, it is possible to shut down the HTTP Interface so that it stops accepting requests.

A typical scenario where this functionality proves useful is as follows:

• A load balancer sits in front of several running instances of the API Gateway and round-robins requests between
them all.

• A client sends SSL requests through the load balancer, which forwards them opaquely to one of the API Gateway in-
stances.

• The API Gateway terminates the SSL connection, processes the message with the configured policy, and forwards
the request on to the back-end Web Service.

In this deployment scenario, the load balancer does not want to keep sending requests to an instance of the API Gate-
way if it has either lost connectivity to the network or if the back-end Web Service is unavailable. If either of these condi-
tions hold, the load balancer should stop attempting to route requests through this instance of the API Gateway and use
the other instances instead.

So then, how can the load balancer determine the availability of the Web Service and also the connectivity of the ma-
chine hosting the API Gateway to the network on which the Web Service resides? Given that the request from the client
to the API Gateway is over SSL, the load balancer has no way of decrypting the encrypted SSL data to determine wheth-
er or not a SOAP Fault, for example, has been returned from the API Gateway to indicate a connection failure.

The solution is to configure certain conditions for each HTTP Interface, which must hold in order for the HTTP Interface
to remain available and accept requests. If any of the associated conditions fail, the Interface will be brought down and
will not accept any more requests until the failed condition becomes true and the HTTP Interface is restarted. Once the
load balancer receives a connection failure from the API Gateway (which it will when the HTTP Interface is down) it will
stop sending requests to this API Gateway and will choose to round-robin requests amongst the other instances instead.

The following conditions can be configured on the HTTP Interface:

• Requires Endpoint:
The HTTP Interface will remain up only if the Remote Host is available. The Remote Host is polled periodically to de-
termine availability so that the HTTP Interface can be brought back up automatically when the Remote Host be-
comes available again.

• Requires Link:
The HTTP Interface will remain up only if a named physical interface has connectivity to the network. As soon as a
"down" physical interface regains connectivity, the HTTP Interface will automatically come back up again.

Conditions can be configured for an HTTP Interface by right clicking on the HTTP Interface (e.g. "*:8080") node under
the Process node in the tree view of the Policy Studio. Select the Add Condition menu option and then either the Re-
quires Endpoint or Requires Link option depending on your requirements. The sections below describe how to config-
ure these conditions.

Requires Endpoint Condition

A Requires Endpoint Condition can be configured in cases where you only want to keep the HTTP Interface up if the
back end Web Service (i.e. the Remote Host) is available. An HTTP Watchdog can be configured for the Remote Host,
which is then responsible for polling the Remote Host periodically to ensure that the Web Service is available. Take a
look at the Remote Host Settings and Configuring an HTTP Watchdog help pages for more information.

271

Remote Host:
The HTTP Interface will be shut down if the Remote Host selected here is deemed to be unavailable. The Remote Host
can be continuously polled so that the Interface can be brought up again when the Remote Host becomes available
again.

Requires Link Condition

The Requires Link Condition is used to bring down the HTTP Interface if a named physical network interface is no
longer connected to the network. For example, if the cable is removed from the ethernet switch, the dependent HTTP In-
terface will be brought down immediately. The HTTP Interface will only start listening again once the physical interface is
connected to the network again (i.e. when the ethernet cable is plugged back in).

Important
The Requires Link Condition is only available on Linux and Solaris platforms.

Interface Name:
The HTTP Interface will be brought down if the physical network interface named here is no longer connected to the net-
work. On Unix platforms, physical network interfaces are usually named "eth0", "eth1", and so on. On Solaris machines,
interfaces are named according to the vendor of the network card, for example, "bge0", "bge1", etc.

Configuring Conditions for HTTP Interfaces

272

POP Client
Overview

The POP Client enables you to poll a Post Office Protocol (POP) mail server and read email messages from it. When the
messages have been read, they can be passed into the core message pipeline where the full collection of message pro-
cessing filters can act on them.

Configuration

You can configure a POP Client by right-clicking a Process node under the Listeners node in the Policy Studio tree, and
selecting the POP Client -> Add menu option. Complete the following fields on the POP Mail Server dialog:

Server Name:
Enter the hostname or IP address of the POP mail server.

Port:
Enter the port on which the POP server is listening. By default, POP servers listen on port 110.

Connection Security:
Select the security used to connect to the POP server (SSL, TLS, or NONE). Defaults to NONE.

User Name:
Enter the user name of a configured mail user for this POP server.

Password:
Enter the password for this user.

Poll Rate:
Enter the rate at which the Process polls the mail server in milliseconds.

Delete Message from Server:
Specifies whether the POP server deletes email messages after they have been read by the Process. This setting is se-
lected by default.

Email Debugging
Select this setting to find out more information about errors encountered by the API Gateway when polling the POP serv-
er. All trace files are written to the /trace directory of your the API Gateway installation. This setting is not selected by
default.

Policy to Use:
Select the policy that you want to use to process messages that have been read from the POP server.

273

TIBCO Integration
Overview

The API Gateway ships with in-built support for TIBCO Enterprise Messaging System (EMS) and TIBCO Rendezvous
enterprise-level products. The API Gateway can both produce and consume messages for both systems. This topic de-
scribes how to integrate with both TIBCO EMS and TIBCO Rendezvous. The reader is advised to follow the relevant
links for more information on each of the steps involved.

TIBCO Rendezvous Integration

The API Gateway can act as both a producer and consumer of TIBCO Rendezvous messages. In both cases, a Rendez-
vous daemon must be configured, which is responsible for communicating with other Rendezvous programs on the net-
work.

Producing TIBCO Rendezvous Messages:
The following steps must be configured in order to produce messages and send them to another Rendezvous program.
Follow the links below to learn more about how to configure each of the steps involved.

• TIBCO Rendezvous Daemon
• TIBCO Rendezvous Routing

Consuming TIBCO Rendezvous Messages:
A TIBCO Rendezvous Listener can be configured at the API Gateway instance level in order to consume Rendezvous
messages. The following steps must be followed in order to consume Rendezvous messages. Take a look at the help
pages for the steps below for more complete information.

• TIBCO Rendezvous Daemon
• TIBCO Rendezvous Listener

TIBCO Enterprise Messaging Service Integration

The API Gateway can also be configured to produce and consume messages for TIBCO Enterprise Messaging Service
(EMS) product. The first step in configuring either a producer or consumer or EMS messages is to configure a TIBCO
Connection. The producer or consumer can then be configured.

Producing EMS Messages:
The following steps must be configured in order to send messages to an EMS Server. Follow the links below to learn
more about how to configure each of the steps involved.

• TIBCO Enterprise Messaging Service Connection
• TIBCO Enterprise Messaging Service Routing Filter

Consuming TIBCO EMS Messages:
A TIBCO EMS Consumer can be configured at the API Gateway instance level to consume messages from a queue or
topic on an EMS Server. The following steps must be followed to consume EMS messages. For more details, see the fol-
lowing topics:

• TIBCO Enterprise Messaging Service Connection
• TIBCO Enterprise Messaging Service Consumer

274

Cryptographic Acceleration
Overview

The API Gateway uses OpenSSL to perform cryptographic operations, such as encryption and decryption, signature
generation and validation, and SSL tunneling. OpenSSL exposes an Engine API, which makes it possible to plug in al-
ternative implementations of some or all of the cryptographic operations implemented by OpenSSL. When configured ap-
propriately, OpenSSL calls the engine's implementation of these operations instead of its own.

For example, a particular engine may provide improved implementations of the asymmetric operations RSA and DSA.
This engine can then be plugged into OpenSSL so that whenever OpenSSL needs to perform either an RSA or DSA op-
eration, it calls out to the engine's implementation of these algorithms rather than call its own.

Typically, OpenSSL engines provide a hardware implementation of specific cryptographic operations. The hardware im-
plementation usually offers improved performance over its software-based counterpart, which is known as cryptographic
acceleration.

Cryptographic acceleration can be configured at the process level in the API Gateway. To configure the API Gateway
process to use an OpenSSL engine instead of the default OpenSSL implementation, right-click the process in the tree-
view in Policy Studio, and select the Cryptographic Acceleration -> Add OpenSSL Engine.

General Configuration

The OpenSSL Engine Configuration dialog:

The dialog displays the name of the engine, the algorithms that it implements, together with any initialization and cleanup
commands required by the engine. Complete the following fields:

Name:
Enter an appropriate name for the engine in this field.

Provides:
Enter a comma-separated list of cryptographic operations to be performed by the engine instead of OpenSSL. The en-
gine must implement the listed operations, otherwise the default OpenSSL operations are used. The following operations
are available:

RSA RSA (Rivest Shamir Adleman) asymmetric algorithm

DSA DSA (Digital Signature Algorithm) asymmetric algorithm

RAND Random number generation

DH Diffie-Hellman anonymous key exchange algorithm

ALL Engine's implementation of all cryptographic algorithms

For example, if you want to configure the API Gateway to use the engine's implementation of the RSA, DSA, and DH al-
gorithms only, enter the following in the Provides field:

RSA, DSA, DH

Commands:
The OpenSSL engine framework allows a number of control commands to be invoked at various stages in the loading
and unloading of a specific engine library. These commands can be issued before and/or after the initialization of the en-

275

gine, and also before and/or after the engine is un-initialized. Control commands are based on text name-value pairs.

Typical uses for control commands include specifying the path to a driver library, logging configuration information, a
password to access a protected devices, a configuration file required by the engine, and so on.

OpenSSL control commands can be added by clicking the Add button. The OpenSSL Engine Command:

Enter the name of the command in the Name field, and its value in the Value field. This command must be supported by
the engine.

Use the When drop-down list to select when the command is to be run. The options available are as follows:

preInit Command is run before the engine is initialized (before the
call to ENGINE_init()).

postInit Command is run after the engine is initialized (after the call
to ENGINE_init()).

preShutdown Command is run before the engine shuts down (before the
call to ENGINE_finish()).

postShutdown Command is run after the engine shuts down (after the call
to ENGINE_finish().

Conversations for Crypto Engines

A Hardware Security Module (HSM) protects the private keys that it holds using a variety of mechanisms, including phys-
ical tokens, passphrases, and other methods. When use of the private key is required by an agent, it must authenticate
itself with the HSM, and be authorized to access this data.

For information on how the API Gateway interacts with the HSM, see the Cryptographic Acceleration Conversation: Re-
quest-Response topic.

Cryptographic Acceleration

276

Cryptographic Acceleration Conversation:
Request-Response
Conversations for Crypto Engines

Hardware Security Modules (HSM) protect the private keys they hold using a variety of mechanisms, including physical
tokens, passphrases, and other methods. When use of the private key is required by some agent, it must authenticate it-
self with the HSM, and be authorized to access this data.

Whatever the mechanism protecting the keys on the HSM, this commonly requires some interaction with the agent. The
most common form of interaction required is for the agent to present a passphrase. The intent is generally that this is car-
ried out by a real person, rather than produced mechanically by the agent. Other forms of interaction may include
prompting the operator to insert a specific card into a card reader.

However, the requirement for an operator to enter a passphrase renders automated startup of services using the HSM
impossible. Although weaker from a security standpoint, the server can conduct an automated dialog with a HSM when it
requires access to a private key, presenting specific responses to specific requests, including feeding passphrases to it.
Of course, this is futile if the dialog calls for the insertion of a physical token in a device.

The dialogue for different keys on the same device is often the same. For example, a number of keys on an nCipher
HSM may require the server to present an operator passphrase for a pre-inserted card in a card-reader. The specific dia-
logues are therefore associated with the cryptographic engine.

Each dialogue consists of a set of expected request-generated response pairs. The expected request takes the form of a
regular expression. When the cryptographic device prompts for input, the text of this prompt is compared against each
expected request in the conversation, until a match is found. When matched, the corresponding generated response is
delivered to the HSM.

In the simplest case, consider a HSM producing the following prompt:

Enter passphrase for operator card Operator1:

You can identify this, for example, with the following regular expression:
"passphrase.*Operator1"

In the configured conversation, you can make the expected response to this prompt the passphrase for the specific card,
for example:
"tellNoOne"

The server is somewhat at the mercy of the HSM for how this dialog continues. If the HSM continues to prompt for re-
quests, the server can only attempt to respond. You may set the maximum expected challenge setting on the conversa-
tion to indicate a maximum number of prompts to expect from the HSM, at which point the server does its best to termin-
ate the conversation, almost certainly failing to load the affected key.

277

TIBCO Rendezvous Daemon
Overview

TIBCO Rendezvous® is the leading low latency messaging product for real-time high throughput data distribution applica-
tions. A message can be sent from the TIBCO daemon running on the local machine to a single TIBCO daemon running
on a separate host machine or it can be broadcast to several daemons running on multiple machines. Each message
has a subject associated with it, which acts as the destination of the message.

A listener, which is itself a TIBCO daemon, can declare an interest in a subject on a specific daemon. Whenever a mes-
sage is delivered to this subject on the daemon the message is delivered to the listening daemon.

The API Gateway can act as a listener on a specific subject at a TIBCO daemon, in which case it said to be acting as a
consumer of TIBCO messages. Similarly, it can also send messages to a TIBCO daemon, effectively acting as a produ-
cer of messages. In both cases, the local TIBCO daemon must be configured to talk to the TIBCO daemons running on
the remote machines.

For more information on consuming and producing messages to and from TIBCO Rendezvous, please refer to the follow-
ing help pages:

• TIBCO Integration
• TIBCO Rendezvous Listener
• TIBCO Rendezvous Routing

The remainder of this page describes how to configure a TIBCO Rendezvous Daemon. For a more detailed description
of how to configure the fields on this dialog please refer to your TIBCO Rendezvous documentation.

Configuration

You can configure TIBCO Rendezvous Daemons under the External Connections tree node in the Policy Studio.
Right-click the TIBCO Rendezvous Daemons node, and select Add a TIBCO Rendezvous Daemon. Configure the fol-
lowing fields on the TIBCO Daemon Settings dialog:

Name:
Enter a friendly name for this TIBCO Rendezvous Daemon. When configured, this name is available for selection when
configuring a TIBCO Rendezvous Listener and a TIBCO Rendezvous Connection filter.

Service:
Communication between TIBCO Rendezvous daemons takes place using Pragmatic General Multicast (PGM) or Univer-
sal Datagram Protocol (UDP) services. The specified service parameter configures the local TIBCO Rendezvous dae-
mon to use this type of service when sending or broadcasting messages to other TIBCO Rendezvous daemons who are
also using this service.

You can specify the service in the following ways:

• By Service Name:
If your network administrator has added an entry for TIBCO Rendezvous in a network database such as NIS (for ex-
ample, rendezvous 7500/udp), you can enter the name of the service (for example, rendezvous) in this field.

• By Port Number:
Alternatively, you can enter the port number on which the TIBCO Rendezvous daemon is listening (for example,
7500).

• Default Option:
If you leave this field blank, a default service name of rendezvous is assumed. For this reason, administrators
should add an entry in the network database with this name (for example, rendezvous 7500/udp. This enables
you to leave this field blank so that this default service is used.

278

Network:
If the machine on which the TIBCO Rendezvous daemon is running has more than one network interface, you can spe-
cify what interface to use for all communications with other daemons. Each TIBCO Rendezvous daemon can only com-
municate on a single network, meaning that separate daemons must be configured for each network you want the dae-
mon to communicate on.

For simplicity, you can leave this field blank, in which case the primary network interface is used for communication with
other daemons. For more information on how to configure different networks and multicast groups, please see the
TIBCO Rendezvous documentation.

Daemon:
The value entered here tells the API Gateway where it can find the TIBCO Rendezvous daemon, which is responsible for
communicating with all other daemons on the network. This daemon can be local or remote.

For local daemons you need only specify the port number that the daemon is running on (for example 6500). Alternat-
ively, you can leave this field blank to connect to the daemon on the default port.

To connect to a remote daemon, you must specify both the host and port number of the daemon in this field (for example
daemon_host:6500).

TIBCO Rendezvous Daemon

279

TIBCO Rendezvous Listener
Overview

TIBCO Rendezvous® is the leading low latency messaging product for real-time high throughput data distribution applica-
tions. A message can be sent from the TIBCO daemon running on the local machine to a single TIBCO daemon running
on a separate host machine or it can be broadcast to several daemons running on multiple machines. Each message
has a subject associated with it, which acts as the destination of the message.

A listener, which is itself a TIBCO daemon, can declare an interest in a subject on a specific daemon. Whenever a mes-
sage is delivered to this subject on the daemon the message will be delivered to the listening daemon.

The API Gateway can act as a listener on a specific subject at a TIBCO daemon, in which case it said to be acting as a
consumer of TIBCO messages. Similarly, it can also send messages to a TIBCO daemon, effectively acting as a produ-
cer of messages. For more information on how to send messages to other TIBCO Rendezvous programs, see the
TIBCO Rendezvous Routing filter.

Configuration

A TIBCO Rendezvous Listener is configured at the API Gateway instance level in the Policy Studio. To add a listener,
right-click the Oracle API Gateway instance in the tree view of the Policy Studio. Select the TIBCO -> Rendezvous
Listener -> Add option from the context menu. Configure the following fields on the TIBCO Rendezvous Listener dia-
log:

TIBCO Settings Tab:
Enter the name of the subject that you want this consumer to listen for in the Rendezvous Subject field. Only messages
addressed with this subject are consumed by the listener.

Click the button next to the TIBCO Rendezvous Daemon to use field, and select a previously configured TIBCO Ren-
dezvous Daemon to communicate with other TIBCO programs. To add a TIBCO Rendezvous Daemon, right-click the
TIBCO Rendezvous Daemons tree node, and select Add a TIBCO Rendezvous Daemon. For more details, see the
TIBCO Rendezvous Daemon topic.

Policy to Use:
When messages with the specified subject have been consumed they must be passed into a policy where they can be
processed accordingly. Select the policy that you want to use to process consumed messages from the tree.

280

TIBCO Enterprise Messaging Service Consumer
Overview

TIBCO Enterprise Messaging Service™ (EMS) provides a distributed message bus with native support for Java Mes-
saging Service (JMS) and TIBCO Rendezvous, along with other protocols.

In general, TIBCO EMS clients produce messages and send them to the TIBCO EMS Server. Similarly, TIBCO EMS cli-
ents can connect to the TIBCO EMS Server and declare an interest in a particular queue or topic on that server. In doing
so, it can consume messages that have been produced by another TIBCO EMS client.

The API Gateway can act as a message producer by sending messages to the TIBCO EMS Server and as a message
consumer by listening on a queue or topic at the server. Both configurations require a connection to the TIBCO EMS
Server. For more information on consuming and producing messages to and from TIBCO EMS, please refer to the fol-
lowing pages:

Configuration

TIBCO EMS Consumers are added at the API Gateway instance level in the Policy Studio. To add a consumer, right-
click the Oracle API Gateway node under Listeners in the Policy Studio tree view. Select the TIBCO -> Enterprise
Messaging Consumer Service -> Add options from the context menus. The following tabs and fields should be con-
figured on the TIBCO Enterprise Messaging Service Consumer dialog.

Connection Tab:
Click the button on the right, and select a previously configured TIBCO EMS Connection for this consumer to connect to.
To add a TIBCO EMS Connection, right-click the TIBCO EMS Connections tree node, and select Add a TIBCO EMS
Connection. For more details see the TIBCO Enterprise Messaging Service Connection topic.

Settings Tab:
Configure the following fields on the Settings tab:

Destination Type:
Select whether this consumer will read messages off a queue or topic.

Queue/Topic Name:
Enter the name of the queue or topic here.

Selector:
Enter a filter to restrict the messages that are read off the queue or topic.

Do Not Receive Local Messages:
Check this option if you do not want to consume messages that have been produced by the API Gateway. For example,
if you have configured a TIBCO EMS Routing filter to place messages on to a queue and have also configured a TIBCO
EMS Consumer to read messages from the same queue, you can check this option to ensure that the consumer will ig-
nore these locally generated messages.

Extraction Method:
The option selected here determines how the API Gateway will serialize the JMS message consumed from the queue or
topic so that it can be passed into the policy selected on the Policy tab. The following options are available:

• Create a content.body attribute based on the SOAP over JMS draft specification:
If this option is selected, messages are formatted according to the SOAP over JMS [http://www.w3.org/TR/soapjms/]
recommendation, and stored in the content.body message attribute.

• Insert the JMS message directly into the attribute named below:
Select this option to simply store the JMS message directly into the attribute specified in the Attribute Name field
below.

281

http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/

• Populate the attribute below with the value inferred from message type to Java:
Select this option if you wish to infer the data type of the JMS message from the underlying TIBCO EMS data type.
In this case a TIBCO EMS TextMessage, BytesMessage, and MapMessage, will be converted into a
java.lang.String, a byte[], and a java.lang.Map, respectively, while a JMS ObjectMessage will be deserialized into the
attribute specified in the Attribute Name field below.

Attribute Name:
Once the message has been consumed it will be stored in the Oracle message attribute specified here. The Extraction
Method selected above will determine how the raw JMS message is deserialized to the specified attribute. The con-
sumed message can be processed at any stage hereafter in the policy selected on the Policy tab by accessing this at-
tribute. By default the message is stored in the ems.message attribute.

Policy Tab:
Select a previously configured policy that you want to pass messages to after consuming the messages from the queue
or topic configured on the Settings tab.

TIBCO Enterprise Messaging Service Consumer

282

Oracle Security Service Module Settings (10g)
Overview

An Oracle Security Service Module (SSM) integrates a secured application (in this case, the API Gateway) with an Or-
acle Entitlements Server (OES) 10g so that security administration (for example, roles, resources, and policies) is deleg-
ated to the Oracle Entitlements Server 10g. An SSM must be installed on the machine hosting the application to be se-
cured by the Oracle Entitlements Server 10g. The SSM runs in-process with the secured application, which improves
performance and on-the-wire security.

In the Policy Studio, select the Settings node in the tree, and click the Security Service Module tab at the bottom of the
screen. The Security Service Module settings enable you to configure the API Gateway to act as a Java SSM. For
more details on Oracle Entitlements Server 10g and SSMs, see the Oracle Entitlements Server [ht-
tp://www.oracle.com/technetwork/middleware/oes/overview/index.html] website.

Important
Oracle SSM is required only for integration with Oracle OES 10g. Oracle SSM is not required for integration
with Oracle OES 11g. OES 10g was previously known as BEA AquaLogic Enterprise Security (ALES).
Some items, such as schema objects, paths, and so on, may still use the ALES name.

Prerequisites

Before configuring the settings on the Security Service Module tab, you must perform the following prerequisite tasks:

Test the SSM Installation
Because the API Gateway is running a Java SSM internally, it is recommended that the example Java SSM client that
ships with the OES installation is set up and configured. This example can be found in the following directory:
/ales32-ssm/java-ssm/examples/JavaAPIExample
Follow the instructions in the README file in this directory to test the installation. When the testing of the
JavaAPIExample is complete, all the configuration files for an SSM instance are located in the /
ales32-ssm/java-ssm/SSM-Name directory, where SSM-Name is the name of the SSM setup when testing the ex-
ample.

Configure the API Gateway Classpath
The API Gateway classpath must be updated to include the JARs and configuration files for the SSM instance. The
jvm.xml file must be updated so that various environment variables and the SSM-Name are updated to reflect the in-
stallation of the Java SSM. At minimum, the following must be updated in jvm.xml:

<Environment name="BEA_HOME" value="/opt/apps/bea" >
<Environment name="INSTANCE_NAME" value="SSM-Name" >

For example, to modify the classpath, place the following jvm.xml in the conf directory of the API Gateway installation:

<!--Additional JVM settings to run with Oracle Entitlements Server BEA_HOME must be set
to the location where the SSM is installed-->

<ConfigurationFragment>
<!-- Environment variables -->
<!-- change these to match location where SSM has been installed and configured -->
<Environment name="BEA_HOME" value="/opt/apps/bea" />
<Environment name="ALES_SHARED_HOME" value="$BEA_HOME/ales32-shared" />

<!-- Name of the SSM running in the API Gateway, replace the "SSM-Name" with the name of
the SSM for the API Gateway -->

283

http://www.oracle.com/technetwork/middleware/oes/overview/index.html
http://www.oracle.com/technetwork/middleware/oes/overview/index.html
http://www.oracle.com/technetwork/middleware/oes/overview/index.html

<Environment name="INSTANCE_NAME" value="SSM-Name" />
<Environment name="INSTANCE_HOME" value="$BEA_HOME/ales32-ssm/java-ssm/instance/
$INSTANCE_NAME" />
<Environment name="PDP_PROXY" value="$INSTANCE_HOME/pdpproxy" />

<!-- Location of the Java SSM libraries -->
<!-- <ClassDir name="$BEA_HOME" /> -->
<ClassDir name="$BEA_HOME/ales32-ssm/java-ssm/lib" />
<ClassDir name="$BEA_HOME/ales32-ssm/java-ssm/lib/providers/ales" />

<!-- Add location of the SSM configuration to classpath -->
<ClassPath name="$INSTANCE_HOME/config/" />

<!-- Additional JVM parameters based on the %JAVA-OPTIONS% of set-env script in SSM
instance running in API Gateway $BEA_HOME/ales32-ssm/java-ssm/instance/ssm-name/config-->
<VMArg name="-Dwles.scm.port=7005" />
<VMArg name="-Dwles.arme.port=8000" />
<VMArg name="-Dwles.config.signer=Oracle Entitlements Serverdemo.oracle.com" />
<VMArg name="-Dlog4j.configuration=file:$INSTANCE_HOME/config/log4j.properties" />
<VMArg name="-Dlog4j.ignoreTCL=true" />
<VMArg name="-Dwles.ssl.passwordFile=$ALES_SHARED_HOME/keys/password.xml" />
<VMArg name="-Dwles.ssl.passwordKeyFile=$ALES_SHARED_HOME/keys/password.key" />
<VMArg name="-Dwles.ssl.identityKeyStore=$ALES_SHARED_HOME/keys/identity.jceks" />
<VMArg name="-Dwles.ssl.identityKeyAlias=wles-ssm" />
<VMArg name="-Dwles.ssl.identityKeyPasswordAlias=wles-ssm" />
<VMArg name="-Dwles.ssl.trustedCAKeyStore=$ALES_SHARED_HOME/keys/trust.jks" />
<VMArg name="-Dwles.ssl.trustedPeerKeyStore=$ALES_SHARED_HOME/keys/peer.jks" />
<VMArg name="-Djava.io.tmpdir=$INSTANCE_HOME/work/jar_temp" />
<VMArg name="-Darme.configuration=$INSTANCE_HOME/config/WLESarme.properties" />
<VMArg name="-Dales.blm.home=$INSTANCE_HOME" />
<VMArg name="-Dkodo.Log=log4j" />
<VMArg name="-Dwles.scm.useSSL=true" />
<VMArg name="-Dwles.providers.dir=$BEA_HOME/ales32-ssm/java-ssm/lib/providers"/>
<VMArg name="-Dpdp.configuration.properties.location=$PDP_PROXY/
PDPProxyConfiguration.properties"/>

</ConfigurationFragment>

Centralize All Trace Output
Oracle’s Java SSM uses log4j to output any diagnostics. You can also add these messages to the API Gateway trace
output by adding the log4j that ships with the API Gateway to the following file:

/ales32-ssm/java-ssm/SSM-NAME/conf/log4j.properties

Then the log4j.rootCategory=WARN, A1, ASIlogFile line includes a new appender called VordelTrace as
follows:

log4j.rootCategory=WARN, A1, ASIlogFile, VordelTrace

Add the configuration for this new appender by adding the following line to the file:

log4j.appender.VordelTrace=com.vordel.trace.VordelTraceAppender

You can now start the API Gateway so that it runs with the Java SSM classpath and the centralized trace output.

Further Information
For more details on configuring and testing SSMs, see the Oracle SSM Installation and Configuration Guide.

Settings

Oracle Security Service Module Settings (10g)

284

On the Security Service Module settings screen, configure the following fields on the Settings tab:

Enable Oracle Security Service Module:
Select whether to enable the API Gateway process to act as an SSM. This setting is disabled by default.

Application Configuration Name:
Enter the Application Configuration name for the SSM instance. This is the name of your runtime application used by
OES (for example, for monitoring purposes).

Configuration Name:
Enter the OES Configuration name for the SSM instance to be stored in the OES Configuration Repository. Configuration
names share the same name as their Policy Domain names.

Application Configuration Properties:
Click Add to specify optional configuration properties as name-value pairs. Enter a Name and Value in the Properties
dialog. Repeat to specify multiple properties.

Policy Domain Name:
Enter the OES Policy Domain name for the SSM instance. Policy Domains contain policy definitions (target resource,
permission set, and policy). Policy Domain names share the same name as their Configuration names.

Name Authority Definition

Configure the following field on the Name Authority Definition tab:

Name Authority Definition File:
Click the Browse button at the bottom right to configure the Name Authority Definition file for the SSM. This is an XML
file that specifies the naming authority definition required for the API Gateway. For example, a specified XML file named
apigatewayNameAuthorityDefinition.xml file should contain the following settings:

<AuthorityConfig>
<AuthorityDefinition name="apigatewayResource" delimiters="/\">

<Attribute name="protocol" type="MULTI_TOKEN" authority="URLBASE" />
</AuthorityDefinition>

<AuthorityDefinition name="apigatewayAction" delimiters="/">
<Attribute name="action" type="SINGLE_VALUE_TERMINAL"/>

</AuthorityDefinition>
</AuthorityConfig>

Further Information

When you have configured the settings in the Security Service Module screen, you can use the following filters to integ-
rate the API Gateway with Oracle Entitlements Server 10g:

• Oracle Entitlements Server 10g Authorization
• Oracle Entitlements Server 10g Authorization

Oracle Security Service Module Settings (10g)

285

Certificates and Keys
Overview

For the API Gateway to trust X.509 certificates issued by a specific Certificate Authority (CA), you must import that CA's
certificate into the API Gateway's trusted Certificate Store. For example, if the API Gateway is to trust secure communic-
ations (SSL connections or XML Signature) from an external SAML Policy Decision Point (PDP), you must import the
PDP's certificate, or the issuing CA's certificate into the API Gateway's Certificate Store.

In addition to importing CA certificates, you can also import and create server certificates and private keys in the Certific-
ate Store. Finally, you can also import and create public-private key pairs. For example, these can be used with the Se-
cure Shell (SSH) File Transfer Protocol (SFTP) or with Pretty Good Privacy (PGP).

Viewing Certificates and Private Keys

To view the lists of certificates and private keys stored in the Certificate Store, select Certificates and Keys -> Certific-
ates in the tree on the left of the Policy Studio. The certificates and keys are listed on the following tabs in the Certific-
ates screen on the right:

• Certificates with Keys: Server certificates with associated private keys.
• Certificates: Server certificates without any associated private keys.
• CA: Certification Authority certificates with associated public keys.

You can search for a specific certificate or key by entering a search string in the text box at the top of each tab, which
automatically filters the tree.

Configuring an X.509 Certificate

To create a certificate and private key, click the Create/Import button. The Configure Certificate and Private Key dia-
log is displayed. This section explains how to use the X.509 Certificate tab on this dialog.

Creating a Certificate
Configure the following settings to create a certificate:

• Subject:
Click the Edit button to configure the Distinguished Name (DName) of the subject.

• Alias Name:
This mandatory field enables you specify a friendly name (or alias) for the certificate. Alternatively, you can click Use
Subject button to add the DName of the certificate in the text box instead of a certificate alias.

• Public Key:
Click the Import button to import the subject's public key (usually from a PEM or DER-encoded file).

• Version:
This read-only field displays the X.509 version of the certificate.

• Issuer:
This read-only field displays the distinguished name of the CA that issued the certificate.

• Choose Issuer Certificate:
Select this setting if you wish to explicitly specify an issuer certificate for this certificate (for example, to avoid a po-
tential clash or expiry issue with another certificate using the same intermediary certificate). You can then click the
button on the right to select an issuer certificate. This setting is not selected by default.

• Validity Period:
The dates specified here define the validity period of the certificate.

• Sign Certificate:
You must click this button to sign the certificate. The certificate can be self-signed, or signed by the private key be-

286

longing to a trusted CA whose key pair is stored in the Certificate Store.

Importing Certificates
You can use the following buttons to import or export certificates into the Certificate Store:

• Import Certificate:
Click this button to import a certificate (for example, from a .pem or .der file).

• Export Certificate:
Use this option to export the certificate (for example, to a .pem or .der file).

Configuring a Private Key

Use the Private Key tab to configure details of the private key. By default, private keys are stored locally in the Certific-
ate Store. They can also be stored on a Hardware Security Module (HSM), if required.

Private Key Stored Locally:
Select the Private key stored locally radio button. The following configuration options are available for keys that are
stored locally in the Certificate Store:

• Private Key:
This read-only field displays details of the private key.

• Import Private Key:
Click the Import Private Key button to import the subject's private key (usually from a PEM or DER-encoded file).

• Export Private Key:
Click this button to export the subject's private key to a PEM or DER-encoded file.

Private key stored on HSM:
If the private key that corresponds to the public key stored in the certificate resides on a HSM, select the Private key
stored on HSM radio button. Configure the following fields to associate a key stored on a HSM with the current certific-
ate:

• Engine Name:
Enter the name of the OpenSSL Engine to use to interface to the HSM. All vendor implementations of the OpenSSL
Engine API are identified by a unique name. Please refer to your vendor's HSM or OpenSSL Engine implementation
documentation to find out the name of the engine.

• Key Id:
The value entered is used to uniquely identify a specific private key from all others that may be stored on the HSM.
On completion of the dialog, this private key is associated with the certificate that you are currently editing. Private
keys are identified by their key Id by default.

• Use Public Key:
Select this option if the HSM allows identifying a specific private key based on its associated public key, instead of
using the private key Id. This option is not selected by default.

• Conversation:
If the HSM requires the server to provide a specific response to a specific request from the HSM, you can enter the
response in this field. This enables the server to conduct an automated dialog with a HSM when it requires access to
a private key. For example, in a simple case, the server response might be a specific passphrase. For more details,
see the topic on Cryptographic Acceleration Conversation: Request-Response.

Global Options

The following global configuration options apply to both the X.509 Certificate and Private Key tabs:

• Import Certificate + Key:

Certificates and Keys

287

Use this option to import a certificate and a key (for example, from a .p12 file).
• Export Certificate + Key:

Use this option to export a certificate and a key (for example, to a .p12 file).

Click OK when you have finished configuring the certificate and/or private key.

Managing Certificates and Keystores

On the main Certificates screen, you can click the Edit button to edit an existing certificate. You can also click the View
button to view the more detailed information on an existing certificate. Similarly, you can click the Remove button to re-
move a certificate from the Certificate Store.

Java Keystore
You can also export a certificate to a Java keystore. You can do this by clicking the Keystore button on the main Certi-
ficates screen. Click the browse button at beside the Keystore field at the top right to open an existing keystore, or click
New Keystore to create a new keystore. Choose the name and location of the keystore file, and enter a passphrase for
this keystore when prompted. Click the Export to Keystore button and select a certificate to export.

Similarly, you can import certificates and keys from a Java keystore into the Certificate Store. To do this, click the Key-
store button on the main Certificates screen. On the Keystore screen, browse to the location of the keystore by clicking
the button beside the Keystore field. The certificates/keys in the keystore are listed in the table. To import any of these
keys to the Certificate Store, select the box next to the certificate or key that you want to import, and click the Import to
Trusted Certificate Store button. If the key is protected by a password, you are prompted for this password.

You can also use the Keystore screen to view and remove existing entries in the keystore. You can also add keys to the
keystore and to create a new keystore. Use the appropriate button to perform any of these tasks.

Configuring Key Pairs

To configure public-private key pairs in the Certificate Store, select Certificates and Keys -> Key Pairs. The Key Pairs
screen enables you to add, edit, or delete OpenSSH public-private key pairs, which are required for the Secure Shell
(SSH) File Transfer Protocol (SFTP).

Adding a Key Pair
To add a public-private key pair, click the Add button on the right, and configure the following settings in the dialog:

• Alias:
Enter a unique name for the key pair.

• Algorithm:
Enter the algorithm used to generate the key pair. Defaults to RSA.

• Load:
Click the Load buttons to select the public key and/or private key files to use. The Fingerprint field is auto-
populated when you load a public key.

Note
The keys must be OpenSSH keys. RSA keys are supported, but DSA keys are not supported. The keys
must not be passphrase protected.

Managing OpenSSH Keys
You can use the ssh-keygen command provided on UNIX to manage OpenSSH keys. For example:

• The following command creates an OpenSSH key:
ssh-keygen -t rsa

Certificates and Keys

288

• The following command converts an ssh.com key to an OpenSSH key:
ssh-keygen -i -f ssh.com.key > open.ssh.key

• The following command removes a passphrase (enter the old passphrase, and enter nothing for the new pass-
phrase):
ssh-keygen -p

• The following command outputs the key fingerprint:
ssh-keygen -lf ssh_host_rsa_key.pub

Editing a Key Pair
To edit a public-private key pair, select a key pair alias in the table, and click the Edit button on the right. For example,
you can load a different public key and/or private key. Alternatively, double-click a key pair alias in the table to edit it.

Deleting Key Pairs
You can delete a selected key pair from the Certificate Store by clicking the Remove button on the right. Alternatively,
click the Remove All button.

Configuring PGP Key Pairs

To configure Pretty Good Privacy (PGP) key pairs in the Certificate Store, select Certificates and Keys -> PGP Key
Pairs. The PGP Key Pairs screen enables you to add, edit, or delete PGP public-private key pairs.

Adding a PGP Key Pair
To add a PGP public-private key pair, click the Add button on the right, and configure the following settings in the dialog:

• Alias:
Enter a unique name for the PGP key pair.

• Load:
Click the Load buttons to select the public key and/or private key files to use.

Note
The PGP keys added must not be passphrase protected.

Managing PGP Keys
You can use the freely available GNU Privacy Guard (GnuPG) tool to manage PGP key files (available from ht-
tp://www.gnupg.org/). For example:

• The following command creates a PGP key:
gpg --gen-key
For more details, see http://www.seas.upenn.edu/cets/answers/pgp_keys.html [ht-
tp://www.seas.upenn.edu/cets/answers/pgp_keys.html]

• The following command enables you to view the PGP key:
gpg -a --export

• The following command exports a public key to a file:
gpg --export -u 'UserName' -a -o public.key

• The following command exports a private key to a file:
gpg --export-secret-keys -u 'UserName' -a -o private.key

• The following command lists the private keys:
gpg --list-secret-keys

Editing a PGP Key Pair
To edit a PGP key pair, select a key pair alias in the table, and click the Edit button on the right. For example, you can
load a different public key and/or private key. Alternatively, double-click a key pair alias in the table to edit it.

Certificates and Keys

289

http://www.gnupg.org/
http://www.gnupg.org/
http://www.seas.upenn.edu/cets/answers/pgp_keys.html
http://www.seas.upenn.edu/cets/answers/pgp_keys.html
http://www.seas.upenn.edu/cets/answers/pgp_keys.html

Deleting PGP Key Pairs
You can delete a selected PGP key pair from the Certificate Store by clicking the Remove button on the right. Alternat-
ively, click the Remove All button.

Certificates and Keys

290

API Gateway Users
Overview

The API Gateway User Store contains the configuration data for managing API Gateway user information. This topic in-
troduces the concepts of API Gateway Users, Groups, and Attributes. It explains how to manage these components on
the Users screen in the Policy Studio.

Note
API Gateway Users provide access to the messages and services protected by the API Gateway. Whereas
Admin Users provide access to the API Gateway configuration management features available in the Policy
Studio and API Gateway Manager. For more details, see the Managing Admin Users topic.

Users

API Gateway Users specify the user identity in the User Store. This includes details such as the user name, password,
and X.509 certificate. API Gateway Users must be a member of at least one User Group. In addition, Users can specify
optional Attributes, and inherit Attributes at the Group level.

To view all existing Users, select the Users and Groups -> Users node in the Policy Studio tree. The Users are listed in
the table on the main panel of the Policy Studio. You can find a specific User by entering a search string in the Filter
field.

Adding Users

You can create API Gateway Users on the Users page in the Policy Studio. Click the Add button on the right to view the
Add User dialog.

Adding User Details
To specify the new user details, complete the following fields on the General tab:

• User Name
Enter a name for the new user.

• Password
Enter a password for the new user.

• Confirm Password
Re-enter the user's password to confirm.

• X.509 Cert
Click the X.509 Cert button to load the user's certificate from the Certificate Store.

Adding User Attributes
You can specify optional User Attributes on the Attributes tab, which is explained in the next section.

Attributes

You can specify Attributes at the User level and at the Group level on the Attributes tab. Attributes specify user configur-
ation data (for example, attributes used to generate SAML attribute assertions).

Adding Attributes
The Attributes tab enables you to configure user attributes as simple name-value pairs. The following are examples of
user attributes:

291

• role=admin

• email=niall@oracle.com

• dept=eng

• company=oracle

You can add user attributes by clicking the Add button. Enter the attribute name, type, and value in the fields provided.
The Encrypted type refers to a string value that is encrypted using a well-known encryption algorithm or cipher.

Groups

API Gateway User Groups are containers that encapsulate one or more Users. You can specify Attributes at the Group
level, which are inherited by all Group members. If a User is a member of more than one Group, that User inherits Attrib-
utes from all Groups (the superset of Attributes across the Groups of which the User is a member).

To view all existing Groups, select the Users and Groups -> Groups node in the Policy Studio tree. The User Groups
are listed in the table on the main panel of the Policy Studio. You can find a specific Group by entering a search string
the Filter field.

Adding Groups

You can create User Groups on the Groups page in the Policy Studio. Click the Add button on the right to view the Add
Group dialog.

Adding Group Details
To specify the new group details, complete the following fields on the General tab:

• Group Name
Enter a name for the new group.

• Members
Click the Add button to display the Add Group Member dialog, and select the members to add to the group.

Adding Group Attributes
You can specify optional Attributes at the Group level on the Attributes tab. For more details, see the Attributes section.

Updating Users or Groups

To edit details for a specific User or Group, select it in the list, and click the Edit button on the right. Enter the updated
details in the Edit User or Edit Group dialog.

To delete a specific User or Group, select it in the list, and click the Remove button on the right. Alternatively, to delete
all Users or Groups, click the Remove All button. You are prompted to confirm all deletions.

API Gateway Users

292

Global Schema Cache
Overview

The Schema Cache contains XML Schemas that can be used globally by Schema Validation filters. You can import
XML Schemas from XML Schema files or from WSDL files. WSDL files often contain XML Schemas that define the ele-
ments that appear in SOAP messages. To facilitate this, the Policy Studio can import WSDL files from the file system,
from a URL, or from a UDDI registry.

When the XML Schema has been imported into the cache and selected in a Schema Validation filter, the API Gateway
can retrieve the schema from the cache instead of fetching it from its original location. This improves the runtime per-
formance of the filter, and also ensures that an administrator has complete control over the schemas used to validate
messages.

In the Policy Studio navigation tree, you can access the global Schema Cache by selecting Resources -> XML Schem-
as. The list of schemas present in the Schema Cache is shown in the tree. You can view or edit the contents of any of
these schemas by clicking the schema node. The schema contents are displayed in the tab on the right.

At any point, you can manually modify the contents of the schema in the tab on the right. To save the modified contents
to the cache, right-click, and elect Save.

Adding Schemas to the Cache

To add an XML Schema to the cache, right-click the Schemas node in the tree, and select Add Schema. Alternatively,
click the Add Schema link at the top of the Schemas screen on the right. The Load Schema dialog enables you to load
a schema from an XML Schema file directly or from a WSDL file.

Select the From XML Schema radio button to load the schema directly from a schema file, and click Next. On the next
screen, enter or browse to the location of the schema file using the field provided. You can also enter a full URL to pull
the schema from a web location. Click the Finish button to import the schema into the cache. Alternatively, if you wish to
load the schema file from a WSDL file, select the From WSDL radio button on the Select Schema Source screen, and
click Next.

The WSDL file can be located from the file system, from a URL, or from a UDDI registry. Select the appropriate option
and enter or browse to the location of the WSDL file in the fields provided. If you wish to retrieve the WSDL file from a
UDDI registry, click the WSDL from UDDI radio button, and click the Browse UDDI button. The Browse UDDI Server
for WSDL dialog enables you to connect to a UDDI and search it for a particular WSDL file. For more information on how
to configure this dialog, see the Retrieving WSDL Files from a UDDI Registry topic.

Testing WSDL Files for WSI Compliance

Before loading the schema from a WSDL file, you can check the WSDL file for compliance with the WS-I Basic Profile.
The Basic Profile consists of a set of assertions and guidelines on how to ensure maximum interoperability between dif-
ferent implementations of Web Services. For example, there are recommendations on the SOAP style to use (docu-
ment/literal), how schema information is included in WSDL files, and how message parts are defined to avoid ambi-
guity for consumers of WSDL files.

The Policy Studio uses the Java version of the WS-Interoperability Testing Tools to test imported WSDL files for compli-
ance with the recommendations in the Basic Profile. A report is generated showing which recommendations have passed
and which have failed. While you can still import a WSDL file that does not comply with the Basic Profile, there is no cer-
tainty that consumers of the Web Service can use it without encountering problems.

Important
Before you run the WS-I compliance test, you must ensure that the Java version of the Interoperability
Testing Tools is installed on the machine on which the Policy Studio is running. You can download these

293

tools from www.ws-i.org [http://www.ws-i.org].

To configure the location of the WS-I testing tools, select Window -> Preferences from the Policy Studio main menu. In
the Preferences dialog, select the WS-I Settings, and browse to the location of the WS-I testing tools. You must specify
the full path to these tools (for example, C:\Program Files\WSI_Test_Java_Final_1.1\wsi-test-tools). For
more details on configuring WS-I settings, see the Policy Studio Preferences topic.

Running the WS-I Compliance Test
To run the WS-I compliance test on a WSDL file, perform the following steps:

1. Select Tools -> Run WS-I Compliance Test from the Policy Studio main menu.
2. In the Run WS-I Compliance Test dialog, browse to the WSDL File or specify the WSDL URL.
3. Click OK. The WS-I Analysis tools run in the background in Policy Studio.

The results of the compliance test are displayed in your browser in a WS-I Profile Conformance Report. The overall
result of the compliance test is displayed in the Summary section. The results of the WS-I compliance tests are grouped
by type in the Artifact: description section. For example, you can access details for a specific port type, operation, or
message by clicking the appropriate link in the Entry List table. Each Entry displays the results for the relevant WS-I
Test Assertions.

Organizing Schemas with Schema Containers

If you intend to add large numbers of schemas to validate different types of requests, it makes sense to organize these
types of schemas into different groups. For example, if you have a set of schemas that defines types used in requests for
a StockQuote Web Service and another set of schemas used to validate requests for a PurchaseOrder Web Service, it
makes sense to organize each set of schemas into separate groups (for example, StockQuote Schemas and Purchase-
Order Schemas).

The Policy Studio enables you to add Schema Containers for this purpose. To add a Schema Container, right-click the
Schemas tree node, and select the Add Schema Container menu option. Enter a descriptive name for the container in
the field provided on the Schema Container dialog.

You can add related schemas under this container by right-clicking the container, and selecting the Add Schema menu
option. You can then load the schema directly from an XML Schema file, or indirectly from a WSDL file in the usual man-
ner.

Furthermore, you can create containers within containers to further organize your schemas. Right-click an existing con-
tainer, and select the Add Schema Container menu option.

A useful feature of Schema Containers is the ability to copy and paste schemas from one container to another. For ex-
ample, you can use this to copy schemas to a Test Schemas container where you can modify them and test them
against incoming requests. To do this, right-click a schema, and select the Copy menu option. To copy the schema to
another container, right-click the destination container and select the Paste option.

Important
Note the following:

• Only one schema is allowed per target namespace in any one container. This is because schemas are
keyed in the cache using the targetNamespace in the schema. Therefore, all elements referenced
by the imported schema must be in the same container as the schema. The Policy Studio automatic-
ally stores imported and included schemas in the same container as the top-level schema. However,
deleting schemas from a container that contains elements referenced by other schemas in the contain-
er prevents the set of schemas from successfully validating incoming requests.

Global Schema Cache

294

http://www.ws-i.org
http://www.ws-i.org

If a schema has no targetNamespace defined, it is keyed using the full path to the file on the file sys-
tem.

• If you add a schema that includes other schemas (using the <include> element) to the Schema
Cache, the included schemas are added inline to the top-level parent schema. Because schemas are
keyed by target namespace, and because all included schemas must belong to the same namespace
as the parent schema, it makes sense to inline the included schemas.

Schema Validation

The Schema Validation filter is used to validate XML messages against schemas stored in the cache or in the Web Ser-
vices Repository. This filter is found in the Content Filtering category of filters in the Policy Studio. For more informa-
tion on configuring this filter, see the Schema Validation topic.

Global Schema Cache

295

External Connections
Overview

The API Gateway can leverage your existing Identity Management infrastructure, thus avoiding the need to maintain sep-
arate silos of user information. For example, if you already have a database full of user credentials, the API Gateway can
authenticate requests against this database, rather than using its own internal user store. Similarly, the API Gateway can
authorize users, lookup user attributes, and validate certificates against third-party Identity Management servers.

You can add a connection to an external system as a global External Connection in the Policy Studio so that it can be re-
used across all filters and policies. For example, if you create a policy that authenticates users against an LDAP direct-
ory, and then validates an XML signature by retrieving a public key from the same LDAP directory, it makes sense to cre-
ate a global External Connection for that LDAP directory. You can then select the LDAP Connection in both the authen-
tication and XML signature verification filters, rather than having to reconfigure them in both filters.

You can also use External Connections in cases where you want to configure a group of related URLs. This is most use-
ful when you want to round-robin between a number of related URLs to ensure high availability. When the API Gateway
is configured to use a URL Connection Set (instead of a single URL), it round-robins between the URLs in the set.

You can configure External Connections by right-clicking the appropriate node (for example, Database Connections)
under the External Connections node in the Policy Studio tree. This topic introduces the different types of External Con-
nection and shows where to obtain more details.

Authentication Repository Profiles

The API Gateway can authenticate users against external databases and LDAP repositories, in addition to its own local
user store. You can also use a number of bespoke authentication connectors to enable the API Gateway to authenticate
against specific third-party Identity Management products.

Connection details for these authentication repositories are configured at a global level, making them available for use
across authentication (and authorization) filters. This saves the administrator from reconfiguring connection details in
each filter.

For example, the available authentication repository types include the following:

• CA SiteMinder Repositories
• Database Repositories
• Entrust GetAccess Repositories
• LDAP Repositories
• Local Repositories (for example, Local User Store)
• Oracle Access Manager Repositories
• Oracle Entitlements Server Repositories
• RADIUS Repositories
• RSA Access Manager Repositories
• Tivoli Repositories

For details how to configure the various authentication repository types, see the Authentication Repository topic.

Connection Sets

Connection Sets are used by the API Gateway to round-robin between groups of external servers (for example, RSA Ac-
cess Manager). You can use reuse these global groups when configuring connections to external servers in the Policy
Studio. For this reason, Connection Sets are available under the External Connections node according to the filter from
which they are available. For example, Connection Sets under the RSA ClearTrust Connection Sets node are available

296

in the RSA Access Manager filter.

At runtime, the API Gateway can round-robin between the servers in the group to ensure that if one of the servers be-
comes unavailable, the API Gateway can use one of the other servers in the group.

To add a Connection Set for a particular category of filters, right-click the appropriate node under the Connection Sets
node under the External Connections node. Select Add a Connection Set to display the Connection Group dialog.
For more details, see the Configuring Connection Groups topic.

Database Connections

The API Gateway typically connects to databases to authenticate or authorize users using the API Gateway's numerous
Authentication and Authorization filters. Similarly, the API Gateway can retrieve user attributes from a database (for ex-
ample, which can then be used to generate SAML attribute assertions later in the policy). You can configure database
connections globally under the External Connections node, making them available to the various filters that require a
database connection. This means that an administrator can reuse the same database connection details across multiple
authentication, authorization, and attribute-based filters.

The API Gateway maintains a JDBC pool of database connections to avoid the overhead of setting up and tearing down
connections to service simultaneous requests. This pool is implemented using Jakarta DBCP (Database Connection
Pools). The settings in the Advanced section of the Configure Database Connection dialog are used internally by the
API Gateway to initialize the connection pool. The table at the end of this section shows how the fields correspond to
specific configuration DBCP settings.

To configure details for a global database connection, right-click the External Connections -> Database Connections
node. Select the Add a Database Connection menu option, and configure the fields on the Configure Database Con-
nection dialog. For details on configuring these fields, see the Database Connection topic.

ICAP Servers

The Internet Content Adaptation Protocol (ICAP) is a lightweight HTTP-based protocol used to optimize proxy servers,
which frees up resources and standardizes how features are implemented. For example, ICAP is typically used to imple-
ment features such as virus scanning, content filtering, ad insertion, or language translation in the HTTP proxy cache.

When an ICAP Server is configured under the External Connections node, you can then select it in multiple ICAP fil-
ters. For details on how to configure an ICAP Server, see the Configuring ICAP Servers topic.

JMS Services

The Java Message Service (JMS) is a Java message-oriented middleware API for sending messages between two or
more clients. When a JMS Service is configured under the External Connections node, it is available for selection in
multiple JMS-related configuration screens. This enables you to share JMS configuration across multiple filters.

For more details on configuring JMS services, see the Messaging System topic.

Kerberos Connections

You can configure global Kerberos Clients, Kerberos Services, and Kerberos Principals under the External Con-
nections node. When a Kerberos item is configured, it is available for selection in all Kerberos-related configuration
screens that require this item. This enables you to share Kerberos configuration items across multiple filters.

For more details, see the following topics:

• Kerberos Clients
• Kerberos Services
• Kerberos Principals

External Connections

297

LDAP Connections

In the same way that database connections can be configured globally in the Policy Studio (and then reused across indi-
vidual filters), LDAP connections are also managed globally in the Policy Studio. LDAP connections are used by authen-
tication, authorization, and attribute filters. Filters that require a public key (from a public-private key pair) can also re-
trieve the key from an LDAP source.

When a filter that uses an LDAP directory is run for the first time, it binds to the LDAP directory using the connection de-
tails configured on the Configure LDAP Server dialog. Usually the connection details include the username and pass-
word of an administrator user who has read access to all users in the LDAP directory for whom you wish to retrieve at-
tributes or authenticate.

For details on how to configure a global LDAP connection, see the topic on Configuring LDAP Directories.

OCSP Connections

The API Gateway can use OCSP (Online Certificate Status Protocol) to validate a certificate against an OCSP responder
or group of responders. OCSP requests for certificate validation can be signed by a key from the Certificate Store, and
the response from the OCSP responder can be optionally validated.

An OCSP Connection typically comprises a group of OCSP Responder URLs, together with options to sign OCSP re-
quests and validate OCSP responses. To configure a global OCSP Connection, right-click the OCSP Connection node
under the External Connections node. Select the Add an OCSP Connection option to display the Certificate Valida-
tion - OCSP dialog. For more details, see the OCSP Certificate Validation topic.

Note
When an OCSP Connection is added in this manner, it is available for selection in the OCSP Certificate
Validation filter, which is found under the Certificate category of filters in the Policy Studio.

Proxy Servers

You can configure proxy servers under the External Connections node, which can then be specified in the Connection
and Connect To URL filters. When configured, the filter connects to the proxy server, which routes the message to the
destination server.

To configure a proxy server, click the External Connections node, and select Proxy Servers -> Add a Proxy Server.
For details on how to configure the settings the Proxy Server Settings dialog, see the Proxy Servers topic.

RADIUS Clients

The Remote Authentication Dial In User Service (RADIUS) protocol provides centralized authentication and authorization
for clients connecting to remote services.

To configure a client connection to a remote server over the RADIUS protocol, click the External Connections node,
and select RADIUS Clients -> Add a RADIUS Client. For details on how to configure the settings the RADIUS Client
dialog, see the RADIUS Clients topic.

For details on how to configure a RADIUS Authentication Repository, see the Authentication Repository topic.

SiteMinder

To add a CA SiteMinder connection, right-click the SiteMinder/SOA Security Manager node under the External Con-
nections node, and select Add a SiteMinder Connection to display the SiteMinder Connection Details dialog. For
details on configuring the fields on this dialog, see the SiteMinder/SOA Security Manager Connection topic.

External Connections

298

SMTP Servers

You can configure a Simple Mail Transfer Protocol (SMTP) server as a global configuration item under the External
Connections node. The SMTP filter in the Routing category can then reference this SMTP server. To configure an
SMTP server, right-click the External Connections -> SMTP Servers node, and select Add an SMTP Server. For more
details, see the topic on SMTP Servers.

SOA Security Manager

To add a CA SiteMinder connection, right-click the External Connections -> SiteMinder/SOA Security Manager node,
and select Add a SOA Security Manager Connection to display the SOA Security Manager Connection Details dia-
log. For details on configuring the fields on this dialog, see the SiteMinder/SOA Security Manager Connection topic.

Syslog Servers

You can configure Syslog Servers globally, and then select them as a customized logging destination for a Process.
Right-click the External Connections -> Syslog Servers node, and select the Add a Syslog Server menu option.
Complete the following fields on the Syslog Server dialog:

Name:
Enter a name for the Syslog server.

Host:
Specify the host on which the Syslog daemon is running.

Facility:
Select the Syslog facility that you want to log to.

For details on how to configure the API Gateway process to log to this remote Syslog Server, see the topic on Audit Log
Settings.

TIBCO

You can add connections to the following TIBCO products:

• TIBCO Enterprise Messaging Service (EMS)
• TIBCO Rendezvous Daemon

To add a TIBCO EMS connection, right-click the External Connections -> TIBCO EMS Connection node in the tree,
and select Add a TIBCO EMS Connection. For details on configuring the fields on the dialog, see the TIBCO Enterprise
Messaging Service Connection topic.

To add a TIBCO Rendezvous Daemon, right-click the External Connections -> TIBCO Rendezvous Daemon node in
the tree, and select Add a TIBCO Rendezvous Daemon. For details on configuring the fields on the dialog, see the
TIBCO Rendezvous Daemon topic.

Tivoli

You can create a connection to an IBM Tivoli server to enable integration between the API Gateway and Tivoli Access
Manager. Tivoli connections can then be used by the API Gateway's Tivoli filter to delegate authentication and authoriza-
tion decisions to Tivoli Access Manager, and to leverage existing Tivoli Access Manager policies.

To add a Tivoli connection, right-click the External Connections -> Tivoli Connections node in the tree, and select
Add a Tivoli Connection. For details on configuring the fields on the Tivoli Configuration dialog, see the Tivoli Integra-
tion topic.

External Connections

299

URL Connection Sets

URL Connection Sets are used by API Gateway filters to round-robin between groups of external servers (for example,
Entrust GetAccess, OCSP, SAML PDP, or XKMS). These global groups can then be reused when configuring these fil-
ters in the Policy Studio. For this reason, URL Connection Sets are available under the External Connections node in
the tree, according to the filters from which they are available. For example, URL sets under the OCSP URL Sets node
are available in the OCS Certificate Validation filter, while sets under the XKMS URL Sets are only available from the
XKMS Certificate Validation filter.

At runtime, the API Gateway can round-robin between the servers in the group to ensure that if one of the servers be-
comes unavailable, the API Gateway can use one of the other servers in the group.

To add a URL Connection Set for a particular category of filters, right-click the appropriate node under the External Con-
nections -> URL Connection Sets node in the tree. Select the Add a URL Set option to display the URL Group dialog.
For more details, see the Configuring URL Groups topic.

XKMS Connections

The API Gateway can also validate certificates against an XKMS (XML Key Management Service) responder or group of
responders. An XKMS Connection consists of a group of XKMS responders to validate certificates against, coupled with
the signing key to use for signing requests to each of the responders in the group.

To add a global XKMS Connection, right-click the External Connections -> XKMS Connection node in the tree, and
select the Add an XKMS Connection option to display the Certificate Validation - XKMS dialog. For more details, see
the XKMS Certificate Validation topic.

All global XKMS Connections are available for selection when configuring the Certificate Validation - XKMS filter. This
saves the administrator from reconfiguring XKMS connection details across multiple filters.

External Connections

300

Global Caches
Overview

In cases where a Web Service is serving the same request (and generating the same response) over and over again, it
makes sense to use a caching mechanism. When a cache is employed, a unique identifier for the request is cached to-
gether with the corresponding response for this request. If an identical request is received, the response can be retrieved
from the cache instead of forcing the Web Service to reprocess the identical request and generate the same response.
The use of caching in this way helps divert unnecessary traffic from the Web Service and makes it more responsive to
new requests.

For example, assume you have deployed a Web Service that returns a list of cities in the USA from an external data-
base, which is then used by a variety of Web-based applications. Because the names and quantity of cities in the USA
are relatively constant, if the Web Service is handling hundreds or thousands of requests every day, this represents a
serious waste of processing time and effort, especially considering that the database that contains the relatively fixed list
of city names is hosted on a separate machine to the service.

If you assume that the list of cities in the database does not change very often, it makes sense to use Oracle API Gate-
way to cache the response from the Web Service that contains the list of cities. Then when a request for this Web Ser-
vice is identified by the API Gateway, the cached response can be returned to the client. This approach results in the fol-
lowing performance improvements:

• The API Gateway does not have to route the message on to the Web Service, therefore saving the processing effort
required, and perhaps more importantly, saving the time it takes for the round trip.

• The Web Service does not have to waste processing power on generating the same list over and over again, there-
fore making it more responsive to requests for other services.

• Assuming a naive implementation of database retrieval and caching, the Web Service does not have to query the
database (over the network) and collate the results over and over again for every request.

The caching mechanism used in the API Gateway offers full control over the size of the cache, the lifetime of objects in
the cache, whether objects are cached to disk or not, and even whether caches can be replicated across multiple in-
stances of API Gateways. The following sections describe how to configure both local and distributed caches in the API
Gateway, concluding with a detailed example of how to configure a policy to cache responses .

Local Caches

Local caches are used where a single API Gateway instance has been deployed. In such cases, you do not need to rep-
licate caches across multiple running instances of the API Gateway.

Adding a Local Cache
In the Policy Studio tree, you can add a local cache by selecting the Libraries -> Caches node, and clicking the Add
button at the bottom right of the screen. Select Add Local Cache from the menu. You can configure the following fields
on the Configure Local Cache dialog:

Cache Name:
Enter a name for the cache.

Maximum Elements in Memory:
Enter the maximum number of objects that can be in memory at any one time.

Maximum Elements on Disk:
Sets the maximum number of objects that can be stored in the disk store at any one time. A value of zero indicates an
unlimited number of objects.

Eternal:

301

If this option is selected, objects stored in the caches never expire and timeouts have no effect.

Overflow to Disk:
Select this option if you want the cache to overflow to disk when the number of objects in memory has reached the
amount set in the Maximum Elements in Memory field above.

Note
The following fields are optional:

Time to Idle:
Determines the maximum amount of time (in seconds) between accesses that an object can remain idle before it expires.
A value of zero indicates that objects can idle for infinity, which is the default value. If the Eternal field is selected, this
setting is ignored.

Time to Live:
Sets the maximum time between when an object is created and when it expires. The default value is zero, which means
that the object can live for infinity. If the Eternal field is selected, this setting is ignored.

Persist to Disk:
If selected, the disk store is persisted between JVM restarts. This option is disabled by default.

Disk Expiry Interval:
Configures the number of seconds between runs of the disk expiry thread. The default is 120 seconds.

Disk Spool Buffer Size:
Indicates the size of memory (in MBs) to allocate the disk store for a spool buffer. Writes are made to this memory and
then asynchronously written to disk. The default size is 30 MB. If you get OutOfMemory exceptions, you may consider
lowering this value. However, if you notice poor performance, you should increase the value.

Eviction Policy:
Select the eviction policy that the cache uses to evict objects from the cache. The default policy is Least Recently Used.
However, you can also use First in First Out and Less Frequently Used.

Distributed Caches

If you have deployed several API Gateways throughout your network, you need to employ a distributed cache. In this
scenario, each API Gateway has its own local copy of the cache but registers a cache event listener that replicates mes-
sages to the other caches so that put, remove, expiry, and delete events on a single cache are duplicated across all oth-
er caches.

Adding a Distributed Cache
You can add a distributed cache by selecting the Libraries -> Caches tree node, and clicking the Add button at the bot-
tom right of the screen. Select Add Distributed Cache from the menu, and configure the following fields on the Config-
ure Distributed Cache dialog:

Note
Many of the settings for the distributed cache are identical to those for the local cache. For details on how
to configure these fields, see the Local Caches section. The following information refers to fields that are
not displayed on both dialogs.

Event Listener Class Name:
Enter the name of the listener factory class that enables this cache to register listeners for cache events, such as put, re-
move, delete, and expire.

Global Caches

302

Properties Separator:
Specify the character to use to separate the list of properties.

Properties:
Specify the properties to pass to the RMICacheReplicatorFactory. The following properties are available:

• replicatePuts=true | false
Determines whether new elements placed in a cache are replicated to other caches. Default is true.

• replicateUpdates=true | false
Determines whether new elements that override (update) existing elements with the same key in a cache are replic-
ated. Default is true.

• replicateRemovals=true
Determines whether element removals are replicated. Default is true.

• replicateAsynchronously=true | false
Determines whether replications are asynchronous (true) or synchronous (false). Default is false.

• replicateUpdatesViaCopy=true | false
Determines whether new elements are copied to other caches (true) or a remove message is sent (false). Default is
true.

• asynchronousReplicationIntervalMillis=[number of ms]
The asynchronous replicator runs at a set interval of milliseconds. The default is 1000 and the minimum is 10. This
property is only applicable if replicateAsynchronously=true.

Cache Bootstrap Class Name:
Specifies a BootstrapCacheLoader factory that the cache can call on initialization to pre-populate itself. The RMI-
BootstrapCacheLoader bootstraps caches in clusters where RMICacheReplicators are used.

Properties Separator:
The character entered here is used to separate the list of properties listed in the field below.

Properties:
The properties listed here are used to initialize the RMIBootstrapCacheLoaderFactory. The following properties are
recognized:

• bootstrapAsynchronously=true | false
Determines whether the bootstrap happens in the background after the cache has started (true), or if bootstrapping
must complete before the cache is made available (false). Default is true.

• maximumChunkSizeBytes=[integer]
Caches can potentially grow larger than the memory limits on the JVM. This property enables the bootstrapper to
fetch elements in chunks. The default chunk size is 5000000 (5 MB).

Distributed Cache Settings

In a distributed cache, there is no master cache controlling all caches in the group. Instead, each cache is a peer in the
group and needs to know where all the other peers in the group are located. Peer Discovery and Peer Listeners are two
essential parts of any distributed cache system.

Editing Distributed Cache Settings
You can configure distributed cache settings by selecting the Settings node in the Policy Studio tree, and clicking the
Cache Settings tab at the bottom of the screen on the right. You can configure the following fields:

Peer Provider Class:
By default, the built-in peer discovery class factory is used:
net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory

Properties Separator:

Global Caches

303

Specify the token used as the separator for the list of properties in the next field.

Properties:
The properties listed here specify whether the peer discovery mechanism is automatic or manual. If the automatic mech-
anism is used, each peer uses TCP multicast to establish and maintain a multicast group. This is the default option be-
cause it requires minimal configuration and peers can be automatically added and removed from the group. Each peer
pings the group every second. If a peer has not pinged any of the other peers after 5 seconds, it is dropped from the
group, while a new peer is admitted to the group if it starts pinging the other peers. To use automatic peer discovery, en-
sure that the peerDiscovery setting is set to automatic. You can specify the multicast address and port using the
multicastGroupAddress and multicastGroupPort settings. You can specify the time to live for multicast data-
grams using the timeToLive setting.

Alternatively, you can configure a manual peer discovery mechanism, whereby each peer definitively lists the peers that
it wants to communicate with. This should only be used in networks where there are problems propagating multicast da-
tagrams. To use a manual peer discovery mechanism, make sure the peerDiscovery setting is set to manual. The list
of RMI URLs of the other peers in the group must also be specified, for example:
rmiUrls=//server2:40001/sampleCache1|//server2:40001/sampleCache2 .

Peer Listener Class:
The peer listener class specified is responsible for listening for messages from peers in the group.

Properties Separator:
Specify the token used to separate the list of properties.

Properties:
The properties entered configure the way the listener behaves. Valid properties are as follows:

• hostname (optional)
Hostname of the machine on which the listener is listening.

Note
By default, this is set to localhost, which maps to the local loopback address of 127.0.0.1, which
is not addressable from another machine on the network. If you intend this cache to be used over the
network, you should change this address to the IP address of the network interface on which the listen-
er is listening.

• port (mandatory)
Specify the port on which the listener is listening, which by default is 4001. This setting is mandatory.

• socketTimeoutMillis (optional)
Enter the number of seconds that client sockets wait when sending messages to this listener until they give up. The
default is 2000 ms.

Notify replicators of removal of items during refresh:
A server refresh automatically purges all items from the cache (for example, when configuration updates are deployed to
the API Gateway). If this checkbox is selected, the contents of each peer in the group are also purged. This avoids a situ-
ation where a single peer is refreshed (and has its contents purged), but the other peers in the group are not purged. If
this option is not selected, the refreshed peer attempts to bootstrap itself to the other peers in the group, resulting in the
cache items becoming replicated in the refreshed cache. This effectively negates the effect of the server refresh and may
result in inconsistent behavior.

Example of Caching Response Messages

This simple example shows how to construct a policy that caches responses from the Web Service. It uses the request
body to identify identical successive requests. In other words, if the API Gateway receives two successive requests with
an identical message body, it returns the corresponding response from the cache instead of routing the request to the
Web Service.

Global Caches

304

The following diagram illustrates the complete policy:

The logic of the policy is summarized as follows:

1. The purpose of the first filter is to configure what part of the request you want to use to identify unique requests. This
example uses the request body as the unique key, which is then used to look up the appropriate response message
from the cache.

2. The second filter looks up the request body in the response cache to see if it contains the request body. If it does,
the response message that corresponds to this request is returned to the client.

3. If it does not, the request is routed to the Web Service, which processes it (by connecting to a database over the
network and running a SQL statement) and returns a response to the API Gateway.

4. The API Gateway then returns the response to the client and caches it in the response cache.
5. When the next identical request is received by the API Gateway, the corresponding response is located in the re-

sponses cache and returned immediately to the client.

You must configure the following caching filters to achieve this policy. For convenience, the routing filters are not in-
cluded in this example because the configuration options depend on your target Web Service.

Create Key Filter:
This filter is used to decide what part of the request is used for a request to be considered unique. Different parts of the
request can be identified internally using message attributes (for example, content.body contains the request body).
The following fields must be configured for this filter:

• Name: Use request body to create unique key
• Attribute Name: content.body
• Output attribute name: message.key

Is Cached?:
This filter looks up the cache to see if a response has been stored for the current request. It looks up the cache using the
message.key attribute by default. The message.key attribute contains a hash of the request message, and can be
used as the key for objects in the cache. If the key is found in the cache, the value of the key (cached response for this
request) is written to the content.body attribute, which can be returned to the client using the Reflect filter. You must

Global Caches

305

configure the following fields:

• Name: Is a response for this request already cached?
• Cache containing key: Response Cache (assuming you have created a cache of this name)
• Attribute Containing Key: message.key
• Overwrite attribute name if found: content.body

Reflect:
If the Is Cached? filter passes, it retrieves the response from the cache and stores it in the content.body message at-
tribute. The Reflect filter is used to return the cached response to the client.

Routing:
If a response for this request could not be located in the cache, the API Gateway routes the request to the Web Service,
and waits for a response. For more details on how to route messages, see the Getting Started with Routing Configuration
tutorial.

Cache Attribute:
When the response has been received from the Web Service, it should be cached for future use. The Cache Attribute
filter is used to configure the key used to look up the cache and which aspect of the response message is stored as the
key value in the cache.

Note
This example specifies the value of the content.body attribute to cache. Because this filter is configured
after the routing filters, this attribute contains the response message. The value entered in the Attribute
Key field should match that entered in the Attribute containing key field in the Is Cached? filter. You
must configure the following fields:

• Name: Cache response body
• Cache to use: Response Cache
• Attribute key: message.key
• Attribute name to store: content.body

For more information on these filters, see the following topics:

Filter Topic

Create Key Create Key

Is Cached? Is Cached?

Cache Attribute Cache Attribute

Remove Cached Attribute Removed Cached Attribute

Global Caches

306

Compare Attribute
Overview

The Compare Attribute filter enables you to compare the value of a specified message attribute on the API Gateway
white board with the values specified in the filter. For example, the following filter only passes if the authentica-
tion.subject.id message attribute has a value of penelope:

Configuration

Configure the following fields:

Name:
Enter an appropriate name for this filter.

Filter will pass if:
Select all or one of the conditions to apply in the drop-down list. Defaults to all. Click the Add button at the bottom
right to add a rule condition. In the Attribute filter rule dialog, perform the following steps:

1. Enter a message attribute name in the Attribute text box on the left (for example, http.request.verb or
my.customer.attribute).

2. Select one of the following rule conditions from the drop-down list:
• contains

• doesn't contain

• doesn't match regular expression

• ends with

• is

• is not

• matches regular expression

• starts with

3. Enter a value to compare with in the text box on the right (for example, POST). Alternatively, you can enter a selector
that is expanded at runtime (for example, ${http.request.uri}). For more details on selectors, see Selecting
Configuration Values at Runtime.

4. Click OK.

Finally, to edit or delete an existing rule condition, select it in the table, and click the appropriate button.

307

Extract REST Request Attributes
Overview

This filter extracts the values of query string parameters and/or HTTP headers from a REST request and stores them in
separate message attributes. The REST request can be an HTTP GET or POST request. This filter is found in the Attrib-
utes category in the Policy Studio. For details on how to create a REST request, see the Create REST Request filter.

Example REST Request
The following example shows an incoming REST request with query string and HTTP headers:

POST /services?name=Niall&location=Dublin&location=Pembroke%20St HTTP/1.1
Host: mail.google.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-GB; rv:1.9.2.15)
Gecko/20110303 Firefox/3.6.15
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-gb,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Using this example, the Extract REST Request Attributes filter generates and populates the following attributes:

http.header.Host = mail.google.com
http.header.User-Agent = Mozilla/5.0 (Windows; U; Windows NT 6.1; en-GB; rv:1.9.2.15)
Gecko/20110303 Firefox/3.6.15
http.header.Accept = text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
http.header.Accept-Language = en-gb,en;q=0.5
http.header.Accept-Encoding = gzip,deflate
http.header.Accept-Charset = ISO-8859-1,utf-8;q=0.7,*;q=0.7

http.querystring.name = Niall
http.querystring.location.1 = Dublin
http.querystring.location.2 = Pembroke St

Note
For multi-valued query string parameters (for example, location), each value is given an incremental in-
dex. For example, the multi-valued location parameter results in the creation of the ht-
tp.querystring.location.1 and http.querystring.location.2 message attributes.

The purpose of this filter is to extract all parameters from an incoming REST request and store them in separate mes-
sage attributes so that they can be validated easily, without needing to iterate through the set of http.headers.

Configuration

Configure the following fields on the Extract REST Request Attributes screen:

Name:
Enter an appropriate name for this filter.

Request Querystring:
Select whether to extract the values of query string parameters from an HTTP POST or GET request. These are simple
name-value pairs (for example, Name=Joe Bloggs). This setting is selected by default.

HTTP Headers:
Select whether to extract the values of HTTP headers from an HTTP POST or GET request. This is selected by default.

308

Extract WSS Timestamp
Overview

You can use the Extract WSS Timestamp filter to extract a WSS Header Timestamp from a message. The timestamp is
stored in a specified message attribute so that it can be processed later in a policy. This filter requires the WSS Header
block to have been extracted previously. For more details, see the Extract WSS Header filter.

Typically, the Validate Timestamp filter is used to retrieve the timestamp from the specified message attribute and valid-
ate it. The Validate Timestamp filter is available from the Content Filtering filter category. For more details, see the
Validate Timestamp filter.

Configuration

Configure the following fields on the Extract WSS Timestamp filter configuration screen:

Name:
Enter an appropriate name for this filter.

Message Attribute to Contain the Timestamp:
When the API Gateway extracts the WSS Header Timestamp from the message at runtime, it stores the timestamp in the
specified message attribute. If you wish to validate the timestamp later in the policy, you must specify this message at-
tribute in the configuration screen for the Validate Timestamp filter.

309

Extract WSS UsernameToken
Overview

You can use the Extract WSS Username Token filter to extract a WS-Security Username Token from a message if it
exists. The extracted Username Token is stored in the wss.usernameToken message attribute.

If you want to process the Username Token later in the policy, you can specify this message attribute in the configuration
screen for the processing filter. For example, if you want to sign the Username Token, you can simply specify the
wss.usernameToken message attribute in the What to Sign section of the Sign Message filter. Open the Message
Attribute tab on the What to Sign screen, and specify this attribute to sign the Username Token.

Configuration

Configure the following field on the Extract WSS Username Token filter configuration screen:

Name:
Enter an appropriate name for the filter. Remember that the WS-Security Username Token is stored in the
wss.usernameToken message attribute.

310

Extract WSS Header
Overview

The Extract WSS Header filter extracts a WS-Security <Header> block from a message. The extracted security header
is stored in the authentication.ws.wsblockinfo message attribute.

If you want to process this security header later in the policy, you can specify this message attribute in the configuration
screen for the specific processing filter. For example, if you want to sign the security header, you can specify the au-
thentication.ws.wsblockinfo message attribute in the What to Sign section of the Sign Message filter. Open the
Message Attribute tab on the What to Sign screen, and specify this attribute to sign the security header.

Configuration

Configure the following fields on the Extract WSS Header filter configuration screen:

Name:
Enter an intuitive name for this filter (for example, Extract Current Actor WSS Header).

Actor or Role:
Specify the name of the SOAP Actor or Role of the WS-Security header that you want to extract. Remember, the WS-
Security header is stored in the authentication.ws.wsblockinfo message attribute.

Remove enclosing WS-Security element:
This option removes the enclosing <wsse:Security> element from the message.

311

Get Cookie
Overview

An HTTP cookie is data sent by a server in an HTTP response to a client. The client can then return an updated cookie
value in subsequent requests to the server. For example, this enables the server to store user preferences, manage ses-
sions, track browsing habits, and so on.

The Get Cookie filter is used to read the Cookie and Set-Cookie HTTP headers. The Cookie header is used when a
client sends a cookie to a server. The Set-Cookie header is used when the server instructs the client to store a cookie.

For more details, see the topic on the Create Cookie filter.

Configuration

Configure the following fields on the Get Cookie Filter Configuration screen:

Filter Name:
Enter an appropriate name to display for this filter.

Cookie Name:
Enter a regular expression that matches the name of the cookie. This value can use wildcards. Defaults to .*.

Remove all Cookie Headers from Message after retrieval:
When this setting is selected, all Cookie and Set-Cookie headers are removed from the message after retrieving the
target cookie. This setting is not selected by default.

Attribute Storage

When a cookie is retrieved, it is stored in the appropriate API Gateway message attribute. The following message attrib-
utes are used to store cookies:

Cookie Header Type Message Attribute Name

Cookie cookie.cookie_name.value (for example, cook-
ie.mytest.value)

Set-Cookie cookie.cookie_name.cookie_attribute_name (for
example, cookie.mytest.header)

Set-Cookie Attribute List
The Set-Cookie HTTP header includes the following cookie attributes (reflected in the Set-Cookie message attribute
name):

Cookie Attribute Name Description

header The HTTP header name.

value The value of the cookie.

domain The domain name for this cookie.

path The path on the server to which the browser returns this
cookie.

maxage The maximum age of the cookie in days, hours, minutes,
and/or seconds.

312

Cookie Attribute Name Description

secure Whether sending this cookie is restricted to a secure pro-
tocol. This setting is not selected by default, which means
that it can be sent using any protocol.

HTTPOnly Whether the browser should use cookies over HTTP only.
This setting is not selected by default.

Get Cookie

313

Retrieve Attribute from Database
Overview

The API Gateway can retrieve user attributes from a specified database, or write user attributes to a specified database.
It can do this by running an SQL query on the specified database, or by invoking a stored procedure call.

General Configuration

Configure the following field:

Name:
Enter an appropriate name for this filter.

Database

Configure the following fields on the Database tab:

Database Location:
The API Gateway searches the selected database for the user's attributes. Click the button on the right to select the
database to search. To use an existing database connection (for example, Default Database Connection), select it
in the tree. To add a database connection, right-click the Database Connections tree node, and select Add DB con-
nection. Alternatively, you can add database connections under the External Connections node in the Policy Studio
tree view. For more information on configuring database connections, see the Database Connection topic.

Database Statements:
The Database Statements table lists the currently configured SQL queries or stored procedure calls. These queries and
calls retrieve certain user attributes from the database selected in the Database Location field. You can edit and delete
existing queries by selecting them from the drop-down list and clicking the Edit and Delete buttons. For more information
on how to configure a Database Query, see the Database Query topic.

Advanced

On the Advanced tab, configure the following fields in the User Attribute Extraction section:

Place query results into user attribute list:
Select whether to place the database query results in a user attribute list using this setting (selected by default). When
selected, the query results are placed in the attribute.lookup.list message attribute.

Associate attributes with user ID returned by selector
When the Place query results into message attribute list setting is selected, you can select or enter a user ID to asso-
ciate with the user attributes. For example, if the user name is stored as admin in the database, you must select the
message attribute containing the value admin. The API Gateway then looks up the database using this name. By de-
fault, the user ID is stored in the ${authentication.subject.id} message attribute.

Configure the following fields on the Attribute Naming section:

Enable legacy attribute naming for retrieved attributes:
Specifies whether to enable legacy naming of retrieved message attributes (unselected by default). Prior to version 7.1,
retrieved attributes were stored in message attributes in the following format:

user.<retrieved_attribute_name>

For example, ${user.email}, ${user.role}, and so on. If the retrieved attribute was multi-valued, you would ac-
cess the values using ${user.email.1} or ${user.email.2}, and so on.

In version 7.1 and later, by default, you can now query for multi-valued retrieved attributes using an array syntax (for ex-

314

ample, ${user.email[0]}, or ${user.email[1]}, and so on). You can also access other previously unreachable
fields in the retrieved attribute (for example, ${user.email.attKey} or ${user.email.namespace}). Select this
setting if you wish to use the legacy format for attribute naming.

Prefix for message attribute names:
You can specify an optional prefix for message attribute names. The default prefix is user.

Attribute name for stored procedure out parameters:
You can also specify an attribute name for stored procedure out parameters. The default prefix is out.param.value.

Case for attribute names:
You can specify whether attribute names are in lower case or upper case. The default is lower case.

Retrieve Attribute from Database

315

Retrieve Attributes from Directory Server
Overview

The API Gateway can leverage an existing directory server by querying it for user profile data. The Retrieve from Dir-
ectory Server filter can lookup a user, retrieve that user's attributes, and set them to the attribute.lookup.list
message attribute, which stores a map of name-value pairs.

General Configuration

Configure the following field:

Name:
Enter an appropriate name for this filter.

Database

Configure the following fields on the Database tab:

LDAP Directory:
The API Gateway queries the selected LDAP directory for user attributes. An LDAP connection is retrieved from a pool of
connections at runtime. Click the button on the right to select the LDAP directory to query. If you wish to use an existing
LDAP directory, (for example, Sample Active Directory Connection), you can select it in the tree. To add an
LDAP directory, right-click the LDAP Connections tree node, and select Add an LDAP Connection. Alternatively, you
can add LDAP connections under the External Connections node in the Policy Studio tree view. For more details on
how to configure LDAP connections, see the topic on Configuring LDAP Directories.

The Retrieve Unique User Identity section enables you to select the user whose profile the API Gateway looks up in
the directory server. The user ID can be taken from a message attribute or looked up from an LDAP directory.

From Message Attribute:
Select this option if the user ID is stored in a message attribute. A user's credentials are stored in the authentica-
tion.subject.id message attribute after authenticating to the API Gateway, so this is the most likely attribute to enter
in this field. Typically, this contains the Distinguished Name (DName) or username of the authenticated user. The name
extracted from the selected message attribute is used to query the directory server.

From LDAP Search:
In cases where you have not already obtained the user's identity and the authentication.subject.id attribute has
not been pre-populated by a prior authentication filter, you must configure the API Gateway to retrieve the user's identity
from an LDAP search. Click the Configure Directory Search button to configure the search criteria to use to retrieve the
user's unique DName from the LDAP repository.

The Retrieve Attributes section instructs the API Gateway to search the LDAP tree to locate a specific user profile.
When the appropriate profile is retrieved, the API Gateway extracts the specified user attributes.

Base Criteria:
This value specifies where the API Gateway should begin searching the LDAP directory. You can enter a selector rep-
resenting the value of a message attribute, which is expanded at runtime. The two most likely message attributes to spe-
cify are the authenticated user's ID and Distinguished Name. The corresponding selector values are available in the
drop-down list:

• ${authentication.subject.id}

• ${authentication.subject.dname}

However, you can enter selectors representing other message attributes using the same syntax. For more details on se-

316

lectors, see Selecting Configuration Values at Runtime.

Search Filter:
This is the name given by the particular LDAP directory to the User class. This depends on the type of LDAP directory
configured. You can also use a selector to represent the value of a message attribute. For example, you can use the
user.role attribute to store the user class. The syntax for using the selector representing this attribute is as follows:

(objectclass=${user.role})

Search Scope:
If the API Gateway retrieves a user profile node from the LDAP tree, the option selected here dictates the level that the
API Gateway searches the node to. The available options are:

• Object level
• One level
• Sub-tree

Select the Unique Result option to force the API Gateway to retrieve a unique user profile from the LDAP directory. This
is useful in cases where the LDAP search has returned several profiles.

The Attribute Name table lists the attributes the API Gateway retrieves from the user profile. If no attributes are listed,
the API Gateway extracts all user attributes. In both cases, retrieved attributes are set to the attribute.lookup.list
message attribute. Click Add to add the name of an attribute to extract from the returned user profile. Enter the attribute
name to extract from the profile in the Attribute Name field of the Attribute Lookup dialog.

Important

• If the search returns results for more that one user, and the Unique Result option is enabled, an error
is generated. If this option is not enabled, all attributes are merged.

• If an attribute is configured that does not exist in the repository, no error is generated.
• If no attributes are configured, all attributes present for the user are retrieved.

Advanced

Configure the following fields on the Advanced tab:

Enable legacy attribute naming for retrieved attributes:
Specifies whether to enable legacy naming of retrieved message attributes (unselected by default). Prior to version 7.1,
retrieved attributes were stored in message attributes in the following format:

user.<retrieved_attribute_name>

For example, ${user.email}, ${user.role}, and so on. If the retrieved attribute was multi-valued, you would ac-
cess the values using ${user.email.1} or ${user.email.2}, and so on.

In version 7.1 and later, by default, you can now query for multi-valued retrieved attributes using an array syntax (for ex-
ample, ${user.email[0]} or ${user.email[1]}, and so on). You can also access other previously unreachable
fields in the retrieved attribute (for example, ${user.email.attKey} or ${user.email.namespace}). Select this
setting if you wish to use the legacy format for attribute naming.

Prefix for message attribute names:
You can specify an optional prefix for message attribute names. The default prefix is user.

Retrieve Attributes from Directory Server

317

Retrieve Attribute from HTTP Header
Overview

The Retrieve from HTTP Header attribute retrieval filter can be used to retrieve the value of an HTTP header and set it
to a message attribute. For example, this filter can retrieve an X.509 certificate from a USER_CERT HTTP header, and set
it to the authentication.cert message attribute. This certificate can then be used by the filter's successors. The fol-
lowing HTTP request shows an example of such a header:

POST /services/getEmployee HTTP/1.1
Host: localhost:8095
Content-Length: 21
SOAPAction: HelloService
USER_CERT: MIIEZDCCA0 ...9aKD1fEQgJ

You can also retrieve a value from a named query string parameter and set this to the specified message attribute. The
following example shows a request URL that contains a query string:

http://hostname.com/services/getEmployee?first=john&last=smith

In the above example, the query string is first=john&last=smith. As is clear from the example, query strings con-
sist of attribute name-value pairs. Each name-value pair is separated by the & character.

Configuration

The following fields are available on the Retrieve from HTTP Header filter configuration screen:

Name:
Enter an appropriate name for this filter.

HTTP Header Name:
Enter the name of the HTTP header contains the value that we want to set to the message attribute.

Base64 Decode:
Check this box if the extracted value should be Base64 decoded before it is set to the message attribute.

Use Query String Parameters:
Select this setting if the API Gateway should attempt to extract the HTTP Header Name from the query string paramet-
ers instead of from the HTTP headers.

Attribute ID:
Finally, select the attribute used to store the value extracted from the request.

318

Insert SAML Attribute Assertion
Overview

A Security Assertion Markup Language (SAML) attribute assertion contains information about a user in the form of a
series of attributes. Having collated a certain amount of information about a user, the API Gateway can generate a SAML
attribute assertion, and insert it into the downstream message.

A SAML Attribute (see example below) is generated for each entry in the attribute.lookup.list attribute. Other fil-
ters from the Attributes filter group can be used to insert user attributes into the attribute.lookup.list attribute.

It may be useful to refer to the following example of a SAML attribute assertion when configuring this filter:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">
<soap:Header>
<wsse:Security>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

ID="Id-0000010a3c4ff12c-0000000000000002"
IssueInstant="2006-03-27T15:26:12Z" Version="2.0">

<saml:Issuer Format="urn:oasis ... WindowsDomainQualifiedName">
TestCA

</saml:Issuer>
<saml:Subject>
<saml:NameIdentifier Format="urn:oasis ... WindowsDomainQualifiedName">
TestUser

</saml:NameIdentifier>
</saml:Subject>
<saml:Conditions NotBefore="2005-03-27T15:20:40Z"

NotOnOrAfter="2028-03-27T17:20:40Z"/>
<saml:AttributeStatement>
<saml:Attribute Name="role" NameFormat="http://www.oracle.com">
<saml:AttributeValue>admin</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="email" NameFormat="http://www.oracle.com">
<saml:AttributeValue>joe@oracle.com</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="dept" NameFormat="">
<saml:AttributeValue>engineering</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

</saml:Assertion>
</wsse:Security>

</soap:Header>

<soap:Body>
<product>
<name>API Gateway</name>
<company>Oracle</company>
<description>Web Services Security</description>
</product>

</soap:Body>
</soap:Envelope>

General Configuration

Configure the following field:

Name:

319

Enter an appropriate name for the filter.

Assertion Details

Configure the following fields on the Assertion Details tab:

Issuer Name:
Select the certificate containing the Distinguished Name (DName) that you want to use as the Issuer of the SAML asser-
tion. This DName is included in the SAML assertion as the value of the Issuer attribute of the <saml:Assertion>
element. For an example, see the sample SAML assertion above.

Expire In:
Specify the lifetime of the assertion in this field. The lifetime of the assertion lasts from the time of insertion until the spe-
cified amount of time has elapsed.

Drift Time:
The Drift Time is used to account for differences in the clock times of the machine hosting the API Gateway (that gener-
ate the assertion) and the machines that consume the assertion. The specified time is subtracted from the time at which
the API Gateway generates the assertion.

SAML Version:
You can create SAML 1.0, 1.1, and 2.0 attribute assertions. Select the appropriate version from the drop-down list.

Important
SAML 1.0 recommends the use of the http://www.w3.org/TR/2001/REC-xml-c14n-20010315
XML Signature Canonicalization algorithm. When inserting signed SAML 1.0 assertions into XML docu-
ments, it is quite likely that subsequent signature verification of these assertions will fail. This is due to the
side effect of the algorithm including inherited namespaces into canonical XML calculations of the inserted
SAML assertion that were not present when the assertion was generated.

For this reason, Oracle recommend that SAML 1.1 or 2.0 is used when signing assertions as they both uses the exclus-
ive canonical algorithm http://www.w3.org/2001/10/xml-exc-c14n#, which safeguards inserted assertions from
such changes of context in the XML document. Please see section 5.4.2 of the oasis-sstc-saml-core-1.0.pdf
and section 5.4.2 of sstc-saml-core-1.1.pdf documents, both of which are available at ht-
tp://www.oasis-open.org.

Assertion Location

The options on the Assertion Location tab specify where the SAML assertion is inserted in the message. By default, the
SAML assertion is added to the WS-Security block with the current SOAP actor/role. The following options are available:

Append to Root or SOAP Header:
Appends the SAML assertion to the message root for a non-SOAP XML message, or to the SOAP Header for a SOAP
message. For example, this option may be suitable for cases where this filter may process SOAP XML messages or non-
SOAP XML messages.

Add to WS-Security Block with SOAP Actor/Role:
Adds the SAML assertion to the WS-Security block with the specified SOAP actor (SOAP 1.0) or role (SOAP 1.1). By de-
fault, the assertion is added with the current SOAP actor/role only, which means the WS-Security block with no actor.
You can select a specific SOAP actor/role when available from the drop-down list.

XPath Location:
If you wish to insert the SAML assertion at an arbitrary location in the message, you can use an XPath expression to
specify the exact location in the message. You can select XPath expressions from the drop-down list. The default is the
First WSSE Security Element, which has an XPath expression of //wsse:Security. You can add, edit, or re-
move expressions by clicking the relevant button. For more details, see the Configuring XPath Expressions topic.

Insert SAML Attribute Assertion

320

You can specify exactly how the SAML assertion is inserted using the following options:

• Append to node returned by XPath expression (the default)
• Insert before node returned by XPath expression
• Replace node returned by XPath expression

Insert into Message Attribute:
Specify a message attribute to store the SAML assertion from the drop-down list (for example, saml.assertion). Al-
ternatively, you can also enter a custom message attribute in this field (for example, my.test.assertion). The SAML
assertion can then be accessed downstream in the policy.

Subject Confirmation Method

The settings on the Subject Confirmation Method tab determine how the <SubjectConfirmation> block of the
SAML assertion is generated. When the assertion is consumed by a downstream Web Service, the information contained
in the <SubjectConfirmation> block can be used to authenticate either the end-user that authenticated to the API
Gateway, or the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

The following configuration fields are available on the Subject Confirmation Method tab:

Method:
The value selected here determines the value of the <ConfirmationMethod> element. The following table shows the
available methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key The API Gateway includes the key
used to prove that the API Gateway is
the holder of the key, or includes a ref-
erence to the key.

urn:oasis:names:tc:SAML:1.0:c
m:holder-of-key

Bearer The subject of the assertion is the
bearer of the assertion.

urn:oasis:names:tc:SAML:1.0:c
m:bearer

SAML Artifact The subject of the assertion is the user
that presented a SAML Artifact to the
API Gateway.

urn:oasis:names:tc:SAML:1.0:c
m:artifact

Sender Vouches Use this confirmation method to assert
that the API Gateway is acting on be-
half of the authenticated end-user. No
other information relating to the context

urn:oasis:names:tc:SAML:1.0:c
m:bearer

Insert SAML Attribute Assertion

321

Method Meaning Value

of the assertion is sent. It is recom-
mended that both the assertion and
the SOAP Body must be signed if this
option is selected. These message
parts can be signed by using the XML
Signature Generation filter.

Note
You can also leave the Method field blank, in which case no <ConfirmationMethod> block is inserted
into the assertion.

Holder-of-Key Configuration:
When you select Holder-of-Key as the SAML subject confirmation in the Method field, you must configure how in-
formation about the key is to be included in the message. There are a number of configuration options available depend-
ing on whether the key is a symmetric or asymmetric key.

Asymmetric Key:
If you want to use an asymmetric key as proof that the API Gateway is the holder-of-key entity, you must select the
Asymmetric Key radio button, and then configure the following fields on the Asymmetric tab:

• Certificate from Store:
If you want to select a key that is stored in the Certificate Store, select this option and click the Signing Key button.
On the Select Certificate screen, select the box next to the certificate that is associated with the key that you want
to use.

• Certificate from Message Attribute:
Alternatively, the key may have already been used by a previous filter in the policy (for example, to sign a part of the
message). In this case, the key is stored in a message attribute. You can specify this message attribute in this field.

Symmetric Key:
If you want to use a symmetric key as proof that the API Gateway is the holder of key, select the Symmetric Key radio
button, and configure the fields on the Symmetric tab:

• Generate Symmetric Key, and Save in Message Attribute:
If you select this option, the API Gateway generates a symmetric key, which is included in the message before it is
sent to the client. By default, the key is saved in the symmetric.key message attribute.

• Symmetric Key in Message Attribute:
If a previous filter (for example, a Sign Message filter) has already used a symmetric key, you can to reuse this key
as proof that the API Gateway is the holder-of-key entity. You must enter the name of the message attribute in the
field provided, which defaults to symmetric.key.

• Encrypt using Certificate from Certificate Store:
When a symmetric key is used, you must assume that the recipient has no prior knowledge of this key. It must,
therefore, be included in the message so that the recipient can validate the key. To avoid meet-in-the-middle style
attacks, where a hacker could eavesdrop on the communication channel between the API Gateway and the recipient
and gain access to the symmetric key, the key must be encrypted so that only the recipient can decrypt the key. One
way of doing this is to select the recipient's certificate from the Certificate Store. By encrypting the symmetric key
with the public in the recipient's certificate, the key can only be decrypted by the recipient's private key, to which only
the recipient has access. Select the Signing Key button and then select the recipient's certificate on the Select Cer-
tificate dialog.

• Encrypt using Certificate from Message Attribute:

Insert SAML Attribute Assertion

322

Alternatively, if the recipient's certificate has already been used (perhaps to encrypt part of the message) this certific-
ate is stored in a message attribute. You can enter the message attribute in this field.

• Symmetric Key Length:
Enter the length (in bits) of the symmetric key to use.

• Key Wrap Algorithm:
Select the algorithm to use to encrypt (wrap) the symmetric key.

Key Info:
The Key Info tab must be configured regardless of whether you have elected to use symmetric or asymmetric keys. It
determines how the key is included in the message. The following options are available:

• Do Not Include Key Info:
Select this option if you do not wish to include a <KeyInfo> section in the SAML assertion.

• Embed Public Key Information:
If this option is selected, details about the key are included in a <KeyInfo> block in the message. You can include
the full certificate, expand the public key, include the distinguished name, and include a key name in the <KeyInfo>
block by selecting the appropriate boxes. When selecting the Include Key Name field, you must enter a name in the
Value field, and select the Text Value or Distinguished Name Attribute radio button, depending on the source of
the key name.

• Put Certificate in Attachment:
Select this option to add the certificate as an attachment to the message. The certificate is then referenced from the
<KeyInfo> block.

• Security Token Reference:
The Security Token Reference (STR) provides a way to refer to a key contained in a SOAP message from another
part of the message. It is often used in cases where different security blocks in a message use the same key materi-
al, and it is considered an overhead to include the key more than once in the message.
When this option is selected, a <wsse:SecurityTokenReference> element is inserted into the <KeyInfo>
block. It references the key material using a URI to point to the key material and a ValueType attribute to indicate
the type of reference used. For example, if the STR refers to an encrypted key, you should select EncryptedKey
from the drop-down list, whereas if it refers to a BinarySecurityToken, select X509v3 from the dropdown. Other
options are available to enable more specific security requirements.

Advanced

The settings on the Advanced tab include the following fields.

Select Required Layout Type:
WS-Policy and SOAP Message Security define a set of rules that determine the layout of security elements that appear
in the WS-Security header in a SOAP message. The SAML assertion is inserted into the WS-Security header according
to the layout option selected here. The available options correspond to the WS-Policy Layout assertions of Strict, Lax,
LaxTimestampFirst, and LaxTimestampLast.

Indent:
Select this method to ensure that the generated signature is properly indented.

Security Token Reference:
The generated SAML attribute assertion can be encapsulated in a <SecurityTokenReference> block. The following
example demonstrates this:

<soap:Header>
<wsse:Security

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
soap:actor="oracle">

<wsse:SecurityTokenReference>
<wsse:Embedded>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

Insert SAML Attribute Assertion

323

ID="Id-0000010a3c4ff12c-0000000000000002"
IssueInstant="2006-03-27T15:26:12Z" Version="2.0">

<saml:Issuer Format="urn:oasis ... WindowsDomainQualifiedName">
TestCA

</saml:Issuer>
<saml:Subject>
<saml:NameID Format="urn:oasis ... WindowsDomainQualifiedName">
TestUser

</saml:NameID>
</saml:Subject>
<saml:Conditions NotBefore="2005-03-27T15:20:40Z"

NotOnOrAfter="2028-03-27T17:20:40Z"/>
<saml:AttributeStatement>
<saml:Attribute Name="role" NameFormat="http://www.oracle.com">
<saml:AttributeValue>admin</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="email" NameFormat="http://www.oracle.com">
<saml:AttributeValue>joe@oracle.com</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="attrib1" NameFormat="">
<saml:AttributeValue xsi:nil="true"/>
<saml:AttributeValue>value1</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

</saml:Assertion>
</wsse:Embedded>
</wsse:SecurityTokenReference>

</wsse:Security>
</soap:Header>

To add the SAML assertion to a <SecurityTokenReference> block like in this example, select the Embed SAML as-
sertion within Security Token Reference option. Otherwise, select No Security Token Reference.

Insert SAML Attribute Assertion

324

Retrieve Attributes with JSON Path
Overview

JSON Path is an XPath like query language for JSON (JavaScript Object Notation) that enables you to select nodes in a
JSON document. The Retrieve Attributes with JSON Path filter enables you to retrieve specified message attributes
from a JSON message using JSON Path expressions.

For more details on JSON Path, see http://code.google.com/p/jsonpath/.

Configuration

Configure the following fields on the Retrieve Attributes with JSON Path filter screen:

Name:
Enter an appropriate name for this filter.

Extract attributes using the following JSON Path expressions:
Specify the list of attributes for the API Gateway to retrieve using appropriate JSON Path expressions. All attribute values
are stored in the attribute.lookup.list message attribute.

To add an attribute to the list, click the Add button, and enter the following values in the dialog:

• Attribute name:
Enter the message attribute name that you wish to extract using JSON Path (for example, bicycle.price).

• JSON Path Expression:
Enter the JSON Path expression that you wish to use to extract the message attribute (for example,
$.store.bicycle.price). The Policy Studio prompts if you enter an unsupported JSON Path expression.

• Unmarshal as:
Enter the data type to unmarshal the message attribute value as (defaults to java.lang.String).

• Fail if JSON Path Fails:
Select whether the filter should fail if the specified JSON Path expression fails. This option is not selected by default.

Note
If no attributes are specified, the API Gateway retrieves all the attributes in the message and sets them to
the attribute.lookup.list attribute.

JSON Path Examples

The following are some examples of using the Retrieve Attributes with JSON Path filter to retrieve data from a JSON
message.

Retrieving Attributes
The following example retrieves three different data items from the JSON message and stores them in the specified mes-
sage attributes as strings:

325

http://code.google.com/p/jsonpath/

When the extracted attributes are added to the content.body message attribute, the following example shows the cor-
responding request and response message in Oracle API Gateway Explorer:

Retrieve Attributes with JSON Path

326

Retrieving Multiple Attributes in a List
The following example retrieves all the authors from the JSON message and stores them in the specified message attrib-
ute as a List:

Retrieve Attributes with JSON Path

327

The following example shows the corresponding request and response in Oracle API Gateway Explorer:

Retrieve Attributes with JSON Path

328

Retrieve Attribute from Message
Overview

The Retrieve from Message filter uses XPath expressions to extract the value of an XML element or attribute from the
message and set it to an internal message attribute. The XPath expression can also return a NodeList, and the
NodeList can be set to the specified message attribute.

Configuration

The following fields are available on the Retrieve from Message filter configuration screen:

Name:
Enter an appropriate name for this filter.

Attribute Location:
Configure an XPath expression to retrieve the desired content.

Click the Add button to add an XPath expression. You can add and remove existing expressions by clicking the Edit and
Remove buttons respectively.

Extract the Content of the Node:
When this option is selected, the content of the XML element or attribute in the message is extracted and set to the spe-
cified message attribute.

Serialize All Nodes in the NodeList:
This option saves all nodes retrieved from the XPath expression to the specified message attribute as a String (for ex-
ample, <node1>test</node1>). This option is useful for extracting <Signature>, <Security>, and
<UsernameToken> blocks, as well as proprietary blocks of XML from messages.

Save as List of Nodes:
This option saves the nodes retrieved from the XPath expression to the specified message attribute as a Java List,
where each item is of type Node. For example, if the XPath returns <node1>test</node1>, there is one node in the
List (<node1>). The child text node (test) is accessible from that node, but is not saved as an entry in the List at the
top-level.

Attribute ID:
The API Gateway sets the value of the message attribute selected here to the value extracted from the message. You
can also enter a user-defined message attribute.

329

Retrieve Attribute from SAML Attribute Assertion
Overview

A SAML (Security Assertion Markup Language) attribute assertion contains information about a user in the form of a
series of attributes. The Retrieve from SAML Attribute Assertion can retrieve these attributes and store them in the
attribute.lookup.list message attribute.

The following SAML attribute assertion contains 3 attributes, "role", "email", and "dept". The Retrieve from SAML Attrib-
ute Assertion will store all 3 attributes and their values in the attribute.lookup.list message attribute.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">
<soap:Header>
<wsse:Security>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

ID="Id-0000010a3c4ff12c-0000000000000002"
IssueInstant="2006-03-27T15:26:12Z" Version="2.0">

<saml:Issuer Format="urn:oasis ... WindowsDomainQualifiedName">
TestCA

</saml:Issuer>
<saml:Subject>
<saml:NameIdentifier Format="urn:oasis ... WindowsDomainQualifiedName">
TestUser

</saml:NameIdentifier>
</saml:Subject>
<saml:Conditions NotBefore="2005-03-27T15:20:40Z"

NotOnOrAfter="2028-03-27T17:20:40Z"/>
<saml:AttributeStatement>
<saml:Attribute Name="role" NameFormat="http://www.oracle.com">
<saml:AttributeValue>admin</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="email" NameFormat="http://www.oracle.com">
<saml:AttributeValue>joe@oracle.com</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="dept" NameFormat="">
<saml:AttributeValue>engineering</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

</saml:Assertion>
</wsse:Security>

</soap:Header>

<soap:Body>
<product>
<name>API Gateway</name>
<company>Oracle</company>
<description>Web Services Security</description>
</product>

</soap:Body>
</soap:Envelope>

Details

The following fields are available on the Details configuration tab:

Name:
Enter a name for this filter here.

330

SOAP Actor/Role:
If you expect the SAML assertion to be embedded within a WS-Security block, you can identify this block by specifying
the SOAP Actor or Role of the WS-Security header that contains the assertion.

XPath Expression:
Alternatively, if the assertion is not contained within a WS-Security block, you can enter an XPath expression to locate
the attribute assertion. XPath expressions can be added by selecting the Add button. Expressions can be edited and de-
leted by selecting an XPath expression and clicking the Add and Delete buttons respectively.

SAML Namespace:
Select the SAML namespace that must be used on the SAML assertion in order for this filter to succeed. If you do not
wish to check the namespace, select the "Do not check version" option from the dropdown.

SAML Version:
Enter the SAML Version that the assertion must adhere to by entering the major version in the 1st field, followed by the
minor version in the 2nd field. For example, for SAML version 2.0, enter "2" in the 1st field and "0" in the 2nd field.

Drift Time:
When the API Gateway receives a SAML attribute assertion, it first checks to make sure that it has not expired. The life-
time of the assertion is specified using the "NotBefore" and "NotOnOrAfter" attributes of the <Conditions> element in
the assertion itself. The API Gateway makes sure that the time at which it validates the assertion is between the "NotBe-
fore" and "NotOnOrAfter" times.

The Drift Time is used to account for differences in the clock time of the machine that generated the assertion and the
machine hosting the API Gateway. The time specified here will be subtracted from the time at which the API Gateway at-
tempts to validate the assertion.

Trusted Issuers

You can use the table on this tab to select the issuers that you consider trusted. In other words, this filter will only accept
assertions that have been issued by the SAML Authorities selected here.

Click the Add button to display the Trusted Issuers screen. Select the Distinguished Name of a SAML Authority whose
certificate has been added to the Certificate Store and click the OK button. Repeat this step to add more SAML Authorit-
ies to the list of trusted issuers.

Subject Configuration

The API Gateway can perform some very basic authentication checks on the subject or sender of the assertion using the
options available on the Subject tab. The API Gateway can compare the subject of the assertion (i.e. the
<NameIdentifier>) to one of the following values:

• Subject of the Authentication Filter:
Select this option if the user specified in the <NameIdentifier> element must match the user that authenticated
to the API Gateway. The subject of the authentication event is stored in the authentication.subject.id mes-
sage attribute.

• A User-Specified Value:
This option can be used if the <NameIdentifier> must match a user-specified value. Select this radio button and
enter the value in the field provided.

• No Authentication:
If the Neither of the above radio button is selected, the API Gateway will not attempt to match the
<NameIdentifier> to any value.

Lookup Attributes

The Lookup Attributes tab is used to determine what attributes the API Gateway should extract from the SAML attribute

Retrieve Attribute from SAML Attribute Assertion

331

assertion. Extracted attributes and their values will be set to the attribute.lookup.list message attribute.

The table lists the attributes that the API Gateway will extract from the assertion and set to the attrib-
ute.lookup.list.

Alternatively, check the Extract all of the attributes from the SAML assertion checkbox to configure the API Gateway
to extract all attributes from the assertion. All attributes will be set to the attribute.lookup.list message attribute.

To configure a specific attribute to lookup in the message, click the Add button to display the Attribute Lookup dialog.
Enter the value of the "Name" attribute of the <Attribute> element in the Name field. Enter the value of the "Name-
Format" attribute of the <Attribute> element in the Namespace field.

Retrieve Attribute from SAML Attribute Assertion

332

SAML PDP Attributes
Overview

The API Gateway can request information about an authenticated end-user in the form of user attributes from a SAML
PDP (Policy Decision Point) using the SAML Protocol (SAMLP). In such cases, the API Gateway presents evidence to
the PDP in the form of some user credentials, such as the Distinguished Name of a client's X.509 certificate.

The PDP looks up its configured user store and retrieves attributes associated with that user. The attributes are inserted
into a SAML attribute assertion and returned to the API Gateway in a SAMLP response. The assertion and/or SAMLP re-
sponse is usually signed by the PDP.

When the API Gateway receives the SAMLP response, it performs a number of checks on the response, such as validat-
ing the PDP signature and certificate, and examining the assertion. It can also insert the SAML attribute assertion into
the original message for consumption by a downstream Web Service.

Request Configuration

This section describes how the API Gateway should package the SAMLP request before sending it to the SAML PDP.

SAML PDP URL Sets
You can configure a group of SAML PDPs to which the API Gateway connects in a round-robin fashion if one or more of
the PDPs are unavailable. This is known as a SAML PDP URL Set. You can configure a SAML PDP URL Set using this
screen or under the External Connections node in the Policy Studio tree. For more details, see the topic on Configuring
URL Groups.

You can configure the following general fields:

• SAML PDP URL Set:
Click the button on the right, and select a previously configured SAML PDP URL Set from the tree. To add a URL
Set, right-click the SAML PDP URL Sets tree node, and select Add a URL Set. Alternatively, you can configure a
SAML PDP URL Set under the External Connections node in the Policy Studio tree.

• SOAPAction:
Enter the SOAP Action required to send SAML Protocol requests to the PDP. Click the Use Default button to use
the following default SOAP Action as specified by the SAML Protocol:
http://www.oasis-open.org/committees/security

• SAML Version:
Select the SAML version to use in the SAMLP request.

• Signing Key:
If the SAMLP request is to be signed, click the Signing Key button, and select the appropriate signing key from the
Certificate Store.

SAML Subject:
These details describe the subject of the SAML assertion. Complete the following fields:

• Subject Attribute:
Select the message attribute that contains the name of an authenticated username. By default, the authentica-
tion.subject.id message attribute is selected, which contains the username of the authenticated user.

• Subject Format:
Select the format of the message attribute selected in the Subject Attribute field above.

333

Note
There is no need to select a format here if the Subject Attribute field is set to authentica-
tion.subject.id

Subject Confirmation:
The settings on the Confirmation Method tab determine how the <SubjectConfirmation> block of the SAML asser-
tion is generated. When the assertion is consumed by a downstream Web Service, the information contained in the
<SubjectConfirmation> block can be used to authenticate either the end-user that authenticated to the API Gate-
way, or the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

You must configure the following fields on the Subject Confirmation tab:

Method:
The selected value determines the value of the <ConfirmationMethod> element. The following table shows the avail-
able methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key A <SubjectConfirmation> is inser-
ted into the SAMLP request. The
<SubjectConfirmation> contains
a <dsig:KeyInfo> section with the
certificate of the user selected to sign
the SAMLP request. The user selected
to sign the SAMLP request must be
the authenticated subject (authen-
tication.subject.id).
Select the Certificate is included if
the signer's certificate is to be included
in the SubjectConfimration block.
Alternatively, select the Only key
name is included radio button if only
the key name is to be included.
Select the user whose private key is
used to sign part of the message in the
User Name drop-down list on the Sign
Request tab.

urn:oasis:names:tc:SAML:1.0:c
m:holder-of-key

SAML PDP Attributes

334

Method Meaning Value

Bearer A <SubjectConfirmation> is inser-
ted into the SAMLP request.

urn:oasis:names:tc:SAML:1.0:c
m:bearer

SAML Artifact A <SubjectConfirmation> is inser-
ted into the SAMLP request.

urn:oasis:names:tc:SAML:1.0:c
m:artifact

Sender Vouches A <SubjectConfirmation> is inser-
ted into the SAMLP request. The SAM-
LP request must be signed by a user.

urn:oasis:names:tc:SAML:1.0:c
m:bearer

If the Method field is left blank, no <ConfirmationMethod> block is inserted into the assertion.

Include Certificate:
Select this option if you wish to include the SAML subject's certificate in the <KeyInfo> section of the
<SubjectConfirmation> block.

Include Key Name:
Alternatively, if you do not want to include the certificate, you can select this option to only include the key name in the
<KeyInfo> section.

Attributes:
You can list a number of user attributes to include in the SAML attribute assertion that is generated by the API Gateway.
If no attributes are explicitly listed in this section, the API Gateway inserts all attributes associated with the user (all user
attributes in the attribute.lookup.list message attribute) in the assertion.

To add a specific attribute to the SAML attribute assertion, click the Add button. A user attribute can be configured using
the Attribute Lookup dialog.

Enter the name of the attribute that is added to the assertion in the Attribute Name field. Enter the namespace that is
associated with this attribute in the Namespace field.

You can edit and remove previously configured attributes using the Edit and Remove buttons.

Response Configuration

The fields on this tab relate to the SAMLP Response returned from the SAML PDP. The following fields are available:

SOAP Actor/Role:
If the SAMLP response from the PDP contains a SAML attribute assertion, the API Gateway can extract it from the re-
sponse and insert it into the downstream message. The SAML assertion is inserted into the WS-Security block identified
by the specified SOAP actor/role.

Drift Time:
The SAMLP request to the PDP is time stamped by the API Gateway. To account for differences in the times on the ma-
chines running the API Gateway and the SAML PDP the specified time is subtracted from the time at which the API
Gateway generates the SAMLP request.

SAML PDP Attributes

335

Retrieve Attribute from User Store
Overview

The User Store stores a user's profile, including attributes relating to that user. After a user has successfully authentic-
ated to the API Gateway, the Retrieve From User Store filter can retrieve attributes belonging to that user from the User
Store. All attributes that are retrieved are set to the attribute.lookup.list.

General Configuration

Configure the following field:

Name:
Enter an appropriate name for this filter.

Database

Configure the following fields on the Database tab:

User ID:
Select or enter the name of the message attribute that contains the name of the user to look up in the User Store. For
example, if the user name is stored as admin, you must select the message attribute containing the value admin. The
API Gateway then looks up the user the User Store using this name.

Attributes:
Enter the list of attributes that the API Gateway should retrieve if it successfully looks up the user identified by the mes-
sage attribute specified in the User ID field. All attribute values are stored in the attribute.lookup.list message
attribute.

If no user attributes are specified, the API Gateway retrieves all the user's registered attributes and sets them to the at-
tribute.lookup.list attribute.

You can add attributes by selecting the Add button. Similarly, you can edit and remove existing attributes by selecting
the Edit and Remove buttons.

Advanced

Configure the following fields on the Advanced tab:

Enable legacy attribute naming for retrieved attributes:
Specifies whether to enable legacy naming of retrieved message attributes (unselected by default). Prior to version 7.1,
retrieved attributes were stored in message attributes in the following format:

user.<retrieved_attribute_name>

For example, ${user.email}, ${user.role}, and so on. If the retrieved attribute was multi-valued, you would ac-
cess the values using ${user.email.1} or ${user.email.2}, and so on.

In version 7.1 and later, by default, you can now query for multi-valued retrieved attributes using an array syntax (for ex-
ample, ${user.email[0]} or ${user.email[1]}, and so on). You can also access other previously unreachable
fields in the retrieved attribute (for example, ${user.email.attKey} or ${user.email.namespace}). Select this
setting if you wish to use the legacy format for attribute naming.

Prefix for message attribute names:
You can specify an optional prefix for message attribute names. The default prefix is user.

336

Attribute Authentication
Overview

In cases where user credentials are passed to the API Gateway in a non-standard way, these credentials can be copied
into API Gateway message attributes, and then authenticated against a specified authentication repository, such as the
API Gateway User Store, an LDAP directory, or a database. For example, assume that username and password creden-
tials are passed to the API Gateway in the following XML message:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<ns:User xmlns:ns="http://www.user.com">

<ns:Username>1</ns:Username>
<ns:Password>2</ns:Password>

</ns:User>
</s:Body>

</s:Envelope>

In this example, the standard methods of passing credentials, such as HTTP Basic/Digest authentication, SAML asser-
tions, WS-Security Username tokens, are bypassed, and the client sends the username and password as parameters in
a simple SOAP message. When the API Gateway receives this message, it can extract the value of the <Username>
and <Password> elements using an XPath expression configured in the Retrieve Attributes from Message filter. This
filter uses an XPath expression to retrieve the value of an element or attribute, and can then store this value in the spe-
cified message attribute.

In this example, you can configure an instance of this filter to retrieve the value of the <Username> attribute, and store it
in the authentication.subject.id message attribute. Similarly, you can configure another filter to retrieve the
value of the <Password>, and store it in the authentication.subject.password message attribute.

The Attribute Authentication filter can then use the username and password values stored in these message attributes
to authenticate the user against the specified authentication repository.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for this filter.

Username:
Specify the API Gateway message attribute that contains the username of the user to be authenticated. The default at-
tribute is the authentication.subject.id attribute, which is typically used to store a username.

Password:
Enter the API Gateway message attribute that contains the password of the user to authenticate. The default message
attribute is the authentication.subject.password attribute, which is typically used to store a password.

Credential Format:
Select the format of the credential stored in the API Gateway message attribute specified in the Username field above.
By default, User Name is selected.

Repository Name:
Select an existing repository to authenticate the user against from the drop-down list. Alternatively, you can configure a
new authentication repository by clicking the Add button. For more details on configuring the various types of repository
supported by the API Gateway, see the Authentication Repository tutorial.

337

Authenticate API Key
Overview

API keys are supplied by client users and applications calling REST APIs to track and control how the APIs are used (for
example, to meter access and prevent abuse or malicious attack). The Authenticate API Key filter enables you to se-
curely authenticate an API key with the API Gateway. API keys include a key ID that identifies the client responsible for
the API service request. This key ID is not a secret, and must be included in each request. API keys can also include a
confidential secret key used for authentication, which should only be known to the client and to the API service. You can
use the Authenticate API Key filter to specify where to find the API key ID and secret key in the request message, and
to specify timestamp and expiry options.

An example use case for this filter would be a client accessing a REST API service to invoke specific methods (for ex-
ample, startVM() or stopVM()). To invoke these methods, you are required to provide your API key ID and secret key
to the API Gateway. You can keep the secret key private by sending the request over HTTPS. Alternatively, you can use
the secret key to generate an HMAC digital signature. This means that the secret key is not sent in the request, but is in-
ferred instead, because the message must have been signed using the required secret key. When the API service re-
ceives the request, it uses the API key ID to look up the corresponding secret key, and uses it to validate the signature
and confirm the request sender.

The API Gateway supports the following API key types:

• Simple API keys including an key ID only. The API key ID is included in all requests to authenticate the client.
• Amazon Web Services style API keys including a key ID and a secret key, which are used together to securely au-

thenticate the client. The API key ID is included in all requests to identify the client. The secret key is known only to
the client and the API Gateway.

For more details on authenticating Amazon Web Services API keys, see
http://s3.amazonaws.com/doc/s3-developer-guide/RESTAuthentication.html

General Settings

Configure the following fields on this tab:

Name:
Enter a suitable name for this filter in your policy.

KPS Alias:
Enter the alias name of the Key Property Store (KPS) used to store the API keys. For more details, see Key Property
Stores. Defaults to the example ClientRegistry supplied with the API Gateway. For details on storing API keys in the
Oracle API Manager, see Configuring and Managing OAuth 2.0.

Field Containing Secret:
Enter the name of the field in the KPS that contains the secret. Defaults to secretKey.

API Key Settings

Configure the following fields on this tab:

Where to find API key:
To specify where to find the API key in the request message, select one of the following options:

• API key is located in:
Select one of the following from the list:
• Query String

338

http://s3.amazonaws.com/doc/s3-developer-guide/RESTAuthentication.html

• Header

• Parameter
The default option is Query String. Enter the name in the text box. Defaults to KeyId.

• API key is in Authorization header with format:
Select one of the following Authorization headers from the list:
• Amazon AWS s3 Authorization Header - "AWS apiKey + ":" + base64(signature)"

• HTTP Basic Authentication Header - "Basic base64(apiKey:secret)"
Defaults to the Amazon AWS s3 Authorization Header.

• API key can be found using the following selector:
Enter the selector value that specifies the location of the API key. For details on selectors, see Selecting Configura-
tion Values at Runtime. Defaults to ${http.client.getCgiArgument("KeyId")}.

Where to find Secret key:
To specify where to find the secret key in the request message, select the Extract Secret setting, and select one of the
following options:

• Secret key is in:
Select one of the following from the list:
• Query String

• Header

• Parameter
The default option is Query String. Enter the name in the text box. Defaults to SecretKey.

• Secret key is in Authorization header with format:
Select the Authorization header from the list. Defaults to HTTP Basic Authentication Header - "Basic
base64(apiKey:secret)".

• Secret key can be inferred from signature:
The client can use the secret key to generate a digital signature that is included in the request. When the API Gate-
way receives the request, it uses the API key ID to identify the client and look up the corresponding secret key in the
Oracle API Manager. The secret key is then used to validate the signature and authenticate the client. To specify the
signature format, select one of the following from the list:
• Amazon AWS s3 Authorization Header Authentication - "AWS apiKey + ":" +

base64(signature)"

• Amazon AWS s3 REST Authentication - "?Signature=<base64(signature)>
&Expires=<seconds since epoch>&AWSAccessKeyId=<aws-id>"

Defaults to Amazon AWS s3 Authorization Header Authentication.
• Secret key can be found using the following selector:

Enter the selector value that specifies the location of the secret key. For details on selectors, see Selecting Configur-
ation Values at Runtime. Defaults to ${http.client.getCgiArgument("SecretKey")}.

Authenticate API key and secret:
Select whether to authenticate both the API key ID and the secret key. This means that the client must supply the API
key ID and the secret key in the request message. This setting is selected by default.

Advanced

Configure the following fields on this tab:

Validate Timestamp:
Select whether to validate the API key timestamp using the settings specified below. This setting is unselected by de-
fault.

Timestamp is located in:
To specify where the timestamp is located in the request message, select one of the following from the list:

Authenticate API Key

339

• Header

• Parameter

• Query String

The default option is Header. Enter the name in the text box. Defaults to Date.

Timestamp format is:
To specify the timestamp format, select one of the following from the list:

• Simple Date Format

• Milliseconds since epoch

• Seconds since epoch

The default option is Simple Date Format. Enter the format in the text box. Defaults to EEE, dd MMM yyyy
HH:mm:ss zzz.

Timestamp Drift +/-:
You can specify a drift time in milliseconds to allow differences in the clock times between the machine on which the API
key was generated and the machine on which the API Gateway is running. Defaults to +-60000 milliseconds (one
minute).

Validate Expires:
Select whether to validate the API key expiry details using the settings specified below. This setting is unselected by de-
fault.

Expires is located in:
To specify the location of the expiry details in the request message, select one of the following from the list:

• Query String

• Header

• Parameter

The default option is Query String. Enter the name in the text box. Defaults to Expires.

Expires format is:
To specify the format of the expiry details, select one of the following from the list:

• Milliseconds since epoch

• Seconds since epoch

• Simple Date Format

The default option is Milliseconds since epoch. Enter the format in the text box.

Timestamp Drift +/-:
You can specify a drift time in milliseconds to allow differences in the clock times between the machine on which the API
key was generated and the machine on which the API Gateway is running. Defaults to 60000 milliseconds (one minute).

Authenticate API Key

340

CA SOA Security Manager Authentication
Overview

CA SOA Security Manager can authenticate end-users and authorize them to access protected Web resources. When
the API Gateway receives a message containing user credentials, it can forward the message to CA SOA Security Man-
ager where the passed credentials are extracted from the message to authenticate the end-user. When the message has
been passed to CA SOA Security Manager, it can authenticate the user by the following methods:

• XML Document Credential Collector:
Gathers credentials from the message and maps them to fields within a user directory.

• XML Digital Signature:
Validates the X.509 certificate contained within an XML-Signature on the message.

• WS-Security:
Extracts user credentials from WS-Security tokens contained in the message.

• SAML Session Ticket:
Consumes a SAML session ticket from an HTTP header, SOAP envelope, or session cookie to authenticate the
end-user.

By delegating the authentication decision to CA SOA Security Manager, the API Gateway acts as a Policy Enforcement
Point (PEP). It enforces the decisions made by the CA SOA Security Manager, which acts a Policy Decision Point (PDP).

Please refer to the Authentication Methods section of the CA SOA Security Manager Policy Configuration Guide for more
information on these authentication methods.

Enter a name for the filter in the Name: field before configuring the Agent and Message Details sections described be-
low.

Prerequisites

CA SOA Security Manager integration requires CA TransactionMinder SDK version 6.0 or later.

API Gateway
When adding third-party binaries to the API Gateway, you must perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the InstallDir/ext/lib directory.
• Add .dll files to the InstallDir\Win32\lib directory.
• Add .so files to the InstallDir/platform/lib directory.

2. Restart the API Gateway.

Policy Studio
When adding third-party binaries to the Policy Studio, you must perform the following steps:

1. Add .jar files to the InstallDir/plugins/thirdparty.runtime.dependencies_6.0.3 directory.
2. Restart the Policy Studio.

Agent Configuration

Name:
Enter a name for this authentication filter in the field provided.

341

Agent Name:
To act as a PEP for the CA SOA Security Manager, the API Gateway must have been set up as a SOA Agent with the
Policy Server. For more details on how to do this, see the CA SOA Security Manager Agent Configuration Guide.

Click the button on the right to select a previously configured agent to connect to SOA Security Manager. This name
must correspond with the name of an agent previously configured in the SOA Security Manager Policy Server. At
runtime, the API Gateway connects as this agent to a running instance of SOA Security Manager.

To add an agent, right-click the SiteMinder/SOA Security Manager Connections tree node, and select Add a SOA Se-
curity Manager Connection. Alternatively, you can add SOA Security Manager connections under the External Con-
nections node in the Policy Studio tree view. For details on how to configure SOA Security Manager connections, see
the section called “SOA Security Manager Connection Details Only”.

Message Details Configuration

While authenticating the user against CA SOA Security Manager, the user can also be authorized for a specified action
on a particular resource. Configure the following fields in the Message Details section:

Resource:
Enter the name of the resource for which you want to ensure that the user has access to. By default, the ht-
tp.request.uri message attribute is used, which contains the relative path on which the request was received by the
API Gateway.

Action:
Specify the action that the user is attempting to perform on the specified resource. The API Gateway will check the user's
entitlements in CA SOA Security Manager to ensure that the user is allowed to perform this action on the resource
entered above. By default, the http.request.verb message attribute is used, which stores the HTTP verb used by
the client when sending up the message.

Protocol:
Enter the protocol used by the client to access the requested resource. Users can have different access rights depending
on their roles in the organization. For example, managers may be allowed to FTP to a given resource, but more junior
employees are only allowed to GET a resource using HTTP. Defaults to http.

Headers:
In order to carry out further authorization checks on the message, it is possible to forward the HTTP headers associated
with the client message to the CA SOA Security Manager. By default, the http.headers message attribute is used to
ensure that the original client headers are send to the CA SOA Security Manager.

XmlToolkit.properties File

The XmlToolkit.properties file contains default properties used by the SOA agent, such as the URL of the CA
SOA Manager, an identifier for the SOA agent, and an indication to the SOA Manager if it should perform fine-grained re-
source identification or not. The XmlToolkit.properties file can be found in the /lib/modules/soasm directory of
your API Gateway installation.

#Wed Jul 18 15:02:16 BST 2007
WSDMResourceIdentification=yes
WS_UT_CREATION_EXPIRATION_MINUTES=60

The following properties are available:

• WSDMResourceIdentification:
This value cannot be configured from the Policy Studio, and so can only be set directly in the properties file. If this
property is set to no (or if the properties file cannot be found) only a coarse-grained resource identification is per-
formed on the requested URL. If this value is set to yes, a fine-grained resource identification including the reques-

CA SOA Security Manager Authentication

342

ted URL, Web Service name, and SOAP operation ([url]/[web service name]/[soap operation]).
• WS_UT_CREATION_EXPIRATION_MINUTES:

Specifies the WS-Username Token age limit restriction in minutes. This setting helps prevent against replay attacks.
The default token age limit is 60 minutes. See the section below for more information on modifying this setting.

Configuring the Username and Password Digest Token Age Restriction:
By default, the WS-Security authentication scheme imposes a 60 minute restriction on the age of Username and Pass-
word Digest Tokens to protect against replay attacks.

You can configure a different value for the token age restriction for the API Gateway by setting the
WS_UT_CREATION_EXPIRATION_MINUTES parameter in the XmlToolkit.properties file for that API Gateway. To
configure the API Gateway to use a non-default age restriction for Username and Password Token authentication, com-
plete the following steps:

1. Navigate to the INSTALL_DIR/system/lib/modules/soasm directory, where INSTALL_DIR points to the root
of your API Gateway installation.

2. Open the XmlToolkit.properties file in a text editor.
3. Add the following line, where token_age_limit specifies the token age limit in minutes:

WS_UT_CREATION_EXPIRATION_MINUTES=token_age_limit

4. Save and close the XmlToolkit.properties file.
5. Restart the API Gateway.

Important
It is important to note the following:

• The properties file is written to the /lib/modules/soasm directory when a SOA Security Manager
Authentication or Authorization filter is loaded at startup, or on server refresh (for example, when a
configuration update is deployed), but only if the file does not already exist in this location.

• If the properties file already exists in the /lib/modules/soasm directory, the WSDMResourceIden-
tification property is not overwritten. In other words, the user is allowed to manually set this property
independently of the Policy Studio.

• If the WSDMResourceIdentification property does not exist, it is given a default value of yes and
written to the file.

CA SOA Security Manager Authentication

343

HTML Form-based Authentication
Overview

HTML Form-based Authentication enables users to supply their user name and password details in an HTML form, and
submit them to login to a system. Using HTML form-based authentication, normal HTTP authentication features such as
HTTP Basic or HTTP Digest are not used. Instead, the user name and password are typically sent as HTML <FORM>
data in an HTTP POST over SSL.

When the HTML Form-based Authentication filter is configured, the API Gateway can authenticate the user details
specified in the HTML form against a user profile stored in the API Gateway local repository, a database, or an LDAP dir-
ectory. The HTML Form-based Authentication filter also enables you to specify how HTTP sessions are managed (for
example, session expiry, and applicable API Gateway domain or relative path).

General Settings

These settings enable you to configure general details such as the names of the HTML form fields, format of user cre-
dentials, and repository to validate credentials against. Complete the following settings:

Name:
Enter an appropriate name for the filter.

Username:
Enter the name of the HTML form field in which the user enters their username. Defaults to username.

Password:
Enter the name of the HTML form field in which the user enters their password. Defaults to password.

Format of Authentication Credentials:
You must specify the format of the user credentials presented by the client because the API Gateway has no way of
telling one credential format from another. Select one of the following from the list:

• User Name

• Distinguished Name

The selected format is then used internally by the API Gateway when performing authorization lookups against third-
party Identity Management servers.

Validate Credentials against this Repository:
This specifies the name of the Authentication Repository where all user profiles are stored. This can be in the API Gate-
way's local repository, a database, or an LDAP directory. Select a pre-configured Repository Name from the drop-down
list (for example, Local User Store).

You can add a new repository by right-clicking the appropriate node under External Connections -> Authentication
Repository Profiles (for example, Database Repositories), and selecting Add a new Repository. For more details,
see the Authentication Repository tutorial.

Session Settings

The session settings enable you to configure how HTTP sessions between the HTML form client and the API Gateway
are managed. Complete the following settings:

Create a session:
Select whether to create an HTTP session. This setting is selected by default.

344

Expiry of session in milliseconds:
Enter the period of time in milliseconds before the session expires. Defaults to 600000 (10 minutes).

Session applicable for this domain:
Enter the API Gateway domain name to which the session applies (for example, dmz).

Session applicable for this path:
Enter the API Gateway relative path to which the session applies. Defaults to /.

Session sent over SSL only:
Select whether the session is sent over an SSL connection only. This setting is not selected by default.

HTML Form-based Authentication

345

HTTP Basic Authentication
Overview

A client can authenticate to the API Gateway with a username and password combination using HTTP Basic Authentica-
tion. When an HTTP Basic Authentication filter is configured, the API Gateway requests the client to present a user-
name and password combination as part of the HTTP Basic challenge-response mechanism.

With HTTP Basic Authentication, the client's username and password are concatenated, base64-encoded, and passed in
the Authorization HTTP header as follows:

Authorization: Basic dm9yZGVsOnZvcmRlbA==

The API Gateway can then authenticate this user against a user profile stored in the API Gateway's local repository, a
database, or an LDAP directory. The realm presented in the challenge for HTTP Basic Authentication is the realm cur-
rently specified in the system settings. See the Default Settings topic for more information.

Configuration

The information specified on this screen informs the API Gateway where it can find user profiles for authentication pur-
poses. The API Gateway can look up user profiles in the API Gateway's local repository, in a database, or in an LDAP
directory. You can add Users to the local repository using the Users interface. For more details, see the API Gateway
Users tutorial.

To configure the HTTP Basic Authentication filter, complete the following settings:

Name
Enter an appropriate name for the filter.

Credential Format
The username presented to the API Gateway during the HTTP Basic handshake can be of many formats, usually user-
name or Distinguished Name (DName). Because the API Gateway has no way of inherently telling one format from an-
other (for example, the client's username could be a DName), you must specify the format of the credential presented by
the client. This format is then used internally by the API Gateway when performing authorization lookups against third-
party Identity Management servers.

Allow Client Challenge
HTTP Basic Authentication can use the following approaches:

• Direct Authentication
The client sends up the Authorization HTTP Basic Authentication header in its first request to the server.

• Challenge-Response Handshake
The client does not send the Authorization header when sending its request to the server (it does not know that
the server requires HTTP Basic Authentication). The server responds with an HTTP 401 response code, instructing
the client to authenticate to the server by sending the Authorization header. The client then sends a second re-
quest, this time including the Authorization header and the relevant username and password.

