
Oracle Endeca Commerce
Deployment Template Usage Guide

Version 3.1.2 • April 2013

Contents
Preface...7
About this guide...7
Who should use this guide..7
Conventions used in this guide...8
Contacting Oracle Support..8

Chapter 1: Deploying and initializing an EAC Application....................9
Deployment prerequisites..9
About deploying EAC applications..9
Deploying and initializing an EAC application...9

Directories created by the Deployment Template..11
Configuring automated/file-based deployment..12
Modifying the template files to support custom applications...13

Custom application descriptors..13
Configuring an automated/file-based deployment for a custom application..16

Communicating with SSL-enabled Oracle Endeca components...16
Displaying the Deployment Template version...19

Chapter 2: Configuring an EAC Application..21
About configuring an EAC application...21
About the application configuration files..21
About the schema for AppConfig.xml..22
Configuring the application configuration files...22

Global application settings...23
Hosts..23
Lock Manager..24
Fault tolerance and polling interval properties...24
CAS Server..26
Forges..29
Dgidxs..30
Dgraphs..31
Log server..37
Report Generators...37
IFCR...38
Workbench Manager..39
Configuration Manager...40

Configuring the BeanShell scripts...42
Configuration overrides...44

Chapter 3: Replacing the Default Forge Pipeline...................................47
About the sample pipelines...47
Sample pipeline overview..47
Specifying a pipeline ..48
Creating a new project..48
Modifying an existing project...50
Configuring a record specifier...51
Forge flags ...52
Input record adapters..53
Dimension adapters..53
Indexer adapters...54
Output record adapters...54
Dimension servers...55
Common errors...55

Chapter 4: Modifying Index Configuration for an Application57
Overview of the Index Configuration Command-line Utility ..57

iii

About index configuration ownership ...58
About the schema for the index configuration file ..59

Schema for an Endeca property, derived property, or dimension..59
Schema for precedence rules..65
Schema for global index configuration...66

Getting the index configuration for an application ..67
Getting the merged index configuration for an application ...69
Setting the index configuration for an application ..71
Deleting the index configuration associated with an owner..73
An example of changing multi-select on a dimension...73
An example of changing a product.brand.name property to a dimension...74
An example of setting dimension display order...75

Chapter 5: Managing Data Operations..77
Running a baseline update with test data ..77
Running a baseline update with production data ...78
Running a partial update with production data ...79
Running CAS crawls ..80

Chapter 6: Script Reference...81
Deployment Template script reference...81
Provisioning scripts...83
Forge-based data processing..83

Dgraph baseline update script using Forge...83
Dgraph partial update script using Forge...86
Dgraph baseline update script using Forge and a CAS full crawl script..89
Dgraph partial update script using Forge and a CAS incremental crawl script....................................90
Multiple CAS crawls and Forge updates..91

CAS-based data processing..92
Dgraph baseline update script using CAS...92
Dgraph partial update script using CAS ..93
CAS crawl scripts for Record Store output..94
CAS crawl scripts for record file output..96

Report generation..98

Appendix A: EAC Development Toolkit..101
EAC Development Toolkit distribution and package contents..101
EAC Development Toolkit usage..102

Appendix B: Application Configuration File..103
Spring framework..103
XML schema...103

Application elements..103
Hosts..104
Components...104
Utilities..108
Customization/extension within the toolkit's schema...109
Customization/extension beyond the toolkit's schema..110

Appendix C: BeanShell Scripting..111
Script implementation..111
BeanShell interpreter environment..111
About implementing logic in BeanShell...113

Appendix D: Command Invocation...115
Invoke a method on an object...115
Identify available methods...115
Update application definition...117
Remove an application..117
Display component status...117

Oracle Endeca Commerceiv

Copyright and disclaimer

Copyright © 2003, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc.
AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

v

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Oracle Endeca Commercevi

Preface

The Oracle Endeca Commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine™, a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This guide describes how to configure, run, and customize the Deployment Template that is included
with Tools and Frameworks.

The Deployment Template is a utility that you run to create a new Endeca application with the complete
directory structure required for deployment, including Endeca Application Controller (EAC) control
scripts, configuration files, and batch files or shell scripts that wrap common script functionality.

Some scripts created by the Deployment Template are documented in the Assembler Application
Developer's Guide, rather than this guide, because the scripts are very closely associated with
Assembler features. Similarly, some scripts are documented in the Oracle Endeca Commerce
Administrator's Guide because the scripts are very closely associated with administrative tasks such
as backing up or restoring site configuration.

Who should use this guide
This guide is for developers or administrators who create and maintain Oracle applications using the
Deployment Template.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle Endeca Commerce Deployment Template Usage Guide

| Preface8

https://support.oracle.com

Chapter 1

Deploying and initializing an EAC Application

This section describes how to deploy and initialize an EAC application using the Deployment Template.

Deployment prerequisites
You must have installed Tools and Frameworks on the machine running the EAC Central Server (part
of the Platform Services package) and set environment variables used by the Oracle Endeca software
(including ENDECA_ROOT).

About deploying EAC applications
The Deployment Template (deploy) script is available for both Windows and UNIX platforms. The
prompts for the deploy.sh script are exactly the same as the deploy.bat script.

In every deployment environment, one server serves as the primary control machine and hosts the
EAC Central Server, while all other servers act as agents to the primary server and host EAC Agent
processes that receive instructions from the Central Server.

Both the EAC Central Server and the EAC Agent run as applications inside the Endeca HTTP Service.
(As mentioned in the prequisites, Tools and Frameworks only needs to be installed on the machine
that hosts the EAC Central Server.)

Note: Mixed-platform deployments may require customization of the default Deployment Template
scripts and components. For example, paths are handled differently on Windows and on UNIX,
so paths and working directories are likely to require customization if a deployment includes
servers running both of these operating systems.

Deploying and initializing an EAC application
The deploy script in the bin directory creates, configures, and distributes the EAC application files
into the deployment directory structure.

To deploy an EAC application on Windows:

1. Start a command prompt (on Windows) or a shell (on UNIX).

2. Navigate to <installation path>\ToolsAndFrameworks\<version>\deployment_tem¬
plate\bin or the equivalent path on UNIX.

3. From the bin directory, run the deploy script.
For example, on Windows:
C:\Endeca\ToolsAndFrameworks\3.1.1\deployment_template\bin>deploy

4. If the path to the Platform Services installation is correct, press Enter.
(The template identifies the location and version of your Platform Services installation based on
the ENDECA_ROOT environment variable. If the information presented by the installer does not
match the version or location of the software you plan to use for the deployment, stop the installation,
reset your ENDECA_ROOT environment variable, and start again. Note that the installer may not be
able to parse the Platform Services version from the ENDECA_ROOT path if it is installed in a
non-standard directory structure. It is not necessary for the installer to parse the version number,
so if you are certain that the ENDECA_ROOT path points to the correct location, proceed with the
installation.)

5. Specify a short name for the application.
The name should consist of lower- or uppercase letters, or digits between zero and nine.

6. Specify the full path into which your application should be deployed.
This directory must already exist. The deploy script creates a folder inside of the deployment
directory with the name of your application and the application directory structure.
For example, if your application name is MyApp, and you specify the deployment directory as
C:\Endeca\apps, the deploy script installs the template for your application into C:\Ende¬
ca\apps\MyApp.

7. Specify the port number of the EAC Central Server.
By default, the Central Server host is the machine on which you are running deploy script and
that all EAC Agents are running on the same port.

8. Specify the port number of Oracle Endeca Workbench, or press Enter to accept the default of 8006.
9. Specify the port number of the Live Dgraph, or press Enter to accept the default of 15000.
10. Specify the port number of the Authoring Dgraph, or press Enter to accept the default of 15002.
11. Specify the port number of the Log Server, or press Enter to accept the default of 15010.

If the application directory already exists, the deploy script time stamps and archives the existing
directory to avoid accidental loss of data.

12. Navigate to the control directory of the newly deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app
dir>\control.

13. From the control directory, run the initialize_services script.

• On Windows:
<app dir>\control\initialize_services.bat

• On UNIX:
<app dir>/control/initialize_services.sh

The script initializes each server in the deployment environment with the directories and configuration
required to host your application. This script removes any existing provisioning associated with this
application in the EAC and then adds the hosts and components in your application configuration
file to the EAC. Use caution when running this script. The script forces any components that are

Oracle Endeca Commerce Deployment Template Usage Guide

Deploying and initializing an EAC Application | Deploying and initializing an EAC application10

defined for this application to stop, which may lead to service interruption if executed on a live
environment.

Once deployed, an EAC application includes all of the scripts and configuration files required to create
an index and start an MDEX Engine.

If no script customization is required, the application is now ready for use. Go on to Managing Data
Operations on page 77.

However, if you need to configure an EAC application (the scripts and files) to reflect your environment
and data processing requirements, go on to Configuring an EAC Application on page 21 before
Managing Data Operations on page 77.

Directories created by the Deployment Template
The Deployment Template creates the following default directory structure. For each Endeca
implementation that is deployed with the Deployment Template, look into these directories to identify
currently used configuration options and scripts.

The Deployment Template is designed to support operations with the MDEX Engine in the production
environment. This means it must support a variety of possible configurations and their modifications.
Therefore, its AppConfig.xml file contains all the possible blocks and directories that you may need
on your production servers.

For example, the Deployment Template has separate directories to ensure that the MDEX Engine
operations are safely accessing only the information they need. Further, the default Deployment
Template allows for configuring multiple Dgraphs, so additional directories are created to facilitate this
task.

ContentsDirectory

Subdirectories to store any custom scripts or code for your
Deployment Template project.

config/lib

The Developer Studio pipeline file and XML configuration files.config/pipeline

Files required to generate an application's reports.config/report_templates

The AppConfig.xml file and related Deployment Template
scripts responsible for defining the baseline update workflow

config/script

and communication of different Endeca components with the
EAC Central Server.

Shell (UNIX) or batch (Windows) scripts responsible for running
different operations defined within AppConfig.xml.

control

The premodified incoming data files that are ready acquisition
by the Endeca pipeline and should be processed.

data/incoming

Temporary data and configuration files created and stored
during the baseline update process.

data/processing

The data and configuration files that are output from the Forge
process to the Dgidx process.

data/forge_output

The index files that are output from the Dgidx process.data/dgidx_output

The copy of the index files used by an instance of the MDEX
Engine.

data/dgraphs

Oracle Endeca Commerce Deployment Template Usage Guide

11Deploying and initializing an EAC Application | Deploying and initializing an EAC application

ContentsDirectory

Autogenerated dimensions files.data/state

Merged configuration (that is, Developer Studio files from
config/pipeline, with any Workbench- maintained files

data/complete_index_config

specified in the Deployment Template's ConfigManager
component overwritten by files downloaded from the
Workbench instance).

Configuration files extracted from Workbench by the
Deployment Template's ConfigManager component.

data/web_studio/config

Various log files within subdirectories, such as Dgidx logs.logs

Generated reports.reports

Configuring automated/file-based deployment
The Deployment Template supports a file-based configuration option to simplify the deployment of an
EAC Application. This automation may be especially useful during development, when the same
deployment process must be repeated many times.

You can create a deployment configuration file that contains name/values that satisfy the deploy
script prompts, so you do not have to respond to the prompts manually. You specify the deployment
configuration file as an argument to the --install-config flag when you run the deploy script.

The deployment configuration file should specify the application name, deployment path, deployment
type, and all ports. The following example specifies the installation of a Dgraph deployment named
Discover:
<install app-name="Discover">
 <deployment-path>/localdisk/endeca/apps</deployment-path>
 <base-module type="dgraph" />
 <options>
 <option name="eac-port">8888</option>
 <option name="workbench-port">8006</option>
 <option name="dgraph1Port">15000</option>
 <option name="authoringDgraphPort">15002</option>
 <option name="logserverPort">15010</option>
 </options>
</install>

To configure automated/file-based deployment:

1. Start a text editor, create a new text file, and copy/paste the example above.
2. If necessary, modify the default port values for the EAC Central Server, Workbench, Live Dgraph,

Authoring Dgraph, and the Log Server to new values.
3. Save and close the file.
4. Run the deploy script and specify the --install-config flag and the location of the deployment

configuration file.

Oracle Endeca Commerce Deployment Template Usage Guide

Deploying and initializing an EAC Application | Configuring automated/file-based deployment12

The following example specifies the deployment descriptor (deploy.xml) for a version of the
Discover Electronics reference application, then the --install-config flag with an argument
to the deployment configuration file (pci-app-install-config.xml):
./deploy.sh --app /localdisk/endeca/ToolsAndFrameworks/*/reference/dis¬
cover-data-pci/deploy.xml --install-config /localdisk/infrontSetup¬
Scripts/config/pci-app-install-config.xml --no-prompt

When a configuration file is specified for the Deployment Template, the deployment attempts to retrieve
and validate required information from the document before proceeding. If any information is missing
or invalid, the Deployment Template prompts for that information, as described in previous sections.
To truly automate the install process, the --no-prompt flag may be passed to the installer, instructing
it to fail (with error messages) if any information is missing and to bypass interactive verification of the
Oracle Endeca version.

Modifying the template files to support custom applications
This section provides information about deploying custom applications.

Custom application descriptors
The Deployment Template deploys new applications based on application descriptor XML documents.
The documents describe the directory structure associated with an application as well as the files to
distribute during the deployment process.

By default, the Deployment Template ships with application descriptor files named
base_descriptor.xml located in <installation
path>\ToolsAndFrameworks\<version>\deployment_template\app-templates.

This document describes the directory structure of the deployment as well as the copying that is done
during the deployment to distribute files into the new directories. Additionally, this document describes
whether files are associated with a Windows or UNIX deployment, and whether copied files should be
updated to replace tokens in the format @@TOKEN_NAME@@ with text strings specified to the
installer.

The following tokens are handled by the base descriptor:
• @@WORKBENCH_PORT@@ - Oracle Endeca Workbench port.
• @@DGRAPH_1_PORT @@ - Live Dgraph port.
• @@AUTHORING_DGRAPH_PORT @@ - Authoring Dgraph port.
• @@LOGSERVER_PORT@@ - Log Server port.

The following tokens are handled by the Deployment Template:
• @@EAC_PORT@@ - EAC Central Server port.
• @@HOST@@ - Hostname of the server on which the deploy script is invoked.
• @@PROJECT_DIR@@ - Absolute path of the target deployment directory.
• @@PROJECT_NAME@@ - Name of the application to deploy.
• @@ENDECA_ROOT@@ - Absolute path of the ENDECA_ROOT environment variable.
• @@SCRIPT_SUFFIX@@ - ".bat" for Windows, ".sh" for Linux installs.

In addition to these tokens, you can specify custom tokens to substitute in the files. Tokens are specified
in the application descriptor file, including the name of the token to substitute as well as the question
with which to prompt the user or the installer configuration option to parse to retrieve the value to

Oracle Endeca Commerce Deployment Template Usage Guide

13Deploying and initializing an EAC Application | Modifying the template files to support custom applications

substitute for the token. The default application descriptors use this functionality to request the port
number for Dgraphs, Log Servers and Forge servers.

If a project deviates from the Deployment Template directory structure, it may find it useful to create
a custom application descriptor document, so that the default Deployment Template can continue to
be used for application deployment.

Custom deployment descriptors may also be used to define add-on modules on top of a base install.
For example, sample applications (such as the Sample Term Discovery and Clustering application)
are shipped with a custom deployment descriptor file, which describes the additional files and directories
to install on top of a base Dgraph deployment. Modules may be installed using the deploy batch or
shell script, specifying the --app argument with the location of the application descriptor document.
For example:
deploy.bat --app \
C:\Endeca\Solutions\sampleTermDiscovery-[VERSION]\data\deploy.xml

The installer prompts you to specify whether it should install the module as a standalone installation
or if it should be installed on top of the base Dgraph deployment. Multiple add-on modules may be
specified to the installer script, though only one of them may be a base install (that is, all but one of
them should specify an attribute of update= "true").

The following excerpt from the Dgraph deployment application descriptor identifies the document's
elements and attributes:
<!--
 Deployment Template installer configuration file. This file defines the
directory structure to create and the copies to perform to distribute files
 into the new directory structure.

 The update attribute of the root install element indicates whether this
is a core installation or an add-on module. When set to false or unspecified,
 the installation requires the removal of an existing target install direc¬
tory (if present). When update is set to true, the installer preserves any
 existing directories, adding directories as required and distributing files
 based on the specified copy pattern.
-->
<app-descriptor update="false" id="Dgraph">

 <custom-tokens>
 <!-- Template custom token:
 <token name="MYTOKEN">
 <prompt-question>What is the value to substitute for token MYTO¬
KEN?</prompt-question>
 <install-config-option>myToken</install-config-option>
 <default-value>My Value</default-value>
 </token>

 This will instruct the installer to look for the "myToken" option
 in a specified install config file (if one is specified) or to
 prompt the user with the specified question to submit a value. If a
 value is entered/retrieved, the installer will substitute instances
 of @@MYTOKEN@@ with the value.
 -->
 </custom-tokens>

 <dir-structure>
 <!-- Template directory:
 <dir platform="unix" primary="true"></dir>

 primary builds directory only on primary server installs

Oracle Endeca Commerce Deployment Template Usage Guide

Deploying and initializing an EAC Application | Modifying the template files to support custom applications14

 platform builds directory only on specified platform.
 Valid values: "win" and "unix"
 -->
 </dir-structure>

 <!—
 Copy source directory is specified relative to this file's directory
 -->
 <copy-pattern src-root="../data ">
 <!-- Template copy pattern:
 <copy clear-dest-dir="true" recursive="true"
 preserve-subdirs="true" filter-files="true"
 primary="true" platform="win" Endeca-version="480">
 <src-dir></src-dir>
 <src-file></src-file>
 <dest-dir></dest-dir>
 </copy>

 src-dir source directory, relative to root of deployment
 template package.

 src-file source filename or pattern (using '*' wildcard
 character) to copy from source dir

 dest-dir destination directory, relative to root of target
 deployment directory.

 clear-dest-dir removes all files in target dir before copying

 recursive copies files matching pattern in subdirectories
 of the specified source dir

 preserve-subdirs copies files, preserving dir structure. Only
 applicable to recursive copies

 filter-files filters file contents and file names by replacing

 tokens (format @@TOKEN@@) with specified
 strings.

 mode applies the specified permissions to the files
 after the copy. Mode string should be 3 octal
 digits with an optional leading zero to
 indicate octal, e.g. 755, 0644. Not relevant
 for Windows deployments.

 platform applies copy to specified platform. Valid
 values: "win" "unix"

 Endeca-version applies copy to specified Oracle Endeca version
Valid
 values: "460" "470" "480" "500"
 -->

Oracle Endeca Commerce Deployment Template Usage Guide

15Deploying and initializing an EAC Application | Modifying the template files to support custom applications

 </copy-pattern>
</app-descriptor>

Configuring an automated/file-baseddeployment for a customapplication
The configuration file discussed in previous sections may be used to specify the location of custom
application descriptor documents in place of the --app command line argument to the installer.

The following example shows how to install the Sample Term Discovery and Clustering application
on top of the base Dgraph deployment.

<install app-name="MyApp" >
 <deployment-path>C:\Endeca</deployment-path>
 <base-module type="dgraph" />
 <additional-module type="custom">
 C:\Endeca\Solutions\sampleTermDiscovery-[VERSION]\data\deploy.xml
 </additional-module>
 <options>
 <option name="eac-port">8888</option>
 <option name="dgraph1Port">15000</option>
 <option name="logserverPort">15010</option>
 </options>
</install>

Communicating with SSL-enabled Oracle Endeca
components

The Deployment Template supports enabling SSL to communicate securely with the EAC Central
Server and with the Content Acquisition System version 3.0.x and later. (Secure communication
between the Deployment Template and CAS is not supported in CAS 2.2.x.)

For details about enabling SSL in the EAC Central Server or Agent, refer to the Oracle Endeca Security
Guide. For details about enabling SSL in CAS, refer to the CAS Developer's Guide.

To use the template with an SSL-enabled Central Server:

1. Update runcommand.bat/.sh to load your SSL keystore and truststore.

Note: To enable secure communication, you must have already followed the documentation
to create a Java keystore and truststore, containing your generated certificates. Upload a
copy of these certificates to the server on which your Deployment Template scripts will run.
Edit the runcommand file to specify the locations of these files.

• On Windows, edit runcommand.bat to add the following lines:
...

set JAVA_ARGS=%JAVA_ARGS% "-Djava.util.logging.config.file=%~dp0..\con¬
fig\script\logging.properties"

if exist [\path\to\truststore] (
 set TRUSTSTORE=[\path\to\truststore]
) else (
 echo WARNING: Cannot find truststore at [path\to\truststore]. Secure

Oracle Endeca Commerce Deployment Template Usage Guide

Deploying and initializing an EAC Application | Communicating with SSL-enabled Oracle Endeca
components

16

 EAC communication may fail.
)

if exist [\path\to\keystore] (
 set KEYSTORE=[\path\to\keystore]
) else (
 echo WARNING: Cannot find keystore at [\path\to\keystore]. Secure
EAC communication may fail.
)

set JAVA_ARGS=%JAVA_ARGS% "-Djavax.net.ssl.trustStore=%TRUSTSTORE%" "-
Djavax.net.ssl.trustStoreType=JKS" "-Djavax.net.ssl.trustStorePass¬
word=[truststore password]"

set JAVA_ARGS=%JAVA_ARGS% "-Djavax.net.ssl.keyStore=%KEYSTORE%" "-
Djavax.net.ssl.keyStoreType=JKS" "-Djavax.net.ssl.keyStorePassword=[key¬
store password]"

set CONTROLLER_ARGS=--app-config AppConfig.xml

...

Note that the final two new lines (beginning with "set JAVA_ARGS" are wrapped to fit the page
size of this document, but each of those two lines should have no line breaks. Also note that
you need to fill in the locations and passwords of your keystore and truststore files in the locations
indicated by the placeholders in italics.

• On UNIX, edit runcommand.sh as follows:
...

JAVA_ARGS="${JAVA_ARGS} -Djava.util.logging.config.file=${WORK¬
ING_DIR}/../config/script/logging.properties"

if [-f "[/path/to/truststore]"] ; then
 if [-f "[/path/to/keystore]"] ; then
 TRUSTSTORE=[/path/to/truststore]
 KEYSTORE=[/path/to/keystore]
 JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl.trustStore=${TRUSTSTORE}"
 JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl.trustStoreType=JKS"
 JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl.trustStorePassword=[trust¬
store password]"
 JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl.keyStore=${KEYSTORE}"
 JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl.keyStoreType=JKS"
 JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl.keyStorePassword=[keystore
 password]"
 else
 echo "WARNING: Cannot find keystore at [/path/to/keystore]. Secure
 EAC communication may fail."
 fi
else
 echo "WARNING: Cannot find truststore at [/path/to/truststore]. Secure
 EAC communication may fail."
fi

CONTROLLER_ARGS="--app-config AppConfig.xml"

...

2. In the app element of the AppConfig.xml document, update the sslEnabled attribute to true.

Oracle Endeca Commerce Deployment Template Usage Guide

17Deploying and initializing an EAC Application | Communicating with SSL-enabled Oracle Endeca
components

The sslEnabled attribute is a application-wide setting that applies to the EAC and to CAS (if used
in your application).

3. Specify the SSL-enabled port for the EAC.

The Endeca HTTP Service uses a separate port to communicate securely. For example, the default
non-SSL connector is on port 8888 and the default SSL connector listens on port 8443. The SSL
port should be specified in the eacPort attribute of the app element in the AppConfig.xml
document.

4. If you are using CAS in your application, specify the SSL-enabled port for CAS.

The Endeca CAS Service uses a separate port to communicate securely. For example, the default
non-SSL port is 8500 and the default SSL port is 8505. The SSL port should be specified in the
value attribute of casPort.

5. Specify the non-SSL connector for hosts.
Internally, the EAC Central Server always initiates communication with Agents by communicating
with the non-SSL connector. When the Agent is SSL-enabled, the non-secure port redirects
communication to the secure port. In both cases, the appropriate configuration is to specify the
non-secure port for provisioned hosts.

6. Specify the non-SSL connector for Oracle Endeca Workbench.

In the ConfigManager component, the property webStudioPort should specify the non-secure
connector for the Endeca Tools Service, as communication with Oracle Endeca Workbench
configuration store always uses the unsecured channel.

The following excerpt from the AppConfig.xml document shows a sample configuration for an
SSL-enabled application.
 <!--
 ##

 # EAC Application Definition
 #
 -->
 <app appName="test" eacHost="localhost" eacPort="8888"
 dataPrefix="test" sslEnabled="true" lockManager="LockManager">
 <working-dir>${ENDECA_PROJECT_DIR}</working-dir>
 <log-dir>./logs</log-dir>
 </app>

 <!--
 ##

 # Lock Manager - Used to set/remove/test flags and obtain/release locks

 #
 -->
 <lock-manager id="LockManager" releaseLocksOnFailure="true" />

<!--
##
Content Acquisition System Server
#

<custom-component id="CAS" host-id="CASHost" class="com.Oracle Ende¬
ca.eac.toolkit.component.cas.ContentAcquisitionServerComponent">

Oracle Endeca Commerce Deployment Template Usage Guide

Deploying and initializing an EAC Application | Communicating with SSL-enabled Oracle Endeca
components

18

 <properties>
 <property name="casHost" value="localhost" />
 <property name="casPort" value="8505" />
 </properties>
</custom-component>

-->

Displaying the Deployment Template version
You can print out the version number of the Deployment Template from the command line.

The runcommand script has a --version flag that prints the version number of the Deployment
Template and exits. The command actually prints the version number of the EAC Development Toolkit.

Displaying the version is important for troubleshooting purposes.

To display the version of the Deployment Template:

1. From a command prompt, navigate to the <app dir>\control directory on Windows (<app
dir>/control on UNIX).

2. Run the runcommand script with the --version flag, as in this Windows example:
C:\Endeca\Apps\control>runcommand --version

The command prints the version, as in this sample output:
Deployment Template: 3.1.1

Oracle Endeca Commerce Deployment Template Usage Guide

19Deploying and initializing an EAC Application | Displaying the Deployment Template version

Chapter 2

Configuring an EAC Application

This section provides an overview of the elements defined in AppConfig.xml.

