Product Costing and Manufacturing Accounting

Release A7.3

Guide June 1996
Where Do I Look?

Online Help
- Program
- Form
- Field

CD-ROM Guides

Guides

Technical Foundation
System Administration and Environment Fundamentals
- Understanding Your Environment
- Creating and Maintaining Environments
- Setting Up Security
- Upgrading Your System

Common Foundation
Prerequisite
J.D. Edwards Software Fundamentals
- Using Menus
- Getting Help
- Customizing Data
- Reporting
Important Note for Students in Training Classes

This guide is a source book for online helps, training classes, and user reference. Training classes may not cover all the topics contained here.
Welcome

About this Guide

This guide provides overviews, illustrations, procedures, and examples for release A7.3 of J.D. Edwards software. Forms (screens and windows) shown are only examples. If your company operates at a different software level, you might find discrepancies between what is shown in this guide and what you see on your screen.

This guide includes examples to help you understand how to use the system. You can access all of the information about a task using either the guide or the online help.

Before using this guide, you should have a fundamental understanding of the system, user defined codes, and category codes. You should also know how to:

- Use the menus
- Enter information in fields
- Add, change, and delete information
- Create and run report versions
- Access online documentation

Audience

This guide is intended primarily for the following audiences:

- Users
- Classroom instructors
- Client Services personnel
- Consultants and implementation team members

Organization

This guide is divided into sections for each major function. Sections contain chapters for each task or group of related tasks. Each chapter contains the information you need to accomplish the task, run the program, or print the
report. Chapters normally include an overview, form or report samples, and procedures.

When it is appropriate, chapters also might explain automatic accounting instructions, processing options, and warnings or error situations. Some chapters include self-tests for your use outside the classroom.

This guide has a detailed table of contents and an index to help you locate information quickly.

Conventions Used in this Guide

The following terms have specific meanings when used in this guide:

- *Form* refers to a screen or a window.
- *Table* generally means “file.”

We assume an “implied completion” at the end of a series of steps. That is, to complete the procedure described in the series of steps, either press Enter or click OK, except where noted.
Table of Contents

Overview

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Integration</td>
<td>1-1</td>
</tr>
<tr>
<td>Features</td>
<td>1-2</td>
</tr>
<tr>
<td>Product Costing and Manufacturing Accounting Integration</td>
<td>1-4</td>
</tr>
<tr>
<td>Achieving Effective Cost Management</td>
<td>1-6</td>
</tr>
<tr>
<td>Tables</td>
<td>1-8</td>
</tr>
<tr>
<td>Menu Overview</td>
<td>1-11</td>
</tr>
<tr>
<td>Product Costing</td>
<td>1-11</td>
</tr>
<tr>
<td>Fast Path Commands</td>
<td>1-11</td>
</tr>
<tr>
<td>Manufacturing Accounting</td>
<td>1-12</td>
</tr>
<tr>
<td>Fast Path Commands</td>
<td>1-12</td>
</tr>
</tbody>
</table>

Product Costing

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About Product Costing</td>
<td>2-1</td>
</tr>
<tr>
<td>What Are Standard Costs?</td>
<td>2-1</td>
</tr>
<tr>
<td>Why Maintain Standard Costs?</td>
<td>2-2</td>
</tr>
<tr>
<td>Simulated versus Frozen Costs</td>
<td>2-2</td>
</tr>
<tr>
<td>What Are Cost Components?</td>
<td>2-3</td>
</tr>
<tr>
<td>Review Bills of Material and Routings</td>
<td>2-5</td>
</tr>
<tr>
<td>Reviewing Bills of Material and Routings</td>
<td>2-5</td>
</tr>
<tr>
<td>Reviewing Bill of Material Information</td>
<td>2-5</td>
</tr>
<tr>
<td>Reviewing Routing Information</td>
<td>2-9</td>
</tr>
<tr>
<td>Set Up Product Costing</td>
<td>2-13</td>
</tr>
<tr>
<td>Setting Up Product Costing</td>
<td>2-13</td>
</tr>
<tr>
<td>Setting Up Accounting Cost Quantities</td>
<td>2-13</td>
</tr>
<tr>
<td>Setting Up Item Cost Levels</td>
<td>2-15</td>
</tr>
<tr>
<td>Converting Item Cost Levels</td>
<td>2-16</td>
</tr>
<tr>
<td>Processing Options for Item Cost Level Conversion</td>
<td>2-19</td>
</tr>
<tr>
<td>Setting Up Item Costs</td>
<td>2-19</td>
</tr>
<tr>
<td>Processing Options for Item Cost Revisions</td>
<td>2-24</td>
</tr>
<tr>
<td>Setting Up Cost Components</td>
<td>2-24</td>
</tr>
<tr>
<td>Setting Up Manufacturing Constants</td>
<td>2-26</td>
</tr>
<tr>
<td>Setting Up Simulated Rates for a Work Center</td>
<td>2-29</td>
</tr>
<tr>
<td>Create Simulated Costs</td>
<td>2-33</td>
</tr>
<tr>
<td>Creating Simulated Costs</td>
<td>2-33</td>
</tr>
<tr>
<td>Creating the Costing Exceptions Report</td>
<td>2-34</td>
</tr>
<tr>
<td>Processing Options for Costing Exceptions</td>
<td>2-35</td>
</tr>
<tr>
<td>Creating a Simulated Rollup</td>
<td>2-37</td>
</tr>
<tr>
<td>Cumulative Yield</td>
<td>2-37</td>
</tr>
<tr>
<td>Operation Scrap</td>
<td>2-37</td>
</tr>
<tr>
<td>Unit of Measure Conversions</td>
<td>2-38</td>
</tr>
<tr>
<td>Processing Options for Cost Simulation</td>
<td>2-39</td>
</tr>
</tbody>
</table>
Work with Simulated Cost Components
- Working with Simulated Cost Components 2–43
- Reviewing and Revising Simulated Cost Components 2–44
- Processing Options for Enter/Change Cost Components 2–48
- Setting Up Standard Rate and Factor Codes 2–49
- Assigning Values to User Defined Cost Components 2–51
- Reviewing the Standard Cost Simulation Report 2–55
- Setting Up Cost Bucket Codes for a Costed Bill of Material ... 2–57
- Reviewing a Costed Bill of Material 2–59
- Processing Options for Costed Bill of Material 2–67
- Setting Up Operation Bucket Codes for a Costed Routing 2–67
- Reviewing a Costed Routing .. 2–69
- Processing Options for Costed Routing 2–77

Update Frozen Costs
- Updating Frozen Costs ... 2–79
- Journal Entries .. 2–80
- Detail Journal Entries ... 2–81
- Summary Journal Entries ... 2–81
- Processing Options for Frozen Update 2–83

Review Costing Information
- Reviewing Costing Information 2–85
- Reviewing Frozen Cost Components 2–85
- Reviewing the Item Ledger ... 2–87
- Processing Options for Item Ledger Inquiry 2–90
- Reviewing a Single Level Costed Bill of Material Report ... 2–91
- Processing Options for Costed Bill of Material Report 2–92
- Reviewing a Multi-Level Costed Bill of Material Report 2–93
- Processing Options for Multi-Level Costed Bill Report ... 2–95
- Reviewing the Cost Components Report 2–95
- Processing Options for Cost Component Print 2–96
- Reviewing the Cost Integrity Report 2–97
- Processing Options for Cost Component/Ledger Integrity 2–98

Work with Additional Costing Features
- Working with Additional Costing Features 2–99
- Copying Costs ... 2–99
- Processing Options for Copy Cost Values 2–100
- Copying Frozen Costs to Simulated Costs 2–100
- Processing Options for Cost Simulation – Refresh 2–101
- Updating Sales Order Price/Cost 2–101
- Processing Options for Update Sales Order Cost/Price ... 2–101
- Updating Product Costs ... 2–103
- Processing Options for Item Cost Revisions 2–105

Product Costing in ERPx Environments

- About Product Costing in ERPx Environments 3–1
- Understand Batch Product Costing 3–3
- About Batch Product Costing 3–3
- Understand Product Costing for Kit Items 3–5
- About Product Costing for Kit Items 3–5
Table of Contents

Work with Rate Based Costing .. 3-7
Working with Rate Based Costing 3-7
Work with Process Industry Costing 3-11
Working with Process Industry Costing 3-11
Reviewing Product Costing for Processes 3-13
Reviewing Product Costing for Intermediates 3-15
Reviewing Ingredients in Product Costing 3-17
Reviewing Co-/By-Products in Product Costing 3-18
 Example: Feature Cost Percent and Co-/By-Product Costing 3-18
Reviewing a Costed Process ... 3-21
 Processing Options for Costed Process 3-29
Setting Up the Co-/By-Products Planning Table 3-29
Reviewing Percent Bills of Material 3-32
Understand Configured Items 3-35
About Configured Items ... 3-35
 Example: Costing a Configured Item 3-36
Process Work Orders program 3-36
 Example: Process Work Orders Data Sequence Setup 3-37

Manufacturing Accounting

About Manufacturing Accounting 4-1
Accounting Fundamentals .. 4-6
 The Accounting Equation 4-6
 T-Accounts .. 4-6
 General Ledger Transactions 4-7
Accounts and Account Numbers 4-8
 Business Units .. 4-8
 Object and Subsidiary Accounts 4-8
 Object - “Major Account” 4-9
 Subsidiary - “Minor Account” 4-9
 Account Numbers ... 4-9
 Level of Detail ... 4-10
What Is Subledger Accounting? 4-11
Subledger Types .. 4-11
 Core Subledger Types 4-11
 Other Subledger Types 4-12
Posting Edit Codes .. 4-12
What Is the Chart of Accounts? 4-13
 Example: Chart of Accounts 4-14
What Are Work Order Variances? 4-14
Set Up Manufacturing Accounting 4-17
Setting Up Manufacturing Accounting 4-17
Setting Up G/L Class Codes 4-17
Reviewing Automatic Accounting Instructions 4-19
 Processing Options for Manufacturing AALs 4-25
Understand Work Orders in Accounting 4-27
About Work Orders in Accounting 4-27
What Is a Work Order? .. 4-27
What Happens when You Create a Work Order? 4-28
How Do You Attach the Parts List and Routing Instructions? 4–29
 Example: Engineering Variance Inquiry 4–31
What Happens when You Revise a Work Order? 4–31
About Unaccounted Units 4–32
How Do You Issue Material to a Work Order? 4–32
What Happens when You Record Hours and Quantities Used? 4–33
What Happens when You Record Component Scrap? 4–34
What Happens when You Record Completions to a Work Order? 4–34
Work with Work Orders 4–37
 Working with Work Orders 4–37
 Creating a Work Order 4–37
 Attaching a Parts List and Routing Instructions 4–40
 Processing Options for Process Work Orders 4–40
 Issuing Parts to the Work Order 4–43
 Recording Hours and Quantities Used 4–45
 Recording Component Scrap 4–48
 Processing Options for Component Scrap 4–52
 Recording Completions to the Work Order 4–52
Create Journal Entries 4–55
 Creating Journal Entries 4–55
 Journal Entries and the Three-Tier Process 4–55
 Generating Journal Entries 4–56
 Detail and Summary Journal Entries 4–57
Creating Journal Entries for Work in Process or Completions 4–59
 Configured Items 4–61
 Processing Options for Journal Entries for Work in Process or Completions 4–62
 Reviewing Variances 4–63
 Configured Items 4–64
Creating Journal Entries for Work Order Variances 4–66
 Processing Options for Journal Entries for Variances 4–72
 Reviewing Summarized Work Orders 4–73
Review General Ledger Batches 4–75
 Reviewing General Ledger Batches 4–75
Post to the General Ledger 4–85
 Posting to the General Ledger 4–85
 Posting Manufacturing Journal Entries 4–85
 Pre-Post Process 4–86
 Post Process 4–87
 Processing Options for Post General Ledger 4–88
Reviewing the Posting Edit Report 4–90
 Common Posting Errors 4–91
Reviewing the Posting Journal report 4–92
Reviewing the Item Ledger/Account Integrity Report 4–92
 Processing Options for Item Ledger/Account Integrity 4–94
Reviewing Other Reports 4–94
 Reviewing Work Order Activity (Amounts) 4–96
 Reviewing Work Order Activity (Units) 4–97
 Reviewing Engineering Variance 4–98
 Reviewing Planned Variance (to Current) 4–99
 Reviewing Planned Variance (to Standard) 4–100

Release A7.3 (June 1996)
Table of Contents

Reviewing Material Usage Variances .. 4–101
Reviewing Efficiency Variances ... 4–102
Reviewing Total/WIP and Other Variances 4–103
Reviewing Open Work Order Valuation 4–104
Reviewing Completed Work Order Valuation 4–105
Reviewing Work Order Amount Variances 4–106
Reviewing Manufacturing Accounting Tables 4–107

Manufacturing Accounting in ERPx Environments

- About Manufacturing Accounting in ERPx Environments 5–1
- Work with Rate Based Accounting .. 5–3
- Working with Rate Based Accounting 5–3
- Completing Rate Schedules .. 5–3
- Creating Journal Entries for Rate Schedules 5–5
- Variance Calculations ... 5–7
- Automatic Accounting Instructions 5–7
- Example: Proof Mode Report ... 5–9
- Example: Final Mode Report ... 5–10
- Processing Options for Rate Base Journal Entries 5–11

Appendices

- Appendix A — Calculations in Cost Rollup A–1
- Material Cost Components ... A–1
 - A1 (Purchased Material Cost) ... A–1
 - A2 (Material Scrap) .. A–1
- Routing Cost Components .. A–1
 - B1 (Direct Labor) ... A–2
 - B2 (Setup Labor) .. A–2
 - B3 (Machine Run) .. A–2
 - B4 (Labor Efficiency) .. A–2
 - C1, C2 (Variable/Fixed Machine Overhead) A–2
 - C3, C4 (Variable/Fixed Labor Overhead) A–3
- Outside Operation Cost Components (Usually Dx) A–4

- Appendix B — Calculations for Variances B–1
- Standard Costs .. B–1
- Current Costs .. B–1
- Planned Costs .. B–2
- Actual Costs .. B–3
- Completed/Scrapped Costs ... B–3

- Appendix C — Purchase Price Variance C–1
- Example: Purchase Price Variance and Material Burden C–1

- Appendix D — Functional Servers D–1
- Example: Voucher Processing Functional Server D–2
Overview
Overview

Maintaining accurate and complete records on the value of inventory is one of the major concerns of most businesses today. Keeping too much of an unprofitable stock, or using inappropriate methods of costing certain inventory items, can quickly deplete your profits.

The Product Costing system allows you to store and retrieve cost information. It also helps you to manage your costs by providing informational inputs to your company’s business plan. With accurate product costing, you can evaluate the following manufacturing processes to determine the impact to your company’s bottom line:

- Manufacturing budgets (direct labor, indirect labor, and overhead)
- Product design (design and manufacturing engineering)
- Accounting (gross margin by product line or item)

After you establish costs in the Product Costing system, the Manufacturing Accounting system tracks the costs, reports on variances, and posts manufacturing transactions to the general ledger.

System Integration

Product Costing and Manufacturing Accounting are two of the systems that are included in the Enterprise Requirements Planning and Execution (ERPx) system.

ERPx is a closed-loop manufacturing system that formalizes company and operations planning, and the implementation of those plans. Use the ERPx system to coordinate your inventory and labor resources to deliver products according to a managed schedule.

The following diagram shows the systems that make up ERPx and the sequence in which they are implemented.
The Product Costing and Manufacturing Accounting systems provide flexibility to accommodate your manufacturing environment. Some of the benefits and features of these systems are:
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User defined cost add-ons</td>
<td>Define and maintain an unlimited number of cost components for tracking specific costs, such as freight, taxes, duty, and electricity.</td>
</tr>
<tr>
<td>User defined cost rollup methods</td>
<td>Define an unlimited number of cost methods to use in cost simulation analyses.</td>
</tr>
<tr>
<td>User defined cost factors and rates</td>
<td>Allocate cost factors and rates to a specific item. Used with cost add-ons to calculate additional costs.</td>
</tr>
<tr>
<td>Cost variances</td>
<td>Print a complete set of reports to compare old costs with new costs before implementing any changes.</td>
</tr>
<tr>
<td>Bill of material rollup</td>
<td>Calculate the total material cost by retrieving the bill of material for all items and adding the total cost of the components.</td>
</tr>
<tr>
<td>Cost simulation</td>
<td>Run a complete simulation of costs before any live data is updated as the frozen standard.</td>
</tr>
<tr>
<td>Multi-facility costing</td>
<td>Maintain cost information at the branch/plant level to allow for cost variances at different locations for identical manufactured items.</td>
</tr>
<tr>
<td>Variances</td>
<td>Review four kinds of variances:</td>
</tr>
<tr>
<td></td>
<td>• Engineering</td>
</tr>
<tr>
<td></td>
<td>• Planned</td>
</tr>
<tr>
<td></td>
<td>• Actual (material and labor)</td>
</tr>
<tr>
<td></td>
<td>• Other</td>
</tr>
<tr>
<td>Journal entries for variances</td>
<td>Create detailed or summary journal entries for work order variances.</td>
</tr>
<tr>
<td>Journal entries for work order transactions</td>
<td>Create detailed or summary journal entries for work in process or completions.</td>
</tr>
<tr>
<td>Automatic accounting instruction (AAI) tables</td>
<td>Charge dollar amounts to specified accounts.</td>
</tr>
<tr>
<td>Reports</td>
<td>Print reports listing detailed costs and variances for work orders.</td>
</tr>
</tbody>
</table>
Product Costing and Manufacturing Accounting Integration

Product costing plays a significant role in the manufacturing environment. Before you can implement your Manufacturing Accounting system, you must set up frozen standard cost component values for the products you produce. To calculate these cost component values, you must consider the following aspects in the manufacturing environment:

- Cost reporting (what does the item really cost to produce?)
- Variance reporting (the actual versus standard costs)
- Product and job costing (detailed information)
 - Materials
 - Labor
 - Overhead

After you calculate your cost component values in a simulated mode and are satisfied with the results, you must establish frozen standard cost components. All shop floor transactions use these frozen standards for calculations, which, in turn, create transactions in your general ledger and are the basis of your inventory valuation.

Certain functions within the Product Costing and Manufacturing Accounting systems overlap with other Manufacturing and Distribution systems, such as Product Data Management and Shop Floor Control. Therefore, it is important that you have a basic understanding of the following tables and how they interact with other systems:

- Item Master (F4101)
- Manufacturing Data (F41027)
- Branch/Plant Master (F4102)
- Bill of Material Master (F3002)
- Routing Master (F3003)
- Work Center Master (F3006)

The following illustration demonstrates the interaction of tables within the Manufacturing Accounting system.
Achieving Effective Cost Management

Most of the major areas or departments within your manufacturing company contribute information to your product costing activities and, therefore, affect the overall accuracy of your manufacturing budget.

The following table lists examples of departments within your company and the aspects of the Product Costing system which are affected by that department.

Design Engineering
The Design Engineering group is responsible for ensuring that:
- The bill of material is complete
- The make-buy information is accurate
- The engineering change orders (ECOs) have been taken into account

Sales
The sales force contributes important information regarding target markets, as well as the latest trends in manufacturing. For effective cost management, it is important that your sales force provide timely and reasonable forecasts.

Manufacturing Engineering
The Manufacturing Engineering group is responsible for identifying:
- Correct processes
- Changes to existing processes
- Manufacturing overhead
- Accurate information about work centers

Purchasing
Your Purchasing department must provide:
- Accurate supplier costs
- Accurate transportation costs

Manufacturing
Manufacturing operations provide vital information to the product costing effort. For example, they must:
- Input their data in a timely and accurate manner
- Identify any discrepancies in the bills of material and routings
Accounting

Your Accounting staff must:

- Ensure that all items have costs
- Identify general and administrative overhead
- Produce timely variance reports (standard costs versus current costs)

Several other issues should be considered as you define and manage your manufacturing costs, including:

- When (and how often) do you change standard costs?
- How do you limit access?
- When are new items reflected in the standard?
- How do you account for labor rates and work center overhead?

You might also encounter these typical circumstances as you define costs and perform rollups:

- Not all standards are available before your initial cost rollup.
- You have used incorrect units of measure.
- Your company inaccurately reports labor hours and costs.
- New products are not updated in a timely manner.
- Standards are updated too frequently.
- Items have been added to or deleted from the bill of material since the last cost update.
- Steps in the routing master have been changed since the last cost update.
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Components</td>
<td>Contains all cost methods and cost elements for each method for all items.</td>
</tr>
<tr>
<td>(F30026)</td>
<td></td>
</tr>
<tr>
<td>Cost Ledger</td>
<td>Contains the costs of all items as of the last frozen update.</td>
</tr>
<tr>
<td>(F4105)</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Constants</td>
<td>Stores variables that indicate whether to include efficiency in the cost rollup and which overhead values to use.</td>
</tr>
<tr>
<td>(F3009)</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Data</td>
<td>Stores the accounting cost quantity, which the system uses to determine the allocation of fixed setup costs for an item.</td>
</tr>
<tr>
<td>(F41027)</td>
<td></td>
</tr>
<tr>
<td>Routing Master</td>
<td>Stores routing information, including operation sequence, work center, run time, setup time, and machine time. The system uses this information to calculate labor, machine, and overhead costs.</td>
</tr>
<tr>
<td>(F3003)</td>
<td></td>
</tr>
<tr>
<td>Bill of Material Master</td>
<td>Contains information at the business unit level about bills of material, such as quantities of components. The system uses this information to calculate material costs.</td>
</tr>
<tr>
<td>(F3002)</td>
<td></td>
</tr>
<tr>
<td>Work Center Rates</td>
<td>Contains all rates for each work center, such as overhead and labor.</td>
</tr>
<tr>
<td>(F30008)</td>
<td></td>
</tr>
<tr>
<td>Work Center Master</td>
<td>Contains detailed data about all defined work centers, including efficiency.</td>
</tr>
<tr>
<td>(F30006)</td>
<td></td>
</tr>
<tr>
<td>Item Ledger</td>
<td>Contains transactions that indicate changes in inventory value.</td>
</tr>
<tr>
<td>(F4111)</td>
<td></td>
</tr>
<tr>
<td>Account Master</td>
<td>Contains account definitions, including numbers and descriptions.</td>
</tr>
<tr>
<td>(F0901)</td>
<td></td>
</tr>
<tr>
<td>Account Ledger</td>
<td>Contains detailed transactions in the general ledger.</td>
</tr>
<tr>
<td>(F0911)</td>
<td></td>
</tr>
<tr>
<td>Account Balances</td>
<td>Contains net postings for each period and prior year balances (net and cumulative). There is one record per account, ledger type, subledger, fiscal year, and transaction currency table.</td>
</tr>
<tr>
<td>(F0902)</td>
<td></td>
</tr>
</tbody>
</table>
User Defined Codes (F0005)
Contains user defined codes and their descriptions. User defined codes in product costing and manufacturing accounting include:
- Cost methods
- Cost components
- Cost buckets
- Operation buckets
- Standard rate codes
- Standard factor codes

Batch Control (F0011)
Contains system-generated batch header information, including the batch number, batch status, and batch entry date.

Automatic Accounting Instruction (AAI) Values (F4095)
Contains account numbers that are used to create journal entries and charge dollars to those accounts.

Work Order Master (F4801)
Contains all work order header information. The data from this table appears on shop floor paperwork. The system updates this table when completion transactions occur against a work order.

Parts List (F3111)
Contains the parts list that is attached to a work order. It contains one record for each part. The system creates this table interactively or when you run the Process Work Orders program.

Routing Instructions (F3112)
Contains the routing steps that are attached to a work order. It contains one record for each operation sequence number and work center. The system creates this table interactively or when you run the Process Work Orders program.

Work Order Variances (F3102)
Contains the amounts used for work order variance calculations. The system updates this table by the Process Work Orders program and by the Journal Entries for Work in Process or Completions program.

Item Master (F4101)
Stores basic information about each defined inventory item, such as item numbers, descriptions, category codes, and units of measure.

Branch/Plant Master (F4102)
Defines and maintains warehouse or plant level information, such as branch level category codes.
| **Address Book**
| (F0101) | Contains a variety of information, including information about customers, suppliers, employees, and prospects. |
| **Business Unit Master**
| (F0006) | Identifies information about business units, such as company names and category codes assigned to the business unit. |
Menu Overview

J.D. Edwards systems are menu driven. Menus are organized according to function and frequency of use.

Product Costing

Access Product Costing functions from the Product Data Management menus.

Manufacturing Systems
G 3

Product Data Management
G 30

Daily Product Costing
G 3014

Periodic Product Costing
G 3023

Product Costing Setup
G 3042

Fast Path Commands

The following table illustrates the fast path commands you can use to move among the Product Costing menus.

<table>
<thead>
<tr>
<th>Command</th>
<th>Menu</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPC</td>
<td>G3014</td>
<td>Daily Product Costing</td>
</tr>
<tr>
<td>PPC</td>
<td>G3023</td>
<td>Periodic Product Costing</td>
</tr>
<tr>
<td>SPC</td>
<td>G3042</td>
<td>Product Costing Setup</td>
</tr>
</tbody>
</table>
Manufacturing Accounting

Access Manufacturing Accounting functions from the Shop Floor Control menus.

Manufacturing Systems
- G3

Shop Floor Control
- G31

Daily Manufacturing Accounting
- G3116

Periodic Manufacturing Accounting
- G3123

Shop Floor Control Setup
- G3141

Fast Path Commands

The following table illustrates the fast path commands you can use to move among the Manufacturing Accounting menus.

<table>
<thead>
<tr>
<th>Command</th>
<th>Menu</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>G3116</td>
<td>Daily Manufacturing Accounting</td>
</tr>
<tr>
<td>PMA</td>
<td>G3123</td>
<td>Periodic Manufacturing Accounting</td>
</tr>
<tr>
<td>SSFC</td>
<td>G3141</td>
<td>Shop Floor Control Setup</td>
</tr>
</tbody>
</table>
Product Costing
Product Costing

Objectives

- To understand product costing and its overall importance in a manufacturing environment
- To learn about standard and user defined cost methods
- To learn about the differences between frozen and simulated costs

About Product Costing

Working with the Product Costing system consists of the following tasks:

- Reviewing bills of material and routings
- Setting up product costing
- Creating simulated costs
- Working with simulated cost components
- Updating frozen costs
- Reviewing costing information
- Working with additional costing features

What Are Standard Costs?

You can work with a variety of cost methods in the Product Costing system. However, the Manufacturing Accounting system uses the standard cost method (07). This method represents the expected (target) cost of an item for a specific period of time, such as quarterly, semi-annually, or annually.

With standard costing, you estimate costs for each end item assembly and manufactured part on a level-by-level basis before production begins. These cost
estimates are based on both past performance and analysis of future conditions. Standard costs include the following elements:

- Labor
- Material
- Overhead
- Extras

The net added cost represents the cost to manufacture an item at this level in the bill of material. The cost includes labor, outside operations, and cost extras, but not materials (lower-level items). The total cost of an item represents the sum of the net added cost and all lower-level component item costs.

Why Maintain Standard Costs?

By defining and monitoring product costs, you can measure your company's current manufacturing performance against your standard (target) costs. Product costing provides information about the dollar investments tied to your materials, work in process, and physical inventory. You can use this information to determine pricing on end items and service components.

Simulated versus Frozen Costs

Simulated costs represent a “what if” analysis for a given cost method. You might want to calculate simulated costs because of changing factors in the business environment, such as labor rates or the cost of raw materials. You can simulate cost change scenarios (rollups) as many times as needed before you finalize the changes.
You finalize the changes by performing a frozen update for the given cost method. A frozen update copies your simulated values and makes them your frozen costs, and updates the Cost Ledger table (F4105) with the total cost. These costs remain in effect until you update them with another frozen update.

You can simulate costs using the standard cost method or any other cost method. However, the Manufacturing Accounting system uses only the standard cost method to establish costs for shop floor transactions.

What Are Cost Components?

Cost components represent the individual costs that make up an item, for example, material, labor, overhead, and extras. Material, labor, and overhead costs are automatically calculated by the system. Extra costs, such as electricity, are manually controlled.

Use cost components to maintain complete item costing information. You can use them to set up simulated cost scenarios to help plan for future cost changes, and to display the simulated or frozen net added and total component costs for any item.

In addition, you can:

- Allow for extra add-on costs related to the manufacturing of a product, such as electricity, insurance, water, or warehouse space.
- Review specific calculations used to determine cost amounts for any item.
- Maintain costs by branch for multi-facility processing. Multi-facility processing allows for different costing values based on regional or business variations.
- Set up costing rates that represent cost elements.
- Define additional cost factors to include in product costing calculations.

See Also

- *Setting Up Cost Components (P00051)*
- *Setting Up Cost Components*
- *Assigning Values to User Defined Cost Components (P30026)*
- *Assigning Values to User Defined Cost Components*
Reviewing Bills of Material and Routings

Reviewing Bills of Material and Routings for Product Costing

The bill of material and routing for an item contain important information that affects costing. To ensure that this information is set up correctly:

- Review bills of material for input to material costs
- Review routings for input to labor and overhead costs

Reviewing Bill of Material Information

Reviewing Product Costing in Bills of Material

Review your bills of material to understand the bills’ input to your material product costs. Only items with a bill type of M are costed.

See Also

- Working with a Parent Item Bill of Material (P3002) in the Product Data Management Discrete Manufacturing Guide
Working with a Parent Item Bill of Material in the Product Data Management Discrete Manufacturing Guide

To review bill of material information

On Enter/Change Bill

1. Review the following fields:
 - Component Item
 - Quantity Per
 - Unit Of Measure
 - Fixed or Variable
2. Access the fold area.
3. Review the following fields:
 - Feature Cost Percent
 - Percent of Scrap
 - Operation Scrap Percent

On Enter/Change Bill

4. Review the following fields:
 - Component Item
 - Quantity Per
 - Unit Of Measure
 - Fixed or Variable

5. Access the fold area.

6. Review the following fields:
 - Feature Cost Percent
 - Percent of Scrap
 - Operation Scrap Percent
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Number</td>
<td>A number that the system assigns to an item. It can be in short, long, or 3rd item number format.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Header: The Parent field contains the item number of the parent item.</td>
</tr>
<tr>
<td></td>
<td>Detail: The Component Item field contains the item number of the component item listed.</td>
</tr>
<tr>
<td>Quantity Per</td>
<td>The number of units to which the system applied the transaction.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Indicates how many of a component is used to manufacture the parent item. A quantity of zero is valid. The default value is 1.</td>
</tr>
<tr>
<td>Unit of Measure</td>
<td>A user defined code (system 00/type UM) that identifies the unit of measurement for an amount or quantity. For example, it can represent a barrel, box, cubic yard, gallon, an hour, and so on.</td>
</tr>
<tr>
<td>Fixed or Variable Quantity</td>
<td>Indicates if the quantity per assembly for an item on the bill of material varies according to the quantity of the parent item produced or is fixed regardless of the parent quantity. This value also determines if the component quantity is a percent of the parent quantity. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>F Fixed Quantity</td>
</tr>
<tr>
<td></td>
<td>V Variable Quantity (Default)</td>
</tr>
<tr>
<td></td>
<td>% Quantities are expressed as a percentage and must total 100%</td>
</tr>
<tr>
<td></td>
<td>For fixed quantity components, the Work Order and MRP systems do not extend the component's quantity per assembly value by the order quantity.</td>
</tr>
<tr>
<td></td>
<td>For Process Manufacturing, the system stores percent components. Therefore, the system treats zero batch sizes like variable quantity components, and treats batch sizes greater than zero like fixed quantity components.</td>
</tr>
<tr>
<td>Feature Cost Percent</td>
<td>A percentage used by the Simulated Cost Rollup program (P30820) to calculate the cost of a feature or phantom item as a percentage of the total cost of the parent.</td>
</tr>
<tr>
<td></td>
<td>Enter the percentage as a whole number: 5% as 5.0</td>
</tr>
</tbody>
</table>
Reviewing Routings for Product Costing

Reviewing Routing Information

Reviewing Routings for Product Costing

Review your routings to understand their input to your labor and overhead costs.

See Also

- Working with Routings (P3003) in the Product Data Management Discrete Manufacturing Guide
- Working with Routings in the Product Data Management Discrete Manufacturing Guide
To review routing information

On Enter/Change Routing

1. Review the following fields:
 - Machine Run Hours
 - Labor Run Hours
 - Setup Hours

2. Access the fold area.
Review Bills of Material and Routings

3. Review the following fields:
 - Time Basis
 - Crew Size
 - Cost Type
 - Type Oper
 - Yield Percent
 - Cumulative Percent

On Enter/Change Routing

1. Review the following fields:
 - Machine Run Hours
 - Labor Run Hours
 - Setup Hours

2. Access the fold area.

3. Review the following fields:
 - Time Basis
 - Crew Size
 - Cost Type
 - Type Oper
 - Yield Percent
- Cumulative Percent

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run Machine – Standard</td>
<td>This is the standard machine hours expected to be incurred in the normal production of this item.</td>
</tr>
</tbody>
</table>
| Estimated Hours – Labor | This is the standard hours of labor expected in the normal production of this item.
The run labor hours in the Routing Master table (F3003) are the total hours it takes the specified crew size to complete the operation. The hours are multiplied by the crew size during shop floor release and product costing.
................. *Form-specific information*
This is the estimated number of hours needed to complete a maintenance activity. |
| Setup Labor Hours | The standard setup hours you expect to incur in the normal completion of this item. |
| Time Basis | A user defined code (system 30, type TB) that identifies the time basis or rate to be used for machine or labor hours entered for any routing step. You can set rates per unit, per 10, per 1000, and so on.
The system uses the values in the Description-2 field on the User Defined Codes form for costing and scheduling calculations. The Description field is a description of what the code represents, but is not used in calculations. |
| Crew Size | The number of people who work in the specified work center or routing operation. |

The system multiplies the Run Labor value in the Routing Master table (F3003):
- By crew size during costing to generate total labor dollars
- During Process Work Orders and Order Maintenance to generate total labor hours

If the Prime Load Code is L or B, the system uses the total labor hours for backscheduling. If the Prime Load Code is C or M, the system uses the total machine hours – without modification by crew size – for backscheduling.
................. *Form-specific information*

For Shop Floor Control:
The Crew Size field on the Routing Revisions form displays the value set on the Enter/Change Work Centers form (P3006). You can override the value by changing this field on the Routing Revisions form. However, the Enter/Change Work Centers form will not reflect this change.
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Component</td>
<td>This code designates each element of cost for an item. An example of the coding structure is:</td>
</tr>
<tr>
<td></td>
<td>A1 Purchased raw material</td>
</tr>
<tr>
<td></td>
<td>B1 Direct labor routing sheet rollup</td>
</tr>
<tr>
<td></td>
<td>B2 Setup labor routing sheet rollup</td>
</tr>
<tr>
<td></td>
<td>C1 Variable burden routing sheet rollup</td>
</tr>
<tr>
<td></td>
<td>C2 Fixed burden routing sheet rollup</td>
</tr>
<tr>
<td></td>
<td>Dx Usually used for outside processing routing sheet rollup</td>
</tr>
<tr>
<td></td>
<td>Xx Usually used for extra add-ons, such as electricity, water, and so forth</td>
</tr>
<tr>
<td></td>
<td>The optional add-on computations usually operate with the type “X” extra add-ons. This cost structure allows you to use an unlimited number of cost components to calculate alternative cost rollups. The system then associates these cost components with one of six user defined summary cost buckets.</td>
</tr>
<tr>
<td>Type Operation</td>
<td>A user defined code (system 30, type OT) that indicates the type of operation. For example:</td>
</tr>
<tr>
<td></td>
<td>A Alternate routing</td>
</tr>
<tr>
<td></td>
<td>TT Travel time</td>
</tr>
<tr>
<td></td>
<td>IT Idle time</td>
</tr>
<tr>
<td></td>
<td>T Text (Enter text at Description)</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>For Product Costing:</td>
</tr>
<tr>
<td></td>
<td>Only operations with a “blank” type operation code are costed.</td>
</tr>
<tr>
<td>Operational Planned Yield Percent</td>
<td>Represents the planned output yield percent for a step. The Planned Yield Update program uses this value to update the Cumulative Percent in the bill of material and the Operation Scrap Percent in the routing. Materials Requirements Planning uses the step scrap percent and the existing component scrap percent to plan component demand.</td>
</tr>
<tr>
<td>Percent – Cumulative Planned Yield</td>
<td>Represents the cumulative planned output yield percent for a step. The system uses this value to adjust the operation step scrap percent for the components at that operation step. This enables the MRP system to use the operation step scrap percent along with the existing component scrap percent to plan component demand.</td>
</tr>
</tbody>
</table>
Set Up Product Costing

Setting Up Product Costing

You can customize the Product Costing system to meet your specific manufacturing environment needs. The system uses the values you define to determine your product costs.

Setting up product costing consists of the following:

- Setting up accounting cost quantities
- Setting up item cost levels
- Converting item cost levels
- Setting up item costs
- Setting up cost components
- Setting up manufacturing constants
- Setting up simulated rates for a work center

Setting Up Accounting Cost Quantities

The system uses accounting cost quantities to determine the allocation of fixed setup costs for an item. Accounting cost quantities represent the average quantity of a work order for this item. During cost rollup, the system divides the fixed
setup costs by the accounting cost quantity you specify to determine a unit setup and fixed cost.

To set up accounting cost quantities

On Manufacturing Data

Complete or review the following field:

- Accounting Cost Quantity

On Manufacturing Data

Complete or review the following field:

- Accounting Cost Quantity

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting Cost Quantity</td>
<td>An amount the system uses in the cost rollup program to determine the allocation of setup costs. The system totals the setup costs and divides the sum by this quantity to determine a unit setup cost. The default is 1.</td>
</tr>
</tbody>
</table>
Setting Up Item Cost Levels

The cost level you assign to an item indicates the level at which the system maintains costs. You determine whether the system maintains one overall cost for an item (cost level 1) or a different cost for the item in each branch/plant (cost level 2). The system can also maintain a different cost for each location and lot within a branch/plant (cost level 3). However, in the Product Costing system, costs at cost level 3 are informational only. All items used in a manufacturing environment should have cost levels of 1 or 2.

To set up item cost levels

On Item Master Information

![Image of Item Master Information dialog box]
Complete or review the following field:

- Inventory Cost Level

On Item Master Information

Complete or review the following field:

- Inventory Cost Level

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory Cost Level</td>
<td>A code that indicates whether the system maintains one overall inventory cost for the item, a different cost for each branch/plant, or a different cost for each location and lot within a branch/plant. The system maintains inventory costs in the Inventory Cost table (F4105). Valid codes are: 1 Item level 2 Item/Branch level 3 Item/Branch/Location level (not recognized by the Manufacturing system).</td>
</tr>
</tbody>
</table>

Converting Item Cost Levels

After you have entered cost information, you might need to change an item’s cost level. You must use the Item Cost Level Conversion program to change an item’s cost level after cost information has been entered.

If you choose to run this program, it deletes all existing cost records for the item in the Cost Ledger table (F4105) and creates new cost records that correspond to the level. The system uses the sales/inventory cost method for the item to create the new cost records.
The program does not change the cost valuation of items and does not create journal entries. For example, if you change an item's cost level from branch/plant and location to branch/plant, all existing cost records for the branch/plant and location must contain the same sales/inventory cost method and cost.

You can run Item Cost Level Conversion in proof mode or final mode. When you run the program in proof mode, the system generates the Item Cost Level Conversion report, showing errors that need correction. You should always run the program in proof mode first and correct any discrepancies.

When you run the program in final mode, the system updates the:

- Inventory Cost Level field in the Item Master table (F4101)
- Cost Ledger table (F4105)

Changing your item cost levels changes data throughout the system. You should restrict access to this program.

CAUTION: Changing your item cost levels changes data throughout the system. You should restrict access to this program.

Before You Begin

- Back up your data tables completely before you begin the data conversion process. If the results of the conversion are unsatisfactory, you can use the backup tables to restore data tables to their original format.

- Verify that no users are accessing the Item Master or Cost Ledger tables when this program is running in final mode.
Item Cost Level Conversion

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Branch</th>
<th>Location</th>
<th>Lot</th>
<th>L CM</th>
<th>Unit Cost</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>E001</td>
<td>30</td>
<td></td>
<td>3</td>
<td>01</td>
<td>6.6378</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>E001</td>
<td>30</td>
<td>DAMAGED</td>
<td>3</td>
<td>01</td>
<td>6.4100</td>
<td>Cost not the same</td>
</tr>
<tr>
<td>P002</td>
<td>10</td>
<td></td>
<td>3</td>
<td>01</td>
<td>30.7500</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>P002</td>
<td>10</td>
<td>1 B 1</td>
<td>3</td>
<td>02</td>
<td>30.3750</td>
<td>Cost Method/Cost not the same</td>
</tr>
<tr>
<td>P002</td>
<td>20</td>
<td></td>
<td>3</td>
<td>01</td>
<td>31.4333</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>P002</td>
<td>20</td>
<td>1 B 1</td>
<td>3</td>
<td>02</td>
<td>30.8417</td>
<td>Cost Method/Cost not the same</td>
</tr>
<tr>
<td>P002</td>
<td>30</td>
<td></td>
<td>3</td>
<td>01</td>
<td>30.1049</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>P002</td>
<td>30</td>
<td>1 B 1</td>
<td>3</td>
<td>02</td>
<td>30.2500</td>
<td>Cost Method/Cost not the same</td>
</tr>
<tr>
<td>P002</td>
<td>40</td>
<td></td>
<td>3</td>
<td>02</td>
<td>30.5610</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>P002</td>
<td>40</td>
<td>R</td>
<td>3</td>
<td>02</td>
<td>30.2500</td>
<td>Cost not the same</td>
</tr>
<tr>
<td>P002</td>
<td>40</td>
<td>1 B 1</td>
<td>3</td>
<td>02</td>
<td>30.2500</td>
<td>Cost not the same</td>
</tr>
<tr>
<td>P002</td>
<td>40</td>
<td>3 E</td>
<td>3</td>
<td>02</td>
<td>30.2500</td>
<td>Cost not the same</td>
</tr>
<tr>
<td>TS002</td>
<td>10</td>
<td></td>
<td>3</td>
<td>01</td>
<td>43.1200</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>TS002</td>
<td>10</td>
<td>1 C 1</td>
<td>3</td>
<td>02</td>
<td>43.5000</td>
<td>Cost Method/Cost not the same</td>
</tr>
<tr>
<td>TS002</td>
<td>20</td>
<td></td>
<td>3</td>
<td>01</td>
<td>43.1200</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>TS002</td>
<td>20</td>
<td>1 C 1</td>
<td>3</td>
<td>02</td>
<td>43.5000</td>
<td>Cost Method/Cost not the same</td>
</tr>
<tr>
<td>TS002</td>
<td>30</td>
<td></td>
<td>3</td>
<td>01</td>
<td>66.0000</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>TS002</td>
<td>30</td>
<td>1 C 1</td>
<td>3</td>
<td>01</td>
<td>43.9573</td>
<td>Cost not the same</td>
</tr>
<tr>
<td>TS002</td>
<td>40</td>
<td></td>
<td>3</td>
<td>02</td>
<td>43.7336</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>TS002</td>
<td>40</td>
<td>R</td>
<td>3</td>
<td>02</td>
<td>43.5000</td>
<td>Cost not the same</td>
</tr>
<tr>
<td>TS002</td>
<td>40</td>
<td>1 C 1</td>
<td>3</td>
<td>02</td>
<td>43.5000</td>
<td>Cost not the same</td>
</tr>
<tr>
<td>TS002</td>
<td>40</td>
<td>2 C 1</td>
<td>3</td>
<td>02</td>
<td>43.5000</td>
<td>Cost not the same</td>
</tr>
<tr>
<td>V001</td>
<td>10</td>
<td></td>
<td>3</td>
<td>01</td>
<td>16.1500</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>V001</td>
<td>10</td>
<td>1 A 1</td>
<td>9310140004</td>
<td>3</td>
<td>01</td>
<td>16.0000</td>
</tr>
<tr>
<td>V001</td>
<td>10</td>
<td>1 A 2</td>
<td>9310140002</td>
<td>3</td>
<td>01</td>
<td>16.0000</td>
</tr>
<tr>
<td>V001</td>
<td>20</td>
<td></td>
<td>3</td>
<td>01</td>
<td>16.1500</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>V001</td>
<td>20</td>
<td>1 A 1</td>
<td>9310140005</td>
<td>3</td>
<td>01</td>
<td>16.0000</td>
</tr>
<tr>
<td>V001</td>
<td>20</td>
<td>1 A 2</td>
<td>9310140003</td>
<td>3</td>
<td>01</td>
<td>16.0000</td>
</tr>
<tr>
<td>V001</td>
<td>30</td>
<td></td>
<td>3</td>
<td>01</td>
<td>16.1500</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>V001</td>
<td>30</td>
<td>1 A 1</td>
<td>0000000006</td>
<td>3</td>
<td>01</td>
<td>16.0000</td>
</tr>
<tr>
<td>V001</td>
<td>30</td>
<td>1 A 2</td>
<td>0000000005</td>
<td>3</td>
<td>01</td>
<td>16.0000</td>
</tr>
<tr>
<td>V001</td>
<td>40</td>
<td></td>
<td>3</td>
<td>02</td>
<td>16.1455</td>
<td>Basing comparison on this record</td>
</tr>
<tr>
<td>V001</td>
<td>40</td>
<td>D</td>
<td>0000000007</td>
<td>3</td>
<td>02</td>
<td>16.0000</td>
</tr>
<tr>
<td>V001</td>
<td>40</td>
<td>R</td>
<td>0000000007</td>
<td>3</td>
<td>02</td>
<td>16.0000</td>
</tr>
<tr>
<td>V001</td>
<td>40</td>
<td>1 A 1</td>
<td>0000000007</td>
<td>3</td>
<td>02</td>
<td>16.0000</td>
</tr>
<tr>
<td>V001</td>
<td>40</td>
<td>1 A 2</td>
<td>0000000007</td>
<td>3</td>
<td>02</td>
<td>16.0000</td>
</tr>
<tr>
<td>V001</td>
<td>40</td>
<td>3 F</td>
<td>0000000007</td>
<td>3</td>
<td>02</td>
<td>16.0000</td>
</tr>
</tbody>
</table>

See Also

- Setting Up Item Cost Levels (P4101)
- Setting Up Item Cost Levels
Processing Options for Item Cost Level Conversion

PROCESS CONTROL:
1. Enter the cost level to update to.