The first case is used mainly for machine-to-machine transactions in which there is no human intervention. The second
case is typical of situations where a browser is talking to a Web server. When the browser receives the HTTP 401 re-
sponse to its initial request, it displays a dialog to enable the user to enter the username and password combination.

If you wish to force clients to always send the HTTP Basic Authorization header to the API Gateway, deselect the Al-
low client challenge checkbox. If you wish to allow clients to engage in the HTTP Basic Authentication challenge-re-
sponse handshake with the API Gateway, ensure this feature is enabled by selecting this option.

346

Allow Retries
Select this option to allow the user to retry their username/password in the browser when an HTTP 401 response code is
received (for example, if authentication fails, or is not yet provided). The number of times that the browser displays the
username/password dialog when an HTTP 401 is received is controlled by the browser (usually three times). This setting
is not selected by default.

Remove HTTP Authentication Header
Select this option to remove the HTTP Authorization header from the downstream message. If this option is not se-
lected, the incoming Authorization header is forwarded on to the destination Web Service.

Repository Name
This specifies the name of the Authentication Repository where all user profiles are stored. This can be the API Gate-
way's local repository, a database, or an LDAP directory. Select a pre-configured Repository Name from the drop-down
list.

You can add a new repository in the tree on the left under the External Connections node. Right-click the appropriate
node under Authentication Repository Profiles (for example, Database Repositories), and select Add a new Repos-
itory. For more details, see the Authentication Repository tutorial.

HTTP Basic Authentication

347

HTTP Digest Authentication
Overview

A client can authenticate to the API Gateway with a username and password digest using HTTP Digest Authentication.
When an HTTP Digest Authentication filter is configured, the API Gateway requests the client to present a username
and password digest as part of the HTTP Digest challenge-response mechanism. The API Gateway can then authentic-
ate this user against a user profile stored in the API Gateway database.

The realm presented in the challenge for HTTP Digest Authentication is the realm currently specified in the system set-
tings. For more details, see the Default Settings topic.

Configuration

The information specified on this screen informs the API Gateway where it can find user profiles for authentication pur-
poses. The API Gateway can lookup user profiles in the API Gateway's local repository, in a database, or in an LDAP dir-
ectory. Users can be added to the local repository using the Users interface. For more details, see the API Gateway
Users tutorial.

To configure the HTTP Digest Authentication filter, complete the following settings:

Name
Enter an appropriate name for the filter.

Credential Format
The username presented to the API Gateway during the HTTP Digest handshake can be of many formats, usually user-
name or Distinguished Name (DName). Because the API Gateway has no way of inherently telling one format from the
other (for example, the client's username could be a DName), it is necessary to specify the format of the credential
presented by the client. This format is then used internally by the API Gateway when performing authorization lookups
against third party Identity Management servers.

Session Timeout
As part of the HTTP Digest Authentication protocol, the API Gateway must generate a nonce (number used once) value,
and send it to the client. The client uses this nonce to create the digest of the username and password. However, it
should only be allowed a certain amount of time to do so. The Session Timeout field specifies the length of time (in milli-
seconds) for which the nonce is valid.

Allow Retries
Select this option to allow the user to retry their username/password in the browser when an HTTP 401 response code is
received (for example, if authentication fails, or is not yet provided). The number of times that the browser displays the
username/password dialog when an HTTP 401 is received is controlled by the browser (usually three times). This setting
is not selected by default.

Remove HTTP Authentication Header
Select this option to remove the HTTP Authorization header from the downstream message. If this option is not se-
lected, the incoming Authorization header is forwarded on to the destination Web Service.

Repository Name
This specifies the name of the Authentication Repository where all user profiles are stored. This can be in the API Gate-
way's local repository, in a database, or in an LDAP directory. Select a pre-configured Repository Name from the drop-
down list.

You can add a new repository in the tree on the left under the External Connections node. Right-click the appropriate
node under Authentication Repository Profiles (for example, Database Repositories), and select Add a new Repos-
itory. For more details, see the Authentication Repository tutorial.

348

HTTP Header Authentication
Overview

You can use the HTTP Header filter in cases where the API Gateway receives end-user authentication credentials in an
HTTP header. A typical scenario would see the end-user (or message originator) authenticating to an intermediary. The
intermediary authenticates the end-user, and to propagate the end-user credentials to the destination Web Service, the
intermediary inserts the credentials into an HTTP header and forwards them onwards.

When the API Gateway receives the message, it performs the following tasks:

• Authenticate the sender of the message (the intermediary)
• Extract the end-user identity from the token in the HTTP header for use in subsequent Authorization filters

Important
In the case outlined above, the API Gateway does not attempt to re-authenticate the end-user. It trusts that
the intermediary has already authenticated the end-user, and so the API Gateway does not authenticate
the user again. However, it is good practice to authenticate the message sender (the intermediary). Any
subsequent Authorization filters use the end-user credentials that were passed in the HTTP header.

Configuration

The following configuration fields are available on this screen:

Name:
Enter an appropriate name for this filter in the Name field.

HTTP Header Name:
Enter the name of the HTTP Header that contains the end-user credentials.

HTTP Header Type:
Select the type of credentials that are passed in the named HTTP Header. The following types are supported:

1. X.509 Distinguished Name
2. Certificate
3. Username

349

IP Address
Overview

You can configure the API Gateway to allow or deny machines, or groups of machines, access to resources based on IP
address. The main table on the screen shows the IP addresses from which the API Gateway accepts or denies mes-
sages depending on what is configured.

The IP Address Authentication filter uses the value stored in the http.request.clientaddr message attribute to
determine whether or not to allow or deny access. This message attribute contains the remote host address from the
TCP socket used in the connection between the client and the API Gateway.

Configuration

The following fields must be configured:

Name:
Enter a name for the filter.

IP Addresses:
You can add IP addresses by clicking the Add button, which displays the Add IP Filter dialog. Enter an IP Address and
Subnet Mask to indicate a network to filter.

Messages sent from hosts belonging to this network will be accepted or rejected based on what is configured in the sec-
tion below. A Subnet Mask of 255.255.255.255 can be used to filter specific IP addresses. For more details, see
Configuring Subnet Masks.

Important
If requests are made across a proxy, portal, or other such intermediary, the API Gateway filters on the IP
address of the intermediary. Therefore, you should enter the IP address of the intermediary on this screen,
and not that of the user/client machine.

You can edit and remove existing IP addresses by selecting the Edit and Remove buttons.

Access:
Depending on whether the Allow Access or Deny Access radio button is checked, the IP addresses listed in the table
are allowed or denied access to the Web Service.

Configuring Subnet Masks

An IP address is normally represented by a string of 4 numbers separated by periods (for example, 192.168.0.20.
Each number is normally represented as the decimal equivalent of an eight-bit binary number, which means that each
number may take any value between 0 (all eight bits cleared) and 255 (all eight bits set).

A subnet mask (or netmask) is also a set of four number blocks separated by periods, each of which has a value in the
range 0-255. Every IP address consists of two parts: the network address and the host number. The netmask is used to
determine the size of these two parts. The positions of the bits set in the netmask represent the space reserved for the
network address, while the bits that are cleared represent the space reserved for the host number. The netmask determ-
ines the range of IP addresses.

The following examples illustrate how netmasks work in practice:

Example 1: Specifying a Range of IP Addresses:
You only want to allow requests from the following IP addresses:

350

192.168.0.16, 192.168.0.17, 192.168.0.18, and 192.168.0.19.
Use the following address/netmask combination to cover the 4 IP addresses listed above:
192.168.0.16/255.255.255.252

In more detail, the binary representation of the netmask is as follows:
11111111.11111111.11111111.11111100
The top 30 bits of the netmask indicate the network and the last 2 bits refer to the host on the network. These last 2 bits
allow 4 different addresses as shown in the worked example below.

When the API Gateway receives a request from a certain IP address, the API Gateway performs a logical AND on the cli-
ent IP address and the configured netmask. It also does a logical AND with the IP address entered in the IP Address fil-
ter and the configured subnet mask. If the AND-ed binary values are the same, the request from the IP address can be
considered in the same network range as that configured in the filter.

The following worked example illustrates the mechanics of the IP address filtering. It assumes that you have entered the
following in the IP Address and Netmask fields in the IP Address filter:

Field Value

IP Address 192.168.0.16

Net Mask 255.255.255.252

Step 1: AND the IP address and Netmask configured in the IP Address Filter:
11000000.10100000.00000000.00010000 (192.168.0.16)
AND
11111111.11111111.11111111.11111100 (255.255.255.252)
===
11000000.10100000.00000000.00010000

Step 2: Request is received from 192.168.0.18:
11000000.10100000.00000000.00010010 (192.168.0.18)
AND
11111111.11111111.11111111.11111100 (255.255.255.252)
===
11000000.10100000.00000000.00010000
===> AND-ed value is equal to the result for 192.168.0.16.
===> Therefore the client IP address is inside the configured range.

Step 3: Request is received from 192.168.0.20:
11000000.10100000.00000000.00010100 (192.168.0.20)
AND
11111111.11111111.11111111.11111100 (255.255.255.252)
===
11000000.10100000.00000000.00010100
===> AND-ed value is NOT equal to the result for 192.168.0.16.
===> Therefore the client IP address is NOT inside the configured range.

Example 2: Specifying an Exact IP Address:
You can also specify an exact IP address by using a netmask of 255.255.255.255. When this netmask is used, only
requests from this client IP address is allowed or blocked, depending on what is configured in the filter. This example as-
sumes that the following details have been configured in the IP Address filter:

Field Value

IP Address 192.168.0.36

Net Mask 255.255.255.255

IP Address

351

Step 1: AND the IP address and Netmask configured in the IP Address Filter:
11000000.10100000.00000000.00100100 (192.168.0.36)
AND
11111111.11111111.11111111.11111111 (255.255.255.255)
===
11000000.10100000.00000000.00100100

Step 2: Request is received from client with IP address of 192.168.0.37:
11000000.10100000.00000000.00100101 (192.168.0.37)
AND
11111111.11111111.11111111.11111111 (255.255.255.255)
===
11000000.10100000.00000000.00100101
===> AND-ed value is NOT equal to the result for 192.168.0.36
===> Therefore the client IP address is NOT inside the configured range.

IP Address

352

SAML Authentication
Overview

A Security Assertion Markup Language (SAML) authentication assertion is issued as proof of an authentication event.
Typically, an end-user authenticates to an intermediary, who generates a SAML authentication assertion to prove that it
has authenticated the user. The intermediary inserts the assertion into the message for consumption by a downstream
Web Service.

When the API Gateway receives a message containing a SAML authentication assertion, it does not attempt to authen-
ticate the end-user again. Instead, it authenticates the sender of the assertion (the intermediary) to ensure that only the
intermediary could have issued the assertion, and then validates the authentication details contained in the assertion.
Therefore, the API Gateway performs the following tasks in this scenario:

• Authenticates the sender of the message (the intermediary)
• Extracts the end-user's identity from the authentication assertion and validates the authentication details

The SAML Authentication filter performs the second task. A separate authentication filter must be placed before this fil-
ter in the policy to authenticate the sender of the assertion. The end-user's identity is used in any subsequent authoriza-
tion filters.

The following sample SOAP message contains a SAML authentication assertion:

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
<wsse:Security>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

AssertionID="oracle-1056477425082"
Id="oracle-1056477425082"
IssueInstant="2003-06-24T17:57:05Z"
Issuer="CN=Sample User,....,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2003-06-20T16:20:10Z"
NotOnOrAfter="2003-06-20T18:20:10Z"/>

<saml:AuthenticationStatement
AuthenticationInstant="2003-06-24T17:57:05Z"

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
<saml:SubjectLocality IPAddress="192.168.0.32"/>
<saml:Subject>

<saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">

sample
</saml:NameIdentifier>

</saml:Subject>
</saml:AuthenticationStatement>

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
id="Sample User">

<dsig:SignedInfo>
.....

</dsig:SignedInfo>
<dsig:SignatureValue>
rpa/......0g==

</dsig:SignatureValue>
<dsig:KeyInfo>
.....

</dsig:KeyInfo>

353

</dsig:Signature>
</saml:Assertion>
</wsse:Security>

</soap-env:Header>
<soap-env:Body>

<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</soap-env:Body>
</soap-env:Envelope>

General Settings

Configure the following field:

Name:
Enter an appropriate name for the filter.

Details

Configure the following fields on the Details tab:

SOAP Actor/Role:
If you expect the SAML assertion to be embedded in a WS-Security block, you can identify this block by specifying the
SOAP Actor or Role of the WS-Security header that contains the assertion.

XPath Expression:
Alternatively, if the assertion is not contained in a WS-Security block, you can enter an XPath expression to locate the
authentication assertion. You can configure XPath expressions using the Add Edit and Delete buttons.

SAML Namespace:
Select the SAML namespace that must be used on the SAML assertion for this filter to succeed. If you do not wish to
check the namespace, select the Do not check version option from the drop-down list.

SAML Version:
Specify the SAML Version that the assertion must adhere to by entering the major version in the first field, and the minor
version in the second field. For example, for SAML 2.0, enter 2 in the first field and 0 in the second field.

Drift Time:
The drift time, specified in seconds, is used when checking the validity dates on the authentication assertion. The drift
time allows for differences between the clock times of the machine on which the assertion was generated and the ma-
chine hosting the API Gateway.

Remove Enclosing WS-Security Element on Successful Validation:
Select this checkbox if you wish to remove the WS-Security block that contains the SAML assertion after the assertion
has been successfully validated.

Trusted Issuers

You can use the table on this tab to select the issuers that you consider trusted. In other words, this filter only accepts
assertions that have been issued by the SAML Authorities selected here.

Click the Add button to display the Trusted Issuers screen. Select the Distinguished Name of a SAML Authority whose
certificate has been added to the Certificate Store, and click OK. Repeat this step to add more SAML Authorities to the
list of trusted issuers.

SAML Authentication

354

SAML PDP Authentication
Overview

The API Gateway can request an authentication decision from a Security Assertion Markup Language (SAML) Policy De-
cision Point (PDP) for an authenticated client using the SAML Protocol (SAMLP). In such cases, the API Gateway
presents evidence to the PDP in the form of some user credentials, such as the Distinguished Name of a client's X.509
certificate.

The PDP decides whether to authenticate the end-user. It then creates an authentication assertion, signs it, and returns it
to the API Gateway in a SAML Protocol response. The API Gateway can then perform a number of checks on the re-
sponse, such as validating the PDP signature and certificate, and examining the assertion. It can also insert the SAML
authentication assertion into the message for consumption by a downstream Web Service.

Request Configuration

This section describes how the API Gateway should package the SAMLP request before sending it to the SAML PDP.

SAML PDP URL Sets
You can configure a group of SAML PDPs to which the API Gateway connects in a round-robin fashion if one or more of
the PDPs are unavailable. This is known as a SAML PDP URL Set. You can configure a SAML PDP URL Set using this
screen or under the External Connections node in the Policy Studio tree. For more details, see the topic on Configuring
URL Groups.

You can configure the following general fields:

• SAML PDP URL Set:
Click the button on the right, and select a previously configured SAML PDP URL Set in the tree. To add a URL Set,
right-click the SAML PDP URL Sets tree node, and select Add a URL Set. Alternatively, you can configure a SAML
PDP URL Set under the External Connections node in the Policy Studio tree.

• SOAPAction:
Enter the SOAP Action required to send SAML Protocol requests to the PDP. Click the Use Default button to use
the following default SOAP Action as specified by the SAML Protocol:
http://www.oasis-open.org/committees/security

• SAML Version:
Select the SAML version to use in the SAMLP request.

• Signing Key:
If the SAMLP request is to be signed, click the Signing Key button, and select the appropriate signing key from the
Certificate Store.

SAML Subject:
The specified details describe the subject of the SAML assertion. Complete the following fields:

• Subject Attribute:
Select the message attribute that contains the name of an authenticated user name. By default, the authentica-
tion.subject.id message attribute is selected, which contains the user name of the authenticated user.

• Subject Format:
Select the format of the message attribute selected in the Subject Attribute field above. You do not need to select a
format if the Subject Attribute field is set to authentication.subject.id

Subject Confirmation:
The settings on the Confirmation Method tab determine how the <SubjectConfirmation> block of the SAML asser-
tion is generated. When the assertion is consumed by a downstream Web Service, the information contained in the

355

<SubjectConfirmation> block can be used to authenticate the end-user that authenticated to the API Gateway, or
the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

You must configure the following fields on the Subject Confirmation tab:

Method:
The selected value determines the value of the <ConfirmationMethod> element. The following table shows the avail-
able methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key Inserts a <SubjectConfirmation>
into the SAMLP request. The
<SubjectConfirmation> contains
a <dsig:KeyInfo> section with the
certificate of the user selected to sign
the SAMLP request. The user selected
to sign the SAMLP request must be
the authenticated subject (authen-
tication.subject.id).
Select the Include Certificate option if
the signer's certificate is to be included
in the SubjectConfimration block.
Alternatively, select the Include Key
Name option if only the key name is to
be included.

urn:oasis:names:tc:SAML:1.0:c
m:holder-of-key

Bearer Inserts a <SubjectConfirmation>
into the SAMLP request.

urn:oasis:names:tc:SAML:1.0:c
m:bearer

SAML Artifact Inserts a <SubjectConfirmation>
into the SAMLP request.

urn:oasis:names:tc:SAML:1.0:c
m:artifact

Sender Vouches Inserts a <SubjectConfirmation>
into the SAMLP request. A user must
sign the SAMLP request.

urn:oasis:names:tc:SAML:1.0:c
m:bearer

If the Method field is left blank, no <ConfirmationMethod> block is inserted into the assertion.

Include Certificate:
Select this option if you wish to include the SAML subject's certificate in the <KeyInfo> section of the

SAML PDP Authentication

356

<SubjectConfirmation> block.

Include Key Name:
Alternatively, if you do not want to include the certificate, select this option to only include the key name in the
<KeyInfo> section.

Response Configuration

This tab configures the SAMLP Response returned from the SAML PDP. The following fields are available:

SOAP Actor/Role:
If the SAMLP response from the PDP contains a SAML authentication assertion, the API Gateway can extract it from the
response and insert it into the downstream message. The SAML assertion is inserted into the WS-Security block identi-
fied by the specified SOAP actor/role.

Drift Time:
The SAMLP request to the PDP is timestamped by the API Gateway. To account for differences in the times on the ma-
chines running the API Gateway and the SAML PDP the specified time is subtracted from the time at which the API
Gateway generates the SAMLP request.

SAML PDP Authentication

357

Insert SAML Authentication Assertion
Overview

After successfully authenticating a client, the API Gateway can insert a SAML (Security Assertion Markup Language) au-
thentication assertion into the SOAP message. Assuming all other security filters in the policy are successful, the asser-
tion will eventually be consumed by a downstream Web Service.

It may be useful to refer to the following example of a signed SAML authentication assertion when configuring this filter:

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
<wsse:Security>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

AssertionID="oracle-1056477425082"
Id="oracle-1056477425082"
IssueInstant="2003-06-24T17:57:05Z"
Issuer="CN=Sample User,....,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2003-06-20T16:20:10Z"
NotOnOrAfter="2003-06-20T18:20:10Z"/>

<saml:AuthenticationStatement
AuthenticationInstant="2003-06-24T17:57:05Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
<saml:SubjectLocality IPAddress="192.168.0.32"/>
<saml:Subject>
<saml:NameIdentifier

Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">
sample

</saml:NameIdentifier>
</saml:Subject>

</saml:AuthenticationStatement>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"

id="Sample User">
<dsig:SignedInfo>

.....
</dsig:SignedInfo>
<dsig:SignatureValue>

rpa/......0g==
</dsig:SignatureValue>
<dsig:KeyInfo>

.....
</dsig:KeyInfo>

</dsig:Signature>
</saml:Assertion>

</wsse:Security>
</soap-env:Header>
<soap-env:Body>

<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>
</soap-env:Body>
</soap-env:Envelope>

General Configuration

Configure the following field:

Name:

358

Enter an appropriate name for the filter.

Assertion Details

Configure the following fields on the Assertion Details tab:

Issuer Name:
Select the certificate containing the Distinguished Name (DName) that you want to use as the Issuer of the SAML asser-
tion. This DName is included in the SAML assertion as the value of the Issuer attribute of the <saml:Assertion>
element. For an example, see the sample SAML assertion above.

Expire In:
Specify the lifetime of the assertion in this field. The lifetime of the assertion lasts from the time of insertion until the spe-
cified amount of time has elapsed.

Drift Time:
The Drift Time is used to account for differences in the clock times of the machine hosting the API Gateway (that gener-
ate the assertion) and the machines that consume the assertion. The specified time is subtracted from the time at which
the API Gateway generates the assertion.

SAML Version:
You can create SAML 1.0, 1.1, and 2.0 attribute assertions. Select the appropriate version from the drop-down list.

Important
SAML 1.0 recommends the use of the http://www.w3.org/TR/2001/REC-xml-c14n-20010315
XML Signature Canonicalization algorithm. When inserting signed SAML 1.0 assertions into XML docu-
ments, it is quite likely that subsequent signature verification of these assertions will fail. This is due to the
side effect of the algorithm including inherited namespaces into canonical XML calculations of the inserted
SAML assertion that were not present when the assertion was generated.

For this reason, Oracle recommend that SAML 1.1 or 2.0 is used when signing assertions as they both
uses the exclusive canonical algorithm http://www.w3.org/2001/10/xml-exc-c14n#, which safe-
guards inserted assertions from such changes of context in the XML document. Please see section 5.4.2 of
the oasis-sstc-saml-core-1.0.pdf and section 5.4.2 of sstc-saml-core-1.1.pdf documents,
both of which are available at http://www.oasis-open.org.

Assertion Location

The options on the Assertion Location tab specify where the SAML assertion is inserted in the message. By default, the
SAML assertion is added to the WS-Security block with the current SOAP actor/role. The following options are available:

Append to Root or SOAP Header:
Appends the SAML assertion to the message root for a non-SOAP XML message, or to the SOAP Header for a SOAP
message. For example, this option may be suitable for cases where this filter may process SOAP XML messages or non-
SOAP XML messages.

Add to WS-Security Block with SOAP Actor/Role:
Adds the SAML assertion to the WS-Security block with the specified SOAP actor (SOAP 1.0) or role (SOAP 1.1). By de-
fault, the assertion is added with the current SOAP actor/role only, which means the WS-Security block with no actor.
You can select a specific SOAP actor/role when available from the drop-down list.

XPath Location:
If you wish to insert the SAML assertion at an arbitrary location in the message, you can use an XPath expression to
specify the exact location in the message. You can select XPath expressions from the drop-down list. The default is the
First WSSE Security Element, which has an XPath expression of //wsse:Security. You can add, edit, or re-
move expressions by clicking the relevant button. For more details, see the Configuring XPath Expressions topic.

Insert SAML Authentication Assertion

359

You can also specify how exactly the SAML assertion is inserted using the following options:

• Append to node returned by XPath expression (the default)
• Insert before node returned by XPath expression
• Replace node returned by XPath expression

Insert into Message Attribute:
Specify a message attribute to store the SAML assertion from the drop-down list (for example, saml.assertion). Al-
ternatively, you can also enter a custom message attribute in this field (for example, my.test.assertion). The SAML
assertion can then be accessed downstream in the policy.

Subject Confirmation Method

The settings on the Subject Confirmation Method tab determine how the <SubjectConfirmation> block of the
SAML assertion is generated. When the assertion is consumed by a downstream Web Service, the information contained
in the <SubjectConfirmation> block can be used to authenticate the end-user that authenticated to the API Gate-
way, or the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

The following configuration fields are available on the Subject Confirmation Method tab:

Method:
The selected value determines the value of the <ConfirmationMethod> element. The following table shows the avail-
able methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key The API Gateway includes the key
used to prove that the API Gateway is
the holder of the key, or it includes a
reference to the key.

urn:oasis:names:tc:SAML:1.0:c
m:holder-of-key

Bearer The subject of the assertion is the
bearer of the assertion.

urn:oasis:names:tc:SAML:1.0:c
m:bearer

SAML Artifact The subject of the assertion is the user
that presented a SAML Artifact to the
API Gateway.

urn:oasis:names:tc:SAML:1.0:c
m:artifact

Sender Vouches Use this confirmation method to assert
that the API Gateway is acting on be-
half of the authenticated end-user. No

urn:oasis:names:tc:SAML:1.0:c
m:bearer

Insert SAML Authentication Assertion

360

Method Meaning Value

other information relating to the context
of the assertion is sent. It is recom-
mended that both the assertion and
the SOAP Body must be signed if this
option is selected. These message
parts can be signed by using the XML
Signature Generation filter.

Note
You can also leave the Method field blank, in which case no <ConfirmationMethod> block is inserted
into the assertion.

Holder-of-Key Configuration:
When you select Holder-of-Key as the SAML subject confirmation in the Method field, you must configure how in-
formation about the key is included in the message. There are a number of configuration options available depending on
whether the key is a symmetric or asymmetric key.

Asymmetric Key:
If you want to use an asymmetric key as proof that the API Gateway is the holder-of-key entity, you must select the
Asymmetric Key radio button and then configure the following fields on the Asymmetric tab:

• Certificate from Store:
If you want to select a key that is stored in the Certificate Store, select this option and click the Signing Key button.
On the Select Certificate screen, select the box next to the certificate that is associated with the key that you want
to use.

• Certificate from Selector Expression:
Alternatively, the key may have already been used by a previous filter in the policy (for example, to sign a part of the
message). In this case, the key can be retrieved using the selector expression entered in this field. Using a selector
enables settings to be evaluated and expanded at runtime based on metadata (for example, in a message attribute,
Key Property Store (KPS), or environment variable). For more details, see Selecting Configuration Values at
Runtime.

Symmetric Key:
If you want to use a symmetric key as proof that the API Gateway is the holder of key, select the Symmetric Key radio
button, and configure the fields on the Symmetric tab:

• Generate Symmetric Key, and Save in Message Attribute:
If you select this option, the API Gateway generates a symmetric key, which is included in the message before it is
sent to the client. By default, the key is saved in the symmetric.key message attribute.

• Symmetric Key Selector Expression:
If a previous filter (for example, a Sign Message filter) has already used a symmetric key, you can reuse this key as
proof that the API Gateway is the holder-of-key entity. Enter the name of the selector expresion (for example, mes-
sage attribute) in the field provided, which defaults to ${symmetric.key}. Using a selector enables settings to be
evaluated and expanded at runtime based on metadata (for example, in a message attribute, Key Property Store
(KPS), or environment variable). For more details, see Selecting Configuration Values at Runtime.

• Encrypt using Certificate from Certificate Store:
When a symmetric key is used, you must assume that the recipient has no prior knowledge of this key. It must,
therefore, be included in the message so that the recipient can validate the key. To avoid meet-in-the-middle style
attacks, where a hacker could eavesdrop on the communication channel between the API Gateway and the recipient

Insert SAML Authentication Assertion

361

and gain access to the symmetric key, the key must be encrypted so that only the recipient can decrypt the key. One
way of doing this is to select the recipient's certificate from the Certificate Store. By encrypting the symmetric key
with the public in the recipient's certificate, the key can only be decrypted by the recipient's private key, to which only
the recipient has access. Select the Signing Key button, and select the recipient's certificate on the Select Certific-
ate dialog.

• Encrypt using Certificate from Message Attribute:
Alternatively, if the recipient's certificate has already been used (perhaps to encrypt part of the message) this certific-
ate is stored in a message attribute. You can enter this message attribute in this field.

• Symmetric Key Length:
Enter the length (in bits) of the symmetric key to use.

• Key Wrap Algorithm:
Select the algorithm to use to encrypt (wrap) the symmetric key.

Key Info:
The Key Info tab must be configured regardless of whether you have elected to use symmetric or asymmetric keys. It
determines how the key is included in the message. The following options are available:

• Do Not Include Key Info:
Select this option if you do not wish to include a <KeyInfo> section in the SAML assertion.

• Embed Public Key Information:
If this option is selected, details about the key are included in a <KeyInfo> block in the message. You can include
the full certificate, expand the public key, include the distinguished name, and include a key name in the <KeyInfo>
block by selecting the appropriate boxes. When selecting the Include Key Name field, you must enter a name in the
Value field, and then select the Text Value or Distinguished Name Attribute radio button, depending on the
source of the key name.

• Put Certificate in Attachment:
Select this option to add the certificate as an attachment to the message. The certificate is then referenced from the
<KeyInfo> block.

• Security Token Reference:
The Security Token Reference (STR) provides a way to refer to a key contained within a SOAP message from an-
other part of the message. It is often used in cases where different security blocks in a message use the same key
material and it is considered an overhead to include the key more than once in the message.
When this option is selected, a <wsse:SecurityTokenReference> element is inserted into the <KeyInfo>
block. It references the key material using a URI to point to the key material and a ValueType attribute to indicate
the type of reference used. For example, if the STR refers to an encrypted key, you should select EncryptedKey
from the dropdown, whereas if it refers to a BinarySecurityToken, you should select X509v3 from the drop-
down. Other options are available to enable more specific security requirements.

Advanced

Select Required Layout Type:
WS-Policy and SOAP Message Security define a set of rules that determine the layout of security elements that appear
in the WS-Security header within a SOAP message. The SAML assertion will be inserted into the WS-Security header
according to the layout option selected here. The available options correspond to the WS-Policy Layout assertions of
Strict, Lax, LaxTimestampFirst, and LaxTimestampLast.

Insert SAML Attribute Statement:
You can insert a SAML attribute statement into the generated SAML authentication assertion. If you select this option, a
SAML attribute assertion is generated using attributes stored in the attribute.lookup.list message attribute and
subsequently inserted into the assertion. The attribute.lookup.list attribute must have been populated previously
by an attribute lookup filter for the attribute statement to be generated successfully.

Indent:
Select this method to ensure that the generated signature is properly indented.

Insert SAML Authentication Assertion

362

Security Token Reference:
The generated SAML authentication assertion can be encapsulated within a <SecurityTokenReference> block. The
following example demonstrates this:

<soap:Header>
<wsse:Security

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
soap:actor="oracle">

<wsse:SecurityTokenReference>
<wsse:Embedded>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

AssertionID="Id-00000109fee52b06-0000000000000012"
IssueInstant="2006-03-15T17:12:45Z"
Issuer="oracle" MajorVersion="1" MinorVersion="0">

<saml:Conditions NotBefore="2006-03-15T17:12:39Z"
NotOnOrAfter="2006-03-25T17:12:39Z"/>

<saml:AuthenticationStatement
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2006-03-15T17:12:45Z">

<saml:Subject>
<saml:NameIdentifier Format="Oracle-Username-Password">

admin
</saml:NameIdentifier>
<saml:SubjectConfirmation>
<saml:ConfirmationMethod>

urn:oasis:names:tc:SAML:1.0:cm:artifact
</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject>
</saml:AuthenticationStatement>

</saml:Assertion>
</wsse:Embedded>
</wsse:SecurityTokenReference>

</wsse:Security>
</soap:Header>

To add the SAML assertion to a <SecurityTokenReference> block as in the example above, select the Embed
SAML assertion within Security Token Reference option. Otherwise, select No Security Token Reference.

Insert SAML Authentication Assertion

363

Insert Timestamp
Overview

In any secure communications protocol, it is crucial that secured messages do not have an indefinite life span. In secure
Web Services transactions, a WS-Utility (WSU) Timestamp can be inserted into a WS-Security Header to define the life-
time of the message in which it is placed. A message containing an expired timestamp should be rejected immediately by
any Web Service that consumes the message.

Typically, the timestamp contains Created and Expires times, which combine to define the lifetime of the timestamp.
The following shows an example Timestamp:

<wsu:Timestamp xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">
<wsu:Created>2009-03-16T16:32:22Z</wsu:Created>
<wsu:Expires>2009-03-16T16:42:22Z</wsu:Expires>

</wsu:Timestamp>

Because the WS-Utility Timestamp is inserted into the WS-Security header block, it is also referred to as a WSS
Timestamp. For example, see the Extract WSS Timestamp filter.

Configuration

Complete the following fields to configure the API Gateway to insert a timestamp into the message:

Name:
Enter an intuitive name for the filter.

Actor:
The timestamp is inserted into the WS-Security header identified by the SOAP Actor selected here.

Expires In:
Configure the lifetime of the timestamp (and hence the message into which the timestamp is inserted) by specifying the
expiration time of the assertion. The expiration time is expressed in days, hours, minutes, and/or seconds.

Layout Type:
In cases where the timestamp must adhere to a particular layout as mandated by the WS-Policy <Layout> assertion,
you must select the appropriate layout type. A Web Service that enforces a WS-Policy may reject the message if the lay-
out of security elements in the SOAP header is incorrect. Therefore, you must ensure that you select the correct layout
type.

364

Insert WS-Security Username Token
Overview

When a client has been successfully authenticated, the API Gateway can insert a WS-Security Username Token into the
downstream message as proof of the authentication event. The <wsse:UsernameToken> token enables a user's iden-
tity to be inserted into the XML message so that it can be propagated over a chain of Web Services.

A typical example would see a user authenticating to the API Gateway using HTTP Digest Authentication. After success-
fully authenticating the user, the API Gateway inserts a WS-Security Username Token into the message and digitally
signs it to prevent anyone from tampering with the token.

The following example shows the format of the <wsse:UsernameToken> token:

<wsse:UsernameToken wsu:Id="oracle"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">

<wsu:Created>2006.01.13T-10:42:43Z</wsu:Created>
<wsse:Username>oracle</wsse:Username>
<wsse:Nonce EncodingType="UTF-8">

KFIy9LgzhmDPNiqU/B9ZiWKXfEVNvFyn6KWYP+1zVt8=
</wsse:Nonce>
<wsse:Password Type="wsse:PasswordDigest">

CxWj1OMnYj7dddMnU/DrOhyY3j4=
</wsse:Password>

</wsse:UsernameToken>

This topic explains how to configure the API Gateway to insert a WS-Security Username Token after successfully au-
thenticating a user.

General Configuration

To configure general settings, complete the following fields:

Name:
Enter an appropriate name for the filter.

Actor:
The Username Token is inserted into the WS-Security block identified by the specified SOAP Actor.

Credential Details

To configure the credential details, complete the following fields:

Username:
Enter the name of the user included in the Username Token. By default, the authentication.subject.id message
attribute is stored, which contains the name of an authenticated user.

Include Nonce:
Select this option if you wish to include a nonce in the Username Token. A nonce a random number that is typically used
to help prevent replay attacks.

Include Password:
Select this option if you wish to include a password in the Username Token.

Password:
If the Include Password checkbox is selected, the API Gateway inserts the user's password into the generated WS-
Security Username Token. It can insert Clear or SHA1 Digest version of the password, depending on which radio button

365

you select. Oracle recommends the digest form of the password to avoid potential eavesdropping.

You can either explicitly enter the password for this user in the Password field, or use a message attribute by selecting
the Wildcard option, and entering the message attribute in the field provided. By default, the authentica-
tion.subject.password attribute is used, which contains the password used by the user to authenticate to the API
Gateway.

Advanced

To configure advanced settings, complete the following field:

Indent:
Select this option to add indentation to the generated UsernameToken and Signature blocks. This makes the security
tokens more human-readable.

Insert WS-Security Username Token

366

Kerberos Client Authentication
Overview

You can configure the API Gateway to act as a Kerberos Client by obtaining a service ticket for a specific Kerberos Ser-
vice. The service ticket makes up part of the Kerberos client-side token that is injected into a SOAP message and then
sent to the Service. If the service can validate the token, the client will be authenticated successfully.

You can also configure a Connection filter (from the Routing category) to authenticate to a Kerberos Service by inserting
a client-side Kerberos token into the Authorization HTTP header.

Therefore, you should use the Connection filter if you wish to send the client-side Kerberos token in an HTTP header to
the Kerberos Service. You should use the Kerberos Client Authentication filter if you wish to send the client-side Ker-
beros token in a BinarySecurityToken block in the SOAP message. For more information on authenticating to a Ker-
beros Service using a client-side Kerberos token, see the topic on the Connection filter.

The Kerberos Client Authentication filter is available from the Authentication category of filters. Drag and drop this filter
on to the policy canvas to configure the filter. The sections below describe how to configure the fields on this filter screen.

Kerberos Client

The fields configured on this tab determine how the Kerberos Client obtains a service ticket for a specific Kerberos Ser-
vice. The following fields must be configured:

Kerberos Client:
The role of the Kerberos Client selected in this field is twofold. First, it must obtain a Kerberos Ticket Granting Ticket
(TGT) and second, it uses this TGT to obtain a service ticket for the Kerberos Service Principal selected below. The
TGT is acquired at server startup, refresh (for example, when a configuration update is deployed), and when the TGT ex-
pires.

Click the button on the right, and select a previously configured Kerberos Client in the tree. To add a Kerberos Client,
right-click the Kerberos Clients tree node, and select Add Kerberos Client. Alternatively, you can add Kerberos Clients
under the External Connections node in the Policy Studio tree view. For more details, see the Kerberos Clients topic.

Kerberos Service Principal:
The Kerberos Client selected above must obtain a service ticket from the Kerberos Ticket Granting Server (TGS) for the
Kerberos Service Principal selected in this field. The Service Principal can be used to uniquely identify the Service in the
Kerberos realm. The TGS grants a ticket for the selected Principal, which the client can then send to the Kerberos Ser-
vice. The Principal in the ticket must match the Kerberos Service's Principal for the client to be successfully authentic-
ated.

Click the button on the right, and select a previously configured Kerberos Principal in the tree (for example, the default
HTTP/host Service Principal). To add a Kerberos Principal, right-click the Kerberos Principals tree node, and
select Add Kerberos Principal. Alternatively, you can add Kerberos Principals under the External Connections node
in the Policy Studio tree view. For more details, see the topic on Kerberos Principals.

Kerberos Standard:
When using the Kerberos Client Authentication filter to insert Kerberos tokens into SOAP messages in order to au-
thenticate to Kerberos Services, it can do so according to 2 different standards:

• Web Services Security Kerberos Token Profile 1.1
• WS-Trust for Simple and Protected Negotiation Protocol (SPNEGO)

When using the Kerberos Token Profile, the client-side Kerberos token is inserted into a BinarySecurityToken block
within the SOAP message. The Kerberos session key may be used to sign and encrypt the SOAP message using the

367

signing and encrypting filters. When this option is selected, the fields on the Kerberos Token Profile tab must be con-
figured.

When the WS-Trust for SPNEGO standard is used, a series of requests and responses occur between the Kerberos Cli-
ent and the Kerberos Service in order to establish a secure context. Once the secure context has been established
(using WS-Trust and WS-SecureConversation), a further series of requests and responses are used to produce a shared
secret key that can be used to sign and encrypt "real" requests to the Kerberos Service.

If the WS-Trust for SPNEGO option is selected it will not be necessary to configure the fields on the Kerberos Token
Profile tab. However, the Kerberos Client Authentication filter must be configured as part of a complicated policy that
is set up to handle the multiple request and response messages that are involved in setting up the secure context
between the Kerberos Client and Service.

Kerberos Token Profile

The fields on this tab need only be configured if the Kerberos Token Profile option has been selected on the Kerberos
Client tab. This tab allows you to configure where to insert the BinarySecurityToken within the SOAP message.

Where to Place BinarySecurityToken:
It is possible to insert the BinarySecurityToken inside a named WS-Security Actor/Role within the SOAP message
or else an XPath expression can be specified to indicate where the token should be inserted.

Select the WS-Security Element radio button if you wish to insert the token into a WS-Security element within the SOAP
Header element. You can either select the default "Current actor/role only" option from the dropdown or enter a named
actor/role in the field provided. The BinarySecurityToken will be inserted into a WS-Security block for the actor/role
specified here.

Alternatively, you should select the XPath Location option if you want to use an XPath expression to specify where the
BinarySecurityToken is to be inserted. Click the Add button to add a new XPath expression or select an XPath and
click the Edit or Delete buttons to edit or delete an existing XPath expression. Take a look at the Configuring XPath Ex-
pressions help page for more information on how to configure XPath expressions.

Note
You can insert the BinarySecurityToken before or after the node pointed to by the XPath expression.
Select the Append or Before radio buttons depending on where you want to insert the token relative to the
node pointed to by the XPath expression.

BinarySecurityToken Value Type:
Currently, the only supported BinarySecurityToken type is the "GSS_Kerberosv5_AP_REQ" type. The selected type
will be specified in the generated BinarySecurityToken.

Kerberos Client Authentication

368

Kerberos Service Authentication
Overview

The API Gateway can act as a Kerberos Service to consume Kerberos tokens sent from a client in either the HTTP
header or in the message itself. The client must have obtained a ticket from the Ticket Granting Server (TGS) for this
Service.

The Kerberos Service Authentication filter is available from the Authentication category of filters. Drag and drop this fil-
ter on to the Policy Editor to configure this filter. The sections below describe how to configure the fields on this filter
screen.

Kerberos Service

The Kerberos Service selected in this field is responsible for consuming the client's Kerberos token. The client must
have obtained a ticket for the service's Principal name to be able to use the service.

Click the button on the right, and select a previously configured Kerberos Service in the tree. To add a Kerberos Service,
right-click the Kerberos Services tree node, and select Add Kerberos Service. Alternatively, you can add Kerberos
Services under the External Connections node in the Policy Studio tree view. For more details, see the Kerberos Ser-
vices topic.

Kerberos Standard

Complete the following fields on this tab.

Kerberos Standard:
You must first select one of the following Kerberos standards:

• Kerberos Token Profile
• WS-Trust for SPNEGO
• SPNEGO over HTTP

Note
The Kerberos Service Authentication filter is used to consume the Kerberos client-side token regardless of
whether the token is sent at the message layer (in the SOAP message), or at the transport layer (in an HT-
TP header).

Client Token Location for Message-Level Standards:
The Kerberos Service ticket can be sent in the Authorization HTTP header or inside the message itself (for example,
inside a <BinarySecurityToken> element). Alternatively, it may be contained within a message attribute. Select one of the
following options:

• Message Body:
Select this option if you expect the Kerberos Service ticket to be contained within the XML message. You must enter
an XPath expression to point to the expected location of the Kerberos token.

Some default expressions that point to common locations are available for selection from the dropdown. Otherwise
you can add a new XPath expression by clicking the Add button. Similarly, existing XPath expressions can be con-
figured by clicking the Edit and Delete buttons, respectively. Please refer to the Configuring XPath Expressions for
more information on configuring XPath expressions.

• Message Attribute:

369

When using the WS-Trust for SPNEGO standard above, the Consume WS-Trust filter will place the client-side
Kerberos token inside the ws.trust.spnego.token message attribute.

Message Level

This section allows you to configure settings that adhere to the message-level standards, i.e. Kerberos Token Profile and
WS-Trust for SPNEGO.

Extract Session Keys:
You must check this checkbox if you want to use the Kerberos/SPNEGO session keys to perform a signing or encryp-
tion/decryption operation in a subsequent filter. This option is only available when the token is extracted from the mes-
sage body.

WS-Trust Settings: Key Length:
When using WS-Trust for SPNEGO, the Kerberos Service Authentication filter will generate a new symmetric key and
wrap it using the Kerberos session key. This setting determines the length of the new symmetric key.

WS-Trust Settings: Cache Security Context Session Key:
The service-side may need to cache the session key in order to process (i.e. decrypt and verify) multiple requests from
the client.

Transport Level

The options available in this section are specific to Kerberos tokens received over HTTP and are only relevant when the
SPNEGO Over HTTP option is selected above.

Cookie Name:
The initial handshake between a Kerberos Client and Service can sometimes involve the exchange of a series of request
and responses until the secure context has been established. In such cases, an HTTP cookie can be used to keep track
of the context across multiple request and response messages. Enter the name of this cookie in the field provided.

Allow Client Challenge:
In some cases, the client may not authenticate (send the Authorization HTTP header) to the Kerberos Service on its
first request. The Kerberos Service should then respond with an HTTP 401 response code, instructing the client to au-
thenticate to the server by sending up the Authorization header. The client then sends up a second request, this time
with the Authorization header, which contains the relevant Kerberos token. Check this option if you want to allow this
type of negotiation between the client and service.

Client Sends Body Only After Context is Established:
The Kerberos client may wait to mutually authenticate the Kerberos service before sending the body of the message. If
this setting is enabled, the Kerberos service will accept the body after the context has been established if the client
provides the known cookie. The cookies are cached in the configured cache.

Advanced SPNEGO

Complete the following fields on this tab:

Cache Partially Established Contexts:
In theory, the Kerberos client and service may need to send and receive a number of tokens between each other in order
to authenticate to each other. In this case, the Kerberos Service Authentication filter will need to cache the partially es-
tablished context for each client. The contexts will only be cached during the establishment of the context.

In practice however, a single client-side Kerberos token is normally enough to establish a context on the service-side, in
which case this setting is not required. This setting applies to the WS-Trust for SPENGO and SPENGO over HTTP
standards only.

Kerberos Service Authentication

370

Kerberos Configuration
Overview

The Kerberos Configuration screen enables you to configure Process-wide Kerberos settings. The most important set-
ting allows you to upload a Kerberos configuration file to the API Gateway, which contains information about the location
of the Kerberos Key Distribution Center (KDC), encryption algorithms and keys, and domain realms to use.

You can also configure trace options for the various APIs used by the Kerberos system. For example, these include the
Generic Security Services (GSS) and Simple and Protected GSSAPI Negotiation (SPNEGO) APIs.

Linux and Solaris platforms ship with a native implementation of the GSS library, which can be leveraged by the API
Gateway. The location of the GSS library can be specified using settings on this screen.

Kerberos Configuration File - krb5.conf

The Kerberos configuration file (krb5.conf) is required by the Kerberos system to configure the location of the Kerber-
os KDC, supported encryption algorithms, and default realms.

The file is required by both Kerberos Clients and Services that are configured for the API Gateway. Kerberos Clients
need to know the location of the KDC so that they can obtain a Ticket Granting Ticket (TGT). They also need to know
what encryption algorithms to use and to what realm they belong.

A Kerberos Client or Service knows what realm it belongs to because either the realm is appended to the principal name
after the @ symbol. Alternatively, if the realm is not specified in the principal name, it is assumed to be in the de-
fault_realm as specified in the krb5.conf file.

Kerberos Services do not need to talk to the KDC to request a TGT. However, they still require the information about
supported encryption algorithms and default realms contained in the krb5.conf file. There is only one de-
fault_realm specified in this file, but you can specify a number of additional named realms. The default_realm set-
ting is found in the [libdefaults] section of the krb5.conf file. It points to a realm in the [realms] section. This
setting is not required.

A default krb5.conf is displayed in the text area, which can be modified where appropriate and then uploaded to the
API Gateway's configuration by clicking the OK button. Alternatively, if you already have a krb5.conf file that you want
to use, browse to this file using the Load File button. The contents of the file are displayed in the text area, and can sub-
sequently be uploaded by clicking the OK button.

Note
You can also type directly into the text area to modify the krb5.conf contents. Please refer to your Ker-
beros documentation for more information on the settings that can be configured in the krb5.conf file.

Advanced Settings

The checkboxes on this screen enable you to configure various tracing options for the underlying Kerberos API. Trace
output is always written to the /trace directory of your API Gateway installation.

Kerberos Debug Trace:
Enables extra tracing from the Kerberos API layer.

SPNEGO Debug Trace:
Turns on extra tracing from the SPNEGO API layer.

Extra Debug at Login:

371

Provides extra tracing information during login to the Kerberos KDC.

Native GSS Library

The Generic Security Services API (GSS-API) is an API for accessing security services, including Kerberos. Implementa-
tions of the GSS-API ship with the Linux and Solaris platforms and can be leveraged by the API Gateway when it is in-
stalled on these platforms. The fields on this tab allow you to configure various aspects of the GSS-API implementation
for your target platform.

Note
These are process-wide settings. If use of the native GSS API is selected, it will be used for all Kerberos
operations. All Kerberos Clients and Services must therefore be configured to load their credentials nat-
ively.

If the native API is used the following will not be supported:

• The SPNEGO mechanism.
• The WS-Trust for SPNEGO standard as it requires the SPNEGO mechanism.
• The SPNEGO over HTTP standard as it requires the SPNEGO mechanism. (It is possible to use the KERBEROS

mechanism with this protocol, but this would be non-standard.)
• Signing and encrypting using the Kerberos session keys.

Use Native GSS Library:
Check this checkbox to use the operating system's native GSS implementation. This option only applies to API Gateway
installations on the Linux and Solaris platforms.

Native GSS Library Location:
If you have opted to use the native GSS library, enter the location of the GSS library in the field provided, for example, /
usr/lib/libgssapi.so. On Linux, the library is called libgssapi.so. On Solaris, this library is called libgss.so.

Note
This setting is only required when this library is in a non-default location.

Native GSS Trace:
Use this option to enable debug tracing for the native GSS library.

Kerberos Configuration

372

Kerberos Clients
Overview

The API Gateway can act as a Kerberos client. In doing so, it must authenticate to the Kerberos KDC (Key Distribution
Center) as a specific Principal and use the TGT (Ticket Granting Ticket) granted to it to obtain tickets from the TGS
(Ticket Granting Service) so that it can authenticate to Kerberos services.

Kerberos Clients can be configured globally under the External Connections node in the tree view of the Policy Studio.
To configure a Kerberos Client, right-click the Kerberos Clients node in the tree, and select the Add a Kerberos Client
option from the context menu. Enter a name for the Kerberos Client in the Name field of the Kerberos Client dialog, and
complete the following sections where necessary.

Having configured the Kerberos Client, it will be available for selection when configuring other Kerberos-related filters.
Make sure to select the Enabled checkbox at the bottom of the screen, which is checked by default.

Ticket Granting Ticket Source

Use this section to configure where to obtain the Kerberos client credentials required in order to request service tickets,
i.e. Ticket Granting Tickets (TGT) and the session key used in communications with the TGS. The TGT can be retrieved
from a cache created as part of a JAAS (Java Authentication and Authorization Service) login, from delegated creden-
tials, or from the native GSS implementation on Linux and Solaris platforms.

Note
Depending on what option is selected here, the Kerberos Principal, Password, and Keytab File fields be-
low may or may not be disabled because some of the TGT source options do not require these fields to be
configured.

Load via JAAS Login:
By default, the API Gateway will perform a JAAS login to the Kerberos KDC, after which the credentials will be cached by
the API Gateway and used to acquire service tickets as they are needed. The JAAS login acquires the credentials in one
of the following ways:

• Request from KDC:
Request a new TGT from the Key Distribution Center. This is performed at server startup, refresh (for example,
when a configuration update is deployed), and also when the TGT expires.

• Extract from Default System Ticket Cache:
If a TGT has already been obtained out of bounds of the API Gateway and has been stored in the default system
ticket cache, this option can be used to retrieve the TGT from this cache. On a Windows 2000 machine, the TGT will
be extracted from the cache using the Local Security Authority (LSA) API. On a Linux/Solaris box, it is assumed that
the ticket cache resides in /tmp/krb5cc_uid, where the uid is a numeric user identifier. If the ticket cache can not
be found in these locations (or if we are running on a different Windows platform), the API Gateway will look for the
cache in {user.home}{file.separator}krb5cc_{user.name}.

Note
A system ticket cache may only hold the credentials of a single Kerberos client. If you wish to load the
credentials of more than one client from system ticket caches, they must be be explicitly named using
the Extract from System Cache option. Ticket caches can be populated with client credentials using
an external utility such as kinit.

• Extract from System Ticket Cache:
Get the TGT from an explicitly named system ticket cache instead of from the default ticket cache. Browse to the

373

location of the alternative cache using the Browse button.

Load from Delegated Credentials:
The Kerberos Client can use a TGT that has been delegated for use by the server and has been already retrieved from a
Kerberos Service Authentication filter. In this case, the TGT is extracted from message attributes (i.e. authentica-
tion.delegated.credentials and authentication.delegated.credentials.client.name) that have
been set by a previous Kerberos Service Authentication filter. It is not necessary to configure the Kerberos Principal or
Secret Key fields if this option is selected.

Load via Native GSS Library:
Select this option to have the Native GSS API acquire the client's credentials. The Native GSS API will expect the cre-
dentials to be already in a system ticket cache that it can access.

If Load via Kinit is not selected, the client credentials must exist in the default system ticket cache. In this case only one
Kerberos client can be used within the API Gateway, as the API Gateway cannot support accessing credentials natively
from the default system ticket cache and other system ticket caches. See above for more details on the location of the
default system ticket cache.

If Load via Kinit is selected the API Gateway can support multiple Kerberos clients natively. In this case, the API Gate-
way will run kinit and create a ticket cache for each client in the /conf/plugins/kerberos/cache directory. The
Native GSS API will know to acquire the client credentials from these caches.

Important
To use the GSS library and optionally the kinit tool in this manner, you must select to use the native GSS
library on the Process-level Kerberos Configuration settings. To configure these settings, right-click the
Process in the tree view of the Policy Studio, and select the Kerberos -> Add option from the context
menu. Open the Native GSS Library tab of the Kerberos Configuration dialog and check the Use Native
GSS Library checkbox.

Kerberos Principal

A Kerberos Principal is used to assign a unique identity to the API Gateway for use in the Kerberos environment. Select
a previously configured Principal from the dropdown. You can configure Kerberos Principals globally under the External
Connections node in the Policy Studio tree. For more information, see the Kerberos Principals topic.

Note
The semantics of this field are slightly different depending on what you selected as the TGT source above.
If you have opted to retrieve the TGT from the KDC, then you are effectively asking the KDC to issue a
TGT for the Principal selected here.

Alternatively, if you have opted to retrieve the TGT from a system ticket cache, then the Principal selected here will be
used to lookup the cache in order to retrieve the TGT for this Principal. Similarly, if you want to use the kinit utility, the
Principal name selected here will be passed as an argument to kinit.

Finally, if you wish to retrieve a TGT from delegated credentials, it is not necessary to specify any Principal.

Secret Key

The secret key is used by the principal to talk to the KDC's Authentication Service in order to acquire a TGT. The secret
key can either be generated from a password or it can be taken from the principal's keytab file. Once again, the options
available here will depend on what has been selected as the source of the TGT.

Password:

Kerberos Clients

374

A password can only be entered if you have chosen to request the TGT from the KDC. The password will be used when
generating the secret key. A secret key is not required at all if the TGT has been already retrieved either from a system
ticket cache or from delegated credentials.

Important
The password entered here is stored by default in clear-text form in the API Gateway's underlying configur-
ation data. If necessary, this can be encrypted using a Passphrase. For more information on encrypting all
sensitive API Gateway configuration data, such as passwords, see Setting the Encryption Passphrase.

Keytab:
When the Request from KDC option is selected above, the secret key for the principal can also be extracted from a
Keytab file, which maps Principal names to encryption keys. Similarly, the kinit tool requires a Keytab file.

You can load the Principal-to-key mappings into the table by selecting the Load Keytab button and then browsing to the
location of an existing Keytab file. A new Keytab Entry can be added by clicking the Add Principal button See the Ker-
beros Keytab help page for more information on configuring the Keytab Entry dialog.

A Ketab Entry can be deleted by selecting the entry in the table and clicking on the Delete Entry button. You can also
export the entire contents of the Keytab table by clicking the Export Keytab button.

Important
The contents of the Keytab table (whether derived from a Keytab file or manually entered using the Keytab
Entry dialog) are stored in the clear in the API Gateway's underlying configuration data. The Keytab con-
tents can be stored encrypted, if required, by setting a passphrase. For more details, see Setting the En-
cryption Passphrase.

When the server starts up it writes the stored Keytab contents out to the /conf/plugin/kerberos/keytabs/ folder
of your API Gateway installation. Oracle recommends that you configure directory- or file-based access control for this
directory and its contents.

Advanced Tab

The following fields can be configured on this tab:

Mechanism:
Select the mechanism used to establish a context between the API Gateway and the Kerberos service. The Kerberos
service must use the same mechanism.

Mutual Authentication:
Request that mutual authentication be carried out during context setup, i.e. the service authenticates back to the client.
For the SPNEGO mechanism this must be turned on.

Integrity:
Enables data integrity for GSS operations.

Confidentiality:
Enables data confidentiality for GSS operations.

Credential Delegation:
Request that the initiator's credentials be delegated to the acceptor during context setup. When this option is checked,
the acceptor can then assume the initiator's identity and authenticate to other Kerberos services on behalf of the initiator.

Anonymity:
Request that the client's identity is not disclosed to the service.

Kerberos Clients

375

Replay Detection:
Enables replay detection for the per-message security services after context establishment.

Sequence Checking:
Turns on sequence checking for the per-message security services after context establishment.

Synchronize to Avoid Replays Errors at Service:
In cases where the Kerberos Client is running "under stress" and is attempting to send many requests to a Kerberos Ser-
vice within a very short (millisecond) timeframe, it is possible that sequential Kerberos Authenticator tokens generated by
the client will contain identical values for the ctime (i.e. the current time on the client's host) and cusec (i.e. the micro-
second portion of the client's timestamp) fields.

Since Kerberos Service implementations often compare the ctime and cusec values on successive Authenticator tokens
to determine replay attacks, it is possible that the Service will reject Authenticator requests in which the ctime and cusec
fields have the same value.

To avoid situations where the Client may generate successive Authenticator requests (for a particular Service) in which
the ctime and cusec fields are identical, you can select this option to synchronize the creation of the Authenticator re-
quests. The Authenticator request generation will be synchronized using the Pause Time field below.

Pause Time:
Specify the time interval (in milliseconds) to wait before generating client-side Authenticator tokens when synchronizing
to avoid over-zealous replay detection at the Kerberos Service. This field is only enabled if the Synchronize to Avoid
Replays Errors at Service checkbox is checked above.

Note
The default value of 15 milliseconds matches the clock resolution time of operating systems such as Win-
dows. Consult your operating system documentation for more information on the clock resolution for your
target system.

Kerberos Clients

376

Kerberos Services
Overview

The API Gateway can act as a Kerberos Service. In this case, Kerberos clients must obtain a Kerberos service ticket to
authenticate to the Kerberos Service exposed by the API Gateway. Clients must present this ticket to the API Gateway
for their requests to be processed (to be successfully authenticated). The Kerberos Service is responsible for consuming
these tickets.

You can configure Kerberos Services globally under the External Connections node in the tree view of the Policy Stu-
dio. To configure a Kerberos Service, right-click the Kerberos Services node in the tree, and select the Add a Kerberos
Service option from the context menu. The following sections describe how to configure the various fields on the Kerber-
os Service dialog.

Globally configured Kerberos Services are selected by name as part of the Kerberos Service Authentication filter, which
is responsible for validating the tickets consumed by the Kerberos Service. Make sure to enter a descriptive name for the
service in the Name field of the Kerberos Service dialog. For more information on configuring this filter, see the Kerber-
os Service Authentication topic.

Having configured the Kerberos Service, it is available for selection when configuring other Kerberos-related filters. Make
sure to select the Enabled checkbox at the bottom of the screen, which is selected by default.

Kerberos Endpoint Tab

Complete the following fields on this tab:

Kerberos Principal:
Select the name of the principal to be associated with the API Gateway. Clients wishing to authenticate to the API Gate-
way must present a service ticket containing a matching principal name to the API Gateway.

Kerberos Principals are configured globally under the External Connections node in the tree view of the Policy Studio.
Right-click the Kerberos Principals node, and select the Add a Kerberos Principal option from the context menu.

Alternatively, you can select the Add button under the Kerberos Principal drop-down list to add a new principal. For
more information on configuring a principal, see the Kerberos Principals topic.

Secret Key:
Use this section to specify the location of the Kerberos Service's secret key, which is used to decrypt service tickets re-
ceived from Kerberos clients.

Password:
The Kerberos Service's secret key is originally created for a specific Principal on the KDC. A password is required to
generate this key, which can be entered directly into the Password field here.

Keytab:
Usually, however, a Keytab file is generated, which contains a mapping between a Principal name and that Principal's
secret key. The Keytab file can then be loaded into the API Gateway configuration using the fields provided on this sec-
tion.

You can load the Principal-to-key mappings into the table by selecting the Load Keytab button, and then browsing to the
location of an existing Keytab file. You can add a new Keytab Entry by clicking the Add Principal button. For more in-
formation on configuring the Keytab Entry dialog, see the Kerberos Keytab topic.

You can delete a Keytab Entry by selecting the entry in the table, and clicking the Delete Entry button. You can also ex-
port the entire contents of the Keytab table by clicking the Export Keytab button.

377

Important
The contents of the Keytab table (whether derived from a Keytab file or manually entered using the Keytab
Entry dialog) are stored in the clear in the API Gateway's underlying configuration. The Keytab contents
can be stored encrypted, if required, by setting a passphrase for the API Gateway configuration data. For
more information on how to do this, see the Setting the Encryption Passphrase topic.

When the server starts up it writes the stored Keytab contents out to the /
conf/plugin/kerberos/keytabs/ folder of your API Gateway installation. Oracle recommends that
you configure directory-based or file-based access control for this directory and its contents.

Load via Native GSS Library:
If you have configured the API Gateway to Use Native GSS Library on the Process-level Kerberos Configuration set-
tings, you must choose to load the Kerberos Service's secret key from the location preferred by the GSS library. The nat-
ive GSS library expects the Kerberos service's secret key to be in the system's default Keytab file. The location of this
Keytab file is specified in the default_keytab_name setting in the krb5.conf file that the native GSS library reads
using the KRB5_CONFIG environment variable. This Keytab may contain keys for multiple Kerberos services.

Advanced Tab

Configure the following fields on this tab:

Mechanism:
Select the mechanism used to establish a context between this Kerberos service and the Kerberos client. The Kerberos
client must use the same mechanism selected here.

Extract Delegated Credentials:
A Kerberos client can set an attribute on the context with the Kerberos service to indicate that they wish to allow the ser-
vice to act on behalf of the client in subsequent communications. For example, this enables the Kerberos service (the
API Gateway) to assume the identity of the client when communicating with a back-end Kerberos service. In this way, the
client's credentials are propagated to the back-end service as opposed to the API Gateway's credentials. This is called
credential delegation.

In cases where a Kerberos client wishes to delegate its credentials to a Kerberos service, you can configure the service
to extract the delegated credentials from the context it establishes with the client. Select the Extract Delegated Creden-
tials checkbox to extract the client's delegated credentials and store them in the gss.delegated.credentials and
gss.delegated.credentials.client.name message attributes.

The extracted delegated credentials can be forwarded on to the back-end Kerberos service (on behalf of the user) using
the Kerberos settings on the Kerberos Client Authentication filter or the Connection filter. When configuring the Ker-
beros Client used on the Kerberos Authentication tab of the Connection filter, make sure to select the option to re-
trieve the Ticket Granting Ticket(TGT) from the extracted delegated credentials (the Extract from delegated creden-
tials checkbox on the Kerberos Endpoint tab).

For more details on configuring these options, see the following topics:

• Connection
• Kerberos Clients

Kerberos Services

378

Kerberos Principals
Overview

A Kerberos Principal represents a unique identity in a Kerberos system to which Kerberos can assign tickets to access
Kerberos-aware services. Principal names are made up of several components separated by the / separator. You can
also specify a realm as the last component of the name by using the @ character. If no realm is given, the Principal is as-
sumed to belong to the default realm, as configured in the krb5.conf file.

Typically, a Principal name comprises three parts: the primary, the instance, and the realm. The format of a typical Ker-
beros v5 Principal name is:
primary/instance@realm

• Primary:
If the Principal represents a user in the system, the primary is the username of the user. Alternatively, for a host, the
primary is specified as the host string.

• Instance:
The instance can be used to further qualify the primary (for example, user/admin@foo.abc.com).

• Realm:
This is your Kerberos realm, which is usually a domain name in upper case letters. For example, the foo.abc.com
machine is in the ABC.COM Kerberos realm.

Configuration

You can configure Kerberos Principals globally under the External Connections node in the Policy Studio tree. To con-
figure a Kerberos Principal, right-click the Kerberos Principals node, and select the Add a Kerberos Principal option
from the context menu. Complete the following fields on the Kerberos Principal dialog:

Name:
Enter a friendly name for the Kerberos Principal. This name will be available for selection from drop-down lists in other
Kerberos-related configuration screens in the Policy Studio.

Principal Name:
Enter the name of the Kerberos Principal in this field. The Principal name consists of a number of components separated
using the / separator. The realm should be specified here if the Principal belongs to either a non-default realm or if a de-
fault realm is not specified.

Principal Type:
Select the type of Principal specified in the field above. The following table lists the available Principal Types.

Note
The Principal Name Types and their corresponding OIDs are defined in the General Security Services
(GSS) API.

Principal Name Type Explanation

NT_USER_NAME The Principal name identifies a named user on the local
system

KERBEROS_V5_PRINCIPAL_NAME The Principal name represents a Kerberos version 5 Prin-
cipal.

NT_EXPORT_NAME The Principal name represents an exported canonical byte

379

Principal Name Type Explanation

representation of the name (for example, which can be
used when searching for the Principal in an Access Control
List (ACL)).

NT_HOSTBASED_SERVICE The Principal name identifies a service associated with a
specific host.

You can add new Principal Types by clicking the Add button. The name entered in the Name field on the Kerberos Prin-
cipal Name OID must correspond to one of the constant fields defined in the org.ietf.jgss.GSSName Java class.
Please refer to the Javadocs for the GSSName [http://java.sun.com/javase/6/docs/api/index.html] class for other allow-
able name types. Similarly, the corresponding OID for this name type must be entered in the OID field of the dialog.
Please consult the GSSName Javadoc here [http://java.sun.com/javase/6/docs/api/index.html] for more information.

Important
OIDs and Principal Type Names should only be changed to reflect changes in the underlying GSS API. Be-
cause of this, you should only choose to Edit existing Principal Types under strict supervision from theOr-
acle support team.

Kerberos Principals

380

http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html

Kerberos Keytab
Overview

The Kerberos Keytab file contains mappings between Kerberos Principal names and DES-encrypted keys that are de-
rived from the password used to log into the Kerberos Key Distribution Center (KDC). The purpose of the Keytab file is to
allow the user to access distinct Kerberos Services without being prompted for a password at each Service. Furthermore,
it allows scripts and daemons to login to Kerberos Services without the need to store clear-text passwords or for human
intervention.

Important
Anyone with read access to the Keytab file has full control of all keys contained in the file. For this reason, it
is imperative that the Keytab file is protected using very strict file-based access control.

The Keytab Entry dialog, which is available from the Secret Key section on both the Kerberos Client and Kerberos Ser-
vice screens after clicking the Add Principal button, is essentially a graphical interface to entries in a Kerberos Keytab
file.

This dialog enables you to generate keytab entries. You can remove entries from the Keytab file by clicking the Delete
Entry button on the Kerberos Client and Kerberos Service screens. You can configure Kerberos Clients and Kerberos
Services under the External Connections node in the Policy Studio tree.

Each key entry in the file is identified by a Kerberos Principal and an encryption type. For this reason, the Keytab file may
hold multiple keys for the same principal where each key has a different encryption type. It may also contain keys for
several different Principals.

In cases where the Keytab file contains encryption keys for different Principals, at runtime the Kerberos Client or Service
only considers keys mapped to the Principal name selected in the Kerberos Principal drop-down list on their respective
screens.

If the Keytab file contains several keys for the Principal, the Kerberos Client or Service uses the key with the strongest
encryption type as agreed during the negotiation of previous messages with the Kerberos Key Distribution Center (KDC).

Configuration

Configure the following fields on the Keytab Entry dialog:

Kerberos Principal:
Select an existing Kerberos Principal from the drop-down list or add a new one by clicking on the Add buttons. You can
configure Kerberos Principals globally under the External Connections node in the Policy Studio tree. For more inform-
ation on configuring Kerberos Principals, see the Kerberos Principals topic.

Password:
The password entered here is used to seed the encryption algorithm(s) selected below.

Encryption Types:
The encryption types selected here determine the algorithms used to generate the encryption keys that are stored in the
Keytab file. In cases where the Keytab file contains multiple keys for the Principal, the encryption type is used to select
an appropriate encryption key.

To ensure maximum interoperability between Kerberos Clients/Services configured in the API Gateway and different
types of KDC, all encryption types are selected by default. With this configuration, the generated Keytab file contains a
separate encryption key for each encryption type listed here where each key is mapped to the Principal name selected
above.

381

Important
You must Ensure that the required encryption types exist in the Keytab as defined by settings in the
krb5.conf. For a Kerberos Client to request a Ticket Granting Ticket, it must have at least one key that
matches one of the encryption types listed in the default_tkt_enctypes setting in the krb5.conffile.
A Kerberos Service requires a key of a certain encryption type to be able to decrypt the service ticket
presented by a client.

For Windows 2003 Active Directory, by default, the service ticket is encrypted using the rc4-hmac encryption type.
However, if the service user has the Use DES encryption types for this account option enabled, the des-cbc-md5
encryption type is used.

Kerberos Keytab

382

SAML Authentication XML-Signature Verification
Overview

A SAML (Security Assertions Markup Language) authentication assertion is issued as proof of an authentication event.
Typically an end-user will authenticate to an intermediary, who generates a SAML authentication assertion to prove that
it has authenticated the user. The intermediary will usually sign the assertion as proof that only it could have signed the
assertion, and also to guarantee the integrity of the assertion. It then inserts the assertion, together with its signature, into
the message for consumption by a downstream Web Service.

The following sample SOAP message contains a signed SAML authentication assertion:

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
<wsse:Security>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

AssertionID="oracle-1056477425082"
Id="oracle-1056477425082"
IssueInstant="2003-06-24T17:57:05Z"
Issuer="CN=Sample User,....,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2003-06-20T16:20:10Z"
NotOnOrAfter="2003-06-20T18:20:10Z"/>

<saml:AuthenticationStatement
AuthenticationInstant="2003-06-24T17:57:05Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">

<saml:SubjectLocality IPAddress="192.168.0.32"/>
<saml:Subject>

<saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">
sample

</saml:NameIdentifier>
</saml:Subject>

</saml:AuthenticationStatement>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="User">

<dsig:SignedInfo>
.....

</dsig:SignedInfo>
<dsig:SignatureValue>
rpa/......0g==

</dsig:SignatureValue>
<dsig:KeyInfo>
.....

</dsig:KeyInfo>
</dsig:Signature>

</saml:Assertion>
</wsse:Security>

</soap-env:Header>
<soap-env:Body>

<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</soap-env:Body>
</soap-env:Envelope>

Configuration

Configure the following fields to validate the XML Signature over a SAML assertion:

383

SAML Signature:
Use this section to specify the location of the signature to validate. The signature can be selected using 3 options:

• Check signature inside the assertion:
Select this option if the signature will be present inside the SAML assertion itself.

• Check signature contained in WS-Security Block:
If the signature is contained within a WS-Security block (but outside the assertion), it is necessary to specify whether
the signature covers only the assertion, or the assertion and the SOAP Body. Select the appropriate option depend-
ing on what the signature covers.

• Use advanced XPath:
If the signature is to be found in a non-standard location, an XPath expression can be used to identify it. Use the
Signature location XPath to find a signature in a non-standard place.
It is also necessary to specify the nodes that are signed by the signature. Use the What must be signed XPath to
configure this.

Signer's Public Key/Certificate
Select the Certificate in Message radio button in order to use the certificate from the XML-Signature specified in the
SAML Signature section. The certificate will be extracted from the KeyInfo block.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...
<dsig:KeyInfo>
<dsig:X509Data>

<dsig:X509SubjectName>CN=Sample User...</dsig:X509SubjectName>
<dsig:X509Certificate>
MIIE EQgJ

</dsig:X509Certificate>
</dsig:X509Data>
<dsig:KeyValue>

<dsig:RSAKeyValue>
<dsig:Modulus>

AMfb2tT53GmMiD
...
NmrNht7iy18=

</dsig:Modulus>
<dsig:Exponent>AQAB</dsig:Exponent>
</dsig:RSAKeyValue>

</dsig:KeyValue>
</dsig:KeyInfo>

</dsig:Signature>

Clients may not always want to include their public keys in their signatures. In such cases, the public key must be re-
trieved from an LDAP directory of the API Gateway's Certificate Store.

For example, the following signed XML message does not include the signatory's certificate. Instead only the Common
Name of the signatory's certificate is included. In this case, the API Gateway must obtain the certificate from either an
LDAP directory or the Certificate Store in order to validate the signature on the assertion.

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="User">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="">
<dsig:Transforms>

SAML Authentication XML-Signature Verification

384

<dsig:Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
<dsig:XPath>ancestor-or-self::soap-env:Body</dsig:XPath>
</dsig:Transform>
<dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n"/>

</dsig:Transforms>
<dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>rvJMkZ1RDo3pNfqCUBa4Qhs8i+M=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>

AXL2gKhqqKwcKujVPftVoztySvtCdARGf97Cjt6Bbpf0w8QFiNuLJncQVnKB
cQ+91KvudYZ/Sk8u7tXhoEiLvNwg76B2STPh+ypEWO+J7OSPedlUdnfVRRvW
vjYLwJVjGNZ+mMTxvfO1wwcIb2Hg94n1BOaeBrNJ+2uO4i87W5TyufAGI+V8
S6oSpPc5KQeHLXoyHS2+fXyqReSiwdhOeli4D4xT+HbjRgYJIwIikXn2k1Fr
D/hnd1/xVf/LjrOwoY9id8W3IcZAzMIRh5SBZjWHYOQzk79xy4YDpzNVYIOB
laAFqzg9G+Z4VYj+RdgrIVHhOXt+mq+fGZV6VheWGQ==

</dsig:SignatureValue>
<dsig:KeyInfo>
<dsig:KeyName>

CN=User,OU=R&D,O=Org Ltd.,L=Dublin 4,ST=Dublin,C=IE
</dsig:KeyName>

</dsig:KeyInfo>
</dsig:Signature>
</soap-env:Header>

<soap-env:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</soap-env:Body>
</soap-env:Envelope>

To retrieve a client certificate from an LDAP directory, select a pre-configured one from the LDAP Source dropdown, or
add/edit a new/existing LDAP directory by clicking the Add/Edit button.

Alternatively, select a certificate from the Trusted Certificate Store by selecting the Certificate in Store radio button and
clicking on the Select button. This certificate will then be associated with the incoming message so that all subsequent
certificate-based filters will use this user's certificate.

SAML Authentication XML-Signature Verification

385

XML Signature Authentication
Overview

The API Gateway can authenticate a client by validating the XML Signature contained within an incoming XML message.
A successful signature validation proves that the client had access to the signing key. Since the signing key is only ac-
cessible by the client (i.e. is not publicly available), the validation process authenticates the client.

Configuration

The following sections can be configured on the XML Signature Authentication screen:

Signature Location
There may be multiple signatures present in a given XML message. For this reason, it is necessary to tell the API Gate-
way which signature it should use to authenticate the client.

The signature can be extracted:

• Using WS-Security Actors
• From the SOAP Header
• Using XPath

Select the most appropriate method from the Signature Location dropdown. Your selection will depend on the types of
SOAP messages that you expect to receive. For example, if incoming SOAP messages will contain an XML Signature
within a WS-Security block, you should choose this option from the dropdown.

What Must be Signed
This section defines the content that must be signed in order for a SOAP message to pass the filter. This ensures that
the client has signed something meaningful (i.e. part of the SOAP message) as opposed to some arbitrary data that
would pass a "blind" signature validation. This further strengthens the authentication process.

An XPath expression is used to identify the nodeset that should be signed. To specify that nodeset, select either an exist-
ing XPath expression from the XPath Expression dropdown list, or add a new one using the Add button. XPath expres-
sions can also be edited and removed with the Edit and Remove buttons respectively.

Signer's Public Key/Certificate
Select the Certificate in Message radio button in order to use the certificate from the XML-Signature specified in the
Signature Location section. The certificate will be extracted from the KeyInfo block.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...
<dsig:KeyInfo>
<dsig:X509Data>

<dsig:X509SubjectName>CN=Sample User...</dsig:X509SubjectName>
<dsig:X509Certificate>
MIIE EQgJ

</dsig:X509Certificate>
</dsig:X509Data>
<dsig:KeyValue>

<dsig:RSAKeyValue>
<dsig:Modulus>

AMfb2tT53GmMiD
...
NmrNht7iy18=

</dsig:Modulus>
<dsig:Exponent>AQAB</dsig:Exponent>
</dsig:RSAKeyValue>

386

</dsig:KeyValue>
</dsig:KeyInfo>

</dsig:Signature>

Clients may not always want to include their public keys in their signatures. In such cases, the public key can be re-
trieved from a specified LDAP directory or from the Certificate Store.

To retrieve a client certificate from an LDAP directory, select a pre-configured one from the LDAP Source dropdown, or
add/edit a new/existing LDAP directory by clicking the Add/Edit button.

Alternatively, select the name of a User from the Certificate field. This user's certificate will then be associated with the
incoming message so that all subsequent certificate-based filters will use this user's certificate.

XML Signature Authentication

387

SSL Authentication
Overview

A client can mutually authenticate to the API Gateway through the exchange of X.509 certificates. An X.509 certificate
contains identity information about its owner and is digitally signed by the Certificate Authority that issued it.

A client will present such a certificate to the API Gateway while the initial SSL/TLS session is being negotiated, in other
words, during the SSL handshake. The SSL Authentication filter extracts this information from the client certificate and
sets it as message attributes. These attributes can then be used by subsequent filters in the policy.

The SSL Authentication filter can be used as a decision-making node on the policy. For example, it can be used to de-
termine a path through a policy based on how users authenticate to the API Gateway.

Configuration

Name:
Enter a name for the filter on the SSL Authentication configuration screen.

388

Security Token Service Client
Overview

The Security Token Service Client filter enables the API Gateway to act as a client to a Security Token Service (STS).
An STS is a third-party Web Service that authenticates clients by validating credentials and issuing security tokens
across different formats (for example, SAML, Kerberos, or X.509). The API Gateway can use the Security Token Ser-
vice Client filter to request security tokens from an STS using WS-Trust. WS-Trust specifies the protocol for issuing, ex-
changing, and validating security tokens.

An STS has its own security requirements for authenticating and authorizing requests for tokens. This means that the
API Gateway may need to insert tokens, digitally sign, and encrypt the request that it sends to the STS for the required
token. Because the STS is exposed as a Web Service, it should have a WSDL file with WS-Policies that describe its se-
curity requirements.

For example, the API Gateway can use the Security Token Service Client filter to request tokens that it cannot issue it-
self, and which may be required by an endpoint service. The endpoint service may require tokens to be signed by a par-
ticular authority (STS), or there may be a requirement for a token that contains a key encrypted for the endpoint service,
and which only the STS can generate. You can also use the Security Token Service Client filter to virtualize an STS
using the API Gateway.

Example Request

Using WS-Trust, requests for tokens are placed in a RequestSecurityToken (RST) element in the SOAP Body ele-
ment. The STS returns the requested token in a RequestSecurityTokenResponse (RSTR) element in the SOAP
Body. The following example is an extract from a token request message sent from the API Gateway to the STS:

<soap:Body
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="Id-0000012e71431904-00000000011d5641-19">
<wst:RequestSecurityToken

xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
Context="Id-0000012e71431904-00000000011d5641-15">
<wst:RequestType>

http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
<wst:TokenType>

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1
</wst:TokenType>
<wst:KeyType>

http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey
</wst:KeyType>
<wst:Entropy>

<wst:BinarySecret
Type="http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey">
WLQmo5mRYiBRqq2D7677Dg==

</wst:BinarySecret>
</wst:Entropy>
<wsp:AppliesTo

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsa:EndpointReference

xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Address>default</wsa:Address>

</wsa:EndpointReference>
</wsp:AppliesTo>

</wst:RequestSecurityToken>
</soap:Body>

389

In this simple example, the client (API Gateway) requests a SAML token with a symmetric KeyType. The SAML token is
requested for an endpoint service named default. An optional OnBehalfOf token is not supplied.

The Security Token Service Client filter enables you to configure token requests sent by the API Gateway to the STS.
This rest of this topic explains all of the available settings.

General Settings

You can configure the following general setting on the filter screen:

Name:
Enter an appropriate name for this filter.

Request Settings

Configure the following general request settings on the Request tab:

Request Type:
Select one of the following request types:

Issue A request to issue a token. This is the default request type.

Validate A request to validate a token.

Token Type to Request:
Select the token type to request from the STS (for example, SAML 1.0, SAML 1.1, SAML 2.0, or UsernameToken).
You can also request a custom token type by entering the custom token URI (for example, ht-
tp://www.mycustomtoken.com/EmailToken). The default is SAML 1.1 (#SAMLV1.1).

Issue: POP Key

A proof-of-possession (POP) security token contains secret data used to demonstrate authorized use of an associated
security token. Typically, the POP data is encrypted with a key known only to the recipient of the POP token. For Issue
requests, you can configure the following POP key settings on the Request -> Issue: POP Key tab:

Proof of Possession Key Type:
Select the POP key type for the token you are requesting. This only applies to certain types of tokens (for example,
SAML tokens). Select one of the following key types from the drop-down list:

SymmetricKey When a SAML token is requested with a symmetric POP
key, the SAML assertion returned by the STS has a subject
confirmation type of holder-of-key. The subject con-
firmation data contains a symmetric key encrypted for the
endpoint service. The API Gateway (the client) can request
the SAML token from the STS with the endpoint service
specified as the token scope, so the STS knows what certi-
ficate to use to encrypt the symmetric key it places in the
SAML assertion’s subject confirmation data. The API Gate-
way cannot decrypt the symmetric key in the SAML asser-
tion because it is encrypted for the endpoint service. The
STS passes the symmetric key to the requesting API Gate-
way in the RSTR so that the API Gateway also has the
symmetric key. It can then use the SAML assertion
(symmetric key) to sign the message to the endpoint ser-
vice, proving that it holds the key in the SAML assertion.

Security Token Service Client

390

The endpoint service can verify the signature because it
can decrypt the key in the SAML assertion. This is the de-
fault POP key type.

PublicKey When a SAML token is requested with a public asymmetric
POP key, the SAML assertion returned by the STS has a
subject confirmation type of holder-of-key. The subject
confirmation data contains a public key or certificate. The
API Gateway (the client) can also use this SAML assertion
to sign messages to the endpoint service using the related
private key, thus proving they hold the key referenced in
the SAML assertion. The public key in the SAML assertion
is not encrypted because it is not sensitive data. This
SAML assertion can be used to sign messages to multiple
endpoint services because it does not contain a key en-
crypted for a specific service. The API Gateway can specify
the public key used in the Public Proof of Possession
Key settings. This public key can be associated with a cer-
tificate in the certificate store, or generated on-the-fly using
the Generate Key filter. For more details, see the Gener-
ate Key topic.

Bearer When a SAML token is requested with a bearer POP key,
the SAML assertion returned by the STS has a subject
confirmation type of bearer. In this case, the SAML token
does not contain a POP key.

Important
An STS can also generate a SAML token with a subject confirmation type of sender-vouches. In this
case, the endpoint service trusts the client directly, the SAML assertion does not need to be signed by the
STS. The client signs the SAML assertion and the SOAP Body before sending the message to the end-
point service. This type of SAML assertion does not map to a value for Proof of Possession Key Type,
but can be returned from the STS if no key type is specified.

Key Size:
Enter the key size in bits to indicate the desired strength of the security. Defaults to 256 bits.

Entropy Type:
If the Proof of Possession Key Type requested is a SymmetricKey, you must specify an Entropy Type. If the API
Gateway provides entropy, this means that it provides some of the binary material used to generate the symmetric key.
In general, both the API Gateway and the STS provide some entropy for the symmetric key (a computed key). However,
either side can also fully generate the symmetric key. Select one of the following options:

None The API Gateway does not provide any entropy, so the
STS must fully generate the symmetric key.

Binary Secret The API Gateway provides entropy in the form of a
Base64-encoded binary secret (or key). You must specify a
Binary Secret Type. For details, see the next setting.

EncryptedKey The API Gateway provides entropy in the form of an En-
cryptedKey element. You must configure an XML-
Encryption filter in the policy, which applies security be-
fore creating the WS-Trust message. This filter generates a

Security Token Service Client

391

symmetric key and encrypts it, but does not encrypt any
data. The key must be encrypted with the STS certificate.

Binary Secret Type:
If the Entropy Type is Binary Secret, you must specify a Binary Secret Type. Select one of the following:

Nonce The API Gateway generates a nonce value and places it in
the RST.

SymmetricKey The Binary Secret Message Attribute value must be spe-
cified. In this case, this is the name of the message attrib-
ute that contains the symmetric key passed to the STS to
be used as entropy for generating the POP symmetric key.
The type of this message attribute must be byte[] when
the Binary Secret Type is SymmetricKey.

AsymmetricKey The Binary Secret Message Attribute value must be spe-
cified. In this case, this is the name of the message attrib-
ute that contains the private asymmetric key passed to the
STS to be used as entropy for generating the POP sym-
metric key. The type of this message attribute must be
byte[], PrivateKey, KeyPair, or X509Certificate
when the Binary Secret Type is AsymmetricKey. In each
case, the private key is used.

Binary Secret Message Attribute:
Enter or select the message attribute that contains the binary secret. This setting is required when the Binary Secret
Type is SymmetricKey or AsymmetricKey.

Computed Key Algorithm:
When both the API Gateway and STS provide entropy values for the symmetric POP key, you can specify a computed
key algorithm (for example, PSHA1). This is used when the key resulting from the token request is not directly returned,
and is computed.

Public Proof of Possession Key:
If the Proof of Possession Key Type requested is a PublicKey, you can specify what public key to include in the
token using the following settings:

Use Key Format Select how the UseKey element in the RST formats the
public key from the drop-down list (for example, Pub-
licKey, Certificate, BinarySecurityToken, and so
on).

Use Key Message Attribute Select or enter the message attribute that contains the pub-
lic key. The public key can be of type X509Certificate,
PublicKey or KeyPair.

Issue: On Behalf Of Token

Security Token Service Client

392

For Issue requests, you can optionally configure the OnBehalfOf token for the RST. If an OnBehalfOf token is in the
RST, this means you are requesting a token on behalf of the subject identified by the token or endpoint reference in the
OnBehalfOf element. You can configure the following settings on the Request -> Issue: On Behalf Of Token tab:

On Behalf Of:
Select one of the following options:

None No OnBehalfOf token is specified. This is the default.

Token The token is embedded directly under the <OnBehalfOf>
element in the RST.

EmbeddedSTR The token is placed in the
<OnBehalfOf><SecurityTokenReference><Embedd
ed> element in the RST.

Endpoint Reference A reference to the token is placed in the
<OnBehalfOf><SecurityTokenReference>< element.
The token is placed in the WS-Security header.

On Behalf Of Token Message Attribute:
Enter or select the message attribute that contains the OnBehalfOf token. This may be a UsernameToken, SAML
token, X.509 certificate, and so on. The type of this message attribute can be Node, List of Nodes, String, or
X509Certificate. This message attribute must be populated using a filter configured in the policy that applies security
before creating the WS-Trust message. For example, this includes a filter to extract a UsernameToken from the incom-
ing message, or a Find Certificate filter.

Endpoint Address:
When the On Behalf Of type is Endpoint Reference, no token is placed in the OnBehalfOf element. Instead, you can
enter an endpoint address in this field that identifies the subject on whose behalf you are requesting the token.

Identity Type:
When the On Behalf Of type is Endpoint Reference, you can select an identity type from the drop-down list (for ex-
ample, DNSName, ServicePrincipaName, or UserPrincipalName).

Identity:
When the Identity Type is set to DNSName, ServicePrincipaName, or UserPrincipalName, you must specify a
value in this field.

Identity Message Attribute:
When the selected Identity Type is one of PublicKey, Certificate, BinarySecurityToken, SecurityToken-
Reference_x509v3, or SecurityTokenReference_ThumbprintSHA1, you must specify a message attribute in this
field. This specifies the name of the message attribute that contains the certificate for the subject on whose behalf you
are requesting the token. The type of this message attribute must be X509Certificate.

Issue: Token Scope and Lifetime

For Issue requests, you can optionally specify details for the scope of the requested token (for example, the endpoint
service this token is used for). These details are placed in the AppliesTo element of the RST. You can configure the
following settings on the Request -> Issue: Token Scope and Lifetime tab:

Endpoint Address:
Enter an address for the endpoint.

Identity Type:
Select an identity type from the drop-down list (for example, Certificate, BinarySecurityTokenDNSName, Servi-

Security Token Service Client

393

cePrincipalName, or UserPrincipalName).

Identity:
When the Identity Type is set to DNSName, ServicePrincipaName, or UserPrincipalName, you must specify a
value in this field.

Identity Message Attribute:
When the Identity Type selected is one of PublicKey, Certificate, BinarySecurityToken, SecurityToken-
Reference_x509v3, or SecurityTokenReference_ThumbprintSHA1, you must specify a message attribute in this
field. This specifies the name of the message attribute that contains the certificate for the endpoint service that the token
is sent to. The type of this message attribute must be X509Certificate.

Expires In:
Specify when the token is due to expire in the day and time boxes.

Lifetime Format:
Enter the date and time format in which the token lifetime is specified. Defaults to yyyy-MM-dd'T'HH:mm:ss.SSS'Z'.

Note
The STS may choose to ignore the token lifetime specified in the RST.

Validate: Target

If the request type is set to Validate, you can use the Request -> Validate: Target tab to specify the token that you re-
quire the STS to validate. In this case, the STS does not issue a token. It validates the token passed to it in the RST and
returns a status. The response from the STS is placed in the sts.validate.code and sts.validate.reason mes-
sage attributes.

You can configure the following settings on the Request -> Validate: Target tab:

Token:
Specifies that the token is placed directly under the <ValidateTarget> element in the RST.

EmbeddedSTR:
Specifies that the token is placed in the <ValidateTarget><SecurityTokenReference><Embedded> element.

STR:
Specifies that a reference to the token is placed in the <ValidateTarget><SecurityTokenReference> element.
The token is placed in the WS-Security header.

Validate Target Message Attribute:
Select the message attribute that contains the token that you wish to validate. The type of this message attribute can be
Node, a List of Nodes, or String. This message attribute must be populated using a filter configured in the policy that
applies security before creating the WS-Trust message. For example, you can run a filter to extract a SAML token from
the incoming message.

Policies Settings

The Policies tab enables you to specify the policies that the Security Token Service Client filter delegates to. You can
configure the following settings on this tab by clicking the button next to each field:

Policy to run to apply security before creating the WS-Trust message:
Specifies the policy that runs before the Security Token Service Client filter creates the RST (the WS-Trust request
message for the STS). The filters in this policy are used to set up message attribute values that the STS client filter re-
quires (for example, the OnBehalfOf token).

Policy to run to apply security to the WS-Trust request:

Security Token Service Client

394

Specifies the policy that runs after the Security Token Service Client filter has created the RST. The filters in this policy
can sign and/or encrypt the message as required by the STS. It can also inject other security tokens into the WS-Security
header if required.

Policy to run to apply security to the WS-Trust response:
Specifies the policy that runs to apply security to the WS-Trust response. This policy runs when the response is received
from the STS. The filters in this policy can decrypt and verify signatures on the response message.

Routing

When routing to an STS, you can specify a direct connection to the Web Service endpoint by entering a URL on the
Routing tab. Alternatively, when the routing behavior is more complex, you can delegate to a custom routing policy to
handle the added complexity. The options on the Routing tab allow for these alternative routing configurations.

Use the following URL:
Select this option to route to the specified URL. You can enter the URL in the text box, or specify the URL as a selector
so that the URL is built dynamically at runtime from the specified message attributes (for example ${host}:${port},
or ${http.destination.protocol}://${http.destination.host}:${http.destination.port}). For
more details on selectors, see Selecting Configuration Values at Runtime

In both cases, you can configure connection details such as SSL for the direct connection using the fields in the Connec-
tion Details group. For more details, see the Connection filter topic.

Delegate to Routing Policy:
Select this option if you wish to use a dedicated routing policy to send messages on to the STS. Click the browse button
next to the Routing policy field to select the policy that you want to use to route messages.

No Routing:
Select this option to only allow request reflection for test purposes.

Response Settings

The Response tab enables you to specify options for processing the response message from the STS. You can config-
ure the following settings on this tab:

Verify returned security token type:
When selected, the filter checks that the TokenType returned is what was requested. This is selected by default.

Put security token into message attribute:
When specified, the token returned from the STS is placed in the specified message attribute. The type of this attribute is
String. Defaults to sts.security.token. An element version of the token is placed in a message attribute named
attrname.element.

Insert security token into original message in SOAP Actor/Role:
When specified, the token returned from the STS is inserted into the original message. This is the original message re-
ceived by the API Gateway (was the current message before the Security Token Service Client filter ran). Defaults to
Current actor/role only.

Extract Token Lifetime:
When selected, the token lifetime is extracted from the response, and the sts.token.lifetime.created and
sts.token.lifetime.expires message attributes are populated. This setting is selected by default.

Advanced Settings

The Advanced tab enables you to specify the following options:

Versions and Namespaces:
The version and namespace options are as follows:

Security Token Service Client

395

WS-Trust Version Specifies the WS-Trust namespace to use in the generated
RST. Defaults to WS-Trust 1.3.

SOAP version Specifies the SOAP version to use in the generated RST.
Defaults to SOAP 1.1.

WS-Addressing Namespace Specifies the WS-Addressing namespace to use in the
generated RST. Defaults to ht-
tp://www.w3.org/2005/08/addressing.

WS-Policy Namespace Specifies the WS-Policy namespace to use in the gener-
ated RST. Defaults to WS-Policy 1.2.

WS-Security Actor Specifies the actor in which to place tokens that are re-
ferred to from the RST using STRs (for example, OnBe-
halfOf). Defaults to Current actor/role only.

Algorithms:
The algorithm options are as follows:

Cannonicalization Algorithm When selected, additional elements are added to the RST,
which specify a client-requested cannonicalization al-
gorithm (for example, ExC14n).

Encryption Algorithm When selected, additional elements are added to the RST,
which specify a client-requested encryption algorithm (for
example, Aes256).

Encrypt with When selected, specifies the encryption algorithm with
which to encrypt the RSTR (for example, Aes256).

Sign with When selected, specifies the signature algorithm with
which to digitally sign the RSTR (for example,
RsaSha256).

Advanced Settings:
The advanced options are as follows:

Content-Type Specifies the Content-Type of the message to be sent to
the STS. For example, for Microsoft Windows Communica-
tion Foundation (WCF), select application/soap+xml.
Defaults to text/xml.

Store and restore original message When selected, the original message is saved before mes-
sages sent from the API Gateway to the STS and mes-
sages sent from the STS to the API Gateway are pro-
cessed. It is then reinstated after this filter finishes pro-
cessing the STS response. This is the default behavior. For
debug purposes, you may wish to return the STS response
from your policy. In this case, deselect this setting, and the
current message after this filter completes should then be
the STS response. You may also wish to debug the RST
(the request to the STS), and return that from your policy.
In this case, disable this setting, click the Routing tab, and
select the No routing option.

Security Token Service Client

396

Security Token Service Client

397

WS-Security Username Authentication
Overview

A WS-Security Username Token enables an end-user identity to be passed over multiple hops before reaching the des-
tination Web Service. The user identity is inserted into the message and is available for processing at each hop on its
path.

The client user name and password are encapsulated in a WS-Security <wsse:UsernameToken>. When the API Gate-
way receives this token, it can perform one of the following tasks, depending on the requirements:

• Ensure that the timestamp on the token is still valid
• Authenticate the user name against a repository
• Authenticate the user name and password against a repository

The following sample SOAP message contains two <wsse:UsernameToken> blocks:

<?xml version="1.0" encoding="iso-8859-1"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext">
<wsse:UsernameToken wsu:Id="sample"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">
<wsse:Username>sample</wsse:Username>
<wsse:Password Type="wsse:PasswordText">oracle</wsse:Password>
<wsu:Created>2004-05-19T08:44:51Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<wsse:Security soap:actor="oracle"

xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext">
<wsse:UsernameToken wsu:Id="oracle"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">
<wsse:Username>oracle</wsse:Username>
<wsse:Password Type="wsse:PasswordText">oracle</wsse:Password>
<wsu:Created>2004-05-19T08:46:04Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>

</soap:Header>
<soap:Body>
<getHello xmlns="http://www.oracle.com"/>
</soap:Body>

</soap:Envelope>

This topic explains how to configure the API Gateway to authenticate users using a WS-Security
<wsse:UsernameToken>.

General Configuration

To configure general settings, complete the following fields:

Name:
Enter an appropriate name for this filter.

Actor:
The example SOAP message at the top of this page contains two <wsse:UsernameToken> blocks. You must specify
which block contains the <wsse:UsernameToken> used to authenticate the end-user. Specify the SOAP Actor/Role of

398

the WS-Security block that contains the token.

Credential Format:
The API Gateway can authenticate users against a user profile repository based on User Names, X.509 Distinguished
Names, or email addresses. Unfortunately, the WS-Security specification does not provide a means of specifying the
type of <wsse:UsernameToken>, and so it is necessary for the administrator to do so using the Credential Format
field. The type specified here is used internally by the API Gateway in subsequent authorization filters.

Token Validation

Each wsse:UsernameToken contains a timestamp inserted into the <wsu:Created> element. Using this timestamp
together with the details entered in this section, the API Gateway can determine whether the WS-Security UsernameT-
oken has expired. The <wsu:Created> element is as follows:

<wsse:UsernameToken wsu:Id="oracle"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">

<wsu:Created>2006.01.13T-10:42:43Z</wsu:Created>
...

</wsse:UsernameToken>

To configure token validation settings, complete the following fields:

Drift Time:
Specified in seconds to account for differences in the clock times between the machine on which the token was gener-
ated and the machine running the API Gateway. Using the start time, end time, and drift time, the token is considered
valid if the current time falls between the following times:

[start - drift] and [start + drift + end]

Validity Period:
Specifies the lifetime of the token, where the value of the <wsu:Created> element represents the start time of the as-
sertion, and the time period entered represents the end time.

Timestamp Required:
Select this option if you want to ensure that the Username Token contains a timestamp. If no timestamp is found in the
Username Token, a SOAP Fault is returned.

Nonce Required:
Select this option to ensure that the Username Token contains a <wsse:Nonce> element. This is a randomly generated
number that is added to the message. You can use the combination of a timestamp and a nonce to help prevent replay
attacks.

Select cache to store WSS username token nonces in:
Click the button on the right, and select the cache that stores the nonce value (for example, Kerberos Session
Keys). Defaults to the local WSS Username Token Nonce Cache.

To add a cache, right-click the Caches tree node, and select Add Local Cache or Add Distributed Cache. Alternat-
ively, you can configure caches under the Libraries node in the Policy Studio tree. For more details, see the topic on
Global Caches.

Token Verification via Repository

Having validated the timestamp on the token, the API Gateway can then optionally authenticate the user name and pass-
word contained in the token. The following options are available:

• No Verification
No verification of the user name and password is performed. Only the timestamp on the token is validated. This is

WS-Security Username Authentication

399

the default behavior.
• Verify Username Only

Only the user name is looked up in the selected repository. If the user name is found in this repository, the user is
authenticated. Select the No password allowed checkbox to block messages that contain a Username Token with
a <wsse:Password> element.

• Verify Username and Password
The user name is looked up in the selected repository and is only authenticated if the corresponding password
matches the one configured in the repository. If you select this option, you must select the type of the password.
Both cleartext and digest formats are supported. Select the appropriate option.

Repository Name:
The API Gateway attempts to authenticate users against the selected Authentication Repository. User profiles can be
stored in the local store, a database, or an LDAP directory. For details on adding a new repository, and editing or delet-
ing a repository, see the Authentication Repository tutorial.

Remove enclosing WS-Security element on successful validation:
Select this option if you wish to remove the WS-Security block that contains the Username Token after the token has
been successfully authenticated. For example, in the above sample SOAP message that contains two
<wsse:UsernameToken> elements in two different WS-Security blocks, you could configure the API Gateway to re-
move one of these on successful authentication.

WS-Security Username Authentication

400

Attributes
Overview

The purpose of the filters in the Attributes filter group is to extract user attributes from various sources. It is possible to
retrieve attributes from the message, an LDAP directory, a database, the User Store, HTTP headers, and finally, from a
SAML attribute assertion.

Having retrieved a set of user attributes, the API Gateway then stores them in the attribute.lookup.list message
attribute, which is essentially a map of name-value pairs. It is the role of the Attributes authorization filter to check the
value of these attributes to authorize the user.

Configuration

The following fields are available on the Attributes configuration screen:

Name:
Enter a suitable name for this filter.

Attributes:
The Attributes table lists the checks that the API Gateway performs on user attributes stored in the attrib-
ute.lookup.list message attribute. The API Gateway performs the following checks:

• The entries in the table are OR-ed together so that if any one of them succeeds, the filter returns a pass result.
• The attribute checks listed in the table are run in series until one of them passes.
• You can add a number of attribute-value pairs to a single attribute check by separating them with commas (for ex-

ample, company=oracle, department=engineering, role=engineer).
• If multiple attribute-value pairs are present in a given attribute check, these pairs are AND-ed together so that the

overall attribute check only passes if all the attribute-value pairs pass. For example, if the attribute check comprises,
department=engineering, role=engineer, this check only passes if both attributes are found with the cor-
rect values in the attribute.lookup.list message attribute.

To add an attribute check to the Attributes table, click Add, and enter attributes in the Add Attributes dialog.

For attribute checks involving attributes extracted from a SAML attribute assertion, it is necessary to specify the
namespace of the attribute as it was given in the assertion. For example, the API Gateway can extract the role attribute
from the following SAML <Attribute Statement>, and store it in the attribute.lookup.list map:

<saml:AttributeStatement>
<saml:Attribute Name="role" NameFormat="http://www.company.com">
<saml:AttributeValue>admin</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="email" NameFormat="http://www.company.com">
<saml:AttributeValue>joe@company.com</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="dept" NameFormat="">
<saml:AttributeValue>engineering</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

The NameFormat attribute of the <Attribute> gives the namespace of the attribute name. You must enter this
namespace (together with a corresponding prefix) in the Add Attributes dialog. For example, to extract the role attrib-
ute from the SAML attribute statement above, enter pre:role=admin in the Attribute Requirement field. Then you
must also map the pre prefix to the http://www.company.com namespace, as specified by the NameFormat attrib-
ute in the attribute statement.

401

Certificate Attributes
Overview

The API Gateway can authorize access to a Web Service based on the X.509 attributes of an authenticated client's certi-
ficate. For example, a simple Certificate Attributes filter might only authorize clients whose certificates have a Distin-
guished Name (DName) containing the following attribute: O=oracle. In other words, only oracle users are authorized
to access the Web Service.

An X.509 certificate consists of a number of fields. The Subject field is the one of most relevance to this topic. It gives
the DName of the client to which the certificate belongs. A DName is a unique name given to an X.500 directory object. It
consists of a number of attribute-value pairs called Relative Distinguished Names (RDNs). Some of the most common
RDNs and their explanations are as follows:

• CN: CommonName
• OU: OrganizationalUnit
• O: Organization
• L: Locality
• S: StateOrProvinceName
• C: CountryName

For example, the following is the DName of the sample.p12 client certificate supplied with the API Gateway:

CN=Sample Cert, OU=R&D, O=Company Ltd., L=Dublin 4, S=Dublin, C=IE

Using the Certificate Attributes filter, it is possible to authorize clients based on (for example, the CN, OU, or C in the
DName).

Configuration

The X.509 Attributes table lists a number of attribute checks to be run against the client certificate. Each entry tests a
number of certificate attributes in such a way that the check only passes if all of the configured attribute values match
those in the client certificate. In effect, the attributes listed in a single attribute check are AND-ed together.

For example, imagine the following is configured as an entry in the X.509 Attributes table:

OU=Eng, O=Company Ltd

If the API Gateway receives a certificate with the following DName, this attribute check passes because all the con-
figured attributes match those in the certificate DName:

CN=User1, OU=Eng, O=Company Ltd, L=D4, S=Dublin, C=IE
CN=User2, OU=Eng, O=Company Ltd, L=D2, S=Dublin, C=IE

However, if the API Gateway receives a certificate with the following DName, the attribute check fails because the attrib-
utes in the DName do not match all the configured attributes (the OU attribute has the wrong value):

CN=User1, OU=qa, O=Company Ltd, L=D4, S=Dublin, C=IE

The X.509 Attributes table can contain several attribute check entries. In such cases, the attribute checks (the entries in
the table) are OR-ed together, so that if any of the checks succeed, the overall Certificate Attributes filter succeeds.

402

So to summarize:

• Attribute values within an attribute check only succeed if all the configured attribute values match those in the
DName of the client certificate.

• The filter succeeds if any of the attribute checks listed in the X.509 Attributes table succeed.

To configure a Certificate Filter complete the following fields:

Name:
Enter a suitable name for the filter here.

X.509 Attributes:
To add a new X.509 attribute check, click the Add button button. In the Add X.509 Attributes dialog, enter a comma-
separated list of name-value pairs representing the X.509 attributes and their values (for example,
OU=dev,O=Company).

The new attribute check is displayed in the X.509 Attributes table. You can edit and delete existing entries by clicking
the Edit and Remove buttons.

Certificate Attributes

403

RSA Access Manager Authorization
Overview

RSA Access Manager (formerly known as RSA ClearTrust) provides Identity Management and access control services
for Web applications. It centrally manages access to Web applications, ensuring that only authorized users are allowed
access to resources.

The API Gateway's Access Manager filter enables integration with RSA Access Manager. This filter can query Access
Manager for authorization information for a particular user on a given resource. In other words, the API Gateway asks
Access Manager to make the authorization decision. If the user has been given authorization rights to the Web Service,
the request is allowed through to the service. Otherwise, the request is rejected.

Prerequisites

RSA Access Manager integration requires RSA ClearTrust SDK version 6.0.

API Gateway
When adding third-party binaries to the API Gateway, you must perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the InstallDir/ext/lib directory.
• Add .dll files to the InstallDir\Win32\lib directory.
• Add .so files to the InstallDir/platform/lib directory.

2. Restart the API Gateway.

Policy Studio
When adding third-party binaries to the Policy Studio, you must perform the following steps:

1. Add .jar files to the InstallDir/plugins/thirdparty.runtime.dependencies_6.0.3 directory.
2. Restart the Policy Studio.

General Details

Configure the following general setting:

Name:
Enter an appropriate name for the filter.

Connection Details

This section enables you to specify a group of Access Manager servers to connect to in order to authenticate clients. You
can select a group of Access Manager servers to provide failover in cases where one or more servers are not available.

Connection Group Type
The API Gateway can connect to a group of Access Manager Authorization Servers or Dispatcher Servers. When
multiple Access Manager Authorization Servers are deployed for load-balancing purposes, the API Gateway should first
connect to a Dispatcher Server, which returns a list of active Authorization Servers. An attempt is then made to connect
to one of these Authorization Servers using round-robin DNS. If the first Dispatcher Server in the Connection Group is
not available, the API Gateway attempts to connect to the Dispatcher Server with the next highest priority in the group,
and so on.

If a Dispatcher Server has not been deployed, the API Gateway can connect directly to an Authorization Server. If the

404

Authorization Server with the highest priority in the Connection Group is not available, the API Gateway attempts to con-
nect to the Authorization Server with the next highest priority, and so on.

Select the type of the Connection Group using the Authorization Server or Dispatcher Server radio button. All servers
in the group must be of the same type.

Connection Group:
Click the button on the right, and select the Connection Group to use for authenticating clients. To add a Connection
Group, right-click the RSA ClearTrust Connection Sets tree node, and select Add a Connection Set. Alternatively, you
can configure a Connection Set under the External Connections node in the Policy Studio tree. For more details, see
the topic on Configuring Connection Groups.

Authorization Details

This section describes the resource for which the user is requesting access.

• Server:
Enter the name of the server that is hosting the requested resource. The name entered must correspond to a pre-
configured Server Name in Access Manager.

• Resource:
Enter the name of the requested resource. This resource must also have been pre-configured in Access Manager.

Alternatively, you can enter a selector representing a message attribute in the Resource field. The API Gateway ex-
pands this selector at runtime to the value of the corresponding message attribute. API Gateway message attribute se-
lectors take the following format:

${message.attribute}

The following example of a typical SOAP message received by the API Gateway shows how this works:

POST /services/timeservice HTTP/1.0
Host: localhost:8095
Content-Length: 374
SOAPAction: TimeService
Accept-Language: en-US
Content-Type: text/XML; utf-8

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">

</ns1:getTime>
</soap:Body>

</soap:Envelope>

The following table shows an example of selector expansion:

Selector Expanded To

${http.request.uri} /services/timeservice

For more details on selectors, see Selecting Configuration Values at Runtime.

RSA Access Manager Authorization

405

Entrust GetAccess Authorization
Overview

Entrust GetAccess provides Identity Management and access control services for Web resources. It centrally manages
access to Web applications, enabling users to benefit from a single sign-on capability when accessing the applications
that they are authorized to use.

The API Gateway's GetAccess filter enables integration with Entrust GetAccess. This filter can query GetAccess for au-
thorization information for a particular user for a given resource. In other words, the API Gateway asks GetAccess to
make the authorization decision. If the user has been given authorization rights to the Web Service, the request is al-
lowed through to the Service. Otherwise, the request is rejected.

GetAccess WS-Trust STS

This section configures how the API Gateway authenticates to the GetAccess WS-Trust Security Token Service (STS).
You can configure the API Gateway to connect to a group of GetAccess STS servers in a round-robin fashion. This
provides the necessary failover capability when one or more STS servers are not available.

Configure the following fields:

• URL Group:
Click the button on the right, and select an STS URL group in the tree. This group consists of a number of GetAc-
cess STS Servers to which the API Gateway round-robins connection attempts. To add a URL group, right-click the
Entrust GetAccess URL Sets node, and select Add a URL Set. Alternatively, you can configure a URL Connection
Set under the External Connections node in the Policy Studio tree. For more details, see the topic on Configuring
URL Groups.

• Drift Time:
Having successfully authenticated to a GetAccess STS server, the STS server issues a SAML authentication asser-
tion and returns it to the API Gateway. When checking the validity period of the assertion, the specified Drift Time is
used to account for a possible difference between the time on the STS server and the time on the machine hosting
the API Gateway.

• WS-Trust STS Attribute Field Name:
Specify the field name for the Id field in the WS-Trust request. The default is Id.

GetAccess SAML PDP

When the API Gateway has successfully authenticated to a GetAccess STS server, it can then obtain authorization in-
formation about the end-user from the GetAccess SAML PDP. The authorization details are returned in a SAML authoriz-
ation assertion, which is then validated by the API Gateway to determine whether the request should be denied.

Configure the following fields:

• URL Group:
Click the button on the right, and select an SAML PDP URL group in the tree. This group consists of a number of
GetAccess SAML PDP Servers to which the API Gateway round-robins connection attempts. To add a URL group,
right-click the Entrust GetAccess URL Sets node, and select Add a URL Set. Alternatively, you can configure a
URL Connection Set under the External Connections node in the Policy Studio tree. For more details, see the topic
on Configuring URL Groups.

• Drift Time:
The specified Drift Time is used to account for the possible difference between the time on the GetAccess SAML
PDP and the time on the machine hosting the API Gateway. This comes into effect when validating the SAML au-
thorization assertion.

• Resource:

406

This is the resource for which the client is requesting access. You can enter a selector representing a message at-
tribute, which is looked up and expanded to a value at runtime. Message attribute selectors have the following
format:
${message.attribute}
For example, to specify the original path on which the request was received by the API Gateway as the resource,
enter the following selector:
${http.request.uri}

For more details on selectors, see Selecting Configuration Values at Runtime.
• Actor/Role:

To add the SAML authorization assertion to the downstream message, select a SOAP actor/role to indicate the WS-
Security block where the assertion is added. By leaving this field blank, the assertion is not added to the message.

Entrust GetAccess Authorization

407

Insert SAML Authorization Assertion
Overview

After successfully authorizing a client, the API Gateway can insert a Security Assertion Markup Language (SAML) au-
thorization assertion into the SOAP message. Assuming all other security filters in the policy are successful, the asser-
tion will eventually be consumed by a downstream Web Service.

It may be useful to refer to the following example of a signed SAML authorization assertion when configuring this filter.

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://.../soap/envelope/">
<soap:Header xmlns:wsse="http://.../secext">
<wsse:Security>
<saml:Assertion

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="oracle-1056130475340"
Id="oracle-1056130475340"
IssueInstant="2003-06-20T17:34:35Z"
Issuer="CN=Sample User,...........,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2003-06-20T16:20:10Z"
NotOnOrAfter="2003-06-20T18:20:10Z"/>

<saml:AuthorizationDecisionStatement
Decision="Permit"
Resource="http://www.oracle.com/service">

<saml:Subject>
<saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">
sample

</saml:NameIdentifier>
</saml:Subject>

</saml:AuthorizationDecisionStatement>
<dsig:Signature xmlns:dsig="http://.../xmldsig#" id="Sample User">

<!-- XML SIGNATURE INSIDE ASSERTION -->
</dsig:Signature>

</saml:Assertion>
</wsse:Security>

</soap:Header>
<soap:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</soap:Body>
</soap:Envelope>

General Configuration

Configure the following field:

Name:
Enter an appropriate name for the filter.

Assertion Details

Configure the following fields on the Assertion Details tab:

Issuer Name:

408

Select the certificate containing the Distinguished Name (DName) that you want to use as the Issuer of the SAML asser-
tion. This DName is included in the SAML assertion as the value of the Issuer attribute of the <saml:Assertion>
element. For an example, see the sample SAML assertion above.

Expire In:
Specify the lifetime of the assertion in this field. The lifetime of the assertion lasts from the time of insertion until the spe-
cified amount of time has elapsed.

Drift Time:
The Drift Time is used to account for differences in the clock times of the machine hosting the API Gateway (that gener-
ate the assertion) and the machines that consume the assertion. The specified time is subtracted from the time at which
the API Gateway generates the assertion.

SAML Version:
You can create SAML 1.0, 1.1, and 2.0 attribute assertions. Select the appropriate version from the drop-down list.

Important
SAML 1.0 recommends the use of the http://www.w3.org/TR/2001/REC-xml-c14n-20010315
XML Signature Canonicalization algorithm. When inserting signed SAML 1.0 assertions into XML docu-
ments, it is quite likely that subsequent signature verification of these assertions will fail. This is due to the
side effect of the algorithm including inherited namespaces into canonical XML calculations of the inserted
SAML assertion that were not present when the assertion was generated.

For this reason, Oracle recommend that SAML 1.1 or 2.0 is used when signing assertions as they both uses the exclus-
ive canonical algorithm http://www.w3.org/2001/10/xml-exc-c14n#, which safeguards inserted assertions from
such changes of context in the XML document. Please see section 5.4.2 of the oasis-sstc-saml-core-1.0.pdf
and section 5.4.2 of sstc-saml-core-1.1.pdf documents, both of which are available at ht-
tp://www.oasis-open.org.

Resource:
Enter the resource for which you want to obtain the authorization assertion. You should specify the resource as a URI
(for example, http://www.oracle.com/TestService). The name of the resource is then included in the assertion.

Action:
You can specify the operations that the user can perform on the resource using the Action field. This entry is a comma-
separated list of permissions. For example, the following is a valid entry: read, write, execute.

Assertion Location

The options on the Assertion Location tab specify where the SAML assertion is inserted in the message. By default, the
SAML assertion is added to the WS-Security block with the current SOAP actor/role. The following options are available:

Append to Root or SOAP Header:
Appends the SAML assertion to the message root for a non-SOAP XML message, or to the SOAP Header for a SOAP
message. For example, this option may be suitable for cases where this filter may process SOAP XML messages or non-
SOAP XML messages.

Add to WS-Security Block with SOAP Actor/Role:
Adds the SAML assertion to the WS-Security block with the specified SOAP actor (SOAP 1.0) or role (SOAP 1.1). By de-
fault, the assertion is added with the current SOAP actor/role only, which means the WS-Security block with no actor.
You can select a specific SOAP actor/role when available from the drop-down list.

XPath Location:
If you wish to insert the SAML assertion at an arbitrary location in the message, you can use an XPath expression to
specify the exact location in the message. You can select XPath expressions from the drop-down list. The default is the
First WSSE Security Element, which has an XPath expression of //wsse:Security. You can add, edit, or re-

Insert SAML Authorization Assertion

409

move expressions by clicking the relevant button. For more details, see the Configuring XPath Expressions topic.

You can also specify how exactly the SAML assertion is inserted using the following options:

• Append to node returned by XPath expression (the default)
• Insert before node returned by XPath expression
• Replace node returned by XPath expression

Insert into Message Attribute:
Specify a message attribute to store the SAML assertion from the drop-down list (for example, saml.assertion). Al-
ternatively, you can also enter a custom message attribute in this field (for example, my.test.assertion). The SAML
assertion can then be accessed downstream in the policy.

Subject Confirmation Method

The settings on the Subject Confirmation Method tab determines how the <SubjectConfirmation> block of the
SAML assertion is generated. When the assertion is consumed by a downstream Web Service, the information contained
in the <SubjectConfirmation> block can be used to authenticate either the end-user that authenticated to the API
Gateway, or the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

The following configuration fields are available on the Subject Confirmation Method tab:

Method:
The selected value determines the value of the <ConfirmationMethod> element. The following table shows the avail-
able methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key The API Gateway includes the key
used to prove that the API Gateway is
the holder of the key, or it includes a
reference to the key.

urn:oasis:names:tc:SAML:1.0:c
m:holder-of-key

Bearer The subject of the assertion is the
bearer of the assertion.

urn:oasis:names:tc:SAML:1.0:c
m:bearer

SAML Artifact The subject of the assertion is the user
that presented a SAML Artifact to the
API Gateway.

urn:oasis:names:tc:SAML:1.0:c
m:artifact

Sender Vouches Use this confirmation method to assert
that the API Gateway is acting on be-
half of the authenticated end-user. No

urn:oasis:names:tc:SAML:1.0:c
m:bearer

Insert SAML Authorization Assertion

410

Method Meaning Value

other information relating to the context
of the assertion is sent. It is recom-
mended that both the assertion and
the SOAP Body must be signed if this
option is selected. These message
parts can be signed by using the XML
Signature Generation filter.

Note
You can also leave the Method field blank, in which case no <ConfirmationMethod> block is inserted
into the assertion.

Holder-of-Key Configuration:
When you select Holder-of-Key as the SAML subject confirmation in the Method field, you must configure how in-
formation about the key is included in the message. There are a number of configuration options available depending on
whether the key is a symmetric or asymmetric key.

Asymmetric Key:
If you want to use an asymmetric key as proof that the API Gateway is the holder-of-key entity, you must select the
Asymmetric Key radio button, and then configure the following fields on the Asymmetric tab:

• Certificate from Store:
If you want to select a key that is stored in the Certificate Store, select this option and click the Signing Key button.
On the Select Certificate screen, select the box next to the certificate that is associated with the key that you want
to use.

• Certificate from Message Attribute:
Alternatively, the key may have already been used by a previous filter in the policy (for example, to sign a part of the
message). In this case, the key is stored in a message attribute. You can specify this message attribute in this field.

Symmetric Key:
If you want to use a symmetric key as proof that the API Gateway is the holder of key, select the Symmetric Key radio
button, and then configure the fields on the Symmetric tab:

• Generate Symmetric Key, and Save in Message Attribute:
If you select this option, the API Gateway generates a symmetric key, which is included in the message before it is
sent to the client. By default, the key is saved in the symmetric.key message attribute.

• Symmetric Key in Message Attribute:
If a previous filter (for example, a Sign Message filter) has already used a symmetric key, you can to reuse this key
as proof that the API Gateway is the holder-of-key entity. You must enter the name of the message attribute in the
field provided, which defaults to symmetric.key.

• Encrypt using Certificate from Certificate Store:
When a symmetric key is used, you must assume that the recipient has no prior knowledge of this key. It must,
therefore, be included in the message so that the recipient can validate the key. To avoid meet-in-the-middle style
attacks, where a hacker could eavesdrop on the communication channel between the API Gateway and the recipient
and gain access to the symmetric key, the key must be encrypted so that only the recipient can decrypt the key. One
way of doing this is to select the recipient's certificate from the Certificate Store. By encrypting the symmetric key
with the public in the recipient's certificate, the key can only be decrypted by the recipient's private key, to which only
the recipient has access. Select the Signing Key button and then select the recipient's certificate on the Select Cer-
tificate dialog.

Insert SAML Authorization Assertion

411

• Encrypt using Certificate from Message Attribute:
Alternatively, if the recipient's certificate has already been used (perhaps to encrypt part of the message) this certific-
ate is stored in a message attribute. You can enter the message attribute in this field.

• Symmetric Key Length:
Enter the length (in bits) of the symmetric key to use.

• Key Wrap Algorithm:
Select the algorithm to use to encrypt (wrap) the symmetric key.

Key Info:
The Key Info tab must be configured regardless of whether you have elected to use symmetric or asymmetric keys. It
determines how the key is included in the message. The following options are available:

• Do Not Include Key Info:
Select this option if you do not wish to include a <KeyInfo> section in the SAML assertion.

• Embed Public Key Information:
If this option is selected, details about the key are included in a <KeyInfo> block in the message. You can include
the full certificate, expand the public key, include the distinguished name, and include a key name in the <KeyInfo>
block by selecting the appropriate boxes. When selecting the Include Key Name field, you must enter a name in the
Value field, and then select the Text Value or Distinguished Name Attribute radio button, depending on the
source of the key name.

• Put Certificate in Attachment:
Select this option to add the certificate as an attachment to the message. The certificate is then referenced from the
<KeyInfo> block.

• Security Token Reference:
The Security Token Reference (STR) provides a way to refer to a key contained in a SOAP message from another
part of the message. It is often used in cases where different security blocks n a message use the same key material
and it is considered an overhead to include the key more than once in the message.
When this option is selected, a <wsse:SecurityTokenReference> element is inserted into the <KeyInfo>
block. It references the key material using a URI to point to the key material and a ValueType attribute to indicate
the type of reference used. For example, if the STR refers to an encrypted key, you should select EncryptedKey
from the dropdown, whereas if it refers to a BinarySecurityToken, you should select X509v3 from the drop-
down. Other options are available to enable more specific security requirements.

Advanced

Configure the following fields on the Advanced tab:

Select Required Layout Type:
WS-Policy and SOAP Message Security define a set of rules that determine the layout of security elements that appear
in the WS-Security header within a SOAP message. The SAML assertion is inserted into the WS-Security header ac-
cording to the layout option selected here. The available options correspond to the WS-Policy Layout assertions of
Strict, Lax, LaxTimestampFirst, and LaxTimestampLast.

Insert SAML Attribute Statement:
You can specify to insert a SAML attribute statement into the generated SAML authorization assertion. If this option is
selected, a SAML attribute assertion is generated using attributes stored in the attribute.lookup.list message at-
tribute and subsequently inserted into the assertion. The attribute.lookup.list attribute must have been popu-
lated previously by an attribute lookup filter for the attribute statement to be generated successfully.

Indent:
Select this method to ensure that the generated signature is properly indented.

Security Token Reference:
The generated SAML authorization assertion can be encapsulated within a <SecurityTokenReference> block. The
following example demonstrates this:

Insert SAML Authorization Assertion

412

<soap:Header>
<wsse:Security

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
soap:actor="oracle">

<wsse:SecurityTokenReference>
<wsse:Embedded>
<saml:Assertion

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="oracle-1056130475340"
Id="oracle-1056130475340"
IssueInstant="2003-06-20T17:34:35Z"
Issuer="CN=Sample User,...........,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2003-06-20T16:20:10Z"
NotOnOrAfter="2003-06-20T18:20:10Z"/>

<saml:AuthorizationDecisionStatement
Decision="Permit"
Resource="http://www.oracle.com/service">

<saml:Subject>
<saml:NameIdentifier

Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">
sample

</saml:NameIdentifier>
</saml:Subject>

</saml:AuthorizationDecisionStatement>
<dsig:Signature xmlns:dsig="http://.../xmldsig#" id="Sample User">

<!-- XML SIGNATURE INSIDE ASSERTION -->
</dsig:Signature>

</saml:Assertion>
</wsse:Embedded>
</wsse:SecurityTokenReference>

</wsse:Security>
</soap:Header>

To add the SAML assertion to a <SecurityTokenReference> block as in the example above, select the Embed
SAML assertion within Security Token Reference option. Otherwise, select No Security Token Reference.

Insert SAML Authorization Assertion

413

RBAC Filter
Overview

Role-Based Access Control (RBAC) is used to protect access to the API Gateway management services. For example,
management services are invoked when a user accesses the server using the Policy Studio or the API Gateway Man-
ager tools (https://localhost:8090/). For more information, see Configuring Role-Based Access Control (RBAC).

The RBAC filter is used in the Protect Management and Policy Director Interfaces policy to perform the following
tasks:

• Read the user roles from the configured message attribute (for example, authentication.subject.role).
• Determine which management service URI is currently being invoked.
• Return true if one of the roles has access to the management service currently being invoked, as defined in the

acl.json file.
• Otherwise, return false, and the Return HTTP Error 403: Access Denied (Forbidden) policy is called. The mes-

sage content of this filter is shown when a valid user has logged into the browser, but their roles do not give them
access to the URI they have invoked. For example, this occurs if a new user is created and they have not yet been
assigned any roles.

Configuration

Name:
Enter an appropriate name for this filter.

Role Attribute:
Select or enter the message attribute that contains the user roles. Defaults to authentication.subject.role.

414

SAML Authorization Assertion
Overview

A Security Assertion Markup Language (SAML) authorization assertion contains proof that a certain user has been au-
thorized to access a specified resource. Typically, such assertions are issued by a SAML Policy Decision Point (PDP)
when a client requests access to a specified resource. The client must present identity information to the PDP, which en-
sures that the client does have permission to access the resource. The PDP then issues a SAML authorization assertion
stating whether the client is allowed access the resource.

When the API Gateway receives a request containing such an assertion, it performs the following validation on the asser-
tion details:

• Ensures the resource in the assertion matches that configured in the filter
• Checks the client's access permissions for the resource
• Ensures the assertion has not expired

If the information validates, the API Gateway authorizes the message for the resource specified in the assertion.

When configuring this filter, it may be useful to refer to the following SAML authorization assertion as an example:

<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
MajorVersion="1" MinorVersion="0"
AssertionID="192.168.0.131.1010924615489"
Issuer="AA" IssueInstant="2002-03-26 16:23:35">

<saml:Conditions NotBefore="2002-04-18T09:19:00Z"
NotOnOrAfter="2003-06-28T09:21:00Z"/>

<saml:AuthorizationDecisionStatement
Resource="http://www.abc.org/services/getPrice"
Decision="Permit">
<saml:Action>Read</saml:Action>

</saml:AuthorizationDecisionStatement>
</saml:Assertion>

General Settings

Configure the following field on the SAML Authorization screen:

Name:
Enter an appropriate name for the filter.

Details

The following fields are available on the Details tab:

SOAP Actor/Role:
There may be several authorization assertions contained in a message. You can identify the assertion to validate by en-
tering the name of the SOAP actor/role of the WS-Security header that contains the assertion.

XPath Expression:
Alternatively, you can enter an XPath expression to locate the authorization assertion. You can configure XPath expres-
sions using the Add, Edit and Delete buttons.

SAML Namespace:
Select the SAML namespace that must be used on the SAML assertion for this filter to succeed. If you do not wish to

415

check the namespace, select the Do not check version option from the drop-down list.

SAML Version:
Enter the SAML Version that the assertion must adhere to by entering the major version in the first field, followed by the
minor version in the second field. For example, for SAML version 2.0, enter 2 in the first field and 0 in the second field.

Drift Time:
The drift time, specified in seconds, is used when checking the validity dates on the authorization assertion. The drift time
allows for differences between the clock times of the machine on which the assertion was generated and the machine
hosting the API Gateway.

Remove Enclosing WS-Security Element on Successful Validation:
Select this checkbox if you wish to remove the WS-Security block that contains the SAML assertion after the assertion
has been successfully validated.

Trusted Issuers

You can use the table on this tab to select the issuers that you consider trusted. In other words, this filter only accepts
assertions that have been issued by the selected SAML Authorities.

Click the Add button to display the Trusted Issuers screen. Select the Distinguished Name of a SAML Authority whose
certificate has been added to the Certificate Store, and click OK. Repeat this step to add more SAML Authorities to the
list of trusted issuers.

Optional Settings

The optional settings enable further examination of the contents of the authorization assertion. The assertion can be
checked to ensure that the authorized subject matches a specified value, and that the resource specified in the assertion
matches the one entered here.

The API Gateway can verify that the subject in the SAML assertion (the <NameIdentifier>) matches one of the fol-
lowing options:

• The subject of the authentication filter
• The following value: (for example, user@oracle.com)
• Neither of the above

The API Gateway examines the <Resource> tag inside the SAML authorization assertion. By default, it compares the
<Resource> to the destination.uri attribute that is set in the policy. If they are identical, this filter passes. Other-
wise, it fails.

You can enter a value for the resource in the Resource field. The API Gateway then compares the <Resource> in the
assertion to this value instead of the destination.uri attribute. The filter passes if the <Resource> value matches
the value entered in the Resource field.

SAML Authorization Assertion

416

SAML PDP Authorization
Overview

The API Gateway can request an authorization decision from a Security Assertion Markup Language(SAML) Policy De-
cision Point (PDP) for an authenticated client using the SAML Protocol (SAMLP). In such cases, the API Gateway
presents evidence to the PDP in the form of some user credentials, such as the Distinguished Name of a client's X.509
certificate.

The PDP decides whether the user is authorized to access the requested resource. It then creates an authorization as-
sertion, signs it, and returns it to the API Gateway in a SAML Protocol response. The API Gateway can then perform a
number of checks on the response, such as validating the PDP signature and certificate, and examining the assertion. It
can also insert the SAML authorization assertion into the message for consumption by a downstream Web Service.

Request Configuration

This section describes how the API Gateway should package the SAMLP request before sending it to the SAML PDP.

SAML PDP URL Sets
You can configure a group of SAML PDPs to which the API Gateway connects in a round-robin fashion if one or more of
the PDPs are unavailable. This is known as a SAML PDP URL Set. You can configure a SAML PDP URL Set using this
screen or under the External Connections node in the Policy Studio tree. For more details, see the topic on Configuring
URL Groups.

You can configure the following general fields:

• SAML PDP URL Set:
Click the button on the right, and select a previously configured SAML PDP URL Set in the tree. To add a URL Set,
right-click the SAML PDP URL Sets tree node, and select Add a URL Set. Alternatively, you can configure a SAML
PDP URL Set under the External Connections node in the Policy Studio tree.

• SAML Version:
Select the SAML version to use in the SAMLP request.

• Signing Key:
If the SAMLP request is to be signed, click the Signing Key button, and select the appropriate signing key from the
Certificate Store.

SAML Subject tab
The details specified on the SAML Subject tab describe the subject of the SAML assertion. Complete the following
fields:

• Subject Attribute:
Select the message attribute that contains the name of an authenticated username. By default, the authentica-
tion.subject.id message attribute is selected, which contains the username of the authenticated user.

• Subject Format:
Select the format of the message attribute selected in the Subject Attribute field above. You do not need to select a
format if the Subject Attribute field is set to authentication.subject.id.

Subject Confirmation tab
The settings on the Subject Confirmation tab determine how the <SubjectConfirmation> block of the SAML asser-
tion is generated. When the assertion is consumed by a downstream Web Service, the information contained in the
<SubjectConfirmation> block can be used to authenticate the end-user that authenticated to the API Gateway, or
the issuer of the assertion, depending on what is configured.

The following is a typical <SubjectConfirmation> block:

417

<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</saml:ConfirmationMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<dsig:X509Data>
<dsig:X509SubjectName>CN=oracle</dsig:X509SubjectName>
<dsig:X509Certificate>

MIICmzCCAY mB9CJEw4Q=
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</saml:SubjectConfirmation>
</saml:SubjectConfirmation>

You must configure the following fields on the Subject Confirmation tab:

Method:
The selected value determines the value of the <ConfirmationMethod> element. The following table shows the avail-
able methods, their meanings, and their respective values in the <ConfirmationMethod> element:

Method Meaning Value

Holder Of Key Inserts a <SubjectConfirmation>
into the SAMLP request. The
<SubjectConfirmation> contains
a <dsig:KeyInfo> section with the
certificate of the user selected to sign
the SAMLP request. The user selected
to sign the SAMLP request must be
the authenticated subject (authen-
tication.subject.id).
Select the Include Certificate option if
the signer's certificate is to be included
in the SubjectConfimration block.
Alternatively, select the Include Key
Name option if only the key name is to
be included.

urn:oasis:names:tc:SAML:1.0:c
m:holder-of-key

Bearer Inserts a <SubjectConfirmation>
into the SAMLP request.

urn:oasis:names:tc:SAML:1.0:c
m:bearer

SAML Artifact Inserts a <SubjectConfirmation>
into the SAMLP request.

urn:oasis:names:tc:SAML:1.0:c
m:artifact

Sender Vouches Inserts a <SubjectConfirmation>
into the SAMLP request. The SAMLP
request must be signed by a user.

urn:oasis:names:tc:SAML:1.0:c
m:bearer

If the Method field is left blank, no <ConfirmationMethod> block is inserted into the assertion.

Include Certificate:
Select this option if you wish to include the SAML subject's certificate in the <KeyInfo> section of the
<SubjectConfirmation> block.

Include Key Name:
Alternatively, if you do not want to include the certificate, you can select this option to only include the key name in the

SAML PDP Authorization

418

<KeyInfo> section.

Resource:
Enter the resource for which you want to obtain the authorization assertion. You should specify the resource as a URI
(for example, http://www.oracle.com/TestService). The name of the resource is then included in the assertion.

Evidence:
The SAML Protocol stipulates that proof of identity in the form of a SAML authentication assertion must be presented to
the SAML PDP as part of the SAMLP request. The API Gateway can either use an existing SAML authentication asser-
tion that is already present in the message, or it can generated one based on the user that authenticated to it.

Select the Use SAML Assertion in message option to include an existing assertion in the SAMLP request. Specify the
actor/role of the WS-Security block where the assertion can be found in the SOAP Actor/Role field.

Alternatively, select the Create SAML Assertion from authenticated client radio button to generate a new authentica-
tion assertion for inclusion in the SAMLP request. You can sign the newly generated assertion by selecting a key from
the drop-down list, which shows all the keys from the Certificate Store.

The specified Drift Time is subtracted from the time at which the API Gateway generates the authentication assertion.
This is to account for any possible difference in the times of the machines hosting the SAML PDP and the API Gateway.

Response

You can configure the API Gateway to perform a number of checks on the SAML Protocol response from the PDP by ex-
amining the contents of various key elements in the authorization assertion.

SOAP Actor/Role:
If the SAMLP response from the PDP contains a SAML authentication assertion, the API Gateway can extract it from the
response and insert it into the downstream message. The SAML assertion is inserted into the WS-Security block identi-
fied by the specified SOAP actor/role.

Drift Time:
The SAMLP request to the PDP is timestamped by the API Gateway. To account for differences in the times on the ma-
chines running the API Gateway and the SAML PDP the specified time is subtracted from the time at which the API
Gateway generates the SAMLP request.

Subject in the Assertion Must Match:
The authorization assertion can be checked to ensure that the authorized subject matches a specified value, and that the
resource specified in the assertion matches the one entered here.

The API Gateway can verify that the subject in the SAML assertion (the <NameIdentifier>) matches one of the fol-
lowing options:

• The subject of the authentication filter
• The following value (for example, CN=sample, O=Company, C=ie)
• Neither of the above

SAML PDP Authorization

419

Tivoli Integration
Overview

Oracle API Gateway is a dedicated network device for offloading processor-intensive tasks from applications running in
general purpose application servers. The API Gateway performs application networking by routing traffic based on both
content and sender. Its patented high performance XML acceleration engine, coupled with acceleration hardware en-
sures wirespeed network performance.