About configuring an EAC application
The standard processing and script operations of the Deployment Template are sufficient to support
the operational requirements of most projects. Some applications require customization to enable
custom processing steps, script behavior, or even directory structure changes.

Developers are encouraged to use the template as a starting point for customization. The scripts and
modules provided with the template incorporate Oracle's best practice recommendations for
synchronization, archiving, and update processing. The Deployment Template is intended to provide
a set of standards on which development should be founded, while allowing the flexibility to develop
custom scripts to meet specific project needs.

There are two ways to configure an EAC application:
• Configure AppConfig.xml files. The simplest form of configuration consists of editing the
AppConfig.xml configuration file and its associated configuration files to change the behavior
of components or to add or remove components.

This type of configuration includes the addition of removal of Dgraphs to the main cluster or even
the creation of additional clusters. In addition, this category includes adjustment of process
arguments (for example, adding a Java classpath for the Forge process in order to enable the use
of a Java Manipulator), custom properties and directories (for example, changing the number of
index archives that are stored on the indexing server).

• Change behavior of existing BeanShell scripts. Scripts are written in the Java scripting language
BeanShell. Scripts are defined in the AppConfig.xml document and are interpreted at runtime
by the BeanShell interpreter. This allows developers and system administrators to adjust the
behavior of the baseline, partial, and configuration update scripts by simply modifying the
configuration document.

About the application configuration files
The application configuration file <app dir>/config/script/AppConfig.xml and its associated
files define the hosts, components, and scripts that make up an EAC application and the that orchestrate
updates by executing the defined components.

The Deployment Template provides a single AppConfig.xml file that contains pointers to refer to
other files that define distinct parts of an application, separate scripts from component provisioning,
and are used for other purposes. The full set of application configuration files are as follows:

• InitialSetup.xml - Specifies scripts to perform initial setup tasks, such as uploading initial
configuration to Workbench.

• DataIngest.xml - Specifies data processing scripts, including the baseline update script, partial
update script, and the components to perform data processing such as CAS or Forge and Dgidx.

• DgraphDefaults.xml - Specifies default values that are inherited by all Dgraph components.
These values include host IDs, data processing paths, and Dgraph flags.

• AuthoringDgraphCluster.xml - Specifies the Dgraphs used in the authoring environment
and a script that pushes configuration from Workbench to each Dgraph in the authoring cluster.

• LiveDgraphCluster.xml - Specifies the Dgraphs used in the live environment and a script that
pushes configuration from Workbench to each Dgraph in the live cluster.

• WorkbenchConfig.xml - Specifies the Endeca Configuration Repository component, the
Workbench Manager component, and a script that promotes content from the authoring environment
to the live environment.

• ReportGeneration.xml - Specifies the hosts used for logging and report generations, and
several scripts that produce log files at different time intervals.

In addition to these files, any number of --app-config arguments may be specified to the Controller
class in the EAC development toolkit. All of the objects in the files will be read and processed and
scripts can refer to components, hosts, or other scripts defined in other files.

About the schema for AppConfig.xml
The eacToolkit.xsd schema determines the valid syntax within AppConfig.xml.

The eacToolkit.xsd file is located at the top level of the eacHandlers.jar archive file. If any of
your Deployment Template scripts fail due to XML syntax errors, you can look at the schema to learn
which syntax options for attributes and values are allowed. You may decide to modify the schema to
allow you to specify the options you need.

This archive file resides in the config/lib/java sub-directory of a deployed application. It also
resides in the data/eac-java/common/config/lib/java directory of the Deployment Template
installation.

To explore this file, use the following command at a prompt from the directory containing the
eacHandlers.jar archive file:

• On UNIX: $ENDECA_ROOT/j2sdk/bin/jar xvf eacHandlers.jar eacToolkit.xsd
• On Windows: %ENDECA_ROOT%\j2sdk\bin\jar xvf eacHandlers.jar eacToolkit.xsd

Configuring the application configuration files
This topic guides you through the process of configuring an EAC application.

1. Edit the AppConfig.xml file in <app dir>/config/script to reflect the details of your
environment. Specifically, set the following values:

• Specify the eacHost and eacPort attributes of the app element with the correct host and port
of the EAC Central Server.

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | About the schema for AppConfig.xml22

• Specify the host elements with the correct host name or names and EAC ports of all EAC
Agents in your environment.

• Specify the WorkbenchManager component with the correct host and port for Oracle Endeca
Workbench.

2. If necessary, edit the InitialSetup.xml file in <app dir>/config/script. This file does
not usually require any modifications.

3. Edit the DataIngest.xml file in <app dir>/config/script to reflect your data processing
requirements. Specifically, ensure that the baseline update script and partial update script are
correct and that the CAS or Forge and Dgidx components are correctly configured.

4. Edit the DgraphDefaults.xml file in <app dir>/config/script with the default values that
are inherited by all Dgraph components in both the authoring cluster and live cluster.

5. Edit the AuthoringDgraphCluster.xml file in <app dir>/config/script to ensure the
authoring Dgraph, the authoring cluster and post-startup script is correct for your environment.

6. Edit the LiveDgraphCluster.xml file in <app dir>/config/script to ensure the live
Dgraph, the live cluster and post-startup script is correct for your environment.

7. Edit the WorkbenchConfig.xml file in <app dir>/config/script to ensure the Workbench
Manager and IFCR components are correct for your environment.

8. If necessary, edit the ReportGeneration.xml file in <app dir>/config/script. This file
does not usually require any modifications.

The following topics describe the components that you can define in the application configuration files.

Global application settings
This first section of the application configuration file defines global application-level configuration,
including the host and port of the EAC Central Server, the application name and whether or not SSL
is to be used when communicating with the EAC Central Server.

In addition, a default working and log directory are specified and a default lockManager is specified
for use by other elements defined in the document. All elements inherit these settings or override them.
<!—
##
Global variables
#
-->
 <app appName="MyApp" eacHost="myhost1.company.com" eacPort="8888"
 dataPrefix="MyApp" sslEnabled="false" lockManager="LockManager">
 <working-dir>C:\Endeca\MyApp</working-dir>
 <log-dir>./logs/baseline</log-dir>
 </app>

Hosts
All servers in a deployment are enumerated in the host definition portion of the document.

Each host must be given a unique ID. The port specified for each host is the port on which the EAC
Agent is listening, which is the Endeca HTTP Service port on that server. This example shows a host
defined to run CAS and a host to run the MDEX Engine.
<!—
##
Servers/hosts

Oracle Endeca Commerce Deployment Template Usage Guide

23Configuring an EAC Application | Configuring the application configuration files

#
-->
 <host id="CASHost" hostName="myhost1.company.com" port="8888" />
 <host id="MDEXHost" hostName="myhost2.company.com" port="8888" />

Lock Manager
The LockManager component is used to obtain and release locks and to set and remove flags using
the EAC's synchronization Web service.

A LockManager object is associated with the elements in the application to enable a centralized access
point to locks, allowing multiple objects to test for the existence of locks and flags. When a script or
component invocation fails, the Deployment Template attempts to release all locks acquired during
the invocation for a LockManager configured to release locks on failure. Multiple LockManager
components may be configured, if it is appropriate for some locks to be released on failure while others
remain.
<!—
##
Lock manager, used to set/remove/test flags and obtain/release
locks
#
-->
 <lock-manager id="LockManager" releaseLocksOnFailure="true" />

Fault tolerance and polling interval properties
Two sets of configurable properties set the behavior of the Deployment Template fault tolerance
mechanism and the frequency of status checks for components.

Fault tolerance property

You can now configure fault tolerance (i.e., retries) for any component (such as Forge, Dgidx, and
Dgraph) when invoked through the EAC. This functionality also extends to the CAS server when
running a crawl with the CAS component. The name of the fault-tolerance property is maxMissedSta¬
tusQueriesAllowed.

When components are run, the Deployment Template instructs the EAC to start a component, then
polls on a regular interval to check if the component is running, stopped, or failed. If one of these status
checks fails, the Deployment Template assumes the component has failed and the script ends. The
maxMissedStatusQueriesAllowed property allows a configurable number of consecutive failures
to be tolerated before the script will end.

The following is an example of a Forge component configured to tolerate a maximum of ten consecutive
failures:
<forge id="Forge" host-id="ITLHost">
 <properties>
 <property name="numStateBackups" value="10"/>
 <property name="numLogBackups" value="10"/>

 <property name="maxMissedStatusQueriesAllowed" value="10"/>
 </properties>
 ...
</forge>

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files24

The default number of allowed consecutive failures is 5. Note that these status checks are consecutive,
so that every time a status query returns successfully, the counter is reset to zero.

Keep in mind that you can use different fault-tolerance settings for your components. For example,
you could set a value of 10 for the Forge component, a value of 8 for Dgidx, and a value of 6 for the
Dgraph.

Polling interval properties

As described in the previous section, the Deployment Template polls on a regular interval to check if
a started component is running, stopped, or failed. A set of four properties is available to configure
each component for how frequently the Deployment Template polls for status while the component is
running. Because each property has a default value, you can use only those properties that are
important to you.

The polling properties are as follows:
• minWaitSeconds specifies the threshold (in seconds) when slow polling switches to standard

(regular) polling. The default is -1 (i.e., no threshold, so the standard polling interval is used from
the start).

• slowPollingIntervalMs specifies the interval (in milliseconds) that status queries are sent as
long as the minWaitSeconds time has not elapsed. The default slow polling interval is 60 seconds.

• standardPollingIntervalMs (specified in milliseconds) is used after the minWaitSeconds
time has passed. If no minWaitSeconds setting is specified, the standardPollingIntervalMs
setting is always used. The default standard polling interval is 1 second.

• maxWaitSeconds specifies the threshold (in seconds) when the Deployment Template gives up
asking for status and assumes that it has failed. The default is -1 (i.e., no threshold, so the
Deployment Template will keep trying indefinitely).

Here is an example configuration for a long-running Forge component that typically takes 8 hours to
complete:
<forge id="Forge" host-id="ITLHost">
 <properties>
 <property name="numStateBackups" value="10"/>
 <property name="numLogBackups" value="10"/>

 <property name="standardPollingIntervalMs" value="60000"/>
 <property name="slowPollingIntervalMs" value="600000"/>
 <property name="minWaitSeconds" value="28800"/>
 <property name="maxMissedStatusQueriesAllowed" value="10"/>
 </properties>
 ...
</forge>

The result of this configuration would be that for the first 8 hours (minWaitSeconds=28800), Forge’s
status would be checked every 10 minutes (slowPollingIntervalMs=600000), after which time
the status would be checked every minute (standardPollingIntervalMs=60000). If a status
check fails, a maximum of 10 consecutive retries will be attempted, based on the standardPolling¬
IntervalMs setting.

Keep in mind that these values can be set independently for each component.

Fault tolerance and polling interval for utilities

Fault tolerance and polling interval values can also be set for these utilities:
• copy
• shell

Oracle Endeca Commerce Deployment Template Usage Guide

25Configuring an EAC Application | Configuring the application configuration files

• archive
• rollback

You set the new values by adjusting the BeanShell script code that is used to construct and invoke
the utility. You adjust the code by using these setter methods from the EAC Toolkit's Utility class:

• Utility.setMinWaitSeconds()

• Utility.setMaxWaitSeconds()

• Utility.setMaxMissedStatusQueriesAllowed()

• Utility.setPollingIntervalMs()

• Utility.setSlowPollingIntervalMs()

• Utility.setMaxMissedStatusQueriesAllowed()

If you do not use any of these methods, then the utility will use the default values listed in the two
previous sections.

For example, here is a default utility invocation in the CAS crawl scripts:
// create the target dir, if it doesn't already exist
mkDirUtil = new CreateDirUtility(CAS.getAppName(),
 CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());
mkDirUtil.init(Forge.getHostId(), destDir, CAS.getWorkingDir());
mkDirUtil.run();

You would then add these methods before calling the run() method, so that the code would now
look like this:
// create the target dir, if it doesn't already exist
mkDirUtil = new CreateDirUtility(CAS.getAppName(),
 CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());
mkDirUtil.init(Forge.getHostId(), destDir, CAS.getWorkingDir());
mkDirUtil.setMinWaitSeconds(30);
mkDirUtil.setMaxWaitSeconds(120);
mkDirUtil.setMaxMissedStatusQueriesAllowed(10);
mkDirUtil.setPollingIntervalMs(5000);
mkDirUtil.setSlowPollingIntervalMs(30000);
mkDirUtil.run();

Alternatively, if your utility was defined in your AppConfig.xml like this:
<copy id=”MyCopy” src-host-id=”ITLHost” dest-host-id=”MDEXHost” recur¬
sive=”true”>
 <src>./path/to/files</src>
 <dest>./path/to/target</dest>
</copy>

You would add the same type of lines as above, before calling the run() method; for example:
MyCopy.setMaxMissedStatusQueriesAllowed(10);
 MyCopy.run();

For more information on the Utility methods, see the Javadocs for the EAC Toolkit package.

CAS Server
The Deployment Template provides support for running CAS crawls with the CAS Server Component.
A CAS Server component is implemented as a custom-component. You configure the component
according to the output type of a crawl. The sections below describe the common configuration
properties, the output-type configuration properties, and then provide examples for each output type
including Record Store output, MDEX-compatible output, and record file output.

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files26

Note: The Deployment Template cannot create a new CAS crawl. You create a crawl using
CAS and run it using the Deployment Template. For details about creating a crawl, see the CAS
Developer's Guide.

The custom-component configuration properties

The custom-component configuration properties identify the CAS server in the Servers/hosts section
of AppConfig.xml. The properties are defined as follows:

• id - Assigns a unique ID to a specific CAS Server.
• host-id - Points back to the id attribute of the host global configuration element.
• class - Specifies the class that implements the ContentAcquisitionServerComponent.

Specify class="com.endeca.eac.toolkit.component.cas.ContentAcquisitionServer¬
Component".

Common configuration properties

The common configuration properties describe the host and port running CAS. The properties are
defined as follows:

• casHost - Host name of the server on which the Content Acquisition System is running.
• casPort - Port on which the Endeca CAS Service listens. If the application is running in SSL

mode, the casPort is the SSL port of the Endeca CAS Service The port number must match the
com.endeca.cas.port value that is used in the CAS Service configuration script. Or, if the
Endeca CAS Service is configured for SSL, then the port number must match com.ende¬
ca.cas.ssl.port value. The configuration script is in <install
path>\CAS\workspace\conf\jetty.xml.

Configuration properties specific to MDEX-compatible output

The configuration properties for MDEX-compatible output are defined as follows:
• numPartialsBackups - Indicates the number of backups to keep for the cumulative partials

directory (cumulativePartialsDir). If this property is not configured, then no backups are
retained.

• cumulativePartialsDir - Indicates the directory on the CAS host where partial MDEX output
should be accumulated. This allows partial updates to be reapplied in the event of a failure while
applying partial updates.

• numDvalIdMappingsBackups - Indicates the number of backups to keep for the dimension
value ID mappings file. This allows you to restore dimension value ID mappings if the CAS host
fails. If this property is not configured, then five backups are retained. If set to zero, then no backing
up is performed.

• dvalIdMappingsArchiveDir - Indicates the directory where the dimension value ID mappings
files are stored. If this property is not configured, then mappings are written to
./data/dvalid_mappings_archive. However, to provide more secure backups, Oracle
recommends that you specify a network drive that is available to CAS but not the same as the
CAS host.

Example

This example CAS Server component is configured for MDEX-compatible output:
 <!--
 ##

Oracle Endeca Commerce Deployment Template Usage Guide

27Configuring an EAC Application | Configuring the application configuration files

 # Content Acquisition System Server
 #
 -->
 <custom-component id="CAS" host-id="ITLHost" class="com.endeca.eac.toolk¬
it.component.cas.ContentAcquisitionServerComponent">
 <properties>
 <property name="casHost" value="localhost" />
 <property name="casPort" value="8500" />
 <property name="numPartialsBackups" value="5" />
 <property name="numDvalIdMappingsBackups" value="5" />
 </properties>
 <directories>
 <directory name="cumulativePartialsDir">./data/partials/cumulative_par¬
tials</directory>
 <directory name="dvalIdMappingsArchiveDir">./data/dvalid_map¬
pings_archive</directory>
 </directories>
 </custom-component>

Configuration properties specific to Record Store output

There are no additional configuration properties required for crawls that write to a Record Store instance.
Only the custom-component and common configuration properties are required.

Example

This example CAS Server component is configured for Record Store output:
<!--
##
Content Acquisition System Server
#
<custom-component id="CAS" host-id="CASHost" class="com.endeca.eac.toolk¬
it.component.cas.ContentAcquisitionServerComponent">
 <properties>
 <property name="casHost" value="localhost" />
 <property name="casPort" value="8500" />
 </properties>
</custom-component>
-->

Configuration properties specific to record file output

The configuration properties are defined as follows:
• casCrawlFullOutputDestDir - Indicates the destination directory to which the crawl output

file will be copied after a baseline crawl. Note that this is not the directory to which the CAS crawl
writes its output; that output directory is set as part of the crawl configuration.

• casCrawlIncrementalOutputDestDir - Indicates the destination directory to which the crawl
output file will be copied after an incremental crawl. As with the previous property, this is not the
directory to which the CAS crawl writes its output. If you run incremental crawls, the default settings
assume that the output format will be compressed binary files.

• casCrawlOutputDestHost - Indicates the ID of the host on which the destination directories
(specified by the previous two properties) reside.

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files28

Example

This example CAS Server component is configured for a record file output:
<!--
 ##

 # Content Acquisition System Server
 #
 -->
 <custom-component id="CAS" host-id="CASHost" class="com.ende¬
ca.soleng.eac.toolkit.component.ContentAcquisitionServerComponent">
 <properties>
 <property name="casHost" value="localhost" />
 <property name="casPort" value="8500" />
 <property name="casCrawlFullOutputDestDir" value="./data/com¬
plete_cas_crawl_output/full" />
 <property name="casCrawlIncrementalOutputDestDir" value="./data/com¬
plete_cas_crawl_output/incremental" />
 <property name="casCrawlOutputDestHost" value="CASHost" />
 </properties>
 </custom-component>

Forges
One or many Forge components are defined for baseline update processing and partial update
processing depending on the deployment type you choose.

If necessary, you can define a Forge cluster component to apply actions to an entire cluster of Forges,
rather than manually iterating over a number of Forges. You could use this feature to run several
instances of Forge in parallel to process large joins.

In addition, the object contains logic associated with executing Forges in parallel based on Forge
groups, which are described below. Multiple Forge clusters can be defined, with no restriction around
which Forges belong to each cluster or how many clusters a Forge belongs to.

A Forge cluster is configured with references to all Forges that belong to that cluster. In addition, the
cluster can be configured to copy data in parallel or serially. This setting applies to copies that are
performed to retrieve source data and configuration to each server that hosts a Forge component. By
default, the template sets this value to true.
<!--
##
Forge Cluster
#
-->
<forge-cluster id="ForgeCluster" getDataInParallel="true">
 <forge ref="ForgeServer" />
 <forge ref="ForgeClient1" />
 <forge ref="ForgeClient2" />
</forge-cluster>

In addition to standard Forge configuration settings and process arguments, the Deployment Template
uses several configurable properties and custom directories during processing:

• numLogBackups - Number of log directory backups to store.
• numStateBackups - Number of autogen state directory backups to store.
• numPartialsBackups - Number of cumulative partials directory backups to store. It is

recommended that you increase the default value of 5. The reason is that the files in the updates
directory for the Dgraph are automatically deleted after partials are applied to the Dgraph. The

Oracle Endeca Commerce Deployment Template Usage Guide

29Configuring an EAC Application | Configuring the application configuration files

number you choose depends on how often you run partial updates and how many copies you want
to keep.

• incomingDataHost - Host to which source data files are extracted.
• incomingDataDir - Directory to which source data files are extracted.
• incomingDataFileName - Filename of the source data files that are extracted.
• configHost - Host from which configuration files and dimensions are retrieved for Forge to

process.
• configDir - Directory from which configuration files and dimensions are retrieved for Forge to

process.
• cumulativePartialsDir - Directory where partial updates are accumulated between baseline

updates.
• wsTempDir - Temp Oracle Endeca Workbench directory to which post-Forge dimensions are

copied to be uploaded to the Workbench.
• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",

will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.

This excerpt combines properties from both the baseline and partial update Forge to demonstrate the
use of all of these configuration settings.
<properties>
 <property name="forgeGroup" value="A" />
 <property name="incomingDataHost">ITLHost</property>
 <property name="incomingDataFileName">project_name-part0-*</property>
 <property name="configHost">ITLHost</property>
 <property name="numStateBackups" value="10" />
 <property name="numLogBackups" value="10" />
 <property name="numPartialsBackups" value="5" />
 <property name="skipTestingForFilesDuringCleanup" value="true" />
</properties>
<directories>
 <directory name="incomingDataDir">./data/partials/incoming</directory>
 <directory name="configDir">./config/pipeline</directory>
 <directory name="cumulativePartialsDir">
 ./data/partials/cumulative_partials
 </directory>
 <directory name="wsTempDir">./data/web_studio/temp</directory>
</directories>

In addition to standard Forge configuration and process arguments, Forge processes add a custom
property used to define which Forge processes run in parallel with each other when they belong to a
Forge cluster.

forgeGroup - Indicates the Forge's membership in a Forge group. When the run method on a Forge
cluster is executed, Forge processes within the same Forge group are run in parallel. Forge group
values are arbitrary strings. The Forge cluster iterates through the groups in alphabetical order, though
non-standard characters may result in groups being updated in an unexpected order.

Dgidxs
One or many Dgidx components are defined depending on the deployment type you choose.

If necessary, you can define a Dgidx cluser to apply actions to an entire cluster of Dgidxs, rather than
manually iterating over a number of Dgidxs. In addition, the object contains logic associated with
executing Dgidxs in parallel based on Dgidx groups, which are described below. Multiple indexing

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files30

clusters can be defined, with no restriction around which Dgidx belongs to each cluster or how many
clusters a Dgidx belongs to.

An indexing cluster is configured with references to all Dgidxs that belong to that cluster. In addition,
the cluster can be configured to copy data in parallel or serially. This setting applies to copies that are
performed to retrieve source data and configuration to each server that hosts a Dgidx component. By
default, the template sets this value to true.
<!--
##
Indexing Cluster
#
-->
<indexing-cluster id="IndexingCluster" getDataInParallel="true">
 <dgidx ref="Dgidx1" />
 <dgidx ref="Dgidx2" />
</indexing-cluster>

In addition to standard Dgidx configuration settings and process arguments, the Deployment Template
uses several configurable properties and custom directories during processing:

• numLogBackups - Number of log directory backups to store.
• numIndexbackups - Number of index backups to store.
• incomingDataHost - Host to which source data files are extracted.
• incomingDataDir - Directory to which source data files are extracted.
• incomingDataFileName - Filename of the source data files that are extracted.
• configHost - Host from which configuration files and dimensions are retrieved for Dgidx to

process.
• configDir - Directory from which configuration files and dimensions are retrieved for Dgidx to

process.
• configFileName - Filename of the configuration files and dimensions that are retrieved for Dgidx

to process.
• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",

will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.

In addition to standard Dgidx configuration and process arguments, Dgidx processes add a custom
property used to define which Dgidx processes run in parallel with each other when they belong to an
indexing cluster.

dgidxGroup - Indicates the Dgidx's membership in a Dgidx group. When the run method on an
indexing cluster is executed, Dgidx processes within the same Dgidx group are run in parallel. Dgidx
group values are arbitrary strings. The indexing cluster iterates through the groups in alphabetical
order, though non-standard characters may result in groups being updated in an unexpected order.

Dgraphs
If a Dgraph deployment type is chosen, a Dgraph cluster component is defined.

This object is used to apply actions to an entire cluster of Dgraphs, rather than manually iterating over
a number of Dgraphs. In addition, the object contains logic associated with Dgraph restart strategies,
which are described below. Multiple Dgraph clusters can be defined, with no restriction around which
Dgraphs belong to each cluster or how many clusters a Dgraph belongs to.

Oracle Endeca Commerce Deployment Template Usage Guide

31Configuring an EAC Application | Configuring the application configuration files

A Dgraph cluster is configured (via the dgraph-cluster element) with references to all Dgraphs
that belong to that cluster. In addition, the cluster can be configured to copy data in parallel or serially.
This setting applies to copies that are performed to distribute a new index, partial updates or
configuration updates to each server that hosts a Dgraph. By default, the template sets this value to
true.
<!--
##
Dgraph Cluster
#
-->
<dgraph-cluster id="DgraphCluster" getDataInParallel="true">
 <dgraph ref="Dgraph1" />
 <dgraph ref="Dgraph2" />
</dgraph-cluster>

Two Dgraphs are defined by the template by default.

Global Dgraph settings

In order to avoid defining shared configuration for multiple Dgraphs in each Dgraph's XML configuration,
the document provides the dgraph-defaults element, where shared settings can be configured
and inherited (or overridden) by each Dgraph defined in the document. This defaults object specifies
a number of custom configuration properties that are used by the update scripts to define operational
functionality.

• numLogBackups - Number of log directory backups to store.
• shutdownTimeout - Number of seconds to wait for a component to stop (after receiving a stop

command).
• numIdleSecondsAfterStop - Number of seconds to pause/sleep after a component is stopped.

Typically, this will be used to ensure that log file locks are release by the component before
proceeding.

• srcIndexDir - Location from which a new index will be copied to a local directory on the Dgraph's
host.

• srcIndexHostId - Host from which a new index will be copied to a local directory on the Dgraph's
host.

• localIndexDir - Local directory to which a single copy of a new index is copied from the source
index directory on the source index host.

• srcPartialsDir - Location from which a new partial update will be copied to a local directory
on the Dgraph's host.

• srcCumulativePartialsDir - Location from which all partial updates accumulated since the
last baseline update will be copied to a local directory on the Dgraph's host.

• srcPartialsHostId - Host from which partial updates will be copied to a local directory on the
Dgraph's host.

• localCumulativePartialsDir - Local directory to which partial updates are copied from the
source (cumulative) partials directory on the source partials host.

• srcDgraphConfigDir - Location from which Dgraph configuration files will be copied to a local
directory on the Dgraph's host.

• srcDgraphConfigHostId - Host from which Dgraph configuration files will be copied to a local
directory on the Dgraph's host.