2. If updating to cost level '1', enter the branch to default the costs from. If updating from a cost level '3', the costs will default from the primary location.

3. Enter a '1' to run in final mode and update files. If blank, no file updates will occur.

PROCESS CONTROL (cont.):
4. Enter a '1' to print only exceptions on the edit report. A blank will print all items.

Setting Up Item Costs

You must provide cost information for each of your items for the system to track inventory costs. You specify the cost method that the system uses to determine an item's cost for:

- Sales/inventory transactions
- Purchase orders

For example, you can have the system use the weighted average cost method to determine the inventory cost for an item and use the last-in cost method to determine the item's unit cost for purchase orders.

For each cost method you assign to an item, you must also specify a cost. For example, to use the last-in cost method for an item, you must enter an initial cost for that cost method. The system updates the last-in cost based on the cost of the item as of the last receipt date.

For purchased items and outside operations, the main inputs to product costing are entered on Cost Revisions or Cost Components.

To set up item costs, complete the following tasks:

- Set up new cost methods
- Assign cost methods

See Also

- Updating Product Costs
To set up new cost methods

You can set up user defined codes to define your own cost methods. For example, you might want to establish a cost method to maintain a history of last year's costs. Codes 01 through 08 are hard-coded and cannot be altered. Codes 09 through 19 are reserved for J.D. Edwards use.

On User Defined Code Revisions

Complete the following fields:

- Code
- Description
- Description-2

On User Defined Code Revisions

Complete the following fields:

- Code
- Description
- Description-2
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Defined Code</td>
<td>This column contains a list of valid codes for a specific user defined code table. The number of characters permitted for a code appears in the column title.</td>
</tr>
<tr>
<td>Description</td>
<td>A user defined name or remark that describes a field.</td>
</tr>
<tr>
<td>Description-2</td>
<td>Additional text that further describes or clarifies a field in J.D. Edwards systems.</td>
</tr>
</tbody>
</table>

What You Should Know About

User Defined Code
This code defines cost methods that are used in the cost rollup and assigned to items. This is a two-character, alphanumeric field.

Description
Identifies the cost method.

Description 2
Identifies additional information about the cost method.

To assign cost methods

![icon](image)

Each time you add an item on the Cost Revisions form, the program displays all cost methods set up in the user defined code table 40/CM. This includes eight predefined methods that the program provides and any additional methods you create. You specify which methods to apply to an item by assigning a unit cost for each method.
On Cost Revisions (Enter/Change Item Costs)

1. Complete the following field for each applicable cost method:
 - Unit Cost

2. Enter the appropriate cost methods in the following fields:
 - Sales/Inventory
 - Purchasing

### Field	Explanation
Unit Cost | Depending on the cost method, this data can come from various sources, for example, purchasing or the cost rollup.

********** Form-specific information **********

The cost for one unit of this item, based on the corresponding cost method.
### Field	Explanation
Sales/Inventory Cost Method | A code (table 40/CM) that indicates the cost method the system uses to calculate the cost of goods sold for the item. Cost methods 01-08 are hard-coded.

 | **Form-specific information**
If you maintain costs at the item level, the system retrieves the default for this field from the data dictionary. If you maintain costs at the item and branch/plant level, the system retrieves the default from Branch/Plant Constants.

Purchasing Cost Method | A code (table 40/CM) that indicates the cost method the system uses to determine the cost of the item for purchase orders. Cost methods 01-08 are hard coded.

 | **Form-specific information**
If you maintain costs at the item level, the system retrieves the default for this field from the data dictionary. If you maintain costs at the item and branch/plant level, the system retrieves the default from Branch/Plant Constants.

What You Should Know About

Assigning a cost method without specifying a cost

If you assign a cost method for sales/inventory or purchasing that is not set up with a cost amount, a warning message appears. If you do not enter a cost amount for the cost method, the system assigns a zero cost.

Changing unit costs

You can change the dollar amount for any cost method at any time. If you change the amount for the cost method you used to track costs of goods sold, the system applies the new amount to your on-hand quantity of the item. It also creates journal entries to account for the difference between the old and the new amounts.
Updating unit costs
Certain programs update the dollar amount for cost methods 01–08. For example:

- **Last-in method** — The system interactively updates this unit cost based on the last cost of the item at the time of a purchase order receipt or after an inventory adjustment.
- **Weighted average method** — The system calculates and updates this amount by adding transaction quantities, adding transaction costs, and dividing the total cost by the total quantity.
- **Purchase method** — same as last-in method, but without landed costs.
- **Standard, current, and future methods** — updated by the Frozen Update program.

If you include additional costing methods, you must update them manually.

Removing a cost method
You can remove a cost method for an item if it is no longer applicable. If you try to remove your sales/inventory or purchasing cost method, the system displays a warning message. The system does not delete the cost method, but updates it to a zero cost.

Processing Options for Item Cost Revisions

DISPLAY CONTROL:
1. Enter a '1' for Speed Cost Update. If left blank, the screen will default to Item Cost Revisions.

DEFAULT VALUES:
2. Enter the default cost method to display when the Speed Cost Update format is selected.

PROCESS CONTROL:
3. Enter a '1' to prevent the standard cost from being changed.
Setting Up Cost Components

Use cost components to identify and track each element or type of cost for an item. Cost components that begin with A, B, and C are hard-coded by J.D. Edwards and cannot be changed. You can define an unlimited number of additional cost components to account for extra costs for an item, such as electricity or research and development. These user defined cost components can begin with any letter except A, B, or C. J.D. Edwards recommends, but does not require, that you use cost component D for outside operations. You can assign separate cost components by categories that are applicable to your business.

Although it might appear that you can set up extra cost components that begin with A, B, or C, the Simulate Cost Rollup program actually deletes these cost components. J.D. Edwards recommends that you define extra costs with an “X” for easy identification.

NOTE: Although it might appear that you can set up extra cost components that begin with A, B, or C, the Simulate Cost Rollup program actually deletes these cost components. J.D. Edwards recommends that you define extra costs with an “X” for easy identification.

See Also

- Assigning Values to User Defined Cost Components (P30026)
- Assigning Values to User Defined Cost Components
- Appendix A — Calculations in Cost Rollup
- About Calculations in Cost Rollup (P30820)
- About Calculations in Cost Rollup
To set up cost components

On User Defined Code Revisions

Complete the following fields:

- Code
- Description
- Description-2

On User Defined Code Revisions

Complete the following fields:

- Code
- Description
- Description-2

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Defined Code</td>
<td>This column contains a list of valid codes for a specific user defined code table. The number of characters permitted for a code appears in the column title.</td>
</tr>
<tr>
<td>Description</td>
<td>A user defined name or remark that describes a field.</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Description-2</td>
<td>Additional text that further describes or clarifies a field in J.D. Edwards systems.</td>
</tr>
</tbody>
</table>

What You Should Know About

User Defined Code
Use this code to identify all of the possible cost components that can be used in the cost rollup for an item.

Description
Identifies what each cost component represents.

Description 2
Additional text that further describes or clarifies the cost components.

Setting Up Manufacturing Constants

Setting Up Constants for Product Costing

You must establish information that is unique to your branch/plant. Use manufacturing constants to set options that determine:

- How to calculate overhead costs
- Whether to consider work center efficiency when calculating direct labor and overhead
- Whether overheads are calculated as percents or rates
See Also

- Setting Up Manufacturing Constants (P3009) in the Product Data Management Discrete Manufacturing Guide
- Setting Up Manufacturing Constants in the Product Data Management Discrete Manufacturing Guide

To set up manufacturing constants

On Manufacturing Constants

![Manufacturing Constants Window]

Complete the following fields:

- Overheads as Percents or Rates
- Modify cost by Work Center Efficiency
- Include Work Center Efficiency in Overhead
- Include Variable Labor Overhead in Cost
- Calculate Variable on Direct Labor
- Calculate Variable on Setup Labor
- Include Fixed Labor Overhead in Cost
- Calculate Fixed on Direct Labor
- Calculate Fixed on Setup Labor
Set Up Product Costing

- Include Variable Machine Overhead in Cost
- Include Fixed Machine Overhead in Cost

On Manufacturing Constants

Complete the following fields:

- Overheads as Percents or Rates
- Modify cost by Work Center Efficiency
- Include Work Center Efficiency in Overhead
- Include Variable Labor Overhead in Cost
- Calculate Variable on Direct Labor
- Calculate Variable on Setup Labor
- Include Fixed Labor Overhead in Cost
- Calculate Fixed on Direct Labor
- Calculate Fixed on Setup Labor
- Include Variable Machine Overhead in Cost
- Include Fixed Machine Overhead in Cost

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percents or Rates</td>
<td>Determines how values for overhead fields (cost components C1 through C4) in the Work Center Rate Revisions table (F30061) are expressed. Valid codes are:</td>
</tr>
<tr>
<td></td>
<td>R Express overhead values as rates (currency values). For example, enter five dollars as 5.00.</td>
</tr>
<tr>
<td></td>
<td>P Express overhead values as percents. Enter percents as whole numbers. For example, enter five percent as 5.00.</td>
</tr>
<tr>
<td>Modify Cost by Work Center Efficiency</td>
<td>Controls whether the cost rollup creates cost component B4 (for labor efficiency) based on the direct labor value (cost component B1) and the Work Center Efficiency percent from the Work Center Revisions table (F3006). Valid values are:</td>
</tr>
<tr>
<td></td>
<td>Y Yes. Create cost component B4.</td>
</tr>
<tr>
<td></td>
<td>N No. Do not create cost component B4.</td>
</tr>
<tr>
<td>Include Efficiency in Overhead</td>
<td>Determines whether the cost rollup includes work center efficiency when calculating overhead values. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>Y Include work center efficiency.</td>
</tr>
<tr>
<td></td>
<td>N Exclude work center efficiency.</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Include Variable Labor</td>
<td>Controls whether the cost rollup creates cost component C3 (for variable labor overhead) in the Item Cost Add-Ons table (F30026). Valid values are:</td>
</tr>
<tr>
<td>Overhead in Cost</td>
<td>Y Yes. Create cost component C3.</td>
</tr>
<tr>
<td></td>
<td>N No. Do not create cost component C3.</td>
</tr>
<tr>
<td>Calculate Variable on Direct</td>
<td>Determines whether the cost rollup includes direct labor expenses (cost component B1) in the total used to calculate variable labor overhead (cost component C3). Valid values are:</td>
</tr>
<tr>
<td>Labor</td>
<td>Y Include direct labor expenses.</td>
</tr>
<tr>
<td></td>
<td>N Exclude direct labor expenses.</td>
</tr>
<tr>
<td>Calculate Variable on Setup</td>
<td>Determines whether the cost rollup includes setup labor expenses (cost component B2) in the total used to calculate variable setup overhead (cost component C3). Valid values are:</td>
</tr>
<tr>
<td>Labor</td>
<td>Y Include setup labor expenses.</td>
</tr>
<tr>
<td></td>
<td>N Exclude setup labor expenses.</td>
</tr>
<tr>
<td>Include Fixed Labor</td>
<td>Controls whether the cost rollup creates cost component C4 (for fixed labor overhead) in the Item Cost Add-Ons table (F30026). Valid values are:</td>
</tr>
<tr>
<td>Overhead in Cost</td>
<td>Y Yes. Create cost component C4.</td>
</tr>
<tr>
<td></td>
<td>N No. Do not create cost component C4.</td>
</tr>
<tr>
<td>Calculate Fixed on Direct</td>
<td>Determines whether the cost rollup includes direct labor expenses (cost component B1) in the total used to calculate fixed labor overhead (cost component C4). Valid values are:</td>
</tr>
<tr>
<td>Labor</td>
<td>Y Include direct labor expenses.</td>
</tr>
<tr>
<td></td>
<td>N Exclude direct labor expenses.</td>
</tr>
<tr>
<td>Calculate Fixed on Setup</td>
<td>Determines whether the cost rollup includes setup labor expenses (cost component B2) in the total used to calculate fixed setup overhead (cost component C4). Valid values are:</td>
</tr>
<tr>
<td>Labor</td>
<td>Y Include setup labor expenses.</td>
</tr>
<tr>
<td></td>
<td>N Exclude setup labor expenses.</td>
</tr>
<tr>
<td>Include Variable Machine</td>
<td>Controls whether the cost rollup creates cost component C1 (for variable machine overhead) in the Item Cost Add-Ons table (F30026). Valid values are:</td>
</tr>
<tr>
<td>Overhead in Cost</td>
<td>Y Yes. Create cost component C1.</td>
</tr>
<tr>
<td></td>
<td>N No. Do not create cost component C1.</td>
</tr>
<tr>
<td>Include Fixed Machine</td>
<td>Controls whether the cost rollup creates cost component C2 (for fixed machine overhead) in the Item Cost Add-Ons table (F30026). Valid values are:</td>
</tr>
<tr>
<td>Overhead in Cost</td>
<td>Y Yes. Create cost component C2.</td>
</tr>
<tr>
<td></td>
<td>N No. Do not create cost component C2.</td>
</tr>
</tbody>
</table>
Setting Up Simulated Rates for a Work Center

You can effectively manage changes to a work center by tracking rates for labor and machine costs. You can update simulated rates for machine and labor hours by work center and cost method. The system uses these values in other manufacturing calculations, such as costed routings, labor rate variance reports, and direct labor efficiency reports.

Before You Begin

- You must set up your work centers on Enter/Change Work Centers before you can assign rates. See also Entering a Work Center in the Product Data Management Discrete Manufacturing Guide for complete information on setting up work centers.

See Also

- Entering Costing and Accounting Information (P30061) in the Product Data Management Discrete Manufacturing Guide
- Entering Costing and Accounting Information in the Product Data Management Discrete Manufacturing Guide

To set up simulated rates for a work center

On Enter/Change Work Center Rate
Complete the following fields:

- Work Center
- Cost Method
- Simulated Direct Labor
- Simulated Setup Labor
- Simulated Labor Variable Overhead
- Simulated Labor Fixed Overhead
- Simulated Machine Run
- Simulated Machine Variable Overhead
- Simulated Machine Fixed Overhead

On Enter/Change Work Center Rate

Complete the following fields:

- Work Center
- Cost Method
- Simulated Direct Labor
- Simulated Setup Labor
- Simulated Labor Variable Overhead
- Simulated Labor Fixed Overhead
- Simulated Machine Run
- Simulated Machine Variable Overhead
- Simulated Machine Fixed Overhead

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Center</td>
<td>A number that identifies a branch, plant, work center, or business unit.</td>
</tr>
<tr>
<td>Cost Method</td>
<td>A user defined code (system 40, type CM) that identifies a cost method. Cost methods 01 through 08 are hard-coded.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information. This code was entered on Branch/Plant Constants.</td>
</tr>
<tr>
<td>Direct Labor – Simulated</td>
<td>This rate, in cost per hour, is used with the Run Labor rate of the associated routing to calculate the standard run labor cost.</td>
</tr>
<tr>
<td>Setup Labor – Simulated</td>
<td>This rate or percent is used with the Setup Labor Hours rate of the associated routing to calculate the standard setup labor cost.</td>
</tr>
<tr>
<td>Labor Var. O/H – Simulated</td>
<td>This rate or percent, in cost per hour or percent of labor, is used to calculate the standard variable labor overhead cost.</td>
</tr>
<tr>
<td>Labor Fixed O/H – Simulated</td>
<td>This rate or percent, in cost per hour or percent of labor, is used to calculate the standard fixed labor overhead cost.</td>
</tr>
<tr>
<td>Machine Run – Simulated</td>
<td>This rate or percent is used with the Run Machine rate of the associated routing to calculate the standard machine labor cost.</td>
</tr>
<tr>
<td>Machine Var. O/H – Simulated</td>
<td>This rate or percent, in cost per hour or percent of machine, is used to calculate the future standard machine overhead cost.</td>
</tr>
<tr>
<td>Machine Fixed O/H – Simulated</td>
<td>This rate or percent, in cost per hour or percent of machine, is used to calculate the standard fixed machine overhead cost.</td>
</tr>
</tbody>
</table>

Exercises

See the exercises for this chapter.
Create Simulated Costs

Creating Simulated Costs

You can use the Product Costing system to calculate costs on a “what if” basis. You can view the effect of any changes you want to incorporate without altering the frozen standard costs. In addition, you can simulate cost change scenarios (rollups) as many times as needed before you finalize the changes during the frozen update process.

For example, you can use simulated rollups to:

- Simulate an increase in material costs
- Forecast the impact of changes to labor rates
- Develop strategies for pricing, contractual, or labor negotiation

The simulated rollup uses information from the following tables to generate costs:

Manufacturing Constants (F3009)
Two fields pertain to including overhead in cost component calculations. If they are set to Y, the rollup program modifies costs by overhead.

Work Center Rates (F30008)
The rollup program uses dollar amounts and percentages for the calculation of labor, machine, and overhead costs.

Routing Master (F3003)
Hours required for each operation and crew size values are from the Routing Master table.

Bill of Material Master (F3002)
The Bill of Material table provides information on the material required at each level of the bill.

Cost Ledger (F4105)
The Cost Ledger table provides costs for purchased items and outside operations.

The Simulate Cost Rollup program sums the costs of all the components in each level of the parent item’s bill of material to arrive at a total cost for the parent item.
Creating simulated costs consists of the following:

☐ Creating the Costing Exceptions report
☐ Creating a simulated rollup

Creating the Costing Exceptions Report

Before you roll up simulated costs, run the Costing Exceptions program. The program generates a report, which lists any problems associated with an item. An example of a problem is an item without a routing. You should correct the problems and run the Costing Exceptions program again before creating a simulated rollup.
Processing Options for Costing Exceptions

ERROR MESSAGES:

1. Enter the minimum message level to appear on the report.
 The error messages for this report are stored in the Vocabulary Overrides File (F0020).
 You may define the message severity level.

2. Enter the cost method to base costing errors on (ie., 01, 02). If left blank, cost method 07 (standard) will be used.

What You Should Know About Processing Options

Indicate in the processing options the minimum level of error messages that you want to include in the report. You can define severity levels and error messages specific to your company by using Vocabulary Overrides. For example, if labor **bours are zero** is important to your company, then you might want to assign this error message a higher severity level.

<table>
<thead>
<tr>
<th>Item</th>
<th>Item Description</th>
<th>T</th>
<th>Plant</th>
<th>Work Center</th>
<th>Oper</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>Acetone Bulk</td>
<td>B</td>
<td>DEPOT1</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>ADD</td>
<td>Fuel Additive</td>
<td>B</td>
<td>DEPOT1</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>ADD</td>
<td>Fuel Additive</td>
<td>B</td>
<td>DEPOT2</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>AERO50</td>
<td>Industrial Gases</td>
<td>S</td>
<td>27</td>
<td></td>
<td></td>
<td>50 – Manufactured item with no BOM</td>
</tr>
<tr>
<td>ARI1278</td>
<td>Engine Oil Filter</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>AR86745</td>
<td>Fuel Filter</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>AT102643</td>
<td>Hydraulic Oil Filter</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>AT105644</td>
<td>Transmission Oil Filter</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>AT158368</td>
<td>Pump Return Filter</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>AT10645</td>
<td>Front Axle Filter</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>AT753035</td>
<td>Air Filter – Primary</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>AT753036</td>
<td>Air Filter – Secondary</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>A200</td>
<td>Acetone-200LT Drum</td>
<td>S</td>
<td>DEPOT1</td>
<td></td>
<td></td>
<td>50 – Manufactured item with no routing</td>
</tr>
<tr>
<td>AJ330</td>
<td>A3T Series Fuse 30 Amp</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>AJ340</td>
<td>A3T Series Fuse 40 Amp</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>AJ350</td>
<td>A3T Series Fuse 50 Amp</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BASE4</td>
<td>Base Oil Bulk</td>
<td>B</td>
<td>DEPOT1</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BBAEB</td>
<td>Base Oil Bulk</td>
<td>B</td>
<td>DEPOT1</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BB303</td>
<td>Ball Bearing Fafnir 303KD</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BB310</td>
<td>Ball Bearing Fafnir 301KD</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BB311</td>
<td>Ball Bearing Fafnir 311KD</td>
<td>P</td>
<td>YARD</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BIKE</td>
<td>Bike Parent</td>
<td>K</td>
<td>10</td>
<td></td>
<td></td>
<td>50 – Manufactured item with no routing</td>
</tr>
<tr>
<td>BIKE10</td>
<td>10 Speed Bike</td>
<td>M</td>
<td>10</td>
<td></td>
<td></td>
<td>50 – Manufactured item with no routing</td>
</tr>
<tr>
<td>BIKE10B</td>
<td>10 Speed Bike-Blue</td>
<td>P</td>
<td>10</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BIKE10G</td>
<td>10 Speed Bike-Green</td>
<td>P</td>
<td>10</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BIKE15</td>
<td>15 Speed Bike</td>
<td>M</td>
<td>10</td>
<td></td>
<td></td>
<td>50 – Manufactured item with no routing</td>
</tr>
<tr>
<td>BIKE15B</td>
<td>15 Speed Bike-Blue</td>
<td>P</td>
<td>10</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BIKE15G</td>
<td>15 Speed Bike-Green</td>
<td>P</td>
<td>10</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BINDER</td>
<td>Spiral Binder</td>
<td>P</td>
<td>M55</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BINDER</td>
<td>Spiral Binder</td>
<td>P</td>
<td>M66</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BINDER</td>
<td>Spiral Binder</td>
<td>P</td>
<td>M80</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BINDER</td>
<td>Spiral Binder</td>
<td>P</td>
<td>M95</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
<tr>
<td>BINDER8ST01</td>
<td>Spiral Binder</td>
<td>P</td>
<td>M55</td>
<td></td>
<td></td>
<td>30 – No Cost Component 07– material cost</td>
</tr>
</tbody>
</table>
The text of the message can also be changed, but it must maintain the same meaning as the original message defined by J.D. Edwards. For example, you could change the message text *labor hours are zero* to *no labor hours*.

The following are examples of errors on which the system searches and the severity level to which they are assigned by J.D. Edwards.

<table>
<thead>
<tr>
<th>Severity</th>
<th>Message Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Manufactured item with no BOM</td>
</tr>
<tr>
<td>40</td>
<td>No rates for work center</td>
</tr>
<tr>
<td>30</td>
<td>No labor rate (for selected cost method)</td>
</tr>
<tr>
<td>30</td>
<td>No cost component – material cost</td>
</tr>
<tr>
<td>30</td>
<td>No setup labor rate (for selected cost method)</td>
</tr>
<tr>
<td>30</td>
<td>No variable overhead rate (for selected cost method)</td>
</tr>
<tr>
<td>30</td>
<td>No fixed overhead rate (for selected cost method)</td>
</tr>
<tr>
<td>30</td>
<td>No work center machine run rate (for selected cost method)</td>
</tr>
<tr>
<td>30</td>
<td>No work center machine variable overhead rate (for selected cost method)</td>
</tr>
<tr>
<td>30</td>
<td>No work center machine fixed overhead rate (for selected cost method)</td>
</tr>
<tr>
<td>20</td>
<td>Purchased part with BOM</td>
</tr>
<tr>
<td>20</td>
<td>BOM component with no quantity per</td>
</tr>
<tr>
<td>10</td>
<td>Setup hours are zero</td>
</tr>
<tr>
<td>10</td>
<td>Machine hours are zero</td>
</tr>
<tr>
<td>10</td>
<td>Labor hours are zero</td>
</tr>
<tr>
<td>10</td>
<td>Extras at standard and not at current or future or vice versa</td>
</tr>
<tr>
<td>10</td>
<td>No accounting lot size set up (future)</td>
</tr>
</tbody>
</table>

See Also

- *Technical Foundation Guide* for more information on changing the text of error messages
Creating a Simulated Rollup

Use the Simulate Cost Rollup program to calculate costs on a “what if” basis. Then, you can view the results on Enter/Change Cost Components.

You can perform simulated rollups and frozen updates for any cost method. However, the Manufacturing Accounting system only uses frozen standard costs (cost method 07).

To choose a bill of material and routing, the program searches first for a bill whose batch quantity matches the accounting cost quantity. If no such bill is found, the program uses the zero batch bill.

Cumulative Yield

Cumulative yield, defined on the routing, affects labor and machine hours in the rollup calculations. There must be enough hours expended in order to obtain 100% yield at the last operation. In a series of routings, the hours must be adjusted accordingly. The following example illustrates how costing of hours is affected by cumulative yield:

Cumulative Yield = 85% (0.85)

- Without yield:
 - Labor hours = 5
 - Machine hours = 5
 - Setup hours = 5

- With yield:
 - Labor hours = 5.88
 - Machine hours = 5.88
 - Setup hours = 5
Operation Scrap

Operation scrap, defined on the bill of material, affects material cost calculations in the rollup. There must be enough material at each operation order to obtain 100% yield at the last operation. When material cost is calculated, the quantity of the components is adjusted accordingly. The following example illustrates the effect of operation scrap on costing:

Parent = A
Component = B
Quantity per = 3
Cost of B = $5.00
Operation scrap = 8%
Cost of B rolled into parent item A = 3 x 1.08 x 5 = $16.20.

Unit of Measure Conversions

The program converts all units of measure to the primary unit of measure for the purpose of the rollup.

When one of the units of measure is a potent unit of measure, the conversion equation includes the standard potency value from Branch/Plant Manufacturing Data. The following example illustrates a conversion involving a potent unit of measure:

Component = B
Quantity per = 3
Primary unit of measure = GA (physical gallons)
Component unit of measure = GP (potent gallons)
Standard potency = 50%
Cost of B = $50.00 (from the Cost Ledger table)
Cost rolled into parent item = [(3 / .5) x 50] = $300.00

When converting from potent units to physical units, the program divides by the standard potency. When converting from physical to potent units, the program multiplies by the standard potency.
Before You Begin

- Create the Costing Exceptions report

What You Should Know About

Master Routings
The program uses the master routing for the item from the Routing Master table (P3003) if all of the following are true:
- The Master Routing field on the Manufacturing Constants form is set to Y for the branch.
- The parent item has a cross-reference item defined for master routing. (The cross-reference item must be defined with a cross-reference type of MR and the Address field must be blank.)
- The cross-reference item has an item routing defined.

See Also
- Updating Frozen Costs (P30835)
- Updating Frozen Costs
- Appendix A — Calculations in Cost Rollup
- About Calculations in Cost Rollup (P30820)
- About Calculations in Cost Rollup

Processing Options for Cost Simulation

AS OF DATE:
1. Enter the "As of" Date (If left blank the current date defaults).

COST ROLLUP MODE:
2. Enter the cost method to use for the roll up (i.e., 01, 02, 03). If left blank, cost method 07 (standard) will be defaulted.
3. Enter a '1' to simulate ONLY the Items selected and not explode the BOM to simulate all components.

COST ROLLUP BRANCH:
4. Enter the Branch the Cost Rollup is to process. ("*" equals all).
 - This is used to associate Bill of Material Items with Item Balance Items.

COST SIMULATION PRINT INFORMATION:
5. Enter one of the following:
- A '1' to print all items.
- A '2' to print changed items.
 (Default of blanks will not print a report.)

ROUTING CALCULATION INFORMATION:
6. Enter one of the following: ____________
- A '1' to clear and recalculate Labor and Overhead for Manufactured items only.
- A '2' to clear and recalculate Labor and Overhead for ALL items.
- A '3' to clear Labor and Overhead for ALL items, but recalculate Labor and Overhead for Manufactured items ONLY.
- Blanks will not recalculate Labor and Overhead.

OUTSIDE OPERATIONS (SUB-CONTRACTS) INFO:
7. Enter the cost method (ie., 01, 02, 03) to move from the Cost Ledger File to the Costing File. ____________
(Blanks will not move cost.)

PURCHASED ITEM INFORMATION:
8. Enter the cost method (ie., 01, 02, 03) to move from the Cost Ledger File to the Costing File. ____________
(Blanks will not move cost.)

PROCESS MANUFACTURING:
9. Enter a '1' to calculate costs of Co/By-Products. If left blank, it is assumed that Co/By-Products are not used, and cost rollup will not be performed for them.

DEFAULT DISPLAY DECIMALS:
10. Enter the number of decimals to use for display (0-4) in the cost simulation report (P30825). If left blank, 4 decimals will be used.

What You Should Know About Processing Options

Selected item rollup (3) This processing option allows you to simulate costs for a selected item or items, without recosting everything else in the bill of material. For example, you might have a new part that needs to be costed, but you do not want to recost everything else. If this processing option is set, the program uses the costs of the lower-level components to roll up the cost for the new part, but does not recost the lower-level components themselves.
Routing calculations (6) If a part changes from manufactured to purchased, select the option to clear labor and overhead for all items, but recalculate labor and overhead for manufactured items only. This ensures that labor and overhead are cleared for the changed items when you run the rollup.

Leave this processing option blank if you intend to manually enter B1–C4 costs. Otherwise, the Simulate Cost Rollup program overwrites manually entered costs.

See also Assigning Values to User Defined Cost Components.

Exercises
See the exercises for this chapter.
Work with Simulated Cost Components

After you have created simulated costs, review costing information to determine the effects of the current rollup scenario. Revise the costing information as necessary. When costs are correct, run the Frozen Update program.

Working with simulated cost components includes the following:

- Reviewing and revising simulated cost components
- Setting up standard rate and factor codes
- Assigning values to user defined cost components
- Reviewing the Standard Cost Simulation report
- Setting up cost bucket codes for a costed bill of material
- Reviewing a costed bill of material
- Setting up operation bucket codes for a costed routing
- Reviewing a costed routing
Reviewing and Revising Simulated Cost Components

You review costing information and set up simulated cost scenarios to help plan for future cost changes.

You can change only simulated costs. You can set a processing option if you want to manually maintain the routing cost components (B and C) and protect them from being overwritten.

For the system to calculate B and C cost components, all of the following conditions must be met:

- A routing operation must have a work center with rates in the Work Center Master table for the cost component to display.
- The type operation code on the routing must indicate a normal operation (that is, the type operation code is blank).
- The effective dates on the routing must be valid. The default for As Of date is today’s date.

See Also

- Creating Simulated Costs (P30820)
- Creating Simulated Costs
- Appendix A — Calculations in Cost Rollup
- About Calculations in Cost Rollup (P30820)
- About Calculations in Cost Rollup
To review simulated cost components

On Enter/Change Cost Components

1. Review or revise the following fields:
 - Item Cost Total — Simulated
 - Item Cost Total — Cost Ledger
 - Cost Method
 - Cost Type
 - Simulated Cost Net Added
 - Simulated Cost Total

2. Access the detail calculations for net added value of a routing cost component.
You might want to view the detail calculations for one of the net added values. These values are calculated from work center data, work center rates, and manufacturing constants.

The detailed calculation at the right indicates how the program calculates the cost component value for the operation sequence that is highlighted.

The detail calculations form shows real-time costs. These costs might be different from those shown on the Enter/Change Cost Components form, if you have changed the item's routing, work center rates, or manufacturing constants since you last ran the Simulate Cost Rollup program.

On Enter/Change Cost Components

1. Review or revise the following fields:
 - Item Cost Total — Simulated
 - Item Cost Total — Cost Ledger
 - Cost Method
 - Cost Type
 - Simulated Cost Net Added
 - Simulated Cost Total

2. Access the detail calculations for net added value of a routing cost component.

You might want to view the detail calculations for one of the net added values. These values are calculated from work center data, work center rates, and manufacturing constants.

The detailed calculation at the right indicates how the program calculates the cost component value for the operation sequence that is highlighted.
The detail calculations form shows real-time costs. These costs might be different from those shown on the Enter/Change Cost Components form, if you have changed the item’s routing, work center rates, or manufacturing constants since you last ran the Simulate Cost Rollup program.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Method</td>
<td>A user defined code (system 40, type CM) that identifies a cost method. Cost methods 01 through 08 are hard-coded.</td>
</tr>
</tbody>
</table>
| Cost Component | This code designates each element of cost for an item. An example of the coding structure is:

 - A1 Purchased raw material
 - B1 Direct labor routing sheet rollup
 - B2 Setup labor routing sheet rollup
 - C1 Variable burden routing sheet rollup
 - C2 Fixed burden routing sheet rollup
 - Dx Usually used for outside processing routing sheet rollup
 - Xx Usually used for extra add-ons, such as electricity, water, and so forth

 The optional add-on computations usually operate with the type “X” extra add-ons. This cost structure allows you to use an unlimited number of cost components to calculate alternative cost rollups. The system then associates these cost components with one of six user defined summary cost buckets.

 \[\text{Form-specific information} \]

 The field to the right of the code describes the cost. |
| Net Added Cost | Used to calculate cost during the simulation process. \[\text{Form-specific information} \]

 This is the cost to build this item at this level in the bill of material. This cost does not include materials (lower-level components). The heading above the Net Added and Total columns indicates if the costs are simulated or frozen values. |
| Total Component Cost| For the designated cost method, used to calculate the cost of all the lower levels during the simulation process. \[\text{Form-specific information} \]

 This is the sum of the net added cost at this level plus the sum of the total costs of the item’s direct components (which includes those items’ lower-level component costs.) The heading above the Net Added and Total columns indicates if the costs are simulated or frozen values. |
What You Should Know About

Item cost totals

The Item Cost Total values are the total costs of all cost elements as of the last cost simulation for simulated values, and as of the last frozen update for frozen values. Simulated and frozen values are from the Item Cost Components table.

If the program finds a discrepancy between the Frozen Total and Cost Ledger Total fields, it highlights both fields.

See also Reviewing the Cost Integrity Report for more information on comparing frozen and cost ledger values.

Deleting costs

You must delete costs at the bill of material level at which they occur. For example, you cannot delete costs for lower-level components by locating the parent item. Instead, locate the component item number and remove the costs for the component. The corresponding cost change to the higher level components and parent item do not adjust until you run the Simulate Cost Rollup program.

To delete outside processing costs (usually cost component Dx), delete the cost component from the routing. Then, delete the cost component and net added value from Enter/Change Cost Components.

Processing Options for Enter/Change Cost Components

INPUT PROCESSING:

1. Enter a '1' to allow input into the routing calculated Cost Types. (i.e. Cost Types: B1, B2, B3, B4, C1, C2, C3, C4)

OUTSIDE OPERATIONS (SUB-CONTRACT) INFO:

2. Enter the cost method to be used for Sub-contracted items *OFxx (i.e., 01,02,03). If left blank will use same method as for parent.
What You Should Know About Processing Options

Input processing (1) If you want to maintain B1–C4 cost components manually, set this processing option to 1. If you do not set this processing option, you cannot enter data into the B1–C4 fields. The fields are instead calculated by the Simulate Cost Rollup program.

If you do maintain these components manually, the values are overwritten by the Simulate Cost Rollup program, unless you have set the processing options for that program to not calculate labor and overhead.

See also Creating a Simulated Rollup.

Setting Up Standard Rate and Factor Codes

Standard rate and factor codes represent overhead costs or other indirect costs that cannot be attributed directly to a certain production process or operation, but must be accounted for in product costing for an item. These types of costs include utilities, insurance, research and development costs, rent or lease costs, or other overhead or general operating costs. Rate and factor codes are user defined.

The Simulate Cost Rollup program uses the rates and factors you define to calculate some of the costs that appear on Enter/Change Cost Components.

See Also

- Assigning Values to User Defined Cost Components (P30026)
• Assigning Values to User Defined Cost Components

To set up standard rate and factor codes

On Standard Rates or Standard Factors

Complete the following fields:

• Code
Work with Simulated Cost Components

- Description
- Rate

On Standard Rates or Standard Factors

Complete the following fields:

- Code
- Description
- Rate

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character Code</td>
<td>This column contains a list of valid codes for a specific user defined code table. The number of characters permitted for a code appears in the column title.</td>
</tr>
<tr>
<td>Description</td>
<td>A user defined name or remark that describes a field.</td>
</tr>
<tr>
<td>Rate</td>
<td>A code used to define rate information in the General Rate/Message Records table (F00191).</td>
</tr>
</tbody>
</table>

What You Should Know About

User Defined Code A rate or factor code used to define the value in the Rate field, as follows:

- Rate code — On Enter/Change Cost Components, the value is used in conjunction with the Factor Code and Factor Amount fields to calculate extra costs.
- Factor code — On Enter/Change Cost Components, the value is used in conjunction with the Rate Code and Rate Amount fields to calculate extra costs.

Description A description of the rate code or factor code.

Rate This rate is used to calculate extra costs.
Assigning Values to User Defined Cost Components

You can define net added values for user defined extra costs in one of the following ways:

- Manually assign a value
- Assign a predefined value by entering a standard rate code
- Assign a calculated value based on another component’s total value
- Assign a calculated value based on another component’s net added value
- Assign a calculated value by multiplying a rate and factor

You can also change cost information or delete extra cost components.
See Also

- What Are Cost Components? (P30026)
- Setting Up Cost Components (P00051, 30/CA)
- Setting Up Cost Components

► To manually assign a net added value

On Enter/Change Cost Components

Complete the following fields:

- Cost Component
- Simulated Cost Net Added

The program writes manually entered costs to the Total field when you run the Simulate Cost Rollup program.

NOTE: The program writes manually entered costs to the Total field when you run the Simulate Cost Rollup program.

On Enter/Change Cost Components

Complete the following fields:

- Cost Component
- Simulated Cost Net Added

The program writes manually entered costs to the Total field when you run the Simulate Cost Rollup program.

NOTE: The program writes manually entered costs to the Total field when you run the Simulate Cost Rollup program.

► To assign a predefined value

Use user defined rate codes and factor codes to identify net added costs. For example, to calculate the value for cost component X5, the program uses the amount defined for rate code R&D.
Use user defined rate codes and factor codes to identify net added costs.

On Enter/Change Cost Components

Complete the following fields:

- Cost component
- Factor Code
- Factor Amount
- Rate Code
- Rate Amount

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor Code</td>
<td>A user defined code (system 30, type CF) used to retrieve factor information from the Generic Rate table (F00191). This value is used in conjunction with the Rate Code and Factor Amount fields to calculate extra costs (electricity, taxes, tooling changes, and so on).</td>
</tr>
<tr>
<td>Factor Amount</td>
<td>A generic factor used to calculate data for standard cost component extras.</td>
</tr>
<tr>
<td>Rate Code</td>
<td>A user defined code (system 30, type CR) used to retrieve rate information from the Generic Rate table (F00191). This value is used in conjunction with the Factor Code and Factor Amount fields to calculate extra costs (electricity, taxes, tooling changes, and so on).</td>
</tr>
<tr>
<td>Rate Amount</td>
<td>A generic rate used to calculate extra costs, such as electricity and taxes.</td>
</tr>
</tbody>
</table>
To assign a calculated value based on another component's total value

The system can calculate the net added value based on the total for an existing cost component. The system calculates this value when you enter the data on Enter/Change Cost Components. The costs are then rolled up into the cost of the item when you run Simulate Cost Rollup.

On Enter/Change Cost Components

1. Complete the following fields:
 - Cost component
 - Factor Code
2. Complete one of the following fields:
 - Rate Code
 - Rate Amount

In the Factor Code field, enter an ampersand (&) followed by the cost component code. Then, enter either a rate code or a rate amount. The program retrieves the total value for the cost component and multiplies it by the rate value indicated.

NOTE: In the Factor Code field, enter an ampersand (&) followed by the cost component code. Then, enter either a rate code or a rate amount. The program retrieves the total value for the cost component and multiplies it by the rate value indicated.

On Enter/Change Cost Components

1. Complete the following fields:
 - Cost component
 - Factor Code
2. Complete one of the following fields:
 - Rate Code
 - Rate Amount

In the Factor Code field, enter an ampersand (&) followed by the cost component code. Then, enter either a rate code or a rate amount. The program retrieves the total value for the cost component and multiplies it by the rate value indicated.

NOTE: In the Factor Code field, enter an ampersand (&) followed by the cost component code. Then, enter either a rate code or a rate amount. The program
retrieves the total value for the cost component and multiplies it by the rate value indicated.

To assign a calculated value based on another component’s net added value

The system can calculate the net added value based on the net added value for an existing cost component. The system calculates this value when you enter the data on Enter/Change Cost Components. The costs are then rolled up into the cost of the item when you run Simulate Cost Rollup.

On Enter/Change Cost Components

1. Complete the following fields:
 - Cost Component
 - Factor Code

2. Complete one of the following fields:
 - Rate Code
 - Rate Amount

 In the Factor Code field, enter an asterisk (*) followed by the cost component code. Then, enter either a rate code or a rate amount. The program retrieves the net added value for the cost component and multiplies it by the rate value indicated.

 NOTE: In the Factor Code field, enter an asterisk (*) followed by the cost component code. Then, enter either a rate code or a rate amount. The program retrieves the net added value for the cost component and multiplies it by the rate value indicated.

On Enter/Change Cost Components

1. Complete the following fields:
 - Cost Component
 - Factor Code

2. Complete one of the following fields:
 - Rate Code
 - Rate Amount

 In the Factor Code field, enter an asterisk (*) followed by the cost component code. Then, enter either a rate code or a rate amount. The program retrieves the net added value for the cost component and multiplies it by the rate value indicated.
NOTE: In the Factor Code field, enter an asterisk (*) followed by the cost component code. Then, enter either a rate code or a rate amount. The program retrieves the net added value for the cost component and multiplies it by the rate value indicated.

To assign a calculated value by multiplying a rate and factor

The system can calculate the net added value by multiplying a rate amount and factor amount. If you enter both amounts, the system multiplies the two numbers to calculate the net added cost for that cost component for that item.

On Enter/Change Cost Components

1. Complete the following field:
 - Cost Component

2. Complete one or both of the following fields:
 - Factor Amount
 - Rate Amount

On Enter/Change Cost Components

1. Complete the following field:
 - Cost Component

2. Complete one or both of the following fields:
 - Factor Amount
 - Rate Amount

Reviewing the Standard Cost Simulation Report

The Simulate Cost Rollup program generates the Standard Cost Simulation report. The report shows the previous cost of the item, the simulated rolled up cost, and the variance between the two.