Tivoli Access Manager is a commonly used product for securing web resources. The Tivoli message filter allows the API
Gateway to leverage existing Access Manager policies, thus avoiding the need to maintain duplicate policies in both
products. At runtime, the Tivoli filters can delegate authentication and authorization decision to Access Manager, and can
also retrieve user attributes. Therefore, the API Gateway integrates with Tivoli Access Manager by providing the follow-
ing functionality:

• Connects to Tivoli Access Manager
• Authenticates a user against Access Manager
• Authorizes a user against Access Manager
• Retrieves user attributes from Access Manager

The API Gateway has been built to integrate with Tivoli Access Manager 6.0.

Integration Architecture

The Oracle API Gateway contains a set of message filters that directly or indirectly restrict access to Web Services. For
example, filters that directly control access include XML-signature verification, CA certificate chain verification, and SAML
assertion verification. With this class of filters, policy decisions are made and enforced within the API Gateway's core en-
gine itself.

On the other hand, filters that indirectly control access offload the policy decision to an external system, such as Tivoli
Access Manager. With indirect filters, the policy decision is made by the external system but then enforced by the API
Gateway.

The objective of this integration solution is to implement a message filter that forwards policy decisions to IBM's Tivoli
Policy Director/Access Manager. The architecture can be seen in the following diagram.

420

The following processing stages are executed:

1. The client sends a message to the API Gateway (for example, using SOAP over HTTPS).
2. The API Gateway dispatches the message to the appropriate policy. The filters configured for that policy are then

executed.
3. Assuming that the Tivoli filter is one of the filters that is configured for this policy, the API Gateway asks Tivoli Ac-

cess Manager to authenticate, authorize, or retrieve attributes for a given user. Tivoli Access Manager makes its se-
curity decision and returns it to the API Gateway, where the decision is enforced.

4. If Tivoli Access Manager successfully authenticates or authorizes the user, or can retrieve attributes about that user,
the message is routed on to the configured target system. Otherwise, the message is blocked and a fault is returned
to the client.

Prerequisites

IBM Tivoli integration requires the following:

Tivoli API:
IBM Tivoli Access Manager requires the IBM Tivoli Access Manager for e-business Authorization C API.

API Gateway
When adding third-party binaries to the API Gateway, you must perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the InstallDir/ext/lib directory.
• Add .dll files to the InstallDir\Win32\lib directory.
• Add .so files to the InstallDir/platform/lib directory.

2. Restart the API Gateway.

Tivoli Integration

421

Policy Studio
When adding third-party binaries to the Policy Studio, you must perform the following steps:

1. Add .jar files to the InstallDir/plugins/thirdparty.runtime.dependencies_6.0.3 directory.
2. Restart the Policy Studio.

Tivoli Runtime:
The Tivoli Access Manager Runtime must be installed on the machine running the API Gateway.

Note
The Tivoli Access Manager Runtime for Java is not required. The Tivoli runtime is not packaged with the
API Gateway product, so the IBM installers need to run to install the runtime.

The Tivoli Access Manager Runtime may be installed using the native utilities instead of the Installation Wizard. This is
advised so that the IBM Java Runtime 1.4.2 does not get installed. The Java Runtime 1.4.2 is required by the Installation
Wizard, but not by any of the runtime software.

Tivoli Configuration Files:
The API Gateway uses information stored in the Tivoli configuration files in order to connect to a Tivoli server. These
configuration files can be generated using the svrsslcfg command line utility, which is shipped with the Tivoli Access
Manager Runtime discussed in the previous section. The generated configuration files are then either uploaded to the
API Gateway using Oracle Policy Studio or manually copied into a location on the API Gateway's file system.

The following example shows how to run the svrsslcfg utility (using Windows file paths):

svrsslcfg -config -f "C:\conf\config.conf" -d "C:\conf" -n API Gateway
-s remote -P passw0rd -S passw0rd -r 7777 -h test.vordel.com

The following list describes the available arguments:

• -config
Create the configuration files required for the API Gateway to communicate with Tivoli.

• -f
The name of the main Tivoli configuration file. This file is generated by the command.

• -d
The name of the directory that is to contain the SSL key file (.kdb) for the server. This command generates the key
file.

• -n
The name of the application that is connecting to Tivoli (the API Gateway).

• -s
The mode in which the application (the API Gateway) runs. The most likely scenario is that the API Gateway runs re-
motely.

• -P
The administrator's password.

• -S
The password for the API Gateway.

• -r
The listening port for the API Gateway.

• -h
The name of the host on which the API Gateway is running.

Tivoli Integration

422

After the svrsslcfg utility has been run with the -config option, the following command must be run:

svrsslcfg -add_replica -f "c:\conf\config.conf" -h tivoli.qa.vordel.com

The following list describes the available arguments:

• -add_replica
Add a Tivoli authorization server replica. The API Gateway contacts this server to make authorization decisions.

• -f
The name of the main Tivoli configuration file. This command adds settings to this file.

• -h
The name of the Tivoli authorization server.

Generated Files
The following files are generated after running these commands:

• c:\conf\config.conf - The main Tivoli configuration file.
• c:\conf\API Gateway.kdb - The SSL key file.
• c:\conf\API Gateway.sth - The stash file for the SSL key file.
• c:\conf\API Gateway.conf.obf - The database configuration file.

Note
Depending on the version of the API Gateway you are running, the above file names may or may not have
spaces in them.

Please refer to the Tivoli documentation for more information on running these command line utilities.

Creating a Tivoli Object Space:
An object space, user, and ACL (Access Control List) may be created within Tivoli using the pdadmin command as fol-
lows:

> login -a sec_master passw0rd
> objectspace create /vordel/test "For testing purposes" 9
> user create -gsouser jsmith "cn=John Smith, o=Vordel" "John Smith" Smith passw0rd
> user modify jsmith account-valid yes
> acl create VordelACL
> acl modify VordelACL set user jsmith brT
> acl attach /vordel/test VordelACL

The following commands allow you to view the details of the newly added user:

> user show jsmith
> objectspace list
> acl show VordelACL

Please refer to the Tivoli documentation for more information on running the pdadmin utility.

Global Tivoli Configuration

Policy Studio is used to configure all Tivoli connections and settings within the API Gateway. It can be run from the /bin
directory of your product installation.

Tivoli Integration

423

There are two global Tivoli-specific settings that can be configured:

• Tivoli Connections
• Tivoli Repositories

Tivoli Connections:
Tivoli Connections determine how a particular API Gateway instance connects to an instance of a Tivoli server. Each API
Gateway instance can connect to a single Tivoli server. This connection can be configured by right-clicking the API Gate-
way instance under the Listeners node in the tree on the left of the Policy Studio, and clicking the Tivoli menu option.

Alternatively, you can add a global Tivoli Connection by right-clicking the External Connections -> Tivoli Connection
node in the tree, and selecting the Add a Tivoli Connection option. The newly added connection can then be assigned
to a particular API Gateway instance.

In both cases, the Tivoli Configuration dialog is used to add the connection details required for the API Gateway to con-
nect to the Tivoli server. As stated in the Prerequisites section above, the connection details are stored in the Tivoli con-
figuration files that are generated by the svrsslcfg utility. This dialog allows you to upload these files to the API Gateway.

The Policy Studio can be used to upload the Tivoli configuration files to the machine on which the API Gateway is run-
ning or, alternatively, the configuration files may be copied manually using the tool of your choice onto the API Gateway's
file system. This section now describes how to perform each of these methods in turn.

Complete the following steps to upload a configuration file to the API Gateway:

1. Enter a name on the Tivoli Configuration dialog. A previously configured Tivoli Connection can be selected to base
the new configuration on.

2. Select the Upload Tivoli configuration files option.
3. Select the version of the Tivoli server that this connection connects to. Both Tivoli 5.1 and 6.0 are supported.
4. Check the Connection enabled checkbox if you want to immediately enable the connection. It can be disabled at a

later stage by toggling this checkbox. Click the Next button.
5. On the Upload Tivoli configuration files screen, click the Load File button and browse to the location of the main

Tivoli configuration file. The contents of this file are then displayed in the text area. Any of the details can be edited
in the text area at this stage if required.
For example, it may be necessary to change the file locations of the configuration files. This is because when you
use the Upload ... option, the API Gateway writes out the files on startup and on server update to the following dir-
ectory, where PROCESS_NAME is API Gateway instance and INSTALL_DIR refers to the root of your product install-
ation:
[INSTALL_DIR]\conf\plugin\tivoli\[PROCESS_NAME]

Note
Spaces are substituted with - in the API Gateway instance name.In addition, the API Gateway names
each file as config.[EXTENSION]. For example, the directory,
[INSTALL_DIR]\conf\plugin\tivoli\API Gateway contains config.conf, config.kdb,
config.sth, and config.conf.obf. The API Gateway overwrites these files each time at startup
or refresh (for example, when configuration updates are deployed). This means that any changes to
the main configuration file must be made using the Policy Studio and not directly to the file on disk.

6. Click the Next button.
7. Click the Load File button and browse to the location of the Tivoli SSL key file. Once again, the contents of this file

are displayed in the text area.

Note
In this case, the (base-64 encoded) SSL keys can not be edited in the text area. Click the Next button.

Tivoli Integration

424

8. Click the Load File button and browse to the location of the Tivoli SSL stash file. Click the Next button.
9. Click the Load File button and browse to the location of the Tivoli Configuration database configuration file. Click the

Finish button to upload all the selected files.

Alternatively, the configuration files may be copied manually onto the API Gateway's file system. Having done this using
some out-of-bounds method, complete the following steps to configure the API Gateway to pick up the uploaded files:

1. Enter a name on the Tivoli Configuration dialog.
2. Select the Set file location for main Tivoli Configuration file option and click the Next button. Click the Next but-

ton.
3. Enter the full path to the main Tivoli configuration file on the server's file system in the Server-side Tivoli configura-

tion field. Click the Finish button.
4. If you have not already manually copied the configuration files on to the API Gateway's file system you should do so

now. Please ensure that the settings contained in the main configuration file that point to other configuration file-
names are set correctly.

Note
When the Set file location option is selected, the API Gateway does not overwrite the files at startup
or refresh time. You may edit the main configuration file directly using an editor of your choice.

Tivoli Repositories:
A Tivoli Repository is used to authenticate clients against a running instance of a Tivoli server. All authentication filters
can pass identity credentials to the Tivoli Repository in order to authenticate clients. The Tivoli server decides whether or
not to authenticate the client and the API Gateway subsequently enforces the decision.

Tivoli Repositories can be configured globally by right clicking on the Tivoli Repositories node in the tree on the Policy
Studio and selecting the Add option.

Enter a name for the Repository in the Repository Name field on the Authentication Repository dialog. Select the Fin-
ish button to complete the configuration. You may specify Tivoli Connection details from the Repository Configuration
screen or via the Settings button. On the Tivoli Configuration dialog, select the API Gateway instance whose connec-
tion details you want to configure, then follow the steps outlined above in the Tivoli Connections section.

When configuring an authentication filter, you can select this globally configured Tivoli Repository to authenticate clients
against. The authentication filter uses the connection details of whatever API Gateway instance was selected.

Tivoli Authorization

The Tivoli Authorization filter can be found in the Authorization category of filters. To configure this filter, drag and
drop it on to the policyt editor and configure the following fields:

Name:
Enter a name for the Tivoli filter here.

Object Space:
The object space represents the resource for which the client must be authorized. Enter the name of the resource in the
Object Space field.

You can also enter a selector that represents the value of a message attribute. At runtime, the API Gateway expands the
selector to current value of the corresponding message attribute.

Message attribute selectors have the following format:
${message.attribute}
For example, to specify the original path on which the request was received as the resource, enter the following selector:

Tivoli Integration

425

${http.request.uri}

For more details on selectors, see Selecting Configuration Values at Runtime.

Permissions:
Clients can access a resource with a number of permissions such as read, write, execute, and so on. A client is only au-
thorized to access the requested resource if it has the relevant permissions checked in the Action Bit table. You can edit
existing permissions by clicking the Edit button.

Attributes:
You can specify a list of user attributes to retrieve from the Tivoli server. You can add attributes to be retrieved can be
added by clicking the Add button and entering the attribute name in the dialog. If you want all attributes to be retrieved,
leave the table blank, and select the Set attributes for SAML Attribute token option. These attributes can then be
made available to the Insert SAML Attribute Assertion filter at a later stage. If you do not require any attribute retrieval,
do not select the Set attributes for SAML Attribute token option.

Note
The permissions for the primary action group are available by default. You can also configure custom ac-
tion groups and make them available for selection in the filter. The groups created here reflect custom
groups created on the Tivoli server. To create a new group with custom action bits, click the Edit button to
display the Tivoli Action Group dialog.

Enter a name for the group in the Name field. Click the Add button to add a new action bit to the group. The Tivoli Ac-
tion dialog is displayed. You must enter an Action Bit (for example, r) and a Description (for example, Read permis-
sion) for the new action bit. Click the OK button on the Tivoli Action dialog to return to the Tivoli Action Group dialog.

Add as many action bits as required to your new group before clicking OK on the Tivoli Action Group dialog. The new
action bits are then available for selection in the table on the main filter screen.

Tivoli Configuration Files:
As stated earlier, a Tivoli configuration file that contains all the required connection details is associated with a particular
Oracle API Gateway instance. Click the Settings button to display the Tivoli Configuration dialog.

On the Tivoli Configuration dialog, select the API Gateway instance whose connection details you want to configure,
then follow the steps as outlined above in the Tivoli Connections section.

Note
You do not have to configure the Tivoli Connection for each filter or Authentication Repository. The Set-
tings button is placed on the filter screen as a convenient way to access the Tivoli Connection settings.
The Tivoli Connection needs to be configured once per API Gateway instance.

Tivoli Authentication

It is possible to authenticate clients against a Tivoli Access Manager repository. In this way, the API Gateway can lever-
age existing Tivoli security policies without the need to duplicate policies across both products.

The Tivoli repository is available from all authentication filters. However, for demonstration purposes, assume that you
want to use the HTTP Basic Authentication filter to authenticate a client against a Tivoli Repository using a username
and password combination.

Drag the HTTP Basic filter from the Authentication category of filters and drop it onto the policy editor of the Policy Stu-
dio. Complete the following fields:

Name:

Tivoli Integration

426

Enter a name for the authentication filter here.

Realm:
The Realm entered here is presented to the client at the same time as they are entering their username and password.
The client is then said to be logging into this realm. It is useful in cases where a given user might belong to many differ-
ent realms, and so, by presenting the realm to the client, he can specify which realm he wants to log into.

Credential Format:
The username presented to the API Gateway during the HTTP Basic handshake can be of many formats, usually either
username or distinguished name. Since the API Gateway has no way of inherently telling one format from the other (the
client's username could be a DName), it is necessary to specify the format of the credential presented by the client.

Allow Client Challenge:
HTTP Basic Authentication can be configured to work in two ways:

1. Direct Authentication:
The client sends up the Authorization HTTP Basic Authentication header in its first request to the server.

2. Challenge-Response Handshake:
The client does not send the Authorization header when sending its request to the server (it does not know that
the server requires HTTP Basic Authentication). The server responds with an HTTP 401 response code, in-
structing the client to authenticate to the server by sending up the Authorization header. The client then sends
up a second request, this time including the Authorization header and the relevant username and password.

The first case is used mainly for machine-to-machine transactions in which there is no human intervention. The second
case is typical of situations where a browser is talking to a Web Server. When the browser receives the HTTP 401 re-
sponse to its initial request, it pops up a dialog to allow the user to enter the username and password combination.

If you wish to force clients to always send the HTTP Basic Authorization header to the API Gateway, disable the Al-
low client challenge checkbox. If, on the other hand, you wish to allow clients to engage in the HTTP Basic Authentica-
tion challenge-response handshake with the API Gateway, make sure this feature is enabled by checking this option.

Remove HTTP Authentication Header:
Select this checkbox to remove the HTTP Authorization header from the downstream message. If this option is left
unchecked, the incoming Authorization header is forwarded onwards to the target system.

Repository Name:
The Repository Name field specifies the name of the Authentication Repository where all User profiles are stored.
You can select a previously configured Tivoli repository by simply selecting the name of this repository from the Reposit-
ory Name dropdown. Alternatively, a new repository can be added by clicking the Add button.

On the Authentication Repository dialog, select Tivoli Repository from the Repository Type field, and then enter
a name for this type of store in the Repository Name field.

Select the OK button on the Authentication Repository dialog and then Finish button on the HTTP Basic filter to com-
plete the configuration.

Connections to Tivoli authentication repositories can be configured globally by expanding the Authentication Reposit-
ory Profiles node in the Policy Studio, right-clicking on the Tivoli Repositories node and selecting the Add a New Re-
pository menu option. The globally configured repository is then available for selection in authentication filters, such as
the HTTP Basic authentication filter, as described above.

Tivoli Attribute Retrieval

The Tivoli Attribute Retrieval filter can be used in cases where you would like to retrieve user attributes independently
from authorizing the user against Tivoli Access Manager. This filter can be found in the Attributes category of filters. The
following fields should be configured:

Name:

Tivoli Integration

427

Enter a name for the filter in this field.

User ID:
Enter the ID of a user to retrieve attributes for. You can enter this as a static username, Distinguished Name (DName), or
selector representing a message attribute. The selector is expanded at runtime to the value of the message attribute.

For example, you can enter ${authentication.subject.id} in this field. This means that the ID of the authentic-
ated user, which is normally a DName, is used to retrieve attributes for. For this to work correctly, an authentication filter
must have been configured to run before this filter in the policy. For more details on selectors, see Selecting Configura-
tion Values at Runtime.

Attributes:
You can specify a list of user attributes to retrieve from the Tivoli server. Individual attributes to be retrieved can be ad-
ded by clicking the Add button and entering the attributes in the dialog. If you want all attributes to be retrieved, simply
leave the table blank.

Tivoli Configuration Files:
A Tivoli configuration file that contains all the required connection details is associated with a particular Oracle API Gate-
way instance. Click the Settings button to display the Tivoli Configuration dialog.

On the Tivoli Configuration dialog, select the API Gateway instance whose connection details you want to configure,
then follow the steps as outlined above in the Tivoli Connections section.

Tivoli Integration

428

Tivoli Authorization
Overview

Tivoli Access Manager provides authentication and access control services for Web resources. It also stores policies de-
scribing the access rights of users.

The API Gateway can integrate with this product through its Tivoli connector. The API Gateway Tivoli connector can
query Tivoli for authorization information for a particular user on a given resource. In other words, the API Gateway asks
Tivoli to make the authorization decision. If the user has been given authorization rights to the Web Service, the request
is allowed through to the Service. Otherwise, the request is rejected.

For details on prerequisites for integration with IBM Tivoli, see the Tivoli Integration topic.

Adding a Tivoli Client

To add the machine running the API Gateway as a client of Tivoli, perform the following steps:

1. Open a terminal window on the machine running the Tivoli Authorization Server and Management Server.
2. Start the pdadmin tool using the following command, where oracle is the password for the Management Server:

C:\WINNT> pdadmin -a sec_master -p oracle

This starts the pdadmin terminal tool.
3. Use the user create command to add a user. The parameters are as follows:

pdadmin> user create <username> <dn> <cn> <sn> <password>

The following is an example where the API Gateway is running on a machine called TEST_CLIENT with an IP ad-
dress of 192.168.0.100:

pdadmin> user create TEST_CLIENT cn=PdPermission/192.168.0.100,o=Company,c=ie \
PdPermission/192.168.0.100 PdPermission myPass1234

Make sure the DName you assign the user is exactly identical to the DName in your user's certificate. This includes
case and attribute order. Also make sure that you put the IP address or hostname in the CN.

4. Next you must activate the account for the new user. Use the following command:

pdadmin> user modify TEST_CLIENT account-valid yes

5. Finally, the user must be included in the remote Access Control List (ACL) client list:

pdadmin> group modify remote-acl-users add batman

The machine running the API Gateway has now been added as a client to Tivoli.

Adding Users and Web Services to Tivoli

To authorize a user to access a Web Service, you must first add the user to Tivoli as follows:

1. Add the user as before using the user create command as follows:

pdadmin> user create <username> <dn> <cn> <sn> <password>

Ensure that the DN you assign the user is identical to the DName in the user's certificate.
2. Next, you must insert the server that runs your Web Service into Tivoli's object space. Use the following command to

429

do this:

pdadmin> object create /API Gateway/<object-name> <description> 9

Note
The 9 parameter indicates that you are adding a Web Resource. In addition, it is the responsibility of
the Policy Decision Point (API Gateway) to map an attempt to access a Web Service to a given object.
The Tivoli Authorization server does not contain any mapping between its object space nodes and
URLs.

3. Finally, you must create a binding between the user and the object by creating an ACL for the object, and adding the
user to that list:

pdadmin> acl create <acl-name>
pdadmin> acl modify <acl-name> set user <username> rx
pdadmin> acl attach <object-name> <acl-name>

Configuring Tivoli Authorization

Open the Tivoli Authorization screen, and configure the following fields:

Name:
Enter a name for the Tivoli filter here.

Object Space:
The object space represents the resource for which the client must be authorized. Enter the name of the resources in the
Object Space field. You can also enter selectors that represent the values of message attributes. At runtime, the API
Gateway expands the selector to the current value of the corresponding message attribute.

Selectors have the following format:
${message.attribute}
For example, to specify the original path on which the request was received by the API Gateway as the resource, enter
the following selector:
${http.request.uri}

For more details on selectors, see Selecting Configuration Values at Runtime.

Access Method:
Clients can access a resource with a number of permissions such as read, write, execute and so on. A client is only au-
thorized to access the requested resource if he has the relevant permissions checked in the Access Types listbox.

Tivoli Connection Settings:
You must enter details on how the API Gateway should connect to the Tivoli Access Manager in this section. The API
Gateway must have been added to Tivoli as a user for it to connect to the Access Manager. Consult your Tivoli adminis-
trator for more information on how to do this.

Important
You must never allow more than one the API Gateway instance use the same account with the Tivoli serv-
er.

1. In the Username field, enter the username that the API Gateway uses to connect to the Tivoli server. This is the dis-
tinguished name of the API Gateway's X.509 certificate. You can use %IP% and %HOSTNAME% to generically repres-

Tivoli Authorization

430

ent the IP and hostname of the API Gateway instance. For example, the following entries are both valid:
cn=PdPermission/%IP%, o=Company, c=ie
cn=PdPermission/%HOSTNAME%, o=Company, c=ie
This means that multiple the API Gateway instances, each of which has been set up as a Tivoli user, can share this
global setting. For example, one the API Gateway installation with cn=10.10.10.10 and another with
cn=20.20.20.20, can both be represented by cn=PdPermission/%IP% in the Tivoli Username. Similarly, an
API Gateway instance with cn=VS_1 and another with cn=VS_2 can both be represented by
cn=PdPermission/%HOSTNAME%.

2. In the Security Master Password field, enter the master password.
3. In the Management Server field, enter the IP address or hostname of the Tivoli Management Server.
4. In the Authorization Server field, enter the IP address or hostname of the Tivoli Authorization Server.

Tivoli Authentication Refresh

At start up, the API Gateway contacts the Tivoli server over SSL, and authenticates using the Security Master password.
If you change the Security Master password in the Policy Studio, you must stop and start the API Gateway for this
change to be picked up.

Tivoli Authorization

431

Retrieve Attributes from Tivoli
Overview

You can use the Tivoli Attribute Retrieval filter when you need to retrieve user attributes independently from authoriz-
ing the user against Tivoli Access Manager. This filter is found in the Attributes category of filters.

For details on prerequisites for integration with IBM Tivoli, see the Tivoli Integration topic.

Configuration

Complete the following fields to configure the Retrieve Attributes from Tivoli filter:

Name:
Enter an appropriate name for the filter.

User ID:
Enter the ID of a user to retrieve attributes for. You can enter a static user name, Distinguished Name (DName), or se-
lector representing a message attribute. The selector is expanded to the value of the message attribute at runtime.

For example, you can enter ${authentication.subject.id}. This means that the ID of the authenticated user,
which is normally a DName, is used to retrieve attributes for. For this to work correctly, an authentication filter must have
been configured to run before this filter in the policy. For more details on selectors, see Selecting Configuration Values at
Runtime.

Attributes:
You can specify a list of user attributes to retrieve from the Tivoli server. You can add individual attributes to be retrieved
by clicking the Add button and entering the attributes in the dialog. If you want all attributes to be retrieved, leave the ta-
ble blank.

Tivoli Configuration Files:
A Tivoli configuration file that contains all the required connection details is associated with a particular Oracle API Gate-
way instance. Click the Settings button to display the Tivoli Configuration dialog.

On the Tivoli Configuration dialog, select the API Gateway instance whose connection details you want to configure.
For more details on configuring this wizard, see the Tivoli Integration topic.

432

CA SOA Security Manager Authorization
Overview

CA SOA Security Manager can authenticate end-users and authorize them to access protected Web resources. The API
Gateway can interact directly with CA SOA Security Manager by asking it to make authorization decisions on behalf of
end-users that have successfully authenticated to the API Gateway. CA SOA Security Manager decides whether to au-
thorize the user, and relays the decision back to the API Gateway where the decision is enforced. The API Gateway,
therefore, acts as a Policy Enforcement Point (PEP) in this situation, enforcing the authorization decisions made by the
CA SOA Security Manager, which acts a Policy Decision Point (PDP).

Important
A CA SOA Security Manager authentication filter must be invoked before a CA SOA Security Manager au-
thorization filter in a given policy. In other words, the end-user must authenticate to CA SOA Security Man-
ager before they can be authorized for a protected resource.

Prerequisites

CA SOA Security Manager integration requires CA TransactionMinder SDK version 6.0 or later.

API Gateway
When adding third-party binaries to the API Gateway, you must perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the InstallDir/ext/lib directory.
• Add .dll files to the InstallDir\Win32\lib directory.
• Add .so files to the InstallDir/platform/lib directory.

2. Restart the API Gateway.

Policy Studio
When adding third-party binaries to the Policy Studio, you must perform the following steps:

1. Add .jar files to the InstallDir/plugins/thirdparty.runtime.dependencies_6.0.3 directory.
2. Restart the Policy Studio.

Configuration

Configure the following fields on the CA SOA Security Manager Authorization filter:

Name:
Enter an appropriate name for the filter.

Attributes:
If the end-user is successfully authorized, the attributes listed here are looked up in CA SOA Security Manager, and re-
turned to the API Gateway. These attributes are stored in the attributes.lookup.list message attribute. They can
be retrieved at a later stage to generate a SAML attribute assertion.

Select the Set attributes for SAML Attribute token checkbox, and click the Add button to specify an attribute to fetch
from CA SOA Security Manager.

433

SAML Authorization XML-Signature Verification
Overview

A SAML authorization assertion contains proof that a certain user has been authorized to access a specified resource.
Typically such assertions are issued by a SAML PDP (Policy Decision Point) when a client requests access to a spe-
cified resource. The client must present identity information to the PDP, who makes sure that the client does indeed have
permission to access the resource. The PDP then issues a SAML authorization assertion stating whether or not the client
is allowed access the resource.

The PDP will usually sign the assertion as proof that only it could have signed the assertion, and also to guarantee the
integrity of the assertion. It then inserts the assertion, together with its signature, into the message for consumption by a
downstream Web Service.

When the API Gateway receives such a signed SAML authorization assertion, it can validate the signature on the asser-
tion.

The following sample SOAP message contains a signed SAML authorization assertion:

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
<wsse:Security>
<saml:Assertion

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="oracle-1056130475340"
Id="oracle-1056130475340"
IssueInstant="2006-06-20T17:34:35Z"
Issuer="CN=Sample User,...........,C=IE"
MajorVersion="1"
MinorVersion="0">

<saml:Conditions
NotBefore="2006-06-20T16:20:10Z"
NotOnOrAfter="2006-06-20T18:20:10Z"/>

<saml:AuthorizationDecisionStatement
Decision="Permit"
Resource="http://www.oracle.com/service">

<saml:Subject>
<saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName">
sample

</saml:NameIdentifier>
</saml:Subject>

</saml:AuthorizationDecisionStatement>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="User">

<dsig:SignedInfo>
.....

</dsig:SignedInfo>
<dsig:SignatureValue>
rpa/......0g==

</dsig:SignatureValue>
<dsig:KeyInfo>
.....

</dsig:KeyInfo>
</dsig:Signature>

</saml:Assertion>
</wsse:Security>

</soap-env:Header>
<soap-env:Body>

<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

434

</soap-env:Body>
</soap-env:Envelope>

Configuration

Configure the following fields to validate the XML Signature over a SAML assertion:

SAML Signature:
Use this section to specify the location of the signature to validate. The signature can be selected using 3 options:

• Check signature inside the assertion:
Select this option if the signature will be present inside the SAML assertion itself.

• Check signature contained in WS-Security Block:
If the signature is contained within a WS-Security block (but outside the assertion), it is necessary to specify whether
the signature covers only the assertion, or the assertion and the SOAP Body. Select the appropriate option depend-
ing on what the signature covers.

• Use advanced XPath:
If the signature is to be found in a non-standard location, an XPath expression can be used to identify it. Use the
Signature location XPath to find a signature in a non-standard place.
It is also necessary to specify the nodes that are signed by the signature. Use the What must be signed XPath to
configure this.

Signer's Public Key/Certificate
Select the Certificate in Message radio button in order to use the certificate from the XML-Signature specified in the
SAML Signature section. The certificate will be extracted from the KeyInfo block.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...
<dsig:KeyInfo>
<dsig:X509Data>

<dsig:X509SubjectName>CN=Sample User...</dsig:X509SubjectName>
<dsig:X509Certificate>
MIIE EQgJ

</dsig:X509Certificate>
</dsig:X509Data>
<dsig:KeyValue>

<dsig:RSAKeyValue>
<dsig:Modulus>

AMfb2tT53GmMiD
...
NmrNht7iy18=

</dsig:Modulus>
<dsig:Exponent>AQAB</dsig:Exponent>
</dsig:RSAKeyValue>

</dsig:KeyValue>
</dsig:KeyInfo>

</dsig:Signature>

Clients may not always want to include their public keys in their signatures. In such cases, the public key must be re-
trieved from an LDAP directory of the API Gateway's Certificate Store.

For example, the following signed XML message does not include the signatory's certificate. Instead only the Common
Name of the signatory's certificate is included. In this case, the API Gateway must obtain the certificate from either an
LDAP directory or the Certificate Store in order to validate the signature on the assertion.

SAML Authorization XML-Signature Verification

435

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="User">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="">
<dsig:Transforms>
<dsig:Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
<dsig:XPath>ancestor-or-self::soap-env:Body</dsig:XPath>
</dsig:Transform>
<dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n"/>

</dsig:Transforms>
<dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>rvJMkZ1RDo3pNfqCUBa4Qhs8i+M=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>

AXL2gKhqqKwcKujVPftVoztySvtCdARGf97Cjt6Bbpf0w8QFiNuLJncQVnKB
cQ+91KvudYZ/Sk8u7tXhoEiLvNwg76B2STPh+ypEWO+J7OSPedlUdnfVRRvW
vjYLwJVjGNZ+mMTxvfO1wwcIb2Hg94n1BOaeBrNJ+2uO4i87W5TyufAGI+V8
S6oSpPc5KQeHLXoyHS2+fXyqReSiwdhOeli4D4xT+HbjRgYJIwIikXn2k1Fr
D/hnd1/xVf/LjrOwoY9id8W3IcZAzMIRh5SBZjWHYOQzk79xy4YDpzNVYIOB
laAFqzg9G+Z4VYj+RdgrIVHhOXt+mq+fGZV6VheWGQ==

</dsig:SignatureValue>
<dsig:KeyInfo>
<dsig:KeyName>

CN=User,OU=R&D,O=Company Ltd.,L=Dublin 4,ST=Dublin,C=IE
</dsig:KeyName>

</dsig:KeyInfo>
</dsig:Signature>
</soap-env:Header>

<soap-env:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</soap-env:Body>
</soap-env:Envelope>

To retrieve a client certificate from an LDAP directory, select a pre-configured one from the LDAP Source dropdown, or
add/edit a new/existing LDAP directory by clicking the Add/Edit button.

Alternatively, select a certificate from the Trusted Certificate Store by selecting the Certificate in Store radio button and
clicking on the Select button. This certificate will then be associated with the incoming message so that all subsequent
certificate-based filters will use this user's certificate.

SAML Authorization XML-Signature Verification

436

XACML Policy Enforcement Point
Overview

The eXtensible Access Control Markup Language (XACML) Policy Enforcement Point (PEP) filter enables you to config-
ure the API Gateway to act as a PEP. The API Gateway intercepts a user request to a resource, and enforces the de-
cision from the Policy Decision Point (PDP). The API Gateway queries the PDP to see if the user has access to the re-
source, and depending on the PDP response, allows the filter to pass or fail. Possible PDP responses include Permit,
Deny, NotApplicable, and Indeterminate.

Workflow
In more detail, when the XACML PEP filter is configured in the API Gateway, the workflow is as follows:

1. The client sends a request for the resource to the XACML PEP filter.
2. The PEP filter stores the original client request, and generates the XACML request.
3. The PEP filter delegates message-level security to the polices configured on the XACML tab.
4. The PEP filter routes the XACML request to the PDP using details configured on the Routing tab.
5. The PDP decides if access should be granted, and sends the XACML response back to the API Gateway.
6. The PEP filter validates the response from the PDP.
7. By default, if the response is Permit, the PEP filter passes, and the original client request for the resource is au-

thorized, and the policy flow continues on the success path.

Further Information
For more details on XACML, see the XACML specification:
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

437

Example XACML Request

The following example XACML request is used to illustrate the XACML request configuration settings explained in this
topic:

<Request xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<Subject>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue>admin</AttributeValue>

</Attribute>
<Attribute AttributeId=”department" DataType="http://www.w3.org/2001/

XMLSchema#string">
<AttributeValue>sysadmin</AttributeValue>

</Attribute>
</Subject>
<Resource>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>http://localhost:8280/services/echo/echoString</AttributeValue>
</Attribute>

</Resource>
<Action>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>read</AttributeValue>
</Attribute>

</Action>
<Environment/>

</Request>

General Settings

In the XACML PEP filter screen, configure the following general field:

Name:
Enter an appropriate name for this filter.

XACML Settings

The XACML tab specifies configuration settings for the generated XACML request. Configure the following fields on this
tab:

XACML Version:
Select the XACML version from the list. Defaults to XACML2_0.

Create XACML Request Assertion with the following attributes:
Click the Add button on the following tabs to add attributes to the XACML request:

Subject Represents the entity making the access request (who
wants access to the resource). The Subject element can
contain multiple Attribute elements, which are used to
identify the Subject. Each Attribute element has two
attributes: AttributeId and DataType. You can define
your own AttributeId or use those provided by the
XACML specification. For more details on adding attrib-
utes, see the next subsection.

Resource Defines the data, service, or system component that the
Subject wants to access. The Resource element con-

XACML Policy Enforcement Point

438

tains one or more attributes of the resource to which sub-
jects request access. There can be only one Resource
element per XACML request. A specific Resource is iden-
tified by the Attribute child element. In the Example
XACML Request, the Subject wants to access the follow-
ing Resource:
ht-
tp://localhost:8280/services/echo/echoStrin
g.

Action Contains one or more attributes of the action that subjects
wish to perform on the resource. There can be only one
Action element per XACML request. A specific Action is
identified by the Attribute child element. In the Example
XACML Request, the Subject wants read access the fol-
lowing Resource:
ht-
tp://localhost:8280/services/echo/echoStrin
g.

Environment A more complex request context may contain some attrib-
utes not associated with the Subject, Resource, or Ac-
tion. These are placed in an optional Environment ele-
ment after the Action element.

Adding Attributes
When you click the Add button on each tab, the XACML dialog is displayed to enable you to add attributes. Complete
the following fields on this dialog:

Attribute ID Enter a custom AttributeId or select one provided by
the XACML specification from the list. For example, the
XACML special identifiers defined for the Subject include
the following:
urn:oasis:names:tc:xacml:1.0:subject:
authn-locality:dns-name
urn:oasis:names:tc:xacml:1.0:subject:
authn-locality:ip-address
urn:oasis:names:tc:xacml:1.0:subject:
authentication-method
urn:oasis:names:tc:xacml:1.0:subject:
authentication-time
urn:oasis:names:tc:xacml:1.0:subject:
key-info
urn:oasis:names:tc:xacml:1.0:subject:
request-time
urn:oasis:names:tc:xacml:1.0:subject:
session-start-time
urn:oasis:names:tc:xacml:1.0:subject:
subject-id
...
In the Example XACML Request, the first attribute under
the Subject element uses the
urn:oasis:names:tc:xacml:1.0:subject:subjec
t-id identifier. The next is a custom department attrib-
ute. This can be any custom attribute (for example, mail,

XACML Policy Enforcement Point

439

givenName, or accessList), which can be identified by
the XACML policy defined where this request is evaluated.

Value(s) Click the Add button to add an attribute value. Enter the
value in the Add dialog, and click OK. You can add mul-
tiple values for a single attribute.

Type Select the type of data that the AttributeValue element
should contain from the list. For example, the set of data
types defined in XACML includes the following:
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#boolean
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#double
http://www.w3.org/2001/XMLSchema#time
http://www.w3.org/2001/XMLSchema#date
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/TR/2002/WD-xquery-
operators-20020816#dayTimeDuration
http://www.w3.org/TR/2002/WD-xquery-
operators-20020816#yearMonthDuration
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#hexBinary
...
In the Example XACML Request, the Attributes are of type
http://www.w3.org/2001/XMLSchema#string.

Issuer Specify an optional issuer for the attribute. For example,
this may be a Distinguished Name, or some other identifier
agreed with the issuer.

AuthzDecisionQuery Settings
This section enables you to configure settings for the Authorization Decision Query, which is sent in the XACML request
to the PDP. Complete the following fields in this group:

Decision based on external XACML attributes If this is selected, the authorization decision must be made
based only on the information contained in the XACML Au-
thz Decision Query, and external XACML attributes must
not be used. If this is unselected, the authorization decision
can be made based on XACML attributes not contained in
the XACML Authz Decision Query. This is unselected by
default, which is equivalent to the following setting in the
XACML Authz Decision Query:
<InputContextOnly value="false">

Return Context If this is selected, the PDP must include an xacmlcon-
text:Request instance in the XACMLAuthzDecision
statement in the XACMLAuthzDecision response. The
xacmlcontext:Request instance must include all attrib-
utes supplied by the PEP in the xacml-sam-
lp:XACMLAuthzDecisionQuery used to make the au-
thorization decision. If this is unselected, the PDP must not
include an xacmlcontext:Request instance in the
XACMLAuthzDecision statement in the XACMLAuthzDe-
cision response. This is unselected by default, which is
equivalent to the following setting in the XACML request:

XACML Policy Enforcement Point

440

<ReturnContext value="false">

Combine Policies If this is selected, the PDP must insert all policies passed in
the xacmlsamlp:XACMLAuthzDecisionQuery into the
set of policies or policy sets that define the PDP. If this is
unselected, there must be no more than one
xacml:Policy or xacml:PolicySet passed in the
xacml-samlp:XACMLAuthzDecisionQuery. This is se-
lected by default, which is equivalent to the following set-
ting in the XACML request:
<CombinePolicies value="true">

XACML Message Security
This section enables you to delegate message-level security to the configured custom security polices. Complete the fol-
lowing fields in this group:

XACML Request Security Click the browse button on the right, select a policy in the
XACML request security policy dialog, and click OK.

XACML Response Security Click the browse button on the right, select a policy in the
XACML response security policy dialog, and click OK.

XACML Response:
Select the Required response decision from the PDP that is required for this XACML PEP filter to pass. Defaults to
Permit. Possible values are as follows:

• Permit

• Deny

• Indeterminate

• NotApplicable

Routing Settings

The Routing tab enables you to specify configuration settings for routing the XACML request to the PDP. You can spe-
cify a direct connection to the PDP using a URL. Alternatively, if the routing behavior is more complex, you can delegate
to a custom routing policy, which takes care of the added complexity.

Use the following URL:
If you wish to route XACML requests to a URL, select this option, and enter the URL. You can also specify the URL as a
selector so that the URL is built dynamically at runtime from the specified message attributes. For example,
${host}:${port}, or
${http.destination.protocol}://${http.destination.host}:${http.destination.port}.

In both cases, you can configure the connection details (for example, SSL and other authentication schemes) using the
fields in the Connection Details group below. For more details, see the Connect to URL topic. For more details on se-
lectors, see Selecting Configuration Values at Runtime.

Delegate routing to the following policy:
If you wish to use a dedicated routing policy to send XACML requests to the PDP, select this option. Click the browse
button next to the Routing Policy field. Select the policy that you want to use to route XACML requests, and click OK.

XACML Policy Enforcement Point

441

Advanced Settings

Configure the following settings on the Advanced tab:

SOAP Settings:
The available SOAP settings are as follows:

SOAP version required Specifies the SOAP version required when creating the
XACML request message. The available options are as fol-
lows:

• SOAP1_1

• SOAP1_2

• NONE

Defaults to SOAP1_1.

SOAP Operation Specifies the SOAP operation name used in the XACML
request message. Defaults to XACMLAuthzDecision-
Query.

Prefix Specifies the prefix name used in the XACML request mes-
sage. Defaults to xacml-samlp.

Namespace Specifies the namespace used in the XACML request mes-
sage. Defaults to
urn:oasis:xacml:2.0:saml:protocol:schema:os.

SOAP Action You can specify an optional SOAPAction field used in the
XACML request header to indicate the intent of the request
message.

Advanced Settings:
The available advanced settings are as follows:

Store and restore original message Specifies whether to store the original client request before
generating the XACML request, and then to restore the ori-
ginal client request after access is granted. This option is
selected by default.

Split subject attributes into individual elements Specifies whether to split Subject attributes into individual
elements in the XACML request. This option is not selected
by default.

Split resource attributes into individual elements Specifies whether to split Resource attributes into indi-
vidual elements in the XACML request. This option is not
selected by default.

XACML Policy Enforcement Point

442

SiteMinder Certificate Authentication
Overview

CA SiteMinder can authenticate end-users and authorize them to access protected Web resources. When the API Gate-
way retrieves an X.509 certificate from a message or during an SSL handshake, it can authenticate to SiteMinder on be-
half of the user using the certificate. SiteMinder decides whether the user should be authenticated, and the API Gateway
then enforces this decision.

Prerequisites

CA SiteMinder integration requires CA SiteMinder SDK version 12.0-sp1-cr005 or later.

API Gateway
When adding third-party binaries to the API Gateway, you must perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the InstallDir/ext/lib directory.
• Add .dll files to the InstallDir\Win32\lib directory.
• Add .so files to the InstallDir/platform/lib directory.

2. Restart the API Gateway.

Policy Studio
When adding third-party binaries to the Policy Studio, you must perform the following steps:

1. Add .jar files to the InstallDir/plugins/thirdparty.runtime.dependencies_11.1.2.1.0 directory.
2. Restart the Policy Studio.

Configuration

Configure the following fields:

Name:
Enter an appropriate name for the filter.

Agent Name:
Click the button on the right to select a previously configured agent to connect to SiteMinder. This name must correspond
with the name of an agent previously configured in the SiteMinder Policy Server. At runtime, the API Gateway connects
as this agent to a running instance of SiteMinder.

To add an agent, right-click the SiteMinder/SOA Security Manager Connections tree node, and select Add a Site-
Minder Connection. Alternatively, you can add SiteMinder connections under the External Connections node in the
Policy Studio tree view. For details on how to configure a SiteMinder connection, see the SiteMinder/SOA Security Man-
ager Connection topic.

Resource:
Enter the name of the protected resource for which the end-user must be authenticated. You can enter a selector repres-
enting a message attribute, which is expanded to a value at runtime. Message attribute selectors have the following
format:

${message.attribute}

For example, to specify the original path on which the request was received by the API Gateway as the resource, enter

443

the following selector:

${http.request.uri}

Action:
The end-user must be authenticated for a specific action on the protected resource. By default, this action is taken from
the HTTP verb used in the incoming request. You can use the following selector to get the HTTP verb:

${http.request.verb}

Alternatively, any user-specified value can be entered. For more details on selectors, see Selecting Configuration Values
at Runtime.

Single Sign-On Token:
When a client has been authenticated for a given resource, SiteMinder can generate a single sign-on token and return it
to the client. The client can then pass this token with future requests to the API Gateway. When the API Gateway re-
ceives such a request, it can validate the token using the SiteMinder Session Validation filter to authenticate the client.
In other words, the client is authenticated for the entire lifetime of the token. As long as the token is still valid, the API
Gateway does not need to authenticate the client against SiteMinder for every request, which increases throughput con-
siderably.

In this section, you can instruct SiteMinder to generate a single sign-on token. The API Gateway can then store this
token in a user-specified message attribute. By default, the token is stored in the siteminder.session message at-
tribute.

Typically, the token is copied to the attribute.lookup.list message attribute using the Copy / Modify Attributes
filter, before being inserted into a SAML attribute statement using the Insert SAML Attribute Assertion filter. The attrib-
ute statement is then returned to the client for use in subsequent requests.

Select the Create single sign-on token checkbox to instruct SiteMinder to generate the single sign-on token. Enter the
name of the message attribute where the token is stored in the field provided.

SiteMinder Certificate Authentication

444

SiteMinder Session Validation
Overview

CA SiteMinder can authenticate end-users and authorize them to access protected Web resources. When the API Gate-
way has authenticated successfully to SiteMinder on behalf of a user using the SiteMinder Certificate Authentication fil-
ter, SiteMinder can issue a single sign-on token and return it to the API Gateway. Typically, the API Gateway inserts this
token into a SAML attribute assertion or an HTTP Header, and returns it to the client.

The client then sends the single-sign on token in subsequent requests to the API Gateway. The API Gateway extracts
the single-sign on token from the message payload or HTTP headers, and stores it in a message attribute, usually the
siteminder.session attribute.

The API Gateway can then use the SiteMinder Session Validation filter to ensure that the token is still valid, and
hence, that the user is still authenticated. This means that the API Gateway does not have to authenticate every request
to SiteMinder. By validating the token, the user can be authenticated, and therefore, unnecessary round-trips to Site-
Minder can be avoided.

Prerequisites

CA SiteMinder integration requires CA SiteMinder SDK version 12.0-sp1-cr005 or later.

API Gateway
When adding third-party binaries to the API Gateway, you must perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the InstallDir/ext/lib directory.
• Add .dll files to the InstallDir\Win32\lib directory.
• Add .so files to the InstallDir/platform/lib directory.

2. Restart the API Gateway.

Policy Studio
When adding third-party binaries to the Policy Studio, you must perform the following steps:

1. Add .jar files to the InstallDir/plugins/thirdparty.runtime.dependencies_6.0.3 directory.
2. Restart the Policy Studio.

Configuration

Configure the following fields on the SiteMinder Session Validation screen:

Name:
Enter an appropriate name for the filter.

Agent Name:
Click the button on the right to select a previously configured agent to connect to SiteMinder. This name must correspond
with the name of an agent previously configured in the SiteMinder Policy Server. At runtime, the API Gateway connects
as this agent to a running instance of SiteMinder.

To add an agent, right-click the SiteMinder/SOA Security Manager Connections tree node, and select Add a Site-
Minder Connection. Alternatively, you can add SiteMinder connections under the External Connections node in the
Policy Studio tree view. For details on how to configure a SiteMinder connection, see the SiteMinder/SOA Security Man-
ager Connection topic.

445

Resource:
Enter the name of the protected resource for which the end-user must be authenticated. You can enter a selector repres-
enting a message attribute, which is expanded to a value a runtime. Message attribute selectors have the following
format:

${message.attribute}

For example, to specify the original path on which the request is received by the API Gateway as the resource, enter the
following selector:

${http.request.uri}

Action:
The end-user must be authenticated for a specific action on the protected resource. By default, this action is taken from
the HTTP verb used in the incoming request. You can use the following selector to get the HTTP verb:

${http.request.verb}

Alternatively, any user-specified value can be entered here. For more details on selectors, see Selecting Configuration
Values at Runtime.

Message attribute containing session:
Enter the name of the message attribute that contains the single sign-on token generated by SiteMinder. By default, the
token is stored in the siteminder.session message attribute, but can be stored in any attribute.

SiteMinder Session Validation

446

SiteMinder Logout
Overview

When the API Gateway authenticates to CA SiteMinder on behalf of a user, SiteMinder can issue a single sign-on token
as evidence of the authentication event. The token is eventually returned to the client, which can then use it in sub-
sequent requests to the API Gateway.

Instead of authenticating the client against SiteMinder for every request, the API Gateway need only validate the token. If
the token validates, the client can be considered authenticated. If the token does not validate, the client is not considered
authenticated.

You can use the SiteMinder Logout filter to invalidate a single sign-on token that was previously issued by SiteMinder.
When the token has been invalidated, the client is no longer be considered authenticated.

Note
You must have already validated the session before calling the SiteMinder Logout filter in your policy. For
more details, see the SiteMinder Session Validation topic.

Prerequisites

CA SiteMinder integration requires CA SiteMinder SDK version 12.0-sp1-cr005 or later.

API Gateway
When adding third-party binaries to the API Gateway, you must perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the InstallDir/ext/lib directory.
• Add .dll files to the InstallDir\Win32\lib directory.
• Add .so files to the InstallDir/platform/lib directory.

2. Restart the API Gateway.

Policy Studio
When adding third-party binaries to the Policy Studio, you must perform the following steps:

1. Add .jar files to the InstallDir/plugins/thirdparty.runtime.dependencies_11.1.2.1.0 directory.
2. Restart the Policy Studio.

Configuration

Enter a name for the filter in the Name field of the SiteMinder Logout screen.

447

SiteMinder Authorization
Overview

CA SiteMinder can authenticate end-users and authorize them to access protected Web resources. The API Gateway
can interact directly with SiteMinder by asking it to make authorization decisions on behalf of end-users that have suc-
cessfully authenticated to API Gateway. The API Gateway then enforces the decisions made by SiteMinder.

Important
A SiteMinder authentication filter must be configured before a SiteMinder authorization filter is created. In
other words, end-users must authenticate to SiteMinder before they can be authorized.

Prerequisites

CA SiteMinder integration requires CA SiteMinder SDK version 12.0-sp1-cr005 or later.

API Gateway
When adding third-party binaries to the API Gateway, you must perform the following steps:

1. Add the binary files as follows:
• Add .jar files to the InstallDir/ext/lib directory.
• Add .dll files to the InstallDir\Win32\lib directory.
• Add .so files to the InstallDir/platform/lib directory.

2. Restart the API Gateway.

Policy Studio
When adding third-party binaries to the Policy Studio, you must perform the following steps:

1. Add .jar files to the InstallDir/plugins/thirdparty.runtime.dependencies_6.0.3 directory.
2. Restart the Policy Studio.

Configuration

Configure the following fields on the SiteMinder Authorization filter:

Name:
Enter an appropriate name for the filter.

Attributes:
If the end-user is successfully authorized, the attributes listed here are returned to the API Gateway and stored in the
attribute.lookup.list message attribute. They can then be used by subsequent filters in a policy to make de-
cisions on their values. Alternatively, they can be inserted into a SAML attribute assertion so that the target service can
apply some business logic based on their values (for example, if role is CEO, escalate the request, and so on).

Select the Retrieve attributes from CA SiteMinder checkbox, and click the Add button to specify an attribute to fetch
from SiteMinder. If you select the Retrieve attributes from CA SiteMinder checkbox, and do not specify attribute
names to be retrieved, all attributes returned by SiteMinder are added to the attribute.lookup.list message at-
tribute.

448

SiteMinder/SOA Security Manager Connection
Overview

This topic explains how to create connections to CA SiteMinder and CA SOA Security Manager. Under the External
Connections tree node in the Policy Studio, right-click the SiteMinder/SOA Security Manager Connection node, and
select Add CA SiteMinder Connection or Add CA SOA Security Manager Connection.

You can specify how the API Gateway connects to CA SiteMinder using the SiteMinder Connection Details dialog. You
can specify how the API Gateway connects to CA SOA Security Manager using the CA SOA Security Manager Con-
nection Details dialog. In both cases, the API Gateway must have already been set up as an agent in the CA Policy
Server.

The connection details to be configured for the API Gateway are the same for both SiteMinder and SOA Security Man-
ager, with an additional setting for SOA Security Manager.

SiteMinder and SOA Security Manager Connection Details

This section describes details that are common to both SiteMinder and CA SOA Security Manager connections.

Agent Name:
Enter the name of the agent to connect to SiteMinder or SOA Security Manager in the Agent Name field. This name
must correspond to the name of an agent previously configured in the CA Policy Server.

Agent Configuration Object:
The name entered must match the name of the Agent Configuration Object (ACO) configured in the CA Policy Server.
The API Gateway currently does not support any features represented by the ACO parameters except for the Persist-
entIPCheck setting. For example, the API Gateway ignores the DefaultAgent parameter, and uses the agent value it
collects separately during agent registration.

When the PersistentIPCheck ACO parameter is set to yes, this instructs the API Gateway to compare the IP ad-
dress from the last request (stored in a persistent cookie) with the IP address in the current request to see if they match.
If the IP addresses do not match, the API Gateway rejects the request. If this parameter is set to no, this check is dis-
abled.

SmHost.conf file created by smreghost:
The API Gateway host machine must be registered with SiteMinder or SOA Security Manager. To register the host ma-
chine, you must use the smreghost tool on the API Gateway machine. The smreghost tool creates a file called
SmHost.conf. You must then use the Browse button to upload this file into the API Gateway configuration.

If you have already generated a suitable SmHost.conf file, and copied it to the machine on which you are running the
Policy Studio, you can browse to the location of the file using the Browse button at the bottom right of the text area. You
can select whether to use an SmHost.conf or SmHost.cnf file in the dialog. You can also enter the file name as an
environment variable selector (for example, ${env.SMHOST}). For more details, see Deploying the API Gateway in Mul-
tiple Environments. After selecting the configuration file, the connection details are displayed in the text area.

If you do not have a suitable SmHost.conf file, you can generate one by running the smreghost command on the ma-
chine running the API Gateway. Complete the following steps:

1. You need to run the smreghost command on the machine on which you have installed the API Gateway. The
smreghost tool is found in the following location, depending on your target platform:
Windows: /Win32/lib
Linux: /Linux.i386/bin
Solaris: /SunOS.sun4u-32/bin

Open a command prompt at this directory, and run the smreghost command. You must pass the appropriate com-

449

mand-line arguments, depending on the hostname and hostconfigobject configured to represent the API Gate-
way in the CA Policy Server. Similarly, you must specify the hostname/IP and port of the CA Policy Server.

2. The smreghost tool writes its output to a SmHosts.conf file in the same directory. You must manually copy this
file from the machine running the API Gateway to the machine running the Policy Studio.

3. Browse to the location of this file using the Browse button on the connection details dialog.

SOA Security Manager Connection Details Only

This section describes details that are specific to CA SOA Security Manager connections only. In addition to the fields
already described in the previous section, you must also configure the following field on the CA SOA Security Manager
Connection Details dialog.

XMLSDKAcceptSMSessionCookie:
This setting controls whether the CA SOA Security Manager authentication filter accepts a single sign-on token for au-
thentication purposes. The single sign-on token must reside in the HTTP header field named SMSESSION to authenticate
using this mechanism. This token is created and updated when the CA SOA Security Manager authorization filter runs
successfully.

When this checkbox is selected, the authentication filter allows authentication using a single sign-on token.

Note
If no single sign-on token is present in the message, the authentication filter authenticates fully by gathering
credentials from the request in whatever manner has been configured in the CA SOA Security Manager.
When this checkbox is unselected, the authentication filter authenticates fully (it never allows authentication
using a single sign-on token).

SiteMinder/SOA Security Manager Connection

450

Static CRL Certificate Validation
Overview

A Certificate Authority (CA) may wish to publish a Certificate Revocation List (CRL) to a file. In such cases, the API Gate-
way can load the revoked certificates from the file-based CRL and validate user certificates against it.

Because the CRL is typically signed by the CA that owns it, the certificate of the CA that issued the CRL must be impor-
ted into the Certificate Store before this filter can work correctly. In addition, the CRL (Static) filter requires the certi-
ficates message attribute to be set by a preceding filter.

Example Policy
Typically, a Find Certificate filter is first used to find the certificate, which is stored in a certificate message attrib-
ute. You can then use a Copy / Modify Attributes filter to copy the certificate attribute to the certificates at-
tribute by selecting its Create list attribute setting.

The following example policy shows the filters used:

The following example shows the settings used in the Copy / Modify Attributes filter:

451

Important
Typically, a CA publishes a new CRL, containing the most up-to-date list of revoked certificates at regular
intervals. However, the CRL (Static) filter does not automatically update the CRL when it is loaded from a
local file. If you need to automatically retrieve updated CRLs from a particular URL, you should use the
CRL (Dynamic) filter.

Configuration

Enter a name for the filter in the Name field, and click the Load CRL button to browse to the location of the CRL file.
When the CRL has been loaded from the selected location, read-only information regarding revoked certificates and up-
date dates is displayed in the other fields on the screen.

Static CRL Certificate Validation

452

Dynamic CRL Certificate Validation
Overview

This filter is responsible for validating certificates against a Certificate Revocation List (CRL) that has been published by
a Certificate Authority (CA). The CRL is retrieved from the specified URL and is cached by the server for certificate valid-
ation. The filter automatically fetches a potentially updated CRL from this URL when the criteria specified in the Auto-
matic CRL Update Preferences section are met.

Configuration

Configure the following fields on the CRL (Dynamic) screen:

Name:
Enter an appropriate name for the filter.

CRL Import URL:
Enter the full URL of the CRL to use to validate the certificate. Alternatively, you can browse to the location of the CRL by
clicking the button.

Automatic CRL Update Preferences:
Typically, a CA publishes an updated CRL at regular intervals. You can configure the filter to dynamically pull down the
latest CRL published by the CA at specified intervals. Select the appropriate update option from the following:

• Do not update:
The filter never attempts to automatically retrieve the latest CRL.

• Update on "next update" date:
The CRL published by the CA contains a Next Update date, which indicates the next date on which the CA pub-
lishes the CRL. You can choose to dynamically retrieve the updated CRL on the Next Update date by selecting this
option. This effectively synchronizes the server with the CA updates.

• Update every number of days:
The filter retrieves the CRL every number of days specified.

• Trigger update on cron expression:
You can enter a cron expression to determine when to perform the automatic update.

453

CRL LDAP Validation
Overview

A Certificate Revocation List (CRL) is a signed list indicating a set of certificates that are no longer considered valid
(revoked certificates) by the certificate issuer. The API Gateway can query a CRL to find out if a given certificate has
been revoked. If the certificate is present in the CRL, it should not be trusted.

To validate a certificate using a CRL lookup, the certificate's issuing CA certificate should be trusted by the API Gateway.
This is because for a CRL lookup, the CA public key is needed to verify the signature on the CRL. The issuing CA public
key is not always included in the certificates that it issues, so it is necessary to retrieve it from the API Gateway's certific-
ate store instead.

Configuration

The Name and URL of all currently configured LDAP directories are displayed in the table on the CRL Certificate Valid-
ation screen. The API Gateway checks the CRL of all selected LDAP directories to validate the client certificate. The fil-
ter fails as soon as the API Gateway determines that one of the CRLs has revoked the certificate.

To configure LDAP connection information, complete the following fields:

Name:
Enter an appropriate name for the filter.

LDAP Connection:
Click the button on the right, and select the LDAP directory to check its CRL. If you wish to use an existing LDAP direct-
ory, (for example, Sample Active Directory Connection), you can select it in the tree. To add an LDAP direct-
ory, right-click the LDAP Connections tree node, and select Add an LDAP Connection.

Alternatively, you can add LDAP connections under the External Connections node in the Policy Studio tree view. For
more details on how to configure LDAP connections, see the topic on Configuring LDAP Directories.

454

CRL Responder
Overview

This filter enables the API Gateway to behave as Certificate Revocation List (CRL) responder, which returns CRLs to cli-
ents. This filter imports the CRL from a specified URL. You can also configure it to periodically retrieve the CRL from this
URL to ensure that it always has the latest version.

Configuration

Configure the following fields on the CRL Responder screen:

Name:
Enter an appropriate name for the filter.

CRL Import URL:
Enter the full URL of the CRL that you want to return to clients. Alternatively, browse to the location of the CRL file by
clicking the browse button on the right.

Automatic CRL Update Preferences:
Because keeping up-to-date with the latest list of revoked certificates is crucial in any trust network, it is important that
you configure the filter to retrieve the latest version of the CRL on a regular basis. The following automatic update op-
tions are available:

• Do not update:
The CRL is not automatically updated.

• Update on "next update" date:
The CRL published by the CA contains a Next Update date, which indicates the next date on which the CA pub-
lishes the CRL. You can choose to dynamically retrieve the updated CRL on the Next Update date by selecting this
option. This effectively synchronizes the server with the CA updates.

• Update every number of days:
The CRL is updated after the specified number of days has elapsed (for example, every 3 days).

• Trigger update on cron expression:
You can enter a cron expression to determine when to perform the automatic update.

455

Create Thumbprint from Certificate
Overview

The Create Thumbprint filter can be used to create a human-readable thumbprint (or fingerprint) from the X.509 certific-
ate that is stored in the certificate message attribute. The generated thumbprint is stored in the certific-
ate.thumbprint attribute.

Configuration

Configure the following fields on this filter:

Name:
Enter a name for this filter.

Digest Algorithm:
Select the digest algorithm to create the thumbprint of the certificate from the drop-down list.

456

Certificate Validity
Overview

The validity period of an X.509 certificate is encoded in the certificate. The Certificate Validity performs a simple check
on a certificate to ensure that it has not expired.

By default, the Certificate Validity filter searches for the X.509 certificate in the certificate message attribute, which
must be set by a predecessor filter in the policy (for example, by an SSL Authentication filter).

Configuration

Configure the following fields on the Certificate Validity screen:

Name:
Enter an appropriate name for the filter.

Certificate Selector Expression:
Enter the selector expression that specifies where to obtain the certificate (for example, from a message attribute). The
filter checks the validity of the specified certificate. If no certificate is found, the filter returns an error. Defaults to
${certificate}.

Using a selector enables settings to be evaluated and expanded at runtime based on metadata (for example, in a mes-
sage attribute, Key Property Store (KPS), or environment variable). For more details, see Selecting Configuration Values
at Runtime.

457

Find Certificate
Overview

The Find Certificate filter locates a certificate and sets it in the message for use by other certificate-based filters. Certi-
ficates can be extracted from the User Store, message attributes, HTTP headers, or attachments.

Configuration

By default, the API Gateway stores the extracted certificate in the certificate message attribute. However, it can
store the certificate in any message attribute, including any arbitrary attribute specified by the user (for example, a
user_certificate attribute). The certificate can be extracted from this attribute by a successor filter in the policy.

Name:
Enter an appropriate name for the filter in the Name field.

Attribute Name:
Enter or select the name of the message attribute to store the extracted certificate in.

When the target message attribute has been selected, the next step is to specify the location of the certificate from one
of the following options:

User:
Select a User whose certificate is extracted from the Certificate Store and set to the message.

Certificate Store:
Click the Select button, and select a certificate from the Certificate Store.

User or Wildcard:
This field represents an alternative way to specify what user's certificate is used. Either an explicitly named User's certi-
ficate is used, or you can specify a selector to locate a User name or DName, which can then be used to locate the certi-
ficate.

You can specify a selector by enclosing the message attribute that contains the user name or DName in curly brackets,
and prefixing this with $. For example:

${authentication.subject.id}

This selector means that the API Gateway uses the certificate belonging to the subject of the authentication event in sub-
sequent certificate-related filters. The certificate is set to the certificate message attribute. Using selectors is a more
flexible way of locating certificates than specifying the User directly. For more details on selectors, see Selecting Config-
uration Values at Runtime.

Message Attribute Name:
Enter the name of the message attribute that contains the certificate.

HTTP Header Name:
Enter the name of the HTTP header that contains the certificate.

Attachment Name:
Enter the name of the attachment (Content-Id) that contains the certificate. Alternatively, you can enter a selector in
this field to represent the value of a message attribute.

Alias Name or Wildcard:
Enter the alias name of the certificate. Alternatively, you can enter a selector to represent the value of a message attrib-
ute. For more details on selectors, see Selecting Configuration Values at Runtime.

458

Extract Certificate Attributes
Overview

You can use the Extract Certificate Attributes filter to extract the X.509 attributes from a certificate stored in a specified
Oracle message attribute.

Typically, this filter is used in conjunction with the Find Certificate filter, which is found in the Certificates category of
message filters. In this case, the Find Certificate filter can locate a certificate from one of many possible sources (for ex-
ample, the message itself, an HTTP header, or the API Gateway Certificate Store), and store it in a message attribute,
which is usually the certificate attribute.

The Extract Certificate Attributes filter can then retrieve this certificate and extract the X.509 attributes from it. For ex-
ample, you can then use a Validate Message Attribute filter to check the values of the attributes.

Generated Message Attributes

The Extract Certificate Attributes filter extracts the X.509 certificate attributes and populates a number of Oracle mes-
sage attributes with their respective values. The following table lists the message attributes that are generated by this fil-
ter, and shows what each of these attributes contains after the filter has executed:

Generated Message Attribute Contains

attribute.lookup.list This user attribute list contains an attribute for each Distin-
guished Name (DName) attribute for the subject (cn, o, l,
and so on). The user attributes are named cn, o, and so
on.

attribute.subject.id The DName of the subject of the cert.

attribute.subject.format Set to X509DName.

cert.basic.constraints If the subject is a Certificate Authority (CA), and the Ba-
sicConstraints extension exists, this field gives the
maximum number of CA certificates that may follow this
certificate in a certification path. A value of zero indicates
that only an end-entity certificate may follow in the path.
This contains the value of pathLenConstraint if the
BasicConstraints extension is present in the certificate
and the subject of the certificate is a CA, otherwise its
value is -1. If the subject of the certificate is a CA and
pathLenConstraint does not appear, there is no limit to
the allowed length of the certification path.

cert.extended.key.usage A String representing the OBJECT IDENTIFIERs of the
ExtKeyUsageSyntax field of the extended key usage ex-
tension (OID = 2.5.29.37). It indicates a purpose for
which the certified public key may be used, in addition to,
or instead of, the basic purposes indicated in the key usage
extension field.

cert.hash.md5 An MD5 hash of the certificate.

cert.hash.sha1 A SHA1 hash of the certificate.

cert.issuer.alternative.name An alternative name for the certificate issuer from the Is-
suerAltName extension (OID = 2.5.29.18).

cert.issuer.id The DName of the issuer of the certificate.

cert.issuer.id.c The c attribute of the issuer of the certificate, if it exists.

459

Generated Message Attribute Contains

cert.issuer.id.cn The cn attribute of the issuer of the certificate, if it exists.

cert.issuer.id.emailaddress The email or emailaddress attribute of the issuer of the
certificate, if it exists.

cert.issuer.id.l The l attribute of the issuer of the certificate, if it exists.

cert.issuer.id.o The o attribute of the issuer of the certificate, if it exists.

cert.issuer.id.ou The ou attribute of the issuer of the certificate, if it exists.

cert.issuer.id.st The st attribute of the issuer of the certificate, if it exists.

cert.key.usage.cRLSign Set to true or false if the key can be used for crlSign.

cert.key.usage.dataEncipherment Set to true or false if the key can be used for dataEn-
cipherment.

cert.key.usage.decipherOnly Set to true or false if the key can be used for de-
cipherOnly.

cert.key.usage.digitalSignature Set to true or false if the key can be used for digital sig-
nature.

cert.key.usage.encipherOnly Set to true or false if the key can be used for en-
cipherOnly.

cert.key.usage.keyAgreement Set to true or false if the key can be used for key-
Agreement.

cert.key.usage.keyCertSign Set to true or false if the key can be used for keyCert-
Sign.

cert.key.usage.keyEncipherment Set to true or false if the key can be used for keyEn-
cipherment.

cert.key.usage.nonRepudiation Set to true or false if the key can be used for non-
repudiation.

cert.not.after Not after validity period date.

cert.not.before Not before validity period date.

cert.serial.number Certificate serial number.

cert.signature.algorithm The signature algorithm for certificate signature.

cert.subject.alternative.name An alternative name for the subject from the SubjectAlt-
Name extension (OID = 2.5.29.17).

cert.subject.id The DName of the subject of the certificate.

cert.subject.id.c The c attribute of the subject of the certificate, if it exists.

cert.subject.id.cn The cn attribute of the subject of the certificate, if it exists.

cert.subject.id.emailaddress The email or emailaddress attribute of the subject of
the certificate, if it exists.

cert.subject.id.l The l attribute of the subject of the certificate, if it exists.

cert.subject.id.o The o attribute of the subject of the certificate, if it exists.

cert.subject.id.ou The ou attribute of the subject of the certificate, if it exists.

cert.subject.id.st The st attribute of the subject of the certificate, if it exists.

cert.version The certificate version.

Extract Certificate Attributes

460

Configuration

Name:
Enter a name for the filter.

Certificate Attribute:
The Extract Certificate Attributes filter extracts the attributes from the certificate contained in the message attribute se-
lected or entered here. The selected attribute must contain a single certificate only.

Include Distribution Points:
If the certificate contains CRL Distribution Point X.509 extension attributes (which point to the location of the certificate is-
suer's CRL), you can also extract these and store them in message attributes by selecting this checkbox. The extracted
distribution points are stored in message attributes that are prefixed by:
distributionpoint.

Extract Certificate Attributes

461

Certificate Chain Check
Overview

It is a trivial task for a user to generate a structurally sound X.509 certificate, and use it to negotiate mutually authentic-
ated connections to publicly available services. However, this scenario is a security nightmare for IT administrators. You
can not allow every user to generate their own certificate and use it on the Internet. For this reason, the API Gateway can
establish the authenticity of the client certificate by ensuring that the certificate originated from a trusted source. To do
this, a server can perform a certificate chain check on the client certificate.

The main purpose of certificate chain validation is to ensure that a certificate has been issued by a trusted source. Typic-
ally, in a Public Key Infrastructure (PKI), a Certificate Authority (CA) is responsible for issuing and distributing certificates.
This infrastructure is based on the premise of transitive trust—if everybody trusts the CA, everybody transitively trusts the
certificates issued by that CA. If entities only trust certificates that have been issued by the CA, they can reject certific-
ates that have been self-generated by clients.

When a CA issues a certificate, it digitally signs the certificate and inserts a copy of its own certificate into it. This is
called a certificate chain. Whenever an application (such as the API Gateway) receives a client certificate, it can extract
the issuing CA certificate from it, and run a certificate chain check to determine whether it should trust the CA. If it trusts
the CA, it also trusts the client certificate.

The API Gateway maintains a repository of trusted CA certificates, which is known as the Certificate Store. To trust a
specific CA, that CA certificate must be imported into the Certificate Store. For more details, see the Certificates and
Keys topic.

Configuration

You can configure the following settings on the Certificate Chain Check screen:

Name:
Enter an appropriate name for this filter.

Certificates Message Attribute:
You can specify a message attribute that contains the certificate or certificates to check. The message attribute type can
be an X509Certificate object, or an ArrayList of X509Certificate objects.

Distinguished Name:
This table lists the Distinguished Names of the certificates currently in the Certificate Store. Select the checkbox beside
a CA to enable this filter to consider it as trusted when performing the certificate chain check. You can select multiple
CAs in the table.

462

OCSP Certificate Validation
Overview

Online Certificate Status Protocol (OCSP) is an automated certificate checking network protocol. The API Gateway can
query an OCSP responder for the status of a certificate. The responder returns whether the certificate is still trusted by
the CA that issued it.

To validate a certificate using an OCSP lookup, the issuing CA certificate should be trusted by the API Gateway. This is
because for an OCSP request, the protocol stipulates that the CA public key must be submitted as part of the request.
The issuing CA public key is not always included in the certificates that it issues, so it is necessary to retrieve it from the
API Gateway's certificate store instead. For more information on how to trust CA certificates, see the Certificates and
Keys tutorial.

Configuration

Configure the following fields on the Certificate Validation - OCSP dialog:

Name:
Enter an appropriate name for this OCSP filter.

OCSP Connection:
Click the button on the right, and select an OCSP connection in the tree. To add an OCSP connection, right-click the OC-
SP Connections node, and select Add an OCSP Connection. Alternatively, you can configure an OCSP connection
under the External Connections node in the Policy Studio tree. For more details, see the OCSP Certificate Validation
Connection topic.

463

OCSP Certificate Validation Connection
Overview

Online Certificate Status Protocol (OCSP) is an automated certificate checking network protocol. The API Gateway can
query an OCSP responder for the status of a certificate. The responder returns whether the certificate is still trusted by
the CA that issued it.

To validate a certificate using an OCSP lookup, the issuing CA certificate should be trusted by the API Gateway. This is
because for an OCSP request, the protocol stipulates that the CA public key must be submitted as part of the request.
The issuing CA public key is not always included in the certificates that it issues, so it is necessary to retrieve it from the
API Gateway's certificate store instead. For more information on how to trust CA certificates, see the Certificates and
Keys tutorial.

You can add OCSP Connections under the External Connections node in the Policy Studio tree. To add a global OCSP
Connection, right-click the OCSP Connections node, and select Add an OCSP Connection.

Configuration

Configure the following fields on the Certificate Validation - OCSP dialog:

Name:
Enter a name for this OCSP connection.

URL Group:
Select a group of OCSP responders from the URL Group drop-down list.

The API Gateway attempts to connect to the OCSP responders in the selected group in a round-robin fashion. It at-
tempts to connect to the responders with the highest priority first, before connecting to responders with a lower priority.

You can add, edit, or remove URL Groups by selecting the appropriate button. For more information on adding and edit-
ing URL groups, see the Configuring URL Groups topic.

User Name:
Requests to OCSP responders can be signed by a user to whom the Sign OCSP or XKMS Requests privilege has been
assigned. Only those users who have been assigned this privilege are displayed in the drop-down list. For more informa-
tion on assigning privileges to users, see the API Gateway Users tutorial.

Signing Key:
Click the Signing Key button to open the list of certificates in the Certificate Store. You can then select the key to use to
sign requests to XKMS responders. This user must have been granted the Sign OCSP or XKMS Requests privilege.

Validate Response:
If the OCSP responders sign responses, select this checkbox to force the API Gateway to validate the signature on the
response from the OCSP responder.

464

Validate Server's Certificate Store
Overview

This filter checks the API Gateway's certificate store for certificates that are due to expire before a specified number of
days. This enables you to monitor the certificates that the API Gateway is running with.

For example, you can configure a policy that includes a Validate Server's Certificate Store filter and an Alert filter,
which sends an email alert when it finds certificates that are due to expire. You can also configure this policy to run at
regular intervals using the policy execution scheduler provided with the API Gateway.

Configuration

Configure the following fields on the Validate API Gateway Certificate Store screen:

Name:
Enter an appropriate name for the filter.

Days before expires:
Enter the number of days before the certificates are due to expire.

Check Server's Certificate Store:
Select whether to check the certificates in the API Gateway's Certificate store. This is selected by default.

Check Server's Java Keystore:
Select whether to check the certificates in the API Gateway's Java Keystore. This is not selected by default. When selec-
ted, you must enter the Password for this keystore. The default is password is changeit.

Check Java Keystore:
Select whether to check the certificates in the specified Java Keystore. This is not selected by default. When selected,
you must configure the following fields:

Keystore Location Specify the path to this keystore (for example, /
home/oracle/osr-client.jks).

Password Enter the password for this keystore.

Deployment Example

The following example shows a Validate Certificates policy that includes a Validate Certificates in API Gateway's
Store filter and an Alert filter. This policy sends an email alert when it finds certificates that are due to expire:

465

Configuring an Email Alert
When this filter is successful, and finds certificates that are due to expire, it generates an expired.certs.summary at-
tribute, which contains a summary of certificates due to expire. You can then use this attribute in the Alert filter to send
an email alert to the API Gateway administrators, as shown in the following example:

You must also select a pre-configured email alert destination on the Destination tab (for example, Email API Gateway
Administrators). For more details on configuring email alert destinations, see the System Alerting topic.

Configuring a Policy Execution Schedule
You can configure this policy to run at regular intervals (for example, once every day) using the policy scheduler provided
with the API Gateway. Under the Listeners node, right-click the API Gateway instance node, and select Add policy ex-
ecution scheduler. The following example runs the policy at 12 noon every day:

Validate Server's Certificate Store

466

For more details, see the Policy Execution Scheduling topic.

Example Email Alert
An email alert is sent if any certificates that are due to expire are detected. The contents of the email are obtained from
the expired.certs.summary message attribute. For example:

Oracle API Gateway running on Roadrunner contains certificates that will expire in 730 days.

2 expired certificates in API Gateway certificate store:

1. Cert details:
Cert issued to: CN=CA
Cert issued by: CN=CA
SHA1 fingerprint: 72:04:35:7C:A1:B1:C2:F5:E2:86:75:C4:83:12:9C:70:A8:D6:21:8E
MD5 fingerprint: 82:23:6F:59:F2:8F:C3:95:56:87:70:B5:51:3F:53:05
Subject Key Identifier (SKI): dfABenFoM0r7iJ3E1ZqU7HmKiyY=
Expires on: 2012-04-20

2. Cert details:
Cert issued to: CN=John Doe
Cert issued by: CN=CA
SHA1 fingerprint: 83:32:EB:3F:9C:15:87:FB:81:E1:D5:AC:CC:35:C3:F8:21:BB:DF:CD
MD5 fingerprint: 48:02:F6:3F:B9:64:EB:DA:DF:CF:F9:82:AC:CC:13:AB
Subject Key Identifier (SKI): HabJNMjAsBAWp4AcCq8yZkTEJKQ=
Expires on: 2012-04-20

Validate Server's Certificate Store

467

XKMS Certificate Validation
Overview

XML Key Management Specification (XKMS) is an XML-based protocol that enables you to establish the trustworthiness
of a certificate over the Internet. The API Gateway can query an XKMS responder to determine whether a given certific-
ate can be trusted.

Configuration

You can configure the following fields on the Certificate Validation - XKMS screen.

Name:
Enter an appropriate name for this XKMS filter.

XKMS Connection:
Click the button on the right, and select an XKMS connection in the tree. To add an XKMS connection, right-click the
XKMS Connections node, and select Add an XKMS Connection. Alternatively, you can configure an XKMS connection
under the External Connections node in the Policy Studio tree. For more details, see the XKMS Certificate Validation
Connection topic.

468

XKMS Certificate Validation Connection
Overview

XML Key Management Specification (XKMS) is an XML-based protocol that enables you to establish the trustworthiness
of a certificate over the Internet. The API Gateway can query an XKMS responder to determine whether a given certific-
ate can be trusted.

You can add XKMS Connections under the External Connections tree node in the Policy Studio. To add a global XKMS
Connection, right-click the XKMS Connections node, and select Add an XKMS Connection.

Configuration

Configure the following fields on the Certificate Validation - XKMS screen.

Name:
Enter an appropriate name for this XKMS connection.

URL Group:
Select a group of XKMS responders from the URL Group drop-down list. The API Gateway attempts to connect to the
XKMS responders in the selected group in a round-robin fashion. It attempts to connect to the responders with the
highest priority first, before connecting to responders with a lower priority.

You can add, edit, or remove URL Groups by selecting the appropriate button. For more information on adding and edit-
ing URL groups, see the Configuring URL Groups topic.

User Name:
Requests to XKMS responders can be signed by a user to whom the Sign OCSP or XKMS Requests privilege has been
assigned. Only those users who have been assigned this privilege are displayed in the drop-down list. For more informa-
tion on assigning privileges to users, see the API Gateway Users tutorial.

Signing Key:
Click the Signing Key button to open the list of certificates in the Certificate Store. You can then select the key to use to
sign requests to XKMS responders. This user must have been granted the Sign OCSP or XKMS Requests privilege.

469

Cache Attribute
Overview

The Cache Attribute filter allows you to configure what part of the message you want to cache. Typically, response mes-
sages are cached and so this filter is usually configured after the routing filters in a policy. In this case, the con-
tent.body attribute stores the response message body from the Web Service and so this message attribute should be
selected in the Attribute Name to Store field.

For more information on how to configure this filter in a caching policy, see the topic on Global Caches.

Configuration

Name:
Enter a name for this filter here.

Select Cache to Use:
Click the button on the right, and select the cache to store the attribute value. The list of currently configured caches is
displayed in the tree. To add a cache, right-click the Caches tree node, and select Add Local Cache or Add Distrib-
uted Cache. Alternatively, you can configure caches under the Libraries node in the Policy Studio tree. For more de-
tails, see the topic on Global Caches.

Attribute Key:
The value of the message attribute entered here acts as the key into the cache. In the context of a caching policy, it must
be the same as the attribute specified in the Attribute containing key field on the Is Cached? filter.

Attribute Name to Store:
The value of the Oracle message attribute entered here will be cached in the cache specified in the Cache to use field
above.

470

Create Key
Overview

The Create Key filter is used to identify the part of the message that determines whether a message is unique. For ex-
ample, you can use the request message body to determine uniqueness so that if two successive identical message
bodies are received by the API Gateway, the response for the second request is taken from the cache.

You can also use other parts of the request to determine uniqueness (for example, HTTP headers, client IP address, cli-
ent SSL certificate, and so on). This means that you can use the Create Key filter to create keys for a range of different
caching scenarios (for example, caching a user's role, or caching a session for a user).

For more information on how to configure this filter in the context of a caching policy, see the Global Caches tutorial. This
shows the order in which caching filters such as the Create Key filter are placed in an example caching policy.

Configuration

Name:
Enter a suitable name for this filter.

Attribute Name:
Select or enter the name of the message attribute to use to determine whether an incoming request is unique or not. For
example, if http.request.clientcert (the client SSL certificate) is selected, the API Gateway takes a cached re-
sponse for successive requests in which the client SSL certificate is the same. Defaults to content.body.

Output attribute name:
Select or enter the name of the output message attribute to be used as the key for objects in the cache. Defaults to mes-
sage.key. This attribute contains a hash of the request message, which can then be used as the key for objects in the
cache.

471

Is Cached?
Overview

The Is Cached? filter looks up a named cache to see if a specified message attribute has already been cached. A mes-
sage attribute (usually message.key) is used as the key to search for in the cache. If the lookup succeeds, the retrieved
value overrides a specified message attribute, which is usually the content.body attribute.

For example, if a response message for a particular request has already been cached, the response message overrides
the request message body so that it can be returned to the client using the Reflect filter.

For more information on how to configure this filter in the context of a caching policy, see the Global Caches tutorial.

Configuration

Name:
Enter a suitable name for this filter.

Select Cache to Use:
Click the button on the right, and select the cache to lookup to find the attribute specified in the Attribute containing key
field below. The list of currently configured caches is displayed in the tree. To add a cache, right-click the Caches tree
node, and select Add Local Cache or Add Distributed Cache. Alternatively, you can configure caches under the Lib-
raries node in the Policy Studio tree. For more details, see the topic on Global Caches.

Attribute containing key:
The message attribute entered here is used as the key to lookup in the cache. In the context of a caching policy, the at-
tribute entered here must be the same as the attribute specified in the Attribute key field on the Cache Attribute filter.

Overwrite Attribute Name if Found:
Usually the content.body is selected here so that value retrieved from the cache (which is usually a response mes-
sage) overrides the request content.body with the cached response, which can then be returned to the client using
the Reflect filter.

472

Removed Cached Attribute
Overview

The Remove Cached Attribute filter allows you to delete a message attribute value that has been stored in a cache.
Each cache is essentially a map of name-value pairs, where each value is keyed on a particular message attribute. For
example, it is possible to store a cache of request messages according to their message ID. In this case the message's
id attribute would be the key into the cache, which would store the value of the request message's content.body
message attribute.

In this example, the Remove Cached Attribute filter can be used to remove a particular entry from the cache based on
the run-time value of a particular message attribute. By specifying the id message attribute to remove, the API Gateway
will look up the cache based on the value of the id message attribute. When it finds a matching message ID in the
cache, it will remove the corresponding entry from the cache.

The example described above may be useful in cases where a request message may need to be cached and stored until
the request has been fully processed and a response returned to the client. For example, if the request must be routed
on to a back-end Web Service, but that Web Service is temporarily unavailable, it may be possible to configure the policy
to re-send the cached request instead of forcing the client to retry.

For more information on how to configure a caching policy, see the topic on Global Caches.

Configuration

Name:
Enter a name for this filter here.

Select Cache to Use:
Click the button on the right, and select the cache that contains the cached values that have been keyed according to the
message attribute specified below. The list of currently configured caches is displayed in the tree. To add a cache, right-
click the Caches tree node, and select Add Local Cache or Add Distributed Cache. Alternatively, you can configure
caches under the Libraries node in the Policy Studio tree. For more details, see the topic on Global Caches.

Attribute Key:
Enter the message attribute that is used as the key into the cache in this field. At run-time, the API Gateway will populate
the value of this message attribute, which will then be used to lookup the cache selected in the table above. If a match is
found in the cache, the corresponding entry will be deleted from the cache.

473

ClamAV Anti-Virus
Overview

The API Gateway can check messages for viruses by connecting to a ClamAV daemon running on network. The
ClamAV daemon inspects the message and if the daemon finds a virus, it returns a corresponding response to the API
Gateway, which can then block the message, if necessary.

Configuration

Complete the following fields to configure the ClamAV Anti-Virus filter:

Name:
Enter an appropriate name for this filter.

ClamAV Daemon Host:
Enter the host name of the machine on which the ClamAV daemon is running.

ClamAV Daemon Port Number:
Enter the port on which the ClamAV daemon is listening.

474

Content Type Filtering
Overview

The SOAP Messages with Attachments specification introduced a standard for transmitting arbitrary files along with
SOAP messages as part of a multipart MIME message. In this way, both XML and non-XML data, including binary data,
can be encapsulated in a SOAP message. The more recent Direct Internet Message Encapsulation (DIME) specification
describes another way of packaging attachments with SOAP messages.

The API Gateway can accept or block multipart messages with certain MIME or DIME content types. For example, you
can configure a filter that blocks multipart messages that contain parts that are of type image/jpeg.

Allow or Deny Types

The Content Type Filtering screen lists the content types that are allowed or denied by this filter.

Allow Content Types:
Use this option if you wish to accept most content types, but only want to reject a few specific types. To allow or deny in-
coming messages based on their content types, complete the following steps:

1. Select the Allow content types radio button to allow multipart messages to be routed onwards. If you wish to allow
all content types, you do not need to select any of the MIME types in the list.

2. To deny multipart messages with certain MIME or DIME types as parts, select the checkbox next to those types.
Multipart messages containing parts of the MIME or DIME types selected here will be rejected.

Deny Content Types:
If you wish to block multipart messages containing most content types, but want to allow a small number of content
types, select this option. To reject multipart messages based on the content types of their parts, complete the following
steps:

1. Select the Deny content types radio button to reject multipart messages. If you wish to block all multipart mes-
sages, you do not need to select any of the MIME or DIME types in the list.

2. To allow messages with parts of a certain MIME or DIME type, select the checkbox next to those types. Multipart
messages with parts of the MIME or DIME types selected here will be allowed. All other MIME or DIME types will be
denied.

MIME and DIME types can be added by clicking the MIME/DIME Registered Types button. The next section describes
how to add, edit, and remove MIME/DIME types.

Configuring MIME/DIME Types

The MIME/DIME Settings dialog enables you to configure new and existing MIME types. When a type has been added,
you can configure the API Gateway to accept or block multipart messages with parts of this type.

Click the Add button to add a new MIME/DIME type, or highlight a type in the table, and select the Edit button to edit an
existing type. To delete an existing type, select that type in the list, and click the Remove button. You can edit or add
types using the Configure MIME/DIME Type dialog.

Enter a name for the new type in the MIME or DIME Type field, and the corresponding file extension in the Extension
field.

475

Content Validation
Overview

This tutorial describes how the API Gateway can examine the contents of an XML message to ensure that it meets cer-
tain criteria. It uses boolean XPath expressions to evaluate whether or not a specific element or attribute contains has a
certain value.

For example, you can configure XPath expressions to make sure the value of an element matches a certain string, to
check the value of an attribute is greater (or less) than a specific number, or that an element occurs a fixed amount of
times within an XML body.

There are two ways to configure XPath expressions on this screen. Please click the appropriate link below:

• Manual XPath Configuration
• XPath Wizard

Manual XPath Configuration

To manually configure a Content Validation rule using XPath:

1. Enter a meaningful name for this XPath content filter.
2. Click the Add button to add a new XPath expression. Alternatively, you can select a previously configured XPath ex-

pression from the drop-down list.
3. In order to resolve any prefixes within the XPath expression, the namespace mappings (i.e. Prefix, URI) should be

entered in the table.

As an example of how this screen should be configured, consider the following SOAP message:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="sig1">

...............

...............

...............

...............
</dsig:Signature>

</soap:Header>
<soap:Body>
<prod:product xmlns:prod="http://www.company.com">
<prod:name>SOA Product</prod:name>
<prod:company>Company</prod:company>
<prod:description>WebServices Security</prod:description>
</prod:product>

</soap:Body>
</soap:Envelope>

The following XPath expression evaluates to true if the <company> element contains the value Company:
XPath Expression: //prod:company[text()='Company']

In this case, you must define a mapping for the prod namespace as follows:

Prefix URI

prod http://www.company.com

476

In another example, the element to be examined by the XPath expression belongs to a default namespace. Consider the
following SOAP message:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="sig1">

...............

...............

...............

...............
</dsig:Signature>

</soap:Header>
<soap:Body>
<product xmlns="http://www.company.com">
<name>SOA Product</name>
<company>Company</company>
<description>Web Services Security</description>
</product>

</soap:Body>
</soap:Envelope>

The following XPath expression evaluates to true if the <company> element contains the value Company:
XPath Expression: //ns:company[text()='Company']

Because the <company> element belongs to the default (xmlns) namespace (http://www.company.com, you must
make up an arbitrary prefix (ns) for use in the XPath expression, and assign it to http://www.company.com. This is
necessary to distinguish between potentially several default namespaces which may exist throughout the XML message.
The following mapping illustrates this:

Prefix URI

ns http://www.company.com

XPath Wizard

The XPath Wizard assists administrators in creating correct and accurate XPath expressions. The wizard enables ad-
ministrators to load an XML message and then run an XPath expression on it to determine what nodes are returned. To
launch the XPath Wizard, click the XPath Wizard Button on the XPath Expression dialog.

To use the XPath Wizard, enter (or browse to) the location of an XML file in the File field. The contents of the XML file
are displayed in the main window of the wizard. Enter an XPath expression in the XPath field, and click the Evaluate
button to run the XPath against the contents of the file. If the XPath expression returns any elements (or returns true),
those elements are highlighted in the main window.

If you are not sure how to write the XPath expression, you can select an element in the main window. An XPath expres-
sion to isolate this element is automatically generated and displayed in the Selected field. If you wish to use this expres-
sion, select the Use this path button, and click OK.

Content Validation

477

HTTP Header Validation
Overview

The API Gateway can check HTTP header values for threatening content. This ensures that only properly configured
name-value pairs appear in the HTTP request headers. Regular expressions are used to test HTTP header values. This
enables you to make decisions on what to do with the message (for example, if the HTTP header value is X, route to ser-
vice X).

You can configure the following sections on the Validate HTTP Headers screen:

• Enter Regular Expression:
HTTP header values can be checked using regular expressions. You can select regular expressions from the global
White list or enter them manually. For example, if you know that an HTTP header must have a value of ABCD, a
regular expression of ^ABCD$ is an exact match test.

• Enter Threatening Content Regular Expression:
You can select threatening content regular expressions from the global Black list to run against all HTTP headers in
the message. These regular expressions identify common attack signatures (for example, SQL injection attacks).

You can configure the global White list and Black list libraries of regular expressions under the Libraries node in the
Policy Studio tree.

Configuring HTTP Header Regular Expressions

The Enter Regular Expression table displays the list of configured HTTP header names together with the White list of
regular expressions that restrict their values. For this filter to run successfully, all required headers must be present in the
request, and all must have values matching the configured regular expressions.

The Name column shows the name of the HTTP header. The Regular Expression column shows the name of the regu-
lar expression that the API Gateway uses to restrict the value of the named HTTP header. A number of common regular
expressions are available from the global White list library.

Configuring a Regular Expression
You can configure regular expressions by selecting the Add, Edit, and Delete buttons. The Configure Regular Expres-
sion dialog enables you to add or edit regular expressions to restrict the values of HTTP headers. To configure a regular
expression, perform the following steps:

1. Enter the name of the HTTP header in the Name field.
2. Select whether this header is Optional or Required using the appropriate radio button. If it is Required, the header

must be present in the request. If the header is not present, the filter fails. If it is Optional, the header does not need
to be present for the filter to pass.

3. You can enter the regular expression to restrict the value of the HTTP header manually or select it from the global
White list library of regular expressions in the Expression Name drop-down list. A number of common regular ex-
pressions are provided (for example, alphanumeric values, dates, and email addresses).
You can use selectors representing the values of message attributes to compare the value of an HTTP header with
the value contained in a message attribute. Enter the $ character in the Regular Expression field to view a list of
available attributes. At runtime, the selector is expanded to the corresponding attribute value, and compared to the
HTTP header value that you want to check. For more details on selectors, see Selecting Configuration Values at
Runtime.

4. You can add a regular expression to the library by selecting the Add/Edit button. Enter a Name for the expression
followed by the Regular Expression.

Advanced Settings

478

The Advanced section enables you to extract a portion of the header value which is run against the regular expression.
The extracted substring can be Base64 decoded if necessary. This section is specifically aimed towards HTTP Basic au-
thentication headers, which consist of the Basic prefix (with a trailing space), followed by the Base64-encoded user-
name and password. The following is an example of the HTTP Basic authentication header:

Authorization: Basic dXNlcjp1c2Vy

The Base64-encoded portion of the header value is what you are interested in running the regular expression against.
You can extract this by specifying the string that occurs directly before the substring you want to extract, together with
the string that occurs directly after the substring.

To extract the Base64-encoded section of the Authorization header above, enter Basic (with a trailing space) in the
Start substring field, and leave the End substring field blank to extract the entire remainder of the header value.

Important
You must select the start and end substrings to ensure that the exact substring is extracted. For example,
in the HTTP Basic example above, you should enter Basic (with a trailing space) in the Start substring
field, and not Basic (with no trailing space).

By specifying the correct substrings, you are left with the Base64-encoded header value (dXNlcjp1c2Vy). However,
you still need to Base64 decode it before you can run a regular expression on it. Make sure to select the Base64 decode
checkbox. The Base64-decoded header value is user:user, which conforms to the standard format of the Authoriz-
ation HTTP header. This is the value that you need to run the regular expression against.

The following example shows an example of an HTTP Digest authentication header:

Authorization: Digest username="user", realm="oracle.com", qop="auth",
algorithm="MD5", uri="/editor", nonce="Id-00000109924ff10b-0000000000000091",
nc="1", cnonce="ae122a8b549af2f0915de868abff55bacd7757ca",
response="29224d8f870a62ce4acc48033c9f6863"

You can extract single values from the header value. For example, to extract the realm field, enter realm=" (including
the " character), in the Start substring field and " in the End substring field. This leaves you with oracle.com to run
the regular expression against. In this case, there is no need to Base64 decode the extracted substring.

Note
If both Start substring and End substring fields are blank, the regular expression is run against the entire
header value. Furthermore, if both fields are blank and the Base64 decode checkbox is selected, the entire
header value is Base64 encoded before the regular expression is run against it.

While the above examples deal specifically with the HTTP authentication headers, the interface is generic enough to en-
able you to extract a substring from other header values.

Configuring Threatening Content Regular Expressions

The regular expressions entered in this section guard against the possibility of an HTTP header containing malicious
content. The Enter Threatening Content Regular Expression table lists the Black list of regular expressions to run to
ensure that the header values do not contain threatening content.

For example, to guard against an SQL DELETE attack, you can write a regular expression to identify SQL syntax and add
it to this list. The Threatening Content Regular Expressions are listed in a table. All of these expressions are run
against all HTTP header values in an incoming request. If the expression matches any of the values, the filter fails.

HTTP Header Validation

479

Important
If any regular expressions are configured in the Configuring HTTP Header Regular Expressions section,
these expressions are run before Threatening Content Regular Expressions (TCRE) are run. For example,
if you already configured a regular expression to extract the Base64-decoded value of the Authentica-
tion header value in the example above, the TCRE is run against this value instead of the attribute value
that appears in the HTTP header.

You can add threatening content regular expressions using the Add button. You can edit or remove existing expressions
by selecting them in the drop-down list, and clicking the Edit or Delete button.

You can enter the regular expressions manually or select them from the global Black list library of threatening content
regular expressions. This library is pre-populated with a number of regular expressions that scan for common attack sig-
natures. These include expressions to guard against common SQL injection-style attacks (for example, SQL INSERT,
SQL DELETE, and so on), buffer overflow attacks (content longer than 1024 characters), and the presence of control
characters in attribute values (ASCII control characters).

Enter or select an appropriate regular expression to restrict the value of the specified HTTP header. You can add a regu-
lar expression to the library by selecting the Add/Edit button. Enter a Name for the expression followed by the Regular
Expression.

HTTP Header Validation

480

ICAP Filter
Overview

You can use an ICAP filter to send a message to a pre-configured ICAP Server for content adaptation. For example, this
includes specific operations such as virus scanning, content filtering, ad insertion, and language translation. For more de-
tails, see the topic on Configuring ICAP Servers.

Configuration

Configure the following settings:

Name:
Enter an appropriate name for the filter.

ICAP Server:
Click the button next to this field, and select a pre-configured ICAP Server in the tree. To add an ICAP Server, right-click
the ICAP Servers tree node, and select Add an ICAP Server. Alternatively, you can configure ICAP Servers under the
External Connections node in the Policy Studio tree. For more details, see the topic on Configuring ICAP Servers.

Example Policies

This section shows some example use cases of the ICAP filter configured in policies.

Request Modification Mode
The following policy shows an ICAP filter used in Request Modification (REQMOD) mode:

This example policy is essentially an internet proxy but with all incoming messages being sent to an ICAP server for vir-
us-checking before being sent to the destination. All ICAP server-bound messages in this instance are REQMOD re-
quests.

Response Modification Mode
The following policy illustrates an ICAP Filter used in Response Modification (RESPMOD) mode:

481

This example policy also is an internet proxy but with all responses being sent to an ICAP server for virus-checking after
being sent to the destination and before being sent back to the client. All ICAP server-bound messages in this instance
are RESPMOD requests.

Further Information

For more details on the REQMOD and RESPMOD modes, see the topic on Configuring ICAP Servers.

ICAP Filter

482

McAfee Anti-Virus
Overview

The McAfee Anti-Virus filter scans incoming HTTP requests and their attachments for viruses and exploits. For ex-
ample, if a virus is detected in a MIME attachment or in the XML message body, the API Gateway can reject the entire
message and return a SOAP Fault to the client. In addition, this filter supports cleaning of messages from infections such
as viruses and exploits. It also provides scan type presets for different detection levels, and reports overall message
status after scanning.

Note
The McAfee Anti-Virus filter is available on Windows and Linux only.

Prerequisites

McAfee virus scanner integration requires the McAfee 5400 Scan Engine.

API Gateway
When adding third-party binaries to the API Gateway, you must perform the following steps:

1. Add the binary files as follows:
• Add .dat files from the McAfee 5400 Scan Engine to the install-dir/conf/plugin/mcafee/datv2 dir-

ectory, except for config.dat which must be added to install-dir/platform/lib or
install-dir\Win32\lib.

• Add .jar files to the install-dir/ext/lib directory.
• Add .dll files to the install-dir\Win32\lib directory.
• Add .so files to the install-dir/platform/lib directory.

2. Restart the API Gateway.

Policy Studio
When adding third-party binaries to the Policy Studio, you must perform the following steps:

1. Add .jar files to the install-dir/plugins/thirdparty.runtime.dependencies_6.0.3 directory.
2. Restart the Policy Studio.

Configuring a McAfee Anti-Virus Filter

To configure the McAfee Anti-Virus filter, perform the following steps:

1. Enter an appropriate name in the Name field.
2. Select a Scan type from the drop-down box. The available options are as follows:

Normal Processes the entire message detecting exploits and vir-
uses in the message headers, macros, multi-file archives,
executables, MIME-en-
coded/UU-encoded/XX-encoded/BinHex and TNEF/IMC
format files. Performs heuristic analysis to find new viruses
and potentially unwanted programs. This is the default
scan type.

483

Fast Detects infections in the top level of each message part,
such as exploits that use headers and multiple bodies. The
detection is less precise, but the performance is better if
the top-level object is infected.

Multi-pass Combines the Normal and Fast scan types. The Fast scan
(pass 1) runs first on the whole message with no cleaning.
The scanner stops if it finds an infected object, and if the
clean type is set to No cleaning, the scanner reports the
infection, or otherwise deletes the message. If pass 1 does
not detect any virus or exploit, the Normal scan (pass 2)
runs with the specified clean type and provides more pre-
cise detection.

Custom Enables you to set the Custom options described in the
next section. This provides compatibility with previous API
Gateway versions.

Note
When existing policies are upgraded to the
current API Gateway version, the McAfee
Anti-Virus filter scan type is set to Custom
and the clean type is set to No cleaning for
backward compatibility.

3. Select a Clean type from the drop-down box. The available options are as follows:

No cleaning Fails if any infection is detected. This is the default clean
type.

Always remove infected parts Removes the infected message part, and does not try to
repair it.

Attempt to repair infected parts Attempts to repair the found infection (if repairable), other-
wise deletes the infected message part.

Configuring Custom Options

When you configure a custom scan type, the following Custom options are available:

Decompress Archives:
This instructs the filter to scan each file in an archive for viruses. Types of archived files include the ZIP, JAR, TAR, ARJ,
LHA, PKARC, PKZIP, RAR, WinACE, BZip, and Zcompress formats.

Decompress Executables:
Executables are sometimes compressed to decrease overall message size. In such cases, any embedded viruses are
also compressed and may be missed by conventional scans. If this option is selected, the filter decompresses the ex-
ecutable before scanning it for viruses.

Fail Any Macros:

McAfee Anti-Virus

484

A macro is a series of commands that can be invoked in a single command or keystroke. While calling the macro can ap-
pear to be harmless, the initiated command sequence may be harmful. Macros are usually configured to run automatic-
ally when the host document is opened. When this option is selected, the API Gateway fails if any macro is detected in a
compound document (whether it matches a virus signature or not). An appropriate SOAP Fault is returned to the client.

Heuristic Program Analysis:
A heuristic virus detection algorithm runs a series of probing tests on a file in an attempt to solicit virus-like behavior from
it. Based on the results of these tests, the algorithm can then make an educated guess on whether the file represents a
potential threat or not. For example, programs that attempt to modify or delete files, invoke email clients, or replicate
themselves all display virus-like behavior and so may be treated as viruses by the scanner.

The major advantage of this type of analysis is that new viruses can be detected. With the signature detection method,
the scanner attempts to find a fixed number of known virus signatures in a file. Because the number of known signatures
is fixed, new or unknown viruses can not be detected. If this option is selected, the filter runs heuristic analysis on ex-
ecutables only.

Heuristic Macro Analysis:
When this option is enabled, the filter runs heuristic detection analysis on macros contained in any body parts of the
message. If any viruses are detected, the message is blocked. If this option is selected, the API Gateway searches for
virus signatures in the respective body parts of a MIME message. However, it can only search for known viruses using
this method.

Note
Macros embedded in MIME parts are also scanned for virus signatures.

Scan Embedded Scripts:
The API Gateway can scan MIME parts, such as HTML documents, for embedded scripts. If this option is selected, the
filter scans for embedded scripts.

Scan for Test Files:
When this option is selected, the API Gateway fails if it encounters an anti-virus test file (for example, eicar.com). This
is a convenient way to check that the anti-virus filter successfully detects known viruses.

Reporting Message Status

When the scan is complete, the McAfee Anti-Virus filter reports the overall message status in the mcafee.status
message attribute, which is generated by the filter. This reflects the overall status of the scan for all message parts, and
includes one of the following values:

NOVIRUS No virus or exploit detected in the message.

INFECTED Infection detected in the message.

REPAIRED Message repaired.

REMOVED Some or all message parts successfully removed.

REPAIRED, REMOVED Some message parts successfully repaired and some oth-
ers removed.

Loading McAfee Updates

When the McAfee Anti-Virus filter has been loaded, it searches for virus definitions in the following directory:

McAfee Anti-Virus

485

install-dir\conf\plugin\mcafee\datv2

When these have been loaded, it periodically checks for the presence of a directory named as follows:

install-dir\conf\plugin\mcafee\datv2.new

directory.

If the datv2.new directory is found, the scanner is stopped and the datv2 directory is renamed to datv2.0. If a
datv2.0 directory already exists from a previous rollover, a datv2.1 directory is created instead, and so on, until an
unused index is used. This means that the server never deletes the old files, and rolls them out of the way.

When the engine is stopped and restarted, any messages that require scanning are suspended until the restart com-
pletes. In addition, an initiated reload is suspended until all currently active scans are completed.

Important
Like all file system scanning approaches, there is an inherent ordering problem. If you create the
datv2.new directory before copying the files into the directory, the scanner may pick up the new directory
before it is ready to be used. For example, on Windows, you may experience problems if you enter the fol-
lowing commands from the install-dir\conf\plugin\mcafee directory:

mkdir datv2.new
copy c:\mcafee\newfiles*.* datv2.new

You can use the following commands to prevent this problem:

mkdir datv2.tmp
copy c:\mcafee\newfiles*.* datv2.tmp
rename datv2.tmp datv2.new

These create a temporary folder, copy the files into this folder, and rename the temporary folder to datv2.new. In this
way, the scanner is guaranteed to pick up the virus definition files when it detects the new directory.

On Linux, the same approach applies, but the location of the file and the commands used are different. For example,
enter the following commands from the install-dir/conf/plugin/mcafee directory:

mkdir datv2.tmp
cp /var/tmp/mcafee/newfiles/*.* datv2.tmp
mv datv2.tmp datv2.new

McAfee Anti-Virus

486

Message Size
Overview

It is sometimes useful to filter incoming messages based, not only on the content of the message, but on external char-
acteristics of the message. To this end, the API Gateway can be configured to reject messages that are greater or less
than a specified size.

Configuration

To configure the API Gateway to block messages of a certain size, complete the following fields:

• Enter the size (in bytes) of the smallest message that should be processed in the At least field. Messages smaller
than this size will be rejected.

• Enter the size (in bytes) of the largest message that should be processed in the At most field. Messages larger than
the size entered here will be rejected.

• The Use in Size Calculation options are used to specify the portion of the message that is to be used when calcu-
lating the size of the message.
• If the Root body only option is selected, the API Gateway will calculate the size of the message body excluding

all other MIME parts, i.e. attachments.
• If the Attachments only option is selected, the API Gateway will only calculate the size of all attachments to

the message. It will exclude the size of the root body payload from its calculation.
• Finally, if the Root body and attachments option is selected, the API Gateway will include the root body to-

gether with all other MIME parts when it calculates the size of the message.

Important
The message size measured by the API Gateway does not include HTTP headers.

487

Query String Validation
Overview

The API Gateway can check the request query string to ensure that only properly configured name and value pairs ap-
pear. Regular expressions are used to test the attribute values. This enables you to make decisions on what to do with
the message (for example, if the query sting value is X, route to service X)

You can configure the following sections on the Validate Query String screen:

• Enter Regular Expression:
Query string values can be checked using regular expressions. You can select regular expressions from the global
White list or enter them manually. For example, if you know that a query string must have a value of ABCD, a regu-
lar expression of ^ABCD$ is an exact match test.

• Enter Threatening Content Regular Expression:
You can select threatening content regular expressions from the global Black list to run against all query string
names and values. These regular expressions identify common attack signatures (for example, SQL injection at-
tacks).

You can configure the global White list and Black list libraries of regular expressions under the Libraries node in the
Policy Studio tree.

Request Query String

The request query string is the portion of the URL that comes after the ? character, and contains the request parameters.
It is typically used for HTTP GET requests in which form data is submitted as name-value pairs on the URL. This con-
trasts with the HTTP POST method where the data is submitted in the body of the request. The following example shows
a request URL that contains a query string:

http://hostname.com/services/getEmployee?first=john&last=smith

In this example, the query string is first=john&last=smith. Query strings consist of attribute name-value pairs, and
each name-value pair is separated by the & character.

The Query String Validation filter can also operate on the form parameters submitted in an HTTP Form POST. Instead
of encoding the request parameters in the query string, the client uses the application/x-www-form-urlencoded
content-type, and submits the parameters in the HTTP POST body, for example:

POST /services/getEmployee HTTP/1.1
Host: localhost:8095
Content-Length: 21
SOAPAction: HelloService
Content-Type: application/x-www-form-urlencoded

first=john&last=smith

If the API Gateway receives an HTTP request body such as this, the Query String Validation filter can validate the form
parameters.

Configuring Query String Attribute Regular Expressions

The Enter Regular Expression table displays the list of configured query string names together with the white list of reg-
ular expressions that restrict their values. For this filter to run successfully, all required attributes must be present in the
request, and all must have the correct value.

488

The Name column shows the name of the query string attribute. The Regular Expression column shows the name of
the regular expression that the API Gateway uses to restrict the value of the named query string attribute. A number of
common regular expressions are available from the global White list library.

If the Allow unspecified names checkbox is selected, additional unnamed query string attributes are not filtered by the
API Gateway. For example, this is useful if you are interested in filtering the content of only a small number of query
string attributes but the request may contain many attributes. In such cases, you only need to filter those few attributes,
and by selecting this checkbox, the API Gateway ignores all other query string attributes.

Configuring a Regular Expression
You can configure regular expressions by selecting the Add, Edit, and Delete buttons. The Configure Regular Expres-
sion dialog enables you to add or edit regular expressions to restrict the values request query string attributes. To config-
ure a regular expression, perform the following steps:

1. Enter the name of the query string attribute in the Name field.
2. Select whether this request parameter is Optional or Required using the appropriate radio button. If it is Required,

the parameter name must be present in the request. If the parameter is not present, the filter fails. If it is Optional,
the attribute does not need to be present for the filter to pass.

3. You can enter the regular expression to restrict the value of the query string attribute manually or select it from the
global White list library of regular expressions in the Expression Name drop-down list. A number of common regu-
lar expressions are provided (for example, alphanumeric values, dates, and email addresses).
You can use selectors representing the values of message attributes to compare the value of the query string attrib-
ute with the value contained in a message attribute. Enter the $ character in the Regular Expression field to view a
list of available attributes. At runtime, the selector is expanded to the corresponding attribute value, and compared to
the query string attribute value that you want to check.

4. You can add a regular expression to the library by selecting the Add/Edit button. Enter a Name for the expression
followed by the Regular Expression.

Advanced Settings
The Advanced section enables you to extract a portion of the query string attribute value that is run against the regular
expression. The extracted substring can also be Base64 decoded if necessary. The following is an example of a URL
containing a query string. The value of the password attribute is Base64 encoded, and must be extracted from the query
string and decoded before it is run against the regular expression.

http://oracle.com/services?username=user&password=dXNlcg0K&dept=eng

You can extract the encoded value of the password= attribute value by specifying the string that occurs directly before
the substring you want to extract, together with the string that occurs directly after the substring. Enter password= in the
Start substring field, and & in the End substring field.

Important
You must select the start and end substrings to ensure that the exact substring is extracted. For example,
in this example, password= (including the equals sign) should be entered in the Start substring field, and
not password (without the equals sign).

By specifying the correct substrings, you are left with the Base64-encoded attribute value (dXNlcg0K). However, you still
need to Base64 decode it before you can run a regular expression on it. Make sure to select the Base64 decode check-
box. The Base64-decoded password value is simply user. This is the value that you want to run the regular expression
against.

By specifying the correct substrings, you are left with the Base64-encoded attribute value (dXNlcg0K). However, you still
need to Base64 decode it before you can run a regular expression on it. Make sure to select the Base64 decode check-
box. The Base64-decoded password value is user. This is the value that you need to run the regular expression against.

Query String Validation

489

Note
If both Start substring and End substring fields are blank, the regular expression is run against the entire
attribute value. Furthermore, if both fields are blank and the Base64 decode checkbox is selected, the en-
tire attribute value is Base64 encoded before the regular expression is run against it.

Configuring Threatening Content Regular Expressions

The regular expressions entered in this section guard against the possibility of a query string attribute containing mali-
cious content. The Enter Threatening Content Regular Expression table lists the Black list of regular expressions to
run to ensure that the header values do not contain threatening content.

For example, to guard against an SQL DELETE attack, you can write a regular expression to identify SQL syntax and add
it to this list. The Threatening Content Regular Expressions are listed in a table. All of these expressions are run
against all attribute values in the query string. If the expression matches any of the values, the filter fails.

Important
If any regular expressions are configured in the Configuring Query String Regular Expressions section,
these expressions are run before the Threatening Content Regular Expressions (TCRE) are run. For ex-
ample, if you have already configured a regular expression to extract the Base64-decoded value of the
password query string attribute as in the example above, the TCRE is run against this value instead of the
attribute value that appears in the query string.

You can add threatening content regular expressions using the Add button. You can edit or remove existing expressions
by selecting them in the drop-down list and clicking the Edit or Delete button.

You can enter the regular expressions manually or select them from the global Black list library of threatening content
regular expressions. This library is pre-populated with regular expressions that guard against common attack signatures.
These include a expressions to guard against common SQL injection style attacks (for example, SQL INSERT, SQL DE-
LETE, and so on), buffer overflow attacks (content longer than 1024 characters), and the presence of control characters
in attribute values (ASCII Control Character).

Enter or select an appropriate regular expression to restrict the value of the specified query string. You can add a regular
expression to the library by selecting the Add/Edit button. Enter a Name for the expression followed by the Regular Ex-
pression.

Query String Validation

490

Schema Validation
Overview

The API Gateway can check that XML messages conform to the structure or format expected by the Web Service by val-
idating those requests against XML Schemas. An XML Schema precisely defines the elements and attributes that consti-
tute an instance of an XML document. It also specifies the data types of these elements to ensure that only appropriate
data is allowed through to the Web Service.

For example, an XML Schema might stipulate that all requests to a particular Web Service must contain a <name> ele-
ment, which contains at most a ten character string. If the API Gateway receives a message with an improperly formed
<name> element, it rejects the message.

You can find the Schema Validation filter in the Content Filtering category of filters in the Policy Studio. Drag and drop
the filter on to the policy where you want to perform schema validation. The Schema Validation dialog has three tabs,
which are explained in this topic.

Schema to Use

Select one of the following options:

Use Schema from WSDL of Web Service:
Instead of selecting a specific XML schema to run in this filter, you can select this option to dynamically use the appropri-
ate SOAP operation schema from the current Web Service Context. When this option is selected, this filter has an addi-
tional required message attribute named webservice.context, which must be provided. This enables you to share
this filter to perform validation across multiple Web Services.

Select which XML Schema to validate messages with:
This is the default option. Click the button on the right, and select a schema to validate incoming messages in the tree.
To add a schema, right-click the Schemas tree node, and select Add Schema. You can select to load the schema from
a file or from a WSDL URL. Alternatively, you can configure schemas under the Resources node in the Policy Studio
tree. For more details on configuring schemas, see the following topics:

• Global Schema Cache
• Web Service Repository

Note
If you have a WSDL file that contains an XML Schema, and want to use this schema to validate the mes-
sage, you can import the WSDL file into the Web Services Repository. The WSDL Import Wizard auto-
matically creates a Schema Validation filter and incorporates it into the auto-generated policy. In this case,
the top-level schema in the WSDL, which is imported into the Web Services Repository, is selected by
default in the filter. In this way, if the schema imports other schemas, they are available to the filter at
runtime when validating the message. For more details on importing WSDL files, see the Web Service Re-
pository topic.

Part of Message to Match

A portion of the XML message can be extracted using an XPath expression. The API Gateway can then validate this por-
tion against the specified XML Schema. For example, administrators may only want to validate the SOAP Body part of a
SOAP message. In this case, they should enter or select an XPath expression that identifies the SOAP Body of the mes-
sage. This portion should then be validated against an XML Schema that defines the structure of the SOAP Body for that
particular message.

491

Click the Add or Edit buttons to add or edit an XPath expression using the Enter XPath Expression dialog. You can re-
move expressions by selecting the expression in the XPath Expression drop-down and clicking the Delete button.

On the Enter XPath Expression dialog, there are two ways to configure XPath expressions. For more details, see the
following links:

• Manual Configuration
• XPath Wizard

The XPath Wizard assists administrators in creating correct and accurate XPath expressions. The wizard enables ad-
ministrators to load an XML message and then run an XPath expression on it to determine what nodes are returned.

Advanced

The following settings are available on the Advanced tab:

Allow RPC Schema Validation:
When the Allow RPC Schema Validation checkbox is selected, the filter makes a best attempt to validate an RPC-
encoded SOAP message. An RPC-encoded message is defined in the WSDL as having an operation with the following
characteristics:

• The style attribute of the <soap:operation> element is set to document.
• The use attribute of the <soap:body> element is set to rpc.

For details on the possible values for these attributes, see Section 3.5 [http://www.w3.org/TR/wsdl#_soap:body] of the
WSDL specification.

The problem with RPC-encoded SOAP messages in terms of schema validation is that the schema contained in the
WSDL file does not necessarily fully define the format of the SOAP message, unlike with document-literal style
messages. With an RPC-encoded operation, the format of the message can be defined by a combination of the SOAP
operation name, WSDL message parts, and schema-defined types. As a result, the schema extracted from a WSDL file
may not be able to validate a message.

Another problem with RPC-encoded messages is that type information is included in each element that appears in the
SOAP message. For such element definitions to be validated by a schema, the type declarations must be removed,
which is precisely what the Schema Validation filter does if the checkbox is selected on this tab. It removes the type de-
clarations and then makes a best attempt to validate the message.

However, as explained earlier, if some of the elements in the SOAP message are taken from the WSDL file instead of
the schema (for example, when the SOAP operation name in the WSDL file is used as the wrapper element beneath the
SOAP Body instead of a schema-defined type), the schema is not able to validate the message.

Inline MTOM Attachments into Message:
Message Transmission Optimization Mechanism (MTOM) provides a way to send binary data to Web Services in stand-
ard SOAP messages. MTOM leverages the include mechanism defined by XML Optimized Packaging (XOP), whereby
binary data can be sent as a MIME attachment (similar to SOAP with Attachments) to a SOAP message. The binary data
can then be referenced from within the SOAP message using the <xop:Include> element.

The following SOAP request contains a binary image that has been Base64-encoded so that it can be inserted as the
contents of the 

Schema Validation

492

http://www.w3.org/TR/wsdl#_soap:body
http://www.w3.org/TR/wsdl#_soap:body

</uploadGraphic>
</soap:Body>

</soap:Envelope>

When this message is converted to an MTOM message by the API Gateway (for example, using the Extract MTOM At-
tachment filter) the Base64-encoded content from the 
</uploadGraphic>

</soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/gif
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/myimage.gif>

// binary octets for image

--MIME_boundary

When attempting to validate the MTOM message with an XML Schema, it is crucial that you are aware of the format of
the 
</uploadGraphic>

</soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/gif
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/myimage.gif>

// binary octets for image

--MIME_boundary

When the API Gateway receives this request, the Insert MTOM Attachment filter can be used to read the binary data in
the MIME parts pointed to by the <xop:Include> elements embedded in the SOAP request. The binary data is then
Base64-encoded and inserted into the message in place of the <xop:Include> elements. The resulting message is as
follows:

<?xml version="1.0" encoding="UTF-8"?>

530

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<uploadGraphic xmlns="www.example.org">

</uploadGraphic>

</soap:Body>
</soap:Envelope>

Configuration

Complete the following fields to configure this filter:

Name:
Enter a name for the filter.

XPath Location:
Use an XPath expression to point to the location of the <xop:Include> element that refers to the binary attachment.
The specified XPath expression can point to multiple <xop:Include> elements if necessary. For example, an XPath
expression of //xop:Include returns all <xop:Include> elements in the SOAP Envelope. For more information, see
the Configuring XPath Expressions topic.

Remove attachments once they have been included in the message:
Select this option if you wish to remove the MIME parts that contain the actual binary content from the message after
they have been inserted into the message.

Insert MTOM Attachment

531

JSON to XML
Overview

You can use the JSON to XML filter to convert a JavaScript Object Notation (JSON) document to an XML document. For
details on the mapping conventions used, see: https://github.com/beckchr/staxon/wiki/Mapping-Convention

Configuration

To configure the JSON to XML filter, specify the following fields:

Name:
Enter a suitable name that reflects the role of the filter.

Virtual root element:
If the incoming JSON document has multiple root elements, enter a virtual root element to be added to the output XML
document. This is required because multiple root elements are not valid in XML. Otherwise, the XML parser will fail. For
more details, see the section called “Examples”.

Insert processing instructions into the output XML representing JSON array boundaries:
Select this option if you wish to enable round-trip conversion back to JSON. This inserts the necessary processing in-
structions into the output XML. This option is not selected by default. For more details, see the section called “Examples”.

Note
This option is recommended if you wish to convert back to the original JSON array structures. This informa-
tion would be lost during the translation back to XML.

For more details, see the topic on XML to JSON.

Convert JSON object names to valid XML element names:
Select this option if you wish to convert your JSON object names to XML element names. This option is not selected by
default.

Important
You should ensure that your JSON object names are also valid XML element names. If this is not possible,
this option analyses each object name and automatically performs the conversion. This has a performance
overhead and is not recommended if you wish to convert back to the original JSON.

Examples

This section shows examples of using JSON to XML filter options.

Multiple Root Elements
For example, the following incoming JSON message has multiple root elements:

{
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address":
{

"streetAddress": "21 2nd Street",
"city": "New York",

532

https://github.com/beckchr/staxon/wiki/Mapping-Convention

"state": "NY",
"postalCode": "10021"

},
"phoneNumber":
[

{
"type": "home",
"number": "212 555-1234"

},
{
"type": "fax",
"number": "646 555-4567"

}
]

}

If you enter customer in the Virtual root element field, this results in the following output XML:

<?xml version="1.0" encoding="utf-8"?>
<customer>

<firstName>John</firstName>
<lastName>Smith</lastName>
<age>25</age>
<address>

<streetAddress>21 2nd Street</streetAddress>
<city>New York</city>
<state>NY</state>
<postalCode>10021</postalCode>

</address>
<phoneNumber>

<type>home</type>
<number>212 555-1234</number>

</phoneNumber>
<phoneNumber>

<type>fax</type>
<number>646 555-4567</number>

</phoneNumber>
</customer>

Inserting processing instructions into the output XML
For example, take the following incoming JSON message:

{
"customer" : {
"first-name" : "Jane",
"last-name" : "Doe",
"address" : {

"street" : "123 A Street"
},
"phone-number" : [{

"@type" : "work",
"$" : "555-1111"

}, {
"@type" : "cell",
"$" : "555-2222"

}]
}

}

When the Insert processing instructions into the output XML representing JSON array boundaries option is selec-
ted, the output XML is as follows:

JSON to XML

533

<?xml version="1.0" encoding="utf-8"?>
<customer>

<first-name>Jane</first-name>
<last-name>Doe</last-name>
<address>

<street>123 A Street</street>
</address>
<?xml-multiple phone-number?>
<phone-number type="work">555-1111</phone-number>
<phone-number type="cell">555-2222</phone-number>

</customer>

JSON to XML

534

Extract MTOM Attachment
Overview

Message Transmission Optimization Mechanism (MTOM) provides a way to send binary data to Web Services within
standard SOAP messages. MTOM leverages the include mechanism defined by XML Optimized Packaging (XOP)
whereby binary data can be sent as a MIME attachment (similar to SOAP with Attachments) to a SOAP message. The
binary data can then be referenced in the SOAP message using the <xop:Include> element.

The following MTOM message contains a binary image that has been Base64-encoded so that it can be inserted as the
contents of the 
</uploadGraphic>

</soap:Body>
</soap:Envelope>

When the API Gateway receives this request, the Extract MTOM Content filter can be used to extract the
Base64-encoded content from the 
</uploadGraphic>

</soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/gif
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/myimage.gif>

// binary octets for image

535

--MIME_boundary

Important
It is important to note the following:

• The Base64-encoded contents of the <image> element have been replaced by the <xop:Include>
element.

• The <xop:Include> element points to a MIME part using the href attribute.
• The value of the href attribute corresponds to the value of the Content-ID HTTP header of the

MIME part that contains the binary octets of the actual image file.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for the filter.

XPath Location:
Use an XPath expression to locate the encoded data elements. For example, in the sample SOAP request message
above, you would configure an XPath expression to point to the <image> element. For more information, see the Config-
uring XPath Expressions topic.

Extract MTOM Attachment

536

Load File
Overview

The Load File filter enables you to load the contents of the specified file, and set them as message content to be pro-
cessed. When the contents of the file are loaded, they can be passed to the core message pipeline for processing by the
appropriate message filters. For example, the Load File filter might be used in cases where an external application drops
XML files on to the file system to be validated, modified, and potentially routed on over HTTP, JMS, or simply stored to a
directory where the application can access them again.

For example, this sort of protocol mediation can be useful when integrating legacy systems. Instead of making drastic
changes to the legacy system by adding an HTTP engine, the API Gateway can load files from the file system, and route
them on over HTTP to another back-end system. The added benefit is that messages are exposed to the full compliment
of message processing filters available in the API Gateway. This ensures that only properly validated messages are
routed on to the target system.

Configuration

To configure the Load File filter, specify the following fields:

Name Name of the filter to be displayed in a policy. Defaults to
Load File.

File Specify the path to the file that the content is loaded from
(for example, c:/workspace/example_file.xml).

File contents Choose one of the following options:

• Raw file
• HTTP message including HTTP headers

This enables you to load the contents of a raw file, or to
load archived HTTP messages from disk.

Output directory Specify the directory to write the output to at the end of pro-
cessing (for example, c:/my_app/output_dir).

Finishing processing Specify the action to take when processing is complete:

• Do nothing
• Delete loaded file
• Move loaded file to following directory

If you select Move loaded file to following directory, the
Directory field is enabled to allow you to specify the direct-
ory that the file is moved to. The default is Do nothing.

537

Remove Attachments
Overview

This filter can be used to remove all attachments from either a request or a response message, depending on where the
filter is placed in the policy.

Configuration

Enter a name for this filter in the Name field.

538

Remove HTTP Header
Overview

The API Gateway can strip a named HTTP header from the message as it passes through a policy. This is especially
useful in cases where end-user credentials are passed to the API Gateway in an HTTP header. After processing the cre-
dentials, you can use the Remove HTTP Header filter to strip the header from the message to ensure that it is not for-
warded on to the destination Web Service.

Configuration

To configure the Remove HTTP Header filter, perform the following steps:

1. Enter an appropriate name for this filter in the Name field.
2. Specify name of the HTTP header to remove in the HTTP Header Name field.
3. Select the Fail if header is not present checkbox to configure the API Gateway to abort the filter if the message

does not contain the named HTTP header. Headers can be added to the message using the Add HTTP Header con-
version filter.

539

JSON Remove Node
Overview

You can use this filter to remove a JSON node from a JSON message. You can specify the node to remove using a
JSON Path expression. The JSON Path query language enables you to select nodes in a JSON document.

For more details on JSON Path, see http://code.google.com/p/jsonpath.

Configuration

To configure this filter, specify the following fields:

Name:
Enter a suitable name that reflects the role of the filter.

JSON Path Expression:
Enter a JSON Path expression to specify the node to remove (for example, $.store.bicycle). The Policy Studio
prompts if you enter an unsupported JSON Path expression.

Note
If the specified expression returns more than one node, all returned nodes are removed.

Fail if no nodes returned from JSON Path:
When this option is selected, and the JSON Path expression returns no nodes, the filter returns false. If this option is not
selected, and the JSON Path returns no nodes, the filter returns true, and no nodes are removed. This option is not se-
lected by default.

Save deleted nodes to be reinserted to new location:
Select this option if you want to move JSON nodes from one location in the message to another. The deleted nodes are
stored in the deleted.json.node.list message attribute. You can then use the JSON Add Node filter to insert the
deleted nodes into a different location in the message. For more details, see the topic on JSON Add Node.

Examples

The following are some examples of using the JSON Remove Node filter.

Removing a Node
The following example shows removing a bicycle from the store:

The following example shows the corresponding request and response message in Oracle API Gateway Explorer:

540

http://code.google.com/p/jsonpath

Removing all Items in an Array
The following example shows removing all books in an array:

The following example shows the corresponding request and response message in Oracle API Gateway Explorer:

JSON Remove Node

541

JSON Remove Node

542

Remove XML Node
Overview

You can use this filter to remove an XML element, attribute, text, or comment node from an XML message. You can spe-
cify the node to remove using an XPath expression. The XPath query language enables you to select nodes in an XML
document.

Configuration

To configure this filter, specify the following fields:

Name:
Enter a suitable name that reflects the role of the filter. For example, if the purpose of this filter is to remove an <ID> ele-
ment from the message, it would be appropriate to name this filter Remove ID Element.

XPath Location:
Specify an XPath expression to indicate the node to remove. When the expression is configured correctly, you can re-
move an element, attribute, text, or comment node. If this expression returns more than one node, all returned nodes are
removed.

You can select XPath expressions from the drop-down list, and edit or add expressions by clicking the relevant button.
The following are some example expressions:

Name XPath Expression Prefix URI

The First WSSE Security
element

//wsse:Security[1] wsse ht-
tp://docs.oasis-open.
org/
wss/
2004/01/oasis-200401-
wss-wssecur-
ity-secext-1.0.xsd

Text Nodes in SOAP Body /
soap:Envelope/soap:Bo
dy/text()

soap ht-
tp://schemas.xmlsoap.
org/soap/envelope/

Fail if no nodes returned from XPath:
If this option is selected, and the XPath expression returns no nodes, the filter returns false. If this option is not selected,
and the XPath returns no nodes, the filter returns true, and no nodes are removed.

Save deleted nodes to be re-inserted to new location:
You can use this option in cases where you want to move XML nodes from one location in the message to another. By
selecting this option, the deleted nodes are stored in the deleted.node.list message attribute. You can then use the
Add XML Node filter to insert the deleted nodes back into a different location in the message. For more details, see the
Add XML Node filter.

543

Restore Message
Overview

You can use this filter to restore message content at runtime using a specified selector expression. You can restore the
contents of a request message or a response message, depending on where the filter is placed in the policy.

For example, you could use this filter to restore original message content if you needed to manipulate the message for
authentication or authorization. Typically, this filter is used with the Store Message filter, which is first used to store the
original message content. For more details, see Store Message.

Configuration

Name:
Enter a suitable name for this filter.

Selector Expression to retrieve message:
Enter the selector expression used to restore the message content. Defaults to ${store.content.body}). For more
details on selector expressions, see Selecting Configuration Values at Runtime.

544

Store Message
Overview

You can use this filter to store message content in a specified message attribute. You can store the contents of a request
message or a response message, depending on where the filter is placed in the policy.

For example, you could use this filter to store the original message content for reuse later if you need to manipulate the
message for authentication or authorization. Typically, this filter is used with the Restore Message filter, which is then
used to restore the original message content. For more details, see Restore Message.

Configuration

Name:
Enter a suitable name for this filter.

Attribute to store message:
Enter the name of the message attribute used to store the message content. Defaults to store.content.body.

545

Set Message
Overview

The Set Message filter replaces the body of the message. The replacement data can be plain text, HTML, XML, or any
other text-based markup.

You can use selectors representing the values of message attributes in the replacement text to insert message-specific
data into the message body. For example, you can insert the authenticated user's ID into a <Username> element by us-
ing a ${authentication.subject.id} selector as follows:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<Username>${authentication.subject.id}</Username>

</soap:Header>
<soap:Body>
<getQuote xmlns="oracle.com">
<ticker>ORM.L</ticker>
</getQuote>

</soap:Body>
</soap:Envelope>

Assuming the oracle user authenticated successfully to the API Gateway, the message body is set as follows:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<Username>oracle</Username>

</soap:Header>
<soap:Body>
<getQuote xmlns="oracle.com">
<ticker>ORM.L</ticker>
</getQuote>

</soap:Body>
</soap:Envelope>

For more details on selectors, see Selecting Configuration Values at Runtime.

You can also use the Set Message filter to customize SOAP faults that are returned to clients in the case of a failure or
exception in the policy. For a detailed explanation of how to use this filter to customize SOAP faults, see the SOAP Fault
topic.

Configuration

Perform the following steps to configure the Set Message filter:

1. Enter a name for this filter in the Name field.
2. Specify the content type of the new message body in the Content-type field. For example, if the new message body

is HTML markup, enter text/html in the Content-Type field.
3. Enter the new message body in the Message Body text area. You can use selectors, as shown in the example

above, to ensure that current message attribute values are inserted into the message body at the appropriate
places. You can also load the message contents from a file by browsing to the location of the file using the Browse
button.

546

XSLT Transformation
Overview

Extensible Stylesheet Language Transformations (XSLT) is a declarative, XML-based language used to transform XML
documents into other XML documents. An XSL stylesheet is used to transform an XML document into another document
type. The stylesheet defines how elements in the XML source document should appear in the resulting XML document.

The API Gateway can convert XML data to other data formats using XSL files. For example, an incoming XML message
adhering to a specific XML schema can be converted to an XML message adhering to a different schema before it is sent
to the destination Web Service.

This type of conversion is especially valuable in the Web Services arena, where a Web Service might receive SOAP re-
quests from various types of clients, such as browsers, applications, and mobile phones. Each client might send up a dif-
ferent type of SOAP request to the Web Service. Using stylesheets, the API Gateway can then convert each type of re-
quest to the same format. The requests can then be processed in the same fashion.

Enter an appropriate name for this filter in the Name field, and configure the following tabs.

Stylesheet Location

Select an XSL stylesheet from the Stylesheet Location drop-down list, which is populated with the contents of the
Stylesheet Library. You can import a new stylesheet into the library by clicking the View/Import button, and the Add but-
ton on the Stylesheet Library dialog.

You can modify existing stylesheets in the XSLT Contents text area, and then update them in the API Gateway configur-
ation by clicking the Update button.

Stylesheet Parameters

You can pass parameters to an XSL stylesheet using specified values in <xsl:param> elements. These values are
then used in the templates defined throughout the stylesheet.

Using the XSLT Transformation filter, you can pass the values of message attributes to the configured stylesheet. For
example, you can take the value of the authentication.subject.id message attribute, pass it to the configured
XSL stylesheet, and then output this value to the result produced by the conversion.

To use this feature, select the Use Message Attributes as Stylesheet Parameters checkbox, and specify the message
attribute to pass to the stylesheet by clicking the Add button.

The following example from an XSL stylesheet that uses parameters shows how to configure this:

<xsl:param name="authentication.subject.id"/>
<xsl:param name="authentication.issuer.id"/>

To pass the corresponding message attribute values to the stylesheet, you must add the authentica-
tion.subject.id and authentication.issuer.id message attributes to the Message Attributes to use table.

Important
The name of the specified parameter must be a valid API Gateway message attribute name, and there
must be an equivalent parameter name in the stylesheet.

Advanced

547

Complete the following fields on this tab:

Provider Class Name:
Enter the fully qualified name of the XSLT provider class of the XSLT library that you want to use. This class must be ad-
ded to the API Gateway's classpath. If this field is blank, the default provider is used.