• localDgraphConfigDir - Local directory to which Dgraph configuration files are copied from
the source Dgraph config directory on the source Dgraph config host.

• srcXQueryHostId - Host from which XQuery modules will be copied to a local directory on the
Dgraph's host.

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files32

• srcXQueryDir - Location from which XQuery modules will be copied to a local directory on the
Dgraph's host.

• localXQueryDir - Local directory to which XQuery modules are copied from the source Dgraph
XQuery directory on the source Dgraph XQuery modules host.

• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",
will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.
<!--
###
Global Dgraph settings, inherited by all dgraphs
#
-->
<dgraph-defaults>
 <properties>
 <property name="srcIndexDir" value="./data/dgidx_output" />
 <property name="srcIndexHostId" value="ITLHost" />
 <property name="srcPartialsDir" value="./data/partials/forge_output"
/>
 <property name="srcPartialsHostId" value="ITLHost" />
 <property name="srcCumulativePartialsDir" value="./data/partials/cumu¬
lative_partials" />
 <property name="srcCumulativePartialsHostId" value="ITLHost" />
 <property name="srcDgraphConfigDir" value="./data/web_studio/dgraph_con¬
fig" />
 <property name="srcDgraphConfigHostId" value="ITLHost" />
 <property name="srcXQueryHostId" value="ITLHost" />
 <property name="srcXQueryDir" value="./config/lib/xquery" />
 <property name="numLogBackups" value="10" />
 <property name="shutdownTimeout" value="30" />
 <property name="numIdleSecondsAfterStop" value="0" />
 </properties>
 <directories>
 <directory name="localIndexDir">./data/dgraphs/local_dgraph_input</di¬
rectory>
 <directory name="localCumulativePartialsDir">./data/dgraphs/local_cumu¬
lative_partials</directory>
 <directory name="localDgraphConfigDir">./data/dgraphs/local_dgraph_con¬
fig</directory>
 <directory name="localXQueryDir">./data/dgraphs/local_xquery</directory>

 </directories>
 <args>
 <arg>--threads</arg>
 <arg>2</arg>
 <arg>--spl</arg>
 <arg>--dym</arg>
 <arg>--xquery_path</arg>
 <arg>./data/dgraphs/local_xquery</arg>
 </args>
 <startup-timeout>120</startup-timeout>
</dgraph-defaults>

Each Dgraph defined in the document (via the dgraph element) inherits from the settings defined in
the dgraph-defaults element, and also specifies settings that are unique to the Dgraph.

Oracle Endeca Commerce Deployment Template Usage Guide

33Configuring an EAC Application | Configuring the application configuration files

Note: As of version 3.1 of the Deployment Template, the numCacheWarmupSeconds and of¬
flineUpdate properties are ignored (and warning messages generated) because they are not
supported in the 6.1.x MDEX Engine.

Restart and update custom properties

In addition to standard Dgraph configuration and process arguments, the dgraph element adds two
custom properties that define restart and update strategies:

• restartGroup

• updateGroup

The restartGroup property indicates the Dgraph's membership in a restart group. When applying
a new index or configuration updates to a cluster of Dgraphs (or when updating a cluster of Dgraphs
with a provisioning change such as a new or modified process argument), the Dgraph cluster object
applies changes simultaneously to all Dgraphs in a restart group.

Similarly, the updateGroup property indicates the Dgraph's membership in an update group. When
applying partial updates, the Dgraph cluster object applies changes simultaneously to all Dgraphs in
an update group.

This means that a few common restart strategies can be applied as follows:
• To restart/update all Dgraphs at once: specify the same restartGroup/updateGroup value for each

Dgraph.
• To restart/update Dgraphs one at a time: specify a unique restartGroup/updateGroup value for

each Dgraph, or omit one or both of the custom properties on all Dgraphs (causing the template
to assign a unique group to each Dgraph).

• To restart/update Dgraphs on each server simultaneously: specify the same
restartGroup/updateGroup value for each Dgraph on a physical server.

• To restart Dgraphs one at a time but apply partial updates to all Dgraphs at once: specify a unique
restartGroup value for each Dgraph and specify the same updateGroup value for each Dgraph.

<dgraph id="Dgraph1" host-id="MDEXHost" port="15000">
 <properties>
 <property name="restartGroup" value="A" />
 <property name="updateGroup" value="a" />
 </properties>
 <log-dir>./logs/dgraphs/Dgraph1</log-dir>
 <input-dir>./data/dgraphs/Dgraph1/dgraph_input</input-dir>
 <update-dir>./data/dgraphs/Dgraph1/dgraph_input/updates</update-dir>
</dgraph>

Restart and update group values are arbitrary strings. The DgraphCluster will iterate through the groups
in alphabetical order, though non-standard characters may result in groups being updated in an
unexpected order.

Running scripts

Dgraph components can specify the name of a script to invoke prior to shutdown and the name of a
script to invoke after the component is started. These optional attributes must specify the ID of a Script
defined in the XML file(s). These BeanShell scripts are executed just before the Dgraph is stopped or
just after it is started. The scripts behave identically to other BeanShell scripts, except that they have
an additional variable, invokingObject, which holds a reference to the Dgraph that invoked the script.
This functionality is typically used to implement calls to a load balancer, adding or removing a Dgraph
from the cluster as it is updated.

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files34

The following example shows two dummy scripts (which just log a message, but could be extended
to call out to a load balancer) provisioned to run pre-shutdown and post-startup for Dgraph1.
<dgraph id="Dgraph1" host-id="MDEXHost" port="15000"
 pre-shutdown-script="DgraphPreShutdownScript"
 post-startup-script="DgraphPostStartupScript">
 <properties>
 <property name="restartGroup" value="A" />
 </properties>
 <log-dir>./logs/dgraphs/Dgraph1</log-dir>
 <input-dir>./data/dgraphs/Dgraph1/dgraph_input</input-dir>
 <update-dir>./data/dgraphs/Dgraph1/dgraph_input/updates</update-dir>
</dgraph>

<script id="DgraphPreShutdownScript">
 <bean-shell-script>
 <![CDATA[
 id = invokingObject.getElementId();
 hostname = invokingObject.getHost().getHostName();
 port = invokingObject.getPort();
 log.info("Removing dgraph with id " + id + " (host: " + hostname +
 ", port: " + port + ") from load balancer cluster.");
]]>
 </bean-shell-script>
</script>

<script id="DgraphPostStartupScript">
 <bean-shell-script>
 <![CDATA[
 id = invokingObject.getElementId();
 hostname = invokingObject.getHost().getHostName();
 port = invokingObject.getPort();
 log.info("Adding dgraph with id " + id + " (host: " + hostname +
 ", port: " + port + ") to load balancer cluster.");
]]>
 </bean-shell-script>
</script>

The following log excerpt shows these scripts running when a new index is being applied to the dgraph:
[03.10.08 10:03:28] INFO: Applying index to dgraphs in restart group 'A'.
[03.10.08 10:03:28] INFO: [MDEXHost] Starting shell utility 'mkpath_dgraph-
input-new'.
[03.10.08 10:03:30] INFO: [MDEXHost] Starting copy utility 'copy_in¬
dex_to_temp_new_dgraph_input_dir_for_Dgraph1'.
[03.10.08 10:03:35] INFO: Removing dgraph with id Dgraph1 (host: mdex1.my¬
company.com, port: 15000) from load balancer cluster.
[03.10.08 10:03:35] INFO: Stopping component 'Dgraph1'.
[03.10.08 10:03:37] INFO: [MDEXHost] Starting shell utility 'move_dgraph-
input_to_dgraph-input-old'.
[03.10.08 10:03:39] INFO: [MDEXHost] Starting shell utility 'move_dgraph-
input-new_to_dgraph-input'.
[03.10.08 10:03:40] INFO: [MDEXHost] Starting backup utility 'back¬
up_log_dir_for_component_Dgraph1'.
[03.10.08 10:03:42] INFO: [MDEXHost] Starting component 'Dgraph1'.
[03.10.08 10:03:45] INFO: Adding dgraph with id Dgraph1 (host: mdex1.mycompa¬
ny.com, port: 15000) to load balancer cluster.

Oracle Endeca Commerce Deployment Template Usage Guide

35Configuring an EAC Application | Configuring the application configuration files

[03.10.08 10:03:45] INFO: [MDEXHost] Starting shell utility 'rmdir_dgraph-
input-old'.

Note that the dgraph-default element can also specify the use of pre-shutdown and post-startup
scripts as attributes, allowing all Dgraphs in an application to execute the same scripts. For example:
<dgraph-defaults pre-shutdown-script="DgraphPreShutdownScript"
 post-startup-script="DgraphPostStartupScript">

 ...

</dgraph-defaults>

Deploying XQuery modules

The Deployment Template supports the distribution of XQuery modules to each Dgraph in the group.
The <app dir>config/lib/xquery directory is provided for users to store their XQuery modules.
In addition, a LoadXQueryModules script (in the AppConfig.xml file) distributes the XQuery modules
to Dgraph servers and instructs the Dgraphs to load the modules.

The procedure to deploy the XQuery modules is:

1. Make certain that the dgraph-defaults section of the AppConfig.xml file has the XQuery
properties set. These global Dgraph setting properties are srcXQueryHostId, srcXQueryDir,
and localXQueryDir.

2. Make certain that the Dgraph --xquery_path flag is specified as an argument in the dgraph-
defaults section.

3. Place all the XQuery code in the <app dir>/config/lib/xquery and <app
dir>/config/lib/xquery/lib directories.

4. Execute the runcommand script with the LoadXQueryModules argument, as in this Windows
example:
C:\Endeca\Apps\control>runcommand LoadXQueryModules

The XQuery modules are distributed to the Dgraphs in the deployment and they are instructed to
reload/compile the modules.

Specifying arguments for the Dgraphs

Both the dgraph and dgraph-defaults elements allow you to use the args sub-element to pass
command-line flags to the Dgraphs. However, if you use an args section in both the dgraph and
dgraph-defaults configurations, the results are not cumulative.

Instead, the args section for an individual Dgraph completely overrides the dgraph-defaults
definition (i.e., it does not inherit the parameters that are specified in the dgraph-defaults section
and then add the ones that are unique for that Dgraph).

Enabling SSL for the Dgraph

You can configure the Dgraph for SSL by using the following elements to define the certificates to use
for SSL:

• cert-file specifies the path of the eneCert.pem certificate file that is used by the Dgraph to
present to any client. This is also the certificate that the Application Controller Agent should present
to the Dgraph when trying to talk to the Dgraph.

• ca-file specifies the path of the eneCA.pem Certificate Authority file that the Dgraph uses to
authenticate communications with other Oracle Endeca components.

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files36

• cipher specifies an optional cipher string (such as RC4-SHA) that specifies the minimum
cryptographic algorithm that the Dgraph uses during the SSL negotiation. If you omit this setting,
the SSL software tries an internal list of ciphers, beginning with AES256-SHA. See the Oracle
Endeca Platform Services Security Guide for more information.

All three elements are first-level children of the <dgraph-defaults> element.

The following example shows the three SSL elements being used within the dgraph-default
element:
<dgraph-defaults>
...
 <cert-file>
 C:\Endeca\PlatformServices\workspace\etc\eneCert.pem
 </cert-file>
 <ca-file>
 C:\Endeca\PlatformServices\workspace\etc\eneCA.pem
 </ca-file>
 <cipher>AES128-SHA</cipher>
</dgraph-defaults>

Log server
A LogServer component is defined.

In addition to standard LogServer configuration settings and process arguments, the Deployment
Template uses a configurable property for log archiving.

• numLogBackups - Number of log directory backups to store.
• shutdownTimeout - Number of seconds to wait for a component to stop (after receiving a stop

command).
• numIdleSecondsAfterStop - Number of seconds to pause/sleep after a component is stopped.

Typically, this will be used to ensure that log file locks are release by the component before
proceeding.

• targetReportGenDir - Directory to which logs will be copied for report generation.
• targetReportGenHostId - Host to which logs will be coped for report generation.
• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",

will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.
<logserver id="LogServer" host-id="ITLHost" port="15010">
 <properties>
 <property name="numLogBackups" value="10" />
 <property name="targetReportGenDir" value="./reports/input" />
 <property name="targetReportGenHostId" value="ITLHost" />
 </properties>
 <log-dir>./logs/logservers/LogServer</log-dir>
 <output-dir>./logs/logserver_output</output-dir>
 <startup-timeout>120</startup-timeout>
 <gzip>false</gzip>
</logserver>

Report Generators
Four report generator components are defined.

Oracle Endeca Commerce Deployment Template Usage Guide

37Configuring an EAC Application | Configuring the application configuration files

In addition to standard Report Generator configuration settings and process arguments, the Deployment
Template uses a configurable property for log archiving, as well as these configurable properties:

• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",
will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.

The configuration file includes the name of an output file for each report generator, which defaults to
report.html or report.xml. This file name is never used when the report generation scripts in
the AppConfig.xml file are used. During execution, the script re-provisions the report generator to
output a file named with a date stamp. This means that the provisioning in the file will always be "out
of synch" with the provisioning in the EAC. This will result in the Report Generator's definition changing
repeatedly as scripts are executed.
<report-generator id="WeeklyReportGenerator" host-id="ITLHost">
 <log-dir>./logs/report_generators/WeeklyReportGenerator</log-dir>
 <input-dir>./reports/input</input-dir>
 <output-file>./reports/weekly/report.xml</output-file>
 <stylesheet-file>
 ./config/report_templates/tools_report_stylesheet.xsl
 </stylesheet-file>
 <settings-file>
 ./config/report_templates/report_settings.xml
 </settings-file>
 <time-range>LastWeek</time-range>
 <time-series>Daily</time-series>
 <charts-enabled>true</charts-enabled>
 </report-generator>

IFCR
The IFCR is a custom component that specifies user information for an Endeca Configuration Repository
that is running inside Oracle Endeca Workbench. The deployment template scripts use the information
to connect to an Endeca Configuration Repository and move configuration used by Authoring and Live
Dgraphs, the media MDEX reference application, and the IFCR Backup Utility.

You define an IFCR component in the WorkbenchConfig.xml file which is then referenced by
AppConfig.xml.

The custom-component configuration properties

The custom-component configuration properties identify the IFCR in the Data Ingest Hosts section
of DataIngest.xml.

The properties are defined as follows:
• id - Assigns a unique ID to a specific IFCR instance.
• host-id - Points back to the id attribute of the host global configuration element.
• class - Specifies the class that implements the IFCRComponent. Specify class="com.ende¬
ca.soleng.eac.toolkit.component.IFCRComponent".

IFCR configuration properties

The configuration properties are defined as follows:
• repositoryUrl - Specifies host, port, and ifcr directory as http://<workbench
host>:<port>/ifcr.

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files38

• username - Name of the user logging in to Oracle Endeca Workbench where the Endeca
Configuration Repository is hosted.

• password - Corresponding password for the user name.
• numExportBackups - Indicates the number of backups to keep for exported configuration of the

Endeca Configuration Repository. If this property is not configured, then no backups are retained.
The default value is 5.

Example

This example shows a typical configuration:
 <!--
 ##

 # IFCR - A component that interfaces with the Workbench repository.
 -->
 <custom-component id="IFCR" host-id="ITLHost" class="com.ende¬
ca.soleng.eac.toolkit.component.IFCRComponent">
 <properties>
 <property name="repositoryUrl" value="http://localhost:8006/ifcr" />

 <property name="username" value="admin" />
 <property name="password" value="admin" />
 <property name="numExportBackups" value="3" />
 </properties>
 </custom-component>

Workbench Manager
The Workbench Manager is a custom component that specifies connection information for Oracle
Endeca Workbench and also a configuration directory for Oracle Endeca Workbench. The deployment
template scripts use the information to connect to Workbench and update shared configuration contained
in the configuration directory.

You define a Workbench Manager component in the WorkbenchConfig.xml file which is then
referenced by AppConfig.xml.

The custom-component configuration properties

The custom-component configuration properties identify the Workbench Manager in the Data Ingest
Hosts section of DataIngest.xml.

The properties are defined as follows:
• id - Assigns a unique ID to a specific Workbench instance.
• host-id - Points back to the id attribute of the host global configuration element.
• class - Specifies the class that implements the WorkbenchManagerComponent. Specify

class="com.endeca.soleng.eac.toolkit.component.WorkbenchManagerComponent".

Workbench configuration properties

The configuration properties are defined as follows:
• workbenchHost - Host name of the server on which Oracle Endeca Workbench is running.
• workbenchPort - Port on which Workbench listens. This is the port of the Endeca Tools Service

on the Oracle Endeca Workbench host. If the application is running in SSL mode, the workbench¬
Port is the SSL port of Workbench.

Oracle Endeca Commerce Deployment Template Usage Guide

39Configuring an EAC Application | Configuring the application configuration files

• configDir - Directory to which Workbench configuration files are uploaded or downloaded by
other components in the implementation.

• workbenchTempDir - Temporary directory used for Workbench interaction. Post-Forge dimensions
are uploaded or downloaded from this directory by other components in the implementation.

Example

This example shows a typical configuration:
 <!--
 ##

 # WorkbenchManager - A component that interfaces with the legacy
 # 'web studio' configuration repository. It is used primarily during
 # data ingest to load post-forge dimensions into Workbench.
 -->
 <custom-component id="WorkbenchManager" host-id="ITLHost" class="com.en¬
deca.soleng.eac.toolkit.component.WorkbenchManagerComponent">
 <properties>
 <property name="workbenchHost" value="localhost" />
 <property name="workbenchPort" value="8006" />
 </properties>
 <directories>
 <directory name="configDir">./config/pipeline</directory>
 <directory name="workbenchTempDir">./data/workbench/temp</directory>

 </directories>
 </custom-component>

Reporting
Oracle Endeca Workbench provides an interface for viewing and analyzing reports produced by the
Report Generator.

In order for Oracle Endeca Workbench to display these reports, report files and associated charts
need to be created and delivered to a directory in Oracle Endeca Workbench's workspace. Alternatively,
a "webstudio" host can be provisioned with a "webstudio-report-dir" custom directory, which
indicates to Oracle Endeca Workbench where it should read reports for the application. In addition,
the files need to be named with a date stamp to conform to Oracle Endeca Workbench's naming
convention. The Deployment Template includes report generation scripts that perform these naming
and copying steps to deliver reports for Oracle Endeca Workbench to read. Common extension or
customization of this functionality may occur when one or more of the components in the reporting
lifecycle run in different environments. The AppConfig.xml allows components to work independently
of each other. Specifically, the LogServer can be configured to deliver files to an arbitrary directory,
from where the files can be copied to another environment for report generation. Similarly, the Report
Generator's output report can be delivered to an arbitrary target directory, from where the files can be
copied to another environment for display in Oracle Endeca Workbench.

Configuration Manager
The Configuration Manager component is a custom component that does not correlate to an Oracle
Endeca process.

Note: In Tools and Frameworks 3.0, the Configuration Manager was deprecated and replaced
by Workbench Manager.

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files40

Instead, this object implements logic used to manage configuration files. Specifically, the current
implementation supports retrieving and merging configuration from Developer Studio with files
maintained in Oracle Endeca Workbench.

The following configuration properties and custom directories are used to implement the logic of the
Config Manager component.

• webStudioEnabled - "true" or "false," indicating whether integration with Oracle Endeca
Workbench is enabled.

• webStudioHost - Hostname of the server on which Oracle Endeca Workbench is running.
• webStudioPort - Port on which Oracle Endeca Workbench listens. This is the port of the Endeca

Tools Service on the Oracle Endeca Workbench host.
• webStudioMaintainedFile* - Specifies the name of a file that will be maintained in Oracle

Endeca Workbench. The ConfigManager respects all properties prefixed with
"webStudioMaintainedFile" but requires that all properties have unique names. When configuring
files, each should be given a unique suffix. Note that the names of files specified may use wildcards
(e.g. <property name="webStudioMaintainedFile1" val¬
ue="merch_rule_group_*.xml" />).

• devStudioConfigDir - Directory from which Developer Studio configuration files are retrieved.
• webStudioConfigDir - Directory to which Workbench configuration files are downloaded.
• webStudioDgraphConfigDir - Directory from which Workbench configuration files are retrieved.
• mergedConfigDir - Directory to which merged configuration is copied.
• webStudioTempDir - Temporary directory used for Workbench interaction. Post-Forge dimensions

are uploaded from this directory to the Workbench.
• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",

will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.
<!--
###
Config Manager. Manages Dev Studio and Workbench config sources.
#
-->
<custom-component id="ConfigManager" host-id="ITLHost"
 class="com.Endeca.soleng.eac.toolkit.component.ConfigManagerComponent">
 <properties>
 <property name="webStudioEnabled" value="true" />
 <property name="webStudioHost" value="localhost" />
 <property name="webStudioPort" value="8006" />
 <property name="webStudioMaintainedFile1"
 value="thesaurus.xml" />
 <property name="webStudioMaintainedFile2"
 value="merch_rule_group_default.xml" />
 <property name="webStudioMaintainedFile3"
 value="merch_rule_group_default_redirects.xml" />
 </properties>
 <directories>
 <directory name="devStudioConfigDir">
 ./config/pipeline
 </directory>
 <directory name="webStudioConfigDir">
 ./data/web_studio/config
 </directory>
 <directory name="webStudioDgraphConfigDir">
 ./data/web_studio/dgraph_config
 </directory>

Oracle Endeca Commerce Deployment Template Usage Guide

41Configuring an EAC Application | Configuring the application configuration files

 <directory name="mergedConfigDir">
 ./data/complete_index_config
 </directory>
 <directory name="webStudioTempDir">
 ./data/web_studio/temp
 </directory>
 </directories>
</custom-component>

Configuring the BeanShell scripts
The following list describes a number of customization approaches that you can implement to extend
the existing functionality or add new functionality to the template.

• For example, if a deployment uses JDBC to read data into the Forge pipeline instead of using
extracted data files, the following changes would be implemented in the BaselineUpdate script:

1. Remove the line that retrieves data and configuration for Forge: Forge.getData();
2. Insert a new copy command to retrieve configuration for Forge to process:

...
// get Workbench config, merge with Dev Studio config
ConfigManager.downloadWsConfig();
ConfigManager.fetchMergedConfig();

// fetch extracted data files, run ITL
srcDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
 Forge.getConfigDir()) + "/*";
destDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
 Forge.getInputDir());

dimensionCopy = new CopyUtility(Forge.getAppName(),
 Forge.getEacHost(), Forge.getEacPort(), Forge.isSslEnabled());
dimensionCopy.init("copy_dimensions", Forge.getHostId(),
 Forge.getHostId(), srcDir, destDir, true);
dimensionCopy.run();

Forge.getData();
Forge.run();
Dgidx.run();
...

Note that this amended BeanShell script imports two classes from the classpath, references
variables that point to elements in the AppConfig.xml document (e.g. Forge, Dgidx) and defines
new variables without specifying their type (e.g. srcDir, destDir). Details about BeanShell scripting
can be found in Appendix A of this guide.

• Write new BeanShell scripts - Some use cases may call for greater flexibility than can easily be
achieved by modifying existing BeanShell scripts. In these cases, writing new BeanShell scripts
may accomplish the desired goal. For example, the following BeanShell script extends the previous
example by pulling the new functionality into a separate script:
<script id="CopyConfig">
 <bean-shell-script>
 <![CDATA[

 // fetch extracted data files, run ITL

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the BeanShell scripts42

 srcDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
 Forge.getConfigDir()) + "/*";
 destDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
 Forge.getInputDir());

 dimensionCopy = new CopyUtility(Forge.getAppName(),
 Forge.getEacHost(), Forge.getEacPort(), Forge.isSslEnabled());
 dimensionCopy.init("copy_dimensions", Forge.getHostId(),
 Forge.getHostId(), srcDir, destDir, true);
 dimensionCopy.run();

]]>
 </bean-shell-script>
</script>

Once the new script is defined, the BaselineUpdate script simplifies to the following:
...
// get Workbench config, merge with Dev Studio config
ConfigManager.downloadWsConfig();
ConfigManager.fetchMergedConfig();

// fetch extracted data files, run ITL
CopyConfig.run();
Forge.getData();
Forge.run();
Dgidx.run();
...

• Define utilities in AppConfig.xml - A common use case for customization is to add or adjust the
functionality of utility invocation. Our previous example demonstrates the need to invoke a new
copy utility when the Forge implementation changes. Other common use cases involve invoking
a data pre-processing script from the shell and archiving a directory. In order to enable this, the
Deployment Template allows utilities to be configured in the AppConfig.xml document. To
configure the copy defined above in the document, use the copy element:
<copy id="CopyConfig" src-host-id="ITLHost" dest-host-id="ITLHost"
 recursive="true">
 <src>./data/complete_index_config/*</src>
 <dest>./data/processing</dest>
</copy>

Once configured, this copy utility is invoked using the same command that was previously added
to the BaselineUpdate to invoke the custom BeanShell script: CopyConfig.run();

• Extend the Java EAC Development Toolkit - In rare cases, you may need to implement complex
custom functionality that would be unwieldy and difficult to maintain if implemented in the
AppConfig.xml document. In these cases, you can extend objects in the toolkit to create new
Java objects that implement the desired custom functionality. Staying with the previous example,
the developer might implement a custom Forge object to change the behavior of the getData()
method to simply copy configuration without looking for extracted data files.
package com.Endeca.soleng.eac.toolkit.component;

import java.util.logging.Logger;
import com.Endeca.soleng.eac.toolkit.exception.*;

public class MyForgeComponent extends ForgeComponent
{
 private static Logger log =
 Logger.getLogger(MyForgeComponent.class.getName());

Oracle Endeca Commerce Deployment Template Usage Guide

43Configuring an EAC Application | Configuring the BeanShell scripts

 protected void getData() throws AppConfigurationException,
 EacCommunicationException, EacComponentControlException,
 InterruptedException
 {

 // get dimensions for processing
 getConfig();

 }
}

Obviously, this trivial customization is too simple to warrant the development of a new class.
However, this approach can be used to override the functionality of most methods in the toolkit or
to implement new methods.