After reviewing the simulated costs, you revise incorrect information and create simulated costs again to include the changes.
<table>
<thead>
<tr>
<th>Item Number</th>
<th>Item Description</th>
<th>Type Cost Desc.</th>
<th>Net Added</th>
<th>Total</th>
<th>Net Added</th>
<th>Total</th>
<th>Net Added</th>
<th>Total</th>
<th>Net Added</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Pen & Pencil Set</td>
<td>B1 Direct Lab</td>
<td>.0979</td>
<td>.0979</td>
<td>.0979</td>
<td>.0979</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B3 Machine Ru</td>
<td>.0338</td>
<td>.0338</td>
<td>.0338</td>
<td>.0338</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B4 Labor Effi</td>
<td>.0184</td>
<td>.0184</td>
<td>.0096</td>
<td>.0096</td>
<td>.0088</td>
<td>.0088</td>
<td>.0088</td>
<td>.0088</td>
<td>47.826-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1 Machine Va</td>
<td>.0271</td>
<td>.0271</td>
<td>.0271</td>
<td>.0271</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 Machine Fi</td>
<td>.0294</td>
<td>.0294</td>
<td>.0294</td>
<td>.0294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3 Labor Vari</td>
<td>23.6307</td>
<td>23.6307</td>
<td>23.6255</td>
<td>23.6255</td>
<td>.0052</td>
<td>.0052</td>
<td>.0052</td>
<td>.0052</td>
<td>.022-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4 Labor Fixe</td>
<td>24.8594</td>
<td>24.8594</td>
<td>24.8550</td>
<td>24.8550</td>
<td>.0044</td>
<td>.0044</td>
<td>.0044</td>
<td>.0044</td>
<td>.017-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UOM. EA</td>
<td>73.4967</td>
<td>73.4967</td>
<td>73.4783</td>
<td>73.4783</td>
<td>.0184</td>
<td>.0184</td>
<td>.0184</td>
<td>.0184</td>
<td>.025-</td>
</tr>
<tr>
<td>1008A</td>
<td>Drawer Labels</td>
<td>A1 Material</td>
<td>.0344</td>
<td>.0344</td>
<td>.0100</td>
<td>.0100</td>
<td>.0244</td>
<td>.0244</td>
<td>.0244</td>
<td>.0244</td>
<td>70.930-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UOM. EA</td>
<td>.0344</td>
<td>.0344</td>
<td>.0100</td>
<td>.0100</td>
<td>.0244</td>
<td>.0244</td>
<td>.0244</td>
<td>.0244</td>
<td>70.930-</td>
</tr>
<tr>
<td>1122</td>
<td>CRT AS/400 Compati</td>
<td>A1 Material</td>
<td>362.5410</td>
<td>362.5410</td>
<td>362.5410</td>
<td>362.5410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B1 Direct Lab</td>
<td>24.1500</td>
<td>24.1500</td>
<td>31.4938</td>
<td>124.6875</td>
<td>79.835-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2 Setup Labo</td>
<td>24.1500</td>
<td>24.1500</td>
<td>31.4938</td>
<td>124.6875</td>
<td>79.835-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B3 Machine Ru</td>
<td>24.1500</td>
<td>24.1500</td>
<td>31.4938</td>
<td>124.6875</td>
<td>79.835-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Setting Up Cost Bucket Codes for a Costed Bill of Material

Use cost bucket codes to combine the material and value-added cost for each item into one group. With cost buckets, you can total cost components by groups according to their use. In addition, you can assign a cost bucket sequence number to each cost component to tell the system how to group the costs on costed bill inquiries and reports.

Each cost bucket can contain several defined cost components. Column sequence is defined by the number in the Description field. For example, you might define the columns (buckets) and user defined codes as follows:

Column 1 — Purchase
- Cost component A1 (material)
- A2 (scrap)
- D1 (outside operations)

Column 2 — Labor
- B1 (direct labor)
- B2 (setup labor)
- B4 (labor efficiency)

Column 3 — Machine
- B3 (machine run)

Column 4 — Overhead
- C1 (machine variable)
- C2 (machine fixed)

Column 5 — Extras
- X1 (taxes)
- X2 (electricity)

<table>
<thead>
<tr>
<th>Bucket #</th>
<th>Title</th>
<th>Cost Components Included in Buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column 1</td>
<td>Purchase</td>
<td>Cost components A1 (material), A2 (scrap), and D1 (outside operations)</td>
</tr>
<tr>
<td>Column 2</td>
<td>Labor</td>
<td>Cost components B1 (direct labor), B2 (setup labor), and B4 (labor efficiency)</td>
</tr>
<tr>
<td>Column 3</td>
<td>Machine</td>
<td>Cost component B3 (machine run)</td>
</tr>
<tr>
<td>Column 4</td>
<td>Overhead</td>
<td>Cost components C1 (machine variable) and C2 (machine fixed)</td>
</tr>
<tr>
<td>Column 5</td>
<td>Extras</td>
<td>Cost components X1 (taxes) and X2 (electricity)</td>
</tr>
</tbody>
</table>

► To set up cost bucket codes

On User Defined Code Revisions

Complete the following fields:
- Code — Cost Component
- Description — Sequence Number
Work with Simulated Cost Components

- Description-2

On User Defined Code Revisions

Complete the following fields:

- Code — Cost Component
- Description — Sequence Number
- Description-2

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Defined Code</td>
<td>This column contains a list of valid codes for a specific user defined code table. The number of characters permitted for a code appears in the column title.</td>
</tr>
<tr>
<td>Description</td>
<td>A user defined name or remark that describes a field.</td>
</tr>
<tr>
<td>Description-2</td>
<td>Additional text that further describes or clarifies a field in J.D. Edwards systems.</td>
</tr>
</tbody>
</table>

What You Should Know About

Code — Cost Component

Designates the cost components to be grouped.

Description — Sequence Number

Specifies in what column (bucket) each cost component is grouped.

Description 2

The name that you want to appear as the heading for the cost bucket column on costed bill inquiries and reports. You only need to enter this title once for each sequence number. If the program finds more than one name for a bucket, it uses the name defined for the last cost component that it accumulates into the cost bucket.
Effective cost and profit projection depend on accurate and comprehensive item cost information. Use Costed Bill Inquiry to view costs for both parent items and components to assist you in budgeting resources and planning for future cost of items.

The program displays summarized costs for the direct components of a parent item, and net added and total costs for the parent item:

- For the parent item, the costs displayed are the net added cost components from the Cost Components table.
- For each component, the costs displayed are calculated based on the as of date from the bill of material and the cost method used. The program uses the as of date to ignore obsolete component lines in the bill of material.

For example, you can view all costs of manufacturing a parent item, including assembly, subassembly, and component costs. In addition, the manufacturing cost of a component is divided into five user defined categories for precise costing calculations:

- Purchase
- Labor
- Machine
- Overhead
- Extras

The program can accumulate purchase costs for up to 500 components on each bill of material. Components beyond 500 are not included in the costing process.

NOTE: The program can accumulate purchase costs for up to 500 components on each bill of material. Components beyond 500 are not included in the costing process.
To review a costed bill of material

On Costed Bill Inquiry

<table>
<thead>
<tr>
<th>Component Item</th>
<th>Purchase</th>
<th>Labor</th>
<th>Machine</th>
<th>Overhead</th>
<th>Extras</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>333</td>
<td>26.88</td>
<td>0.99</td>
<td>2.13</td>
<td>3.71</td>
<td></td>
<td>33.92</td>
</tr>
<tr>
<td>121</td>
<td>26.88</td>
<td>0.94</td>
<td>1.35</td>
<td>2.30</td>
<td></td>
<td>31.70</td>
</tr>
<tr>
<td>42.0</td>
<td>52.30</td>
<td>0.25</td>
<td>1.10</td>
<td>3.21</td>
<td></td>
<td>57.21</td>
</tr>
<tr>
<td>64.0</td>
<td>52.30</td>
<td>10.05</td>
<td>0.05</td>
<td></td>
<td></td>
<td>73.10</td>
</tr>
<tr>
<td>123</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>122</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.84</td>
</tr>
</tbody>
</table>

1. Review the following fields:
 - As of
 - Cost Method
 - Requested Quantity
 - Unit Of Measure
 - Skip to Sequence Number
 - Component Item
 - Purchase
 - Labor
 - Machine
 - Overhead
 - Extras
 - Total (row)
 - Total (column)

2. Access the fold area.
3. Review the following fields:
 - Effective – From Date
 - Effective – To Date
 - Feature Cost Percent
 - Operation Scrap Percent
 - Quantity
 - Percent of Scrap

4. Access the costed bill information for the components.
5. Toggle to review frozen or simulated costs.
6. Access Cost Bucket Key (Columns) to review an item’s cost buckets.

See also *Setting Up Cost Bucket Codes for a Costed Bill of Material.*

On Costed Bill Inquiry

1. Review the following fields:
 - As of
 - Cost Method
 - Requested Quantity
 - Unit Of Measure
• Skip to Sequence Number
• Component Item
• Purchase
• Labor
• Machine
• Overhead
• Extras
• Total (row)
• Total (column)

2. Access the fold area.

3. Review the following fields:
 • Effective – From Date
 • Effective – To Date
 • Feature Cost Percent
 • Operation Scrap Percent
 • Quantity
 • Percent of Scrap

4. Access the costed bill information for the components.

5. Toggle to review frozen or simulated costs.

6. Access Cost Bucket Key (Columns) to review an item’s cost buckets.

 See also Setting Up Cost Bucket Codes for a Costed Bill of Material.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>As of Date</td>
<td>This field is used for effectivity checking. Enter a specific date to display documents (orders, bills of material, routings, as applicable) that are effective on or after that date. The current system date is the default, but you can enter any future or past date. Form-specific information The system uses the bill of material that is effective as of this date.</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Item Number</td>
<td>A number that the system assigns to an item. It can be in short, long, or 3rd item number format. [Form-specific information] [In the header, this is the item number of the parent. In the detail area, these are the item numbers of the components.]</td>
</tr>
<tr>
<td>Quantity – Requested Quantity</td>
<td>The number of parent items you want to process. The system calculates lower-level values in quantity per the number of parent items requested. For example, if 3 components are needed for a parent item, and the requested quantity is 10, the system plans for 30 components. [Form-specific information] [This is the number of parent items for which you want to view cost breakdowns. Costs are figured in quantity per the parent item.]</td>
</tr>
<tr>
<td>Unit of Measure</td>
<td>A user defined code (system 00/ type UM) that indicates in what quantity an inventory item is expressed; for example, CS (case) or BX (box).</td>
</tr>
<tr>
<td>Skip to Seq. No.</td>
<td>A number that indicates the sequence of the components on a bill of material. It initially indicates the relative sequence in which a component was added to a kit or single level bill of material. You can modify this number to change the sequence in which the components appear on the bill of material. [Skip To fields allow you to enter a component line number that you want to begin the display of information.] [Form-specific information] [You can enter a component line number with which to begin the display.]</td>
</tr>
<tr>
<td>Purchase</td>
<td>Work Amount field for the Manufacturing System. [Form-specific information] [This is cost bucket No. 1 as defined for user defined code 30/CB, Cost Buckets. You can view the cost components assigned to the cost bucket. Cost extras must be defined in cost buckets to be included in the amounts in this display. The total of this column appears at the bottom of the screen in the “Totals” row. The heading above the columns indicates which costs are displayed: frozen or simulated. You can toggle between simulated and frozen values.]</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Labor</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 2 as defined for user defined code 30/CB,</td>
</tr>
<tr>
<td></td>
<td>Cost Buckets. You can view the cost components assigned to the cost bucket.</td>
</tr>
<tr>
<td></td>
<td>Cost extras must be defined in cost buckets to be included in the amounts</td>
</tr>
<tr>
<td></td>
<td>in this display. The total of this column appears at the bottom of the</td>
</tr>
<tr>
<td></td>
<td>screen in the “Totals” row. The heading above the columns indicates which</td>
</tr>
<tr>
<td></td>
<td>costs are displayed: frozen or simulated. You can toggle between simulated</td>
</tr>
<tr>
<td></td>
<td>and frozen values.</td>
</tr>
<tr>
<td>Machine</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 3 as defined for user defined code 30/CB,</td>
</tr>
<tr>
<td></td>
<td>Cost Buckets. You can view the cost components assigned to the cost bucket.</td>
</tr>
<tr>
<td></td>
<td>Cost extras must be defined in cost buckets to be included in the amounts</td>
</tr>
<tr>
<td></td>
<td>in this display. The total of this column appears at the bottom of the</td>
</tr>
<tr>
<td></td>
<td>screen in the “Totals” row. The heading above the columns indicates which</td>
</tr>
<tr>
<td></td>
<td>costs are displayed: frozen or simulated. You can toggle between simulated</td>
</tr>
<tr>
<td></td>
<td>and frozen values.</td>
</tr>
<tr>
<td>Overhead</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 4 as defined for user defined code 30/CB,</td>
</tr>
<tr>
<td></td>
<td>Cost Buckets. You can view the cost components assigned to the cost bucket.</td>
</tr>
<tr>
<td></td>
<td>Cost extras must be defined in cost buckets to be included in the amounts</td>
</tr>
<tr>
<td></td>
<td>in this display. The total of this column appears at the bottom of the</td>
</tr>
<tr>
<td></td>
<td>screen in the “Totals” row. The heading above the columns indicates which</td>
</tr>
<tr>
<td></td>
<td>costs are displayed: frozen or simulated. You can toggle between simulated</td>
</tr>
<tr>
<td></td>
<td>and frozen values.</td>
</tr>
<tr>
<td>Extras</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 5 as defined for user defined code 30/CB,</td>
</tr>
<tr>
<td></td>
<td>Cost Buckets. You can view the cost components assigned to the cost bucket.</td>
</tr>
<tr>
<td></td>
<td>Cost extras must be defined in cost buckets to be included in the amounts</td>
</tr>
<tr>
<td></td>
<td>in this display. The total of this column appears at the bottom of the</td>
</tr>
<tr>
<td></td>
<td>screen in the “Totals” row. The heading above the columns indicates which</td>
</tr>
<tr>
<td></td>
<td>costs are displayed: frozen or simulated. You can toggle between simulated</td>
</tr>
<tr>
<td></td>
<td>and frozen values.</td>
</tr>
<tr>
<td>Cost Bucket Totals</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Contain system calculated totals for item costs, that is, for each component</td>
</tr>
<tr>
<td></td>
<td>and parent item.</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Effective – From Date | A date that indicates one of the following:
 - When a component part goes into effect on a bill of material
 - When a routing step goes into effect as a sequence on the routing for an item
 - When a rate schedule is in effect
 The default is the current system date. You can enter future effective dates so that the system plans for upcoming changes. Items that are no longer effective in the future can still be recorded and recognized in Product Costing, Shop Floor Control, and Capacity Requirements Planning. The Material Requirements Planning system determines valid components by effectivity dates, not by the bill of material revision level. Some forms display data based on the effectivity dates you enter. |
| Quantity | The number of units to which the system applied the transaction.

 Form-specific information
 This is the quantity per assembly and indicates how many of a component are used in the parent. |
| Effective – Thru Date | A date that indicates one of the following:
 - When a component part is no longer in effect on a bill of material
 - When a routing step is no longer in effect as a sequence on the routing for an item
 - When a rate schedule is no longer active
 The default is December 31 of the default year defined in the Data Dictionary for Century Change Year. You can enter future effective dates so that the system plans for upcoming changes. Items that are no longer effective in the future can still be recorded and recognized in Product Costing, Shop Floor Control, and Capacity Requirements Planning. The Material Requirements Planning system determines valid components by effectivity dates, not by the bill of material revision level. Some forms display data based on the effectivity dates you enter. |
| Feature Cost Percent | A percentage used by the Simulated Cost Rollup program (P30820) to calculate the cost of a feature or phantom item as a percentage of the total cost of the parent.
 Enter the percentage as a whole number: 5% as 5.0 |
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Scrap Percent</td>
<td>The system uses this value to increase or decrease the amount of materials to account for loss within the operation. The system updates this value on Enter/Change Bill of Material (P3002) when you run the Planned Yield Update program (P3093). The system calculates this value by compounding the yield percentages from the last operation to the first operation. Use a processing option in Enter/Change Routing to enable the system to calculate the component scrap percent.</td>
</tr>
<tr>
<td>Percent – Percent of Scrap</td>
<td>Scrap is the percentage of unusable component material created during the manufacture of a particular parent item. During DRP/MPS/MRP generation, the system increases gross requirements for the component item to compensate for the loss. Note: Shrink is the expected loss of parent items (and hence, components) due to the manufacturing process. Shrink and scrap are compounded to figure the total loss in the manufacture of a particular item. Accurate shrink and scrap factors can help to produce more accurate planning calculations. Enter percents as whole numbers: 5% as 5.0</td>
</tr>
</tbody>
</table>

What You Should Know About

Displayed costs

This program calculates the cost associated with each cost component in the same way as the Simulate Cost Rollup program.

See also Appendix A — Calculations in Cost Rollup.

The top line (the parent) is the net added cost of the parent from the Cost Components table. The lines for the components are the cost breakdown for all next level components. The totals across the bottom are the total costs of the parent item from the Cost Components table. The rightmost bottom total is the total of all costs for the parent item.

The costs on Costed Bill Inquiry are real-time costs, so they can change if you update the bill of material or routing for an item. The Enter/Change Cost Components form displays the costs computed when you run Simulate Cost Rollup. As a result, the values might differ from those on Costed Bill Inquiry if you have changed the bill of material, routing, or manufacturing constants since you last ran the rollup.
Displayed costs

This program calculates the cost associated with each cost component in the same way as the Simulate Cost Rollup program.

See also About Calculations in Cost Rollup.

The top line (the parent) is the net added cost of the parent from the Cost Components table. The lines for the components are the cost breakdown for all next level components. The totals across the bottom are the total costs of the parent item from the Cost Components table. The rightmost bottom total is the total of all costs for the parent item.

The costs on Costed Bill Inquiry are real-time costs, so they can change if you update the bill of material or routing for an item. The Enter/Change Cost Components form displays the costs computed when you run Simulate Cost Rollup. As a result, the values might differ from those on Costed Bill Inquiry if you have changed the bill of material, routing, or manufacturing constants since you last ran the rollup.

Processing Options for Costed Bill of Material

DEFAULT DISPLAY DECIMALS:
1. Enter the number of decimals to use for display (0-4). If left blank, 4 decimals will be used.

Setting Up Operation Bucket Codes for a Costed Routing

Use operation bucket codes to combine component costs in each step in the routing. That is, you can group operation costs into totals that appear on costed routing inquiries and reports.

For example, you might track labor costs by separate cost components that represent setup, run, and overhead labor for an item. You could combine these cost components into one total cost for labor on the costed routing inquiry or report for the item by assigning the same sequence number to each cost component.
To set up operation bucket codes

On User Defined Code Revisions

Complete the following fields:

- Code — Cost Component
- Description — Sequence Number
- Description—2

On User Defined Code Revisions

Complete the following fields:

- Code — Cost Component
- Description — Sequence Number
- Description—2

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Defined Code</td>
<td>This column contains a list of valid codes for a specific user defined code table. The number of characters permitted for a code appears in the column title.</td>
</tr>
<tr>
<td>Description</td>
<td>A user defined name or remark that describes a field.</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Description-2</td>
<td>Additional text that further describes or clarifies a field in J.D. Edwards systems.</td>
</tr>
</tbody>
</table>

What You Should Know About

Code — Cost Component
Designates the cost components to be grouped.

Description — Sequence Number
Specifies in what column (bucket) each cost component is grouped.

Description 2
The name that you want to appear as the heading for the operation bucket column on costed routing inquiries and reports. You only need to enter this title once for each sequence number. If the program finds more than one name for a bucket, it uses the name defined for the last cost component that it accumulates into the operation bucket.

Reviewing a Costed Routing

Use Costed Routing Inquiry to review the summarized costs of an item for each operation in the routing. This information can help you effectively manage production costs. For example, you can:

- View the work center responsible for an operation
- Determine if a work center performs multiple operations
- Display simulated or frozen costs for labor values for cost methods
- Calculate the totals for all costs by cost categories
The program can accumulate purchase costs for up to 500 components on each bill of material. Components beyond 500 are not included in the costing process.

NOTE: The program can accumulate purchase costs for up to 500 components on each bill of material. Components beyond 500 are not included in the costing process.

To review a costed routing

On Costed Routing Inquiry

1. Review the following fields:
 - As of Date
 - Cost Method
 - Requested Quantity
 - Unit Of Measure
 - Up to Operation Sequence
 - Extras 1–3
 - Extras 4–7
 - Work Center
 - Operation Sequence Number
 - Labor
- Machine
- Overhead
- Components
- Total (row)
- Total (column)

2. Access the detail form.

![Detail Form]

3. On Detail, review the following fields:
 - Category
 - (Cost) Type
 - Description
 - Cost

4. On Costed Routing Inquiry, toggle to review frozen or simulated costs.

5. Access Operation Bucket Key to review an item’s operation buckets.

![Operation Bucket Key Form]
See also Setting Up Operation Bucket Codes for a Costed Routing.

On Costed Routing Inquiry

1. Review the following fields:
 - As of Date
 - Cost Method
 - Requested Quantity
 - Unit Of Measure
 - Up to Operation Sequence
 - Extras 1–3
 - Extras 4–7
 - Work Center
 - Operation Sequence Number
 - Labor
 - Machine
 - Overhead
 - Components
 - Total (row)
 - Total (column)

2. Access the detail form.

3. On Detail, review the following fields:
 - Category
 - (Cost) Type
 - Description
 - Cost

4. On Costed Routing Inquiry, toggle to review frozen or simulated costs.

5. Access Operation Bucket Key to review an item's operation buckets.

See also Setting Up Operation Bucket Codes for a Costed Routing.
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>As of Date</td>
<td>This field is used for effectivity checking. Enter a specific date to display documents (orders, bills of material, routings, as applicable) that are effective on or after that date. The current system date is the default, but you can enter any future or past date.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>The routing that is effective as of this date is used.</td>
</tr>
<tr>
<td>Quantity – Requested</td>
<td>The number of parent items you want to process. The system calculates lower-level values in quantity per the number of parent items requested. For example, if 3 components are needed for a parent item, and the requested quantity is 10, the system plans for 30 components.</td>
</tr>
<tr>
<td>Quantity</td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>This is the number of parent items for which you want to see cost breakdowns. Costs are figured in quantity per the parent item.</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Skip to/Up to Op Seq</td>
<td>In routings, used to sequence the fabrication or assembly steps in the manufacture of an item. You can track costs and charge time by operation. In bills of material, designates the routing step in the fabrication or assembly process that requires a specified component part. You define the operation sequence after you create the routing for the item. The Shop Floor Control system uses this field in the backflush/preflush by operation process. In engineering change orders, used to sequence the assembly steps for the engineering change. Skip To fields allow you to enter an operation sequence that you want to begin the display of information. You can use decimals to add steps between existing steps. For example, use 12.5 to add a step between steps 12 and 13. In the process, the sequence number that produces the intermediate product.</td>
</tr>
<tr>
<td>Extras 1–3</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
</tbody>
</table>

Form-specific information

Top of form: A processing option controls whether “Skip to” or “Up to” operation sequence mode is in effect.

In “Skip to” mode, the system uses an entered operation sequence number as the starting point when displaying operations, and displays the total from that point forward on the total line.

In “Up to” mode, the system uses an entered operation sequence number as the cutoff for displaying operations. The total for all operations up to and including the operation sequence number entered appears on the total line.

Bottom of form: The Op Seq field contains a number that indicates the order of each step in the manufacturing operation.

Form-specific information

Cost bucket No. 1 as defined for user defined code 30/CO, Operation, Buckets. A processing option controls whether the system adds cost buckets 1 and 2 (at the top of the form) into the grand total of all costs for the parent item at the bottom of the form.
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extras 4–7</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 2 as defined for user defined code 30/CO, Operation Buckets. A processing option controls whether the system adds cost buckets 1 and 2 (at the top of the form) into the grand total of all costs for the parent item at the bottom of the form.</td>
</tr>
<tr>
<td>Work Center</td>
<td>A number that identifies a branch, plant, work center, or business unit.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>This is the business unit assigned to the work center for the operation sequence listed.</td>
</tr>
<tr>
<td>Labor</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 3 as defined for user defined code 30/CO, Operation Buckets. The total of this column appears at the bottom of the form in the "Totals" row. The heading above the columns indicates which costs are displayed: frozen or simulated. You can toggle between simulated and frozen values. You also can view a detailed breakdown of the cost components added to determine the total for the work center.</td>
</tr>
<tr>
<td>Machine</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
</tbody>
</table>
| | Cost bucket No. 4 as defined for user defined code 30/CO, Operation Buckets. The total of this column appears at the bottom of the screen in the "Totals" row. The heading above the columns indicates which costs are displayed: frozen or simulated. You can toggle between simulated and frozen values. You also can view a detailed breakdown of the cost components added to arrive at the total for the work center.
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>.. Form-specific information ..</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 5 as defined for user defined code 30/CO, Operation Buckets. The total of this column appears at the bottom of the screen in the “Totals” row. The heading above the columns indicates which costs are displayed: frozen or simulated. You can toggle between simulated and frozen values. You can also view a detailed breakdown of the cost components added to arrive at the total for the work center.</td>
</tr>
<tr>
<td>Components</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>.. Form-specific information ..</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 6 as defined for user defined code 30/CO, Operation Buckets. The total of this column appears at the bottom of the screen in the "Totals" row. The heading above the columns indicates which costs are displayed: frozen or simulated. You can toggle between simulated and frozen values. You can also view a detailed breakdown of the cost components added to arrive at the total for the work center.</td>
</tr>
<tr>
<td>Cost Bucket Totals</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>.. Form-specific information ..</td>
</tr>
<tr>
<td></td>
<td>This column contains system-calculated totals for each row of costs, that is, for each operation sequence. The totals across the bottom of the form are the totals of each cost bucket. The rightmost bottom total is the total of all costs for the routing for an item.</td>
</tr>
</tbody>
</table>
What You Should Know About

Displayed costs

This program calculates the cost associated with each cost component in the same way as the Simulate Cost Rollup program.

See also Appendix A — Calculations in Cost Rollup.

The costs on Costed Routing Inquiry are real-time costs, so they can change if you update the bill of material or routing for an item. The Enter/Change Cost Components form displays the costs computed when you run Simulate Cost Rollup. As a result, the values might differ from those on Costed Routing Inquiry if you have changed the bill of material, routing, or manufacturing constants since you last ran the rollup.

Displayed costs

This program calculates the cost associated with each cost component in the same way as the Simulate Cost Rollup program.

See also About Calculations in Cost Rollup.

The costs on Costed Routing Inquiry are real-time costs, so they can change if you update the bill of material or routing for an item. The Enter/Change Cost Components form displays the costs computed when you run Simulate Cost Rollup. As a result, the values might differ from those on Costed Routing Inquiry if you have changed the bill of material, routing, or manufacturing constants since you last ran the rollup.

Master routings

The program uses the master routing for the item from the Routing Master table (F3003) if all of the following are true:

- The Master Routing field on the Manufacturing Constants form is set to Y for the branch.
- The parent item has a cross-reference item defined for master routing. (The cross-reference item must be defined with a cross-reference type of MR and the Address field must be blank.)
- The cross-reference item has an item routing defined.
Processing Options for Costed Routing

OUTSIDE OPERATIONS (SUB-CONTRACTS) INFO:
1. Enter the cost method (ie., 01, 02, 03) to be used for Sub-Contracted Items. (Blanks will default to a “01”)

PURCHASED ITEM INFORMATION:
2. Enter the cost method (ie., 01, 02, 03) to be used for Purchased Items. (Blanks will default the cost from the Mode, ie., Standard Cost.)

OPERATION SEQUENCE DISPLAY:
3. Enter a ‘1’ to display the costs ‘UP TO’ and including the operation sequence entered in the ‘Skip to’ video field. If left blank, the costs will be displayed beginning with the entered operation’s costs.

TOTALING OPTIONS:
4. Enter a ‘1’ to include cost buckets 1 and 2 in the total. If left blank, the total will only include cost buckets 3-6.

COSTED RESOURCES/CO/BY PRODUCTS OPTION:
5. Enter the number of decimals to display (0-4) in the Costed Resources/Co/By Products window. If left blank, 4 decimals will be used.

Exercises
See the exercises for this chapter.
Update Frozen Costs

After you perform simulated rollups to determine the effect of changes, you can update your frozen costs with simulated values by running a frozen update. Most companies run this program at the beginning of a new fiscal year to create their manufacturing costs for the next fiscal period.

The Frozen Update program uses the costs generated when you run Simulate Cost Rollup to:

- Update unit costs in the Cost Ledger table (F4105) for the cost method selected
- Update frozen costs in the Cost Components table (F30026) for the cost method selected
- Create an IB record in the Item Ledger table (F4111) if the cost method selected matches the sales/inventory cost method for an item
- Update labor and overhead rates in the Work Center Master table (F30006)
- Write journal entries to the Account Ledger table (F0911) in either detail or summary format
Item Cost Ledger Exception report

The program produces this report if it finds any general ledger errors while formatting the journal entries. An error message is only printed once for the same combination of AAI number, account number, and G/L category code. Correct any errors and run the Frozen Update program again.

Frozen Standard Update report

This report shows the effect of the inventory revaluation based on the changes made to the cost revisions records for the inventory items. You can print all items or only those that have a cost change. You can run the report in proof mode or final mode. The report provides the following information:

- Old and new costs for each updated item
- Variances between old and new costs
- Item quantity on hand
- Net amount of change in cost
- Summary of the amount changed by item general ledger category (facilitates any manual journal entries required)
- G/L exception errors
- Whether G/L transactions have been written
- Either G/L subtotals by company and G/L category code or G/L category code only

An item ledger record is written if the cost method selected for update is the standard (07) cost method or the sales/inventory cost method. The item ledger record indicates a change in inventory value for the updated items. The number of item ledger records written depends on the cost level of the item, which is defined in the Item Master table (F4101). For example, items at cost level 2 would have an item ledger record for each branch/plant at which they are defined, because costs can differ by branch/plant.

You can perform simulated rollups and frozen updates for any cost method. However, the Manufacturing Accounting system uses frozen standard costs (method 07).

This program uses the costs generated by the most recent version of the Simulate Cost Rollup program. If you have changed information since the last simulated cost rollup, those changes will not be reflected by the frozen update.

NOTE: This program uses the costs generated by the most recent version of the Simulate Cost Rollup program. If you have changed information since the last simulated cost rollup, those changes will not be reflected by the frozen update.
Journal Entries

The program creates journal entries in either detail or summary format that match in amount with the item ledger records. Thus the program maintains integrity between the Item Ledger and the Account Ledger. Use the Item Ledger/Account Integrity report to verify this integrity.

The process flow is as follows:

- The program creates a journal entry only if an item ledger record has been written.
- An item ledger record is written only if an item cost ledger record has been updated.
- An item cost ledger record is updated only if a cost component record has been updated.

The program accesses the following AAIIs to obtain the object account.

- 4134 (inventory)
 - Debit to show increase in item cost
 - Credit to show decrease in item cost
- 4136 (expense or COGS)
 - Debit to show expense or loss
 - Credit to show income or gain

<table>
<thead>
<tr>
<th>AAI table number</th>
<th>Description</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>4134</td>
<td>Inventory</td>
<td>Debit to show increase in item cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Credit to show decrease in item cost</td>
</tr>
<tr>
<td>4136</td>
<td>Expense or COGS</td>
<td>Debit to show expense or loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Credit to show income or gain</td>
</tr>
</tbody>
</table>

Detail Journal Entries

If you choose detail format, the program creates matching debit and credit account ledger records for every item ledger record created. Use the detail format when you want a detailed audit trail. However, consider that the potential volume is large, possibly causing disk space problems.

Summary Journal Entries

If you choose summary format, the program creates debit and credit records by subtotals of company, general ledger category code, and transaction type. Use the summary format to reduce the amount of detail in the general ledger. You can still run a report as a detailed audit trail.
Before You Begin

☐ Ensure that you have set up item cost levels on the initial Item Master Information form. See Setting Up Item Cost Levels.
Item Cost Ledger Update – Final Mode

Batch Number . . FINAL
Batch Date . . .
J/E Mode Detailed
Cost Method 07 Standard

<table>
<thead>
<tr>
<th>G/L</th>
<th>Item Number</th>
<th>Branch</th>
<th>Location</th>
<th>Lot</th>
<th>Cat</th>
<th>Old Cost</th>
<th>New Cost</th>
<th>Variance</th>
<th>Qty on Hand</th>
<th>Net Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>111</td>
<td>M30</td>
<td>IN20</td>
<td></td>
<td></td>
<td>13.0000</td>
<td>13.0000</td>
<td>.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>M30</td>
<td>IN20</td>
<td></td>
<td></td>
<td>14.8527</td>
<td>14.8527</td>
<td>.0000</td>
<td>140960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>122</td>
<td>M30</td>
<td>IN20</td>
<td></td>
<td></td>
<td>.0700</td>
<td>.0700</td>
<td>.0000</td>
<td>597336</td>
<td></td>
</tr>
<tr>
<td></td>
<td>123</td>
<td>M30</td>
<td>IN20</td>
<td></td>
<td></td>
<td>4.0000</td>
<td>4.0000</td>
<td>.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>212</td>
<td>M30</td>
<td>IN20</td>
<td></td>
<td></td>
<td>15.9607</td>
<td>15.9607</td>
<td>.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>333</td>
<td>M30</td>
<td>IN20</td>
<td></td>
<td></td>
<td>261.5500</td>
<td>260.5662</td>
<td>1.0838</td>
<td>5931</td>
<td>6428.02</td>
</tr>
</tbody>
</table>

See Also

- **Creating Journal Entries** (*P31802*) for more information on detail and summary journal entries
- **Creating Journal Entries** for more information on detail and summary journal entries
- **Reviewing the Item Ledger/Account Integrity Report** (*P41543*)
- **Reviewing the Item Ledger/Account Integrity Report**

Release A7.3 (June 1996)
Processing Options for Frozen Update

UPDATE INFORMATION:
1. Enter a ‘1’ to update costs. __________
 Blanks assume ‘Proof Mode’ and
 no updating will occur.

2. Enter the cost method to update in
 the Cost Components and Item Cost
 Ledger files (ie., 01, 02, 03). __________
 If left blank, cost method 07
 (standard) will be defaulted.

3. Enter a ‘1’ to update ONLY the
 Items selected and not explode the
 BOM to update all components.

4. Enter a ‘1’ to update the Work
 Center Rates in the Work Center
 Rates File. (Default of blanks
 will not update the Rates.) __________

5. Enter the Branch to be processed. __________
 (’*’ equals all.)

PROCESS MANUFACTURING:
6. Enter a ‘1’ to update costs of
 Co/By-Products. If left blank,
 it is assumed that Co/By-Products
 are not used, and frozen cost
 update will not be performed for
 Co/By-Products. __________

ACCOUNT LEDGER INFORMATION:
7. Enter one of the following: __________
 A ‘1’ to write Detailed G/L
 transactions (by Item).
 A ‘2’ to write Summarized G/L
 transactions (by Account).
 If left blank, no G/L transactions
 will be written.

8. Enter the General Ledger Date. __________
 Blanks default to the current date.

REPORT OPTIONS:
9. Enter one of the following: __________
 A ‘1’ to print all items.
 A ‘2’ to print changed items only.
 If left blank all items will
 print.

What You Should Know About Processing Options

Work Center Rates (4) The program updates work center rates only if you run it in final mode.
Reviewing Costing Information

Reviewing Costing Information

After you run the Frozen Update program to revalue your inventory, you should review the updated costing information. These costs stay in effect until you run the update again.

Complete the following tasks:

☐ Review frozen cost components

☐ Review the item ledger, which displays the item balance transactions for an item

☐ Review the Single Level Costed Bill of Material report

☐ Review the Multi-Level Costed Bill of Material report

☐ Review the Cost Components report, which lists the component costs and total cost for each item by cost component

☐ Review the Cost Integrity report, which compares the total frozen cost and the unit cost of an item and lists variances

Reviewing Frozen Cost Components

After you run the Frozen Update program to revalue your inventory, review the frozen costs.
To review frozen cost components

On Enter/Change Cost Components

1. Review the following field:
 - Item Cost Total Frozen

2. Access the fold area.
3. Toggle to review frozen or simulated costs.

On Enter/Change Cost Components

1. Review the following field:
 - Item Cost Total Frozen
2. Access the fold area.
3. Toggle to review frozen or simulated costs.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount – Frozen Cost</td>
<td>The accumulated standard cost rolled up from lower</td>
</tr>
<tr>
<td>Rollup</td>
<td>levels.</td>
</tr>
</tbody>
</table>

Reviewing the Item Ledger

Use Item Ledger to view Item Balance (IB) transactions for an item. The Frozen Update program transfers IB transactions to the item ledger if all of the following are true:

- The frozen cost changes in the Cost Ledger table (F4105) for a given cost method
- That cost method is used as the sales/inventory cost method
- A quantity on hand exists

You can view ledger information in five formats, depending on the processing options you choose:

- Real-time history (standard format)
- Running quantity balance (to review transactions with running quantity balances as of a specified general ledger date)
- Running amount balance (to review transactions with running amount balances as of a specified general ledger date)
- Location item ledger format (for warehouse management)
- Lot status, grade, potency item ledger format (for bulk inventory)

To review the item ledger

On Item Ledger

1. Enter IB in the following field:
 - Document Type
2. Access Running Balance to review running quantity balances.
Use this format to tie inventory balances to the general ledger or to view balance information as of a period or fiscal year end. The program calculates the balance and displays item ledger records by general ledger date in ascending order.

3. On Running Balance, review the following fields:
 - Date From G/L and Date Through G/L
 - Quantity Balance

4. Access the Details form.

For manufacturing transactions (document types IM and IC), the G/L date and batch number do not appear until you process journal entries for manufacturing.
accounting. These transactions do not appear in the running balance until you run Journal Entries for Work in Process or Completions.

NOTE: For manufacturing transactions (document types IM and IC), the G/L date and batch number do not appear until you process journal entries for manufacturing accounting. These transactions do not appear in the running balance until you run Journal Entries for Work in Process or Completions.

On Item Ledger

1. Enter IB in the following field:
 - Document Type
2. Access Running Balance to review running quantity balances.

 Use this format to tie inventory balances to the general ledger or to view balance information as of a period or fiscal year end. The program calculates the balance and displays item ledger records by general ledger date in ascending order.

3. On Running Balance, review the following fields:
 - Date From G/L and Date Through G/L
 - Quantity Balance
4. Access the Details form.

For manufacturing transactions (document types IM and IC), the G/L date and batch number do not appear until you process journal entries for manufacturing accounting. These transactions do not appear in the running balance until you run Journal Entries for Work in Process or Completions.

NOTE: For manufacturing transactions (document types IM and IC), the G/L date and batch number do not appear until you process journal entries for manufacturing accounting. These transactions do not appear in the running balance until you run Journal Entries for Work in Process or Completions.
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Type</td>
<td>A user defined code (system 00/type DT) that identifies the origin and purpose of the transaction. J.D. Edwards reserves several prefixes for document types, such as vouchers, invoices, receipts, and time sheets. The reserved document type prefixes for codes are: P Accounts payable documents R Accounts receivable documents T Payroll documents I Inventory documents O Order processing documents J General ledger/joint interest billing documents The system creates offsetting entries as appropriate for these document types when you post batches.</td>
</tr>
<tr>
<td>Date From</td>
<td>The beginning date in the date range. This is the date starting with which you want the system to display information.</td>
</tr>
<tr>
<td>Thru Date</td>
<td>The ending date in the date range. This is the date through which you want the system to display information. If you leave this field blank, the system uses the current period.</td>
</tr>
<tr>
<td>Quantity Amount Total</td>
<td>The total quantity requested.</td>
</tr>
</tbody>
</table>
Processing Options for Item Ledger Inquiry

DISPLAY OPTIONS:
1. Enter the format to be displayed: ____________
 1 = Running Quantity Balance format.
 2 = Running Dollar Balance format.
 3 = Cost Item Ledger format.
 4 = Location Item Ledger format.
 5 = Lot Status/Grade/Potency Item Ledger format.
 If left blank, the Cost Item Ledger format will be displayed.

DEFAULT VALUES: ____________
2. Enter the default document type upon entering the video. If left blank, a ‘*’ will default for all document types.

3. Enter a ‘1’ to display Item Ledger entries in ascending date and time order. If left blank, the entries will be displayed in descending date and time order. (This option does NOT apply to Running Balance formats.)

4. Enter a ‘1’ to search by Original Document Type. If left blank, the search will be done by G/L Document Type.

DREAM WRITER VERSIONS:
Enter a DREAM Writer Version for the following programs. (ZJDE0001) is the default.
5. Load & Delivery Ledger Inq P49511

Reviewing a Single Level Costed Bill of Material Report

G 3014 Daily Product Costing
Choose Periodic Product Costing

G 3023 Periodic Product Costing
Choose Costed Bill
Use the Costed Bill program to create a report that lists the total cost of parent items detailed by component costs. Use this information to develop more accurate financial plans by monitoring product costs.