The simplest way to add a provider class to the API Gateway's classpath is to drop the required JAR file into the
PRODUCT_HOME/ext/lib directory, where PRODUCT_HOME refers to the root of your API Gateway installation.

Result will be XML:
You can convert an incoming XML message to other data formats. Select this option if the result of the XSLT conversion
is always XML. If not, the content-type of the result document depends on the output method of the XSLT stylesheet. For
example, if the stylesheet specifies an output method of HTML (<xsl:output method="html">), this field should be
left blank so that the API Gateway can forward on the HTML output document to the target Web Service.

Do not change the content type header:
You can select whether to change the HTTP Content-Type header in this XSLT transformation. This setting is selected
by default, so the content type is preserved.

XSLT Transformation

548

XML to JSON
Overview

You can use the XML to JSON filter to convert an XML document to a JavaScript Object Notation (JSON) document. For
details on the mapping conventions used, see:https://github.com/beckchr/staxon/wiki/Mapping-Convention

Configuration

To configure the XML to JSON filter, specify the following fields:

Name:
Enter a suitable name to reflect the role of this filter.

Automatically insert JSON array boundaries:
Select this option to attempt to automatically reconstruct JSON arrays from the incoming XML document. This option is
selected by default.

Note
If the incoming XML document includes the <?xml multiple> processing instruction, the JSON array is
reconstructed regardless of this option setting. If the XML document does not contain <?xml multiple>,
and this option is selected, the filter makes an attempt at guessing what should be part of the array by ex-
amining the element names.

For more details and example <?xml multiple> processing instructions, see the topic on JSON to XML.

549

https://github.com/beckchr/staxon/wiki/Mapping-Convention

Generate Key
Overview

The Generate Key filter enables you to generate an asymmetric key pair, or a symmetric key. The generated keys are
placed in message attributes, which are then available to be consumed by other filters.

An example use case for this filter is to use it in conjunction with the Security Token Service Client filter. For example,
you wish to request a SAML token with a symmetric proof-of-possession key from an STS. You need to provide the key
material to the STS as a binary secret, which is the private key of an asymmetric key pair. You can use an asymmetric
private key generated on-the-fly instead of from the Certificate Store with an associated certificate. You must configure
the Generate Key filter in a Security Token Service Client filter policy that runs before the WS-Trust request is created.
You can then configure the Security Token Service Client filter to consume the generated asymmetric private key. For
more details, see the Security Token Service Client topic.

Note
An asymmetric key pair generated by the Generate Key filter can also be used by the Security Token
Service Client filter when a proof-of-possession key of type PublicKey is requested. The generated pub-
lic key can be used as the UseKey in the request to the STS.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for the filter.

Key Type:
Select the key type from the drop-down list. Defaults to RSA Asymmetric Key Pair.

Key Size:
Enter the key size in bits. Defaults to 2048 bits.

550

PGP Decrypt
Overview

You can use the PGP Decrypt filter to decrypt a Pretty Good Privacy (PGP) encrypted message. This filter decrypts an
incoming message using the specified PGP private key, and creates a new message body using the specified content
type. The decrypted message can be processed by the API Gateway, and then encrypted again using the PGP Encrypt
filter.

An example use case for this filter would be when files are sent to the API Gateway over Secure Shell File Transfer Pro-
tocol (SFTP) in PGP encrypted format. The API Gateway can use the PGP Decrypt filter to decrypt the message, and
then use Threat Detection filters to perform virus scanning. The clean files can be PGP encrypted again using the PGP
Encrypt filter before being sent over SFTP to their target destination. For more details, see the PGP Encrypt filter.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for this filter.

PGP Private Key to be retrieved from one of the following locations:
Select one of the following options:

• Use the following private key from the PGP Key Pair list
Click the browse button on the right, and select a PGP key pair configured in the Certificate Store. For details on
configuring PGP key pairs, see the topic on Certificates and Keys.

• Look up the private key using the following alias
Enter the alias name of the PGP private key used in the Certificate Store (for example, My PGP Test Key). Altern-
atively, you can enter a selector expression that specifies the name of a message attribute that contains the alias.
The value of the selector is expanded at runtime (for example, ${my.pgp.test.key.alias}).

• The following message attribute will contain the private key
Enter a selector expression that specifies the name of the message attribute that contains the private key. The value
of the selector is expanded at runtime (for example, ${my.pgp.test.private.key}).

For more details on selectors, see Selecting Configuration Values at Runtime.

Content type:
Enter the Content-Type of the unencrypted message data. Defaults to application/octet-stream.

551

PGP Encrypt
Overview

You can use the PGP Encryption filter to generate a Pretty Good Privacy (PGP) encrypted message. This filter enables
you to configure the PGP public key used when encrypting the message. You can also configure advanced options such
as whether the message outputs ASCII armor, or whether it uses a symmetrically encrypted integrity protected data
packet to protect against modification attacks.

For example, using the default options, the PGP Encryption filter creates a PGP encrypted message such as the follow-
ing:

-----BEGIN PGP MESSAGE-----
Version: BCPG v1.46

hQIOA3ePizxHLIA8EAgAmVNAgJO7TXI9vWCJHZS27r4FIfZIYWNc0+MiQ3H+LZrW
29Wageetg5N7cFAbRpG28iKYSE5O0uFMThuWuhnMZ/GtRwMogiRsNyBY0Cq0LKaG
7oIbkjWE1BHdWXQLWW44zYl8ekTWJ4ZPNCemTtHyULB9QwuWx5b6QfAyh1jvFrSN
ub9mQzU8caY7xQrVgWii1tBFOzTcGw6/Vb7AtMZfwGGjqmzYLT5pLozWUKB0gZe1
/7wpWDsHsn+53lrRXdoqwvAhY2AnOLPyrrVsykXS38YtIh9N5D+uCCvgmICej9Ok
iieh1hgGnuzw3VdQ6n3TS0t/Xk3shB95I3IkXU1l4ggAjPSnf9qEuN2u8dsRooNR
J6nYWs/OGwBSj0/MtssoRAcEVYu93tITUXqybduq8CATHGD8at4WRiTLOcndgJTp
0aUU+aOi3l3SsnrlpPSKIu18K9AqFCE+lafdXKlqU2OaGMBbsU22Vy6SkDgSXuGg
EOG0KYHRdrAntHJiO3qrJRTd8BDrPc5PZWUwDfCUWuQRMJiJVp0bxrK8Qzz/Ni7T
XgRSL1cYzAQRsQAbne69On+5n+NWO1Qcx9SnSimBtPOQXJfff+a+Wb45ABj5TdYr
4PCd2OJ0uOapSWfiSA5mZ1sB9hEAR0FidXs1iAploun1qggNYZK94BGGXblnTCzR
ccnARKqWmWanr1VVnp6fs9WI6I3zkiCGTJlQMNa0UKZdEPe1wJb7NHgJFMKrwN1X
3rSVyUWiovnYYMlDGBHG/RWGsTSd0LT7VugtIByefCI2G7WevgLUJbOq+U/0Sh6A
82oMNuWbXbDTp3pfZae/SHqOyEdDp5zsGqZ/F4M7CQFx63XCIBsFA6JRj6GdYqYf
dewuej3WJtRDdHmikjb3o7Utl8fFhKjA9GdEZueG9ls+XcAx21iBT656HRof8wio
oSca8ui3SYbhZ+0uzwImDJ0054P3Xr24+iwI4vlKjiQNY23GjXsVa2rQn6VHT60o
CYo08tDYBH4gyetLAqczCVyh6sff9SqX
=qkB0
-----END PGP MESSAGE-----

For an example use case, see the PGP Decrypt filter.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for the filter.

PGP Public Key to be retrieved from one of the following locations:
Select one of the following options:

• Use the following public key from the PGP Key Pair list
Click the browse button on the right, and select a PGP key pair configured in the Certificate Store. For details on
configuring PGP key pairs, see the topic on Certificates and Keys.

• Look up the public key using the following alias
Enter the alias name of the PGP public key used in the Certificate Store (for example, My PGP Test Key). Altern-
atively, you can enter a selector expression that specifies the name of a message attribute that contains the alias.
The value of the selector is expanded at runtime (for example, ${my.pgp.test.key.alias}).

• The following message attribute will contain the public key
Enter a selector expression that specifies the name of the message attribute that contains the public key. The value
of the selector is expanded at runtime (for example, ${my.pgp.test.public.key}).

552

For more details on selectors, see Selecting Configuration Values at Runtime.

ASCII Armor Output:
Select whether to output the binary message data as ASCII Armor. ASCII Armor is a special text format used by PGP to
convert binary data into printable ASCII text. ASCII Armored data is especially suitable for use in email messages, and is
also known as Radix-64 encoding. This option is selected by default.

Symmetric Encrypted Integrity Protected Data Packet:
Select whether the message uses a Symmetrically Encrypted Integrity Protected Data packet. This is a variant of the
Symmetrically Encrypted Data packet, and is used detect modifications to the encrypted data. This option is not selected
by default.

PGP Encrypt

553

SMIME Decryption
Overview

The SMIME Decryption filter can be used to decrypt an encrypted Secure/Multipurpose Internet Mail Extensions
(SMIME) message.

Configuration

Complete the following fields to configure this filter:

Name:
Enter a name for the filter in the Name field.

Use Certificate to Decrypt:
Check the box next to the certificate that you want to use to decrypt the encrypted PKCS#7 message with. The private
key associated with this certificate will be used to actually decrypt the message.

554

SMIME Encryption
Overview

You can use the SMIME Encryption filter to generate an encrypted Secure/Multipurpose Internet Mail Extensions
(SMIME) message. This filter enables you to configure the certificates of the recipients of the encrypted message. You
can also configure advanced options such as ciphers and Base64 encoding.

General Configuration

Complete the following general field:

Name:
Enter an appropriate name for the filter.

Recipients

The Recipients tab enables you to configure the certificates of the recipients of the encrypted SMIME message. Select
one of the following options:

Use the following certificates:
This is the default option. Select the certificates of the recipients of the encrypted message. The public keys associated
with these certificates are used to encrypt the data so that it can only be decrypted using the associated private keys.

Certificate in attribute:
Alternatively, enter the message attribute that contains the certificate of the recipients of the encrypted message. De-
faults to the certificate message attribute.

Advanced

The Advanced tab includes the following settings:

Cipher:
Enter the cipher that you want to use to encrypt the message data. Defaults to the DES-EDE3-CBC cipher.

Content-Type:
Enter the Content-Type of the message data. Defaults to application/pkcs7-mime.

Base64 encode:
Select whether to Base64 encode the message data. This option is not selected by default.

555

XML-Decryption
Overview

The XML Decryption filter is responsible for decrypting data in XML messages based on the settings configured in the
XML-Decryption Settings filter.

The XML-Decryption Settings filter generates the decryption.properties message attribute based on configura-
tion settings. The XML-Decryption filter uses these properties to perform the decryption of the data.

Configuration

Enter an appropriate name for the filter in the Name field.

Auto-generation using the XML Decryption Wizard

Because the XML Decryption filter must always be paired with an XML Decryption Settings filter, the Policy Studio
provides a wizard that can generate both of these filters at the same time. To use the wizard, right-click a policy node un-
der the Policies node in the Policy Studio tree, and select XML Decryption Settings.

Configure the fields on the XML Decryption Settings dialog as explained in the XML-Decryption Settings topic. When
finished, an XML Decryption Settings filter is created along with an XML Decryption filter.

556

XML-Decryption Settings
Overview

The API Gateway can decrypt an XML encrypted message on behalf of its intended recipients. XML Encryption is a W3C
standard that enables data to be encrypted and decrypted at the application layer of the OSI stack, thus ensuring com-
plete end-to-end confidentiality of data.

You should use the XML-Decryption Settings in conjunction with the XML-Decryption filter, which performs the de-
cryption. The XML-Decryption Settings generates the decryption.properties message attribute, which is required
by the XML-Decryption filter.

Important
The output of a successfully executed decryption filter is the original unencrypted message. Depending on
whether the Remove EncryptedKey used in decryption has been enabled, all information relating to the
encryption key can be removed from the message. For more details, see Options section.

XML Encryption Overview

XML Encryption facilitates the secure transmission of XML documents between two application endpoints. Whereas tra-
ditional transport-level encryption schemes, such as SSL and TLS, can only offer point-to-point security, XML Encryption
guarantees complete end-to-end security. Encryption takes place at the application-layer and so the encrypted data can
be encapsulated in the message itself. The encrypted data can therefore remain encrypted as it travels along its path to
the target Web Service. Furthermore, the data is encrypted such that only its intended recipients can decrypt it.

To understand how the API Gateway decrypts XML encrypted messages, you should first examine the format of an XML
Encryption block. The following example shows a SOAP message containing information about Oracle:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<getCompanyInfo xmlns="www.oracle.com">
<name>Company</name>
<description>XML Security Company</description>
</getCompanyInfo>

</s:Body>
</s:Envelope>

After encrypting the SOAP Body, the message is as follows:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<Security xmlns="http://schemas.xmlsoap.org/ws/2003/06/secext" s:actor="Enc">
<!-- Encapsulates the recipient's key details -->
<enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="00004190E5D1-7529AA14" MimeType="text/xml">
<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#rsa-1_5">
<enc:KeySize>256</enc:KeySize>

</enc:EncryptionMethod>
<enc:CipherData>
<!-- The session key encrypted with the recipient's public key -->
<enc:CipherValue>

AAAAAJ/lK ... mrTF8Egg==
</enc:CipherValue>

</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>sample</dsig:KeyName>

557

<dsig:X509Data>
<!-- The recipient's X.509 certificate -->
<dsig:X509Certificate>

MIIEZzCCA0 ... fzmc/YR5gA
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>
<enc:CarriedKeyName>Session key</enc:CarriedKeyName>
<enc:ReferenceList>
<enc:DataReference URI="#00004190E5D1-5F889C11"/>

</enc:ReferenceList>
</enc:EncryptedKey>
</Security>

</s:Header>
<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="00004190E5D1-5F889C11" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#aes256-cbc">
<enc:KeySize>256</enc:KeySize>
</enc:EncryptionMethod>
<enc:CipherData>
<!-- The SOAP Body encrypted with the session key -->
<enc:CipherValue>

E2ioF8ib2r ... KJAnrX0GQV
</enc:CipherValue>
</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>Session key</dsig:KeyName>
</dsig:KeyInfo>

</enc:EncryptedData>
<s:Envelope>

The most important elements are as follows:

• EncryptedKey: The EncryptedKey element encapsulates all information relevant to the encryption key.
• EncryptionMethod: The Algorithm attribute specifies the algorithm that is used to encrypt the data. The mes-

sage data (EncryptedData) is encrypted using the Advanced Encryption Standard (AES) symmetric cipher, but
the session key (EncryptedKey) is encrypted with the RSA asymmetric algorithm.

• CipherValue: The value of the encrypted data. The contents of the CipherValue element are always Base64 en-
coded.

• KeyInfo: Contains information about the recipient and his encryption key, such as the key name, X.509 certificate,
and Common Name.

• ReferenceList: This element contains a list of references to encrypted elements in the message. The Refer-
enceList contains a DataReference element for each encrypted element, where the value of a URI attribute
points to the Id of the encrypted element. In the previous example, you can see that the DataReference URI at-
tribute contains the value #00004190E5D1-5F889C11, which corresponds with the Id of the EncryptedData ele-
ment.

• EncryptedData: The XML element(s) or content that has been encrypted. In this case, the SOAP Body element
has been encrypted, and so the EncryptedData block has replaced the SOAP Body element.

Now that you have seen how encrypted data can be encapsulated in an XML message, it is important to discuss how this
data gets encrypted in the first place. When you understand how data is encrypted, the fields that must be configured to
decrypt this data become easier to understand.

When a message is encrypted, only the intended recipient(s) of the message can decrypt it. By encrypting the message
with the recipient's public key, the sender can be guaranteed that only the intended recipient can decrypt the message
using his private key, to which he has sole access. This is the basic principle behind asymmetric cryptography.

XML-Decryption Settings

558

In practice, however, encrypting and decrypting data with a public-private key pair is notoriously CPU-intensive and time
consuming. Because of this, asymmetric cryptography is seldom used to encrypt large amounts of data. The following
steps exemplify a more typical encryption process:

1. The sender generates a one-time symmetric (or session) key which is used to encrypt the data. Symmetric key en-
cryption is much faster than asymmetric encryption and is far more efficient with large amounts of data.

2. The sender encrypts the data with the symmetric key. This same key can then be used to decrypt the data. It is
therefore crucial that only the intended recipient can access the symmetric key and consequently decrypt the data.

3. To ensure that nobody else can decrypt the data, the symmetric key is encrypted with the recipient's public key.
4. The data (encrypted with the symmetric key) and session key (encrypted with the recipient's public key) are then

sent together to the intended recipient.
5. When the recipient receives the message he, decrypts the encrypted session key using his private key. Because the

recipient is the only one with access to the private key, he is the only one who can decrypt the encrypted session
key.

6. Armed with the decrypted session key, the recipient can decrypt the encrypted data into its original plaintext form.

Now that you understand how XML Encryption works, it is now time to learn how to configure the API Gateway to decrypt
XML encrypted messages. The following sections describe how to configure the XML Decryption Settings filter to de-
crypt encrypted XML data.

Node(s) to Decrypt

An XML message may contain several EncryptedData blocks. This section specifies which encryption blocks are to be
decrypted. There are two available options:

• Decrypt All Encrypted Nodes
• Use XPath to Select Encrypted Nodes

Decrypt All:
The API Gateway attempts to decrypt all EncryptedData blocks contained in the message.

Use XPath:
This option enables the administrator to explicitly choose the EncryptedData block that the API Gateway should de-
crypt.

For example, the following skeleton SOAP message contains two EncryptedData blocks:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>

...
<s:Header>
<s:Body>
<!-- 1st EncryptedData block -->
<e:EncryptedData xmlns:e="http://www.w3.org/2001/04/xmlenc#"

Encoding="iso-8859-1" Id="ENC_1" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

...
</e:EncryptedData>
<!-- 2nd EncryptedData block -->
<e:EncryptedData xmlns:e="http://www.w3.org/2001/04/xmlenc#"

Encoding="iso-8859-1" Id="ENC_2" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

...
</e:EncryptedData>

</s:Body>
</s:Envelope>

XML-Decryption Settings

559

The EncryptedData blocks are selected using XPath. You can use the following XPath expressions to select the re-
spective EncryptedData blocks:

EncryptedData Block XPath Expression

1st //enc:EncryptedData[@Id='ENC_1']

2nd //enc:EncryptedData[@Id='ENC_2']

Click the Add, Edit, or Delete buttons to add, edit, or remove an XPath expression.

Decryption Key

This section specifies the key to use to decrypt the encrypted nodes. As discussed in the section called “XML Encryption
Overview”, data encrypted with a public key can only be decrypted with the corresponding private key. The Decryption
Key settings enable you to specify the private (decryption) key from the <KeyInfo> element of the XML Encryption
block, or the certificate stored in the Oracle message attribute can be used to lookup the private key of the intended re-
cipient of the encrypted data in the Certificate Store.

Find via KeyInfo in Message:
Select this option if you wish to determine the decryption key to use from the KeyInfo section of the EncryptedKey
block. The KeyInfo section contains a reference to the public key used to encrypt the data. You can use this KeyInfo
section reference to find the relevant private key (from the Oracle Certificate Store) to use to decrypt the data.

Find via certificate from Selector Expression:
Select this option if you do not wish to use the KeyInfo section in the message. Enter a selector expression that con-
tains a certificate, (for example, ${certificate}) whose corresponding private key is stored in the Oracle Certificate
Store . Using a selector enables settings to be evaluated and expanded at runtime based on metadata (for example, in a
message attribute, a Key Property Store (KPS), or environment variable). For more details, see Selecting Configuration
Values at Runtime.

Extract nodes from Selector Expression:
Specify whether to extract nodes from a specified selector expression (for example, ${node.list}). This setting is not
selected by default.

Typically, a Find Certificate filter is used in a policy to locate an appropriate certificate and store it in the certificate
message attribute. When the certificate has been stored in this attribute, the XML Decryption Settings filter can use this
certificate to lookup the Certificate Store for a corresponding private key for the public key stored in the certificate. To do
this, select the certificate attribute from the drop-down list.

Options

The following configuration options are available in this section:

Fail if no encrypted data found:
If this option is selected, the filter fails if no <EncryptedData> elements are found within the message.

Remove the EncryptedKey used in decryption:
Select this option to remove information relating to the decryption key from the message. When this option is selected,
the <EncryptedKey> block is removed from the message.

Important
In cases where the <EncryptedKey> block has been included in the <EncryptedData> block, it is re-
moved regardless of whether this setting has been selected.

XML-Decryption Settings

560

Default Derived Key Label:
If the API Gateway consumes a <DerivedKeyToken>, the default value entered is used to recreate the derived key
that is used to decrypt the encrypted data.

Algorithm Suite Required:
Select the WS-Security Policy Algorithm Suite that must have been used when encrypting the message. This check en-
sures that the appropriate algorithms were used to encrypt the message.

Auto-generation using the XML Decryption Wizard

Because the XML Decryption Settings filter must always be paired with an XML Decryption filter, it makes sense to
have a wizard that can generate both of these filters at the same time. To use the wizard, right-click the name of the
policy in the tree view of the Policy Studio, and select the XML Decryption Settings menu option.

Configure the fields on the XML Decryption Settings dialog as explained in the previous sections. When finished, an
XML Decryption Settings filter is created along with an XML Decryption filter.

XML-Decryption Settings

561

XML-Encryption
Overview

The XML-Encryption filter is responsible for encrypting parts of XML messages based on the settings configured in the
XML-Encryption Settings filter.

The XML-Encryption Settings filter generates the encryption.properties message attribute based on configura-
tion settings. The XML-Encryption filter uses these properties to perform the encryption of the data.

Configuration

Enter a suitable name for the filter in the Name field.

Auto-generation using the XML Encryption Settings Wizard

Because the XML Encryption filter must always be used in conjunction with the XML Encryption Settings and Find
Certificate filters, the Policy Studio provides a wizard that can generate these three filters at the same time. To use this
wizard, right-click a policy node under the Policies node in the Policy Studio tree, and select the XML Encryption Set-
tings menu option.

For more information on how to configure the XML Encryption Settings Wizard see the XML Encryption Wizard topic.

562

XML-Encryption Settings
Overview

The API Gateway can XML encrypt an XML message so that only certain specified recipients can decrypt the message.
XML Encryption is a W3C standard that enables data to be encrypted and decrypted at the application layer of the OSI
stack, thus ensuring complete end-to-end confidentiality of data.

The XML-Encryption Settings should be used in conjunction with the XML-Encryption filter, which performs the en-
cryption. The XML-Encryption Settings generates the encryption.properties message attribute, which is required
by the XML-Encryption filter.

XML Encryption Overview

XML Encryption facilitates the secure transmission of XML documents between two application endpoints. Whereas tra-
ditional transport-level encryption schemes, such as SSL and TLS, can only offer point-to-point security, XML Encryption
guarantees complete end-to-end security. Encryption takes place at the application-layer, and so the encrypted data can
be encapsulated in the message itself. The encrypted data can therefore remain encrypted as it travels along its path to
the target Web Service.

Before explaining how to configure the API Gateway to encrypt XML messages, it is useful to examine an XML encrypted
message. The following example shows a SOAP message containing information about Oracle:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<getCompanyInfo xmlns="http://www.oracle.com">
<name>Company</name>
<description>XML Security Company</description>
</getCompanyInfo>

</s:Body>
</s:Envelope>

After encrypting the SOAP Body, the message is as follows:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<Security xmlns="http://schemas.xmlsoap.org/ws/2003/06/secext" s:actor="Enc">
<!-- Encapsulates the recipient's key details -->
<enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="00004190E5D1-7529AA14" MimeType="text/xml">
<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#rsa-1_5">
<enc:KeySize>256</enc:KeySize>

</enc:EncryptionMethod>
<enc:CipherData>
<!-- The session key encrypted with the recipient's public key -->
<enc:CipherValue>

AAAAAJ/lK ... mrTF8Egg==
</enc:CipherValue>

</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>sample</dsig:KeyName>
<dsig:X509Data>
<!-- The recipient's X.509 certificate -->
<dsig:X509Certificate>

MIIEZzCCA0 ... fzmc/YR5gA
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>
<enc:CarriedKeyName>Session key</enc:CarriedKeyName>

563

<enc:ReferenceList>
<enc:DataReference URI="#00004190E5D1-5F889C11"/>

</enc:ReferenceList>
</enc:EncryptedKey>
</Security>

</s:Header>
<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="00004190E5D1-5F889C11" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#aes256-cbc">
<enc:KeySize>256</enc:KeySize>
</enc:EncryptionMethod>
<enc:CipherData>
<!-- The SOAP Body encrypted with the session key -->
<enc:CipherValue>

E2ioF8ib2r ... KJAnrX0GQV
</enc:CipherValue>
</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>Session key</dsig:KeyName>
</dsig:KeyInfo>

</enc:EncryptedData>
<s:Envelope>

The most important elements are as follows:

• EncryptedKey:
The EncryptedKey element encapsulates all information relevant to the encryption key.

• EncryptionMethod:
The Algorithm attribute specifies the algorithm used to encrypt the data. The message data (EncryptedData) is
encrypted using the Advanced Encryption Standard (AES) symmetric cipher, but the session key (EncryptedKey)
is encrypted with the RSA asymmetric algorithm.

• CipherValue:
The value of the encrypted data. The contents of the CipherValue element are always Base64 encoded.

• DigestValue:
Contains the Base64-encoded message-digest.

• KeyInfo:
Contains information about the recipient and his encryption key, such as the key name, X.509 certificate, and Com-
mon Name.

• ReferenceList: This element contains a list of references to encrypted elements in the message. It contains a
DataReference element for each encrypted element, where the value of a URI attribute points to the Id of the en-
crypted element. In the previous example, the DataReference URI attribute contains the value
#00004190E5D1-5F889C11, which corresponds with the Id of the EncryptedData element.

• EncryptedData:
The XML elements or content that has been encrypted. In this case, the SOAP Body element has been encrypted,
and so the EncryptedData block has replaced the SOAP Body element.

Now that you have seen how encrypted data can be encapsulated in an XML message, it is important to discuss how the
data is encrypted. When a message is encrypted, it is encrypted in such a manner that only the intended recipients of the
message can decrypt it. By encrypting the message with the recipient public key, the sender can be guaranteed that only
the intended recipient can decrypt the message using his private key, to which he has sole access. This is the basic prin-
ciple behind asymmetric cryptography.

In practice, however, encrypting and decrypting data with a public-private key pair is a notoriously CPU-intensive and
time consuming affair. Because of this, asymmetric cryptography is seldom used to encrypt large amounts of data. The
following steps show a more typical encryption process:

XML-Encryption Settings

564

1. The sender generates a one-time symmetric (or session) key which is used to encrypt the data. Symmetric key en-
cryption is much faster than asymmetric encryption, and is far more efficient with large amounts of data.

2. The sender encrypts the data with the symmetric key. This same key can then be used to decrypt the data. It is
therefore crucial that only the intended recipient can access the symmetric key and consequently decrypt the data.

3. To ensure that nobody else can decrypt the data, the symmetric key is encrypted with the recipient's public key.
4. The data (encrypted with the symmetric key), and session key (encrypted with the recipient's public key), are then

sent together to the intended recipient.
5. When the recipient receives the message, he decrypts the encrypted session key using his private key. Because the

recipient is the only one with access to the private key, only he can decrypt the encrypted session key.
6. Armed with the decrypted session key, the recipient can decrypt the encrypted data into its original plaintext form.

Now that you understand the structure and mechanics of XML Encryption, you can configure the API Gateway to encrypt
egress XML messages. The next section describes how to configure the tabs on the XML Encryption Settings screen.

Encryption Key

The settings on this tab determine the key to use to encrypt the message, and how this key is referred to in the encrypted
data. The following configuration options are available:

Important
A symmetric key is used to encrypt the data. This symmetric key is then encrypted (asymmetrically) with
the recipient's public key. In this way, only the recipient can decrypt the symmetric encryption key with its
private key. When the recipient has access to the unencrypted encryption key, it can decrypt the data.

Generate Encryption Key:
Select this option to generate a symmetric key to encrypt the data with.

Encryption Key from Selector Expression:
If you have already used a symmetric key in a previous filter (for example, a Sign Message filter), you can reuse that key
to encrypt data by selecting this option and specifying a selector expression to obtain the key (for example,
${symmetric.key}). Using a selector enables settings to be evaluated and expanded at runtime based on metadata
(for example, in a message attribute, a Key Property Store (KPS), or environment variable). For more details, see Select-
ing Configuration Values at Runtime.

Include Encryption Key in Message:
Select this option if you want to include the encryption key in the message. The encryption key is encrypted for the recipi-
ent so that only the recipient can access the encryption key. You may choose not to include the symmetric key in the
message if the API Gateway and recipient have agreed on the symmetric encryption key using some other means.

Specify Method of Associating the Encryption Key with the Encrypted Data:
This section enables you to configure the method by which the encrypted data references the key used to encrypt it. The
following options are available:

• Point to Encryption Key with Security Token Reference:
This option creates a <SecruityTokenReference> in the <EncryptedData> that points to an
<EncryptedKey>.

• Embed Symmetric Key Inside Encrypted Data:
Place the <xenc:EncryptedKey> inside the <xenc:EncryptedData> element.

• Specify Encryption Key via Carried Keyname:
Place the encrypted key's carried keyname inside the <dsig:KeyInfo>/ <dsig:KeyName> of the
<xenc:EncryptedData>.

• Specify Encryption Key via Retrieval Method:
Refer to a symmetric key via a retrieval method reference from the <xenc:EncryptedData>.

XML-Encryption Settings

565

• Symmetric Key Refers to Encrypted Data:
The symmetric key refers to <xenc:EncryptedData> using a reference list.

Use Derived Key:
Select this option if you want to derive a key from the symmetric key configured above to encrypt the data. The
<enc:EncryptedData> has a <wsse:SecurityTokenReference> to the <wssc:DerivedKeyToken>. The
<wssc:DerivedKeyToken> refers to the <enc:EncryptedKey>. Both <wssc:DerivedKeyToken> and
<enc:EncryptedKey> are placed inside a <wsse:Security> element.

Key Info

This tab configures the content of the <KeyInfo> section of the generated <EncryptedData> block. Configure the fol-
lowing fields on this tab:

Do Not Include KeyInfo Section:
This option enables you to omit all information about the certificate that contains the public key that was used to encrypt
the data from the <EncryptedData> block. In other words, the <KeyInfo> element is omitted from the
<EncryptedData> block. This is useful where a downstream Web Service uses an alternative method to decide what
key to use to decrypt the message. In such cases, adding certificate information to the message may be regarded as an
unnecessary overhead.

Include Certificate:
This is the default option, which places the certificate that contains the encryption key inside the <EncryptedData>.
The following example, shows an example of a <KeyInfo> that has been produced using this option:

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIEZDCCA0yg
....
RNp9aKD1fEQgJ

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</enc:EncryptedData>

Expand Public Key:
The details of the public key used to encrypt the data are inserted into a <KeyValue> block. The <KeyValue> block is
only inserted when this option is selected.

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIE EQgJ
</dsig:X509Certificate>
</dsig:X509Data>
<dsig:KeyValue>
<dsig:RSAKeyValue>
<dsig:Modulus>

AMfb2tT53GmMiD
...
NmrNht7iy18=

</dsig:Modulus>
<dsig:Exponent>AQAB</dsig:Exponent>

</dsig:RSAKeyValue>

XML-Encryption Settings

566

</dsig:KeyValue>
</dsig:KeyInfo>

</enc:EncryptedData>

Include Distinguished Name:
If this checkbox is selected, the Distinguished Name of the certificate that contains the public key used to encrypt the
data is inserted in an <X509SubjectName> element as shown in the following example:

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample,C=IE...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIEZDCCA0yg
....
RNp9aKD1fEQgJ

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</enc:EncryptedData>

Include Key Name:
This option enables you insert a key identifier, or <KeyName>, to allow the recipient to identify the key to use to decrypt
the data. Enter an appropriate value for the <KeyName> in the Value field. Typical values include Distinguished Names
(DName) from X.509 certificates, key IDs, or email addresses. Specify whether the specified value is a Text value of a
Distinguished name attribute by selecting the appropriate radio button.

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<dsig:KeyName>test@oracle.com</dsig:KeyName>

</dsig:KeyInfo>
</enc:EncryptedData>

Put Certificate in an Attachment:
The API Gateway supports SOAP messages with attachments. By selecting this option, you can save the certificate con-
taining the encryption key to the file specified in the input field. This file can then be sent along with the SOAP message
as a SOAP attachment.

From previous examples, it is clear that the user's certificate is usually placed inside a <KeyInfo> element. However, in
this example, the certificate is contained in an attachment, and not in the <EncryptedData>. Clearly, you need a way
to reference the certificate from the <EncryptedData> block, so that the recipient can determine what key it should use
to decrypt the data. This is the role of the <SecurityTokenReference> block.

The <SecurityTokenReference> block provides a generic mechanism for applications to retrieve security tokens in
cases where these tokens are not contained in the SOAP message. The name of the security token is specified in the
URI attribute of the <Reference> element.

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<wsse:SecurityTokenReference xmlns:wsse="http://schemas.xmlsoap.org/ws/...">
<wsse:Reference URI="c:\myCertificate.txt"/>
</wsse:SecurityTokenReference>

</dsig:KeyInfo>
</enc:EncryptedData>

XML-Encryption Settings

567

When the message is sent, the certificate attachment is given a Content-Id corresponding to the URI attribute of the
<Reference> element. The following example shows the wire format of the complete multipart MIME SOAP message.
It should help illustrate how the <Reference> element refers to the Content-ID of the attachment:

POST /adoWebSvc.asmx HTTP/1.0
Content-Length: 3790
User-Agent: API Gateway
Accept-Language: en
Content-Type: multipart/related; type="text/xml";

boundary="----=Multipart-SOAP-boundary"

------=Multipart-SOAP-boundary
Content-Id: soap-envelope
Content-Type: text/xml; charset="utf-8";
SOAPAction=getQuote

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
...

<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
...

<dsig:KeyInfo>
<ws:SecurityTokenReference xmlns:ws="http://schemas.xmlsoap.org/ws/...">
<ws:Reference URI="c:\myCertificate.txt"/>

</ws:SecurityTokenReference>
</dsig:KeyInfo>

</enc:EncryptedData>
...

</s:Envelope>

------=Multipart-SOAP-boundary
Content-Id: c:\myCertificate.txt
Content-Type: text/plain; charset="US-ASCII"

MIIEZDCCA0ygAwIBAgIBAzANBgkqhki
....
7uFveG0eL0zBwZ5qwLRNp9aKD1fEQgJ
------=Multipart-SOAP-boundary-

Security Token Reference:
A <wsse:SecurityTokenReference> element can be used to point to the security token used to encrypt the data. If
you wish to use a <wsse:SecurityTokenReference>, enable this option, and select a Security Token Reference
type from Reference Type drop-down list.

The <wsse:SecurityTokenReference>, (in the <dsig:KeyInfo>), may contain a <wsse:Embedded> security
token. Alternatively, the <wsse:SecurityTokenReference>, (in the <dsig:KeyInfo>), may refer to a certificate us-
ing a <dsig:X509Data>. Select the appropriate button, Embed or Refer, depending on whether you want to use an
embedded security token or a referred one.

If you have configured the SecurityContextToken (sct) mechanism from the Security Token Reference drop-
down list, you can select to use an Attached SCT or an Unattached SCT. The default option is to use an Attached
SCT, which should be used in cases where the SCT refers to a security token inside the <wsse:Security> header. If
the SCT is located outside the <wsse:Security> header, you should select the Unattached SCT option.

You can make sure to include a <BinarySecurityToken> (BST) that contains the certificate (that contains the encryp-
tion key) in the message by selecting the Include BinarySecurityToken option. The BST is inserted into the WS-
Security header regardless of the type of Security Token Reference selected from the dropdown.

Select Include TokenType if you want to add the TokenType attribute to the SecurityTokenReference element.

XML-Encryption Settings

568

Important
When using the Kerberos Token Profile standard, and the API Gateway is acting as the initiator of a secure
transaction, it can use Kerberos session keys to encrypt a message. The KeyInfo must be configured to
use a Security Token Reference with a ValueType of GSS_Kerberosv5_AP_REQ. In this case, the Ker-
beros token is contained in a <BinarySecurityToken> in the message.

If the API Gateway is acting as the recipient of a secure transaction, it can also use the Kerberos session keys to encrypt
the message returned to the client. However, in this case, the KeyInfo must be configured to use a Security Token Ref-
erence with ValueType of Kerberosv5_APREQSHA1. When this is selected, the Kerberos token is not contained in the
message. The Security Token Reference contains a SHA1 digest of the original Kerberos token received from the client,
which identifies the session keys to the client.

When using the WS-Trust for SPENGO standard, the Kerberos session keys are not used directly to encrypt messages
because a security context with an associated symmetric key is negotiated. This symmetric key is shared by both client
and service and can be used to encrypt messages on both sides.

Recipients

XML Messages can be encrypted for multiple recipients. In such cases, the symmetric encryption key is encrypted with
the public key of each intended recipient and added to the message. Each recipient can then decrypt the encryption key
with their private key and use it to decrypt the message.

The following SOAP message has been encrypted for 2 recipients (oracle_1 and oracle_2). The encryption key has
been encrypted twice: once for oracle_1 using its public key, and a second time for oracle_2 using its public key:

Important
The data itself is only encrypted once, while the encryption key must be encrypted for each recipient. For il-
lustration purposes, only those elements relevant to the above discussion have been included in the follow-
ing XML encrypted message.

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<Security xmlns="http://schemas.xmlsoap.org/ws/2003/06/secext"

s:actor="Enc Keys">
<enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="0000418BBB61-A692675C" MimeType="text/xml">
...
<enc:CipherData>
<!-- Enc key encrypted with oracle_1's public key and base64-encoded -->
<enc:CipherValue>AAAAAExx1A ... vuAhCgMQ==</enc:CipherValue>

</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>oracle_1</dsig:KeyName>

</dsig:KeyInfo>
<enc:CarriedKeyName>Session key</enc:CarriedKeyName>
<enc:ReferenceList>

<enc:DataReference URI="#0000418BBB61-D4495D9B"/>
</enc:ReferenceList>

</enc:EncryptedKey>
<enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="#0000418BBB61-D4495D9B" MimeType="text/xml">
...
<enc:CipherData>
<!-- Enc key encrypted with oracle_2's public key and base64-encoded -->
<enc:CipherValue>AAAAABZH+U ... MrMEEM/Ps=</enc:CipherValue>

</enc:CipherData>

XML-Encryption Settings

569

<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>oracle_2</dsig:KeyName>

</dsig:KeyInfo>
<enc:CarriedKeyName>Session key</enc:CarriedKeyName>
<enc:ReferenceList>

<enc:DataReference URI="#0000418BBB61-D4495D9B"/>
</enc:ReferenceList>

</enc:EncryptedKey>
</Security>

</s:Header>
<enc:EncryptedData xmlns:enc="http://www.w3.org/2001/04/xmlenc#"

Id="0000418BBB61-D4495D9B" MimeType="text/xml"
Type="http://www.w3.org/2001/04/xmlenc#Element">

<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04xmlenc#aes256-cbc">
<enc:KeySize>256</enc:KeySize>
</enc:EncryptionMethod>
<enc:CipherData>
<!-- SOAP Body encrypted with symmetric enc key and base64-encoded -->
<enc:CipherValue>WD0TmuMk9 ... GzYFeq8SM=</enc:CipherValue>
</enc:CipherData>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:KeyName>Session key</dsig:KeyName>
</dsig:KeyInfo>

</enc:EncryptedData>
</s:Envelope>

There are two <EncryptedKey> elements, one for each recipient. The <CipherValue> element contains the symmet-
ric encryption key encrypted with the recipient's public key. The encrypted symmetric key must be Base64-encoded so
that it can be represented as the textual contents of an XML element.

The <EncryptedData> element contains the encrypted data, along with information about the encryption process, in-
cluding the encryption algorithm used, the size of the encryption key, and the type of data that was encrypted (for ex-
ample, whether an element or the contents of an element was encrypted).

Click the Add button to add a new recipient for which the data will be encrypted. Configure the following fields on the
XML Encryption Recipient dialog:

Recipient Name:
Enter a name for the recipient. This name can then be selected on the main Recipients tab of the filter.

Actor:
The <EncryptedKey> for this recipient is inserted into the specified SOAP actor/role.

Use Key in Message Attribute:
Specify the message attribute that contains the recipient's public key that is used to encrypt the data. By default, the
certificate attribute is used. Typically, this attribute is populated by the Find Certificate filter, which retrieves a certi-
ficate from any one of a number of locations, including the Certificate Store, an LDAP directory, HTTP header, or from
the message itself.

If you want to encrypt the message for multiple recipients, you must configure multiple Find Certificate filters (or some
other filter that can retrieve certificates). Each Find Certificate filter retrieves a certificate for a single recipient and store
it in a unique message attribute.

For example, a Find Certificate filter called Find Certificate for Recipient1 filter could locate Recipient1's certificate
from the Certificate Store and store it in a certificate_recip1 message attribute. You would then configure a
second Find Certificate filter called Find Certificate for Recipient2, which could retrieve Recipient2's certificate from
the Certificate Store and store it in a certificate_recip2 message attribute.

On the Recipients tab of the XML Encryption Settings filter, you would then configure two recipients. For the first recip-
ient (Recipient1), you would enter certificate_recip1 as the location of the encryption key, while for the second re-

XML-Encryption Settings

570

cipient (Recipient2), you would specify certificate_recip2 as the location of the encryption key.

Note
If the API Gateway fails to encrypt the message for any of the recipients configured on the Recipients tab,
the filter will fail.

What to Encrypt

This tab is used to identify parts of the message that must be encrypted. Each encrypted part will be replaced by an
<EncryptedData> block, which contains all information required to decrypt the block.

You can use any combination of Node Locations, XPaths, and the nodes contained in a Message Attribute to specify
the nodes that are required to be encrypted. Please refer to the Locate XML Nodes filter for more information on how to
use these node selectors.

Important
Note the difference between encrypting the element and encrypting the element content. When encrypting
the element, the entire element is replaced by the <EncryptedData> block. This is not recommended, for
example, if you wish to encrypt the SOAP Body because if this element is removed from the SOAP mes-
sage, the message may no longer be considered a valid SOAP message.

Element encryption is more suitable when encrypting security blocks, (for example, WS-Security Username tokens and
SAML assertions) that may appear in a WS-Security header of a SOAP message. In such cases, replacing the element
content (for example, a <UsernameToken> element) with an <EncryptedData> block will not affect the semantics of
the WS-Security header.

If you wish to encrypt the SOAP Body, you should use element content encryption, where the children of the element are
replaced by the <EncryptedData> block. In this way, the message can still be validated against the SOAP schema.

When using Node Locations to identify nodes that are to be encrypted, you can configure whether to encrypt the ele-
ment or the element contents on the Locate XML Nodes dialog. To encrypt the element, select the Encrypt Node radio
button. Alternatively, to encrypt the element contents, select the Encrypt Node Content radio button.

If you are using XPath expressions to specify the nodes that are to be signed, be careful not to use an expression that
returns a node and all its contents. The Encrypt Node and Encrypt Node Content options are also available when con-
figuring XPath expressions on the Enter XPath Expression dialog.

Advanced

The Advanced tab on the main XML-Encryption Settings screen enables you to configure some of the more complic-
ated settings regarding XML-Encryption. The following settings are available:

Algorithm Suite Tab:
The following fields can be configured on this tab:

Algorithm Suite:
WS-Security Policy defines a number of algorithm suites that group together a number of cryptographic algorithms. For
example, a given algorithm suite uses specific algorithms for asymmetric encryption, symmetric encryption, asymmetric
key wrap, and so on. Therefore, by specifying an algorithm suite, you are effectively selecting a whole suite of crypto-
graphic algorithms to use.

If you want to use a particular WS-Security Policy algorithm suite, you can select it here. The Encryption Algorithm and
Key Wrap Algorithm fields are automatically populated with the corresponding algorithms for that suite.

XML-Encryption Settings

571

Encryption Algorithm:
The encryption algorithm selected is used to encrypt the data. The following algorithms are available:

• AES-256
• AES-192
• AES-128
• Triple DES

Key Wrap Algorithm:
The key wrap algorithm selected here is used to wrap (encrypt) the symmetric encryption key with the recipient's public
key. The following key wrap algorithms are available:

• KwRsa15
• KwRsaOaep

Settings Tab:
The following advanced settings are available on this tab:

Generate a Reference List in WS-Security Block:
When this option is selected, a <xenc:ReferenceList> that holds a reference to all encrypted data elements is gen-
erated. The <xenc:ReferenceList> element is inserted into the WS-Security block indicated by the specified actor.

Insert Reference List into EncryptedKey:
When this option is selected, a <xenc:ReferenceList> that holds a reference to all encrypted data elements is gen-
erated. The <xenc:ReferenceList> element is inserted into the <xenc:EncryptedKey> element.

Layout Type:
Select the WS-SecurityPolicy layout type that you want the generated tokens to adhere to. This includes elements such
as the <EncryptedData>, <EncryptedKey>, <ReferenceList>, <BinarySecurityToken>, and
<DerivedKeyToken> tokens, among others.

Fail if no Nodes to Encrypt:
Select this option if you want the filter to fail if any of the nodes specified on the What to Encrypt tab are found in the
message.

Insert Timestamp:
This option enables you to insert a WS-Security Timestamp as an encryption property.

Indent:
This option enables you to format the inserted <EncryptedData> and <EncryptedKey> blocks by indenting the ele-
ments.

Insert CarriedKeyName for EncryptedKey:
Select this option to insert a <CarriedKeyName> element into the generated <EncryptedKey> block.

Auto-generation using the XML Encryption Settings Wizard

Because the XML Encryption Settings filter must always be used in conjunction with the XML Encryption and Find
Certificate filters, the Policy Studio provides a wizard that can generate these three filters at the same time. Right-click a
policy under the Policies node in the Policy Studio, and select XML Encryption Settings.

For more information on how to configure the XML Encryption Settings Wizard see the XML Encryption Wizard topic.

XML-Encryption Settings

572

XML Encryption Wizard
Overview

The following filters are involved in encrypting a message using XML Encryption:

Filter Role

Find Certificate Specifies the certificate that contains the public key to use
in the encryption. The data is encrypted such that it can
only be decrypted with the corresponding private key.

XML Encryption Settings Specifies the recipient of the encrypted data, what data to
encrypt, what algorithms to use, and other such options
that affect the way the data is encrypted.

XML Encryption Performs the actual encryption using the certificate selec-
ted in the Find Certificate filter, and the options set in the
XML Encryption Settings filter.

While these filters can be configured independently of each other, it makes sense to configure them all at the same time
because they must play a role in the policy that XML-Encrypts messages. You can do this using the XML Encryption
Wizard. The wizard is available by right-clicking the name of the policy in the tree view of the Policy Studio, and selecting
the XML Encryption Settings menu option. The next section describes how to configure the settings on this dialog.

Configuration

The first step in configuring the XML Encryption Wizard is to select the certificate that contains the public key to use to
encrypt the data. When the data has been encrypted with this public key, it can only be decrypted using the correspond-
ing private key. Select the relevant certificate from the list of Certificates in the Trusted Certificate Store.

When the wizard is completed, the information configured on this screen results in the auto-generation of a Find Certi-
ficate filter. This filter is automatically configured to use the selected certificate from the Certificate Store. For more de-
tails, see the Find Certificate tutorial.

After clicking the Next button on the first screen of the wizard, the configuration options for the XML Encryption Set-
tings filter are displayed. For more details, see the XML-Encryption Settings topic.

When you have completed all the steps in the wizard, a policy is created that comprises a Find Certificate, XML En-
cryption Settings, and XML Encryption filter. You can insert other filters into this policy as required, however, the order
of the encryption filters must be maintained as follows:

1. Find Certificate
2. XML Encryption Settings
3. XML Encryption

573

XML Signature Generation
Overview

The API Gateway can sign both SOAP and non-SOAP XML messages. Attachments to the message can also be signed.
The resulting XML Signature is inserted into the message for consumption by a downstream Web Service. At the Web
Service, the signature can be used to authenticate the message sender and/or verify the integrity of the message.

Enter a name for the filter in the Name field. You can use the following tabs to configure various aspects of the generated
XML Signature.

Signing Key

You can use either a symmetric or an asymmetric key to sign the message content. Select the appropriate radio button
and configure the fields on the corresponding tab.

Asymmetric Key

With an asymmetric signature, the signatory's private key (from a public-private key pair) is used to sign the message.
The corresponding public key is then used to verify the signature. The following fields are available for configuration on
this tab:

Private Key in Certificate Store:
To use a signing key from the Certificate Store, select the Key in Store radio button and, click the Signing Key button.
Select a certificate that has the required signing key associated with it. The signing key can also be stored on a Hard-
ware Security Module (HSM). For more information on storing signing keys, see the the Certificates and Keys topic.

The Distinguished Name of the selected certificate will appear in the X509SubjectName element of the XML Signature
as follows:

<dsig:X509SubjectName>
CN=Sample,OU=R&D,O=Company Ltd.,L=Dublin 4,ST=Dublin,C=IE

</dsig:X509SubjectName>

Private Key from Selector Expression:
Alternatively, the signing key may have already have been used by another filter and stored in a message attribute. To
reuse this key, select the Private Key from Selector Expression radio button, and enter the selector expression in the
field provided (for example, ${asymmetric.key}). Using a selector enables settings to be evaluated and expanded at
runtime based on metadata (for example, in a message attribute, Key Property Store (KPS), or environment variable).
For more details, see Selecting Configuration Values at Runtime.

Symmetric Key

With a symmetric signature, the same key is used to sign and verify the message. Typically the client generates the sym-
metric key and uses it to sign the message. The key must then be transmitted to the recipient so that they can verify the
signature. It would be unsafe to transmit an unprotected key along with the message so it is usually encrypted (or
wrapped) with the recipient's public key. The key can then be decrypted with the recipient's private key and can then be
used to verify the signature. The following configuration options are available on this screen:

Generate Symmetric Key, and Save in Message Attribute:
If you select this option, the API Gateway generates a symmetric key, which is included in the message before it is sent
to the client. By default, the key is saved in the symmetric.key message attribute.

Symmetric Key from Selector Expression:
If a previous filter (for example, a Sign Message filter) has already used a symmetric key, you can to reuse this key as
proof that the API Gateway is the holder-of-key entity. Enter the name of the selector expression in the field provided,

574

which defaults to ${symmetric.key}. Using a selector enables settings to be evaluated and expanded at runtime
based on metadata (for example, in a message attribute, a Key Property Store (KPS), or environment variable). For more
details, see Selecting Configuration Values at Runtime.

Include Encrypted Symmetric Key in Message:
As described earlier, the symmetric key is typically encrypted for the recipient and included in the message. However, it
is possible that the initiator and recipient of the transaction have agreed on a symmetric key using some out-of-bounds
mechanism. In this case, it is not necessary to include the key in the message. However, the default option is to include
the encrypted symmetric key in the message. The <KeyInfo> section of the Signature points to the <EncryptedKey>.

Encrypt with Key in Store:
Select this option to encrypt the symmetric key with a public key from the Certificate Store. Click the Signing Key button
and then select the certificate that contains the public key of the recipient. By encrypting the symmetric key with this pub-
lic key, you are ensuring that only the recipient that has access to the corresponding private key will be able to decrypt
the encrypted symmetric key.

Encrypt with Key from Selector Expression:
You can also use a key stored in a message attribute to encrypt (or wrap) the symmetric key. Select this radio button and
enter the selector expression to obtain the public key you want to use to encrypt the symmetric key with. Using a selector
enables settings to be evaluated and expanded at runtime based on metadata (for example, in a message attribute, a
Key Property Store (KPS), or environment variable). For more details, see Selecting Configuration Values at Runtime.

Use Derived Key:
A <wssc:DerivedKeyToken> token can be used to derive a symmetric key from the original symmetric key held in and
<enc:EncryptedKey>. The derived symmetric key is then used to actually sign the message, as opposed to the origin-
al symmetric key. It must be derived again during the verification process using the parameters in the
<wssc:DerivedKeyToken>. One of these parameters is the symmetric key held in <enc:EncryptedKey>. The fol-
lowing example shows the use of a derived key:

<enc:EncryptedKey Id="Id-0000010b8b0415dc-0000000000000000">
<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
<dsig:KeyInfo>

...
</dsig:KeyInfo>
<enc:CipherData>

</enc:EncryptedKey>

<wssc:DerivedKeyToken wsu:Id="Id-0000010bd2b8eca1-0000000000000017"
Algorithm="http://schemas.xmlsoap.org/ws/2005/02/sc/dk/p_sha1">

<wsse:SecurityTokenReference wsu:Id="Id-0000010bd2b8ed5d-0000000000000018">
<wsse:Reference URI="#Id Id-0000010b8b0415dc-0000000000000000"
ValueType="..../oasis-wss-soap-message-security-1.1#EncryptedKey"/>

</wsse:SecurityTokenReference>
<wssc:Generation>0</wssc:Generation>
<wssc:Length>32</wssc:Length>
<wssc:Label>WS-SecureConverstaionWS-SecureConverstaion</wssc:Label>
<wssc:Nonce>h9TTWKRylCOz87+mc1/7Pg==</wssc:Nonce>

</wssc:DerivedKeyToken>

<dsig:Signature Id="Id-0000010b8b0415dc-0000000000000004">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
<dsig:Reference>...</dsig:Reference>

</dsig:SignedInfo>
<dsig:SignatureValue>...dsig:SignatureValue>
<dsig:KeyInfo>
<wsse:SecurityTokenReference wsu:Id="Id-0000010b8b0415dc-0000000000000006">

<wsse:Reference
URI="# Id-0000010bd2b8eca1-0000000000000017"

XML Signature Generation

575

ValueType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"/>
</wsse:SecurityTokenReference>

</dsig:KeyInfo>
</dsig:Signature>

Symmetric Key Length:
This option enables the user to specify the length of the key to use when performing symmetric key signatures. It is im-
portant to realize that the longer the key, the stronger the encryption.

Key Info

This tab configures how the <KeyInfo> block of the generated XML Signature is displayed. Configure the following
fields on this tab:

Do Not Include KeyInfo Section:
This option enables you to omit all information about the signatory's certificate from the signature. In other words, the
KeyInfo element is omitted from the signature. This is useful where a downstream Web Service uses an alternative
method of authenticating the signatory, and wishes to use the signature for the sole purpose of verifying the integrity of
the message. In such cases, adding certificate information to the message may be regarded as an unnecessary over-
head.

Include Certificate:
This is the default option which places the signatory's certificate inside the XML Signature itself. The following example,
shows an example of an XML Signature which has been created using this option:

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIEZDCCA0yg
....
RNp9aKD1fEQgJ

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

Expand Public Key:
The details of the signatory's public key are inserted into a KeyValue block. The KeyValue block is only inserted when
this option is selected.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIE EQgJ
</dsig:X509Certificate>
</dsig:X509Data>
<dsig:KeyValue>
<dsig:RSAKeyValue>
<dsig:Modulus>

AMfb2tT53GmMiD
...
NmrNht7iy18=

</dsig:Modulus>
<dsig:Exponent>AQAB</dsig:Exponent>

XML Signature Generation

576

</dsig:RSAKeyValue>
</dsig:KeyValue>

</dsig:KeyInfo>
</dsig:Signature>

Include Distinguished Name:
If this checkbox is selected, the Distinguished Name of the signatory's X.509 certificate is inserted in an
<X509SubjectName> element as shown in the following example:

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<dsig:X509Data>
<dsig:X509SubjectName>CN=Sample,C=IE...</dsig:X509SubjectName>
<dsig:X509Certificate>

MIIEZDCCA0yg
....
RNp9aKD1fEQgJ

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

Include Key Name:
This option allows you insert a key identifier, or KeyName, to allow the recipient to identify the signatory. Enter an appro-
priate value for the KeyName in the Value field. Typical values include Distinguished Names (DName) from X.509 certi-
ficates, key IDs, or email addresses. Specify whether the specified value is a Text value of a Distinguished name at-
tribute by checking the appropriate radio button.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<dsig:KeyName>test@oracle.com</dsig:KeyName>

</dsig:KeyInfo>
</dsig:Signature>

Put Certificate in an Attachment:
The API Gateway supports SOAP messages with attachments. By selecting this option, you can save the signatory's cer-
tificate to the file specified in the input field. This file can then be sent along with the SOAP message as a SOAP attach-
ment.

From previous examples, it is clear that the user's certificate is usually placed inside a KeyInfo element. However, in
this example, the certificate is actually contained within an attachment, and not within the XML Signature itself. Clearly,
we need a way to reference the certificate from the XML Signature, so that validating applications can process the signa-
ture correctly. This is the role of the SecuriyTokenReference block.

The SecurityTokenReference block provides a generic way for applications to retrieve security tokens in cases
where these tokens are not contained within the SOAP message. The name of the security token is specified in the URI
attribute of the Reference element.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<wsse:SecurityTokenReference xmlns:wsse="http://schemas.xmlsoap.org/ws/...">
<wsse:Reference URI="c:\myCertificate.txt"/>
</wsse:SecurityTokenReference>

</dsig:KeyInfo>

XML Signature Generation

577

</dsig:Signature>

When the message is actually sent, the certificate attachment will be given a "Content-Id" corresponding to the URI at-
tribute of the Reference element. The following example shows what the complete multipart MIME SOAP message
looks like as it is sent over the wire. It should help illustrate how the Reference element actually refers to the "Content-
ID" of the attachment:

POST /adoWebSvc.asmx HTTP/1.0
Content-Length: 3790
User-Agent: API Gateway
Accept-Language: en
Content-Type: multipart/related; type="text/xml";

boundary="----=Multipart-SOAP-boundary"

------=Multipart-SOAP-boundary
Content-Id: soap-envelope
Content-Type: text/xml; charset="utf-8";
SOAPAction=getQuote

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
...

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

<dsig:KeyInfo>
<ws:SecurityTokenReference xmlns:ws="http://schemas.xmlsoap.org/ws/...">
<ws:Reference URI="c:\myCertificate.txt"/>

</ws:SecurityTokenReference>
</dsig:KeyInfo>

</dsig:Signature>
...

</s:Envelope>

------=Multipart-SOAP-boundary
Content-Id: c:\myCertificate.txt
Content-Type: text/plain; charset="US-ASCII"

MIIEZDCCA0ygAwIBAgIBAzANBgkqhki
....
7uFveG0eL0zBwZ5qwLRNp9aKD1fEQgJ
------=Multipart-SOAP-boundary-

Security Token Reference:
A <wsse:SecurityTokenReference> element can be used to point to the security token used in the generation of
the signature. Select this option if you wish to use this element. The type of the reference must be selected from the Ref-
erence Type dropdown.

The <wsse:SecurityTokenReference>, (within the <dsig:KeyInfo>), may contain a <wsse:Embedded> security
token. Alternatively, the <wsse:SecurityTokenReference>, (within the <dsig:KeyInfo>), may refer to a certificate
via a <dsig:X509Data>. Select the appropriate button, Embed or Refer, depending on whether you want to use an
embedded security token or a referred one.

You can make sure to include a <BinarySecurityToken> (BST) that contains the certificate used to wrap the sym-
metric key in the message by selecting the Include BinarySecurityToken option. The BST is inserted into the WS-
Security header regardless of the type of Security Token Reference selected from the dropdown.

Important
When using the Kerberos Token Profile standard and the API Gateway is acting as the initiator of a secure
transaction, it can use Kerberos session keys to sign a message. The KeyInfo must be configured to use
a Security Token Reference with a ValueType of GSS_Kerberosv5_AP_REQ. In this case, the Kerberos

XML Signature Generation

578

token is contained in a <BinarySecurityToken> in the message.

If the API Gateway is acting as the recipient of a secure transaction, it can also use the Kerberos session keys to sign
the message returned to the client. However, in this case, the KeyInfo must be configured to use a Security Token Ref-
erence with ValueType of Kerberosv5_APREQSHA1. When this ValueType is selected, the Kerberos token is not
contained in the message. The Security Token Reference contains a SHA1 digest of the original Kerberos token re-
ceived from the client, which identifies the session keys to the client.

Note
When using the WS-Trust for SPENGO standard, the Kerberos session keys are not used directly to sign
messages since a security context with an associated symmetric key is negotiated. This symmetric key is
shared by both client and service and can be used to sign messages on both sides.

What to Sign

This tab is used to identify parts of the message that must be signed. Each signed part will be referenced from within the
generated XML Signature. You can use any combination of Node Locations, XPaths, XPath Predicates, and the nodes
contained in a Message Attribute to specify what must be signed. For details on the settings on these tabs, see the Loc-
ate XML Nodes filter.

XML Signing Mechanisms
It is important to consider the mechanisms available for referencing signed elements from within an XML Signature. For
example, With WSU Ids, an Id attribute is inserted into the root element of the nodeset that is to be signed. The XML Sig-
nature then references this Id to indicate to verifiers of the Signature the nodes that were signed. The use of WSU Ids is
the default option because these are WS-I compliant.

Alternatively, a generic Id attribute (not bound to the WSU namespace) can be used to dereference the data. The Id at-
tribute is inserted into the top-level element of the nodeset that is to be signed. The generated XML Signature can then
reference this Id to indicate what nodes were signed.

When XPath transforms are used, an XPath expression that points to the root node of the nodeset that is signed will be
inserted into the XML Signature. When attempting to verify the Signature, this XPath expression must be run on the mes-
sage to retrieve the signed content.

Id Attribute:
Select the Id attribute used to dereference the signed element in the dsig:Signature. The available options are as fol-
lows:

• wsu:Id
The default option references the signed data using a wsu:Id attribute. A wsu:Id attribute is inserted into the root
node of the signed nodeset. This Id is then referenced in the generated XML Signature as an indication of which
nodes were signed. For example:

<soap:Envelope xmlns:soap="...">
<soap:Header>
<wsse:Security xmlns:wsse="...">

<dsig:Signature xmlns:dsig="..." Id="Id-00000112e2c98df8-0000000000000004">
<dsig:SignedInfo>

<dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<dsig:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<dsig:Reference URI="#Id-00000112e2c98df8-0000000000000003">
<dsig:Transforms>

<dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

XML Signature Generation

579

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>xChPoiWJJrrPZkbXN8FPB8S4U7w=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>KG4N /9dw==</dsig:SignatureValue>
<dsig:KeyInfo Id="Id-00000112e2c98df8-0000000000000005">

<dsig:X509Data>
<dsig:X509Certificate>

MIID ... ZiBQ==
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</dsig:Signature>
</wsse:Security>

</soap:Header>
<soap:Body xmlns:wsu="..." wsu:Id="Id-00000112e2c98df8-0000000000000003">
<vs:getProductInfo xmlns:vs="http://ww.oracle.com">
<vs:Name>API Gateway</vs:Name>
<vs:Version>11.1.2.1.0</vs:Version>
</vs:getProductInfo>

</s:Body>
</s:Envelope>

In the above example, a wsu:Id attribute has been inserted into the <soap:Body> element. This wsu:Id attribute
is then referenced by the URI attribute of the <dsig:Reference> element in the actual Signature. When the Sig-
nature is being verified, the value of the URI attribute can be used to locate the nodes that have been signed.

• Id
Select the Id option to use generic Ids (not bound to the WSU namespace) to dereference the signed data. Under
this schema, the URI attribute of the <Reference> points at an Id attribute, which is inserted into the top-level node
of the signed nodeset. In the following example, the Id specified in the Signature matches the Id attribute inserted in-
to the <Body> element, indicating that the Signature applies to the entire contents of the SOAP Body:

<soap:Envelope xmlns:soap="....">
<soap:Header>

<dsig:Signature xmlns:dsig="...."
Id="Id-0000011a101b167c-0000000000000013">

<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="#Id-0000011a101b167c-0000000000000012">

<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>JCy0JoyhVZYzmrLrl92nxfr1+zQ=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>......<dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0000011a101b167c-0000000000000014">

<dsig:X509Data>
<dsig:X509Certificate>......</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</dsig:Signature>
</soap:Header>
<soap:Body Id="Id-0000011a101b167c-0000000000000012">

XML Signature Generation

580

<product version="11.1.2.1.0">
<name>API Gateway</name>
<company>oracle</company>
<description>SOA Security and Management</description>

</product>
</soap:Body>

</soap:Envelope>

• ID
Select this option to use generic IDs (not bound to the WSU namespace) to dereference the signed data. Under this
schema, the URI attribute of the Reference points at an ID attribute, which is inserted into the top-level node of the
signed nodeset. In the following example, the URI specified in the Signature Reference node matches the ID attrib-
ute inserted into the Body element, indicating that the Signature applies to the entire contents of the SOAP Body:

<soap:Envelope xmlns:soap="....">
<soap:Header>

<dsig:Signature xmlns:dsig="....">
<dsig:SignedInfo>

<dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<dsig:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<dsig:Reference URI="#Id-0000011a101b167c-0000000000000012">
<dsig:Transforms>

<dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>JCy0JoyhVZYzmrLrl92nxfr1+zQ=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>......<dsig:SignatureValue>

<dsig:KeyInfo Id="Id-0000011a101b167c-0000000000000014">
<dsig:X509Data>

<dsig:X509Certificate>......</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

</soap:Header>
<soap:Body ID="Id-0000011a101b167c-0000000000000012">
<product version="11.1.2.1.0">

<name>API Gateway</name>
<company>Oracle</company>
<description>SOA Security and Management</description>

</product>
</soap:Body>

</soap:Envelope>

• xml:id
Select this option to use an xml:id to dereference the signed data. Under this schema, the URI attribute of the
Reference points at an xml:id attribute, which is inserted into the top-level node of the signed nodeset. In the fol-
lowing example, the URI specified in the Signature Reference node matches the xml:id attribute inserted into the
Body element, indicating that the Signature applies to the entire contents of the SOAP Body:

<soap:Envelope xmlns:soap="....">
<soap:Header>

<dsig:Signature xmlns:dsig="...."
Id="Id-0000011a101b167c-0000000000000013">

<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

XML Signature Generation

581

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="#Id-0000011a101b167c-0000000000000012">

<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>JCy0JoyhVZYzmrLrl92nxfr1+zQ=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>......<dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0000011a101b167c-0000000000000014">

<dsig:X509Data>
<dsig:X509Certificate>......</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</dsig:Signature>
</soap:Header>
<soap:Body ID="Id-0000011a101b167c-0000000000000012">
<product version=11.1.2.1.0>

<name>API Gateway</name>
<company>Oracle</company>
<description>SOA Security and Management</description>

</product>
</soap:Body>

</soap:Envelope>

• No id (use with enveloped signature and XPath 'The Entire Document')
Select this option to sign the entire document. In this case, the URI attribute on the Reference node of the Signa-
ture is “”, which means that no id is used to refer to what is being signed. The “” URI means that the full document
is signed. A signature of this type must be an enveloped signature. On the Advanced -> Options tab, select Create
enveloped signature. To sign the full document, on the What to Sign -> XPaths tab, select the XPath named The
entire document.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="....">

<soap:Header>
<wsse:Security

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd">

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
Id="Id-0001346926985531-fffffffff28f6103-1">
<dsig:SignedInfo>

<dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

<dsig:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<dsig:Reference URI="">
<dsig:Transforms>

<dsig:Transform
Algorithm="http://www.w3.org/2000/09/

xmldsig#enveloped-signature" />
<dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>

BAz3140AFAfBL/DIj9y+16TEJIU=
</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>........</dsig:SignatureValue>

XML Signature Generation

582

<dsig:KeyInfo Id="Id-0001346926985531-fffffffff28f6103-2">
<dsig:X509Data>

<dsig:X509Certificate>........</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

</wsse:Security>
</soap:Header>
<soap:Body>

<product version=11.1.2.1.0>
<name>API Gateway</name>
<company>Oracle</company>
<description>SOA Security and Management</description>

</product>
</soap:Body>

</soap:Envelope>

Use SAML Ids for SAML Elements:
This option is only relevant if a SAML assertion is required to be signed. If this option is selected, and the signature is to
cover a SAML assertion, an AssertionID attribute is inserted into a SAML version 1.1 assertion, or an ID attribute is
inserted into a SAML version 2.0 assertion. The value of this attribute is then referenced from within a <Reference> block
of the XML Signature. This option is selected by default.

Add and Dereferece Security Token Reference for SAML:
This option is only relevant if a SAML assertion is required to be signed. This setting signs the SAML assertion using a
Security Token Reference and an STR-Transform. The Signature points to the id of the
wsse:SecurityTokenReference, and applies the STR-Transform. When signing the SAML assertion, this means to
sign the XML that the wsse:SecurityTokenReference points to, and not the wsse:SecurityTokenReference.
This option is unselected by default.

The following shows an example SOAP header:

<soap:Envelope xmlns:soap="....">
<soap:Header>

<wsse:Security xmlns:wsse="...." xmlns:wsu="....";
<dsig:Signature xmlns:dsig=".....">

<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
<dsig:Reference

URI="#Id-0001347292983847-00000000530a9b1a-1">
<dsig:Transforms>

<dsig:Transform
Algorithm="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0#STR-Transform">
<wsse:TransformationParameters>

<dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</wsse:TransformationParameters>
</dsig:Transform>

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>

6/aLwABWfS+9UiX7v39sLJw5MaQ=
</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>

XML Signature Generation

583

......
</dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0001347292983847-00000000530a9b1a-3">

<dsig:X509Data>
<dsig:X509Certificate>

.....
</dsig:X509Certificate>

</dsig:X509Data>
</dsig:KeyInfo>

</dsig:Signature>
<wsse:SecurityTokenReference

wsu:Id="Id-0001347292983847-00000000530a9b1a-1">
<wsse:KeyIdentifier

ValueType="http://docs.oasis-open.org/wss/
oasis-wss-saml-token-profile-1.0#SAMLAssertionID">

Id-948d50f1504e0f3703e00000-1
</wsse:KeyIdentifier>

</wsse:SecurityTokenReference>
<saml:Assertion xmlns:saml="...."

IssueInstant="2012-09-10T16:03:03Z"
Issuer="CN=AAA Certificate Services, O=Comodo CA Limited,

L=Salford, ST=Greater Manchester, C=GB"
MajorVersion="1" MinorVersion="1">
<saml:Conditions NotBefore="2012-09-10T16:03:02Z"

NotOnOrAfter="2012-12-18T16:03:02Z" />
<saml:AuthenticationStatement

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2012-09-10T16:03:03Z">
<saml:Subject>

<saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">
admin

</saml:NameIdentifier>
<saml:SubjectConfirmation>

<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:sender-vouches

</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject>
</saml:AuthenticationStatement>

</saml:Assertion>
</wsse:Security>

</soap:Header>
....

</soap:Envelope>

Where to Place Signature

Append Signature to Root or SOAP Header:
If the message is a SOAP message, the signature will be inserted into the SOAP Header element when this radio button
is selected. The XML Signature will be inserted as an immediate child of the SOAP Header element. The following ex-
ample shows a skeleton SOAP message which has been signed using this option:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<ws:Security xmlns:ws="http://schemas.xmlsoap.org/..." s:actor="test">
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/..." id="Sample">

...
</dsig:Signature>
</ws:Security>

</s:Header>
<s:Body>
...

XML Signature Generation

584

</s:Body>
</s:Envelope>

If, on the other hand, the message is just plain XML, the signature will be inserted as an immediate child of the root ele-
ment of the XML message. The following example shows a non-SOAP XML message which has been signed using this
option:

<PurchaseOrder>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...

</dsig:Signature>

<Items>
...
</Items>

</PurchaseOrder>

Place in WS-Security Element for SOAP Actor/Role:
By selecting this option, the XML Signature will be inserted into the WS-Security element identified by the specified
SOAP actor or role. A SOAP actor/role is simply a way of distinguishing a particular WS-Security block from others which
may be present in the message. Actors belong to the SOAP 1.1 specification, but were replaced in SOAP 1.2 by roles.
Conceptually, however, they are identical.

Enter the name of the SOAP actor or role of the WS-Security block in the dropdown. The following SOAP message con-
tains an XML Signature within a WS-Security block identified by the "test" actor:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<ws:Security xmlns:ws="http://schemas.xmlsoap.org/..." s:actor="test">
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/..." id="Sample">

...
</dsig:Signature>
</ws:Security>

</s:Header>
<s:Body>
...

</s:Body>
</s:Envelope>

Use XPath Location:
This option is useful in cases where the signature must be inserted into a non-SOAP XML message. In such cases, it is
possible to insert the signature into a location pointed to by an XPath expression. Select or add an XPath expression in
the field provided, and then specify whether the API Gateway should insert the signature before the location to which the
XPath expression points, or append it to this location.

Advanced

The Advanced tab enables you to set the following:

• Additional elements from the message to be signed.
• Algorithms and ciphers used to sign the message parts.
• Various advanced options on the generated XML Signature.

Additional

The Additional tab allows you to select additional elements from the message that are to be signed. It is also possible to

XML Signature Generation

585

insert a WS-Security Timestamp into the XML Signature, if necessary.

Additional Elements to Sign:
The options here allow you to select other parts of the message that you may wish to sign.

• Sign KeyInfo Element of Signature:
The <KeyInfo> block of the XML Signature can be signed to prevent people cut-and-pasting a different <KeyInfo>
block into the message, which may point to some other key material, for example.

• Sign Timestamp:
As stated earlier, timestamps are used to prevent replay attacks. However, to guarantee the end-to-end integrity of
the timestamp, it is necessary to sign it.

Note
This option is only enabled when you have elected to insert a Timestamp into the message using the
relevant fields on the Timestamp Options panel below.

• Sign Attachments:
In addition to signing some or all of the contents of the SOAP message, it is also possible to sign attachments to the
SOAP message. To sign all attachments, check the Include Attachments checkbox.
A signed attachment is referenced in an XML Signature using the Content-Id or cid of the attachment. The URI at-
tribute of the Reference element corresponds to this Content-Id. The following example shows how an XML Signa-
ture refers to a sample attachment. It shows the wire format of the message and its attachment as they are sent to
the destination Web Service. Multiple attachments will result in successive Reference elements.

POST /myAttachments HTTP/1.0
Content-Length: 1000
User-Agent: API Gateway
Accept-Language: en
Content-Type: multipart/related; type="text/xml";

boundary="----=Multipart-SOAP-boundary"

------=Multipart-SOAP-boundary
Content-Id: soap-envelope
SOAPAction: none
Content-Type: text/xml; charset="utf-8"

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<dsig:Signature id="Sample" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="cid:moredata.txt">...</dsig:Reference>

</dsig:SignedInfo>
</dsig:Signature>

</s:Header>
<s:Body>

...
</s:Body>

</s:Envelope>

------=Multipart-SOAP-boundary
Content-Id: moredata.txt
Content-Type: text/plain; charset="UTF-8"

Some more data.

XML Signature Generation

586

------=Multipart-SOAP-boundary--

Transform:
This dropdown is only available when you have selected the Sign Attachments box above. It determines the transform
used to reference the signed attachments.

Timestamp Options:
It is possible to insert a timestamp into the message to indicate when exactly the signature was generated. Consumers of
the signature can then validate the signature to ensure that it is not of date.

The following options are available:

• No Timestamp:
No timestamp is inserted into the signature.

• Embed in WSSE Security:
The wsu:Timestamp is inserted into a wsse:Security block. The Security block is identified by the SOAP act-
or/role specified on the Signature tab.

• Embed in Signature Property:
The wsu:Timestamp is placed inside a signature property element in the dsig:Signature.

The Expires In fields enable the user to optionally specify the wsu:Expires for the wsu:Timestamp. If all fields are
left at 0, no wsu:Expires element is placed inside the wsu:Timestamp.

The following examples shows a wsu:Timestamp that has been inserted into a wsse:Security block:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<wsse:Security>

<wsu:Timestamp wsu:Id="Id-0000011294a0311e-000000000000003d">
<wsu:Created>2007-05-16T11:22:45Z</wsu:Created>
<wsu:Expires>2007-05-23T11:22:45Z</wsu:Expires>

</wsu:Timestamp>
<dsig:Signature ...>
...
</dsig:Signature ...>

</wsse:Security>
</s:Header>
<s:Body>

...
</s:Body>

</s:Envelope>

Algorithm Suite

The fields on this tab determine the combination of cryptographic algorithms and ciphers that are used to sign the mes-
sage parts.

Algorithm Suite:
WS-Security Policy defines a number of algorithm suites that group together a number of cryptographic algorithms. For
example, a given algorithm suite will use specific algorithms for asymmetric signing, symmetric signing, asymmetric key
wrap, and so on. Therefore, by specifying an algorithm suite, you are effectively selecting a whole suite of cryptographic
algorithms to use.

If you want to use a particular WS-Security Policy algorithm suite, you can select it here. The Signature Method, Key
Wrap Algorithm, and Digest Method fields will then be automatically populated with the corresponding algorithms for
that suite.

XML Signature Generation

587

Signature Method:
The Signature Method field enables you to configure the method used to generate the signature. Various strengths of
the HMAC-SHA1 algorithms are available from the dropdown.

Key Wrap Algorithm:
Select the algorithm to use to wrap (encrypt) the symmetric signing key. This option need only be configured when you
are using a symmetric key to sign the message.

Digest Algorithm:
Select the digest algorithm to you to produce a cryptographic hash of the signed data.

Options

This tab enables you to configure various advanced options on the generated XML Signature. The following fields can be
configured on this tab:

WS-Security Options:
WSSE 1.1 defines a <SignatureConfirmation> element that can be used as proof that a particular XML Signature
was processed. A recipient and verifier of an XML Signature must generate a <SignatureConfirmation> element for
each piece of data that was signed (for each <Reference> in the XML Signature). A <SignatureConfirmation>
element contains the hash of the signed data and must be signed by the recipient before returning it in the response to
the initiator (the original signatory of the data).

When the initiator receives the <SignatureConfirmation> elements in the response, it compares the hash with the
hash of the data that it produced initially. If the hashes match, the initiator knows that the recipient has processed the
same signature.

Select the Initiator option here if the API Gateway is the initiator as outlined in the scenario above. The API Gateway will
keep a record of the signed data and will compare it to the contents of the <SignatureConfirmation> elements re-
turned from the recipient in the response message.

Alternatively, if the API Gateway is acting as the recipient in this transaction, you can select the Responder radio button
to instruct the API Gateway to generate the <SignatureConfirmation> elements and return them to the inititor. The
signature confirmations will be added to the WS-Security header.

Layout Type:
Select the WS-SecurityPolicy layout type that you want the XML Signature and any generated tokens to adhere to. This
includes elements such as <Signature>, <BinarySecurityToken>, and <EncryptedKey>, which can all be gener-
ated as part of the signing process.

Fail if No Nodes to Sign:
Check this option if you want the filter to fail if it cannot find any nodes to sign as configured on the What to Sign tab.

Add Inclusive Namespaces for Exclusive Canonicalization:
You can include information about the namespaces (and their associated prefixes) of signed elements in the signature it-
self. This ensures that namespaces that are in the same scope as the signed element, but not directly or visibly used by
this element, are included in the signature. This ensures that the signature can be validated as a standalone entity out-
side of the context of the message from which it was extracted.

It is also worth pointing out that the WS-I specification only permits the use of exclusive canonicalization in an XML Sig-
nature. The <InclusiveNamespaces> element is an attempt to take advantage of some of the behavior of inclusive
canonicalization, while maintaining the simplicity of exclusive canonicalization.

A PrefixList attribute is used to list the prefixes of in-scope, but not visibly used elements and attributes. The following ex-
ample shows how the PrefixList attribute is used in practice:

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope'>
<soap:Header>

XML Signature Generation

588

<wsse:Security xmlns:wsse='http://docs.oasis-open.org/...'
xmlns:wsu='http://docs.oasis-open.org/...'>

<wsse:BinarySecurityToken wsu:Id='SomeCert'
ValueType="http://docs.oasis-open.org/...">

lui+Jy4WYKGJW5xM3aHnLxOpGVIpzSg4V486hHFe7sH
</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds='http://www.w3.org/2000/09/xmldsig#'>
<ds:SignedInfo>
<ds:CanonicalizationMethod

Algorithm='http://www.w3.org/2001/10/xml-exc-c14n#'>
<c14n:InclusiveNamespaces

xmlns:c14n='http://www.w3.org/2001/10/xml-exc-c14n#'
PrefixList='wsse wsu soap' />

</ds:CanonicalizationMethod>
<ds:SignatureMethod

Algorithm='http://www.w3.org/2000/09/xmldsig#rsa-sha1'/>
<ds:Reference URI=''>
<ds:Transforms>
<dsig:XPath xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:m='http://example.org/ws'>
//soap:Body/m:SomeElement
</dsig:XPath>
<ds:Transform Algorithm='http://www.w3.org/2001/10/xml-exc-c14n#'>
<c14n:InclusiveNamespaces

xmlns:c14n='http://www.w3.org/2001/10/xml-exc-c14n#'
PrefixList='soap wsu test' />

</ds:Transform>
</ds:Transforms>
<ds:DigestMethod Algorithm='http://www.w3.org/2000/09/xmldsig#sha1' />
<ds:DigestValue>VEPKwzfPGOxh2OUpoK0bcl58jtU=</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>+diIuEyDpV7qxVoUOkb5rj61+Zs=</ds:SignatureValue>
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI='#SomeCert' />

</wsse:SecurityTokenReference>
</ds:KeyInfo>

</ds:Signature>
</wsse:Security>

</soap:Header>
<soap:Body xmlns:wsu='http://docs.oasis-open.org/...'

xmlns:test='http://www.test.com' wsu:Id='TheBody'>
<m:SomeElement xmlns:m='http://example.org/ws' attr1='test:fdwfde' />

</soap:Body>
</soap:Envelope>

Indent:
Select this method to ensure that the generated signature is properly indented.

Create Enveloped Signature:
By selecting this option, an enveloped XML Signature is generated. The following skeleton signed SOAP message
shows the enveloped signature:

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#" id="Sample">
<ds:SignedInfo>
<ds:Reference URI="">
<ds:Transforms>
<ds:Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
</ds:Transforms>
</ds:Reference>

</ds:SignedInfo>

XML Signature Generation

589

</ds:Signature>

This indicates to the application validating the signature that the signature itself should not be included in the signed
data. In other words, to validate the signature, the application must first strip out the signature. This is necessary in cases
where the entire SOAP envelope has been signed, and the resulting signature has been inserted into the SOAP header.
In this case, the signature is over a nodeset which has been altered (the Signature has been inserted), and so the signa-
ture will break.

Insert CarriedKeyName for EncryptedKey:
Select this option to include a <CarriedKeyName< element in the <EncryptedKey> block that is generated when us-
ing a symmetric signing key.

XML Signature Generation

590

XML Signature Verification
Overview

In addition to validating XML Signatures for authentication purposes, the API Gateway can also use XML Signatures to
prove message integrity. By signing an XML message, a client can be sure that any changes made to the message do
not go unnoticed by the API Gateway. Therefore by validating the XML Signature on a message, the API Gateway can
guarantee the integrity of the message.

Before configuring the XML Signature Verification filter, enter an appropriate name for this filter in the Name field.

Signature Verification

The following sections are available on the Signature Verification tab:

Signature Location:
Because there may be multiple signatures contained in the message, you must specify which signature the API Gateway
uses to verify the integrity of the message. The signature can be extracted from one of the following:

• From the SOAP header
• Using WS-Security Actors
• Using XPath

Select the appropriate option from the drop-down list.

For details on all the configuration options available in this section, see the Signature Location topic.

Find Signing Key
The public key used to verify the signature can be taken from the following locations:

• Via KeyInfo in Message:
Typically, a <KeyInfo> block is used in an XML Signature to reference the key used to sign the message. For ex-
ample, it is common for a <KeyInfo> block to reference a <BinarySecurityToken> that contains the certificate
associated with the public key used to verify the signature.

• Via Selector Expression:
The certificate used to verify the signature can be extracted from a selector expression. For example, a previous fil-
ter (for example, a Find Certificate filter) may have already located a certificate and populated the certificate
message attribute. If you wish to use this certificate to verify the signature, specify the selector expression in the field
provided (for example, ${certificate}). Using a selector enables settings to be evaluated and expanded at
runtime based on metadata (for example, in a message attribute, Key Property Store (KPS), or environment vari-
able). For more details, see Selecting Configuration Values at Runtime.

• Via Certificate in LDAP:
Clients may not always want to include their public keys in their signatures. In such cases, the public key can be re-
trieved from a specified LDAP directory. To do this, select the Via Certificate in LDAP radio button, and select a
previously configured LDAP directory from the drop-down list. You can add LDAP connections under the External
Connections node in the Policy Studio tree. Right-click the LDAP Connection tree node, and select Add an LDAP
Connection.

• Via Certificate in Store:
Similarly, you can retrieve a certificate from the Certificate Store by selecting this option, and clicking the Select but-
ton. Select the checkbox next to the certificate that contains the public key that you want to use to verify the signa-
ture, and click OK.

What Must Be Signed

591

This section defines the content that must be signed for a SOAP message to pass the filter. This ensures that the client
has signed something meaningful (part of the SOAP message), instead of arbitrary data that would pass a blind signa-
ture validation. This further strengthens the integrity verification process.

The nodeset that must be signed can be identified by a combination of XPath expressions, node locations, and/or the
contents of a message attribute. For more details on how to configure this section, see the What To Sign topic.

Note
If all attachments are required to be signed, select the All attachments checkbox to enforce this.

Advanced

The following advanced configuration options are available:

Signature Confirmation:
If this filter is configured as part of an Initiator policy, where the API Gateway acts as the client in a Web Services trans-
action, select the Initiator option. This means that the filter keeps a record of the Signature that it has verified, and
checks the <SignatureConfirmation> returned by the Recipient.

Alternatively, if the API Gateway acts as the Recipient in the transaction, select the Recipient option. In this case, the
API Gateway returns the <SignatureConfirmation> elements in the response to the Initiator.

Default Derived Key Label:
If the API Gateway consumes a <DerivedKeyToken>, the default value entered is used to recreate the derived key.

Algorithm Suite:
Select the WS-Security Policy Algorithm Suite that must have been used when signing the message. This check ensures
that the appropriate algorithms were used to sign the message.

Fail if No Signatures to Verify:
Select this option if you want to configure the filter to fail if no XML Signatures are present in the incoming message.

Verify Signature for Authentication Purposes:
You can use the XML Signature Verification filter to authenticate an end user. If the message can be successfully valid-
ated, it proves that only the private key associated with the public key used to verify the signature was used to sign the
message. Because the private key is only accessible to its owner, a successful verification can be used to effectively au-
thenticate the message signer.

Retrieve DOM using Selector Expression:
You can configure this field to verify the response from a SAML PDP. When the API Gateway receives a response from
the SAML PDP, it stores the signature on the response in a message attribute. You can specify this attribute using a se-
lector expression to verify this signature. Using a selector enables settings to be evaluated and expanded at runtime
based on metadata (for example, in a message attribute, Key Property Store (KPS), or environment variable). For more
details, see Selecting Configuration Values at Runtime.

Remove enclosing WS-Security element on successful verification:
Select this checkbox if you wish to remove the enclosing WS-Security block when the signature has been successfully
verified. This setting is not selected by default.

XML Signature Verification

592

PGP Sign
Overview

You can use the PGP Sign filter to digitally sign messages passing through the API Gateway pipeline. Messages signed
on the API Gateway can be verified by the recipient by validating the signature using a public PGP key. Signed mes-
sages received at the API Gateway can be verified in the same manner. The PGP Sign filter supports the following sign-
ing methods:

Compressed Compresses the message and creates a hash of the con-
tents before signing. Because the message is contained in
the signature, the signature can be used in place of the
message. The typical use of this method produces a signa-
ture in printable ASCII form (ASCII Armor output). You can
deselect this option to produce a binary signature.

Clear Signed Clear signing a message leaves the message intact and
adds the signature under the clear message text. This
provides for optional verification of the message signature
and contents. The output has a content type of applica-
tion/pgp-signature.

Note
It is not possible to clear sign binary objects.

Detached Signature (MIME) Creates a multipart MIME document where the message
remains in clear text and the signature is attached as a
MIME part.

For an example use case, see the PGP Verify filter.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for the filter.

PGP Private Key to be retrieved from one of the following locations:
Select how the private PGP key is retrieved to sign the message:

Use the following private key from the PGP Key Pair
list

Click the browse button on the right, and select a PGP key
pair configured in the Certificate Store. For details on con-
figuring PGP key pairs, see the topic on Certificates and
Keys.

Look up the private key using the following alias Enter the alias name of the PGP private key used in the
Certificate Store (for example, My PGP Test Key). Al-
ternatively, you can enter a selector expression that spe-
cifies the name of a message attribute that contains the ali-
as. The value of the selector is expanded at runtime (for
example, ${my.pgp.test.key.alias}).

593

The following message attribute will contain the
private key

Enter a selector expression that specifies the name of the
message attribute that contains the private key. The value
of the selector is expanded at runtime (for example,
${my.pgp.test.private.key}).

For more details on selectors, see Selecting Configuration Values at Runtime.

Signing Method:
Select the method used to create the digital signature for the message attachment:

Compressed Creates a compressed signature. Because the message is
contained in the signature, this signature is used in place of
the message.

You can use the ASCII Armor Output setting to specify
whether to output the binary message data as printable
ASCII Armor text. This option is selected by default.

Clear signed A clear signed message has the message intact and a sig-
nature attached under the clear message text. This is use-
ful when the software reading the message does not un-
derstand the PGP structure, because it can still display the
signed content, but without verifying the signature.

Detached signature (MIME) Creates a multipart MIME document where the message is
in clear text and the signature is attached as a MIME part.
Similar to clear signed, this is useful when the software
reading the message does not understand the PGP struc-
ture.

PGP Sign

594

PGP Verify
Overview

You can use the PGP Verify filter to verify Pretty Good Privacy (PGP) signed messages passing through the API Gate-
way pipeline. PGP signed messages received at the API Gateway can be verified by validating the signature using the
public PGP key of the message signer. The PGP Verify filter supports the following signing methods:

Compressed Verifies a compressed signature. Because the message is
contained in the signature, this signature is used in place of
the message.

Clear Signed A clear signed message has the message intact and a sig-
nature attached under the clear message text. Verifying
this message verifies the sender and the message integ-
rity.

Detached Signature (MIME) Verifies a multipart MIME document where the message is
in clear text and the signature is attached as a MIME part.

An example use case for this filter would be when files are sent to the API Gateway over Secure Shell File Transfer Pro-
tocol (SFTP) in PGP signed format. The API Gateway can use the PGP Verify filter to verify the message, and then use
Threat Detection filters to perform virus scanning. The clean files can be PGP signed again using the PGP Sign filter be-
fore being sent over SFTP to their target destination. For more details, see the PGP Sign filter.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for the filter.

PGP Public Key to be retrieved from one of the following locations:
Select how the sender's public PGP key is retrieved to verify the message:

Use the following public key from the PGP Key Pair list Click the browse button on the right, and select a PGP key
pair configured in the Certificate Store. For details on con-
figuring PGP key pairs, see the topic on Certificates and
Keys.

Look up the public key using the following alias Enter the alias name of the PGP public key used in the
Certificate Store (for example, My PGP Test Key). Al-
ternatively, you can enter a selector expression that spe-
cifies the name of a message attribute that contains the ali-
as. The value of the selector is expanded at runtime (for
example, ${my.pgp.test.key.alias}).

The following message attribute will contain the public
key

Enter a selector expression that specifies the name of the
message attribute that contains the public key. The value
of the selector is expanded at runtime (for example,
${my.pgp.test.public.key}).

595

For more details on selectors, see Selecting Configuration Values at Runtime.

Signing Method:
Select the signing method that was used to create the digital signature for the message attachment:

• Compressed
• Clear Signed
• Detached Signature (MIME)

For details on creating PGP digital signatures, see the topic on the PGP Sign filter.

Content type:
Enter the Content-Type of the verified message data. Defaults to application/octet-stream.

PGP Verify

596

SMIME Sign
Overview

You can use the SMIME Sign filter to digitally sign a multipart message as it passes through the API Gateway core
pipeline. The recipient of the message can then verify the integrity of the SMIME message by validating the Public Key
Cryptography Standards (PKCS) #7 signature.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for the filter.

Sign Using Key:
Select the checkbox next to the certificate that contains the public key associated with the private signing key that you
wish to use to sign the message.

Create Detached Signature in Attachment:
Specifies whether to create a detached digital signature in the message attachment. This is selected by default. For ex-
ample, this is useful when the software reading the message does not understand the PKCS#7 binary structure, because
it can still display the signed content, but without verifying the signature.

If this is unselected, the message content is embedded with the PKCS#7 binary signature. This means that user agents
that do not understand PKCS#7 can not display the signed content. Intermediate systems between the sender and final
recipient may modify the text content slightly (for example, line wrapping, whitespace, or text encoding). This may cause
the message to fail signature validation due to changes in the signed text that are not malicious, nor necessarily affecting
the meaning of the text.

597

SMIME Verify
Overview

You can use the SMIME Verify filter to check the integrity of a Secure/Multipurpose Internet Mail Extensions (SMIME)
message. This filter enables you to verify the Public Key Cryptography Standards (PKCS) #7 signature over the mes-
sage.

You can select the certificates that contain the public keys that you wish to use to verify the signature. Alternatively, you
can specify a message attribute that contains the certificate with the public key that you wish to use.

Configuration

Complete the following fields to configure this filter:

Name:
Enter an appropriate name for the filter.

Certificates from the following list:
Select the certificates that contain the public keys that you wish to use to verify the signature. This is the default option.

Certificate in attribute:
Alternatively, enter the message attribute that specifies the certificate that contains the public key that you wish to use to
verify the signature. Defaults to ${certificate}.

Remove Outer Envelope if Verification is Successful:
Select this option if you want to remove the PKCS#7 signature and all its associated data from the message if it verifies
successfully.

598

Generic Error
Overview

In cases where a transaction fails, the API Gateway can use a Generic Error to convey error information to the client
based on the message type (for example, SOAP or JSON). By default, the API Gateway returns a very basic error to the
client when a message filter fails. You can add the Generic Error filter to a policy to return more meaningful error inform-
ation to the client based on the message type.

When the Generic Error filter is configured, the API Gateway examines the incoming message and attempts to infer the
type of message to be returned. For example, for an incoming SOAP message, the API Gateway sends an appropriate
SOAP response (for example, SOAP 1.1 or 1.2) using the SOAP fault processor. For an incoming JSON message, the
API Gateway sends an appropriate JSON response. If the inference process fails, the API Gateway sends a SOAP mes-
sage by default. For example error messages, see the JSON Error and SOAP Fault topics.

You can also transform the error message returned by applying an XSLT stylesheet. The API Gateway implicitly trans-
forms the incoming message into XML before applying the stylesheet to the message.

Important
For security reasons, it is good practice to return as little information as possible to the client. However, for
diagnostic reasons, it is useful to return as much information to the client as possible. Using the Generic
Error filter, administrators have the flexibility to configure just how much information to return to clients, de-
pending on their individual requirements.

General Configuration

Configure the following general settings:

Name:
Enter an appropriate name for this filter.

HTTP Response Code Status
Enter the HTTP response code status for this Generic Error filter. This ensures that a meaningful response is sent to the
client in the case of an error occurring in a configured policy. Defaults to 500 (Internal Server Error). For a com-
plete list of status codes, see the HTTP Specification [http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html].

Generic Error Contents

The following configuration options are available in this section:

Show detailed explanation of error:
If this option is selected, a detailed explanation of the Generic Error is returned in the error message. This makes it pos-
sible to suppress the reason for the exception in a tightly locked down system (the reason is displayed as message
blocked in the Generic Error). Defaults to the value of the ${circuit.failure.reason} message attribute selector.

Show filter execution path
When this option is selected, the API Gateway returns a Generic Error containing the list of filters run on the message
before the error occurred. For each filter listed in the Generic Error, the status is given (pass or fail).

Show stack trace
If this option is selected, the API Gateway returns the Java stack trace for the error to the client. This option should only
be enabled under instructions from the Oracle Support Team.

Show current message attributes

599

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

By selecting this option, the message attributes present at the time the Generic Error was generated are returned to the
client. For example, for an incoming SOAP message, each message attribute forms the content of a
<fault:attribute> element.

Warning
For security reasons, Show filter execution path, Show stack trace, and Show current message attrib-
utes should not be used in a production environment.

Use Stylesheet
Select this option if you wish to transform the error message returned by applying an XSLT stylesheet. Click the browse
button on the right of the Stylesheet text box, and select a stylesheet in the dialog. To add a stylesheet, right-click the
Stylesheets node, and select Add Stylesheet. Alternatively, you can also add stylesheets under the Resources ->
Stylesheets node in the Policy Studio main menu.

Because XSLT stylesheets accept XML as input, the API Gateway implicitly transforms the incoming message into XML.
The API Gateway then retrieves the selected XSLT stylesheet and applies the transformation to the message, and sends
the response in the format specified in the XSLT stylesheet.

Using the Set Message Filter
You can also use the Set Message filter create customized Generic Errors. The Set Message filter can change the con-
tents of the message body to any arbitrary content. When an exception occurs in a policy, you can use this filter to cus-
tomize the body of the Generic Error. For details on how to use the Set Message filter to generate customized faults and
return them to the client, see the example in the SOAP Fault topic. You can use the same approach to generate custom-
ized Generic Errors.

Generic Error

600

JSON Error
Overview

In cases where a JavaScript Object Notation (JSON) transaction fails, the API Gateway can use a JSON Error to convey
error information to the client. By default, the API Gateway returns a very basic fault to the client when a message filter
has failed. You can add the JSON Error filter to a policy to return more meaningful error information to the client. For ex-
ample, the following message extract shows the format of a JSON Error raised when a JSON Schema Validation filter
fails:

{
"reasons": [

{
"language": "en",
"message": "JSON Schema Validation filter failed"

}
],
"details": {

"msgId": "Id-f5aab7304f6c754804f70000",
"exception message": "JSON Schema Validation filter failed",

...
}

}

Important
For security reasons, it is good practice to return as little information as possible to the client. However, for
diagnostic reasons, it is useful to return as much information to the client as possible. Using the JSON Er-
ror filter, administrators have the flexibility to configure just how much information to return to clients, de-
pending on their individual requirements.

For more details on JSON schema validation, see the topic on the JSON Schema Validation filter. For more details on
JSON, see http://www.json.org/index.html.

General Configuration

Configure the following general settings:

Name:
Enter an appropriate name for this filter.

HTTP Response Code Status
Enter the HTTP response code status for this JSON error filter. This ensures that a meaningful response is sent to the
client in the case of an error occurring in a configured policy. Defaults to 500 (Internal Server Error). For a com-
plete list of status codes, see the HTTP Specification [http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html].

JSON Error Contents

The following configuration options are available in this section:

Show detailed explanation of error:
If this option is selected, a detailed explanation of the JSON Error is returned in the error message. This makes it pos-
sible to suppress the reason for the exception in a tightly locked down system. By default, the reason is displayed as
message blocked in the JSON Error. This option displays the value of the ${circuit.failure.reason} message
attribute selector.

601

http://www.json.org/index.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

Show filter execution path
When this option is selected, the JSON Error returned by the API Gateway contains the list of filters run on the message
before the error occurred. For each filter listed in the JSON Error, the status is output (Pass or Fail). The following
message extract shows a filter execution path returned in a JSON Error:

"path" : {
"policy" : "test_policy",
"filters" : [{
"name" : "True Filter",
"status" : "Pass"

}, {
"name" : "JSON Schema Validation",
"status" : "Fail",
"filterMessage" : "Filter failed"

}, {
"name" : "Generic Error",
"status" : "Fail",
"filterMessage" : "Filter failed"

}]
},

Show stack trace
If this option is selected, the API Gateway returns the Java stack trace for the error to the client. This option should only
be enabled under instructions from the Oracle Support Team.

Show current message attributes
By selecting this option, the message attributes present when the JSON Error is generated are returned to the client. The
value of each message attribute is output as shown in the following example:

"attributes": [
{

"name": "circuit.exception",
"value": "com.vordel.circuit.CircuitAbortException: JSON Schema Validation
filter failed"

},
{

"name": "circuit.failure.reason",
"value": "JSON Schema Validation filter failed"

},
{

"name": "content.body",
"value": "com.vordel.mime.JSONBody@185afba1"

},
{

"name": "failure.reason",
"value": "JSON Schema Validation filter failed"

},
{

"name": "http.client",
"value": "com.vordel.dwe.http.ServerTransaction@7d3e1384"

},
{

"name": "http.headers",
"value": "com.vordel.mime.HeaderSet@76737f58"

},
{

"name": "http.response.info",
"value": "ERROR"

},
{

"name": "http.response.status",
"value": "500"

JSON Error

602

},
{

"name": "id",
"value": "Id-f5aab7304f6c754804f70000"

},
{

"name": "json.errors",
"value": "org.codehaus.jackson.JsonParseException: Unexpected character
('\"' (code 34)): was expecting comma to separate OBJECT entries\n at [Source:
com.vordel.dwe.InputStream@592c34b; line: 3, column: 25]"

},
...

]

Warning
For security reasons, Show filter execution path, Show stack trace, and Show current message attrib-
utes should not be used in a production environment.

Customized JSON Errors

You can use the following approaches to create customized JSON errors:

Using the Generic Error Filter
Instead of using the JSON Error filter, you can use the Generic Error filter to transform the JSON error message re-
turned by applying an XSLT stylesheet. The Generic Error filter examines the incoming message and infers the type of
message to be returned (for example, JSON or SOAP). For more details, see the Generic Error topic.

Using the Set Message Filter
You can create customized JSON Errors using the Set Message filter with the JSON Error filter. The Set Message filter
can change the contents of the message body to any arbitrary content. When an exception occurs in a policy, you can
use this filter to customize the body of the JSON Error. For details on how to use the Set Message filter to generate cus-
tomized faults and return them to the client, see the example in the SOAP Fault topic. You can use the same approach to
generate customized JSON Errors.

JSON Error

603

SOAP Fault
Overview

In cases where a typical SOAP transaction fails, a SOAP Fault can be used to convey error information to the SOAP cli-
ent. The following message shows the format of a SOAP Fault:

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Body>
<env:Fault>
<env:Code>
<env:Value>Receiver</env:Value>
<env:Subcode>
<env:Value>policy failed</env:Value>

</env:Subcode>
</env:Code>
<env:Detail xmlns:oraclefault="http://www.oracle.com/soapfaults"

oraclefault:type="exception" type="exception"/>
</env:Fault>

</env:Body>
</env:Envelope>

By default, the API Gateway returns a very basic SOAP Fault to the client when a message filter has failed. You can add
the SOAP Fault processor to a policy to return more complicated error information to the client.

For security reasons, it is good practice to return as little information as possible to the client. However, for diagnostic
reasons, it is useful to return as much information to the client as possible. Using the SOAP Fault processor, administrat-
ors have the flexibility to configure just how much information to return to clients, depending on their individual require-
ments.

SOAP Fault Format

The following configuration options are available in this section:

SOAP Version:
You can send either a SOAP Fault 1.1 or 1.2 response to the client. Select the appropriate version using the radio but-
tons provided.

Fault Namespace:
Select the default namespace to use in SOAP Faults, or enter a new one if necessary.

Indent SOAP Fault:
If this option is selected, an XSL stylesheet is run over the SOAP Fault to indent nested XML elements. The indented
SOAP Fault is returned to the client.

SOAP Fault Contents

The following configuration options are available in this section:

Show Detailed Explanation of Fault:
If this option is selected, a detailed explanation of the SOAP Fault is returned in the fault message. This makes it pos-
sible to suppress the reason for the exception in a tightly locked down system (the reason is displayed as message
blocked in the SOAP Fault).

Show Filter Execution Path
When this option is selected, the API Gateway returns a SOAP Fault containing the list of filters run on the message be-

604

fore the error occurred. For each filter listed in the SOAP Fault, the status is given (pass or fail). The following mes-
sage shows a filter execution path returned in a SOAP Fault:

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header>
</env:Header>
<env:Body>
<env:Fault>
<env:Code>
<env:Value>Receiver</env:Value>
<env:Subcode>
<env:Value>policy failed</env:Value>

</env:Subcode>
</env:Code>
<env:Detail xmlns:oraclefault="http://www.oracle.com/soapfaults"
oraclefault:type="exception" type="exception">
<oraclefault:path>
<oraclefault:visit node="HTTP Parser" status="Pass"></oraclefault:visit>
<oraclefault:visit node="/services" status="Fail"></oraclefault:visit>
<oraclefault:visit node="/status" status="Fail"></oraclefault:visit>

</oraclefault:path>
</env:Detail>
</env:Fault>

</env:Body>
</env:Envelope>

Show Stack Trace
If this option is selected, the API Gateway returns the Java stack trace for the error to the client. This option should only
be enabled under instructions from the Oracle Support Team.

Show Current Message Attributes
By selecting this option, the message attributes present at the time the SOAP Fault was generated are returned to the
client. Each message attribute forms the content of a <fault:attribute> element, as shown in the following ex-
ample:

<fault:attributes>
<fault:attribute name="circuit.failure.reason" value="null">
<fault:attribute name="circuit.lastProcessor" value="HTTP Digest">
<fault:attribute name="http.request.clientaddr" value="/127.0.0.1:4147">
<fault:attribute name="http.response.status" value="401">
<fault:attribute name="http.request.uri" value="/authn">
<fault:attribute name="http.request.verb" value="POST">
<fault:attribute name="http.response.info" value="Authentication Required">
<fault:attribute name="circuit.name" value="Digest AuthN">

</fault:attributes>

Customized SOAP Faults

You can use the following approaches to create customized SOAP faults:

Using the Generic Error Filter
Instead of using the SOAP Fault filter, you can use the Generic Error filter to transform the SOAP fault message re-
turned by applying an XSLT stylesheet. The Generic Error filter examines the incoming message and infers the type of
message to be returned (for example, JSON or SOAP). For more details, see the Generic Error topic.

Using the Set Message Filter
You can create customized SOAP Faults using the Set Message filter with the SOAP Fault filter. The Set Message filter
can change the contents of the message body to any arbitrary content. When an exception occurs in a policy, you can
use this filter to customize the body of the SOAP fault. The following example demonstrates how to generate customized

SOAP Fault

605

SOAP faults and return them to the client.

Step 1: Create the Top-level Policy:
This example first creates a very simple policy called Main Policy. This policy ensures the size of incoming messages is
between 100 and 1000 bytes. Messages in this range are echoed back to the client.

Step 2: Create the Fault Policy
Next, create a second policy called Fault Circuit. This policy uses the Set Message filter to customize the body of the
SOAP fault. When configuring this filter, enter the contents of the customized SOAP fault that you want to return to cli-
ents in the text area provided.

Step 3: Create a shortcut to the Fault Policy
Add a Policy Shortcut filter to the Main Policy and configure it to refer to the Fault Circuit. Do not connect this filter to
the policy. Instead, right-click the filter, and select the Set as Fault Handler menu option. The Main Policy is displayed
as follows:

SOAP Fault

606

So how does it work? Assume a 2000-byte message is received by the API Gateway and is passed to the Main Policy
for processing. The message is parsed by the HTTP Parser filter, and the size of the message is checked by the Mes-
sage Size filter. Because the message is greater than the size constraints set by this filter, and because there is no fail-
ure path configured for this filter, an exception is thrown.

When an exception is thrown in a policy, it is handled by the designated Fault Handler, if one is present. In the Main
Policy, a Policy Shortcut filter is set as the fault handler. This filter delegates to the Fault Circuit, meaning that when
an exception occurs, the Main Policy invokes (or delegates to) the Fault Circuit.

The Fault Circuit consists of two filters, which play the following roles:

1. Set Message:
This filter is used to set the body of the message to the contents of the customized SOAP fault.

2. Reflect:
When the SOAP fault has been set to the message body, it is returned to the client using the Reflect filter.

SOAP Fault

607

System Alerting
Overview

This tutorial shows the API Gateway's enhanced logging capabilities. System alerts are usually sent when a filter fails,
but they can also be used for notification purposes. The API Gateway can send system alerts to several alert destina-
tions, including a Windows Event Log, UNIX/Linux sylsog, SNMP Network Management System, Check Point Firewall-1,
email recipient, or Twitter.

There are two main steps involved in configuring the API Gateway to send system alerts:

1. Configuring an alert destination
2. Configuring an Alert filter

Configuring an Alert Destination

The first step in configuring the API Gateway to send alerts is to configure an alert destination. The API Gateway can
send alerts to the following destinations:

• Syslog (Local or Remote)
• Windows Event Log
• Check Point FireWall-1 (OPSEC)
• SNMP Network Management System
• Email Recipient
• Twitter

You can configure these alert destinations under the Libraries -> Alerts node in the Policy Studio tree.

Syslog (Local or Remote)
Many types of UNIX and Linux provide a general purpose logging utility called syslog. Both local and remote processes
can send logging messages to a centralized system logging daemon, known as syslog, which in turn writes the mes-
sages to the appropriate log files. You can configure the level of detail at which syslog logs information. This enables
administrators to centrally manage how log files are handled, rather than separately configuring logging for each process.

Each type of process logs to a different syslog facility. There are facilities for the kernel, user processes, authorization
processes, daemons, and a number of place-holders that can be used by site-specific processes. For example, the API
Gateway enables you to log to facilities such as auth, daemon, ftp, local0-7, and syslog itself.

Remote Syslog
To configure a remote syslog alert destination, perform the following steps:

1. Right-click the Libraries -> Alerts node, and click Add -> Syslog Remote at the bottom of the screen on the right.
2. The Syslog Server dialog enables you to specify details about the machine on which the syslog daemon is running.

The API Gateway connects to this daemon and logs to the specified facility when the alert event is triggered. Com-
plete the following fields on the Syslog Server dialog:
• Name:

Enter a name for this alert destination.
• Host:

Enter the host name or IP address of the machine where the syslog daemon is running.
• Facility:

Select the facility that the API Gateway sends alerts to from the drop-down list.
3. Click OK.

608

Local Syslog (UNIX only)
To configure a local syslog alert destination, perform the following steps:

1. Right-click the Libraries -> Alerts node, and click Add -> Syslog Local (UNIX only) at the bottom of the screen on
the right.

2. The Syslog Server dialog enables you to specify where the alert is sent when the alert event is triggered. Complete
the following fields on the Syslog Server dialog:
• Name:

Enter a name for this alert destination.
• Facility:

Select the facility that the API Gateway sends alerts to from the drop-down list.
3. Click OK.

Windows Event Log
This alert destination enables alert messages to be written to the local or a remote Windows Event Log. To add a Win-
dows Event Log alert destination, perform the following steps:

1. Right-click the Libraries -> Alerts node in the Policy Studio tree, and click Add -> Windows Event Log at the bot-
tom of the screen on the right.

2. The Windows Event Log Alerting dialog enables you to specify the machine of the Event Log the API Gateway
sends alerts to. Complete the following fields on this dialog:
• Name:

Enter a name for this alert destination.
• UNC Server name:

Enter the UNC (Universal Naming Code) of the machine where the event log resides. For example, to send
alerts to the event log running on a machine called \\NT_SERVER, enter \\NT_SERVER as the UNC name for
this host.

3. Click OK.

Check Point FireWall-1 (OPSEC)
The API Gateway complies with Open Platform for Security (OPSEC). OPSEC compliance is awarded by Check Point
Software Technologies to products that have been successfully integrated with at least one of their products. In this case,
the API Gateway has been integrated with the Check Point FireWall-1 product.

FireWall-1 is the industry leading firewall that provides network security based on a security policy created by an admin-
istrator. Although OPSEC is not an open standard, the platform is recognized worldwide as the standard for interoperabil-
ity of network security, and the alliance contains over 300 different companies. OPSEC integration is achieved through a
number of published APIs, which enable third-party vendors to interoperate with Check Point products.

To configure a FireWall-1 alert destination, perform the following steps:

1. Right-click the Libraries -> Alerts node in the Policy Studio tree, and click Add -> OPSEC at the bottom of the
screen on the right.

2. The OPSEC Alerting dialog enables you to specify details about the machine on which FireWall-1 is installed, the
port it is listening on, and how to authenticate to the firewall. The API Gateway connects to the specified firewall
when the alert event is triggered and prevents further requests for the particular client that triggered the alert. The
following configuration settings must be set:
• sam_server auth_port:

The port number used to establish SIC (Secure Internal Communications) based connections with the firewall.
• sam_server auth_type:

The authentication method used to connect to the firewall.
• sam_server ip:

The host name or IP address of the machine that hosts the Check Point Firewall.

System Alerting

609

• sam_server opsec_entity_sic_name:
The firewall's SIC name.

• opsec_sic_name:
The OPSEC application's SIC Name, which is the application's full DName as defined by the VPN-1 SmartCen-
ter Server.

• opsec_sslca_file:
The name of the file containing the OPSEC application's digital certificate.

3. Click OK.

You can store configuration information in a file and then load it using the Browse button. Alternatively, you can use the
Template button to load the required settings into the text area, and add the configuration values manually.

For the API Gateway to establish the SSL connection to the firewall, the opsec_sslca_file specified must be up-
loaded to the API Gateway machine. You can do this by clicking the Add button at the bottom of the screen.

For more information on OPSEC settings, see the documentation for your OPSEC application.

SNMP Network Management System
This alert destination enables the API Gateway to send Simple Network Management Protocol (SNMP) traps to a Net-
work Management System (NMS).

To configure an SNMP alert destination, perform the following steps:

1. Right-click the Libraries -> Alerts node in the Policy Studio tree, and click Add -> SNMP at the bottom of the
screen on the right.

2. The SNMP Alerting dialog enables you to specify details about the NMS that the API Gateway should send an alert
to. Complete the following fields:
• Host:

The host name or IP address of the machine on which the NMS system resides.
• Port:

The port on which the NMS system is listening.
• Timeout:

The timeout in seconds for connections from the API Gateway to the NMS system.
• Retries:

The number of retries that should be attempted whenever a connection failure occurs.
• SNMP Version:

Select the version of SNMP that you wish to use for this alert.
3. Click OK.

Email Recipient
This alert destination enables alert messages to be sent by email. To add a Windows Event Log alert destination, per-
form the following steps:

1. Right-click the Libraries -> Alerts node in the Policy Studio tree, and click Add -> Email at the bottom of the screen
on the right.

2. The Email Alerting dialog enables you to configure how the email alert is to be sent. Complete the following fields:
• Name:

Enter a name for this alert destination.
• Email Recipient (To):

Enter the recipient of the alert mail in this field. Use a semicolon-separated list of email addresses to send alerts
to multiple recipients.

• Email Sender (From):
Email alerts appear from the sender email address specified here.

System Alerting

610

Important
Some mail servers do not allow relaying mail when the sender in the From field is not recognized
by the server.

• Email Subject:
Email alerts use the subject specifed in this field.

3. In the SMTP Server Settings, specify the following fields:
• Outgoing Mail Server (SMTP):

Specify the SMTP server that the API Gateway uses to relay the alert email.
• Port:

Specify the SMTP server port to connect to. Defaults to port 25.
• Connection Security:

Select the connection security used to send the alert email (SSL, TLS, or NONE). Defaults to NONE.
4. If you are required to authenticate to the SMTP server, specify the following fields in Log on Using:

• User Name:
Enter the user name for authentication.

• Password:
Enter the password for the user name specified.

5. Finally, you can select the Email Debugging setting to find out more information about errors encountered by the
API Gateway when attempting to send email alerts. All trace files are written to the /trace directory of your the API
Gateway installation. This setting is not selected by default.

6. Click OK.

Twitter
This alert destination enables the API Gateway to send tweet alerts to Twitter. Twitter uses the OAuth open authentica-
tion standard. To enable the API Gateway to send tweet alerts using the Twitter API, you first need to do the following:

• Create a Twitter account to represent you as the user
• Register a custom application for your API Gateway instance, which posts alerts on the user’s behalf

Twitter requires that API calls are made for both the user and the application. The Twitter API requires the following cre-
dentials:

• Consumer Key of registered applications
• Consumer Secret Key of registered application
• Access Token allowing application to post on behalf of a user
• Access Token Secret to verify the Access Token

Twitter uses this information to determine which application is calling the API, and verifies that the Twitter user you are
attempting to make API requests on behalf of has authorized access to their account using the specified application.
Twitter identifies and authenticates all requests as coming from both the user performing the request and the registered
API Gateway application working on the user’s behalf.

Registering a client application
To use the Twitter API, you must create a Twitter account, and register a client application for the API Gateway. If you
have not already created a Twitter account, register a new account using the instructions on ht-
tp://www.twitter.com. When you have created the account, register a client application for the API Gateway as fol-
lows:

1. Go to http://dev.twitter.com/.

System Alerting

611

2. On the Twitter toolbar, select Your apps.
3. Click the Register a new app button.
4. Enter the details for your custom application. Some details are arbitrary, but you must specify the following values:

• Application Type:
Select the Client radio button.

• Default Access Type:
Select the Read & Write radio button.

Note
The Application Name may already be registered to another user, so you may need to specify a dif-
ferent unique name.

5. Click Register Application. Each client application you register is provisioned a consumer key and consumer
secret. These are used, in conjunction with the OAuth library, to sign every request you make to the API. Using this
signing process, Twitter trusts that the traffic identifying itself as you is indeed you.

6. Select your registered application, and select My Access Token. This provides you with an access token and an ac-
cess token secret. You must store these safely.

Configuring a Twitter alert destination
To configure a Twitter alert destination, perform the following steps:

1. Right-click the Libraries -> Alerts node in the Policy Studio tree.
2. Click Add -> Twitter at the bottom of the screen on the right.
3. The Twitter Alerting dialog enables you to specify credentials for the Twitter user that the API Gateway uses to

send an alert to. Complete the following fields on this dialog:
• Consumer Key:

The Consumer Key of your registered application.
• Consumer Secret:

The Consumer Secret of your registered application.
• Access Token:

The Access Token that represents you.
• Access Token Secret:

The Access Token Secret that represents you.

Configuring an Alert Filter

Typically, an Alert filter is placed on the failure path of another filter in the policy. For example, you could configure an
alert if a schema validation fails 10 times within a 5000 millisecond period for a specified Web Service. In this case, you
would place the Alert filter on the failure path from the Schema Validation filter, as shown in the following policy screen
shot:

System Alerting

612

When editing policies, you can drag and drop the Alert filter from the Monitoring filter group. To configure an alert filter,
specify the following settings on the Alert filter screen:

Name:
Enter a descriptive name for the filter.

Message:
Configure the following settings on the Message tab:

Alert Type Select the severity level of the alert. This option is only rel-
evant for alert destinations that support severity levels,
such as the Windows Event Log.

Alert Message Enter the text that appears in the alert. You can enter mes-
sage attributes using selectors, which are looked up and
expanded to values at runtime. For example, instead of
sending a generic alert stating Authentication
Failed, you can use a message attribute to give the ID of
the user that was not authenticated. To do this, use the fol-
lowing syntax:
${name_of_attribute}
The following examples show how to use message attrib-
utes in alert messages:

• Authentication failure for user:
${authentication.subject.id}.

• {alert.number.failures} authentication
failures have occurred in
${alert.time.period} seconds.

• ${alert.number.failures} exceptions have
occurred in policy ${circuit.name}.

• The last exception was
${circuit.exception} with path
${circuit.path}.

Note
An alert message is not required for alerts
sent to an OPSEC firewall.

System Alerting

613

Tracking:
Configure the following settings on the Tracking tab:

Accumulated number of messages Enter the number of times this filter can be invoked before
the alert is sent.

In time period (secs) Enter the time period in which the accumulated number of
messages can occur before and alert is triggered.

Track per client Select this option if you want to record the accumulated
number of messages in the specified time period for each
client.

Destination:
All pre-configured alert destinations are displayed in the Alert Name table. Select the destinations that the API Gateway
sends alerts to if the criteria specified for this filter are met. You can click Add to configure an alert destination. For more
details, see the section called “Configuring an Alert Destination”.

System Alerting

614

Audit Log Settings
Overview

One of the most important features of a server-based product is its ability to maintain highly detailed and configurable
logging. It is crucial that a record of each and every transaction is kept, and that these records can easily be queried by
an administrator to carry out detailed transaction analysis. In recognition of this requirement, the API Gateway provides
detailed logging to a number of possible locations.

You can configure the API Gateway so that it logs information about all requests. Such information includes the request
itself, the time of the request, where the request was routed to, and the response that was returned to the client. The log-
ging information can be written to the console, log file, local/remote syslog, and/or a database, depending on what is con-
figured in the logging settings.

The API Gateway can also digitally sign the logging information it sends to the log files and the database. This means
that the logging information can not be altered after it has been signed, thus enabling an irreversible audit trail to be cre-
ated.

Configuring Log Output

To edit the default logging settings that ship with the API Gateway, in the Policy Studio main menu, select Tasks -> Man-
age Settings -> Audit Log. Alternatively, in the Policy Studio tree, select the Settings node, and click the Audit Log tab
at the bottom of the screen. You can configure the API Gateway to log to the following locations.

Log to Text File

To configure the API Gateway to log in text format to a file, click the Text File tab, and select the Enable logging to file
checkbox. You can configure the following fields:

• File Name:
Enter the name of the text-based file that the API Gateway logs to. By default, the log file is called transaction-
Log.

• File Extension:
Enter the file extension of the log file in this field. By default, this has a .log extension.

• Directory:
Enter the directory of the log file in this field. By default, all log files are stored in the /logs/audit directory of your
API Gateway installation.

• File Size:
Enter the maximum size that the log file grows to. When the file reaches the specified limit, a new log file is created.
By default, the maximum file size is 1000 kilobytes.

• Roll Log Daily:
Specify whether to roll over the log file at the start of each day. This is enabled by default.

• Number of Files:
Specify the number of log files that are stored. The default number is 20.

• Format:
You can specify the format of the logging output using the values entered here. You can use selectors to output log-
ging information that is specific to the request. The default logging format is as follows:

${level} ${timestamp} ${id} ${text} ${filterType} ${filterName}

The available logging properties are described as follows:
• level:

The log level (fatal, fail, success).
• timestamp:

615

The time that the message was processed in user-readable form.
• id:

The unique transaction ID assigned to the message.
• text:

The text of the log message that was configured in the filter itself. In the case of the Log Message Payload fil-
ter, the ${payload} selector contains the message that was sent by the client.

• filterName:
The name of the filter that generated the log message.

• filterType:
The type of the filter that logged the message.

• ip:
The IP address of the client that sent the request.

• Signing Key:
To sign the log file, select a Signing Key from the Certificates Store that is used in the signing process. By signing
the log files, you can verify their integrity at a later stage.

Log to XML File

To configure the API Gateway to log to an XML file, click the XML File tab, and select the Enable logging to XML file
checkbox.

The log entries are written as the values of XML elements in this file. You can view historical XML log files (not the cur-
rent file) as HTML for convenience by opening the XML file in your default browser. The /logs/xsl/MessageLog.xsl
stylesheet is used to render the XML log entries in a more user-friendly HTML format.

You can configure the following fields on the XML File tab:

• File Name:
Enter the name of the text-based file that the API Gateway logs to. By default, the log file is called oracle.

• File Extension:
Enter the file extension of the log file in this field. By default, the log file is given the .log extension.

• Directory:
Enter the directory of the log file in this field. By default, all log files are stored in the /logs/audit directory of your
API Gateway installation.

• File Size:
Enter the maximum size that the log file grows to. When the file reaches the specified limit, a new log file is created.
By default, the maximum file size is 1000 kilobytes.

• Roll Log Daily:
Specify whether to roll over the log file at the start of each day. This is enabled by default.

• Number of Files:
Specify the number of log files that are persisted. The default number is 20.

• Signing Key:
To sign the log file, select a Signing Key from the Certificates Store that will be used in the signing process. By
signing the log files, you can verify their integrity at a later stage.

Log to Database

Using this option, you can configure the API Gateway to log messages to an Oracle, SQL Server, or MySQL relational
database. Before configuring the API Gateway to log to a database, you must first create the tables that the API Gateway
writes to. The SQL commands required to set up these tables for each of these databases can be found under the IN-
STALL_DIR/system/conf/sql. This folder contains a directory for each of the Oracle, SQL Server, and MySQL data-
bases, each of which contains the appropriate SQL scripts.

The SQL commands to generate the database table can be found in the audit_trail.sql file. Select this file from the

Audit Log Settings

616

appropriate directory (depending on your database), and use the tool of your choice to run the SQL commands contained
in the file. For example, to create the logging tables in a MySQL database, you can simply copy and paste the SQL com-
mands into the MySQL command prompt.

When you have set up the logging database tables, you can configure the API Gateway to log to the database. To do
this, click the Database tab, and select the Enable logging to database checkbox. You can configure the following
fields on the Database tab:

• Connection:
Select an existing database from the Connection drop-down list. To add a database connection, click the External
Connections button on the left, right-click the Database Connections tree node, and select Add a Database Con-
nection. For more details, see the Database Connection topic.

• Signing Key:
You can sign log messages stored in the database to ensure that they are not tampered with. Click the Signing Key
button to open the list of certificates in the Certificate Store. You can then select the key to use to sign log mes-
sages.

Log to Local Syslog

To configure the API Gateway to send logging information to the local UNIX syslog, click the Local Syslog tab, and se-
lect the Enable logging to local UNIX Syslog checkbox. You can configure the following fields:

• Select Syslog server:
Select the local syslog facility that the API Gateway should log to. The default is LOCAL0.

• Format:
You can specify the format of the log message using the values (including selectors) entered in this field. For details
on the properties that are available, see the section called “Log to Text File”.

Log to Remote Syslog

To configure the API Gateway to send logging information to a remote syslog, click the Remote Syslog tab, and select
the Enable logging to Remote Syslog checkbox. You can configure the following fields:

• Syslog Server
Select a previously configured Syslog Server from the drop-down list.

• Format:
You can specify the format of the log message using the values (including properties) entered in this field. For de-
tails on the properties that are available, see the section called “Log to Text File”.

Log to System Console

To configure the API Gateway to send logging information to the system console, click the System Console tab, and se-
lect the Enable logging to system console checkbox. For details on how to use the Format field to configure the
format of the log message, see the section called “Log to Text File”.

Audit Log Settings

617

Access Log Settings
Overview

The Access Log records a summary of the request and response messages that pass through the API Gateway. By de-
fault, the API Gateway records this in the access.log file in the log directory. This file rolls over at the start of each
day so that the name of the log file includes the date on which it was created (for example, access_30May2012.log).

The Access Log file format is based on that used by Apache HTTP Server. This means that the log file can be consumed
by third-party Web analytics tools such as Webtrends to generate charts and statistics.

Log Format

The syntax used to specify the Access Log file is based on the syntax of available patterns used by the Access Log files
in Apache HTTP Server. For example:

%h %l %u %t "%r" %s %b

The items in this example are explained as follows:

%h Remote hostname or IP address.

%l Remote logical username.

%u Remote user that was authenticated (for example, Distin-
guished Name of a certificate).

%t Date and time of the request in Common Log Format.

%r First line of the request that originated at the client.

%s HTTP status code returned to the client in the response.

%b Bytes sent, excluding HTTP headers.

The following extract from the access.log file illustrates the resulting log format:

s1.oracle.com - lisa [09/05/2012:18:24:48 00] "POST / HTTP/1.0" 200 429
s2.oracle.com - dave [09/05/2012:18:25:26 00] "POST / HTTP/1.0" 200 727
s3.oracle.com - fred [09/05/2012:18:27:12 00] "POST / HTTP/1.0" 200 596
................
................
................

For more details on Apache HTTP Server Access Log formats, see the following:

• http://httpd.apache.org/docs/current/logs.html
• http://httpd.apache.org/docs/current/mod/mod_log_config.html#formats

Configuring the Access Log

To configure the Access Log, select the Settings node in the Policy Studio tree, and click the Access Log tab at the bot-
tom of the screen. Configure the following fields to enable the server to write an Access Log to file:

618

http://httpd.apache.org/docs/current/logs.html
http://httpd.apache.org/docs/current/mod/mod_log_config.html#formats

Enable Apache Access File Logger:
Select whether to configure the Process to start writing event data to the Access Log. This setting is disabled by default.

Pattern:
Enter the Access Log file pattern. This is based on the syntax used in Apache HTTP Server Access Log files, for ex-
ample:

%h %l %u %t "%r" %s %b

For more details, see the section called “Log Format”.

Base Log File Name:
Enter the name of the Access Log file in this field. When the file rolls over (because the maximum file size has been
reached, or because the date has changed), a suitable increment is appended to the file name. Defaults to access.

Directory Name:
Enter the directory for the Access Log file. Defaults to the logs/access directory of your product installation.

Log File Extension:
Enter the file extension for the log file. Defaults to .log.

Max Files:
Specify the number of log files that are stored. Defaults to 20.

Max Log File Size:
Specify the maximum size that the log file is allowed reach before it rolls over to a new file. Defaults to 1000 kilobytes.

Roll Over Daily:
Select whether to roll over the log file at the start of each day. This is enabled by default.

Note
These settings configure the Access Log at the API Gateway level. You can configure the Access Log at
the service level on a Relative Path. For more details, see the section called “Relative Paths”.

Access Log Settings

619

Log Level and Message
Overview

By default, logging is configured for a service with logging level of failure. You can also configure each filter in a policy to
log its own message depending on whether it succeeds, fails, and/or throws an exception. Log messages can be stored
in several locations, including a database, a file, or the system console. For more details on configuring logging destina-
tions, see the topic on Audit Log Settings.

Logging levels apply to the following cases:

• A filter succeeds if it returns a true result after carrying out its processing. For example, if an LDAP directory returns
an authorized result to an authorization filter, the filter succeeds.

• A filter fails if it returns a false result after performing its processing. For example, an authorization filter returns false
if an LDAP directory returns a not authorized result to the filter.

• A filter aborts when it can not make the decision it is configured to make. For example, if an LDAP-based authoriza-
tion filter can not connect to the LDAP directory, it aborts because it can neither authorize nor refuse access. This is
regarded as a fatal error.

Configuration

You can access the Log Level and Message configuration screen by clicking the Next button on the main screen of all
filters. This screen includes the following fields:

Logging Level:
Configure one of the following options:

Use Service Level Settings This option is selected by default. Logging is configured for
the Web Service with logging level of Failure.

Override Logging Level for this Filter Alternatively, select this option to configure log messages
for this filter when it succeeds, fails, and/or aborts. Select
Success, Failure, and/or Fatal to configure this filter to log
at the respective levels.

Log Messages:
Default log message values are provided at each level for all filters. When you select the checkbox for a particular level,
the default log message for that level is used. You can specify an alternative log message by entering the message in
the text field provided.

All filters require and generate message attributes, while some consume attributes. In some cases, it may be useful to
log the value of these attributes. For example, instead of an authentication filter logging a generic Authentication
Failed message, you can use the value of the authentication.subject.id attribute to log the ID of the user that
could not be authenticated.

Use the following format to enter a message attribute selector in a log message:

${name_of_attribute}

At runtime, the API Gateway expands these selectors to the value of the message attribute. For example, to make sure
the ID of a non-authenticated user is logged in the message, enter something like the following in the text field for the
Failure case:

620

The user '${authentication.subject.id}' could not be authenticated.

Then if a user with ID oracle can not be authenticated by the API Gateway (a failure case), the following message is
logged:

The user 'oracle' could not be authenticated.

For more details on selectors, see Selecting Configuration Values at Runtime.

Audit Logging Behavior:
This setting is relevant only in cases where you have configured the API Gateway to log audit trail messages to a data-
base. For more details, see the instructions in the section called “Log to Database”.

You can select the Abort policy processing on database log error checkbox if you have configured the API Gateway
to write log messages to a database, but that database is not available at runtime. If you have selected this checkbox,
and the database is not available, the filter aborts, which in turn causes the policy to abort. In this case, the Fault Handler
for the policy is invoked.

Filter Category:
The category selected here identifies the category of filters to which this filter belongs. The default selection should be
appropriate in most cases.

Log Level and Message

621

Log Message Payload
Overview

The Log Message Payload filter is used to log the message payload at any point in the policy. The message payload in-
cludes the HTTP headers and MIME/DIME attachments.

By placing the Log Message Payload filter at various key locations in the policy, a complete audit trail of the message
can be achieved. For example, by placing the filter after each filter in the policy, the complete history of the message can
be logged. This is especially useful in cases where the message has been altered by the API Gateway (for example, by
signing or encrypting the message, inserting security tokens, or by converting the message to another grammar using
XSLT).

Log messages can be stored in several locations, including a database, a file, or the system console. For more details on
configuring logging destinations, see the topic on Audit Log Settings.

Configuration

Enter an appropriate name for the Log Message Payload filter in the Name field. It is good practice to use descriptive
names for these filters. For example, Log message before signing message and Log message after signing would
be useful names to give to two Log Message Payload filters that are placed before and after a Sign Message filter.

By default, the Log Message Payload filter writes entries to the log file in the following format:

${timestamp} ${id} ${filterName} ${payload}

However, you can alter the format of the logging output using the values entered in the Format field. You can use select-
ors to output logging information that is specific to the request. You can specify the following properties:

• level:
The log level (i.e. fatal, fail, success).

• id:
The unique transaction ID assigned to the message.

• ip:
The IP address of the client that sent the request.

• timestamp:
The time that the message was processed in user-readable form.

• filterName:
The name of the filter that generated the log message.

• filterType:
The type of the filter that logged the message.

• text:
The text of the log message that was configured in the filter itself.

• payload:
The complete contents of the HTTP request, including HTTP headers, body, and attachments.

622

Log Access Filter
Overview

The Log Access filter is used by the API Gateway to log records of all messages that pass through the filter. The API
Gateway writes the access log to an access.log file in the logs/access directory. This file rolls over at the start of
each day so that the name of the log file includes the date the date on which it was created (for example, ac-
cess_30Apr2010.log).

Important
The Log Access filter is deprecated in version 7.x. Instead you should use the Access Log available in
the Settings in the Policy Studio. For more details, see the Access Log Settings topic.

Log Format

The format of the log entries is Common Log Format, which has the following format:

host ident authuser date request status bytes

The following list explains each item:

• host: The remote hostname.
• ident: The remote logname of the user.
• authuser: The username by which the user has authenticated himself (for example, the Distinguished Name of a

certificate).
• date: The date and time of the request.
• request: The request line exactly as it originated at the client.
• status: The HTTP status code returned to the client.
• bytes: The content-length of the document returned to the client.

The following extract from the access.log file illustrates the format:

m1.oracle.com - Good [30/Mar/2009:22:09:05 00] "http://services/qotd" 200 587
m3.oracle.com - Good [30/Mar/2009:22:10:34 00] "http://services/qotd" 200 671
m1.oracle.com - Good [30/Mar/2009:22:10:53 00] "http://services/qotd" 200 571
................
................
................

Because the Log Access filter reports the number of bytes returned to the client (the bytes parameter explained
above), it should be positioned towards the end of a policy. A typical policy involving a Log Access filter might appear as
follows:

623

Configuration

The Log Access filter requires only a Name field to be configured.

Log Access Filter

624

Service Level Agreement (SLA) Filter
Overview

A Service Level Agreement (SLA) is an agreement put in place between a Web Services host and a client of that Web
Service in order to guarantee a certain minimum quality of service. It is common to see SLAs in place to ensure that a
minimum number of messages result in a communications failure and that responses are received within an acceptable
timeframe. In cases where the conditions of the SLA are breached, it is crucial that an alert can be sent to the appropri-
ate party.