In order to use the new functionality, the developer will compile the new class and ensure that it
is included on the classpath when invoking scripts. The simplest way to do this is to deploy the
compiled .class file to the <app dir>/config/script directory. Once on the classpath, the
new component can be loaded in place of the default Forge component by making the following
change to the Forge configuration in AppConfig.xml:
<forge class="com.Endeca.soleng.eac.toolkit.component.MyForgeComponent"

 id="Forge" host-id="ITLHost">
...
</forge>

Some types of customization will require more complex configuration. Refer to Appendix A ("EAC
Development Toolkit") for information about configuring custom Java classes using the Spring
Framework namespace in the AppConfig.xml document.

Configuration overrides
The Deployment Template allows the use of one or more configuration override files.

These files can be used to override or substitute values into the configuration documents. For example,
developers may want to separate the specification of environment-specific configuration (e.g. hostnames,
ports, etc.) from the application configuration and scripts. This may be useful for making configuration
documents portable across environments and for dividing ownership of configuration elements between
system administrators and application developers.

Override files are specified by using the --config-override flag to the EAC development toolkit's
controller. For example, the runcommand script in the template includes an environment.properties
file by default, though this file only contains examples of overrides and does not specify any active
overrides.

Two types of properties can be specified in an override file:

1. [object].[field] = [value] - This style of override specifies the name of an object and
field and sets the value for that field, overriding any value specified for that field in the XML
configuration document or documents. For example:
Dgraph1.port = 16000
Dgraph1.properties['restartGroup'] = B
ITLHost.hostName = itl.mycompany.com

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuration overrides44

2. [token] = [value] - This style of override specifies the name of a token defined in the XML
config file and substitutes the specified value for that token. For example, if the AppConfig.xml
defines the following host:
<host id="ITLHost" hostName="${itl.host}" port="${itl.port}" />

The override can specify the values to substitute for these tokens:
itl.host = it.mycompany.com
itl.port = 8888

It is important to note that both styles of substitution are attempted for every value defined in the
override file. When a token fails to match, a low-severity warning is logged and ignored. This is required
because most tokens will only match one of the two styles of substitution. It may be important to avoid
using token names that coincide with object names. For example, defining the token ${Forge.tem¬
pDir} will cause the corresponding value to substitute for both the token as well as the tempDir field
of the Forge component.

Oracle Endeca Commerce Deployment Template Usage Guide

45Configuring an EAC Application | Configuration overrides

Chapter 3

Replacing the Default Forge Pipeline

This chapter describes how to modify or create a Forge pipeline that is designed for use within the
deployment template operational structure. This includes pipeline naming requirements, common
errors encountered, etc. Note: This chapter only applies to applications that use Forge to process
source data. If your application uses CAS to produce MDEX-compatible output, this chapter does not
apply.

About the sample pipelines
For testing purposes, the Deployment Template includes a Developer Studio project with two Forge
pipelines (a baseline and a partial). The sample pipelines facilitate testing the deployment template;
however, the files should be replaced with project-specific files immediately after a deployed application
has been properly configured.

The pipelines are located in <app dir>/config/pipeline. The pipeline for a baseline update
processes 10 records, and the pipeline for a partial update that adds 2 more records.

Sample pipeline overview
This section describes the high-level steps that are necessary to integrate a new/existing pipeline with
a deployment template.

Additional detail on each of these steps is provided in later sections.

1. Ensure that the application name and pipeline configuration prefix match the data prefix configured
in the deployment template.

2. Place pipeline configuration files in the <app dir>/config/pipeline/ directory of the primary
server.

3. In order to enable partial updates, ensure that the project is configured with a record spec (i.e., a
unique record identifier property).

4. Ensure that any input Record Adapters requiring filenames specify the file location relative to the
<app dir>/data/processing/ (or <app dir>/data/partials/processing) directory.

Specifying a pipeline
By default, the Deployment Template checks the <app dir>/config/pipeline for the pipeline to
run. This includes baseline updates and partial updates. It is simplest to put your pipeline files in this
directory. Alternatively, the devStudioConfigDir attribute in the ConfigManager custom component
specifies the pipeline to run.

To specify a pipeline to run in AppConfig.xml:

1. Ensure that your pipeline files are located in <app dir>/config/pipeline.
2. Alternatively, modify the devStudioConfigDir property in the ConfigManager custom

component to reference the pipeline directory.
In this example, the pipeline is stored in the pipeline directory:
<custom-component id="ConfigManager" host-id="ITLHost"
 class="com.Endeca.soleng.eac.toolkit.component.ConfigManagerComponent">

 <properties>
 ...
 </properties>
 <directories>
 <directory
 name="devStudioConfigDir">./config/pipeline
 </directory>
 ...
 </directories>

3. If you modified the value in step 2, also modify the value of the configDir attribute in the Partial
update Forge section to reference the config/pipeline directory.
For example:
<!—
##
Partial update Forge
-->
<forge id="PartialForge" host-id="ITLHost">
 <properties>
 ...
 </properties>
 <directories>
 ...
 <directory name="configDir">./config/pipeline</directory>
 ...
 </directories>

Creating a new project
Once the reference configuration files have been deleted, a new pipeline configuration project can be
created.

When creating a new project using the Oracle Endeca Developer Studio, you are prompted with the
following dialog box:

Oracle Endeca Commerce Deployment Template Usage Guide

Replacing the Default Forge Pipeline | Specifying a pipeline48

To create a new project:

1. In order for a new pipeline to be run properly within the deployment template, the following must
be properly specified:
a) The Project Name field must be the same as the data prefix specified for the "app" element in

<app dir>/config/script/AppConfig.xml. By default, this data prefix will have been
set to the name of the application that was specified when running deploy.bat or deploy.sh.

b) Recall that the [appname] specified was also used to create the base <app dir> directory.
For example, if "myapp" was supplied as the [appname], and "c:\Endeca\apps" was supplied
as the Deployment Directory, then <app dir> would be c:\Endeca\apps\myapp. In this
example, the Project Name should also be specified as "myapp".

2. The Save Project As field should be <app dir>\config\pipeline\[appname].esp

In the example above, the Save Project As field would be
c:\Endeca\apps\myapp\config\pipeline\myapp.esp.

Oracle Endeca Commerce Deployment Template Usage Guide

49Replacing the Default Forge Pipeline | Creating a new project

After clicking the "OK" button, a number of files are created in the <app dir>/config/pipeline/
directory. The primary files to be concerned with are listed below:

DescriptionFile name

This is the main pipeline file that the deployment
template will reference when running forge.

pipeline.epx

This is the Developer Studio project file that will
be used whenever reopening the project. Although

[appname].esp

this file does not actually require the [appname]
prefix, it is good practice to keep it consistent with
other project files.

These are the various configuration files that will
be used later by the indexer and MDEX Engine

[appname].*.xml

processes. It is important that they have the same
prefix as the deployment template Application
Name.

This is the dimension file referenced by the default
Dimension Adapter.

dimensions.xml

Modifying an existing project
Modifying an existing Developer Studio project to match a new deployment template application is a
somewhat tedious task. In fact, it is often easier to simply create a new deployment template application
instead.

The important key is that the [appname].*.xml files share the same [appname] as the deployment
template project. Since there are 30+ XML files, you can either:

Oracle Endeca Commerce Deployment Template Usage Guide

Replacing the Default Forge Pipeline | Modifying an existing project50

• Rename each of the XML files with a new prefix, and update the [appname].esp file to reference
each new file.

• Update the deployed application's AppConfig.xml file to specify the [appname] of your
configuration files. For example, if your configuration files are named myapp.*.xml, update the
configuration as follows:
 <app appName="myapp" eacHost="host1.company.com" eacPort="8888"
 dataPrefix="myapp" sslEnabled="false"
 lockManager="LockManager">
 <working-dir>C:\Endeca\apps\myapp</working-dir>
 <log-dir>./logs/baseline</log-dir>
 </app>

In most cases, the appName attribute and the dataPrefix attribute will be identical. However, this
is not required and an application can be configured to support files with a data prefix other than the
application name. If the data prefix is not specified, the application defaults to using the application
name.

Note that opening an existing project in the Oracle Endeca Developer Studio and using the Save As
feature will not rename the corresponding *.xml files. It will only rename the [appname].esp file.
The prefix for the XML files can only be specified when a new project is created.

Related Links
Common errors on page 55

This section provides troubleshooting information for commonly received errors.

Configuring a record specifier
The deployment includes support for both baseline and partial index updates. In order to support partial
updates, an application must include a record specifier, which is a property marked as the unique
identifier of records in the index.

For details about the record specifier property, refer to the Platform Services Forge Guide.

When configuring your application, identify a property for which each record will have a unique assigned
value.

To enable the use of that property as a record spec:

1. Open the Property dialog box in Developer Studio.
2. Check the box labeled "Use for record spec."

Oracle Endeca Commerce Deployment Template Usage Guide

51Replacing the Default Forge Pipeline | Configuring a record specifier

Forge flags
In order to reduce the amount of configuration required to integrate a pipeline into a deployment
template, a standard deployment template application runs the primary and partial update Forge
processes with an abbreviated set of flags.

Since the deployment template already specifies directory structures and file prefixes, the following
flags are used to override a pipeline's input and output components, specifying the appropriate
directories and prefixes for either reading or writing data.

Primary Forge flags

DescriptionFlag

<app dir>/data/processing--inputDir

<app dir>/data/state--stateDir

<app dir>/data/forge_temp--tmpDir

<app dir>/logs/baseline--logDir

<app dir>/data/forge_output--outputDir

[dataPrefix]--outputPrefix

Partial update Forge flags

DescriptionFlag

<app dir>/data/partials/processing--inputDir

<app dir>/data/state--stateDir

<app dir>/data/forge_temp--tmpDir

<app dir>/logs/partial--logDir

<app dir>/data/partials/forge_output--outputDir

Oracle Endeca Commerce Deployment Template Usage Guide

Replacing the Default Forge Pipeline | Forge flags52

DescriptionFlag

[dataPrefix]--outputPrefix

Input record adapters
The record adapters load the source data.

To start, here is a quick review of how sample data included with the deployment template is processed.
The sample application includes a sample dataset in <app dir>/test_data/baseline directory.
When processing the sample data, the load_baseline_test_data script copies the contents of
this directory into the <app dir>/data/incoming/ directory and sets a flag in the EAC.

This flag, named baseline_data_ready, indicates to the deployment template scripts that the data
extraction process is complete and data is ready for processing. Once that has occurred, the baseline
update process copies these files into the <app dir>/data/processing directory before running
the Forge process.

When using a default deployment template application, it is therefore necessary for all input record
adapters to look in the <app dir>/data/processing directory for incoming data extracts. The
deployment template handles this automatically by specifying the --inputDir flag when running the
primary forge process. This flag overrides any absolute path specified for specific input adapters with
the proper deployment template path: <app dir>/data/processing. However, the --inputDir
flag respects relative paths, resolving them relative to the path specified as the input directory.

The URL property of any record adapter component therefore only needs to specify the relative path
to a specific file or subdirectory within the <app dir>/data/incoming directory. (Remember that
files and subdirectories in the incoming directory are copied to the processing directory by the
deployment template before Forge is run.)

For example, if a single extract file called data.txt is copied into the <app dir>/data/incoming
directory before running a baseline, the URL property of that data's input record adapter should specify
a URL of data.txt.

For a more complex deployment where, for instance, multiple text extract files are copied into the <app
dir>/data/incoming/extracted_data directory before running a baseline update, the URL
property of a single input record adapter configured to read these files should be set to
extracted_data/*.txt.

Related Links
Output record adapters on page 54

Output record adapters are often used to generate debug or state information. By default,
the location to which this data is written will be overridden by the --outputDir flag.

Dimension adapters
The --inputDir flag specified to forge overrides the input URL for dimension adapters.

Since the dimensions for a project are usually stored in the <app dir>/config/pipeline directory
along with other configuration files, the deployment template copies these files into the <app
dir>/data/processing/ directory before running the Forge process. The URLs specified in
dimension adapters should follow the same rules as those described for input record adapters, specifying

Oracle Endeca Commerce Deployment Template Usage Guide

53Replacing the Default Forge Pipeline | Input record adapters

dimension XML file URLs relative to the --inputDir directory. In most cases, this is as simple as
specifying the URL for the main dimension adapter as Dimensions.xml, which is the value used by
the default "Dimensions" adapter created by Developer Studio's project template.

More complex deployments that include multiple dimension adapters or external delivery of dimension
files should ensure that the dimension XML files are copied into the <app dir>/data/incoming/
directory before the forge process runs.

Indexer adapters
Because the --outputPrefix and --outputDir flags are both included, the deployment template
will override any values specified for the Indexer Adapter "URL" and "Output prefix" properties.

Therefore, it is unnecessary to modify these properties in most cases.

Output record adapters
Output record adapters are often used to generate debug or state information. By default, the location
to which this data is written will be overridden by the --outputDir flag.

In most cases, however, it is undesirable for these files to be written to the same location as the Forge
output files.

In these cases, an output record adapter can be configured to instead respect the --stateDir flag
by selecting the "Maintain State" checkbox.

Now any files generated by this output record adapter will be written to the <app dir>/data/state/
directory.

Note that the output file name must still be specified in the "URL" property of the record adapter. The
--outputPrefix flag only overrides the indexer adapter output file names, not output record adapter
file names.

Related Links
Input record adapters on page 53

The record adapters load the source data.

Oracle Endeca Commerce Deployment Template Usage Guide

Replacing the Default Forge Pipeline | Indexer adapters54

Dimension servers
The --stateDir flag will override the URL value for all Dimension Server components, and place
any autogen state files in the <app dir>/data/state/ directory.

Common errors
This section provides troubleshooting information for commonly received errors.

Unable to Find Pipeline.epx

If Forge fails, check the logs (<app dir>/logs/baseline/err.forge) to make sure that Forge
was able to find the pipeline.epx file in its proper location. Remember that a basic deployment
template application assumes that it will find the project's pipeline.epx file in <app
dir>\config\pipeline\.

On UNIX platforms, file names are case sensitive. The deployment template expects the primary
pipeline file to be named pipeline.epx and the partial update pipeline (if one is required for the
deployed application) to be named partial_pipeline.epx. Ensure that the files in your deployment
use this capitalization.

Missing Configuration Files

This more common error is also more difficult to detect. Since all pipelines created by the Oracle
Endeca Developer Studio typically contain a Pipeline.epx file, it is unlikely that the Forge process
will be unable to find the file, unless it was placed in the wrong directory. If the XML configuration files,
however, have a different prefix from the deployment template [appname], these files will not be
copied into the <app dir>/data/forge_output/ , <app dir>/data/dgidx_output/, and
<app dir>/data/dgraphs/*/dgraph_input/ directories. All processes will likely complete
successfully, but any configuration information specified by these XML files, such as search interfaces,
business rules, sort keys, etc. will be missing from the resulting MDEX Engine. To correct this problem,
check the XML files located in <app dir>/config/pipeline/ and make sure they have the correct
prefix. Also check the directories mentioned above to make sure that these XML files are being properly
copied.

MDEX Engine Fails to Start

If an MDEX Engine fails to start, check the log for the appropriate Dgraph in <app
dir>/logs/dgraphs/[dgraph]/[dgraph].log. If the log indicates that the Dgraph failed to start
because no record specifier was found, follow the steps in this document to create a unique record
specifier property for you project.

Record Adapter Unable to Open File

Another common error may occur if a record adapter is unable to find or open a specified file for either
input or output. In this case, the Forge error log (<app dir>/logs/baseline/err.forge) should
specify which file or directory could not be found. To correct this problem, make sure the files or
directories specified by the record adapters correspond to the directory structure established by the
deployment template application. Note that this error may be masked if the "Require Data" property
is not checked for a given input adapter, since Forge will only log a warning instead of a fatal error.

Oracle Endeca Commerce Deployment Template Usage Guide

55Replacing the Default Forge Pipeline | Dimension servers

Chapter 4

Modifying Index Configuration for an Application

This section describes how to modify index configuration using the Index Configuration Command-line
Utility in a CAS-based processing model. If you are using Forge to process updates, this chapter does
not apply to your deployment.

Overview of the Index Configuration Command-line Utility
The Index Configuration Command-line Utility modifies index configuration stored in the Endeca
Configuration Repository for an application. This utility is typically used to modify data after it has been
exported from a product catalog system and modify the search configuration settings for the data. In
many cases, the utility is also used to manually create index configuration that is not part of a product
catalog system.

The Index Configuration Command-line Utility is a script named index-config-cmd that you run
from a command prompt. After you deploy a new application, the index-config-cmd script is
available in the <app name>\control directory.

Help options

The Index Configuration Command-line Utility has two help options that display the usage syntax. The
--help option displays a summary of the tasks. The --help-detail option displays detailed usage
information for a specified task. For example:
C:\Endeca\apps\Discover\control>index_config_cmd.bat --help
usage: index-config-cmd <task-name> [options]
where <task-name> is one of the following:
 get-config
 set-config
 delete-owner
 get-merged-config
For detailed usage information for individual task options, use <task-name>
 --help

Command-line options

The command syntax for executing the tasks is:
index_config_cmd <task-name> [options]

The <task-name> argument is the task to be performed by the utility, such as the get-config task.
The task options vary, depending on the task. However, the following option can be used with any
task:

• -o (or --owner) specifies an import owner for a task. If you specify the -o option, the task applies
only to the owner specified. The option can have an argument of all, system, or user-specified
owner name. The all owner includes both the system owner and all user-specified owners. If
you omit this option, the task applies to the system owner.

About index configuration ownership
The index configuration for an application is associated with one or more import owners. An import
owner provides a way of indicating that a portion of an application's configuration came from one
source rather than another source. The name of the import owner typically identifies the source. For
example, the name of an import owner could reflect a product catalog system.

In addition to any number of import owners, there is also one default system owner. The system
owner is typically a developer who uses the utility to augment index configuration and troubleshoot
data issues as part of update processing.

Creating and deleting import owners

An import owner is typically created during the data import operation using the Endeca Configuration
Import API. The owner name is specified as argument to the ConfigRepositoryImporter
constructor. For details, see the Endeca Configuration Import API Reference (Javadoc). You can also
create an import owner using the -o option of the set-config task. If the owner does not already
exist, the utility creates it.

The index configuration associated with an owner is removed using the delete-owner task.

Examining index configuration for an owner

You can retrieve and examine index configuration for an owner using the get-config task and the
-o option. The task returns a JSON file with the index configuration for the specified owner. If the file
contains configuration from multiple import owners, each import owner's configuration is represented
as a node within the file.

Overwriting index configuration per owner

As described in Setting the index configuration for an application on page 71, the set-config task
overwrites all previous index configuration for a specified owner.

Setting global configuration

Only the system owner can set global index configuration.

Merging index configuration from multiple owners

During baseline update processing, the Content Acquisition System merges and processes index
configuration from all owners into a consolidated set of MDEX-compatible output files.

If multiple import owners modify the same attribute, the configuration from the system owner always
overrides other import owners during the merge process.

For example, suppose an import owner named ATG creates an attribute that represents an Endeca
property. Then the system owner updates the Endeca property to become an Endeca dimension with
isAutogen set to true. The merged configuration processes the attribute and updates it to become
an autogen dimension.

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | About index configuration ownership58

About the schema for the index configuration file
The Index Configuration Command-line Utility writes and reads index configuration as JSON. The
schema for the JSON file varies depending on whether you retrieve configuration for one owner or
more than one owner and whether you restrict the types of configuration that you retrieve.

Types of configuration include:
• Endeca properties, derived properties, and dimensions. These are specified under the attributes

node.
• Precedence rules. These are specified under the precedenceRules node.
• Search configuration. These are specified under the searchIndexConfig node.

See the topics and examples below that illustrate the schema for each index configuration type.

Schema for an Endeca property, derived property, or dimension
You specify an Endeca property or dimension as an attribute in the index configuration file. Each
attribute has a jcr:primaryType property with one of the following values:

• endeca:property - indicates that the attribute is an Endeca property.
• endeca:derivedProperty - indicates that the attribute is a derived property.
• endeca:dimension - indicates that the attribute is an Endeca dimension.

Properties, dimensions, and precedence rules must be named uniquely across the index configuration.
The only exception to this is where you update a property by setting the mergeAction property to
UPDATE.

Schema for an attribute node that defines an Endeca property

An attribute that is an endeca:property can have the following schema properties:

DescriptionData TypeName

Optional. Indicates whether the property is processed by
CAS when CAS writes MDEX-compatible output. A value

BOOLEANisEnabled

of true includes the property during processing; false
excludes the property. This setting is useful when
troubleshooting data issues for specific attributes. If
omitted, the default value is true.

Optional. Indicates whether the property can be used to
filter records. Record filtering presents a subset of the

BOOLEANisRecordFilter¬
able

data to the end-user. If omitted, the default value is
false.

Optional. Specifies whether or not record search should
be enabled for this property. Record search finds all

BOOLEANisRecord¬
SearchEnabled

records in an Endeca application that are tagged with an
Endeca property that matches a term the user provides.
You must enable each property that you want available
for record search. If omitted, the default value is false.

Optional. Indicates whether the property can be used as
a rollup key. This allow aggregated records to be based

BOOLEANisRollupKey

Oracle Endeca Commerce Deployment Template Usage Guide

59Modifying Index Configuration for an Application | About the schema for the index configuration file

DescriptionData TypeName

on this Endeca property. If omitted, the default value is
false.

Optional. Indicates whether wildcard search is enabled
for this Endeca property. Wildcard searching allows user

BOOLEANisWildcardEn¬
abledInRecord¬
Search queries that contain a wildcard character (*) to match

against fragments of words in a property value. You must
enable each property that you want available for wildcard
searching. If isWildcardEnabledInRecordSearch
is set to true, then isRecordSearchEnabled must
also be set to true for a property. (Enabling wildcard
record search depends on first enabling record search.)
If omitted, the default value is false.

Optional. The mergeAction specifies how to merge the
attribute into the index configuration. Valid enumerations

STRINGmergeAction

are ADD and UPDATE. Specify a value of ADD to merge
new attributes that are not already in the system. Specify
a value of UPDATE to merge changes to an existing
attribute. If omitted, the default value of mergeAction
is ADD.

Optional. The propertyDataType enumerates the valid
values for the data type of an Endeca property. The valid

STRINGproperty¬
DataType

enumerations are ALPHA, INTEGER, DOUBLE, GEOCODE,
DATETIME, DURATION, and TIME. Such data types have
several uses. Non-alpha properties can be used for range
filtering. Temporal properties can be used for record
sorting and analytics. If omitted, the default value of
propertyDataType is ALPHA.

Optional. Specifies an explicit mapping between one or
more source properties and an Endeca property. An

STRING
(multi-valued)

sourceProperty¬
Names

Endeca property is populated with data from the source
property that it is mapped to. If specified, the source¬
PropertyNames value can be empty, single-valued, or
multi-valued.

If empty (a zero-length list), no source property is mapped
to an Endeca property. This allows you to define an
Endeca property but not populate it with any data.

If single-valued, then the source property has its value
mapped to the Endeca property.

If multi-valued, then each source property in this list has
its value mapped to the Endeca property.

If omitted, the source property has its value mapped to
an Endeca property of the same name. In other words,
a source property with a name that is identical to an
Endeca property is automatically mapped to that Endeca
property. This is the default behavior.

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | About the schema for the index configuration file60

Schema for an attribute node that defines an Endeca derived property

An attribute that is an endeca:derivedProperty can have the following schema properties:

DescriptionData TypeName

Required. The derivedPropertyFunction
enumerates the the valid functions that can be applied

STRINGderivedProperty¬
Function

to the derivedPropertySource property. The valid
enumerations are MIN, MAX, SUM, and AVG.

Required. Specifies the Endeca property from which the
derived property is calculated.

STRINGderivedProper¬
tySource

Optional. Indicates whether the property is processed by
CAS when CAS writes MDEX-compatible output. A value

BOOLEANisEnabled

of true includes the property during processing; false
excludes the property. This setting is useful when
troubleshooting data issues for specific attributes.

Optional. The mergeAction specifies how to merge the
attribute into the index configuration. Valid enumerations

STRINGmergeAction

are ADD and UPDATE. Specify a value of ADD to merge
new attributes that are not already in the system. Specify
a value of UPDATE to merge changes to an existing
attribute. If omitted, the default value of mergeAction
is ADD.

Schema for an attribute node that defines an Endeca dimension

An attribute that is an endeca:dimension can have the following schema properties:

DescriptionData TypeName

Optional. Specifies the display order of a dimension
relative to other dimensions in refinement results.

INTEGERdisplayOrder

Dimensions with lower values display before dimensions
with higher values. Valid values are integers between 0
and 2147483647. If omitted, the dimension displays lower
than dimensions with specified display orders. If
dimensions have the same display order value (a tie),
the dimensions are ordered alphabetically by dimension
name.

Optional. Specifies whether the dimension values for a
dimension are automatically generated during a CAS

BOOLEANisAutogen

crawl. A value of true generates dimension values for
a dimension. If omitted, the default value is false. (An
error results if you set this to true and also specify
dimension values for the dimension.)

Optional. Indicates whether the dimension is processed
by CAS when CAS writes MDEX-compatible output. A

BOOLEANisEnabled

value of true includes the dimension during processing;
false excludes the dimension. This setting is useful
when troubleshooting data issues for specific attributes.

Oracle Endeca Commerce Deployment Template Usage Guide

61Modifying Index Configuration for an Application | About the schema for the index configuration file

DescriptionData TypeName

Optional. Specifies whether a dimension search also
considers ancestor dimension values in this dimension

BOOLEANisHierarchi¬
calDimension¬
SearchEnabled when matching a dimension search query. If omitted, the

default value is false.

Optional. Specifies whether a record search also
considers ancestor dimension values in this dimension
when matching a record search query.

If isHierarchicalRecordSearchEnabled is set to
true, then isRecordSearchEnabled must also be

BOOLEANisHierarchical¬
RecordSearchEn¬
abled

set to true for a dimension. (Enabling hierarchical search
depends on first enabling record search.) If omitted, the
default value of isHierarchicalRecordSearchEn¬
abled is set to the value of isRecordSearchEnabled.

Optional. Specifies whether or not record search should
be enabled for this dimension. Record search finds all

BOOLEANisRecord¬
SearchEnabled

records in an Endeca application that are tagged with a
dimension value that matches a term the user provides.
You must enable each property that you want available
for record search. If omitted, the default value is false.