You can customize this report to help you in your analysis. For example, you can:

- Process the report using any valid cost method
- Process the report for simulated or frozen costs
- Specify a date for the program to use as a criterion when accessing information
- Print all product costs and user defined categories on the report
- Print the report for one branch, selected branches, or all branches

This report presents the component costs in five user defined cost buckets. In addition, the program totals the cost buckets for each item. Each cost bucket can contain several cost components, depending on how you set up your user defined codes.

```
<table>
<thead>
<tr>
<th>Item Number/Description</th>
<th>Branch</th>
<th>Quantity</th>
<th>UM Purchase</th>
<th>Labor</th>
<th>Machine</th>
<th>Overhead</th>
<th>Extras</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAK SHELF SIDES</td>
<td>M30</td>
<td>1</td>
<td>4.6500</td>
<td>1.0575</td>
<td>1.8567</td>
<td></td>
<td></td>
<td>7.5642</td>
</tr>
<tr>
<td>1x10x6' OAK S4S</td>
<td>M30</td>
<td>1</td>
<td>13.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.0000</td>
</tr>
<tr>
<td>Parent Item Number</td>
<td></td>
<td></td>
<td>13.0000</td>
<td>4.6500</td>
<td>1.0575</td>
<td>1.8567</td>
<td></td>
<td>20.5642</td>
</tr>
<tr>
<td>Batch Quantity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounting Cost Qty.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

See Also

- Setting Up Cost Bucket Codes for a Costed Bill of Material (P00051, 30/CB)
Processing Options for Costed Bill of Material Report

BILL EFFECTIVITY:
1. Enter the “As of” date for the Bill of Material. If left blank the current date will be used.

COSTING OPTIONS:
2. Enter the Cost Method to be used (ie., 01, 02, 03). Blanks will default to 07 cost method (standard).
3. Enter the Costs to be printed. 1 = Simulated 2 = Frozen
4. Enter the number of units to Cost. (i.e. 10,000) Bottom

Reviewing a Multi-Level Costed Bill of Material Report

Use the Multi-Level Costed Bill program to create a report that lists the total cost of parent items detailed by component costs. Use this information to develop more accurate financial plans by monitoring product costs.

You can customize this report to help you in your analysis. For example, you can:

- Specify the number of units that the program costs when you run the report
- Process the report using any valid cost method
- Process the report for simulated or frozen costs
- Specify a date for the program to use as a criterion when accessing information
- Print all product costs and user defined categories on the report
Print the report for one branch, selected branches, or all branches

This report presents the component costs in five user defined cost buckets. In addition, the program totals the cost buckets for each item. Each cost bucket can contain several cost components, depending on how you set up your user defined codes.

<table>
<thead>
<tr>
<th>Level</th>
<th>Item Number/Branch</th>
<th>Description</th>
<th>B T Purchase</th>
<th>Labor</th>
<th>Machine</th>
<th>Overhead</th>
<th>Extras</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2214</td>
<td>CRT Keyboard Flat P I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2215</td>
<td>CRT 3180 Style K P I</td>
<td>42.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M30 Qty P</td>
<td>1 EA Unit Cost</td>
<td>42.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2216</td>
<td>CRT AT Style Key P I</td>
<td>42.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M30 Qty P</td>
<td>1 EA Unit Cost</td>
<td>42.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Batch Quantity</td>
<td>EA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accounting Cost Qty.</td>
<td>1 EA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5120</td>
<td>Oak Desk With Ch M I</td>
<td>677.3400</td>
<td>368.1829</td>
<td>24.7071</td>
<td>595.1073</td>
<td></td>
<td>1665.3373</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4277</td>
<td>FRAMING KIT, 30x P I</td>
<td>47.3900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47.3900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M30 Qty P</td>
<td>1 EA Unit Cost</td>
<td>47.3900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4133</td>
<td>SIDE ASSY, 30x30 M I</td>
<td>140.0000</td>
<td>206.8332</td>
<td>1.5340</td>
<td>364.3240</td>
<td></td>
<td>712.6912</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M30 Qty P</td>
<td>4 EA Unit Cost</td>
<td>8.0313</td>
<td>8.344</td>
<td></td>
<td></td>
<td>16.6757</td>
</tr>
<tr>
<td>.2</td>
<td>3390</td>
<td>LEG OAK, 1.5x1.5 M I</td>
<td>22.8800</td>
<td>41.1520</td>
<td>.3250</td>
<td>79.7746</td>
<td></td>
<td>143.9316</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M30 Qty P</td>
<td>2 EA Unit Cost</td>
<td>20.7760</td>
<td>.1625</td>
<td>39.8873</td>
<td></td>
<td>60.8258</td>
</tr>
<tr>
<td>.3</td>
<td>2611</td>
<td>OAK BOARD, 2x2x1 P I</td>
<td>10.2300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.2300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M30 Qty P</td>
<td>1 EA Unit Cost</td>
<td>10.2300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.3</td>
<td>2417</td>
<td>LEG CAP, 1.5x1.5 P I</td>
<td>.9100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.9100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M30 Qty P</td>
<td>1 EA Unit Cost</td>
<td>.9100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>3386</td>
<td>SIDE PANEL, OAK, M I</td>
<td>12.7200</td>
<td>2.1250</td>
<td>.0585</td>
<td>2.4720</td>
<td></td>
<td>17.3755</td>
</tr>
</tbody>
</table>

See Also

- Setting Up Cost Bucket Codes for a Costed Bill of Material (P00051, 30/CB)
- Setting Up Cost Bucket Codes for a Costed Bill of Material
Processing Options for Multi-Level Costed Bill Report

BILL EFFECTIVITY:
1. Enter the “As of” date for the Bill of Material. If left blank the current date will be used.

COSTING OPTIONS:
2. Enter the Cost Method to be used (ie., 01, 02, 03).
 Blanks will default to cost method 07 (standard).
3. Enter the Costs to be printed.
 1 = Simulated
 2 = Frozen
4. Enter the number of units to Cost.
 (i.e. 10,000) More

PRINT OPTIONS:
5. Enter a ‘1’ to print an indented Costed Bill Report.
6. Enter a ‘1’ to print a “Unit Cost” line of detail. If left blank, only one line of detail will be printed for each item.

Reviewing the Cost Components Report

Use the Cost Components program to create a report that displays the component costs and total cost for each item. This information comes from the Enter/Change Cost Components form.

You can customize this report to meet your specific needs. For example, you can:

- Process the report using any valid cost method.
- Review the cost type and description by item number.
- Identify items.
- Define the exact information to appear on the report from data selection options. For example, you can select specific items and choose whether to include factors or rates for add-on and extra costs.

- Print the report for a single item, several items, or all items.

You can include any of the cost components you define for an item in the cost bucket that you specify.

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Item Description</th>
<th>Cut Type</th>
<th>Cost Description</th>
<th>. . Simulated Cost . .</th>
<th>Optional Add-On Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1007</td>
<td>MAHOGANY, 8x10x.50in</td>
<td>A1</td>
<td>Material</td>
<td>4.2200</td>
<td></td>
</tr>
<tr>
<td>1008</td>
<td>PLYWOOD, 30x60x.50, ACA</td>
<td>A1</td>
<td>Material</td>
<td>3.9300</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>1x10x6' OAK S4S</td>
<td>A1</td>
<td>Material</td>
<td>13.0000</td>
<td></td>
</tr>
<tr>
<td>1122</td>
<td>CRT AS/400 Compatible</td>
<td>A1</td>
<td>Material</td>
<td>362.5410</td>
<td></td>
</tr>
<tr>
<td>1127</td>
<td>OAK BOARD, 12x24x.75</td>
<td>A1</td>
<td>Material</td>
<td>5.2800</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>OAK SHELF TOP/BOTTOM</td>
<td>A1</td>
<td>Material</td>
<td>13.0000</td>
<td></td>
</tr>
</tbody>
</table>

See Also

- Setting Up Cost Bucket Codes for a Costed Bill of Material (P00051, 30/CB)
- Setting Up Cost Bucket Codes for a Costed Bill of Material
Processing Options for Cost Component Print

Select one of the following for printing
Enter a '1' for Simulated Cost
Enter a '2' for Frozen Cost

Reviewing the Cost Integrity Report

Use the Cost Integrity program to create a report that compares the sum of the frozen standard cost components on the Enter/Change Cost Components form and the unit cost in the Cost Ledger table (F4105) and lists variances. For cost level 3 items, the program uses the unit cost for the primary location of the item in the Cost Ledger table.
Processing Options for Cost Component/Ledger Integrity

REPORT OPTIONS:

1. Enter a '1' to see report detail for all items processed. If left blank, only items with cost discrepancies will be printed.
Work with Additional Costing Features

Working with Additional Costing Features

There are several additional features you can use to work with costing information. You can copy costs for an item from one cost method to another. You can reset your simulated costs to their frozen values. You can update the costs in your sales orders with the most current cost values. You can update costs for an item globally, using an amount or a percentage change.

Working with additional costing features consists of:

- Copying costs
- Copying frozen costs to simulated costs
- Updating sales order price/cost
- Updating product costs

Copying Costs

Use Copy Costs to copy the simulated or frozen costs and work center rates from one cost method to the simulated costs for another cost method. You can also copy work center rates between cost methods within the same work center.

Based on the processing option values, the program copies information in the Cost Components table (F30026) and the Work Center Rates table (F30008) to update costs for the cost method and branches you specify. You can only
replace simulated costs, not frozen costs, in the copy to branch. Run the Frozen Update program to update frozen costs.

To ensure acceptable results, J.D. Edwards recommends that you plan your choices carefully and write them down before you enter them. This program does not generate a report of the updated costs.

CAUTION: To ensure acceptable results, J.D. Edwards recommends that you plan your choices carefully and write them down before you enter them. This program does not generate a report of the updated costs.

Processing Options for Copy Cost Values

COPY FROM INFORMATION:
1. Enter the Branch/Plant to copy:
2. Select the Cost Method to copy: (ie., 01, 02, 03)
 Blanks will not copy costs.
3. Select the Costs to copy:
 1 = Simulated
 2 = Frozen

COPY TO INFORMATION:
4. Enter the Branch/Plant to update:
5. Select the Cost Method to update: (ie., 01, 02, 03)
 Blanks will not update costs.

Copying Frozen Costs to Simulated Costs

For the cost method and branches you choose, use Reset Simulated Costs to reset simulated costs to their frozen values. Resetting costs allows you to begin a simulation again.
Processing Options for Cost Simulation - Refresh

1. Enter the Branch for Cost Reset processing ("*" for all branches).

2. Enter a ‘1’ to reset rates for Cost Centers also. This will reset ALL Cost Centers that have rates for the selected cost method(s).
 (A blank will not reset Cost Center rates.)

Updating Sales Order Price/Cost

Use the Update Sales Price/Cost program to update the unit and extended cost in your sales orders with the most current cost values specified in the Cost Ledger table (F4105). If multi-currency processing is active in the system, the program updates the Foreign Unit and Extended Cost fields as well. Use data selections to designate particular information to be processed.

When you run this program, the system updates your live sales order detail information. Therefore, J.D. Edwards recommends extreme caution in setting up data selections.

CAUTION: When you run this program, the system updates your live sales order detail information. Therefore, J.D. Edwards recommends extreme caution in setting up data selections.

See Also

- Updating Prices for a Customer (P42950) in the Sales Order Management Guide
- Updating Prices for a Customer in the Sales Order Management Guide
Processing Options for Update Sales Order Cost/Price

UPDATE OPTIONS:
1. Enter ‘1’ to update Sales Order with the most current unit cost. If left blank, will not update cost.
2. Enter ‘1’ to update the currency exchange rate. Please note that only the domestic amounts will be re-calculated, the foreign amounts will remain the same. If left blank the currency exchange rate will remain the same.
3. Enter ‘1’ to update the inter-company currency exchange rate. Foreign amounts will not be re-calculated. If left blank, will not update the inter-company exchange rate.

UPDATE PRICE OPTIONS:
4. Enter ‘1’ to recalculate the unit price of the sales order. If left blank, the unit price will remain the same.
5. Enter ‘1’ to recalculate the Transfer Price for inter-branch sales. The pricing method specified when the order was entered will be used.
6. Specify the date on which all base price and advanced price adjustment recalculations will be based:
 ’ ’ – Transaction/Order Date
 ’1’ – Requested Ship Date
 ’2’ – Promised Ship Date
 ’3’ – Original Promised Date
 ’4’ – Actual Ship Date
 ’5’ – System Date
 ’6’ – Invoice Date
 ’*’ – Use System Constants value

NOTE: Processing options 7 thru 9 are supported only by the Advanced Price Adjustment Module (45).

7. Enter the Line Type of the new sales detail line item. This line item will contain the difference between the old sales price and the newly recalculated price. If left blank, will update the new price directly to the item. This must be a non-inventory Line Type.

8. If you have specified in the last processing option to create a sales detail record to record the price difference, enter the override next status of the detail line. If left blank, will use the original detail line’s next status.

9. Enter ‘1’ to base recalculation on the original order quantity.
If left blank, the system will recalculate based on the current quantities of the order.

Updating Product Costs

Use Speed Cost Maintenance to update costs for purchased items in the branch/plants, locations, and lots you choose. You can increase or decrease costs by a percentage or dollar amount, or you can specify a new dollar amount. You also specify the cost method for which you want to update costs.

See Also

- *Setting Up Item Costs (P4105)*
- *Setting Up Item Costs*
- *Updating Item Costs (P4105)* in the *Inventory Management Guide*
- *Updating Item Costs* in the *Inventory Management Guide*
To update a product’s cost

On Speed Cost Maintenance

1. To locate current cost information for an item, complete the following fields:
 - Item Number
 - Branch/Plant (if applicable)
 - Cost Method to Update

2. Complete the following fields:
 - Increase/Decrease Amount
 - Amount Type (A % *)
 - Unit Cost

On Speed Cost Maintenance

1. To locate current cost information for an item, complete the following fields:
 - Item Number
 - Branch/Plant (if applicable)
 - Cost Method to Update
2. Complete the following fields:
 - Increase/Decrease Amount
 - Amount Type (A % *)
 - Unit Cost

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase/Decrease Amount</td>
<td>The dollar amount or percentage by which you want to increase or decrease unit costs for items. You can also indicate a dollar amount to override current unit costs. The value you specify in the Amount Type field determines whether you enter a dollar amount or a percentage.</td>
</tr>
<tr>
<td></td>
<td>Note: Enter percentages as whole numbers. For example, enter 10 to increase costs by 10%. To decrease costs, enter a negative sign before the number. For example, enter -10 to decrease costs by 10%.</td>
</tr>
<tr>
<td></td>
<td>---------------- Form-specific information -------------------------------</td>
</tr>
<tr>
<td></td>
<td>All costs for all locations are changed.</td>
</tr>
<tr>
<td>Unit Cost</td>
<td>Depending on the cost method, this data can come from various sources, for example, purchasing or the cost rollup.</td>
</tr>
<tr>
<td></td>
<td>---------------- Form-specific information -------------------------------</td>
</tr>
<tr>
<td></td>
<td>The cost for one unit of this item, based on the corresponding cost method.</td>
</tr>
<tr>
<td>Amount Type (A % *)</td>
<td>A code that indicates whether the number in the Increase/Decrease Amount field is a dollar amount or a percentage value.</td>
</tr>
</tbody>
</table>
| | Codes are: Amount
| | % Percentage
| | * Cost Override Amount

What You Should Know About

Displayed information The information that appears on Speed Cost Maintenance depends on the cost level for the item. For example, if an item has a cost level of 2, the system displays costs for all branch/plants. If an item has a cost level of 3, the system displays costs for all locations at the branch/plant you specify.

See Setting Up Item Cost Levels.
Processing Options for Item Cost Revisions

DISPLAY CONTROL:
1. Enter a ‘1’ for Speed Cost Update. If left blank, the screen will default to Item Cost Revisions.

DEFAULT VALUES:
2. Enter the default cost method to display when the Speed Cost Update format is selected.

PROCESS CONTROL:
3. Enter a ‘1’ to prevent the standard cost from being changed.
Product Costing in ERPx Environments
Product Costing in ERPx Environments

Objectives

- To learn how batches must be set up to calculate costs correctly
- To understand how kit items are costed
- To understand how rate-scheduled items are costed
- To understand how co-/by-products are costed at an operation level
- To understand how configured items are costed

About Product Costing in ERPx Environments

If you use the Product Costing system in any special environment (using batches, kits, rate schedules, processes, or configured items), the system calculates product costs differently.

Understanding product costing in ERPx environments requires the following:

☑ Understanding batch product costing
☑ Understanding product costing for kit items
☑ Working with rate based costing
☑ Working with process industry costing
☑ Understanding configured items
Understand Batch Product Costing

About Batch Product Costing

For bills of material and routings, you can have a batch quantity for products that are normally built in specific batch sizes, such as chemicals, food, or petroleum.

To obtain a correct rollup when you use a batch quantity, the accounting cost quantity, the bill of material batch size, and the routing batch size must match, as follows:

- Labor and overhead costs are rolled up only if the accounting cost quantity and the routing batch size match.
- Material costs are rolled up only if the accounting cost quantity and the bill of material batch size match.

The following table illustrates these possibilities.

<table>
<thead>
<tr>
<th>Accounting Cost Quantity</th>
<th>Bill Batch Size</th>
<th>Routing Batch Size</th>
<th>Rollup</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
<td>Complete</td>
</tr>
<tr>
<td>5,000</td>
<td>10,000</td>
<td>10,000</td>
<td>None</td>
</tr>
<tr>
<td>10,000</td>
<td>5,000</td>
<td>10,000</td>
<td>Labor and Overhead Only</td>
</tr>
<tr>
<td>10,000</td>
<td>10,000</td>
<td>5,000</td>
<td>Material Only</td>
</tr>
</tbody>
</table>

If the Simulate Cost Rollup program does not find a bill of material whose batch quantity matches the accounting cost quantity, it uses the zero batch bill.

What You Should Know About

Displayed quantities

Quantities displayed on Costed Bill and Enter/Change Cost Components are expressed per each unit of measure, not batch quantity.
See Also

- Working with a Parent Item Bill of Material (P3002) in the Product Data Management Discrete Manufacturing Guide
- Working with a Parent Item Bill of Material in the Product Data Management Discrete Manufacturing Guide
Understand Product Costing for Kit Items

About Product Costing for Kit Items

When you use kit items with options, the Simulate Cost Rollup program calculates the average cost of the parent phantom based on the feature costing percentage, as follows:

- The parent phantom must have a stocking type of M (manufactured). The options can be manufactured or purchased.
- The feature costing percentages of the components are user defined on the bill of material.
- The Simulate Cost Rollup program multiplies the feature costing percentage by the cost of the option (from the branch/plant table) to determine the option’s share of the parent phantom’s average cost.
- The program then adds dollar amounts for each option to determine the average cost for the parent phantom.

The following diagram illustrates an example of product costing for a kit item.

See Also

- Entering a Planning Bill (P3002) in the Forecasting Guide
• Entering a Planning Bill in the Forecasting Guide
Work with Rate Based Costing

Working with Rate Based Costing

Rate based items are manufactured according to a rate schedule. A rate schedule is a request to produce a certain quantity of items periodically for a given length of time. Rate schedules eliminate the need to create work orders for items that are produced regularly.

Product costing for rate based items is similar to that for items that originate from work orders. The only difference is how routing steps are selected for processing in the cost rollup.

For the product to be costed, the routing type must be M and the operation type must be blank.

See Also

- Creating Rate Schedules (P3104) in the Shop Floor Control Discrete Manufacturing Guide
- Understanding Rate Schedules in the Shop Floor Control Discrete Manufacturing Guide
To work with rate based costing

On Enter/Change Routing

1. Complete or review the following fields:
 - Routing Type
 - Line/Cell

2. Access the fold area.
3. Complete or review the following field:
 - Type of Operation

On Enter/Change Routing

1. Complete or review the following fields:
 - Routing Type
 - Line/Cell
2. Access the fold area.
3. Complete or review the following field:
 - Type of Operation

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Routing</td>
<td>User defined code (system 40, type TR) that designates the type of routing. You can define different types of routing instructions for different uses. For example:</td>
</tr>
<tr>
<td></td>
<td>M Standard Manufacturing Routing</td>
</tr>
<tr>
<td></td>
<td>RWK Rework Routing</td>
</tr>
<tr>
<td></td>
<td>RSH Rush Routing</td>
</tr>
<tr>
<td></td>
<td>You define the routing type on the work order header. The specific type of routing defined will then be used in the work order routing.</td>
</tr>
<tr>
<td></td>
<td>Product Costing and Capacity Planning systems use only M type routings.</td>
</tr>
<tr>
<td>Line/Cell Identifier</td>
<td>Defines a production line or cell. Detailed work center operations can be defined inside the line or cell. For rate based manufacturing to use this value for reporting, this value must match the line cell in the header.</td>
</tr>
<tr>
<td>Type Operation</td>
<td>A user defined code (system 30, type OT) that indicates the type of operation. For example:</td>
</tr>
<tr>
<td></td>
<td>A Alternate routing</td>
</tr>
<tr>
<td></td>
<td>TT Travel time</td>
</tr>
<tr>
<td></td>
<td>IT Idle time</td>
</tr>
<tr>
<td></td>
<td>T Text (Enter text at Description)</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>For Product Costing:</td>
</tr>
<tr>
<td></td>
<td>Only operations with a "blank" type operation code are costed.</td>
</tr>
</tbody>
</table>
Work with Process Industry Costing

Working with Process Industry Costing

Process manufacturing creates a product by mixing, separating, forming, or performing chemical reactions. This is usually a two-step procedure, which consists of a mixing or blending step, followed by a filling or packaging step. This type of manufacturing can also include intermediate steps, such as curing, baking, or fermenting.

Process manufacturing companies create a variety of items, including:

- Liquids
- Fibers
- Powders
- Gases

Pharmaceuticals, foods, and beverages are specific examples.

A process includes ingredients (equivalent to parts on a work order) and a process routing or recipe. The output from a process includes intermediates, by-products, and co-products.

Intermediate

The output from an operation that is used as the input to the next operation. There is no cost associated with an intermediate.

By-Product

The material produced incidental to or as a residual of the process.

Co-Product

An end item produced as a result of the process. There are usually two or more co-products from a process.
The following illustrates an example of a process.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Routing</th>
<th>Co-product and By-product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato Slices 8459</td>
<td>10 Starch wash potatoes</td>
<td>BY Waste Water 5215</td>
</tr>
<tr>
<td>Frying Oil 522</td>
<td>20 Drain water</td>
<td>BY Waste Water 5215</td>
</tr>
<tr>
<td>Seasoning 303</td>
<td>30 Add water, soak</td>
<td>BY Used Frying Oil 5225</td>
</tr>
<tr>
<td>Nitrogen 938</td>
<td>40 Drain water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 Deep fry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 Add seasoning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 Package</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 Add preservatives</td>
<td>CO Potato Chips 771</td>
</tr>
</tbody>
</table>

You define a process item with ingredient relationships. These relationships also determine co-products, by-products, intermediates, and substitutions.

You define the steps that are required to produce a manufactured item with process routings. These routings also determine work centers and labor standards.

Working with process industry costing consists of:

- Reviewing product costing for processes
- Reviewing product costing for intermediates
- Reviewing ingredients in product costing
- Reviewing co-/by-products in product costing
- Reviewing a costed process
- Setting up the co-/by-products planning table
- Reviewing percent bills of material, if applicable
See Also

- About Process Manufacturing in the Shop Floor Control Process Manufacturing Guide

Reviewing Product Costing for Processes

Review process manufacturing to note the differences from discrete manufacturing in the input and output of costing.

To review product costing for processes

On Enter/Change Process

![Image of the G30 Product Data Management screen]

- Choose Daily PDM Process
- Enter/Change Process
- Review process manufacturing to note the differences from discrete manufacturing in the input and output of costing.
1. Review the following fields:
 - Machine Run Hours
 - Labor Run Hours
 - Setup Hours
2. Access the fold area.

3. Review the following fields:
 - Time Basis
 - Crew Size
 - Cost Type
 - Type of Operation
 - Yield Percent
 - Cumulative Percent

On Enter/Change Process

1. Review the following fields:
 - Machine Run Hours
 - Labor Run Hours
 - Setup Hours
2. Access the fold area.
3. Review the following fields:
• Time Basis
• Crew Size
• Cost Type
• Type of Operation
• Yield Percent
• Cumulative Percent

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Planned Yield Percent</td>
<td>Represents the planned output yield percent for a step. The Planned Yield Update program uses this value to update the Cumulative Percent in the bill of material and the Operation Scrap Percent in the routing. Materials Requirements Planning uses the step scrap percent and the existing component scrap percent to plan component demand.</td>
</tr>
<tr>
<td>Percent – Cumulative Planned Yield</td>
<td>Represents the cumulative planned output yield percent for a step. The system uses this value to adjust the operation step scrap percent for the components at that operation step. This enables the MRP system to use the operation step scrap percent along with the existing component scrap percent to plan component demand.</td>
</tr>
</tbody>
</table>

Reviewing Product Costing for Intermediates

An intermediate is the product of an operation. This product is not the end item of the process, but an input to the next operation. You define intermediates when you need to express them in a unit of measure different from that of the parent item, or when you need to track the quantity of materials at each operation. Only one intermediate is allowed per operation. You cannot define an intermediate for the last operation, because the output of the last operation is the end item of the process.

An example of an intermediate is fermented liquid. The liquid ferments for an extended period of time before being distilled. The resulting liquid is not a finished product. Rather, it proceeds to the next operation.

If you define an intermediate item at a particular operation, you also establish a ratio between the intermediate quantity and the parent quantity. The system uses this ratio for costing the operation. A direct relationship exists among hours, the time basis, parent batch quantity, and intermediate operation quantity.

The systems uses intermediate quantities to cost only direct labor hours (cost component B1) and direct machine hours (B3) from the routing. These hours are then used to calculate efficiency (B4) and overhead (C1–C4).
The labor and machine hours at an operation with an intermediate are the hours to produce one unit of measure of the intermediate. The hours are then adjusted in the rollup by the total quantity of intermediates produced at that operation. The following example illustrates the effect of intermediates on costing:

Operation 10
Labor Hours = 5
Intermediate quantity produced = 50 pounds
Hours for costing = 5 x 50 = 250

See Also

- Assigning the Intermediate Items (P3111) in the Shop Floor Control Process Manufacturing Guide

To review intermediates in product costing

On Enter/Change Process

2. On Intermediate Product Revisions, review the following fields:
 - Output Quantity
 - Operation Sequence Number

On Enter/Change Process

2. On Intermediate Product Revisions, review the following fields:
 - Output Quantity
 - Operation Sequence Number
### Field	Explanation
Output Quantity | The number of units to which the system applied the transaction.

Form-specific information

The quantity of an intermediate produced at the current step in the process.

Sequence Number – Operations | In routings, used to sequence the fabrication or assembly steps in the manufacture of an item. You can track costs and charge time by operation.

In bills of material, designates the routing step in the fabrication or assembly process that requires a specified component part. You define the operation sequence after you create the routing for the item. The Shop Floor Control system uses this field in the backflush/preflush by operation process.

In engineering change orders, used to sequence the assembly steps for the engineering change.

Skip To fields allow you to enter an operation sequence that you want to begin the display of information.

You can use decimals to add steps between existing steps. For example, use 12.5 to add a step between steps 12 and 13.

In the process, the sequence number that produces the intermediate product.

Reviewing Ingredients in Product Costing

Ingredients are the components of a process. You attach an ingredients list to a process (in the same way that you attach a parts list to a routing) as part of setup.

To review ingredients in product costing

On Enter/Change Process

2. On Process Resource Revisions, review the following fields:
 - Ingredient
 - Quantity Per
 - Unit Of Measure

3. Access the fold area.

4. Review the following fields:
 - Fixed or Variable
 - Feature Cost Percent
 - Percent of Scrap
 - Operation Scrap Percent

On Enter/Change Process

2. On Process Resource Revisions, review the following fields:
 - Ingredient
• Quantity Per
• Unit Of Measure

3. Access the fold area.

4. Review the following fields:
 • Fixed or Variable
 • Feature Cost Percent
 • Percent of Scrap
 • Operation Scrap Percent

Reviewing Co-/By-Products in Product Costing

Co-products are produced, usually together, as a result of a process routing. They are normally the main products (end items) that are then sold to customers.

A by-product is a material of value produced incidental to or as a residual of the production process. By-products can be recycled, sold as-is, or used for other purposes.

Co-products and by-products are costed using the Feature Cost Percent field.

Example: Feature Cost Percent and Co-/By-Product Costing

In the following example:

• Cumulative cost = cost this operation + cost of previous operation – cost of the co-/by-product produced in the previous operation.
• The total of all percentages at an operation cannot exceed 100%.
• The total of all percentages at the last operation must equal 100%.
To review co-/by–products in product costing

On Enter/Change Process

2. On Process Resource Revisions, review the following fields:
 - Output Quantity
 - Unit Of Measure
 - Feature Cost Percent
 - Resource Percent
On Enter/Change Process

2. On Process Resource Revisions, review the following fields:
 - Output Quantity
 - Unit Of Measure
 - Feature Cost Percent
 - Resource Percent

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Output Quantity | The number of units to which the system applied the transaction.
 | Form-specific information
 | The quantity of a co-/by-product produced at the current step in the process. |
| Unit of Measure | A user defined code (system 00/type UM) that identifies the unit of measurement for an amount or quantity. For example, it can represent a barrel, box, cubic yard, gallon, an hour, and so on. |
| Feature Cost Percent | A percentage used by the Simulated Cost Rollup program (P30820) to calculate the cost of a feature or phantom item as a percentage of the total cost of the parent.
 | Enter the percentage as a whole number: 5% as 5.0
 | Form-specific information
 | This value is used in Cost Rollup to calculate what percent of the cost, up to and including the operation, that the co-/by-product comes out of, is apportioned to the co-/by-products at that step.
 | The total of all percentages at an operation cannot exceed 100%. The total of all percentages at the last operation must equal 100%. |
| Resource Percent | If this option is chosen, this value indicates what percent of the ingredients should be issued separately to co-products and by-products.
 | Form-specific information
 | This is used to issue ingredients separately to co-/by-products at work order completion, rather than a total issue for each ingredient.
 | For co-/by-products at the final operation, their resource percent must equal 100 to issue all ingredients. |
Reviewing a Costed Process

Use Costed Process to review the summarized costs of an item for each operation in the process. This information can help you effectively manage production costs. For example, you can:

- View the work center responsible for an operation.
- Determine if a work center performs multiple operations.
- Display simulated or frozen costs for labor values for cost methods.
- Calculate the totals for all costs by cost categories.
- View the costs of the ingredients.
- View the costs of the co- and by-products.
- View the costs for different quantities and units of measure. This feature allows you to simulate different scenarios and view the costing effect.

The program can accumulate purchase costs for up to 500 components on each bill of material. Components beyond 500 are not included in the costing.

NOTE: The program can accumulate purchase costs for up to 500 components on each bill of material. Components beyond 500 are not included in the costing.
To review a costed process

On Costed Process

1. Review the following fields:
 - As of Date
 - Cost Method
 - Requested Quantity
 - Unit Of Measure
 - Up to Operation Sequence
 - Extras 1–3
 - Extras 4–7
 - Work Center
 - Operation Sequence Number
 - Labor
 - Machine
 - Overhead
 - Components
 - Total (row)
 - Total (column)
Costs are real-time. They are calculated each time you access this form.

2. Toggle to review frozen or simulated costs.
3. Access Operation Bucket Key to review the item’s operation buckets.

See also Setting Up Operation Bucket Codes for a Costed Routing.

You can view ingredient costs for a single operation or for all ingredients across all operations in the process. Costs displayed come from the Cost Components table and reflect the last simulated rollup. Thus the costs might differ from those on Costed Process, if you have changed the process since the last rollup.

5. On Costed Process, access Costed Resources for Co-/By-Products.
You can view co-/by-product costs for a single operation or for all co-/by-products across all operations. If the co-/by-product is made from more than one process, the costs shown are for all processes. Costs displayed come from the Cost Components table and reflect the last simulated rollup. Thus the costs might differ from those on Costed Process, if you have changed the process since the last rollup.

6. On Costed Process, access Detail to view all costs associated with an operation.

Costs displayed are real-time costs. The cost components are grouped using cost buckets. See also Setting Up Cost Bucket Codes for a Costed Bill of Material.

On Costed Process

1. Review the following fields:
 - As of Date
 - Cost Method
 - Requested Quantity
- Unit Of Measure
- Up to Operation Sequence
- Extras 1–3
- Extras 4–7
- Work Center
- Operation Sequence Number
- Labor
- Machine
- Overhead
- Components
- Total (row)
- Total (column)

Costs are real-time. They are calculated each time you access this form.

2. Toggle to review frozen or simulated costs.
3. Access Operation Bucket Key to review the item’s operation buckets.

 See also Setting Up Operation Bucket Codes for a Costed Routing.

 You can view ingredient costs for a single operation or for all ingredients
 across all operations in the process. Costs displayed come from the Cost
 Components table and reflect the last simulated rollup. Thus the costs
 might differ from those on Costed Process, if you have changed the
 process since the last rollup.

5. On Costed Process, access Costed Resources for Co-/By-Products.

 You can view co-/by-product costs for a single operation or for all
 co-/by-products across all operations. If the co-/by-product is made from
 more than one process, the costs shown are for all processes. Costs
 displayed come from the Cost Components table and reflect the last
 simulated rollup. Thus the costs might differ from those on Costed
 Process, if you have changed the process since the last rollup.

6. On Costed Process, access Detail to view all costs associated with an
 operation.

 Costs displayed are real-time costs. The cost components are grouped
 using cost buckets. See also Setting Up Cost Bucket Codes for a Costed Bill
 of Material.
### Field	Explanation
As of Date | This field is used for effectivity checking. Enter a specific date to display documents (orders, bills of material, routings, as applicable) that are effective on or after that date. The current system date is the default, but you can enter any future or past date.

Form-specific information

The routing that is effective as of this date is used.

Cost Method | A user defined code (system 40, type CM) that identifies a cost method. Cost methods 01 through 08 are hard-coded.

Quantity – Requested Quantity | The number of parent items you want to process. The system calculates lower-level values in quantity per the number of parent items requested. For example, if 3 components are needed for a parent item, and the requested quantity is 10, the system plans for 30 components.

Form-specific information

This is the number of parent items for which you want to see cost breakdowns. Costs are figured in quantity per the parent item.

Unit of Measure | A user defined code (system 00/ type UM) that indicates in what quantity an inventory item is expressed; for example, CS (case) or BX (box).
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Skip to/Up to Op Seq | In routings, used to sequence the fabrication or assembly steps in the manufacture of an item. You can track costs and charge time by operation. In bills of material, designates the routing step in the fabrication or assembly process that requires a specified component part. You define the operation sequence after you create the routing for the item. The Shop Floor Control system uses this field in the backflush/preflush by operation process. In engineering change orders, used to sequence the assembly steps for the engineering change. Skip To fields allow you to enter an operation sequence that you want to begin the display of information. You can use decimals to add steps between existing steps. For example, use 12.5 to add a step between steps 12 and 13. In the process, the sequence number that produces the intermediate product.

............. Form-specific information

Top of form: A processing option controls whether “Skip to” or “Up to” operation sequence mode is in effect. In “Skip to” mode, the system uses an entered operation sequence number as the starting point when displaying operations, and displays the total from that point forward on the total line. In “Up to” mode, the system uses an entered operation sequence number as the cutoff for displaying operations. The total for all operations up to and including the operation sequence number entered appears on the total line. Bottom of form: The Op Seq field contains a number that indicates the order of each step in the manufacturing operation.

| Extras 1–3 | Work Amount field for the Manufacturing System.

............. Form-specific information

Cost bucket No. 1 as defined for user defined code 30/CO, Operation Buckets. A processing option controls whether the system adds cost buckets 1 and 2 (at the top of the form) into the grand total of all costs for the parent item at the bottom of the form.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extras 4-7</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 2 as defined for user defined code 30/CO, Operation Buckets. A processing option controls whether the system adds cost buckets 1 and 2 (at the top of the form) into the grand total of all costs for the parent item at the bottom of the form.</td>
</tr>
<tr>
<td>Work Center</td>
<td>A number that identifies a branch, plant, work center, or business unit.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information Form-specific information</td>
</tr>
<tr>
<td></td>
<td>This is the business unit assigned to the work center for the operation sequence listed.</td>
</tr>
<tr>
<td>Labor</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 3 as defined for user defined code 30/CO, Operation Buckets. The total of this column appears at the bottom of the form in the “Totals” row. The heading above the columns indicates which costs are displayed: frozen or simulated. You can toggle between simulated and frozen values. You also can view a detailed breakdown of the cost components added to determine the total for the work center.</td>
</tr>
<tr>
<td>Machine</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 4 as defined for user defined code 30/CO, Operation Buckets. The total of this column appears at the bottom of the screen in the “Totals” row. The heading above the columns indicates which costs are displayed: frozen or simulated. You can toggle between simulated and frozen values. You also can view a detailed breakdown of the cost components added to arrive at the total for the work center.</td>
</tr>
</tbody>
</table>
Field

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 5 as defined for user defined code 30/CO, Operation Buckets. The total of this column appears at the bottom of the screen in the “Totals” row. The heading above the columns indicates which costs are displayed: frozen or simulated. You can toggle between simulated and frozen values. You can also view a detailed breakdown of the cost components added to arrive at the total for the work center.</td>
</tr>
<tr>
<td>Components</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>Cost bucket No. 6 as defined for user defined code 30/CO, Operation Buckets. The total of this column appears at the bottom of the screen in the “Totals” row. The heading above the columns indicates which costs are displayed: frozen or simulated. You can toggle between simulated and frozen values. You can also view a detailed breakdown of the cost components added to arrive at the total for the work center.</td>
</tr>
<tr>
<td>Cost Bucket Totals</td>
<td>Work Amount field for the Manufacturing System.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>This column contains system-calculated totals for each row of costs, that is, for each operation sequence. The totals across the bottom of the form are the totals of each cost bucket. The rightmost bottom total is the total of all costs for the routing for an item.</td>
</tr>
</tbody>
</table>

What You Should Know About

Displayed costs

This program calculates the cost associated with each cost component in the same way as the Simulate Cost Rollup program.

See also Appendix A — *Calculations in Cost Rollup*.
Displayed costs
This program calculates the cost associated with each cost component in the same way as the Simulate Cost Rollup program.

See also About Calculations in Cost Rollup.

Processing Options for Costed Process

OUTSIDE OPERATIONS (SUB-CONTRACTS) INFO:
1. Enter the cost method (ie., 01, 02, 03) to be used for Sub-Contracted Items.
 (Blanks will default to a "01")

PURCHASED ITEM INFORMATION:
2. Enter the cost method (ie., 01, 02, 03) to be used for Purchased Items.
 (Blanks will default the cost from the Mode, ie., Standard Cost.)

OPERATION SEQUENCE DISPLAY:
3. Enter a '1' to display the costs 'UP TO' and including the operation sequence entered in the 'Skip to' video field. If left blank, the costs will be displayed beginning with the entered operation’s costs.

TOTALING OPTIONS:
4. Enter a '1' to include cost buckets 1 and 2 in the total. If left blank, the total will only include cost buckets 3-6.

COSTED RESOURCES/CO/BY PRODUCTS OPTION:
5. Enter the number of decimals to display (0-4) in the Costed Resources/Co/By Products window. If left blank, 4 decimals will be used.
Setting Up the Co-/By-Products Planning Table

You use the Co-/By-Products Planning Table to determine:

- What percentage of the demand for co-products is satisfied from process work orders
- What percentage is satisfied from work orders for the co-products themselves

Normally, all demand for co-/by-products is satisfied from process work orders. However, for special circumstances, you can specify, for example, 50% from process work orders and 50% from co-product work orders. To do so, enter less than 100% in the table. The remainder is automatically satisfied by co-product work orders.

You can also have a co-product that is produced by more than one process. It is possible, for example, to have a 75% to 25% relationship between the two processes. Both processes appear on the Co-/By-Products Planning Table form when you locate the co-product.

Even if all demand for co-/by-products is satisfied from process work orders, you must set up the co-/by-products planning table with a feature cost percent equal to 100. This ensures that the rollup calculates the costs of co- and by-products correctly.
To set up the co-/by-products planning table

On Co-/By–Products Planning Table

1. Complete the following fields:
 - Co-/By-Product Item Number
 - Process/Item
 - Process
 - Feature Planned Percent
 - Feature Cost Percent

2. Access the fold area.
3. Complete the following fields:
 - Effective From Date
 - Effective Through Date

On Co-/By-Products Planning Table

1. Complete the following fields:
 - Co-/By-Product Item Number
 - Process/Item
 - Process
 - Feature Planned Percent
 - Feature Cost Percent

2. Access the fold area.
3. Complete the following fields:
 - Effective From Date
 - Effective Through Date

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Number</td>
<td>A number that the system assigns to an item. It can be in short, long, or 3rd item number format.</td>
</tr>
</tbody>
</table>
Field

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-/By product process flag</td>
<td>This field indicates whether this is a process from which the co- or by-product is produced or a regular parent item.</td>
</tr>
<tr>
<td>Feature Planned Percent</td>
<td>The percentage of demand for a specified feature based on projected sales. For example, a company might sell 35% of their computers with a standard keyboard and 65% of them with an extended keyboard, based on customer demand. The Material Planning system uses this percentage to accurately plan for a feature’s component items. Enter percents as whole numbers: 5% as 5.0. The default value is 100%.</td>
</tr>
<tr>
<td>Feature Cost Percent</td>
<td>A percentage used by the Simulated Cost Rollup program (P30820) to calculate the cost of a feature or phantom item as a percentage of the total cost of the parent. Enter the percentage as a whole number: 5% as 5.0. Form-specific information. Used to calculate the cost of a co-/by-product when it can be produced from more than one process, or from a combination of a process and a work order. This value determines what percent of the cost of the co-/by-product is allocated to the selected process.</td>
</tr>
</tbody>
</table>

Reviewing Percent Bills of Material

Reviewing Product Costing for Percent Bills of Material

You use a percent bill of material to express the ingredients as a percentage of the process quantity.
If you use percent bills of material, the system calculates costs based on the quantities specified in the percent bill.

See Also

- Working with Components (P3002) in the Product Data Management Discrete Manufacturing Guide
- Working with Components in the Product Data Management Discrete Manufacturing Guide

▶ To review a percent bill of material

On Enter/Change Bill

Review the following fields:

- Quantity Per
- Fixed or Variable

On Enter/Change Bill

Review the following fields:

- Quantity Per
- Fixed or Variable
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity Per</td>
<td>The number of units to which the system applied the transaction. Form-specific information. Indicating how many of a component is used to manufacture the parent item. A quantity of zero is valid. The default value is 1.</td>
</tr>
</tbody>
</table>
| Fixed or Variable Quantity | Indicates if the quantity per assembly for an item on the bill of material varies according to the quantity of the parent item produced or is fixed regardless of the parent quantity. This value also determines if the component quantity is a percent of the parent quantity. Valid values are:
 F Fixed Quantity
 V Variable Quantity (Default)
 % Quantities are expressed as a percentage and must total 100%

For fixed quantity components, the Work Order and MRP systems do not extend the component’s quantity per assembly value by the order quantity.

For Process Manufacturing, the system stores percent components. Therefore, the system treats zero batch sizes like variable quantity components, and treats batch sizes greater than zero like fixed quantity components.
Understand Configured Items

About Configured Items

About Costing for Configured Items

Costing for configured items is different from costing for non-configured items, because configured items do not have a standard bill of material or routing. Because there is no standard configuration, costing cannot be established before you enter the sales order. In other words, there are no standard costs for configured items.

The Process Work Orders program performs a cost rollup when it attaches a parts list and routing to a work order for a configured item. A processing option instructs the program to calculate the costs. When the costs are calculated, they are stored in the Work Order Variances table, not the Cost Components table.

For configured items, the A1 material cost is calculated from the total cost of its direct components. B1 direct labor cost is calculated from that item’s routing.

When these costs have been established, the system updates the unit cost and extended cost on the sales order for the top-level configured item only.

The following graphic illustrates costing for configured items.
Example: Costing a Configured Item

The following example illustrates how the frozen standard costs are calculated for a configured item.

A basic assumption is that you have done a cost rollup for the non-configured items and that frozen standard costs exist on the Cost Components table for those items.
Process Work Orders program

For the rollup to occur correctly, the data sequence for Process Work Orders must be set as follows.

The sales order number must have a sequence number of 1 and should be in ascending order. The sales order line number must have a sequence number of 2 and should be in descending order.

On the sales order, the lowest level components have the highest line number. Thus when you specify a descending sequence for the line numbers in the data sequence setup, Process Work Orders runs on the lowest level components first.

To ensure that the costs roll up properly, you must process work orders on the lowest level items first.
Example: Process Work Orders Data Sequence Setup

The sales order number displays first, and then the sales order line number.

On the sales order, the lowest level components have the highest line number. Thus when you specify a descending sequence for the line numbers in the data sequence setup, Process Work Orders runs on the lowest level components first.

To ensure that the costs roll up properly, you must process work orders on the lowest level items first. In the example, you must process the work order for item U before the work order for item X, and the work order for item X before the work order for item Z.

See Also

- Configuration Management Guide
Manufacturing Accounting
Manufacturing Accounting

Objectives

- To review the basic concepts of manufacturing accounting
- To review the basic concepts of posting to the general ledger
- To understand how the general ledger and the account code structure relate to manufacturing accounting