The API Gateway satisfies these requirements by allowing SLAs to be configured at the policy level. It is possible to con-
figure SLAs to monitor the following types of problems:

• Response times
• HTTP status codes returned from the Web Service
• Communication failures

The SLA monitoring performed by the API Gateway is statistical. Because of this, a single message (or even a small
number of messages) is not considered a sufficient sample to cause an alert to be triggered. The monitoring engine actu-
ally uses an exponential decay algorithm to determine whether an SLA is failing or not. This algorithm is best explained
with an example.

Assume the poll rate is set to 3 seconds (i.e. 3000ms), the data age is set to 6 seconds (i.e. 6000ms), and you have a
Web Service with an average processing time of 100ms. A single client sending a stream of requests through the API
Gateway will be able to generate about 10 requests per second, given the Web Services's 100ms response time.

At every 3 seconds poll period you will have data from a previous 30 samples to consider the average response times of.
However, rather than simply using the response time of the last 3 seconds worth of data, historical data is "smoothed" in-
to the current estimate of the failing percentage. The new data is combined with the existing data such that it will take ap-
proximately the data age time for a sample to disappear from the average.

Therefore the closer the data age is to the sampling rate, the less significant historical data becomes, and the more signi-
ficant the "last" sample becomes.

In order to generate an alert, you must also have enough significant samples at each poll period to consider the date to
be statistically valid. For example, if a single request arrives over a period of 1 hour it may not be fair to say that "less
than 20%" of all received requests have failed the response time requirements. For this reason, statistical analysis
provides a more realistic SLA monitoring mechanism than a solution based purely on absolute metrics.

Response Time Requirements

You can monitor the response times of Web Services protected by the SLA Filter. This filter provides different ways of
measuring response times:

Response Time Measurement Description

receive-request-start The time that the API Gateway receives the first byte of the
request from the client.

receive-request-end The time that the API Gateway receives the last byte of the
request from the client.

send-request-start The time that the API Gateway sends the first byte of the
request to the Web Service.

send-request-end The time that the API Gateway sends the last byte of the

625

Response Time Measurement Description

request to the Web Service

receive-response-start The time that the API Gateway receives the first byte of the
response from the Web Service

receive-response-end The time that the API Gateway receives the last byte of the
response from the Web Service.

send-response-start The time that the API Gateway sends the first byte of the
response to the client.

send-response-end The time that the API Gateway sends the last byte of the
response to the client.

The API Gateway will measure each of the 8 time values. They will available for processing after the policy has com-
pleted for a single request. These 8 options are available for the following reasons:

• The API Gateway may start to send the first byte to the Web Service before the last byte is received from the client,
i.e. send-request-start <receive-request-end. This will occur if the invoked policy does not require the full message to
be read into memory.

• The API Gateway may start to send the response to the client before the complete response has been received from
the Web Service, i.e. send-response-start < receive-response-end. This will occur when invoked policy does not re-
quire the full message to be read into memory.

• It is possible that the Web Service may start to send the response before it has received the complete request.
However, the API Gateway will not start to read the response until it has sent the complete request. This means that
the following is always true:- send-request-end < receive-response-start.

• The time value for send-response-end will depend upon the client application. This value will be larger if the client is
slow to read the response.

To add a Response Time Requirement for an SLA, click the Add button.

To configure the start time and end time for the response time measurement, click the Add button. On the Settings tab,
specify the percentage of response times that must be below a specified time interval (in milliseconds) in the fields
provided. The purpose of these options is to allow for situations where a very small number of unusually slow requests
may cause an SLA to trigger unnecessarily. By using percentages, such requests will not distort the statistics collected
by the API Gateway.

Click the Message Text tab to configure the messages that will appear in the alert message when the SLA is breached
and also when the SLA is cleared, i.e. when the breached conditions are no longer in breach of the SLA.

Finally, click the Advanced tab to configure timing information. Select a Start Timing Point from the 8 times listed in the
table above. The API Gateway will start measuring the response time from this time. Then select an End Timing Point
from the 8 times listed in the table above. The API Gateway will stop measuring the response time from this time.

HTTP Status Requirements

HTTP status codes may be received from a Web Service. The API Gateway can be configured to monitor these and gen-
erate alerts based on the number of occurrences of certain types of status code response. HTTP status codes are three
digit codes that may be grouped into standard status "classes", with the first digit indicating the status class. The status
classes are as follows:

Service Level Agreement (SLA) Filter

626

HTTP Status Code Class Description

1xx These status codes indicate a provisional response.

2xx These status codes indicate that the client's request was
successfully received, understood, and accepted.

3xx These status codes indicate that further action needs to be
taken by the user agent in order to fulfill the request.

4xx These status codes are intended for cases in which the cli-
ent seems to have erred. For example 401, means that au-
thentication has failed.

5xx These status codes are intended for cases where the serv-
er has encountered an unexpected condition that preven-
ted it from fulfilling the request. For example, 500 is used to
transmit SOAP faults.

The API Gateway may monitor a class (i.e. range) of status codes, or they may monitor specific status codes. For ex-
ample, it is possible to configure the following HTTP status code requirements:

• At least 97% of the requests must yield HTTP status codes between 200 and 299
• At most 2% of requests may yield HTTP status codes between 400 and 499
• At most 0% of requests may yield HTTP status code 500

Click the Add button in the HTTP Status Code Requirements section.

Select an existing status code or class of status codes from the HTTP Status Code dropdown. To add a new code or
range of codes, click the Add button.

Enter a name for the new code or range of codes in the Name field of the Configure HTTP Status Code dialog. Enter
the first HTTP status code in the range of status codes that you want to monitor in the Start Status field. Then enter the
last HTTP status code in the range of status codes that you want to monitor in the End Status field.

If you just want to monitor one specific status code, enter the same code in the Start Status and End Status fields.

Click OK when you are satisfied with the selected range of status codes to return to the previous dialog. The remaining 2
fields allow the administrator to specify the minimum or maximum percentage of received HTTP status codes that fall into
the configured range before an alert is triggered.

Again, the use of percentages here is to allow for situations where a very small number of requests return the status
codes within the "forbidden" range. By using percentages, such requests will not distort the statistics collected by the API
Gateway.

Click the Message Text tab to configure the messages that will appear in the alert message when the SLA is breached
and also when the SLA is cleared, (when the breached conditions are no longer in breach of the SLA).

Communications Failure Requirements

The API Gateway is deemed to have experienced a communications failure when it fails to connect to the Web Service,
fails to send the request, or fails to receive the response.

The requirements for communications failures may be expressed as follows:

• No more than 4% of requests may result in communications failures.

Service Level Agreement (SLA) Filter

627

Enter the percentage of allowable communications failures in the field provided. An alert will be configured if the percent-
age of communicates failures rises above this level.

Click the Message Text tab to configure the messages that will appear in the alert message when the SLA is breached
and also when the SLA is cleared, i.e. when the breached conditions are no longer in breach of the SLA.

Select Alerting System

If an alert is triggered, it must be sent to an alerting destination. The API Gateway can send alerts to the following destin-
ations:

• Windows Event Log
• Email Recipient
• SNMP Network Management System
• Local Syslog
• Remote Syslog
• CheckPoint FireWall-1 (OPSEC)
• Twitter

The Select Alerting System table at the bottom of the screen displays all available alerting destinations that have been
configured. You can click Add to configure an alert destination. For more details, see the topic on System Alerting.

Select one or more alerting systems in the table. An alert will be sent to each selected system in the event of a violation
of the performance requirements. Alert clearances will be generated when the violation no longer exists.

Service Level Agreement (SLA) Filter

628

Set Service Context
Overview

The Set Service Context filter configures service-level monitoring details. For example, you can use the fields on this fil-
ter screen to configure whether the API Gateway stores service usage and service usage per client details. You can also
set the name of the service displayed in the web-based API Gateway Manager monitoring tools and Oracle API Gateway
Analytics reporting tools.

When you use the API Service Manager tool to virtualize an API service, a Set Service Context filter is automatically
generated for the service. For example, you can view generated policies in the Policy Studio tree under the Polices ->
Generated Polices -> API Service Manager -> Services.

Configuration

Name:
Enter an appropriate name for the filter to be displayed in a policy.

Service Name:
Enter an appropriate name for this service to be displayed in the Web-based API Gateway Manager tools, and in the Or-
acle API Gateway Analytics interface when generating reports for this service.

Monitoring Options:
The fields in this group enable you to configure whether this service stores usage metrics data to a database. For ex-
ample, this information can be used by Oracle API Gateway Analytics to produce reports showing how and who is calling
this service. The following fields are available:

• Monitor service usage:
Select this option if you want to store message metrics for this service.

• Monitor service usage per client:
Select this option if you want to generate reports monitoring which authenticated clients are calling which services.

• Monitor client usage:
If you want to generate reports on authenticated clients, but are not interested in which services they are calling, se-
lect this option and deselect Monitoring service usage per client.

• Which attribute is used to identify the client?:
Enter the message attribute to use to identify authenticated clients. The default is authentication.subject.id,
which stores the identifier of the authenticated user (for example, the username or user's X.509 Distinguished
Name).

• Composite Context:
This setting enables you to select a service context as a composite context in which multiple service contexts are
monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message, and sends it to serviceA first, and then to serviceB. Monit-
oring is performed separately for each service by default. However, you can set a composite service context before
serviceA and serviceB that includes both services. This composite service passes if both services complete suc-
cessfully, and monitoring is also performed on the composite service context.

629

API Gateway OAuth 2.0 Introduction
Overview

The Oracle API Gateway can be used as an OAuth Authorization Server and as an OAuth Resource Server. The Author-
ization Server issues tokens to clients on behalf of a Resource Owner for use in authenticating subsequent API calls to
the Resource Server.

You should be familiar with the terms and concepts of The OAuth 2.0 Authorization Framework specification:
http://tools.ietf.org/html/draft-ietf-oauth-v2-27

API Gateway OAuth Components
The API Gateway ships with the following features to support OAuth 2.0:

• Client application registration
• Generation of access tokens and authorization codes
• Support for the following OAuth flows:

• Authorization Code
• Implicit Grant
• Resource Owner Password Credentials
• Client Credentials
• JWT
• Refresh Token
• Revoke Token
• Token Information Service

• Sample clients for all of the above scenarios

OAuth 2.0 Definitions

The API Gateway uses the following definitions of basic OAuth 2.0 terms:

Resource Owner: An entity capable of granting access to a protected resource. When the resource owner is a person, it
is referred to as an end user.

Resource Server: The server hosting the protected resources, capable of accepting and responding to protected re-
source requests using access tokens.

Client: An application making protected requests on behalf of the resource owner and with its authorization.

Authorization Server: The server issuing access tokens to the client after successfully authenticating the resource own-
er and obtaining authorization.

OAuth 2.0 Authentication Flows

The API Gateway supports the following authentication flows:

OAuth 2.0 Authorization Code Grant (Web Server): The Web server authentication flow is used by applications that
are hosted on a secure server. A critical aspect of the Web server flow is that the server must be able to protect the is-
sued client application's secret.

OAuth 2.0 Implicit Grant (User-Agent): The user-agent authentication flow is used by client applications residing in the
user's device. This could be implemented in a browser using a scripting language such as JavaScript or Flash. These cli-
ents cannot keep the client secret confidential.

630

http://tools.ietf.org/html/draft-ietf-oauth-v2-27

OAuth 2.0 Resource Owner Password Credentials: This username-password authentication flow can be used when
the client application already has the resource owner's credentials.

OAuth 2.0 Client Credentials: This username-password flow is used when the client application needs to directly ac-
cess its own resources on the resource server. Only the client application's credentials are used in this flow. The re-
source owner's credentials are not required.

OAuth 2.0 JWT: This flow is similar to OAuth 2.0 Client Credentials. A JSON Web Token (JWT) is a JSON-based secur-
ity token encoding that enables identity and security information to be shared across security domains.

OAuth 2.0 Refresh Token: After the consumer has been authorized for access, it can use a refresh token to get a new
access token. This is only done after the consumer already has received an access token using the Authorization Code
Grant or Resource Owner Password Credentials Grant flow.

OAuth 2.0 Revoke Token: A revoke token request causes the removal of the client permissions associated with the par-
ticular token to access the end-user's protected resources.

OAuth 2.0 Token Information Service: The OAuth Token Info service responds to requests for information on a spe-
cified OAuth 2.0 access token.

Further Information

For more details on the API Gateway OAuth 2.0 support, see the following topics:

• Configuring and Managing OAuth 2.0
• API Gateway OAuth 2.0 Authentication Flows

For more details on OAuth 2.0, see The OAuth 2.0 Authorization Framework:
http://tools.ietf.org/html/draft-ietf-oauth-v2-27

API Gateway OAuth 2.0 Introduction

631

http://tools.ietf.org/html/draft-ietf-oauth-v2-27

Configuring and Managing OAuth 2.0
Overview

Client applications that send OAuth requests to the API Gateway’s Authorization Server must be registered with the Au-
thorization Server. This topic describes the OAuth 2.0 endpoints used to manage client applications and the pre-
registered examples provided with the API Gateway. It describes the registry used to store these client applications, and
provides details how to manage them using a REST API-based HTML interface. This topic also includes details on the
database schema, and SSL commands used for the example client applications.

Enabling OAuth 2.0 Management

The API Gateway provides the following endpoints used to manage OAuth 2.0 client applications:

Description URL

Authorization Endpoint (REST API) https://GATEWAY:8089/api/oauth/authorize

Token Endpoint (REST API) https://GATEWAY:8089/api/oauth/token

Token Info Endpoint (REST API) https://GATEWAY:8089/api/oauth/tokeninfo

Revoke Endpoint (REST API) https://GATEWAY:8089/api/oauth/revoke

Oracle API Manager (HTML Interface) https://GATEWAY:8089

Oracle API Manager (REST API) https://GATEWAY:8089/api/kps/
ClientApplicationRegistry

where GATEWAY is the machine on which the API Gateway is installed.

Important
You must first enable the OAuth listener port in the API Gateway before these endpoints are available.

Enabling OAuth Endpoints
To enable the OAuth management endpoints on your API Gateway, perform the following steps:

1. In the Policy Studio tree, select Listeners -> API Gateway -> OAuth 2.0 Services -> Ports.
2. Right-click the OAuth 2.0 Interface in the panel on the right, and select Edit.
3. Select Enable Interface in the dialog.
4. Click the Deploy button in the toolbar.
5. Enter a description and click Finish.

Note
On Linux-based systems, such as Oracle Enterprise Linux, you must open the firewall to allow external ac-
cess to port 8089.

632

If you need to change the port number, set the value of the env.PORT.OAUTH2.SERVICES environment
variable. For more details, see Deploying the API Gateway in Multiple Environments.

Pre-registered Client Applications

The API Gateway ships with a number of pre-registered example client applications.

Note
These client applications are for demonstration purposes only and should be removed before moving the
Authorization Server into production.

The default example client applications include the following:

Client ID Client Secret

SampleConfidentialApp 6808d4b6-ef09-4b0d-8f28-3b05da9c48ec

SamplePublicApp 3b001542-e348-443b-9ca2-2f38bd3f3e84

Managing Registered Clients

Every client application that sends OAuth requests to the API Gateway's OAuth Authorization Server must be registered
with the Oracle API Manager. The API Gateway provides the API Manager Web-based HTML interface for managing re-
gistered client applications. It also provides the API Manager REST API that enables you to manage registered clients on
the command line.

Accessing the API Manager Web Interface
You can access the API Manager Web interface at the following URL:

https://localhost:8089

This interface is displayed as follows:

You can select a registration entry and click Edit to update its details. For example, you can can select the scopes that
an application requires access to, and configure API keys or certificates. Remember to click Save when finished.

Configuring and Managing OAuth 2.0

633

Configuring and Managing OAuth 2.0

634

By default, the API Manager back-end is file-based and uses the API Gateway’s Key Property Store (KPS). For more de-
tails, see Key Property Stores. You can also store this data in a database. For more details, see the section called
“Token Management”.

Accessing the API Manager REST API
For details on using the API Manager REST interface on the command line, see the section called “API Manager REST
API”.

Sample Clients

The API Gateway includes sample Jython client applications for all supported OAuth flows in the following directory your
API Gateway installation:

INSTALL_DIR/samples/scripts/oauth

To run a sample script, open a UNIX shell or DOS command prompt in the following directory:

INSTALL_DIR/samples/scripts

Windows
For example, run the following command:

> run.bat oauth\implicit_grant.py

Linux/Solaris
For example, run the following command:

> sh run.sh oauth/implicit_grant.py

Token Management

The API Gateway can store generated authorization codes and access tokens in its caches or in a central database. The
Authorization Server issues tokens to clients on behalf of a Resource Owner for use in authenticating subsequent API
calls to the Resource Server. These issued tokens need to be persisted so that subsequent client requests to the Author-
ization Server can be validated.

The following screen shows the OAuth stores in the Policy Studio:

Configuring and Managing OAuth 2.0

635

Note
The Authorization Server can cache authorization codes and access tokens depending on the OAuth flow.
The steps for adding an authorization code cache are similar to adding an access token cache.

The Authorization Server offers the following token persistent storage options:

• Database
• Cache

The following screen shows these options in the Policy Studio:

Configuring and Managing OAuth 2.0

636

The Purge expired tokens every 60 secs setting enables you to configure the time in seconds that a background pro-
cess will polls the database or cache looking for expired access/refresh tokens or authorization codes.

Caching Tokens using a Database
Perform the following steps:

1. Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token Store.
2. This displays the dialog that enables you to choose the persistence type. Select Store in a database, and select the

browse button to display a database configuration dialog.
3. Complete the database configuration details. The following example uses a MySQL database, and a database in-

stance named oauth_db. For more details, see Database Connection.

Configuring and Managing OAuth 2.0

637

Configuring and Managing OAuth 2.0

638

Note
On first use of the database for caching access tokens, the following tables are created automatically: oau-
th_access_token and oauth_refresh_token. A table named oauth_authz_code is created for
caching authorization codes.

For more details, see the section called “Database-Backed API Manager”.

Caching Tokens using EHCache

1. Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token Store.
2. This displays a dialog that enables you to choose the persistence type. Select Store in a cache, and select the

browse button to display the cache configuration dialog.
3. Add a new cache (for example, AccessTokenCache). For more details, see Global Caches.

API Manager REST API

This section desribes a set of commands that enables you to use the API Manager REST API to manage client applica-
tions.

Register a Client Application
You can register client applications using a command line utility such as curl. For example, to register a new client ap-
plication, use the following command:

curl -v --header "Content-Type:application/json" -X POST -d @newobj.json
--user admin:changeme

where newobj.json is something like the following:

Configuring and Managing OAuth 2.0

639

{
"storeId": "ClientApplicationRegistry",
"typeId": "AppDetails",
"objects": [

{
"enabled": true,
"logo": "http://localhost:8090/logos/logo.gif",
"scopes": [

"https://localhost:8090/auth/userinfo.email",
"https://localhost:8090/auth/userinfo.profile"

],
"contactPhone": "012345678",
"contactEmail": "sample@sampleapp.com",
"description": "Oracle Sample Confidential Application",
"name": "Oracle Sample Confidential App",
"clientID": "SampleConfidentialApp",
"clientSecret": "NjgwOGQ0YjYtZWYwOS00YjBkLThmMjgtM2IwNWRhOWM0OGVj",
"redirectURLs": [

"http://localhost:8080/auth/redirect.html"
],

"base64EncodedCert":
"-----BEGIN CERTIFICATE-----

MIIDpTCCAw6gAwIBAgIJAKqGffYjCdSiMA0GCSqGSIb3DQEBBQUAMIGUMQswCQYD
.....
-----END CERTIFICATE-----\n",

"clientType": "confidential"
}

]
}

Retrieve all Registered Clients
Use the following command:

curl --user admin:changeme | python -mjson.tool

Viewing a Registered Client
This is similar to retrieving all registered clients except you are passing in a registered client_id (in this example,
95574d66-f115-4c9b-b93e-526d383b4b6a). Use the following command:

curl --user admin:changeme
https://localhost:8089/api/kps/ClientApplicationRegistry/
95574d66-f115-4c9b-b93e-526d383b4b6a | python -mjson.tool

To access one of the preregistered clients, you can call the following:

curl --user admin:changeme
https://localhost:8089/api/kps/ClientApplicationRegistry/
SampleConfidentialApp | python -mjson.tool

Removing a Registered Client
To delete a client, pass in the client ID at the end of the request. For example:

curl -v -X DELETE --user admin:changeme
https://localhost:8089/api/kps/ClientApplicationRegistry/
95574d66-f115-4c9b-b93e-526d383b4b6a

Verify Client Deletion is Successful

Configuring and Managing OAuth 2.0

640

This is the same request as viewing a register client application, but this time the API Manager KPS returns a JSON er-
ror. For exmaple:

curl --user admin:changeme
https://localhost:8089/api/kps/ClientApplicationRegistry/
95574d66-f115-4c9b-b93e-526d383b4b6a | python -mjson.tool

The following JSON error is returned:

{
"errors": [

{
"code": 102,
"message": "Unexpected exception:

com.vordel.kps.ObjectNotFound : id:
95574d66-f115-4c9b-b93e-526d383b4b6a"

}
]

}

Disabling a Client Application

curl -v --header "Content-Type:application/json" -X PUT -d '{"enabled" : false}'
--user admin:changeme https://localhost:8089/api/kps/ClientApplicationRegistry/
c5659b84-8524-4592-aed8-c7fa77c8eb26

Alternatively, you can upload a full update by passing in a file using -d @updatedObject.json.

Database-Backed API Manager

The Oracle API Manager KPS can also be backed by a database. For more details, see Key Property Stores. The default
file-based KPS that ships in the samples directory of the API Gateway is displayed as follows in the Policy Studio:

To change this definition to use a database for storage, add the following property name:value pairs:

• Database username: username: root

• Database password: password: password

• Database URL: url: jdbc:mysql://localhost:3306/oauth_db

Configuring and Managing OAuth 2.0

641

• Database driver: driver: com.mysql.jdbc.Driver

Note
Alternatively, you can set the dbConnectionName property. This enables you to use a database connec-
tion that you have already defined in External Connections -> Database Connections in the Policy Stu-
dio. A setting of dbConnectionName means that the username, password, url, and driver properties
are not required. The schemaOption parameter, if set to create, creates the database tables required by
the KPS. This variable is typically used at development and test time.

For details on adding KPS properties in the Policy Studio, see Key Property Stores.

OAuth Database Schemas

This section shows the OAuth database schemas displayed by example mysql commands.

oauth_access_token schema
The following shows the result from the show columns from auth_access_token; command:

+---------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+--------------+------+-----+---------+-------+
id	varchar(2	NO	PRI	NULL	
auth_request	blob	NO		NULL	
client_id	varchar(255	NO		NULL	
expiry_ti	datetime	NO		NULL	
token	blob	NO		NULL	
refresh_token	varchar(2	YES		NULL	
user_auth	varchar(255	NO		NULL	
user_name	varchar(255	NO		NULL	
+---------------+--------------+------+-----+---------+-------+

oauth_refresh_token schema
The following shows the result from the show columns from oauth_refresh_token; command:

+--------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+--------------+------+-----+---------+-------+
token_id	varchar(255)	NO	PRI	NULL	
auth_request	blob	NO		NULL	
expiry_time	datetime	NO		NUL	
token	blob	NO		NULL	
user_name	varchar(255)	NO		NULL	
+--------------+--------------+------+-----+---------+-------+

oauth_refresh_token schema
The following shows the result from the show columns from oauth_refresh_token; command:

+---------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+--------------+------+-----+---------+-------+
id	varchar(255)	NO	PRI	NULL	
authorization	blob	NO		NULL	
expiry_time	datetime	NO		NULL	
+---------------+--------------+------+-----+---------+-------+

Configuring and Managing OAuth 2.0

642

OpenSSL Commands

The following example openssl command shows generating a client application certificate and private key:

$ openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout mykey.pem
-out mycert.pem
Generating a 1024 bit RSA private key
...
...........++++++
.....++++++
writing new private key to 'mykey.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank.
For some fields there will be a default value.
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:MA
Locality Name (eg, city) []:Newton
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Oracle
Organizational Unit Name (eg, section) []:API Gateway
Common Name (eg, YOUR name) []:SampleConfidentialApp
Email Address []:support@widgits.com

OAuth 2.0 Message Attributes

Most of the OAuth 2.0 policy filters in the API Gateway generate message attributes that can be queried further using
API Gateway selector syntax. The message attributes generated by the OAuth filters are as follows:

• accesstoken

• accesstoken.authn

• authzcode

• authentication.subject.id

• oauth.client.details

accesstoken methods
The following methods are available to call on the accesstoken message attribute:

${accesstoken.getValue()}
${accesstoken.getExpiration()}
${accesstoken.getExpiresIn()}
${accesstoken.isExpired()}
${accesstoken.getTokenType()}
${accesstoken.getRefreshToken()}
${accesstoken.getOAuth2RefreshToken().getValue()}
${accesstoken.getOAuth2RefreshToken().getExpiration()}
${accesstoken.getOAuth2RefreshToken().getExpiresIn()}
${accesstoken.getOAuth2RefreshToken().hasExpired()}
${accesstoken.hasRefresh()}
${accesstoken.getScope()}
${accesstoken.getAdditionalInformation()}

The following example shows output from querying each of the accesstoken methods:

so0HlJYASrnXqn2fL2VWgiunaLfSBhWv6W7JMbmOa131HoQzZB1rNJ

Configuring and Managing OAuth 2.0

643

Fri Oct 05 17:16:54 IST 2012
3599
false
Bearer
xif9oNHi83N4ETQLQxmSGoqfu9dKcRcFmBkxTkbc6yHDfK
xif9oNHi83N4ETQLQxmSGoqfu9dKcRcFmBkxTkbc6yHDfK
Sat Oct 06 04:16:54 IST 2012
43199
false
true
https://localhost:8090/auth/userinfo.email
{department=engineering}

accesstoken.authn methods
The following methods are available to call on the accesstoken.authn message attribute:

${accesstoken.authn.getUserAuthentication()}
${accesstoken.authn.getAuthorizationRequest().getScope()}
${accesstoken.authn.getAuthorizationRequest().getClientId()}
${accesstoken.authn.getAuthorizationRequest().getState()}
${accesstoken.authn.getAuthorizationRequest().getRedirectUri()}
${accesstoken.authn.getAuthorizationRequest().getParameters()}

The following example shows output from querying each of the accesstoken.authn methods:

admin
[https://localhost:8090/auth/userinfo.email]
SampleConfidentialApp
343dqak32ksla
https://localhost/oauth_callback
{client_secret=6808d4b6-ef09-4b0d-8f28-3b05da9c48ec,

scope=https://localhost:8090/auth/userinfo.email, grant_type=authorization_code,
redirect_uri=https://localhost/oauth_callback, state=null,
code=FOT4nudbglQouujRl8oH3EOMzaOlQP, client_id=SampleConfidentialApp}

authzcode methods
The following methods are available to call on the authzcode message attribute:

${authzcode.getCode()}
${authzcode.getState()}
${authzcode.getApplicationName()}
${authzcode.getExpiration()}
${authzcode.getExpiresIn()}
${authzcode.getRedirectURI()}
${authzcode.getScopes()}
${authzcode.getUserIdentity()}

The following example shows output from querying each of the authzcode methods:

F8aHby7zctNRknmWlp3voe61H20Md1
sds12dsd3343ddsd
SampleConfidentialApp
Fri Oct 05 15:47:39 IST 2012
599 (expiry in secs)
https://localhost/oauth_callback
[https://localhost:8090/auth/userinfo.email]
admin

oauth.client.details methods

Configuring and Managing OAuth 2.0

644

The following methods are available to call on the oauth.client.details message attribute:

${authzcode.getCode()}
${authzcode.getState()}
${authzcode.getApplicationName()}
${authzcode.getExpiration()}
${authzcode.getExpiresIn()}
${authzcode.getRedirectURI()}
${authzcode.getScopes()}
${authzcode.getUserIdentity()}

The following example shows output from querying each of the oauth.client.details methods:

F8aHby7zctNRknmWlp3voe61H20Md1
sds12dsd3343ddsd
SampleConfidentialApp
Fri Oct 05 15:47:39 IST 2012
599 (expiry in secs)
https://localhost/oauth_callback
[https://localhost:8090/auth/userinfo.email]
admin

Example Use
If you add additional access token parameters to the OAuth 2.0 Access Token Info filter, you can return a lot of addi-
tional information about the token. For example:

{
"audience" : "SampleConfidentialApp",
"user_id" : "admin",
"scope" : "https://localhost:8090/auth/userinfo.email",
"expires_in" : 3567,
"Access Token Expiry Date" : "Wed Aug 15 11:19:19 IST 2012",
"Authentication parameters" : "{username=admin,
client_secret=6808d4b6-ef09-4b0d-8f28-3b05da9c48ec,
scope=https://localhost:8090/auth/userinfo.email, grant_type=password,
redirect_uri=null, state=null, client_id=SampleConfidentialApp,
password=changeme}",

"Access Token Type:" : "Bearer"

You also have the added flexibility to add extra name/value pair settings to access tokens upon generation.The OAuth
2.0 access token generation filters provide an option to store additional parameters for an access token. For example, if
you add the name/value pair Department/Engineering to the Client Credentials filter:

Configuring and Managing OAuth 2.0

645

You can then update the Access Token Info filter to add a name/value pair using a selector to get the following value:

Department/${accesstoken.getAdditionalInformation().get("Department")}

For example:

Configuring and Managing OAuth 2.0

646

Then the JSON response is as follows:

{
"audience" : "SampleConfidentialApp",
"user_id" : "SampleConfidentialApp",
"scope" : "https://localhost:8090/auth/userinfo.email",
"expires_in" : 3583,
"Access Token Type:" : "Bearer",
"Authentication parameters" :
"{client_secret=6808d4b6-ef09-4b0d-8f28-3b05da9c48ec,
scope=https://localhost:8090/auth/userinfo.email, grant_type=client_credentials,
redirect_uri=null, state=null, client_id=SampleConfidentialApp}",

"Department" : "Engineering",
"Access Token Expiry Date" : "Wed Aug 15 12:10:57 IST 2012"

Configuring and Managing OAuth 2.0

647

You can also use API Gateway selector syntax when storing additional information with the token. For more details on
selectors, see Selecting Configuration Values at Runtime.

Configuring and Managing OAuth 2.0

648

API Gateway OAuth 2.0 Authentication Flows
Overview

The API Gateway can use the OAuth 2.0 protocol for authentication and authorization. The API Gateway can act as an
OAuth 2.0 Authorization Server and supports several OAuth 2.0 flows that cover common Web server, JavaScript,
device, installed application, and server-to-server scenarios. This topic describes each of the supported OAuth 2.0 flows
in detail, and shows how to run example client applications.

Authorization Code (or Web Server) Flow

The Authorization Code or Web server flow is suitable for clients that can interact with the end-user’s user-agent
(typically a Web browser), and that can receive incoming requests from the authorization server (can act as an HTTP
server).

The Authorization Code flow is as follows:

1. The Web server redirects the user to the API Gateway acting as an Authorization Server to authenticate and author-
ize the server to access data on their behalf.

2. After the user approves access, the Web server receives a callback with an authorization code.
3. After obtaining the authorization code, the Web server passes back the authorization code to obtain an access token

response.
4. After validating the authorization code, the API Gateway passes back a token response to the Web server.
5. After the token is granted, the Web server accesses their data.

649

Obtaining an Access Token
The detailed steps for obtaining an access token are as follows:

1. Redirect the user to the authorization endpoint with the following parameters:

Parameter Description

response_type Required. Must be set to code.

client_id Required. The Client ID generated when the application
was registered in the Oracle API Manager.

redirect_uri Optional. Where the authorization code will be sent. This
value must match one of the values provided in the Oracle
API Manager.

scope Optional. A space delimited list of scopes, which indicate
the access to the Resource Owner's data being requested
by the application.

state Optional. Any state the consumer wants reflected back to it
after approval during the callback.

API Gateway OAuth 2.0 Authentication Flows

650

The following is an example URL:

https://apigateway/oauth/authorize?client_id=SampleConfidentialApp&
response_type=code&&redirect_uri=http%3A%2F%2Flocalhost%3A8090%2Fauth%2Fredirect.html&
scope=https%3A%2F%2Flocalhost%3A8090%2Fauth%2Fuserinfo.email

Note
During this step the Resource Owner user must approve access for the application Web server to access
their protected resources, as shown in the following example screen.

2. The response to the above request is sent to the redirect_uri. If the user approves the access request, the re-
sponse contains an authorization code and the state parameter (if included in the request). If the user does not ap-
prove the request, the response contains an error message. All responses are returned to the Web server on the query
string. For example:

https://localhost/oauth_callback&code=9srN6sqmjrvG5bWvNB42PCGju0TFVV

3. After the Web server receives the authorization code, it may exchange the authorization code for an access token and
a refresh token. This request is an HTTPS POST, and includes the following parameters:

Parameter Description

grant_type Required. Must be set to authorization_code.

code Required. The authorization code received in the redirect
above.

API Gateway OAuth 2.0 Authentication Flows

651

redirect_uri Required. The redirect URL registered for the application
during application registration.

client_id* Optional. The client_id obtained during application re-
gistration.

client_secret* Optional. The client_secret obtained during application
registration.

format Optional. Expected return format. The default is json. Pos-
sible values are:

• urlencoded

• json

• xml

* If the client_id and client_secret are not provided as parameters in the HTTP POST, they must be provided in
the HTTP Basic Authentication header (Authorization base64Encoded(client_id:client_secret)).

The following example HTTPS POST shows some parameters:

POST /api/oauth/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

client_id=SampleConfidentialApp&client_secret=6808d4b6-ef09-4b0d-8f28-3b05da9c48ec
&code=9srN6sqmjrvG5bWvNB42PCGju0TFVV&redirect_uri=http%3A%2F%2Flocalhost%3A809
0%2Fauth%2Fredirect.html&grant_type=authorization_code&format=query

4. After the request is verified, the API Gateway sends a response to the client. The following parameters are in the re-
sponse body:

Parameter Description

access_token The token that can be sent to the Resource Server to ac-
cess the protected resources of the Resource Owner
(user).

refresh_token A token that may be used to obtain a new access token.

expires The remaining lifetime on the access token.

type Indicates the type of token returned. At this time, this field
always has a value of Bearer.

The following is an example response:

API Gateway OAuth 2.0 Authentication Flows

652

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json
Pragma: no-cache{

"access_token": “O91G451HZ0V83opz6udiSEjchPynd2Ss9......",
"token_type": "Bearer",
"expires_in": "3600",

}

5. After the Web server has obtained an access token, it can gain access to protected resources on the Resource Server
by placing it in an Authorization: Bearer HTTP header:

GET /oauth/protected HTTP/1.1
Authorization: Bearer O91G451HZ0V83opz6udiSEjchPynd2Ss9
Host: apigateway.com

For example, the curl command to call a protected resource with an access token is as follows:

curl -H "Authorization: Bearer O91G451HZ0V83opz6udiSEjchPynd2Ss9"
https://apigateway.com/oauth/protected

Sample Client
The following Jython sample client creates and sends an authorization request for the authorization grant flow to the Au-
thorization Server:

INSTALL_DIR/samples/scripts/oauth/authorization_code.py

To run the sample, perform the folllowing steps:

1. Open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/authorization_code.py

The script outputs the following:

> Go to the URL here:
http://127.0.0.1:8080/api/oauth/authorize?client_id=SampleConfidentialApp&response_type=

code&scope=https%3A%2F%2Flocalhost%3A8090%2Fauth%2Fuserinfo.email&redirect_uri=
https%3A%2F%2Flocalhost%2Foauth_callback

Enter Authorization code in dialog

2. Copy the URL output to the command prompt into a browser, and perform the following steps as prompted:

API Gateway OAuth 2.0 Authentication Flows

653

a. Provide login credentials to the authorization server. The default values are:
• Username: admin
• Password: changeme

b. When prompted, grant access to the client application to access the protected resource.
3. After the Resource Owner has authorized and approved access to the application, the Authorization Server redirects

a fragment containing the access code to the redirection URI. For example:

https://localhost/oauth_callback&code=AaI5Or3RYB2uOgiyqVsLs1ATIY0ll0

In this example, the access token is:

AaI5Or3RYB2uOgiyqVsLs1ATIY0ll0

Enter this value into the Enter Authorization Code dialog, and the script attempts to access the protected resource
using the access token. For example:

Enter Authorization code in dialog
AuthZ code: AaI5Or3RYB2uOgiyqVsLs1ATIY0ll0
Exchange authZ code for access token
Sending up access token request using grant_type set to authorization_code
Response from access token request: 200
Parsing the json response
**********************ACCESS TOKEN RESPONSE***********************************
Access token received from authorization server icPgKP2uVUD2thvAZ5ENhsQb66ffnZEC
XHyRQEz5zP8aGzcobLV3AR

Access token type received from authorization server Bearer
Access token expiry time: 3599
Refresh token: NpNbzIVVvj8MhMmcWx2zsawxxJ3YADfc0XIxlZvw0tIhh8
**
Now we can try access the protected resource using the access token
Executing get request on the protected url
Response from protected resource request is: 200
<html>Congrats! You've hit an OAuth protected resource</html>

Implicit Grant (or User Agent) Flow

The Implicit Grant (User-Agent) authentication flow is used by client applications (consumers) residing in the user's
device. This could be implemented in a browser using a scripting language such as JavaScript, or from a mobile device
or a desktop application. These consumers cannot keep the client secret confidential (application password or private
key).

The User Agent flow is as follows:

1. The Web server redirects the user to the API Gateway acting as an Authorization Server to authenticate and author-
ize the server to access data on their behalf.

2. After the user approves access, the Web server receives a callback with an access token in the fragment of the re-
direct URL.

3. After the token is granted, the application can access the protected data with the access token.

API Gateway OAuth 2.0 Authentication Flows

654

Obtaining an Access Token
The detailed steps for obtaining an access token are as follows:

1. Redirect the user to the authorization endpoint with the following parameters:

Parameter Description

response_type Required. Must be set to token.

client_id Required. The Client ID generated when the application
was registered in the Oracle API Manager.

redirect_uri Optional. Where the access token will be sent. This value
must match one of the values provided in the Oracle API
Manager.

scope Optional. A space delimited list of scopes, which indicates
the access to the Resource Owner's data requested by the
application.

state Optional. Any state the consumer wants reflected back to it
after approval during the callback.

The following is an example URL:

https://apigateway/oauth/authorize?client_id=SampleConfidentialApp&response_type=

API Gateway OAuth 2.0 Authentication Flows

655

token&&redirect_uri=http%3A%2F%2Flocalhost%3A8090%2Fauth%2Fredirect.html&scope=
https%3A%2F%2Flocalhost%3A8090%2Fauth%2Fuserinfo.email

Note
During this step the Resource Owner user must approve access for the application (Web server) to access
their protected resources, as shown in the following example screen.

2. The response to the above request is sent to the redirect_uri. If the user approves the access request, the re-
sponse contains an access token and the state parameter (if included in the request). For example:

https://localhost/oauth_callback#access_token=19437jhj2781FQd44AzqT3Zg
&token_type=Bearer&expires_in=3600

If the user does not approve the request, the response contains an error message.

3. After the request is verified, the API Gateway sends a response to the client. The following parameters are contained
in the fragment of the redirect:

Parameter Description

access_token The token that can be sent to the Resource Server to ac-
cess the protected resources of the Resource Owner
(user).

expires The remaining lifetime on the access token.

type Indicates the type of token returned. At this time, this field

API Gateway OAuth 2.0 Authentication Flows

656

will always have a value of Bearer.

state Optional. If the client application sent a value for state in
the original authorization request, the state parameter is
populated with this value.

4. After the application has obtained an access token, it can gain access to protected resources on the Resource Server
by placing it in an Authorization: Bearer HTTP header:

GET /oauth/protected HTTP/1.1
Authorization: Bearer O91G451HZ0V83opz6udiSEjchPynd2Ss9
Host: apigateway.com

For example, the curl command to call a protected resource with an access token is as follows:

curl -H "Authorization: Bearer O91G451HZ0V83opz6udiSEjchPynd2Ss9"
https://apigateway.com/oauth/protected

Sample Client
The following Jython sample client creates and sends an authorization request for the implicit grant flow to the Authoriza-
tion Server:

INSTALL_DIR/samples/scripts/oauth/implicit_grant.py

To run the sample, perform the following steps:

1. Open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/implicit_grant.py

The script outputs the following:

> Go to the URL here:
http://127.0.0.1:8080/api/oauth/authorize?client_id=SampleConfidentialApp&
response_type=token&scope=https%3A%2F%2Flocalhost%3A8090%2Fauth%2Fuserinfo.email&
redirect_uri=https%3A%2F%2Flocalhost%2Foauth_callback&state=1956901292

Enter Access Token code in dialog

API Gateway OAuth 2.0 Authentication Flows

657

2. After the Resource Owner has authorized and approved access to the application, the Authorization Server redirects
to the redirection URI a fragment containing the access code. For example:

https://localhost/oauth_callback#access_token=
4owzGyokzLLQB5FH4tOMk7Eqf1wqYfENEDXZ1mGvN7u7a2Xexy2OU9&expires_in=
3599&state=1956901292&token_type=Bearer

In this example, the access token is:

4owzGyokzLLQB5FH4tOMk7Eqf1wqYfENEDXZ1mGvN7u7a2Xexy2OU9

Enter this value into the Enter Access Token from fragment dialog, and the script attempts to access the protec-
ted resource using the access token. For example:

**********************ACCESS TOKEN RESPONSE******************************
Access token received from authorization server 4owzGyokzLLQB5FH4tOMk7Eqf1wqYfEN
EDXZ1mGvN7u7a2Xexy2OU9
**
Now we can try access the protected resource using the access token
Executing get request on the protected url
Response from protected resource request is: 200
<html>Congrats! You've hit an OAuth protected resource</html>

Resource Owner Password Credentials Flow

The Resource Owner password credentials flow is also known as the username-password authentication flow. This flow
can be used as a replacement for an existing login when the consumer already has the user’s credentials.

The Resource Owner password credentials grant type is suitable in cases where the Resource Owner has a trust rela-
tionship with the client (for example, the device operating system or a highly privileged application). The Authorization
Server should take special care when enabling this grant type, and only allow it when other flows are not viable.

This grant type is suitable for clients capable of obtaining the Resource Owner's credentials (username and password,
typically using an interactive form). It is also used to migrate existing clients using direct authentication schemes such as
HTTP Basic or Digest authentication to OAuth by converting the stored credentials to an access token.

API Gateway OAuth 2.0 Authentication Flows

658

Requesting an Access Token
The client token request should be sent in an HTTP POST to the token endpoint with the following parameters:

Parameter Description

grant_type Required. Must be set to password

username Required. The Resource Owner's user name.

password Required. The Resource Owner's password.

scope Optional. The scope of the authorization.

format Optional. Expected return format. The default is json. Pos-
sible values are:

• urlencoded

• json

• xml

The following is an example HTTP POST request:

POST /api/oauth/token HTTP/1.1
Content-Length: 424
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Host: 192.168.0.48:8080
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JWgrant_type=password&username=
johndoe&password=A3ddj3w

Handling the Response
The API Gateway will validate the resource owner’s credentials and authenticate the client against the Oracle API Man-
ager. An access token, and optional refresh token, is sent back to the client on success. For example, a valid response is
as follows:

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json
Pragma: no-cache
{

"access_token": “O91G451HZ0V83opz6udiSEjchPynd2Ss9......",
"token_type": "Bearer",
"expires_in": "3600",
“refresh_token”: “8722gffy2229220002iuueee7GP...........”

}

Sample Client
The following Jython sample client sends a request to the Authorization Server using the Resource Owner password cre-
dentials flow:

INSTALL_DIR/samples/scripts/oauth/resourceowner_password_credentials.py

API Gateway OAuth 2.0 Authentication Flows

659

To run the sample, open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/resourceowner_password_credentials.py

The script outputs the following:

Sending up access token request using grant_type set to password
Response from access token request: 200
Parsing the json response
**********************ACCESS TOKEN RESPONSE***********************************
Access token received from authorization server lrGHhFhFwSmycXStIza1jjvXlSaac9
JNIgviF7oPiV8OnxlSIsrxVA

Access token type received from authorization server Bearer
Access token expiry time: 3600
**
Now we can try access the protected resource using the access token
Excuting get request on the protected url
Response from protected resource request is: 200
<html>Congrats! You've hit an OAuth protected resource</html>

Client Credentials Grant Flow

The client credentials grant type must only be used by confidential clients. The client can request an access token using
only its client credentials (or other supported means of authentication) when the client is requesting access to the protec-
ted resources under its control. The client can also request access to those of another Resource Owner that has been
previously arranged with the Authorization Server (the method of which is beyond the scope of the specification).

Requesting an Access Token
The client token request should be sent in an HTTP POST to the token endpoint with the following parameters:

Parameter Description

API Gateway OAuth 2.0 Authentication Flows

660

grant_type Required. Must be set to client_credentials.

scope Optional. The scope of the authorization.

format Optional. Expected return format. The default is json. Pos-
sible values are:

• urlencoded

• json

• xml

The following is an example POST request:

POST /api/oauth/token HTTP/1.1
Content-Length: 424
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Host: 192.168.0.48:8080
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
grant_type=client_credentials

Handling the Response
The API Gateway authenticates the client against the Oracle API Manager. An access token is sent back to the client on
success. A refresh token is not included in this flow. An example valid response is as follows:

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json
Pragma: no-cache
{ "access_token": “O91G451HZ0V83opz6udiSEjchPynd2Ss9......",

"token_type": "Bearer",
"expires_in": "3600"

}

Sample Client
The following Jython sample client sends a request to the Authorization Server using the client credentials flow:

INSTALL_DIR/samples/scripts/oauth/client_credentials.py

To run the sample, open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/client_credentials.py

The outputs the following:

Sending up access token request using grant_type set to client_credentials
Response from access token request: 200
Parsing the json response
**********************ACCESS TOKEN RESPONSE***********************************
Access token received from authorization server
OjtVvNusLg2ujy3a6IXHhavqdEPtK7qSmIj9fLl8qywPyX8bKEsjqF
Access token type received from authorization server Bearer
Access token expiry time: 3599

API Gateway OAuth 2.0 Authentication Flows

661

**
Now we can try access the protected resource using the access token
Response from protected resource request is: 200
<html>Congrats! You've hit an OAuth protected resource</html>

OAuth 2.0 JWT Flow

A JSON Web Token (JWT) is a JSON-based security token encoding that enables identity and security information to be
shared across security domains.

In the OAuth 2.0 JWT flow, the client application is assumed to be a confidential client that can store the client applica-
tion’s private key. The X.509 certificate that matches the client’s private key must be registered in the Oracle API Man-
ager. The API Gateway uses this certificate to verify the signature of the JWT claim. For information on creating a private
key and certificate, see the section called “OpenSSL Commands”.

For more details on the OAuth 2.0 JWT flow, see
http://self-issued.info/docs/draft-ietf-oauth-jwt-bearer-00.html

Creating a JWT Bearer Token
To create a JWT bearer token, perform the following steps:

1. Construct a JWT header in the following format:

{"alg":"RS256"}

2. Base64url encode the JWT Header as defined here, which results in the following:

eyJhbGciOiJSUzI1NiJ9

3. Create a JWT Claims Set, which conforms to the following rules:
• The issuer (iss) must be the OAuth client_id or the remote access application for which the developer re-

gistered their certificate.
• The audience (aud) must match the value configured in the JWT filter. By default, this value is as follows:

http://apigateway/api/oauth/token

• The validity (exp) must be the expiration time of the assertion, within five minutes, expressed as the number of
seconds from 1970-01-01T0:0:0Z measured in UTC.

• The time the assertion was issued (iat) measured in seconds after 00:00:00 UTC, January 1, 1970.
• The JWT must be signed (using RSA SHA256).

API Gateway OAuth 2.0 Authentication Flows

662

http://self-issued.info/docs/draft-ietf-oauth-jwt-bearer-00.html

• The JWT must conform with the general format rules specified here:
http://tools.ietf.org/html/draft-jones-json-web-toke.

For example:

{
"iss": "SampleConfidentialApp",

"aud": "http://apigateway/api/oauth/token",
"exp": "1340452126",
"iat": "1340451826"

}

4. Base64url encode the JWT Claims Set, resulting in:

eyJpc3MiOiJTYW1wbGVDb25maWRlbnRpYWxBcHAiLCJhdWQiOiJodHRwOi8vYXBpc2VydmV
yL2FwaS9vYXV0aC90b2tlbiIsImV4cCI6IjEzNDA0NTIxMjYiLCJpYXQiOiIxMzQwNDUxODI2In0=

5. Create a new string from the encoded JWT header from step 2, and the encoded JWT Claims Set from step 4, and
append them as follows:

Base64URLEncode(JWT Header) + . + Base64URLEncode(JWT Claims Set)

This results in a string as follows:

eyJhbGciOiJSUzI1NiJ9.eyJpc3MiOiAiU2FtcGxlQ29uZmlkZW50aWFsQXBwIiwgImF1ZCI6ICJodHRw
Oi8vYXBpc2VydmVyL2FwaS9vYXV0aC90b2tlbiIsICJleHAiOiAiMTM0MTM1NDYwNSIsICJpYXQiOiAi
MTM0MTM1NDMwNSJ9

6. Sign the resulting string in step 5 using SHA256 with RSA. The signature must then be Base64url encoded. The sig-
nature is then concatenated with a . character to the end of the Base64url representation of the input string. The
result is the following JWT (line breaks added for clarity):

{Base64url encoded header}.
{Base64url encoded claim set}.

This results in a string as follows:

eyJhbGciOiJSUzI1NiJ9.eyJpc3MiOiAiU2FtcGxlQ29uZmlkZW50aWFsQXBwIiwgImF1ZCI6ICJodHR
wOi8vYXBpc2VydmVyL2FwaS9vYXV0aC90b2tlbiIsICJleHAiOiAiMTM0MTM1NDYwNSIsICJpYXQiOiA
iMTM0MTM1NDMwNSJ9.ilWR8O8OlbQtT5zBaGIQjveOZFIWGTkdVC6LofJ8dN0akvvD0m7IvUZtPp4dx3
KdEDj4YcsyCEAPhfopUlZO3LE-iNPlbxB5dsmizbFIc2oGZr7Zo4IlDf92OJHq9DGqwQosJ-s9GcIRQk
-IUPF4lVy1Q7PidPWKR9ohm3c2gt8

Requesting an Access Token
The JWT bearer token should be sent in an HTTP POST to the Token Endpoint with the following parameters:

Parameter Description

grant_type Required. Must be set to
urn:ietf:params:oauth:grant-type:jwt-bearer.

assertion Required. Must be set to the JWT bearer token,
base64url-encoded.

format Optional. Expected return format. The default is json. Pos-
sible values are:

• urlencoded

API Gateway OAuth 2.0 Authentication Flows

663

http://tools.ietf.org/html/draft-jones-json-web-toke

• json

• xml

The following is an example POST request:

POST /api/oauth/token HTTP/1.1
Content-Length: 424
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Host: 192.168.0.48:8080
grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer&assertion=eyJhbGciOiJS
UzI1NiJ9.eyJpc3MiOiAiU2FtcGxlQ29uZmlkZW50aWFsQXBwIiwgImF1ZCI6ICJodHRwOi8vYXBpc2Vy
dmVyL2FwaS9vYXV0aC90b2tlbiIsICJleHAiOiAiMTM0MTM1NDYwNSIsICJpYXQiOiAiMTM0MTM1NDMwN
SJ9.ilWR8O8OlbQtT5zBaGIQjveOZFIWGTkdVC6LofJ8dN0akvvD0m7IvUZtPp4dx3KdEDj4YcsyCEAPh
fopUlZO3LE-iNPlbxB5dsmizbFIc2oGZr7Zo4IlDf92OJHq9DGqwQosJ-s9GcIRQk-IUPF4lVy1Q7PidP
WKR9ohm3c2gt8

Handling the Response
The API Gateway returns an access token if the JWT claim and access token request are properly formed, and the JWT
has been signed by the private key matching the registered certificate for the client application in the Oracle API Man-
ager.

For example, a valid response is as follows:

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json
Pragma: no-cache
{

"access_token": “O91G451HZ0V83opz6udiSEjchPynd2Ss9......",
"token_type": "Bearer",
"expires_in": "3600",

}

Sample Client
The following Jython sample creates and sends a JWT Bearer token to the Authorization Server:

INSTALL_DIR/samples/scripts/oauth/jwt.py

To run the sample, open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/jwt.py

Revoke Token

In some cases a user may wish to revoke access given to an application. An access token can be revoked by calling the
API Gateway revoke service and providing the access token to be revoked. A revoke token request causes the removal
of the client permissions associated with the particular token to access the end-user's protected resources.

API Gateway OAuth 2.0 Authentication Flows

664

The endpoint for revoke token requests is as follows:

https://<API Gateway>:8089/api/oauth/revoke

The token to be revoked should be sent to the revoke token endpoint in an HTTP POST with the following parameter:

Parameter Description

token Required. A token to be revoked (for example,
4eclEUX1N6oVIOoZBbaDTI977SV3T9KqJ3ayOvs4gqh
GA4).

The following is an example POST request:

POST /api/oauth/revoke HTTP/1.1
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Host: 192.168.0.48:8080
Authorization: Basic U2FtcGxlQ29uZmlkZW50aWFsQXBwOjY4MDhkNGI2LWVmMDktNGIwZC04ZjI4LT
NiMDVkYTljNDhlYw==token=4eclEUX1N6oVIOoZBbaDTI977SV3T9KqJ3ayOvs4gqhGA4

Sample Client
The following Jython sample client creates a token revoke request to the Authorization Server:

INSTALL_DIR/samples/scripts/oauth/revoke_token.py

To run the sample, open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/revoke_token.py

API Gateway OAuth 2.0 Authentication Flows

665

When the Authorization Server receives the token revocation request, it first validates the client credentials and verifies
whether the client is authorized to revoke the particular token based on the client identity.

Note
Only the client that was issued the token can revoke it.

The Authorization Server decides whether the token is an access token or a refresh token:

• If it is an access token, this token is revoked.
• If it is a refresh token, all access tokens issued for the refresh token are invalidated, and the refresh token is re-

voked.

Response Codes
The following HTTP status response codes are returned:

• HTTP 200 if processing is successful.
• HTTP 401 if client authentication failed.
• HTTP 403 if the client is not authorized to revoke the token.

The following is an example response:

Token to be revoked: 3eXnUZzkODNGb9D94Qk5XhiV4W4gu9muZ56VAYoZiot4WNhIZ72D3
Revoking token...............
Response from revoke token request is: 200
Successfully revoked token

Token Info Service

You can use the Token Info Service to validate that an access token issued by the API Gateway. A request to the
tokenInfo service is an HTTP GET request for information in a specified OAuth 2.0 access token.

API Gateway OAuth 2.0 Authentication Flows

666

The endpoint for the token information service is as follows:

https://<apigateway>:8089/api/oauth/tokeninfo

Getting information about a token from the Authorization Server only requires a GET request to the tokeninfo endpoint.
For example:

GET /api/oauth/tokeninfo HTTP/1.1
Host: 192.168.0.48:8080
access_token=4eclEUX1N6oVIOoZBbaDTI977SV3T9KqJ3ayOvs4gqhGA4

This request includes the following parameter:

Parameter Description

access_token Required. A token that you want information about (for ex-
ample:
4eclEUX1N6oVIOoZBbaDTI977SV3T9KqJ3ayOvs4gqh
GA4)

The following example uses this parameter:

https://apigateway/api/oauth/tokeninfo?access_token=4eclEUX1N6oVIOoZBba
DTI977SV3T9KqJ3ayOvs4gqhGA4

Sample Client
The following Jython sample client creates a token revoke request to the Authorization Server:

INSTALL_DIR/samples/scripts/oauth/token_info.py

API Gateway OAuth 2.0 Authentication Flows

667

To run the sample, open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/token_info.py

This displays the following dialog:

When the Authorization Server receives the Token Info request, it first ensures the token is in its cache (EhCache or
Database), and ensures the token is valid and has not expired.

The following is an example response:

Get token info for this token: BcYGjPOQSCrtbEc1F0ag8zf6OT9rCaMLiI1dYjFLT5zhxz3x5ScrdN
Response from token info request is: 200
**********************TOKEN INFO RESPONSE***********************************
Token audience received from authorization server: SampleConfidentialApp
Scopes user consented to: https://localhost:8090/auth/userinfo.email
Token expiry time: 3566
User id : admin
**

Response Codes
The following HTTP Status codes are returned:

• 200 if processing is successful
• 400 on failure

The response is sent back as a JSON message. For example:

{
"audience" : "SampleConfidentialApp",
"user_id" : "admin",
"scope" : "https://localhost:8090/auth/userinfo.email",
"expires_in" : 2518

}

You can get additional information about the access token using message attributes. For more details, see the section
called “OAuth 2.0 Message Attributes”.

API Gateway OAuth 2.0 Authentication Flows

668

OAuth Access Token Information
Overview

The OAuth 2.0 Access Token Information filter is used to return a JSON description of the specified OAuth 2.0 access
token. OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of
time (for example, photos on a photo sharing website). This enables users to grant third-party applications access to their
resources without sharing all of their data and access permissions.

An OAuth access token can be sent to the Resource Server to access the protected resources of the Resource Owner
(user). This token is a string that denotes a specific scope, lifetime, and other access attributes. For details on supported
OAuth flows, see API Gateway OAuth 2.0 Authentication Flows.

Access Token Info Settings

Configure the following fields on this tab:

Verify access token is in this cache:
Click the browse button to select where to verify that the access token is present (for example, in the default OAuth Ac-
cess Token Store). To add a store, right-click Access Token Stores, and select Add Access Token Store. You can
select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches
• Database Connection

The Purge expired tokens every setting specifies the time in seconds that the database or cache is polled for expired
tokens. Defaults to 60 seconds.

The application registry is stored in the following KPS:
Enter the Key Property Store (KPS) in which the application registry is stored. The application registry contains the ap-
plications registered with the Authorization Server that are permitted access to specific scopes and resources. Defaults
to the example ClientApplicationRegistry, which is available at the following URL:

http://localhost:8089/appregistry/

For more details, see the topic on Key Property Stores.

Where to get access token from?:
Select one of the following:

• In Query String:
This is the default setting. Defaults to the access_token parameter.

• In a selector:
Defaults to the ${http.client.getCgiArgument('access_token')} selector. For more details on API Gate-
way selectors, see Selecting Configuration Values at Runtime.

Return additional Access Token parameters:
Click Add to return additional access token parameters, and enter the Name and Value in the dialog. For example, you
could enter Department in Name, and the following selector in Value:

${accesstoken.getAdditionalInformation().get("Department")

Monitoring

669

The settings on this tab configure service-level monitoring options such as whether the service stores usage metrics data
to a database. This information can be used by the web-based API Gateway Manager tool to display service use, and by
the Oracle API Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab,
see the Monitoring Options in Set Service Context.

OAuth Access Token Information

670

Access Token using Authorization Code
Overview

The OAuth 2.0 Access Token using Authorization Code filter is used to get a new access token using the authoriza-
tion code. This supports the OAuth 2.0 Authorization Code Grant or Web server authentication flow, which is used by ap-
plications that are hosted on a secure server. A critical aspect of this flow is that the server must be able to protect the is-
sued client application's secret. For more details on supported OAuth flows, see API Gateway OAuth 2.0 Authentication
Flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application Validation

Configure the following fields on this tab:

Use this store to validate the Authorization Code:
Click the browse button to select the store in which to validate the authorization code (for example, in the default Authz
Code Store). To add a store, right-click Authorization Code Stores, and select Add Authorization Code Store. You
can select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches
• Database Connection

The Purge expired tokens every setting specifies the time interval in seconds that the database or cache is polled for
expired authorization codes. Defaults to every 60 seconds.

The application registry is stored in the following KPS:
Enter the Key Property Store (KPS) in which the application registry is stored. The application registry contains the ap-
plications registered with the Authorization Server that are permitted access to specific scopes and resources. Defaults
to the example ClientApplicationRegistry, which is available at the following URL:

http://localhost:8089/appregistry/

For more details, see the topic on Key Property Stores.

Find client application information from message:
Select one of the following:

• In Authorization Header
This is the default setting.

• In Query String:
The Client Id defaults to client_id, and Client Secret defaults to client_secret.

Validate Scopes:
Select whether to validate the OAuth scopes in the incoming message against the scopes registered in the API Gateway.
For example, select Libraries -> OAuth Scopes in the Policy Studio to view the default scopes:

https://localhost:8090/auth/user.photos
https://localhost:8090/auth/userinfo.email

671

Access Token

Configure the following fields on the this tab:

Cache Access Token here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches
• Database Connection

The Purge expired tokens every setting specifies the time interval in seconds that the database or cache is polled for
expired tokens. Defaults to every 60 seconds.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment, Engineering).

Monitoring

The settings on this tab configure service-level monitoring options such as whether the service stores usage metrics data
to a database. This information can be used by the web-based API Gateway Manager tool to display service use, and by
the Oracle API Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab,
see the Monitoring Options in Set Service Context.

Access Token using Authorization Code

672

Access Token using Client Credentials
Overview

The OAuth 2.0 Access Token using Client Credentials filter enables an OAuth client to request an access token using
only its client credentials. This supports the OAuth 2.0 Client Credentials flow, which is used when the client application
needs to directly access its own resources on the Resource Server. Only the client application's credentials or public/
private key pair are used in the this flow, the Resource Owner's credentials are not required. For more details on suppor-
ted OAuth flows, see API Gateway OAuth 2.0 Authentication Flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application Validation

Configure the following fields on this tab:

The application registry is stored in the following KPS:
Enter the Key Property Store (KPS) in which the application registry is stored. The application registry contains the ap-
plications registered with the Authorization Server that are permitted access to specific scopes and resources. Defaults
to the example ClientApplicationRegistry, which is available at the following URL:

http://localhost:8089/appregistry/

For more details, see the topic on Key Property Stores.

Find client application information from message:
Select one of the following:

• In Authorization Header:
This is the default setting.

• In Query String:
The Client Id defaults to client_id, and Client Secret defaults to client_secret.

Validate Scopes:
Select whether to validate the OAuth scopes in the incoming message against the scopes registered in the API Gateway.
For example, select Libraries -> OAuth Scopes in the Policy Studio to view the default scopes:

https://localhost:8090/auth/user.photos
https://localhost:8090/auth/userinfo.email

Access Token

Configure the following fields on the this tab:

Cache Access Token Here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches

673

• Database Connection

The Purge expired tokens every setting specifies the time interval in seconds that the database or cache is polled for
expired tokens. Defaults to every 60 seconds.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment and Engineering).

Monitoring

The settings on this tab configure service-level monitoring options such as whether the service stores usage metrics data
to a database. This information can be used by the web-based API Gateway Manager tool to display service use, and by
the Oracle API Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab,
see the Monitoring Options in Set Service Context.

Access Token using Client Credentials

674

Access Token using JWT
Overview

The OAuth 2.0 Access Token using JWT filter enables an OAuth client to request an access token using only a JSON
Web Token (JWT). This supports the OAuth 2.0 JWT flow, which is used when the client application needs to directly ac-
cess its own resources on the Resource Server. Only the client JWT token is used in this flow, the Resource Owner's
credentials are not required. A JWT token is a JSON-based security token encoding that enables identity and security in-
formation to be shared across security domains. For more details on supported OAuth flows, see API Gateway OAuth
2.0 Authentication Flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application Validation

Configure the following fields on this tab:

The application registry is stored in the following KPS:
Enter the Key Property Store (KPS) in which the application registry is stored. The application registry contains the ap-
plications registered with the Authorization Server that are permitted access to specific scopes and resources. Defaults
to the example ClientApplicationRegistry, which is available at the following URL:

http://localhost:8089/appregistry/

For more details, see the topic on Key Property Stores.

Audience (aud) must contain the following URI:
Enter the JWT aud (intended audience). The JWT must contain an aud URI that identifies the Authorization Server, or
service provider domain, as an intended audience. The Authorization Server must also verify that it is an intended audi-
ence for the JWT. Defaults to http://apiserver/api/oauth/token.

Validate Scopes:
Select whether to validate the OAuth scopes in the incoming message against the scopes registered in the API Gateway.
For example, select Libraries -> OAuth Scopes in the Policy Studio to view the default scopes:

https://localhost:8090/auth/user.photos
https://localhost:8090/auth/userinfo.email

Access Token

Configure the following fields on the this tab:

Cache Access Token Here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches
• Database Connection

The Purge expired tokens every setting specifies the time interval in seconds that the database or cache is polled for

675

expired tokens. Defaults to every 60 seconds.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is unselected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment and Engineering).

Monitoring

The settings on this tab configure service-level monitoring options such as whether the service stores usage metrics data
to a database. This information can be used by the web-based API Gateway Manager tool to display service use, and by
the Oracle API Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab,
see the Monitoring Options in Set Service Context.

Access Token using JWT

676

Authorization Code Flow
Overview

The OAuth 2.0 Authorization Code Flow filter is used to consume OAuth authorization requests. This supports the
OAuth 2.0 Authorization Code Grant or Web server authentication flow, which is used by applications hosted on a secure
server. A critical aspect of this flow is that the server must be able to protect the issued client application's secret. The
Web server flow is suitable for clients capable of interacting with the end-user’s user-agent (typically a Web browser),
and capable of receiving incoming requests from the Authorization Server (acting as an HTTP server).

The OAuth 2.0 Authorization Code Grant flow is as follows:

1. The Web server redirects the user to the API Gateway acting as an Authorization Server to authenticate and author-
ize the server to access data on their behalf.

2. After the user approves access, the Web server receives a callback with an authorization code.
3. After obtaining the authorization code, the Web server passes back the authorization code to obtain an access token

response.
4. After validating the authorization code, the API Gateway passes back a token response to the Web server.
5. After the token is granted, the Web server accesses their data.

For more details on supported OAuth flows, see API Gateway OAuth 2.0 Authentication Flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Validation/Templates

Configure the following fields on this tab:

The application registry is stored in the following KPS:
Enter the Key Property Store (KPS) in which the application registry is stored. The application registry contains the ap-
plications registered with the Authorization Server that are permitted access to specific scopes and resources. Defaults
to the example ClientApplicationRegistry, which is available at the following URL:

http://localhost:8089/appregistry/

For more details, see the topic on Key Property Stores.

Validate Scopes:
Select whether to validate the OAuth scopes in the incoming message against the scopes registered in the API Gateway.
For example, select Libraries -> OAuth Scopes in the Policy Studio to view the default scopes:

https://localhost:8090/auth/user.photos
https://localhost:8090/auth/userinfo.email

Authorize Resource Owner:
Select one of the following:

• Use internal flow
Uses the internal API Gateway flow to authorize the Resource Owner. This is the default setting.

• Call this policy

677

Click the browse button to select a policy to authorize the Resource Owner. You can use the Policy will store sub-
ject in selector text box to specify where the policy is stored. Defaults to the ${authentication.subject.id}
message attribute. For more details on selectors, see Selecting Configuration Values at Runtime.

Authz Code Details

Configure the following fields on the this tab:

Cache Authorization Code here:
Click the browse button to select where to cache the access token (for example, in the default Authz Code Store). To
add an access token store, right-click Authorization Code Stores, and select Add Authorization Code Store. You can
select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches
• Database Connection

The Purge expired tokens every setting specifies the time interval in seconds that the database or cache is polled for
expired tokens. Defaults to every 60 seconds.

Location of Access Code Redirect Page:
Enter the full path to the HTML page used for the access code HTTP redirect. Defaults to the following:

${environment.VDISTDIR}/samples/oauth/templates/showAccessCode.html

Authz Code Length:
Enter the number of characters in the authorization code. Defaults to 30.

Authz Code Expiry (in secs):
Enter the number of seconds before the authorization code expires. Defaults to 600 (ten minutes).

Access Token Details

Configure the following fields on the this tab:

Cache Access Token here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You
can select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches
• Database Connection

The Purge expired tokens every setting specifies the time interval in seconds that the database or cache is polled for
expired tokens. Defaults to every 60 seconds.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Authorization Code Flow

678

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Additional parameters to store for this Access Token:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment, Engineering).

Monitoring

The settings on this tab configure service-level monitoring options such as whether the service stores usage metrics data
to a database. This information can be used by the web-based API Gateway Manager tool to display service use, and by
the Oracle API Gateway Analytics tool to produce reports on how the service is used.

Monitoring Options
For details on the Monitoring Options fields on this tab, see the Monitoring Options in Set Service Context.

Record Outbound Transactions
Select whether to record outbound message traffic. You can use this setting to override the Record Outbound Transac-
tions setting on the System Settings -> Traffic Monitor screen. This setting is selected by default.

Authorization Code Flow

679

Authorize Transaction
Overview

The OAuth 2.0 Authorize Transaction filter is used to authorize the Resource Owner and grant (allow/deny) client ac-
cess to the resources. This supports the OAuth 2.0 Authorization Code Grant or Web server authentication flow, which is
used by applications hosted on a secure server. A critical aspect of this flow is that the server must be able to protect the
issued client application's secret. The Web server flow is suitable for clients capable of interacting with the end-user’s
user-agent (typically a Web browser), and capable of receiving incoming requests from the Authorization Server (acting
as an HTTP server).

For more details on supported OAuth flows, see API Gateway OAuth 2.0 Authentication Flows.

Validation/Templates

Configure the following fields on this tab:

The application registry is stored in the following KPS:
Enter the Key Property Store (KPS) in which the application registry is stored. The application registry contains the ap-
plications registered with the Authorization Server that are permitted access to specific scopes and resources. Defaults
to the example ClientApplicationRegistry, which is available at the following URL:

http://localhost:8089/appregistry/

For more details, see the topic on Key Property Stores.

Validate Scopes:
Select whether to validate the OAuth scopes in the incoming message against the scopes registered in the API Gateway.
For example, select Libraries -> OAuth Scopes in the Policy Studio to view the default scopes:

https://localhost:8090/auth/user.photos
https://localhost:8090/auth/userinfo.email

HTML Templates:
Specify the following templates for HTML forms:

• Login Form:
Enter the full path to the HTML form that the Resource Owner can use to log in. Defaults to the following:

${environment.VDISTDIR}/samples/oauth/templates/login.html

• Authorization Form:
Enter the full path to the HTML form that the Resource Owner can use to grant (allow/deny) client access to the re-
sources. Defaults to the following:

${environment.VDISTDIR}/samples/oauth/templates/requestAccess.html

Authz Code Details

Configure the following fields on the this tab:

Cache Authorization Code here:
Click the browse button to select where to cache the access token (for example, in the default Authz Code Store). To
add an access token store, right-click Authorization Code Stores, and select Add Authorization Code Store. You can

680

select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches
• Database Connection

The Purge expired tokens every setting specifies the time interval in seconds that the database or cache is polled for
expired tokens. Defaults to every 60 seconds.

Location of Access Code Redirect Page:
Enter the full path to the HTML page used for the access code HTTP redirect. Defaults to the following:

${environment.VDISTDIR}/samples/oauth/templates/showAccessCode.html

Authz Code Length:
Enter the number of characters in the authorization code. Defaults to 30.

Authz Code Expiry (in secs):
Enter the number of seconds before the authorization code expires. Defaults to 600 (ten minutes).

Access Token Details

Configure the following fields on the this tab:

Cache Access Token here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You
can select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches
• Database Connection

The Purge expired tokens every setting specifies the time interval in seconds that the database or cache is polled for
expired tokens. Defaults to every 60 seconds.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Authorize Transaction

681

Additional parameters to store for this Access Token:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment, Engineering).

Monitoring

The settings on this tab configure service-level monitoring options such as whether the service stores usage metrics data
to a database. This information can be used by the web-based API Gateway Manager tool to display service use, and by
the Oracle API Gateway Analytics tool to produce reports on how the service is used.

Monitoring Options
For details on the Monitoring Options fields on this tab, see the Monitoring Options in Set Service Context.

Authorize Transaction

682

Refresh Access Token
Overview

The OAuth 2.0 Refresh Access Token filter enables an OAuth client to get a new access token using a refresh token.
This filter supports the OAuth 2.0 Refresh Token flow. After the client consumer has been authorized for access, they
can use a refresh token to get a new access token (session ID). This is only done after the consumer already has re-
ceived an access token using either the Web Server or User-Agent flow. For more details on supported OAuth flows, see
API Gateway OAuth 2.0 Authentication Flows.

Application Validation

Configure the following fields on this tab:

The application registry is stored in the following KPS:
Enter the Key Property Store (KPS) in which the application registry is stored. The application registry contains the ap-
plications registered with the Authorization Server that are permitted access to specific scopes and resources. Defaults
to the example ClientApplicationRegistry, which is available at the following URL:

http://localhost:8089/appregistry/

For more details, see the topic on Key Property Stores.

Find client application information from message:
Select one of the following:

• In Authorization Header:
This is the default setting.

• In Query String:
The Client Id defaults to client_id, and Client Secret defaults to client_secret.

Validate Scopes:
Select whether to validate the OAuth scopes in the incoming message against the scopes registered in the API Gateway.
For example, select Libraries -> OAuth Scopes in the Policy Studio to view the default scopes:

https://localhost:8090/auth/user.photos
https://localhost:8090/auth/userinfo.email

Access Token

Configure the following fields on the this tab:

Cache Access Token Here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches
• Database Connection

The Purge expired tokens every setting specifies the time interval in seconds that the database or cache is polled for
expired tokens. Defaults to every 60 seconds.

Access Token Expiry (in secs):

683

Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment and Engineering).

Monitoring

The settings on this tab configure service-level monitoring options such as whether the service stores usage metrics data
to a database. This information can be used by the web-based API Gateway Manager tool to display service use, and by
the Oracle API Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab,
see the Monitoring Options in Set Service Context.

Refresh Access Token

684

Resource Owner Credentials
Overview

The OAuth 2.0 Resource Owner Credentials filter is used to directly obtain an access token and an optional refresh
token. This supports the OAuth 2.0 Resource Owner Password Credentials flow, which can be used as a replacement for
an existing login when the consumer client already has the user’s credentials. For more details on supported OAuth
flows, see API Gateway OAuth 2.0 Authentication Flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application Validation

Configure the following fields on this tab:

Authenticate Resource Owner
Select one of the following:

• Authenticate credentials using this repository:
Select one of the following from the list:
• Simple Active Directory Repository

• Local User Store

• Call this policy:
Click the browse button to select a policy to authenticate the Resource Owner. You can use the Policy will store
subject in selector text box to specify where the policy is stored. Defaults to the
${authentication.subject.id} message attribute. For more details on selectors, see Selecting Configuration
Values at Runtime.

The application registry is stored in the following KPS:
Enter the Key Property Store (KPS) in which the application registry is stored. The application registry contains the ap-
plications registered with the Authorization Server that are permitted access to specific scopes and resources. Defaults
to the example ClientApplicationRegistry, which is available at the following URL:

http://localhost:8089/appregistry/

For more details, see the topic on Key Property Stores.
>

Find client application information from message:
Select one of the following:

• In Authorization Header:
This is the default setting.

• In Query String:
The Client Id defaults to client_id, and Client Secret defaults to client_secret.

Validate Scopes:
Select whether to validate the OAuth scopes in the incoming message against the scopes registered in the API Gateway.
For example, select Libraries -> OAuth Scopes in the Policy Studio to view the default scopes:

685

https://localhost:8090/auth/user.photos
https://localhost:8090/auth/userinfo.email

Access Token

Configure the following fields on the this tab:

Cache Access Token here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches
• Database Connection

The Purge expired tokens every setting specifies the time interval in seconds that the database or cache is polled for
expired tokens. Defaults to every 60 seconds.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment and Engineering).

Monitoring

The settings on this tab configure service-level monitoring options such as whether the service stores usage metrics data
to a database. This information can be used by the web-based API Gateway Manager tool to display service use, and by
the Oracle API Gateway Analytics tool to produce reports on how the service is used.

Monitoring Options
For details on the Monitoring Options fields on this tab, see the Monitoring Options in Set Service Context.

Record Outbound Transactions
Select whether to record outbound message traffic. You can use this setting to override the Record Outbound Transac-
tions setting on the System Settings -> Traffic Monitor screen. This setting is selected by default.

Resource Owner Credentials

686

Revoke a Token
Overview

The OAuth 2.0 Revoke a Token filter is used to revoke a specified OAuth 2.0 access or refresh token. A revoke token
request causes the removal of the client permissions associated with the specified token used to access the user's pro-
tected resources. For more details on supported OAuth flows, see API Gateway OAuth 2.0 Authentication Flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. OAuth refresh tokens are tokens issued by the Author-
ization Server to the client that can be used to obtain a new access token.

Revoke Token Settings

Configure the following fields on this tab:

Revoke token from this cache:
Click the browse button to select the cache to revoke the token from (for example, the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches
• Database Connection

The Purge expired tokens every setting specifies the time interval in seconds that the database or cache is polled for
expired tokens. Defaults to every 60 seconds.

The application registry is stored in the following KPS:
Enter the Key Property Store (KPS) in which the application registry is stored. The application registry contains the ap-
plications registered with the Authorization Server that are permitted access to specific scopes and resources. Defaults
to the example ClientApplicationRegistry, which is available at the following URL:

http://localhost:8089/appregistry/

For more details, see the topic on Key Property Stores.

Find client application information from message:
Select one of the following:

• In Authorization Header:
This is the default setting.

• In Query String:
The Client Id defaults to client_id, and Client Secret defaults to client_secret.

Monitoring

The settings on this tab configure service-level monitoring options such as whether the service stores usage metrics data
to a database. This information can be used by the web-based API Gateway Manager tool to display service use, and by
the Oracle API Gateway Analytics tool to produce reports on how the service is used.

Monitoring Options
For details on the Monitoring Options fields on this tab, see the Monitoring Options in Set Service Context.

687

Validate Access Token
Overview

The OAuth 2.0 Validate Access Token filter is used to validate a specified access token contained in persistent storage.
OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions.

For more details on supported OAuth flows, see API Gateway OAuth 2.0 Authentication Flows.

Configuration

Configure the following fields on this tab:

Name:
Enter a suitable name for this filter.

Verify access token is in this cache:
Click the browse button to select the cache in which to verify access token (for example, in the default OAuth Access
Token Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store.
You can select to Store in a cache or Store in a database. For more details, see the following topics:

• Global Caches
• Database Connection

The Purge expired tokens every setting specifies the time interval in seconds that the database or cache is polled for
expired tokens. Defaults to every 60 seconds.

Location of access token:
Select one of the following:

• In Authorization Header with prefix:
The access token is in the Authorization header with the selected prefix. Defaults to Bearer. This is the default op-
tion.

• In Query String with name:
The access token is in the HTTP query string with the name specified in the text box.

• In Form POST with name:
The access token is in the HTTP form POST request with the name specified in the text box.

• In Attribute:
The access token is in the API Gateway message attribute specified in the text box.

Only accept access tokens that have been issued with the following scopes:
Select the OAuth scope(s) from the list registered in the API Gateway. For example, the default scopes are as follows:

https://localhost:8090/auth/user.photos
https://localhost:8090/auth/userinfo.email

688

Oracle Access Manager Authorization
Overview

This filter enables you to authorize an authenticated user for a particular resource against Oracle Access Manager
(OAM). The user must first have been authenticated to OAM using the HTTP Basic Authentication or HTTP Digest Au-
thentication filter. After successful authentication, OAM issues a Single Sign On (SSO) token, which can then be used in-
stead of the user name and password.

Configuration

Configure the following fields to authorize a user for a particular resource against Oracle Access Manager:

Name:
Enter a descriptive name for this filter.

Attribute Containing SSO Token:
Enter the name of the message attribute that contains the user's SSO token. This attribute will have been populated
when authenticating to Oracle Access Manager using the HTTP Basic Authentication or HTTP Digest Authentication fil-
ter. By default, the SSO token is stored in the oracle.sso.token message attribute.

Resource Type:
Enter the type of the resource for which you are requesting access. For example, when seeking access to a Web-based
URL, specify http.

Resource Name:
Enter the name of the resource for which the user is requesting access. The default is
//hostname${http.request.uri}, which contains the original path requested by the client.

Operation:
In most access management products, it is common to authorize users for a limited set of actions on the requested re-
source. For example, users with management roles may be able to write (HTTP POST) to a certain Web Service, but
users with more junior roles might only have read access (HTTP GET) to the same service.

You can use this field to specify the operation that you want to grant the user access to on the specified resource. By de-
fault, this field is set to the http.request.verb message attribute, which contains the HTTP verb used by the client to
sent the message to the API Gateway (for example, POST).

689

Oracle Access Manager Log in with Certificate
Overview

This filter enables authentication to Oracle Access Manager (OAM) using an X.509 certificate presented by the client.
After successful authentication, OAM issues a Single Sign On (SSO) token, which can then be used by the client for sub-
sequent calls to the virtualized service.

General Configuration

Configure the following general settings:

Name:
Enter an appropriate name for this filter.

Attribute containing X509 certificate:
Enter the name of the message attribute that contains the user's X.509 certificate. By default, this is stored in the cer-
tificate message attribute.

Attribute to contain SSO token id:
Enter the name of the message attribute to contain the user's SSO token. By default, the SSO token is stored in the or-
acle.sso.token message attribute.

Resource Configuration

Configure the following resource settings:

Resource Type:
Enter the type of the resource for which you are requesting access. For example, when seeking access to a Web-based
URL, enter http.

Resource Name:
Enter the name of the resource for which the user is requesting access. By default, this field is set to /
/hostname${http.request.uri}, which contains the original path requested by the client.

Operation:
In most access management products, it is common to authorize users for a limited set of actions on the requested re-
source. For example, users with management roles may be able to write (HTTP POST) to a certain Web Service, but
users with more junior roles might only have read access (HTTP GET) to the same service.

You can use this field to specify the operation that you want to grant the user access to on the specified resource. By de-
fault, this field is set to the http.request.verb message attribute, which contains the HTTP verb used by the client to
sent the message to the API Gateway (for example, POST).

Include query string:
Select whether the query string parameters are used by the OAM server to determine the policy that protects this re-
source. This setting is optional if the policies configured do not rely on the query string parameters.

Session Configuration

Configure the following session settings:

Location:
If the client location must be passed to OAM for it to make its decision, you can enter a valid DNS name or IP address to
specify this location.

690

Parameters:
You can add optional additional parameters to be used in the authentication decision. The available optional parameters
include the following:

ip IP address, in dotted decimal notation, of the client access-
ing the resource.

operation Operation attempted on the resource (for HTTP resources,
one of GET, POST, PUT, HEAD, DELETE, TRACE, OPTIONS,
CONNECT, or OTHER).

resource The requested resource identifier (for HTTP resources, the
full URL).

targethost The host (host:port) to which resource request is sent.

Note
One or more of these optional parameters may be required by certain authentication schemes, modules, or
plugins configured in the OAM server. To determine which parameters to add, see your OAM server config-
uration and documentation.

OAM Access Server SDK Configuration

Configure the following setting:

OAM Access Server SDK Directory:
Enter the path to your OAM Access Server SDK directory. For more details on the OAM Access Server SDK, see your
Oracle Access Manager documentation.

Oracle Access Manager Log in with Certificate

691

Logout from Oracle Access Manager SSO Session
Overview

This filter enables you to log out a session from Oracle Access Manager by invalidating the SSO token that is associated
with this session.

Configuration

Configure the following fields to explicitly log out (invalidate) an SSO token from Oracle Access Manager:

Name:
Enter a descriptive name for this filter.

Attribute Containing SSO Token ID:
Enter the name of the message attribute that contains the SSO token that you want to validate. This attribute will have
been populated when authenticating to Oracle Access Manager using the HTTP Basic Authentication or HTTP Digest
Authentication filter. By default, the SSO token is stored in the oracle.sso.token message attribute.

OAM Access Server SDK Directory:
Enter the path to your OAM Access Server SDK directory. For more details on the OAM Access Server SDK, see your
Oracle Access Manager documentation.

692

Oracle Access Manager SSO Token Validation
Overview

This filter enables you to check an Oracle Access Manager Single Sign On (SSO) token to ensure that it is still valid. The
SSO token is issued by Oracle Access Manager (OAM) after the API Gateway authenticates to it on behalf of an end-
user using the HTTP Basic Authentication or HTTP Digest Authentication filter. After successfully authenticating to OAM,
the SSO token is stored in the oracle.sso.token message attribute.

Oracle Access Manager SSO enables a client to send up its user name and password once, and then receive an SSO
token (for example, in a cookie or in the XML payload). The client can then send up the SSO token instead of the user
name and password.

Configuration

Configure the following fields to validate an SSO token issued by Oracle Access Manager:

Name:
Enter a descriptive name for the filter.

Attribute Containing SSO Token ID:
Enter the name of the message attribute that contains the SSO token that you want to validate. This attribute will have
been populated when authenticating to Oracle Access Manager using the HTTP Basic Authentication or HTTP Digest
Authentication filters. By default, the SSO token is stored in the oracle.sso.token message attribute.

OAM Access Server SDK Directory:
Enter the path to your OAM Access Server SDK directory. For more details on the OAM Access Server SDK, see your
Oracle Access Manager documentation.

693

Oracle Entitlements Server 10g Authorization
Overview

This filter enables you to authorize an authenticated user for a particular resource against Oracle Entitlements Server
(OES) 10g. The user must first have been authenticated to OES 10g (for example, using the HTTP Basic Authentication
or HTTP Digest Authentication filter).

This filter enables you to configure the API Gateway to delegate authorization to OES 10g. You can configure the API
Gateway to authorize an authenticated user for a particular resource against OES 10g. Credentials used for authentica-
tion can be extracted from the HTTP Basic header, WS-Security username token, or the message payload. After suc-
cessful authentication, the API Gateway can authorize the user to access a resource using OES 10g.

General

Configure the following general field:

Name:
Enter an appropriate descriptive name for this filter.

Settings

Configure the following fields on the Settings tab:

Resource:
Enter the URL for the target resource (for example, Web Service). Alternatively, if this policy is reused for multiple ser-
vices, enter a URL using message attribute selectors, which are expanded at runtime to the value of the specified attrib-
ute. For example:

${http.destination.protocol}://${http.destination.host}:${http.destination.port}
${http.request.uri}

Resource Naming Authority:
Enter apigatewayResource to match the Naming Authority Definition loaded in the OES 10g settings. For more de-
tails, see Oracle Security Service Module Settings (10g).

Action:
Enter the HTTP verb (for example, POST, GET, DELETE, and so on). Alternatively, if this policy is reused for multiple ser-
vices, enter a message attribute selector, which is expanded at runtime to the value of the specified attribute (for ex-
ample, ${http.request.verb}) For more details on selectors, see Selecting Configuration Values at Runtime.

Action Naming Authority:
Enter apigatewayAction to match the Naming Authority Definition loaded in the OES 10g settings. For more details,
see Oracle Security Service Module Settings (10g).

How access request is processed:
Select one of the following options:

ONCE Specifies that the authorization query is only asked once
for a resource and action.

POST Specifies that the authorization query is asked after a re-
source is acquired, but before it has been processed or
presented.

PRIOR Specifies that the authorization query is asked before a re-
source is acquired.

694

Application Context

Configure the following field on the Application Context tab:

Application's Current Context:
Click Add to specify optional Application Contexts as name-value pairs. Enter a Name and Value in the Properties dia-
log. Repeat to specify multiple properties.

Oracle Entitlements Server 10g Authorization

695

Get Roles from Oracle Entitlements Server 10g
Overview

This filter enables you to get the set of roles that are assigned to an identity for a specific resource (for example, Web
Service) and a specific action (for example, HTTP POST) from Oracle Entitlements Server (OES) 10g.

General

Configure the following general field:

Name:
Enter an appropriate descriptive name for this filter.

Settings

Configure the following fields on the Settings tab:

Resource:
Enter the URL of the target resource (for example, Web Service). Alternatively, if this policy is reused for multiple ser-
vices, enter a URL using message attribute selectors, which are expanded at runtime to the value of the specified attrib-
ute. For example:

${http.destination.protocol}://${http.destination.host}:${http.destination.port}
${http.request.uri}

Resource Naming Authority:
Enter apigatewayResource to match the Naming Authority Definition loaded in the OES 10g settings. For more de-
tails, see Oracle Security Service Module Settings (10g).

Action:
Enter the HTTP verb (for example, POST, GET, DELETE, and so on). Alternatively, if this policy is reused for multiple ser-
vices, enter a message attribute selector, which is expanded at runtime to the value of the specified attribute (for ex-
ample, ${http.request.verb}). For more details on selectors, see Selecting Configuration Values at Runtime.

Action Naming Authority:
Enter apigatewayAction to match the Naming Authority Definition loaded in the OES 10g settings. For more details,
see Oracle Security Service Module Settings (10g).

Application Context

Configure the following field on the Application Context tab:

Application's Current Context:
Click Add to specify optional Application Contexts as name-value pairs. Enter a Name and Value in the Properties dia-
log. Repeat to specify multiple properties.

696

Oracle Entitlements Server 11g Authorization
Overview

This filter enables you to authorize an authenticated user for a particular resource against Oracle Entitlements Server
(OES) 11g. The user must first have been authenticated to OES 11g (for example, using the HTTP Basic Authentication
or HTTP Digest Authentication filter).

This filter enables you to configure the API Gateway to delegate authorization to OES 11g. You can configure the API
Gateway to authorize an authenticated user for a particular resource against OES 11g. Credentials used for authentica-
tion can be extracted from the HTTP Basic header, WS-Security username token, or the message payload. After suc-
cessful authentication, the API Gateway can authorize the user to access a resource using OES 11g.

Configuration

Configure the following fields on the filter screen:

Name:
Enter an appropriate descriptive name for this filter.

Resource:
Enter the URL for the target resource to be authorized (for example, Web Service). Alternatively, if this policy is reused
for multiple services, enter a URL using selectors, which are expanded at runtime to the value of the specified attributes.
For example:

${http.destination.protocol}://${http.destination.host}:${http.destination.port}
${http.request.uri}

Action:
Enter the HTTP verb (for example, POST, GET, DELETE, and so on). Alternatively, if this policy is reused for multiple ser-
vices, enter a selector, which is expanded at runtime to the value of the specified attribute (for example,
${http.request.verb}). For more details on selectors, see Selecting Configuration Values at Runtime.

Environment/Context attributes:
Click Add to specify optional Application Contexts as name-value pairs. Enter a Name and Value in the Properties dia-
log. Repeat to specify multiple properties.

697

Relative Path Resolver
Overview

The Relative Path filter enables you to identify an incoming XML message based on the relative path on which the mes-
sage is received.

The following example shows how to find the relative path of an incoming message. Consider the following SOAP mes-
sage:

POST /services/helloService HTTP/1.1
Host: localhost:8095
Content-Length: 196
SOAPAction: HelloService
Accept-Language: en-US
UserAgent: API Gateway
Content-Type: text/XML; utf-8

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
</soap:Header>
<soap:Body>
<getHello xmlns="http://www.oracle.com/"/>

</soap:Body>
</soap:Envelope>

The relative path for this message is as follows:

/services/helloService

Configuration

To configure the Relative Path filter, complete the following:

1. Enter an appropriate name for the filter in the Name field.
2. Enter a regular expression to match the value of the relative path on which messages are received in the Relative

Path field. For example, enter ^/services/helloService$ to exactly match a path with a value of /
services/helloService. Incoming messages received on a matching relative path value are passed on to the
next filter on the success path in the policy.

698

SOAP Action Resolver
Overview

The SOAP Action Resolver filter enables you to identify an incoming XML message based on the SOAPAction HTTP
header in the message. The SOAP Action Resolver filter applies to SOAP 1.1 and SOAP 1.2.

The following example illustrates how to locate the SOAPAction header in an incoming message. Consider the following
SOAP message:

POST /services/helloService HTTP/1.1
Host: localhost:8095
Content-Length: 196
SOAPAction: HelloService
Accept-Language: en-US
UserAgent: API Gateway
Content-Type: text/XML; utf-8

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
</soap:Header>
<soap:Body>
<getHello xmlns="http://www.oracle.com/"/>

</soap:Body>
</soap:Envelope>

The SOAP Action for this message is HelloService.

Configuration

To configure the SOAP Action Resolver filter, complete the following:

1. Enter an appropriate name for the filter in the Name field.
2. Enter a regular expression to match the value of the SOAPAction HTTP header in the SOAP Action field. For ex-

ample, enter ^getQuote$ to exactly match a SOAPAction header with a value of getQuote. Incoming messages
with a matching SOAPAction value are passed on to the next filter on the success path in the policy.

699

Operation Name
Overview

The Operation Name filter enables you to identify an incoming XML message based on the SOAP Operation in the mes-
sage.

The following example shows how to find the SOAP Operation of an incoming message. Consider the following SOAP
message:

POST /services/timeservice HTTP/1.0
Host: localhost:8095
Content-Length: 374
SOAPAction: TimeService
Accept-Language: en-US
UserAgent: API Gateway
Content-Type: text/XML; utf-8

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ns1:getTime xmlns:ns1="Some-URI">

<ns1:city>Dublin</ns1:city>
</ns1:getTime>

</soap:Body>
</soap:Envelope>

The SOAP Operation for this message and its namespace are as follows:

SOAP Operation getTime

SOAP Operation Namespace urn:timeservice

The SOAP Operation is the first child element of the SOAP <Body> element.

Configuration

To configure the Operation Name filter, complete the following:

1. Enter an appropriate name for the filter in the Name field.
2. Enter the name of the SOAP Operation in the Operation field. Incoming messages with an operation name match-

ing the value entered here are passed on to the next Success filter in the policy.
3. Enter the namespace to which the SOAP Operation belongs in the Namespace field.

700

Getting Started with Routing Configuration
Overview

This topic describes how to configure the API Gateway to send messages to external Web Services. The API Gateway
offers a number of different filters that can be used to route messages. Depending on how the API Gateway is perceived
by the client, different combinations of routing filters can be used.

For example, the API Gateway can act both as a proxy and as an endpoint (in-line) server for a client, depending on how
the client is configured. In each case, the request received by the API Gateway appears slightly different, and the API
Gateway can take advantage of this when routing the message onwards. Furthermore, the API Gateway can provide ser-
vice virtualization by shielding the underlying hierarchy of back-end Web Services from clients.

This topic explains how clients can use the API Gateway both as a proxy and as an endpoint server. It then shows how
service virtualization works. When these basic concepts are explained, this topic helps you to identify the combination of
routing filters that is best suited to your deployment scenario.

Proxy or Endpoint Server

The API Gateway can be used by clients as both a proxy server and an endpoint server. When a client uses the API
Gateway as a proxy server, it sends up the complete URL of the destination Web Service in the HTTP request line. The
API Gateway can use the URL to determine the host and port to route the message to. The following HTTP request
shows an example of a request received by the API Gateway when acting as a proxy for a client:

POST http://localhost:8080/services/getHello HTTP/1.1

Alternatively, when the API Gateway is acting as an endpoint (in-line) server, the client sends the request directly to the
API Gateway. In this case, the request line appears as follows:

POST /services/getHello HTTP/1.1

In this case, only the path on the server is specified, and no scheme, host, or port number is included in the HTTP re-
quest line. Because this information is not provided by the client, the API Gateway must be explicitly configured to route
the message on to the specific destination.

Service Virtualization

It is sometimes desirable to shield the underlying structure of the directory hierarchy in which Web Services reside from
external clients. You can do this by providing a mapping between the path that the client accesses and the actual path at
which the Web Service resides.

For example, suppose you have two Web Services accessible at the /helloService/getHello and /
financeService/getQuote URIs. You may wish to hide that these services are deployed under different paths, per-
haps exposing them under a common /services base URI (for example, /services/getHello and /
services/getQuote). The client is therefore unaware of the underlying hierarchy (for example, directory structure) of
the two Web Services. This is termed service virtualization.

Choosing the Correct Routing Filters

This section first identifies how your clients perceive the API Gateway, and then determines whether you wish to virtual-
ize your back-end Web Services. Depending on these requirements, you can use different combinations of routing filters,
as described in the use cases in the subsequent sections.

Consider the following to determine which combination of routing filters is most appropriate for your scenario:

701

Proxy or Endpoint?

• If the client is using the API Gateway as a proxy server, see cases 1 or 2 below, depending on whether service virtu-
alization is required.

• Alternatively, if the client using the API Gateway as the endpoint of the connection (as an in-line server), see cases 3
or 4 below.

Service Virtualization?

• If you want to shield the hierarchy of protected Web Services by exposing a virtual view of these services, see cases
2, 4, and 5 below.

• If service virtualization is not important, see cases 1 and 3 below.

These permutations are summarized in the following table:

Proxy or Endpoint? Service Virtualization? Example

Proxy No Case 1: Proxy without Virtualization

Proxy Yes Case 2: Proxy with Virtualization

Endpoint No Case 3: Endpoint without Virtualization

Endpoint Yes Case 4: Endpoint with Virtualization

Proxy or Endpoint Yes Case 5: Simple Redirect

Case 1: Proxy without Service Virtualization

In this case, the API Gateway is configured as an HTTP proxy for the client, and maintains the original path used by the
client in the HTTP request. For example, if the API Gateway is listening at http://localhost:8080/, and the Web
Service is running at http://localhost:5050/services/getQuote, the request line of the client HTTP request
appears as follows:

POST http://localhost:5050/services/getQuote HTTP/1.1

Because the client is configured to use the API Gateway instance running on localhost at port 8080 as its HTTP
proxy, the client automatically sends all messages to the proxy. However, it includes the full URL of the ultimate destina-
tion of the message in the request line of the HTTP request.

When the API Gateway receives the request, it extracts this URL from the request line and uses it to determine the des-
tination of the message. In the above example, the API Gateway routes the message on to ht-
tp://localhost:5050/services/getQuote.

You can configure the following policy to route the message to the URL specified in the request line of the client request:

Getting Started with Routing Configuration

702

The following table explains the role of each filter in the policy. For more information on a specific filter, click the appropri-
ate link in the Details column.

Filter Role in Policy Details

Dynamic Router Extracts the URL of the destination
Web Service from the request line of
the incoming HTTP request. The Dy-
namic Router is normally used when
the API Gateway is perceived as a
proxy by the client.

Dynamic Router

Connection Establishes the connection to the des-
tination Web Service, and sends the
message over this connection. This
connection can be mutually authentic-
ated if necessary.

Connection

Case 2: Proxy with Service Virtualization

In this case, the API Gateway is also perceived as an HTTP proxy by the client. However, the API Gateway exposes a
virtualized view of the services that it protects. This is termed service virtualization.

To achieve this, the API Gateway must provide a mapping between the path used by the client and the path under which
the service is deployed. Assuming the API Gateway is running at http://localhost:8080/services, and the Web
Service is deployed at http://localhost:5050/financialServices/quotes/getQuote, the following example
shows what the client may send up in the HTTP request line:

POST http://localhost:5050/services/getQuote HTTP/1.1

To achieve this, the API Gateway must provide a mapping between what the client requests (/services/getQuote),
and the address of the Web Service (/financialServices/quotes/getQuote. The Rewrite URL filter in the follow-
ing policy fulfills this role:

Getting Started with Routing Configuration

703

The following table explains the roles of the each filter in the policy:

Filter Role in Policy Details

Dynamic Router Extracts the URL of the destination
Web Service from the request line of
the incoming HTTP request. The Dy-
namic Router is normally used when
the API Gateway is perceived as a
proxy by the client.

Dynamic Router

Rewrite URL Specifies the mapping between the
path requested by the client and the
path under which the Web Service is
deployed, therefore providing service
virtualization.

Rewrite URL

Connection Establishes the connection to the des-
tination Web Service, and sends the
message over this connection. This
connection can be mutually authentic-
ated if necessary.

Connection

Case 3: Endpoint without Service Virtualization

In this scenario, the client sees the API Gateway as the endpoint to its connection, and the API Gateway must be con-
figured to route messages on to a specific destination. For example, assuming that the API Gateway is running at ht-
tp://localhost:8080/services, the request line of the client's HTTP request is received by the API Gateway as
follows:

POST /services HTTP/1.1

The request line above shows that no information about the scheme, host, or port of the destination Web Service is spe-
cified. Therefore, this information must be configured in the API Gateway so that it knows where to route the message on
to. The Static Router enables the user to enter connection details for the destination Web Service.

Getting Started with Routing Configuration

704

Assuming that the Web Service is running at http://localhost:5050/stockquote/getPrice, the host, port, and
scheme respectively are: localhost, 5050, and http. You must explicitly configure this information in the Static
Router. The following policy illustrates this scenario:

The following table explains the role of each filter in the above policy:

Filter Role in Policy Details

Static Router Enables the user to explicitly specify
the host, port, and scheme at which
the Web Service is listening. This filter
must be used when the client sees the
API Gateway as the endpoint to its
connection (the API Gateway is not
acting as a proxy for the client).

Static Router

Connection Establishes the connection to the des-
tination Web Service, and sends the
message over this connection. This
connection can be mutually authentic-
ated if necessary.

Connection

Case 4: Endpoint with Service Virtualization

In this case, the API Gateway acts as the endpoint to the client connection (and not as a proxy), and hides the deploy-
ment hierarchy of protected Web Services from clients. In other words, it performs service virtualization.

In this scenario, the client sends messages directly to the API Gateway. For example, assuming that the API Gateway is
running at http://localhost:8080/services, and the Web Service is running at ht-
tp://localhost:5050/stockquote/getPrice, the request line of the client HTTP request is received by the API
Gateway as follows:

POST /services HTTP/1.1

You can then configure the Static Router filter to route the message on to port 8080 on localhost using the http
scheme, while the Rewrite URL filter provides the mapping between the path requested by the client (/services) and
the path under which the Web Service is deployed (/stockquote/getPrice). The following policy illustrates a sample
policy that provides service virtualization when the API Gateway is used as an endpoint:

Getting Started with Routing Configuration

705

The following table explains the role of each filter in the policy:

Filter Role in Policy Details

Static Router Enables you to explicitly specify the
host, port, and scheme at which the
Web Service is listening. This filter can
be used when the client sees the API
Gateway as the endpoint to its connec-
tion (not as a proxy for the client).

Static Router

Rewrite URL Provides the mapping between the
path requested by the client and the
path under which the Web Service is
deployed.

Rewrite URL

Connection Establishes the connection to the des-
tination Web Service, and sends the
message over this connection. This
connection can be mutually authentic-
ated if necessary.

Connection

Important
Alternatively, instead of using the Static Router, Rewrite URL, and Connection filters, you can use the
Connect to URL filter, which is equivalent to using these three filters combined. You can configure the
Connect to URL filter to send messages to a Web Service simply by specifying the destination URL. For
more details, see the Connect to URL topic.

Case 5: Simple Redirect

In some cases, the API Gateway must route the incoming message to an entirely different URL. You can use the Re-
write URL filter for this purpose, in addition to rewriting the path on which the request is received (as described in cases
2 and 4 above).

Getting Started with Routing Configuration

706

Note
The full URL of the destination Web Service should be specified in this case in the Rewrite URL filter.

The following policy illustrates the use of the Redirect URL filter to route messages to a fully qualified URL:

The following table describes the role of each filter in the policy:

Filter Role in Policy Details

Rewrite URL Used to specify the fully qualified URL
of the destination Web Service.

Rewrite URL

Dynamic Router In this case, the Dynamic Router filter
is used to parse the URL specified in
the Rewrite URL filter into its constitu-
ent parts. The HTTP scheme, port, and
host of the Web Service are extracted
and set to the internal message object
for use by the Connection filter.

Dynamic Router

Connection Establishes the connection to the des-
tination Web Service, and sends the
message over this connection. This
connection can be mutually authentic-
ated if necessary.

Connection

Case 6: Routing on to an HTTP Proxy

This is a more advanced case where the API Gateway is configured to route on through an HTTP proxy to the back-end
Web Service, which sits behind the proxy. When the API Gateway is configured to route through a proxy, it connects dir-
ectly to the proxy, and sends a request including the full URL of the target Web Service in the HTTP request URI. When
the HTTP proxy receives this request, it uses the URL in the request line to determine where to route the message on to.
The following example shows the request line of a request made through a proxy:

Getting Started with Routing Configuration

707

POST http://localhost:8080/services/getQuote HTTP/1.1

The following filters are required to configure the API Gateway to route through an HTTP proxy:

Filter Role in Policy Details

Static Router You must explicitly specify the host,
port, and scheme of the HTTP proxy.

Static Router

Rewrite URL Enter the full URL of the Web Service
(for example, ht-
tp://HOST:8080/myServices).
Because you are routing through a
proxy, the full URL is sent in the re-
quest line of the HTTP request.

Rewrite URL

Connection In this case, the Connection filter con-
nects to the HTTP proxy, which in turn
routes the message on to the destina-
tion server named in the request URI.
The Send via Proxy option must be
enabled in the Connection filter to fa-
cilitate this.

Connection

Note
It is important to note the differences between how the filters are configured to route on through a proxy
and the scenario described in Case 4: Endpoint with Service Virtualization where no proxy is involved:

• Static Router:
When the API Gateway routes on to an HTTP proxy, the Static Router filter is configured with the de-
tails of the HTTP proxy. Otherwise, the Static Router filter is given the details of the Web Service end-
point directly.

• Rewrite URL:
The full URL of the Web Service endpoint must be specified in this filter when the API Gateway routes
through a proxy. The full URL is then included in the request line of the HTTP request to the proxy. In
cases where no proxy is involved, the Rewrite URL filter is only necessary when the back-end Web
Services are virtualized. In this case, the API Gateway must send the request to a different URI than
that requested by the client.

• Connection:
When routing through a proxy, the Send via Proxy option must be enabled in the Connection filter.
This is not necessary when no proxy sits between the API Gateway and the back-end Web Service.

Summary

The following are the key concepts to consider when configuring the API Gateway to connect to external Web Services:

• The Connection or Connect to URL filter must always be used because it establishes the connection to the Web
Service.

• Service virtualization can be achieved using the Rewrite URL or Connect to URL filter.
• If the client is configured to use the API Gateway as a proxy, the API Gateway can use the Dynamic Router filter to

extract the URL from the request line of the HTTP request. It can then route the message on to this URL.

Getting Started with Routing Configuration

708

• If the client sees the API Gateway as the endpoint of the connection (not as a proxy), the Static Router filter can be
used to explicitly configure the host, port, and scheme of the destination Web Service. Alternatively, you can use the
Connect to URL to specify a URL.

Finally, the API Gateway provides a Routing Wizard to enable you to quickly configure and auto-generate the filters ne-
cessary to route messages on to a specific destination. For more details, see the Routing Wizard topic.

Getting Started with Routing Configuration

709

Routing Wizard
Overview

For convenience, the API Gateway provides a Routing Wizard to enable administrators to quickly configure the filters
necessary to route messages on to a specific destination. The wizard auto-generates the following filters:

Filter Role Details

Rewrite URL This filter determines the request URI
of the HTTP request that is ultimately
made by the Connection filter below.
You should enter a complete URL (for
example, ht-
tp://host:8080/services), from
which the host and port is extracted
and used to configure the Static
Router below.

Rewrite URL

Static Router The Static Router filter specifies the
host of the destination server together
with the port to connect to on that host.

Static Router

Connection The Connection filter establishes the
connection to the URL, host, and port
specified in the Rewrite URL and Stat-
ic Router filters. If an SSL connection
is required, you can select a certificate
from the Trusted Certificate Store to
use to authenticate to the destination
server. You can also select what certi-
ficates are considered trusted by the
API Gateway so that the destination
server's certificate can be trusted.

Connection

To use the Routing Wizard for a particular policy, right-click the policy under the Policies node in the Policy Studio tree,
and select Routing Wizard. Configuring the URL field and/or the Proxy Settings tab in the Routing Wizard auto-
generates a Rewrite URL filter and a Static Router filter.

Configuration

You can configure the following fields in the Routing Wizard:

URL:
Enter the full URL of the destination Web Service. The host, port, and scheme (HTTP or HTTPS) are extracted from the
URL and used to configure a Static Router filter.

Proxy Host:
If you want to send the request using an HTTP proxy, configure the Proxy Host and Proxy Port. In this case, the Static
Router filter is configured with the host and port entered in these fields. The Connection filter sends the complete URL
specified in the URL field as the request URI to the proxy, as required by the HTTP specification. The proxy then knows
where to route the message on to.

710

Note
If the Proxy Host and Proxy Port fields are completed, the wizard automatically selects the Send via
proxy field on the Advanced tab of the auto-generated Connection filter.

Proxy Port:
If you want to route messages using a proxy to the destination Web Service, enter the port on the Proxy Host specified
above on which the proxy accepts requests.

SSL Port:
If the proxy is SSL-enabled, enter the SSL port in this field.

Trusted Certificates, Client SSL Authentication, and HTTP Authentication Tabs
The settings configured on the remaining tabs of the wizard correspond to the settings configured on the tabs displayed
on the Connection filter. For more information on configuring the fields on these tabs, see the Connection topic.

Routing Wizard

711

Call Internal Service
Overview

The Call Internal Service filter is a special filter that passes messages to an internal servlet application or static content
provider that has been deployed at the API Gateway. The appropriate application is selected based on the relative path
on which the request message is received.

This filter is used by Management Services that are configured to listen on the Management Interface on port 8090. For
more information on how the Call Internal Service filter is used by these services, see the section called “Management
Services” in the Configuring HTTP Services topic.

Configuration

You can configure the following fields on the filter screen:

Name:
Enter an appropriate name for this filter.

Additional HTTP Headers to Send to Internal Service:
You can click the Add button to configure additional HTTP headers to send to the internal application. Specify the follow-
ing fields on the HTTP Header dialog:

• HTTP Header Name:
Enter the name of the HTTP header to add to the message.

• HTTP Header Value:
Enter the value of the new HTTP header. You can also enter selectors to represent message attributes. At runtime,
the API Gateway expands these selectors to the current value of the corresponding message attribute. For example,
the ${id} selector is replaced by the value of the current message ID. Message attribute selectors have the follow-
ing syntax:
${messsage_attribute}

For more details on selectors, see Selecting Configuration Values at Runtime.

712

Connection
Overview

The Connection filter makes the connection to the remote Web Service. It relies on connection details that are set by the
other filters in the Routing category. Because the Connection filter connects out to other services, it negotiates the SSL
handshake involved in setting up a mutually authenticated secure channel.

Depending on how the API Gateway is perceived by the client, different combinations of routing filters can be used. For
an introduction to using the various filters in the Routing category, see the topic on Getting Started with Routing Config-
uration.

General Configuration

Enter an appropriate name for the filter in the Name field. Click the tabs to configure the various aspects of the Connec-
tion filter.

Trusted Certificates

This section lists all CA certificates that have been imported into the Oracle Certificate Store. Select the certificates that
the API Gateway considers to be trusted when it attempts to establish a connection to a remote server. The remote serv-
er's SSL certificate must be issued by one of the selected trusted certificates on this tab.

Client SSL Authentication

You can configure the API Gateway to authenticate itself to the remote Web Service. It does so using the certificate se-
lected on this tab.

HTTP Authentication

The API Gateway can use both HTTP basic and HTTP digest authentication to authenticate to the remote server. In both
cases, the User Name and Password of a user must be specified in the fields provided.

Kerberos Authentication

The settings on this tab enable you to authenticate to a Kerberos Service by sending a Kerberos service ticket in the HT-
TP request to that service.

Note
You can also configure the API Gateway to authenticate to a Kerberos Service by including the relevant
Kerberos tokens inside the XML message. For more details, see the Kerberos Client Authentication topic.

Kerberos Client:
The selected Kerberos Client has two roles. First, it must obtain a Kerberos TGT (Ticket Granting Ticket). Second, it
uses this TGT to obtain a service ticket for the Kerberos Service Principal selected below.

Click the button on the right, and select a previously configured Kerberos Client in the tree. To add a Kerberos Client,
right-click the Kerberos Clients tree node, and select Add Kerberos Client. Alternatively, you can add Kerberos Clients
under the External Connections node in the Policy Studio tree view. For more details, see the Kerberos Clients topic.

Kerberos Service Principal:
The Kerberos Client selected above must obtain a ticket from the Kerberos Ticket Granting Server (TGS) for the selected
Kerberos Service Principal. The Service Principal can be used to uniquely identify the Service in the Kerberos realm. The

713

TGS grants a ticket for the selected Principal, which the client can then send to the Kerberos Service. The Principal in
the ticket must match the Kerberos Service's Principal for the client to be successfully authenticated.

Click the button on the right, and select a previously configured Kerberos Principal in the tree (for example, the default
HTTP/host Service Principal). To add a Kerberos Principal, right-click the Kerberos Principals tree node, and
select Add Kerberos Principal. Alternatively, you can add Kerberos Principals under the External Connections node
in the Policy Studio tree view. For more details, see the topic on Kerberos Principals.

Send token with first request:
In some cases, the client may not authenticate (send the Authorization HTTP header) to the Kerberos Service on its
first request. The Kerberos Service should then respond with an HTTP 401 response containing a WWW-Au-
thenticate: Negotiate HTTP header. This header value instructs the client to authenticate to the server by sending
up the Authorization header. The client then sends up a second request, this time with the Authorization header,
which contains the relevant Kerberos token. Select this option to force the Connection filter to always send the Author-
ization HTTP header that contains the Kerberos Service ticket on its first request to the Kerberos Service.

Send body only after establish context:
You can configure the Kerberos client to only send the message body after the context has been fully established (the
client has mutually authenticated with the service).

Pass when service returns 200 even if context not established:
In some rare cases, a Kerberos Service may return a 200 OK response to a Kerberos Client's initial request even though
the security context has not yet been fully established. This 200 OK response may not contain the WWW-authenticate
HTTP header.

By selecting this option, you are instructing the Connection filter to send the request to the Kerberos Service despite
that the context has not been established. It is the responsibility of the Kerberos Service to decide whether to process the
request depending on the status of the security context.

Behavior

The Behavior tab enables you to configure Retries and Failure Settings. By default, both of these sections are col-
lapsed. Click a section to expand it.

Retries:
To specify the retry settings for this filter, complete the following fields:

Perform Retries Select whether the filter performs retries. By default, this
setting is not selected, no retries are performed, and all Re-
tries settings are disabled. This means that the filter only
attempts to perform the connection once.

Retry On Select the HTTP status ranges on which retries can be per-
formed. If a host responds with an HTTP status code that
matches one of the selected ranges, this filter performs a
retry. Select one or more ranges in the table (for example,
Client Error 400-499). For details on adding custom
HTTP status ranges, see the next subsection.

Retry Count Enter the maximum number of retries to attempt. The de-
fault is 5.

Retry Interval (ms) Enter the amount of time to delay between retries in milli-
seconds. The default is 500 ms.

Adding HTTP Status Ranges
To add an HTTP status range to the default list displayed in the Retry On table, click the Add button. In the Configure

Connection

714

HTTP Status Code dialog, complete the following fields:

Name Enter a name for the HTTP status range.

Start status Enter the first HTTP status code in the range of status
codes that you wish to monitor.

End status Enter the last HTTP status code in the range of status
codes that you wish to monitor.

If you wish to monitor one specific status code only, enter the same code in the Start status and End status fields. Click
OK to finish. You can manage existing HTTP status ranges using the Edit and Delete buttons.

Failure Settings:
To specify the failure settings for this filter, complete the following fields:

Consider SLA Breach as Failure Select whether to attempt the connection if a configured
SLA has been breached. This is not selected by default. If
this option is selected, and an SLA breach is encountered,
the filter returns false.

Save Transaction on Failure (for replay) Select whether to store the incoming message in the spe-
cified directory and file if a failure occurs during processing.
This is not selected by default.

File name Enter the name of the file that the message content is
saved to. You can specify this using a selector, which is ex-
panded to the specified value at runtime. Defaults to
${id}.out. For more details on selectors, see Selecting
Configuration Values at Runtime.

Directory Enter the directory that the file is saved to. You can specify
this using a selector, which is expanded to the specified
value at runtime. Defaults to
${environment.VINSTDIR}/message-archive,
where VINSTDIR is the root of your API Gateway installa-
tion.

Maximum number of files in directory Enter the maximum number of files that can be saved in
the directory. Defaults to 500.

Maximum file size Enter the maximum file size in MB. Defaults to 1000.

Include HTTP Headers Select whether to include HTTP headers in the file. HTTP
headers are not included by default.

Include Request Line Select whether to include the HTTP request line from the
client in the file. The request line is not included by default.

Call policy on Connection Failure Select whether to execute a policy in the event of a con-
nection failure. This is not selected by default.

Connection Failure Policy Click the browse button on the right, and select the policy
to run in the event of a connection failure in the dialog.

Advanced

This tab enables you to configure certain advanced features of the Connection filter. The following configuration options
are available:

Connection

715

Handles Redirects:
Specifies whether the API Gateway handles HTTP redirects, and connects to the redirect URL specified in the HTTP re-
sponse. This setting is enabled by default.

Forward spurious received Content headers:
Specifies whether the API Gateway sends any content-related message headers when sending an HTTP request with no
message body to the HTTP server. For example, you can select this setting if content-related headers are required by an
out-of-band agreement. If there is no body in the outbound request, any content-related headers from the original in-
bound HTTP request are forwarded. These are extracted from the http.content.headers message attribute, which
is generally populated by the API Gateway for the incoming call. This attribute can be manipulated in a policy using the
appropriate filters, if required. This setting is not enabled by default.

Send via Proxy:
Select this option if the API Gateway must connect to the destination Web Service through an HTTP proxy. In this case,
the API Gateway includes the full URL of the destination Web Service in the request line of the HTTP request. For ex-
ample, if the destination Web Service resides at http://localhost:8080/services, the request line is as follows:

POST http://localhost:8080/services HTTP/1.1

If the API Gateway is not routing through a proxy, the request line is as follows:

POST /services HTTP/1.1

Proxy Server:
When Send via Proxy is selected, you can configure a specific proxy server to use for the connection. Click the button
next to this field, and select an existing proxy server in the dialog. To add a proxy server, right-click the Proxy Servers
tree node, and select Add a Proxy Server. Alternatively, you can configure Proxy Servers under the External Connec-
tions node in the Policy Studio tree. For more details, see the topic on Proxy Servers.

Transparent Proxy (present client's IP address to server)
Enables the use of the API Gateway as a transparent proxy on Linux systems with the TPROXY kernel option set. When
selected, the IP address of the original client connection that caused the policy to be invoked is used as the local address
of the connection to the destination server. For more details, see Configuring a Transparent Proxy.

Ciphers:
The Ciphers field enables the administrator to specify the ciphers that the server supports. The server sends this list of
supported ciphers to the destination server, which then selects the highest strength common cipher as part of the SSL
handshake. The selected cipher is then used to encrypt the data as it is sent over the secure channel.

HTTP Host Header:
An HTTP 1.1 client must send a Host header in all HTTP 1.1 requests. The Host header identifies the host name and
port number of the requested resource as specified in the original URL given by the client.

When routing messages on to target Web Services, the API Gateway can forward on the Host as received from the cli-
ent, or it can specify the address and port number of the destination Web Service in the Host header that it routes on-
wards.

Select Use Host header specified by client to force the API Gateway to always forward on the original Host header
that it received from the client. Alternatively, to configure the API Gateway to include the address and port number of the
destination Web Service in the Host header, select the Generate new Host header radio button.

Connection

716

Connect to URL
Overview

The Connect to URL filter is the simplest routing filter to use to connect to a target Web Service. To configure this filter
to send messages to a Web Service, you need only enter the URL of the service in the URL field. If the Web Service is
SSL enabled or requires mutual authentication, you can use the other tabs on the Connect to URL filter to configure
this.

Depending on how the API Gateway is perceived by the client, different combinations of routing filters can be used. Us-
ing the Connect to URL filter is equivalent to using the following combination of routing filters:

• Static Router
• Rewrite URL
• Connection

The Connect to URL filter enables the API Gateway to act as the endpoint to the client connection (and not as a proxy),
and to hide the deployment hierarchy of protected Web Services from clients. In other words, the API Gateway performs
service virtualization. For an introduction to routing scenarios and the filters in the Routing category, see the Getting
Started with Routing Configuration topic.

General Configuration

Configure the following general settings on the Basic tab:

Name:
Enter an appropriate name for the filter.

URL:
Enter the complete URL of the target Web Service. You can specify this setting as a selector, which enables values to be
expanded at runtime. For more details, see Selecting Configuration Values at Runtime. Defaults to
${http.request.uri}.

Trusted Certificates

When API Gateway connects to a server over SSL, it must decide whether to trust the server's SSL certificate. You can
select a list of CA or server certificates from the Trusted Certificates tab that are considered trusted by the API Gate-
way when connecting to the server specified in the URL field on this dialog.

The table displayed on the Trusted Certificates tab lists all certificates imported into the API Gateway Certificate Store.
To trust a certificate for this particular connection, select the box next to the certificate in the table.

Client SSL Authentication

In cases where the destination server requires clients to authenticate to it using an SSL certificate, you must select a cli-
ent certificate on the Client SSL Authentication tab. Select the checkbox next to the client certificate that you want to
use to authenticate to the server specified in the URL field.

HTTP Authentication

If the destination server requires clients to authenticate to it using HTTP basic or digest authentication, use the fields on
the HTTP Authentication tab.

None, HTTP Basic, or HTTP Digest:
Select the method that you want to use to authenticate to the server.

717

User Name:
Enter the user name you want to use to authenticate to the server.

Password:
Enter the password for this user.

Kerberos Authentication

The settings on this tab enable you to authenticate to a Kerberos Service by sending a Kerberos service ticket in the HT-
TP request to that service.

Note
You can also configure the API Gateway to authenticate to a Kerberos Service by including the relevant
Kerberos tokens inside the XML message. For more details, see the Kerberos Client Authentication topic.

Kerberos Client:
The selected Kerberos Client has two roles. First, it must obtain a Kerberos TGT (Ticket Granting Ticket). Second, it
uses this TGT to obtain a service ticket for the Kerberos Service Principal selected below.

You can configure Kerberos Clients globally under the External Connections node in the Policy Studio tree. These can
then be selected in the Kerberos Client drop-down list. For more details on configuring Kerberos Clients, see the Ker-
beros Clients topic.

Kerberos Service Principal:
The Kerberos Client selected in the drop-down list must obtain a ticket from the Kerberos Ticket Granting Server (TGS)
for the selected Kerberos Service Principal. The Service Principal can be used to uniquely identify the Service in the Ker-
beros realm. The TGS grants a ticket for the selected Principal, which the client can then send to the Kerberos Service.
The Principal in the ticket must match the Kerberos Service's Principal for the client to be successfully authenticated.

You can also configure Kerberos Principals globally under the External Connections node in the Policy Studio tree. For
more details on configuring Kerberos Principals, see the Kerberos Principals topic.

Send token with first request:
In some cases, the client may not authenticate (send the Authorization HTTP header) to the Kerberos Service on its
first request. The Kerberos Service should then respond with an HTTP 401 response containing a WWW-Au-
thenticate: Negotiate HTTP header. This header value instructs the client to authenticate to the server by sending
up the Authorization header. The client then sends up a second request, this time with the Authorization header,
which contains the relevant Kerberos token. Select this option to force the Connect to URL filter to always send the Au-
thorization HTTP header that contains the Kerberos Service ticket on its first request to the Kerberos Service.

Send body only after establish context:
You can configure the Kerberos client to only send the message body after the context has been fully established (the
client has mutually authenticated with the service).

Pass when service returns 200 even if context not established:
In some rare cases, a Kerberos Service may return a 200 OK response to a Kerberos Client's initial request even though
the security context has not yet been fully established. This 200 OK response may not contain the WWW-authenticate
HTTP header.

By selecting this option, you are instructing the Connect to URL filter to send the request to the Kerberos Service even if
the context has not been established. It is the responsibility of the Kerberos Service to decide whether to process the re-
quest depending on the status of the security context.

Behavior

Connect to URL

718

The Behavior tab enables you to configure Retries and Failure Settings. By default, both of these sections are col-
lapsed. Click a section to expand it.

Retries:
To specify the retry settings for this filter, complete the following fields:

Perform Retries Select whether the filter performs retries. By default, this
setting is not selected, no retries are performed, and all Re-
tries settings are disabled. This means that the filter only
attempts to perform the connection once.

Retry On Select the HTTP status ranges on which retries can be per-
formed. If a host responds with an HTTP status code that
matches one of the selected ranges, this filter performs a
retry. Select one or more ranges in the table (for example,
Client Error 400-499). For details on adding custom
HTTP status ranges, see the next subsection.

Retry Count Enter the maximum number of retries to attempt. The de-
fault is 5.

Retry Interval (ms) Enter the amount of time to delay between retries in milli-
seconds. The default is 500 ms.

Adding HTTP Status Ranges
To add an HTTP status range to the default list displayed in the Retry On table, click the Add button. In the Configure
HTTP Status Code dialog, complete the following fields:

Name Enter a name for the HTTP status range.

Start status Enter the first HTTP status code in the range of status
codes that you wish to monitor.

End status Enter the last HTTP status code in the range of status
codes that you wish to monitor.

If you wish to monitor one specific status code only, enter the same code in the Start status and End status fields. Click
OK to finish. You can manage existing HTTP status ranges using the Edit and Delete buttons.

Failure Settings:
To specify the failure settings for this filter, complete the following fields:

Consider SLA Breach as Failure Select whether to attempt the connection if a configured
SLA has been breached. This is not selected by default. If
this option is selected, and an SLA breach is encountered,
the filter returns false.

Save Transaction on Failure (for replay) Select whether to store the incoming message in the spe-
cified directory and file if a failure occurs during processing.
This is not selected by default.

File name Enter the name of the file that the message content is
saved to. You can specify this using a selector, which is ex-
panded to the specified value at runtime. Defaults to
${id}.out. For more details on selectors, see Selecting
Configuration Values at Runtime.

Connect to URL

719

Directory Enter the directory that the file is saved to. You can specify
this using a selector, which is expanded to the specified
value at runtime. Defaults to
${environment.VINSTDIR}/message-archive,
where VINSTDIR is the root of your API Gateway installa-
tion.

Maximum number of files in directory Enter the maximum number of files that can be saved in
the directory. Defaults to 500.

Maximum file size Enter the maximum file size in MB. Defaults to 1000.

Include HTTP Headers Select whether to include HTTP headers in the file. HTTP
headers are not included by default.

Include Request Line Select whether to include the HTTP request line from the
client in the file. The request line is not included by default.

Call policy on Connection Failure Select whether to execute a policy in the event of a con-
nection failure. This is not selected by default.

Connection Failure Policy Click the browse button on the right, and select the policy
to run in the event of a connection failure in the dialog.

Advanced

This tab enables you to configure certain advanced features of the Connect to URL filter. The following configuration op-
tions are available:

Handles Redirects:
Specifies whether the API Gateway handles HTTP redirects, and connects to the redirect URL specified in the HTTP re-
sponse. This setting is enabled by default.

Forward spurious received Content headers:
Specifies whether the API Gateway sends any content-related message headers when sending an HTTP request with no
message body to the HTTP server. For example, you can select this setting if content-related headers are required by an
out-of-band agreement. If there is no body in the outbound request, any content-related headers from the original in-
bound HTTP request are forwarded. These are extracted from the http.content.headers message attribute, which
is generally populated by the API Gateway for the incoming call. This attribute can be manipulated in a policy using the
appropriate filters, if required. This setting is not enabled by default.

Send via Proxy:
Select this option if the API Gateway must connect to the destination Web Service through an HTTP proxy. In this case,
the API Gateway includes the full URL of the destination Web Service in the request line of the HTTP request. For ex-
ample, if the destination Web Service resides at http://localhost:8080/services, the request line is as follows:

POST http://localhost:8080/services HTTP/1.1

If the API Gateway was not routing through a proxy, the request line is as follows:

POST /services HTTP/1.1

Proxy Server:
When Send via Proxy is selected, you can configure a specific proxy server to use for the connection. Click the button
next to this field, and select an existing proxy server in the dialog. To add a proxy server, right-click the Proxy Servers
tree node, and select Add a Proxy Server. Alternatively, you can configure Proxy Servers under the External Connec-

Connect to URL

720

tions node in the Policy Studio tree. For more details, see the topic on Proxy Servers.

Transparent Proxy (present client's IP address to server)
Enables the use of the API Gateway as a transparent proxy on Linux systems with the TPROXY kernel option set. When
selected, the IP address of the original client connection that caused the policy to be invoked is used as the local address
of the connection to the destination server. For more details, see Configuring a Transparent Proxy.

Ciphers:
The Ciphers field enables the administrator to specify the ciphers that API Gateway supports. The API Gateway sends
this list of supported ciphers to the destination server, which then selects the highest strength common cipher as part of
the SSL handshake. The selected cipher is then used to encrypt the data as it is sent over the secure channel.

HTTP Host Header:
An HTTP 1.1 client must send a Host header in all HTTP 1.1 requests. The Host header identifies the hostname and
port number of the requested resource as specified in the original URL given by the client.

When routing messages on to target Web Services, the API Gateway can forward on the Host as received from the cli-
ent, or it can specify the address and port number of the destination Web Service in the Host header that it routes on-
wards.

Select Use Host header specified by client to force the API Gateway to always forward on the original Host header
that it received from the client. Alternatively, to configure the API Gateway to include the address and port number of the
destination Web Service in the Host header, select the Generate new Host header radio button.

Request Details

On the Request Details tab, you can use the API Gateway selector syntax to evaluate and expand request details at
runtime. For more details, see Selecting Configuration Values at Runtime. You can configure the following settings:

Method:
Enter the HTTP verb used in the incoming request (for example, GET). Defaults to ${http.request.verb}.

Body:
Enter the content of the incoming request message body. Defaults to ${content.body}.

Important
You must enter the body headers and body content in the Body text area. For example, enter the Con-
tent-Type followed by a return and then the required message payload:

Content-Type: text/html

<!DOCTYPE html>
<html>
<body>
<h1>Hello World</h1>
</body>
</html>

Protocol Headers:
Enter the HTTP headers associated with the incoming request message. Defaults to ${http.headers}.

Connect to URL

721

Dynamic Router
Overview

The API Gateway can act as a proxy for clients of the secured Web Service. When a client uses a proxy, it includes the
fully qualified URL of the destination in the request line of the HTTP request. It sends this request to the configured
proxy, which then forwards the request to the host specified in the URL. The relative path used in the original request is
preserved by the proxy on the outbound connection.

The following is an example of an HTTP request line that was made through a proxy, where WEB_SERVICE_HOST is the
name or IP address of the machine hosting the destination Web Service:

POST http://WEB_SERVICE_HOST:80/myService HTTP/1.0

When the API Gateway acts as a proxy for clients, it can receive requests like the one above. The Dynamic Router filter
can route the request on to the URL specified in the request line (http://WEB_SERVICE_HOST:80/myService).

Depending on how the API Gateway is perceived by the client, different combinations of routing filters can be used. For
an introduction to using the various filters in the Routing category, see the topic on Getting Started with Routing Config-
uration.

Configuration

Enter an appropriate name for the router in the Name field on the Dynamic Router filter configuration screen.

722

Extract Path Parameters
Overview

The Extract Path Parameters filter enables the API Gateway to parse the contents of a specified HTTP path into mes-
sage attributes. This means that you can define HTTP path parameters, and then extract their values at runtime using
selectors. For example, this is useful when passing in parameters to REST-based requests. For more details on select-
ors, see the topic on Selecting Configuration Values at Runtime.

Configuration

Complete the following settings:

Name:
Enter a descriptive name for this filter.

URI Template:
Enter the URI template for the path to be parameterized. This is a formatted Jersey @Path annotation string, which en-
ables you to parameterize the path specified in the incoming http.request.path message attribute. The following is
an example URI template entry:

/twitter/{version}/statuses/{operation}.{format}

For more details on Jersey @Path annotations, see the following:
http://jersey.java.net/nonav/documentation/latest/jax-rs.html#d4e104

Path Parameters:
The Path Parameters table enables you to map the path parameters specified in the URI Template to user-defined
message attributes. These attributes can then be used by other filters downstream in the policy. Click Add to configure a
path parameter, and specify the following in the dialog:

Field Description

Path Parameter Enter the name of the path parameter (for example, ver-
sion).

Type Enter the type of the path parameter (for example,
java.lang.String)..

Message Attribute Enter the name of the message attribute that stores the
parameter value (for example, twitter_version).

The following screen shows the example path parameters:

723

http://jersey.java.net/nonav/documentation/latest/jax-rs.html#d4e104

Required Input and Generated Output

The incoming http.request.path message attribute is required as input to this filter.

This filter generates the message attributes for the parameters that you specify in the Path Parameters table. For ex-
ample, in the previous screen shot, the following attributes are generated:

• twitter_format

• twitter_operation

• twitter_version

Possible Outcomes

The possible outcomes of this filter are as follows:

• True if the specified URI Template is successfully parsed.
• False if an error occurs during URI Template parsing.
• CircuitAbortException if an exception occurs during URI Template parsing.

Extract Path Parameters

724

File Download
Overview

You can use the File Download filter to download files from a file transfer server and store their contents in the con-
tent.body message attribute. The File Download filter supports the following protocols:

• FTP: File Transfer Protocol
• FTPS: FTP over Secure Sockets Layer (SSL)
• SFTP: Secure Shell (SSH) File Transfer Protocol

Configuring a File Download filter can be useful when integrating with Business-to-Business (B2B) partner destinations
or with legacy systems. For example, instead of making drastic changes to either system, the API Gateway can down-
load files from the other system. The added benefit is that the files are exposed to the full compliment of API Gateway
message processing filters. This ensures that only properly validated files are downloaded from the target system. The
File Download filter is available from the Routing category of filters in the Policy Studio.

General Settings

Configure the following general settings:

Name:
Enter a descriptive name for this filter.

Host:
Enter the name of the host machine on which the file transfer server is running.

Port:
Enter the port number to connect to the file transfer server. Defaults to 21.

Username:
Enter the username to connect to the file transfer server.

Password:
Specify the password for this user.

File Details

Configure the following fields in the File details section:

Filename:
Specifies the filename to download from the file transfer server. The default value is filename.xml. You can enter a
different filename or use a message attribute selector, which is expanded at runtime (for example,
${authentication.subject.id}).

When downloading a file from the file transfer server, the API Gateway uses a temporary file name of filename.part.
When the file has been downloaded, it then uses the filename specified in this filter (for example, the default file-
name.xml). This prevents an incomplete file from being downloaded.

Directory:
Specify the directory where the file is stored.

Connection Type

The fields configured in the Connection Type section determine the type of file transfer connection. Select the FTP con-

725

nection type from the drop-down list:

• FTP - File Transfer Protocol
• FTPS - FTP over SSL
• SFTP - SSH File Transfer Protocol

FTP and FTPS Connections

The following general settings apply to FTP and FTPS connections:

Passive transfer mode:
Select this option to prevent problems caused by opening outgoing ports in the firewall relative to the file transfer server
(for example, when using active FTP connections). This is selected by default.

File Type:
Select ASCII mode for sending text-based data, or Binary mode for sending binary data over the file transfer connection.
Defaults to ASCII mode.

FTPS Connections

The following security settings apply to FTPS connections only:

SSL Protocol:
Enter the SSL protocol used (for example, SSL or TLS). Defaults to SSL.

Implicit:
When this option is selected, security is automatically enabled as soon as the File Download client makes a connection
to the remote file transfer service. No clear text is passed between the client and server at any time. In this case, a spe-
cific port is used for secure connections (990). This option is not selected by default.

Explicit:
When this option is selected, the remote file transfer service must explicitly request security from the File Download cli-
ent, and negotiate the required security. If the file transfer service does not request security, the client can allow the file
transfer service to continue insecure or refuse and/or limit the connection. This option is selected by default.

Trusted Certificates:
To connect to a remote file server over SSL, you must trust that server's SSL certificate. When you have imported this
certificate into the Certificate Store, you can select it on the Trusted Certificates tab.