Optional. Indicates whether wildcard search is enabled
for this dimension. Wildcard searching allows user queries

BOOLEANisWildcardEn¬
abledInRecord¬
Search that contain a wildcard character (*) to match against

fragments of words in a dimension. You must enable
each dimension that you want available for wildcard
searching.

If isWildcardEnabledInRecordSearch is set to
true, then isRecordSearchEnabled must also be
set to true for a dimension. (Enabling wildcard
dimension search depends on first enabling dimension
search.) If omitted, the default value is false.

Optional. The mergeAction specifies how to merge the
attribute into the index configuration. Valid enumerations

STRINGmergeAction

are ADD and UPDATE. Specify a value of ADD to merge
new attributes that are not already in the system. Specify
a value of UPDATE to merge changes to an existing
attribute. If omitted, the default value of mergeAction
is ADD.

Optional. The multiSelectType enumerates the valid
values for specifying multiselect dimensions. When AND

STRINGmultiSelectType

is specified on a dimension, the MDEX Engine returns
all records from all the select dimension values. The result
set is expanded with each additional dimension value
that a user selects. The OR enumeration returns the
records from one selected dimension value. The result
set is reduced with each dimension value that a user
selects. The valid enumerations are NONE, OR, and AND.

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | About the schema for the index configuration file62

DescriptionData TypeName

Optional. The rangeComparisonType enumerates the
types that can be used to map source properties to

STRINGrangeComparison¬
Type

dimension values that represent ranges. The valid
enumerations are STRING, INTEGER, and FLOAT.

Optional. Specifies an explicit mapping between one or
more source properties and an Endeca dimension. A

STRING
(multi-valued)

sourceProperty¬
Names

dimension is populated with data from the source property
that it is mapped to. If specified, the sourceProperty¬
Names value can be empty, single-valued, or
multi-valued.

If empty (a zero-length list), no source property is mapped
to a dimension. This allows you to define a dimension
but not populate it with any data. This is useful when
creating trigger dimension values for content spotlighting
cartridges.

If single-valued, then the source property has its value
mapped to the Endeca dimension.

If multi-valued, then each source property in this list has
its value mapped to the Endeca dimension.

If omitted, the source property has its value mapped to
an Endeca dimension of the same name. In other words,
a source property with a name that is identical to a
dimension is automatically mapped to that dimension.
This is the default behavior.

Example index configuration for two owners and all configuration types

In this example, the utility returns index configuration for the system owner. The configuration in this
case is made up of attributes and global index configuration settings:
{
 "indexConfig" : {
 "system" : {
 "attributes" : {
 "product.price" : {
 "propertyDataType" : "DOUBLE",
 "jcr:primaryType" : "endeca:property"
 },
 "product.brand.name" : {
 "isRecordSearchEnabled" : true,
 "isAutogen" : true,
 "jcr:primaryType" : "endeca:dimension",
 "multiSelectType" : "OR"
 },
 "product.review.count" : {
 "propertyDataType" : "INTEGER",
 "jcr:primaryType" : "endeca:property"
 },
 "product.sku" : {
 "isRecordSearchEnabled" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"

Oracle Endeca Commerce Deployment Template Usage Guide

63Modifying Index Configuration for an Application | About the schema for the index configuration file

 },
 "product.id" : {
 "isRecordFilterable" : true,
 "isRecordSearchEnabled" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"
 },
 "camera.color" : {
 "sourcePropertyNames" : ["camera.Colour of product"],
 "isAutogen" : true,
 "jcr:primaryType" : "endeca:dimension"
 },
 "product.category" : {
 "sourcePropertyNames" : ["product.category_id"],
 "isRecordSearchEnabled" : true,
 "jcr:primaryType" : "endeca:dimension"
 },
 "product.name" : {
 "isRecordSearchEnabled" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"
 },
 "product.features" : {
 "isAutogen" : true,
 "jcr:primaryType" : "endeca:dimension",
 "multiSelectType" : "AND"
 },
 "product.min_price" : {
 "derivedPropertySource" : "product.price",
 "derivedPropertyFunction" : "MIN",
 "jcr:primaryType" : "endeca:derivedProperty"
 },
 "product.price_range" : {
 "sourcePropertyNames" : ["product.price"],
 "rangeComparisonType" : "FLOAT",
 "jcr:primaryType" : "endeca:dimension"
 },
 "common.id" : {
 "isRecordFilterable" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"
 },
 ...
 },
 "precedenceRules" : {
 },
 "searchIndexConfig" : {
 "spellingDictMinNumWordOccurrences" : 4,
 "spellingDictMaxWordLength" : 16,
 "isWildcardEnabledInDimensionSearch" : true,
 "spellingDictMinWordLength" : 3
 }
 }
 }
}

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | About the schema for the index configuration file64

Schema for precedence rules
You specify a precedence rule in the precedenceRules node of the index configuration file. The
precedenceRules node is a sibling of the attributes node.

Schema for a precedenceRule node to define a precedence rule

Each node representing a precedence rule under precedenceRules can have the following schema
properties:

DescriptionData TypeName

Optional. Indicates whether the precedence rule is
processed by CAS when CAS writes MDEX-compatible

BOOLEANisEnabled

output. A value of true includes the precedence rule
during processing; false excludes the precedence rule.
This setting is useful when troubleshooting data issues
for specific attributes.

Optional. Specifies a Boolean to indicate if the trigger is
a leaf trigger or not. If set to true, the rule only triggers
on leaf dimension values.

BOOLEANisLeafTrigger

Optional. The mergeAction enumerates the valid values
that describe how to merge the precedence rule into the

STRINGmergeAction

index configuration. Valid enumerations are ADD and
UPDATE. Specify a value of ADD to merge new
precedence rules that are not already in the system.
Specify a value of UPDATE to merge changes to an
existing precedence rule. If omitted, the default value of
mergeAction is ADD.

Required. Specifies the trigger dimension for a
precedence rule. Recall that a user's selection of the

STRINGtriggerDimension

trigger dimension reveals the previously unavailable target
dimension to the user.

Optional. Specifies the dimension value specification of
the triggerDimension. If omitted, the precedence rule
fires for any selection from the trigger dimension.

STRINGtriggerDimensionVa¬
lueSpec

Required. Specifies the target dimension for a precedence
rule.

STRINGtargetDimension

Example index configuration for precedence rules

In this example, the utility returns index configuration from one owner, named ATG, and the prece¬
denceRules configuration type.
C:\Endeca\apps\Discover\control>index_config_cmd.bat get-config -o ATG -t
precedenceRules
[07.26.12 12:57:19] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin

The output contains a precedenceRules root node, because that was the specified configuration
type, and then child nodes for two precedence rules:
{
 "precedenceRules" : {

Oracle Endeca Commerce Deployment Template Usage Guide

65Modifying Index Configuration for an Application | About the schema for the index configuration file

 "aspectRatioDigitalCamerasRule" : {
 "targetDimension" : "camera.aspect_ratio",
 "triggerDimensionValueSpec" : "575",
 "triggerDimension" : "product.category",
 "isLeafTrigger" : false
 },
 "digitalZoomDigitalCamerasRule" : {
 "targetDimension" : "camera.digital_zoom",
 "triggerDimensionValueSpec" : "575",
 "triggerDimension" : "product.category",
 "isLeafTrigger" : false
 }
 ...
 }
}

Schema for global index configuration
You specify search configuration in the searchIndexConfig node of the index configuration file. In
this release, the settings control spelling dictionary configuration and wildcard search. The
searchIndexConfig node is a sibling of the attributes and precedenceRules nodes.

Schema for a searchIndexConfig node

Each property under searchIndexConfig represents an index configuration setting. The following
properties are available:

DescriptionData TypeName

Optional. Specifies the minimum number of times the
word must appear in the source data before the word

LONGspellingDictMin¬
NumWordOccur¬
rences should be included in the spelling dictionary. This setting

applies to record search only. If omitted, the default value
is 4.

For dimension search, this setting is always set to 1. (All
dimension value names are included in the spelling
dictionary by default.)

Optional. Specifies the maximum length of a word that
should be included in the spelling dictionary. Words longer

LONGspellingDictMax¬
WordLength

than this value are excluded. This setting applies to both
dimension search and record search. If omitted, the
default value is 16.

Optional. Specifies a Boolean to indicate that a query can
contain a wildcard character (*) to match against

BOOLEANisWildcardEn¬
abledInDimen¬
sionSearch fragments of words in a dimension value. If omitted, the

default value is true.

Optional. Specifies the minimum character length for a
word to be included in the spelling dictionary. This setting

LONGspellingDictMin¬
WordLength

applies to both dimension search and record search. If
omitted, the default value is 3.

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | About the schema for the index configuration file66

Example index configuration for global settings

In this example, the utility returns index configuration for the system owner. The index configuration
is restricted to only the searchIndexConfig type.
C:\Endeca\apps\Discover\control>index_config_cmd.bat get-config -o system
-t searchIndexConfig
[07.26.12 12:57:19] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin

The output contains a searchIndexConfig root node, because that was the specified configuration
type, and then properties for each configuration setting:
{
 "searchIndexConfig" : {
 "spellingDictMinNumWordOccurrences" : 4,
 "spellingDictMaxWordLength" : 16,
 "isWildcardEnabledInDimensionSearch" : true,
 "spellingDictMinWordLength" : 3
 }
}

Getting the index configuration for an application
The get-config task retrieves the index configuration for an application.

The syntax for this task is:
index_config_cmd get-config [-o OwnerName] [-f FileName]
[-r] [-t precedenceRules|attributes|searchIndexConfig]

Where:
• -o (or --owner) specifies an import owner for a task. If you specify the -o option, the task applies

only to the owner specified. The option can have an argument of all, system, or user-specified
owner. The all owner includes both the system owner and all import owners. If you omit this
option, the task applies to the system owner. Optional.

• -f (or --file) specifies a path to a JSON output file that contains the index configuration. Omitting
the -f option prints the index configuration to standard out. Optional.

• -r (or --repositoryMetadata) specifies whether to return metadata about each attribute value
in the index configuration. Metadata for an attribute includes properties such as jcr:lastModi¬
fiedBy, jcr:createdBy, jcr:created, jcr:lastModified, and so on. Optional.

• -t (or --type) specifies the type of index configuration you want the task to return. The arguments
areprecedenceRules,attributes, andsearchIndexConfig. SpecifyingprecedenceRules
returns only precedence rules in the index configuration, or none. Specifying attributes returns
the attributes in the index configuration. Specifying searchIndexConfig returns only the global
index configuration settings. Omitting the -t option returns all types of index configuration. Optional.

Note: There is a size limit on the total number of attributes and precedence rules the task can
retrieve. If the index configuration that you are retrieving contains more than approximately
10,000 attributes and precedence rules, the get-config task returns a Multiple Choices
(300) error.

To get the index configuration for an application:

1. Start a command prompt and navigate to <app dir>\control (for Windows) or <app
dir>/control (for UNIX).

Oracle Endeca Commerce Deployment Template Usage Guide

67Modifying Index Configuration for an Application | Getting the index configuration for an application

2. Type index_config_cmd and specify the get-config task.

Note: This task name is case sensitive.

Example of getting the index configuration for an application
C:\Endeca\apps\Discover\control>index_config_cmd.bat get-config
[07.23.12 15:50:54] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin
{
 "indexConfig" : {
 "system" : {
 "attributes" : {
 "product.price" : {
 "propertyDataType" : "DOUBLE",
 "jcr:primaryType" : "endeca:property"
 },
 "product.brand.name" : {
 "isRecordSearchEnabled" : true,
 "isAutogen" : true,
 "jcr:primaryType" : "endeca:dimension",
 "multiSelectType" : "OR"
 },
 "product.review.count" : {
 "propertyDataType" : "INTEGER",
 "jcr:primaryType" : "endeca:property"
 },
 "product.sku" : {
 "isRecordSearchEnabled" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"
 },
 "product.id" : {
 "isRecordFilterable" : true,
 "isRecordSearchEnabled" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"
 },
 "camera.color" : {
 "sourcePropertyNames" : ["camera.Colour of product"],
 "isAutogen" : true,
 "jcr:primaryType" : "endeca:dimension"
 },
 "product.category" : {
 "sourcePropertyNames" : ["product.category_id"],
 "isRecordSearchEnabled" : true,
 "jcr:primaryType" : "endeca:dimension"
 },
 "product.name" : {
 "isRecordSearchEnabled" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"
 },
 "product.features" : {
 "isAutogen" : true,
 "jcr:primaryType" : "endeca:dimension",
 "multiSelectType" : "AND"
 },
 "product.min_price" : {

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | Getting the index configuration for an application68

 "derivedPropertySource" : "product.price",
 "derivedPropertyFunction" : "MIN",
 "jcr:primaryType" : "endeca:derivedProperty"
 },
 "product.price_range" : {
 "sourcePropertyNames" : ["product.price"],
 "rangeComparisonType" : "FLOAT",
 "jcr:primaryType" : "endeca:dimension"
 },
 "common.id" : {
 "isRecordFilterable" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"
 },
 ...
 },
 "precedenceRules" : {
 },
 "searchIndexConfig" : {
 "spellingDictMinNumWordOccurrences" : 4,
 "spellingDictMaxWordLength" : 16,
 "isWildcardEnabledInDimensionSearch" : true,
 "spellingDictMinWordLength" : 3
 }
 }
 }
}

Getting the merged index configuration for an application
The get-merged-config task retrieves the merged index configuration for an application. In other
words, the output of this task is the consolidated index configuration for all import owners.

This task is primarily used as a debugging tool to troubleshoot configuration and data issues in the
MDEX-compatible output files produced by a CAS crawl.

In some ways, the get-merged-config task is logically similar to get-config task with the owner
option (-o) set to all. However, there are several important differences between the two tasks:

• get-config outputs configuration that is grouped in nodes by the owner name. get-merged-
config outputs the consolidated configuration with no distinction for ownership.

• get-config does not remove copies of attributes from other owners. For example, if an ATG
owner adds attribute A and system owner updates attribute A, get-config returns attribute A
in the node for the ATG owner and also the node for the system owner. Whereas, get-merged-
config merges the copies of the attribute and returns only one instance of attribute A which is
from the system owner.

The syntax for this task is:
index_config_cmd get-merged-config [-f FileName]
[-t precedenceRules|attributes|searchIndexConfig]

Where:
• -f (or --file) specifies a path to a JSON output file that contains the index configuration. Omitting

the -f option prints the index configuration to standard out. Optional.

Oracle Endeca Commerce Deployment Template Usage Guide

69Modifying Index Configuration for an Application | Getting the merged index configuration for an
application

• -t (or --type) specifies the type of index configuration you want the task to return. The arguments
areprecedenceRules,attributes, andsearchIndexConfig. SpecifyingprecedenceRules
returns only precedence rules in the index configuration, or none. Specifying attributes returns
the attributes in the index configuration. Specifying searchIndexConfig returns only the global
index configuration settings. Omitting the -t option returns all types of index configuration. Optional.

To get the merged index configuration for an application:

1. Start a command prompt and navigate to <app dir>\control (for Windows) or <app
dir>/control (for UNIX).

2. Type index_config_cmd and specify the get-merged-config task.

Note: This task name is case sensitive.

Example of getting the merged index configuration for an application
C:\Endeca\apps\Discover\control>index_config_cmd.bat get-merged-config
[08.17.12 11:48:05] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin
{
 "indexConfig" : {
 "attributes" : {
 "product.price" : {
 "propertyDataType" : "DOUBLE",
 "jcr:primaryType" : "endeca:property"
 },
 "product.brand.name" : {
 "isRecordSearchEnabled" : true,
 "isAutogen" : true,
 "jcr:primaryType" : "endeca:dimension",
 "multiSelectType" : "OR"
 },
 "product.sku" : {
 "isRecordSearchEnabled" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"
 },
 "product.id" : {
 "isRecordFilterable" : true,
 "isRecordSearchEnabled" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"
 },
 "camera.megapixel_range" : {
 "sourcePropertyNames" : ["camera.Megapixel"],
 "rangeComparisonType" : "FLOAT",
 "jcr:primaryType" : "endeca:dimension"
 },
 "product.category" : {
 "sourcePropertyNames" : ["product.category_id"],
 "isRecordSearchEnabled" : true,
 "jcr:primaryType" : "endeca:dimension"
 },
 "product.name" : {
 "isRecordSearchEnabled" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"
 },

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | Getting the merged index configuration for an
application

70

 "product.features" : {
 "isAutogen" : true,
 "jcr:primaryType" : "endeca:dimension",
 "multiSelectType" : "AND"
 },
 "product.min_price" : {
 "derivedPropertySource" : "product.price",
 "derivedPropertyFunction" : "MIN",
 "jcr:primaryType" : "endeca:derivedProperty"
 },
 "product.code" : {
 "isRollupKey" : true,
 "isRecordSearchEnabled" : true,
 "jcr:primaryType" : "endeca:property",
 "propertyDataType" : "ALPHA"
 },
 "product.price_range" : {
 "sourcePropertyNames" : ["product.price"],
 "rangeComparisonType" : "FLOAT",
 "jcr:primaryType" : "endeca:dimension"
 },
 "product.max_price" : {
 "derivedPropertySource" : "product.price",
 "derivedPropertyFunction" : "MAX",
 "jcr:primaryType" : "endeca:derivedProperty"
 },
 "product.long_desc" : {
 "isRecordSearchEnabled" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"
 },
 "product.short_desc" : {
 "isRecordSearchEnabled" : true,
 "propertyDataType" : "ALPHA",
 "jcr:primaryType" : "endeca:property"
 },
 ...
 },
 "precedenceRules" : {
 },
 "searchIndexConfig" : {
 "spellingDictMinNumWordOccurrences" : 4,
 "spellingDictMaxWordLength" : 16,
 "isWildcardEnabledInDimensionSearch" : true,
 "spellingDictMinWordLength" : 3
 }
 }
}

Setting the index configuration for an application
The set-config task sets the index configuration for a specified owner. You provide the index
configuration in a JSON file.

Running this task overwrites any previous index configuration for the owner. Oracle recommends that
developers who modify the index configuration, use the default system owner. This usage separates
index configuration that comes from the system owner from configuration that comes from import

Oracle Endeca Commerce Deployment Template Usage Guide

71Modifying Index Configuration for an Application | Setting the index configuration for an application

operations which are owner by a user-specified owner. If the JSON configuration file contains index
configuration from multiple owners, you must specify the -o option with a value of all.

If desired, you can also update an Endeca property to become a dimension by modifying the
jcr:primaryType from endeca:property to endeca:dimension. However, you cannot modify
it from dimension to property.

The syntax for this task is:
index_config_cmd set-config [-o OwnerName] -f FileName

Where:
• -o (or --owner) specifies an import owner for a task. If you specify the -o option, the task applies

only to the owner specified. The option can have an argument of all, system, or a user-specified
import owner. The all owner includes both the system owner and all import owners. If you omit
this option, the task applies to the system owner. Optional.

• -f (or --file) specifies a path to a JSON file that contains the index configuration. Required.

To set the index configuration for an application:

1. Start a command prompt and navigate to <app dir>\control (for Windows) or <app
dir>/control (for UNIX).

2. Type index_config_cmd and specify the set-config task and the -f option with a path to the
JSON file.

Note: This task name is case sensitive.

Examples of setting the index configuration for an application

This example sets index configuration from three owners.
C:\Endeca\apps\Discover\control>index_config_cmd.bat set-config -f
C:\temp\indexConfigAllOwners.json -o all
[07.24.12 15:53:58] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin
You are attempting to write schema configuration that will be overwritten
 in the
 event of a fresh import.
Are you sure you want to continue? (y/n)
y

This example sets index configuration from an owner named ATG.
C:\Endeca\apps\Discover\control>index_config_cmd.bat set-config -f
C:\temp\indexConfigATGOwner.json -o ATG
[07.24.12 16:23:06] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin
You are attempting to write schema configuration that will be overwritten
 in the
 event of a fresh import.
Are you sure you want to continue? (y/n)
y

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | Setting the index configuration for an application72

Deleting the index configuration associated with an owner
The delete-owner task removes index configuration from an application that is associated with an
owner that you specify.

The syntax for this task is:
index_config_cmd delete-owner -o OwnerName

Where:
• -o (or --owner) specifies an import owner for a task. If you specify the -o option, the task applies

only to a user-specified owner. You cannot delete the system or all owners. Required.

To delete the index configuration associated with an owner:

1. Start a command prompt and navigate to <app dir>\control (for Windows) or <app
dir>/control (for UNIX).

2. Type index_config_cmd and specify the delete-owner task with an argument for the owner's
index configuration that you want to remove.

Note: This task name is case sensitive.

Example of deleting the index configuration associated with an owner

This example deletes the index configuration for the ATG owner.
C:\Endeca\apps\Discover\control>index_config_cmd.bat delete-owner -o ATG
[07.24.12 17:14:50] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin

An example of changing multi-select on a dimension
This topic provides a simple example of using the Index Configuration Command-line Utility to update
index configuration. In this example, suppose an import owner named ATG has added index configuration
to an Endeca application. You want to update the index configuration by adding multiSelectType
to the product.category dimension.

The steps to accomplish this are as follows:

1. Retrieve the index configuration by running:
C:\Endeca\apps\<app dir>\control>index_config_cmd.bat get-config -o ATG -f
 C:\temp\indexConfig.json

2. Open the resulting JSON file and locate the product.category attribute:
{
 "indexConfig" : {
 "attributes" : {
 "product.category" : {
 "sourcePropertyNames" : ["product.category_id"],
 "isRecordSearchEnabled" : true,
 "jcr:primaryType" : "endeca:dimension"
 },
 },
....

Oracle Endeca Commerce Deployment Template Usage Guide

73Modifying Index Configuration for an Application | Deleting the index configuration associated with an
owner

3. Add multiSelectType and set the value to OR, and also add the mergeAction with a value of
UPDATE. You can delete other properties of the attribute because they are not changing as part of the
update:
{
 "indexConfig" : {
 "attributes" : {
 "product.category" : {
 "mergeAction" : "UPDATE",
 "multiSelectType" : "OR",
 },
 },
....

4. Set the revised index configuration by running:
C:\Endeca\apps\<app dir>\control>index_config_cmd.bat set-config -o ATG
-f C:\temp\indexConfig.json

5. If desired, examine the merged configuration by running:
C:\Endeca\apps\<app dir>\control>index_config_cmd.bat get-merged-config
-f C:\temp\indexConfig.json

You see the following:
{
 "indexConfig" : {
 "ATG" : {
 "attributes" : {
 "product.category" : {
 "sourcePropertyNames" : ["product.category_id"],
 "isRecordSearchEnabled" : true,
 "multiSelectType" : "OR",
 "jcr:primaryType" : "endeca:dimension"
 },
 },
....

An example of changing a product.brand.name property to
a dimension

This topic provides a simple example of using the Index Configuration Command-line Utility to update
index configuration. In this example, suppose an import owner named ATG has added index configuration
to an Endeca application. You want to update the index configuration by changing the prod¬
uct.brand.name attribute from an Endeca property to an Endeca dimension.

The steps to accomplish this are as follows:

1. Retrieve the index configuration by running:
C:\Endeca\apps\<app dir>\control>index_config_cmd.bat get-config -o ATG -f
 C:\temp\indexConfig.json

2. Open the resulting JSON file and locate the product.brand.name attribute:
{
 "indexConfig" : {
 "attributes" : {
 "product.brand.name" : {
 "isRecordSearchEnabled" : true,

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | An example of changing a product.brand.name
property to a dimension

74

 "jcr:primaryType" : "endeca:property"
 },
 },
....

3. Change jcr:primaryType from endeca:property to endeca:dimension, add the mergeAc¬
tion with a value of UPDATE, and also add isAutogen with a value of true:
{
 "indexConfig" : {
 "attributes" : {
 "product.brand.name" : {
 "mergeAction" : "UPDATE",
 "isAutogen" : true,
 "jcr:primaryType" : "endeca:dimension",
 "multiSelectType" : "OR"
 },
 },
....

4. Set the revised index configuration by running:
C:\Endeca\apps\<app dir>\control>index_config_cmd.bat set-config -o ATG
-f C:\temp\indexConfig.json

5. If desired, examine the merged configuration by running:
C:\Endeca\apps\<app dir>\control>index_config_cmd.bat get-merged-config
-f C:\temp\indexConfig.json

You see the following:
{
 "indexConfig" : {
 "attributes" : {
 "product.brand.name" : {
 "isHierarchicalDimensionSearchEnabled" : true,
 "isRecordSearchEnabled" : true,
 "isAutogen" : true,
 "jcr:primaryType" : "endeca:dimension",
 "multiSelectType" : "OR"
 },
....

An example of setting dimension display order
This topic provides an example of how the displayOrder property sets the display order of dimensions
in the discover-data-cas application.

The following JSON snippet shows the displayOrder property for the Category dimension, Price
Range dimension, and Brand Name dimension, where displayOrder is set to 0, 1, and 2, respectively.
 ...
 "product.category" : {
 "displayOrder" : 0,
 "sourcePropertyNames" : ["product.category_id"],
 "isRecordSearchEnabled" : true,
 "jcr:primaryType" : "endeca:dimension"
 },
 "product.price_range" : {
 "sourcePropertyNames" : ["product.price"],

Oracle Endeca Commerce Deployment Template Usage Guide

75Modifying Index Configuration for an Application | An example of setting dimension display order

 "displayOrder" : 1,
 "rangeComparisonType" : "FLOAT",
 "jcr:primaryType" : "endeca:dimension"
 },

 "product.brand.name" : {
 "isHierarchicalDimensionSearchEnabled" : true,
 "displayOrder" : 2,
 "isRecordSearchEnabled" : true,
 "isAutogen" : true,
 "jcr:primaryType" : "endeca:dimension",
 "multiSelectType" : "OR"
 },

When the dimensions are rendered in the Discover Electronics reference application, they render in
the order specified by the property value. Category displays first, Price Range second, and Brand
Name third:

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | An example of setting dimension display order76

Chapter 5

Managing Data Operations

This section describes how to incorporate test data and production data into an application.

Running a baseline update with test data
A deployed application includes test data that you can process with baseline update scripts, baseline
test data, and a baseline Forge pipeline. Because this task describes test data, not production data,
you use the load_baseline_test_data script to simulate the data extraction process (or to set
the data readiness signal, in the case of an application that uses a non-extract data source).