- To understand what happens when work order transactions take place
- To learn what calculations are performed in the Manufacturing Accounting system
- To understand how work order variances are calculated and how to interpret variance reports
- To identify the available manufacturing accounting reports

About Manufacturing Accounting

The Manufacturing Accounting system works with the General Accounting system to help you manage the general ledger functions for your organization.

Working with the Manufacturing Accounting system consists of:

- Setting up manufacturing accounting
- Understanding work orders in accounting
- Working with work orders
- Creating journal entries
- Reviewing general ledger batches
- Posting to the general ledger

The following two graphics illustrate the interaction between the Manufacturing Accounting system and the General Accounting system.
Transaction Entry

Accounts Payable System 04

General Accounting System 09

Accounts Receivable System 03

Manufacturing Accounting System 31

Distribution Systems 41, 42, and 43

Reports/Output

Account Ledger

F0911

Voucher Payments

Journal Entries

Invoice Cash Receipts

Shop Floor Control Transactions

Sales Orders, Purchase Orders, Inventory Transactions

F0902

Account Balances

F0902

F0901

Video Accounts Ledger Inquiry

Video Trial Balance by Business Unit

Video Trial Balance by Object Acct

Video Trial Balance by Month

Trial Balances

FASTR

Financial Reporting: Balance Sheet Income Statement

General Journal
The following graphic (in two parts) illustrates the flow of the Manufacturing Accounting system.
Accounting Fundamentals

Before you set up your company’s Manufacturing Accounting system, you must have a basic understanding of the general ledger and accounting concepts. Once you understand the underlying framework, you can use the Manufacturing Accounting system to:

- Create and generate work orders
- Run work order variances

The Accounting Equation

To determine a company’s net worth, you must review the results at the end of the previous fiscal period and then take into account changes that have occurred during the year.

You calculate these changes with this basic accounting equation:

\[
\text{Assets} = \text{Liabilities} + \text{Equity}
\]

To extend this equation, Shareholders’ Equity is equal to the change in contributed capital plus revenues, minus expenses and dividends. The complete equation is illustrated below:

T-Accounts

The basis of all accounting systems is the T-account. This bookkeeping device is where you record the increases and decreases of a specific type of asset or liability caused by a business transaction.

T-accounts consist of two types of transactions — debits and credits. In the general ledger, “debit” and “credit” refer only to the position of the columns on the account. For example, you record an increase to an asset account as a debit and an increase to a liability account as a credit. Conversely, you record an increase to a revenue account as a credit and an increase to an expense account as a debit.
ASSETS = LIABILITIES + EQUITY

General Ledger Transactions

The following example shows how transactions are recorded in the general ledger.

After work is complete, inventory transfers out of WIP to Finished Goods. The difference between the total inventory and the finished goods is the scrap, which transfers to the variance account.
Accounts and Account Numbers

The account code structure provides a method for the system to record transactions to the general ledger. When you set up your system, you must:

- Assign business unit/object/subsidiary codes
- Determine how amounts are posted
- Assign levels of detail that the system uses to structure accounts to roll up balances

Business Units

Business units are an important part of the basic account structure. Business units identify where general ledger activity occurs. They are the lowest organizational level within your business and the level at which you account for all revenues, expenses, assets, liabilities, and equity.

Business units of 12 alphanumeric characters are set up in the following format:

A company can have several revenue and expense business units, for example:

- Department
- Machine shop
- Drill press

Object and Subsidiary Accounts

Every business unit you define must have an object and, optionally, subsidiary accounts. The object and subsidiary accounts define the kind of transaction you are working with (for example, rent, paper supplies, and so on). These items make up your chart of accounts.
Object - “Major Account”

The object, or major account, describes the type of transaction with which you are working. The system requires objects for each transaction entry, such as:

- Rent expense
- Service sales
- Finished goods inventory

You must use six alphanumeric characters in this field. To make data entry more efficient, you should consider using only numbers in the object.

Subsidiary - “Minor Account”

Subsidiary accounts are subdivisions of object accounts. Use a subsidiary account when you need more detailed accounting activity for an object account.

You can use up to eight alphanumeric characters in this field.

Account Numbers

An account number includes both the business unit and object.subsidiary codes. You can use periods (the default), commas, or other user defined symbols to separate the components of the account number.

![Account Number Diagram]

For example, you can categorize the “Cash in Banks” object (account 1110) into the following subsidiary accounts:

- 1110.BEAR Bear Creek National Bank
- 1110.FIB First Interstate Bank
- 1110.FRANCE First Bank of France
See Also

- Creating a Flexible Format (P0907) in the General Accounting II Guide for other methods for numbering accounts.

Level of Detail

You assign levels of detail (LODs) to control which accounts are subtotalled during the rollup process. The system also displays the level of detail you view online and in printed reports.

Use LOD 3 through 9 for accounts. LOD 1 is reserved for companies and LOD 2 for business units. The system underlines LOD 3 on balance sheet reports and LODs 3 and 4 on income statement reports.

The following guidelines apply when you assign levels of detail to accounts:

- Assign LODs sequentially and do not skip a level of detail. Non-sequential levels of detail cause rollup errors in financial reports that run at a level you did not use.
- Assign LOD 3 to balance sheet title accounts for assets, liabilities, and equity.
- Assign either LOD 3 or LOD 4 to major title accounts on the income statement. For example:
 - Revenues
 - Direct costs
 - General and administrative expenses
• Other income and expenses

What Is Subledger Accounting?

In addition to the regular business unit.object.subsidiary method of account coding, you can use subledger accounting. Subledgers are “subdivisions” of account details for categories that you do not want in the permanent chart of accounts.

The subledger and subledger type for a general ledger account work together to provide detailed accounting to the Account Master table (F0901). The subledger numbers become the audit trail for the posted subledger transactions.

You can group and report transactions posted to a general ledger account with subledger types. Subledger types allow you to view account totals in more detail. You can also report on subledgers across accounts (for example, all accounting activity by asset ID or by work order number).

Subledgers differ from subsidiary accounts in the following ways:

- Subledgers do not create additional records in the Account Master table (F0901).
- You enter and post transactions to the same account using different codes in the Subledger and Subledger Type fields rather than to different accounts.
- Subledgers can create additional records in the Account Balances table (F0902). You control this using the posting edit code on the Account Master table.

Subledger Types

There are eight predefined, hard-coded subledger types. Each one edits or validates the subledger number against a master table.

Core Subledger Types

- **A** Address Book number. This number is edited against the Address Book Master table (F0101). It is the most commonly used subledger type and is used for the detail method of intercompany settlements.
- **C** Business Unit number. This number is edited against the Business Unit Master table (F0006).
Other Subledger Types

E Equipment Item number. This number is edited against the Equipment Master table (F1201).

L Lease Item number. This number is edited against the Lease Master table (F1501).

I Item number (short). This number is edited against the Item Master table (F4101).

O Sales Order number. This number is edited against the Sales Order Master table (F4211).

S Structure Subledger. This item is edited against the Chart of Accounts Format table (F0909).

W Work order number. This number is edited against the Work Order Master table (F4801).

In addition, there are three subledger types (X, Y, and Z) that you can define with user defined codes (system 00, type ST). These types are not edited against any tables. You set up these types if you want the system to edit values against a format requirement rather than a specific value.

Posting Edit Codes

Use posting edit codes (PECs) to designate which accounts use subledgers and how the system posts accounts. These codes define how the system updates the general accounting tables and the type of information on which you can search or print a report.

Set the PEC on the Account Master table for all accounts that use subledger accounting. Use one of the following PECs.

S Summary. Posts subledgers in summary format on every transaction that references the account. You see only subledger detail in the Account Ledger table.

This code requires subledger entry.
L Long. Posts subledgers in detailed format. The system stores the subledger in detail in both the Account Ledger and Account Balances tables.

This code requires subledger entry.

X Does not allow subledger entry for the account.

Blank Allows all posting. The system posts the subledger in detailed format. A blank code does not require subledger entry.

What Is the Chart of Accounts?

The chart of accounts is a record of the valid accounts you assign to the business units within your company’s reporting structure. When you set up your chart of accounts, you define the location of the accounts using automatic accounting instructions (AAIs) that indicate which number ranges represent assets, liabilities, and so on.

The chart of accounts begins with the major headings of your transactions and continues with detailed transaction descriptions:

- **Assets** (Balance Sheet)
- **Liabilities** (Balance Sheet)
- **Owners’ Equity** (Balance Sheet)
- **Revenues** (Income Statement)
- **Expenses** (Income Statement)

The chart of accounts displays the following elements:

- The account number
- The posting edit codes
- The level of detail assigned to the account
- Which accounts are assigned to which business units
Example: Chart of Accounts

<table>
<thead>
<tr>
<th>Acct</th>
<th>Description</th>
<th>Post</th>
<th>Edit</th>
<th>LOD</th>
<th>B/S BU100</th>
<th>DEN BU210</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>Assets</td>
<td>N</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>Current Assets</td>
<td>N</td>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>Cash</td>
<td>N</td>
<td>5</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>Cash in Bank</td>
<td>N</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1130</td>
<td>Short-Term Investments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>Accounts Receivable</td>
<td>N</td>
<td>5</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1210</td>
<td>Trade Accounts Receivable</td>
<td>M</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1215</td>
<td>Allow for Doubtful Accounts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>Inventory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>Prepaid Expenses</td>
<td>N</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1810</td>
<td>Prepaid Insurance</td>
<td>N</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1890</td>
<td>Other Prepaid Expenses</td>
<td>N</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Fixed Assets</td>
<td>N</td>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Property and Equipment</td>
<td>N</td>
<td>5</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Buildings</td>
<td>N</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2060</td>
<td>Furniture & Office Equipment</td>
<td>N</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>Accumulated Depreciation</td>
<td>N</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2160</td>
<td>Accum Depr - Buildings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2170</td>
<td>Accum Depr - Office Furniture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3900</td>
<td>Accum Depr - Computer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other Assets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What Are Work Order Variances?

Variances occur when the frozen standard costs differ from other user defined cost methods, such as current costs. These variances can be due to differences in labor or overhead, or changes to the bill of material or routing.

The following describes each variance type.

Engineering

The difference between the frozen standard costs (material, labor, and overhead) at the beginning of the accounting period and the current costs derived from the bills of material, routings, and overhead rates.
Planned

The difference between the current costs derived from the bills of material, routings, and overhead rates and the costs based on the work order parts list and routing instructions. Planned variances can occur when you revise a work order.

Actual

The difference between the cost values derived from the work order parts list and routing, and the material and labor that were actually reported against that work order. Actual variances can occur when you:

- Issue material
- Record hours and quantities
- Record completions

Labor Efficiency

The difference between the planned and actual labor costs, based on the work order routing.

Material Usage

The difference between the planned and actual material costs, based on the work order parts list.
Set Up Manufacturing Accounting

Setting Up Manufacturing Accounting

You can customize the Manufacturing Accounting system to meet your specific manufacturing environment needs.

Setting up manufacturing accounting consists of the following:

- Setting up general ledger (G/L) class codes
- Reviewing automatic accounting instructions (AAIs)
- Reviewing AAIs for manufacturing

Because the system generates journal entries based on how you set them up, you should define these options carefully.

NOTE: Because the system generates journal entries based on how you set them up, you should define these options carefully.

Setting Up G/L Class Codes

G/L class codes are used by the AAIs to determine to which accounts the system posts transactions.
To set up G/L class codes

On Item Branch/Plant Information

![Image of Item Branch/Plant Information window]

Complete the following field:

- G/L Class

On Item Branch/Plant Information

Complete the following field:

- G/L Class
Set Up Manufacturing Accounting

Field	Explanation
Category – G/L | A code that identifies the general ledger class that you want the system to use when it searches for the account to which it will post the transaction. If you do not want to specify a class code, you can enter **** (four asterisks) in this field.

The table of Automatic Accounting Instructions (AAIs) allows you to predefine classes of automatic offset accounts for the Inventory, Purchasing, and Sales Order Management systems. G/L categories might be assigned as follows:

IN20 Direct Ship Orders
IN60 Transfer Orders
IN80 Stock Sales

The system can generate accounting entries based upon a single transaction. As an example, a single sale of a stock item can trigger the generation of accounting entries similar to these:

Sales–Stock (Debit) xxxxx.xx
A/R Stock Sales (Credit) xxxxx.xx Posting
Category: IN80
Stock Inventory (Debit) xxxxx.xx
Stock COGS (Credit) xxxxx.xx

Although this field is four characters, only the last two characters of the Category and the last character of the Document Type are used to find the AAI.

Reviewing Automatic Accounting Instructions

Reviewing Manufacturing AAIs

Any Shop Floor Control menu
Enter 29

| G3141 | Shop Floor Control Setup
| | Choose Automatic Accounting Instructions

Each transaction that creates journal entries has automatic accounting instructions (AAIs) that instruct the program to post to specific G/L accounts. User defined AAIs connect manufacturing accounting, your chart of accounts,
and financial reporting. You should create AAIs for each unique combination of company, transaction, document type, and G/L class that you anticipate using.

To create G/L entries for transactions, the AAIs access the following information to find the account number to use:

- Company number
- Document type
- G/L class code
- Cost component
- Branch or business unit

Each AAI or record type points to a specific G/L account consisting of a business unit, an object, and a subsidiary code. J.D. Edwards defines manufacturing AAIs at the 3000 level, as shown in the following table.

<table>
<thead>
<tr>
<th>3110 Raw Materials/Subassemblies</th>
<th>Specifies which balance sheet G/L accounts are used when issuing raw materials or parts from inventory to work in process. Also used to issue completed subassemblies from inventory back into work in process.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3120 Work in Process</td>
<td>For debit transactions, increases the material value of work in process by issuing raw materials and parts to work orders. Also records increases in direct labor, setup labor, machine time, and overhead by applying them to issued materials. For credit transactions, records the transfer of work order material costs from work in process inventory to some other inventory accounts because of work order completion. Also records the transfer of direct labor, setup labor, and overhead from work in process when work orders are complete.</td>
</tr>
<tr>
<td>3130 Subassemblies/Finished Goods</td>
<td>Specifies which balance sheet G/L accounts are used when receiving subassemblies or finished goods from work in process into inventory.</td>
</tr>
<tr>
<td>3220 Labor Variance</td>
<td>These five AAIs post debits when there is a difference between actual and standard costs associated with shop floor activities.</td>
</tr>
<tr>
<td>3240 Material Variance</td>
<td>Variances are posted as positive or negative depending on whether they are favorable or unfavorable.</td>
</tr>
<tr>
<td>3260 Planned Variance</td>
<td></td>
</tr>
<tr>
<td>3270 Engineering Variance</td>
<td></td>
</tr>
<tr>
<td>3280 Other Variance</td>
<td></td>
</tr>
</tbody>
</table>
3401 Accruals
Specifies the profit and loss accounts that offset work in process labor transactions to work orders.

If you access the Automatic Accounting Instructions from any manufacturing menu, the system automatically enters 3000 (the beginning of the manufacturing AAI) in the Skip To AAI field.

To review AAI's

On Automatic Accounting Instructions

1. Access the fold area to view the AAI table number for each record.
2. Select the record type for which you want to review AAIIs.

3. Choose AAI Revisions to access Manufacturing and Distribution Automatic Account.

4. On Manufacturing and Distribution Automatic Account, review the following fields:
 - Work Order Type
 - Company
 - Document Type
- Company
- G/L Class Code
- Type
- Account Manufacturing and Distribution Business Unit
- Account Manufacturing and Distribution Object
- Account Manufacturing and Distribution Subsidiary

5. Access Memo Text.

On Automatic Accounting Instructions

1. Access the fold area to view the AAI table number for each record.
2. Select the record type for which you want to review AAIs.
3. Choose AAI Revisions to access Manufacturing and Distribution Automatic Account.
4. On Manufacturing and Distribution Automatic Account, review the following fields:
 - Work Order Type
 - Company
 - Document Type
 - Company
 - G/L Class Code
- Type
- Account Manufacturing and Distribution Business Unit
- Account Manufacturing and Distribution Object
- Account Manufacturing and Distribution Subsidiary

5. Access Memo Text.
6. On AAI Number Text, review memo text for a record type.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Order Type | A user defined code (system 00/type DT) that identifies the type of document. This code also indicates the origin of the transaction. J.D. Edwards has reserved document type codes for vouchers, invoices, receipts, and time sheets, which create automatic offset entries during the post program. (These entries are not self-balancing when you originally enter them.) The following document types are defined by J.D. Edwards and should not be changed:
 P Accounts Payable Documents
 R Accounts Receivable Documents
 T Payroll Documents
 I Inventory Documents
 O Order Processing Documents
 J General Accounting/Joint Interest Billing Documents |
| Company | A code that identifies a specific organization, fund, entity, and so on. This code must already exist in the Company Constants table (F0010). It must identify a reporting entity that has a complete balance sheet. At this level, you can have intercompany transactions.
 NOTE: You can use company 00000 for default values, such as dates and automatic accounting instructions (AAIs). You cannot use it for transaction entries.
 Form-specific information
 In the inquiry field at the top of the form, the asterisk (*) is the default value. It causes the system to display AAIs for all companies.
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Type</td>
<td>A user defined code (system 00/type DT) that identifies the origin and purpose of the transaction.</td>
</tr>
<tr>
<td></td>
<td>J.D. Edwards reserves several prefixes for document types, such as vouchers, invoices, receipts, and time sheets.</td>
</tr>
<tr>
<td></td>
<td>The reserved document type prefixes for codes are:</td>
</tr>
<tr>
<td></td>
<td>P Accounts payable documents</td>
</tr>
<tr>
<td></td>
<td>R Accounts receivable documents</td>
</tr>
<tr>
<td></td>
<td>T Payroll documents</td>
</tr>
<tr>
<td></td>
<td>I Inventory documents</td>
</tr>
<tr>
<td></td>
<td>O Order processing documents</td>
</tr>
<tr>
<td></td>
<td>J General ledger/joint interest billing documents</td>
</tr>
<tr>
<td></td>
<td>The system creates offsetting entries as appropriate for these document types when you post batches.</td>
</tr>
<tr>
<td></td>
<td>. Form-specific information</td>
</tr>
<tr>
<td></td>
<td>In the inquiry field at the top of the form, the asterisk (*) is the default and causes the system to display all document types.</td>
</tr>
<tr>
<td>Cost Component</td>
<td>This code designates each element of cost for an item. An example of the coding structure is:</td>
</tr>
<tr>
<td></td>
<td>A1 Purchased raw material</td>
</tr>
<tr>
<td></td>
<td>B1 Direct labor routing sheet rollup</td>
</tr>
<tr>
<td></td>
<td>B2 Setup labor routing sheet rollup</td>
</tr>
<tr>
<td></td>
<td>C1 Variable burden routing sheet rollup</td>
</tr>
<tr>
<td></td>
<td>C2 Fixed burden routing sheet rollup</td>
</tr>
<tr>
<td></td>
<td>Dx Usually used for outside processing routing sheet rollup</td>
</tr>
<tr>
<td></td>
<td>Xx Usually used for extra add-ons, such as electricity, water, and so forth</td>
</tr>
<tr>
<td></td>
<td>The optional add-on computations usually operate with the type “X” extra add-ons. This cost structure allows you to use an unlimited number of cost components to calculate alternative cost rollups. The system then associates these cost components with one of six user defined summary cost buckets.</td>
</tr>
<tr>
<td>Cost Center</td>
<td>A number that identifies a branch, plant, work center, or business unit.</td>
</tr>
<tr>
<td></td>
<td>. Form-specific information</td>
</tr>
<tr>
<td></td>
<td>If you leave this field blank, the system uses the business unit that you entered in the detail area of the transaction.</td>
</tr>
</tbody>
</table>
Field Details

Object Account
The object account portion of a general ledger account. The terms “object account” and “cost type” are used synonymously. They refer to the breakdown of the Cost Code (for example, labor, materials, and equipment) into subcategories (for example, dividing labor into regular time, premium time, and burden). When you are using a flexible chart of accounts, if the object is set to 6 digits, J.D. Edwards recommends that you use all 6 digits. Here, entering 000456 is not the same as entering 456, because the system adds three blank spaces to fill a 6-digit object.

Subsidiary
A subdivision of an object account. Subsidiary accounts include more detailed records of the accounting activity for an object account.

Processing Options for Manufacturing AAlS

DEFAULT INFORMATION:
1. Enter the default skip to AAI
 Number:

Understand Work Orders in Accounting

About Work Orders in Accounting

The Manufacturing Accounting system tracks costs associated with work orders, and creates journal entries for all shop floor transactions. Each step in the work order process can affect manufacturing accounting. The principal effect is that when you complete any step in the process, you create a transaction that can be the source of a variance. The variances are calculated when you run Journal Entries for Variances.

See Also

- What Are Work Order Variances? (P3102)
- What Are Work Order Variances?

What Is a Work Order?

A work order is a request to produce a certain quantity of an item by a given date.

A work order consists of:

- A header
- A parts list
- Routing instructions

The following graphic illustrates the work order structure.
After you have determined what resources are required to produce an item, you can schedule the work order and begin the work. As you complete the work order, you must track the following:

- Completed items
- Materials used
- Quantities scrapped
- Hours of machine and personnel time used

What Happens when You Create a Work Order?

To create a work order, you identify on the header the item, its branch/plant and quantity, and the requested date for the work order.

The following graphic illustrates the flow of information when you create a work order.
How Do You Attach the Parts List and Routing Instructions?

Understanding Manufacturing Accounting

About the Parts List and Routing

After you have created a work order header, you must attach a parts list and routing instructions to indicate the parts, personnel, machinery, and time required to make the items. You can attach the parts list and routing instructions in one of three ways:

- Manually.
- Interactively from Enter/Change Order. This method uses the data from the item’s bill of material or routing as the default data for the parts list or routing instructions. You can modify the data.
- Automatically through the Work Order Generation program. This method makes copies of the item’s bill of material and routing, and uses them for the initial parts list and routing instructions. You can modify the data. This method also allows you to attach the parts lists and routing instructions in a batch.

Regardless of the method you choose, the system compares the frozen standard costs to the current costs. The frozen standard costs come from the Cost Components table (F30026), based on the original bill of material and routing. The current costs are calculated from the values in the Cost Components table, based on the current parts list and routing instructions. If a discrepancy exists.
between the frozen standard costs and the current costs, the amount of the discrepancy becomes the engineering variance.

When Process Work Orders attaches the parts list and routing instructions to a work order, the system compares the frozen standard costs to the current costs. The frozen standard costs come from the Cost Components table (F30026), based on the original bill of material and routing. The current costs are calculated from the values in the Cost Components table, based on the current parts list and routing instructions. If a discrepancy exists between the frozen standard costs and the current costs, the amount of the discrepancy becomes the engineering variance.

You can view engineering variances once you attach a parts list and routing instructions to a work order.
Example: Engineering Variance Inquiry

See Also

- Reviewing Variances (P3102)
- Reviewing Variances

What Happens when You Revise a Work Order?

Understanding Manufacturing Accounting

After you create a work order and attach a parts list and routing, you might need to make revisions. If you revise the quantity requested, the parts list, or the routing, you might also revise the cost of the work order.

When you run Journal Entries for Variances, the system compares the current costs to these revised planned costs. The revised planned costs are calculated from the values in the Cost Components table, based on the revised parts list and routing instructions. If a discrepancy exists between the current costs and the revised planned costs, Journal Entries for Variances calculates a planned variance.

If you make no revisions to a work order, there is no planned variance.
See Also

- Creating Journal Entries for Work Order Variances (P31804)
- Creating Journal Entries for Work Order Variances

About Unaccounted Units

Unaccounted units represent the quantities and dollar amounts of transactions that occur against a work order when you issue parts, or record labor or completions. You cannot view unaccounted units. They are stored by the system until you run Journal Entries for Work in Process or Completions. That program creates journal entries for the unaccounted units and then purges the unaccounted units.

The Parts List table (F3111) stores unaccounted units that are updated by work order issues.

The Routing Instructions table (F3112) stores unaccounted units and dollars. These are updated when reporting labor and machine hours.

The Work Order Master table (F4801) stores unaccounted units that are updated by work order completions.

How Do You Issue Material to a Work Order?

Understanding Manufacturing Accounting

What Happens when You Issue Material?

You must send the required materials to the shop floor for production. The quantities issued to the shop floor are deducted from inventory through an issue transaction. This transaction reports the actual quantities of materials that were used in the production process to the Inventory Management and Manufacturing Accounting systems.
Issue transactions do not have to occur at the same time that the physical transfer of inventory takes place. You can choose the point in the production process where you want your inventory records to reflect the issue of the parts to the work order.

The four ways to issue parts are:

Manual issues

Materials are deducted from inventory when you enter the issue transactions on the Issues form.

Preflushing

Materials are automatically deducted from inventory when a work order is processed through the Process Work Orders program if the processing option is set to do so.

Backflushing

Materials are deducted from inventory when items on the work order are reported complete. This might be when you report partial completions throughout the production process or when you report full completions at the last routing operation.

Super Backflushing

Materials are automatically deducted from inventory at operations defined as pay points throughout the routing. The Super Backflush program allows you to backflush materials and labor hours and report items complete at the same time.

When you issue parts to a work order, unaccounted units are stored in the Parts List table until you run Journal Entries for Work in Process or Completions.
Whatever method you use to issue materials to a work order, when you run Journal Entries for Variances, the program compares the cost of materials issued to the cost of materials specified on the parts list. If there is a discrepancy, the program calculates an actual variance.

What Happens when You Record Hours and Quantities Used?

Understanding Manufacturing Accounting

As you produce items on a work order, you record the hours spent on production and the number of items completed in that time.

The Manufacturing Accounting system interfaces with Payroll Time Entry so that transaction data is usable in both the Shop Floor Control and Payroll systems. You can record hours and quantities per work request or per employee to accommodate both piece-work and hourly rate employees.

Use the Hours and Quantities Entry program to charge actual hours and quantities to a work order. The header information comes from the Work Order Master table (F4801). The information you enter is stored in the Work Order Transactions table (F31122).

You can enter hours and quantities data on one of two forms:

- Payroll Time Entry
- Hours and Quantities Entry

Inquiries and reports allow you to review and revise the hours and quantities reported by employee and by work request. After you enter the transactions into the system, you must post them to the Manufacturing Accounting system for further tracking and cost accounting.

After you have entered hours and quantities data, you post the transactions to the Work Order Routing table, where they are used to create journal entries. You can perform the post interactively when you record the hours and quantities, or you can run the Hours and Quantities Update program. The update takes the hours and quantities recorded against work order operations from the Work Order Transactions table (F31122) and updates their respective fields in the Routing Instructions table (F3112). The transaction data is then available for use by Journal Entries for Work in Process or Completions.

When you record labor and machine hours, unaccounted units are stored in the Routing Instructions table.

When you run Journal Entries for Variances, the program compares the cost of materials and labor reported to the cost of materials and labor as specified on
the work order parts list and routing instructions. If a discrepancy exists, the program updates the actual variance.

What Happens when You Record Component Scrap?

Understanding Manufacturing Accounting

After you issue parts to a work order, you might need to report some of them as scrapped. Scrap is unusable material that results from the production process. You specify the amount of material to be scrapped and the reason on Component Scrap.

When you report the quantity of component material scrapped, and you run Journal Entries for Work in Process or Completions, the program calculates the new A2 cost value for the parent. If the amount of the scrapped material differs from the estimated scrap amount on the bill of material, this difference updates the amount of the actual variance.

There are no unaccounted units associated with scrapping components.

What Happens when You Record Completions to a Work Order?

Understanding Manufacturing Accounting

When you finish production of a work order on the shop floor, you must record the completions to inventory. These transactions update records in the Inventory Management system.
Completions occur when you report the products that result from a process and enter them into inventory as complete. The Shop Floor Control system provides several ways to complete products into inventory, including:

- Super backflushing
- Partial completion
- Full completion
- Backflushing at completion

Work Order Completions calculates the final value of the cost components for the parent part and updates the amount of the actual variance in the Work Order Variance table. Completions represent dollar amounts added to inventory.

When you record completions, unaccounted units are stored in the Work Order Master table.
Work with Work Orders

Working with Work Orders

Work with work orders to view the effect of each step on manufacturing accounting.

Working with work orders includes:

- Creating a work order
- Attaching a parts lists and routing instructions
- Issuing parts to the work order
- Recording hours and quantities used
- Recording component scrap
- Recording completions to the work order

Creating a Work Order

Create a work order as the first step in the process of understanding the cycle of a work order and its effect on manufacturing accounting.
See Also

- Entering Work Order Headers (P48013) in the Shop Floor Control Discrete Manufacturing Guide
- Entering Work Order Headers in the Shop Floor Control Discrete Manufacturing Guide

To create a work order

On Enter/Change Order

![Image of the Enter/Change Order screen]

Complete the following fields:

- Item Number
- Requested
- Quantity Ordered
- Branch/Plant
- Charge to Business Unit
- Cost Code

On Enter/Change Order

Complete the following fields:

- Item Number
- Requested
- Quantity Ordered
- Branch/Plant
- Charge to Business Unit
- Cost Code

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Number</td>
<td>A number that the system assigns to an item. It can be in short, long, or 3rd item number format.</td>
</tr>
<tr>
<td>Requested</td>
<td>The date that an item is to arrive or that an action is to be complete.</td>
</tr>
<tr>
<td></td>
<td>........................ Form-specific information</td>
</tr>
<tr>
<td></td>
<td>For Shop Floor Control</td>
</tr>
<tr>
<td></td>
<td>When you change the requested date:</td>
</tr>
<tr>
<td></td>
<td>- The system calculates a new start date based on the new requested date if you delete the date in the Start date field before you enter the new requested date. If you do not delete the start date, the system does not recalculate or change it.</td>
</tr>
<tr>
<td></td>
<td>- The system recalculates the operation start and complete dates according to the scheduling rules defined.</td>
</tr>
<tr>
<td>Quantity Ordered</td>
<td>The quantity of units affected by this transaction.</td>
</tr>
<tr>
<td></td>
<td>........................ Form-specific information</td>
</tr>
<tr>
<td></td>
<td>For Shop Floor Control discrete manufacturing:</td>
</tr>
<tr>
<td></td>
<td>When you change the order quantity, the system recalculates the following:</td>
</tr>
<tr>
<td></td>
<td>- The component-required quantities and commitments</td>
</tr>
<tr>
<td></td>
<td>- The operation start and complete dates, if the leadtimes are variable</td>
</tr>
<tr>
<td></td>
<td>In the process industry:</td>
</tr>
<tr>
<td></td>
<td>The quantity of co-/by-products produced by the process.</td>
</tr>
</tbody>
</table>
Field | Explanation
--- | ---
Branch/Plant | Represents a high-level business unit. It can be used to reference a branch or plant that might have departments or jobs, which represent lower-level business units (data item MCU), subordinate to it. For example:
- Branch/Plant (MMC)
- Dept A (MCU)
- Dept B (MCU)
- Job 123 (MCU)

Business unit security is based on the higher-level business unit.

................. *Form-specific information*

For Shop Floor Control and Manufacturing Accounting:
This field identifies the branch/plant that the item resides in.

Charge to Cost Center | A number that identifies a branch, plant, work center, or business unit.

................. *Form-specific information*

The default business unit for journal entries for the work order. The business unit on the AAI tables must be blank.

Cost Code | A subdivision of an object account. Subsidiary accounts include more detailed records of the accounting activity for an object account.

................. *Form-specific information*

For Shop Floor Control and Manufacturing Accounting:
If a value is not entered in the AAI table for subsidiary account, the system uses this value as a default in journal entries.

Attaching a Parts List and Routing Instructions

You can attach the parts list and routing instructions in one of three ways:

- Manually
- Interactively
- Through the Process Work Orders program

For example, to understand its effect on manufacturing accounting, run the Process Work Orders program.
See Also

- Attaching the Parts List Interactively (P3111) in the Shop Floor Control Discrete Manufacturing Guide
- Attaching the Parts List Interactively in the Shop Floor Control Discrete Manufacturing Guide
- Attaching the Routing Interactively (P3112) in the Shop Floor Control Discrete Manufacturing Guide
- Attaching the Routing Interactively in the Shop Floor Control Discrete Manufacturing Guide
- Processing Work Orders (P31410) in the Shop Floor Control Discrete Manufacturing Guide
- Processing Work Orders in the Shop Floor Control Discrete Manufacturing Guide

Processing Options for Process Work Orders

GENERATION INFORMATION:
1. Enter one of the following: ____________
 1 – Parts List only
 2 – Routing only
 3 – Both Parts List and Routing
 If left blank, neither Parts List nor Routing will be generated.
2. Enter a ’1’ to use the W.O. Date ____________
 for Effectivity checking. (Default is the W.O. Start Date.)

UPDATE INFORMATION:
3. Enter the new Status Code for the ____________
 Work Order Header. If left blank, status will not be changed.

WORK ORDER PRINT INFORMATION:
4. Enter a ’1’ to print Work Orders. ____________
 If printing Work Orders:

PARTS LIST PRINT INFORMATION:
5. Enter a ’1’ to print Parts List ____________
6. Enter a ’1’ to print the 2nd line of ____________
 information, which is scrap and related work center.
7. Enter a ’1’ to print Parts List on a ____________
 new page.
8. Enter the DREAM Writer Version of ____________
 the Parts List to print. If left blank, XJDE0001 is used.
 (See Form ID P31415.)
9. Enter a ’1’ to print a consolidated Parts List. ____________

ROUTING INSTRUCTIONS PRINT INFO:
10. Enter a ’1’ to print Routing ____________
11. Enter a ’1’ to print Routing on a ____________
 new page.
12. Enter the DREAM Writer Version to be
executed for the desired sequencing of the Routing. If left blank, the operation sequence is used. (See Form ID P314151.)

BACKSCHEDULING INFORMATION:
13. Enter the Unit of Measure for backscheduling.

SHOP PACKET SUMMARY INFORMATION:
14. Enter a ‘1’ to print the Shop Packet Summary.

SHORTAGE REPORT INFORMATION:
15. Enter the DREAM Writer Version of the Shortage Report to execute. If left blank, no shortage report will be printed. (See Form ID P31416.)

BAR CODE INFORMATION:
16. Enter the DREAM Writer Version to be executed for the desired print overrides for Bar Coding. (See Form ID P31413.)

INVENTORY ISSUE INFORMATION:
17. Enter the DREAM Writer Version of Batch Inventory Issues to execute. If left blank, the Inventory Issues program will not be called. (See Form ID P31420)

PURCHASE ORDER INFORMATION:
(Used for Sub-Contract Routings)
18. Enter the Document Type
19. Enter the Line Type
20. Enter the Beginning Status
21. Enter a ‘1’ to default the tax area from the ’Ship-To’ address book number. If left blank, the tax area will default from the Supplier address book number.

SALES ORDER INFORMATION:
22. Enter the new Line Type for kit and configured components. This is used to avoid issuing inventory from Sales Order processing. The Line Type used should be inventory interface ‘N’. If left blank, Line Type will not be changed.
23. Enter the Next Status for Sales Order kit and configured component lines. (This is used to bypass the normal flow of the order, i.e., Pick Slip.) If left blank, status will not be changed.
24. Enter a ‘1’ to print Sales Order Text lines.

CONFIGURED ITEM COSTS:
25. Enter one of the following options for calculating the standard cost for configured items in the WO
Variance file (F3102).
1 - Always calculate the standard cost.
2 - Only calculate the standard cost if it has not already been done (no variance records exist.)
If left blank, standard cost will not be calculated.

BOM SUBSTITUTES:
26. Enter '1' to allow the use of Bill of Material substitutes in case of a shortage.

PURCHASING JOURNAL ENTRIES:
27. Enter a '1' to load the Work Order Number into the Subledger field of the purchasing J/E’s.

BLANKET/QUOTE PROCESSING:
28. Enter a '1' for automatic blanket order release processing.

BUILD AGAINST PRIOR REVISIONS:
29. Enter a '1' to permit building work orders against prior revision levels. The revision level in the work order header (F4801) will be used to select the parts list to attach to the work order. If left blank, prior revision level bills will not be selected.

WAREHOUSE PROCESSING:
30. Enter the request processing mode:
1 - Generate requests only
2 - Generate requests and process using the subsystem.
If left blank, requests will not be generated.
31. If processing pick requests using the subsystem, enter the DREAM Writer version to use. If left blank, XJDE0002 will be used. (see Form ID P46171)
32. Enter the default staging location for moving goods out of the warehouse. The parts picked from the warehouse are staged at this location prior to use within manufacturing. (F1=Location Window)
33. Enter a '1' if the default staging location should be checked for availability. If the part is available at the staging location a request will NOT be generated. This option only applies to parts without work center locations.

QUALITY MANAGEMENT OPTIONS:
34. Enter a '1' to attach the
Work Order/Routing tests.

GENERIC TEXT PRINT OPTIONS:
35. Enter a ‘1’ to print component generic text on the Parts List.
36. Enter a ‘1’ to print operation generic text on the Routing.

Issuing Parts to the Work Order

Issue the necessary parts to the work order. There are four ways to issue parts:

- Manually
- Preflushing
- Backflushing
- Super backflushing

Whichever method you use, when you issue parts to a work order, you create:

- One source of an actual variance, if the cost of materials issued is different from the cost of materials specified on the parts list
- Unaccounted units in the Parts List table

For example, to understand its effect on manufacturing accounting, issue the parts manually.

See Also

- About Issue Transactions in the Shop Floor Control Discrete Manufacturing Guide
To issue parts to the work order

On Inventory Issues

Complete the following fields:

- Order Number
- Issue Material For

On Inventory Issues

Complete the following fields:

- Order Number
- Issue Material For

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document (Order No, Invoice, and so on)</td>
<td>A number identifying the original document. This can be an invoice number, work order number, sales order number, journal entry number, and so on.</td>
</tr>
<tr>
<td>Quantity – Requested Quantity</td>
<td>The number of parent items you want to process. The system calculates lower-level values in quantity per the number of parent items requested. For example, if 3 components are needed for a parent item, and the requested quantity is 10, the system plans for 30 components.</td>
</tr>
</tbody>
</table>
Recording Hours and Quantities Used

As you produce items on a work order, you record the hours spent on production and the number of items completed in that time.

When you record hours and quantities used, you create:

- One source of an actual variance, if the cost of materials and labor reported differs from the cost of materials and labor as specified on the work order parts list and routing instructions
- Unaccounted units in the Routing Instructions table

To record hours and quantities used

On Hours and Quantities
Complete the following fields:

- Work Date
- Order Number
- Employee Number
- Operation Number
- Type of Hours
- Hours
- Quantity
- Unit of Measure
- Operation Status

On Hours and Quantities

Complete the following fields:

- Work Date
- Order Number
- Employee Number
- Operation Number
- Type of Hours
- Hours
- Quantity
- Unit of Measure
- Operation Status

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Date</td>
<td>A date that identifies the financial period that the transaction is to be posted to. The general accounting constants specify the date range for each financial period. You can have up to 14 periods. Generally, period 14 is for audit adjustments. The system edits this field for PBCO (posted before cutoff), PYEB (prior year ending balance), and so on.</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Order Number</td>
<td>A number identifying the original document. This can be an invoice number, work order number, sales order number, journal entry number, and so on.</td>
</tr>
</tbody>
</table>
| | *Form-specific information*
You can specify the order number or employee number in the processing options for the Hours and Quantities program. |
| Address Number | A number that identifies an entry in the Address Book system. Use this number to identify employees, applicants, participants, customers, suppliers, tenants, special mailing addresses, and so on. |
| Operation Sequence | In routings, used to sequence the fabrication or assembly steps in the manufacture of an item. You can track costs and charge time by operation. |
| Number |
In bills of material, designates the routing step in the fabrication or assembly process that requires a specified component part. You define the operation sequence after you create the routing for the item. The Shop Floor Control system uses this field in the backflush/preflush by operation process. |
| | In engineering change orders, used to sequence the assembly steps for the engineering change. |
| | Skip To fields allow you to enter an operation sequence that you want to begin the display of information. |
| | You can use decimals to add steps between existing steps. For example, use 12.5 to add a step between steps 12 and 13. |
| | In the process, the sequence number that produces the intermediate product. |
| | *Form-specific information*
This is the sequence number of the routing step on the work order. You must enter this number. |
| Type of Hours | A code to indicate the type of time entered. Valid codes are: |
| | 1 Run Labor Hours |
| | 2 Setup Labor Hours |
| | 3 Machine Hours |
| | 4 Quantities Completed |
| | 5 Quantities Scrapped |
| | 9 Miscellaneous (piece rate bonus and so forth) |
| Hours Worked | The number of hours associated with each transaction. |
Field | Explanation
--- | ---
Quantity Shipped | The number of units committed for shipment in Sales Order Entry, using either the entered or the primary unit of measure defined for this item.
In the Manufacturing system and Work Order Time Entry, this field can indicate completed or scrapped quantities. The quantity type is determined by the type code entered.
Operation Status Code W.O. | User defined code system 31, type OS. The operation status code that identifies the current status of a work order or engineering change order as the operation steps in the routing are completed.

Recording Component Scrap

When you report the quantity of component material scrapped, and you run Journal Entries for Work in Process or Completions, the program calculates the new A2 cost value for the parent. If the amount of the scrapped material differs from the estimated scrap amount on the bill of material, this difference updates the amount of the actual variance.

See Also

- *Recording Component Scrap (P31116)* in the *Shop Floor Control Discrete Manufacturing Guide*
- *Recording Component Scrap* in the *Shop Floor Control Discrete Manufacturing Guide*
To record component scrap

On Component Scrap

1. Review the following fields:
 - Quantity Ordered
 - Quantity Completed
 - Ingredient
 - Quantities Issued
 - Quantities Scrapped

2. Complete the following field:
 - Quantity to Scrap

3. Complete the following optional fields:
 - Unit of Measure
 - Transaction Date

4. Access the fold area.
The fold area is only accessible if you have already issued parts to the work order.

5. Complete the following optional fields:
 - Reason Code
 - Explanation
 - Date

On Component Scrap

1. Review the following fields:
 - Quantity Ordered
 - Quantity Completed
 - Ingredient
 - Quantities Issued
 - Quantities Scrapped

2. Complete the following field:
 - Quantity to Scrap

3. Complete the following optional fields:
 - Unit of Measure
 - Transaction Date

4. Access the fold area.
The fold area is only accessible if you have already issued parts to the work order.

5. Complete the following optional fields:
 - Reason Code
 - Explanation
 - Date

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity Ordered</td>
<td>The quantity of units affected by this transaction.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>The work order quantity.</td>
</tr>
<tr>
<td>Quantity Completed</td>
<td>The number of units committed for shipment in Sales Order Entry, using either the entered or the primary unit of measure defined for this item.</td>
</tr>
<tr>
<td></td>
<td>In the Manufacturing system and Work Order Time Entry, this field can indicate completed or scrapped quantities.</td>
</tr>
<tr>
<td></td>
<td>The quantity type is determined by the type code entered.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>The quantity completed on this work order to date.</td>
</tr>
<tr>
<td>Date – Order/Transaction</td>
<td>The date that an order was entered into the system. This date determines which effective level is used for inventory pricing.</td>
</tr>
<tr>
<td>Ingredient (Component)</td>
<td>A number that the system assigns to an item. It can be in short, long, or 3rd item number format.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>These are the components used on this work order.</td>
</tr>
<tr>
<td>Quantities Scrapped</td>
<td>The number of units canceled in Sales Order or Work Order Processing, using either the entered or the primary unit of measure defined for this item.</td>
</tr>
<tr>
<td></td>
<td>In manufacturing, this can also be the number of units scrapped to date.</td>
</tr>
<tr>
<td>Reason Code</td>
<td>A user defined code (system 42/type RC) that explains the purpose for a transaction. For example, you can use a code to indicate a transaction that involves returned items, such as goods that were damaged in shipment or the overshipment of goods.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>A user defined code (system 41, type RC) that indicates the reason for the quantity scrapped at this operation.</td>