Client Certificates:
If the remote file server requires the File Download client to present an SSL certificate to it during the SSL handshake
for mutual authentication, you must select this certificate from the list on the Client Certificates tab. This certificate must
have a private key associated with it that is also stored in the Certificate Store.

SFTP Connections

The following security settings apply to SFTP connections only:

Present following key for authentication:
Click the button on the right, and select a previously configured key to be used for authentication from the tree. To add a
key, right-click the Key Pairs node, and select Add. Alternatively, you can import key pairs under the Certificates and
Keys node in the Policy Studio tree. For more details, see the topic on Certificates and Keys.

SFTP host must present key with the following finger print:
Enter the fingerprint of the public key that the SFTP host must present (for example,
43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8).

File Download

726

File Upload
Overview

You can use the File Upload filter to upload processed messages as files to a file transfer server. This enables you to
upload the contents of the content.body message attribute as a file. The File Upload filter supports the following pro-
tocols:

• FTP: File Transfer Protocol
• FTPS: FTP over Secure Sockets Layer (SSL)
• SFTP: Secure Shell (SSH) File Transfer Protocol

Configuring a File Upload filter can be useful when integrating with Business-to-Business (B2B) partner destinations or
with legacy systems. For example, instead of making drastic changes to either system, the API Gateway can make files
available for upload to the other system. The added benefit is that the files are exposed to the full compliment of API
Gateway message processing filters. This ensures that only properly validated files are uploaded to the target system.

The File Upload filter is available from the Routing category of filters in the Policy Studio. This topic describes how to
configure the fields on the File Upload filter dialog.

General Settings

Configure the following general settings:

Name:
Enter a descriptive name for this filter.

Host:
Enter the name of the host machine on which the file transfer server is running.

Port:
Enter the port number to connect to the file transfer server. Defaults to 21.

Username:
Enter the username to connect to the file transfer server.

Password:
Specify the password for this user.

File Details

Configure the following fields in the File details section:

Filename:
The message body (in the content.body message attribute) is stored using this filename on the destination file trans-
fer server. The default value of ${id}.out enables you to use the unique identifier associated with each message pro-
cessed by the API Gateway. When this value is specified, messages are stored in individual files on the file transfer serv-
er according to their unique message identifier.

Directory:
Specify the directory where this file will be stored on the destination file transfer server.

Use temporary file name during upload:
This option specifies whether to use a temporary file name of ${id}.part when the file is uploading to the file transfer
server. When the file has uploaded, it then uses the filename specified in this filter (for example, the default ${id}.out

727

filename). This prevents an incomplete file from being uploaded. This option is selected by default.

Important
You must deselect this option if the file transfer server is the API Gateway. For example, this option applies
when the API Gateway uploads to a file transfer server, and then another server (possibly API Gateway)
polls the file transfer server for new files to process. The poller server is configured to consume *.xml files
and ignores the temporary file. When the upload is complete, the file is renamed and the poller sees the
new file to process.

Connection Type

The fields configured in the Connection Type section determine the type of file transfer connection. Select the FTP con-
nection type from the drop-down list:

• FTP - File Transfer Protocol
• FTPS - FTP over SSL
• SFTP - SSH File Transfer Protocol

FTP and FTPS Connections

The following general settings apply to FTP and FTPS connections:

Passive transfer mode:
Select this option to prevent problems caused by opening outgoing ports in the firewall relative to the file transfer server
(for example, when using active FTP connections). This is selected by default.

File Type:
Select ASCII mode for sending text-based data, or Binary mode for sending binary data over the file transfer connection.
Defaults to ASCII mode.

FTPS Connections

The following security settings apply to FTPS connections only:

SSL Protocol:
Enter the SSL protocol used (for example, SSL or TLS). Defaults to SSL.

Implicit:
When this option is selected, security is automatically enabled as soon as the File Upload client makes a connection to
the remote file transfer service. No clear text is passed between the client and server at any time. In this case, a specific
port is used for secure connections (990). This option is not selected by default.

Explicit:
When this option is selected, the remote file transfer service must explicitly request security from the File Upload client,
and negotiate the required security. If the file transfer service does not request security, the client can allow the file trans-
fer service to continue insecure or refuse and/or limit the connection. This option is selected by default.

Trusted Certificates:
To connect to a remote file server over SSL, you must trust that server's SSL certificate. When you have imported this
certificate into the Certificate Store, you can select it on the Trusted Certificates tab.

Client Certificates:
If the remote file server requires the File Upload client to present an SSL certificate to it during the SSL handshake for
mutual authentication, you must select this certificate from the list on the Client Certificates tab. This certificate must
have a private key associated with it that is also stored in the Certificate Store.

File Upload

728

SFTP Connections

The following security settings apply to SFTP connections only:

Present following key for authentication:
Click the button on the right, and select a previously configured key to be used for authentication from the tree. To add a
key, right-click the Key Pairs node, and select Add. Alternatively, you can import key pairs under the Certificates and
Keys node in the Policy Studio tree. For more details, see the topic on Certificates and Keys.

SFTP host must present key with the following finger print:
Enter the fingerprint of the public key that the SFTP host must present (for example,
43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8).

File Upload

729

HTTP Redirect
Overview

You can use the HTTP Redirect filter to enable the API Gateway to send an HTTP redirect message. For example, you
may wish to send an HTTP redirect to force a client to enter user credentials on an HTML login page if no HTTP cookie
already exists. Alternatively, you may wish to send an HTTP redirect if a Web page has moved to a new URL address.

Configuration

Complete the following settings:

Name:
Enter a descriptive name for this filter.

HTTP response code status:
Enter the HTTP response code status to use in the HTTP redirect message. Defaults to 301, which means that the re-
quested resource has been assigned a new permanent URI, and any future references to this resource should use the
returned redirect URL.

Redirect URL:
Enter the URL address to which the message is redirected.

Content-Type:
Enter the Content-Type of the HTTP redirect message (for example, text/xml).

Message Body:
Enter the message body text that you wish to send in the HTTP redirect message.

730

HTTP Status Code
Overview

This filter sets the HTTP status code on response messages. This enables an administrator to ensure that a more mean-
ingful response is sent to the client in the case of an error or anomaly occurring in a configured policy.

For example, if a Relative Path filter fails, it may be useful to return a 503 Service Unavailable response. Simil-
arly, if a user does not present identity credentials when attempting to access a protected resource, you can configure
the API Gateway to return a 401 Unauthorized response to the client.

HTTP status codes are returned in the status-line of an HTTP response. The following are some typical examples:

HTTP/1.1 200 OK
HTTP/1.1 400 Bad Request
HTTP/1.1 500 Internal Server Error

Configuration

Name:
Enter an appropriate name for this filter.

HTTP response code status:
Enter the status code returned to the client. For a complete list of status codes, see the HTTP Specification [ht-
tp://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html].

731

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

Insert WS-Addressing
Overview

The WS-Addressing specification defines a transport-independent standard for including addressing information in SOAP
messages. The API Gateway can generate WS-Addressing information based on a configured endpoint in a policy, and
then insert this information into SOAP messages.

Configuration

Complete the following fields to configure the API Gateway to insert WS-Addressing information into the SOAP message
header.

Name:
Enter an appropriate name for the filter.

To:
The message is delivered to the specified destination.

From:
Informs the destination server where the message originated from.

Reply To:
Indicates to the destination server where it should send response messages to.

Fault To:
Indicates to the destination server where it should send fault messages to.

MessageID:
A unique identifier to distinguish this message from others at the destination server. It also provides a mechanism for cor-
relating a specific request with its corresponding response message.

Action:
The specified action indicates what action the destination server should take on the message. Typically, the value of the
WS-Addressing Action element corresponds to the SOAPAction on the request message. For this reason, this field de-
faults to the soap.request.action message attribute.

Relates To:
If responses are to be received asynchronously, the specified value provides a method to associate an incoming reply to
its corresponding request.

Namespace:
The WS-Addressing namespace to use in the WS-Addressing block.

732

Messaging System Filter
Overview

A messaging system is a loosely coupled, peer-to-peer facility where clients can send messages to, and receive mes-
sages from any other client. In a messaging system, a client sends a message to a messaging agent. The recipient of
the message can then connect to the same agent and read the message. However, the sender and recipient of the mes-
sage do not need to be available at the same time to communicate (for example, unlike HTTP). The sender and recipient
need only know the name and address of the messaging agent to talk to.

The Java Messaging System (JMS) is an implementation of such a messaging system. It provides an API for creating,
sending, receiving, and reading messages. Java-based applications can use it to connect to other messaging system im-
plementations. A JMS provider can deliver messages synchronously or asynchronously, which means that the client can
fire and forget messages or wait for a response before resuming processing. Furthermore, the JMS API ensures different
levels of reliability in terms of message delivery. For example, it can ensure that the message is delivered once and only
once, or at least once.

The API Gateway uses the JMS API to connect to other messaging systems that expose a JMS interface. For example,
these include Oracle WebLogic Server, IBM MQSeries, JBoss Messaging, TIBCO EMS, IBM WebSphere Server, and
Progress SonicMQ.

Important
You must add the JMS provider JAR files to the API Gateway classpath for this filter to function correctly. If
the provider's implementation is platform-specific, copy the provider JAR files to the IN-
STALL_DIR/ext/PLATFORM folder, where INSTALL_DIR points to the root of your product installation,
and PLATFORM is the platform on which the API Gateway is installed (Win32, Linux.i386, or Sun-
OS.sun4u-32). If the provider implementation is platform-independent, you can place the JAR files in IN-
STALL_DIR/ext/lib.

Request Settings

The Request tab specifies properties of the request to the messaging system. You can configure the following fields:

JMS Service:
Click the button next to this field, and select an existing JMS service in the tree. To add a JMS Service, right-click the
JMS Services tree node, and select Add a JMS Service. Alternatively, you can configure JMS services under the Ex-
ternal Connections node in the Policy Studio tree. For more details, see the Messaging System topic.

Destination:
Enter the name of the JMS queue or topic that you want to drop messages on to.

Delivery Mode:
The API Gateway supports persistent and non-persistent delivery modes:

• Persistent:
Instructs the JMS provider to ensure that a message is not lost in transit if the JMS provider fails. A message sent
with this delivery mode is logged to persistent storage when it is sent.

• Non-persistent:
Does not require the JMS provider to store the message. With this mode, the message may be lost if the JMS pro-
vider fails.

Priority Level:
You can use message priority levels to instruct the JMS provider to deliver urgent messages first. The ten levels of prior-

733

ity range from 0 (lowest) to 9 (highest). If you do not specify a priority level, the default level is 4. A JMS provider tries to
deliver higher priority messages before lower priority ones but does not have to deliver messages in exact order of prior-
ity.

Time to Live:
By default, a message never expires. However, if a message becomes obsolete after a certain period, you may want to
set an expiration time (in milliseconds). If the specified time to live value is 0, the message never expires.

Message ID:
Enter an identifier to be used as the unique identifier for the message. By default, the unique identifier is the ID assigned
to the message by the API Gateway (${id}). However, you can use a proprietary correlation system, perhaps using
MIME message IDs instead of API Gateway message IDs.

Correlation ID:
Enter an identifier for the message that the API Gateway uses to correlate response messages with the corresponding
request messages. Usually, if ${id} is specified in the Message ID field above, it is also used here to correlate request
messages with their correct response messages.

Message Type:
This drop-down list enables you to specify the type of data to be serialized and sent in the JMS message to the JMS pro-
vider. The option selected depends on what part of the message you want to send to the consumer. For example, if you
want to send the message body, select the option to format the body according to the rules defined in the SOAP over
JMS [http://www.w3.org/TR/soapjms/] recommendation. Alternatively, if you wanted to serialize a list of name-value pairs
to the JMS message, choose the option to create a MapMessage.

The following list describes the various serialization options available:

• Use content.body attribute to create a message in the format specified in the SOAP
over Java Messaging Service recommendation:
If this option is selected, messages are formatted according to the SOAP over JMS [http://www.w3.org/TR/soapjms/]
recommendation. This is the default option because, in most cases, the message body is to be routed to the mes-
saging system. If this option is selected, a javax.jms.BytesMessage is created and a JMS property containing
the content type (text/xml) is set on the message.

• Create a MapMessage from the java.lang.Map in the attribute named below:
Select this option to create a javax.jms.MapMessage from the API Gateway message attribute named below that
consists of name-value pairs.

• Create a BytesMessage from the attribute named below:
Select this option to create a javax.jms.BytesMessage from the API Gateway message attribute named below.

• Create an ObjectMessage from the java.lang.Serializable in the attribute named below:
Select this option to create a javax.jms.ObjectMessage from the API Gateway message attribute named below.

• Create a TextMessage from the attribute named below:
Select this option to create a javax.jms.TextMessage from the message attribute named below.

• Use the javax.jms.Message stored in the attribute named below:
If a javax.jms.Message has already been stored in a message attribute, select this option, and enter the name of
the attribute in the field below.

Attribute Name:
Enter the name of the API Gateway message attribute that holds the data that is to be serialized to a JMS message and
sent over the wire to the JMS provider. The type of the attribute named here must correspond to that selected in the
Message Type drop-down field above.

Use Shared JMS Session:
By default, each running instance of a Messaging System filter creates its own session (using its own thread) with the
JMS provider. You can select this option to force all running instances of this filter to share the same JMS session (using
a common shared thread) to the JMS provider. Reusing a shared session across multiple filter instances in this manner
may result in performance degradation as each connection to the provider using the session blocks until the response (if
any) is received.

Messaging System Filter

734

http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/

Custom Message Properties:
You can set custom properties for messages in addition to those provided by the header fields. Custom properties may
be required to provide compatibility with other messaging systems. You can use message attribute selectors as property
values. For example, you can create a property called AuthNUser, and set its value to
${authenticated.subject.id}. Other applications can then filter on this property (for example, only consume mes-
sages where AuthNUser equals admin). To add a new property, click Add, and enter a name and value in the fields
provided on the Properties dialog.

Use the following policy to change JMS request message:
This setting enables you to customize the JMS message before it is published to a JMS queue or topic. Click the browse
button on the right, and select a configured policy in the dialog. The selected policy is then invoked before the JMS re-
quest is sent to the queuing system.

When the selected policy is invoked, the JMS request message is available on the white board in the
jms.outbound.message message attribute. You can therefore call JMS API methods to manipulate the JMS request
further. For example, you could configure a policy containing a Scripting Language filter that runs a script such as the
following against the JMS message:

function invoke(msg) {
var jmsMsg = msg.get("jms.outbound.message");
jmsMsg.setIntProperty("My_JMS_Report", 123);
return true;

}

Response Settings

The Response tab specifies whether the API Gateway uses asynchronous or synchronous communication when talking
to the messaging system. For example, if you want the API Gateway to use asynchronous communication, you can se-
lect the Do not set response option. If synchronous communication is required, you can select to read the response
from a temporary queue or from a named queue or topic.

You can also specify whether the API Gateway waits on a response message from a queue or topic from the messaging
system. The API Gateway sets the JMSReplyTo property on each message that it sends. The value of the JMSReplyTo
property is the temporary queue, queue, or topic selected in this dialog. It is the responsibility of the application that con-
sumes the message from the queue (JMS Consumer) to send the message back to the destination specified in JMS-
ReplyTo.

The API Gateway sets the JMSCorrelationID property to the value of the Correlation ID field on the Request tab to
correlate requests messages to their corresponding response messages. If you select to use a temporary queue or tem-
porary topic, this is created when the API Gateway starts up.

Wait for response:
Select whether the API Gateway waits to receive a response:

• No wait:
The API Gateway does not wait to receive a response.

• Wait with timeout (ms):
The API Gateway waits a specific time period to receive a response before it times out. If the API Gateway times out
waiting for a response, the Messaging System filter fails. Enter the timeout value in milliseconds. The default value
of 0 means there is no timeout, and the API Gateway waits for a response indefinitely.

Set where response is to be sent:
Select where the response message is to be placed using one of the following options:

• Do not set response:
Select this option if you do not expect or do not care about receiving a response from the JMS provider.

Messaging System Filter

735

• Use temporary queue:
Select this option to instruct the JMS provider to place the response message on a temporary queue. In this case,
the temporary queue is created when the API Gateway starts up. Only the API Gateway can read from the tempor-
ary queue, but any application can write to it. The API Gateway uses the value of the JMSReplyTo header to indic-
ate the location where reads responses from.

• Use named queue or topic:
If you want the JMS provider to place response messages on a named queue or topic, select this option, and enter
the name of the queue or topic in the text box.

Selector for response:
The expression entered specifies the messages that the consumer is interested in receiving. By using a selector, the task
of filtering the messages is performed by the JMS provider instead of by the consumer. The selector is a string that spe-
cifies an expression whose syntax is based on the SQL92 conditional expression syntax. The API Gateway instance only
receives messages whose headers and properties match the selector.

Important
The JMS Consumer automatically returns the results of the invoked policy to the JMS destination specified
in the JMSReplyTo header of the request. This means that you do not need to send a reply using the Mes-
saging System filter.

If the incoming JMS message contains a JMSReplyTo header (a queue or topic that expects a response), when the
policy invoked by the JMS Consumer completes, the API Gateway sends a message to the JMSReplyTo source using
the reverse of the mechanism that it used to read from the queue. For example, if the consumer reads the JMS message
and populates an attribute with a value inferred from the message type to Java (for example, from TextMessage to
String), when the policy completes, the consumer looks up this attribute, and infers the JMS response message type
based on the object type stored in the message.

Messaging System Filter

736

Read WS-Addressing
Overview

The WS-Addressing specification defines a transport-independent standard for including addressing information in SOAP
messages. The API Gateway can read WS-Addressing information contained in a SOAP message and subsequently use
this information to route the message to its intended destination.

Configuration

Complete the following fields to configure the API Gateway to read WS-Addressing information contained in a SOAP
message.

Name:
Enter an appropriate name for the filter.

Address location:
Specify the name of the element in the WS-Addressing block that contains the address of the destination server to which
the API Gateway routes the message. For more information on configuring XPath expressions, see the Configuring
XPath Expressions topic.

By default, XPath expressions are available to extract the destination server from the From, To, ReplyTo, and FaultTo
elements. Click the Add button to add a new XPath expression to extract the address from a different location.

Remove enclosing WS-Addressing element:
If this option is selected, the WS-Addressing element returned by the XPath expression configured above is removed
from the SOAP Header when it has been consumed.

737

Rewrite URL
Overview

You can use the Rewrite URL filter to specify the path on the remote machine to send the request to. This filter normally
used in conjunction with a Static Router filter, whose role is to supply the host and port of the remote service. For more
details, see the Static Router topic.

Depending on how the API Gateway is perceived by the client, different combinations of routing filters can be used. For
an introduction to using the various filters in the Routing category, see the topic on Getting Started with Routing Config-
uration.

Configuration

Configure the following fields on the Rewrite URL filter configuration screen:

Name:
Enter an appropriate name for the filter in the Name field.

URL:
Enter the relative path of the Web Service in the URL field. The API Gateway combine the specified path with the host
and port number specified in the Static Router filter to build up the complete URL to route to.

Alternatively, you can perform simple URL rewrites by specifying a fully qualified URL into the URL field. You can then
use a Dynamic Router to route the message to the specified URL.

738

Save to File
Overview

The Save to File filter enables you to write the current message contents to a file. For example, you can save the mes-
sage contents to a file in a directory where it can be accessed by an external application. This can be used to quarantine
messages to the file system for offline examination. This filter can also be useful when integrating legacy systems. In-
stead of making drastic changes to the legacy system by adding an HTTP engine, the API Gateway can save the mes-
sage contents to the file system, and route them on over HTTP to another back-end system.

Configuration

To configure the Save to File filter, specify the following fields:

Name Name of the filter to be displayed in a policy. Defaults to
Save to File.

File name Enter the name of the file that the content is saved to. You
can specify this using a selector, which is expanded to the
specified value at runtime. Defaults to ${id}.out. For
more details on selectors, see Selecting Configuration Val-
ues at Runtime.

Directory Enter the directory that the file is saved to. You can specify
this using a selector, which is expanded to the specified
value at runtime. Defaults to
${environment.VINSTDIR}/message-archive,
where VINSTDIR is the root of your API Gateway installa-
tion.

Maximum number of files in directory Enter the maximum number of files that can be saved in
the directory. Defaults to 500.

Maximum file size Enter the maximum file size in MB. Defaults to 1000.

Include HTTP Headers Select whether to include HTTP headers in the file. HTTP
headers are not included by default.

739

SMTP Routing
Overview

You can use the SMTP Routing filter to relay messages to an email recipient using a configured SMTP server.

General Settings

Complete the following general settings:

Name:
Specify a descriptive name for this SMTP Server.

SMTP Server Settings:
Click the button on the right, and select a pre-configured SMTP Server in the tree. To add an SMTP Server, right-click
the SMTP Servers tree node, and select Add an SMTP Server. Alternatively, you can configure SMTP Servers under
the External Connections node in the Policy Studio tree. For more details, see the topic on SMTP Servers.

Message Settings

Complete the following fields in the Message Settings section of the screen:

To:
Enter the email address of the recipient(s) of the messages. You can enter multiple addresses by separating each one
using a semicolon. For example:

joe.soap@example.com;joe.bloggs@example.com;john.doe@example.com

Subject:
Enter some text as the Subject of the email messages.

Send content as attachment:
Select whether to send the message content as an attachment. This setting is not selected by default. In Oracle API
Gateway 6.2 and earlier versions, the SMTP Routing filter always sent the message content as an attachment.

740

Static Router
Overview

The API Gateway uses the information configured in the Static Router filter to connect to a machine that is hosting a
Web Service. You should use the Static Router filter in conjunction with a Rewrite URL filter to specify the path to send
the message to on the remote machine. For more details, see the Rewrite URL topic.

Depending on how the API Gateway is perceived by the client, different combinations of routing filters can be used. For
an introduction to using the various filters in the Routing category, see the topic on Getting Started with Routing Config-
uration.

Configuration

You must configure the following fields must be configured on the Static Router configuration screen:

Name:
Enter a name for the filter.

Host:
Enter the host name or IP address of the remote machine that is hosting the destination Web Service.

Port:
Enter the port on which the remote service is listening.

HTTP:
Select this option if the API Gateway should send the message to the remote machine over plain HTTP.

HTTPS:
Select this option if the API Gateway should send the message to the remote machine over a secure channel using SSL.
You can use a Connection filter to configure the API Gateway to mutually authenticate to the remote system.

741

TIBCO Rendezvous Routing
Overview

TIBCO Rendezvous® is a low latency messaging product for real-time high throughput data distribution applications. It fa-
cilitates the exchange of data between applications over the network.

A TIBCO Rendezvous daemon runs on each participating node on the network. All data sent to and read by each applic-
ation passes through the daemon. API Gateway uses the TIBCO Rendezvous API to communicate with a TIBCO Ren-
dezvous daemon running locally (by default) to send messages to other TIBCO Rendezvous programs.

You can configure the TIBCO Rendezvous filter to route messages (using a TIBCO Rendezvous daemon) to other
TIBCO Rendezvous programs. This filter is found in the Routing category of filters.

Configuration

Configure the following fields to route messages to other TIBCO Rendezvous programs:

Name:
Enter an appropriate name for this filter in the field provided.

TIBCO Rendezvous Daemon to Use:
Click the button on the right, and select a previously configured TIBCO Rendezvous Daemon from the tree. The API
Gateway sends messages to the specified TIBCO Rendezvous Subject on this daemon. To add a TIBCO Rendezvous
Daemon, right-click the TIBCO Rendezvous Daemons tree node, and select Add a TIBCO Rendezvous Daemon. For
more details, see the TIBCO Rendezvous Daemon topic.

TIBCO Rendezvous Subject:
The message is sent with the subject entered here meaning that all other TIBCO daemons on the network that have sub-
scribed to this subject name will receive the message. The subject name comprises a series of elements, including wild-
cards (for example, *), separated by dot characters, for example:

• news.sport.soccer

• news.sport.*

• FINANCE.ACCOUNT.SALES

For more information on the subject name syntax, see the TIBCO Rendezvous documentation.

Field Name:
Click the Add button to add details about a particular field to add to the message. On the Message Field Definition dia-
log, enter the name of the field to send in the message in the Field Name field, and complete the remaining fields.

Type:
Select the data type of the value specified in either of the following fields:

Set value to the following constant value:
You can explicitly set this value by entering it here.

Set value to the object found in the following attribute:
If you would like to dynamically populate the field value using the contents of a message attribute, you can select this at-
tribute from this drop-down list. At runtime, the contents of the message attribute are placed into the message that is sent
to TIBCO Rendezvous.

742

TIBCO Enterprise Messaging Service Routing Filter
Overview

TIBCO Enterprise Messaging Service™ (EMS) provides a distributed message bus with native support for Java Mes-
saging Service (JMS) and TIBCO Rendezvous, along with other protocols.

In general, TIBCO EMS clients produce messages and send them to the TIBCO EMS Server. Similarly, TIBCO EMS cli-
ents can connect to the TIBCO EMS Server and declare an interest in a particular queue or topic on that server. In doing
so, it can consume messages that have been produced by another TIBCO EMS client.

The API Gateway can act as a message producer by sending messages to the TIBCO EMS Server and as a message
consumer by listening on a queue or topic at the server. The TIBCO EMS Routing filter can be used as a message pro-
ducer in this manner.

Connection

On the Connection tab, click the button on the right, and select a previously configured TIBCO EMS Connection in the
tree. Messages are sent to this TIBCO EMS connection and are dropped on the queue or topic specified on the Request
tab.

To add a TIBCO EMS Connection, right-click the TIBCO Enterprise Messaging Service Connections node, and select
Add a TIBCO EMS connection. For more information on configuring TIBCO EMS connections, see the TIBCO Enter-
prise Messaging Service Connection topic.

Request

The Request tab is used to configure properties of the request to the messaging system. You can configure the following
fields:

Destination Type:
You must specify whether the name specified in the Queue or Topic Name field below is a Queue or Topic.

Queue or Topic Name:
Enter the name of the queue or topic that you want to drop messages on to.

Delivery Mode:
The API Gateway supports the following delivery modes:

• Persistent:
Instructs the TIBCO EMS Server to ensure that a message is not lost in transit if the server fails. A message sent
with this delivery mode is logged to persistent storage when it is sent.

• Non-persistent:
Does not require the TIBCO EMS Server to store the message. With this mode, the message may be lost if the serv-
er fails.

• Reliable:
When using reliable mode the TIBCO EMS Server never sends an acknowledgment or confirmation receipt back to
the producer. This greatly decreases the volume of traffic on the network and can result in improved performance.

Priority Level:
You can use message priority levels to instruct the TIBCO EMS server to deliver urgent messages first. The ten levels of
priority range from 0 (lowest) to 9 (highest). If you do not specify a priority level, the default level is 1. The TIBCO EMS
Server tries to deliver higher priority messages before lower priority ones but does not have to deliver messages in exact
order of priority.

743

Time to Live:
By default, a message never expires. However, if a message becomes obsolete after a certain period, you may want to
set an expiration time (in milliseconds). If the specified time to live value is 0, the message never expires.

Message ID:
Enter an identifier to be used as the unique identifier for the message. By default, the unique identifier is the ID assigned
to the message by the API Gateway (${id}). However, you can use a proprietary correlation system, perhaps using
MIME message IDs instead of Oracle message IDs.

Correlation ID:
Enter an identifier for the message that the API Gateway uses to correlate response messages with the corresponding
request messages. Usually, if ${id} is specified in the Message ID field above, it is also used here to correlate request
messages with their correct response messages.

Message Type:
This enables you to specify the type of data to be serialized and sent in the message to the TIBCO EMS Server. The op-
tion selected depends on what part of the message you want to send to the consumer.

For example, if you wish to send the message body you should select the option to format the body according to the
rules defined in the SOAP over JMS [http://www.w3.org/TR/soapjms/] recommendation. Alternatively, if you wish to seri-
alize a list of name-value pairs to the message, choose the option to create a MapMessage.

The following list describes the various serialization options available:

• Use content.body attribute to create a message in the format specified in the SOAP
over Java Messaging Service recommendation:
If this option is selected, messages are formatted according to the SOAP over JMS [http://www.w3.org/TR/soapjms/]
recommendation. This is the default option.

• Create a MapMessage from the java.lang.Map in the attribute named below:
Select this option to create a javax.jms.MapMessage from the Oracle message attribute (named below) that con-
sists of name-value pairs.

• Create a ByteMessage from the attribute named below:
Select this option to create a javax.jms.ByteMessage from the Oracle message attribute named below.

• Create an ObjectMessage from the java.lang.Serializable in the attribute named below:
Select this option to create a javax.jms.ObjectMessage from the Oracle message attribute named below.

• Create a TextMessage from the attribute named below:
A javax.jms.TextMessage can be created from the message attribute named below by selecting this option.

Attribute Name:
Enter the name of the Oracle message attribute that holds the data to be serialized to a JMS message and sent over the
wire to the TIBCO EMS Server. The type of the attribute named here must correspond to that selected in the Message
Type field above.

Custom Message Properties:
You can set custom properties for messages in addition to the standard JMS header fields. Custom properties may be
useful to pass additional information to the TIBCO EMS Server. You can use message attribute selectors as property val-
ues. For example, you can create a property called AuthNUser, and set its value to
${authenticated.subject.id}. When this message is routed to the specified queue or topic, other consumers can
then filter on this property (for example, only consume messages where AuthNUser equals admin). For more details on
selectors, see Selecting Configuration Values at Runtime.

Response

The Response tab is used to configure whether the API Gateway should use asynchronous or synchronous communica-
tion when talking to the messaging system. If the API Gateway is to use asynchronous communication, select No Re-
sponse from the Response drop-down list. If synchronous communication is required, you must configure where to read

TIBCO Enterprise Messaging Service Routing Filter

744

http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/

the response from the TIBCO EMS Server.

When synchronous communication is selected, the API Gateway waits on a message from a queue/topic from the
TIBCO EMS Server. The API Gateway sets the JMSReplyTo property on each message that it sends. The value of the
JMSReplyTo property is the queue, temporary queue, topic, or temporary topic that was selected in the Response drop-
down list. It is the responsibility of the application that consumes the message from the queue to send the message back
to the destination specified in the JMSReplyTo property.

The API Gateway sets the JMSCorrelationID property to the value of the Correlation ID field on the Response tab
to correlate requests messages to their corresponding response messages. If the user has selected to use a temporary
queue or temporary topic, this is created when the API Gateway starts up.

Response:
Select where to read the response message from. The following options are available:

• No Response:
Select this option if you do not expect or require a response from the TIBCO EMS Server.

• Response in Queue Named Below:
If you want the TIBCO EMS Server to place response messages into a named queue, select this option, and enter
the name of the queue in the field below.

• Response in Temporary Queue:
You can also instruct the TIBCO EMS Server to place response messages on a temporary queue from which the
API Gateway can pick them up.

• Response in Topic Named Below:
Select this option to tell the TIBCO EMS Server to place response messages in the topic named in the field below.

• Response in Temporary Topic:
If you want to read response messages from a temporary topic, select this option.

Note
When a temporary destination is selected, this destination is created at start-up of the API Gateway. Only
the API Gateway can read from the temporary destination, however, any application can write to it. The API
Gateway uses the value of the JMSReplyTo header to indicate the location where it reads responses from.

Reply Topic/Queue Name:
If you have selected a named queue or topic (not a temporary queue or topic) from the Response field above, enter its
name here.

Time Out:
The API Gateway waits a certain time period for a response to be received before times out. If the API Gateway does
time out waiting for a response, this filter fails. Enter the time out value in milliseconds.

TIBCO Enterprise Messaging Service Routing Filter

745

TIBCO Enterprise Messaging Service Connection
Overview

TIBCO Enterprise Messaging Service™ (EMS) provides a distributed message bus with support for JMS (Java Mes-
saging Service) and TIBCO Rendezvous, along with other protocols.

In general, TIBCO EMS clients produce messages and send them to the TIBCO EMS Server. Similarly, TIBCO EMS cli-
ents can connect to the TIBCO EMS Server and declare an interest in a particular queue or topic on that server. In doing
so, it can consume messages that have been produced by another TIBCO EMS client.

The API Gateway can act as a message producer by sending messages to the TIBCO EMS Server and as a message
consumer by listening on a queue or topic at the server. Both configurations require a connection to the TIBCO EMS
Server.

For more information on consuming and producing messages to and from TIBCO EMS, see the following topics:

• TIBCO Integration
• TIBCO Enterprise Messaging Service Consumer
• TIBCO Enterprise Messaging Service Routing Filter

This topic describes how to configure a connection to an TIBCO EMS Server. For more detailed information on configur-
ing TIBCO EMS Connections, see the TIBCO EMS documentation.

Configuration

The TIBCO EMS Connection is configured globally so that it can be referenced when configuring TIBCO EMS con-
sumers and TIBCO EMS producers in the API Gateway. To configure a global connection to an TIBCO EMS Server,
right-click the External Connections -> TIBCO Enterprise Messaging Service Connections node in the Policy Studio
tree, and select Add a TIBCO EMS Connection from the context menu. The remainder of this topic describes how to
configure the tabs and fields on the TIBCO Enterprise Messaging System Connection dialog.

Before configuring the following fields you must enter a name for this TIBCO EMS Connection in the Name field. This
connection is then available when configuring a TIBCO EMS Consumer and when configuring a TIBCO EMS Routing fil-
ter.

General Tab:
The following fields are available on the General Tab:

Server URL:
Enter the full URL of the TIBCO EMS Server in this field, for example tcp://hostname:7222 for non-SSL connections
or ssl://server:7243 for SSL-enabled TIBCO EMS Servers.

User Name:
Enter a username to use when the API Gateway connects to the TIBCO EMS Server.

Password:
Enter the password for this user.

SSL Tab:
The following tabs and fields are available on the SSL Tab:

Limit the use of SSL to improve performance:
If this option is selected, SSL is only used for establishing (mutual) authentication with the TIBCO EMS Server, which
takes place during the initial SSL handshaking process. When the channel is set up, data sent over this channel is sent

746

in the clear and is not encrypted like in a typical SSL session.

Enable client verification of the host certificate or host name:
Select this option if you want to compare the Common Name (cn) X.509 attribute of the Distinguished Name in the
TIBCO EMS Server's certificate. Typically, the SSL handshake requires that the common name in the host's certificate
matches the name of the host machine. For example, to trust the certificate associated with the www.abc.com site,
the certificate must have the common name attribute set to this name (cn=www.abc.com). If you wish to perform this
check on the TIBCO EMS Server's certificate presented to the API Gateway during SSL setup, select this setting.

Expected Host Name:
In cases where the common name in the certificate is not the same as the host machine, you can override the default
validation by specifying a host name that you expect instead of the host given in the common name of the server's certi-
ficate.

For example, a generic TIBCO EMS Server certificate is issued for testing purposes, and this certificate is created with a
common name of server (cn=server). Now, assume that you want to create an SSL session with a TIBCO EMS Serv-
er running on a machine that is called host.

The default client verification of the host name setting checks to make sure that the host on which the TIBCO EMS Serv-
er is running is called server because this is what is in the common name of the certificate. However, the host name of
this machine is host, and so this check fails.

In such cases, you must override the default host checking behavior by specifying the expected host name in this field. In
this case, enter host in the Expected Host Name field.

Cipher suites to be used:
Specify the OpenSSL cipher suites that the API Gateway supports. The ciphers are negotiated during the SSL hand-
shake with the TIBCO EMS Server so that the strongest and most secure ciphers that are common to both parties are
used.

Trusted Certificates Tab:
You can select the CA (Certificate Authority) certificates that you consider trusted for setting up the connection to the
TIBCO EMS Server on this tab.

The TIBCO EMS Server's certificate can be explicitly trusted by importing it into the Certificate Store and selecting it in
the list. Alternatively, in a solution more typical for a Public Key Infrastructure, the CA certificate that issued the TIBCO
EMS Server's certificate is imported into the Certificate Store and is selected in the list. In this case, a chain of trust is es-
tablished because all certificates issued by the CA are implicitly trusted if the CA is considered trusted.

Client Identity Tab:
If you want to configure mutual authentication to the TIBCO EMS Server you must select a client certificate from the list
that the API Gateway can use to authenticate to the TIBCO EMS Server. For the SSL channel to be established suc-
cessfully, the TIBCO EMS Server must trust the client certificate selected here.

Important
If the selected client certificate has been issued by a CA (it is not self-signed), the certificate of this CA
must be imported into the Trusted Certificate Store. If a chain of certificates exists (for example, the client
certificate was issued by an intermediary CA, which was issued by the root CA), all intermediary CA certific-
ates must be imported into the Certificate Store.

TIBCO Enterprise Messaging Service Connection

747

Wait for Response Packets
Overview

Packet Sniffers are a type of Passive Service. Rather than opening up a TCP port and actively listening for requests, the
Packet Sniffer passively reads data packets off the network interface. The Sniffer assembles these Packets into com-
plete messages that can then be passed into an associated policy.

Because the Packet Sniffer operates passively (does not listen on a TCP port) and transparently to the client, it is most
useful for monitoring and managing Web Services. For example, you can deploy the Sniffer on a machine running a Web
Server acting as a container for Web Services. Assuming that the Web Server is listening on TCP port 80 for traffic, the
Packet Sniffer can be configured to read all packets destined for port 80 (or any other port, if necessary). The packets
can then be marshaled into complete HTTP/SOAP messages by the Sniffer and passed into a policy that, for example,
logs the message to a database.

Packet Sniffer Configuration

Because Packet Sniffers are mainly used as passive monitoring agents, they are usually created in their own Service
Group. For example, you can create a new group for this purpose by right-clicking the API Gateway instance under the
Listeners node in the Policy Studio tree, and selecting Add Service Group. Enter Packet Sniffer Group on the
Add Service Group dialog.

You can then add a Relative Path Service to this Group by right-clicking the Packet Sniffer Group, and selecting
Add Relative Path. Enter a path in the field provided, and select the policy that you want to dispatch messages to when
the Packet Sniffer detects a request for this path (after it assembles the packets). For example, if the Relative Path is
configured as /a, and the Packet Sniffer assembles packets into a request for this path, the request is dispatched to the
policy selected in the Relative Path Service.

Finally, you can add the Packet Sniffer by right-clicking the Packet Sniffer Group node, selecting Packet Sniffer ->
Add. Complete the following fields on the Packet Sniffer dialog:

Device to Monitor:
Enter the name or identifier of the network interface that the Packet Sniffer monitors. The default entry is any, but it is
this is only valid on Linux. On UNIX-based systems, network interfaces are usually identified using names like eth0,
eth1, and so on. On Windows, these names are more complicated (for example,
\Device\NPF_{00B756E0-518A-4144 ... }).

Filter:
You can configure the Packet Sniffer to only intercept certain types of packets. For example, it can ignore all UDP pack-
ets, only intercept packets destined for port 80 on the network interface, ignore packets from a certain IP address, listen
for all packets on the network, and so on.

The Packet Sniffer uses the libpcap library filter language to achieve this. This language has a complicated but powerful
syntax that enables you to filter what packets are intercepted, and what packets are ignored. As a general rule, the syn-
tax consists of one or more expressions combined with conjunctions, such as and, or, and not. The following table lists
a few examples of common filters and explains what they filter:

Filter Expression Description

port 80 Captures only traffic for the HTTP Port (i.e. 80).

host 192.168.0.1 Captures traffic to and from IP address 192.168.0.1.

tcp Captures only TCP traffic.

host 192.168.0.1 and port 80 Captures traffic to and from port 80 on IP address
192.168.0.1.

748

tcp portrange 8080-8090 Captures all TCP traffic destined for ports from 8080
through to 8090.

tcp port 8080 and not src host 192.168.0.1 Captures all TCP traffic destined for port 8080 but not from
IP address 192.168.0.1.

The default filter of tcp captures all TCP packets arriving on the network interface. For more information on how to con-
figure filter expressions like these, see the tcpdump man page [http://www.tcpdump.org/tcpdump_man.html].

Promiscuous Mode:
When listening in promiscuous mode, the Packet Sniffer captures all packets on the same Ethernet network, regardless
of whether the packets are addressed to the network interface that the Sniffer is monitoring.

Sniffing Response Packets

The API Gateway can capture both incoming and outgoing packets when it is listening passively (not opening any ports)
on the network interface. For example, a Web Service is deployed in a web server that listens on port 80. The API Gate-
way can be installed on the same machine as the web server. It is configured not to open any ports and to use a Packet
Sniffer to capture all packets destined for TCP port 80.

When packets arrive on the network interface that are destined for this port, they are assembled by the Packet Sniffer in-
to HTTP messages and passed into the configured policy. Typically, this policy logs the message to an audit trail, and so
usually consists of just a Log Message filter.

Assuming that you also want to log response messages passively, as is typically required for a complete audit trail, you
can use the Wait for Response Packets filter to correlate response packets with their corresponding requests. The Wait
for Response Packets filter assembles the response messages into HTTP messages and can then log them again us-
ing the Log Message Payload filter. The following policy logs both request and response messages captured transpar-
ently by the Packet Sniffer:

You can see from the policy that the first logging filter logs the request message. By this stage, the Packet Sniffer has as-
sembled the request packets into a complete HTTP request, and this is what is passed to the Log Request Message fil-
ter. The Assemble response packets filter is a Wait for Response Packets filter that assembles response packets into
complete HTTP response messages and passes them to the Log Response Message filter, which logs the complete re-
sponse message. More information on the Log Message Payload filter is available in the Log Message Payload topic.

Wait for Response Packets

749

http://www.tcpdump.org/tcpdump_man.html
http://www.tcpdump.org/tcpdump_man.html

Proxy Servers
Overview

You can configure settings for individual proxy servers under the External Connections node in the Policy Studio tree,
which you can then specify at the filter level (in the Connection and Connect To URL filters). When configured, the filter
connects to the HTTP proxy server, which in turn routes the message on to the destination server named in the request
URI. For more details, see Connection and Connect to URL .

These proxy server settings are different from the global proxy settings in the Preferences dialog in the Policy Studio,
which apply only when downloading WSDL, XSD, and XSLT files from the Policy Studio. For more details, see the Policy
Studio Preferences topic.

Configuration

To configure a proxy server under the External Connections tree node, right-click the Proxy Servers node, and select
Add a Proxy Server. You can configure the following settings in the dialog:

Proxy Server Setting Description

Name Unique name or alias for these proxy server settings.

Host Host name or IP address of the proxy server.

Port Port number on which to connect to the proxy server.

Username Optional user name when connecting to the proxy server.

Password Optional password when connecting to the proxy server.

Scheme Specifies whether the proxy server uses the HTTP or HT-
TPS transport. Defaults to HTTP.

750

DSS Signature Generation Service
Overview

This filter enables the API Gateway to generate XML Signatures as a service according to the OASIS Digital Signature
Services (DSS) specification. The DSS specification describes how a client can send a message containing an XML Sig-
nature to a DSS Signature Web Service that can sign the relevant parts of the message, and return the resulting XML
Signature to the client.

The advantage of this approach is that the Signature generation code is abstracted from the logic of the Web Service
and does not have to be coded into the Web Service. Furthermore, in a Services Oriented Architecture (SOA), a central-
ized DSS server provides a single implementation point for all XML Signature related services, which can then be ac-
cessed by all services running in the SOA. This represents a much more manageable solution that one in which the se-
curity layer is coded into each Web Service.

Configuration

Complete the following fields to configure the Sign Web Service filter.

Name:
Enter a descriptive name for the filter in this field.

Signing Key:
Click the Signing Key button to select a private key from the Certificate Store. This key will be used to perform the sign-
ing operation.

751

DSS Signature Verification
Overview

This filter enables the API Gateway to verify XML Signatures as a service according to the OASIS Digital Signature Ser-
vices (DSS) specification. The DSS specification describes how a client can send a message containing an XML Signa-
ture to a DSS Signature verification Web Service that can verify the Signature and return the result of the verification to
the client.

The advantage of this approach is that the Signature verification code is abstracted from the logic of the Web Service
and does not have to be coded into the Web Service. Furthermore, in a Services Oriented Architecture (SOA), a central-
ized DSS server provides a single implementation point for all XML Signature related services, which can then be ac-
cessed by all Services running in the SOA. This represents a much more manageable solution that one in which the se-
curity layer is coded into each Web Service.

Configuration

Complete the following fields to configure the Verify Signature Web Service filter.

Name:
Enter a descriptive name for the filter.

Find Signing Key:
The public key to be used to verify the signature can be retrieved from one of the following locations:

• Via KeyInfo in Message:
The verification certificate can be located using the <KeyInfo> block in the XML Signature. For example, the certi-
ficate could be contained in a <BinarySecurityToken> element in a WSSE Security header. The <KeyInfo>
section of the XML Signature can then reference this BinarySecurityToken. The API Gateway can automatically
resolve this reference to locate the certificate that contains the public key necessary to perform the signature verific-
ation.

• Via Selector Expression:
The certificate used to verify the signature can be extracted from the message attribute specified in the selector ex-
pression (for example, ${certificate}). The certificate must have been placed into the specified attribute by a
predecessor of the Verify Signature Web Service filter. For more details on selector expressions, see Selecting
Configuration Values at Runtime.

• Via Certificate in LDAP:
The certificate used to verify the Signature can be retrieved from an LDAP directory. Click the button next to this
field, and select a previously configured LDAP directory in the tree. To add an LDAP directory, right-click the LDAP
Connections tree node, and select Add an LDAP Connection. Alternatively, you can configure LDAP Connections
under the External Connections node in the Policy Studio tree. For more details, see the topic on Configuring
LDAP Directories.

• Via Certificate in Store:
Finally, the verification certificate can be selected from the Certificate Store. Click the Select button to view the certi-
ficate that has been added to the store. Select the verification certificate by selecting the checkbox next to it in the
table.

752

Encrypt and Decrypt Web Services
Overview

This filter allows the API Gateway to act as an XML encrypting Web Service, where clients can send up XML blocks to
the API Gateway that are required to be encrypted. The API Gateway can then encrypt the XML data, replacing it with
<EncryptedData> blocks in the message. The encrypted content is then returned to the client.

Similarly, the API Gateway can act as an XML decrypting Web Service, where clients can send up <EncryptedData>
blocks to the API Gateway, which can then decrypt them and return the plain-text data back to the client.

By deploying the API Gateway as a centralized encryption/decryption service, clients distributed throughout an SOA
(Services Oriented Architecture) can abstract out the security layer from their core business logic. This simplifies the lo-
gic of the client applications and makes the task of managing and configuring the security aspect a lot simpler since it is
centralized.

Furthermore, the API Gateway's XML and cryptographic acceleration capabilities ensure that the process of encrypting
and decrypting XML messages - a task that involves some very CPU-intensive operations - is performed at optimum
speed.

Configuration

To configure both the Encrypt Web Service and Decrypt Web Service filters you simply need to enter a descriptive
name for the filter in the Name field.

753

STS Web Service
Overview

This filter can be used to expose a Security Token Service, allowing clients to obtain security tokens for use within a SOA
(Services Oriented Architecture) network.

Configuration

Complete the following field to configure the STS Web Service filter.

Name:
Enter a descriptive name for the filter in this field.

754

Consume WS-Trust Message
Overview

You can configure the API Gateway to consume various types of WS-Trust messages, including RequestSecurity-
Token (RST), RequestSecurityTokenResponse (RSTR), and RequestSecurityTokenResponseCollection
(RSTRC) messages.

For more information on the various types of WS-Trust messages and their semantics and format, please see the WS-
Trust specification.

Consume WS-Trust Message Types

The API Gateway can consume the following types of WS-Trust messages. Select the appropriate message type based
on your requirements:

• RST: RequestSecurityToken
The RST message contains a request for a single token to be issued by the Security Token Service (STS).

• RSTR: RequestSecurityTokenResponse
The RSTR message is sent in response to an RST message from a token requestor. It contains the token issued by
the STS.

• RSTRC: RequestSecurityTokenResponseCollection
The RSTRC message contains an RSTR (containing a single issued token) for each RST that was received in an
RSTC message.

Message Consumption

The configuration options available in this section enable you to extract various parts of the WS-Trust message and store
them in message attributes for use in subsequent filters.

Extract Token:
Extracts a <RequestedSecurityToken> from the WS-Trust message and stores it in a message attribute. Select the
expected value of the <TokenType> element in the <RequestSecurityToken> block. The default URI is ht-
tp://schemas.xmlsoap.org/ws/2005/02/sc/sct.

Extract BinaryExchange:
Extracts a <BinaryExchange> token from the message and stores it in a message attribute. You should select the
ValueType of the token from the drop-down list.

Extract Entropy:
The client can provide its own key material (entropy) that the token issuer may use when generating the token. The is-
suer can use this entropy as the key itself, it can derive another key from this entropy, or it can choose to ignore the en-
tropy provided by the client altogether in favor of generating its own entropy.

Extract RequestedProofToken:
Select this option if you want to extract a <RequestedProofToken> from the WS-Trust message and store it in a mes-
sage attribute for later use. You must select the type of the token (encryptedKey or computedKey) from the drop-
down list.

Extract CancelTarget:
You can select this option to extract a <CancelTarget> block from the WS-Trust message and store it in a message
attribute.

Extract RequestedTokenCancelled:
You can select this option to extract a <RequestedTokenCancelled> block from the WS-Trust message and store it

755

in a message attribute.

Match Context ID:
Select this option if you wish to correlate the response message from the STS with a specific request message. The
Context attribute on the RequestSecurityTokenResponse message is compared to the value of the
ws.trust.context.id message attribute, which contains the context ID of the current token request.

Extract Lifetime:
Select this option to remove the <Lifetime> elements from the WS-Trust token.

Extract Authenticator:
Select this option to extract the <Authenticator> from the WS-Trust token and store it in a message attribute.

Advanced

The following fields can be configured on the Advanced tab: WS-Trust Namespace:
Enter the WS-Trust namespace that you expect all WS-Trust elements to be bound to in tokens that are consumed by
this filter. The default namespace is http://schemas.xmlsoap.org/ws/2005/02/trust.

Cache Security Context Session Key:
Click the button on the right, and select the cache to store the security context session key. The session key (the value of
the security.context.session.key attribute), is cached using the value of the secur-
ity.context.token.unattached.id message attribute as the key into the cache.

You can select a cache from the list of currently configured caches in the tree. To add a cache, right-click the Caches
tree node, and select Add Local Cache or Add Distributed Cache. Alternatively, you can configure caches under the
Libraries node in the Policy Studio tree. For more details, see the topic on Global Caches.

Lifetime of ComputedKey:
The settings in this section enable you to add a timestamp to the extracted computedKey using the values specified in
the <Lifetime> element. This section is enabled only after selecting the Extract RequestedProofToken checkbox
above, selecting the computedKey option from the associated dropdown list, and finally by selecting the Extract Life-
time checkbox. Configure the following fields in this section:

• Add Lifetime to ComputedKey:
Adds the <Lifetime> details to the security.context.session.key message attribute. This enables you to
check the validity of the key every time it is used against the details in the <Lifetime> element.

• Format of Timestamp:
Specify the format of the timestamp using the Java date and time pattern settings.

• Timezone:
Select the appropriate time zone from the drop-down list.

• Drift:
To allow for differences in the clock times on the machine on which the WS-Trust token was generated and the ma-
chine running the API Gateway, you can enter a drift time here. The drift time allows for differences in the clock
times on these machines and is used when validating the timestamp on the computedKey.

Verify Authenticator Using:
You can verify the authenticator using either the Generated or Consumed message. In either case you should select
the appropriate type of WS-Trust message from the available options.

Consume WS-Trust Message

756

Create WS-Trust Message
Overview

You can configure the API Gateway to create various types of WS-Trust messages. The API Gateway can act both as a
WS-Trust client when generating a RequestSecurityToken (RST) message, but also as a WS-Trust service, or Se-
curity Token Service (STS), when generating RequestSecurityTokenResponse (RSTR) and RequestSecurity-
TokenResponseCollection (RSTRC) messages.

A token requestor generates an RST message and sends it to the STS, which generates the required token and returns
it in an RSTR message. If several tokens are required, the requestor can send up multiple RST messages in a single
RequestSecurityTokenCollection (RSTC) request. The STS generates an RSTR for each RST in the RSTC mes-
sage and returns them all in batch mode in an RSTRC message.

For more information on the various types of WS-Trust messages and their semantics and format, please see the WS-
Trust specification.

Create WS-Trust Message Type

The Create WS-Trust Message filter can create the following types of WS-Trust message. Select the appropriate mes-
sage type based on your requirements:

• RST: RequestSecurityToken
The RST message contains a request for a single token to be issued by the STS.

• RSTR: RequestSecurityTokenResponse
The RSTR message is sent in response to an RST message from a token requestor. It contains the token issued by
the STS.

• RSTRC: RequestSecurityTokenResponseCollection
The RSTRC message contains an RSTR (containing a single issued token) for each RST that was received in an
RSTC message.

Message Creation

The settings on this tab specify characteristics of the WS-Trust message. The following fields are available:

Insert Token Type:
Select the type of token requested from the drop-down list. The type of token selected here is returned in the response
from the STS. By default, the Security Token Context type is used, which is identified by the URI ht-
tp://schemas.xmlsoap.org/ws/2005/02/sc/sct.

Binary Exchange:
You can use a <BinaryExchange> when negotiating a secure channel that involves the transfer of binary blobs as part
of another security negotiation protocol (for example, SPNEGO). The contents of the blob are always Base64-encoded to
ensure safe transmission.

Select the Binary Exchange option if you wish to use a negotiation-type protocol for the exchange of keys, such as
SPNEGO. The URI selected in the Value Type field identifies the type of the negotiation in which the blob is used. The
URI is placed in the ValueType attribute of the <BinaryExchange> element.

Entropy:
The client can provide its own key material (entropy) that the token issuer may use when generating the token. The is-
suer can use this entropy as the key itself, it can derive another key from this entropy, or it can choose to ignore the en-
tropy provided by the client altogether in favor of generating its own entropy.

Select this option to generate some entropy, which is included in the <wst:entropy> element of the

757

<wst:RequestSecurityToken> block.

Insert Key Size:
The client can request the key size (in number of bits) required in a <RequestSecurityToken> request. However, the
WS-Trust token issuer does not have to use the requested key size. It is merely intended as an indication of the strength
of security required. The default request key size is 256 bits.

Insert Lifetime:
Select this option to insert a <Lifetime> element into the WS-Trust message. Use the associated fields to specify
when the message expires. The lifetime of the WS-Trust message is expressed in terms of <Created> and <Expires>
elements.

Lifetime Format:
The specified date/time pattern string determines the format of the <Created> and <Expires> elements. The default
format is yyyy-MM-dd'T'HH:mm:ss.SSS'Z', which can be altered if necessary. For more details on how to use this
format, see the Javadoc for the java.text.SimpleDateFormat Java class in the Java Platform, Standard Edition 6
API Specification [http://java.sun.com/javase/6/docs/api/index.html].

Insert RequestedTokenCancelled:
Select this option to insert a <RequestedTokenCancelled> element into the generated WS-Trust message.

RST Creation

The following configuration fields specify the way in which a WS-Trust RST message is created:

Insert Request Type:
You can create two types of RST message. Select one of the following request types from the drop-down list:

• Issue: This type of RST message is used to request the STS to issue a token for the requestor.
• Cancel: This type of RST message is used to cancel a specific token.

Insert Key Type:
Select this option to insert the key type into the RST WS-Trust message.

Insert Computed Key Algorithm:
Select this option to insert the computed key algorithm into the message.

Insert Endpoint Reference:
Select this option and enter a suitable endpoint if you want to include an endpoint reference in the RST message.

RSTR Creation

The following configuration fields determine the way in which a WS-Trust RSTR message is created:

Insert RequestedProofToken:
Select this checkbox to insert a <RequestedProofToken> element into the generated WS-Trust message. The type of
this token can be set to either computedKey or encryptedKey using the associated drop-down list.

Insert Authenticator:
Select this option to insert an authenticator into the RSTR message.

Advanced Settings

This section enables you to configure certain advanced aspects of the SOAP message that is sent to the WS-Trust Ser-
vice.

WS-Trust Namespace:
Enter the WS-Trust namespace to bind all WS-Trust elements to in this field. The default namespace is ht-

Create WS-Trust Message

758

http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html

tp://schemas.xmlsoap.org/ws/2005/02/trust.

WS-Addressing Namespace:
Select the WS-Addressing namespace version to use in all created WS-Trust messages.

WS-Policy Namespace:
Select the appropriate WS-Policy namespace from the drop-down list. The selected version selected can affect the or-
dering of tokens that are inserted into the WS-Security header of the SOAP message.

SOAP Version:
Select the SOAP version to use when creating the WS-Trust message.

Overwrite SOAP Method:
Select this option if you want the WS-Trust token to overwrite the SOAP method in the request. In this case, the token
appears as a direct child of the SOAP Body element. You should use this option if you wish to preserve the contents of
the SOAP Header, if present.

Overwrite SOAP Envelope:
Select this option if you want the generated WS-Trust message to form the entire contents of the message. In other
words, the generated WS-Trust message replaces the original SOAP request.

Content-Type:
Specify the HTTP content-type of the WS-Trust message. For example, for Microsoft Windows Communication Founda-
tion (WCF), you should use application/soap+xml.

Generate Authenticator Using:
You can verify the authenticator using the Generated or Consumed message. In either case, you should select the ap-
propriate type of WS-Trust message from the available options.

Create WS-Trust Message

759

Advanced Filter View
Overview

You can use the advanced filter view in the Policy Studio to edit all filter settings as text values. This enables you to edit
each field as a text value regardless of whether the field is displayed as a radio button, checkbox, or drop-down list in the
default user-friendly view for the filter.

This also means that you can specify all filter fields using the API Gateway selector syntax. This enables settings to be
evaluated and expanded at runtime using metadata (for example, from message attributes, a Key Property Store (KPS),
or environment variables). This is a powerful feature for System Integrators (SIs) and Independent Software Vendors
(ISVs) when integrating with other systems.

Important
You should only modify filter settings using the advanced filter view under strict advice and supervision
from the Oracle Support team.

Configuration

To enable the advanced filter view for a filter in the Policy Studio, press the Shift key when opening the filter. For ex-
ample, you can press Shift, and double-click a filter on the policy canvas. Alternatively, you can press Shift, right-click
the filter in the Policy Studio tree or policy canvas, and select Edit.

In the advanced filter view, settings are displayed with the following characters before the field name:

• Required: * (for example, *name)
• Reference: ^ (for example, ^proxyServer)
• Radio attribute: (:) (for example, (:)httpAuthType)

Editing Filter Settings
You can specify all fields in this view using text values (for example, values such as ht-
tp://stockquote.com/stockquote/instance1, false, 0, -1, 500, and so on). Alternatively, you can use the
API Gateway Selector syntax to expand values at runtime. The following example selector expands the user agent head-
er sent by the client in the http.headers message attribute:

${http.headers["User-Agent"]}

For example, this selector might return a user agent header such as the following at runtime:

Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.77
Safari/535.7

For more details on the API Gateway selector syntax, see the topic on Selecting Configuration Values at Runtime.

To confirm your updates, you must click Save Changes at the bottom right of the dialog. Alternatively, at any stage, you
can click Restore Defaults to return to the original factory settings.

Returning to the Default Filter View
When you have finished editing filter settings in the Advanced Filter View, deselect the Show Advanced Filter View set-
ting in Preferences. Then when you edit a selected filter on the policy canvas, the default user-friendly view for the filter
is displayed.

760

Selecting Configuration Values at Runtime
Overview

A selector is a special syntax that enables API Gateway configuration settings to be evaluated and expanded at runtime
based on metadata values (for example, from message attributes, a Key Property Store (KPS), or environment vari-
ables). The selector syntax uses the Java Unified Expression Language (JUEL) to evaluate and expand the specified
values. Selectors provide powerful a feature when integrating with other systems or when customizing and extending the
API Gateway.

When you press the Shift key and open a filter, you can edit all filter settings using text values in the advanced filter
view. This means that you can specify all filter fields using the API Gateway selector syntax. For more details on the ad-
vanced view, see Advanced Filter View.

Selector Syntax

The API Gateway selector syntax uses JUEL to evaluate and expand the following types of values at runtime:

• Message attribute properties configured in message filters, for example:

${authentication.subject.id}

• Environment variables specified in envSettings.props and system.properties files, for example:

${env.PORT.MANAGEMENT}

• Values specified in a configured Key Property Store, for example:

${kps.CustomerProfiles[JoeBloggs].age}

Accessing Fields
A message attribute selector can refer to a field of that message (for example certificate), and you can use . char-
acters to access subfields. For example, the following selector expands to the username field of the object stored in the
profile attribute in the message:

${profile.username}

You can also access fields indirectly using square brackets ([and]). For example, the following selector is equivalent to
the previous example:

${profile[field]}

You can specify literal strings as follows:

${profile[“a field name with spaces”]}

For example, the following selector gets a certificate from a Keyed Property Store by specifying its Distinguished Name:

${kps.certsByDName[“CN=Joe, O=Vordel”].certificate}

761

Note
For backwards compatibility with the . spacing characters used in previous versions of the API Gateway, if
a selector fails to resolve with the above rules, the flat, dotted name of a message attribute still works. For
example, ${content.body} returns the item stored with the content.body key in the message.

Special Selector Keys
The following top-level keys are resolved specially:

Key Description

kps Subfields of the kps key reflect the alias names of Keyed
Property Store objects configured for the local API Gate-
way. Further indexes represent objects looked up in that
KPS (for example, ${kps.certsByDName[“CN=Joe,
O=Vordel”].certificate}).

env, system In previous versions, fields from the envSettings.props
and system.properties files had restrictions on the
prefixes used. The selector syntax does not require the
env and system prefixes in these files. For example, con-
ceptually ${env. selects the settings from envSet-
tings.props, and the rest of the selector chooses any
properties in it. For compatibility, if a setting in either file
starts with this prefix, it is stripped away so the selectors
still behave correctly with previous installations.

Resolving Selectors
Each ${...} selector string is resolved step-by-step, passing an initial context object (for example, Message). The top-
level key is offered to the context object, and if it resolves the field (for example, the message contains the named attrib-
ute), the resolved object is indexed with the next level of key. At each step, the following rules apply:

1. At the top level, test the key for the global values (for example, kps, system, and env) and resolve those specially.
2. If the object being indexed is a Dictionary, KPS, or Map, use the index as a key for the item’s normal indexing mech-

anism, and return the resulting lookup.
3. If all else fails, attempt Java reflection on the indexed object.

Note
Method calls are currently only supported using Java reflection. There are currently no supported functions
as specified by the Unified Expression Language (EL) standard. For more details on JUEL, see ht-
tp://juel.sourceforge.net/.

Example Selector Expressions

This section lists some example selectors that use expressions to evaluate and expand their values at runtime.

Message Attribute
The following message attribute selector returns the HTTP User-Agent header:

${http.headers["User-Agent"]}

Selecting Configuration Values at Runtime

762

http://juel.sourceforge.net/
http://juel.sourceforge.net/

For example, this might expand to the following value:

Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.77
Safari/535.7

Environment Variable
In a default configuration, the following environment variable selector returns port 8091:

${env.PORT.MANAGEMENT + 1}

Key Property Store
The following KPS selector returns the certificate for the entry in the Certificate Store with the Joe Soap alias:

${kps.certsByAlias[“Joe Soap”].certificate}

This returns the Distinguished Name in that certificate:

${kps.certsByAlias[“Joe Soap”].certificate.getSubjectDN()}

This returns the certificate identified by the alias stored in the authentication.subject.id attribute:

${kps.certsByAlias[authentication.subject.id]}

Examples Using Reflection
The following message attribute selector returns the CGI argument from an HTTP URL (for example, returns bar for ht-
tp://localhost/request.cgi?foo=bar):

${http.client.getCgiArgument("foo")}

This returns the name of the top-level element in an XML document:

${content.body.getDocument().getDocumentElement().getNodeName()}

This returns true if the HTTP response code lies between 200 and 299:

${http.response.status / 200 == 2}

Extracting Message Attributes

There are a number of API Gateway filters that extract message attribute values (for example, Extract Certificate At-
tributes and Retrieve from HTTP Header). Using selectors to extract message attributes offers a more flexible alternat-
ive to using such filters. For more details on using selectors instead of these filters, contact Oracle Support (see Oracle
Contact Details).

Selecting Configuration Values at Runtime

763

Key Property Stores
Overview

A Key Property Store (KPS) is an external data store of policy properties (typically, read frequently, and seldom written
to). Using a KPS enables metadata-driven policies. Policy configuration data is stored in an external data store, which is
looked up dynamically when policies are executed. You can specify configuration settings in Policy Studio and API Ser-
vice Manager using selectors, which are evaluated and expanded at runtime.

For example, the following is a simple keyed property in an external data store:

• Key: customerId
• URL: http://myapp.test.com
• Username: john.doe
• Password: changeme

In this example, the KPS is configured in Policy Studio using an alias of oauth. You can use the following selector to
specify the username in Policy Studio and API Service Manager:

${kps.oauth[customerId].username}

For more details on selectors, see Selecting Configuration Values at Runtime.

KPS Backing Data Stores

A KPS provides a consistent interface to object data in different backing data stores. By default, the API Gateway
provides support for the following KPS backing stores:

• JSON file
• Oracle certificate store (DNAME to certificate, alias to certificate)
• Database (Oracle, Microsoft SQL Server, DB2, MySQL, JPA, DB schema)

The database support includes generic Java Persistence API (JPA) for serializing Java objects to a database, and exist-
ing or custom database schema for writing beans that map keyed property attributes to the schema.

Note
JSON files and certificate stores are cached on startup. A database-backed KPS is read each time.

You can configure a KPS using Policy Studio (for example, specify details such as store name, alias, type, and provider,
or import and export a KPS). For web-based user interfaces, JavaScript-based KPS browser widgets are also available.
You can use the KPS Service Provider Interface (SPI) to add custom stores. KPS functionality is exposed using a Java
API and a REST API.

Configuring a Key Property Store

To configure a KPS in the Policy Studio, perform the following steps:

1. In the main Policy Studio tree, select Libraries -> Key Property Stores.
2. Click Add at the bottom of the screen.
3. Complete the following fields in the Add Store dialog:

764

• Name:
Enter the KPS name (for example, ApplicationRegister).

• Description:
Enter a description for your KPS.

• Alias:
Enter an alias used to identify your KPS (for example, appregister).

• Type:
Enter a type for your KPS (for example, AppDetails).

• Store Implementation:
Enter an implementation for your KPS (for example, com.vordel.kps.storeImpl.StoreImpl).

4. Right-click the Store Configuration Properties table, and select New Property.
5. Enter a name-value pair in the Add Property table (for example, Name of key and Value of clientID).
6. Click OK.
7. Repeat to add multiple properties.

Further Information
For more detailed information on using a KPS, please contact the Oracle Support Team with your queries (see Oracle
Contact Details).

Key Property Stores

765

Scripting Language Filter
Overview

The Scripting Language filter uses Java Specification Request (JSR) 223 [ht-
tp://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/] to embed a scripting environment in the API Gate-
way's core engine. This enables you to write bespoke JavaScript or Groovy code to interact with the message as it is
processed by the API Gateway. You can get, set, and evaluate specific message attributes with this filter.

Because the scripting environment is embedded in the API Gateway engine, it has access to all Java classes on the API
Gateway's classpath, including all JRE classes. If you wish to invoke a Java object, you must place its corresponding
class file on the API Gateway classpath. The recommended way to add classes to the API Gateway classpath is to place
them (or the JAR files that contain them) in the INSTALL_DIR/ext/lib folder. For more details, see the readme.txt
in this folder.

Some typical uses of the Scripting Language filter include the following:

• Check the value of a specific message attribute
• Set the value of a message attribute
• Remove a message attribute
• DOM processing on the XML request or response

Writing a Script

To write a script filter, you must implement the invoke() method. This method takes a
com.vordel.circuit.Message object as a parameter and returns a boolean result.

The API Gateway provides a Script Library that contains a number of pre-written invoke() methods to manipulate
specific message attributes. For example, there are invoke() methods to check the value of the SOAPAction header,
remove a specific message attribute, manipulate the message using the DOM, and assign a particular role to a user.

You can access the script examples provided in the Script library by clicking the Show script library button on the fil-
ter's main configuration screen. For a complete list of available message attributes, see the Message Attribute
Reference.

Important
When writing the JavaScript or Groovy code, you should note the following:

• The invoke() method must be implemented.
• The invoke() method takes a com.vordel.circuit.Message object as a parameter, and returns

a boolean.
• You can obtain the value of a message attribute using the getProperty method of the Message ob-

ject.

Use Local Variables
The API Gateway is a multi-threaded environment, therefore, at any one time multiple threads can be executing code in
a script. When writing JavaScript or Groovy code, always declare variables locally using var. Otherwise, the variables
are global, and global variables can be updated by multiple threads.

For example, always use the following approach:

766

http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/

var myString = new java.lang.String("hello word");
for (var i = 100; i < 100; i++) {

java.lang.System.out.println(myString + java.lang.Integer.toString(i));
}

Do not use the following approach:

myString = new java.lang.String("hello word");
for (i = 100; i < 100; i++) {

java.lang.System.out.println(myString + java.lang.Integer.toString(i));
}

Using the second example under load, you cannot guarantee which value is output because both of the variables (myS-
tring and i) are global.

Configuring a Script Filter

You can write or edit the JavaScript or Groovy code in the text area on the Script tab. A JavaScript function skeleton is
displayed by default. Use this skeleton code as the basis for your JavaScript code. You can also load an existing JavaS-
cript or Groovy script from the Script library by clicking the Show script library button.

On the Script library dialog, click any of the Configured scripts in the table to display the script in the text area on the
right. You can edit a script directly in this text area. Make sure to click the Update button to store the updated script to
the Script library.

Adding a Script to the Library

You can add a new script to the library by clicking the Add button, which displays the Script Details dialog. Enter a
Name and a Description for the new script in the fields provided. By default, the Language field is set to JavaScript, but
you can also select Groovy from the drop-down list. You can then write the script in the Script text area.

Scripting Language Filter

767

Scripting Language Filter

768

Writing a Custom Filter using the Oracle API Gateway SDK
Overview

Oracle API Gateway exposes several powerful APIs as part of its Software Development Kit (SDK) to enable users to
build their own bespoke message filters. Users can leverage the API Gateway's pluggable and extensible architecture to
enhance the message processing capabilities of the API Gateway core processing engine.

This tutorial walks you through a step-by-step example of how to build a custom message filter using the SDK, and integ-
rate it into a policy. This tutorial shows how to build the two main aspects of an Addition filter: the server runtime compon-
ent, and the Policy Studio configuration component. It then integrates these components into a policy, and shows how
the filter adds the values of two parameters of a SOAP message together, and returns the result to the client. By the end
of this tutorial, you should be able to write and test your own message filters by following a similar procedure.

Before going any further, it is important to explain exactly what are Oracle API Gateway filters, and how you can wire
them together to create message processing policies.

Policies, Filters, and Message Attributes

A policy consists of a network of message filters where each filter is a modular executable unit that performs a specific
type of processing on a message. The policy arranges these filters into sequences called paths. The filters then act as
decision-making points along these paths, determining which filters are run on the message, and in what order.

The following four-node policy contains a single path with four message filters. The filter marked as Start (AuthN: WS-
Security Username Token) is executed first. If this filter runs successfully, the next filter in the path (getQuotes Opera-
tion Name) is run, and so on until the last filter (Echo Web Service) in the path is executed.

When an HTTP request is received, it is converted into a set of message attributes. Each message attribute represents a
specific characteristic of the HTTP request, such as the HTTP headers, HTTP body, and MIME parts, amongst others.

Every Filter declares the message attributes that it requires, generates, and consumes from the attributes blackboard.
The blackboard contains all the available message attributes. When a filter generates message attributes, it puts them up
on the blackboard so that when another Filter requires them it can pull them off the blackboard. If a filter consumes a

769

message attribute, it is wiped from the blackboard so that no other filter in the policy can use it.

For example, the following table summarizes the attributes required and generated by the Operation Name resolver,
which filters incoming requests based on their SOAP operation and namespace:

Filter Name: Operation Name

Description: Filters incoming SOAP requests based on their SOAP op-
eration and namespace.

Required Attributes: content.body
http.request.uri

Generated Attributes: soap.request.method

For more information on policy, policy building, filters, see the API Gateway documentation. The following list summar-
izes the important concepts introduced in this section:

• Policy:
A network of interconnected message filters.

• Message Filters:
An executable unit that performs a specific type of processing on message attributes.

• Message Attributes:
Message attributes represent specific characteristics of a message.

Oracle API Gateway SDK Overview

The Oracle API Gateway Software Development Kit (SDK) comprises three Java packages that provide programmatic
access to Oracle API Gateway policies, message objects, and the Entity Store. The following table describes these pack-
ages:

Package Description

com.vordel.circuit
[../../javadoc/com/vordel/circuit/Circuit.html]

This package is responsible for implementing the core Or-
acle API Gateway policy. It includes the base classes for all
message filters and their associated classes.

com.vordel.mime
[../../javadoc/com/vordel/mime/Multipart.html]

Includes classes that encapsulate the message as it
passes through the Oracle API Gateway policy. It also
provides programmatic access to HTTP headers, HTTP
body, request query string (if present), and MIME parts.

com.vordel.es [../../javadoc/com/vordel/es/EntityStore.html] These classes provide access to the underlying Entity
Store where all configuration data is stored.

Tutorial Prerequisites

You should read Oracle API Gateway Concepts to make sure you understand the concepts of policies and filters before
continuing.

The Oracle API Gateway SDK requires a JDK 1.6, and is supported for the Windows, Linux, and Solaris packages.

Oracle API Gateway SDK Sample Overview

Writing a Custom Filter using the Oracle API Gateway SDK

770

../../javadoc/com/vordel/circuit/Circuit.html
../../javadoc/com/vordel/circuit/Circuit.html
../../javadoc/com/vordel/mime/Multipart.html
../../javadoc/com/vordel/mime/Multipart.html
../../javadoc/com/vordel/es/EntityStore.html
../../javadoc/com/vordel/es/EntityStore.html

The Oracle API Gateway SDK ships with a working example of a message filter, called the SimpleFilter, which
demonstrates how to use the SDK to build a filter. The filter extracts two integer parameters from a SOAP message,
adds the integers, and returns the result of the addition in a SOAP response to the client.

This tutorial documents the steps required to build, integrate, configure, and test the supplied SimpleFilter and Sim-
pleProcessor classes. The steps are as follows:

Step Description

Step 1: Create TypeDocs Every filter has an associated XML-based TypeDoc that
contains the entity's type definition. It defines the configura-
tion field names for that filter and their corresponding data
types.

Step 2: Create Filter Class Every message filter has an associated Filter class that en-
capsulates the configuration data for a particular instance
of the filter. It also returns the corresponding Processor and
Policy Studio classes.

Step 3: Create Processor Class The Processor class is the server runtime component that
is responsible for processing the message. Every message
filter has an associated Processor and Filter class.

Step 4: Create Policy Studio Classes All Filters are configured using the Policy Studio. Every Fil-
ter has a configuration wizard that enables you to set each
of the fields defined in the entity that corresponds to that
Filter. You can then add the filter to a policy to process
messages.

Step 5: Build Classes When the classes are written, you must build them, and
add them to the server and client classpaths. The Oracle
API Gateway SDK provides example classes.

Step 6: Load TypeDocs You must register the TypeDoc created for the filter in Step
1 with the Entity Store.

Step 7: Construct a Policy Construct a policy that echoes messages back to the client,
and then adds the newly created filter to it.

Step 8: Configure the SimpleFilter Use the GUI component of the newly added filter to specify
its configuration. Then test the functionality of the filter (and
its configuration) using the Oracle API Gateway Explorer
testing tool.

Step 1: Create the Typedocs

All configuration data is stored as entities in the Oracle API Gateway Entity Store. The Entity Store is an XML-based
store that holds all configuration data required to run the Oracle core processing engine. Each configurable item has an
entity type definition. The entity type definition is defined in an XML file known as the TypeDoc.

Entity types are analogous to class definitions in an object-oriented programming language. In the same way that in-
stances of a class can be created in the form of objects, an instance of an entity type can also be created. Therefore it is
useful to think of the entity type defined in a TypeDoc as a header file, and the entity itself as a class instance. All entities
and their entity type definitions are stored in the Entity Store.

Every filter requires specific configuration data to perform its processing on the message. For example, the SimpleFil-
ter, which extracts the values of two elements from a SOAP message, and adds them together, must be primed with
the names and namespaces of those two elements.

Writing a Custom Filter using the Oracle API Gateway SDK

771

Because a filter is a configurable item, it requires a new XML typedoc to be written containing an entity type definition for
it. The entity type for a filter contains a set of configuration parameters and their associated data types and default val-
ues.

When an instance of the filter is added to a policy using the Policy Studio, a corresponding entity instance is created and
stored in the Entity Store. Whenever the filter instance is invoked, its configuration data is read from the entity instance in
the Entity Store.

TypeDoc Syntax
The following example XML shows how the TypeDoc lists the various fields that form the configuration data for the Filter.

<entityStoreData>
<entityType name="SimpleFilter" extends="Filter">
<!-- Name of filter class that encapsulates the config data -->
<constant name="class" type="string"

value="com.vordel.example.filter.SimpleFilter"/>
<!-- List of config fields, their types, and their default values -->
<field ... />
<field ... />
<field ... />

</entityType>
<entityStoreData>

All TypeDocs must obey the following simple rules:

• Extend the Filter type
• Define a constant Filter class
• List the configuration fields for the entity

SimpleFilter Elements and Attributes
The following table describes the important elements and attributes from the SimpleFilter TypeDoc listed above:

Element Attribute Description

<entityStoreData> The topmost wrapper element for the
entire type definition.

<entityType> Contains the type definition, including
all its fields and their types.

<entityType> name The unique name for this type.

<entityType> extends Entity definitions are hierarchical and
can inherit from other higher level
types. All filters must extend the Fil-
ter type.

<constant> A <constant> element is used to rep-
resent a read-only immutable property
of the type.

<constant> name This attribute contains the name of the
read-only property. In the example
above, the named property is class,
indicating that the value of this con-
stant is the Java class that encapsu-
lates the defined type. The name of
this class must be specified as a
<constant>.

Writing a Custom Filter using the Oracle API Gateway SDK

772

Element Attribute Description

<constant> type Specifies the type of the value attrib-
ute. In this case, the value is the name
of a Java class, which is a string.

<constant> value Contains the value of the named prop-
erty, which is the name of the Java
class that encapsulates this type
com.vordel.example.filter.Si
(mpleFilter).

<field> Contains the definition of a single con-
figuration field for this filter.

<field> name The name of the configuration field.
You can see later in this tutorial how
this name is used to get and set this
property.

<field> type Specifies the data type of the named
configuration field. For example, sup-
ported types include string,
boolean, encrypted, and integer.

<field> cardinality Stipulates how many times this field
can appear in an instance of the entity.
For example, a cardinality of 1 means
that this field can occur only once in an
entity.

<field> default Specifies a default value for the config-
uration field, if appropriate.

SimpleFilter TypeDoc
The TypeDoc for the SimpleFilter is as follows:

<entityStoreData>
<entityType name="SimpleFilter" extends="Filter">

<!-- Name of Filter class that encapsulates this config entity -->
<constant name="class" type="string"

value="com.vordel.example.filter.SimpleFilter"/>

<!-- List of config params, their types, and their default values -->
<field name="param1" type="string" cardinality="1" default="a"/>
<field name="param1Namespace" type="string"

cardinality="1" default="http://startvbdotnet.com/web/"/>
<field name="param2" type="string" cardinality="1" default="b"/>
<field name="param2Namespace" type="string"

cardinality="1" default="http://startvbdotnet.com/web/"/>
</entityType>

</entityStoreData>

All type and related information for the Filter is contained in the top-level <entityStoreData> element. The Filter type
declaration together with its field definitions and types are child elements of the <entityType> element. Each field
name is specified in the name attribute of the <field> element, while the type and default value for the field are spe-
cified in the type and default attributes, respectively.

Writing a Custom Filter using the Oracle API Gateway SDK

773

You can also provide internationalized log messages by specifying an <entity> block of type Internationaliza-
tionFilter within the <entityStoreData> elements.

Now that you understand how the configuration data for the filter is defined, you can create the filter class.

Step 2: Create the Filter Class

A filter class encapsulates the type information defined in an entity's type definition. There are class members that cor-
respond to each of the fields in the type definition. At runtime, when the filter is invoked, the filter class is instantiated with
the configuration data for the appropriate entity instance. The filter class is responsible for the following tasks:

• Storing member variables corresponding to fields in the type definition
• Specifying the message attributes it requires, consumes, and generates
• Returning the corresponding server runtime class (the Processor)
• Returning the corresponding Policy Studio class

SimpleFilter Class
The following code shows the members and methods of the SimpleFilter.java example:

package com.vordel.example.filter;

import com.vordel.circuit.DefaultFilter;
import com.vordel.circuit.FilterConfigureContext;
import com.vordel.circuit.MessageProperties;
import com.vordel.es.EntityStoreException;

/**
SimpleFilter contains the local name of the two
parameters (a and b) and contains the namespace that
these elements belong to (http://startvbdotnet.com/web/)
**/

public class SimpleFilter extends DefaultFilter {

// element name of the first parameter
String param1;
// namespace of the first element
String param1Namespace;
// element name of the second parameter
String param2;
// namespace of the second parameter
String param2Namespace;

/**
* Set the message attributes used by this filter
*/

protected final void setDefaultProperties() {
requiredProperties.add(MessageProperties.CONTENT_BODY);

}

/**
* This method is called to set the config fields for the filter
* @param ctx The configuration context for this filter
* @param entity The entity object
*/

public void configure(FilterConfigureContext ctx,
com.vordel.es.Entity entity)
throws EntityStoreException {

super.configure(ctx, entity);

Writing a Custom Filter using the Oracle API Gateway SDK

774

// read the settings for the processor
param1 = entity.getStringValue("param1");
param1Namespace = entity.getStringValue("param1Namespace");
param2 = entity.getStringValue("param2");
param2Namespace = entity.getStringValue("param2Namespace");

}

/**
* Returns the server runtime Processor class associated
* with this Filter class.
*/

public Class getMessageProcessorClass() {
return SimpleProcessor.class;

}

/**
* Returns the GUI component for this Filter
*/

public Class getConfigPanelClass() throws ClassNotFoundException {
// Avoid any compile or runtime dependencies on SWT and other UI
// libraries by lazily loading the class when required.
return

Class.forName("com.vordel.example.filter.simple.SimpleFilterUI");
}

}

SimpleFilter TypeDoc
At this point, it is worth revisiting the entity definition for the SimpleFilter entity to see how the class members correl-
ate to the defined fields.

<entityType name="SimpleFilter" extends="Filter">

<!-- Name of Filter class that encapsulates this config entity -->
<constant name="class" type="string"

value="com.vordel.example.filter.SimpleFilter"/>

<!-- List of config params, their types, and their default values -->
<field name="param1" type="string" cardinality="1" default="a"/>
<field name="param1Namespace" type="string"

cardinality="1" default="http://startvbdotnet.com/web/"/>
<field name="param2" type="string" cardinality="1" default="b"/>
<field name="param2Namespace" type="string"

cardinality="1" default="http://startvbdotnet.com/web/"/>
</entityType>

SimpleFilter Methods
The Filter class members (param1, param1Namespace, param2, and param2Namespace) directly correspond to the
field definitions in the type definition. These members are populated in the configure method of the Filter class, which
is called by the framework when the server is started up initially, and whenever the server is refreshed. The Entity
class provides getter and setter methods for the different data types (for example, string, boolean, integer, and so on).
For more details, see the Entity Javadoc [../../javadoc/com/vordel/es/Entity.html].

There are two more important methods implemented in this class: setDefaultProperties and getMessagePro-
cessorClass. The setDefaultProperties method enables the Filter to define the message attributes that it re-
quires, generates, and consumes from the attributes blackboard. The blackboard contains all the available message at-
tributes. When a filter generates message attributes, it puts them up on the blackboard so that when another Filter re-
quires them, it can pull them off the blackboard. If a filter consumes a message attribute, it is wiped from the blackboard
so that no other filter in the policy can use it.

Writing a Custom Filter using the Oracle API Gateway SDK

775

../../javadoc/com/vordel/es/Entity.html
../../javadoc/com/vordel/es/Entity.html

The attributes are stored in String arrays (reqProps, genProps, conProps), which are inherited from the Variable-
PropertiesFilter class. In the case of the SimpleFilter class, the content.body attribute is required because
the SOAP parameters must be extracted from the body of the HTTP request.

The next important method here is the getMessageProcessorClass method, which returns the server runtime com-
ponent (the Processor class) that is associated with this Filter class. Each Filter class has a corresponding Processor
class, which is responsible for using the configuration data stored in the Filter class to process the message. The next
step looks at the SimpleProcessor class to see how it acts on the data stored in the SimpleFilter class.

Finally, the corresponding Policy Studio configuration class is returned by the getConfigPanelClass method, which in
this case is the com.vordel.example.filter.simple.SimpleFilterUI class. This class is described in detail in
Step 4 of this tutorial.

Step 3: Create Processor Class

The Processor class is responsible for performing the processing on the message. It uses the configuration data stored
in the Filter class to determine how to process the message.

Note
This is the server runtime component of the filter that is returned by the getMessageProcessorClass of
the Filter class described in the previous section.

Example Skeleton Code
The following skeleton code shows how the Processor attaches to the Filter class and uses its data to process the mes-
sage. The following code is for illustration purposes only, and some of the SimpleProcessor code has been omitted.

package com.vordel.example.filter;

import java.io.ByteArrayInputStream;
import java.io.IOException;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;

import com.vordel.circuit.Circuit;
import com.vordel.circuit.CircuitAbortException;
import com.vordel.circuit.Filter;
import com.vordel.circuit.Message;
import com.vordel.circuit.MessageProcessor;
import com.vordel.circuit.MessageProperties;
import com.vordel.es.EntityStore;
import com.vordel.mime.Body;
import com.vordel.mime.ContentType;
import com.vordel.mime.HeaderSet;
import com.vordel.mime.XMLBody;
import com.vordel.trace.Trace;

/**
* This Processor acts as a simple Addition Web Service.
* It extracts two parameters from a SOAP message and adds them together.
* The result is then returned to the client.
* The incoming message is expected in the following format:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<Add xmlns="http://startvbdotnet.com/web/">

Writing a Custom Filter using the Oracle API Gateway SDK

776

<a>1
1

</Add>
</soap:Body>

</soap:Envelope>

The SimpleFilter contains the local name of the two parameters (a
and b), and contains the namespace that these elements belong to
(http://startvbdotnet.com/web/).
*/

public class SimpleProcessor extends MessageProcessor {

/**
* This method attaches the Filter to the Processor object.
* This is called at startup and on every refresh.
* This should contain server-side config/initialization.
* For example, if this filter is required to establish
* connections to any 3rd party products/servers, the
* connection setup should be done here.
* @param ctx Configuration context for the filter.
* @param entity The Entity object
*/

public void filterAttached(FilterConfigureContext ctx,
com.vordel.es.Entity entity)
throws EntityStoreException {

// nothing to do here for initialisation
super.filterAttached(ctx, entity);

}

/**
* The invoke method performs the filter processing.
* @param c The policy circuit
* @param message The message
* @return true or false.
*/

public boolean invoke(Circuit c, Message message)
throws CircuitAbortException {

try {
// Get the incoming request message as a DOM
Document doc = getDOM(message);

// Default result
String result = "UNKNOWN";

// Cast the filter member variable to a SimpleFilter so that
// you may access the values stored in the SimpleFilter's
// fields (for example, param1, param1Namespace, and so on).
SimpleFilter f = (SimpleFilter)filter;

// Look into the DOM to get the two parameters.
// Get the 1st parameter
NodeList param1 =

doc.getElementsByTagNameNS(f.param1Namespace, f.param1);
if (param1 == null || param1.getLength() <= 0)

throw new CircuitAbortException(
"Could not find " + f.param1 + "in message");

// Get the value passed in the 1st parameter
String a = getElementContent((Element)param1.item(0));

// Get the 2nd parameter
NodeList param2 =

doc.getElementsByTagNameNS(f.param2Namespace, f.param2);
if (param2 == null || param2.getLength() <= 0)

throw new CircuitAbortException(

Writing a Custom Filter using the Oracle API Gateway SDK

777

"Could not find " + f.param2 + "in message");

// Get the value of the 2nd parameter
String b = getElementContent((Element)param2.item(0));

// Calculate the result by adding the two parameter values
result =

Integer.toString(Integer.parseInt(a) + Integer.parseInt(b));

// Set the response by setting the content body
// to be the response
HeaderSet responseHeaders = new HeaderSet();
responseHeaders.putString("Content-Type", "text/xml");
StringBuffer response = new StringBuffer(RESPONSE_START);
response.append(result);
response.append(RESPONSE_END);
Body convertedBody =

Body.create(responseHeaders, new ContentType("text/xml"),
new ByteArrayInputStream(

response.toString().getBytes()));
message.setProperty(

MessageProperties.CONTENT_BODY, convertedBody);

return true;
}
catch (IOException exp) {

Trace.error("IOException in SimpleProcessor: " + exp.getMessage());
return false;

}
}

}

Processor Methods
There are two important methods that must be implemented by every Processor: the filterAttached method and the
invoke method. The filterAttached method associates an appropriate Filter class with the Processor. The Pro-
cessor can then access the configuration data stored in the Filter class. In this case, the SimpleProcessor attaches to
the SimpleFilter class. The filterAttached method should contain any server-side initialization or configuration
that is to be performed by the Filter, such as connecting to third-party products or servers.

The invoke method is responsible for using the data stored in the attached Filter class to perform the message pro-
cessing. This method is called by the server as it executes the series of filters in any given policy. In the case of the Sim-
pleFilter, the invoke method extracts the values of the <a> and elements from the SOAP message, and adds
the two values together. The result is then returned to the client in a templated SOAP response.

Important
The invoke method can have the following possible results:

Result Description

True If the filter processed the message successfully (for ex-
ample, successful authentication, schema validation
passed, and so on), the invoke method should return a
true result, meaning that the next filter on the success path
for the filter is invoked.

False If the filter's processing fails (for example, the user was not
authenticated, message failed integrity check, and so on),
the invoke method should return false, meaning that the
next filter on the failure path for the filter is invoked.

CircuitAbortException If for some reason the filter cannot process the message at

Writing a Custom Filter using the Oracle API Gateway SDK

778

Result Description

all (for example, if it can not connect to an Identity Manage-
ment server to authenticate a user), it should throw a Cir-
cuitAbortException. If a CircuitAbortException
is thrown in a policy, the designated Fault Processor (if
any) is invoked instead of any successive filters on either
the success or failure paths.

Now that you have a class to encapsulate the configuration data and another class to act on that data, it is now time to
create some GUI classes where the user can configure the fields stored in the Filter class.

Step 4: Create Policy Studio Classes

The next step involves writing two GUI classes that enable the fields defined in the SimpleFilter type definition to be
configured. When the GUI classes and resources are built, the visual components can be used in the Policy Studio to
configure the Filter and add it to a policy.

SimpleFilter GUI Classes and Resources
The following table describes the GUI classes and resources for the SimpleFilter:

Class or Resource Description

SimpleFilterUI.java This class lists the pages that are involved in a Filter's con-
figuration screen. Each Filter has at least two pages: the
main configuration page, and a page where log messages
related to the filter can be customized. This class is re-
turned by the getConfigPanelClass method of the
SimpleFilter class.

SimpleFilterPage.java This class defines the layout of the visual fields on the Fil-
ter's main configuration screen. For example, there are four
text fields on the configuration screen for the SimpleFil-
ter corresponding to the four fields defined in the entity
type definition.

resources.properties This file contains all text displayed in the GUI configuration
screen (for example, dialog titles, field names, and error
messages). This means that the text can be customized or
internationalized easily without needing to change code.

simple.gif This image file is the icon that identifies the Filter in the
Management Console, and is displayed in the Filter
Palette.

This step first looks at the SimpleFilterUI class, which is returned by the getConfigPanelClass method of the
SimpleFilter class. It is responsible for the following:

• Listing the configuration pages that make up the interface for the filter
• Naming the category of filters to which this filter belongs
• Specifying the name of the images to use as the icons/images for this filter

Writing a Custom Filter using the Oracle API Gateway SDK

779

SimpleFilterUI Class
The code for the SimpleFilterUI is as follows:

package com.vordel.example.filter.simple;

import java.util.Vector;

import org.eclipse.jface.resource.ImageDescriptor;
import org.eclipse.swt.graphics.Image;

import com.vordel.client.manager.Images;
import com.vordel.client.manager.filter.DefaultGUIFilter;
import com.vordel.client.manager.wizard.VordelPage;

/**
* Filter configuration GUI for 'Simple' example filter.
* This class shows how to code simple text fields for configuring a
* custom filter.
*/

public class SimpleFilterUI
extends DefaultGUIFilter

{
/**
* Add the pages you want to show in the configuration wizard for the filter.
*/

public Vector<VordelPage> getPropertyPages() {
Vector<VordelPage> pages = new Vector<VordelPage>();

// Add the panel for configuring the specific fields
pages.add(new SimpleFilterPage());

// Add the page which allows the user to set the log strings for the
// audit trail, for the pass/fail/error cases
pages.add(createLogPage());

return pages;
}

/**
* Set the categories in which you want to display this Filter. The
* categories define the sections of the palette in which the Filter
* appears. The values returned should be the localized name of the
* palette section, so ensure that the property is defined in the
* resources.properties in this class's package. You will add this
* file to the "Example Filters" category.
*/

public String[] getCategories() {
return new String[]{_("FILTER_GROUP_EXAMPLE")};

}

/*
* Register our custom images with the image registry
*/

private static final String IMAGE_KEY = "simpleFilter";
static {

Images.getImageRegistry().put(IMAGE_KEY,
Images.createDescriptor(SimpleFilterUI.class, "simple.gif"));

}

/**
* The icon image needs to be added in images.properties in com.vordel.client.manager
* the id used there is used as a reference here.
* Use this method to get image id for the small icon image in Images.get(id), etc.
*/

Writing a Custom Filter using the Oracle API Gateway SDK

780

public String getSmallIconId() {
return IMAGE_KEY;

}

/**
* Implement this method if you want to display a non-default image
* for your filter in the policy editor canvas and navigation tree.
*/

public Image getSmallImage() {
return Images.get(IMAGE_KEY);

}

/**
* Implement this method to display a non-default icon for your filter in
* the palette.
*/

public ImageDescriptor getSmallIcon() {
return Images.getImageDescriptor(IMAGE_KEY);

}
}

SimpleFilterUI Methods
The following table describes the important methods:

Method Description

public Vector getPropertyPages() Initializes a Vector of the Pages that makeup the total con-
figuration screens for this Filter. Successive Pages are ac-
cessible by clicking the Next button on the Policy Studio
configuration screen.

public String[] getCategories() This method returns the names of the Filter categories that
this Filter belongs to. The Filter is displayed under these
categories in the Filter Palette in the Policy Studio. The
SimpleFilter is added to the Example Filters category.

public Image getSmallImage() The default image for the Filter, which is registered in the
static block in the code above, can be overridden by return-
ing a different image here.

public ImageDescriptor getSmallIcon() The default icon for the Filter can be overridden by return-
ing a different icon here.

A Page only represents a single configuration screen in the Policy Studio. You can chain together several Pages to form
a series of configuration screens that together make up the overall configuration for a given Filter. By default, all Filters
consist of two pages: one for the configuration fields for the Filter, and the other to allow per-Filter logging. However,
there is no reason why more Pages can not be chained together. Successive Pages should be added to the configura-
tion in the getPropertyPages method.

From looking at the getPropertyPages method of the SimpleFilterUI, it is clear that the SimpleFilterPage
class forms one of the configuration screens (or pages) for the SimpleFilter filter. The SimpleFilterPage class is
responsible for the layout of all the input fields that make up the configuration screen for the SimpleFilter.

SimpleFilterPage Class
The code for the SimpleFilterPage class is shown below:

package com.vordel.example.filter.simple;

Writing a Custom Filter using the Oracle API Gateway SDK

781

import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Composite;

import com.vordel.client.manager.wizard.VordelPage;

public class SimpleFilterPage extends VordelPage
{

/**
* Create the configuration page. Set the title and description
* here. The title and description are maintained in the
* resources.properties file for customization and
* internationalization purposes.
*/

public SimpleFilterPage() {
// Call the super constructor with a unique name for this
// page to bind it with its corresponding wizard.
super("simplePage");
setTitle(_("SIMPLE_PAGE"));
setDescription(_("SIMPLE_PAGE_DESCRIPTION"));
setPageComplete(false);

}

/**
* Get the unique identifier for the help page for this filter.
* The ID-to-HTML page mapping is maintained in the following file:
* <policy_studio_build>/plugins/
* com.vordel.client.rcp.common.resources_version/contexts.xml.
*/

public String getHelpID() {
return "simple.help";

}

/**
* Any post-processing of the configuration values can happen
* here, before they are persisted to the Entity Store. If the
* configuration is not complete and valid, notify the user here
* with a dialog box and return false, otherwise return true.
*
* @see com.vordel.client.manager.util.MsgBox
*/

public boolean performFinish() {
// Simple mutually independent values here, no checking required,
// so return true
return true;

}

/**
* Create the main control for the Filter configuration dialog.
* This will include the text fields for setting the particular
* Field Values in the Entity.
*/

public void createControl(Composite parent) {
// Create a Panel with two columns
GridLayout layout = new GridLayout();
layout.numColumns = 2;
Composite container = new Composite(parent, SWT.NULL);
container.setLayout(layout);

// Add controls to populate the appropriate Entity Fields
// You use the localization keys for the field names and
// descriptions which will map to entries in the
// resources.properties file.
createLabel(container, "SF_NAME");

Writing a Custom Filter using the Oracle API Gateway SDK

782

createTextAttribute(container, "name", "SF_NAME_DESC");

createLabel(container, "SF_PARAM1");
createTextAttribute(container, "param1", "SF_PARAM1_DESC");

createLabel(container, "SF_PARAM1NS");
createTextAttribute(container, "param1Namespace", "SF_PARAM1NS_DESC");

createLabel(container, "SF_PARAM2");
createTextAttribute(container, "param2", "SF_PARAM2_DESC");

createLabel(container, "SF_PARAM2NS");
createTextAttribute(container, "param2Namespace", "SF_PARAM2NS_DESC");

// Finish up the page definition
setControl(container);
setPageComplete(true);

}
}

SimpleFilterPage Methods
There are four important interface methods that must be implemented in this class:

Method Description

public SimpleFilterPage() The constructor performs some basic initialization, such as
setting a unique ID for the page, and setting the title and
description for the page. The text representing the page
title and description are kept in the re-
sources.properties file so that they can be localized
or customized easily, if necessary.

public String getHelpID() This method is called by the Policy Studio help system.
There is a Help button on every configuration page in the
Policy Studio. When this button is pressed, the help system
is invoked. Every page has a help ID (for example,
simple.help) associated with it, which is mapped to a
help page. This mapping is defined in the /plu-
gins/
com.vordel.rcp.policystudio.resources_<vers
ion>/contexts.xml file under the directory where you
have installed Policy Studio. The following shows an ex-
ample mapping in this file:
<context id="simple_help">
<description>>Simple filter
test</description>
<topic label="Simple Filter"
href="html/general_filter.html"/>
</context>

Note
A dot in a help ID is replaced by an under-
score in the contexts.xml file as in the ex-
ample above. All URLs specified in the con-
texts.xml file are relative from the /
plugins/
com.vordel.rcp.policystudio.resou

Writing a Custom Filter using the Oracle API Gateway SDK

783

Method Description

rces_<version> folder of your Policy Stu-
dio installation. You can add the lines from
the example above to the contexts.xml file
now, and you can check that the help page
works at the end of this tutorial.

public boolean performFinish() This method gives you the chance to process the user-
specified data before it is submitted to the Entity Store. For
example, any validation on the data should be added to
this method.

public void createControl(Composite parent) This method is responsible for creating and ordering the in-
put fields on the configuration page. Again, localization
keys from the resource.properties file are used to
give labels for the input fields.

Note
createTextAttribute takes a String as
its second parameter, which corresponds to a
field defined for an entity (for example,
param, param1Namespace, param2, and
param2Namespace are all defined in the
SimpleFilter entity type). When the user
submits the values entered in these fields, the
values are set to the corresponding fields in
the entity instance in the Entity Store.

resources.properties File
Both the SimpleFilterUI and the SimpleFilterPage classes use localized keys for all text that is displayed on the
configuration screen. This makes it easy to localize or customize all text that is displayed in the Policy Studio. The local-
ization keys and their corresponding strings are stored in the resources.properties file, which takes the following
format:

Palette category for example filters
FILTER_GROUP_EXAMPLE=Example Filters

Title and Description for the SimpleFilter
SIMPLE_PAGE=Simple Filter Configuration
SIMPLE_PAGE_DESCRIPTION=Configure parameter values for the Simple Filter

Field labels and descriptions
SF_NAME=Filter Name:
SF_NAME_DESC=The name of the Simple Filter
SF_PARAM1=Parameter 1
SF_PARAM1_DESC=the first parameter
SF_PARAM1NS=Parameter 1 Namespace
SF_PARAM1NS_DESC=the first parameter namespace field
SF_PARAM2=Parameter 2
SF_PARAM2_DESC=the second parameter
SF_PARAM2NS=Parameter 2 Namespace
SF_PARAM2NS_DESC=the second parameter namespace field

Writing a Custom Filter using the Oracle API Gateway SDK

784

The final resource is the simple.gif image file, which is displayed as the icon for the SimpleFilter in the Policy
Studio. You can see this icon later in this tutorial when you configure the SimpleFilter.

Now that all classes and resources have been written, it is now time to build the relevant JAR files and incorporate them
into the product.

Step 5: Build Classes

You must perform the following steps to build the Java classes and resources described in the previous sections.

Important
The classes must be built against a 1.6 JDK because this is used to build the API Gateway, which contains
the JAR files for the API Gateway SDK API.

1. Build the classes and associated resources into a JAR file using your chosen build technology (see ex-
ample below).

2. Place the new JAR in the INSTALL_DIR/ext/lib directory, where INSTALL_DIR refers to the root
of your API Gateway installation.

3. In the Policy Studio main menu, select Window -> Preferences -> Runtime Dependencies, and click
Add to browse to the new JAR, and add it to the list (for example, IN-
STALL_DIR/ext/lib/VordelExampleFilters.jar).

4. Place any third-party JAR files used by your classes into the INSTALL_DIR/ext/lib, and add them
to the list of Runtime Dependencies in the Policy Studio.

5. Restart the API Gateway.
6. Restart the Policy Studio using the following command:

policystudio -clean

Example Build File
For an example of building the SimpleFilter classes, see the Apache Ant build.xml file supplied in the
SDK_HOME/example/filter/src directory, where SDK_HOME points to the root of your Oracle API Gateway SDK in-
stallation. For more details, see the instructions in SDK_HOME/example/readme.html.

Writing a Custom Filter using the Oracle API Gateway SDK

785

The Ant file builds the SimpleFilter classes and packages all associated resources into the VordelExampleFil-
ters.jar file. You must then place this file into the INSTALL_DIR/ext/lib folder, and add it to the Runtime De-
pendencies in the Policy Studio Preferences.

When both the server and the Policy Studio boot up, they automatically pick up the new JAR file. The remaining steps of
this tutorial describe how to configure a policy that includes the SimpleFilter, and then test its functionality.

Step 6: Load TypeDocs

You must now register the type definition for the SimpleFilter with the Entity Store using the Policy Studio. When the
entity type is registered, any time the server needs to create an instance of the SimpleFilter, the instance contains
the correct fields with the appropriate types.

Register using the Policy Studio
To register the type definition using the Policy Studio, perform the following steps:

1. Start the Policy Studio, and connect to the API Gateway.
2. Select Window -> Show View -> Tag/Profile Manager from the main menu to display the Tag/Profile Manager

tab.
3. Create a copy of the active configuration. To do this, expand the Core Configurations tree node, and right-click the

active configuration (for example, Default Core Configuration). Select Create via Copy in the context menu, and
give the new configuration a meaningful name (for example, Custom Filter Config).

4. Right-click the new configuration, and select Edit from the context menu. You are asked to enter a passphrase. If
this has not been changed from the default, you can leave the field blank and proceed. This displays the Profile Ed-
itor tab with Custom Filter Config as a root node. Right-click this root node, and select Import Custom Filter
Types from the menu.

5. Browse to the sampleTypeSet.xml file, which is located in the
SDK_HOME/example/src/com/vordel/example/filter directory. A TypeSet file is used to group together
one or more TypeDocs. This enables multiple TypeDocs to be added to the Entity Store in batch mode. The
sampleTypeSet.xml file includes the following:

<typeSet>
<!-- SimpleFilter TypeDoc -->

<typedoc file="SimpleFilter.xml"/>
</typeSet>

6. After selecting the TypeSet, the workspace refreshes. To verify that the filter is available, select an existing policy in
the Policy Studio tree, and you should see the Example Filters category in the palette, which contains the new cus-
tom filters.

Writing a Custom Filter using the Oracle API Gateway SDK

786

7. Right-click the configuration, and commit this version. From now on, any further revisions of this version, or configur-
ations copied from this configuration contain the new custom filter types.

8. Click the Deploy button in the toolbar to deploy the new Custom Filter Config with the latest version contain-
ing the new filter types.

Verifying using the Entity Explorer
Another way to verify that your new filter has been installed is to use the Entity Explorer. You can use the Entity Ex-
plorer tool for browsing the entity types and entity instances that have been registered with the Entity Store.

To verify that the filter has been installed, perform the following steps:

1. Start the Entity Explorer from the /bin directory of your installation using the esexplorer startup script. The Entity
Explorer is displayed as follows:

Writing a Custom Filter using the Oracle API Gateway SDK

787

There are two main tabs on the Entity Store's interface: Entities and Types. The Types tab lists all currently defined
entity types that have been registered with the Entity Store, while the Entities tab lists all the instances of entities
that have been committed to the Entity Store (for example, configured filters).

2. You must first point the Entity Explorer at the management interface exposed by a running instance of the API Gate-
way. Right-click the Entity Stores node in the Entity Hierarchy tree:

The Connect to an Entity Store dialog is displayed as follows:

Writing a Custom Filter using the Oracle API Gateway SDK

788

3. The API Gateway exposes a management service that interfaces to the underlying Entity Store. This is the preferred
method of managing the Entity Store. You can now start the API Gateway (which connects to the Entity Store), and
point the Entity Explorer at the management service exposed by the API Gateway. Start the API Gateway from the /
bin directory of your product installation.

4. You can now configure the Entity Explorer to talk to the management service exposed by the API Gateway. By de-
fault, this service is available at the following URL, where HOST refers to the host name or IP address of the machine
on which the API Gateway is running:
http://HOST:8090/configuration/policies.

5. Enter this address in the URL field of the Connect to an Entity Store dialog.
6. If you have not already changed the default username and password for the entity store, use the default username

admin with password changeme. Otherwise, specify the alternative username and password in the fields provided.
7. Click OK to connect to the management service on the API Gateway. A log message is displayed in the Log panel at

the bottom right corner of the screen to confirm that you are connected to the API Gateway at the specified URL.
8. Expand the Entity Store filename, and then expand the System Components node to display the list of entity in-

stances stored in the Entity Store:

Writing a Custom Filter using the Oracle API Gateway SDK

789

9. Click the Types tab, and expand the node representing the API Gateway's management interface, (for example,
http://HOST:8090/configuration/policies).

10. Expand the Entity node to display the list of registered entity types. Each of these entity types has a corresponding
type definition.

11. Expand the Filter node, and click the SimpleFilter entity type in the tree. The names and data types of the fields for
this entity type are displayed under the Details tab on the right.

12. To view the type definition for this entity, click the XML tab. These details should match the filter that has just been
added.

Writing a Custom Filter using the Oracle API Gateway SDK

790

The Entity Store is now aware of the SimpleFilter type. You can now create an instance of a Filter class that encap-
sulates the fields defined in the SimpleFilter type.

The remaining steps in this tutorial show how to configure a policy that includes the SimpleFilter, and then tests its
functionality.

Step 7: Construct a Policy

This section first shows how to build a simple policy that echoes messages back to the client. The next step then adds
the SimpleFilter to the policy.

You can build policies using the policy editor in the Policy Studio. To build a policy, you can drag message filters from the
filters palette on the left on to the policy canvas on the right. You can then link these filters using Success Paths or Fail-
ure Paths to create a network of filters. The following screenshot shows the policy editor screen in the Policy Studio:

Writing a Custom Filter using the Oracle API Gateway SDK

791

The policy canvas is the large blank area on the screen, while the filters palette is the area on the right that contains the
filters. Message filters are grouped together by category. For example, all the content-based filters are displayed together
in one group, while all the authentication filters are displayed in a different group. You can build policies by dragging
these filters and dropping them on to the canvas.

Important
If you have followed the steps outlined above, you can see a new category of filters named Example Fil-
ters in the filter palette. The Example Filters category is expanded in the example screenshot.

Creating the Policy
To create a policy, perform the following steps:

1. Right-click the Policies node in the tree view on the left of the Policy Studio, and select Add Policy.
2. Enter Circuit 1 as the name of the new policy in the Policy dialog.
3. This example creates a policy containing only one filter: the Reflect filter. This filter simply echoes the client mes-

sage back to the client. The Reflect filter is found in the Utility filter group. Drag this filter on to the canvas.

Writing a Custom Filter using the Oracle API Gateway SDK

792

4. Enter a name for the filter (or use the default) in the field provided. Select the default value (200) for the HTTP re-
sponse status code, and click Finish.

5. The policy needs to have a start filter, so right-click the Reflect filter, and choose Set as Start.
6. You must now configure the Process to invoke the new policy. Under the Listeners node in Policy Studio, select the

Process (for example API Gateway) -> Default Services. Right-click Path: /, and select Edit.
7. Enter the following values on the Configure Relative Path dialog:

• Relative Path:
Keep / in this field, meaning that the Process invokes the policy selected below for all requests received on this
path.

• Policy:
Select Circuit 1 to configure the server to send all requests received on the path configured above to our
newly configured policy.

8. To force the server to pick up the new configuration, you must deploy the configuration to the server. Click the De-
ploy or press F6.

9. To test this, start up the API Gateway Explorer testing tool (distributed separately):

10. Assuming your HTTP interface is listening on port 8080, you can configure API Gateway Explorer to send a re-
quest to: http://HOST:8080/, where HOST is the hostname or IP address of the machine on which the server is
running.

Note
You send to / because, earlier, you configured the firewall to filter requests received on this relative
path.

11. Copy any SOAP message into the Request panel of API Gateway Explorer. Click the triangular green Send button
to send the message to the server, which echoes it back to the client using the Reflect filter configured earlier.
When the message has been returned to API Gateway Explorer, try changing the message slightly to assure your-
self that the correct message is actually being returned.

Finally, it is time to add the SimpleFilter to the policy, and to test its functionality.

Step 8: Configure the SimpleFilter

Writing a Custom Filter using the Oracle API Gateway SDK

793

The final section of this tutorial adds the SimpleFilter to the policy built in the previous section. Currently, the policy
consists of only one filter, the Reflect filter:

The SimpleFilter is found in the Example Filters category of the Filter Palette on the Policy Studio.

Configuring the Filter
To configure the new filter, perform the following steps:

1. Drag and drop the SimpleFilter on to the policy canvas. The configuration screen is displayed as follows:

Writing a Custom Filter using the Oracle API Gateway SDK

794

2. Because the type definition for the SimpleFilter entity contained default values, the input fields on the configura-
tion screen are pre-populated with these default values.

3. Before completing the configuration, make sure the help system is working correctly. Remember that in Step 4 of
this tutorial, you added a mapping to the contexts.xml file (in the /plu-
gins/com.vordel.rcp.policystudio.resources_<version> folder of your Policy Studio installation.) If
you have not done so yet, this is explained in Step 4. After restarting Policy Studio, you can try clicking the Help but-
ton while editing the SimpleFilter configuration.

4. Right-click the Simple node, and select Set as Start from the context menu.
5. Connect the Simple node to the Reflect node with a success path. You can do this by clicking the Success Path

arrow, and then clicking the Simple node, followed by clicking the Reflect node. The policy is now displayed as fol-
lows:

Writing a Custom Filter using the Oracle API Gateway SDK

795

6. To force the server to pick up the new configuration, you must refresh the server. Click the Deploy button in Policy
Studio (or press F6).

7. You can now test the configuration to make sure that it performs as expected (that it can correctly add the two num-
bers together). Load the appropriate SOAP message into the API Gateway Explorer by selecting the File ->
Samples -> Add two numbers menu option. The following SOAP message is loaded:

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<Add xmlns="http://startvbdotnet.com/web/">
<a>1
2

</Add>
</soap:Body>

</soap:Envelope>

Important
Note the presence of the <a> and elements in the SOAP message, and the namespace declaration in
the <Add> element. These elements and their corresponding namespaces match the values configured in
the SimpleFilter earlier.

Make sure to send the message to the same address as before by entering http://localhost:8080/ as the URL.
The Wsdl field is not needed and can be removed. Press the Run (Send) button when you have done this to send the
message to the server.

The following response is returned to API Gateway Explorer:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance\"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
<AddResponse xmlns="http://startvbdotnet.com/web/">

<AddResult>3</AddResult>
</AddResponse>

</soap:Body>
</soap:Envelope>

Writing a Custom Filter using the Oracle API Gateway SDK

796

The value of the <AddResult> element is 3, which indicates that the newly added filter has worked successfully.

Conclusion

This tutorial described a working example of how to write a message processing filter using the Oracle API Gateway, and
how to integrate it into a policy. You should now try to build your own filter by following a similar sequence of steps to
those outlined in this tutorial.

If you have any queries on the content of this document, please contact the Oracle Support Team with your questions
(see Oracle Contact Details).

Writing a Custom Filter using the Oracle API Gateway SDK

797

Abort Filter
Overview

The Abort filter can be used to force a policy to throw an exception. It can be used to test the behavior of the policy when
an exception occurs.

For example, to quickly test how the policy behaves when a Message Size filter throws an exception, it is possible to
place an Abort filter before it in the policy. The following policy diagram illustrates the setup:

Configuration

Enter a name for the filter in the Name field.

798

Check Group Membership
Overview

The Check Group Membership filter checks whether the specified API Gateway User is a member of the specified API
Gateway Group. The User and the Group are both stored in the API Gateway User Store. For more details, see API
Gateway Users.

Configuration

Configure the following required fields:

Name:
Enter an appropriate name for this filter.

User:
Enter the User name. You can specify this as a selector that expands to the value of the specified message attribute at
runtime. Defaults to ${authentication.subject.id}. For more details on selectors, see Selecting Configuration
Values at Runtime.

Group:
Select the Group name from the drop-down list. This list contains the Groups currently configured in the API Gateway
User Store.

Possible Paths

The possible paths through this filter are as follows:

Outcome Description

True The specified user is a member of the specified group.

False The specified user is not a member of the specified group.

CircuitAbort An exception has occurred while executing the filter.

799

Configuration Web Service
Overview

This filter is only used by the configuration Management Service and should not need to be configured.

800

Copy/Modify Attributes
Overview

The Copy/Modify Attributes filter copies the values of message or user attributes to other message or user attributes. It
is also possible to set the value of a message or user attribute to a user-specified value.

Configuration

The configured attribute-copying rules are listed in the table. To add a new rule, click the Add button.

The Copy/Modify Attributes screen can be used to copy a message or user attribute to a different message or user at-
tribute. The From Attribute represents the source attribute, while the To Attribute represents the destination attribute.

The attribute value can be copied from 3 possible sources:

• Message:
Select this option to copy the value of a message attribute. The name of the source attribute should be specified in
the Name field.

• User:
This option should be selected if a user attribute stored in the attribute.lookup.list is to be copied. Enter the
name (and namespace if the attribute was extracted from a SAML attribute assertion) of the user attribute in the
Name and Namespace fields.
If there are multiple values stored in the attribute.lookup.list for the attribute entered in the Name field, only
the first value will be copied.

• User Entered Value:
Select this option to copy a user-specified value to an attribute. Enter the new attribute value in the attribute field.
You can enter a selector to represent the value of a message attribute instead of entering a specific value directly.
The syntax for entering message attribute selectors is as follows:
${authentication.subject.id}
In this case the value of the authentication.subject.id attribute is copied to the named attribute.

The message can be copied to one of the following types of attributes:

• Message:
The attribute can be copied to any message attribute. The name of the attribute should be specified in the Name
field.

• User:
Select this option if the attribute or value should be copied to a user attribute stored in the attrib-
ute.lookup.list. Specify the name and namespace (if necessary) of this attribute in the Name and Namespace
fields.
If there are multiple values stored in the attribute.lookup.list for the attribute entered in the Name field of
the From attribute section, the attribute value will be copied to the first occurrence of the attribute name in list.

Select the Create list attribute checkbox if the new attribute can contain several items.

801

Evaluate Expression
Overview

The Evaluate Expression filter enables you to extract a string, convert it into a selector expression, and evaluate the
contents of that expression. This filter is useful for testing purposes.

For example, you could configure an Evaluate Expression filter with the following default value:

${http.client.cgiArgument('expr')}

You could then chain this filter to a Set Message filter that specifies the ${value} message attribute generated by the
Evaluate Expression filter in its message body. Then in this case, the following HTTP client request would result in a
value of 3 in the response message body:

http://localhost:8080/req?expr=${1+2}

For more details, see the following topics:

• Set Message
• Selecting Configuration Values at Runtime

Configuration

Name:
Enter a descriptive name for this filter.

Expression location:
Enter the selector expression to be evaluated. Defaults to the following:

${http.client.cgiArgument('expr')}

Expression type:
Enter the type of the selector expression to be evaluated. Defaults to java.lang.String.

802

Execute External Process
Overview

This filter enables you to execute an external process from a policy. You can use this filter to execute any external pro-
cess (for example, start an SSH session to connect to another machine, run a script, or send an SMS message).

Configuration

To configure the Execute Process filter, specify the following fields:

Name:
Name of the filter to be displayed in a policy. Defaults to Execute process.

Command tab
This tab includes the following fields:

Command to execute Specify the full path to the command that you wish to ex-
ecute (for example, c:\cygwin\bin\mkdir.exe).

Arguments Click the Add button to add arguments to your command.
Specify an argument in the Value field (for example,
dir1), and click OK. Repeat these steps to add multiple
arguments (for example, dir2 and dir3).

Working directory Specify the directory to run the command from. You can
specify this using a selector that is expanded to the spe-
cified value at runtime. Defaults to
${environment.VINSTDIR}, where VINSTDIR is the
root of your installation. For more details on selectors, see
Selecting Configuration Values at Runtime.

Expected exit code Specify the expected exit code for the process when it has
finished. Defaults to 0.

Kill if running longer than (ms) Specify the number of milliseconds after which the running
process is killed. Defaults to 60000.

Advanced tab
This tab includes the following fields:

Environment variables to set Click Add to add environment variables. In the dialog, spe-
cify an Environment variable name (for example,
JAVA_HOME) and a Value (for example,
c:\jdk1.6.0_18), and click OK. Repeat to add multiple
variables.

Block till process finished Select whether to block until the process is finished in the
checkbox. This is enabled by default.

803

False Filter
Overview

The False filter can be used to force a path in the policy to return false. This can be useful in cases where you want to
create a false positive path in a policy.

The following policy parses the HTTP request and then runs a Message Size filter on the message to make sure that the
message is no larger than 1000 bytes. If we want to make sure that the message cannot be greater than this size, we
can connect a False filter to the success path of the Message Size filter. This means that an exception will be raised if a
message exceeds 1000 bytes in size.

Configuration

Enter a name for the filter in the Name field.

804

HTTP Parser
Overview

The HTTP Parser parses the HTTP request headers and body. As such, it acts as a barrier in the policy to guarantee
that the entire content has been received before any other filters are invoked. It requires the content.body attribute.

The HTTP Parser filter forces the server to do "store-and-forward" routing instead of the default "cut-through" routing,
where the request is only parsed on-demand. This filter can be used as a simple test to ensure that the message is XML,
for example.

Configuration

Enter a name for the filter in the Name field.

805

Insert BST
Overview

You can use the Insert BST filter to insert a Binary Security Token (BST) into a message. A BST is a security token that
is in binary form, and therefore not necessarily human readable. For example, an X.509 certificate is a binary security
token. Inserting a BST into a message is normally performed as a side effect of signing or encrypting a message.
However, there are also some scenarios where you may wish to insert a certificate into a message in a BST without sign-
ing or encrypting the message.

For example, you can use the Insert BST filter when the API Gateway is acting as a client to a Security Token Service
that issues security tokens (for example, to create OnBehalfOf tokens). For more details, see the topic on the Security
Token Service Client filter. Finally, you can also use the Insert BST filter to generate XML nodes without inserting them
into the message. In this case, the WS-Security Actor is set to blank.

Configuration

You can configure the following settings on the filter dialog:

Name:
Enter an appropriate name for this filter.

WS-Security Actor:
Select or enter the WS-Security element in which to place the BST. Defaults to Current actor / role only. If you
wish to use the Insert BST filter to generate XML nodes without inserting them into the message, you must ensure that
this field is set to blank.

Message Attribute:
Select or enter the message attribute that contains the BST. The message attribute type can be byte[], String,
X509Certificate, or X509Certificate[].

Value Type:
Select the BST value type, or enter a custom type. Example value types include the following:

• http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

• ht-
tp://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_R
EQ

• http://xmlns.oracle.com/am/2010/11/token/session-propagation

Base64 Encode:
This option applies only when the data in the message attribute is not already Base64 encoded. In some cases, the input
may already be Base64 encoded, so you should deselect this setting in these cases.

806

Invoke Policy per Message Body
Overview

In cases where API Gateway receives a multipart related MIME message, the Invoke Policy per Message Body filter
can be used to pass each body part to a specified policy for processing.

So, for example, if other XML documents have been attached to an XML message (using the SOAP with Attachments
specification perhaps), each of these documents can be passed to an appropriate policy where they can be processed
by the full compliment of message filters.

Configuration

Complete the following fields:

Name:
Enter a name for the filter in this field.

Policy Shortcut:
Select the policy to invoke for each MIME body part in the message. Each body part will be passed to the selected policy
in turn. The filter will fail if the selected policy fails for any of the passed body parts.

Maximum Level to Unzip:
In cases where a MIME body part is a MIME message itself, which may, in turn, contain more multi-part messages, the
setting here determines how many levels of enveloped MIME messages to attempt to unzip. A default value of "2" levels
ensures that the server will not attempt to unwrap unnecessarily deep MIME messages.

If one of the body parts is actually an archive file (e.g. tar or zip), this setting determines the maximum depth of files to
unzip in cases where the archive file contains other archive files, which may contain others, and so on.

807

Locate XML Nodes
Overview

You can use the Locate XML Nodes filter to select a number of nodes from an XML message. The selected nodes are
stored in a message attribute, which is typically used by a Signature or XML Encryption filter later in a policy.

The primary use of the Locate XML Nodes filter is when a series of policies is auto-generated by importing a Web Ser-
vices Description Language (WSDL) file that contains WS-Policy assertions. For example, because there may be many
different WS-Policy assertions that describe elements in the message that must be signed, the Locate XML Nodes filter
can be used to build up the node list of elements. Eventually, this node list is passed into the Sign Message filter (using
a message attribute) so that a single Signature can be created that covers all the relevant parts.

However, you can also use this filter in similar cases where the message content that must be signed depends on con-
tent of the message. For example, a given policy runs a number of XPath expressions on a message where each XPath
expression checks for a particular element. If that element is found, it can be marked as an element to be signed/en-
crypted by selecting that element in the Locate XML Nodes filter. This means that only a single Signature/XML Encryp-
tion filter must be configured, with each path feeding back into this filter and passing in the message attribute that con-
tains the nodes set for each specific case.

Configuration

As explained earlier, nodes can be selected using any combination of Node Locations, XPaths, and/or Message At-
tributes. The following sections explain how to use each different mechanism and how to store the selected nodes in a
message attribute.

Node Locations:
The simplest way to select nodes is using the pre-configured elements listed in the table on the Node Locations tab.
The table is pre-populated with elements that are typically found in secured SOAP messages, including, the SOAP Body,
WSSE Security Header, WS-Addressing headers, SAML Assertions, WS UsernameToken, and so on.

The elements selected here are found by traversing the SOAP message as a DOM and finding the element name with
the correct namespace and with the selected index position (for example, the first Signature element from the ht-
tp://www.w3.org/2000/09/xmldsig# namespace).

You can select the checkbox in the Name column of the table to select the corresponding node. You can select any num-
ber of Node Locations in this manner.

If you want to locate an element that is not already present in the table, you can add a new Node Location by clicking the
Add button below the table. In the Locate XML Nodes dialog, enter the name of the element, its namespace, and its po-
sition in the message using the Element Name, Namespace, and Index fields.

If you wish to select this node for encryption purposes, you must select an appropriate Encryption Type. For example,
WS-Security Policy mandates that when encrypting the SOAP Body that only its contents are encrypted and not the
SOAP Body element itself. This means that the <xenc:EncryptedData> is inserted as a direct child of the SOAP
Body element. In this case, you should select the Encrypt Node Content radio button.

However, in most other cases, it is typically the entire node that gets encrypted. For example, when encrypting a
<wsse:UsernameToken>, the entire node should be encrypted. In this case, the <EncryptedData> element replaces
the <UsernameToken> element. To encrypt the entire node in this manner, select the Encrypt Node radio button.

XPath Expressions:
In cases where you want to select nodes that exist under a more complicated element hierarchy, it may be necessary to
use an XPath expression to locate the required nodes. The XPaths table is pre-populated with a number of XPath ex-
pressions to locate SOAP elements and common security elements, including SAML Assertions and SAMLP Responses.

To select an existing XPath expression, you can select the checkbox next to the Name of the appropriate XPath expres-

808

sion. You can select any number of XPath expressions in this manner.

To add a new XPath expression, click the Add button. You must enter a name for the XPath expression in the Name
field. You can then enter the XPath expression in the XPath Expression field. For more information on configuring this
dialog, see the Configuring XPath Expressions topic.

If you wish to select this node for encryption purposes, you must select an appropriate Encryption Type. For example,
WS-Security Policy mandates that when encrypting the SOAP Body that only its contents are encrypted and not the
SOAP Body element itself. This means that the <xenc:EncryptedData> is inserted as a direct child of the SOAP
Body element. In this case, you should select the Encrypt Node Content radio button.

However, in most other cases, it is typically the entire node that gets encrypted. For example, when encrypting a
<wsse:UsernameToken>, the entire node should be encrypted. In this case, the <EncryptedData> element replaces
the <UsernameToken> element. To encrypt the entire node in this manner, select the Encrypt Node radio button.

Message Attribute:
Finally, you can also retrieve nodes that have been previously stored in a named message attribute. In such cases, an-
other filter extracts nodes from the message and stores them in a named message attribute (for example, node.list).
The Locate XML Nodes filter can then extract these nodes and store them in the message attribute configured in the
Message Attribute Name field below.

Extract nodes from Selector Expression:
Specify whether to extract nodes from a specified selector expression (for example, ${node.list}). This setting is not
selected by default. Using a selector enables settings to be evaluated and expanded at runtime based on metadata (for
example, in a message attribute, Key Property Store (KPS), or environment variable). For more details, see Selecting
Configuration Values at Runtime.

Message Attribute in which to place list of nodes:
At runtime, the Locate XML Nodes filter locates and extracts the selected nodes from the message. It then stores them
in the specified message attribute. For example, if you wish to sign the selected nodes, it would make sense to store the
nodes in a message attribute called sign.nodeList, which would then be specified in the Sign Message filter. Altern-
atively, if you wish to encrypt the selected nodes, you could store the nodes in the encrypt.nodeList message attrib-
ute, which would then be specified in the XML Encryption Properties filter. The Message Attribute Name setting de-
faults to the node.list attribute.

Finally, you must specify whether you want the selected nodes to Overwrite any nodes that may already exist in the spe-
cified attribute, or if you want to Append to any existing nodes. You can also decide to Reset the contents of the mes-
sage attribute. Select the appropriate radio button depending on your requirements.

Locate XML Nodes

809

Pause Filter
Overview

The Pause filter is mainly used for testing purposes. A Pause filter causes a policy to sleep for a specified amount of
time.

Configuration

Enter an appropriate name for the filter in the Name field. When the filter is executed in a policy, it sleeps for the time
specified in the Pause for field. The sleep time is specified in milliseconds.

810

Policy Shortcut
Overview

The Policy Shortcut filter enables you to reuse the functionality of one policy in another policy. For example, you could
create a policy called Security Tokens that inserts various security tokens into the message. You can then create a
policy that calls this policy using a Policy Shortcut filter.

In this way, you can adopt a design pattern of building up reusable pieces of functionality in separate policies, and then
bringing them together when required using a Policy Shortcut filter. For example, you can create modular reusable
policies to perform specific tasks, such as authentication, content-filtering, or logging, and call them as required using a
Policy Shortcut filter.

For details on how to create a sequence of policy shortcuts in a single policy, see the Policy Shortcut Chain filter.

Configuration

Complete the following fields to configure the Policy Shortcut filter:

Name:
Enter an appropriate name for the filter.

Policy Shortcut:
Select the policy that you want to reuse from the tree. You can search for a specific policy by entering its name in the text
box, and the policy tree is filtered automatically. The policy in which this Policy Shortcut filter is configured calls the se-
lected policy when it is executed.

Tip
Alternatively, to speed up policy shortcut configuration, you can drag a policy from the tree on the left of the
Policy Studio and drop it on to the policy canvas on the right. This automatically configures the fields for the
selected policy.

811

Policy Shortcut Chain
Overview

The Policy Shortcut Chain filter enables you to run a series of configured policies in sequence without needing to wire
up a policy containing several Policy Shortcut filters. This enables you to adopt a design pattern of creating modular re-
usable policies to perform specific tasks, such as authentication, content-filtering, or logging. You can then link these
policies together into a single, coherent sequence using this filter.

Each policy in the Policy Shortcut Chain is evaluated in succession. The evaluation proceeds as each policy in the
chain passes, until finally the filter exits with a pass status. If a policy in the chain fails, the entire Policy Shortcut Chain
filter also fails at that point.

The Policy Shortcut Chain is available from the Utility category of filters. You can drag and drop this filter from the filter
palette to the policy editor canvas in the Policy Studio.

General Configuration

Complete the following general setting:

Name:
Enter an intuitive name for the filter in this field. For example, the name might reflect the business logic of the policies
that are chained together in this filter.

Add a Policy Shortcut

Click the Add button to display the Policy Shortcut Editor dialog, which enables you to add a policy shortcut to the
chain. Complete the following settings in this dialog:

Shortcut Label:
Enter an appropriate name for this policy shortcut.

Evaluate this shortcut when executing the chain:
Select whether to evaluate this policy shortcut when executing a policy shortcut chain. When this option is selected, the
policy shortcut has an Active status in the table view of the policy shortcut chain. This option is selected by default.

Choose a specific Policy to execute:
Select this option if you wish to choose a specific policy to execute. This option is selected by default.

Policy:
Click the browse button next to the Policy field, and select a policy to reuse from the tree (for example, Health Check).
You can search for a specific policy by entering its name in the text box, and the policy tree is filtered automatically. The
policy in which this Policy Shortcut Chain filter is configured calls the selected policy when it is executed.

Choose a Policy to execute by label:
Select this option if you wish to choose a policy to execute based on a specific policy label. For example, this enables
you to use the same policy on all requests or responses, and also enables you to update the assigned policy without
needing to rewire any existing policies. For more details, see the Configuring Global Policies topic.

Policy Label:
Click the browse button next to the Policy Label field, and select a policy label to reuse from the tree (for example, API
Gateway request policy (Health Check)). The policy in which this Policy Shortcut Chain filter is configured calls the
selected policy label when it is executed.

Click OK when finished. You can click Add and repeat as necessary to add more policy shortcuts to the chain. You can
alter the sequence in which the policies are executed by selecting a policy in the table and clicking the Up and Down
buttons on the right. The policies are executed in the order in which they are listed in the table.

812

Edit a Policy Shortcut

Select an existing policy shortcut, and click the Edit button to display the Policy Shortcut Editor dialog. Complete the
following settings in this dialog:

Shortcut Label:
Enter an appropriate name for this policy shortcut.

Evaluate this shortcut when executing the chain:
Select whether to evaluate this policy shortcut when executing a policy shortcut chain. When this option is selected, the
policy shortcut has an Active status in the table view of the policy shortcut chain.

Policy / Policy Label:
Click the browse button next to the Policy or Policy Label field (depending on whether you chose a specific policy or a
policy label when creating the policy shortcut). Select a policy or policy label to reuse from the tree (for example, Health
Check or API Gateway request policy (Health Check)). The policy in which this Policy Shortcut Chain filter is con-
figured calls the selected policy or policy label when it is executed.

Policy Shortcut Chain

813

Quote of the Day
Overview

The Quote of the Day filter is a useful test utility for returning a simple SOAP response to a client. The API Gateway
wraps the quote in a SOAP response, which can then be returned to the client.

Configuration

Simply enter the quote in the Quotes text area. This quote can be returned in a SOAP response to the client by setting
the Reflect filter to be the successor of this filter in the policy.

The Quote of the Day filter can also load a file containing a list of quotes at runtime. In this case, a random quote from
the file will be returned to the client in the SOAP response. Each quote should be delimited by a % character on a new
line. This is analogous to the BSD fortune format. The format of this file is shown in the following example:

Most powerful is he who has himself in his own power.
%
All science is either physics or stamp collecting.
%
A cynic is a man who knows the price of everything and the value of nothing.
%
Intellectuals solve problems; geniuses prevent them.
%
If you can't explain it simply, you don't understand it well enough.

The quotes can, of course, be simply entered in this format into the Quotes textarea to achieve the same goal.

The following example shows a SOAP response returned by the API Gateway to a client who requested the Quote of
the Day service:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header/>
<s:Body xmlns:oracle="www.oracle.com">
<oracle:getQuoteResponse>

Every cloud has a silver lining
</oracle:getQuoteResponse>

</s:Body>
</s:Envelope>

814

Reflect Message Filter
Overview

The Reflect Message filter echoes the HTTP request headers, body, and attachments back to the client.

Configuration

Enter a name for the filter in the Name field. Specify an HTTP status response code to return to the client in the HTTP
Response Code Status field.

815

Reflect Message And Attributes Filter
Overview

The Reflect Message and Attributes filter echoes the HTTP request headers, body, and attachments back to the client.
It also echoes back the message attributes that were stored in the message at the time when the message completed
the policy.

Configuration

Enter a name for the filter in the Name field.

816

Remove Attribute
Overview

You can use this filter to remove a specified message attribute from a request message or a response message, de-
pending on where the filter is placed in the policy.

Configuration

Name:
Enter a suitable name for this filter.

Attribute Name:
Select or enter the message attribute name to be removed from the message (for example, authentica-
tion.subject.password).

817

Set Response Status
Overview

The Set Response Status filter is used to explicitly set the response status of a call. This status is then recorded as a
message metric for use in reporting.

This filter is primarily used in cases where the fault handler for a policy is a Policy Shortcut filter. If the Policy Shortcut
passes, the overall fail status still exists. The Set Response Status filter can then be used to explicitly set the re-
sponse status back to pass, if necessary.

Note
This filter should only be used under advice from the Oracle Support team.

Configuration

Name:
Enter an intuitive name for the filter in this field.

Response Status:
Select Pass or Fail to set the response status.