The load_baseline_test_data script loads the test data stored in <app
dir>/test_data/baseline and runs the set_baseline_data_ready_flag script which sets
a flag in the EAC indicating that data has been extracted and is ready for baseline update processing.

Note: This script is not required in applications that use CAS to produce MDEX-compatible
output.

When you are done familiarizing yourself with the data processing steps and the test data, see Running
a baseline update with production data on page 78. Processing production data requires the following
changes to an application' s configuration:

• Replace the step to run load_baseline_test_datawith a data extraction process that delivers
production data into the <app dir>/test_data/baseline directory. Delete the data.txt
file from <app dir>/test_data/baseline. This step is not necessary if your application does
not use data extracts: for example, if your application retrieves data directly from a database via
ODBC or JDBC or from a CAS crawl.

• Set the baseline_data_ready flag in the EAC. You set the baseline_data_ready flag by
making a Web service call to the EAC or by running the set_baseline_data_ready_flag
script.

To run a baseline update with test data:

1. Ensure that the Endeca HTTP Service is running on each server in the deployment environment
and that you have already deployed and initialized an application.

2. Start a command prompt (on Windows) or a shell (on UNIX).
3. Navigate to the control directory of deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app
dir>\control.

4. Run the load_baseline_test_data script.

• On Windows:
<app dir>\control\load_baseline_test_data.bat

• On UNIX:
<app dir>/control/load_baseline_test_data.sh

5. Run the baseline_update script.

• On Windows:
<app dir>\control\baseline_update.bat

• On UNIX:
<app dir>/control/baseline_update.sh

6. Examine the indexed data in an Endeca front-end application.
For example, start a Web browser and open the JSP reference application at
http://localhost:8006/endeca_jspref.
You should see 10 records.

Running a baseline update with production data
You run the baseline_update script to process production data and distribute the resulting index
files to one or more Dgraphs. Production data may come from any number of sources including data
extracts, CAS crawls, or direct calls to a database via ODBC or JDBC.

To run a baseline update with production data:

1. Ensure that the Endeca HTTP Service is running on each server in the deployment environment
and that you have already deployed and initialized an application.

2. Replace the default Forge pipeline (Developer Studio configuration files) in <app
dir>/config/pipeline with the Developer Studio configuration files for your application. For
details, see Replacing the Default Forge Pipeline on page 47.

3. Replace the baseline test data stored in <app dir>/test_data/baselinewith production data
for the application. This step varies depending on your application requirements. It can include any
of the following approaches:

• Add a data extract file to the <app dir>/test_data/baseline and delete the test data
extract.

• Set up a CAS crawl to run as part of the baseline_update script.
• Make a direct call to a database via ODBC or JDBC.

4. Start a command prompt (on Windows) or a shell (on UNIX).
5. Navigate to the control directory of deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app
dir>\control.

6. Set the baseline_data_ready flag in the EAC by running the
set_baseline_data_ready_flag script.

Oracle Endeca Commerce Deployment Template Usage Guide

Managing Data Operations | Running a baseline update with production data78

On Windows:
<app dir>\control\set_baseline_data_ready_flag.bat

•

• On UNIX:
<app dir>/control/set_baseline_data_ready_flag.sh

Note: This script is not required in applications that use CAS to produce MDEX-compatible
output.

7. Run the baseline_update script.

• On Windows:
<app dir>\control\baseline_update.bat

• On UNIX:
<app dir>/control/baseline_update.sh

8. Examine the indexed data in an Endeca front-end application.
For example, start a Web browser and open the JSP reference application at
http://localhost:8006/endeca_jspref.

Running a partial update with production data
You run the partial_update script to process incremental changes in production data and distribute
the resulting index files to one or more Dgraphs. Production data may come from any number of
sources including data extracts, CAS crawls, or direct calls to a database via ODBC or JDBC.

For more information on partial updates, see the MDEX Engine Partial Updates Guide.

To run a partial update with production data:

1. Ensure that the Endeca HTTP Service is running on each server in the deployment environment
and that you have already deployed and initialized an application.

2. Replace the default Forge pipeline (Developer Studio configuration files) in <app
dir>/config/pipeline with the Developer Studio configuration files for your application. For
details, see Replacing the Default Forge Pipeline on page 47.

3. Provide the partial data (incremental data changes since the last baseline update). This step varies
depending on the application requirements. It can include any of the following approaches:

• Add a data extract file to the <app dir>/test_data/partial.
• Set up a CAS crawl to run as part of the baseline_update script.
• Make a direct call to a database via ODBC or JDBC.

4. Start a command prompt (on Windows) or a shell (on UNIX).
5. Navigate to the control directory of deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app
dir>\control.

6. Set the partial_data_ready flag in the EAC by running the set_partial_data_ready_flag
script.

Oracle Endeca Commerce Deployment Template Usage Guide

79Managing Data Operations | Running a partial update with production data

On Windows:
<app dir>\control\set_partial_data_ready_flag.bat

•

• On UNIX:
<app dir>/control/set_partial_data_ready_flag.sh

7. Run the partial_update script.

• On Windows:
<app dir>\control\partial_update.bat

• On UNIX:
<app dir>/control/partial_update.sh

8. Examine the indexed data in an Endeca front-end application.
For example, start a Web browser and open the JSP reference application at
http://localhost:8006/endeca_jspref.

Running CAS crawls
In your DataIngest.xml code, you can run baseline or partial updates that include CAS crawls using
the methods available in ContentAcquisitionServerComponent.

For details about ContentAcquisitionServerComponent, see theEACComponent API Reference
for CAS Server (Javadoc) installed in CAS\<version>\doc\cas-dt-javadoc and see the CAS
examples in Script Reference on page 81.

Oracle Endeca Commerce Deployment Template Usage Guide

Managing Data Operations | Running CAS crawls80

Chapter 6

Script Reference

This section describes scripts that are included with the Deployment Template, provides additional
sample scripts, and provides information about running and configuring them.

Deployment Template script reference
The Deployment Template includes a set of utility scripts with deployed applications.

The following scripts are available in the control directory of a deployed application:

PurposeScript

Runs a baseline update.baseline_update

Takes a path to an XML file as an argument and exports the
content in the Endeca Configuration Repository to the specified
XML file.

export_site

If no file is specified, site data is exported to
<App_Name>-<timestamp>.xml, where the timestamp format
is YYYY-MM-DD_HH-MM-SS.

Exports editor configuration to the <app
dir>\config\editors\config directory.

get_editors_config

Exports media configuration to the <app dir>\config\media
directory.

get_media

Exports template configuration to the <app
dir>\config\cartridge_templates directory.

get_templates

Takes a path to an XML file and imports the content to the Endeca
Configuration Repository. Optionally, you can use the --force

import_site

flag to override the confirmation prompt for overwriting site content
that already exists.

PurposeScript

Copies data from the <app dir>\test_data\baseline\
directory to <app dir>\data\incoming for a baseline update
and calls the set_baseline_data_ready_flag script.

load_baseline_test_data

Copies data from the <app dir>\test_data\partial\
directory to <app dir>\data\partials\incoming for a

load_partial_test_data

partial update and calls the set_partial_data_ready_flag
script.

Runs a partial update.partial_update

Promotes content and configuration in the authoring environment
to the live environment.

promote_content

Provides a means of invoking methods in AppConfig.xml
against specified instances of objects.

runcommand

You can run runcommand with the --help flag for a list of
command line arguments and flags.

Sets the baseline_data_ready flag in the EAC.set_baseline_data_ready_flag

Note: This script is not required in applications that use
CAS to produce MDEX-compatible output.

Imports editor configuration from <app
dir>\config\editors\config to the Endeca Configuration
Repository.

set_editors_config

Imports media from <app dir>\config\media to the Endeca
Configuration Repository.

set_media

Sets the partial_extract flag in the EAC.set_partial_data_ready_flag

Imports templates from <app
dir>\config\cartridge_templates to the Endeca
Configuration Repository.

set_templates

This script should be run once after deploying an application. It
does the following:

initialize_services

• Removes existing application provisioning
• Sets new EAC provisioning and performs initial setup
• Calls set_editors_config
• Calls set_media

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | Deployment Template script reference82

PurposeScript

• Calls set_templates

Provisioning scripts
The EAC allows scripts to be provisioned and invoked via Web service calls. A script is provisioned
by specifying a working directory, a log directory into which output from the script is recorded, and a
command to execute the script.

The AppConfig.xml document allows defined scripts to be provisioned by specifying the command
used to invoke the script from the command line. When the provisioning configuration information is
included, the script is provisioned and becomes available for invocation via Web service calls or from
the EAC Admin console in Oracle Endeca Workbench. When excluded, the script is not provisioned.
 <script id="BaselineUpdate">
 <log-dir>./logs/provisioned_scripts</log-dir>
 <provisioned-script-command>
 ./control/baseline_update.bat
 </provisioned-script-command>
 <bean-shell-script>
 <![CDATA[
...
]]>
 </bean-shell-script>
 </script>

The command line used to invoke scripts can always be specified in this form, relative to the default
Deployment Template working directory:
./control/runcommand.[sh|bat] [script id]

Forge-based data processing
The Deployment Template supports running baseline and partial updates using Forge. In this processing
model, an update essentially runs a CAS crawl (if applicable), Forge, Dgidx, and then updates the
Dgraphs in an application.

Dgraph baseline update script using Forge
The baseline update script defined in the DataIngest.xml document for a Dgraph deployment is
included in this section, with numbered steps indicating the actions performed at each point in the
script.
<script id="BaselineUpdate">
 <![CDATA[
 log.info("Starting baseline update script.");

1. Obtain lock. The baseline update attempts to set an "update_lock" flag in the EAC to serve as
a lock or mutex. If the flag is already set, this step fails, ensuring that the update cannot be started

Oracle Endeca Commerce Deployment Template Usage Guide

83Script Reference | Provisioning scripts

more than once simultaneously, as this would interfere with data processing. The flag is removed
in the case of an error or when the script completes successfully.
 // obtain lock
 if (LockManager.acquireLock("update_lock")) {

2. Validate data readiness. Check that a flag called "baseline_data_ready" has been set in the
EAC. This flag is set as part of the data extraction process to indicate that files are ready to be
processed (or, in the case of an application that uses direct database access, the flag indicates
that a database staging table has been loaded and is ready for processing). This flag is removed
as soon as the script copies the data out of the data/incoming directory, indicating that new
data may be extracted.
 // test if data is ready for processing
 if (Forge.isDataReady()) {

3. If Workbench integration is enabled, download and merge Workbench configuration. The Config¬
Manager copies all Developer Studio config files to the complete_index_config directory.
Then, all Workbench-maintained configuration files are downloaded. Any files that are configured
in the ConfigManager component to be maintained by the Oracle Endeca Workbench are copied
to the complete_index_config directory, overwriting the Developer Studio copy of the same
file, if one exists. The final result is a complete set of configuration files for Forge to use. If Workbench
integration is not enabled, the ConfigManager copies all Developer Studio config files to the
complete_index_config directory.
 if (ConfigManager.isWebStudioEnabled()) {
 // get Workbench config, merge with Dev Studio config
 ConfigManager.downloadWsConfig();
 ConfigManager.fetchMergedConfig();
 } else {
 ConfigManager.fetchDsConfig();
 }

4. Clean processing directories. Files from the previous update are removed from the
data/processing, data/forge_output, data/temp, data/dgidx_output and
data/partials/cumulative_partials directories.
 // clean directories
 Forge.cleanDirs();
 PartialForge.cleanCumulativePartials();
 Dgidx.cleanDirs();

5. Copy data to processing directory. Extracted data in data/incoming is copied to
data/processing.
 // fetch extracted data files to forge input
 Forge.getIncomingData();

6. Release Lock. The "baseline_data_ready" flag is removed from the EAC, indicating that the
incoming data has been retrieved for baseline processing.
 LockManager.releaseLock("baseline_data_ready");

7. Copy config to processing directory. Configuration files are copied from
data/complete_index_config to data/processing.
 // fetch config files to forge input
 Forge.getConfig();

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | Forge-based data processing84

8. Archive Forge logs. The logs/forges/Forge directory is archived, to create a fresh logging
directory for the Forge process and to save the previous Forge run's logs.
 // archive logs
 Forge.archiveLogDir();

9. Forge. The Forge process executes.
 Forge.run();

10. Archive Dgidx logs. The logs/dgidxs/Dgidx directory is archived, to create a fresh logging
directory for the Dgidx process and to save the previous Dgidx run's logs.
 // archive logs
 Dgidx.archiveLogDir();

11. Dgidx. The Dgidx process executes.
 Dgidx.run();

12. Distribute index to each server. A single copy of the new index is distributed to each server that
hosts a Dgraph. If multiple Dgraphs are located on the same server but specify different srcIn¬
dexDir attributes, multiple copies of the index are delivered to that server.

13. Update MDEX Engines. The Dgraphs are updated. Engines are updated according to the
restartGroup property specified for each Dgraph. The update process for each Dgraph is as
follows:

a. Create dgraph_input_new directory.
b. Create a local copy of the new index in dgraph_input_new.
c. Stop the Dgraph.
d. Archive Dgraph logs (e.g. logs/dgraphs/Dgraph1) directory.
e. Rename dgraph_input to dgraph_input_old.
f. Rename dgraph_input_new to dgraph_input.
g. Start the Dgraph.
h. Remove dgraph_input_old.

This somewhat complex update functionality is implemented to minimize the amount of time that
a Dgraph is stopped. This restart approach ensures that the Dgraph is stopped just long enough
to rename two directories.
 // distributed index, update Dgraphs
 DistributeIndexAndApply.run();

<script id="DistributeIndexAndApply">
 <bean-shell-script>
 <![CDATA[
 DgraphCluster.cleanDirs();
 DgraphCluster.copyIndexToDgraphServers();
 DgraphCluster.applyIndex();
]]>
 </bean-shell-script>
 </script>

14. If Workbench integration is enabled, upload post-Forge dimensions to Oracle Endeca Workbench.
The latest dimension values generated by the Forge process are uploaded to Oracle Endeca
Workbench, to ensure that any new dimension values (including values for autogen dimensions
and external dimensions) are available to Oracle Endeca Workbench for use in, for example,
dynamic business rule triggers.

Oracle Endeca Commerce Deployment Template Usage Guide

85Script Reference | Forge-based data processing

Note: This action does not add new dimensions or remove existing dimensions. These
changes can be made by invoking the update_web_studio_config.[bat|sh] script.

 // if Workbench is integrated, update Workbench with latest
 // dimension values
 if (ConfigManager.isWebStudioEnabled()) {
 ConfigManager.cleanDirs();
 Forge.getPostForgeDimensions();
 ConfigManager.updateWsDimensions();
 }

15. Archive index and Forge state. The newly created index and the state files in Forge's state directory
are archived on the indexing server.
 // archive state files, index
 Forge.archiveState();
 Dgidx.archiveIndex();

16. Cycle LogServer. The LogServer is stopped and restarted. During the downtime, the LogServer's
error and output logs are archived.
 // cycle LogServer
 LogServer.cycle();

17. Release Lock. The "update_lock" flag is removed from the EAC, indicating that another update
may be started.
 // release lock
 LockManager.releaseLock("update_lock");

 log.info("Baseline update script finished.");
 } else {
 log.warning("Failed to obtain lock.");
 }
]]>
 </bean-shell-script>
</script>

Related Links
Dgraph partial update script using Forge on page 86

The partial update script defined in the DataIngest.xml document for a Dgraph deployment
is included in this section, with numbered steps indicating the actions performed at each point
in the script.

Dgraph partial update script using Forge
The partial update script defined in the DataIngest.xml document for a Dgraph deployment is
included in this section, with numbered steps indicating the actions performed at each point in the
script.
<script id="PartialUpdate">
 <bean-shell-script>
 <![CDATA[

1. Obtain lock. The partial update attempts to set an "update_lock" flag in the EAC to serve as a
lock or mutex. If the flag is already set, this step fails, ensuring that the update cannot be started

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | Forge-based data processing86

more than once simultaneously, as this would interfere with data processing. The flag is removed
in the case of an error or when the script completes successfully.
 log.info("Starting partial update script.");
 // obtain lock
 if (LockManager.acquireLock("update_lock")) {

2. Validate data readiness. Test that the EAC contains at least one flag with the prefix "partial_ex¬
tract::". One of these flags should be created for each successfully and completely extracted
file, with the prefix "partial_extract::" prepended to the extracted file name (e.g. "partial_ex¬
tract::adds.txt.gz"). These flags are deleted during data processing and must be created
as new files are extracted.
 // test if data is ready for processing
 if (PartialForge.isPartialDataReady()) {

3. Archive partial logs. The logs/partial directory is archived, to create a fresh logging directory
for the partial update process and to save the previous run's logs.
 // archive logs
 PartialForge.archiveLogDir();

4. Clean processing directories. Files from the previous update are removed from the
data/partials/processing, data/partials/forge_output, and data/temp directories.
 // clean directories
 PartialForge.cleanDirs();

5. Move data and config to processing directory. Extracted files in data/partials/incoming with
matching "partials_extract::" flags in the EAC are moved to data/partials/processing.
Configuration files are copied from config/pipeline to data/processing.
 // fetch extracted data files to forge input
 PartialForge.getPartialIncomingData();

 // fetch config files to forge input
 PartialForge.getConfig();

6. Forge. The partial update Forge process executes.
 // run ITL
 PartialForge.run();

7. Apply timestamp to updates. The output XML file generated by the partial update pipeline is renamed
to include a timestamp, to ensure it is processed in the correct order relative to files generated by
previous or following partial update processes.
 // timestamp partial, save to cumulative partials dir
 PartialForge.timestampPartials();

8. Copy updates to cumulative updates. The timestamped XML file is copied into the cumulative
updates directory.
 PartialForge.fetchPartialsToCumulativeDir();

9. Distribute update to each server. A single copy of the partial update file is distributed to each server
specified in the configuration.
 // distribute partial update, update Dgraphs
 DgraphCluster.copyPartialUpdateToDgraphServers();

10. Update MDEX Engines. The Dgraph processes are updated. Engines are updated according to
the updateGroup property specified for each Dgraph. The update process for each Dgraph is as
follows:

Oracle Endeca Commerce Deployment Template Usage Guide

87Script Reference | Forge-based data processing

Copy update files into the dgraph_input/updates directory.a.
b. Trigger a configuration update in the Dgraph by calling the URL admin?op=update.

 DgraphCluster.applyPartialUpdates();

11. Archive cumulative updates. The newly generated update file (and files generated by all partial
updates processed since the last baseline) are archived on the indexing server.
 // archive partials
 PartialForge.archiveCumulativePartials();

12. Release Lock. The "update_lock" flag is removed from the EAC, indicating that another update
may be started.
 // release lock
 LockManager.releaseLock("update_lock");
 log.info("Partial update script finished.");
 }
 else {
 log.warning("Failed to obtain lock.");
 }
]]>
 </bean-shell-script>
</script>

Preventing non-nillable element exceptions

When running the partial updates script, you may see a Java exception similar to this example:
INFO: Starting copy utility 'copy_partial_update_to_host_MDEXHost1'.
Oct 20, 2008 11:46:37 AM org.apache.axis.encoding.ser.BeanSerializer seri¬
alize
SEVERE: Exception:
java.io.IOException: Non nillable element 'fromHostID' is null.
...

If this occurs, make sure that the following properties are defined in the AppConfig.xml configuration
file:
<dgraph-defaults>
 <properties>
 ...
 <property name="srcPartialsDir" value="./data/partials/forge_output"
 />
 <property name="srcPartialsHostId" value="ITLHost" />
 <property name="srcCumulativePartialsDir" value="./data/partials/cu¬
mulative_partials" />
 <property name="srcCumulativePartialsHostId" value="ITLHost" />
 ...
 </properties>
 ...
</dgraph-defaults>

The reason is that the script is obtaining the fromHostID value from this section.

Related Links
Dgraph baseline update script using Forge on page 83

The baseline update script defined in the DataIngest.xml document for a Dgraph
deployment is included in this section, with numbered steps indicating the actions performed
at each point in the script.

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | Forge-based data processing88

Dgraph baseline update script using Forge and a CAS full crawl script
After running a full CAS crawl, you can run a baseline update using Forge to incorporate the records
from a Record Store instance.

This example runs a baseline update that includes a full CAS crawl. The crawl writes output to a Record
Store instance and then Forge incorporates the records from the crawl. To create this sequential
workflow of CAS crawl and then baseline update, you can do the following:

• Remove the default Forge.isDataReady check from the baseline update script. This call handles
concurrency control around Forge input files. The Record Store has built-in logic to handle
concurrency between read and write operations, so no external concurrency control is required.
Removing this call means that the lock manager does not check the flag or wait on the flag to be
cleared before running a CAS crawl.

• Add a call to runBaselineCasCrawl() to run the full CAS crawl.
• Remove the call to Forge.getIncomingData() that fetches extracted data files.

For example, this baseline update script calls CAS.runBaselineCasCrawl("MyCrawl") which
runs a full CAS crawl that writes output to a Record Store instance. Then the script continues with
baseline update processing.
<!--
 ##

 # Baseline update script
 #
 -->
 <script id="BaselineUpdate">
 <log-dir>./logs/provisioned_scripts</log-dir>
 <provisioned-script-command>./control/baseline_update.bat</provisioned-
script-command>
 <bean-shell-script>
 <![CDATA[
 log.info("Starting baseline update script.");
 // obtain lock
 if (LockManager.acquireLock("update_lock")) {

 // call the baseline crawl script to run a full CAS
 // crawl.
 CAS.runBaselineCasCrawl("MyCrawl");

 // clean directories
 Forge.cleanDirs();
 PartialForge.cleanCumulativePartials();
 Dgidx.cleanDirs();

 // fetch extracted data files to forge input
 Forge.getIncomingData();
 LockManager.removeFlag("baseline_data_ready");

 // fetch config files to forge input
 Forge.getConfig();

 // archive logs and run ITL
 Forge.archiveLogDir();
 Forge.run();
 Dgidx.archiveLogDir();
 Dgidx.run();

 // distributed index, update Dgraphs

Oracle Endeca Commerce Deployment Template Usage Guide

89Script Reference | Forge-based data processing

 DistributeIndexAndApply.run();

 WorkbenchManager.cleanDirs();
 Forge.getPostForgeDimensions();
 WorkbenchManager.updateWsDimensions();

 // archive state files, index
 Forge.archiveState();
 Dgidx.archiveIndex();

 // (start or) cycle the LogServer
 LogServer.cycle();

 // release lock
 LockManager.releaseLock("update_lock");
 log.info("Baseline update script finished.");
 } else {
 log.warning("Failed to obtain lock.");
 }
]]>
 </bean-shell-script>
 </script>

You run the baseline update by running baseline_update in the apps/<app dir>/control
directory.

For example:
C:\Endeca\apps\DocApp\control>baseline_update.bat

Dgraph partial update script using Forge and a CAS incremental crawl
script

After running an incremental CAS crawl, you can run a partial update that incorporates the records
from a Record Store instance.

To create this sequential workflow of incremental CAS crawl and then partial update, you can do the
following:

• Remove the default PartialForge.isPartialDataReady check from the partial update script.
This call handles concurrency control around Forge input files. The Record Store has built-in logic
to handle concurrency between read and write operations, so no external concurrency control is
required. Removing this call means that the lock manager does not check the flag or wait on the
flag to be cleared before running a CAS crawl.

• Add a call runIncrementalCasCrawl() to run the incremental CAS crawl.
• If the pipeline does not read from sources in the Forge incoming directory, remove the call to
PartialForge.getPartialIncomingData() that fetches extracted data files.

For example, this partial update script calls CAS.runIncrementalCasCrawl("MyCrawl") which
runs an incremental CAS crawl named MyCrawl. Then the script continues with partial update
processing.
 <!--
 ##

 # Partial update script
 #
 -->
 <script id="PartialUpdate">

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | Forge-based data processing90

 <log-dir>./logs/provisioned_scripts</log-dir>
 <provisioned-script-command>./control/partial_update.bat</provisioned-
script-command>
 <bean-shell-script>
 <![CDATA[
 log.info("Starting partial update script.");

 // obtain lock
 if (LockManager.acquireLock("update_lock")) {

 // call the partial crawl script to run an incremental
 // CAS crawl.
 CAS.runIncrementalCasCrawl("MyCrawl");

 // archive logs
 PartialForge.archiveLogDir();

 // clean directories
 PartialForge.cleanDirs();

 // fetch config files to forge input
 PartialForge.getConfig();

 // run ITL
 PartialForge.run();

 // timestamp partial, save to cumulative partials dir
 PartialForge.timestampPartials();
 PartialForge.fetchPartialsToCumulativeDir();

 // distribute partial update, update Dgraphs
 DgraphCluster.cleanLocalPartialsDirs();
 DgraphCluster.copyPartialUpdateToDgraphServers();
 DgraphCluster.applyPartialUpdates();

 // archive partials
 PartialForge.archiveCumulativePartials();

 // release lock
 LockManager.releaseLock("update_lock");
 log.info("Partial update script finished.");
 } else {
 log.warning("Failed to obtain lock.");
 }
]]>
 </bean-shell-script>
 </script>

You run the partial update by running partial_update in the apps/<app dir>/control directory.
For example:
C:\Endeca\apps\DocApp\control>partial_update.bat

Multiple CAS crawls and Forge updates
There are more complicated cases where multiple CAS crawls are running on their own schedules,
and Forge updates are running on their own schedules. To coordinate this asynchronous workflow of
CAS crawls and baseline or partial updates, you add code that calls methods in ContentAcquisi¬
tionServerComponent.

Oracle Endeca Commerce Deployment Template Usage Guide

91Script Reference | Forge-based data processing

In your DataIngest.xml code, the main coordination task is one of determining how you time running
CAS crawls and how you time running baseline or partial updates that consume records from those
crawls. For example, suppose you have an application that runs three full CAS crawls and those
records are consumed by a single baseline update. In that scenario, each of the three full crawls has
its own full crawl script in DataIngest.xml that runs on a nightly schedule. And the DataIngest.xml
file contains a baseline update that runs nightly to consume the latest generation of records from each
of the three crawls. The Forge.isDataReady check is not required in the baseline update script
because the source data is not locked.