</tr>
</tbody>
</table>
Work with Work Orders

What You Should Know About

Quantities Issued field
The quantity of a component that has been issued to date.

Quantity to Scrap field
The quantity of a component that is being scrapped on this work order.

Processing Options for Component Scrap

DEFAULT FORMAT:
1. Enter a ‘1’ for Item Number entry. Blanks will default to Work Order Number entry.

DEFAULT VALUES:
2. Item Ledger Transaction date. (Blanks will default to the current date).

4. Enter the document type associated with the Component Scrap Transaction.

SERIAL NUMBER PROCESSING:
5. Enter the Document type used for Serial Number Issues. If left blank ‘IM’ will default.

Recording Completions to the Work Order

G31 Shop Floor Control
Choose Daily Order Reporting — Discrete

G3112 Daily Order Reporting — Discrete
Choose Full Completion
When you finish production of a work order on the shop floor, you must record the completions to inventory. These transactions update records in the Inventory Management system. You can record completions in the following ways:

- Super backflushing
- Partial completion
- Full completion
- Backflushing at completion

When you record completions to a work order, you create:

- One source of an actual variance, if the cost of materials and labor reported differs from the cost of materials and labor as specified on the work order parts list and routing instructions
- Unaccounted units in the Work Order Master table

For example, to understand its effect on manufacturing accounting, record a full completion.

See Also

- *Completing Work Orders (P31114)* in the *Shop Floor Control Discrete Manufacturing Guide*
- *Completing Work Orders* in the *Shop Floor Control Discrete Manufacturing Guide*
To record completions to the work order

On Full Completion

Complete the following fields:

- Order Number
- Quantity Completed
- Quantity Scrapped
- Date Complete
- Work Order Status

On Full Completion

Complete the following fields:

- Order Number
- Quantity Completed
- Quantity Scrapped
- Date Complete
- Work Order Status
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units – Quantity Canceled/Scrapped</td>
<td>The number of units canceled in Sales Order or Work Order Processing, using either the entered or the primary unit of measure defined for this item. In manufacturing, this can also be the number of units scrapped to date.</td>
</tr>
<tr>
<td>Date – Completion (Julian)</td>
<td>The date the work order or engineering change order is completed or canceled.</td>
</tr>
<tr>
<td>Status Code W.O.</td>
<td>A user defined code (system 00, type SS) that describes the status of a work order or engineering change order. Any status change from 90 thru 99 automatically updates the date completed.</td>
</tr>
</tbody>
</table>

Exercises

See the exercises for this chapter.
Create Journal Entries

Creating Journal Entries

You create journal entries for work in process (issues, labor entry, and machine run time), completions, and manufacturing variances as the first step towards posting these work order transactions to the general ledger.

To create journal entries for work order transactions, complete the following tasks:

- Create journal entries for work in process or completions
- Review variances
- Create journal entries for work order variances
- Review summarized work orders

Journal Entries and the Three-Tier Process

When you enter daily journal transactions, you are performing the first of three steps in the J.D. Edwards three-tier process. This process is used throughout all J.D. Edwards entry programs and includes the following steps:

1. Entering transactions into a batch
2. Reviewing and approving the batch for posting
3. Posting the batch transactions
The following graphic illustrates the three-tier process.

1. **Enter journal entries into a batch**
 - Creates unposted batch header records
 - Updates Account Ledger table (F0911) with unposted records

2. **Review the batch and approve for posting**
 - Updates batch header to an Approved status and makes documents eligible for posting

3. **Post transactions**
 - Transacts are posted to Account Balances table (F0902)
 - Updates Account Ledger records (F0911)

Generating Journal Entries

Generating journal entries occurs in two ways:

- You enter transactions manually through the General Accounting system, such as:
 - Accruals
 - Adjustments
 - Reclassification of transactions

- The Journal Entries for Work in Process or Completions program generates journal entries based on another system’s transactions, such as:
 - Manufacturing Accounting (variances)
 - Shop Floor Control
In the Manufacturing Accounting system, you use programs to create journal entries for various types of shop floor activity, including:

- Material issues
- Labor and machine reporting
- Completions
- Scrap
- Variances
 - Engineering
 - Planned
 - Material usage (actual)
 - Labor efficiency (actual)
 - Other (volume)

Detail and Summary Journal Entries

You can enter detail or summary entries for both debit and credit journal entry transactions. Use the object portion of the account number to control the level of detail of your journal entries.

Detail Journal Entries

To enter detail journal entries for a work order by cost component, enter a different object account number for each cost component.

<table>
<thead>
<tr>
<th>Cost Component</th>
<th>Business Unit</th>
<th>Account Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>M30</td>
<td>1341</td>
</tr>
<tr>
<td>B1</td>
<td>M30</td>
<td>1342</td>
</tr>
<tr>
<td>B2</td>
<td>M30</td>
<td>1343</td>
</tr>
</tbody>
</table>

Summary Journal Entries

To summarize the cost components for an item on a work order into a single journal entry, enter the costs with the same object account number.

<table>
<thead>
<tr>
<th>Cost Component</th>
<th>Business Unit</th>
<th>Account Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>M30</td>
<td>1340</td>
</tr>
<tr>
<td>B1</td>
<td>M30</td>
<td>1340</td>
</tr>
<tr>
<td>B2</td>
<td>M30</td>
<td>1340</td>
</tr>
</tbody>
</table>
In addition, you can set processing options to:

- Summarize material issues (document type IM) by account number within a work order. There is one journal entry for each unique combination of account number and work order number.
- Summarize all journal entries by account number across work orders. There is one entry for the batch for each account. The entry is the sum of all work order issue transactions for each account.
- Print a summarized Accounting Transaction report.

If you use summarized journal entries, the program batches the appropriate work orders and then assigns a new work order number to the batch. This summarized work order number appears on inquiry forms and reports, but does not refer to an actual work order.

You should run the following programs in this order to generate journal entries:

Journal Entries for Work in Process or Completions
This program creates journal entries for shop floor control transactions. It also updates information in the Work Order Variance table (F3102), which the system uses to create journal entries for transactions with variances.

Journal Entries for Variances
Run this program only after you have run Journal Entries for Work in Process or Completions on a set of transactions for the last time. You cannot run Journal Entries for Variances on the same set of transactions twice, or the journal entries are duplicated.

If you have extra costs on purchased items, and you want to calculate their costs separately, you need to understand purchase price variance and material burden cost.

NOTE: If you have extra costs on purchased items, and you want to calculate their costs separately, you need to understand purchase price variance and material burden cost.

See Also

- Appendix C — Purchase Price Variance
- About Purchase Price Variance (P31802)
- About Purchase Price Variance
Creating Journal Entries for Work in Process or Completions

Journal Entries for Work in Process or Completions creates journal entries for shop floor activity. You can report transactions for material issues, completions, and labor and machine hours reported against a work order.

This program locates unaccounted units in the Parts List table, Routing Instructions table, and Work Order Master table, and creates journal entries for them. The program then purges the unaccounted units.

This program also updates information in the Work Order Variances table (F3102), which Journal Entries for Variances uses to create journal entries for transactions with variances.

This program uses the following AAI tables to match inventory and cost transactions to general ledger accounts.

<table>
<thead>
<tr>
<th>Account</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3110</td>
<td>Credit inventory, raw materials/subassemblies Moves inventory cost from inventory during issue reporting. Not used by variance accounting.</td>
</tr>
<tr>
<td>3120</td>
<td>Debit/credit work in process Moves inventory cost to WIP during inventory issue and shop hours report. Also moves inventory from WIP during inventory completion reporting.</td>
</tr>
<tr>
<td>3130</td>
<td>Debit inventory, subassemblies/finished goods Moves inventory cost to inventory during the completion reporting. Not used by variance accounting.</td>
</tr>
<tr>
<td>3401</td>
<td>Credit accruals Moves shop hour cost to accruals during shop hours reporting. Not used by variance accounting.</td>
</tr>
</tbody>
</table>
The system uses the following data to match the transaction to the AAI account:

- Work order type for the AAI.
- Company number associated with the work order or component branch/plant. If the system does not find a match, it uses 00000.
- Document type associated with the transaction.
- G/L category code for the transaction item. If the system does not find a match, it uses **** (four asterisks).
- Cost component.
- Branch/plant.

<table>
<thead>
<tr>
<th>Batch Number</th>
<th>Account Number</th>
<th>G/L Date</th>
<th>AAI Do G/L</th>
<th>Cost Document Or Type</th>
<th>Number Ty</th>
<th>Amount</th>
<th>Error Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>122764</td>
<td></td>
<td>02/21/98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No Errors - Batch Ready for G/L Post</td>
</tr>
</tbody>
</table>
G/L RECAP (Summarized by Account)

<table>
<thead>
<tr>
<th>Ty</th>
<th>Date</th>
<th>Co</th>
<th>Description</th>
<th>G/L Account</th>
<th>Debit</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM</td>
<td>06/30/98</td>
<td>00200</td>
<td>Material Charged To W.O.’s</td>
<td>M30.1710.A1</td>
<td>3,416.28</td>
<td>AA</td>
</tr>
<tr>
<td>IM</td>
<td>06/30/98</td>
<td>00200</td>
<td>Material Charged To W.O.’s</td>
<td>M30.1510.A1</td>
<td>3,416.28</td>
<td>AA</td>
</tr>
<tr>
<td>IH</td>
<td>06/30/98</td>
<td>00200</td>
<td>Outside Ops</td>
<td>M30.1710.D1</td>
<td>67.05</td>
<td>AA</td>
</tr>
<tr>
<td>IH</td>
<td>06/30/98</td>
<td>00200</td>
<td>Labor</td>
<td>M30.1720.B1</td>
<td>59.86</td>
<td>AA</td>
</tr>
<tr>
<td>IH</td>
<td>06/30/98</td>
<td>00200</td>
<td>Variable Labor</td>
<td>M30.1730.C3</td>
<td>44.18</td>
<td>AA</td>
</tr>
<tr>
<td>IH</td>
<td>06/30/98</td>
<td>00200</td>
<td>Fixed Labor</td>
<td>M30.1730.C4</td>
<td>36.82</td>
<td>AA</td>
</tr>
<tr>
<td>IH</td>
<td>06/30/98</td>
<td>00200</td>
<td>Other Charges</td>
<td>M30.1740.X</td>
<td>254.55</td>
<td>AA</td>
</tr>
<tr>
<td>IH</td>
<td>06/30/98</td>
<td>00200</td>
<td>R&D</td>
<td>M30.1740.X5</td>
<td>.30</td>
<td>AA</td>
</tr>
<tr>
<td>IH</td>
<td>06/30/98</td>
<td>00200</td>
<td>Accrued Payroll</td>
<td>200.4205</td>
<td>59.86</td>
<td>AA</td>
</tr>
<tr>
<td>IH</td>
<td>06/30/98</td>
<td>00200</td>
<td>Actual Burden Clearing Account</td>
<td>200.4333</td>
<td>335.85</td>
<td>AA</td>
</tr>
<tr>
<td>IH</td>
<td>06/30/98</td>
<td>00200</td>
<td>Other Accrued Expenses</td>
<td>200.4420</td>
<td>67.05</td>
<td>AA</td>
</tr>
<tr>
<td>IC</td>
<td>06/30/98</td>
<td>00200</td>
<td>Material</td>
<td>M30.1510.A1</td>
<td>3,332.07</td>
<td>AA</td>
</tr>
<tr>
<td>IC</td>
<td>06/30/98</td>
<td>00200</td>
<td>Material</td>
<td>M30.1510.A2</td>
<td>95.76</td>
<td>AA</td>
</tr>
<tr>
<td>IC</td>
<td>06/30/98</td>
<td>00200</td>
<td>Outside Operations</td>
<td>M30.1510.D1</td>
<td>67.05</td>
<td>AA</td>
</tr>
<tr>
<td>IC</td>
<td>06/30/98</td>
<td>00200</td>
<td>Direct Labor</td>
<td>M30.1520.B1</td>
<td>55.92</td>
<td>AA</td>
</tr>
<tr>
<td>IC</td>
<td>06/30/98</td>
<td>00200</td>
<td>Setup Labor</td>
<td>M30.1520.B2</td>
<td>6.69</td>
<td>AA</td>
</tr>
<tr>
<td>IC</td>
<td>06/30/98</td>
<td>00200</td>
<td>Labor Efficiency</td>
<td>M30.1520.B4</td>
<td>12.99</td>
<td>AA</td>
</tr>
</tbody>
</table>
Processing Options for Journal Entries for Work in Process or Completions

1. Enter the G/L Date. If left blank, the current date will be used.

2. Enter a ’1’ to create journal entries. If left blank, ’Proof’ mode is assumed.

JOURNAL ENTRY SUMMARIZATION:
3. Enter a ’1’ to summarize Material Issues by Account within Work Order.

4. Enter a ’1’ to summarize by Account ACROSS work orders. WARNING: This option will reduce the number of journal entries. See Helps.

REPORT OPTIONS:
5. Enter a ’1’ to print an Accounting Journal.

6. Enter a ’1’ to print subtotals by Document Type and Document.

REPORT SUMMARIZATION:
7. Enter a ’1’ to summarize Material Issues within work order.

8. Enter a ’1’ to summarize by Account ACROSS work orders. WARNING: This option will reduce the report output. See Helps.

9. Enter a ’1’ to default the Work Order number into the Subledger field.

10. Enter the new Status Code for the Work Order. If left blank, the status will not be changed.

11. Enter the Document Type associated with Inventory Scrap.

12. Enter the Document Type to default for Shop Floor Activity. (NOTE: This will only be used if no Document Type exists in the Work Order Routing file, F3112.)
What You Should Know About Processing Options

If you use routings, the program automatically assigns a document type of IH to transactions on extra cost components.

If you do not use routings, enter a document type here. This processing option ensures that transactions on extra cost components do not have a blank document type.

Reviewing Variances

Variances occur when the frozen standard costs differ from other user defined cost methods, such as current costs. These variances can be due to differences in labor or overhead, or changes to the bill of material or routing.

The following describes each variance type.

Engineering

The difference between the frozen standard costs (material, labor, and overhead) at the beginning of the accounting period and the current costs derived from the bills of material, routings, and overhead rates.

Planned

The difference between the current costs derived from the bills of material, routings, and overhead rates and the costs based on the work order parts list and routing instructions. Planned variances can occur when you revise a work order.
Actual

The difference between the cost values derived from the work order parts list and routing, and the material and labor that were actually reported against that work order. Actual variances can occur when you:

- Issue material
- Record hours and quantities
- Record completions

Labor Efficiency

The difference between the planned and actual labor costs, based on the work order routing.

Material Usage

The difference between the planned and actual material costs, based on the work order parts list.

Review variances to identify errors before you run Journal Entries for Variances. For example, if you did not issue parts to the work order, a large actual variance appears. You can issue the parts, rerun Journal Entries for Work in Process or Completions, and review the variances again. After you correct any errors, run Journal Entries for Variances.

You cannot run Journal Entries for Variances in final mode more than once for the same set of transactions.

NOTE: You cannot run Journal Entries for Variances in final mode more than once for the same set of transactions.

Variance Inquiry displays the costs and variances associated with a work order. You can view work order variances by comparing amounts calculated in one mode to amounts calculated in another mode. Modes include:

- Frozen
- Current
- As planned
- Actual
- Completed

Variance Inquiry inserts defaults of 1 and 2 into the column modes when you first access the program. These defaults compare frozen costs with current costs, but you can change the values to compare different modes. The program uses frozen standard costs from the Cost Components table (F30026). Current amounts are based on the current bills of material, routings, and constants. Both frozen and current amounts are extended by the work order quantity.
Configured Items

If you manufacture configured items, no engineering variance exists because there is no bill of material.

To review variances

On Variance Inquiry

1. Complete the following fields:
 - Column 1 Mode
 - Column 2 Mode
 - Order Number

2. Review the following fields:
 - Item
 - Cost
 - Parent/Component
 - Variance Amount

Depending on the values you entered for Column 1 Mode and Column 2 Mode, two of the following amounts appear:

- Frozen Amount
- Current Amount
Product Costing and Manufacturing Accounting

• As Planned Amount
• Actual Amount
• Completed Amount

On Variance Inquiry

1. Complete the following fields:
 • Column 1 Mode
 • Column 2 Mode
 • Order Number

2. Review the following fields:
 • Item
 • Cost
 • Parent/Component
 • Variance Amount

Depending on the values you entered for Column 1 Mode and Column 2 Mode, two of the following amounts appear:

• Frozen Amount
• Current Amount
• As Planned Amount
• Actual Amount
• Completed Amount

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Column 1 Mode | Determines which amounts the system displays in the first column on the data table for the work order. Valid codes are:
| | 1 Frozen (Standard) Cost
| | 2 Current Cost
| | 3 Planned Cost
| | 4 Actual Cost
| | 5 Completed Cost (includes scrapped) |

The difference (variance) between column 1 and column 2 amounts displays in the Variance Amount (3rd) column.
### Field	Explanation
Column 2 Mode | Determines which amounts the system displays in the second column on the data table for the work order. Valid codes are:
1 | Frozen (Standard) Cost
2 | Current Cost
3 | Planned Cost
4 | Actual Cost
5 | Completed Cost (includes scrapped)
The difference (variance) between column 1 and column 2 amounts displays in the Variance Amount (3rd) column.

Item Number/Description | A number that the system assigns to an item. It can be in short, long, or 3rd item number format.

Cost Component | This code designates each element of cost for an item. An example of the coding structure is:
A1 | Purchased raw material
B1 | Direct labor routing sheet rollup
B2 | Setup labor routing sheet rollup
C1 | Variable burden routing sheet rollup
C2 | Fixed burden routing sheet rollup
Dx | Usually used for outside processing routing sheet rollup
Xx | Usually used for extra add-ons, such as electricity, water, and so forth

The optional add-on computations usually operate with the type “X” extra add-ons. This cost structure allows you to use an unlimited number of cost components to calculate alternative cost rollups. The system then associates these cost components with one of six user defined summary cost buckets.

Parent/Component Relationship | A code that indicates if the parent item number has a child item number associated with it. Valid codes are:
Blank | No relationship has been defined.
P | Parent number.
C | Child number.
B | Co-/By-Product

See Also
- Appendix B — Calculations for Variances
About Calculations for Variances (P3102)

About Calculations for Variances

Creating Journal Entries for Work Order Variances

Journal Entries for Variances creates detailed or summary journal entries for work order variances. These include engineering, planned, actual, and other variance transactions for the following items:

- Material issues
- Hours entry
- Material completions

The program generates an exceptions report that lists errors such as invalid account numbers. If no errors exist, the report states that the batch is error-free. However, this error check is not as comprehensive as the error check for the general ledger post process.

You can set processing options to:

- Indicate to which general ledger date to post entries
- Indicate the document type for the manufacturing variances
- Use the work order number as the subledger number
- Update the status of the work orders processed
- Run the program in proof or final mode
- Summarize journal entries
- Print an accounting journal report that details the journal entries

When you run this program in final mode, the system creates a batch of journal entries for posting to the general ledger. You can run this program in proof
mode multiple times. However, you can only run it in final mode once for each work order.

The following graphic illustrates the flow of information when you run Journal Entries for Variances.

This program creates journal entries for variances using the following calculations.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>Standard (frozen) cost minus current cost</td>
</tr>
<tr>
<td></td>
<td>Results from a change to the standard bill of material or standard routing.</td>
</tr>
<tr>
<td>Planned</td>
<td>Current cost minus planned cost</td>
</tr>
<tr>
<td></td>
<td>Results from a change to the parts list or routing instructions, or from a</td>
</tr>
<tr>
<td></td>
<td>shrink factor.</td>
</tr>
<tr>
<td>Material usage (actual)</td>
<td>Planned cost minus actual cost</td>
</tr>
<tr>
<td>Cost components A1 and</td>
<td>Results from over- or under-issues.</td>
</tr>
<tr>
<td>A2</td>
<td></td>
</tr>
</tbody>
</table>
Labor efficiency (actual) Planned cost minus actual cost

All cost components except A1 and A2 Results from having actual hours that differ from the standard hours.

Other (to clear out WIP) Completed cost minus standard cost
- Results from doing a cost rollup in the middle of the cycle.
- Generated when the Quantity Completed + Quantity Scrapped does not equal the Work Order Quantity.

The program uses the following AAI tables to match inventory and cost transactions to general ledger accounts:

- **3220** Debit Variances, Labor
- **3240** Debit Variances, Material
- **3260** Debit Variances, Planned
- **3270** Debit Variances, Engineered
- **3280** Debit, Other

The system uses the following data to match the transaction to the AAI account:

- Work order type for the AAI.
- Table number for the AAI. If the system does not find a match, it uses table 3280.
- Company number associated with the work order or component branch/plant. If the system does not find a match, it uses 00000.
- Document type associated with the transaction.
- G/L category code for the transaction item. If the system does not find a match, it uses **** (four asterisks).
- Cost component.

Before You Begin

- Run the Journal Entries for Work in Process or Completions program.
- Run one or more available reports to review your production costs and variances. See Reviewing Other Reports.
- Run one or more available reports to review your production costs and variances. See Reviewing Manufacturing Accounting Reports.
<table>
<thead>
<tr>
<th>Batch Number</th>
<th>Account Number</th>
<th>Date</th>
<th>G/L</th>
<th>AAI Do G/L</th>
<th>Cost Document Or Type</th>
<th>Number Ty Cat</th>
<th>Type</th>
<th>Amount</th>
<th>Error Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>129173</td>
<td></td>
<td>04/03/98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No Errors – Batch Ready for G/L Post</td>
</tr>
<tr>
<td>Do Document Or</td>
<td>G/L</td>
<td>Co</td>
<td>Account Description</td>
<td>G/L Account</td>
<td>. Amounts</td>
<td>LT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>----</td>
<td>--------------------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ty</td>
<td>Ty</td>
<td>Date</td>
<td>Explanation</td>
<td>Subldgr-Ty</td>
<td>Debit</td>
<td>Credit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Direct Labor (Actual)</td>
<td>M30.6076.B1</td>
<td>3.95</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Material (Actual)</td>
<td>M30.6083.A1</td>
<td>84.21</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Scrap (Actual)</td>
<td>M30.6083.A2</td>
<td>95.76-</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Var Labor (ENG)</td>
<td>M30.6086.C3</td>
<td>1.34</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Fixed Labor (ENG)</td>
<td>M30.6086.C4</td>
<td>1.12</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Var Labor (Actual)</td>
<td>M30.6088.C3</td>
<td>2.52-</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Fixed Labor (Actual)</td>
<td>M30.6088.C4</td>
<td>2.10-</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Setup Labor</td>
<td>M30.6091.B2</td>
<td>2.23</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Material</td>
<td>M30.1710.A1</td>
<td>84.21-</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Scrap</td>
<td>M30.1710.A2</td>
<td>95.76</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Labor</td>
<td>M30.1720.B1</td>
<td>3.95-</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Variable Labor</td>
<td>M30.1730.C3</td>
<td>1.18</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>135642</td>
<td>WO 04/03/98 0020</td>
<td>Fixed Labor</td>
<td>M30.1730.C4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Also

- Reviewing Automatic Accounting Instructions (P40901)
- Reviewing Manufacturing AAI's (P40901)
- Reviewing Manufacturing AAI’s
Processing Options for Journal Entries for Variances

1. Enter the G/L Date. If left blank, the current date will be used.

JOURNAL ENTRY SELECTIONS:
2. Enter a '1' to create journal entries. If left blank, 'Proof' mode is assumed.
3. Enter a '1' to summarize by Account ACROSS work orders. WARNING: This option will reduce the number of journal entries. See Helps.

REPORT SELECTIONS:
4. Enter a '1' to print an Accounting Journal.
5. Enter a '1' to print subtotals by Document.
6. Enter a '1' to summarize by Account ACROSS work orders. WARNING: This option will reduce the report output. See Helps.
7. Enter a '1' to default the Work Order Number into the Subledger field.
8. Enter the Document Type associated with a Manufacturing Variances.
9. Enter the new Status Code for the Work Order. If left blank, the status will not be changed.

What You Should Know About Processing Options

Work order status code (9)

If you run this program in proof mode, leave this processing option blank. If you enter a value, the status code is updated, even though the program is in proof mode.
Reviewing Summarized Work Orders

You can view which work orders were summarized into a particular batch.

► To review summarized work orders

On Summarized Work Orders

1. Complete one of the following fields:
 - Summary Work Order Number
 - Work Order Number
2. If you do not know the work order number, access Summarized Batch Selection.
This form displays summarized work orders, their batch dates, and their general ledger dates, in descending date order. Choose a summarized work order and return to Summarized Work Orders.

3. On Summarized Work Orders, review the following fields:
 - Summary Work Order Number
 - Work Order Number
 - Program ID
 - Program Description

On Summarized Work Orders

1. Complete one of the following fields:
 - Summary Work Order Number
 - Work Order Number

2. If you do not know the work order number, access Summarized Batch Selection.

 This form displays summarized work orders, their batch dates, and their general ledger dates, in descending date order. Choose a summarized work order and return to Summarized Work Orders.

3. On Summarized Work Orders, review the following fields:
 - Summary Work Order Number
 - Work Order Number
 - Program ID
 - Program Description
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summarized Work Order</td>
<td>The document number assigned as a batch work order number when you summarize manufacturing work order journal entries. The number indicates the work order into which the journal entries were summarized. The system writes this number to the DOCO field in the General Ledger (F0911).</td>
</tr>
</tbody>
</table>

Exercises

See the exercises for this chapter.

Reviewing Summarized Work Order Selection

This form displays summarized work orders, their batch dates, and their general ledger dates, in descending date order. Choose a summarized work order and return to Summarized Work Orders.
Reviewing General Ledger Batches

Reviewing Manufacturing General Ledger Batches

After you generate journal entries, you review and approve them before posting them to the general ledger. This review is the second step in the J.D. Edwards three-tier process.

When you review G/L batches, you can:

- Review all or specific batches
- Review G/L batch detail
- Review the original journal entry document

Each batch of journal entries has one of the following status codes:

- Pending
- Approved
- Error

The status that the system assigns depends on how you set the management approval in the general accounting constants. If a batch has an error status, the system prevents it from posting.
The system updates information in the Batch Control (F0011) and the Account Ledger (F0911) tables.

If you change, void, or add transactions to a posted batch, the system automatically changes the batch status from posted to the default entry status of pending or approved. You must then repost the batch. The post only processes changed transactions.

NOTE: If you change, void, or add transactions to a posted batch, the system automatically changes the batch status from posted to the default entry status of pending or approved. You must then repost the batch. The post only processes changed transactions.

Before You Begin

☐ Verify that you have set up your general accounting system properly.

☐ Set the management approval in the general accounting constants for approving journal entries for posting. This depends on the workflow and responsibility controls you establish for your organization.

See Also

- *Creating Journal Entries (P31802)*
- *Creating Journal Entries*

▶ To review all or specific G/L batches

When you review all or specific journal entry batches, you can also:

- Approve a batch for posting (if allowed)
- Change the status of a batch
- Select a particular batch of journal entries to review the batch detail
On G/L Review

Review the following fields:

- Batch Number
- Batch Date From
- Batch Date Through
- User ID
- Batch Approved for Posting
- Batch Number
- Batch Type
- Batch Date
- Status
- User

On G/L Review

Review the following fields:

- Batch Number
- Batch Date From
- Batch Date Through
- User ID
- Batch Approved for Posting
- Batch Number
- Batch Type
- Batch Date
- Status
- User

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch Number</td>
<td>A number that identifies a group of transactions that are processed and balanced as a unit. When you add a batch, you can either assign a batch number or let the system assign it through Next Numbers. When you change, locate, or delete a batch, you must specify the batch number. The system closes the batch when you return to the menu.</td>
</tr>
<tr>
<td>Batch Date From</td>
<td>The date of the batch. If you leave this field blank, the system date is used.</td>
</tr>
<tr>
<td>Batch Date Thru</td>
<td>The ending date of the range for the batches you want to display. If you specify a From date and leave the Thru date blank, the system displays all batches with that batch date and future batch dates.</td>
</tr>
<tr>
<td>User ID</td>
<td>The IBM-defined user profile.</td>
</tr>
<tr>
<td>Approved</td>
<td>A code that indicates whether a batch is ready for posting. Valid codes are:</td>
</tr>
<tr>
<td></td>
<td>A Approved, ready for posting.</td>
</tr>
<tr>
<td></td>
<td>P Pending approval. The batch will not post.</td>
</tr>
<tr>
<td></td>
<td>If the system constants do not specify manager approval, the system automatically approves batches that are not in error.</td>
</tr>
<tr>
<td>Batch Type</td>
<td>A code that indicates the system and type of entries for a batch. This is a user defined code (system 98, type IT).</td>
</tr>
<tr>
<td>Date – Batch</td>
<td>The date for the batch. If this is an entry field and you leave it blank, the system supplies the current date.</td>
</tr>
</tbody>
</table>
Review General Ledger Batches

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch Status</td>
<td>A code that indicates the posting status of a batch. Valid codes are:</td>
</tr>
<tr>
<td></td>
<td>blank</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>U</td>
</tr>
</tbody>
</table>

These valid codes are set up in user defined codes (system 98, type IC).

► To review G/L batch detail

You can review detailed batch header information and general journal entry information (one line per document) for a batch. You can also select a specific journal entry from the batch to review or revise.

On G/L Review

1. Access General Ledger Batch Review.
2. On General Ledger Batch Review, review the following fields:
 - Mode
 - Type
 - Journal Entry Number
 - Company
 - Explanation
 - G/L Date
 - Amount
 - Currency Code

On G/L Review

1. Access General Ledger Batch Review.
2. On General Ledger Batch Review, review the following fields:
 - Mode
 - Type
 - Journal Entry Number
 - Company
 - Explanation
 - G/L Date
 - Amount
- Currency Code

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currency Mode – Foreign or Domestic</td>
<td>This code indicates whether amounts are in the domestic currency of the company that the accounts are associated with, or in the foreign currency of the transaction. If Detailed Currency Restatement is being used, amounts restated from the domestic currency of the company that the accounts are associated with are shown. Codes are: D Domestic F Foreign</td>
</tr>
<tr>
<td>Document</td>
<td>A number that identifies the original document, such as a voucher, invoice, unapplied cash, journal entry, and so on. On entry forms, you can assign the original document number or let the system assign it through Next Numbers. Matching document (DOCM) numbers identify related documents in the Accounts Receivable and Accounts Payable systems. Examples:</td>
</tr>
<tr>
<td></td>
<td>• Automated/Manual Payment</td>
</tr>
<tr>
<td></td>
<td>• A/R Original Invoice</td>
</tr>
<tr>
<td></td>
<td>• Receipt Application</td>
</tr>
<tr>
<td></td>
<td>• Credit Memo/Adjustment</td>
</tr>
<tr>
<td></td>
<td>• Unapplied Receipt</td>
</tr>
<tr>
<td>Document Company</td>
<td>A number that, along with document number, document type and G/L date, uniquely identifies an original document, such as invoice, voucher, or journal entry. If you are using the Next Numbers by Company/Fiscal Year feature, the Automatic Next Numbers program (X0010) uses the document company to retrieve the correct next number for that company. If two or more original documents have the same document number and document type, you can use the document company to locate the desired document.</td>
</tr>
<tr>
<td>Name – Alpha Explanation</td>
<td>A description, remark, explanation, name, or address.</td>
</tr>
<tr>
<td>Date – For G/L (and Voucher) – Julian</td>
<td>A date that identifies the financial period that the transaction will be posted to. The company constants table for general accounting specifies the date range for each financial period. You can have up to 14 periods. Generally, period 14 is for audit adjustments.</td>
</tr>
</tbody>
</table>
Field | **Explanation**
---|---
Gross Amount | The gross amount of an invoice or voucher pay item, including tax but not including discounts. The total amount for a voucher or invoice is the accumulation of the open pay items. The accounting distributions must balance to the net amount of a voucher or invoice, not to the gross amount.

Transaction Currency Code | A code that indicates the currency of a customer’s or a supplier’s transactions.

- Form-specific information -

This is the currency code of the transaction if the form is displaying foreign amounts (F in the Mode field). It is the currency code of the company if the form is displaying domestic amounts (D in the Mode field).

▶ To review the original journal entry document

You can review the original journal entry document. You can also make changes to the accounting distributions, as well as add a new transaction to an existing batch.

On G/L Review

1. Access General Ledger Batch Review.

3. On Journal Entries, review the following fields:
• Account Number
• Amount
• Explanation 2

4. Access the fold area.

5. Review the following fields:
 • Units
 • Subledger
 • Type
 • G/L Date
 • Ledger Type

On G/L Review

1. Access General Ledger Batch Review.
3. On Journal Entries, review the following fields:
 • Account Number
 • Amount
 • Explanation 2

4. Access the fold area.
5. Review the following fields:
- Units
- Subledger
- Type
- G/L Date
- Ledger Type

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Account Number | A field that identifies an account in the general ledger. You can use one of the following formats for account numbers:
| | - Structured account (business unit.object.subsidiary) |
| | - 25-digit unstructured number |
| | - 8-digit short account ID number |
| | - Speed code |
| | The first character of the account indicates the format of the account number. You define the account format in the General Accounting Constants program (P000909). |
| | **Form-specific information** |
| | Depending on your general accounting constants, you might be able to accept an invalid account number. Insert a # (hash mark) as the first character in front of the invalid account number. For example, #90.1107 |
| Amount | A number that identifies the actual amount. Type debits with no sign or a plus sign (+). Type credits with a minus sign (-) either before or after the amount. You can use decimals, dollar signs, and commas. The system ignores non-significant symbols.
| | **Form-specific information** |
| | For a percent journal entry or a model for percent journal entries, enter the percent to be distributed to the account without a % (percent) sign. For example, enter 25.75 for 25.75%. The system will calculate the amount as a percentage of the amount to distribute.
| | When you use the Journal Entry format with separate debit and credit columns, omit signs. Instead, enter the amount in the appropriate column (debit or credit). |
| Explanation 2 | A name or remark that describes an element in the J.D. Edwards systems. |
| | **Form-specific information** |
| | An optional description of the transaction or a remark. Press the key that is set up to act as a duplication key to copy the description from the preceding line. |
Field | Explanation
--- | ---
Units | The quantity of something that is identified by a unit of measure. For example, it can be the number of barrels, boxes, cubic yards, gallons, hours, and so on.
Subledger | A code that identifies a detailed auxiliary account within a general ledger account. A subledger can be an equipment item number, an address book number, and so forth. If you enter a subledger, you must also specify the subledger type.
Subledger Type | A user defined code (00/ST) that is used with the Subledger field to identify the subledger type and subledger editing. On the User Defined Codes form, the second line of the description controls how the system performs editing. This is either hard-coded (as shown in the second line of description) or can be user defined. For example:
- A Alphanumeric field, do not edit
- N Numeric field, right justify and zero fill
- C Alphanumeric field, right justify and blank fill
G/L Date | A date that identifies the financial period that the transaction will be posted to. The company constants table for general accounting specifies the date range for each financial period. You can have up to 14 periods. Generally, period 14 is for audit adjustments.
--- | ---
If you do not specify a G/L date when you are locating journal entries, the system displays journal entries for all G/L dates associated with the document, as specified by document number, document type, and document company.
To keep the periods in balance when you void reversing journal entries, use the same date in the voiding entry as shown for the corresponding journal entry you are voiding.
Ledger Type | A user defined code (09/LT) that specifies the type of ledger, such as AA (Actual Amount), BA (Budget Amount), or FE (Field Estimate). You can set up multiple, concurrent accounting ledgers within the general ledger to establish an audit trail for all transactions.
--- | ---
The default ledger type is AA.
Post to the General Ledger

Update your account balances with amounts from journal entries by posting the journal entries to the general ledger. After posting, the system provides several reports that you can use to view the journal entries that have been posted.

Complete the following tasks:

- Post manufacturing journal entries
- Review the Posting Edit report
- Review the Posting Journal report
- Review the Item Ledger/Account Integrity report
- Review other reports

Posting Manufacturing Journal Entries

After you enter, review, and approve journal entries, use Post General Journal to post the journal entries to the general ledger.

You can only run one post at a time. You must ensure that all post menu selections are routed to the same job queue and that the job queue only allows one job to process at a time.
J.D. Edwards strongly recommends that you do not customize the post program.

CAUTION: J.D. Edwards strongly recommends that you do not customize the post program.

The post is the third step of the J.D. Edwards three-tier process. The post itself consists of two phases, the pre-post process and the post process.

Pre-Post Process

The pre-post process consists of several elements:

Selection

The Post General Journal program selects unposted, approved transactions with a batch type 0 and other criteria specified in the processing options. These transactions come from the Account Ledger table (F0911).

Detail edit

The program edits each transaction to determine whether:

- The account exists in the Account Master and is a posting account.
- The business unit is valid in the Business Unit Master table (F0006).
- The G/L date is valid.
- Intercompany transactions exist.
- Detail currency restatement should be done.

Batch edit

The program edits each batch to ensure that it is approved and in balance. If the program finds any errors, it does not post the batch.

Posting Edit report

This report lists all batch errors that have occurred. It prints in batch sequence.

Error conditions

If any transaction in the batch is in error, the program places the entire batch in error, which prevents it from posting.

You should not make changes to the accounts, automatic accounting instructions (AAIs), intercompany settlements, general accounting constants, or processing options when you run the post.

NOTE: You should not make changes to the accounts, automatic accounting instructions (AAIs), intercompany settlements, general accounting constants, or processing options when you run the post.
The following graphic illustrates the pre-post process.

Post Process

The Post General Journal program only posts batches when no errors are found in the pre-post process. In general, the program:

- Posts transactions to the Account Balances table (F0902) and marks each transaction and the batch header as posted in the Account Ledger table and the Batch Control table (F0011)
- Changes the batch status for the Batch Control table to D
- Marks each transaction with a status of P (posted)
- Performs intercompany settlements for ledger types AA (actual amounts), XA, YA, CA, AZ, and ZA (detailed currency restatement amounts), if requested
- Creates reversing entries, if requested
- Generates two reports:
 - Posting Journal report, which lists the transactions posted to the Account Balances and the Account Ledger tables
 - Detailed Post Error report, which lists the detail transactions in a batch if there is a balancing error.

The following graphic illustrates the post process.

Before You Begin

- Verify that the batch has an approved status. See Reviewing General Ledger Batches.
- Verify that the post is submitted to a single-threaded job queue.

See Also

- Creating Journal Entries (P31802)
- Creating Journal Entries
- Posting Journal Entries (P09800) in the General Accounting I Guide
- Posting Journal Entries in the General Accounting I Guide

Processing Options for Post General Ledger
Post to the General Ledger

BATCH SELECTION:
1. Enter Batch Number
 or Batch Date
 or Batch User ID

PRINT SELECTION:
2. Identify how to print amount fields
 on Post Journal:
 '1' = to Millions (w/ commas)
 '2' = to Billions (w/o commas)
 Blank (Default) = No Journal Printed.

3. Identify which account number to
 print on report:
 '1' = Account Number
 '2' = Short Account ID
 '3' = Unstructured Account
 '4' = (Default) Number Entered
 During Input

FIXED ASSETS:
4. Enter a '1' to post F/A entries
 to Fixed Assets.
 NOTE: DREAM Writer version ZJDE0001
 of Post G/L Entries to Assets(P12800)
 is executed when this option is
 selected. All transactions selected
 from that DREAM Writer will be posted
 rather than just the current entries
 being posted to G/L.

5. Enter a 'Y' if you wish to explode
 parent item time down to the
 assembly component level. Component
 billing rates will be used. (This
 applies to batch type 'T' only.)

CASH BASIS ACCOUNTING:
6. Enter a '1' to create and post Cash
 Basis accounting entries. (Applies
 to batch type G, K, M, W, & R only.)

7. Enter units ledger type for Cash
 Basis Accounting entries. (Default
 of blank will use "ZU" ledger type.)

ACCOUNTING FOR 52 PERIODS:
8. Enter a '1' for 52 Period Post.
 NOTE: DREAM Writer data selection is
 used for 52 period posting ONLY. It
 is NOT used for the standard post to
 the F0902. Additionally, 52 period
 date patterns must be set up.

TAX FILE UPDATE:
9. Identify when to update the Tax Work
 file (F0018):
 '1' = V.A.T. or Use Tax only
 '2' = for All Tax Amounts
 '3' = for All Tax Explanation Codes
 Blank (Default) = No Update to File.

10. Adjust VAT Account for Cash Receipt
 Adjustments and Write Offs. Tax
 explanation must be a 'V'.
 '1' = update VAT amount only
 '2' = update VAT amount, extended
price and taxable amount

11. Adjust VAT Account for Discount Taken. The Tax Rules file must be set to Calculate Tax on Gross Amount, including Discount and Calculate Discount on Gross Amount, including Tax. Tax explanation must be a 'V'.

 '1' = update VAT amount only
 '2' = update VAT amount, extended price and taxable amount

PROPERTY MANAGEMENT:
12. Enter DREAM Writer version of Property Management G/L Transaction Creation to be executed. Default is version ZJDE0001. (This applies to batch types '2' and '/'.)

UPDATE OPTION:
13. Enter '1' to update short ID number, company, fiscal year/period number, century, and fiscal quarter in unposted transaction records selected for posting. (May be required for custom input programs.)

REPORT FORMAT:
14. Enter a '1' to print the Posting Journal in a 198 character format. The default of blank will print the format with 132 characters.

DETAILED CURRENCY RESTATEMENT:
15. Enter a '1' to create currency restatement entries. This creates records in theXA, YA, and/or ZA ledgers depending on the version you are running.

16. Enter the version of the Detailed Currency Restatement (P11411) to execute. Default of blank will execute ZJDE0001.

BATCH TYPE SELECTION:
 NOTE: This option should NOT be changed by User.

Reviewing the Posting Edit Report

Reviewing the Posting Edit Report for Manufacturing

Each time you run Post General Journal, the program generates the Posting Edit Report. This report lists errors detected during the post. If the program finds errors, it does not post the batch. You must correct all errors in order for the batch to be posted.
Common Posting Errors

<table>
<thead>
<tr>
<th>Batch not approved for posting</th>
<th>This error message is caused by a batch with a pending or error status.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account not set up in Account Master table (F0901)</td>
<td>Two situations can cause this error message:</td>
</tr>
<tr>
<td></td>
<td>• An undefined account number (designated as # during journal entry) was entered. To correct this, locate the document number and line number on the Journal Entries form. Change the # on the detail line to the valid account number.</td>
</tr>
<tr>
<td></td>
<td>• An undefined account number was not set up prior to posting, or it does not meet the model account criteria to be automatically created by the system. Add the G/L account number on Accounts by Object.</td>
</tr>
<tr>
<td>Batch journal entries out-of-balance</td>
<td>This error message occurs when debits do not equal credits. If the out-of-balance journal entry was entered in error, correct the error and post the batch again.</td>
</tr>
<tr>
<td></td>
<td>Other situations can cause a journal entry to be out-of-balance. For example:</td>
</tr>
<tr>
<td></td>
<td>• A power failure might have occurred during entry or posting.</td>
</tr>
<tr>
<td></td>
<td>• A valid, one-sided journal entry might have been entered to correct a conversion error made during setup.</td>
</tr>
<tr>
<td></td>
<td>For information about how to enter an out-of-balance transaction, see Correcting Out-of-Balance Batches in the General Accounting II Guide.</td>
</tr>
</tbody>
</table>
Reviewing the Posting Journal report

Each time you run Post General Journal, the program generates the Posting Journal report during the post process. This report lists the transactions posted to the Account Balances and Account Ledger tables.

Reviewing the Posting Journal report

<table>
<thead>
<tr>
<th>Batch Type</th>
<th>Batch Number</th>
<th>Batch Date</th>
<th>Post Out of Balance</th>
<th>Create Intercompany Settlements</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>83257</td>
<td>04/24/98</td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Do Document</th>
<th>G/L Co</th>
<th>Account Description</th>
<th>G/L Account</th>
<th>Debit</th>
<th>Credit</th>
<th>LT</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>JE 1522</td>
<td>03/31/98 00100</td>
<td>Miscellaneous Expense USD</td>
<td>90.9250</td>
<td>1.000.00</td>
<td>AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JE 1522</td>
<td>03/31/98 00100</td>
<td>Bear Creek National B USD</td>
<td>100.1110.BEAR</td>
<td>1.000.00- AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOID JOURNAL ENTRY</td>
<td></td>
<td></td>
<td>90.9250</td>
<td>1.000.00- AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOID JOURNAL ENTRY</td>
<td></td>
<td></td>
<td>100.1110.BEAR</td>
<td>1.000.00- AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JE 10418</td>
<td>03/31/98 00001</td>
<td>Other Expense USD</td>
<td>9.9200</td>
<td>1.000.00</td>
<td>AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JE 10418</td>
<td>03/31/98 00001</td>
<td>Bear Creek National B USD</td>
<td>1.1110.BEAR</td>
<td>1.000.00- AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JE 10418</td>
<td>03/31/98 00100</td>
<td>Miscellaneous Expense USD</td>
<td>90.9250</td>
<td>1.000.00</td>
<td>AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JE 10418</td>
<td>03/31/98 00100</td>
<td>Bear Creek National B USD</td>
<td>100.1110.BEAR</td>
<td>1.000.00- AA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Batch Total

<table>
<thead>
<tr>
<th>Debit</th>
<th>Credit</th>
<th>LT</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.000.00</td>
<td>4.000.00- AA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reviewing the Item Ledger/Account Integrity Report

The Item Ledger/Account Integrity report lists discrepancies between the Item Ledger and Account Ledger tables. If the data in the two files is in agreement, no lines print.
The lines that print are summary lines, that is, the amounts on a line represent the total for a specific document type, document number, and key company. No other total lines print. You can run this report as many times as needed because no tables are updated.

If you use summarized journal entries for work orders, the program ignores material issue transactions (IM), completions (IC), and scrap transactions (IS) against those summarized work orders because they are not actual work orders. In a future release of the software, the program will summarize these transactions for the report.

Before You Begin

- Verify that you have set up exception rules (user defined codes system 41, table IN).

41543

J.D. Edwards & Company

Item Ledger/Account Integrity

From - 01/01/98 To - 12/10/98

<table>
<thead>
<tr>
<th>Document/Type</th>
<th>Key/Number</th>
<th>Item Ledger Amount</th>
<th>Account Ledger Amount</th>
<th>Variance</th>
<th>G/L Date</th>
<th>Error Number</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>8 100</td>
<td>60,000.00</td>
<td>60,000.00</td>
<td>0.00</td>
<td>01/01/98</td>
<td>3036</td>
<td>No existing General Ledger records</td>
</tr>
<tr>
<td>IA</td>
<td>10 100</td>
<td>33,600.00</td>
<td>33,600.00</td>
<td>0.00</td>
<td>01/01/98</td>
<td>3036</td>
<td>No existing General Ledger records</td>
</tr>
<tr>
<td>IA</td>
<td>11 100</td>
<td>273,600.00</td>
<td>273,600.00</td>
<td>0.00</td>
<td>01/01/98</td>
<td>3036</td>
<td>No existing General Ledger records</td>
</tr>
<tr>
<td>IA</td>
<td>12 100</td>
<td>30,000.00</td>
<td>30,000.00</td>
<td>0.00</td>
<td>01/01/98</td>
<td>3036</td>
<td>No existing General Ledger records</td>
</tr>
<tr>
<td>IA</td>
<td>653 200</td>
<td>2,048,212.61</td>
<td>2,048,212.61</td>
<td>0.00</td>
<td>01/30/97</td>
<td>3036</td>
<td>No existing General Ledger records</td>
</tr>
<tr>
<td>IB</td>
<td>2247 50</td>
<td>4,184.83</td>
<td>4,184.83</td>
<td>0.00</td>
<td>10/13/93</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IB</td>
<td>2240 50</td>
<td>4,184.83</td>
<td>4,184.83</td>
<td>0.00</td>
<td>11/22/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IB</td>
<td>2242 100</td>
<td>4,184.83</td>
<td>4,184.83</td>
<td>0.00</td>
<td>11/22/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IB</td>
<td>2243 200</td>
<td>4,184.83</td>
<td>4,184.83</td>
<td>0.00</td>
<td>11/22/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IB</td>