818

Set Attribute
Overview

The simple Set Attribute filter allows you to set the value of a message attribute.

Configuration

Complete the following fields to configure the Set Attribute filter.

• Name:
Enter a name for the filter in the Name field.

• Attribute Name:
Enter the name of the message attribute in which you want to store a value.

• Attribute Value:
Enter the value of the message attribute specified above.

819

String Replace Filter
Overview

The String Replace filter enables you to replace all or part of the value of a specified message attribute. You can use
this filter to replace any specified string or substring in a message attribute. For example, changing the from attribute in
an email, or changing all or part of a URL.

Configuration

To configure the String Replace filter, specify the following fields:

Name Name of the filter to be displayed in a policy. Defaults to
String Replace. This field is required.

Message Attribute Select the name of the message attribute to be replaced
from the list. This is required. If this is not specified, a
MissingPropertyException is thrown, which results in
a CircuitAbortException.

Specify Destination Attribute By default, the value of the specified Message Attribute is
both the source and destination, and is therefore overwrit-
ten. If you wish to specify a different destination attribute,
select this checkbox to enable the Destination Attribute
field, and select a value from the drop-down list.

Replacement String The string used to replace the value of the specified source
attribute. You can specify this as a selector, which is ex-
panded to the specified value at runtime (for example,
${http.request.uri}). This is a required field if you
specify the Specify Destination Attribute.

Straight A match string used to search the value of the specified
source attribute. You can specify this as a selector, which
is expanded to the specified value at runtime. If a straight
(exact) match is found, it is replaced with the specified Re-
placement String.

Regexp A match string, specified as a regular expression, used to
search the value of the specified source attribute. You can
specify this as a selector, which is expanded to the spe-
cified attribute value at runtime. If a match is found, it is re-
placed with the specified Replacement String. For more
details on selectors, see Selecting Configuration Values at
Runtime.

First Match If a match is found, only replace the first occurrence.

All Matches If a match is found, replace all occurrences.

Note
The possible paths available through this filter are True (even if no replacement takes place), and Cir-
cuitAbort. Under certain circumstances, if the Replacement String contains a selector, a Missing-
PropertyException can occur, which results in a CircuitAbortException.

820

Switch on Attribute Value
Overview

The Switch on Attribute Value filter enables you to switch to a specific policy based on the value of a configured mes-
sage attribute. You can specify various switch cases (for example, contains, is, ends with, matches regular expression,
and so on). Specified switch cases are evaluated in succession until a switch case is found, and the policy specified for
that case is then executed. You can also specify a default policy, which is executed when none of the switch cases spe-
cified in the filter are found.

The Switch on Attribute Value filter is available from the Utility category of filters. You can drag and drop this filter from
the filter palette on to the policy editor canvas in the Policy Studio, and configure it to meet the requirements of your
policy.

Configuration

Complete the following configuration settings in the Switch on attribute value screen:

Name:
Enter an intuitive name for the filter. For example, the name might reflect the business logic of a specified switch case.

Switch on selector expression:
Enter or select the name of the message attribute selector to switch on (for example, ${http.request.path}). This
filter examines the specified message attribute value, and switches to the specified policy if this value meets a configured
switch case.

Case:
You can add, edit, and delete switch cases by clicking the appropriate button on the right. All configured switch cases are
displayed in the table on this screen. For more details, see Adding a Switch Case.

Default:
This field specifies the default behavior of the filter when none of the specified switch cases are found in the configured
message attribute value. Select one of the following options:

Return result of calling the following policy Click the browse button, and select a default policy to ex-
ecute from the dialog (for example, XML Threat Policy).
The filter returns the result of the specified policy. This op-
tion is selected by default.

Return true The filter returns true.

Return false The filter returns false.

Adding a Switch Case

To add a switch case, click the Add button, and configure the following fields in the dialog:

Comparison Type:
Select the comparison type that you wish to perform with the configured message attribute. The available options include
the following:

• Contains

• Doesn't Contain

• Ends With

821

• Is

• Isn't

• Matches Regular Expression

• Starts With

All of these options are case insensitive, except for Matches Regular Expression.

Compare with:
Enter the value to compare the configured message attribute value with. For example, if you select a Comparison Type
of Matches Regular Expression, enter the regular expression in this field.

Policy:
Click the browse button next to the Policy field, and select the policy to execute from the dialog (for example, Remove
All Security Tokens). You can search for a specific policy by entering its name in the text box, and the policy tree is
filtered automatically. The selected policy is executed when this switch case is found.

Click OK when finished. You can click Add, and repeat as necessary to add more switch cases to this filter. The switch
cases are examined in the order in which they are listed in the table. You can alter the sequence in which the switch
cases are evaluated by selecting a policy in the table and clicking the Up and Down buttons on the right.

Switch on Attribute Value

822

Time Filter
Overview

The Time Filter enables you to block or allow messages on a specified time of day and/or day of week. You can input
the time of day directly in the Time Filter screen, configure message attributes to supply this information using the Java
SimpleDateFormat, or specify a cron expression.

You can use the Time Filter in any policy (for example, to block messages at specified times and/or days when a Web
Service is not available, or has not been subscribed for by a consumer). In this way, this filter enables you to meter the
availability of a Web Service and to enforce Service Level Agreements.

General Configuration

Configure the following general options:

Name:
Enter an appropriate name for this filter.

Block Messages:
Select this option if you wish to use this filter to block messages. This is the default option.

Allow Messages:
Select this option if you wish to use this filter to allow messages.

Basic Time Options

Select Basic if you wish to block or allow messages at specified times of the day. This is the default option. You can con-
figure following settings:

User defined time:
Select this option to input the times to block or allow messages directly in this screen. This is the default option. Config-
ure the following settings:

From The time to start blocking or allowing messages from in
hours, minutes, and seconds. Defaults to 9:00:00.

To The time to end blocking or allowing messages in hours,
minutes, and seconds. Defaults to 17:00:00.

Time from attribute:
Select this option to specify times to block or allow messages using configured message attributes. You can specify
these attributes using selectors, which are replaced at runtime with the values of the specified message attributes set in
previous filters or messages. For more details, see Selecting Configuration Values at Runtime. You must configure the
following settings:

From Message attribute that contains the time to start blocking or
allowing messages from (for example,
$(message.starttime)). Defaults to a time of
9:00:00.

To Message attribute that contains the time to end blocking or
allowing messages (for example,
$(message.endtime)). Defaults to a time of 17:00:00.

823

Pattern Message attribute that contains the time format based on
the Java SimpleDateFormat class (for
example,$(message.pattern)). This enables you to
format and parse dates in a locale-sensitive manner. Day,
month, years, and milliseconds are ignored. Defaults to a
format of HH:mm:ss.

Days:
If you wish to block or allow messages on specific days of the week, select the checkboxes for those days. For example,
you may wish to block messages on Saturday and Sunday.

Advanced Time Options

Select Advanced if you wish to block or allow messages at specified times based on a cron expression. Configure the
following setting:

Cron Expression:
Enter a cron expression or a message attribute that contains a cron expression in this field. Alternatively, click the button
next to this field to use a the Cron Dialog to guide you through the configuration steps. You can also use this dialog to
test the cron expression. For details, see the topic on Configuring Cron Expressions.

For example, the following cron expression blocks all messages received on April 27 and 28 2012, at any time except
those received between 10:00:01 and 10:59:59.

* * 0-9,11-23 27-28 APR ? 2012

The default value is * * 9-17 * * ? *, which specifies a time of 9:00:00 to 17:00:00 every day. For more details on
cron expressions, see the Policy Execution Scheduling topic.

Time Filter

824

Trace Filter
Overview

The Trace filter outputs the current message attributes to the configured trace destination(s). By default, output is traced
to the system console.

Configuration

Name:
Enter an appropriate name for the filter.

Include the following text in trace:
Enter an optional custom text message to include in the trace output.

Trace Level:
Select the level at which you wish to trace output from the drop-down list. DATA tracing is the most verbose level, while
FATAL is the least verbose.

Include Attributes:
Select this option to trace all current message attributes to the configured trace destination.

Include Body:
Select this option if you wish to trace the entire message body.

Indent XML:
If this option is selected, the XML message is pretty-printed (indented) before it is output to the trace destination.

825

True Filter
Overview

You can use the True filter to force a path in a policy to return true. For example, this can be useful in cases where you
want to prevent a path from ending on a false case and consequently throwing an exception. The following policy parses
the HTTP request, and then runs Attachment1 on the message. If Attachment1 passes, the message is echoed back to
the client by the Reflect filter. However, if Attachment1 fails, the Attachment2 filter is run on the message. Because
this is an end node, if this filter fails, an exception is thrown.

By adding a True filter to the Attachment2 filter, this path always ends on a true case, and so does not throw an excep-
tion if Attachment2 fails.

Configuration

Enter an appropriate name for the filter in the Name field.

826

Web Service Filter
Overview

The Web Service Filter is used to control and validate requests to the Web Service and responses from the Web Ser-
vice. Typically, this is automatically generated and populated as a Service Handler when a WSDL file is imported into
the Web Services Repository. For example, if you import the WSDL file for a Web Service named ExampleService, a
Service Handler for ExampleService filter is automatically generated. However, you can also configure a Web Service
Filter manually.

In cases when the imported WSDL file contains WS-Policy assertions, a number of policies are automatically created to
generate the filters required to generate the relevant security tokens (for example, SAML, WS-Security UsernameToken,
and WS-Addressing headers). These policies perform the necessary cryptographic operations (for example, signing and
encrypting) to meet the security constraints stipulated by the WS-Policy assertions.

General Settings

Name:
Enter an intuitive name for the filter in this field.

Web Service Context:
Click the button on the right, and select a WSDL file currently registered in the Web Service Repository from the tree to
set the Web Service Context. To register a Web Service, right-click the default Web Services node, and select Register
Web Service. For more details on adding services to the Web Services Repository, see the Web Service Repository tu-
torial.

Routing

When routing to a service, you can specify a direct connection to the Web Service endpoint by using the URL in the
WSDL or you can override this URL by entering a URL in the field provided. Alternatively, in cases where the routing be-
havior is more complex, you can delegate to a custom routing policy, which takes care of the added complexity. The top-
level radio buttons on the Routing tab allow for these alternative routing configurations.

Direct Connection to Service Endpoint:
Select this option to route to either the URL specified in the WSDL or a URL. The radio buttons in the Routing Details
group enable you to choose between using the URL in the WSDL and providing an override. When providing an override,
you can enter the new URL in the URL field. Alternatively, you can specify the URL as a selector so that the URL is built
dynamically at runtime from the specified message attributes (for example ${host}:${port}, or
${http.destination.protocol}://${http.destination.host}:${http.destination.port}). For more
details on selectors, see Selecting Configuration Values at Runtime.

In both cases, you can configure the connection details, such as SSL and other authentication schemes, for the direct
connection using the fields in the Connection Details group. For more details, see the Connection tutorial.

Delegate to Routing Policy:
If you wish to use a dedicated routing policy to send messages on to the Web Service, you can select this radio button.
For example, you may have configured a dedicated routing policy that uses the JMS-based Messaging System filter to
route over JMS. Click the browse button next to the Routing Policy field. Select the policy that you want to use to route
messages, and click OK. You can search for a specific policy by entering its name in the text box, and the policy tree is
filtered automatically.

Validation

The WSDL for a Web Service contains information about the SOAP Action, SOAP Operation, and the data types of the
message parts used in a particular SOAP operation. The API Gateway creates the following implicit validation incoming
requests for the Web Service:

827

• SOAPAction HTTP Header:
If a Web Service requires clients to send a certain SOAPAction HTTP header in all requests, the API Gateway can
check the value of this header in the incoming request against the value specified in the WSDL.

• SOAP Operation and Namespace:
The WSDL defines the SOAP Operation and namespace to be used in the SOAP request. The SOAP Operation is
defined as the first child element of the SOAP Body element. The API Gateway can check the value of this element
in an incoming SOAP request and its namespace against the values specified in the WSDL.

• Relative Path:
The filter ensures that requests for this Web Service are received on the same URL as that specified in the
<service> block of the WSDL.

It is also common for a WSDL document to contain an XML Schema that defines the format and types of the message
parts in the request. This is usually the case for document/literal style SOAP requests, where a complete XML Schema is
embedded or imported into the <wsdl:types> block of the WSDL.

When using a WSDL to import a service into the Web Services Repository, the Policy Studio can extract the XML
Schema from the WSDL and configure the API Gateway to validate incoming requests against it. Select the Use WSDL
Schema if you want to validate incoming requests against the Schema in the WSDL.

Alternatively, you can create a custom-built policy to validate the contents of incoming requests. To do this, select the
Delegate to Validation Policy radio button, and the click the browse button next to the Message Validation Policy
field. Select the policy that you want to use to validate requests, and click the OK button.

Message Interception Points

The configuration settings on the Message Interception Points tab determine how the request and response messages
for the service are processed as they pass through the API Gateway. Several message interception points are exposed
to enable you to hook into different stages of the API Gateway's request processing cycle.

At each of these interception points, it is possible to run policies that are specific to that stage of the request processing
cycle. For example, you can configure a logging policy to run just before the request has been sent to the Web Service
and then again just after the response has been received.

Typically, the configuration settings on this screen are automatically configured when importing a service into the Web
Services Repository based on information contained in the WSDL. In cases where the WSDL contains WS-Policy asser-
tions, a number of policies are automatically generated and hooked up to perform the relevant security operations on the
message. For example, policies are created to insert SAML assertions, WS-Security Username Tokens, WS-Addressing
headers, and WS-Security Timestamps into the message. Similarly, filters are created to sign and encrypt the outbound
message, if necessary, and to decrypt and validate the signature on the response from the Web Service.

Order of Execution:
The order of execution of the message interception points is as follows:

• The interception points are executed in the following order:
1. Request from Client
2. User-defined Request Hooks
3. Request to Service
4. Response from Service
5. User-defined Response Hooks
6. Response to Client

• In steps 1, 3, 4, and 6, the execution order is as follows:
A) Before Operation-specific Policy
B) Operation-specific Policy Shortcuts
C) After Operation-specific Policy

• The overall order of all the message interception points is given in the sequence below.

Web Service Filter

828

1. Request from Client:
This is the first message interception point, which enables you to run a policy against the request as it is received by the
API Gateway. Typically, this is where authentication and authorization events should occur.

1A) Before Operation-specific Policy:
This is usually where authentication policies should be configured because it is the earliest point in the request cycle that
you can hook into. To select a policy to run at this point, click the browse button, and select the checkbox next to a previ-
ously configured policy.

1B)Operation-specific Policy Shortcuts:
If you want to run policies that are specific to the different operations exposed by the Web Service, click the Edit button
at the bottom of the table to set this up. For example, you may want to perform different validation on requests for the dif-
ferent operations.

On the Policy Shortcut Editor dialog, enter the Operation Namespace and Operation Name in the fields provided.
Enter a regular expression used to match the value of the SOAPAction HTTP header in the SOAPAction Regular Ex-
pression field. Finally, select the policy to run requests for this operation by clicking the browse button next to the Policy
Shortcut field. Select the checkbox next to the policy that you want to run.

1C) After Operation-specific Policy:
This enables you to run a policy on the request after all the operation-level policies have been executed on the request.
Select the appropriate policy as described earlier by clicking the browse button.

2. User-defined Request Hooks:
Users should primarily use this interception point to hook in their own custom-built request processing policies.

User-defined Request Policy:
Browse to your custom-built request processing policy using the browse button as before.

3. Request to Service:
This enables you to alter the message before it is routed to the Web Service. For example, if the service requires the
message to be signed and encrypted, you can configure the necessary policies here.

3A) Before Operation-specific Policy:
This enables run policies on the message before the operation-level policies are run. Select the policy to run as outlined
in the previous sections.

3B) Operation-specific Policy Shortcuts:
Operation-level policies on the request to the Web Service can be run here. For example, if the input policy for a particu-
lar operation requires the body to be signed and encrypted, a Locate XML Nodes filter can be run here to mark the re-
quired nodes.

3C) After Operation-specific Policy:
This is the last interception point available before the message is routed on to the Web Service. For example, if certain
operation-level policies have been run to mark parts of the message to be signed and encrypted, the signing and en-
crypting filters should be run here.

4. Response from Service:
This is executed on the response returned from the Web Service.

4A) Before Operation-specific Policy:
If the response from the Web Service is encrypted, this interception point enables you to decrypt the message before any
of the operation-level policies are run on the decrypted message.

4B) Operation-specific Policy Shortcuts:
The policies configured at this point run on specific operation-level responses (for example, getHelloResponse) from
the Web Service.

Web Service Filter

829

4C) After Operation-specific Policy:
This should be used to run policies after the operation-level policies have been run. For example, this is the appropriate
point to place an XML Signature Verification filter.

5. User-defined Response Hooks:
You should primarily use this interception point to hook in custom-built response processing policies.

User-defined Response Policy:
Browse to your custom-built response processing policy using the browse button as before.

6. Response to Client:
This enables you to process the response before it is returned to the client.

6A) Before Operation-specific Policy:
As before, this enables you to process the message with a policy before the operation-level policies are run on the re-
sponse.

6B) Operation-specific Policy Shortcuts:
The policies listed here are run on each operation response.

6C) After Operation-specific Policy:
This is the very last point at which you can run policies to process the response message before it is returned to the cli-
ent. For example, if you are required to return a signed and encrypted response message to the client, the signing and
encrypting should be done at this point.

WSDL

You can expose an imported WSDL file to clients of the API Gateway. A client can retrieve a WSDL for a service by ap-
pending the WSDL name to the query string of the relative path on which the service is accepting requests. For example,
if the service is accepting requests at the URL http://server:8080/services/getHello, the client can retrieve
the WSDL on the following URL:
http://server:8080/services/getHello?WSDL

Important
When the API Gateway returns the WSDL to the client, it dynamically modifies the service URL of the ori-
ginal WSDL to point to the machine on which the API Gateway is running. For example, the original WSDL
contains the following service element, where www.service.com resolves to an internal IP address that is
not accessible to the public Internet:

<wsdl:service name="GetHelloService">
<wsdl:port name="GetHelloServiceSoap" binding="tns:ServiceSoap">

<soap:address location="http://www.service.com/getHello"/>
</wsdl:port>

</wsdl:service>

When the API Gateway returns this WSDL to the client, it dynamically modifies the value of the location attribute to
point to the name of the machine hosting the API Gateway. In the following example, the location attribute has been
modified to point to the API Gateway instance running on port 8080 on the Oracle_SERVER host:

<wsdl:service name="GetHelloService">
<wsdl:port name="GetHelloServiceSoap" binding="tns:ServiceSoap">
<soap:address location="http://Oracle_SERVER:8080/getHello"/>

</wsdl:port>
</wsdl:service>

Web Service Filter

830

When the client receives the WSDL, it can automatically generate the SOAP request for the getHello service, which it
then sends to the Oracle_SERVER machine on port 8080.

Complete the following fields if you wish to expose the WSDL for this service to clients.

Advertise WSDL to the Client:
Select this option if you wish to publish the WSDL for the selected Web Service.

Note
The exposed WSDL represents a virtualized view of the back-end Web Service. In this way, clients can re-
trieve the WSDL from the API Gateway, generate SOAP requests, and send these requests to the API
Gateway. The API Gateway then routes the requests on to the Web Service.

WSDL Access Policy:
If you want to configure a policy to control or monitor access to the WSDL for this service, you can select the policy by
clicking the browse button to the right of this field. Select the policy that you want to use to run on requests to retrieve the
WSDL.

Monitoring

The fields on this tab enable you to configure whether this Web Service stores usage metrics data to a database. This in-
formation can then be used by API Gateway Analytics to produce reports showing how and who is calling this Web Ser-
vice. The following fields are available on this tab:

• Monitor service usage:
Select this option if you want to store message metrics for this Web Service.

• Monitor service usage per client:
Select this option if you want to generate reports monitoring which authenticated clients are calling which Web Ser-
vices.

• Monitor client usage:
If you want to generate reports on authenticated clients, but are not interested in what Web Services they are calling,
select this option, and deselect the Monitoring service usage per client checkbox.

• Which attribute is used to identify the client?:
Enter the message attribute to use to identify authenticated clients. The default is authentication.subject.id,
which stores the identifier of the authenticated user (for example, the username or user's X.509 Distinguished
Name).

• Composite Context:
This setting enables you to select a service context as a composite context in which multiple service contexts are
monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message, and sends it to serviceA first, and then to serviceB. Monit-
oring is performed separately for each service by default. However, you can set a composite service context before
serviceA and serviceB that includes both services. This composite service passes if both services complete suc-
cessfully, and monitoring is also performed on the composite service context.

Web Service Filter

831

Return WSDL
Overview

The Return WSDL filter returns a WSDL file from the Web Services Repository. This filter is configured automatically
when auto-generating a policy from a WSDL file and is not normally manually configured.

For details on how to auto-generate a policy from a WSDL file, see the Web Service Repository topic. For details on how
to identify services in the Web Service Repository, see the Set Web Service Context topic.

Configuration

Enter a name for the filter in the Name field.

832

Set Web Service Context
Overview

The Set Web Service Context filter is used in a policy to determine the service to obtain resources from in the Web Ser-
vice Repository. For example, by pointing this filter at a pre-configured getQuote service in the Web Service Repository,
the policy knows to return the WSDL for this particular service when a WSDL request is received. The Return WSDL fil-
ter is used in conjunction with this filter to achieve this.

The Set Web Service Context filter is configured automatically when auto-generating a policy from a WSDL file and is
not normally manually configured. For a detailed example, see the Web Service Repository tutorial.

Configuration

Name:
Enter a name for the filter in the Name: field.

Service WSDL:
Click the button on the right, and select a service definition (WSDL file) currently registered in the Web Service Reposit-
ory from the tree. To register a Web Service, right-click the default Web Services node, and select Register Web Ser-
vice. For more details on adding services to the Web Services Repository, see the Web Service Repository tutorial.

Monitoring:
The fields on this tab enable you to configure whether this Web Service stores usage metrics data to a database. This in-
formation can be used by API Gateway Analytics to produce reports showing how and who is calling this Web Service.
The following monitoring options are available on this tab:

• Monitor service usage:
Select this option if you want to store message metrics for this Web Service.

• Monitor service usage per client:
Select this option if you want to generate reports monitoring which authenticated clients are calling which Web Ser-
vices.

• Monitor client usage:
If you want to generate reports on authenticated clients, but are not interested in what Web Services they are calling,
select this option and deselect the Monitoring service usage per client checkbox.

• Which attribute is used to identify the client?:
Enter the message attribute to use to identify authenticated clients. The default is authentication.subject.id,
which stores the identifier of the authenticated user (for example, the username or user's X.509 Distinguished
Name).

• Composite Context:
This setting enables you to select a service context as a composite context in which multiple service contexts are
monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message, and sends it to serviceA first, and then to serviceB. Monit-
oring is performed separately for each service by default. However, you can set a composite service context before
serviceA and serviceB that includes both services. This composite service passes if both services complete suc-
cessfully, and monitoring is also performed on the composite service context.

833

Authentication Repository
Overview

The API Gateway supports a wide range of common authentication schemes, including SSL, XML Signatures, WS-
Security Username tokens, and HTTP Authentication. With SSL, the client authenticates to the API Gateway using a cli-
ent certificate. With XML Signatures, the client is authenticated by validating the signature contained within the XML
message. However, when the API Gateway attempts to authenticate a client using a username and password (for ex-
ample, WS-Security Username tokens and HTTP Authentication), it must compare the username and password presen-
ted by the client to those stored in the Oracle Authentication Repository.

The Authentication Repository acts as a repository for Users. Users serve many roles in the API Gateway. For ex-
ample, clients whose username and password combinations are stored in the Authentication Repository can authentic-
ate to the API Gateway using that username and password combination. For more information on Users, see the API
Gateway Users tutorial.

The Authentication Repository can be maintained in the API Gateway's local configuration store, in an LDAP directory,
or in a range of third-party Identity Management products and services. When a user has been successfully authentic-
ated against one of these repositories, the API Gateway can use any one of that user's stored attributes (for example,
DName, email address, username) to authorize that same user in a subsequent Authorization Filter.

For example, this credential mapping is useful in cases where your client-base uses username-password combinations
for authentication (authentication attributes), yet their access rights must be looked up in an authorization server using
the client's DName (authorization attribute). In this way, the client possesses a single virtual identity within the API Gate-
way. The client can use one identity for authentication, and another for authorization, yet the API Gateway sees both
identities as representing the same client.

You can add a new repository under the External Connections node in the Policy Studio tree by right-clicking the ap-
propriate node (for example, Database Repositories), and selecting Add a new Repository. Similarly, you can edit an
existing repository by right-clicking the repository node (for example, the default Local User Store), and selecting Edit
Repository. Repositories added under the External Connections node are available for reuse by multiple filters.

Local Repositories

The Authentication Repository can be maintained in the same database that the API Gateway uses to store all its con-
figuration information. To edit the default user store, select Local Repositories -> Local User Store -> Edit
Repository. Alternatively, to create a new user store, select Local Repositories -> Add a new Repository.

You can enter an appropriate name for the repository in the Repository Name field. The Authorization Attribute
Format field enables administrators to specify whether to use the client's X.509 Distinguished Name or User Name in
subsequent Authorization Filters. If User Name is selected, the user name used by the client to authenticate to the API
Gateway is used in any configured Authorization filters. If X.509 Distinguished Name is selected, the X.509 DName
stored by the API Gateway for that user is used for subsequent authorization.

For example, if the administrator selects User Name from the Authorization Attribute Format drop-down list, admin
(the User Name field) is used for authorization. Alternatively, if X.509 Distinguished Name is selected, the X.509
DName is used for authorization (for example, O=Company, OU=comp, EMAIL=emp@company.com, CN=emp).

For more information on adding and configuring users to the Authentication Repository, see the API Gateway Users
tutorial.

LDAP Repositories

In cases where an organization stores user profiles in an LDAP directory, it does not make sense to re-enter these pro-
files into the default API Gateway user store. Instead, the API Gateway can leverage an existing LDAP directory by
querying it for user profile data. If a user's profile can be retrieved, and you can bind to the LDAP directory as that user,

834

the user is authenticated.

Authenticating with LDAP
The following steps occur when a filter is configured to authenticate a user against an LDAP repository using a username
and password combination:

1. A pooled LDAP connection to the repository selected in the LDAP Directory field is retrieved.
2. A search filter is run using the retrieved connection (for example,

(&(objectClass={User})(sAMAccountName={c05vc}))). Attributes configured in the Login Authentication
Attribute and Authorization Attribute fields are retrieved in this search.
For example, if you select Distinguished Name from the drop-down list, the user's DName is retrieved from the
LDAP directory. This uniquely identifies the user in the LDAP directory, and is used to bind to the directory so the
user's password can be verified. The attribute specified in Login Authentication Attribute is used when you bind
as any user. The value of the attribute specified in Authorization Attribute is stored in authentica-
tion.subject.id, and can be used by subsequent filters in the policy (for example, Authorization filters that au-
thorize the authenticated user).

3. If no results are returned from the search, the user is not found in the directory. It is important that the administrator
user configured on the Configure LDAP Server screen has the ability to see the user that you are attempting to au-
thenticate.

4. If multiple users are returned from the search, an attempt is made to bind to the directory using each Login Authen-
tication Attribute value retrieved from the search, together with the password from the message.

5. If more than one user is authenticated correctly, an error is returned because you only want to authenticate a single
user.

6. If no user is authenticated, an error is returned.
7. If a single user's Login Authentication Attribute value and password binds successfully to the directory, authentic-

ation has succeeded.
8. Any successful bind is immediately closed.

Creating an LDAP Repository
To create a new LDAP repository, right-click LDAP Repositories, and select Add a new Repository. The details
entered on the Authentication Repository dialog depend on the type of LDAP directory that you are using. The Policy
Studio has default entries for some of the more common LDAP directories, which are available from the drop-down lists.
However, you can also connect to alternative LDAP directories.

The following subsections demonstrate how to configure this screen for typical user searches on three common LDAP
servers:

• Oracle Directory Server
• Microsoft Active Directory Server
• IBM Directory Server

Oracle Directory Server
To configure the Authentication Repository dialog for Oracle Directory Server (formerly iPlanet and Sun Directory
Server), use the following settings:

• Repository Name:
Enter a suitable name for this user store.

• Directory Name:
Click Add/Edit to add details of your Oracle Directory Server. For more details, see the topic on Configuring LDAP
Directories.

The User Search Conditions section instructs the API Gateway to search the LDAP tree according to the following con-

Authentication Repository

835

ditions:

• Base Criteria:
Enter where the API Gateway should begin searching the LDAP directory (for example, cn=Users, dc=qa,
dc=vordel, dc=com).

• User Class:
Enter or select the name given by the particular LDAP directory to the User class. For Oracle Directory Server, se-
lect 'inetorgperson' LDAP Class.

• User Search Attribute:
The value entered depends on the type of LDAP directory to which you are connecting. When a user is stored in an
LDAP directory, a number of user attributes are stored with that user. One of these attributes corresponds to the
user name presented by the client for authentication. However, different LDAP directories use different names for
that user attribute. For Oracle Directory Server, select cn from the drop-down list.

• Allow Blank Passwords:
Select this to allow the use of blank passwords.

In the next section, you must specify the following:

• Login Authentication Attribute:
In an LDAP directory tree, there must be one user attribute that uniquely distinguishes any one user from all the oth-
ers. In Oracle Directory Server, the Distinguished name is referred to as the entrydn or Entry Domain Name. Select
Entry Domain Name to uniquely identify the client authenticating to the API Gateway.

• Authorization Attribute:
When the client has been successfully authenticated, you can use any one of that user's stored attributes in a sub-
sequent Authorization filter. In this case, you want to use the user's Entry Domain Name (Distinguished Name) for
an Authorization filter, so enter entrydn in the text box. However, you can enter any user attribute as long as the
subsequent Authorization filter supports it. The value of the LDAP attribute specified is stored in the authentica-
tion.subject.id message attribute.

• Authorization Attribute Format:
Because any user attribute can be specified in the Authorization Attribute above, you must inform the API Gate-
way of the type of this attribute. This information is used internally by the API Gateway in subsequent Authorization
filters. Select X.509 Distinguished Name from the drop-down list.

Microsoft Active Directory Server
This subsection describes how to configure the Authentication Repository dialog for Microsoft Active Directory Server.
The values enter here differ from those entered when interfacing to the Oracle Directory Server:

• Repository Name:
Enter a suitable name for this search.

• LDAP Directory:
Click Add/Edit to add details of your Active Directory Server.

The User Search Conditions instruct the API Gateway to search the LDAP tree according to certain criteria. The values
specified are different from those selected for Oracle Directory Server, because MS Active Directory Server uses differ-
ent attributes and classes to Oracle Directory Server:

• Base Criteria:
The base criteria specify the base object under which to search for the user's profile (for example, cn=Users,
dc=qa, dc=vordel, dc=com.

• User Class:
In Active Directory Server, the user class is called User, so select 'User' LDAP Class.

• User Search Attribute:
This specifies the name of the user attribute whose value corresponds to the user name entered by the client during
a successful authentication process. With Active Directory Server, this attribute is called givenName, which repres-

Authentication Repository

836

ents the name of the user. Enter givenName in this field.
• Login Authentication Attribute:

Enter the name of the user attribute that uniquely identifies the user in the LDAP directory. This attribute is the Dis-
tinguished Name and is called distinguishedName in Active Directory Server. Select Distinguished Name from
the drop-down list to uniquely identify the user. The API Gateway authenticates the username and password presen-
ted by the client against the values stored for the user identified in this field.

• Authorization Attribute:
When the client has been successfully authenticated, the API Gateway can use any of that user's stored attributes in
subsequent Authorization filters. Because most Authorization filters require a Distinguished Name, enter Distin-
guished Name in the text box. However, any user attribute could be entered here, as long as the subsequent Au-
thorization filter supports it.

• Authorization Attribute Format:
The API Gateway needs to know the format of the Authorization Attribute. Select X.509 Distinguished Name
from the drop-down list.

IBM Directory Server
The configuration details for IBM Directory Server provide an example of a directory server that does not return a full Dis-
tinguished Name (DName) as the result of a standard LDAP user search. Instead, it returns a contextualized DName,
which is relative to the specified Base Criteria. In such cases, the API Gateway can build up the full DName by combin-
ing the Base Criteria and the returned name. The following example shows how this works in practice.

If C=IE is specified as the Base Criteria, the IBM Directory Server returns CN=niall, OU=Dev, instead of the full
DName, which is C=IE, CN=niall, OU=Dev. To enable the API Gateway to do this, leave the Login Authentication
Attribute field blank. The API Gateway then automatically concatenates the specified Base Criteria (C=IE) with the con-
textualized DName returned from the directory server (CN=niall, OU=Dev) to obtain the fully qualified DName (C=IE,
CN=niall, OU=Dev).

You can also leave the Authorization Attribute field blank, which enables the API Gateway to automatically use the
fully qualified DName for subsequent Authorization Filters. You should select X.509 Distinguished Name from the
Authorization Attribute Format drop-down list.

CA SiteMinder Repositories

In cases where user profiles have been stored in an existing SiteMinder server, the API Gateway can query SiteMinder
to authenticate users.

To authenticate users against a CA SiteMinder repository, right-click CA SiteMinder Repositories, and select Add a
new Repository. Complete the following fields on the Authentication Repository dialog:

Repository Name:
Enter a suitable name for this repository.

Agent Name:
Select a previously configured SiteMinder Agent name from the drop-down list. Click Add to register a new agent. Com-
plete the following fields in the SiteMinder Connection Details dialog:

• Agent Name:
Enter the name of the agent to connect to SiteMinder in the Agent Name field. This name must correspond with the
name of an agent that was previously configured in the Policy Server.

• Agent Configuration Object:
The name entered must match the name of the Agent Configuration Object (ACO) configured in the Policy Server.
The API Gateway currently does not support any of the features represented by the ACO parameters except for the
PersistentIPCheck setting. For example, the API Gateway disregards the DefaultAgent parameter and uses
the agent value it collects separately during agent registration.
When the PersistentIPCheck ACO parameter is set to yes, it instructs the API Gateway to compare the IP ad-
dress from the last request (stored in a persistent cookie) with the IP address in the current request to see if they

Authentication Repository

837

match. If the IP addresses do not match, the API Gateway rejects the request. If this parameter is set to no, this
check is disabled.

• Connection Details:
For more information on configuring this section, please refer to the instructions in the SiteMinder Connection De-
tails section of the SiteMinder Certificate Authentication help page.

Resource:
Enter the name of the protected resource for which the user must be authenticated.

Alternatively, you can enter a selector representing a message attribute, which is looked up and expanded to a value at
runtime. Message attribute selectors have the following format:

${message.attribute}

For example, to specify the original path on which the request was received by the API Gateway as the resource, enter
the following selector:

${http.request.uri}

Action:
The user must be authenticated for a specific action on the protected resource. By default, this action is taken from the
HTTP verb used in the incoming request. You can use the following selector to get the HTTP verb:

${http.request.verb}

Alternatively, you can enter any user-specified value. For more details on selectors, see Selecting Configuration Values
at Runtime.

Create Single Sign-On Token:
When this option is selected, SiteMinder generates a single sign-on token as part of the authentication event and returns
it to the API Gateway. This is then inserted into the downstream message for re-use later, either by another instance of
the API Gateway running the SiteMinder Session Validation filter, or by another SiteMinder-aware agent.

Put Token in Message Attribute:
Enter the name of the message attribute where you wish to store the single sign-on token. By default, the token is stored
in the siteminder.session attribute. Please refer to the Message Attribute Reference for a complete list of available
message attributes.

Database Repositories

The API Gateway can store its Authentication Repository in an external database. This option makes sense when an
organization already has a silo of user profiles stored in the database and does not want to duplicate this store within the
API Gateway's local configuration storage.

To authenticate users against a database repository, right-click Database Repositories, and select Add a new Reposit-
ory. Complete the following fields on the Authentication Repository dialog:

Repository Name:
Enter an appropriate name for the database in the Repository Name field.

Database:
There are two basic configuration items required to retrieve a user's profile from the database:

• Database Location:
You can configure connection details for the database by clicking Add, and completing the Database Connection

Authentication Repository

838

dialog. For details on configuring the fields on this dialog, see the Database Connection topic. You can edit or re-
move previously configured database connections by selecting them in the drop-down list and clicking Edit or De-
lete.

• Database Query:
The Database Query retrieves a specific user's profile from the database to enable the API Gateway to authenticate
them. Having successfully authenticated the user, you can select an attribute of this user to use for the authorization
filter later in the policy. The Database Query can take the form of an SQL statement, stored procedure, or function
call. For details on how to configure the Database Query, see the Database Query topic.

Format Password Received From Client:
If the user sends up a clear-text password to the API Gateway, but that user's password is stored in a hashed format in
the database, it is the API Gateway must hash the password before performing the authentication step.

• Hash Client Password:
Depending on whether you wish to hash the user's submitted password, select the appropriate radio button.

• Hash Format:
If you have selected to hash the client's password, the API Gateway needs to know the format of the hashed pass-
word. The most typical formats are available from the drop-down list, however, you can also enter another format.
Formats should be entered in terms of message attribute selectors. The following formats are available from the
Hash Format drop-down list.

${authentication.subject.id}:${authentication.subject.realm}:${authentication.
subject.password}
${authentication.subject.password}

The first option combines the username, authentication realm, and password respectively. This combination is then
hashed. The second option simply creates a hash of the user's password.

• Hash Algorithm:
Select either MD5 or SHA1 to use as the digest algorithm to use when creating the hash.

For more details on selectors, see Selecting Configuration Values at Runtime.

Query Result Processing:
This section enables you to provide the API Gateway with some meta information about the result returned by the Data-
base Query configured earlier on this screen. It enables allows you to identify the name of the database table column or
row that contains the user's password, and also the name of the column or row that contains the attribute that is to be
used for the authorization filter.

• Password Column:
Specify the name of the database table column that contains the user's password. The contents of this column are
compared to the password submitted by the user.

• Password Type:
Depending on how the user's password has been stored in the database, select either Clear Password or Digest
Password from the drop-down list.

• Authorization Attribute Column:
By running the Database Query, all of the user's attributes are returned. Only the user's username and password
are used for the authentication event. You can also use one of the other user's attributes for authorization at a later
stage in the policy. The additional authorization attribute should be either a username or an X.509 distinguished
name (DName). You should enter the name of the column containing the username or the DName here, but only if
this value is required for authorization purposes.

• Authorization Attribute Format:
The API Gateway's authorization filters all operate on the basis of a username or DName. They all evaluate whether
a user identified by a username or DName is allowed to access a specific resource. Select the appropriate format

Authentication Repository

839

from the drop-down list depending on what type of user credential is stored in the database table column entered
above.

Entrust GetAccess Repositories

Entrust GetAccess provides Identity Management and access control services for Web resources. It centrally manages
access to Web applications, enabling users to benefit from a single sign-on capability when accessing the applications
that they are authorized to use.

You can configure the API Gateway to connect to a group of GetAccess servers in a round-robin fashion. This provides
the necessary failover capability when one or more GetAccess servers are not available. When the API Gateway suc-
cessfully authenticates to a GetAccess server, it obtains authorization information about the end-user from the GetAc-
cess SAML PDP. The authorization details are returned in a SAML authorization assertion, which is then validated by the
API Gateway to determine whether the request should be denied.

To authenticate users against an Entrust GetAccess repository, right-click Entrust GetAccess Repositories, and select
Add a new Repository. Configure the following fields on the Authentication Repository dialog:

Repository Name:
Enter an appropriate name for this repository

Request:
Configure the following request settings:

• URL Group:
Select a URL group from the drop-down list. This group consists of a number of GetAccess Servers to which the API
Gateway round-robins connection attempts. You can add URL groups under the External Connections tree node in
Policy Studio. Expand the URL Connection Sets node, right-click Entrust GetAccess URL Sets, and select Add a
URL Set. For more details on adding and editing URL groups, see the Configuring URL Groups topic.

• WS-Trust Attribute Field Name:
Specify the field name for the Id field in the WS-Trust request. The default is Id.

Response:
Configure the following response settings:

• SOAP Actor/Role:
To add the SAML authorization assertion to the response message, select a SOAP actor/role to indicate the WS-
Security block where the assertion is added. By leaving this field blank, the assertion is not added to the message.

Drift Time:
The specified time is used to allow for the possible difference between the time on the GetAccess SAML PDP and
the time on the machine hosting the API Gateway. This comes into effect when validating the SAML authorization
assertion.

Further Information
For details on using a filter to integrate the API Gateway with Entrust GetAccess, see the Entrust GetAccess Authoriza-
tion topic.

Oracle Access Manager Repositories

You can authorize an authenticated user for a particular resource against an Oracle Access Manager (OAM) repository.
After successful authentication, OAM issues a Single Sign On (SSO) token, which can then be used instead of the user
name and password.

To authenticate users against an Oracle Access Manager repository, right-click Oracle Access Manager Repositories,

Authentication Repository

840

and select Add a new Repository. Configure the following fields on the Authentication Repository dialog:

Repository Name:
Enter an appropriate name for this repository.

Resource Request:
Configure the following settings for the resource request:

• Resource Type:
Enter the type of the resource for which you are requesting access. For example, for access to a Web-based URL,
enter http.

• Resource Name:
Enter the name of the resource for which the user is requesting access. By default, this field is set to /
/hostname${http.request.uri}, which contains the original path requested by the client.

• Operation:
In most access management products, users are authorized for a limited set of actions on the requested resource.
For example, users with management roles may be permitted to write (HTTP POST) to a certain Web Service, but
users with junior roles might only have read access (HTTP GET) to the same service. Use this field to specify the op-
eration to which you want to grant the user access on the specified resource. By default, this is set to the ht-
tp.request.verb message attribute, which contains the HTTP verb used by the client to send the message to the
API Gateway (for example, HTTP POST).

• Include query string:
Select whether the query string parameters are used by the OAM server to determine the policy that protects this re-
source. This setting is optional if the policies configured do not rely on the query string parameters.

• Client location:
If the client location must be passed to OAM for it to make its decision, you can enter a valid DNS name or IP ad-
dress to specify this location.

• Optional Parameters:
You can add optional additional parameters to be used in the authentication decision. The available optional para-
meters include the following:

ip IP address, in dotted decimal notation, of the client access-
ing the resource.

operation Operation attempted on the resource (for HTTP resources,
one of GET, POST, PUT, HEAD, DELETE, TRACE, OPTIONS,
CONNECT, or OTHER).

resource The requested resource identifier (for HTTP resources, the
full URL).

targethost The host (host:port) to which resource request is sent.

Note
One or more of these optional parameters may be required by certain authentication schemes, modules, or
plugins configured in the OAM server. To determine which parameters to add, see your OAM server config-
uration and documentation.

Single Sign On:
Configure the following settings for single sign on:

• Create SSO Token:
Select whether to create an SSO token. This is selected by default.

Authentication Repository

841

• Store SSO Token in User Attribute:
Enter the name of the message attribute that contains the user's SSO token. This attribute is populated when au-
thenticating to Oracle Access Manager using the HTTP Basic Authentication or HTTP Digest Authentication filter. By
default, the SSO token is stored in the oracle.sso.token message attribute.

• Add SSO Token to User Attributes:
Select whether to add the SSO Token to user message attributes. This is selected by default.

OAM Access Server SDK Directory:
Enter the path to your OAM Access Server SDK directory. For more details on the OAM Access Server SDK, see your
Oracle Access Manager documentation.

Further Information
For details on using filters to integrate the API Gateway with Oracle Access Manager, see Chapter 23, Oracle Access
Manager.

Oracle Entitlements Server 10g Repositories

You can authenticate and authorize a user for a particular resource against an Oracle Entitlements Server (OES) 10g re-
pository.

For example, the API Gateway can extract credentials from the message sent by the client, and delegate authentication
to OES 10g. When the client has been authenticated, the API Gateway queries OES 10g to see if the client is permitted
to access the Web Service resource. When authentication and authorization have passed, the message is trusted and
forwarded to the target Web Service.

To authenticate and authorize users against an OES 10g repository, right-click Oracle Entitlements Server 10g Repos-
itories, and select Add a new Repository. Configure the following fields on the Authentication Repository dialog:

Repository Name:
Enter an appropriate name for this repository.

Oracle SSM Settings:
Click Configure to launch the Oracle Security Service Module Settings dialog. For details on configuring these set-
tings, see the Oracle Security Service Module Settings (10g) topic.

RADIUS Repositories

You can configure the API Gateway to authenticate users in a Remote Authentication Dial In User Service (RADIUS) re-
pository. RADIUS is a client-server network protocol that provides centralized authentication and authorization for clients
connecting to remote services.

To authenticate users against a RADIUS repository, perform the following steps:

1. Right-click RADIUS Repositories, and select Add a new Repository.
2. In the Authentication Repository dialog, enter the RADIUS Repository Name.
3. On the Client tab, select the RADIUS clients that you wish to authenticate to the repository. For details on how to

add clients to this list, see the RADIUS Clients topic.
4. On the Attributes tab, click Add to add a RADIUS attribute. This is a name-value pair used to determine how ac-

cess is granted. Examples include User-Name, User-Password, NAS-IP-Address, or NAS-Port).
5. In the RADIUS Attributes dialog, specify a Name (for example, User-Name). You can select standard RADIUS at-

tributes from the drop-down list, or enter a custom attribute.
6. Enter a Value, and click OK.
7. Click OK.

Repeat steps 4-6 to add multiple attributes. You can edit or delete attributes using the buttons provided.

Authentication Repository

842

RSA Access Manager Repositories

RSA Access Manager (formerly known as RSA ClearTrust) provides Identity Management and access control services
for Web applications. It centrally manages access to Web applications, ensuring that only authorized users are allowed
access to resources. Integration with RSA Access Manager requires RSA ClearTrust SDK version 6.0.

To authenticate users against an RSA Access Manager repository, right-click RSA Access Manager Repositories, and
select Add a new Repository. Configure the following fields on the Authentication Repository dialog:

Repository Name:
Enter an appropriate name for this repository.

Connection Details:
The API Gateway can connect to a group of Access Manager Authorization Servers or Dispatcher Servers. When mul-
tiple Access Manager Authorization Servers are deployed for load-balancing purposes, the API Gateway first connects to
a Dispatcher Server, which returns a list of active Authorization Servers. An attempt is made to connect to one of these
Authorization Servers using round-robin DNS. If the first Dispatcher Server in the Connection Group is not available, the
API Gateway attempts to connect to the Dispatcher Server with the next highest priority in the group, and so on.

If a Dispatcher Server has not been deployed, the API Gateway can connect directly to an Authorization Server. If the
Authorization Server with the highest priority in the Connection Group is not available, the API Gateway attempts to con-
nect to the Authorization Server with the next highest priority, and so on. You can select the type of the Connection
Group using the Authorization Server or Dispatcher Server radio button. All servers in the group must be of the same
type.

Connection Group:
Select the Connection Group to use for authenticating clients. You can add Connection Groups under the External
Connections tree node in the Policy Studio. Expand the Connection Sets node, right-click RSA ClearTrust Connec-
tion Sets, and select Add a Connection Set. For more details on adding and editing Connection Groups, see the Con-
figuring Connection Groups topic.

Authentication Type:
Select one of the following authentication types for the connection:

• HTTP Basic
• Windows NT
• RSA SecureID
• LDAP
• Certificate Distinguished Name

Further Information
For more details on prerequisites and on using a filter to integrate the API Gateway with RSA Access Manager, see the
RSA Access Manager Authorization topic.

Tivoli Repositories

The API Gateway can integrate with Tivoli Access Manager to authenticate users. To authenticate users against a Tivoli
repository, right-click Tivoli Repositories, and select Add a new Repository.

For more information on how to configure API Gateway to communicate with a Tivoli server, see the Tivoli Integration
topic.

Authentication Repository

843

Certificate Chain Check
Overview

Whenever the API Gateway receives a client's X.509 certificate, either in an XML Signature or as part of an SSL hand-
shake, it needs to determine whether that certificate can be trusted. For example, it is a trivial task for a user to generate
a structurally sound X.509 certificate. This certificate can then be used to negotiate mutually authenticated connections
to publicly available services.

Clearly, this scenario represents a security nightmare for IT administrators. You cannot allow any user to generate their
own certificate and use it on the Internet. The server must be able to trust the authenticity of the client certificate. Further-
more, it must be able to verify that the certificate originated from a trusted source. To do this, a server can perform a cer-
tificate chain check on the client certificate.

The main purpose of certificate chain validation is to ensure that a certificate has been issued by a trusted source. Typic-
ally, in a Public-Key Infrastructure (PKI), a Certificate Authority (CA) is responsible for issuing and distributing certificates.
This infrastructure is based on the premise of transitive trust: If everybody trusts the CA, everybody transitively trusts the
certificates issued by that CA. If entities only trust certificates that have been issued by the CA, they can then reject certi-
ficates which have been self-generated by clients.

When a CA issues a certificate, it digitally signs the certificate and inserts a copy of its own certificate into it. This is
called a certificate chain. Whenever an application (such as the API Gateway) receives a client certificate, it can extract
the issuing CA's certificate from it, and run a certificate chain check to determine whether it should trust the CA. If it trusts
the CA, it also trusts the client certificate.

The question then arises how does the API Gateway trust a Certificate Authority? The API Gateway maintains a reposit-
ory of both trusted CA certificates, and trusted server certificates for use in SSL communications. To trust a certain CA,
that CA's certificate must be imported into the Certificate Store.

Configuration

The Policy Studio provides an easy-to-use interface for configuring certificate chain validation. This interface allows you
to amalgamate CA and server certificates into groups such that if an incoming client certificate has been issued by any of
the CAs in the group, the API Gateway trusts the certificate. Enter a name for the group in the Group Name field. To
populate the new group, click the Add/Edit button.

By selecting a group from this list, the members of this group are displayed in the Certificate Alias table. To add and/or
remove members from the selected group, click the Add/Edit button. Certificates can be added to and removed from
new or existing groups using the Configure Trusted Certificate Groups dialog which is displayed on clicking the Add/
Edit button.

The Configure Trusted Certificate Groups dialog consists of 2 main tables. The first lists all certificates currently in the
Certificate Store (those trusted by the API Gateway). The second lists the members of the group selected in the Group
Name field. To add a certificate to a trusted group, select it from the Certificate Store table, and click Add. The certific-
ate appears in the group certificates table. Similarly, to remove a certificate from the group, select it from the group certi-
ficates table, and click <- Remove. The certificate is removed from the group table.

You can also add, remove, and view certificates in the Certificate Store using this dialog. To add a certificate to the Cer-
tificate Store, click Add, which displays the Import Certificate dialog. Browse to the location of the CA certificate file,
and enter an Alias for the certificate. This is used to uniquely identify the certificate in the API Gateway. You can remove
a certificate by selecting it in the Trusted Store table, and clicking Remove. The certificate is removed from the table,
and is no longer be trusted by the API Gateway.

Finally, you can also examine the details of any one of the certificates in the Certificate Store. To do this, again select a
certificate from the Trusted Certificate table, and click the View button.

844

Certificate Validation
Overview

Whenever the API Gateway receives an X.509 certificate, either as part of the SSL handshake or as part of the XML
message itself, it is important to be able to determine whether that certificate is legitimate or not. Certificates can be re-
voked by their issuers if it becomes apparent that the certificate is being used maliciously. Such certificates should never
be trusted, and so it is very important that the API Gateway can perform certificate validation.

The API Gateway uses the following methods/protocols to validate certificates:

OCSP - Online Certificate Status Protocol
OCSP is an automated certificate checking network protocol. The API Gateway can query the OCSP responder for the
status of a certificate. The responder returns whether the certificate is still trusted by the CA that issued it.

CRL - Certificate Revocation Lists
A CRL is a signed list indicating a set of certificates that are no longer considered valid (i.e. revoked certificates) by the
certificate issuer. The API Gateway can query a CRL to find out if a given certificate has been revoked - if the certificate
is present in the CRL, it should not be trusted.

XKMS - XML Key Management Services
XKMS is an XML-based protocol for (amongst other things) establishing the trustworthiness of a certificate over the Inter-
net. The API Gateway can query an XKMS responder to determine whether or not a given certificate can be trusted or
not.

Configuration

The API Gateway can check that the validity of a client certificate using any of the following methods:

1. OCSP - Online Certificate Status Protocol
2. CRL - Certificate Revocation Lists
3. XKMS - XML Key Management Services

Note
To validate a certificate using either an or CRL lookup, the issuing CA's certificate should be trusted by the
API Gateway. This is because for a CRL lookup, the CA's public key is needed to verify the signature on
the CRL, and for an OCSP request, the protocol stipulates that the CA's public key must be submitted as
part of the request. The issuing CA's public key is not always present in issued certificates, so it is neces-
sary to retrieve it from the API Gateway's certificate store instead.

OCSP - Online Certificate Status Protocol

1. Enter or select a name for the validation rule in the Name field.
2. Select OCSP from the Type dropdown.
3. Optionally enter a description of the rule in the Description field.
4. Select a group of OCSP Responders from the URL Group field. The API Gateway will attempt to connect to the Re-

sponders in the selected group in a round-robin fashion. It will attempt to connect to the Responders with the highest
priority first, before connecting to Responders with a lower priority. URL Groups can be added, edited, and removed
by selecting the Add, Edit, and Remove buttons respectively.
Take a look at the Configuring URL Groups section below for more information on adding and editing URL groups.

5. Enter the user name of a User whose key will be used to sign status requests sent to the OCSP responder in the
User Name field.

845

6. Enter the corresponding password for this user in the Password field.
7. If the OCSP Responder signs the OCSP response, and you wish to validate this signature, select the Validate Re-

sponse checkbox.

CRL - Certificate Revocation Lists

1. Enter or select a name for the validation rule in the Name field.
2. Select CRL from the Type dropdown.
3. Optionally enter a description of the rule in the Description field.
4. Select a previously configured LDAP directory from the LDAP directory dropdown list, or add a new one using the

Add button.

XKMS - XML Key Management Services

1. Enter or select a name for the validation rule in the Name field.
2. Select XKMS from the Type dropdown.
3. Optionally enter a description of the rule in the Description field.
4. Enter the URL of the XKMS Responder in the URL field.
5. Enter the user name of a User whose key will be used to sign status requests sent to the XKMS responder in the

User Name field.
6. Enter the corresponding password for this user in the Password field.

Configuring URL Groups

The API Gateway can make connections on a round-robin basis to the URLs listed in a URL group, thus enabling a high
degree of failover to external servers. URL groups can be configured by selecting the Add and/or Edit buttons.

The API Gateway will attempt to connect to the listed servers according to the priorities assigned to them. So, for ex-
ample, let's assume there are two "High" priority URLs, one "Medium" URL, and a single "Low" URL configured. Assum-
ing the API Gateway can successfully connect to the two "High" priority URLs, it will alternate requests between these
two URLs only in a round-robin fashion. The other group URLs will not be used at all. If, however, both of the "High" pri-
ority URLs become unavailable, the API Gateway will then try to use the "Medium" priority URL, and only if this fails will
the "Low" priority URL be used.

So, in general, the API Gateway will attempt to round-robin requests over URLs of the same priority, but will use higher
priority URLs before lower priority ones. When a new URL is added to the group it is automatically given the highest pri-
ority. Priorities can then be changed by selecting the URL and clicking the Up and Down buttons.

Individual URLs can be added and edited by selecting the URL from the table and clicking on the Add and Edit buttons
respectively.

The following fields should be completed:

• URL:
Enter the full URL of the external server.

• Timeout:
Specify the timeout in seconds for connections to the specified server.

• Time:
Whenever the server becomes unavailable for whatever reason (maintenance, for example), no attempt will be
made to connect to that server until the time specified here has elapsed. In other words, once a connection failure
has been detected, the next connection to that URL will be made after this amount of time.

• Username:
If the specified server requires clients to authenticate to it over 2-way SSL, a User must be selected here for authen-

Certificate Validation

846

tication.
• Password:

Enter the password for this user.
• Host/IP:

If the specified server sits behind a proxy server, the host name or IP address of the proxy server must be entered
here.

• Port:
Enter the port on which the proxy is listening.

Certificate Validation

847

Compressed Content Encoding
Overview

The API Gateway supports HTTP content encoding for the gzip and deflate compressed content encodings. This en-
ables the API Gateway to compress files and deliver them to clients (for example, web browsers) and to back-end serv-
ers. For example, HTML, text, and XML files can be compressed to approximately 20% to 30% of their original size,
thereby saving on server traffic. Compressing files causes a slightly higher load on the server, but this is compensated by
a significant decrease in client connection times to the server. For example, a client that takes six seconds to download
an uncompressed XML file might only take two seconds for a compressed version of the same file.

In the Policy Studio, an Input Encodings list specifies the content encodings that the API Gateway can accept from
peers, and an Output Encodings list specifies the content encodings that the API Gateway can apply to outgoing mes-
sages. You can configure these settings globally, per remote host, or per listening interface.

Encoding of HTTP Responses

Content encoding of HTTP responses is negotiated using the Accept-Encoding HTTP request header. This enables a
client to indicate its willingness to receive a particular encoding in this header. The server can then choose to encode the
response with one of these client-supported encodings, and indicate this with the Content-Encoding header.

When the API Gateway is acting as a client communicating with a server, it uses the currently configured Input Encod-
ings list to format the Accept-Encoding header sent to the server, thereby requesting the server to apply one of these
encodings to it. If the server decides to apply one of these encodings, the API Gateway automatically inflates the com-
pressed response when it is received.

When acting as a server, the API Gateway selects an output encoding from the intersection of what the client specified in
its Accept-Encoding header, and the currently configured Output Encodings, and applies that encoding to the re-
sponse.

Encoding of HTTP Requests

Because a request arrives unsolicited from a client to a server, there is not normally a chance to negotiate the server's
ability to process any optional features, so the automatic negotiation provided by the Accept-Encoding header is not
available.

When acting as a client, the API Gateway selects the first configured encoding from the Output Encodings list to en-
code its request to the server. If the server fails to accept this encoding, it most likely responds with an HTTP 415 error,
and the API Gateway treats this as a general HTTP error. Therefore, if the server is unable to accept content encodings,
the API Gateway must be configured not to send them to that particular server.

By default, the API Gateway always accepts any supported encoding from clients, regardless of settings. For example, if
a client sends gzipped content, the API Gateway inflates it regardless of configured settings.

Delimiting the End of an HTTP Message

HTTP sessions can encode a number of request/response pairs. The rules for delimiting the end of each message and
the start of the next one are well defined, but complex due to requirements for historical compatibility, and poor support
from HTTP entities.

HTTP Requests
There are two ways to delimit the end of an HTTP request:

• A Content-Length header in the request indicates to the server the exact length of the payload entity following the
HTTP headers, and can be used by the receiving server to locate the end of that entity.

• Alternatively, an HTTP/1.1 server should accept chunked transfer encoding, which precedes each chunk of the en-

848

tity with a length, until a zero-length chunk indicates the end.

The benefit of using chunked transfer encoding is that the client does not need to know the length of the transmitted en-
tity when it sends HTTP request headers (unlike when inserting a Content-Length header). Because the API Gateway
compresses the requests on the fly, it is prohibitively expensive to calculate the content length before compressing the
body. As a result, outbound content encoding is only supported when talking to HTTP/1.1 servers that support chunked
transfer encoding.

Note
All HTTP/1.1 servers are required to support chunked transfer encoding, but unfortunately some do not, so
you can use Remote Host settings to configure whether a destination is capable of supporting the chunked
encoding in HTTP/1.1, regardless of its advertised HTTP protocol version. For more details, see the topic
on Remote Host Settings.

HTTP Responses
For HTTP responses, the server has three options for delimiting the end of the entity. The two mentioned above, and
also the ability to close the HTTP connection after the response is transmitted. The receiving client can then infer that the
entire message has been received due to the normal end of the TCP/IP session. When content encoding responses, the
API Gateway avoids using Content-Length headers in the response, and uses chunked encoding or TCP/IP connec-
tion closure to indicate the end of the response. This means that content encoding of responses is supported for HTTP/
1.0 or HTTP/1.1 clients.

Configuring Content Encoding

In the Policy Studio, you can configure HTTP content encodings in the Content Encodings dialog. You can configure
the following settings globally, per remote host, or per listening interface:

Input Encodings Specifies the content encodings that the API Gateway can
accept from peers.

Output Encodings Specifies the content encodings that the API Gateway can
apply to outgoing messages.

The available content encodings include gzip and deflate. By default, the content encodings configured in the De-
fault Settings are used. You can override this setting at the HTTP interface and Remote Host levels.

Configuring Content Encodings
To configure content encodings, perform the following steps in the Content Encodings dialog:

1. Deselect the Use Default setting.
2. Select the content encoding(s) that you wish to configure in the Available Content Encodings list on the left.
3. Click the > or >> button to move the content encoding(s) to the Content Encodings list on the right. You can also

double-click a content encoding to move it to the right or left.
4. Click OK. This displays the configured encoding(s) in the Input Encodings or Output Encodings field (for ex-

ample, gzip, deflate).

Configuring No Content Encodings
Alternatively, to configure no content encodings, deselect the Use Default setting, and click OK. This displays None in
the Input Encodings or Output Encodings field.

Compressed Content Encoding

849

Note
You can select the Use Default setting to switch to the Default Settings without losing your original con-
tent encoding selection.

Further Information

For more details on the different levels at which you can configure content encodings in the Policy Studio, see the follow-
ing topics:

• Default Settings
• Remote Host Settings
• Configuring HTTP Services

For more details on HTTP content encoding, see HTTP RFC 2616:
http://www.w3.org/Protocols/rfc2616/rfc2616.html [http://www.w3.org/Protocols/rfc2616/rfc2616.html]

Compressed Content Encoding

850

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Configuring Connection Groups
Overview

A Connection Group consists of a number of external servers that the API Gateway connects to (for example, RSA Ac-
cess Manager servers for authorization). The API Gateway attempts to connect to all the servers in the group in a round-
robin fashion, therefore providing a high degree of failover. If one or more servers are unavailable, the API Gateway can
still connect to an alternative server.

The API Gateway attempts to connect to the listed servers according to the priorities assigned to them. For example, as-
sume there are two High priority servers, one Medium priority server, and one Low priority server configured. Assuming
the API Gateway can successfully connect to the two High priority servers, it alternates requests between these two
servers only in a round-robin fashion. The other group servers are not used. However, if both High priority servers be-
come unavailable, the API Gateway then tries to use the Medium priority server, and only if this fails is the Low priority
server used.

Connection Groups are available in Policy Studio tree under the External Connections node according to the filter from
which they are available. For example, Connection Sets under the RSA ClearTrust Connection Sets node are available
in the RSA Access Manager filter. For more details, see the RSA Access Manager Authorization topic.

Configuring a Connection Group

You can configure a Connection Group using the Connection Group dialog. The external servers are listed in order of
priority in the table on the Connection Group dialog. The API Gateway attempts to connect to the server at the top of
the list first. If this server is not available, a connection attempt is made to the second server, and so on until an available
server is contacted. If none of the listed servers are available, the client is not authorized and a SOAP fault is returned to
the client.

You can increase or decrease the priorities of the listed external servers using the Up and Down buttons. You can add,
edit, and delete Access Manager servers using the Add, Edit, and Remove buttons.

Configuring a Connection

You can configure a single connection using the Connection Configuration dialog. To configure a single Access Man-
ager Connection, perform the following steps:

1. Enter the name or IP address of the machine hosting the selected Access Manager server in the Location field.
2. Enter the Port on which the specified Access Manager server is listening.
3. Select a suitable Timeout in seconds for connections to this server.
4. Select the appropriate Connection Type for the API Gateway to use when connecting to the specified Access Man-

ager server. Connections between the API Gateway and the Access Manager server can be made in the clear, over
Anonymous SSL, or Mutual SSL Authentication (two-way SSL).

5. If SSL Authentication is selected, you must select an SSL mutual authentication certificate. This certificate is
then used to authenticate to the Access Manager server.

851

Configuring Cron Expressions
Overview

The Cron Dialog enables you to create a cron expression used to trigger regularly occurring events (for example, gener-
ate a report, or block or allow messages at specified times). You can use the time tabs in this dialog to guide you through
the configuration steps. Alternatively, enter the cron expression value directly in the text boxes. When you have created
the cron expression, you can click the Test Cron button to test the value of the cron expression and see when it is next
due to fire.

For background information and details on cron expression syntax, see the section on Cron Expressions in the Policy Ex-
ecution Scheduling topic.

Creating a Cron Expression using the Time Tabs

Using the time tabs in the dialog to guide you through the configuration steps is the default option. You can create a cron
expression to trigger at the specified times using the following settings:

Seconds:
Select one of the following options:

Every Second of the Minute Fires every second of the minute. This is the default set-
ting.

Just on Second Fires only on the specified second of the minute.

Range from Second Fires over a range of seconds. For example, if the first
value is 10 and the second value is 25, the trigger starts fir-
ing on second 10 of the minute and continues to fire for 15
seconds.

Start on Second Fires on the specified second of the minute and repeats
every specified number of seconds. For example, if the first
number is 15 and the second number is 30, the trigger fires
at 15 seconds and repeats every 30 seconds until stopped.

On Multiple Seconds Fires on the specified seconds of each minute. Enter a
comma separated list of seconds (values of 0-59 inclus-
ive). For example, 10,20,30.

Minutes:
Select one of the following options:

Every Minute of the Hour Fires every minute of the hour. This is the default setting.

Just on Minute Fires only on the specified minute of the hour.

Range from Minute Fires over a range of minutes. For example, if the first
value is 5 and the second value is 15, the trigger starts fir-
ing on minute 5 of the hour and continues to fire for 10
minutes.

Start on Minute Fires on the specified minute of the hour and repeats every
specified number of minutes. For example, if the first num-
ber is 10 and the second number is 20, the trigger fires at
10 minutes and repeats every 20 minutes until stopped.

852

On Multiple Minutes Fires on the specified minute of each hour. Enter a comma-
separated list of minutes (values of 0-59 inclusive). For ex-
ample, 5,15,30.

Hours:
Select one of the following options:

Every Hour of the Day Fires every hour of the day. This is the default setting.

Just on Hour Fires only on the specified hour of the day.

Range from Hour Fires over a range of hours. For example, if the first value
is 9 and the second value is 17, the trigger starts firing on
hour 9 of the day and continues to fire for 8 hours.

Start on Hour Fires on the specified hour of the day and repeats every
specified number of hours. For example, if the first number
is 6 and the second number is 2, the trigger fires at hour 6
and repeats every 2 hours until stopped.

On Multiple Hours Fires on the specified hours of each day. Enter a comma-
separated list of hours (values of 0-23 inclusive). For ex-
ample, 6,12,18.

Multiple Ranges Fires on the specified ranges of hours of each day. Enter
comma separated ranges of hours (values of 0-23 inclus-
ive). For example, 9-1,14-17.

Day:
You must first select Day of Week or Day of Month from the drop-down list (using both of these fields in not supported).
Day of Month is selected by default.

Day of Month
Select one of the following options:

Every Day of the Month Fires every day of the month. This is the default setting.

Just on Day Fires only on the specified day of the month.

Range from Day Fires over a range of days. For example, if the first value is
7 and the second value is 14, the trigger starts firing on day
7 of the month and continues to fire for 9 days.

Start on Day Fires on the specified day of the month and repeats every
specified number of days. For example, if the first day is 2
and the second number is 5, the trigger fires at day 2 and
repeats every 5 days until stopped.

On Multiple Days Fires on the specified days of each month. Enter a comma
separated list of days (values of 1-32 inclusive). For ex-
ample, 1,14,21,28.

Last Day of the Month Fires on the last day of each month (for example, 31 Janu-
ary, or 28 February in non-leap years).

Last Week Day of the Month Fires on the last week day of each month (Monday-Friday
inclusive only).

Configuring Cron Expressions

853

Day of Week
Select one of the following options:

Every Day of the Week Fires every day of the week. This is the default setting.

Just on Day Fires only on the specified day of the week. Defaults to
SUN.

Range from Day Fires over a range of days. For example, if the first value is
MON and the second value is FRI, the trigger starts firing on
MON and continues to fire until FRI.

Start on Day Fires on the specified day of the week and repeats every
specified number of days. For example, if the first day is
TUES and the number is 3, the trigger fires on TUES and re-
peats every 3 days until stopped.

On Multiple Days Fires on the specified days of each week. Enter a comma
separated list of days. For example, MON,WED,FRI.

Last Day of the Week Fires on the last day of each week (SAT).

On the Nth Day Fires on the Nth day of the week of each month (for ex-
ample, the second FRI of each month).

Month:
Select one of the following options:

Every Month of the Year Fires every month of the year. This is the default setting.

Just on Month Fires only on the specified month of the year. Defaults to
JAN.

Range from Month Fires over a range of months. For example, if the first value
is MAY and the second value is JUL, the trigger starts firing
on MAY and continues to fire until JUL.

Start on Month Fires on the specified month of the year and repeats every
specified number of months. For example, if the first month
is FEB and the number is 2, the trigger fires in FEB and re-
peats every 2 months until stopped.

On Multiple Months Fires on the specified months of each year. Enter a
comma-separated list of months (values of JAN-DEC or
1-12 inclusive). For example, MAR,JUN,SEPT.

Year:
Select one of the following options:

Every Year Fires every year. This is the default setting.

No Specific Year Fires no specific year.

Just on Year Fires only on the specified year. Defaults to current year.

Range from Year Fires over a range of years. For example, if the first value
is 2012 and the second value is 2015, the trigger starts fir-
ing on 2012 and continues to fire until 2015.

Configuring Cron Expressions

854

Start on Year Fires on the specified year and repeats every specified
number of years. For example, if the first year is 2012 and
the number is 2, the trigger fires in 2012 and repeats every
2 years until stopped.

On Multiple Years Fires on the specified Year. Enter a comma-separated list
of years (for example, 2012,2013,2015).

Entering a Cron Expression

To enter the cron expression value directly in the dialog, click Create cron expression using edit boxes, and enter the
values in the appropriate boxes. For example, the following cron expression fires on April 27 and 28, at any time except
those received between 10:00:01 and 10:59:59:

* * 0-9,11-23 27-28 APR ?

For details on cron expression syntax and special characters, see the section on Cron Expressions in the Policy Execu-
tion Scheduling topic.

Testing the Cron Expression

When you have configured the cron expression using either approach, click the Test Cron button to test the syntax of
the cron expression value and view when it is next due to fire. If the configured cron expression is invalid, a warning dia-
log is displayed.

Results:
The test results include the following output:

Expression Displays the configured cron expression. For example, the
default is: * * 9-17 * * ? *

Next Fire Times Displays when cron expression is next due to fire. For ex-
ample, Next fire event: Fri Jul 22 10:26:09
EST 2012.

Further Information

For details on using the Cron Dialog to create cron expressions that trigger regularly occurring events (for example, gen-
erate reports, or block or allow messages at specified times), see the following topics:

• Time Filter
• Scheduled Reports

Configuring Cron Expressions

855

Database Connection
Overview

The details entered on the Configure Database Connection dialog specify how the API Gateway connects to the data-
base. The API Gateway maintains a JDBC pool of database connections to avoid the overhead of setting up and tearing
down connections to service simultaneous requests. This pool is implemented using Apache Commons DBCP
(Database Connection Pools). The settings in the Advanced - Connection pool section of this screen configure the
database connection pool. For details on how the fields on this screen correspond to specific DBCP configuration set-
tings, see the Database Connection Pool Settings table.

Configuring the Database Connection

Configure the following fields on this screen:

Name:
Enter a name for the database connection in the Name field.

URL:
Enter the fully qualified URL of the location of the database. The following table shows examples of database connection
URLs, where reports is the name of the database and DB_HOST is the IP address or host name of the machine on
which the database is running:

Database Example Connection URL

Oracle jdbc:oracle:thin:@DB_HOST:1521:reports

Microsoft SQL Server jd-
bc:sqlserver://DB_HOST:1433;DatabaseName=re
ports;integratedSecurity=false;

MySQL jdbc:mysql://DB_HOST:3306/reports

IBM DB2 jdbc:db2://DB_HOST:50000/reports

User Name:
The username to use to access the database.

Password:
The password for the user specified in the User Name field.

Initial pool size:
The initial size of the DBCP pool when it is first created.

Maximum number of active connections:
The maximum number of active connections that can be allocated from the JDBC pool at the same time. The default
maximum is 8 active connections.

Maximum number of idle connections:
The maximum number of active connections that can remain idle in the pool without extra connections being released.
The default maximum is 8 connections.

Minimum number of idle connections:
The minimum number of active connections that can remain idle in the pool without extra connections being created. The
default minimum is 8 connections.

856

Maximum wait time:
The maximum number of milliseconds that the pool waits (when there are no available connections) for a connection to
be returned before throwing an exception, or -1 to wait indefinitely. The default time is 10000ms, and a value of -1 indic-
ates an indefinite time to wait.

Time between eviction:
The number of milliseconds to sleep between runs of the thread that evicts unused connections from the JDBC pool.

Number of tests:
The number of connection objects to examine from the pool during each run of the evictor thread. The default number of
objects is 3.

Minimum idle time:
The minimum amount of time an object may sit idle in the pool before it is eligible for eviction by the idle object evictor (if
any).

Database Connection Pool Settings

The table below shows the correspondence between the fields in the Advanced - Connection pool section of the
screen and the Apache Commons DBCP configuration properties:

Field Name DBCP Configuration Property

URL url

User Name username

Password password

Initial pool size initialSize

Maximum number of active connections maxActive

Maximum number of idle connections maxIdle

Minimum number of idle connections minIdle

Maximum wait time maxWait

Time between eviction timeBetweenEvictionRunsMillis

Number of tests numTestsPerEvictionRun

Minimum idle time minEvictableIdleTimeMillis

Connection Validation

By default, when the API Gateway makes a connection, it performs a simple connection validation query. This enables
the API Gateway to test the database connection before use, and to recover if the database goes down (for example, if
there is a network failure, or if the database server reboots). The API Gateway validates connections by running a simple
SQL query (for example, a SELECT 1 query with MySQL). If it detects a broken connection, it creates a new connection
to replace it.

Test the Connection

When you have specified all the database connection details, you can click the Test Connection button to verify that the
connection to the database is configured successfully. This enables you to detect any configuration errors at design time
instead at runtime.

Database Connection

857

Database Query
Overview

The Database Statement dialog enables you to enter an SQL query, stored procedure, or function call that the API
Gateway runs to return a specific user's profile from a database.

Configuration

The following fields should be completed on this screen:

Name:
Enter a name for this database query here.

Database Query:
Enter the actual SQL query, stored procedure, or function call in the text area provided. When executed, the query
should return a single user's profile. The following are examples of SQL statements and stored procedures:

select * from users where username=${authentication.subject.id}

{ call load_user (${authentication.subject.id}, ${out.param}) }

{ call ${out.param.cursor} := p_test.f_load_user(${authentication.subject.id}) }

These examples show that you can use selectors in the query. The selector that is most commonly used in this context is
${authentication.subject.id}, which specifies the message attribute that holds the identity of the authenticated
user. For more details on selectors, see Selecting Configuration Values at Runtime.

Statement Type:
The database can take the form of an SQL query, stored procedure, or function call, as shown in the above examples.
Select the appropriate radio button depending on whether the database query is an SQL Query or a Stored procedure/
function call

Table Structure:
To process the result set that is returned by the database query, the API Gateway needs to know whether the user's at-
tributes are structured as rows or columns in the database table.

The following example of a database table shows the user's attributes (Role, Dept, and Email) structured as table
columns:

Username Role Dept Email

Admin Administrator Engineering admin@org.com

Tester Testing QA tester@org.com

Dev Developer Engineering dev@org.com

In the following table, the user's attributes have been structured as name-value pairs in table rows:

Username Attribute Name Attribute Value

Admin Role Administrator

858

Username Attribute Name Attribute Value

Admin Dept Engineering

Admin Email admin@org.com

Tester Role Testing

Tester Dept QA

Tester Email tester@org.com

Dev Role Developer

Dev Dept Engineering

Dev Email dev@org.com

If the user's attributes are structured as column names in the database table, select the attributes as column names ra-
dio button. If the attributes are structured as name-value pair in table rows, select the attribute name-value pairs in
rows option.

Database Query

859

Configuring ICAP Servers
Overview

The Internet Content Adaptation Protocol (ICAP) is a lightweight HTTP-based protocol used to optimize proxy servers,
which frees up resources and standardizes how features are implemented. For example, ICAP is typically used to imple-
ment features such as virus scanning, content filtering, ad insertion, or language translation in the HTTP proxy server
cache. Content Adaptation refers to performing a specific value-added service (for example, virus scanning) for a specific
client request and/or response.

You can configure ICAP Servers under the External Connections tree node, which you can then specify in an ICAP fil-
ter later. To configure an ICAP Server, right-click the ICAP Servers node, and select Add an ICAP Server to display the
ICAP Server Settings dialog.

General Settings

Configure the following general setting:

Name:
Enter an appropriate name for the ICAP server.

Server Settings

Configure the following settings on the Server tab:

Host The machine name or IP address of the remote ICAP host.
Defaults to the localhost (127.0.0.1).

Port The port on which the ICAP server is listening. Defaults to
1344.

Request Service The path to the service (exposed by the ICAP server) that
handles Request Modification (REQMOD) requests. The
default value is /request.

Response Service The path to the service exposed by the ICAP server that
handles Response Modification (RESPMOD) requests. The
default value is /response.

Options Service The path to the service (exposed by the ICAP server) that
handles OPTIONS requests. OPTIONS requests enable
server capabilities to be queried. The default value is /
options.

Security Settings

The following settings on the Security tab enable you to secure the connection to the ICAP server:

Trusted Certificates
When the API Gateway connects to the ICAP server over SSL, it must decide whether to trust the ICAP server's SSL
certificate. You can select a list of CA or server certificates on the Trusted Certificates tab that are considered trusted
by API Gateway when connecting to the ICAP server. The table displayed on the Trusted Certificates tab lists all certi-
ficates imported into the API Gateway Certificate Store. To trust a certificate for this particular connection, select the box
next to the certificate in the table.

860

Client SSL Authentication
In cases where the destination ICAP server requires clients to authenticate to it using an SSL certificate, you must select
a client certificate on the Client SSL Authentication tab. Select the checkbox next to the client certificate that you want
to use to authenticate to the ICAP server.

Advanced
The Ciphers field enables you to specify the ciphers that API Gateway supports. The API Gateway sends this list of sup-
ported ciphers to the destination ICAP server, which then selects the highest strength common cipher as part of the SSL
handshake. The selected cipher is then used to encrypt the data when it is sent over the secure channel.

Advanced Settings

Select one of the following ICAP server modes on the Advanced tab:

Request Modification Mode (REQMOD) Specifies that the ICAP filter in the API Gateway sends a
Request Modification (REQMOD) request to the ICAP serv-
er. The ICAP Server returns a modified version of the re-
quest, an HTTP response, or a 204 response code indicat-
ing that no modification is required. This mode is selected
by default.

Response Modification Mode (RESPMOD) Specifies that the ICAP filter in the API Gateway sends a
Response Modification (RESPMOD) request to the ICAP
server. For example, the API Gateway sends an origin
server's HTTP response to the ICAP server. The response
from the ICAP server can be an adapted HTTP response,
an error, or a 204 response code indicating that no adapta-
tion is required.

Further Information

For more details, see the ICAP Filter topic. This topic includes example policies that show an ICAP filter configured in
REQMOD and RESPMOD modes.

Configuring ICAP Servers

861

Configuring LDAP Directories
Overview

A filter that uses an LDAP directory to authenticate a user or retrieve attributes for a user must have an LDAP directory
associated with it. You can use the Configure LDAP Server dialog to configure connection details of the LDAP direct-
ory. Both LDAP and LDAPS (LDAP over SSL) are supported.

When a filter that uses an LDAP directory is run for the first time after a server refresh/restart, the server binds to the
LDAP directory using the connection details configured on the Configure LDAP Server dialog. Usually, the connection
details include the username and password of an administrator user who has read access to all users in the LDAP direct-
ory for whom you wish to retrieve attributes or authenticate.

General Configuration

Configure the following general LDAP connection settings:

Name:
Enter or select a name for the LDAP filter in the drop-down list.

URL:
Enter the URL location of the LDAP directory. The URL is a combination of the protocol (LDAP or LDAPS), the IP ad-
dress of the host machine, and the port number for the LDAP service. By default, port 389 is reserved for LDAP connec-
tions, while port 636 is reserved for LDAPS connections. For example, the following are valid LDAP directory URLs:
ldap://192.168.0.45:389
ldaps://145.123.0.28:636

Cache Timeout:
Specifies the timeout for cached LDAP connections. Any cached connection that is not used in this time period is dis-
carded. Defaults to 300000 milliseconds (5 minutes). A cache timeout of 0 means that the LDAP connection is cached in-
definitely and never times out.

Cache Size:
Specifies the number of cached LDAP connections. Defaults to 8 connections. A cache size of 0 means that no caching
is performed.

Authentication Configuration

If the configured LDAP directory requires clients to authenticate to it, you must select the appropriate authentication
method in the Authentication Type field. When the API Gateway connects to the LDAP directory, it is authenticated us-
ing the selected method. Choose one of the following authentication methods:

• None
• Simple
• Digest-MD5
• External

Important
If any of the following authentication methods connect to the LDAP server over SSL, that server's SSL certi-
ficate must be imported into the API Gateway Certificate Store.

None:

862

No authentication credentials need to be submitted to the LDAP server for this method. In other words, the client con-
nects anonymously to the server. Typically, a client is only allowed to perform read operations when connected anonym-
ously to the LDAP server. It is not necessary to enter any details for this authentication method.

Simple:
Simple authentication involves sending a user name and corresponding password in clear text to the LDAP server. Be-
cause the password is passed in clear text to the LDAP server, it is recommended to connect to the server over an en-
crypted channel (for example, over SSL).

It is not necessary to specify a Realm for the Simple authentication method. The realm is only used when a hash of the
password is supplied (for Digest-MD5). However, in cases where the LDAP server contains multiple realms, and the spe-
cified user name is present in more than one of these realms, it is at the discretion of the specific LDAP server as to
which user name binds to it.

Click the SSL Enabled checkbox to force the API Gateway to connect to the LDAP directory over SSL. To successfully
establish SSL connections with the LDAP directory, you must import the directory's certificate into the API Gateway's cer-
tificate store. You can do this using the global Certificates and Keys screen. For LDAPS (LDAP over SSL) connections,
the LDAP server's certificate must be imported into the Policy's Studio's JRE trusted store. For more details, see Testing
the Connection.

Digest-MD5:
With Digest-MD5 authentication, the server generates some data and sends it to the client. The client encrypts this data
with its password according to the MD5 algorithm. The LDAP server then uses the client's stored password to decrypt the
data and hence authenticate the user.

The Realm field is optional, but may be necessary in cases where the LDAP server contains multiple realms. If a realm is
specified, the LDAP server attempts to authenticate the user for the specified realm only.

External:
External authentication enables you to use client certificate-based authentication when connecting to an LDAP directory.
When this option is selected, you must select a client certificate from the API Gateway certificate store. The SSL En-
abled checkbox is selected automatically. This means that you must specify the URL field using LDAPS (for example,
ldaps://145.123.0.28:636). The username, password, and realm fields are not required for external authentica-
tion.

Testing the LDAP Connection

When you have specified all the LDAP connection details, you can click the Test Connection button to verify that the
connection to the LDAP directory is configured successfully. This enables you to detect any configuration errors at
design time, rather than at runtime.

Important
For LDAPS (LDAP over SSL) connections, the LDAP server's certificate must be imported into the Policy's
Studio's JRE trusted store. You can do this by performing the following steps in the Policy Studio:

1. Select the Certificates and Keys -> Certificates node in the Policy Studio tree.
2. In the Certificates panel on the right, click Create/Import, and click Import Certificate.
3. Browse to the LDAP server's certificate file, and click Open.
4. Click Use Subject on the right of the Alias Name field, and click OK. The LDAP server's certificate is

now imported into the Certificate Store, and must be added to the Java keystore.
5. In the Certificates panel, select the certificates that you wish the JRE to trust.
6. Click Export to Keystore, and browse to the cacerts file in the following directory:

Policy_Studio_Install\Win32\jre\lib\security\cacerts

7. Select the cacerts file.
8. Click Save.

Configuring LDAP Directories

863

9. You are prompted for a password. The default password for the JRE is changeit.
10. Click OK.
11. Restart the Policy Studio.
12. You can now click Test Connection to test the connection to the LDAP directory server over SSL.

Additional JNDI Properties

You can also specify optional JNDI properties as simple name-value pairs. Click the Add button to specify properties in
the dialog.

Configuring LDAP Directories

864

RADIUS Clients
Overview

The API Gateway provides support for integration with remote systems over the Remote Authentication Dial In User Ser-
vice (RADIUS) protocol. RADIUS is a client-server network protocol that provides centralized authentication and author-
ization for clients connecting to remote services. For more details, see the RADIUS specification [ht-
tp://tools.ietf.org/html/rfc2865].

To configure a client connection to a remote server over the RADIUS protocol, under the External Connections tree
node in the Policy Studio, select RADIUS Clients -> Add a RADIUS Client. This topic explains how to configure the set-
tings the RADIUS Client dialog.

For details on how to configure a RADIUS Authentication Repository, see the Authentication Repository topic.

Configuration

Configure the following fields in the RADIUS Client dialog:

• Name:
Enter an appropriate name for the RADIUS client to display in the Policy Studio.

• Host name:
Enter the host name used by the RADIUS client.

• Client port:
Enter the port number used by the RADIUS client.

• RADIUS servers:
This field displays a list of configured RADIUS servers. To add a server to the list, click Add, and complete the fol-
lowing fields:

Name Name of the RADIUS server.

Port Port number used by the RADIUS server.

Secret Shared secret used to access the RADIUS server.

Response timeout (sec) Response timeout in seconds before the connection to the
server is closed.

Retransmit count Number of times retransmission is attempted before the
connection to the server fails.

865

http://tools.ietf.org/html/rfc2865
http://tools.ietf.org/html/rfc2865
http://tools.ietf.org/html/rfc2865

SAML PDP Response XML-Signature Verification
Overview

A SAML assertion contains identity information about an end-user. Depending on its type, the assertion can convey proof
of an authentication event, details of user attributes, or authorization information about the end-user. Typically such as-
sertions are issued by a SAML PDP (Policy Decision Point) after a client authenticates to it or requests access to a spe-
cified resource.

Clients use the SAML Protocol (SAMLP) to obtain SAML assertions from SAML PDPs. The SAMLP request usually con-
tains identity information about the end-user. The PDP then uses this information when generating the assertion, which is
then returned in a SAMLP response.

The PDP will usually sign the assertion and/or the SAMLP response as proof that only it could have issued the assertion/
response, and also to guarantee the integrity of the assertion. When the API Gateway receives the SAMLP response
from the PDP, it can validate the signature on the assertion or on the response.

Configuration

Configure the following fields to validate the XML Signature over the SAMLP response:

Signature Location:
Because there may be multiple signatures contained within the SAMLP response, it is necessary to specify which signa-
ture the API Gateway should validate. The signature can be extracted from one of three places:

• From the SOAP header
• Using WS-Security Actors
• Using XPath

Select the appropriate option from the dropdown. Take a look at the Signature Location tutorial for more information on
configuring this section.

What Must Be Signed:
This section defines the content that must be signed in order for the signature on the SAMLP response to be considered
valid. This ensures that the client has signed something meaningful (i.e. part of the SAMLP response) as opposed to
some arbitrary data that would pass a "blind" signature validation.

An XPath expression is used to identify the nodeset that should be signed. To specify that nodeset, select either an exist-
ing XPath expression from the XPath Expression dropdown list, or add a new one using the Add button. XPath expres-
sions can also be edited or removed with the Edit and Delete buttons respectively.

Signer's Public Key/Certificate
Select the Certificate in Message radio button in order to use the certificate from the XML-Signature specified in the
Signature Location section. The certificate will be extracted from the <KeyInfo> block.

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="Sample">
...
<dsig:KeyInfo>
<dsig:X509Data>

<dsig:X509SubjectName>CN=Sample User...</dsig:X509SubjectName>
<dsig:X509Certificate>
MIIE EQgJ

</dsig:X509Certificate>

866

</dsig:X509Data>
<dsig:KeyValue>

<dsig:RSAKeyValue>
<dsig:Modulus>

AMfb2tT53GmMiD
...
NmrNht7iy18=

</dsig:Modulus>
<dsig:Exponent>AQAB</dsig:Exponent>
</dsig:RSAKeyValue>

</dsig:KeyValue>
</dsig:KeyInfo>

</dsig:Signature>

Clients may not always want to include their public keys in their signatures. In such cases, the public key must be re-
trieved from a certificate stored either in a specified LDAP directory or in the the API Gateway's global Certificate Store.

For example, the following signed XML message does not include the signatory's certificate. Instead only the Common
Name of the signatory's certificate is included. In this case, the API Gateway must obtain the certificate from an LDAP
directory or the Certificate Store to validate the signature on the assertion.

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="User">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="">
<dsig:Transforms>
<dsig:Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
<dsig:XPath>ancestor-or-self::soap-env:Body</dsig:XPath>
</dsig:Transform>
<dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n"/>

</dsig:Transforms>
<dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>rvJMkZ1RDo3pNfqCUBa4Qhs8i+M=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>

AXL2gKhqqKwcKujVPftVoztySvtCdARGf97Cjt6Bbpf0w8QFiNuLJncQVnKB
cQ+91KvudYZ/Sk8u7tXhoEiLvNwg76B2STPh+ypEWO+J7OSPedlUdnfVRRvW
vjYLwJVjGNZ+mMTxvfO1wwcIb2Hg94n1BOaeBrNJ+2uO4i87W5TyufAGI+V8
S6oSpPc5KQeHLXoyHS2+fXyqReSiwdhOeli4D4xT+HbjRgYJIwIikXn2k1Fr
D/hnd1/xVf/LjrOwoY9id8W3IcZAzMIRh5SBZjWHYOQzk79xy4YDpzNVYIOB
laAFqzg9G+Z4VYj+RdgrIVHhOXt+mq+fGZV6VheWGQ==

</dsig:SignatureValue>
<dsig:KeyInfo>
<dsig:KeyName>

CN=User,OU=R&D,O=Company Ltd.,L=Dublin 4,ST=Dublin,C=IE
</dsig:KeyName>

</dsig:KeyInfo>
</dsig:Signature>
</soap-env:Header>

<soap-env:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</soap-env:Body>
</soap-env:Envelope>

SAML PDP Response XML-Signature Verification

867

To retrieve a client certificate from an LDAP directory, select a pre-configured one from the LDAP Source dropdown, or
add/edit a new/existing LDAP directory by clicking the Add/Edit button.

Alternatively, select a certificate from the Certificate Store by selecting the Certificate in Store radio button and clicking
on the Select button. This certificate will then be associated with the incoming message so that all subsequent certific-
ate-based filters will use this user's certificate.

SAML PDP Response XML-Signature Verification

868

Signature Location
Overview

A given XML message can contain several XML Signatures. Consider an XML document (for example, a company policy
approval form) that must be digitally signed by a number of users (for example, department managers) before being sub-
mitted to the ultimate Web Service (for example, a company policy approval Web Service). Such a message will contain
several XML Signatures by the time it is ready to be submitted to the Web Service.

In such cases, where multiple signatures will be present within a given XML message, it is necessary to specify which
signature the API Gateway should use in the validation process.

Configuration

The API Gateway can extract the signature from an XML message using several different methods. The signature can be
extracted:

• Using WS-Security Actors
• From the SOAP header
• Using XPath

Select the most appropriate method from the Signature Location dropdown. Your selection will depend on the types of
SOAP messages that you expect to receive. For example, if incoming SOAP messages will contain an XML Signature
within a WS-Security block, you should choose this option from the dropdown.

Using WS-Security Actors:
If the signature is present in a WS-Security block:

1. Select WS-Security block from the Signature Location dropdown list.
2. Select a SOAP Actor from the Select Actor/Role(s) dropdown. Each Actor uniquely identifies a separate WS-

Security block. By selecting Current actor only from the dropdown, the WS-Security block with no Actor will be taken.
3. In cases where there may be multiple signatures within the WS-Security block, it is necessary to extract one using

the Signature Position field.

The following is a skeleton version of a message where the XML Signature is contained in the sample WS-Security
block, (soap-env:actor="sample"):

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"

s:actor="sample">
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="s1">
....

</dsig:Signature>
</wsse:Security>

</s:Header>
<s:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</s:Body>
</s:Envelope>

SOAP Header:
If the signature is present in the SOAP Header:

869

1. Select SOAP message header from the Signature Location dropdown list.
2. If there is more than one signature in the SOAP Header, then it is necessary to specify which signature the API

Gateway should use. Specify the appropriate signature by setting the Signature Position field.

The following is an example of an XML message where the XML Signature is contained within the SOAP header:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="s1">

....
</dsig:Signature>

</s:Header>
<s:Body>
<ns1:getTime xmlns:ns1="urn:timeservice">
</ns1:getTime>

</s:Body>
</s:Envelope>

Using XPath:
Finally, an XPath expression can be used to locate the signature.

1. Select Advanced (XPath) from the Signature Location dropdown list.
2. Select an existing XPath expression from the dropdown, or add a new one by clicking on the Add button. XPath ex-

pressions can also be edited or removed with the Edit and Remove buttons respectively.

The default First Signature XPath expression takes the first signature from the SOAP Header. The expression is as fol-
lows:

XPath Expression:

//s:Envelope/s:Header/dsig:Signature[1]

To edit this expression, click the Edit button to display the Enter XPath Expression dialog.

An example of a SOAP message containing an XML Signature in the SOAP header is provided below. The following
XPath expression instructs the API Gateway to extract the first signature from the SOAP header:

XPath Expression:

//s:Envelope/s:Header/dsig:Signature[1]

Because the elements referenced in the expression (Envelope and Signature) are prefixed elements, you must
define the namespace mappings for each of these elements as follows:

Prefix URI

s http://schemas.xmlsoap.org/soap/envelope/

dsig http://www.w3.org/2000/09/xmldsig#

Signature Location

870

<?xml version="1.0" encoding="UTF-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="s1">
....

</dsig:Signature>
</s:Header>
<s:Body>
<product xmlns="http://www.oracle.com">
<name>SOA Product*</name>
<company>Company</company>
<description>Web Services Security</description>
</product>

</s:Body>
</s:Envelope>

When adding your own XPath expressions, you must be careful to define any namespace mappings in a manner similar
to that outlined above. This avoids any potential clashes that might occur where elements of the same name, but belong-
ing to different namespaces are present in an XML message.

Signature Location

871

SMTP Servers
Overview

You can configure the API Gateway to use a specified Simple Mail Transfer Protocol (SMTP) server to relay messages
to an email recipient. You can configure the SMTP server as a global configuration item under the External Connec-
tions node. The SMTP server is then available for selection in the SMTP filter in the Routing category.

To configure an SMTP server, right-click the External Connections -> SMTP Servers node, and select Add an SMTP
Server. Alternatively, in the SMTP filter screen, click the button beside the SMTP Server Settings field, right-click the
SMTP Servers node, and select Add an SMTP Server.

Configuration

Configure the following fields in the SMTP Server settings dialog:

Name:
Enter an appropriate name for the SMTP server.

SMTP Server Settings
Specify the following fields:

• SMTP Server Hostname:
Enter the hostname or IP address of the SMTP server.

• Port:
Enter the SMTP port on the specified server hostname. By default, SMTP servers run on port 25.

• Connection Security:
Select the security required for the connection to the SMTP server (SSL, TLS, or NONE). Defaults to NONE.

Log on using
If you are required to authenticate to the SMTP server, specify the following fields:

• User Name:
Enter the user name of a registered user that can access the SMTP server.

• Password:
Enter the password for the user name specified.

Note
The SMTP server connection supports a simple username/password type of authentication. Microsoft Win-
dows NT LAN Manager (NTLM) authentication is not supported.

872

Configuring a Transparent Proxy
Overview

On Linux systems with the TPROXY kernel option enabled, you can configure the API Gateway as a transparent proxy.
This enables the API Gateway to present itself as having the server's IP address from the point of view of the client, and/
or having the client's IP address from the point of view of the server. This can be useful for administrative or network in-
frastructure purposes (for example, to keep using existing client/server IP addresses, and for load-balancing).

You can configure transparent proxy mode both for inbound and outbound API Gateway connections:

• Incoming interfaces can listen on IP addresses that are not assigned to any interface on the local host.
• Outbound calls can present the originating client's IP address to the destination server.

Both of these options act independently of each other.

Configuring Transparent Proxy Mode for Incoming Interfaces

To enable transparent proxy mode on an incoming interface, perform the following steps:

1. In the Policy Studio tree view, expand the Listeners -> Oracle API Gateway nodes.
2. Right-click your service, and select Add Interface -> HTTP or HTTPS to display the appropriate dialog (for example,

Configure HTTP Interface).
3. Select the checkbox labeled Transparent Proxy (allow bind to foreign address). When selected, the value in the

Address field can specify any IP address, and incoming traffic for the configured address/port combinations is
handled by the API Gateway.

For more details on configuring interfaces, see Configuring HTTP Services.

Configuring Transparent Proxy Mode for Outgoing Calls

Transparent proxy mode for outgoing calls must be enabled at the level of a connection filter in a policy. To enable trans-
parent proxy mode for outbound calls, perform the following steps:

1. Ensure that your policy contains a connection filter (for example, Connect to URL or Connection, available from
the Routing category in the filter palette).

2. In your connection filter, select the Advanced tab.
3. Select the checkbox labeled Transparent Proxy (present client's IP address to server). When selected, the IP

address of the original client connection that caused the policy to be invoked is used as the local address of the TCP
connection to the destination server.

For more details on configuring connection filters, see Connection and Connect to URL .

Configuration Example

A typical configuration example of transparent proxy mode is shown as follows:

873

In this example, the remote client’s address is 172.16.0.99, and it is attempting to connect to the server at
10.0.0.99, port 80. The front-facing firewall is configured to route traffic for 10.0.0.99 through the API Gateway at
address 192.168.0.9. The server is configured to use the API Gateway at address 10.0.0.1 as its default IP router.

The API Gateway is multi-homed, and sits on both the 192.168.0.0/24 and 10.0.0.0/24 networks. It is configured
with a listening interface at address 10.0.0.99:80, with transparent proxy mode switched on, as shown in the following
Configure HTTP Interface dialog:

The API Gateway accepts the incoming call from the client, and processes it locally. However, there is no communication
with the server yet. The API Gateway can process the call to completion and respond to the client—it is masquerading as
the server.

If the API Gateway invokes a connection filter when processing this call (with transparent proxying enabled), the connec-
tion filter consults the originating address of the client, and binds the local address of the new outbound connection to
that address before connecting. The server then sees the incoming call on the API Gateway originating from the client

Configuring a Transparent Proxy

874

172.16.0.99), rather than either of the API Gateway's IP addresses. The following dialog shows the example configur-
ation for the Connect to URL filter:

The result is a transparent proxy, where the client sees itself as connecting directly to the server, and the server sees an
incoming call directly from the client. The API Gateway processes two separate TCP connections, one to the client, one
to the server, with both masquerading as the other on each connection.

Note
Either side of the transparent proxy is optional. By configuring the appropriate settings for the incoming in-
terface or the connection filter, you can masquerade only to the server, or only to the client.

Configuring a Transparent Proxy

875

Retrieving WSDL Files from a UDDI Registry
Overview

A Web Services Description Language (WSDL) file defines the interface to a Web Service, or list of services. It lists the
operations exposed by the service, the wire format for operation requests, and the data types in the request body. It also
specifies the location of the Web Service as a URL that clients can access to use the exposed operations. For example,
the Policy Studio can extract this information from the WSDL file to generate the following filters, which can be incorpor-
ated into policies:

• Relative Path Resolver
• SOAPAction Resolver
• SOAP Operation Resolver
• Connection Handler
• Static Router
• Schema Validation

You can use WSDL files to register Web Services in the Web Services Repository and to add XML Schemas to the
global Schema Cache. The Policy Studio can retrieve a WSDL file from the file system, from a URL, or from a UDDI re-
gistry. This topic explains how to retrieve a WSDL file from a UDDI registry. For details on how to register WSDL files,
see Web Service Repository. For details on how to publish WSDL files, see Publishing WSDL Files to a UDDI Registry.

You can also browse a UDDI registry in the Policy Studio directly without registering a WSDL file. Under the Business
Services node in the tree, right-click the Web Services Repository node, and select Browse UDDI Registry.

UDDI: A Brief Introduction

Universal Description, Discovery and Integration (UDDI) is an OASIS-led initiative that enables businesses to publish and
discover Web Services on the Internet. A business publishes services that it provides to a public XML-based registry so
that other businesses can dynamically look up the registry and discover these services. Enough information is published
to the registry to enable other businesses to find services and communicate with them. In addition, businesses can also
publish services to a private or semi-private registry for internal use.

A business registration in a UDDI registry includes the following components:

• Green Pages:
Contains technical information about the services exposed by the business

• Yellow Pages:
Categorizes the services according to standard taxonomies and categorization systems

• White Pages:
Gives general information about the business, such as name, address, and contact information

You can search the UDDI registry according to a whole range of search criteria, which is of key importance to the Policy
Studio. You can search the registry to retrieve the WSDL file for a particular service. The Policy Studio can then use this
WSDL file to create a policy for the service, or to extract a schema from the WSDL to check the format of messages at-
tempting to use the operations exposed by the Web Service.

For a more detailed description of UDDI, see the UDDI specification. In the meantime, the next section gives high-level
definitions of some of the terms displayed in the Policy Studio interface.

UDDI Definitions

Because UDDI terminology is used in Policy Studio screens such as the Import WSDL wizard, the following list of defini-

876

tions explains some common UDDI terms. For more detailed explanations, see the UDDI specification.

businessEntity
This represents all known information about a particular business (for example, name, description, and contact informa-
tion). A businessEntity can contain a number of businessService entities. A businessEntity may have an
identifierBag, which is a list of name-value pairs for identifiers, such as Data Universal Numbering System (DUNS)
numbers or taxonomy identifiers. A businessEntity may also have a categoryBag, which is a list of name-value
pairs used to tag the businessEntity with classification information such as industry, product, or geographic codes.
There is no mapping for a WSDL item to a businessEntity. When a WSDL file is published, you must specify a
businessEntity for the businessService.

businessService
A businessService represents a logical service classification, and is used to describe a Web Service provided by a
business. It contains descriptive information in business terms outlining the type of technical services found in each
businessService element. A businessService may have a categoryBag, and may contain a number of bind-
ingTemplate entities. In the WSDL to UDDI mapping, a businessService represents a wsdl:service. A busi-
nessService has a businessEntity as its parent in the UDDI registry.

bindingTemplate
A bindingTemplate contains pointers to the technical descriptions and the access point URL of the Web Service, but
does not contain the details of the service specification. A bindingTemplate may contain references to a number of
tModel entities, which do include details of the service specification. In the WSDL to UDDI mapping, a bindingTem-
plate represents a wsdl:port.

tModel
A tModel is a Web service type definition, which is used to categorize a service type. A tModel consists of a key, a
name, a description, and a URL. tModels are referred to by other entities in the registry. The primary role of the tModel
is to represent a technical specification (for example, WSDL file). A specification designer can establish a unique technic-
al identity in a UDDI registry by registering information about the specification in a tModel. Other parties can express
the availability of Web services that are compliant with a specification by including a reference to the tModel in their
bindingTemplate data.

This approach facilitates searching for registered Web services that are compatible with a particular specification. tMod-
els are also used in identifierBag and categoryBag structures to define organizational identity and various classi-
fications. In this way, a tModel reference represents a relationship between the keyed name-value pairs to the super-
name, or namespace in which the name-value pairs are meaningful. A tModel may have an identifierBag and a
categoryBag. In the WSDL to UDDI mapping, a tModel represents a wsdl:binding or wsdl:portType.

Identifier
The purpose of identifiers in a UDDI registry is to enable others to find the published information using more formal iden-
tifiers such as DUNS numbers, Global Location Numbers (GLN), tax identifiers, or any other kind of organizational identi-
fiers, regardless of whether these are private or shared.

The following are identification systems used commonly in UDDI registries:

Identification System Name tModel Key

Dun and Bradstreet D-U-N-S Number dnb-com:D-U-N-S uuid:8609C81E-EE1F-4D5A-B202-
3EB13AD01823

Thomas Registry Suppliers thomasregister-
com:supplierID

uuid:B1B1BAF5-2329-43E6-AE13-
BA8E97195039

Category
Entities in the registry may be categorized according to categorization system defined in a tModel (for example, geo-
graphical region). The businessEntity, businessService, and tModel types have an optional categoryBag.
This is a collection of categories, each of which has a name, value, and tModel key.

Retrieving WSDL Files from a UDDI Registry

877

The following are categorization systems used commonly in UDDI registries:

Categorization System: Name: tModel Key:

UDDI Type Taxonomy uddi-org:types uuid:C1ACF26D-9672-4404-9D70-
39B756E62AB4

North American Industry Classification
System (NAICS) 1997 Release

ntis-gov:naics:1997 uuid:C0B9FE13-179F-413D-8A5B-
5004DB8E5BB2

Example tModel Mapping for WSDL portType
The following shows an example tModel mapped for a WSDL portType:

<tModel tModelKey="uuid:e8cf1163-8234-4b35-865f-94a7322e40c3" >
<name>

StockQuotePortType
</name>
<overviewDoc>

<overviewURL>
http://location/sample.wsdl

<overviewURL>
<overviewDoc>

<categoryBag>
<keyedReference

tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"
keyName="portType namespace"

keyValue="http://example.com/stockquote/" />
<keyedReference

tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"
keyName="WSDL type"

keyValue="portType" />
</categoryBag>

</tModel>

In this example, the tModel name is the same as the local name of the WSDL portType (in this case, StockQuote-
PortType), and the overviewURL links to the WSDL file. The categoryBag specifies the WSDL namespace, and
shows that the tModel is for a portType.

Configuring a Registry Connection

You first need to select the UDDI registry that you want to search for WSDL files. Complete the following fields to select
or add a UDDI registry:

Select Registry:
Select an existing UDDI registry to browse for WSDL files from the Registry drop-down list. To configure the location of
a new UDDI registry, click Add. Similarly, to edit an existing UDDI registry location, click Edit. Then configure the fields
in the Registry Connection Details dialog. For more details, see Connecting to a UDDI Registry.

Select Locale:
You can select an optional language locale from this list. The default is No Locale.

WSDL Search

When you have configured a UDDI registry connection, you can search the registry using a variety of different search op-
tions on the Search tab. WSDL Search is the default option. This enables you to search for the UDDI entries that the

Retrieving WSDL Files from a UDDI Registry

878

WSDL file is mapped to. You can also do this using the Advanced Search option. The following different types of WSDL
searches are available:

WSDL portType (UDDI tModel):
Searches for a uddi:tModel that corresponds to a wsdl:portType. You can enter optional search criteria for specific
categories in the uddi:tModel (for example, Namespace of portType).

WSDL binding (UDDI tModel):
Searches for a uddi:tModel that corresponds to a wsdl:binding. You can enter optional search criteria for specific
categories in the uddi:tModel (for example, Name of binding, or Binding Transport Type).

WSDL service (UDDI businessService):
Searches for a uddi:businessService that corresponds to a wsdl:service. You can enter optional search criteria
for specific categories in the uddi:businessService (for example, Namespace of service).

WSDL port (UDDI bindingTemplate):
Searches for a uddi:bindingTemplate that corresponds to a wsdl:port. This search is more complex because a
serviceKey is required to find a uddi:bindingTemplate. This means that at least two queries are carried out, first
to find the uddi:businessService, and another to find the uddi:bindingTemplate.

For example, a bindingTemplate contains a reference to the tModel for the wsdl:portType. You can use the
tModel key to find all implementations (bindingTemplates) for that wsdl:portType. The search looks for busi-
nessServices that have bindingTemplates that refer to the tModel for the wsdl:portType. Then with the ser-
viceKey, you can find the bindingTemplate that refers to the tModel for the wsdl:portType.

In all cases, click Next to start the WSDL search. The Search Results tree shows the tModel URIs as top-level nodes.
These URIs are all WSDL URIs, and you can use these to generate policies on import by selecting the URI, and clicking
the Finish button.

You can click any of the nodes in the tree to display detailed properties about that node in the table below the Search
Results tree. The properties listed depend on the type of the node that is selected. You can also right-click a node to edit
it (for example, add a description, add a category or identifier node, or delete a duplicate node).

Quick Search

The Quick Search option enables you to search the UDDI registry for a specific tModel name or category.

tModel Name:
You can enter a tModel Name for a fine-grained search. This is a partial or full name pattern with wildcard searching as
specified by the SQL-92 LIKE specification. The wildcard characters are percent %, and underscore _, where an under-
score matches any single character and a percent matches zero or more characters.

Categories:
You can select one of the following options to search by:

wsdlSpec Search for tModels classified as wsdlSpec (uddi-
org:types category set to wsdlSpec). This is the default.

Reusable WS-Policy Expressions Search for tModels classified as reusable WS-Policy Ex-
pressions.

All Search for all tModels.

Click Next to start the search. The Search Results tree shows the tModel URIs as top-level nodes. These URIs are all
WSDL URIs, and you can use these to generate policies on import by selecting the URI, and clicking the Finish button.

You can click any of the nodes in the tree to display detailed properties about that node in the table below the Search

Retrieving WSDL Files from a UDDI Registry

879

Results tree. The properties listed depend on the type of the node that is selected. You can also right-click a node to edit
it (for example, add a description, add a category or identifier node, or delete a duplicate node).

Name Search

The Name Search option enables you to search for a businessEntity, businessService or tModel by name. In
the Select Registry Data Type, select one of the following UDDI entity levels to search for:

• businessEntity
• businessService
• tModel

You can enter a name in the Name field to narrow the search. You can also use wildcards in the name. The name ap-
plies to a businessEntity, businessService, or tModel, depending on which registry entity type has been selec-
ted. If no name is entered, all entities of the selected type are retrieved.

Click the Search button to start the search. The search results display the matching entities in the tree. For example, if
you enter MyTestBusiness for Name, and select businessEntity, this searches for a businessEntity with the
name MyTestBusiness. Child nodes of the matching businessEntity nodes are also shown. tModels are dis-
played in the results if any child nodes of the businessEntity refer to tModels. Only referred to tModels are dis-
played. The same applies if you search for a businessService. If you select tModel, and search for tModels, only
tModels are displayed.

Important
The tModel URIs shown in the resulting tree may not all be categorized as wsdlSpec according to the
uddi-org:types categorization system. You can choose to load any of these URIs as a WSDL file, but
you are warned if it is not categorized as wsdlSpec.

As before, you can click any node in the results tree to display properties about that node in the table. You can also right-
click a node to edit it (for example, add a description, add a category or identifier node, or delete a duplicate node).

UDDI v3 Name Searches
By default, a UDDI v3 name search is an exact match. To perform a search using wildcards (for example, %, _, and so
on), you must select the approximateMatch find qualifier in the Advanced Options tab. This applies to anywhere you
enter a name for search purposes (for example, Name Search, Quick Search, and Advanced Search).

Advanced Search

The Advanced Search option enables you to search the UDDI registry using any combination of Names, Keys, tMod-
els, Discovery URLs, Categories, and Identifiers. You can also specify the entity level to search for in the tree. All of
these options combine to provide a very powerful search facility. You can specify search criteria for any of the categories
listed above by right-clicking the folder node in the Enter Search Criteria tree, and selecting the Add menu option. You
can enter more than one search criteria of the same type (for example, two Key search criteria).

Important
The tModel URIs shown in the resulting tree may not all be categorized as wsdlSpec according to the
uddi-org:types categorization system. You can choose to load any of these URIs as a WSDL file, but
you are warned if it is not categorized as wsdlSpec.

The following options enable you to add a search criteria for each of the types listed in the Enter Search Criteria tree.
All search criteria are configured by right-clicking the folder node, and selecting the Add menu option.

Retrieving WSDL Files from a UDDI Registry

880

Names:
Enter a name to be used in the search in the Name field in the Name Search Criterion dialog. For example, the name
could be the businessEntity name. The name is a partial or full name pattern with wildcards allowed as specified by the
SQL-92 LIKE specification. The wildcard characters are percent %, and underscore _, where an underscore matches any
single character and a percent matches zero or more characters. A name search criterion can be used for busines-
sEntity, businessService, and tModel level searches.

Keys:
In the Key Search Criterion dialog, you can specify a key to search the registry for in the Key field. The key value is a
Universally Unique Identifier (UUID) value for a registry object. You can use the Key Search Criterion on all levels of
searches. If one or more keys are specified with no other search criteria, the keys are interpreted as the keys of the se-
lected type of registry object and used for a direct lookup, instead of a find/search operation. For example, if you enter
key1 and key2, and select the businessService entity type, the search retrieves the businessService object with
key key1, and another businessService with key key2.

If you enter a key with other search criteria, a key criterion is interpreted as follows:

• For a businessService entity lookup, the key is the businessKey of the services.
• For a bindingTemplate entity lookup, the key is the serviceKey of the binding templates.
• Not applicable for any other object type.

tModels:
You can enter a key in the tModel Key field on the tModel Search Criterion screen. The key entered should correspond
to the UUID of the tModel associated with the type of object you are searching for. A tModel search criterion may be
used for businessEntity, businessService, and bindingTemplate level searches.

Discovery URLs:
Enter a URL in the Discovery URL field on the Discovery URL Search Criterion dialog. The Use Type field is optional,
but can be used to further fine-grain the search by type. You can use a Discovery URL search criterion for busines-
sEntity level searches only.

Categories:
Select a previously configured categorization system from the Type drop-down list in the Category Search Criterion
dialog. This pre-populated with a list of common categorization systems. You can add a new categorization system using
the Add button.

In the Add/Edit Category dialog, enter a Name, Description, and UUID for the new category type in the fields provided.
When the categorization system has been selected or added, enter a value to search for in the Value field. The Name
field is optional.

Identifiers:
Select a previously configured identification system from the Type drop-down list in the Identifier Search Criterion dia-
log. This is pre-populated with well-known identification systems. To add a new identification system, click the Add but-
ton.

In the Add/Edit Identifier dialog, enter a Name, Description, and UUID for the new identifier in the fields provided.

Select Registry Data Type:
Select one of the following UDDI entity levels to search for:

• businessEntity
• businessService
• bindingTemplate
• tModel

Retrieving WSDL Files from a UDDI Registry

881

The search also displays child nodes of the matching nodes. tModels are also returned if they are referred to.

Advanced Options

This tab enables you to configure various aspects of the search conditions specified on the previous tabs. The following
options are available:

UDDI Find Qualifier: Description:

andAllKeys By default, identifier search criteria are ORed together.
This setting ensures that they are ANDed instead. This is
already the default for categoryBag and tModelBag.

approximateMatch (v3) This applies to a UDDI v3 registry only. Specifies wildcard
searching as defined by the uddi-
org:approximatematch:SQL99 tModel, which means
approximate matching where percent sign (%) indicates any
number of characters, and underscore (_) indicates any
single character. The backslash character (\) is an escape
character for the percent sign, underscore and backslash
characters. This option adjusts the matching behavior for
name, keyValue and keyName (where applicable).

binarySort (v3) This applies to a UDDI v3 registry only. Enables greater
speed in sorting, and causes a binary sort by name, as rep-
resented in Unicode codepoints.

bindingSubset (v3) This applies to a UDDI v3 registry only. Specifies that the
search uses only categoryBag elements from contained
bindingTemplate elements in the registered data, and
ignores any entries found in the categoryBag that are not
direct descendents of registered businessEntity or
businessService elements.

caseInsensitiveMatch (v3) This applies to a UDDI v3 registry only. Specifies that that
the matching for name, keyValue and keyName (where
applicable) should be performed without regard to case.

caseInsensitiveSort (v3) This applies to a UDDI v3 registry only. Specifies that the
result set should be sorted without regard to case. This
overrides the default case sensitive sorting behavior.

caseSensitiveMatch (v3) This applies to a UDDI v3 registry only. Specifies that that
the matching for name, keyValue and keyName (where
applicable) should be case sensitive. This is the default be-
havior.

caseSensitiveSort (v3) This applies to a UDDI v3 registry only. Specifies that the
result set should be sorted with regard to case. This is the
default behavior.

combineCategoryBags Makes the categoryBag entries of a businessEntity
behave as if all categoryBags found at the busines-
sEntity level and in all contained or referenced busi-
nessServices are combined. Searching for a category
yields a positive match on a registered business if any of
the categoryBags contained in a businessEntity
(including the categoryBags in contained or referenced
businessServices) contain the filter criteria.

diacriticInsensitiveMatch (v3) This applies to a UDDI v3 registry only. Specifies that
matching for name, keyValue and keyName (where ap-
plicable) should be performed without regard to diacritics.

Retrieving WSDL Files from a UDDI Registry

882

Support for this qualifier by nodes is optional.

diacriticSensitiveMatch (v3) This applies to a UDDI v3 registry only. Specifies that
matching for name, keyValue and keyName (where ap-
plicable) should be performed with regard to diacritics. This
is the default behavior.

exactMatch (v3) This applies to a UDDI v3 registry only. Specifies that only
entries with name, keyValue and keyName (where applic-
able) that exactly match the name argument passed in,
after normalization, are returned. This qualifier is sensitive
to case and diacritics where applicable. This is the default
behavior.

exactNameMatch (v2) This applies to a UDDI v2 registry only. Specifies that the
name entered as part of the search criteria must exactly
match the name specified in the UDDI registry.

orAllKeys By default, tModel and category search criteria are AN-
Ded. This setting ORs these criteria instead.

orLikeKeys When a bag container contains multiple keyedReference
elements (categoryBag or identifierBag), any
keyedReference filters from the same namespace (for
example, with the same tModelKey value) are ORed to-
gether rather than ANDed. For example, this enables you
to search for any of these four values from this
namespace, and any of these two values from
this namespace.

serviceSubset Causes the component of the search that involves categor-
ization to use only the categoryBags from directly con-
tained or referenced businessServices in the registered
data. The search results return only those businesses that
match based on this modified behavior, in conjunction with
any other search arguments provided.

signaturePresent (v3) This applies to a UDDI v3 registry only. This restricts the
result to entities that contain, or are contained in, an XML
Digital Signature element. The Signature element
should be verified by the client. This option, or the pres-
ence of a Signature element, should only be used to re-
fine a search result, and should not be used as a verifica-
tion mechanism by UDDI clients.

sortByDateAsc (v3) This applies to a UDDI v3 registry only. Sorts the results al-
phabetically in order of ascending date.

sortByDateDsc (v3) This applies to a UDDI v3 registry only. Sorts the results al-
phabetically in order of descending date.

sortByNameAsc Sorts the results alphabetically in order of ascending name.

sortByNameDsc Sorts the results alphabetically in order of descending
name.

suppressProjectedServices (v3) This applies to a UDDI v3 registry only. Specifies that ser-
vice projections must not be returned when searching for
services or businesses. This option is enabled by default
when searching for a service without a businessKey.

UTS-10 (v3) This applies to a UDDI v3 registry only. Specifies sorting of
results based on the Unicode Collation Algorithm on ele-
ments normalized according to Unicode Normalization

Retrieving WSDL Files from a UDDI Registry

883

Form C. A sort is performed according to the Unicode Col-
lation Element Table in conjunction with the Unicode Colla-
tion Algorithm on the name field, and normalized using Uni-
code Normalization Form C. Support for this qualifier by
nodes is optional.

Publish

Click the Publish radio button to view the Published UDDI Entities Tree View. This enables you to manually publish
UDDI entities to the specified UDDI registry (for example, businessEntity, businessService, bindingTemplate,
and tModel entities). You must already have the appropriate permissions to write to the UDDI registry. Adding a busi-
nessEntity
To add a business, perform the following steps:

1. Right-click the tree view, and select Add businessEntity.
2. In the Business dialog, enter a Name and Description for the business.
3. Click OK.
4. You can right-click the new businessEntity node to add child UDDI entities in the tree (for example, busi-

nessService, Category, and Identifier entities).

Adding a tModel
To add a tModel, perform the following steps:

1. Right-click the tree view, and select Add tModel.
2. In the tModel dialog, enter a Name, Description, and Overview URL for the tModel. For example, you can use

the Overview URL to specify the location of a WSDL file.
3. Click OK.
4. You can right-click the new tModel node to add child UDDI entities in the tree (for example, Category and Iden-

tifier entities).

As before, you can click any node in the results tree to display properties about that node in the table. You can also right-
click a node to edit it (for example, add a description, add a category or identifier node, or delete a duplicate node). At
any stage, you can click the Clear button on the right to clear the entire contents of the tree. This does not delete the
contents of the registry.

For more details on UDDI entities such as businessEntity and tModel, see the UDDI Definitions section. For details
on how to publish Web Services automatically using a wizard, see Publishing WSDL Files to a UDDI Registry.

For more details on UDDI entities such as businessEntity and tModel, see the UDDI Definitions section.

Retrieving WSDL Files from a UDDI Registry

884

Connecting to a UDDI Registry
Overview

This topic explains how to configure a connection to a UDDI registry in the Registry Connection Details dialog. It ex-
plains how to configure connections to UDDI v2 and UDDI v3 registries, also how to secure a connection over SSL.

Configuring a Registry Connection

Configure the following fields in the Registry Connection Details dialog:

Registry Name:
Enter the display name for the UDDI registry.

UDDI v2:
Select this option to use UDDI v2.

UDDI v3:
Select this option to use UDDI v3.

Inquiry URL:
Enter the URL on which to search the UDDI registry (for example, http://HOSTNAME:PORT/uddi/inquiry).

Publish URL:
Enter the URL on which to publish to the UDDI registry, if required (for example, ht-
tp://HOSTNAME:PORT/uddi/publishing).

Security URL (UDDI v3):
For UDDI v3 only, enter the URL for the security service, if required (for example, ht-
tp://HOSTNAME:PORT/uddi/security.wsdl).

Important
For UDDI v3, the Inquiry URL, Publish URL, and Security URL specify the URLs of the WSDL for the in-
quiry, publishing, and security Web services that the registry exposes. These fields can use the same URL
if the WSDL for each service is at the same URL.

For example, a WSDL file at http://HOSTNAME:PORT/uddi/uddi_v3_registry.wsdl can contain three URLs
(http://HOSTNAME:PORT/uddi/inquiry, http://HOSTNAME:PORT/uddi/publishing, and ht-
tp://HOSTNAME:PORT/uddi/security). These are the service endpoint URLs that the Policy Studio uses to browse
and publish to the registry. These URLs are not set in the connection dialog, but discovered using the WSDL. However,
for UDDI v2, WSDL is not used to discover the service endpoints, so you must enter these URLs directly in the connec-
tion dialog.

Max Rows:
Enter the maximum number of entries returned by a search. Defaults to 20.

Registry Authentication:
The registry authentication settings are as follows:

Type This optional field applies to UDDI v2 only. The only sup-
ported authentication type is UDDI_GET_AUTHTOKEN.

Username Enter the username required to authenticate to the registry,
if required.

Password Enter the password for this user, if required.

885

The username and password apply to UDDI v2 and v3. These are generally required for publishing, but depend on the
configuration on the registry side.

HTTP Proxy:
The HTTP proxy settings apply to UDDI v2 and v3:

Proxy Host If the UDDI registry location entered above requires a con-
nection to be made through an HTTP proxy, enter the host
name of the proxy.

Proxy Port If a proxy is required, enter the port on which the proxy
server is listening.

Username If the proxy has been configured to only accept authentic-
ated requests, the Policy Studio sends this username and
password to the proxy using HTTP Basic authentication.

Password Enter the password to use with the username specified in
the field above.

HTTPS Proxy:
The HTTPS proxy settings apply to UDDI v2 and v3:

SSL Proxy Host If the Inquiry URL or Publish URL uses the HTTPS pro-
tocol, the SSL proxy host entered is used instead of the
HTTP proxy entered above. In this case, the HTTP proxy
settings are not used.

Proxy Port Enter the port that the SSL proxy is listening on.

Securing a Connection to a UDDI Registry

You may wish to communicate with the UDDI registry over SSL. All communication may not need to be over SSL (for ex-
ample, you may wish publish over SSL, and perform inquiry calls without SSL). For UDDI v2 and v3, you can use a mix
of http and https URLs for WSDL and service address locations.

You can specify some or all of the Inquiry URL, Publish URL, and Security URL settings as https URLs. For ex-
ample, with UDDI v3, you could use a single URL like the following:

https://HOSTNAME:PORT/uddi/wsdl/uddi_v3_registry.wsdl

If any URLs (WSDL or service address location) use https, you must configure the Policy Studio so that it trusts the re-
gistry SSL certificate.

Configuring the Policy Studio to Trust a Registry Certificate
For an SSL connection, you must configure the registry server certificate as a trusted certificate. Assuming mutual au-
thentication is not required, the simplest way to configure an SSL connection between the Policy Studio and UDDI re-
gistry is to add the registry certificate to the Policy Studio default truststore (the cacerts file). You can do this by per-
forming the following steps in the Policy Studio:

1. Select the Certificates and Keys -> Certificates node in the Policy Studio tree.
2. Click Create/Import, and click Import Certificate.
3. Browse to the UDDI registry SSL certificate file, and click Open.

Connecting to a UDDI Registry

886

4. Click Use Subject on the right of the Alias Name field, and click OK. The registry SSL Certificate is now imported
into the Certificate Store, and must be added to the Java keystore.

5. Click Keystore on the Certificate screen.
6. Click Browse next to the Keystore field.
7. Browse to the following file:

INSTALL_DIR/policystudio/jre/lib/security/cacerts

8. Click Open, and enter the Keystore password. The default password is: changeit.
9. Click Add to Keystore.
10. Browse to the registry SSL certificate imported earlier, select it, and click OK.
11. Restart the Policy Studio. You should now be able to connect to the registry over SSL.

Configuring Mutual SSL Authentication
If mutual SSL authentication is required (if the Policy Studio must authenticate to the registry), the Policy Studio must
have an SSL private key and certificate. In this case, you should create a keystore containing the Policy Studio key and
certificate. You must configure the Policy Studio to load this file. For example, edit the IN-
STALL_DIR/policystudio/policystudio.ini file, and add the following arguments:

-Djavax.net.ssl.keyStore=/home/oracle/osr-client.jks
-Djavax.net.ssl.keyStorePassword=changeit

This example shows an osr-client.jks keystore file used with Oracle Service Registry (OSR), which is the UDDI re-
gistry provided by Oracle.

Note
You can also use the Policy Studio to create a new keystore (.jks) file. Click New keystore instead of
browsing to the cacerts file as described earlier.

Connecting to a UDDI Registry

887

Publishing WSDL Files to a UDDI Registry
Overview

You can register Web Services in the Web Services Repository using Web Services Description Language (WSDL)
files. The Policy Studio can retrieve a WSDL file from the file system, from a URL, or from a UDDI registry. When you
have registered a WSDL file in the Web Services Repository, you can use the Publish WSDL Wizard to publish the
WSDL file to a UDDI registry. You can also use the Find WSDL Wizard to search for the selected WSDL file in a UDDI
registry. This topic explains how to perform both of these tasks.

For background information and an introduction to general UDDI concepts, see Retrieving WSDL Files from a UDDI Re-
gistry. For details on how to register WSDL files, see Web Service Repository.

Finding WSDL Files

You can search a UDDI registry to determine if a Web Service is already published in the registry. To search for a selec-
ted WSDL file in a specified UDDI registry, perform the following steps:

1. In the Policy Studio tree, expand the Business Services -> Web Services Repository node.
2. Right-click a WSDL node (for example, http://HOSTNAME/TestService/StockQuote.svc?WSDL, where

HOSTNAME is the endpoint host of the Web service).
3. Select Find in UDDI Registry to launch the Find WSDL Wizard.
4. In the Find WSDL screen, select a UDDI Registry from the list. You can add or edit a registry connection using the

buttons provided. For details on configuring a registry connection, see Connecting to a UDDI Registry.
5. You can select an optional language Locale from the list. The default is No Locale.
6. Click Next. The WSDL Found in UDDI Registry screen displays the result of the search in a tree. The Node

Counts field shows the total numbers of each UDDI entity type returned from the search (businessEntity,
businessService, bindingTemplate, and tModel).

7. You can right-click to edit a UDDI entity node in the tree, if necessary (for example, add a description, add a cat-
egory or identifier node, or delete a duplicate node).

8. Click the Refresh button to run the search again.
9. Click Finish.

The Find WSDL Wizard provides is a quick and easy way of finding a selected WSDL file published in a UDDI registry.
For more fine-grained ways of searching a UDDI registry (for example, for specific WSDL or UDDI entities), see Retriev-
ing WSDL Files from a UDDI Registry.

Publishing WSDL Files

To publish a WSDL file registered in the Web Services Repository to a UDDI registry, perform the following steps:

1. Expand the Business Services -> Web Services Repository tree node.
2. Right-click a WSDL node (for example, http://HOSTNAME/TestService/StockQuote.svc?WSDL, where

HOSTNAME is the host from which the Web service is registered).
3. Select Publish WSDL to UDDI Registry to launch the Publish WSDL Wizard.
4. Perform the steps in the wizard screens described in the next sections.

Step 1: Enter Virtualized Service Address and WSDL URL for Publishing in UDDI Registry

When you register a WSDL file in the Web Services Repository, the API Gateway exposes a virtualized version of the
Web Service. The host and port for the Web Service are changed dynamically to point to the machine running the API
Gateway. The client can then retrieve the WSDL for the virtualized Web Service from the API Gateway, without knowing

888

its real location.

This screen enables you to optionally override the service address locations in the WSDL file with the virtualized ad-
dresses exposed by the API Gateway. You can also override the WSDL URL published to the UDDI registry. Complete
the following fields:

Mapping of Service Addresses to Virtualized Service Addresses
You can enter multiple virtual service address mappings for each service address specified in the selected WSDL file. If
you do not enter a mapping, the original address location in the WSDL file is published to the UDDI registry. If one or
more mappings are provided, corresponding UDDI bindingTemplates are published in the UDDI registry, each with a
different access point (virtual service address). This enables you to publish the access points of a service when it is ex-
posed on different ports/schemes using the API Gateway.

When you launch the wizard, the mapping table is populated with a row for each wsdl:service, wsdl:port,
soap:address, soap12:address, or http:address in the selected WSDL file. To modify an existing entry, select a
row in the table, and click Edit. Alternatively, click Add to add an entry. In the Virtualize Service Address dialog, enter
the virtualized service address. For example, if the API Gateway is running on a machine named roadrunner, the new
URL on which the Web service is available to clients is: ht-
tp://roadrunner:8080/TestServices/StockQuote.svc.

WSDL URL:
You can enter a WSDL URL to be published to the UDDI registry in the corresponding tModel overviewURL fields. If
you do not enter a URL, the WSDL URL in the Original WSDL URL field is used. For example, an endpoint service is at
http://coyote.qa.acmecorp.com/TestService/StockQuote.svc. Assume this service is virtualized in the API
Gateway and exposed at http://HOST:8080/TestService/StockQuote.svc, where HOST is the machine on
which the API Gateway is running. The http://HOST:8080/TestService/StockQuote.svc URL is entered as the
virtual service address, and http://HOST:8080/TestService/StockQuote.svc?WSDL is entered as the WSDL
URL to Publish.

Note
If incorrect URLs are published, you can edit these in the UDDI tree in later steps in this wizard, or when
browsing the registry.

Click Next when finished.

Step 2: View WSDL to UDDI Mapping Result

You can use this screen to view the unpublished mapping of the WSDL file to a UDDI registry structure. You can also
edit a specific mapping in the tree view. This screen includes the following fields:

Mapping of WSDL to a UDDI Registry Structure:
The unpublished mappings from the WSDL file to the UDDI registry are displayed in the table. For example, this includes
the relevant businessService, bindingTemplate, tModel, Identifier, Category mappings. You can select a
tree node to display its values in the table below.

You can optionally edit the values for a specific mapping in the table (for example, update a value, or add a key or de-
scription for the selected UDDI entity). You can also right-click a tree node to edit it (for example, add a description, add
a category or identifier node, or delete a duplicate node).

Retrieve service address from WSDL instead of bindingTemplate access point:
When selected, this ensures that the bindingTemplate access point does not contain the service port address, and is
set to WSDL instead. This means that you must retrieve the WSDL to get the service access point. When selected, the
bindingTemplate contains an additional tModelInstanceInfo that points to the
uddi:uddi.org.wsdl:address tModel. This option is not selected by default.

Include WS-Policy as:

Publishing WSDL Files to a UDDI Registry

889

When selected, you can choose one of the following options to specify how WS-Policy statements in the WSDL file are
included in the registry:

Remote Policy Expressions Each WS-Policy URL in the WSDL that is associated with a
mapped UDDI entity is accessed remotely. For example, a
businessService is categorized with the
uddi:w3.org:ws-policy:v1.5:attachment:remot
epolicyreference tModel where the keyValue holds
the remote WS-Policy URL. This is the default option.

Reusable Policy Expressions Each WS-Policy URL in the WSDL that is associated with a
mapped UDDI entity has a separate tModel published for
it. Other UDDI entities (for example, businessService)
can then refer to these tModels. These are reusable be-
cause UDDI entities published in the future can also use
these tModels. You can do this in Step 4: Select a du-
plicate publishing approach by selecting the Reuse du-
plicate tModels option.

Click Next when finished.

Step 3: Select a Registry for Publishing

Use this screen to select a UDDI registry in which to publish the WSDL to UDDI mapping. Complete the following fields:

Select Registry
Select an existing UDDI registry to browse for WSDL files from the Registry drop-down list. To configure the location of
a new UDDI registry, click Add. Similarly, to edit an existing UDDI registry location, click Edit. For details on how to con-
figure a UDDI connection, see Connecting to a UDDI Registry.

Select Locale:
You can select an optional language locale from this list. The default is No Locale.

Click Next when finished.

Step 4: Select a Duplicate Publishing Approach

This screen is displayed only if mapped WSDL entities already exist in the UDDI registry. Otherwise, the wizard skips to
step 5. This screen includes the following fields:

Select Duplicate Mappings
The Mapped WSDL to publish pane on the left displays the unpublished WSDL mappings from Step 2. The Duplicates
for WSDL mappings in UDDI registry pane on the right displays the nodes already published in the registry. The Node
List at the bottom right shows a breakdown of the duplicate nodes.

Edit Duplicate Mappings
You can eliminate duplicate mappings by right-clicking a tree node in the right or left pane, and selecting edit to update a
specific mapping in the dialog. Select the Refresh button on the right to run the search again, and view the updated
Node List. Alternatively, you can configure the options in the next field.

Select Publishing Approach for Duplicate Entries:
Select one of the following options:

Reuse duplicate tModels Publishes the selected entries from the tree on the left, and
reuses the selected duplicate entries in the tree on the
right. This is the default option. Some or all duplicate

Publishing WSDL Files to a UDDI Registry

890

tModels (for example, for portType, binding, and re-
usable WS-Policy expressions) that already exist in the re-
gistry can be reused. This means that a new busi-
nessService that points to existing tModels is pub-
lished. Any entries selected on the left are published, and
any referred to tModels on the left now point to selected
duplicate tModels on the right. By default, this option se-
lects all businessServices on the left, and all duplicate
tModels on the right. If there is more than one duplicate
tModels, only the first is selected.