CAS-based data processing
The Deployment Template supports running baseline and partial updates using CAS as a replacement
for Forge. In this processing model, the update runs a CAS crawl to produce MDEX-compatible output.
This is the step that removes the need for Forge. Then the update runs Dgidx and updates the Dgraphs
in an application.

Dgraph baseline update script using CAS
You do not need to run Forge if you run a CAS crawl that is configured to produce MDEX-compatible
output as part of your update process.

This example runs a baseline update that includes a full CAS crawl. The crawl writes MDEX compatible
output and then the update invokes Dgidx to process the records, dimensions, and index configuration
produced by the crawl. To create this sequential workflow of CAS crawl and then baseline update, you
add a call to runBaselineCasCrawl() to run the CAS crawl.

For example, this baseline update script calls CAS.runBaselineCasCrawl("${lastMileCrawl¬
Name}") which runs a CAS crawl that writes MDEX-compatible output. Then the script continues with
baseline update processing by running Dgidx and distributing the index files.
<!--
 ##

 # Baseline update script
 #
 -->
 <script id="BaselineUpdate">
 <log-dir>./logs/provisioned_scripts</log-dir>
 <provisioned-script-command>./control/baseline_update.bat</provisioned-
script-command>
 <bean-shell-script>
 <![CDATA[
 log.info("Starting baseline update script.");
 // obtain lock
 if (LockManager.acquireLock("update_lock")) {
 // clean directories
 CAS.cleanCumulativePartials();
 Dgidx.cleanDirs();

 // run crawl and archive any changes in the dvalId mappings
 CAS.runBaselineCasCrawl("${lastMileCrawlName}");
 CAS.archiveDvalIdMappingsForCrawlIfChanged("${lastMileCrawlName}");

 // archive logs and run the Indexer
 Dgidx.archiveLogDir();

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | CAS-based data processing92

 Dgidx.run();

 // distributed index, update Dgraphs
 DistributeIndexAndApply.run();

 // Upload the generated dimension values to Workbench
 WorkbenchManager.cleanDirs();
 CAS.copyOutputDimensionsFile("${lastMileCrawlName}", WorkbenchManag¬
er.getWorkbenchTempDir());
 WorkbenchManager.updateWsDimensions();

 // Upload the generated config to Workbench
 WorkbenchManager.updateWsConfig();

 // archive state files, index
 Dgidx.archiveIndex();

 // (start or) cycle the LogServer
 LogServer.cycle();
 // release lock
 LockManager.releaseLock("update_lock");
 log.info("Baseline update script finished.");
 } else {
 log.warning("Failed to obtain lock.");
 }
]]>
 </bean-shell-script>
 </script>

You run the baseline update by running baseline_update in the apps/<app dir>/control
directory.

For example:
C:\Endeca\apps\DocApp\control>baseline_update.bat

Dgraph partial update script using CAS
You do not need to run Forge if you run a CAS crawl that is configured to produce MDEX-compatible
output as part of your update process.

This example runs an incremental CAS crawl that writes MDEX compatible output and then runs a
partial update to process data records. Remember that in an incremental CAS crawl, the index
configuration and dimension value records are not processed.

To create this sequence of CAS crawl and then partial update, you add a call to runIncremental¬
CasCrawl() to run the CAS crawl. For example, this partial update script calls CAS.runIncremen¬
talCasCrawl("${lastMileCrawlName}")which runs a CAS crawl that writes MDEX-compatible
output. Then the script continues with update processing by running Dgidx and distributing the index
files.

Note: In some applications, the archiveDvalIdMappingsForCrawlIfChanged call can
take modest amounts of processing time (for example, typically less than 10 seconds). This
method is recommended in all but the most time-sensitive partial update scenarios.

<!--
 ##

 # Partial update script

Oracle Endeca Commerce Deployment Template Usage Guide

93Script Reference | CAS-based data processing

 #
 -->
 <script id="PartialUpdate">
 <log-dir>./logs/provisioned_scripts</log-dir>
 <provisioned-script-command>./control/partial_update.bat</provisioned-
script-command>
 <bean-shell-script>
 <![CDATA[
 log.info("Starting partial update script.");
 // obtain lock
 if (LockManager.acquireLock("update_lock")) {

 // run crawl and archive any changes in the dvalId mappings
 CAS.runIncrementalCasCrawl("${lastMileCrawlName}");
 CAS.archiveDvalIdMappingsForCrawlIfChanged("${lastMileCrawlName}");

 // Copy the partial to the master cumulative directory
 CAS.fetchPartialsToCumulativeDir("${lastMileCrawlName}");

 // copy from srcPartials to localCumulative for authoring
 AuthoringDgraphCluster.copyPartialUpdateToDgraphServers();

 // copy from local to mdex's update-dir and trigger the update for
authoring
 AuthoringDgraphCluster.applyPartialUpdates();

 // copy from srcPartials to localCumulative for live
 LiveDgraphCluster.copyPartialUpdateToDgraphServers();

 // copy from localCumulative to mdex's update-dir and trigger the
update
 LiveDgraphCluster.applyPartialUpdates();

 // Archive accumulated partials
 CAS.archiveCumulativePartials();

 // release lock
 LockManager.releaseLock("update_lock");
 log.info("Partial update script finished.");
 } else {
 log.warning("Failed to obtain lock.");
 }
]]>
 </bean-shell-script>
 </script>

You run the baseline update by running partial_update in the apps/<app dir>/control
directory.

For example:
C:\Endeca\apps\DocApp\control>partial_update.bat

CAS crawl scripts for Record Store output
This topic provides an example CAS crawl script with a crawl that is configured to write to Record
Store output. To create a similar CAS crawl script in your application, add code to AppConfig.xml
that specifies the CAS crawl to run locks the crawl (to wait for any running crawls to complete), runs

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | CAS-based data processing94

the crawl, and releases the lock. Depending on your environment, you may need a script that runs a
full CAS crawl and a script that runs an incremental CAS crawl.

This example AppConfig.xml code runs a full crawl that writes to a Record Store instance:
<!--
 ##

 # full crawl script
 #
 -->

 <script id="MyCrawl_fullCrawl">
 <log-dir>./logs/provisioned_scripts</log-dir>
 <provisioned-script-command>./control/runcommand.bat MyCrawl_fullCrawl
 run</provisioned-script-command>
 <bean-shell-script>
 <![CDATA[
 crawlName = "MyCrawl";

 log.info("Starting full CAS crawl '" + crawlName + "'.");

 // obtain lock
 if (LockManager.acquireLock("crawl_lock_" + crawlName)) {

 CAS.runBaselineCasCrawl(crawlName);

 LockManager.releaseLock("crawl_lock_" + crawlName);
 }
 else {
 log.warning("Failed to obtain lock.");
 }

 log.info("Finished full CAS crawl '" + crawlName + "'.");
]]>
 </bean-shell-script>
 </script>

This example runs an incremental crawl that writes to a Record Store instance:
 <!--
 ##

 # incremental crawl script
 #
 -->
 <script id="MyCrawl_IncrementalCrawl">
 <log-dir>./logs/provisioned_scripts</log-dir>
 <provisioned-script-command>./control/runcommand.bat MyCrawl_Incremen¬
talCrawl run</provisioned-script-command>
 <bean-shell-script>
 <![CDATA[
 crawlName = "MyCrawl";

 log.info("Starting incremental CAS crawl '" + crawlName + "'.");

 // obtain lock
 if (LockManager.acquireLock("crawl_lock_" + crawlName)) {

 CAS.runIncrementalCasCrawl(crawlName);

 LockManager.releaseLock("crawl_lock_" + crawlName);

Oracle Endeca Commerce Deployment Template Usage Guide

95Script Reference | CAS-based data processing

 }
 else {
 log.warning("Failed to obtain lock.");
 }

 log.info("Finished incremental CAS crawl '" + crawlName + "'.");
]]>
 </bean-shell-script>
 </script>

CAS crawl scripts for record file output
This topic provides an example CAS crawl script with a crawl that is configured to write to record file
output. To create a similar CAS crawl script in your application, add code to DataIngest.xml that
specifies the CAS crawl to run locks the crawl (to wait for any running crawls to complete), runs the
crawl, and releases the lock. Depending on your environment, you may need a script that runs a full
CAS crawl and a script that runs an incremental CAS crawl.

This example DataIngest.xml code runs a full crawl that writes to record file output:
<!--
 ##

 # full crawl script
 #
 -->

 <script id="MyCrawl_fullCrawl">
 <log-dir>./logs/provisioned_scripts</log-dir>
 <provisioned-script-command>./control/runcommand.bat MyCrawl_fullCrawl
 run</provisioned-script-command>
 <bean-shell-script>
 <![CDATA[
 crawlName = "MyCrawl";

 log.info("Starting full CAS crawl '" + crawlName + "'.");

 // obtain lock
 if (LockManager.acquireLock("crawl_lock_" + crawlName)) {

 if (!CAS.isCrawlFileOutput(crawlName)) {
 throw new UnsupportedOperationException("The crawl " + crawlName
 +
 " does not have a File System output type. The only supported
 output type for this script is File System.");
 }

 log.info("Starting full CAS crawl '" + crawlName + "'.");
 // Remove all files from the crawl's output directory
 CAS.cleanOutputDir(crawlName);
 CAS.runBaselineCasCrawl(crawlName);
 // Rename the output to files to include the crawl name
 // so they do not collide with the output from other crawls
 CAS.renameBaselineCrawlOutput(crawlName);

 destDir = PathUtils.getAbsolutePath(CAS.getWorkingDir(),
 CAS.getCasCrawlFullOutputDestDir());

 // create the target dir, if it doesn't already exist

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | CAS-based data processing96

 mkDirUtil = new CreateDirUtility(CAS.getAppName(),
 CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());
 mkDirUtil.init(CAS.getCasCrawlOutputDestHost(), destDir, CAS.get¬
WorkingDir());
 mkDirUtil.run();

 // clear the destination dir of full crawl from previous crawls
 CAS.clearFullCrawlOutputFromDestinationDir(crawlName);

 // remove previously collected incremental crawl files,
 // which are expected to be incorporated in this full crawl
 CAS.clearIncrementalCrawlOutputFromDestinationDir(crawlName);

 // copy the full crawl output to destination directory
 CAS.copyBaselineCrawlOutputToDestinationDir(crawlName);
 LockManager.releaseLock("crawl_lock_" + crawlName);
 }

 else {
 log.warning("Failed to obtain lock.");
 }

 log.info("Finished full CAS crawl '" + crawlName + "'.");
]]>
 </bean-shell-script>
 </script>

This example DataIngest.xml code runs an incremental crawl that writes to record file output:
 <!--
 ##

 # incremental crawl script
 #
 -->
 <script id="MyCrawl_IncrementalCrawl">
 <log-dir>./logs/provisioned_scripts</log-dir>
 <provisioned-script-command>./control/runcommand.bat MyCrawl_Incremen¬
talCrawl run</provisioned-script-command>
 <bean-shell-script>
 <![CDATA[
 crawlName = "MyCrawl";

 log.info("Starting incremental CAS crawl '" + crawlName + "'.");

 // obtain lock
 if (LockManager.acquireLock("crawl_lock_" + crawlName)) {

 if (!CAS.isCrawlFileOutput(crawlName)) {
 throw new UnsupportedOperationException("The crawl " + crawlName
 +
 " does not have a File System output type. The only supported
output type for this script is File System.");
 }

 log.info("Starting incremental CAS crawl '" + crawlName + "'.");
 // Remove all files from the crawl's output directory
 CAS.cleanOutputDir(crawlName);
 CAS.runIncrementalCasCrawl(crawlName);
 // Timestamp and rename the output to files to include the
 // crawl name so they do not collide with the output from

Oracle Endeca Commerce Deployment Template Usage Guide

97Script Reference | CAS-based data processing

 // previous incremental output from this crawl or incremental
 // output from other crawls
 CAS.renameIncrementalCrawlOutput(crawlName);

 destDir = PathUtils.getAbsolutePath(CAS.getWorkingDir(),
 CAS.getCasCrawlIncrementalOutputDestDir());

 // create the target dir, if it doesn't already exist
 mkDirUtil = new CreateDirUtility(CAS.getAppName(),
 CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());
 mkDirUtil.init(CAS.getCasCrawlOutputDestHost(), destDir, CAS.getWork¬
ingDir());
 mkDirUtil.run();

 // copy crawl output to destination directory
 // Note: We assume a downstream process removes incremental crawl
output
 // from this directory that has already been processed.
 CAS.copyIncrementalCrawlOutputToDestinationDir(crawlName);

 LockManager.releaseLock("crawl_lock_" + crawlName);
 }

 else {
 log.warning("Failed to obtain lock.");
 }

 log.info("Finished incremental CAS crawl '" + crawlName + "'.");
]]>
 </bean-shell-script>
 </script>

Report generation
Four report generation scripts are defined in the DataIngest.xml document.

Two of the scripts are used to generate XML reports for Oracle Endeca Workbench and two generate
HTML reports that can be viewed in a browser. All scripts share similar functionality, so only one is
included below, with numbered steps indicating the actions performed at each point in the script.
 <script id="DailyReports">
 <bean-shell-script>
 <![CDATA[
 log.info("Starting daily Workbench report generation script.");

1. Obtain lock. The report generation script attempts to set a "report_generator_lock" flag in
the EAC to serve as a lock or mutex. If the flag is already set, this step fails, ensuring that the report
generator cannot be started more than once simultaneously, as the default report generators share
input directories and working directories. The flag is removed in the case of an error or when the
script completes successfully.
 if (LockManager.acquireLock("report_generator_lock")) {

2. Clean working directories. Clear any files in the report generator's input directory.
 // clean report gen input dir
 DailyReportGenerator.cleanInputDir();

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | Report generation98

3. Distribute configuration files to each server. A single copy of the Dgraph configuration files is
distributed to each server specified in the configuration.
DgraphCluster.copyDgraphConfigToDgraphServers();

4. Roll LogServer. If the LogServer is actively writing to a file and the file is required for the specified
time range, the LogServer needs to be rolled in order to free up the log file. This code handles that
test and invokes the roll administrative URL command on the LogServer, if necessary.
 // roll the logserver, if the report requires the active log file
 if (LogServer.isActive() &&
 LogServer.yesterdayIncludesLatestLogFile()) {
 LogServer.callLogserverRollUrl();
 }

5. Retrieve logs for specified report. The LogServer identifies log files in its output directory that are
required to generate a report for the requested date range. Those files are copied to the target
directory configured for the LogServer. Note that this step could be modified to include retrieving
logs from multiple LogServers, if more than one is deployed.
 // retrieve required log files for processing
 LogServer.copyYesterdayLogFilesToTargetDir();

6. Update Report Generator to the appropriate time range and output file name. Oracle Endeca
Workbench requires reports to be named according to a time stamp convention. The Report
Generator component’s provisioning is updated to specify the appropriate time range, time series
and output filename. The output file path in the existing provisioning is updated to use the same
path, but to use the date stamp as the filename. Files default to a “.xml” extension, though the
component will attempt to retain a “.html” extension, if specified in the AppConfig.xml.
 // update report generator to the appropriate dates, time series
 // and to output a timestamped file, as required by Workbench
 DailyReportGenerator.updateProvisioningForYesterdayReport();

7. Archive logs. If one or more files were copied into the report generator's input directory, report
generation will proceed. Start by archiving logs associated with the previous report generator
execution.
 if (DailyReportGenerator.reportInputDirContainsFiles()) {
 // archive logs
 DailyReportGenerator.archiveLogDir();

8. Run report generator. Execute the report generation process.
 // generate report
 DailyReportGenerator.run();

9. Copy report to Oracle Endeca Workbench report directory. By default, Oracle Endeca Workbench
reads reports from a directory in its workspace. Typically, the directory is
[ENDECA_TOOLS_CONF]/reports/[appName]/daily or
[Endeca_TOOLS_CONF]/reports/[appName]/weekly. Starting in Oracle Endeca Workbench
1.0.1, this location can be configured by provisioning a host named "webstudio" with a custom
directory named "webstudio-report-dir." The Deployment Template provisions this directory
and delivers generated reports to that location for Workbench to read. The report file (and associated
charts) will be copied to this directory, as specified in the AppConfig.xml, which defaults to <app
dir>/reports. Note that this step is not necessary for HTML reports, as those reports are not
viewed in Oracle Endeca Workbench.
 // copy generated report and charts
 // defined in "webstudio" host and its "webstudio-report-dir"
 // directory
 reportHost = "webstudio";

Oracle Endeca Commerce Deployment Template Usage Guide

99Script Reference | Report generation

 absDestDir = PathUtils.getAbsolutePath(webstudio.getWorkingDir(),

 webstudio.getDirectory("webstudio-report-dir"));
 isDaily = true;
 DailyReportGenerator.copyReportToWebStudio(reportHost,
 absDestDir, isDaily);
 }
 else {
 log.warning("No log files for report generator to process.");
 }

 LockManager.releaseLock("report_generator_lock");
 log.info("Finished daily Workbench report generation.");
 }
 else {
 log.warning("Failed to obtain lock.");
 }
]]>
 </bean-shell-script>
 </script>

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | Report generation100

Appendix A

EAC Development Toolkit

The EAC Development Toolkit provides a common set of objects, a standard and robust configuration
file format and a lightweight controller implementation that developers can leverage in order to implement
operational controller applications. The toolkit is designed to enable quick deployment, while providing
complete flexibility for developers to extend and override any part of the implementation to create
custom, project-specific functionality.

EACDevelopment Toolkit distribution and package contents
The EAC Development Toolkit is distributed as a set of JAR files bundled with the Deployment Template.

The toolkit consists of three JAR files and depends on two others that are distributed with this package.
The following sections describe the JAR files. Details about classes and methods can be found in
Javadoc distributed with the EAC Development Toolkit. These JAR files must be on the classpath of
any application built using the EAC Development Toolkit.

eacToolkit.jar

This JAR contains the source and compiled class files for the core EAC Development Toolkit classes.
These classes encompass core EAC functionality, from which all component implementations extend.
Included are low-level classes that access the EAC's central server via SOAP calls to its Web Service
interface as well as higher level objects that wrap logic and data associated with hosts, components,
scripts and utilities. In addition, this JAR includes the controller implementation used to load the Toolkit's
application configuration file, and to invoke actions based on the configuration and the user's command
line input.

eacComponents.jar

This JAR contains the source and compiled class files for common implementations of Oracle Endeca
components. These classes extend core functionality in eacToolkit.jar and implement standard
versions of Forge, Dgidx, Dgraph and other components of an Oracle Endeca deployment.

eacHandlers.jar

This JAR contains the source and compiled class files for parsing application configuration documents.
In addition, the EAC Dev Toolkit's application configuration XML document format is defined by an
XSD file packaged with this JAR. Finally, the JAR includes files required to register the schema and
the toolkit's namespace with Spring, the framework used to load the toolkit's configuration.

spring.jar

The toolkit uses the Spring framework for configuration management.

bsh-2.0b4.jar

The toolkit uses BeanShell as the scripting language used by developers to write scripts in their
application configuration documents.

EAC Development Toolkit usage
The EAC Development Toolkit provides a library of classes that developers can use to develop and
configure EAC scripts.

Classes in the library expose low level access to the EAC's web services and implement high level
functionality common to many EAC scripts. Developers may implement applications by simply
configuring functionality built in the toolkit or by extending the toolkit at any point to develop custom
functionality.

This document discusses the toolkit's configuration file format, BeanShell scripting, command invocation
and logging. This document does not provide a reference of the classes in the toolkit, or the functionality
implemented in various objects and methods. Developers should refer to Javadoc or Java source files
distributed with this package for details about the implementation.

Oracle Endeca Commerce Deployment Template Usage Guide

EAC Development Toolkit | EAC Development Toolkit usage102

Appendix B

Application Configuration File

The EAC toolkit uses an XML configuration file to define the elements that make up an application. In
most deployments, this document will serve as the primary interface for developers and system
administrators to configure, customize, and maintain a deployed application.

Spring framework
The EAC Development Toolkit uses the Spring Framework's Inversion of Control container to load an
EAC application based on configuration specified in an XML document.

A great deal of functionality and flexibility is provided in Spring's IoC Container and in the default bean
definition XML file handled by Spring's XmlBeanDefinitionReader class. For details about either
of these, refer to Spring Framework documentation and JavaDoc.

The EAC Development Toolkit uses a customized document format and includes a schema and custom
XML handlers to parse the custom document format. It uses Spring to convert this customized
configuration metadata into a system ready for execution. Specifically, the toolkit uses Spring to load
a set of objects that represent an EAC application with the configuration specified for each object in
the configuration document.

XML schema
A customized document format is used to provide an intuitive configuration format for EAC script
developers and system administrators.

However, this customization restricts the flexibility of the configuration document. The following sections
describe elements available in the custom namespace defined by the eacToolkit.xsd XML schema.
Each element name is followed by a brief description and an example configuration excerpt. For details,
refer to the eacToolkit.xsd schema file distributed within the file eacHandlers.jar.

Application elements
This section describes the application elements available in the custom namespace defined by the
eacToolkit.xsd XML schema.

For more details, refer to the eacToolkit.xsd schema file distributed within the file
eacHandlers.jar.

DescriptionElement

This element defines the global application settings inherited by all other objects in
the document, including application name, EAC central server host and port, data

app

file prefix, the lock manager used by the application and whether or not SSL is
enabled. In addition, this object defines global defaults for the working directory and
the logs directory, which can be inherited or overridden by objects in the document.
<app appName="myApp" eacHost="devhost.company.com" eac¬
Port="8888"
 dataPrefix="myApp" sslEnabled="false" lockManager="Lock¬
Manager" >
 <working-dir>C:\Endeca\apps\myApp</working-dir>
 <log-dir>./logs/baseline</log-dir>
</app>

This element defines a LockManager object used by the application to interact with
the EAC's synchronization web service. Lock managers can be configured to release

lock-manag¬
er

locks when a failure is encountered, ensuring that the system returns to a "neutral"
state if a script or component fails. Multiple lock managers can be defined.
<lock-manager id="LockManager" releaseLocksOnFailure="true"
/>

Hosts
This section describes the host element available in the custom namespace defined by the
eacToolkit.xsd XML schema.

The host element defines a host associated with the application, including the ID, hostname and
EAC agent port of the host. Multiple host elements can be defined.
<host id="ITLHost" hostName="itlhost.company.com" port="8888" />

Components
This section describes the component elements available in the custom namespace defined by the
eacToolkit.xsd XML schema.

For more details, refer to the eacToolkit.xsd schema file distributed within the file
eacHandlers.jar.

DescriptionElement

This element defines a Forge component, including attributes that define the
functionality of the Forge process as well as custom properties and directories

forge

used to configure the functionality of the Forge object's methods. Multiple forge
elements can be defined.
<forge id="Forge" host-id="ITLHost">
 <properties>
 <property name="numStateBackups" value="10" />
 <property name="numLogBackups" value="10" />
 </properties>

Oracle Endeca Commerce Deployment Template Usage Guide

Application Configuration File | XML schema104

DescriptionElement

 <directories>
 <directory name="incomingDataDir">./data/incoming</di¬
rectory>
 <directory name="configDir">./data/complete_config</di¬
rectory>
 <directory name="wsTempDir">./data/web_stu¬
dio_temp_dir</directory>
 </directories>
 <args>
 <arg>-vw</arg>
 </args>
 <input-dir>./data/processing</input-dir>
 <output-dir>./data/forge_output</output-dir>
 <state-dir>./data/state</state-dir>
 <temp-dir>./data/temp</temp-dir>
 <num-partitions>1</num-partitions>
 <pipeline-file>./data/processing/pipeline.epx</pipeline-
file>
</forge>

This element defines a Forge cluster, including a list of ID references to the
Forge components that belong to this cluster. This object can be configured to
distribute data to Forge servers serially or in parallel.
<forge-cluster id="ForgeCluster" getDataInParallel="true">

forge-cluster

 <forge ref="ForgeServer" />
 <forge ref="ForgeClient1" />
 <forge ref="ForgeClient2" />
</forge-cluster>

This element defines a Dgidx component, including attributes that define the
functionality of the Dgidx process as well as custom properties and directories

dgidx

used to configure the functionality of the Dgidx object's methods. Multiple dgidx
elements can be defined.
<dgidx id="Dgidx" host-id="ITLHost">
 <args>
 <arg>-v</arg>
 </args>
 <input-dir>./data/forge_output</input-dir>
 <output-dir>./data/dgidx_output</output-dir>
 <temp-dir>./data/temp</temp-dir>
 <run-aspell>true</run-aspell>
</dgidx>

This element defines an indexing cluster, including a list of ID references to the
Dgidx components that belong to this cluster. This object can be configured to
distribute data to indexing servers serially or in parallel.
<indexing-cluster id="IndexingCluster" getDataInParal¬
lel="true">

indexing-clus¬
ter

 <dgidx ref="Dgidx1" />
 <dgidx ref="Dgidx2" />
</indexing-cluster>

Oracle Endeca Commerce Deployment Template Usage Guide

105Application Configuration File | XML schema

DescriptionElement

This element defines a Dgraph component, including attributes that define the
functionality of the Dgraph process as well as custom properties and directories

dgraph

used to configure the functionality of the Dgraph object's methods. Multiple
dgraph elements can be defined. Each dgraph element inherits, and potentially
overrides, configuration specified in the dgraph-defaults element (see
below).