<td>2247 200</td>
<td>4,184.83</td>
<td>4,184.83</td>
<td>0.00</td>
<td>11/22/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IC</td>
<td>109954 200</td>
<td>281,405.45</td>
<td>281,405.45</td>
<td>0.00</td>
<td>12/01/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IC</td>
<td>109971 200</td>
<td>281,405.45</td>
<td>281,405.45</td>
<td>0.00</td>
<td>12/01/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IC</td>
<td>109989 200</td>
<td>281,405.45</td>
<td>281,405.45</td>
<td>0.00</td>
<td>12/01/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IC</td>
<td>109997 200</td>
<td>281,405.45</td>
<td>281,405.45</td>
<td>0.00</td>
<td>12/01/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IC</td>
<td>110023 200</td>
<td>281,405.45</td>
<td>281,405.45</td>
<td>0.00</td>
<td>12/01/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IC</td>
<td>110040 200</td>
<td>281,405.45</td>
<td>281,405.45</td>
<td>0.00</td>
<td>12/01/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IC</td>
<td>110058 200</td>
<td>281,405.45</td>
<td>281,405.45</td>
<td>0.00</td>
<td>12/01/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IC</td>
<td>110066 200</td>
<td>281,405.45</td>
<td>281,405.45</td>
<td>0.00</td>
<td>12/01/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IC</td>
<td>110074 200</td>
<td>281,405.45</td>
<td>281,405.45</td>
<td>0.00</td>
<td>12/01/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IC</td>
<td>110082 200</td>
<td>281,405.45</td>
<td>281,405.45</td>
<td>0.00</td>
<td>12/01/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
<tr>
<td>IC</td>
<td>110091 200</td>
<td>281,405.45</td>
<td>281,405.45</td>
<td>0.00</td>
<td>12/01/94</td>
<td>3038</td>
<td>Item Ledger and G/L do not balance</td>
</tr>
</tbody>
</table>

See Also

- **Printing the Item Ledger/Account Integrity Report (P41543)** in the *Inventory Management Guide*
- **Printing the Item Ledger/Account Integrity Report** in the *Inventory Management Guide*
- **Creating Journal Entries (P31802)** for more information on summarized journal entries
• Creating Journal Entries for more information on summarized journal entries

Processing Options for Item Ledger/Account Integrity

REPORT DISPLAY:
1. Enter the beginning Item Ledger date.

2. Enter the ending Item Ledger date.

SUMMARIZED MANUFACTURING J/E’s:
3. Enter a ’1’ to indicate that Manufacturing J/E’s are summarized by account.

Enter Document Types associated with:
4. Inventory Issues
5. Inventory Completions
6. Parent Scrap

Reviewing Other Reports

Reviewing Manufacturing Accounting Reports

When you access the Manufacturing World Writer menu, locate the World Writer reports for Group Q31.

These reports help you review your production costs and variances. You might want to run them before you run Journal Entries for Variances, or you can run them after Journal Entries for Variances to verify the accuracy of the journal entries.

Complete the following tasks:

☐ Review Work Order Activity (Amounts)

☐ Review Work Order Activity (Units)
Post to the General Ledger

☑ Review Engineering Variance
☑ Review Planned Variance (to Current)
☑ Review Planned Variance (to Standard)
☑ Review Material Usage Variances
☑ Review Efficiency Variances
☑ Review Total/WIP and Other Variances
☑ Review Open Work Order Valuation
☑ Review Completed Work Order Values
☑ Review Work Order Amount Variances
☑ Review Manufacturing Accounting Tables

See Also

- *World Writer Guide*
Reviewing Work Order Activity (Amounts)

This report lists standard, current, planned, actual, and completed amounts of work orders.

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Type</th>
<th>Standard Cost</th>
<th>Current Cost</th>
<th>Planned Cost</th>
<th>Actual Cost</th>
<th>Completed Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>16,178.9200</td>
<td>18,806.9400</td>
<td>19,206.9400</td>
<td>20,826.5230</td>
<td>16,178.9200</td>
</tr>
<tr>
<td>422 333</td>
<td>A1</td>
<td>P</td>
<td>16,178.9200</td>
<td>18,806.9400</td>
<td>19,206.9400</td>
<td>20,826.5230</td>
<td>16,178.9200</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>P</td>
<td>525.6000</td>
<td>1,051.2080</td>
<td>1,051.2080</td>
<td></td>
<td>525.6000</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>P</td>
<td>37.2800</td>
<td>37.2750</td>
<td>37.2750</td>
<td>55.1200</td>
<td>37.2800</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>P</td>
<td>3.1875</td>
<td>3.1875</td>
<td>3.1800</td>
<td></td>
<td>3.1800</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>P</td>
<td>8.2500</td>
<td>11.3750</td>
<td>11.3700</td>
<td></td>
<td>11.3700</td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>P</td>
<td>8.6700</td>
<td>8.6625</td>
<td>8.6625</td>
<td>12.8625</td>
<td>8.6700</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>P</td>
<td>8.5313</td>
<td>11.9438</td>
<td>11.9385</td>
<td></td>
<td>11.9385</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>P</td>
<td>27.5600</td>
<td>29.4750</td>
<td>29.4750</td>
<td>42.6975</td>
<td>27.5600</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>P</td>
<td>22.9700</td>
<td>24.5626</td>
<td>24.5626</td>
<td>35.5813</td>
<td>22.9700</td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>P</td>
<td>478.0000</td>
<td>478.0000</td>
<td>478.0000</td>
<td>478.0000</td>
<td>478.0000</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>P</td>
<td>85.2600</td>
<td>85.2600</td>
<td>85.2600</td>
<td>85.2600</td>
<td>85.2600</td>
</tr>
<tr>
<td></td>
<td>X3</td>
<td>P</td>
<td>3.3000</td>
<td>3.3000</td>
<td>3.3000</td>
<td>3.3000</td>
<td>3.3000</td>
</tr>
<tr>
<td></td>
<td>X5</td>
<td>P</td>
<td>2.0000</td>
<td>2.0000</td>
<td>2.0000</td>
<td>2.0000</td>
<td>2.0000</td>
</tr>
<tr>
<td></td>
<td>X6</td>
<td>P</td>
<td>1,608.4000</td>
<td>1,608.4000</td>
<td>1,608.4000</td>
<td>1,608.4000</td>
<td>1,608.4000</td>
</tr>
</tbody>
</table>

Parent Child Relationship... Total...

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Type</th>
<th>Standard Cost</th>
<th>Current Cost</th>
<th>Planned Cost</th>
<th>Actual Cost</th>
<th>Completed Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>18,977.9600</td>
<td>22,165.0832</td>
<td>22,575.8082</td>
<td>23,190.4453</td>
<td>18,977.9600</td>
</tr>
<tr>
<td>490 1007</td>
<td>C</td>
<td></td>
<td>84.4000</td>
<td></td>
<td></td>
<td></td>
<td>84.4000</td>
</tr>
</tbody>
</table>

Parent Child Relationship... Total...

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Type</th>
<th>Standard Cost</th>
<th>Current Cost</th>
<th>Planned Cost</th>
<th>Actual Cost</th>
<th>Completed Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>18,977.9600</td>
<td>22,165.0832</td>
<td>22,575.8082</td>
<td>23,190.4453</td>
<td>18,977.9600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Type</th>
<th>Standard Cost</th>
<th>Current Cost</th>
<th>Planned Cost</th>
<th>Actual Cost</th>
<th>Completed Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>84.4000</td>
<td></td>
<td></td>
<td></td>
<td>84.4000</td>
</tr>
</tbody>
</table>
Reviewing Work Order Activity (Units)

This report lists standard, current, planned, actual, and completed units of work orders.

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Cost P</th>
<th>Standard Units</th>
<th>Current Units</th>
<th>Planned Units</th>
<th>Actual Units</th>
<th>Completed Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>422 333</td>
<td>A1 P</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>A2 P</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>B1 P</td>
<td>100.0000</td>
<td>7.1000</td>
<td>7.1000</td>
<td>10.5000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>B2 P</td>
<td>100.0000</td>
<td>2.5000</td>
<td>3.5000</td>
<td>3.5000</td>
<td>3.5000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>B3 P</td>
<td>100.0000</td>
<td>7.1000</td>
<td>7.1000</td>
<td>10.5000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>C1 P</td>
<td>100.0000</td>
<td>2.5000</td>
<td>3.5000</td>
<td>3.5000</td>
<td>3.5000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>C2 P</td>
<td>100.0000</td>
<td>2.5000</td>
<td>3.5000</td>
<td>3.5000</td>
<td>3.5000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>C3 P</td>
<td>100.0000</td>
<td>9.5000</td>
<td>9.5000</td>
<td>13.7000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>C4 P</td>
<td>100.0000</td>
<td>9.5000</td>
<td>9.5000</td>
<td>13.7000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>D1 P</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>X2 P</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>X3 P</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>X5 P</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>422 333</td>
<td>X6 P</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Parent Child Relationship...

Total: 1,500.0000 | 741.4500 | 744.4500 | 659.6500 | 1,100.0000

490 1007

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Cost P</th>
<th>Standard Units</th>
<th>Current Units</th>
<th>Planned Units</th>
<th>Actual Units</th>
<th>Completed Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>490 1001</td>
<td>A1 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 1001</td>
<td>B1 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 1001</td>
<td>B2 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 1001</td>
<td>B3 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 1001</td>
<td>B4 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 1001</td>
<td>C1 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 1001</td>
<td>C2 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 1001</td>
<td>C3 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 1001</td>
<td>C4 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 3991</td>
<td>A1 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 3991</td>
<td>A2 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 3991</td>
<td>B1 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 3991</td>
<td>B2 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 3991</td>
<td>B3 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 3991</td>
<td>C1 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
<tr>
<td>490 3991</td>
<td>C2 P</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
<td>2,000.0000</td>
</tr>
</tbody>
</table>

Parent Child Relationship...

Total: 28,000.0000 | 4,398.4400
Reviewing Engineering Variance

This report lists work orders, their standard and current amounts, and their engineering variances.

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Type</th>
<th>Cost P Amount</th>
<th>Standard Amount</th>
<th>Current Amount</th>
<th>Engineering Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>406 5120</td>
<td>B1</td>
<td>P</td>
<td>5,701.8000</td>
<td>5,701.5000</td>
<td>0.3000-</td>
<td></td>
</tr>
<tr>
<td>406 5120</td>
<td>B2</td>
<td>P</td>
<td>2,337.6000</td>
<td>11.6875</td>
<td>2,325.9125-</td>
<td></td>
</tr>
<tr>
<td>406 5120</td>
<td>B4</td>
<td>P</td>
<td>1,108.8000</td>
<td>1,108.8000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>406 5120</td>
<td>C3</td>
<td>P</td>
<td>5,488.8000</td>
<td>4,093.1925</td>
<td>1,395.6075-</td>
<td></td>
</tr>
<tr>
<td>406 5120</td>
<td>C4</td>
<td>P</td>
<td>4,573.8000</td>
<td>3,410.9938</td>
<td>1,162.8062-</td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>A1</td>
<td>P</td>
<td>16,178.9200</td>
<td>16,178.9200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>A2</td>
<td>P</td>
<td>525.6000</td>
<td>525.6040</td>
<td>.0040-</td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>B1</td>
<td>P</td>
<td>37.2800</td>
<td>37.2750</td>
<td>.0050-</td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>B4</td>
<td>P</td>
<td>8.6700</td>
<td>8.6625</td>
<td>.0075-</td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>C3</td>
<td>P</td>
<td>27.5600</td>
<td>27.5625</td>
<td>.0025-</td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>C4</td>
<td>P</td>
<td>22.9700</td>
<td>22.9688</td>
<td>.0012-</td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>D1</td>
<td>P</td>
<td>478.0000</td>
<td>478.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>X2</td>
<td>P</td>
<td>85.2600</td>
<td>85.2600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>X3</td>
<td>P</td>
<td>3.3000</td>
<td>3.3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>X5</td>
<td>P</td>
<td>2.0000</td>
<td>2.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>X6</td>
<td>P</td>
<td>1,608.4000</td>
<td>1,608.4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent Child Relationship. . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>19,210.8000</td>
<td>14,326.1738</td>
<td>4,884.6262-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Type</th>
<th>Cost P Amount</th>
<th>Standard Amount</th>
<th>Current Amount</th>
<th>Engineering Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>422 333</td>
<td>A1</td>
<td>P</td>
<td>16,178.9200</td>
<td>16,178.9200</td>
<td>2,628.0200</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>A2</td>
<td>P</td>
<td>525.6000</td>
<td>1,051.2080</td>
<td>525.6080</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>B1</td>
<td>P</td>
<td>37.2800</td>
<td>37.2750</td>
<td>.0050-</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>B2</td>
<td>P</td>
<td>8.6700</td>
<td>8.6625</td>
<td>.0075-</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>B3</td>
<td>P</td>
<td>8.1250</td>
<td>8.1250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>C1</td>
<td>P</td>
<td>10.1563</td>
<td>10.1563</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>C2</td>
<td>P</td>
<td>8.5313</td>
<td>8.5313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>C3</td>
<td>P</td>
<td>27.5600</td>
<td>29.4750</td>
<td>1.9150</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>C4</td>
<td>P</td>
<td>22.9700</td>
<td>24.5626</td>
<td>1.5926</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>D1</td>
<td>P</td>
<td>478.0000</td>
<td>478.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>X2</td>
<td>P</td>
<td>85.2600</td>
<td>85.2600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>X3</td>
<td>P</td>
<td>3.3000</td>
<td>3.3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>X5</td>
<td>P</td>
<td>2.0000</td>
<td>2.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>X6</td>
<td>P</td>
<td>1,608.4000</td>
<td>1,608.4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent Child Relationship. . .</td>
<td></td>
<td></td>
<td>18,977.9600</td>
<td>18,977.9528</td>
<td>.0072-</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18,977.9600</td>
<td>18,977.9528</td>
<td>3,187.1232</td>
<td></td>
</tr>
</tbody>
</table>
Reviewing Planned Variance (to Current)

This report lists all work orders and their planned variances (current amounts compared to planned amounts). Journal entries for planned variances are calculated in the same way.

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Cost P Type</th>
<th>Current Amount</th>
<th>Planned Amount</th>
<th>Planned Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>422 212</td>
<td></td>
<td>C</td>
<td>5,256.0400</td>
<td>5,256.0400</td>
<td></td>
</tr>
<tr>
<td>422 121</td>
<td></td>
<td>C</td>
<td>2,609.5000</td>
<td>2,609.5000</td>
<td></td>
</tr>
<tr>
<td>422 444</td>
<td></td>
<td>C</td>
<td>5,200.8000</td>
<td>5,200.8000</td>
<td></td>
</tr>
<tr>
<td>422 123</td>
<td></td>
<td>C</td>
<td>400.0000</td>
<td>800.0000</td>
<td>400.0000</td>
</tr>
<tr>
<td>422 122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parent Child Relationship...

Total 18,806.9400 19,206.9400 400.0000

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Cost P Type</th>
<th>Current Amount</th>
<th>Planned Amount</th>
<th>Planned Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>422 333</td>
<td></td>
<td>A1</td>
<td>18,806.9400</td>
<td>19,206.9400</td>
<td>400.0000</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>A2</td>
<td>1,051.2080</td>
<td>1,051.2080</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>B1</td>
<td>37.2750</td>
<td>37.2750</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>B2</td>
<td>3.1875</td>
<td>3.1875</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>B3</td>
<td>8.1250</td>
<td>11.3750</td>
<td>3.2500</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>B4</td>
<td>8.6625</td>
<td>8.6625</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>C1</td>
<td>10.1563</td>
<td>14.2188</td>
<td>4.0625</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>C2</td>
<td>8.5313</td>
<td>11.9438</td>
<td>3.4125</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>C3</td>
<td>29.4750</td>
<td>29.4750</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>C4</td>
<td>24.5626</td>
<td>24.5626</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>D1</td>
<td>478.0000</td>
<td>478.0000</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>X2</td>
<td>105.2600</td>
<td>105.2600</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>X3</td>
<td>3.3000</td>
<td>3.3000</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>X5</td>
<td>2.0000</td>
<td>2.0000</td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>X6</td>
<td>1,608.4000</td>
<td>1,608.4000</td>
<td></td>
</tr>
</tbody>
</table>

Parent Child Relationship...

Total 22,165.0832 22,575.8082 410.7250

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Cost P Type</th>
<th>Current Amount</th>
<th>Planned Amount</th>
<th>Planned Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>490 1001</td>
<td></td>
<td>B1</td>
<td>195.7750</td>
<td>195.7750</td>
<td></td>
</tr>
<tr>
<td>490 1001</td>
<td></td>
<td>B2</td>
<td>24.8000</td>
<td>24.8000</td>
<td></td>
</tr>
<tr>
<td>490 1001</td>
<td></td>
<td>B3</td>
<td>67.6800</td>
<td>67.6800</td>
<td></td>
</tr>
<tr>
<td>490 1001</td>
<td></td>
<td>B4</td>
<td>36.6550</td>
<td>36.6550</td>
<td></td>
</tr>
<tr>
<td>490 1001</td>
<td></td>
<td>C1</td>
<td>54.1440</td>
<td>54.1440</td>
<td></td>
</tr>
<tr>
<td>490 1001</td>
<td></td>
<td>C2</td>
<td>58.8816</td>
<td>58.8816</td>
<td></td>
</tr>
<tr>
<td>490 1001</td>
<td></td>
<td>C3</td>
<td>164.7680</td>
<td>164.7680</td>
<td></td>
</tr>
<tr>
<td>490 1001</td>
<td></td>
<td>C4</td>
<td>143.3150</td>
<td>143.3150</td>
<td></td>
</tr>
<tr>
<td>490 3991</td>
<td></td>
<td>A1</td>
<td>84.4000</td>
<td>84.4000</td>
<td></td>
</tr>
<tr>
<td>490 3991</td>
<td></td>
<td>B3</td>
<td>1.0400</td>
<td>1.0400</td>
<td></td>
</tr>
<tr>
<td>490 3991</td>
<td></td>
<td>C1</td>
<td>1.3000</td>
<td>1.3000</td>
<td></td>
</tr>
<tr>
<td>490 3991</td>
<td></td>
<td>C2</td>
<td>1.0920</td>
<td>1.0920</td>
<td></td>
</tr>
</tbody>
</table>

Parent Child Relationship...

Total 838.2506 838.2506
Reviewing Planned Variance (to Standard)

This report lists work orders and their planned variances (standard amounts compared to planned amounts). These variances are informational only. Journal entries are not created from these amounts. Journal entries for planned variances come from comparing current amounts to planned amounts.

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Cost P Type</th>
<th>Standard Amount</th>
<th>Planned Amount</th>
<th>Planned Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>110040 1122</td>
<td>A1 P</td>
<td>2,323.1163</td>
<td>2,323.1163</td>
<td>2,323.1163</td>
<td>-</td>
</tr>
<tr>
<td>110040 1122</td>
<td>A2 P</td>
<td>2,323.1163</td>
<td>2,323.1163</td>
<td>2,323.1163</td>
<td>-</td>
</tr>
<tr>
<td>110040 1122</td>
<td>B1 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110040 1122</td>
<td>B2 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110040 1122</td>
<td>B3 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110040 1122</td>
<td>B4 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110040 1122</td>
<td>C1 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110040 1122</td>
<td>C2 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110040 1122</td>
<td>C3 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110040 1122</td>
<td>C4 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110058 1122</td>
<td>A1 P</td>
<td>2,560.6702</td>
<td>2,560.6702</td>
<td>2,560.6702</td>
<td>-</td>
</tr>
<tr>
<td>110058 1122</td>
<td>A2 P</td>
<td>2,560.6702</td>
<td>2,560.6702</td>
<td>2,560.6702</td>
<td>-</td>
</tr>
<tr>
<td>110058 1122</td>
<td>B1 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110058 1122</td>
<td>B2 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110058 1122</td>
<td>B3 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110058 1122</td>
<td>B4 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110058 1122</td>
<td>C1 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110058 1122</td>
<td>C2 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110058 1122</td>
<td>C3 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>110058 1122</td>
<td>C4 P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parent Child Relationship . . .</th>
<th>Total</th>
<th>Standard Amount</th>
<th>Planned Amount</th>
<th>Planned Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,646.2326</td>
<td>2,323.1163</td>
<td>2,323.1163</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5,121.3404</td>
<td>2,560.6702</td>
<td>2,560.6702</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6,557.6546</td>
<td>3,278.8273</td>
<td>3,278.8273</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parent Child Relationship . . .</th>
<th>Total</th>
<th>Standard Amount</th>
<th>Planned Amount</th>
<th>Planned Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5,121.3404</td>
<td>2,560.6702</td>
<td>2,560.6702</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6,557.6546</td>
<td>3,278.8273</td>
<td>3,278.8273</td>
<td>-</td>
</tr>
</tbody>
</table>

Release A7.3 (June 1996)
Reviewing Material Usage Variances

This report lists the planned and actual material (A1) quantities, extended by standard cost, and a total dollar variance for items on your work orders.

<table>
<thead>
<tr>
<th>Material Usage Variances</th>
<th>Amounts</th>
<th>Page</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Number</td>
<td>2nd Item Number</td>
<td>Cost Type</td>
<td>Planned Amount</td>
</tr>
<tr>
<td>3390</td>
<td>A1</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Parent Child Relationship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>347 INSPECT FAN BLADES</td>
<td>A1</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>347 INSPECT FAN BLADES</td>
<td>A2</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Parent Child Relationship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406 5120</td>
<td>A1</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent Child Relationship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>A1</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>A2</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Parent Child Relationship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>A1</td>
<td>P</td>
<td>19,206.9400</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td>A2</td>
<td>P</td>
<td>1,051.2080</td>
</tr>
<tr>
<td>Parent Child Relationship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reviewing Efficiency Variances

This report shows planned and actual labor hours (all cost components except A1), extended by standard rates, and the dollar amount of variance by work order and item number.

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Cost P Type</th>
<th>Planned Amount</th>
<th>Actual Amount</th>
<th>Efficiency Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>422 212</td>
<td></td>
<td>C</td>
<td>5,256.0400</td>
<td>6,307.2480</td>
<td>1,051.2080</td>
</tr>
<tr>
<td>422 121</td>
<td></td>
<td>C</td>
<td>2,609.5000</td>
<td>3,261.8750</td>
<td>652.3750</td>
</tr>
<tr>
<td>422 424</td>
<td></td>
<td>C</td>
<td>5,256.6000</td>
<td>5,256.6000</td>
<td>0.0000</td>
</tr>
<tr>
<td>422 444</td>
<td></td>
<td>C</td>
<td>5,200.8000</td>
<td>5,200.8000</td>
<td>0.0000</td>
</tr>
<tr>
<td>422 123</td>
<td></td>
<td>C</td>
<td>800.0000</td>
<td>800.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>422 122</td>
<td></td>
<td>C</td>
<td>84.0000</td>
<td></td>
<td>84.0000</td>
</tr>
</tbody>
</table>

Parent Child Relationship . . .

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Cost P Type</th>
<th>Planned Amount</th>
<th>Actual Amount</th>
<th>Efficiency Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>422 333</td>
<td></td>
<td>B1 P</td>
<td>37.2750</td>
<td>55.1200</td>
<td>17.8450</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>B2 P</td>
<td>3.1875</td>
<td>3.1800</td>
<td>0.0075</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>B3 P</td>
<td>11.3750</td>
<td>11.3700</td>
<td>0.0050</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>C1 P</td>
<td>14.2188</td>
<td>14.2125</td>
<td>0.0063</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>C2 P</td>
<td>11.9438</td>
<td>11.9385</td>
<td>0.0053</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>C3 P</td>
<td>39.4750</td>
<td>42.6975</td>
<td>13.2225</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>C4 P</td>
<td>28.5626</td>
<td>35.5813</td>
<td>11.0187</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>D1 P</td>
<td>478.0000</td>
<td>478.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>X2 P</td>
<td>85.2600</td>
<td>85.2600</td>
<td>0.0000</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>X3 P</td>
<td>3.3000</td>
<td>3.3000</td>
<td>0.0000</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>X5 P</td>
<td>2.0000</td>
<td>2.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>422 333</td>
<td></td>
<td>X6 P</td>
<td>1,608.4000</td>
<td>1,608.4000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Parent Child Relationship . . .

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Cost P Type</th>
<th>Planned Amount</th>
<th>Actual Amount</th>
<th>Efficiency Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>19,206.9400</td>
<td>20,826.5230</td>
<td>1,619.5830</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,317.6602</td>
<td>2,363.9223</td>
<td>46.2621</td>
</tr>
</tbody>
</table>
Reviewing Total/WIP and Other Variances

This report shows the standard, actual, and completed amounts, and total and other variances by cost component and item for your work orders.

Total/WIP and Other Variances

<table>
<thead>
<tr>
<th>Order Number</th>
<th>2nd Item Number</th>
<th>Cost P Type</th>
<th>Standard Amount</th>
<th>Actual Amount</th>
<th>Completed Amount</th>
<th>Total/WIP Variance</th>
<th>Other Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>414 333</td>
<td>A1 P</td>
<td></td>
<td>16,178.9200</td>
<td></td>
<td>16,178.9200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>A2 P</td>
<td></td>
<td>525.6000</td>
<td></td>
<td>525.6000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>B1 P</td>
<td></td>
<td>37.2800</td>
<td></td>
<td>37.2800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>B2 P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>B3 P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>B4 P</td>
<td></td>
<td>8.6700</td>
<td></td>
<td>8.6700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>C1 P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>C2 P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>C3 P</td>
<td></td>
<td>27.5600</td>
<td></td>
<td>27.5600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>C4 P</td>
<td></td>
<td>22.9700</td>
<td></td>
<td>22.9700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>D1 P</td>
<td></td>
<td>478.0000</td>
<td></td>
<td>478.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>X2 P</td>
<td></td>
<td>85.2600</td>
<td></td>
<td>85.2600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>X3 P</td>
<td></td>
<td>3.3000</td>
<td></td>
<td>3.3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>X5 P</td>
<td></td>
<td>2.0000</td>
<td></td>
<td>2.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 333</td>
<td>X6 P</td>
<td></td>
<td>1,608.4000</td>
<td></td>
<td>1,608.4000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parent Child Relationship

| Total | 18,977.9600 | 18,977.9600 | 18,977.9600 | 4,212.4853 |

| Parent Child Relationship | 18,977.9600 | 23,190.4453 | 18,977.9600 | 4,212.4853 |
Reviewing Open Work Order Valuation

This report shows the standard, actual, completed, and outstanding balance of amounts by cost component and item for your open work orders. The program calculates the total for each type of cost by work order and a grand total of each cost for all of the work orders listed.

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Item Description</th>
<th>Type</th>
<th>Cost P</th>
<th>Standard</th>
<th>Actual</th>
<th>Completed</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>347</td>
<td>INSPECT FAN BLADES</td>
<td>A1 P</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2 P</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
</tbody>
</table>

Order Number

Total .00 .00 .00 .00

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Item Description</th>
<th>Type</th>
<th>Cost P</th>
<th>Standard</th>
<th>Actual</th>
<th>Completed</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>698</td>
<td>SHAFT MAINT PM KIT</td>
<td>A1 P</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2 P</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
</tbody>
</table>

Order Number

Total .00 .00 .00 .00

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Item Description</th>
<th>Type</th>
<th>Cost P</th>
<th>Standard</th>
<th>Actual</th>
<th>Completed</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>844 200-001</td>
<td>200-001</td>
<td>A1 P</td>
<td>19750.49</td>
<td>19750.49</td>
<td>.00</td>
<td>19750.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B1 P</td>
<td>3254.50</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B3 P</td>
<td>86.60</td>
<td>16.92</td>
<td>.00</td>
<td>16.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1 P</td>
<td>129.90</td>
<td>13.54</td>
<td>.00</td>
<td>13.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 P</td>
<td>69.28</td>
<td>14.72</td>
<td>.00</td>
<td>14.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3 P</td>
<td>3599.75</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4 P</td>
<td>3519.45</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
</tbody>
</table>

Order Number

Total 30409.97 19795.67 .00 19795.67
Reviewing Completed Work Order Valuation

This report shows the standard, actual, completed, and outstanding balance amounts by cost component and item for your completed work orders. The Journal Entries for Work in Process or Completions and Journal Entries for Variances programs have already been run for these work orders. The program calculates the total for each type of cost by work order and a grand total of each cost for all of the work orders listed.

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Item Number</th>
<th>Cost P Type</th>
<th>Standard Amount</th>
<th>Actual Amount</th>
<th>Completed Amount</th>
<th>Balance (Actual–Complete)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112328</td>
<td>12786</td>
<td>A1 P</td>
<td>2.33</td>
<td>2.33</td>
<td>2.33</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2 P</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B1 P</td>
<td>.39</td>
<td>.39</td>
<td>.39</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B3 P</td>
<td>1.41</td>
<td>1.41</td>
<td>1.41</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B4 P</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1 P</td>
<td>1.77</td>
<td>1.77</td>
<td>1.77</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 P</td>
<td>1.48</td>
<td>1.48</td>
<td>1.48</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3 P</td>
<td>.40</td>
<td>.28</td>
<td>.40</td>
<td>.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4 P</td>
<td>.33</td>
<td>.24</td>
<td>.33</td>
<td>.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>8.38</td>
<td>7.99</td>
<td>8.38</td>
<td>.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Item Number</th>
<th>Cost P Type</th>
<th>Standard Amount</th>
<th>Actual Amount</th>
<th>Completed Amount</th>
<th>Balance (Actual–Complete)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112344</td>
<td></td>
<td>A1 P</td>
<td>2.33</td>
<td>2.33</td>
<td>2.33</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2 P</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B1 P</td>
<td>.39</td>
<td>.39</td>
<td>.39</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B3 P</td>
<td>1.41</td>
<td>1.41</td>
<td>1.41</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B4 P</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1 P</td>
<td>1.77</td>
<td>1.77</td>
<td>1.77</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 P</td>
<td>1.48</td>
<td>1.48</td>
<td>1.48</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3 P</td>
<td>.40</td>
<td>.28</td>
<td>.40</td>
<td>.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4 P</td>
<td>.33</td>
<td>.24</td>
<td>.33</td>
<td>.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>8.38</td>
<td>7.99</td>
<td>8.38</td>
<td>.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Item Number</th>
<th>Cost P Type</th>
<th>Standard Amount</th>
<th>Actual Amount</th>
<th>Completed Amount</th>
<th>Balance (Actual–Complete)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112352</td>
<td></td>
<td>A1 P</td>
<td>2.33</td>
<td>2.33</td>
<td>2.33</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2 P</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B1 P</td>
<td>.39</td>
<td>.39</td>
<td>.39</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B3 P</td>
<td>1.41</td>
<td>1.41</td>
<td>1.41</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B4 P</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1 P</td>
<td>1.77</td>
<td>1.77</td>
<td>1.77</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 P</td>
<td>1.48</td>
<td>1.48</td>
<td>1.48</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3 P</td>
<td>.40</td>
<td>.28</td>
<td>.40</td>
<td>.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4 P</td>
<td>.33</td>
<td>.24</td>
<td>.33</td>
<td>.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>8.38</td>
<td>7.99</td>
<td>8.38</td>
<td>.39</td>
</tr>
</tbody>
</table>
Reviewing Work Order Amount Variances

This report shows detailed production costs and variance amounts for your work orders.

Work Order Variances

<table>
<thead>
<tr>
<th>Cost Type</th>
<th>Standard Amount</th>
<th>Current Amount</th>
<th>Engineering Variance</th>
<th>Planned Amount</th>
<th>Planned Variance</th>
<th>Actual Amount</th>
<th>Actual Variance</th>
<th>Other Variances</th>
<th>Total Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>16178.92</td>
<td>18806.94</td>
<td>2628.02</td>
<td>19206.94</td>
<td>400.00</td>
<td>20826.52</td>
<td>1619.58</td>
<td>4647.60</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>37.28</td>
<td>37.28</td>
<td>.01</td>
<td>37.28</td>
<td>.00</td>
<td>55.12</td>
<td>17.85</td>
<td></td>
<td>17.84</td>
</tr>
<tr>
<td>B2</td>
<td>.00</td>
<td>3.19</td>
<td>3.19</td>
<td>.00</td>
<td>3.18</td>
<td>.01</td>
<td>.01</td>
<td></td>
<td>.01</td>
</tr>
<tr>
<td>B3</td>
<td>.00</td>
<td>8.13</td>
<td>11.38</td>
<td>3.25</td>
<td>11.37</td>
<td>.01</td>
<td>.01</td>
<td></td>
<td>.01</td>
</tr>
<tr>
<td>B4</td>
<td>8.67</td>
<td>8.66</td>
<td>.01</td>
<td>8.66</td>
<td>.00</td>
<td>12.86</td>
<td>4.20</td>
<td></td>
<td>4.19</td>
</tr>
<tr>
<td>C1</td>
<td>.00</td>
<td>10.16</td>
<td>10.16</td>
<td>14.22</td>
<td>4.06</td>
<td>14.21</td>
<td>.01</td>
<td></td>
<td>14.21</td>
</tr>
<tr>
<td>C2</td>
<td>.00</td>
<td>8.53</td>
<td>8.53</td>
<td>11.14</td>
<td>3.41</td>
<td>11.14</td>
<td>.01</td>
<td></td>
<td>11.14</td>
</tr>
<tr>
<td>C3</td>
<td>27.56</td>
<td>29.48</td>
<td>1.92</td>
<td>29.48</td>
<td>.00</td>
<td>42.70</td>
<td>13.22</td>
<td></td>
<td>15.14</td>
</tr>
<tr>
<td>C4</td>
<td>22.97</td>
<td>24.56</td>
<td>1.59</td>
<td>24.56</td>
<td>.00</td>
<td>35.58</td>
<td>11.02</td>
<td></td>
<td>12.61</td>
</tr>
<tr>
<td>D1</td>
<td>478.00</td>
<td>478.00</td>
<td>.00</td>
<td>478.00</td>
<td>.00</td>
<td>478.00</td>
<td>.00</td>
<td></td>
<td>.00</td>
</tr>
<tr>
<td>X2</td>
<td>85.26</td>
<td>85.26</td>
<td>.00</td>
<td>85.26</td>
<td>.00</td>
<td>85.26</td>
<td>.00</td>
<td></td>
<td>.00</td>
</tr>
<tr>
<td>X3</td>
<td>3.30</td>
<td>3.30</td>
<td>.00</td>
<td>3.30</td>
<td>.00</td>
<td>3.30</td>
<td>.00</td>
<td></td>
<td>.00</td>
</tr>
<tr>
<td>X5</td>
<td>2.00</td>
<td>2.00</td>
<td>.00</td>
<td>2.00</td>
<td>.00</td>
<td>2.00</td>
<td>.00</td>
<td></td>
<td>.00</td>
</tr>
<tr>
<td>X6</td>
<td>1608.40</td>
<td>1608.40</td>
<td>.00</td>
<td>1608.40</td>
<td>.00</td>
<td>1608.40</td>
<td>.00</td>
<td></td>
<td>.00</td>
</tr>
<tr>
<td>Order Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18977.96</td>
<td>22165.08</td>
<td>3187.12</td>
<td>22575.81</td>
<td>410.73</td>
<td>23190.45</td>
<td>614.64</td>
<td></td>
<td>4212.49</td>
</tr>
<tr>
<td>A1</td>
<td>19750.49</td>
<td>19750.49</td>
<td>.00</td>
<td>19750.49</td>
<td>.00</td>
<td>19750.49</td>
<td>.00</td>
<td></td>
<td>19750.49</td>
</tr>
<tr>
<td>B1</td>
<td>3254.50</td>
<td>3254.50</td>
<td>.00</td>
<td>3254.50</td>
<td>.00</td>
<td>3254.50</td>
<td>.00</td>
<td></td>
<td>3254.50</td>
</tr>
<tr>
<td>B3</td>
<td>86.60</td>
<td>86.60</td>
<td>.00</td>
<td>86.60</td>
<td>.00</td>
<td>86.60</td>
<td>.00</td>
<td></td>
<td>86.60</td>
</tr>
<tr>
<td>C1</td>
<td>129.90</td>
<td>129.90</td>
<td>.00</td>
<td>129.90</td>
<td>.00</td>
<td>129.90</td>
<td>.00</td>
<td></td>
<td>129.90</td>
</tr>
<tr>
<td>C2</td>
<td>69.28</td>
<td>69.28</td>
<td>.00</td>
<td>69.28</td>
<td>.00</td>
<td>69.28</td>
<td>.00</td>
<td></td>
<td>69.28</td>
</tr>
<tr>
<td>C3</td>
<td>3599.75</td>
<td>3599.75</td>
<td>.00</td>
<td>3599.75</td>
<td>.00</td>
<td>3599.75</td>
<td>.00</td>
<td></td>
<td>3599.75</td>
</tr>
<tr>
<td>C4</td>
<td>3519.45</td>
<td>3519.45</td>
<td>.00</td>
<td>3519.45</td>
<td>.00</td>
<td>3519.45</td>
<td>.00</td>
<td></td>
<td>3519.45</td>
</tr>
<tr>
<td>Order Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30409.97</td>
<td>1985708.48</td>
<td>1955298.51</td>
<td>30252.31</td>
<td>1955456.17</td>
<td>19795.67</td>
<td>10456.64</td>
<td>30409.97</td>
<td>19795.67</td>
</tr>
</tbody>
</table>
Reviewing Manufacturing Accounting Tables

This report lists the manufacturing AAIs used by your companies.

<table>
<thead>
<tr>
<th>M Co</th>
<th>G/L Do</th>
<th>Description</th>
<th>V Cost</th>
<th>Type</th>
<th>Description</th>
<th>Cost</th>
<th>Obj</th>
<th>Sub</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 0</td>
<td>IN20 IC</td>
<td>Completed W.O.'s To Inventory</td>
<td>A1</td>
<td>Material</td>
<td>48 1510 A1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>A2</td>
<td>Scrap</td>
<td>48 1510 A2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>B1</td>
<td>Direct Labor</td>
<td>48 1520 B1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>B2</td>
<td>Setup Labor</td>
<td>48 1520 B2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>B3</td>
<td>Machine Run</td>
<td>48 1520 B3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>B4</td>
<td>Labor Efficiency</td>
<td>48 1520 B4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>C1</td>
<td>Machine Variable Overhead</td>
<td>48 1535 C1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>C2</td>
<td>Machine Fixed Overhead</td>
<td>48 1535 C2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>C3</td>
<td>Labor Variable Overhead</td>
<td>48 1533 C3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>C4</td>
<td>Labor Fixed Overhead</td>
<td>48 1533 C4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>D1</td>
<td>Outside Operation</td>
<td>48 1510 D1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>X1</td>
<td>Taxes and Duty</td>
<td>48 1540 X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>X2</td>
<td>Electricity</td>
<td>48 1540 X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>X3</td>
<td>Freight Out</td>
<td>48 1540 X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>X4</td>
<td>Royalties</td>
<td>48 1540 X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>X5</td>
<td>R&D</td>
<td>48 1540 X5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>X6</td>
<td>Warehouse Charge</td>
<td>48 1540 X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IC</td>
<td></td>
<td>X7</td>
<td>Cooling Unit</td>
<td>48 1540 X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN20 IS Scrapped W.O.'s To Inventory</td>
<td>A1</td>
<td>Material</td>
<td>48 1511 A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Manufacturing Accounting in ERPx Environments
Manufacturing Accounting in ERPx Environments

Objectives

- To understand how rate schedule variances are calculated
- To understand what happens when completions are reported against co- and by-products

About Manufacturing Accounting in ERPx Environments

If you use the Manufacturing Accounting system in any special environment (using rate schedules or processes), there are differences in how the system calculates variances and creates journal entries.

Understanding manufacturing accounting in ERPx environments requires the following:

☐ Working with rate based accounting
☐ Understanding process industry accounting
Work with Rate Based Accounting

Working with Rate Based Accounting

Rate schedules are requests to produce a certain quantity of items on a periodic basis for a given length of time. Rate schedules eliminate the need to create multiple orders for items that are produced monthly, weekly, or daily in consistent quantities. Generally, you use rate schedules in repetitive manufacturing environments.

Working with rate based accounting consists of:

- Completing rate schedules
- Creating journal entries for rate schedules

See Also

- *Creating Rate Schedules (P3104)* in the *Shop Floor Control Discrete Manufacturing Guide*
- *Creating Rate Schedules* in the *Shop Floor Control Discrete Manufacturing Guide*

Completing Rate Schedules

Understanding Manufacturing Accounting Integration
You use Rate Schedule Workbench to:

- Record completions
- Issue parts
- Record labor and machine hours

You can set a processing option to automatically backflush parts when you record completions, or you can issue them manually. You can also set a processing option to automatically record hours when you record completions, or you can record hours manually.

See Also

- *Completing Rate Schedules (P31114)* in the *Shop Floor Control Discrete Manufacturing Guide*
- *Completing Rate Schedules* in the *Shop Floor Control Discrete Manufacturing Guide*

► **To complete a rate schedule**

On Rate Schedule Workbench

![Rate Schedule Workbench](image)

Complete the following fields:

- Quantities – Completed
- Quantities – Scrapped
On Rate Schedule Workbench

Complete the following fields:

- Quantities – Completed
- Quantities – Scrapped

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity Shipped</td>
<td>The number of units committed for shipment in Sales Order Entry, using either the entered or the primary unit of measure defined for this item.</td>
</tr>
<tr>
<td></td>
<td>In the Manufacturing system and Work Order Time Entry, this field can indicate completed or scrapped quantities. The quantity type is determined by the type code entered.</td>
</tr>
<tr>
<td>Units – Quantity Canceled/Scrapped</td>
<td>The number of units canceled in Sales Order or Work Order Processing, using either the entered or the primary unit of measure defined for this item.</td>
</tr>
<tr>
<td></td>
<td>In manufacturing, this can also be the number of units scrapped to date.</td>
</tr>
</tbody>
</table>

What You Should Know About

Unaccounted units

Because rate based items have no work order, no parts lists or routing instructions exist. Therefore, all unaccounted units are stored in the Work Order Variances table (F5102).

Planned variance

Because there are no work orders, no parts lists or routing instructions exist. Thus there is no planned variance for rate based items.
Creating Journal Entries for Rate Schedules

Run Journal Entries for Rate Schedules to create journal entries for rate scheduled shop floor activity. You can record transactions for the following rate scheduled items:

- Material issues
- Hours
- Completions
- Scrap
- Variances

Rate scheduled items have no work order, parts list, or routing instructions. Because the Journal Entries for Work in Process or Completions program uses the Work Order Master, Parts List, and Routing Instructions tables as the source of its journal entries, this program does not apply to rate scheduled items.

All rate based transactions are stored in the Work Order Variances table. Unlike work order based items, which require two programs to create journal entries, rate based items require only one program.

When you run this program in final mode, it creates a batch of journal entries to post to the general ledger. You can run this program in proof mode as many times as necessary. However, you can only run it in final mode once for each set of transactions.

The system creates rate based journal entries from information in the Rate Schedule Master table (F3104) and the Work Order Variances table (F3102). In addition, the program multiplies the frozen standard cost in the Cost Components table by the completed quantity at the last operation, the quantity of components issued, and the hours reported.

The program updates unaccounted units when you enter transactions in the Rate Schedule Workbench. Unaccounted units are purged after journal entries are created.
The following table defines the rate costs:

<table>
<thead>
<tr>
<th>Frozen</th>
<th>The dollar amount of the frozen standard cost components plus the quantity reported on the last operation in the Rate Schedule Workbench. This amount is now the frozen standard and represents the running total for the rate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned</td>
<td>There are no planned costs in rate based accounting. The planned quantity and amount fields store unaccounted material and labor information. The system adds these unaccounted values to the actual values when you run the rate based accounting update.</td>
</tr>
<tr>
<td>Current</td>
<td>The dollar amount calculated for the cost components. It is based on the current bill, routing, labor, and overhead rates for what should be reported for the quantity at the last operation. This amount is a running total for the rate and increases each time a receipt is recorded.</td>
</tr>
<tr>
<td>Actual</td>
<td>The dollar amount that is actually reported for the cost components based on any changes made from current. This amount is based on the quantity at the last operation. The program generates journal entries for these amounts.</td>
</tr>
<tr>
<td>Completed</td>
<td>The dollar amount of the frozen standard cost components plus the quantity completed at the last operation. This amount is a running total and is increased as receipts are recorded.</td>
</tr>
</tbody>
</table>

Variance Calculations

This program creates journal entries for variance values using the calculations in the following table:

<table>
<thead>
<tr>
<th>Engineering</th>
<th>Standard (frozen) cost minus current cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Results from a change to the standard bill of material or standard routing.</td>
</tr>
<tr>
<td>Material usage (actual) Cost components A1 and A2</td>
<td>Planned cost minus actual cost</td>
</tr>
<tr>
<td></td>
<td>Results from over- or under-issues.</td>
</tr>
</tbody>
</table>
Automatic Accounting Instructions

The system uses the following AAI tables to match inventory and cost transactions to general ledger accounts:

- **3220** Debit Variances, Labor
- **3240** Debit Variances, Material
- **3270** Debit Variances, Engineered
- **3280** Debit, Other

The system uses the following data to match the transaction to the AAI account:

- Work order type for the AAI.
- Table number for the AAI. If the system does not find a match, it uses table 3280.
- Company number associated with the work order or component branch/plant. If the system does not find a match, it uses 00000.
- Document type associated with the transaction.
- G/L category code for the transaction item. If the system does not find a match, it uses **** (four asterisks).
- Cost component.
Example: Proof Mode Report

Work with Rate Based Accounting

<table>
<thead>
<tr>
<th>Batch Number</th>
<th>Account Number</th>
<th>G/L Date</th>
<th>AAI Date</th>
<th>Do G/L Type</th>
<th>Cost Type</th>
<th>Document Number</th>
<th>Amount</th>
<th>Error Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROOF 200-100.1710 .A1</td>
<td>01/01/98 3120 IN20 A1</td>
<td>90000080</td>
<td>880.41</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1710 .A1</td>
<td>01/01/98 3110 IN20 A1</td>
<td>90000080</td>
<td>9.897,32</td>
<td>Account No. For Issue Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1510 .A1</td>
<td>01/01/98 3110 IN20 A1</td>
<td>90000080</td>
<td>2.631,55</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1720 .B2</td>
<td>01/01/98 3120 IN20 B2</td>
<td>90000080</td>
<td>7.07</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1720 .B3</td>
<td>01/01/98 3120 IN20 B3</td>
<td>90000080</td>
<td>157,22</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1720 .B4</td>
<td>01/01/98 3120 IN20 B4</td>
<td>90000080</td>
<td>363,77</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1730 .C1</td>
<td>01/01/98 3120 IN20 C1</td>
<td>90000080</td>
<td>196,52</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1730 .C2</td>
<td>01/01/98 3120 IN20 C2</td>
<td>90000080</td>
<td>165,08</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1730 .C3</td>
<td>01/01/98 3120 IN20 C3</td>
<td>90000080</td>
<td>1.705,99</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1730 .C4</td>
<td>01/01/98 3120 IN20 C4</td>
<td>90000080</td>
<td>1.624,69</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1520 .B1</td>
<td>01/01/98 3130 IC IN20 B1</td>
<td>90000080</td>
<td>263.154,56</td>
<td>Account No. For Compl. Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1520 .B2</td>
<td>01/01/98 3130 IC IN20 B2</td>
<td>90000080</td>
<td>799.512,80</td>
<td>Account No. For Compl. Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1520 .B3</td>
<td>01/01/98 3130 IC IN20 B3</td>
<td>90000080</td>
<td>15.721,55</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1520 .B4</td>
<td>01/01/98 3130 IC IN20 B4</td>
<td>90000080</td>
<td>52.630,91</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1530 .C1</td>
<td>01/01/98 3130 IC IN20 C1</td>
<td>90000080</td>
<td>19.649,52</td>
<td>Account No. For Compl. Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1530 .C2</td>
<td>01/01/98 3130 IC IN20 C2</td>
<td>90000080</td>
<td>16.505,21</td>
<td>Account No. For Compl. Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1730 .C2</td>
<td>01/01/98 3120 IC IN20 C2</td>
<td>90000080</td>
<td>16.505,21</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1550 .C3</td>
<td>01/01/98 3130 IC IN20 C3</td>
<td>90000080</td>
<td>869.713,15</td>
<td>Account No. For Compl. Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1550 .C4</td>
<td>01/01/98 3130 IC IN20 C4</td>
<td>90000080</td>
<td>869.713,15</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1510 .A1</td>
<td>01/01/98 3130 IC IN20 A1</td>
<td>90000080</td>
<td>0.777,772,72</td>
<td>Account No. For Compl. Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1710 .A1</td>
<td>01/01/98 3120 IV IN20 A1</td>
<td>90000080</td>
<td>0.666,994,99</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.6077 .B1</td>
<td>01/01/98 3270 IV IN20 B1</td>
<td>90000080</td>
<td>240,523,01</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1720 .B2</td>
<td>01/01/98 3120 IV IN20 B2</td>
<td>90000080</td>
<td>799.505,73</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1720 .B3</td>
<td>01/01/98 3120 IV IN20 B3</td>
<td>90000080</td>
<td>15.564,33</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1720 .B4</td>
<td>01/01/98 3120 IV IN20 B4</td>
<td>90000080</td>
<td>52.267,14</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1720 .C1</td>
<td>01/01/98 3120 IV IN20 C1</td>
<td>90000080</td>
<td>19.453,00</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1730 .C1</td>
<td>01/01/98 3120 IV IN20 C1</td>
<td>90000080</td>
<td>19.453,15</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1710 .A1</td>
<td>01/01/98 3120 IM IN20 A1</td>
<td>90000090</td>
<td>1.204,80</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1510 .A1</td>
<td>01/01/98 3120 IM IN20 A1</td>
<td>90000090</td>
<td>1.204,80</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1710 .A1</td>
<td>01/01/98 3120 IM IN20 A1</td>
<td>90000090</td>
<td>13.544,11</td>
<td>Account No. For Issue Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROOF 200-100.1720 .B1</td>
<td>01/01/98 3120 IN20 B1</td>
<td>90000090</td>
<td>3.671,78</td>
<td>Account No. For WIP Not Setup in G/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Release A7.3 (June 1996)

5–9
Example: Final Mode Report

<table>
<thead>
<tr>
<th>Document Type</th>
<th>G/L Account</th>
<th>Description</th>
<th>Debit</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM 90000080</td>
<td>200-100.1710</td>
<td>Material Charged To W.O.'s</td>
<td>880,41</td>
<td>AA</td>
</tr>
<tr>
<td>ME 90000080</td>
<td>-</td>
<td>EOB</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IC 90000080</td>
<td>-</td>
<td>Accrued Payroll</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IC 90000080</td>
<td>-</td>
<td>Actual Burden Clearing Account</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IC 90000080</td>
<td>-</td>
<td>Completed W.O.'s To Inventory</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

See Also

- Creating Journal Entries (P31802)
- Creating Journal Entries
Processing Options for Rate Base Journal Entries

1. Enter the G/L date. If left blank, the current date will be used.

2. Enter a '1' to create journal entries. If left blank, 'Proof' mode is assumed.

JOURNAL ENTRY SUMMARIZATION:
3. Enter a '1' to summarize Material Issues by Account within a document.

4. Enter a '1' to summarize by Account ACROSS documents. WARNING: This option will reduce the number of journal entries. See Helps.

REPORT OPTIONS:
5. Enter a '1' to print an Accounting Journal.

6. Enter a '1' to print subtotals by Document Type and Document.

REPORT SUMMARIZATION:
7. Enter a '1' to summarize Material Issues within a document.