Overwrite duplicates Publishes the selected entries from the tree on the left, and
overwrites the selected duplicate entries in the tree on the
right. When a UDDI entity is overwritten, its UUID key stays
the same, but all the data associated with it is overwritten.
This is not just a transfer of additions or differences. You
can also overwrite some duplicates and create some new
entries. By default, this option selects all businessSer-
vices and tModels on the left and all duplicate busi-
nessServices and tModels on the right. If there is more
than one duplicate, only the first is selected. The default
overwrites all selected duplicates and does not create any
new UDDI entries, unless there is a new referred to tMod-
el (for example, for a reusable WS-Policy expression).

Ignore duplicates Publishes the selected entries from the tree on the left, and
ignores all duplicates. You can proceed to publish the
mapped WSDL to UDDI data. New UDDI entries are cre-
ated for each item that is selected in the tree on the left.

Click Next when finished.

Note
If you select duplicate businessServices in the tree, and select Overwrite duplicates, the wizard skips
to Step 6 when you click Next.

Step 5: Create or Search for Business

Use this screen to specify a businessEntity for the Web Service. You can create a new businessEntity or search
for an existing one in the UDDI registry. Complete the following fields:

Creating a New businessEntity
This is the default option. Enter a Name and Description for the businessEntity, and click Publish.

Searching for an Existing businessEntity
To search for an existing businessEntity name, perform the following steps:

1. Select the Search for an existing businessEntity in the UDDI registry option.
2. In the Search tab, ensure the Name Search option is selected.
3. Enter a Name option (for example, Acme Corporation).

Alternatively, you can select the Advanced Search option to search by different criteria such as Keys, Categories, or

Publishing WSDL Files to a UDDI Registry

891

tModels. For more details, see Retrieving WSDL Files from a UDDI Registry.

Advanced Options
You can also select a range of search options on the Advanced tab (for example, Exact match, Case sensitive, or Ser-
vice subset). For more details, see Retrieving WSDL Files from a UDDI Registry.

The Node Counts field shows the total numbers of each UDDI entity type returned from the search (businessEntity,
businessService, bindingTemplate, and tModel).

Click Next when finished.

Step 6: Publish WSDL

Use this screen to publish the WSDL to the UDDI registry.

Selected businessEntity for Publishing:
This field displays the name and tModel key of the businessEntity to be published. Click the Publish WSDL button
on the right.

Published WSDL:
This field displays the tree of the UDDI mapping for the WSDL file. You can right-click to edit or delete any nodes in the
tree if necessary, and click Refresh to run the search again. Click Publish WSDL to publish your updates.

Click Finish.

Publishing WSDL Files to a UDDI Registry

892

LDAP User Search
Configure Directory Search

The User Search dialog is used to search a given LDAP directory for a unique user according to the criteria configured
in the fields on this dialog.

Base Criteria:
The value entered here tells the API Gateway where it should begin searching the LDAP directory. For example, it may
be appropriate to search for a given user under the C=IE tree in the LDAP hierarchy.

Query Search Filter:
The value entered here is what the API Gateway uses to determine whether it has obtained a successful match. In this
case, because you are searching for a specific user, you can use the username of an authenticated user (the value of
the authentication.subject.id message attribute to lookup in the LDAP directory. You must also specify the ob-
ject class that defines users for the particular type of LDAP directory that you are searching against. For example, object
classes representing users amongst common LDAP directories are inetOrgPerson, givenName, and User.

For example, to search for an authenticated user against Microsoft's Active Directory, you might specify the following as
the Query Search Filter:

(objectclass=User)(cn=${authentication.subject.id})

This example uses a selector to obtain the ID of the authenticated subject at runtime. For more details on selectors, see
Selecting Configuration Values at Runtime.

Search Scope:
These settings specify the depth of the LDAP tree that you wish to search. The settings selected here depends largely on
the structure of your LDAP directory.

893

Configuring URL Groups
Overview

The API Gateway can make connections on a round-robin basis to the URLs listed in a URL group, thus enabling a high
degree of failover to external servers (for example, Entrust GetAccess, OCSP, SAML PDP, or XKMS).

The API Gateway attempts to connect to the listed servers according to the priorities assigned to them. For example, as-
sume there are two High priority URLs, one Medium URL, and one Low URL configured. Assuming the API Gateway can
successfully connect to the two High priority URLs, it alternates requests between these two URLs only in a round-robin
fashion. The other group URLs are not used. However, if both of the High priority URLs become unavailable, the API
Gateway then tries to use the Medium priority URL, and only if this fails is the Low priority URL used.

In general, the API Gateway attempts to round-robin requests over URLs of the same priority, but uses higher priority
URLs before lower priority ones. When a new URL is added to the group, it is automatically given the highest priority.
You can then change priorities by selecting the URL, and clicking the Up and Down buttons.

You can add and edit URLs by selecting the URL from the table, and clicking on the Add and Edit buttons.

Configuration

Configure the following fields in the URL Configuration dialog:

• URL:
Enter the full URL of the external server.

• Timeout:
Specify the timeout in seconds for connections to the specified server.

• Retry After:
Whenever the server becomes unavailable for whatever reason (for example, maintenance), no attempt is made to
connect to that server until the time specified here has elapsed. In other words, when a connection failure is detec-
ted, the next connection to that URL is after this amount of time.

• SSL Certificate:
If the specified server requires clients to authenticate to it over two-way SSL, you must select an SSL Certificate
from the Certificate Store for authentication.

• Host/IP:
If the specified server sits behind a proxy server, you must enter the host name or IP address of the proxy server.

• Port:
Enter the port on which the proxy is listening.

894

What To Sign
Overview

The What To Sign section enables the administrator to define the exact content that must be signed for a SOAP mes-
sage to pass the corresponding filter. The purpose of this configuration section is to ensure that the client has signed
something meaningful (part of the SOAP message) instead of some arbitrary data that would pass a blind signature val-
idation.

This prevents clients from simply pasting technically correct, but unrelated signatures into messages in the hope that
they pass any blind signature verification. For example, the user may be able to generate a valid XML Signature over any
arbitrary XML document. Then by including the signature and XML portion into a malicious SOAP message, the signa-
ture passes a blind signature validation, and the harmful XML is allowed to reach the Web Service.

The What To Sign section ensures that clients must sign a part of the SOAP message, and therefore prevents them
from pasting arbitrary XML Signatures into the message. This section enables you to use any combination of Node Loc-
ations, XPath Expressions, XPath Predicates, and/or Message Attribute to specify message content that must be
signed. This topic describes how to configure each of the corresponding tabs displayed in this section.

ID Configuration

With WSU IDs, an ID attribute is inserted into the root element of the nodeset that is to be signed. The XML Signature
then references this ID to indicate to verifiers of the signature the nodes that were signed. The use of WSU IDs is the de-
fault option because they are WS-I compliant.

Alternatively, a generic ID attribute (that is not bound to the WSU namespace) can be used to dereference the data. The
ID attribute is inserted into the top-level element of the nodeset to be signed. The generated XML Signature can then ref-
erence this ID to indicate what nodes were signed.

You can also use AssertionID attributes when signing SAML assertions. The following options provide more details
and examples of the different styles of IDs that are available.

Use WSU IDs:
Select this option to reference the signed data using a wsu:Id attribute. In this case, a wsu:Id attribute is inserted into
the root node of the nodeset that is signed. This id is then referenced in the generated XML Signature as an indication of
what nodes were signed. The following example shows the correlation:

<s:Envelope xmlns:s="...">
<s:Header>
<wsse:Security xmlns:wsse="...">
<dsig:Signature xmlns:dsig="..." Id="Id-00000112e2c98df8-0000000000000004">

<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="#Id-00000112e2c98df8-0000000000000003">

<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>xChPoiWJJrrPZkbXN8FPB8S4U7w=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>KG4N /9dw==</dsig:SignatureValue>
<dsig:KeyInfo Id="Id-00000112e2c98df8-0000000000000005">
<dsig:X509Data>

895

<dsig:X509Certificate>
MIID ... ZiBQ==

</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

</wsse:Security>
</s:Header>
<s:Body xmlns:wsu="..." wsu:Id="Id-00000112e2c98df8-0000000000000003">
<vs:getProductInfo xmlns:vs="http://ww.oracle.com">
<vs:Name>API Gateway</vs:Name>
<vs:Version>11.1.2.1.0</vs:Version>
</vs:getProductInfo>

</s:Body>
</s:Envelope>

In the above example, a wsu:Id attribute has been inserted into the <s:Body> element. This wsu:Id attribute is then
referenced by the URI attribute of the <dsig:Reference> element in the actual Signature.

When the Signature is being verified, the value of the URI attribute can be used to locate the nodes that have been
signed.

Use IDs:
Select this option to use generic IDs (that are not bound to the WSU namespace) to dereference the signed data. Under
this schema, the URI attribute of the <Reference> points at an ID attribute, which is inserted into the top-level node of
the nodeset that is signed. Take a look at the following example, noting how the ID specified in the Signature matches
the ID attribute that has been inserted into the <Body> element, indicating that the Signature applies to the entire con-
tents of the SOAP Body.

lt;soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"

Id="Id-0000011a101b167c-0000000000000013">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference URI="#Id-0000011a101b167c-0000000000000012">

<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>JCy0JoyhVZYzmrLrl92nxfr1+zQ=</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>......<dsig:SignatureValue>
<dsig:KeyInfo Id="Id-0000011a101b167c-0000000000000014">
<dsig:X509Data>

<dsig:X509Certificate>......</dsig:X509Certificate>
</dsig:X509Data>

</dsig:KeyInfo>
</dsig:Signature>

</soap:Header>
<soap:Body Id="Id-0000011a101b167c-0000000000000012">
<product version="11.1.2.1.0">
<name>API Gateway</name>
<company>Oracle</company>
<description>SOA Security and Management</description>

</product>

What To Sign

896

</soap:Body>
</soap:Envelope>

Use SAML IDs for SAML Elements:
This ID option is specifically intended for use where a SAML assertion is to be signed. When this option is selected, an
AssertionID attribute is inserted into a SAML 1.1 assertion, or a more generic ID attribute is used for a SAML 2.0 as-
sertion.

Node Locations

Node Locations are perhaps the simplest way to configure the message content that must be signed. The table on this
screen is pre-populated with a number of common SOAP security headers, including the SOAP Body, WS-Security
block, SAML assertion, WS-Security UsernameToken and Timestamp, and the WS-Addressing headers. For each of
these headers, there are several namespace options available. For example, you can sign both a SOAP 1.1 and/or a
SOAP 1.2 block by distinguishing between their namespaces.

On the Node Locations tab, you can select one or more nodesets to sign from the default list. You can also add more
default nodesets by clicking the Add button. Enter the Element Name, Namespace, and Index of the nodeset in the
fields provided. The Index field is used to distinguish between two elements of the same name that occur in the same
message.

XPath Configuration

You can use an XPath expression to identify the nodeset (the series of elements) that must be signed. To specify that
nodeset, select an existing XPath expression from the table, which contains several XPath expressions that can be used
to locate nodesets representing common SOAP security headers, including SAML assertions. Alternatively, you can add
a new XPath expression using the Add button. XPath expressions can also be edited and removed with the Edit and Re-
move buttons.

An example of a SOAP message is provided below. The following XPath expression indicates that all the contents of the
SOAP body, including the Body element itself, should be signed:

/soap:Envelope/soap:Body/descendant-or-self::node()

You must also supply the namespace mapping for the soap prefix, for example:

Prefix URI

soap http://schemas.xmlsoap.org/soap/envelope/

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
</soap:Header>
<soap:Body>
<product xmlns="http://www.oracle.com">

<name>SOA Product</name>
<company>Company</company>
<description>Web Services Security</description>

</product>
</soap:Body>

</soap:Envelope>

What To Sign

897

XPath Predicates

Select this option if you wish to use an XPath transform to reference the signed content. You must select an XPath Pre-
dicate from the table to do this. The table is pre-populated with several XPath predicates that can be used to identify
common security headers that occur in SOAP messages, including SAML assertions.

To illustrate the use of XPath predicates, the following example shows how the SOAP message is signed when the de-
fault Sign SOAP Body predicate is selected:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<vs:getProductInfo xmlns:vs="http://www.oracle.com">
<vs:Name>API Gateway</vs:Name>
<vs:Version>11.1.2.1.0</vs:Version>
</vs:getProductInfo>

</s:Body>
</s:Envelope>

The default XPath expression (Sign SOAP Body) identifies the contents of the SOAP Body element, including the Body
element itself. The following is the XML Signature produced when this XPath predicate is used:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<dsig:Signature id="Sample" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<dsig:SignedInfo>

...
<dsig:Reference URI="">
<dsig:Transforms>
<dsig:Transform

Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
<dsig:XPath xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

ancestor-or-self::soap:Body
</dsig:XPath>

</dsig:Transform>
<dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n"/>

</dsig:Transforms>
...

</dsig:Reference>
</dsig:SignedInfo>
...

</dsig:Signature>
</s:Header>
<s:Body>
<vs:getProductInfo xmlns:vs="http://ww.oracle.com">
<vs:Name>API Gateway</vs:Name>
<vs:Version>11.1.2.1.0</vs:Version>
</vs:getProductInfo>

</s:Body>
</s:Envelope>

This XML Signature includes an extra Transform element, which has a child XPath element. This element specifies the
XPath predicate that validating applications must use to identify the signed content.

Message Attribute

Finally, you can use the contents of a message attribute to determine what must be signed in the message. For example,
you can configure a Locate XML Nodes filter to extract certain content from the message and store it in a particular mes-
sage attribute. You can then specify this message attribute on the Message Attribute tab.

To do this, select the Extract nodes from message attribute checkbox, and enter the name of the attribute that con-
tains the nodes in the field provided.

What To Sign

898

Configuring XPath Expressions
Overview

The API Gateway uses XPath expressions in a number of ways, for example, to locate an XML Signature in a SOAP
message, to determine what elements of an XML message to validate against an XML Schema, to check the content of a
particular element within an XML message, amongst many more uses.

There are two ways to configure XPath expressions on this screen:

• Manual Configuration
• XPath Wizard

Manual Configuration

If you are already familiar with XPath and wish to configure the expression manually, complete the following fields, using
the examples below if necessary:

1. Enter or select a name for the XPath expression in the Name drop-down list.
2. Enter the XPath expression to use in the XPath Expression field.
3. In order to resolve any prefixes within the XPath expression, the namespace mappings (Prefix, URI) should be

entered in the table.

Consider the following example SOAP message: >

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="sample">

...............

...............

...............

...............
</dsig:Signature>

</soap:Header>
<soap:Body>
<prod:product xmlns:prod="http://www.oracle.com">

<prod:name>SOA Product*</prod:name>
<prod:company>Company</prod:company>
<prod:description>WebServices Security</prod:description>

</prod:product>
</soap:Body>

</soap:Envelope>

The following XPath expression evaluates to true if the <name> element contains the value API Gateway:
XPath Expression: //prod:name[text()='API Gateway']

In this case, it is necessary to define a mapping for the prod namespace as follows:

Prefix URI

prod http://www.oracle.com

899

In another example, the element to be examined belongs to a default namespace. Consider the following SOAP mes-
sage:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" id="sample">

...............

...............

...............

...............
</dsig:Signature>

</soap:Header>
<soap:Body>
<product xmlns="http://www.company.com">

<name>SOA Product</name>
<company>Company</company>
<description>WebServices Security</description>

</product>
</soap:Body>

</soap:Envelope>

The following XPath expression evaluates to true if the <company> element contains the value Company:
XPath Expression: //ns:company[text()='Company']

The <company> element actually belongs to the default (xmlns) namespace (http://www.company.com. This means
that it is necessary to make up an arbitrary prefix, ns, for use in the XPath expression and assign it to ht-
tp://www.company.com. This is necessary to distinguish between potentially several default namespaces, which may
exist throughout the XML message. The following mapping illustrates this:

Prefix URI

ns http://www.oracle.com

Returning a NodeSet:
Both of the examples above dealt with cases where the XPath expression evaluated to a Boolean value. For example,
the expression in the above example asks does the <company> element in the http://www.oracle.com namespace
contain a text node with the value oracle?.

It is sometimes necessary to use the XPath expression to return a subset of the XML message. For example, when using
an XPath expression to determine what nodes should be signed in a signed XML message, or when retrieving the node-
set to validate against an XML Schema.

The API Gateway ships with such an XPath expression: one that returns All Elements inside SOAP Body To view
this expression, select it from the Name field. It appears as follows:
XPath Expression: /soap:Envelope/soap:Body//*

This XPath expression simply returns all child elements of the SOAP <Body> element. To construct and test more com-
plicateD expressions, administrators are advised to use the XPath Wizard.

XPath Wizard

The XPath Wizard assists administrators in creating correct and accurate XPath expressions. The wizard allows admin-
istrators to load an XML message and then run an XPath expression on it to determine what nodes are returned. To
launch the XPath Wizard, click the XPath Wizard Button on the XPath Expression dialog.

Configuring XPath Expressions

900

To use the XPath Wizard, simply enter (or browse to) the location of an XML file in the File field. The contents of the
XML file will appear in the main window of the wizard. Enter an XPath expression in the XPath field and click the Evalu-
ate button to run the XPath against the contents of the file. If the XPath expression returns any elements (or returns
true), those elements will be highlighted in the main window.

If you are not sure how to write the XPath expression, you can select an element in the main window. An XPath expres-
sion to isolate this element is automatically generated and displayed in the Selected field. If you wish to use this expres-
sion, select the Use this path button, and click OK.

Configuring XPath Expressions

901

Message Attribute Reference
attribute.lookup.list

Name attribute.lookup.list

Description User attributes can be retrieved from a variety of sources,
including LDAP directories, databases, Oracle Entity Store,
SAML attribute assertions, and so on. All retrieved attrib-
utes are stored in the attribute.lookup.list attrib-
ute, where they can be looked up at a later stage in the
policy.

Type java.util.HashMap

Generated By Extract Certificate Attributes
Retrieve Attributes from Database
Retrieve Attributes from Directory Server
Retrieve Attributes from SAML Attribute Assertion
Retrieve Attributes from SAML PDP
Retrieve Attributes from User Store
SiteMinder Authorization

Consumed By

Required By Attribute Authorization
Insert SAML Attribute Assertion

attribute.subject.format

Name attribute.subject.format

Description The format of the subject ID that is used to lookup attrib-
utes (for example, X.509 DName or username).

Type java.lang.String

Generated By Extract Certificate Attributes
Retrieve Attributes from Directory Server
Retrieve Attributes from SAML Attribute Assertion
SiteMinder Authorization

Consumed By

Required By Insert SAML Attribute Assertion

attribute.subject.id

Name attribute.subject.id

Description The ID of the subject that is used to look up user attributes.
This can either be an X.509 Distinguished Name (DName)
or a username.

Type java.lang.String

Generated By Extract Certificate Attributes
Retrieve Attributes from Directory Server
Retrieve Attributes from SAML Attribute Assertion
SiteMinder Authorization

902

Consumed By

Required By Insert SAML Attribute Assertion

authentication.cert

Name authentication.cert

Description The certificate that was used to authenticate the client.

Type java.security.cert.X509Certificate

Generated By HTTP Header Authentication

Consumed By

Required By

authentication.issuer.format

Name authentication.issuer.format

Description The format of the authentication.issuer.id attribute.

Type java.lang.String

Generated By HTTP Header Authentication
SSL Authentication

Consumed By

Required By

authentication.issuer.id

Name authentication.issuer.id

Description Contains the ID of the issuer of the authenticated client's
certificate. This is usually either the X.509 DName or the
username of the issuer of the subject's certificate.

Type java.lang.String

Generated By HTTP Header Authentication
SSL Authentication
SAML Authentication XML-Signature Verification

Consumed By

Required By

authentication.issuer.orig.format

Name authentication.issuer.orig.format

Description Format of the authentication.issuer.orig.id attribute. This is
the format of the issuer's ID before any credential mapping

Message Attribute Reference

903

was done to the identifier, e.g. DName to username.

Type java.lang.String

Generated By HTTP Header Authentication

Consumed By

Required By

authentication.issuer.orig.id

Name authentication.issuer.orig.id

Description The ID of the issuer of the subject's credential before any
credential mapping took place. An example of credential
mapping would involve mapping an issuer's username to a
DName.

Type java.lang.String

Generated By HTTP Header Authentication

Consumed By

Required By

authentication.method

Name authentication.method

Description The method used by the client to authenticate to API Gate-
way.

Type java.lang.String

Generated By HTTP Basic Authentication
HTTP Digest Authentication
HTTP Header Authentication
SAML Authentication
SSL Authentication
SiteMinder Certificate Authentication
SiteMinder Session Validation
XML-Signature Authentication

Consumed By

Required By SAML Authentication
Retrieve Attributes from SAML PDP
SAML PDP Authorization

authentication.subject.format

Name authentication.subject.format

Description The format of the subject's ID, e.g. X.509 DName or user-
name.

Type java.lang.String

Message Attribute Reference

904

Generated By HTTP Basic Authentication
HTTP Digest Authentication
HTTP Header Authentication
Retrieve Attributes from SAML Attribute Assertion
Retrieve Attributes from SAML PDP
Retrieve Attributes from Database
Retrieve Attributes from Directory Server
Retrieve Attributes from User Store
SAML Authentication
SSL Authentication
SiteMinder Certificate Authentication
SiteMinder Session Validation
XML-Signature Authentication

Consumed By

Required By Retrieve Attributes from Database
Retrieve Attributes from Directory Server
Retrieve Attributes from SAML Attribute Assertion
Retrieve Attributes from SAML PDP
Retrieve Attributes from User Store
SAML PDP Authorization
SAML Authorization
Tivoli Authorization

authentication.subject.id

Name authentication.subject.id

Description Contains the ID of the authenticated subject (for example,
the username supplied by the client).

Type java.lang.String

Generated By HTTP Basic Authentication
HTTP Digest Authentication
HTTP Header Authentication
Retrieve Attributes from SAML Attribute Assertion
Retrieve Attributes from SAML PDP
Retrieve Attributes from Database
Retrieve Attributes from Directory Server
Retrieve Attributes from User Store
SAML Authentication
SSL Authentication
SiteMinder Certificate Authentication
SiteMinder Session Validation
XML-Signature Authentication

Consumed By

Required By Retrieve Attributes from Database
Retrieve Attributes from Directory Server
Retrieve Attributes from SAML Attribute Assertion
Retrieve Attributes from SAML PDP
Retrieve Attributes from User Store

Message Attribute Reference

905

authentication.subject.orig.format

Name authentication.subject.orig.format

Description The ID of the subject before any credential mapping was
performed. For example, the subject's ID may be mapped
from an X.509 DName to the username stored in an ex-
ternal database. In this case, the subject's original ID was a
DName.

Type java.lang.String

Generated By HTTP Basic Authentication
HTTP Digest Authentication
HTTP Header Authentication

Consumed By

Required By

authentication.subject.orig.id

Name authentication.subject.orig.id

Description Contains the ID of the authenticated subject before creden-
tial mapping is performed (for example, from username to
DName).

Type java.lang.String

Generated By HTTP Basic Authentication
HTTP Digest Authentication
HTTP Header Authentication

Consumed By

Required By

authentication.subject.password

Name authentication.subject.password

Description If a user authenticates to the API Gateway using a user-
name and password combination (either with HTTP digest/
basic authentication or with a WS-Security Username
token), the user's password is stored in this attribute.

Type java.lang.String

Generated By HTTP Basic Authentication
HTTP Digest Authentication

Consumed By

Required By

authentication.ws.wsblockinfo

Name authentication.ws.wsblockinfo

Message Attribute Reference

906

Description Contains a WS-Security <Header> block that has been ex-
tracted from a message.

Type java.lang.String

Generated By Extract WSS Header

Consumed By

Required By

cert.basic.constraints

Name cert.basic.constraints

Description If the subject is a Certificate Authority (CA), and the Ba-
sicConstraints extension exists, this attribute gives the
maximum number of CA certificates that may follow this
certificate in a certification path. A value of zero indicates
that only an end-entity certificate may follow in the path.
This contains the value of pathLenConstraint if the
BasicConstraints extension is present in the certificate
and the subject of the certificate is a CA, otherwise its
value is -1. If the subject of the certificate is a CA and
pathLenConstraint does not appear, there is no limit to
the allowed length of the certification path.

Type java.lang.Integer

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.extended.key.usage

Name cert.extended.key.usage

Description A string representing the OBJECT IDENTIFIERs of the Ex-
tKeyUsageSyntax field of the extended key usage exten-
sion (OID = 2.5.29.37). It indicates a purpose for
which the certified public key may be used, in addition to,
or instead of, the basic purposes indicated in the key usage
extension field.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.hash.md5

Name cert.hash.md5

Description An MD5 hash of the certificate.

Message Attribute Reference

907

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.hash.sha1

Name cert.hash.sha1

Description An SHA1 hash of the certificate.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.issuer.alternative.name

Name cert.issuer.alternative.name

Description An alternative name for the certificate issuer from the Is-
suerAltName extension (OID = 2.5.29.18)

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.issuer.id

Name cert.issuer.id

Description The Distinguished Name (DName) of the issuer of the certi-
ficate.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.issuer.id.c

Name cert.issuer.id.c

Description The c attribute of the issuer of the certificate, if it exists.

Type java.lang.String

Message Attribute Reference

908

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.issuer.id.cn

Name cert.issuer.id.cn

Description The cn attribute of the issuer of the certificate, if it exists.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.issuer.id.emailaddress

Name cert.issuer.id.emailaddress

Description The email or emailaddress attribute of the issuer of the
certificate, if it exists.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.issuer.id.l

Name cert.issuer.id.l

Description The l attribute of the issuer of the certificate, if it exists.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.issuer.id.o

Name cert.issuer.id.o

Description The o attribute of the issuer of the certificate, if it exists.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Message Attribute Reference

909

Required By

cert.issuer.id.ou

Name cert.issuer.id.ou

Description The ou attribute of the issuer of the certificate, if it exists.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.issuer.id.st

Name cert.issuer.id.st

Description The st attribute of the issuer of the certificate, if it exists.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.key.usage.cRLSign

Name cert.key.usage.cRLSign

Description Set to true or false if the key can be used for crlSign .

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.key.usage.dataEncipherment

Name cert.key.usage.dataEncipherment

Description Set to true or false if the key can be used for dataEn-
cipherment .

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

Message Attribute Reference

910

cert.key.usage.decipherOnly

Name cert.key.usage.decipherOnly

Description Set to true or false if the key can be used for de-
cipherOnly .

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.key.usage.digitalSignature

Name cert.key.usage.digitalSignature

Description Set to true or false if the key can be used for digital sig-
nature.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.key.usage.encipherOnly

Name cert.key.usage.encipherOnly

Description Set to true or false if the key can be used for en-
cipherOnly .

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.key.usage.keyAgreement

Name cert.key.usage.keyAgreement

Description Set to true or false if the key can be used for key-
Agreement .

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

Message Attribute Reference

911

cert.key.usage.keyCertSign

Name cert.key.usage.keyCertSign

Description Set to true or false if the key can be used for keyCert-
Sign .

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.key.usage.keyEncipherment

Name cert.key.usage.keyEncipherment

Description Set to true or false if the key can be used for keyEn-
cipherment .

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.key.usage.nonRepudiation

Name cert.key.usage.nonRepudiation

Description Set to true or false if the key can be used for non-
repudiation.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.not.after

Name cert.not.after

Description Not after date for the validity of the certificate.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.not.before

Message Attribute Reference

912

Name cert.not.before

Description Not before date for the validity of the certificate.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.serial.number

Name cert.serial.number

Description Certificate serial number.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.signature.algorithm

Name cert.signature.algorithm

Description The signature algorithm for the certificate signature.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.subject.alternative.name

Name cert.subject.alternative.name

Description An alternative name for the subject from the SubjectAlt-
Name extension (OID = 2.5.29.17).

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.subject.id

Name cert.subject.id

Description The Distinguished Name (DName) of the subject of the cer-

Message Attribute Reference

913

tificate.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.subject.id.c

Name cert.subject.id.c

Description The c attribute of the subject of the certificate, if it exists.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.subject.id.cn

Name cert.subject.id.cn

Description The cn attribute of the subject of the certificate, if it exists.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.subject.id.emailaddress

Name cert.subject.id.emailaddress

Description The emailaddress attribute of the subject of the certific-
ate, if it exists.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.subject.id.l

Name cert.subject.id.l

Description The l attribute of the subject of the certificate, if it exists.

Type java.lang.String

Message Attribute Reference

914

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.subject.id.o

Name cert.subject.id.o

Description The o attribute of the subject of the certificate, if it exists.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.subject.id.ou

Name cert.subject.id.ou

Description The ou attribute of the subject of the certificate, if it exists.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.subject.id.st

Name cert.subject.id.st

Description The st attribute of the subject of the certificate, if it exists.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Required By

cert.version

Name cert.version

Description The version of the certificate.

Type java.lang.String

Generated By Extract Certificate Attributes

Consumed By

Message Attribute Reference

915

Required By

certificate

Name certificate

Description Used to store a certificate in addition to the certificate
stored in the authentication.cert attribute. For example, the
Find Certificate filter can extract a certificate from an
LDAP directory, HTTP header, or the User Store. By de-
fault, it sets this certificate to the certificate attribute.

Type java.lang.String

Generated By Find Certificate
HTTP Header Authentication
XML-Signature Verification
SAML Authentication XML-Signature Verification
SAML PDP XML-Signature Response Verification
SAML PDP Response XML-Signature Verification
SSL Authentication
XML-Signature Authentication

Consumed By

Required By Create Thumbprint from Certificate
Extract Certificate Attributes
SiteMinder Certificate Authentication

certificate.thumbprint

Name certificate.thumbprint

Description Contains a human-readable thumbprint (or fingerprint),
which is generated from the X.509 certificate stored in the
certificate message attribute.

Type java.lang.String

Generated By Create Thumbprint from Certificate

Consumed By

Required By

certificates

Name certificates

Description Contains an array of X.509 certificates for use in the Certi-
ficate Chain Check and Certificate Validation filters.

Type java.util.ArrayList

Generated By Find Certificate
HTTP Header Authentication
XML-Signature Verification

Message Attribute Reference

916

SAML Authentication XML-Signature Verification
SAML PDP XML-Signature Response Verification
SAML PDP Response XML-Signature Verification
SSL Authentication
XML-Signature Authentication

Consumed By

Required By Certificate Chain
Certificate Revocation List (Static)
Certificate Revocation List (LDAP)
OCSP (Online Certificate Status Protocol)
SiteMinder Certificate Authentication
XKMS (XML Key Management and Security)

circuit.abort.exception

Name circuit.abort.exception

Description Whenever a filter throws an exception, the exception is
stored in the circuit.abort.exception message at-
tribute. The exception can then be used, for example, to re-
turn customized SOAP faults that describe the verbose de-
tails of the error.

Important
A filter only throws an exception if it cannot
carry out its core task. For example, an au-
thentication filter throws an exception if it can-
not connect to the authentication repository, a
Schema validation filter aborts if the request
is not XML, and an attribute retrieval filter
aborts if it cannot connect to the user profile
store (for example, database, LDAP, and so
on).

Type java.lang.String

Generated By circuit.abort.exception can be thrown by all filters.

Consumed By

Required By circuit.abort.exception can be used as a selector
in appropriate filters. For example, you can specify a
${circuit.abort.exception} selector in the Set
Message filter, which can then be returned to the client us-
ing a Reflect filter.

content.body

Name content.body

Description Contains the parsed body of the incoming HTTP request.

Type com.vordel.mime.Body

Message Attribute Reference

917

Generated By Load File

Consumed By

Required By Content Type Filtering
Connection
Content Validation
Entrust GetAccess Authorization
Insert SAML Attribute Assertion
SAML Authentication
Insert SAML Authorization Assertion
XML-Signature Verification
Throttling
McAfee Anti-Virus
Operation Name
Reflect
Reflect Message and Attributes
Retrieve Attribute from HTTP Header
Retrieve Attribute from Message
Retrieve Attributes from SAML Attribute Assertion
SAML Authorization
Save to File
Schema Validation
Sign Message
SiteMinder Session Validation
SSL Authentication
XML Complexity
XML-Decryption
XML-Encryption
XML-Signature Authentication
XSLT Transformation
Web Service Filter

decryption.properties

Name decryption.properties

Description Indicates the XML-Encrypted block(s) to decrypt. The actu-
al decryption is performed by the XML-Decryption filter.

Type java.util.Map

Generated By XML-Decryption Settings

Consumed By

Required By XML-Decryption

encryption.properties

Name encryption.properties

Description Allows the user to encrypt (part of) the message for a num-
ber of recipients so that only those recipients can to de-
crypt the encrypted data. The encryption is performed by
the XML-Encryption filter.

Message Attribute Reference

918

Type java.util.Map

Generated By XML-Encryption Settings

Consumed By

Required By XML-Encryption

http.destination.host

Name http.destination.host

Description The host on which the destination Web Service is running.

Type java.lang.String

Generated By Dynamic Router
Static Router
Web Service Filter

Consumed By

Required By Connection

http.destination.port

Name http.destination.port

Description The port on which the destination Web Service is listening.

Type java.lang.String

Generated By Dynamic Router
Static Router
Web Service Filter

Consumed By

Required By Connection

http.destination.protocol

Name http.destination.protocol

Description Indicates the protocol to use when routing messages to the
destination Web Service. Typically, the protocol is either
HTTP or HTTPS.

Type java.lang.String

Generated By Dynamic Router
Static Router
Web Service Filter

Consumed By

Required By Connection

Message Attribute Reference

919

http.headers

Name http.headers

Description Contains a list of all HTTP headers from the incoming re-
quest.

Type com.vordel.mime.HeaderSet

Generated By Connection
Web Service Filter

Consumed By

Required By Add HTTP Header
Connection
HTTP Basic Authentication
HTTP Digest Authentication
HTTP Header Authentication
Reflect
Reflect Message and Attributes
Remove HTTP Header
Return WSDL
SOAPAction
Validate HTTP Headers
Web Service Filter

http.request.clientaddr

Name http.request.clientaddr

Description Contains the IP address of the client machine from which
the HTTP request was sent to API Gateway.

Type java.net.InetSocketAddress

Generated By

Consumed By

Required By IP Address

http.request.connection.error

Name http.request.connection.error

Description If an error occurs when API Gateway is routing on to the
target Web Service, the error status will be recorded in this
attribute.

Type java.lang.String

Generated By Connection
Web Service Filter

Consumed By

Required By

Message Attribute Reference

920

http.request.clientcert

Name http.request.clientcert

Description Contains the certificate used by the client in the HTTP re-
quest.

Type java.security.cert.X509Certificate

Generated By

Consumed By

Required By

http.request.path

Name http.request.path

Description Contains the path on which the HTTP request from the cli-
ent is received by the API Gateway (for example, /test).

Type java.lang.String

Generated By

Consumed By

Required By

http.request.uri

Name http.request.uri

Description Contains the URI on which the HTTP request is received
by the API Gateway (for example, /
test?location=dublin).

Type java.net.URI

Generated By Web Service Filter

Consumed By

Required By Connection
Dynamic Router
Operation Name
Rewrite URL
Relative Path
Return WSDL

http.request.verb

Name http.request.verb

Description Contains the HTTP verb used in the client HTTP request to
the API Gateway.

Type java.lang.String

Generated By

Message Attribute Reference

921

Consumed By

Required By Connection
HTTP Basic Authentication
HTTP Digest Authentication
Web Service Filter

http.request.version

Name http.request.version

Description Contains the HTTP version used in the request from the cli-
ent to the API Gateway.

Type java.lang.String

Generated By

Consumed By

Required By

http.response.info

Name http.response.info

Description Contains the reason-phrase from the HTTP status-line
(for example, Not found from the 404 Not found
status-line).

Type java.lang.String

Generated By Connection
Web Service Filter

Consumed By

Required By

http.response.status

Name http.response.status

Description Stores the HTTP status-code of the response from the
Web Service, (for example, 404 from the 404 Not found
status-line).

Type java.lang.Integer

Generated By Connection
Web Service Filter

Consumed By

Required By

http.response.version

Message Attribute Reference

922

Name http.response.version

Description Stores the HTTP version used in the response from the
Web Service.

Type java.lang.String

Generated By Connection
Web Service Filter

Consumed By

Required By

kerberos.client.context.established

Name kerberos.client.context.established

Description Indicates whether the client-side context has been estab-
lished (true or false).

Type java.lang.String

Generated By Kerberos Client Authentication

Consumed By

Required By

kerberos.context

Name kerberos.context

Description Used on client-side to reload the context to consume the
service-side token, if there is one.

Type org.ietf.jgss.GSSContext

Generated By Kerberos Client Authentication

Consumed By

Required By

kerberos.mechanism.oid

Name kerberos.mechanism.oid

Description Contains the mechanism OID (SPNEFGO or Kerberos).

Type java.lang.String

Generated By Kerberos Client Authentication
Kerberos Client Authentication

Consumed By

Required By

Message Attribute Reference

923

kerberos.profile.ap.req.bst.id

Name kerberos.profile.ap.req.bst.id

Description Contains the wsu:Id of the BinarySecurityToken con-
taining the AP_REQ message generated by the GssIniti-
atorFilter .

Type java.lang.String

Generated By Kerberos Client Authentication

Consumed By

Required By

kerberos.profile.ap.req.sha1

Name kerberos.profile.ap.req.sha1

Description Contains the SHA1 hash of a Kerberos AP_REQ message.
This is generated when a Kerberos service consumes it, or
when a Kerberos client generates it.

Type java.lang.String

Generated By Kerberos Client Authentication
Kerberos Client Authentication

Consumed By

Required By

kerberos.service.authenticator.principal

Name kerberos.service.authenticator.principal

Description Contains the principal extracted from the AP_REQ message
on the Kerberos acceptor side.

Type java.lang.String

Generated By Kerberos Client Authentication

Consumed By

Required By

kerberos.service.authenticator.realm

Name kerberos.service.authenticator.realm

Description Contains the realm extracted from the AP_REQ message on
the Kerberos acceptor side.

Type java.lang.String

Generated By Kerberos Client Authentication

Consumed By

Required By

Message Attribute Reference

924

kerberos.service.authenticator.time

Name kerberos.service.authenticator.time

Description Contains the time extracted from the AP_REQ message on
the Kerberos acceptor side.

Type java.lang.String

Generated By Kerberos Client Authentication

Consumed By

Required By

kerberos.service.context.established

Name kerberos.service.context.established

Description Indicates whether the service-side context has been estab-
lished (true or false).

Type java.lang.String

Generated By Kerberos Client Authentication

Consumed By

Required By

kerberos.service.subject.id

Name kerberos.service.subject.id

Description Contains the principal name of the Kerberios service.

Type java.lang.String

Generated By Kerberos Client Authentication
Kerberos Client Authentication

Consumed By

Required By

kerberos.service.ticket.principal

Name kerberos.service.ticket.principal

Description Contains the principal extracted from the AP_REQ message
on the Kerberos acceptor side.

Type java.lang.String

Generated By Kerberos Client Authentication

Consumed By

Required By

Message Attribute Reference

925

kerberos.service.ticket.realm

Name kerberos.service.ticket.realm

Description Contains the realm extracted from the AP_REQ message on
the Kerberos acceptor side.

Type java.lang.String

Generated By Kerberos Client Authentication

Consumed By

Required By

kerberos.session.key

Name kerberos.session.key

Description On the Kerberos server-side, contains the session key ex-
tracted from the service ticket and authenticator in the Ker-
beros AP_REQ message. On the Kerberos client-side, con-
tains the session key extracted from the private credentials
of the client subject in the KerebrosTicket .

Type javax.security.auth.kerberos.KerberosKey

Generated By Kerberos Client Authentication
Kerberos Client Authentication

Consumed By

Required By

mcafee.status

Name mcafee.status

Description Stores the overall message status of all message parts
after a McAfee virus scan (for example, NOVIRUS , INFEC-
TED , REPAIRED , and REMOVED).

Type java.lang.String

Generated By McAfee Anti-Virus

Consumed By

Required By

message.key

Name message.key

Description Contains a hash of the request message. By default, used
as the key to search for objects in the cache.

Type java.lang.String

Generated By Create Key

Consumed By

Message Attribute Reference

926

Required By Cache Attribute
Is Cached?
Remove Cached Attribute

saml.assertion

Name saml.assertion

Description Contains the SAML assertion that was used for authentica-
tion, authorization, or attribute extraction.

Type org.w3c.dom.Element

Generated By Retrieve Attributes from SAML Attribute Assertion
SAML Authentication
SAML Authorization

Consumed By

Required By

saml.assertion.position

Name saml.assertion.position

Description Indicates the position of the SAML assertion within a given
WS-Security block. There may be more than 1 assertion in
a WS-Security block, and so this attribute can be used to
select the appropriate one.

Type java.lang.Integer

Generated By Retrieve Attributes from SAML Attribute Assertion
SAML Authentication
SAML Authorization

Consumed By

Required By

saml.wsblockinfo

Name saml.wsblockinfo

Description Stores the WS-Security block that contains the relevant
SAML assertion.

Type com.vordel.common.util.WSBlockInfo

Generated By Retrieve Attributes from SAML Attribute Assertion
SAML Authentication
SAML Authorization

Consumed By

Required By

Message Attribute Reference

927

samlpdp.response.assertion

Name samlpdp.response.assertion

Description Contains the SAML assertion from the SAMLP response.

Type org.w3c.dom.Element

Generated By Retrieve Attributes from SAML Attribute Assertion
SAML PDP Authorization

Consumed By

Required By

samlpdp.response.doc

Name samlpdp.response.doc

Description Contains the SAMLP response from the SAML PDP as an
XML Document.

Type org.w3c.dom.Document

Generated By Retrieve Attributes from SAML PDP
SAML PDP Authorization
SAML PDP Response XML-Signature Verification
SAML PDP XML-Signature Response Verification

Consumed By

Required By

samlpdp.response.namespace.saml

Name samlpdp.response.namespace.saml

Description Stores the SAML namespace that was used in the SAMLP
response.

Type java.lang.String

Generated By Retrieve Attributes from SAML PDP
SAML PDP Authorization

Consumed By

Required By

samlpdp.response.namespace.samlp

Name samlpdp.response.namespace.samlp

Description Stores the SAMLP namespace that was used in the SAM-
LP response.

Type java.lang.String

Generated By Retrieve Attributes from SAML PDP
SAML PDP Authorization

Consumed By

Message Attribute Reference

928

Required By

samlpdp.subject.format

Name samlpdp.subject.format

Description Contains the subject format used in the SAMLP request to
the SAML PDP.

Type java.lang.String

Generated By Retrieve Attributes from SAML PDP
SAML PDP Authorization

Consumed By

Required By

samlpdp.subject.id

Name samlpdp.subject.id

Description Identifies the subject used in the SAMLP request to the
SAML PDP.

Type java.lang.String

Generated By Retrieve Attributes from SAML PDP
SAML PDP Authorization

Consumed By

Required By

service.name

Name service.name

Description Stores the name of the backend Web Service. For ex-
ample, this is used when the service is displayed in real-
time monitoring tools.

Type java.lang.String

Generated By Set Service Name
Set Web Service Context
Web Service Filter

Consumed By

Required By

siteminder.agent

Name siteminder.agent

Description Indicates the name of the agent that API Gateway uses to

Message Attribute Reference

929

connect to SiteMinder as.

Type java.lang.String

Generated By SiteMinder Certificate Authentication
SiteMinder Session Validation

Consumed By

Required By SiteMinder Authorization
SiteMinder Logout

siteminder.decision

Name siteminder.decision

Description API Gateway can ask SiteMinder to make an authorization
decision based on whether or not SiteMinder authenticates
the user. SiteMinder returns its decision to API Gateway
where it is stored in this attribute.

Type com.vordel.circuit.siteminder.SiteMinderDec
ision

Generated By SiteMinder Certificate Authentication
SiteMinder Session Validation

Consumed By

Required By SiteMinder Authorization
SiteMinder Logout

soap.request.action

Name soap.request.action

Description Specifies the SOAP Action in the HTTP header.

Type java.lang.String

Generated By SOAPAction

Consumed By

Required By

soap.request.method

Name soap.request.method

Description Stores the SOAP operation name. This is the first element
under the SOAP body for an RPC encoded SOAP mes-
sage.

Type java.lang.String

Generated By Operation Name

Consumed By

Required By

Message Attribute Reference

930

soap.request.method.namespace

Name soap.request.method.namespace

Description Contains the namespace of the element identified by the
value of the soap.request.method attribute. In oth-
er words, this attribute indicates the namespace of the
SOAP operation.

Type java.lang.String

Generated By Operation Name

Consumed By

Required By

soasecuritymanager.action

Name soasecuritymanager.action

Description Contains the action to take.

Type java.lang.String

Generated By

Consumed By

Required By

soasecuritymanager.agent

Name soasecuritymanager.agent

Description Contains the name of the agent used by API Gateway to
connect to the CA SOA Security Manager.

Type java.lang.String

Generated By CA SOA Security Manager Authentication

Consumed By

Required By CA SOA Security Manager Authorization

soasecuritymanager.decision

Name soasecuritymanager.decision

Description Contains the authentication/authorization decision made by
CA SOA Security Manager.

Type java.lang.String

Generated By CA SOA Security Manager Authentication

Consumed By

Required By CA SOA Security Manager Authorization

Message Attribute Reference

931

soasecuritymanager.realmdef

Name soasecuritymanager.realmdef

Description Contains the authentication/authorization realm of the CA
SOA Security Manager.

Type java.lang.String

Generated By CA SOA Security Manager Authentication

Consumed By

Required By CA SOA Security Manager Authorization

soasecuritymanager.resource

Name soasecuritymanager.resource

Description Contains the name of the resource that the client is at-
tempting to access.

Type java.lang.String

Generated By

Consumed By

Required By

soasecuritymanager.resource.context

Name soasecuritymanager.resource.context

Description Describes the context of the resource that the user is at-
tempting to access.

Type java.lang.String

Generated By CA SOA Security Manager Authentication

Consumed By

Required By CA SOA Security Manager Authorization

webservice.context

Name webservice.context

Description Stores the Web Service context of the backend Web Ser-
vice. For example, this is used to identify the service in the
Web Service Repository when a WSDL request is re-
ceived.

Type java.lang.String

Generated By Set Web Service Context
Web Service Filter

Consumed By

Required By Return WSDL

Message Attribute Reference

932

Schema Validation

ws.username.token.name

Name ws.username.token.name

Description Associates the generated UsernameToken with the au-
thenticated user.

Type java.lang.String

Generated By Insert WS-Security Username Token

Consumed By

Required By

wss.timestamp

Name wss.timestamp

Description The timestamp in the WSS header block that is obtained
from the message for a particular SOAP actor/role. Indic-
ates how long the security data remains valid for.

Type java.lang.String

Generated By Extract WSS Timestamp

Consumed By

Required By

wss.usernameToken

Name wss.usernameToken

Description The usernameToken in the WSS header block that is ob-
tained from the message for a particular SOAP actor/role.

Type java.lang.String

Generated By Extract WSS Username Token

Consumed By

Required By

xacml.decision

Name xacml.decision

Description Contains the authorization decision sent by the XACML
Policy Decision Point to the XACML Policy Enforcement
Point (for example, Permit , Deny , Indeterminate , or
NotApplicable).

Message Attribute Reference

933

Type java.lang.String

Generated By XACML PEP

Consumed By

Required By

xacml.result.xml

Name xacml.result.xml

Description Contains the XML response message that includes the au-
thorization decision sent by the XACML Policy Decision
Point to the XACML Policy Enforcement Point (for ex-
ample, Permit , Deny , Indeterminate , or NotAp-
plicable).

Type java.lang.String

Generated By XACML PEP

Consumed By

Required By

xacml.statuscode

Name xacml.statuscode

Description Contains the XACML status code message (for example,
urn:oasis:names:tc:xacml:1.0:status:ok syn-
tax-error , processing-error , or missing-at-
tribute).

Type java.lang.String

Generated By XACML PEP

Consumed By

Required By

xsd.errors

Name xsd.errors

Description Stores validation errors generated when a schema valida-
tion check fails. For example, you can return an appropri-
ate SOAP Fault to the client by writing out the contents of
this attribute. You can configure a Set Message filter to
write a custom response message back to the client, and
place it on the failure path of the Schema Validation filter.

Type java.lang.String

Generated By Schema Validation

Consumed By

Message Attribute Reference

934

Required By

Message Attribute Reference

935

Message Filter Reference
Extract WSS Header

Name Extract WSS Header

Description Extracts a WS-Security <Header> block from a message,
and stores it in the authentication.ws.wsblockinfo
message attribute.

Category Attributes

Required Attributes

Consumed Attributes

Generated Attributes authentication.ws.wsblockinfo

Tutorial Extract WSS Header

Extract WSS Timestamp

Name Extract WSS Timestamp

Description Extracts a WS-Utility Timestamp from a message. The
timestamp is stored in a specified message attribute to be
processed later in a policy. Defaults to the
wss.timestamp message attribute.

Category Attributes

Required Attributes

Consumed Attributes

Generated Attributes wss.timestamp

Tutorial Extract WSS Timestamp

Extract WSS Username Token

Name Extract WSS Username Token

Description Extracts a WS-Security UsernameToken from a message if
it exists. The extracted UsernameToken is stored in the
wss.usernameToken message attribute.

Category Attributes

Required Attributes

Consumed Attributes

Generated Attributes wss.usernameToken

Tutorial Extract WSS UsernameToken

Insert SAML Attribute Assertion

Name Insert SAML Attribute Assertion

936

Description Inserts a SAML attribute assertion into the downstream
message.

Category Attributes

Required Attributes attribute.lookup.list
attribute.subject.format
attribute.subject.id
content.body

Consumed Attributes

Generated Attributes

Tutorial Insert SAML Attribute Assertion

Retrieve Attributes from Directory Server

Name Retrieve Attribute from Directory Server

Description Retrieves user attributes from an LDAP directory.

Category Attributes

Required Attributes authentication.subject.id
authentication.subject.format

Consumed Attributes

Generated Attributes attribute.lookup.list
attribute.subject.format
attribute.subject.id

Tutorial Retrieve Attributes from Directory Server

Retrieve Attribute from HTTP Header

Name Retrieve Attribute from HTTP Header

Description Retrieves the value of an HTTP header and sets it to a
user-specified message attribute.

Category Attributes

Required Attributes content.body

Consumed Attributes

Generated Attributes

Tutorial Retrieve Attribute from HTTP Header

Retrieve Attributes from Database

Name Retrieve Attributes from Database

Description Retrieves user attributes from a specified database.

Category Attributes

Required Attributes authentication.subject.id

Message Filter Reference

937

authentication.subject.format

Consumed Attributes

Generated Attributes attribute.lookup.list
authentication.subject.id
authentication.subject.format

Tutorial Retrieve Attribute from Database

Retrieve Attribute from Message

Name Retrieve Attribute from Message

Description Retrieves the value of an XML attribute or element from the
message and sets it to a user-specified message attribute.

Category Attributes

Required Attributes content.body

Consumed Attributes

Generated Attributes

Tutorial Retrieve Attribute from Message

Retrieve Attributes from SAML Attribute Assertion

Name Retrieve Attribute from SAML Attribute Assertion

Description Retrieves user attributes from a SAML attribute assertion
and stores them in the attribute.lookup.list message attrib-
ute.

Category Attributes

Required Attributes content.body

Consumed Attributes

Generated Attributes attribute.lookup.list
attribute.subject.format
attribute.subject.id
saml.assertion
saml.assertion.position
saml.wsblockinfo

Tutorial Retrieve Attribute from SAML Attribute Assertion

Retrieve Attributes from SAML PDP

Name Retrieve Attribute from SAML PDP

Description When a user has been successfully authenticated, the API
Gateway can send a SAMLP (SAML Protocol) request to
the SAML PDP to obtain user attributes. The PDP pack-
ages the relevant attributes into a SAML attribute assertion
and returns the assertion to API Gateway in a SAMLP re-

Message Filter Reference

938

sponse. API Gateway validates the response and can op-
tionally insert the attribute assertion into the downstream
message.

Category Attributes

Required Attributes authentication.subject.id
authentication.subject.format
authentication.method

Consumed Attributes

Generated Attributes attribute.lookup.list
samlpdp.response.assertion
samlpdp.response.doc
samlpdp.response.namespace.saml
samlpdp.response.namespace.samlp
samlpdp.subject.format
samlpdp.subject.id

Tutorial SAML PDP Attributes

Retrieve Attributes from Tivoli

Name Retrieve Attributes from Tivoli

Description You can use this filter when you need to retrieve user at-
tributes independently from authorizing the user against
Tivoli Access Manager.

Category Attributes

Required Attributes authentication.subject.id

Consumed Attributes

Generated Attributes attribute.lookup.list
attribute.subject.format
attribute.subject.id

Tutorial Retrieve Attributes from Tivoli

Retrieve Attributes from User Store

Name Retrieve from User Store

Description Retrieves user attributes from the User Store and stores
them in the attribute.lookup.list message attribute.

Category Attributes

Required Attributes authentication.subject.id

Consumed Attributes

Generated Attributes attribute.lookup.list
authentication.subject.id
authentication.subject.format

Tutorial Retrieve Attribute from User Store

Message Filter Reference

939

SAML PDP XML-Signature Response Verification

Name SAML PDP XML-Signature Response Verification

Description Typically, a SAML PDP will sign SAMLP responses re-
turned to API Gateway. In such cases, API Gateway can
validate the signature on the response using this filter.

Category Attributes

Required Attributes samlpdp.response.doc

Consumed Attributes

Generated Attributes certificate
certificates

Tutorial SAML PDP Response XML-Signature Verification

Attribute Authentication

Name Attribute Authentication

Description Authenticates user credentials specified in API Gateway
message attributes against a configured user store.

Category Authentication

Required Attributes authentication.subject.id
authentication.subject.password

Consumed Attributes

Generated Attributes authentication.method
authentication.subject.format
authentication.subject.id
authentication.subject.orig.format
authentication.subject.orig.id
authentication.subject.password

Tutorial Attribute Authentication

HTML Form-based Authentication

Name HTML Form-based Authentication

Description Authenticates API Gateway client user credentials spe-
cified in an HTML form against a configured user store.

Category Authentication

Required Attributes

Consumed Attributes

Generated Attributes authentication.method
authentication.subject.format
authentication.subject.id
authentication.subject.orig.format
authentication.subject.orig.id
authentication.subject.password

Tutorial HTML Form-based Authentication

Message Filter Reference

940

HTTP Basic Authentication

Name HTTP Basic Authentication

Description Authenticates a client against a configured user store using
HTTP basic authentication.

Category Authentication

Required Attributes http.headers
http.request.verb

Consumed Attributes

Generated Attributes authentication.method
authentication.subject.format
authentication.subject.id
authentication.subject.orig.format
authentication.subject.orig.id
authentication.subject.password

Tutorial HTTP Basic Authentication

HTTP Digest Authentication

Name HTTP Digest Authentication

Description Authenticates a client against a configured user store using
HTTP digest authentication.

Category Authentication

Required Attributes http.headers
http.request.verb

Consumed Attributes

Generated Attributes authentication.method
authentication.subject.format
authentication.subject.id
authentication.subject.orig.format
authentication.subject.orig.id
authentication.subject.password

Tutorial HTTP Digest Authentication

IP Address

Name IP Address

Description Allows or denies access to an IP address or range of IP ad-
dresses.

Category Authentication

Required Attributes http.request.clientaddr

Consumed Attributes

Generated Attributes

Tutorial IP Address

Message Filter Reference

941

SSL Authentication

Name SSL Authentication

Description Authenticates a user's SSL certificate.

Category Authentication

Required Attributes content.body

Consumed Attributes

Generated Attributes authentication.cert
authentication.issuer.format
authentication.issuer.id
authentication.method
authentication.subject.format
authentication.subject.id
certificate
certificates

Tutorial SSL Authentication

CA SOA Security Manager Authentication

Name CA SOA Security Manager Authentication

Description Authenticates a user against CA SOA Security Manager.

Category Authentication

Required Attributes content.body
http.request.clientaddr
http.request.uri
http.request.verb

Consumed Attributes

Generated Attributes authentication.method
authentication.subject.format
authentication.subject.id
soasecuritymanager.agent
soasecuritymanager.decision
soasecuritymanager.realmdef
soasecuritymanager.resource.context

Tutorial CA SOA Security Manager Authorization

HTTP Header Authentication

Name HTTP Header Authentication

Description Extracts a user credential from an HTTP header and uses
it to authenticate the user. Typically, a username, X.509
certificate, or Distinguished Name is extracted from the HT-
TP header.

Category Authentication

Required Attributes http.headers

Consumed Attributes

Message Filter Reference

942

Generated Attributes authentication.cert
authentication.issuer.format
authentication.issuer.id
authentication.issuer.orig.format
authentication.issuer.orig.id
authentication.method
authentication.subject.format
authentication.subject.id
authentication.subject.orig.format
authentication.subject.orig.id
certificate
certificates

Tutorial HTTP Header Authentication

Insert SAML Authentication Assertion

Name Insert SAML Authentication Assertion

Description Inserts a SAML authentication assertion into the down-
stream message on behalf of an authenticated user.

Category Authentication

Required Attributes authentication.method
authentication.subject.format
authentication.subject.id
content.body

Consumed Attributes

Generated Attributes

Tutorial Insert SAML Authentication Assertion

Insert WS-Security Username Token

Name Insert WS-Security Username Token

Description Inserts a WS-Security Token into the downstream mes-
sage on behalf of an authenticated client.

Category Authentication

Required Attributes authentication.subject.id
content.body

Consumed Attributes

Generated Attributes ws.username.token.name

Tutorial Insert WS-Security Username Token

Insert Timestamp

Name Insert Timestamp

Description Inserts a WS-Utility (WSU) Timestamp into a WS-Security

Message Filter Reference

943

Header to specify the lifetime of the message to which it is
added.

Category Authentication

Required Attributes content.body

Consumed Attributes

Generated Attributes

Tutorial Insert Timestamp

Kerberos Client Authentication

Name Kerberos Client Authentication

Description Obtains a service ticket for a Kerberos Service, and uses it
to authenticate to the service.

Category Authentication

Required Attributes http.destination.host

Consumed Attributes

Generated Attributes authentication.method
authentication.subject.format
authentication.subject.id
kerberos.client.context.established
kerberos.context
kerberos.mechanism.oid
kerberos.profile.ap.req.bst.id
kerberos.profile.ap.req.sha1
kerberos.service.subject.id
kerberos.session.key

Tutorial Kerberos Client Authentication

Kerberos Service Authentication

Name Kerberos Service Authentication

Description Consumes a Kerberos token to authenticate a Kerberos
Client.

Category Authentication

Required Attributes http.destination.host

Consumed Attributes

Generated Attributes authentication.method
authentication.subject.format
authentication.subject.id
kerberos.mechanism.oid
kerberos.profile.ap.req.sha1
kerberos.service.authenticator.principal
kerberos.service.authenticator.principal
kerberos.service.authenticator.principal
kerberos.service.context.established

Message Filter Reference

944

kerberos.service.subject.id
kerberos.service.subject.id
kerberos.service.subject.id
kerberos.session.key

Tutorial Kerberos Service Authentication

SAML Authentication

Name SAML Authentication

Description Validates a SAML authentication assertion to make sure it
has not expired.

Category Authentication

Required Attributes content.body

Consumed Attributes

Generated Attributes authentication.method
authentication.subject.id
authentication.subject.format
saml.assertion
saml.assertion.position
saml.wsblockinfo

Tutorial SAML Authentication

SAML Authentication XML-Signature Verification

Name SAML Authentication XML-Signature Verification

Description Validates the signature on a SAML authentication asser-
tion.

Category Authentication

Required Attributes content.body

Consumed Attributes

Generated Attributes authentication.cert
authentication.issuer.format
authentication.issuer.id
certificate
certificates

Tutorial SAML Authentication XML-Signature Verification

SAML PDP Response XML-Signature Verification

Name SAML PDP Response XML-Signature Verification

Description Typically a SAML PDP will sign SAMLP responses and/or
the issued SAML assertion itself. This filter can be used to
validate the signature on the SAMLP response.

Category Authentication

Message Filter Reference

945

Required Attributes samlpdp.response.doc

Consumed Attributes

Generated Attributes certificate
certificates

Tutorial SAML PDP Response XML-Signature Verification

XML-Signature Authentication

Name XML-Signature Authentication

Description API Gateway can authenticate a client by validating the
XML-Signature on an incoming request. A successful sig-
nature validation proves that the client had access to the
private key that was used to sign the request.

Category Authentication

Required Attributes content.body

Consumed Attributes

Generated Attributes authentication.cert
authentication.issuer.format
authentication.issuer.id
authentication.method
authentication.subject.format
authentication.subject.id
certificate
certificates

Tutorial XML Signature Authentication

Attribute Authorization

Name Attribute Authorization

Description This filter checks the values of user attributes that are
stored in the attribute.lookup.list message attrib-
ute.

Category Authorization

Required Attributes attribute.lookup.list

Consumed Attributes

Generated Attributes

Tutorial Attributes

CA SOA Security Manager Authorization

Name CA SOA Security Manager Authorization

Description Authorizes an authenticated user against CA SOA Security
Manager.

Message Filter Reference

946

Category Authorization

Required Attributes http.request.clientaddr
soasecuritymanager.agent
soasecuritymanager.decision
soasecuritymanager.realmdef
soasecuritymanager.resource.context

Consumed Attributes

Generated Attributes attribute.lookup.list
attribute.subject.format
attribute.subject.id

Tutorial CA SOA Security Manager Authentication

Certificate Attributes Authorization

Name Certificate Attributes Authorization

Description Authorizes a user by examining the attributes in that user's
X.509 certificate.

Category Authorization

Required Attributes authentication.subject.id
authentication.subject.format

Consumed Attributes

Generated Attributes

Tutorial Certificate Attributes

Check Group Membership

Name Check Group Membership

Description Checks whether the specified API Gateway User is a mem-
ber of the specified API Gateway Group.

Category Authorization

Required Attributes authentication.subject.id

Consumed Attributes

Generated Attributes

Tutorial Check Group Membership

Entrust GetAccess Authorization

Name GetAccess Authorization

Description Authorizes an authenticated user against Entrust's GetAc-
cess.

Category Authorization

Required Attributes authentication.subject.id

Message Filter Reference

947

authentication.subject.format content.body

Consumed Attributes

Generated Attributes

Tutorial Entrust GetAccess Authorization

Insert SAML Authorization Assertion

Name Insert SAML Authorization Assertion

Description When the user has been successfully authorized, API
Gateway can insert a SAML authorization assertion into the
downstream message.

Category Authorization

Required Attributes authentication.subject.id
authentication.subject.format
content.body

Consumed Attributes

Generated Attributes

Tutorial Insert SAML Authorization Assertion

RSA Access Manager Authorization

Name Access Manager

Description Authorizes an authenticated user against RSA's ClearTrust
Authorization Server.

Category Authorization

Required Attributes authentication.subject.id
authentication.subject.format

Consumed Attributes

Generated Attributes

Tutorial RSA Access Manager Authorization

SAML Authorization

Name SAML Authorization

Description Authorizes a user by validating the SAML authorization as-
sertion in an incoming request.

Category Authorization

Required Attributes authentication.subject.id
authentication.subject.format
content.body

Consumed Attributes

Message Filter Reference

948

Generated Attributes saml.assertion
saml.assertion.position
saml.wsblockinfo

Tutorial SAML Authorization Assertion

SAML Authorization XML-Signature Verification

Name SAML Authorization XML-Signature Verification

Description Validates the XML-Signature on a SAML authorization as-
sertion.

Category Authorization

Required Attributes content.body

Consumed Attributes

Generated Attributes certificate
certificates

Tutorial SAML Authorization XML-Signature Verification

SAML PDP Authorization

Name SAML PDP Authorization

Description Generates a SAMLP authorization request to a SAML PDP
on behalf of an authenticated user. The SAML PDP gener-
ates a SAML authorization assertion and returns it to API
Gateway in a SAMLP response. API Gateway validates the
response and can optionally insert the assertion into the
downstream message.

Category Authorization

Required Attributes authentication.method
authentication.subject.id
authentication.subject.format

Consumed Attributes

Generated Attributes samlpdp.response.assertion
samlpdp.response.doc
samlpdp.response.namespace.saml
samlpdp.response.namespace.samlp
samlpdp.subject.id
samlpdp.subject.format

Tutorial SAML PDP Authorization

SAML PDP Response XML-Signature Verification

Name SAML PDP Response XML-Signature Verification

Description Typically a SAML PDP will sign SAMLP responses and/or
the issued SAML assertion itself. This filter can be used to

Message Filter Reference

949

validate the signature on the SAMLP response.

Category Authorization

Required Attributes samlpdp.response.doc

Consumed Attributes

Generated Attributes certificate
certificates

Tutorial SAML PDP Response XML-Signature Verification

Tivoli Authorization

Name Tivoli Authorization

Description Authorizes an authenticated user against IBM's Tivoli Ac-
cess Manager.

Category Authorization

Required Attributes authentication.subject.id
authentication.subject.format

Consumed Attributes

Generated Attributes

Tutorial Tivoli Authorization

XACML PEP

Name XACML PEP

Description Configures an eXtensible Access Control Markup Lan-
guage (XACML) Policy Enforcement Point (PEP)

Category Authorization

Required Attributes

Consumed Attributes

Generated Attributes xacml.decision
xacml.result.xml
xacml.statuscode

Tutorial XACML Policy Enforcement Point

SiteMinder Authorization

Name SiteMinder Authorization

Description Authorizes a user against CA's SiteMinder. The user must
have been authenticated to SiteMinder before they can be
authorized.

Category CA SiteMinder

Required Attributes siteminder.agent

Message Filter Reference

950

siteminder.decision

Consumed Attributes

Generated Attributes attribute.lookup.list
attribute.subject.format
attribute.subject.id

Tutorial SiteMinder Authorization

SiteMinder Certificate Authentication

Name SiteMinder Certificate Authentication

Description Authenticates a user's certificate against SiteMinder.

Category CA SiteMinder

Required Attributes certificate
certificates

Consumed Attributes

Generated Attributes authentication.method
authentication.subject.format
authentication.subject.id
siteminder.agent
siteminder.decision

Tutorial SiteMinder Certificate Authentication

SiteMinder Logout

Name SiteMinder Logout

Description Terminates a user's SiteMinder session by invalidating the
user's single sign-on token.

Category CA SiteMinder

Required Attributes siteminder.agent
siteminder.decision

Consumed Attributes

Generated Attributes

Tutorial SiteMinder Logout

SiteMinder Session Validation

Name SiteMinder Session Validation

Description Extracts a user's single sign-on token from the message
and validates it against SiteMinder.

Category CA SiteMinder

Required Attributes content.body

Consumed Attributes

Message Filter Reference

951

Generated Attributes authentication.method
authentication.subject.format
authentication.subject.id
siteminder.agent
siteminder.decision

Tutorial SiteMinder Session Validation

Cache Attribute

Name Cache Attribute

Description Specifies which part of the message is cached. Typically,
response messages are cached, so this filter is usually
configured after the routing filters in a policy.

Category Cache

Required Attributes message.key
content.body

Consumed Attributes

Generated Attributes

Tutorial Cache Attribute

Create Key

Name Create Key

Description Specifies which part of a message determines if the mes-
sage is unique (for example, message body, HTTP header,
client IP address, and so on).

Category Cache

Required Attributes content.body

Consumed Attributes

Generated Attributes message.key

Tutorial Create Key

Is Cached?

Name Is Cached?

Description Looks up a named cache to see if a specified message at-
tribute is already cached. A message attribute is used as
the key to search for in the cache (defaults to mes-
sage.key). If the lookup succeeds, the retrieved value
overrides a specified message attribute (defaults to con-
tent.body).

Category Cache

Required Attributes message.key

Message Filter Reference

952

Consumed Attributes

Generated Attributes content.body

Tutorial Is Cached?

Remove Cached Attribute

Name Remove Cached Attribute

Description Deletes a message attribute value that has been stored in
a cache.

Category Cache

Required Attributes message.key

Consumed Attributes

Generated Attributes

Tutorial Removed Cached Attribute

Certificate Chain

Name Certificate Chain

Description Ensures that a trusted CA (Certificate Authority) issued the
certificate. Trusted CA certificates are stored in the Certific-
ate Store.

Category Certificate

Required Attributes certificates

Consumed Attributes

Generated Attributes

Tutorial Certificate Chain Check

Certificate Revocation List (Dynamic)

Name Certificate Revocation List (dynamic)

Description Validates a certificate against a CRL and automatically re-
trieves the CRL periodically.

Category Certificate

Required Attributes certificates

Consumed Attributes

Generated Attributes

Tutorial Dynamic CRL Certificate Validation

Certificate Revocation List (LDAP)

Message Filter Reference

953

Name CRL (in LDAP)

Description Looks up a user's certificate in an LDAP-based CRL to see
if that user has been revoked.

Category Certificate

Required Attributes certificates

Consumed Attributes

Generated Attributes

Tutorial CRL LDAP Validation

Certificate Revocation List Responder

Name CRL Responder

Description Configures the API Gateway to act as CRL responder by
returning CRL files to clients.

Category Certificate

Required Attributes certificates

Consumed Attributes

Generated Attributes

Tutorial CRL Responder

Certificate Revocation List (Static)

Name CRL (static)

Description Looks up a user's certificate in a file-based CRL to see if
that user has been revoked.

Category Certificate

Required Attributes certificates

Consumed Attributes

Generated Attributes

Tutorial Static CRL Certificate Validation

Create Thumbprint from Certificate

Name Create Thumbprint

Description Used to create a human-readable thumbprint (or finger-
print) from the X.509 certificate that is stored in the certi-
ficate message attribute. The generated thumbprint is
stored in the certificate.thumbprint attribute.

Category Certificate

Required Attributes certificate

Consumed Attributes

Message Filter Reference

954

Generated Attributes certificate.thumbprint

Tutorial certificate.thumbprint

Extract Certificate Attributes

Name Extract Certificate Attributes

Description Extracts the X.509 attributes from a certificate stored in a
specified Oracle message attribute. Typically, this filter is
used in conjunction with a Find Certificate filter.

Category Certificate

Required Attributes certificate

Consumed Attributes

Generated Attributes attribute.lookup.list
attribute.subject.format
attribute.subject.id
cert.basic.constraints
cert.extended.key.usage
cert.hash.md5
cert.hash.sha1
cert.issuer.alternative.name
cert.issuer.id
cert.issuer.id.c
cert.issuer.id.cn
cert.issuer.id.emailaddress
cert.issuer.id.l
cert.issuer.id.o
cert.issuer.id.ou
cert.issuer.id.st
cert.key.usage.cRLSign
cert.key.usage.dataEncipherment
cert.key.usage.digitalSignature
cert.key.usage.encipherOnly
cert.key.usage.keyAgreement
cert.key.usage.keyCertSign
cert.key.usage.keyEncipherment
cert.key.usage.nonRepudiation
cert.not.after
cert.not.before
cert.serial.number
cert.signature.algorithm
cert.subject.alternative.name
cert.subject.id
cert.subject.id.c
cert.subject.id.cn
cert.subject.id.emailaddress
cert.subject.id.o
cert.subject.id.ou
cert.subject.id.st
cert.version

Tutorial Extract Certificate Attributes

Message Filter Reference

955

Find Certificate

Name Find Certificate

Description Locates a certificate from a message attribute, HTTP head-
er, message attachment, or extracts a certificate from the
User Store. The extracted certificate is stored in a user-
specified message attribute. This new attribute will then ap-
pear as a Generated Attribute in the policy. The certificate
is stored in the certificate attribute by default.

Category Certificate

Required Attributes

Consumed Attributes

Generated Attributes certificate
certificates

Tutorial Find Certificate

OCSP (Online Certificate Status Protocol)

Name OCSP Certificate Validation

Description Checks the status of a user's certificate against a group of
OCSP responders.

Category Certificate

Required Attributes certificates

Consumed Attributes

Generated Attributes

Tutorial OCSP Certificate Validation

XKMS (XML Key Management and Security)

Name XKMS Certificate Validation

Description Validates a user's certificate against a group of XKMS re-
sponders.

Category Certificates

Required Attributes certificates

Consumed Attributes

Generated Attributes

Tutorial XKMS Certificate Validation

Content Type Filtering

Name Content Type Filtering

Description Filters MIME and DIME messages based on the types of
their attachments.

Message Filter Reference

956

Category Content Filtering

Required Attributes content.body

Consumed Attributes

Generated Attributes

Tutorial Content Type Filtering

Content Validation

Name Content Validation

Description Runs a boolean XPath expression on the incoming re-
quest.

Category Content Filtering

Required Attributes content.body

Consumed Attributes

Generated Attributes

Tutorial Content Validation

Throttling

Name Throttling

Description Limits the number of messages a client can send in a spe-
cified interval through the policy in which this filter is con-
figured. In other words, it provides filtering of messages on
a per client, per service basis.

Category Content Filtering

Required Attributes content.body

Consumed Attributes

Generated Attributes

Tutorial Throttling

McAfee Anti-Virus

Name McAfee Anti-Virus

Description Scans incoming HTTP requests and their attachments for
viruses and exploits. Supports cleaning of messages from
infections, provides scan presets for detection levels, and
reports overall message status after scanning.

Category Content Filtering

Required Attributes content.body

Consumed Attributes

Generated Attributes mcafee.status

Message Filter Reference

957

Tutorial McAfee Anti-Virus

Schema Validation

Name Schema Validation

Description Validates the contents of the message body against a se-
lected XML Schema. This ensures that the message ad-
heres to the correct message format, and can also ensure
that the message contains appropriate data.

Category Content Filtering

Required Attributes content.body
webservice.context

Consumed Attributes

Generated Attributes xsd.errors

Tutorial Schema Validation

Validate HTTP Headers

Name Validate HTTP Headers

Description Filters MIME and DIME messages based on the types of
their attachments.

Category Content Filtering

Required Attributes http.headers

Consumed Attributes

Generated Attributes

Tutorial HTTP Header Validation

Validate Message Attribute

Name Validate Message Attribute

Description Compares the value of a message attribute to a configured
regular expression. It can also check for the presence of
Threatening Content regular expressions such as SQL in-
jection and buffer overflow attacks.

Category Content Filtering

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial Validate Message Attributes

Message Filter Reference

958

XML Complexity

Name XML Complexity

Description Checks the depth and complexity of XML messages.

Category Content Filtering

Required Attributes content.body

Consumed Attributes

Generated Attributes

Tutorial XML Complexity

Add HTTP Header

Name Add HTTP Header

Description Adds a user-specified HTTP header to the downstream
message.

Category Conversion

Required Attributes http.headers

Consumed Attributes

Generated Attributes

Tutorial Add HTTP Header

Set Message

Name Set Message

Description Sets the content of the message payload.

Category Conversion

Required Attributes content.body

Consumed Attributes

Generated Attributes content.body

Tutorial Set Message

Load File

Name Load file

Description Loads the contents of the specified file, and sets them as
message content to be processed.

Category Conversion

Required Attributes

Consumed Attributes

Generated Attributes content.body

Tutorial Load File

Message Filter Reference

959

Remove HTTP Header

Name Remove HTTP Header

Description Removes a user-specified HTTP header from the down-
stream message.

Category Conversion

Required Attributes http.headers

Consumed Attributes

Generated Attributes

Tutorial Remove HTTP Header

XSLT Transformation

Name XSLT Transformation

Description This filter uses an XSLT stylesheet to convert the body of
the incoming request to an alternative XML grammar or
format.

Category Conversion

Required Attributes content.body

Consumed Attributes

Generated Attributes

Tutorial XSLT Transformation

XML-Decryption

Name XML-Decryption

Description Decrypts an XML-Encrypted message according to the set-
tings configured in the XML-Decryption Settings filter.
These settings are stored in the decryp-
tion.properties message attribute, which is a required
attribute for this filter.

Category Encryption

Required Attributes content.body
decryption.properties

Consumed Attributes

Generated Attributes

Tutorial XML-Decryption

XML-Decryption Settings

Name XML-Decryption Settings

Description This filter is used to specify the XML-Encrypted blocks to
decrypt in the message. All of the encrypted blocks can be

Message Filter Reference

960

decrypted or a single encrypted block can be selected us-
ing an XPath expression. The actual decryption is per-
formed by the XML-Decryption filter.

Category Encryption

Required Attributes

Consumed Attributes

Generated Attributes decryption.properties

Tutorial XML-Decryption Settings

XML-Encryption

Name XML-Encryption

Description Encrypts (part of) an XML message as specified in the
XML Encryption Settings filter. The message will be en-
crypted such that only its intended recipients can decrypt it.

Category Encryption

Required Attributes content.body
encryption.properties

Consumed Attributes

Generated Attributes

Tutorial XML-Encryption

XML-Encryption Settings

Name XML-Encryption Settings

Description This filter is used to specify the part(s) of the message to
encrypt, and for whom the message is to be encrypted.
Only the intended recipients will be able to decrypt the
message.

Category Encryption

Required Attributes

Consumed Attributes

Generated Attributes encryption.properties

Tutorial XML-Encryption Settings

SOAP Fault

Name SOAP Fault

Description If a SOAP Fault handler is configured for a policy, it
handles any exceptions that occur in the policy. As such it
dictates the format of the SOAP Fault that is returned to the
client.

Message Filter Reference

961

Category Fault Handlers

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial SOAP Fault

Sign Message

Name XML Signature Generation

Description Signs the selected part of the incoming request.

Category Integrity

Required Attributes content.body

Consumed Attributes

Generated Attributes

Tutorial XML Signature Generation

XML-Signature Verification

Name XML-Signature Verification

Description Verifies the integrity of the incoming message by validating
its XML-Signature. This ensures that the message was not
tampered with after it was signed.

Category Integrity

Required Attributes content.body

Consumed Attributes

Generated Attributes certificate
certificates

Tutorial XML Signature Verification

Set Service Name

Name Set Service Name

Description Configures service-level monitoring details. For example,
you can specify the service name displayed in real-time
monitoring tools, and whether to store service usage met-
rics.

Category Monitoring

Required Attributes

Consumed Attributes

Generated Attributes service.name

Tutorial Set Service Context

Message Filter Reference

962

Alert

Name Alert

Description Sends an alert to a configured alerting destination.

Category Monitoring

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial System Alerting

Log Access

Name Log Access

Description Logs message details in Common Log Format to an Ac-
cess Log. The log file is written to the /logs directory of your
API Gateway installation.

Category Monitoring

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial Log Access Filter

Log Message Payload

Name Log Message Payload

Description Logs the message payload, including HTTP headers and
MIME/DIME attachments, at a particular point in the policy.

Category Monitoring

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial Log Message Payload

Operation Name

Name Operation Name

Description Compares the first element of the SOAP body (i.e. the
SOAP operation) and its namespace to the values con-
figured here.

Category Resolvers

Required Attributes content.body

Message Filter Reference

963

Consumed Attributes

Generated Attributes soap.request.method
soap.request.method

Tutorial Operation Name

Relative Path

Name Relative Path

Description Matches the relative path (URI) on which the request was
received to the value configured here.

Category Resolvers

Required Attributes http.request.uri

Consumed Attributes

Generated Attributes

Tutorial Relative Path Resolver

SOAPAction

Name SOAPAction

Description Matches the SOAPAction HTTP header on the incoming
request to the value configured in this filter.

Category Resolvers

Required Attributes http.headers

Consumed Attributes

Generated Attributes soap.request.action

Tutorial SOAP Action Resolver

Connection

Name Connection

Description This filter is responsible for connecting to the target Web
Service or system. API Gateway can mutually authenticate
to the endpoint using SSL certificates or HTTP basic/digest
authentication.

Category Routing

Required Attributes content.body
http.destination.host
http.destination.port
http.destination.protocol
http.headers
http.request.uri
http.request.verb

Message Filter Reference

964

Consumed Attributes

Generated Attributes http.headers
http.request.connection.error
http.response.info
http.response.status
http.response.version

Tutorial Connection

Dynamic Router

Name Dynamic Router

Description In cases where API Gateway is acting as a proxy, it can ex-
tract the URL from the request line of the HTTP request
and route the message to this address.

Category Routing

Required Attributes http.request.uri

Consumed Attributes

Generated Attributes http.destination.host
http.destination.port
http.destination.protocol

Tutorial Dynamic Router

Rewrite URL

Name Rewrite URL

Description In cases where API Gateway is acting as a proxy, it can
forward the message on to the address specified in the re-
quest line of the HTTP request. This filter can be used to
rewrite the URL of the original request to an alternative
one, i.e. service virtualization.

Category Routing

Required Attributes http.request.uri

Consumed Attributes

Generated Attributes

Tutorial Rewrite URL

Static Router

Name Static Router

Description The static router is used to configure connection details for
a particular endpoint. API Gateway will route messages to
the endpoint configured here.

Category Routing

Message Filter Reference

965

Required Attributes

Consumed Attributes

Generated Attributes http.destination.host
http.destination.port
http.destination.protocol

Tutorial Static Router

Insert WS-Addressing

Name Insert WS-Addressing

Description Inserts WS-Addressing information into a SOAP message.

Category Routing

Required Attributes http.destination.host
http.destination.port
http.destination.protocol
http.headers
http.request.uri
soap.request.action

Consumed Attributes

Generated Attributes

Tutorial Insert WS-Addressing

Read WS-Addressing

Name Read WS-Addressing

Description Uses WS-Addressing information contained within a SOAP
message to route the message.

Category Routing

Required Attributes content.body

Consumed Attributes

Generated Attributes http.destination.host
http.destination.port
http.destination.protocol
http.request.uri

Tutorial Read WS-Addressing

Save to File

Name Save to file

Description Writes the current message contents to a file.

Category Routing

Required Attributes content.body

Message Filter Reference

966

Consumed Attributes

Generated Attributes

Tutorial Save to File

Abort

Name Abort

Description Forces a policy path to abort and throw an exception. This
causes a SOAP Fault to be returned to the client.

Category Utility

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial Abort Filter

Copy/Modify Attributes

Name Copy/Modify Attributes

Description This filter can be used to copy the value of one message
attribute to another.

Category Utility

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial Copy/Modify Attributes

False

Name False

Description Forces the policy path to return false.

Category Utility

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial False Filter

Policy Shortcut

Name Policy Shortcut

Message Filter Reference

967

Description This filter can be used to pass control to another policy. It is
very useful for creating a policy macro that contains small
pieces of logic that you may wish to keep outside of a
policy so that it can be re-used. This helps to keep the
main logic of a policy uncluttered.

Category Utility

Required Attributes The required attributes for this filter are whatever attributed
are required by the start node of the policy shortcut.

Consumed Attributes

Generated Attributes The generated attributes for this filter are the attributes that
are returned from the end node of the policy shortcut.

Tutorial Policy Shortcut

Reflect

Name Reflect

Description Echoes the request body back to the client.

Category Utility

Required Attributes content.body
http.headers

Consumed Attributes

Generated Attributes http.response.status

Tutorial Reflect Message Filter

Reflect Message and Attributes

Name Reflect Message and Attributes

Description Echoes the request body and the current message attrib-
utes back to the client.

Category Utility

Required Attributes content.body
http.headers

Consumed Attributes

Generated Attributes

Tutorial Reflect Message And Attributes Filter

True

Name True

Description Forces a true result from a policy path.

Category Utility

Message Filter Reference

968

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial True Filter

Execute process

Name Execute process

Description Executes an external process from a policy.

Category Utility

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial Execute External Process

Pause

Name Pause

Description This filter forces the policy to suspend processing for a
specified time interval. When this interval has elapsed, the
next filter in the policy path is executed immediately.

Category Utility

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial Pause Filter

Set Response Status

Name Set Response Status

Description Explicitly sets the response status of a given message.

Category Utility

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial Set Response Status

String Replace

Message Filter Reference

969

Name String Replace

Description Replaces all or part of the value of the specified string in a
message attribute.

Category Utility

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial String Replace Filter

Trace

Name Trace

Description Forces the API Gateway to trace the current message at-
tributes to the configured trace destination. By default,
trace files are written to the /trace directory of your API
Gateway installation.

Category Utility

Required Attributes

Consumed Attributes

Generated Attributes

Tutorial Trace Filter

Return WSDL

Name Return WSDL

Description Returns a WSDL file from the Web Services Repository.
This filter is configured automatically when a WSDL file is
imported into the repository.

Category Web Service

Required Attributes http.headers
http.request.uri
webservice.context

Consumed Attributes

Generated Attributes

Tutorial Return WSDL

Set Web Service Context

Name Set Web Service Context

Description Specifies which service to take resources from in the Web
Service Repository. For example, if you set this filter to a
getQuote service in the repository, and configure the Re-

Message Filter Reference

970

turn WSDL filter, the WSDL definition for the getQuote
service is returned when a WSDL request is received.

Category Web Service

Required Attributes

Consumed Attributes

Generated Attributes service.name
webservice.context

Tutorial Set Web Service Context

Web Service Filter

Name Web Service Filter

Description Controls and validates requests to the Web Service and re-
sponses from the Web Service. This is automatically gen-
erated as the Service Handler when a WSDL file is impor-
ted into the Web Services Repository.

Category Web Service

Required Attributes content.body
http.headers
http.request.verb

Consumed Attributes

Generated Attributes http.destination.host
http.destination.port
http.destination.protocol
http.headers
http.request.connection.error
http.request.uri
http.response.info
http.response.status
http.response.version
service.name
webservice.context

Tutorial Web Service Filter

Message Filter Reference

971

WS-Policy Reference
Asymmetric Binding WS-Policies

WS-Policy Name Description

AsymmetricBinding with Encrypted UsernameToken The service exposes an AsymmetricBinding where the
client and server use their respective X.509v3 tokens to
sign and encrypt the message. An encrypted UsernameT-
oken with hash password must be included in all mes-
sages from the client to the server.

AsymmetricBinding with SAML 1.1 (Sender Vouches)
Assertion and Signed Supporting Token

The service is secured with an AsymmetricBinding
where the client and server use their respective X.509v3
certificates to secure the message. The client must include
a SAML 1.1 Assertion (sender vouches) in all messages it
sends to the service.

AsymmetricBinding with Signed and Encrypted User-
nameToken

The service exposes an AsymmetricBinding where the
client and server use their respective X.509v3 tokens to
sign and encrypt the message. A signed and encrypted
UsernameToken with plaintext password must be included
in all messages from the client to the service.

AsymmetricBinding with WSS 1.0 Mutual Authentica-
tion with X509 Certificates, Sign, Encrypt

The service exposes an AsymmetricBinding interface
where the client and server use their respective X.509v3
certificates for mutual authentication, signing, and encrypt-
ing.

AsymmetricBinding with X509v3 Tokens The service exposes an AsymmetricBinding where the
client and server use their respective X.509v3 tokens to
sign and encrypt the message.

Message Level WS-Policies

WS-Policy Name Description

Encrypt SOAP Body The SOAP body must be encrypted.

Sign and Encrypt SOAP Body The SOAP body must be signed and encrypted.

Sign SOAP Body The SOAP body must be signed.

Oracle Web Services Manager WS-Policies

WS-Policy Name Description

WS-Security 1.0 Mutual Auth with Certificates AsymmetricBinding where the client and server use
their respective X.509v3 certificates to secure the mes-
sage.

WS-Security 1.0 SAML with Certificates AsymmetricBinding with SAML assertion as Signed-
SupportingToken.

WS-Security 1.0 Username with Certificates AsymmetricBinding with WS-Security UsernameToken
as SignedSupportingToken.

WS-Security 1.1 Mutual Auth with Certificates SymmetricBinding where the same X.509v3 certificate
is used to secure all messages between the client and the

972

service.

WS-Security 1.1 Username with Certificates SymmetricBinding with a WS-Security UsernameT-
oken as a SignedSupportingToken. The message is
endorsed with an asymmetric Signature.

WS-Security SAML Token Over SSL TransportBinding with a SAML Token as a Support-
ingToken.

WS-Security UsernameToken Over SSL TransportBinding with a WS-Security UsernameT-
oken as a SupportingToken.

Simple WS-Policies

WS-Policy Name Description

SAML 1.1 Bearer The client must include a SAML 1.1 Assertion (bearer)
representing the Requestor in all messages from the client
to the service.

Username SupportingToken Hash Password The client must authenticate with a WS-Security SAML
UsernameToken with hash password.

Username SupportingToken No Password The client must authenticate with a WS-Security User-
nameToken without a password.

Username SupportingToken Plaintext Password The client must authenticate with a WS-Security User-
nameToken with a plaintext password.

Symmetric Binding WS-Policies

WS-Policy Name Description

SymmetricBinding with SAML 2.0 (Sender Vouches)
Assertion and Endorsing Supporting Token

The service exposes a SymmetricBinding that requires
the client to send a SAML 2.0 Assertion to the service.
An X.509v3 token is also included in all messages from the
client to the service as an EndorsingSupportingToken.

SymmetricBinding with Signed and Encrypted User-
nameToken

The service uses a SymmetricBinding where the client
and service use the same X.509v3 token to sign and en-
crypt the message. A signed and encrypted UsernameT-
oken with plaintext password must be included in all mes-
sages from the client to the service. The policy uses WSS
SOAP Message Security 1.1 options.

SymmetricBinding with WSS 1.1 Anonymous Authen-
tication with X.509v3, Sign, Encrypt

The service is secured by a SymmetricBinding where
the same X.509v3 certificate is used to secure all mes-
sages between the client and the service. Derived Keys are
used for signing and encrypting and Signature Confirma-
tion is required by the Policy.

SymmetricBinding with WSS 1.1 Mutual Authentication
with X.509v3, Sign, Encrypt

The service exposes a SymmetricBinding where the
same X.509v3 certificate is used to secure all messages
between the client and the service. The client also en-
dorses the primary message signature using another
X.509v3 certificate.

WS-Policy Reference

973

Transport Binding WS-Policies

WS-Policy Name Description

SAML 1.1 Holder-of-Key over SSL The client includes a SAML 1.1 Assertion (sender
vouches) in all messages from the client to the service. The
client provides an endorsing signature to prove that it is the
holder-of-key. A TransportBinding is used to sign and
encrypt the message.

SAML 1.1 Sender-Vouches over SSL The client includes a SAML 1.1 Assertion (sender
vouches) on behalf of the Requestor to all messages from
the client to the service. The service uses a Transport-
Binding to ensure that all messages are signed and en-
crypted.

SAML 2.0 Holder-of-Key over SSL The client includes a SAML 2.0 Assertion (sender
vouches) in all messages from the client to the service. The
client provides an endorsing signature to prove that it is the
holder-of-key. A TransportBinding is used to sign and
encrypt the message.

SAML 2.0 Sender-Vouches over SSL The client includes a SAML 2.0 Assertion (sender vouches)
on behalf of the Requestor to all messages from the client
to the service. The service uses a TransportBinding to
ensure that all messages are signed and encrypted.

SSL Transport Binding The service is secured by SSL (HTTPS).

Username Token over SSL with no Timestamp The service is secured over SSL (HTTPS), the client is au-
thenticated with a UsernameToken, and no timestamp
should be included in the Security header.

Username Token over SSL with Timestamp The service is secured over SSL (HTTPS), the client is au-
thenticated with a UsernameToken. The Security header
contains a timestamp.

WS-Policy Reference

974

Glossary of Terms
ASN.1

ASN.1 (Abstract Syntax Notation One) is a standard format for transmitting messages over a network. The standard
defines a syntax for describing the structure of a message, and also rules for encoding the various data types con-
tained within the message. ASN.1 is defined in the following ISO standards:

• ISO 8824/ITU X.208 specifies the ASN.1 syntax.
• ISO 8825/ITU X.209 specifies the encoding rules for ASN.1

Base64
A method of encoding 8-bit characters as ASCII printable characters. It is typically used to encode binary data so
that it may be sent over text-based protocols such as HTTP and SMTP. Base64 is a scheme where 3 bytes are con-
catenated, then split to form 4 groups of 6-bits each; and each 6-bits gets translated to an encoded printable ASCII
character, via a table lookup. The specification is described in RFC 2045.

CA
A Certificate Authority (CA) issues digital certificates (especially X.509 certificates) and vouches for the binding
between the data items in a certificate.

cacert
A file used to keep the root certificates of signing authorities. The default password is changeit. It is typically stored
in c:\jdk1.6\jre\lib\security\cacerts. Each entry is identified by a unique alias, and is either a key entry
or a certificate entry. Key entries consist of a key pair, whereas certificate entries consist of just a certificate.

Since you implicitly trust all the Certificate Authorities in the cacerts file for code signing and verification, you must
manage the cacerts file carefully. The cacerts file should contain only certificates of the CAs you trust.

CRL
A Certificate Revocation List is a signed list indicating a set of certificates that are no longer considered valid by the
certificate issuer. CRLs may be used to identify revoked public-key certificates or attribute certificates and may rep-
resent revocation of certificates issued to authorities or to users. The term CRL is also commonly used as a generic
term applying to different types of revocation lists.

DER
Distinguished Encoding Rules is a type of ASN.1 encoding and is widely used to define the format of X.509 certific-
ates.

DName
An identifier that uniquely represents an object in the X.500 Directory Information Tree (DIT). A DName is a set of at-
tribute values that identify the path leading from the base of the DIT to the object that is named. An X.509 public-key
certificate or CRL contains a DName that identifies its issuer, and an X.509 attribute certificate contains a DN or oth-
er form of name that identifies its subject.

DOM
Document Object Model (DOM) is a generic interface (platform- and language-neutral) that allows external programs
to edit a document's contents, structure, and style.

DTD
A Document Type Definition defines a formal grammar for specifying the structure of an XML document. An XML
document is said to be valid if it conforms to the syntactic rules specified in the DTD.

ISO
ISO is a worldwide consortium of national standards bodies from more than 140 countries. The goal of ISO is to pro-
mote standardization in the world with a view to facilitating the international exchange of goods and services, and to
develop cooperation in scientific, technological and economic activity.

keystore
The keystore file of the JDK contains your public and private keys. It has a file name ".keystore", the peculiar leading
dot makes the file read-only in Unix. It is stored in PKCS #12 format, contains both public and private keys, and is
protected by a passphrase.

LDAP
LDAP is a "lightweight" version of Directory Access Protocol (DAP), which is part of X.500, a standard for directory
services in a network. An LDAP directory stores information on resources in a hierarchical fashion. This makes data

975

retrieval very efficient.
OCSP

Online Certificate Status Protocol is an automated certificate checking network protocol. A client will query the OC-
SP responder for the status of a certificate. The responder returns whether the certificate is still trusted by the CA
that issued it.

PEM
PEM (Privacy Enhanced Mail) was originally intended for securing Internet mail through authentication, message in-
tegrity and confidentiality using various encryption techniques. Its scope was widened in later years for use in a
broader range of applications, such as Web Servers. Its format is essentially a base64-encoded certificate wrapped
in BEGIN CERTIFCATE and END CERTIFICATE directives.

PKCS#12
PKCS#12 is a standard for storing private keys and certificates securely. It is used in (among other things) Netscape
and Microsoft Internet Explorer with their import and export options.

Private-Key
The secret component of a pair of cryptographic keys used for asymmetric cryptography.

Public-Key
The publicly-disclosable component of a pair of cryptographic keys used for asymmetric cryptography.

SAML
Security Assertion Markup Language (SAML) is an XML standard for establishing trust between entities. SAML as-
sertions can contain identity information about users (authentication assertions) and also information about the ac-
cess permissions of users (authorization assertions). The basic idea is that when a user is authenticated at one site,
that site issues a SAML authentication assertion and gives it to the user. The user can then use this assertion in re-
quests at other affiliated sites. These sites need only check the details contained within the authentication assertion
in order to authenticate the user. In this way, SAML allows authentication and authorization information to be shared
between separate sites.

SAX
The Simple API for XML is an interface that allows applications to read in XML data. SAX is an event-based inter-
face, which means that it responds to certain events. SAX is a read-only interface, which means that it cannot be
used to generate XML elements in the same way that the DOM can. However, it is generally more efficient than
DOM for reading XML documents since it does not keep the entire XML tree in memory like DOM parsing does.

Signature
A value computed with a cryptographic algorithm and appended to a data object in such a way that any recipient of
the data can use the signature to verify the data's origin and integrity.

SOAP
SOAP, or Simple Object Access Protocol is an XML-based object invocation protocol. SOAP was originally de-
veloped for distributed applications to communicate over HTTP and through corporate firewalls. SOAP defines the
use of XML and HTTP to access services, objects and servers in a platform-independent manner. SOAP provides a
way to access services, objects, and servers in a completely platform-independent manner. SOAP is a wire protocol
that can be used to facilitate highly ultra-distributed architecture.

SOAP is simple. It is nothing more and nothing less than a protocol that defines how to access services, objects,
and servers in a platform-independent manner using HTTP (also SMTP) and XML. See the Simple Object Access
Protocol Specification [http://www.w3.org/TR/SOAP/] for more details.

SSL
Secure Sockets Layer (SSL) is an encrypted communications protocol for sending information securely across the
Internet. It sits just above the transport layer, and below the application layer and transparently handles the encryp-
tion and decryption of data when a client establishes a secure connection to the server. It optionally provides peer
entity authentication between client and server.

TLS
Transport Layer Security is the successor to SSL 3.0. Like SSL, it allows applications to communicate over a secure
channel.

UDDI
Universal Description, Discovery, and Integration (UDDI) is an XML-based lookup service for locating Web Services
in an Internet scenario. See the Universal Description Discovery Integration (UDDI) standard [http://www.uddi.org/]
for more details.

URI

Glossary of Terms

976

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP/
http://www.uddi.org/
http://www.uddi.org/

Uniform Resource Identifiers (URIs), are a platform-independent way to specify a file or resource somewhere on the
web. Strictly speaking, every URL is also a URI, but not every URI is also a URL. Two RFCs specify the format of a
URI:

• RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax [http://www.faqs.org/rfcs/rfc2396.html]
• RFC 2732: Format for Literal IPv6 Addresses in URIs [http://www.faqs.org/rfcs/rfc2732.html]

WSDL
Web Services Description Language (WSDL) is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-oriented information. The operations and
messages are described abstractly, and then bound to a concrete network protocol and message format to define an
endpoint. Related concrete endpoints are combined into abstract endpoints (services).

WSDL is extensible to allow description of endpoints and their messages regardless of what message formats or
network protocols are used to communicate, however, the only bindings described in this document describe how to
use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and MIME. See the Web Services Description Lan-
guage Specification [http://www.w3.org/TR/wsdl] for more details.

X509
X509 is the standard which defines the contents and data format of a public-key certificate.

XKMS
XML Key Management Specification (XKMS) uses the relative simplicity of XML to provide key management ser-
vices so that a Web Service can query the trustworthiness of a user's certificate over the Internet. XKMS aims to
simplify application building by separating digital-signature handling and encryption from the applications them-
selves. See the XML Key Management Specification [http://www.w3.org/TR/xkms/] for more details.

XPath
XML Path Language (XPath), is a language that describes how to locate and process specific parts of an XML docu-
ment. See the XML Path Language Specification [http://www.w3.org/TR/xpath] for more details.

XSL
XML Stylesheet Language is used to convert XML documents into different formats, the most common of which is
HTML. In a typical scenario, an XML document will reference an XSL stylesheet, which will define how the XML ele-
ments of the document should be displayed as HTML. Therefore, a clear separation of content and presentation is
achieved.

XSLT
Extensible Stylesheet Language Transformations are used to convert XML documents into other formats.

Glossary of Terms

977

http://www.faqs.org/rfcs/rfc2396.html
http://www.faqs.org/rfcs/rfc2396.html
http://www.faqs.org/rfcs/rfc2732.html
http://www.faqs.org/rfcs/rfc2732.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xkms/
http://www.w3.org/TR/xkms/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

	Oracle® Fusion Middleware
	Contents
	Chapter 1. Getting Started
	Oracle API Gateway Overview
	Overview
	Integration
	Performance
	Governance
	Security

	Oracle API Gateway Architecture
	Overview
	Basic Architecture
	Policy Development
	API Gateway Administration
	API Service Administration
	System Administration
	Managed Domain Architecture

	Oracle API Gateway Concepts
	Overview
	Product Concepts

	Starting the API Gateway Tools
	Overview
	Before you Begin
	Launching API Gateway Manager
	Starting Policy Studio
	Getting Started Tutorial

	Virtualizing a Service
	Overview
	Accessing the Example Service
	Creating a Workspace in API Service Manager
	Step 1—Basic Information
	Step 2—Service Exposure
	Step 3—Request Processing
	Step 4—Routing
	Step 5—Response Processing
	Step 6—Monitoring
	Step 7—Tags
	Deploying to a Group
	Accessing the Virtualized Service
	Monitoring a Service

	Monitoring Services
	Overview
	Enabling Monitoring
	Viewing Real-time Monitoring
	Viewing Message Traffic
	Viewing Message Content
	Viewing Performance Statistics
	Detecting Malformed Messages
	Monitoring System Data
	Configuring Trace and Log Settings
	Using Oracle API Gateway Analytics

	Troubleshooting
	Overview
	Viewing API Gateway Trace Files
	Setting API Gateway Trace Levels
	Configuring API Gateway Trace Files
	Running Trace at DEBUG level
	Running Trace at DATA level
	Integrating Trace Output with Apache log4J
	Configuring Logging Output
	Configuring Log Level and Message
	Getting Help

	License Acknowledgments
	Overview
	Acknowledgments

	Oracle Contact Details
	Contact Details

	Chapter 2. Sample Policies
	Configuring the Sample Policies
	Overview
	Enabling the Sample Services Interface
	Configuring a Different Sample Services Interface
	StockQuote Demo Service
	Remote Host Settings

	Conversion Sample Policy
	Overview
	REST to SOAP Policy
	Running the Conversion Sample

	Security Sample Policies
	Overview
	Signature Verification
	Encryption and Decryption

	Throttling Sample Policy
	Overview
	Throttling Policy
	Running the Throttling Sample

	Virtualized Service Sample Policy
	Overview
	Virtualized Service policies
	Running the Virtualized Service Sample

	Stress Testing with Send Request (SR)
	Overview
	Basic SR Examples
	Advanced SR Examples
	SR Arguments

	Sending a Request with API Gateway Explorer
	Overview
	Creating a Request in API Gateway Explorer
	Further Information

	Chapter 3. Managing API Services
	Introduction to API Service Manager
	Overview
	Accessing API Service Manager
	Deploying to a Group
	Resetting your Configuration

	Managing API Services
	Overview
	Virtualizing a Service in API Service Manager
	Step 1—Basic Information
	Step 2—Service Exposure
	Step 3—Request Processing
	Step 4—Routing
	Step 5—Response Processing
	Step 6—Monitoring
	Step 7—Tags
	Deploying to a Group

	Chapter 4. Governance
	Configuring Security Policies from WSDL Files
	Overview
	Importing a WSDL File
	Configuring Policy Settings
	Configuring Policy Filters
	Editing a Policy
	Removing Security Tokens
	Further Information

	Securing a Virtual Service using Policies
	Overview
	Importing a WSDL File
	Configuring a Security Policy
	Configuring Policy Settings
	Configuring Policy Filters
	Editing a Security Policy
	Using WCF WS-Policies
	Removing Security Tokens
	Further Information

	Configuring Policies Manually
	Overview
	Configuration

	Configuring Global Policies
	Overview
	Global Policy Roles
	Selecting a Global Policy
	Configuring Global Policies in a Policy Shortcut Chain
	Configuring Global Policies for a Service
	Showing Global Policies

	Configuring Policy Packages
	Overview
	Configuring a Policy Package
	Applying a Policy Package
	Applying a Policy Package to a Service

	Chapter 5. Managing Deployments
	Getting Started with Managing Deployments
	Overview
	Connecting to a Server in the Policy Studio
	Editing Server Configuration in the Policy Studio
	Managing Deployments in the API Gateway Manager
	Managing Admin Users in the API Gateway Manager
	Configuring Policies in the Policy Studio

	Deploying Configuration
	Overview
	Creating a Deployment Archive in the Policy Studio
	Deploying a Deployment Archive in the Policy Studio
	Deploying a Factory Configuration in the Policy Studio
	Deploying a Currently Loaded Configuration in the Policy Studio
	Deployment Summary in the Policy Studio
	Deploying an Archive in API Gateway Manager
	Deploying on the Command Line

	Deploying the API Gateway in Multiple Environments
	Overview
	Configuring Environment Variables
	Configuring Certificates as Environment Variables

	Managing Admin Users
	Overview
	Admin User Privileges
	Admin User Roles
	Adding a New Admin User
	Removing an Admin User
	Resetting an Admin User Password
	Managing Admin User Roles

	Configuring Role-Based Access Control (RBAC)
	Overview
	Local Admin User Store
	Access Control List
	Configuring Users and Roles
	Management Service Roles and Permissions

	Using Active Directory for Authentication and RBAC of Management Services
	Overview
	Step 1: Create an Active Directory Group
	Step 2: Create an Active Directory User
	Step 3: Create an LDAP Connection
	Step 4: Create an LDAP Repository
	Step 5: Create a Test Policy for LDAP Authentication and RBAC
	Step 6: Use the LDAP Policy to Protect Management Services
	Adding an LDAP User with Limited Access to Management Services

	Using OpenLDAP for Authentication and RBAC of Management Services
	Overview
	Step 1: Create an OpenLDAP Group for RBAC Roles
	Step 2: Add RBAC Roles to the OpenLDAP RBAC Group
	Step 3: Add Users to the OpenLDAP RBAC Group
	Step 4: Create an LDAP Connection
	Step 5: Create an OpenLDAP Repository
	Step 6: Create a Test Policy for LDAP Authentication and RBAC
	Step 7: Use the OpenLDAP Policy to Protect Management Services

	Chapter 6. General Configuration
	Startup Instructions
	Overview
	Setting Passphrases
	Starting the Node Manager
	Starting the API Gateway
	Connecting to the API Gateway

	Connection Details
	Overview
	Connecting to a URL
	Connecting to a File
	Unlocking a Server Connection

	Global Configuration
	Overview
	Server Configuration
	API Gateway Settings
	Web Services Repository
	Processes
	Policies
	Certificates and Keys
	API Gateway User Store
	System Alerts
	External Connections
	Caches
	Black list and White list
	Schema Cache
	Scripts
	Stylesheets
	References

	Server Configuration
	Overview
	Deploy

	API Gateway Settings
	Overview
	Default Settings
	Audit Log
	Namespace
	MIME/DIME
	Traffic Monitor
	Metrics
	Session Settings
	Cache
	Access Log
	Security Service Module
	Kerberos
	Tivoli

	Policy Studio Preferences
	Overview
	Management Services
	Policy Colors
	Proxy Settings
	Runtime Dependencies
	Server Connection
	SSL Settings
	Status Bar
	Trace Level
	Web and XML
	WS-I Settings

	Policy Studio Viewing Options
	Overview
	Filtering the Tree
	Configuring Viewing Options
	Configuring the Policy Filter Palette

	Web Service Repository
	Overview
	Testing WS-I Compliance
	Registering the WSDL File
	Loading the WSDL File
	Selecting WSDL Operations
	WS-Policy Options
	Deploy Policy
	Secure Virtual Service
	WSDL Import Summary
	What is Created?
	Publishing the WSDL

	Setting the Encryption Passphrase
	Encryption Passphrase Overview
	Setting the Group Passphrase in the Policy Studio
	Entering the Group Passphrase in the Policy Studio
	Specifying the Passphrase in a File or on Startup

	Default Settings
	Overview
	Settings

	Namespace Settings
	Overview
	SOAP Namespace
	Signature ID Attribute
	WSSE Namespace

	MIME/DIME Settings
	Overview
	Configuration

	Session Settings
	Overview
	Configuration

	Exporting API Gateway Configuration
	Overview
	What is Exported
	Exporting Configuration Items
	Exporting All API Gateway Configuration

	Importing API Gateway Configuration
	Overview
	Importing Configuration
	Viewing Differences
	What is Imported

	Chapter 7. Reporting
	Configuring the API Gateway for API Gateway Analytics
	Overview
	Connecting to the API Gateway
	Configuring the Database Connection
	Configuring the Database Logging
	Configuring Monitoring Settings
	Deploying to the API Gateway

	Using Oracle API Gateway Analytics
	Overview
	Launching API Gateway Analytics
	System
	API Services
	Remote Hosts
	Clients
	Audit Trail
	Reports
	Custom Reporting

	Scheduled Reports
	Overview
	Database Configuration
	Scheduled Reports Configuration
	SMTP Configuration

	Real-Time Monitoring Settings
	Overview
	Configuring Metrics Settings
	Configuring Reports Settings

	Configuring Traffic Monitoring
	Overview
	Configuration

	Purging the Reports Database
	Overview
	Running the dbpurger Command
	Example Commands

	Chapter 8. API Gateway Instances
	Configuring API Gateway Instances
	Overview
	Add Remote Host
	Add HTTP Services
	Add SMTP Services
	Add File Transfer Services
	Add Policy Execution Scheduler
	Messaging System
	FTP Poller
	Directory Scanner
	POP Client
	TIBCO
	API Gateway Settings
	API Gateway Logging
	Cryptographic Acceleration

	Configuring HTTP Services
	Overview
	HTTP Services Groups
	HTTP and HTTPS Interfaces
	HTTPS Interfaces Only
	Relative Paths
	Web Service Resolvers
	Static Content Provider
	Servlet Applications
	Management Services
	Changing the Management Services Port

	Configuring SMTP Services
	Overview
	Adding an SMTP Service
	Adding an SMTP Interface
	Configuring Policy Handlers for SMTP Commands
	Adding an HELO/EHLO Policy Handler
	Adding an AUTH Policy Handler
	Adding a MAIL Policy Handler
	Adding a RCPT Policy Handler
	Adding a DATA Policy Handler
	SMTP Authentication
	SMTP Content-Transfer-Encoding
	Deployment Example

	File Transfer Service
	Overview
	General Configuration
	File Upload
	Secure Services
	Commands
	Access Control
	Messages
	Directory

	Policy Execution Scheduling
	Overview
	Cron Expressions
	Adding a Schedule
	Adding a Policy Execution Scheduler

	FTP Poller
	Overview
	General Settings
	Scan Details
	Connection Type
	FTP and FTPS Connections
	FTPS Connections
	SFTP Connections

	Directory Scanner
	Overview
	Directory to Scan
	Directory for Output
	Completed Directory
	Working Directory
	Policy to Use

	Packet Sniffers
	Overview
	Configuration

	Messaging System
	Overview
	Configuring a JMS Service
	Configuring a JMS Session
	Configuring a JMS Consumer
	Configuring the JMS Wizard

	Remote Host Settings
	Overview
	General Settings
	Address and Load Balancing Settings
	Advanced Settings
	Configuring Watchdogs

	Configuring an HTTP Watchdog
	Overview
	Configuration

	Configuring Conditions for HTTP Interfaces
	Overview
	Requires Endpoint Condition
	Requires Link Condition

	POP Client
	Overview
	Configuration

	TIBCO Integration
	Overview
	TIBCO Rendezvous Integration
	TIBCO Enterprise Messaging Service Integration

	Cryptographic Acceleration
	Overview
	General Configuration
	Conversations for Crypto Engines

	Cryptographic Acceleration Conversation: Request-Response
	Conversations for Crypto Engines

	TIBCO Rendezvous Daemon
	Overview
	Configuration

	TIBCO Rendezvous Listener
	Overview
	Configuration

	TIBCO Enterprise Messaging Service Consumer
	Overview
	Configuration

	Oracle Security Service Module Settings (10g)
	Overview
	Prerequisites
	Settings
	Name Authority Definition
	Further Information

	Chapter 9. Resources
	Certificates and Keys
	Overview
	Viewing Certificates and Private Keys
	Configuring an X.509 Certificate
	Configuring a Private Key
	Global Options
	Managing Certificates and Keystores
	Configuring Key Pairs
	Configuring PGP Key Pairs

	API Gateway Users
	Overview
	Users
	Adding Users
	Attributes
	Groups
	Adding Groups
	Updating Users or Groups

	Global Schema Cache
	Overview
	Adding Schemas to the Cache
	Testing WSDL Files for WSI Compliance
	Organizing Schemas with Schema Containers
	Schema Validation

	External Connections
	Overview
	Authentication Repository Profiles
	Connection Sets
	Database Connections
	ICAP Servers
	JMS Services
	Kerberos Connections
	LDAP Connections
	OCSP Connections
	Proxy Servers
	RADIUS Clients
	SiteMinder
	SMTP Servers
	SOA Security Manager
	Syslog Servers
	TIBCO
	Tivoli
	URL Connection Sets
	XKMS Connections

	Global Caches
	Overview
	Local Caches
	Distributed Caches
	Distributed Cache Settings
	Example of Caching Response Messages

	Chapter 10. Attributes
	Compare Attribute
	Overview
	Configuration

	Extract REST Request Attributes
	Overview
	Configuration

	Extract WSS Timestamp
	Overview
	Configuration

	Extract WSS UsernameToken
	Overview
	Configuration

	Extract WSS Header
	Overview
	Configuration

	Get Cookie
	Overview
	Configuration
	Attribute Storage

	Retrieve Attribute from Database
	Overview
	General Configuration
	Database
	Advanced

	Retrieve Attributes from Directory Server
	Overview
	General Configuration
	Database
	Advanced

	Retrieve Attribute from HTTP Header
	Overview
	Configuration

	Insert SAML Attribute Assertion
	Overview
	General Configuration
	Assertion Details
	Assertion Location
	Subject Confirmation Method
	Advanced

	Retrieve Attributes with JSON Path
	Overview
	Configuration
	JSON Path Examples

	Retrieve Attribute from Message
	Overview
	Configuration

	Retrieve Attribute from SAML Attribute Assertion
	Overview
	Details
	Trusted Issuers
	Subject Configuration
	Lookup Attributes

	SAML PDP Attributes
	Overview
	Request Configuration
	Response Configuration

	Retrieve Attribute from User Store
	Overview
	General Configuration
	Database
	Advanced

	Chapter 11. Authentication
	Attribute Authentication
	Overview
	Configuration

	Authenticate API Key
	Overview
	General Settings
	API Key Settings
	Advanced

	CA SOA Security Manager Authentication
	Overview
	Prerequisites
	Agent Configuration
	Message Details Configuration
	XmlToolkit.properties File

	HTML Form-based Authentication
	Overview
	General Settings
	Session Settings

	HTTP Basic Authentication
	Overview
	Configuration

	HTTP Digest Authentication
	Overview
	Configuration

	HTTP Header Authentication
	Overview
	Configuration

	IP Address
	Overview
	Configuration
	Configuring Subnet Masks

	SAML Authentication
	Overview
	General Settings
	Details
	Trusted Issuers

	SAML PDP Authentication
	Overview
	Request Configuration
	Response Configuration

	Insert SAML Authentication Assertion
	Overview
	General Configuration
	Assertion Details
	Assertion Location
	Subject Confirmation Method
	Advanced

	Insert Timestamp
	Overview
	Configuration

	Insert WS-Security Username Token
	Overview
	General Configuration
	Credential Details
	Advanced

	Kerberos Client Authentication
	Overview
	Kerberos Client
	Kerberos Token Profile

	Kerberos Service Authentication
	Overview
	Kerberos Service
	Kerberos Standard
	Message Level
	Transport Level
	Advanced SPNEGO

	Kerberos Configuration
	Overview
	Kerberos Configuration File - krb5.conf
	Advanced Settings
	Native GSS Library

	Kerberos Clients
	Overview
	Ticket Granting Ticket Source
	Kerberos Principal
	Secret Key
	Advanced Tab

	Kerberos Services
	Overview
	Kerberos Endpoint Tab
	Advanced Tab

	Kerberos Principals
	Overview
	Configuration

	Kerberos Keytab
	Overview
	Configuration

	SAML Authentication XML-Signature Verification
	Overview
	Configuration

	XML Signature Authentication
	Overview
	Configuration

	SSL Authentication
	Overview
	Configuration

	Security Token Service Client
	Overview
	Example Request
	General Settings
	Request Settings
	Issue: POP Key
	Issue: On Behalf Of Token
	Issue: Token Scope and Lifetime
	Validate: Target
	Policies Settings
	Routing
	Response Settings
	Advanced Settings

	WS-Security Username Authentication
	Overview
	General Configuration
	Token Validation
	Token Verification via Repository

	Chapter 12. Authorization
	Attributes
	Overview
	Configuration

	Certificate Attributes
	Overview
	Configuration

	RSA Access Manager Authorization
	Overview
	Prerequisites
	General Details
	Connection Details
	Authorization Details

	Entrust GetAccess Authorization
	Overview
	GetAccess WS-Trust STS
	GetAccess SAML PDP

	Insert SAML Authorization Assertion
	Overview
	General Configuration
	Assertion Details
	Assertion Location
	Subject Confirmation Method
	Advanced

	RBAC Filter
	Overview
	Configuration

	SAML Authorization Assertion
	Overview
	General Settings
	Details
	Trusted Issuers
	Optional Settings

	SAML PDP Authorization
	Overview
	Request Configuration
	Response

	Tivoli Integration
	Overview
	Integration Architecture
	Prerequisites
	Global Tivoli Configuration
	Tivoli Authorization
	Tivoli Authentication
	Tivoli Attribute Retrieval

	Tivoli Authorization
	Overview
	Adding a Tivoli Client
	Adding Users and Web Services to Tivoli
	Configuring Tivoli Authorization
	Tivoli Authentication Refresh

	Retrieve Attributes from Tivoli
	Overview
	Configuration

	CA SOA Security Manager Authorization
	Overview
	Prerequisites
	Configuration

	SAML Authorization XML-Signature Verification
	Overview
	Configuration

	XACML Policy Enforcement Point
	Overview
	Example XACML Request
	General Settings
	XACML Settings
	Routing Settings
	Advanced Settings

	Chapter 13. CA SiteMinder
	SiteMinder Certificate Authentication
	Overview
	Prerequisites
	Configuration

	SiteMinder Session Validation
	Overview
	Prerequisites
	Configuration

	SiteMinder Logout
	Overview
	Prerequisites
	Configuration

	SiteMinder Authorization
	Overview
	Prerequisites
	Configuration

	SiteMinder/SOA Security Manager Connection
	Overview
	SiteMinder and SOA Security Manager Connection Details
	SOA Security Manager Connection Details Only

	Chapter 14. Certificates
	Static CRL Certificate Validation
	Overview
	Configuration

	Dynamic CRL Certificate Validation
	Overview
	Configuration

	CRL LDAP Validation
	Overview
	Configuration

	CRL Responder
	Overview
	Configuration

	Create Thumbprint from Certificate
	Overview
	Configuration

	Certificate Validity
	Overview
	Configuration

	Find Certificate
	Overview
	Configuration

	Extract Certificate Attributes
	Overview
	Generated Message Attributes
	Configuration

	Certificate Chain Check
	Overview
	Configuration

	OCSP Certificate Validation
	Overview
	Configuration

	OCSP Certificate Validation Connection
	Overview
	Configuration

	Validate Server's Certificate Store
	Overview
	Configuration
	Deployment Example

	XKMS Certificate Validation
	Overview
	Configuration

	XKMS Certificate Validation Connection
	Overview
	Configuration

	Chapter 15. Cache
	Cache Attribute
	Overview
	Configuration

	Create Key
	Overview
	Configuration

	Is Cached?
	Overview
	Configuration

	Removed Cached Attribute
	Overview
	Configuration

	Chapter 16. Content Filtering
	ClamAV Anti-Virus
	Overview
	Configuration

	Content Type Filtering
	Overview
	Allow or Deny Types
	Configuring MIME/DIME Types

	Content Validation
	Overview
	Manual XPath Configuration
	XPath Wizard

	HTTP Header Validation
	Overview
	Configuring HTTP Header Regular Expressions
	Configuring Threatening Content Regular Expressions

	ICAP Filter
	Overview
	Configuration
	Example Policies
	Further Information

	McAfee Anti-Virus
	Overview
	Prerequisites
	Configuring a McAfee Anti-Virus Filter
	Configuring Custom Options
	Reporting Message Status
	Loading McAfee Updates

	Message Size
	Overview
	Configuration

	Query String Validation
	Overview
	Request Query String
	Configuring Query String Attribute Regular Expressions
	Configuring Threatening Content Regular Expressions

	Schema Validation
	Overview
	Schema to Use
	Part of Message to Match
	Advanced
	Reporting Schema Validation Errors

	JSON Schema Validation
	Overview
	Configuration
	Generating a JSON Schema Using Jython

	Sophos Anti-Virus
	Overview
	Prerequisites
	General Settings
	Sophos Configuration Settings

	Threatening Content
	Overview
	Scanning Details
	MIME Types

	Throttling
	Overview
	General Settings
	Cache Settings
	Using Multiple Throttling Filters

	Validate Message Attributes
	Overview
	Configuring Message Attribute Regular Expressions
	Threatening Content Regular Expressions

	Validate REST Request
	Overview
	General Configuration
	REST Request Parameter Restrictions

	Validate Timestamp
	Overview
	Configuration

	WS-SecurityPolicy Layout
	Overview
	Configuration

	XML Complexity
	Overview
	Configuration

	Chapter 17. Conversion
	Add HTTP Header
	Overview
	Configuration

	JSON Add Node
	Overview
	Configuration
	Examples

	Add XML Node
	Overview
	General Configuration
	Configure where to Insert the New Nodes
	Node Source
	Configure New Node Details
	Attribute Node Details
	Examples

	Contivo Transformation
	Overview
	Configuration

	Multipart Bodypart Conversion
	Overview
	Configuration

	Create Cookie
	Overview
	Configuration

	Create REST Request
	Overview
	Configuration

	Set HTTP Verb
	Overview
	Configuration

	Insert MTOM Attachment
	Overview
	Configuration

	JSON to XML
	Overview
	Configuration
	Examples

	Extract MTOM Attachment
	Overview
	Configuration

	Load File
	Overview
	Configuration

	Remove Attachments
	Overview
	Configuration

	Remove HTTP Header
	Overview
	Configuration

	JSON Remove Node
	Overview
	Configuration
	Examples

	Remove XML Node
	Overview
	Configuration

	Restore Message
	Overview
	Configuration

	Store Message
	Overview
	Configuration

	Set Message
	Overview
	Configuration

	XSLT Transformation
	Overview
	Stylesheet Location
	Stylesheet Parameters
	Advanced

	XML to JSON
	Overview
	Configuration

	Chapter 18. Encryption
	Generate Key
	Overview
	Configuration

	PGP Decrypt
	Overview
	Configuration

	PGP Encrypt
	Overview
	Configuration

	SMIME Decryption
	Overview
	Configuration

	SMIME Encryption
	Overview
	General Configuration
	Recipients
	Advanced

	XML-Decryption
	Overview
	Configuration
	Auto-generation using the XML Decryption Wizard

	XML-Decryption Settings
	Overview
	XML Encryption Overview
	Node(s) to Decrypt
	Decryption Key
	Options
	Auto-generation using the XML Decryption Wizard

	XML-Encryption
	Overview
	Configuration
	Auto-generation using the XML Encryption Settings Wizard

	XML-Encryption Settings
	Overview
	XML Encryption Overview
	Encryption Key
	Key Info
	Recipients
	What to Encrypt
	Advanced
	Auto-generation using the XML Encryption Settings Wizard

	XML Encryption Wizard
	Overview
	Configuration

	Chapter 19. Integrity
	XML Signature Generation
	Overview
	Signing Key
	What to Sign
	Where to Place Signature
	Advanced
	Additional
	Algorithm Suite
	Options

	XML Signature Verification
	Overview
	Signature Verification
	What Must Be Signed
	Advanced

	PGP Sign
	Overview
	Configuration

	PGP Verify
	Overview
	Configuration

	SMIME Sign
	Overview
	Configuration

	SMIME Verify
	Overview
	Configuration

	Chapter 20. Fault Handlers
	Generic Error
	Overview
	General Configuration
	Generic Error Contents

	JSON Error
	Overview
	General Configuration
	JSON Error Contents
	Customized JSON Errors

	SOAP Fault
	Overview
	SOAP Fault Format
	SOAP Fault Contents
	Customized SOAP Faults

	Chapter 21. Monitoring
	System Alerting
	Overview
	Configuring an Alert Destination
	Configuring an Alert Filter

	Audit Log Settings
	Overview
	Configuring Log Output
	Log to Text File
	Log to XML File
	Log to Database
	Log to Local Syslog
	Log to Remote Syslog
	Log to System Console

	Access Log Settings
	Overview
	Log Format
	Configuring the Access Log

	Log Level and Message
	Overview
	Configuration

	Log Message Payload
	Overview
	Configuration

	Log Access Filter
	Overview
	Log Format
	Configuration

	Service Level Agreement (SLA) Filter
	Overview
	Response Time Requirements
	HTTP Status Requirements
	Communications Failure Requirements
	Select Alerting System

	Set Service Context
	Overview
	Configuration

	Chapter 22. OAuth
	API Gateway OAuth 2.0 Introduction
	Overview
	OAuth 2.0 Definitions
	OAuth 2.0 Authentication Flows
	Further Information

	Configuring and Managing OAuth 2.0
	Overview
	Enabling OAuth 2.0 Management
	Pre-registered Client Applications
	Managing Registered Clients
	Sample Clients
	Token Management
	API Manager REST API
	Database-Backed API Manager
	OAuth Database Schemas
	OpenSSL Commands
	OAuth 2.0 Message Attributes

	API Gateway OAuth 2.0 Authentication Flows
	Overview
	Authorization Code (or Web Server) Flow
	Implicit Grant (or User Agent) Flow
	Resource Owner Password Credentials Flow
	Client Credentials Grant Flow
	OAuth 2.0 JWT Flow
	Revoke Token
	Token Info Service

	OAuth Access Token Information
	Overview
	Access Token Info Settings
	Monitoring

	Access Token using Authorization Code
	Overview
	Application Validation
	Access Token
	Monitoring

	Access Token using Client Credentials
	Overview
	Application Validation
	Access Token
	Monitoring

	Access Token using JWT
	Overview
	Application Validation
	Access Token
	Monitoring

	Authorization Code Flow
	Overview
	Validation/Templates
	Authz Code Details
	Access Token Details
	Monitoring

	Authorize Transaction
	Overview
	Validation/Templates
	Authz Code Details
	Access Token Details
	Monitoring

	Refresh Access Token
	Overview
	Application Validation
	Access Token
	Monitoring

	Resource Owner Credentials
	Overview
	Application Validation
	Access Token
	Monitoring

	Revoke a Token
	Overview
	Revoke Token Settings
	Monitoring

	Validate Access Token
	Overview
	Configuration

	Chapter 23. Oracle Access Manager
	Oracle Access Manager Authorization
	Overview
	Configuration

	Oracle Access Manager Log in with Certificate
	Overview
	General Configuration
	Resource Configuration
	Session Configuration
	OAM Access Server SDK Configuration

	Logout from Oracle Access Manager SSO Session
	Overview
	Configuration

	Oracle Access Manager SSO Token Validation
	Overview
	Configuration

	Chapter 24. Oracle Entitlements Server
	Oracle Entitlements Server 10g Authorization
	Overview
	General
	Settings
	Application Context

	Get Roles from Oracle Entitlements Server 10g
	Overview
	General
	Settings
	Application Context

	Oracle Entitlements Server 11g Authorization
	Overview
	Configuration

	Chapter 25. Resolvers
	Relative Path Resolver
	Overview
	Configuration

	SOAP Action Resolver
	Overview
	Configuration

	Operation Name
	Overview
	Configuration

	Chapter 26. Routing
	Getting Started with Routing Configuration
	Overview
	Proxy or Endpoint Server
	Service Virtualization
	Choosing the Correct Routing Filters
	Case 1: Proxy without Service Virtualization
	Case 2: Proxy with Service Virtualization
	Case 3: Endpoint without Service Virtualization
	Case 4: Endpoint with Service Virtualization
	Case 5: Simple Redirect
	Case 6: Routing on to an HTTP Proxy
	Summary

	Routing Wizard
	Overview
	Configuration

	Call Internal Service
	Overview
	Configuration

	Connection
	Overview
	General Configuration
	Trusted Certificates
	Client SSL Authentication
	HTTP Authentication
	Kerberos Authentication
	Behavior
	Advanced

	Connect to URL
	Overview
	General Configuration
	Trusted Certificates
	Client SSL Authentication
	HTTP Authentication
	Kerberos Authentication
	Behavior
	Advanced
	Request Details

	Dynamic Router
	Overview
	Configuration

	Extract Path Parameters
	Overview
	Configuration
	Required Input and Generated Output
	Possible Outcomes

	File Download
	Overview
	General Settings
	File Details
	Connection Type
	FTP and FTPS Connections
	FTPS Connections
	SFTP Connections

	File Upload
	Overview
	General Settings
	File Details
	Connection Type
	FTP and FTPS Connections
	FTPS Connections
	SFTP Connections

	HTTP Redirect
	Overview
	Configuration

	HTTP Status Code
	Overview
	Configuration

	Insert WS-Addressing
	Overview
	Configuration

	Messaging System Filter
	Overview
	Request Settings
	Response Settings

	Read WS-Addressing
	Overview
	Configuration

	Rewrite URL
	Overview
	Configuration

	Save to File
	Overview
	Configuration

	SMTP Routing
	Overview
	General Settings
	Message Settings

	Static Router
	Overview
	Configuration

	TIBCO Rendezvous Routing
	Overview
	Configuration

	TIBCO Enterprise Messaging Service Routing Filter
	Overview
	Connection
	Request
	Response

	TIBCO Enterprise Messaging Service Connection
	Overview
	Configuration

	Wait for Response Packets
	Overview
	Packet Sniffer Configuration
	Sniffing Response Packets

	Proxy Servers
	Overview
	Configuration

	Chapter 27. Security Services
	DSS Signature Generation Service
	Overview
	Configuration

	DSS Signature Verification
	Overview
	Configuration

	Encrypt and Decrypt Web Services
	Overview
	Configuration

	STS Web Service
	Overview
	Configuration

	Chapter 28. WS-Trust
	Consume WS-Trust Message
	Overview
	Consume WS-Trust Message Types
	Message Consumption
	Advanced

	Create WS-Trust Message
	Overview
	Create WS-Trust Message Type
	Message Creation
	RST Creation
	RSTR Creation
	Advanced Settings

	Chapter 29. Extensibility
	Advanced Filter View
	Overview
	Configuration

	Selecting Configuration Values at Runtime
	Overview
	Selector Syntax
	Example Selector Expressions
	Extracting Message Attributes

	Key Property Stores
	Overview
	KPS Backing Data Stores
	Configuring a Key Property Store

	Scripting Language Filter
	Overview
	Writing a Script
	Configuring a Script Filter
	Adding a Script to the Library

	Writing a Custom Filter using the Oracle API Gateway SDK
	Overview
	Policies, Filters, and Message Attributes
	Oracle API Gateway SDK Overview
	Tutorial Prerequisites
	Oracle API Gateway SDK Sample Overview
	Step 1: Create the Typedocs
	Step 2: Create the Filter Class
	Step 3: Create Processor Class
	Step 4: Create Policy Studio Classes
	Step 5: Build Classes
	Step 6: Load TypeDocs
	Step 7: Construct a Policy
	Step 8: Configure the SimpleFilter
	Conclusion

	Chapter 30. Utility
	Abort Filter
	Overview
	Configuration

	Check Group Membership
	Overview
	Configuration
	Possible Paths

	Configuration Web Service
	Overview

	Copy/Modify Attributes
	Overview
	Configuration

	Evaluate Expression
	Overview
	Configuration

	Execute External Process
	Overview
	Configuration

	False Filter
	Overview
	Configuration

	HTTP Parser
	Overview
	Configuration

	Insert BST
	Overview
	Configuration

	Invoke Policy per Message Body
	Overview
	Configuration

	Locate XML Nodes
	Overview
	Configuration

	Pause Filter
	Overview
	Configuration

	Policy Shortcut
	Overview
	Configuration

	Policy Shortcut Chain
	Overview
	General Configuration
	Add a Policy Shortcut
	Edit a Policy Shortcut

	Quote of the Day
	Overview
	Configuration

	Reflect Message Filter
	Overview
	Configuration

	Reflect Message And Attributes Filter
	Overview
	Configuration

	Remove Attribute
	Overview
	Configuration

	Set Response Status
	Overview
	Configuration

	Set Attribute
	Overview
	Configuration

	String Replace Filter
	Overview
	Configuration

	Switch on Attribute Value
	Overview
	Configuration
	Adding a Switch Case

	Time Filter
	Overview
	General Configuration
	Basic Time Options
	Advanced Time Options

	Trace Filter
	Overview
	Configuration

	True Filter
	Overview
	Configuration

	Chapter 31. Web Services
	Web Service Filter
	Overview
	General Settings
	Routing
	Validation
	Message Interception Points
	WSDL
	Monitoring

	Return WSDL
	Overview
	Configuration

	Set Web Service Context
	Overview
	Configuration

	Chapter 32. Common Configuration
	Authentication Repository
	Overview
	Local Repositories
	LDAP Repositories
	CA SiteMinder Repositories
	Database Repositories
	Entrust GetAccess Repositories
	Oracle Access Manager Repositories
	Oracle Entitlements Server 10g Repositories
	RADIUS Repositories
	RSA Access Manager Repositories
	Tivoli Repositories

	Certificate Chain Check
	Overview
	Configuration

	Certificate Validation
	Overview
	Configuration
	Configuring URL Groups

	Compressed Content Encoding
	Overview
	Encoding of HTTP Responses
	Encoding of HTTP Requests
	Delimiting the End of an HTTP Message
	Configuring Content Encoding
	Further Information

	Configuring Connection Groups
	Overview
	Configuring a Connection Group
	Configuring a Connection

	Configuring Cron Expressions
	Overview
	Creating a Cron Expression using the Time Tabs
	Entering a Cron Expression
	Testing the Cron Expression
	Further Information

	Database Connection
	Overview
	Configuring the Database Connection
	Database Connection Pool Settings
	Connection Validation
	Test the Connection

	Database Query
	Overview
	Configuration

	Configuring ICAP Servers
	Overview
	General Settings
	Server Settings
	Security Settings
	Advanced Settings
	Further Information

	Configuring LDAP Directories
	Overview
	General Configuration
	Authentication Configuration
	Testing the LDAP Connection
	Additional JNDI Properties

	RADIUS Clients
	Overview
	Configuration

	SAML PDP Response XML-Signature Verification
	Overview
	Configuration

	Signature Location
	Overview
	Configuration

	SMTP Servers
	Overview
	Configuration

	Configuring a Transparent Proxy
	Overview
	Configuring Transparent Proxy Mode for Incoming Interfaces
	Configuring Transparent Proxy Mode for Outgoing Calls
	Configuration Example

	Retrieving WSDL Files from a UDDI Registry
	Overview
	UDDI: A Brief Introduction
	UDDI Definitions
	Configuring a Registry Connection
	WSDL Search
	Quick Search
	Name Search
	Advanced Search
	Advanced Options
	Publish

	Connecting to a UDDI Registry
	Overview
	Configuring a Registry Connection
	Securing a Connection to a UDDI Registry

	Publishing WSDL Files to a UDDI Registry
	Overview
	Finding WSDL Files
	Publishing WSDL Files
	Step 1: Enter Virtualized Service Address and WSDL URL for Publishing in UDDI Registry
	Step 2: View WSDL to UDDI Mapping Result
	Step 3: Select a Registry for Publishing
	Step 4: Select a Duplicate Publishing Approach
	Step 5: Create or Search for Business
	Step 6: Publish WSDL

	LDAP User Search
	Configure Directory Search

	Configuring URL Groups
	Overview
	Configuration

	What To Sign
	Overview
	ID Configuration
	Node Locations
	XPath Configuration
	XPath Predicates
	Message Attribute

	Configuring XPath Expressions
	Overview
	Manual Configuration
	XPath Wizard

	Chapter 33. Reference
	Message Attribute Reference
	Message Filter Reference
	WS-Policy Reference
	Glossary of Terms