<dgraph id="Dgraph1" host-id="MDEXHost" port="15000">
 <properties>
 <property name="restartGroup" value="A" />
 <property name="updateGroup" value="a" />
 </properties>
 <log-dir>./logs/dgraphs/Dgraph1</log-dir>
 <input-dir>./data/dgraphs/Dgraph1/dgraph_input</input-
dir>
 <update-dir>./data/dgraphs/Dgraph1/dgraph_input/up¬
dates</update-dir>
 </dgraph>

This element defines the default settings inherited by all dgraph elements
specified in the document. This enables a single point of configuration for

dgraph-defaults

common Dgraph configuration such as command line arguments, and script
directory configuration. Only one dgraph-defaults element can be defined.
<dgraph-defaults>
 <properties>
 <property name="srcIndexDir" value="./data/dgidx_out¬
put" />
 <property name="srcIndexHostId" value="ITLHost" />
 <property name="numLogBackups" value="10" />
 </properties>
 <directories>
 <directory name="localIndexDir">
 ./data/dgraphs/local_dgraph_input
 </directory>
 </directories>
 <args>
 <arg>--threads</arg>
 <arg>2</arg>
 <arg>--spl</arg>
 <arg>--dym</arg>
 </args>
 <startup-timeout>120</startup-timeout>
</dgraph-defaults>

This element defines a Dgraph cluster, including a list of ID references to the
Dgraph components that belong to this cluster. This object can be configured
to distribute data to Dgraph servers serially or in parallel.
<dgraph-cluster id="DgraphCluster" getDataInParal¬
lel="true">

dgraph-cluster

 <dgraph ref="Dgraph1" />
 <dgraph ref="Dgraph2" />
</dgraph-cluster>

Oracle Endeca Commerce Deployment Template Usage Guide

Application Configuration File | XML schema106

DescriptionElement

This element defines a LogServer component, including attributes that define
the functionality of the LogServer process as well as custom properties and

logserver

directories used to configure the functionality of the LogServer object's methods.
Multiple logserver elements can be defined.
<logserver id="LogServer" host-id="ITLHost" port="15002">

 <properties>
 <property name="numLogBackups" value="10" />
 <property name="targetReportGenDir" value="./reports/in¬
put" />
 <property name="targetReportGenHostId" value="ITLHost"
 />
 </properties>
 <log-dir>./logs/logserver</log-dir>
 <output-dir>./logs/logserver_output</output-dir>
 <startup-timeout>120</startup-timeout>
 <gzip>false</gzip>
</logserver>

This element defines a ReportGenerator component, including attributes that
define the functionality of the ReportGenerator process as well as custom

report-genera¬
tor

properties and directories used to configure the functionality of the
ReportGenerator object's methods. Multiple report-generator elements
can be defined.
<report-generator id="WeeklyReportGenerator" host-
id="ITLHost">
 <properties>
 <property name="webStudioReportDir"
value="C:\Endeca\MDEXEngine\workspace/reports/MyApp" />
 <property name="webStudioReportHostId" value="ITLHost"
 />
 </properties>
 <log-dir>./logs/report_generators/WeeklyReportGenera¬
tor</log-dir>
 <input-dir>./reports/input</input-dir>
 <output-file>./reports/weekly/report.xml</output-file>
 <stylesheet-file>
 ./config/report_templates/tools_report_stylesheet.xsl

 </stylesheet-file>
 <settings-file>
 ./config/report_templates/report_settings.xml
 </settings-file>
 <time-range>LastWeek</time-range>
 <time-series>Daily</time-series>
 <charts-enabled>true</charts-enabled>
</report-generator>

This element defines a custom component, including custom properties and
directories used to configure the functionality of the custom component object's

custom-compo¬
nent

methods. Multiple custom-component elements can be defined, though each
must specify the name of the implemented class that extends
com.Endeca.soleng.eac.toolkit.component.CustomComponent.

Oracle Endeca Commerce Deployment Template Usage Guide

107Application Configuration File | XML schema

DescriptionElement

The custom component is also used to implement the Configuration Manager,
Workbench Manager, and IFCR components.
<custom-component id="IFCR" host-id="ITLHost"
class="com.endeca.soleng.eac.toolkit.component.IFCRCompo¬
nent">
 <properties>
 <property name="repositoryUrl" value="http://local¬
host:8006/ifcr" />
 <property name="username" value="admin" />
 <property name="password" value="admin" />
 <property name="numExportBackups" value="3" />
 </properties>
 </custom-component>

Related Links
Display component status on page 117

The controller provides a convenience method for displaying the status of all components
defined in the configuration document.

Utilities
This section describes the utility elements available in the custom namespace defined by the
eacToolkit.xsd XML schema.

For more details, refer to the eacToolkit.xsd schema file distributed within the file
eacHandlers.jar.

DescriptionElement

This element defines a copy utility invocation, including the source and destination and
whether or not the source pattern should be interpreted recursively. Multiple copy
elements can be defined.
<copy id="CopyData" src-host-id="ITLHost" dest-host-id="ITLHost"

copy

 recursive="true" >
 <src>./data/incoming/*.txt</src>
 <dest>./data/processing/</dest>
</copy>

This element defines a shell utility invocation, including the command to execute and
the host on which the command will be executed. Multiple shell elements can be
defined.
<shell id="ProcessData" host-id="ITLHost" >
 <command>perl procesDataFiles.pl ./data/incoming/data.txt</com¬

shell

mand>
</shell>

Oracle Endeca Commerce Deployment Template Usage Guide

Application Configuration File | XML schema108

DescriptionElement

This element defines a backup utility invocation, including the directory to archive, how
many archives should be saved and whether the archive should copy or move the
source directory. Multiple backup elements can be defined.
<backup id="ArchiveState" host-id="ITLHost" move="true" num-
backups="5">

backup

 <dir>C:\Endeca\apps\myApp\data\state</dir>
</backup>

This element defines a rollback utility invocation, including the directory whose archive
should be recovered. Multiple rollback elements can be defined.
<rollback id="RollbackState" host-id="ITLHost">
 <dir>./data/state</dir>
</rollback>

rollback

Customization/extension within the toolkit's schema
Most configuration tasks are performed by simply altering an element in the configuration document,
by adding elements to the document, or by removing elements from the configuration.

These three actions enable users to alter the behavior of objects in their application, change which
objects make up their application and change the way scripts acts on the objects in their application.

In addition to these simple actions, users can customize the behavior of objects in their application or
create new objects while continuing to use the EAC development toolkit's XML configuration document
format. The following are examples of customization that are possible within the constructs of the XML
schema defined in the eacToolkit.xsd schema file.

Implement a custom component

Users can develop new custom components by extending the class
com.Endeca.soleng.eac.toolkit.component.CustomComponent. This class and its associated XML
element allow any number of properties and directories to be specified and accessed by methods in
the object. This customization method may be appropriate for cases where functionality needs to be
developed that is not directly associated with an Oracle Endeca process.

Extend an existing object

Users can implement customizations on top of existing objects by creating a new class that extends
an object in the toolkit. Most elements in the configuration document (with the notable exception of
the "app" element, which specifies global configuration, but does not directly correspond to an object
instance) can specify a class attribute to override the default class associated with each element. For
example, a user could implement a MyForgeComponent class by extending the toolkit's ForgeCom¬
ponent class.
package com.Endeca.soleng.eac.toolkit.component;

import java.util.logging.Logger;

import com.Endeca.soleng.eac.toolkit.exception.AppConfigurationException;
import com.Endeca.soleng.eac.toolkit.exception.EacCommunicationException;
import com.Endeca.soleng.eac.toolkit.exception.EacComponentControlException;

Oracle Endeca Commerce Deployment Template Usage Guide

109Application Configuration File | XML schema

public class MyForgeComponent extends ForgeComponent
{
 private static Logger log =
 Logger.getLogger(MyForgeComponent.class.getName());

 protected void getIncomingData() throws AppConfigurationException,
 EacCommunicationException, EacComponentControlException,
 InterruptedException
 {

 // custom data retrieval implementation

 }
}

The new class can override method functionality to customize the behavior of the object. As long as
the new object does not require configuration elements unknown to the ForgeComponent from which
it inherits, it can continue to use the forge element in the XML document to specify object configuration.
<forge class="com.Endeca.soleng.eac.toolkit.component.MyForgeComponent"
 id="CustomForge" host-id="ITLHost">
...
</forge>

Implement custom functionality in BeanShell scripts

Users can implement custom functionality by writing new code in the XML document in new or existing
BeanShell scripts. This form of customization can be used to add new functionality or to override
functionality that is built in to toolkit objects. While this customization approach is very flexible, it can
become unwieldy and hard to maintain and debug if a large amount of custom code needs to be written.

Customization/extension beyond the toolkit's schema
Customization approaches within the existing schema will be sufficient for the majority of applications,
but some developers will require even greater flexibility than can be supported by the XML document
exposed by the toolkit.

This type of customization can still be achieved, by switching out of the default eacToolkit namespace
in the XML document and leveraging the highly flexible and extensible Spring Framework bean definition
format.

As an example, a developer might implement a new class, PlainOldJavaObject, which needs to
be loaded and accessed by EAC scripts. If the object is implemented, compiled and added to the
classpath, it can be loaded based on configuration in the XML document by specifying its configuration
using the "spr" namespace.
<spr:bean id="MyPOJO" class="com.company.PlainOldJavaObject">
 <spr:constructor-arg>true</spr:constructor-arg>
 <spr:property name="Field1" value="StrValue" />
 <spr:property name="Map1">
 <spr:map>
 <spr:key>one</spr:key>
 <spr:value>1</spr:value>
 <spr:key>two</spr:key>
 <spr:value>2</spr:value>
 </spr:map>
 </spr:property>
</spr:bean>

Oracle Endeca Commerce Deployment Template Usage Guide

Application Configuration File | XML schema110

Appendix C

BeanShell Scripting

The EAC Development Toolkit uses BeanShell to interpret and execute scripts defined in the app
configuration document. The following sections describe the toolkit's use of the BeanShell interpreter
and provide sample BeanShell script excerpts.

Script implementation
In the toolkit, the com.Endeca.soleng.eac.toolkit.script.Script class implements scripts.

This class exposes simple execution logic that either uses a BeanShell interpreter to execute the script
specified in the configuration file or, if no BeanShell script is specified in the script's configuration, uses
the Script object's scriptImplementation method. By default, the scriptImplementation
method has no logic and must be overridden by an extending class to take any action. This allows
developers to leverage BeanShell to implement their scripts or to extend the Script object, overriding
and implementing the scriptImplementation method.

By implementing scripts as BeanShell scripts configured in the toolkit's XML configuration document,
developers can quickly develop and adjust scripts, and system administrators can adjust script
implementations without involving developers. The scripting language should be familiar to any Java
developer, as it is a Java based scripting language that can interpret strict Java code (i.e. code that
could be compiled as a Java class). BeanShell also provides a few flexibilities that are not available
in Java; for example, BeanShell allows developers to import classes at any point in the script, rather
than requiring all imports to be defined up front. In addition, BeanShell allows variables to be declared
without type specification.

Note: For details about BeanShell and ways in which it differs from Java, developers should
refer to BeanShell documentation and Javadoc.

BeanShell interpreter environment
The most common use of BeanShell scripts in the EAC Development Toolkit is to orchestrate the
elements defined in the application configuration document.

More precisely, BeanShell scripts are used to orchestrate the execution of methods on the objects
that are loaded from the configuration document. In order to enable this, when the toolkit constructs
the BeanShell Interpreter environment, it sets internal variables associated with each element defined

in the configuration document. While additional variables can be declared at any point in a script, this
allows scripts to immediately act on objects defined in the document without declaring any variables.

Take, for example, the following configuration document:
<app appName="myApp" eacHost="devhost.company.com" eacPort="8888"
 dataPrefix="myApp" sslEnabled="false" lockManager="LockManager" >
 <working-dir>C:\Endeca\apps\myApp</working-dir>
 <log-dir>./logs/baseline</log-dir>
</app>

<host id="ITLHost" hostName="itlhost.company.com" port="8888" />

<copy id="CopyData" src-host-id="ITLHost" dest-host-id="ITLHost"
 recursive="true" >
 <src>./data/incoming/*.txt</src>
 <dest>./data/processing/</dest>
</copy>

<backup id="ArchiveState" host-id="ITLHost" move="true" num-backups="5">
 <dir>C:\Endeca\apps\myApp\data\state</dir>
</backup>

<forge id="Forge" host-id="ITLHost">
 <properties>
 <property name="numStateBackups" value="10" />
 <property name="numLogBackups" value="10" />
 </properties>
 <directories>
 <directory name="incomingDataDir">./data/incoming</directory>
 <directory name="configDir">./data/processing</directory>
 </directories>
 <args>
 <arg>-vw</arg>
 </args>
 <input-dir>./data/processing</input-dir>
 <output-dir>./data/forge_output</output-dir>
 <state-dir>./data/state</state-dir>
 <temp-dir>./data/temp</temp-dir>
 <num-partitions>1</num-partitions>
 <pipeline-file>./data/processing/pipeline.epx</pipeline-file>
</forge>

A BeanShell script defined in this document will have five variables immediately available for use:
ITLHost, CopyData, ArchiveState, Forge, and log. Note that there is no variable associated
with the app element in the document, as this element does not correspond to an object instance.
Each of the other elements is instantiated, loaded with data based on its configuration and made
available in the BeanShell interpreter. In addition, a special variable called log is always created for
each script with a java.util.Logger instance.

A simple BeanShell script can then be written without importing a single class or instantiating a single
variable.
<script id="SimpleForgeScript">
 <bean-shell-script>
 <![CDATA[
 log.info("Starting Forge script.");
 CopyData.run();
 Forge.run();
 ArchiveState.setNumBackups(Forge.getProperty("numStateBackups"));
 ArchiveState.run();

Oracle Endeca Commerce Deployment Template Usage Guide

BeanShell Scripting | BeanShell interpreter environment112

 log.info("Finished Forge script.");
]]>
 </bean-shell-script>
</script>

In addition to exposing objects defined in the document, the toolkit imports and executes a default
script each time a BeanShell script is invoked. If a file named "beanshell.imports" is successfully
loaded as a classpath resource, that file is executed each time a BeanShell script is executed. This
allows a default set of imports to be defined. For example, the following default file imports all of the
classes in the toolkit, exposing them to BeanShell scripts:
import com.Endeca.soleng.eac.toolkit.*;
import com.Endeca.soleng.eac.toolkit.application.*;
import com.Endeca.soleng.eac.toolkit.base.*;
import com.Endeca.soleng.eac.toolkit.component.*;
import com.Endeca.soleng.eac.toolkit.component.cluster.*;
import com.Endeca.soleng.eac.toolkit.exception.*;
import com.Endeca.soleng.eac.toolkit.host.*;
import com.Endeca.soleng.eac.toolkit.logging.*;
import com.Endeca.soleng.eac.toolkit.script.*;
import com.Endeca.soleng.eac.toolkit.utility.*;
import com.Endeca.soleng.eac.toolkit.utility.perl.*;
import com.Endeca.soleng.eac.toolkit.utility.webstudio.*;
import com.Endeca.soleng.eac.toolkit.utility.wget.*;
import com.Endeca.soleng.eac.toolkit.utils.*;

About implementing logic in BeanShell
BeanShell scripts will typically be used to orchestrate method execution for objects defined in the
configuration document.

However, scripts can also implement logic, instantiating objects to provide a simple point of extension
for developers to implement new logic without compiling additional Java classes.

For example, the following script excerpt demonstrates how a method can be defined and referenced
in a script:
<script id="Status">
 <bean-shell-script>
 <![CDATA[

 // define function for printing component status
 import com.Endeca.soleng.eac.toolkit.component.Component;
 void printStatus(Component component) {
 log.info(component.getAppName() + "." +
 component.getElementId() + ": " +
 component.getStatus().toString());
 }

 // print status of forge, dgidx, logserver
 printStatus(Forge);
 printStatus(Dgidx);
 printStatus(LogServer);

 // print status for dgraph cluster
 dgraphs = DgraphCluster.getDgraphs().iterator();
 while(dgraphs.hasNext()) {
 printStatus(dgraphs.next());
 }

Oracle Endeca Commerce Deployment Template Usage Guide

113BeanShell Scripting | About implementing logic in BeanShell

]]>
 </bean-shell-script>
 </script>

Oracle Endeca Commerce Deployment Template Usage Guide

BeanShell Scripting | About implementing logic in BeanShell114

Appendix D

Command Invocation

The toolkit provides a simple interface for invoking commands from the command line.

Invoke a method on an object
By default, the controller tries to invoke a method called "run" with no arguments on the specified
object.

The following simple command invokes the run method on the BaselineUpdate script object:
java Controller --app-config AppConfig.xml BaselineUpdate

If a method name is specified, the controller looks for a method with that name on the specified object
and invokes it. For example, the following command executes the applyIndex method on the
DgraphCluster object:
java Controller --app-config AppConfig.xml DgraphCluster applyIndex

In addition to no-argument method invocation, the controller allows any number of String arguments
to be passed to a method. The following example shows the releaseLock method being invoked
on the LockManager object with the single String argument "update_lock" specifying the name of
the lock to release:
java Controller --app-config AppConfig.xml LockManager releaseLock
 update_lock

Identify available methods
In order to help users identify the objects and methods available for invocation, the controller provides
a help argument that can be called to list all available objects or methods available on an object.

If specified with an app configuration document, the help command displays usage and available
objects:
java Controller --app-config AppConfig.xml --help

...

The following objects are defined in document 'AppConfig.xml':
[To see methods available for an object, use the --help command line argument
 and specify the name of the object.]

 [com.Endeca.soleng.eac.toolkit.base.LockManager]
 LockManager
 [com.Endeca.soleng.eac.toolkit.component.ConfigManagerComponent]
 ConfigManager
 [com.Endeca.soleng.eac.toolkit.component.DgidxComponent]
 Dgidx
 [com.Endeca.soleng.eac.toolkit.component.DgraphComponent]
 Dgraph1
 Dgraph2
 [com.Endeca.soleng.eac.toolkit.component.ForgeComponent]
 Forge
 PartialForge
 [com.Endeca.soleng.eac.toolkit.component.LogServerComponent]
 LogServer
 [com.Endeca.soleng.eac.toolkit.component.ReportGeneratorComponent]
 WeeklyReportGenerator
 DailyReportGenerator
 [com.Endeca.soleng.eac.toolkit.component.cluster.DgraphCluster]
 DgraphCluster
 [com.Endeca.soleng.eac.toolkit.host.Host]
 ITLHost
 MDEXHost
 [com.Endeca.soleng.eac.toolkit.script.Script]
 BaselineUpdate
 DistributeIndexAndApply
 PartialUpdate
 DistributePartialsAndApply
 ConfigUpdate

The name of each object loaded from the configuration document is printed along with the object's
class. To identify the available methods, the help command can be invoked again with the name of
an object in the document:
java Controller --app-config AppConfig.xml --help DgraphCluster
...

The following methods are available for object 'DgraphCluster':
[Excluded: private, static and abstract methods; methods inherited from
Object; methods with names that start with 'get', 'set' or 'is'. For details,
 refer to Javadoc for class com.Endeca.soleng.eac.toolkit.component.clus¬
ter.DgraphCluster.]

 start(), stop(), removeDefinition(), updateDefinition(), cleanDirs(),
 applyIndex(), applyPartialUpdates(), applyConfigUpdate(),
 cleanLocalIndexDirs(), cleanLocalPartialsDirs(),
 cleanLocalDgraphConfigDirs(), copyIndexToDgraphServers(),
 copyPartialUpdateToDgraphServers(),
 copyCumulativePartialUpdatesToDgraphServers(),
 copyDgraphConfigToDgraphServers(), addDgraph(DgraphComponent)

Note that not all methods defined for the class com.Endeca.soleng.eac.toolkit.compo¬
nent.cluster.DgraphCluster are displayed. As the displayed message notes, methods declared
as private, static or abstract are excluded, as are methods inherited from Object, getters and setters,
and a few reserved methods that are known not to be useful from the command line. These restrictions
are intended to make the output of this help command as useful as possible, but there are likely to be
cases when developers will need to refer to Javadoc to find methods that are not displayed using the
help command.

Oracle Endeca Commerce Deployment Template Usage Guide

Command Invocation | Identify available methods116

Update application definition
By default, the controller will test the application definition in the configuration document against the
provisioned definition in the EAC and update EAC provisioning if the definition in the document has
changed.

This will happen by default any time any method is invoked on the command line.

System administrators may find it useful to update the definition without invoking a method. To facilitate
this, a flag has been provided to perform the described definition update and exit.
java Controller --app-config AppConfig.xml --update-definition

In addition, there may be a need to invoke a method without testing the application definition. This can
be accomplished by using an alternate command line argument:
java Controller --app-config AppConfig.xml --skip-definition
 BaselineUpdate

Remove an application
The controller provides a convenience method for removing an application from the EAC's central
store.

When invoked, this action checks whether the application loaded from the configuration document is
defined in the EAC. If it is, all active components are forced to stop and the application's definition is
completely removed from the EAC.
java Controller --remove-app --app-config AppConfig.xml

Display component status
The controller provides a convenience method for displaying the status of all components defined in
the configuration document.

When the following method is invoked, the controller iterates over all defined components, querying
the EAC for the status of each one and printing it.
java Controller --print-status --app-config AppConfig.xml

Related Links
Components on page 104

This section describes the component elements available in the custom namespace defined
by the eacToolkit.xsd XML schema.

Oracle Endeca Commerce Deployment Template Usage Guide

117Command Invocation | Update application definition

Index

A
AppConfig.xml file

schema for 22
Application configuration 22
Application descriptors 13
Application settings

Report Generator 38
CAS Server 27
Configuration Manager 40
Dgidx 30
Dgraphs 31
Forges 29
global 23
hosts 23
IFCR 38
Lock Manager 24
log server 37
WorkbenchManager 39

Applications, custom 13
Automated deployments 12

custom 16

B
Baseline update

Forge flags 52
running sample scripts 77

BeanShell scripting
about implementing logic 113
interpreter environment 111
script implementation 111

C
CAS Server 27
Command invocation

display component status 117
identify available methods 115
method on an object 115
remove an application 117
update application definition 117

Configuration file, application 22
Configuration Manager 40
Configuration overrides 44
Configuring an application 22
customizations

commonly used 21
introduced 21

D
Deploying

EAC application 9
on UNIX 9
on Windows 9

Deployment Template
directories 11

Development Toolkit, See EAC Development Toolkit
Dgraph

clusters 31
enabling SSL 37
partial update script 86

Dimension adapters 53
Dimension servers 55

E
EAC

applications 9
deploying an EAC application 9
SSL-enabled 16

EAC Development Toolkit
application configuration file 103
BeanShell scripting 111, 113
command invocation 115, 117
distribution 101
package contents 101
Spring framework 103
usage 102
XML schema 103, 104, 108, 109, 110

F
fault tolerance for components, configuring 24
File-based deployment 12

custom 16
Forge cluster 29
Forge flags 52

G
Global application settings 23

I
Indexer adapters 54
Indexing cluster 30
Installer tokens 13

L
LockManager

configuring 24
default 23

Log directory, default 23

O
Oracle Endeca Deployment Template

automated deployment 12, 16
configuration overrides 44
deploying XQuery modules 36
Dgraph partial update script 86
displaying version 19
integration with Oracle Endeca Workbench, reporting
40
provisioning scripts 83
report generation script 98
sample pipelines 47
standard Forge flags 52
with SSL-enabled EAC 16

Oracle Endeca Workbench
reporting 40

Output record adapters 54

P
Partial updates

Dgraph scripts 86
Forge flags 52

Pipeline configuration
creating a new project 48
modifying a project 50
record spec 51

polling intervals for components, configuring 25

R
Report generation script 98
Report Generator 38

S
Sample pipeline

common errors 55
creating a new project 48
dimension adapters 53
dimension servers 55
Forge flags 52
indexer adapters 54
modifying a project 50
output record adapters 54
overview 47
record spec 51

sample scripts
baseline update script 77

scripts 81
Spring framework 103
SSL-enabled deployments 16

U
utilities, setting fault tolerance and polling intervals for 26

V
version of Deployment Template, displaying 19

W
Working directory, default 23

X
XML schema 103

application elements 103
components 104
customization 109, 110
extension 109, 110
hosts 104
utility elements 108

XQuery modules, deploying 36

Oracle Endeca Commerce120

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Deploying and initializing an EAC Application
	Deployment prerequisites
	About deploying EAC applications
	Deploying and initializing an EAC application
	Directories created by the Deployment Template

	Configuring automated/file-based deployment
	Modifying the template files to support custom applications
	Custom application descriptors
	Configuring an automated/file-based deployment for a custom application

	Communicating with SSL-enabled Oracle Endeca components
	Displaying the Deployment Template version

	Configuring an EAC Application
	About configuring an EAC application
	About the application configuration files
	About the schema for AppConfig.xml
	Configuring the application configuration files
	Global application settings
	Hosts
	Lock Manager
	Fault tolerance and polling interval properties
	CAS Server
	Forges
	Dgidxs
	Dgraphs
	Log server
	Report Generators
	IFCR
	Workbench Manager
	Reporting

	Configuration Manager

	Configuring the BeanShell scripts
	Configuration overrides

	Replacing the Default Forge Pipeline
	About the sample pipelines
	Sample pipeline overview
	Specifying a pipeline
	Creating a new project
	Modifying an existing project
	Configuring a record specifier
	Forge flags
	Input record adapters
	Dimension adapters
	Indexer adapters
	Output record adapters
	Dimension servers
	Common errors

	Modifying Index Configuration for an Application
	Overview of the Index Configuration Command-line Utility
	About index configuration ownership
	About the schema for the index configuration file
	Schema for an Endeca property, derived property, or dimension
	Schema for precedence rules
	Schema for global index configuration

	Getting the index configuration for an application
	Getting the merged index configuration for an application
	Setting the index configuration for an application
	Deleting the index configuration associated with an owner
	An example of changing multi-select on a dimension
	An example of changing a product.brand.name property to a dimension
	An example of setting dimension display order

	Managing Data Operations
	Running a baseline update with test data
	Running a baseline update with production data
	Running a partial update with production data
	Running CAS crawls

	Script Reference
	Deployment Template script reference
	Provisioning scripts
	Forge-based data processing
	Dgraph baseline update script using Forge
	Dgraph partial update script using Forge
	Dgraph baseline update script using Forge and a CAS full crawl script
	Dgraph partial update script using Forge and a CAS incremental crawl script
	Multiple CAS crawls and Forge updates

	CAS-based data processing
	Dgraph baseline update script using CAS
	Dgraph partial update script using CAS
	CAS crawl scripts for Record Store output
	CAS crawl scripts for record file output

	Report generation

	EAC Development Toolkit
	EAC Development Toolkit distribution and package contents
	EAC Development Toolkit usage

	Application Configuration File
	Spring framework
	XML schema
	Application elements
	Hosts
	Components
	Utilities
	Customization/extension within the toolkit's schema
	Customization/extension beyond the toolkit's schema

	BeanShell Scripting
	Script implementation
	BeanShell interpreter environment
	About implementing logic in BeanShell

	Command Invocation
	Invoke a method on an object
	Identify available methods
	Update application definition
	Remove an application
	Display component status

	Index