8. Enter a '1' to summarize by Account ACROSS documents. WARNING: This option will reduce the report output. See Helps.

DOCUMENT TYPES:
9. Enter the Document Type associated with Inventory Issues.

10. Enter the Document Type associated with Rate Base Shop Floor Activity.

11. Enter the Document Type associated with Inventory Completions.

12. Enter the Document Type associated with Inventory Scrap.

13. Enter the Document Type associated with Rate Accounting Variances.

PARTIAL COMPLETIONS:
14. Enter a '1' to recognize all units and amounts unposted due to partial operation completions. This will create variances for any partially reported completions. Unpostable units and amounts will be cleared when run in 'Final' mode.
What You Should Know About Processing Options

Partial Completions (14) All journal entries for rate based items are based on the quantity at the last operation. If you report a partial completion, you create unposted units. This processing option recognizes the unposted units and creates a variance.
Understand Process Industry Accounting

About Process Industry Accounting

The main difference between discrete manufacturing accounting and process manufacturing accounting is that with a process, completions are reported against the co- and by-products themselves and not against the parent process. You can set a processing option to allow completions of unplanned co- and by-products. Variances are still reported against the process.

About Unaccounted Units in Process Industry Accounting

Unaccounted units represent the quantities and dollar amounts of transactions that occur against a work order when you issue parts, or record labor or completions. You cannot view unaccounted units. They are stored by the system until you run the Journal Entries for Work in Process or Completions program. This program creates journal entries for the unaccounted units and then purges the unaccounted units.

In the process industry, unaccounted units are stored in the same tables as in the discrete industry. Unaccounted units are stored in the following tables:

- **Work Order Master (F4801)**
 - When you complete a work order or record scrap against a work order, unaccounted units are stored in the Work Order Master table.

- **Parts List (F3111)**
 - When you issue material to a work order, unaccounted units are stored in the Parts List table.

- **Routing Instructions (F3112)**
 - When you record hours against a work order, unaccounted units are stored in the Routing Instructions table.

About Calculated Amounts in Process Industry Accounting

Variance Inquiry can display small engineering variances because the frozen amounts differ slightly from the current amounts. However, Journal Entries for Variances rounds the amounts, and no variances print on the report.
Amounts are calculated in the process industry as follows:

Frozen amounts
Frozen amounts are based on the cost of the process, from the Cost Components table (F30026).

Actual amounts
The actual costs of the ingredients issued are added to calculate the actual A1 cost of the process.

Completed amounts
For each cost component, the completed costs of the co- and by-products are added to calculate the completed cost of the process for that cost component. For example, the completed B1 cost of all co- and by-products are added. Their sum is the completed B1 cost of the process.
Appendices
Appendices
Appendix A — Calculations in Cost Rollup

About Calculations in Cost Rollup

The following provides information about how hard-coded cost components are generated in the cost rollup process. These calculations can vary according to your manufacturing constants and your processing option choices.

The program adjusts direct labor hours and direct machine hours by time basis, crew size, and cumulative yield, as appropriate. The program adjusts component material quantities by operation scrap. Hours and quantities are also converted to the primary unit of measure.

See Also

- Assigning Values to User Defined Cost Components (P30026)
- Assigning Values to User Defined Cost Components

Material Cost Components

A1 (Purchased Material Cost)

- If you enter a cost method in the Purchased Item processing option on the Simulate Cost Rollup program, the program uses that cost method to retrieve the cost from the Cost Ledger table.
- If you leave the processing option blank, the program uses the values entered manually on Enter/Change Cost Components.

A2 (Material Scrap)

- Used for items that have a percent of scrap defined in their bill of material.
- Net added cost comes from scrap incurred when the components are assembled.
- Component material scrap cost = % of scrap from bill of material x quantity per parent item x the total cost of the component.
Routing Cost Components

Routing cost components (cost components B and C) can be controlled manually or through the Simulated Cost Rollup program.

B1 (Direct Labor)

- Parent direct labor costs = sum of direct labor calculations for all operations on the item’s routing.
- Operation direct labor cost = \((\text{operation direct labor hours} / \text{operation time basis}) \times \text{operation crew size} / \text{(operation cumulative yield \% / 100)})\) x work center direct labor rate.

B2 (Setup Labor)

- Parent setup labor cost = sum of all setup labor calculations for all operations on the item’s routing.
- Operation setup labor cost = \((\text{operation setup labor hours} \times \text{work center setup labor rate}) / \text{accounting cost quantity (if the accounting cost quantity is not zero)}\).

B3 (Machine Run)

- Parent machine run cost = sum of machine run calculations for all operations on the item’s routing.
- Operation machine run cost = \((\text{operation machine run hours} / \text{operation time basis}) \times \text{(operation cumulative yield / 100)}\) x work center machine run rate.

B4 (Labor Efficiency)

- Increases or decreases the cost of the labor required to produce an item. If you have set the manufacturing constants to modify costs by work center efficiency, the program creates a cost component (B4) for labor efficiency when you run Simulated Cost Rollup. In addition, if the efficiency for a work center is equal to zero, then no calculation is performed for that work center. Labor efficiency is only calculated for direct labor hours.
- Parent labor efficiency cost = sum of all efficiency calculations for all operations on the item’s routing.
- Operation labor efficiency cost = operation direct labor hours – (operation direct labor hours \times \text{(work center efficiency / 100)}) x work center direct labor rate.
C1, C2 (Variable/Fixed Machine Overhead)

- Calculated only if you have set the Manufacturing Constants table (F3009) to include variable and fixed machine overhead in the cost. In this table, you must also determine whether machines’ overhead costs are calculated from manually entered rates in the Work Center Master table (F30006) or as a percent of machine run costs.

- Parent variable/fixed machine overhead cost = sum of all variable/fixed machine overhead calculations for the item’s routing.

- Operation variable/fixed machine overhead cost by percent = machine run hours x (work center variable/fixed machine overhead percent / 100) x work center machine run rate.

- Operation variable/fixed machine overhead cost by rate = machine run hours x work center variable/fixed machine overhead rate.

C3, C4 (Variable/Fixed Labor Overhead)

The following calculations are displayed as rates. If you indicate on Work Center Master that variable/fixed labor overhead costs should be calculated as a percent of labor costs, multiply the work center labor rate by the percent / 100 to obtain the labor overhead rate. For example:

Operation variable labor overhead rate = (work center variable labor overhead percent / 100) x work center direct labor rate

- Calculated only if you have set the Manufacturing Constants table (F3009) to include variable and fixed labor overhead in the cost. In this table, you must also determine whether labor overhead costs are calculated from manually entered rates in the Work Center Master table (F30006) or as a percent of labor costs. In addition, you can set the manufacturing constants to factor labor overhead by work center efficiency.

- Parent variable/fixed labor overhead cost = sum of all variable/fixed labor overhead calculations for all operations on the item’s routing.

- Variable/fixed labor overhead cost = direct labor overhead cost + setup labor overhead cost:
 - Direct labor overhead cost by rate:
 - Without labor efficiency: direct labor hours x work center variable/fixed labor overhead rate
 - With labor efficiency: (direct labor hours + work center efficiency) x work center variable/fixed labor overhead rate

 Work center efficiency = labor hours – ((work center efficiency percent / 100) x labor hours)
• Setup labor overhead cost by rate = (operation setup labor hours / accounting cost quantity) x work center variable/fixed labor overhead rate. Accounting cost quantity is factored if it is not equal to zero.

Outside Operation Cost Components (Usually Dx)

• Can be entered manually on Enter/Change Cost Components or retrieved from the Cost Ledger table (F4105) when you run Simulated Cost Rollup.

• The Simulated Cost Rollup program creates item numbers for outside operations as follows:
 • Parent*OPxx (where Parent = the parent item number and xx = the whole-number portion of the outside operation’s operation sequence number)

• If you enter a cost method in the Outside Operations processing option on the Simulate Cost Rollup program, the program uses that cost method to retrieve the cost from the Cost Ledger table. If the value is zero and a value previously existed in the Cost Components table, the original value remains.

• If you leave the processing option blank, the program uses the values entered manually on Enter/Change Cost Components.
Appendix B — Calculations for Variances

About Calculations for Variances

Variance Inquiry displays costs from the Work Order Variance table (F3102). How the system calculates each cost component is explained here.

Standard Costs

A1
Sum of rolled costs minus sum of net added costs = component material cost. Component material cost multiplied by work order quantity.

All other cost components

Net added cost x work order quantity

These costs are created under the following conditions:

- When you run Process Work Orders
- When the Parts List Revisions program copies the bill of material
- When the Work Order Routing program copies the routings
- When you generate journal entries for work order activity

Current Costs

A1
The sum of total rolled costs for each item in the current bill of material. The cost of components is based on the quantity before scrap is added.

This value is created under the following conditions:

- When you generate a parts list with Process Work Orders
- When you generate journal entries for work order activity
A2 The sum of the total rolled costs for each item that is scrapped.

This value is created under the following conditions:
- When you generate a parts list with Process Work Orders
- When Parts List Revisions copies the bill of material

B1–C4 Calculated in the same manner as the Simulated Cost Rollup using the hours from the current routing.

This value is created under the following conditions:
- When you generate a parts list with Process Work Orders
- When Work Order Routing copies the routing

All other cost components Net added cost x work order quantity

These costs are created under the following conditions:
- When you generate work order routing with Process Work Orders
- When Work Order Routing copies the routing

You must run the Journal Entry program in update mode to create standard and current variance values. Running the program in proof mode does not generate these values.

NOTE: You must run the Journal Entry program in update mode to create standard and current variance values. Running the program in proof mode does not generate these values.

Planned Costs

A1 The sum of total rolled costs for each item in the current parts list.

This value is created when you generate journal entries for work order activity.

A2 The sum of the total rolled costs for each item that is scrapped.

This value is created when you generate journal entries for work order activity.
Appendix B — Calculations for Variances

B1–C4
Calculated in the same manner as the Simulated Cost Rollup using the hours from the work order routing.

This value is created when you generate journal entries for work order activity.

All other cost components
The net added cost x work order quantity

This value is created when you generate journal entries for work order activity.

Actual Costs

A1
Generated based on actual work order issues.

This value is created when you generate journal entries for work order activity.

A2
The cost of the components actually scrapped using the Component Scrap form.

See Recording Component Scrap.

B1–C4
Calculated in the same manner as the Simulated Cost Rollup using the hours from the work order routing.

This value is created when you generate journal entries for work order activity.

All other cost components
The net added cost x work order quantity

This value is created when you generate journal entries for work order activity.

Completed/Scrapped Costs

A1
Sum of rolled costs — sum of net added costs = component material cost

This amount includes completed and scrapped quantities.
All other cost components

Net added cost x work order quantity

This value is created when you generate journal entries for work order activity.
Appendix C — Purchase Price Variance

About Purchase Price Variance

For purchased items, if the standard cost differs from the actual purchase price, you have a purchase price variance (PPV). If you use extra costs on purchased items, the total standard cost might differ from the A1 (material) cost. This difference is the material burden cost.

When you receive a purchase order, the system updates the accounts payable account using the price on the purchase order. The system updates the inventory account with the standard item cost from the Cost Ledger table (F4105). Any difference between the two costs is made up of PPV and material burden. PPV is the difference between the frozen A1 cost and the purchase order cost. Material burden cost is the difference between the total standard cost from the Cost Ledger table and the A1 cost, as follows:

\[
\text{PPV} = \text{A1 cost} - \text{purchase order unit cost}
\]

Material burden cost = total standard cost – A1 cost

Example: Purchase Price Variance and Material Burden

Cost Ledger Table (F4105)

Average cost = $14

Standard cost = $16

Cost Components Table (F30026)

A1 cost = $13

X1 cost = $3

<table>
<thead>
<tr>
<th>Material Inventory</th>
<th>Material Received (AP)</th>
<th>Material Burden</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$16 (total standard cost)</td>
<td>$12 (P.O. cost)</td>
<td>$3</td>
<td>$1</td>
</tr>
</tbody>
</table>
Material issued to the work order relieves the inventory account and posts to the WIP account with the fully loaded standard cost for the item.

<table>
<thead>
<tr>
<th>Material Inventory</th>
<th>WIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$16</td>
<td>$16</td>
</tr>
</tbody>
</table>

At period end, a manual journal entry closes the PPV to the Cost of Goods Sold account.

<table>
<thead>
<tr>
<th>PPV</th>
<th>COGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1</td>
<td>$1</td>
</tr>
</tbody>
</table>

There is an additional AAI table (4337) to handle posting of the material overhead.

If you have multiple cost extras and you want to post to different accounts for each of them, you must use landed cost.

See Also

- Setting Up Landed Costs (P43214) in the Purchase Management Guide
- Setting Up Landed Costs in the Purchase Management Guide
Appendix D — Functional Servers

Several J.D. Edwards programs access functional servers. The purpose of functional servers is to provide a central location for standard business rules about entering documents, such as vouchers, invoices, and journal entries. These business rules establish the following:

- Data dictionary default values
- Field edits and valid values
- Error processing
- Relationships between fields or applications

The advantages of a functional server are:

- It reduces maintenance of entry programs because edit rules reside in one central location.
- You can standardize documents across all applications because you create them using the same business rules.
- Generally, the user interface (appearance and interaction) of a form is now separate from how a program works.

The steps for setting up business rules for an entry program are:

1. Create a DREAM Writer version for a specific functional server program (for example, XT0411Z1 for voucher entry).
2. Set the processing options within the version according to your company requirements.
3. Specify the version you want the entry program to use in the processing options for that entry program.

You can have all your entry programs use the same DREAM Writer version (and thus, use the same rules) or you can set up different DREAM Writer versions. J.D. Edwards provides DREAM Writer version ZJDE0001 as the default functional server version for your entry programs.

Only the person responsible for system-wide setup should make changes to the functional server version. For more information about how to set up DREAM Writer versions, see the Technical Foundation Guide.
Example: Voucher Processing Functional Server

The following graphic shows the programs that use the voucher processing functional server. J.D. Edwards provides two demo versions of the functional server, ZJDE0001 and ZJDE0002.
Glossary
This glossary defines terms in the context of your use of JDE systems and the accompanying user guide.

access. To get to the information or functions provided by the system through menus, screens, and reports.

allocated material. Material on hand or on order that is assigned to specific future production or customer orders. Synonymous with reserved material.

alphabetical character. Represents data by using letters and other symbols from the keyboard (such as *&#). Contrast with numeric character.

alphanumeric character. Represents data in a combination of letters, numbers, and other symbols (such as *&#).

alternate operation. Replacement for a normal step in the manufacturing process or routing for an item.

alternate routing. A routing, usually less preferred than the primary routing, but resulting in an identical item.

assemble-to-order. A make-to-order product for which key components (bulk, semi-finished, intermediate, subassembly, fabricated, purchased, packaging, etc.) used in the assembly or finishing process are planned and stocked in anticipation of a customer order. Receipt of an order initiates assembly of the finished product. This is useful when a large number of finished products can be assembled from common components.

assembly. A group of subassemblies and/or parts that are put together and constitute a major subdivision for the final product. An assembly may be an end item or a component of a higher level assembly.

audit trail. The detailed, verifiable history of a processed transaction. The history consists of the original documents, transaction entries, and posting of records, and usually concludes with a report.

automatic accounting instruction (AAI). A code that points to an account in the chart of accounts. AAI s define rules for programs that automatically generate journal entries. This includes interfaces between Accounts Payable, Accounts Receivable, and Financial Reporting and the General Accounting system. Each system that interfaces with the General Accounting system has AAI s. For example, AAI s can direct the Post to General Ledger program to post a debit to a certain expense account and an automatic credit to a certain accounts payable account.

backflush. The deduction from inventory records of the component parts used in an assembly or subassembly by exploding the bill of material by the production count of assemblies produced.

back scheduling. A technique for calculating operation start dates and due dates. The schedule is computed starting with the due date for the order and working backward to determine the required start date and/or due dates for each operation.

backup copy. A copy of original data preserved on a magnetic tape or diskette as protection against destruction or loss.

batch. A group of like records or transactions that the computer treats as a single unit during processing. For identification purposes, the system usually assigns each batch a unique identifier, known as a “batch number.”
batch bill of material. A bill of material in which the statement of quantity per is based on the standard batch quantity of the parent.

batch header. Information the computer uses as identification and control for a group of transactions or records in a batch.

batch job. A task or group of tasks you submit for processing that the system treats as a single unit during processing, for example, printing reports and purging files. The computer performs these tasks with little or no user interaction.

batch processing. A method by which the computer selects jobs from the job queue, processes them, and writes output to the output queue. Contrast with interactive processing.

batch type. A code that designates which JDE system the associated transactions pertain to, thus controlling what records are selected for processing. For example, in the Post General Journal process, only unposted transaction batches with a batch type of G for General Accounting are selected for posting.

bill of material (BOM). A listing of all the subassemblies, parts, and raw materials that go into a parent assembly showing the quantity of each required to make the assembly. It is used in conjunction with the master production schedule to determine the items for which purchase requisitions and production orders must be released. There is a variety of display formats for bills of material, including: single level, multi level, indented, planning, and costed. Synonymous with formula, recipe, and ingredients list.

Boolean logic operand. In JDE’s DREAM Writer, the parameter of the Relationship field. The Boolean logic operand tells the system to perform a comparison between certain records or parameters. Available operands are:

- **EQ** = Equal To
- **LT** = Less Than
- **LE** = Less Than or Equal To
- **GT** = Greater Than
- **GE** = Greater Than or Equal To
- **NE** = Not Equal To
- **NL** = Not Less Than
- **NG** = Not Greater Than

bubble chart. A diagram that attempts to display the interrelationships of systems, functions, or data in sequential flow. It derives its name from the circular symbols used to enclose the statements on the chart.

bucketed system. An MRP, DRP, or other time-phased system in which all time-phased data are accumulated into time periods or "buckets." If the period of accumulation is one week, then the system is said to have weekly buckets.

bucketless system. An MRP, DRP, or other time-phased system in which all time-phased data are processed, stored, and usually displayed using dated records rather than defined time periods or "buckets."

bulk issue. Parts issued from stores to work-in-process inventory, but not based on a job order. They are issued in quantities estimated to cover requirements of individual work centers and production lines. The issue may be used to cover a period of time or to fill a fixed-size container.

by-product. A material of value produced as residual of or incidental to the production process. The ratio of by-product to primary product is usually predictable. By-products may be recycled, sold as is, or used for other purposes.

CAD/CAP. Computer Assisted Design/Computer Assisted Programming. A set of automated programming tools for designing and developing systems. These tools automate system design, generate source code and documentation, enforce design standards, and help to ensure consistency throughout all JDE systems.
capacity requirements planning (CRP). The function of establishing, measuring, and adjusting limits or levels of capacity. It is the process of determining in detail how much labor and machine resources are required to accomplish the tasks of production. Open shop orders and planned orders in the MRP system are input to CRP, which "translates" these orders into hours of work by work center and by time period.

category code. In user defined codes, a temporary title for an undefined category. For example, if you are adding a code that designates different sales regions, you could change category code 4 to Sales Region, and define E (East), W (West), N (North), and S (South) as the valid codes. Category codes were formerly known as reporting codes.

classification. Any letter, number, or other symbol that a computer can read, write, and store.

closed–loop MRP. A system built around material planning that includes the additional planning functions of sales and operations (production planning, master production scheduling, and capacity requirements planning). Once this planning phase is complete and the plans have been accepted as realistic and attainable, the execution functions come into play. These include the manufacturing control functions of input–output (capacity) measurement, detailed scheduling and dispatching, as well as anticipated delay reports from both the plant and supplier. The term "closed loop" implies that not only is each of these elements included in the overall system, but also that feedback is provided by the execution functions so that the planning can be kept valid at all times.

command. A character, word, phrase, or combination of keys you use to tell the computer to perform a defined activity.

costed bill of material. A form of bill of material that extends the quantity per of every component in the bill by the cost of the components.

crew size. The number of people required to perform an operation. The associated standard time should represent the total time for all crew members to perform the operation, not the net start to finish time for the crew.

cumulative leadtime. The longest planned length of time involved to accomplish the activity in question. For any item planned through MRP, it is found by reviewing the leadtime for each bill of material path below the item. Whichever path adds up to the greatest number defines cumulative leadtime. Synonymous with aggregate leadtime, composite leadtime, and critical path leadtime.
cumulative manufacturing leadtime. The cumulative planned leadtime when all purchased items are assumed to be in stock.

cumulative MRP. The planning of parts and subassemblies by exploding a master schedule, as in MRP, except that the master scheduled items and therefore the exploded requirements are time phased in cumulative form. Usually these cumulative figures cover a planning year.

current cost. The current or replacement cost of labor, material, or overhead. Its computation is based on current performance or measurements, and it is used to address "today's" costs before production as a revision of annual standard costs.

cursor. The blinking underscore or rectangle on your screen that indicates where the next keystroke will appear.

cursor sensitive help. JDE's online help function, which allows you to view a description of a field, an explanation of its purpose, and, when applicable, a list of the valid codes you can enter. To access this information, move the cursor to the field and press F1.

data. Numbers, letters, or symbols that represent facts, definitions, conditions, and situations, that a computer can read, write, and store.

database. A continuously updated collection of all information a system uses and stores. Databases make it possible to create, store, index, and cross-reference information online.

data dictionary. A database file consisting of the definitions, structures, and guidelines for the usage of fields, messages, and help text. The data dictionary file does not contain the actual data itself.

default. A code, number, or parameter the system supplies when you do not enter one. For example, if an input field's default is N and the you do not enter something in that field, the system supplies an N.

demand. A need for a particular product or component. The demand could come from any number of sources, such as a customer order or forecast, or an interplant requirement or a request from a branch warehouse for a service part or for manufacturing another product.

dependent demand. Demand that is directly related to or derived from the bill of material structure for other items or end products. Such demands are calculated and need not and should not be forecast. A given inventory item may have both dependent and independent demand at any given time. For example, a part may simultaneously be the component of an assembly and also sold as a service part.

descriptive title. See user defined code.

detail. The individual pieces of information and data that make up a record or transaction. Contrast with summary.

direct labor. Labor that is specifically applied to the product being manufactured or utilized in the performance of the service.

direct material. Material that becomes a part of the final product in measurable quantities.

discrete manufacturing. Production of distinct items such as automobiles, appliances, or computers.

display. (1) To cause the computer to show information on a terminal's screen. (2) A specific set of fields and information that a JDE system might show on a screen. Some screens can show more than one display when you press a specified function key.

display field. A field of information on a screen that contains a system-provided code or parameter that you cannot change. Contrast with input field.
downstream operation. A task subsequent to the task currently being planned or executed.

DREAM Writer. Data Record Extraction And Management Writer. A flexible data manipulator and cataloging tool. You use this tool to select and sequence the data that is to appear on a programmed report.

edit. (1) To make changes to a file by adding, changing, or removing information. (2) The program function of highlighting fields into which you have entered inadequate or incorrect data.

effectivity date. The date on which a component or an operation is to be added or removed from a bill of material or an assembly process. The effective dates are used in the explosion process to create demands for the correct items. Normally, bill of material and routing systems provide for an effectivity "start date" (from) and "stop date" (thru), signifying the beginning and end of a particular relationship. Synonymous with effective date.

efficiency. A measure (as a percentage) of the actual output to the standard output expected. Efficiency measures how well something is performing relative to expectations; it does not measure output relative to any input. For example, if there is a standard of 100 pieces per hour and 780 units are produced in one eight-hour shift, the efficiency is 780 divided by 800, then multiplied by 100% or 97.5%.

electronic data interchange (EDI). The paperless (electronic) exchange of trading documents, such as purchase orders, shipment authorizations, advanced shipment notices, and invoices, using standardized document formats.

end item. A product sold as a completed item or repair part. Any item subject to a customer order or sales forecast. Synonymous with end product, finished good, and finished product.

engineering change order (ECO). A work order used to implement a change in a manufactured product. This can be a change in design, quantity or parts required, assembly or production process, and so forth.

engineer-to-order. Products whose customer specifications require unique engineering design or significant customization. Each customer order results in a unique set of part numbers, bills of material, and routings.

execute. See run.

exit. (1) To interrupt or leave a computer program by pressing a specific key or a sequence of keys. (2) An option or function key displayed on a screen that allows you to access another screen.

expedite. To "rush" or "chase" production or purchase orders that are needed in less than the normal leadtime. To take extraordinary action because of an increase in relative priority.

facility. A collection of computer language statements or programs that provides a specialized function throughout a system or throughout all integrated systems. Some examples DREAM Writer and FASTR.

feature. An accessory or attachment to an item.

field. (1) An area on a screen that represents a particular type of information, such as name, document type, or amount. Fields that you can enter data into are designated with underscores. See input field and display field. (2) A defined area within a record that contains a specific piece of information. For example, a vendor record
Product Costing and Manufacturing Accounting

consists of the fields Vendor Name, Address, and Telephone Number. The Vendor Name field contains just the name of the vendor.

file. A collection of related data records organized for a specific use and electronically stored by the computer.

fixed cost. An expenditure that does not vary with the production volume, for example, rent, property tax, and salaries of certain personnel.

fixed order quantity. A lot-sizing technique in MRP or inventory management that will always cause planned or actual orders to be generated for a predetermined fixed quantity, or multiples thereof, if net requirements for the period exceed the fixed order quantity.

fixed overhead. Traditionally all manufacturing costs, other than direct labor and direct materials, that continue even if products are not produced. Although fixed overhead is necessary to produce the product, it cannot be directly traced to the final product.

fold area. An area of a screen, accessed by pressing F4, that displays additional information associated with the records or data items displayed on the screen.

forecast. An estimate of future demand. A forecast can be determined by mathematical means using historical data, created subjectively by using estimates from informal sources, or a combination of both techniques.

function. A separate feature within a facility that allows you to perform a specific task, for example, the field help function.

function key. A key you press to perform a system operation or action. For example, you press F4 to have the system display the fold area of a screen.

Gantt chart. A control chart designed to show graphically the relationship between planned performance and actual performance.

hard copy. A presentation of computer information printed on paper. Synonymous with printout.

header. Information at the beginning of a file. This information is used to identify or provide control information for the group of records that follows.

help instructions. Online documentation or explanations of fields that you access by pressing the Help key or by pressing F1 with your cursor in a particular field.

helps. See help instructions.

hidden selections. Menu selections you cannot see until you enter HS in a menu’s Selection field. Although you cannot see these selections, they are available from any menu. They include such items as Display Submitted Jobs (33), Display User Job Queue (42), and Display User Print Queue (43). The Hidden Selections window displays three categories of selections: user tools, operator tools, and programmer tools.

implode. 1) Compression of detailed data in a summary–level record or report. 2) Tracing a usage and/or cost impact from the bottom to the top (end product) of a bill of material using where–used logic.

implosion. The process of determining the where–used relationship for a given component. Implosion can be single–level (showing only the parents on the next higher level) or multilevel (showing the ultimate top–level parent). Synonymous with where used. Contrast with explosion.

indented bill of material. A form of multilevel bill of material that lists the highest level parent items at the left margin and all the components going into these parents indented to the right of the margin. All subsequent levels of components are indented farther to the right. If a component is used in more than one parent within a given product structure, it will appear more than once, under every subassembly in which it is used.
indented where-used. A listing of every parent item, and the respective quantities required, as well as each of their respective parent items, continuing until the ultimate end item, or level-0 item, is listed. Each of these parent items is one that calls for a given component item in a bill of material file. The component item is shown closest to the left margin of the listing, with each parent indented to the right, and each of their respective parents indented even further to the right.

indirect costs. Costs that are not directly incurred by a particular job or operation. Certain utility costs, such as plant heating, are often indirect. An indirect cost is typically distributed to the product through the overhead rates.

indirect labor. Work required to support production in general without being related to a specific product, for example, sweeping the floor.

indirect materials. Items that become part of the final product or substances that are consumed in the manufacture of a product that have a negligible value relative to the value of the final product or the usage of which cannot be effectively determined. These components may or may not be included in the bill of material. Synonymous with *supplies*.

input. Information you enter in the input fields on a screen or that the computer enters from other programs, then edits and stores in files.

input field. An area on a screen, distinguished by underscores (___), where you type data, values, or characters. A field represents a specific type of information such as name, document type, or amount. Contrast with *display field*.

install system code. The code that identifies a JDE system. Examples are 01 for the Address Book system, 04 for the Accounts Payable system, and 09 for the General Accounting system.

interactive processing. A job the computer performs in response to commands you enter from a terminal. During interactive processing, you are in direct communication with the computer, and it might prompt you for additional information during the processing of your request. See *online*. Contrast with *batch processing*.

interface. A link between two or more JDE systems that allows these systems to send information to and receive information from one another.

issue. The physical movement of items from a stocking location and, often, the transaction reporting of this activity.

issue cycle. The time required to generate a requisition for material, pull the material from an inventory location, and move it to its destination.

item. Any unique manufactured or purchased part, material, intermediate, subassembly, or product.

item master record. The master record for an item. Typically, it contains identifying and descriptive data and control values (leadtimes, lot sizes, etc.) and may contain data on inventory status, requirements, planned orders, and costs. Item records are linked together by product structure records which define the bill of material for an item.

item number. A number that serves to uniquely identify an item. Synonymous with *part number*.

jargon. A JDE term for system specific help text. You base your help text on a specific reporting code you designate in the Data Dictionary Glossary. You can display this text as part of online help.

job. A single identifiable set of processing actions you tell the computer to perform. You start jobs by choosing menu selections, entering commands, or pressing designated function keys. An example of a computer job is check printing in the Accounts Payable system.
job queue. A screen that lists the batch jobs you and others have told the computer to process. When the computer completes a job, the system removes the job’s identifier from the list.

justify. To shift information you enter in an input field to the right or left side of the field. Many of the facilities within JDE systems justify information. The system does this only after you press Enter.

Just-in-Time (JIT). A philosophy of manufacturing based on planned elimination of all waste and continuous improvement of productivity. The primary elements of zero inventories are to have only the required inventory when needed; to improve quality to zero defects; to reduce leadtimes by reducing setup times, queue lengths, and lot sizes; to incrementally revise the operations themselves; and to accomplish these things at minimum cost.

key field. A field common to each record in a file. The system uses the key field designated by the program to organize and retrieve information from the file.

Key General Ledger Account (Key G/L). See automatic accounting instructions.

labor cost. The dollar amount of added value due to labor performed during manufacturing.

leading zeros. A series of zeros that certain facilities in JDE systems place in front of a value you enter. This normally occurs when you enter a value that is smaller than the specified length of the field. For example, if you enter 4567 in a field that accommodates eight numbers, the facility places four zeros in front of the four numbers you enter. The result would look like this: 00004567.

leadtime. 1) A span of time required to perform a process (or series of operations). 2) In a logistics context, the time between recognition of the need for an order and the receipt of goods. Individual components of leadtime can include order preparation time, queue time, move or transportation time, and receiving and inspection time.

leadtime offset. A technique used in MRP where a planned order receipt in one time period will require the release of that order in an earlier time period based on the leadtime for the item.

level. Every part or assembly in a product structure is assigned a level code signifying the relative level in which that part or assembly is used within the product structure. Normally the end items are assigned to level 0 with the components and subassemblies going into it assigned to level 1 and so forth. The MRP explosion process starts from level 0 and proceeds downward one level at a time.

level of detail. (1) The degree of difficulty of a menu in JDE software. The levels of detail for menus are as follows:
 A=Major Product Directories
 B=Product Groups
 1=Basic Operations
 2=Intermediate Operations
 3=Advanced Operations
 4=Computer Operations
 5=Programmers
 6=Advanced Programmers
 Also known as menu levels.
 (2) The degree to which account information in the General Accounting system is summarized. The highest level of detail is 1 (least detailed) and the lowest level of detail is 9 (most detailed).

master file. A computer file that a system uses to store data and information which is permanent and necessary to the system’s operation. Master files might contain data or information such as paid tax amounts and vendor names and addresses.

load. The amount of planned work scheduled and actual work released for a facility, work center, or operation for a
specific span of time. It is usually expressed in terms of standard hours of work or, when items consume similar resources at the same rate, units of production.

lot. A quantity produced together and sharing the same production costs and resultant specifications.

lot number. A number that identifies a designated group of related items manufactured in a single run or received from a vendor in a single shipment.

lot number control. Assignment of unique numbers to each instance of receipt and carrying forth that number into subsequent manufacturing processes so that, in review of an end item, each lot consumed from raw materials through end item can be identified as having been used for the manufacture of this specific end item lot.

lot number traceability. Tracking parts by lot numbers to a group of items. This tracking can assist in the tracing of quality problems to their source.

lot traceability. The ability to identify the lot or batch numbers of consumption and/or composition for manufactured, purchased, and shipped items. This is a federal requirement in certain regulated industries.

low-level code. A number that identifies the lowest level in any bill of material at which a particular component may appear. Net requirements for a given component are not calculated until all the gross requirements have been calculated down to that level. Low-level codes are normally calculated and maintained automatically by the computer software. Synonymous with explosion level.

machine hours. The amount of time, in hours, that a machine is actually running. Machine hours, rather than labor hours, may be used for planning capacity and scheduling and for allocating costs.

make-to-order product. A product that is finished after receipt of a customer's order. The final product is usually a combination of standard items and items custom designed to meet the special needs of the customer. Frequently long leadtime components are planned prior to the order arriving in order to reduce the delivery time to the customer. Where options or other subassemblies are stocked prior to customer orders arriving, the term "assemble-to-order" is frequently used.

make-to-stock product. A product that is shipped from finished goods, "off-the-shelf," and therefore is finished prior to a customer order arriving. The master scheduling and final assembly scheduling are conducted at the finished goods level.

manufacturing leadtime. The total time required to manufacture an item, exclusive of lower level purchasing leadtime. It includes the time for order preparation, queue, setup, run, move, inspection, and put-away.

manufacturing resource planning (MRP II) A method for the effective planning of all resources of a manufacturing company. Ideally, it addresses operational planning in units, financial planning in dollars, and has a simulation capability to answer "what if" questions. It is made up of a variety of functions, each linked together: business planning, sales and operations (production planning), master production scheduling, material requirements planning, and the execution support systems for capacity and material. Output from these systems is integrated with financial reports such as the business plan, purchase commitment report, shipping budget, inventory projections in dollars, etc. Manufacturing resource planning is a direct outgrowth and extension of closed-loop MRP.

master file. A computer file that a system uses to store data and information which is permanent and necessary to the system's
operation. Master files might contain data or information such as paid tax amounts and vendor names and addresses.

master planning. A classification scheme that includes the following activities: forecasting and order servicing (which together constitute demand management); production and resource planning; and master scheduling (which includes the final assembly schedule, the master schedule, and the rough cut capacity plan).

master production schedule (MPS). A detailed statement of how many items are planned to be produced and when. The MPS focuses on products to be made and, through the detailed planning system, identifies the resources (materials, work force, plant equipment and capital) needed and the timing of the need.

menu. A screen that displays numbered selections. Each of these selections represents a program. To access a selection from a menu, type the selection number and then press Enter.

menu levels. See level of detail.

menu masking. A security feature of JDE systems that lets you prevent individual users from accessing specified menus or menu selections. The system does not display the menus or menu selections to unauthorized users.

menu message. Text that appears on a screen after you make a menu selection. It displays a warning, caution, or information about the requested selection.

need date. The date when an item is required for its intended use. In an MRP system, this date is calculated by a bill of material explosion of a schedule and the netting of available inventory against that requirement.

next number facility. A JDE software facility you use to control the automatic numbering of such items as new G/L accounts, vouchers, and addresses. It lets you specify your desired numbering system and provides a method to increment numbers to reduce transposition and typing errors.

nonsignificant part numbers. Part numbers that are assigned to each part but do not convey any information about the part. They are identifiers, not descriptors. Contrast with significant part numbers.

numeric character. Represents data using the numbers 0 through 9. Contrast with alphabetic character and alphanumeric character.

offline. Computer functions that are not under the continuous control of the system. For example, if you were to run a certain job on a personal computer and then transfer the results to a host computer, that job would be considered an offline function. Contrast with online. See interactive processing.

online. Computer functions over which the system has continuous control. Each time you work with a JDE system-provided screen, you are online with the system. Contrast with offline. See interactive processing.

online information. Information the system retrieves, usually at your request, and immediately displays on the screen. This information includes items such as database information, documentation, and messages.

operand. See Boolean logic operand.

operation number. A sequential number, usually two, three, or four digits long, such as 010, 020, 030, and so forth, that indicates the sequence in which operations are to be performed within an item’s routing.

operations sequence. The sequential steps for an item to follow in its flow through the plant. For instance, operation 1: cut bar stock; operation 2: grind bar stock; operation 3: shape; operation 4: polish; operation 5: inspect and send to stock. This information is normally maintained in the routing file.
option. A numbered selection from a JDE screen that performs a particular function or task. To select an option, you enter its number in the Option field next to the item you want the function performed on. When available, for example, option 4 allows you to return to a prior screen with a value from the current screen.

output. Information the computer transfers from internal storage to an external device, such as a printer or a computer screen.

output queue. A screen that lists the spooled files (reports) you have told the computer to write to an output device, such as a printer. After the computer writes a file, the system removes that file's identifier from the online list.

overhead. Costs incurred in the operation of a business that cannot be directly related to the individual products or services produced. These costs, such as light, heat, supervision, and maintenance, are grouped in several pools (department overhead, factory overhead, general overhead) and distributed to units of product or service by some standard allocation method.

overlap. The percentage that an operation overlaps the previous operation in the sequence. For example, a 20% overlap means that the step can begin when the previous step is 80% complete.

override. The process of entering a code or parameter other than the one provided by the system. Many JDE systems offer screens that provide default field values when they appear. By typing a new value over the default code, you can override the default. See default.

parameter. A number, code, or character string you specify in association with a command or program. The computer uses parameters as additional input or to control the actions of the command or program.

part. Generally, a material item that is used as a component and is not an assembly, subassembly blend, intermediate, and so forth.

password. A unique group of characters that you enter when you sign on to the system that the computer uses to identify you as a valid user.

pegging. In MRP, the capability to identify for a given item the sources of its gross requirements and/or allocations. Pegging can be thought of as "live where-used" information.

picking. The process of withdrawing from stock the components to make the products or the finished goods to be shipped to a customer.

pick list. A document that lists the material to be picked for manufacturing or shipping orders.

planned order. A suggested order quantity, release date, and due date created by MRP processing when it encounters net requirements. Planned orders are created by the computer, exist only within the computer, and may be changed or deleted by the computer during subsequent MRP processing if conditions change. Planned orders at one level will be exploded into gross requirements for components at the next lower level. Planned orders, along with released orders, serve as input to capacity requirements planning to show the total capacity requirements by work center in future time periods.

planning bill of material. An artificial grouping of items and/or events in bill of material format, used to facilitate master scheduling and/or material planning. Sometimes called a pseudo bill of material.

planning family. A group of end items whose similarity of design and manufacture facilitates being planned in aggregate.

planning horizon. The amount of time the master schedule extends into the future. This is normally set to cover a minimum of
cumulative leadtime plus time for lot sizing low-level components and for capacity changes of primary work centers.

primary location. The designation of a certain storage location as the standard, preferred location for an item.

printout. A presentation of computer information printed on paper. Synonymous with hard copy.

print queue. An online list (screen) of written files that you have told the computer to print. Once the computer prints the file, the system removes the file’s identifier from the online list. See output queue.

priority. The relative importance of jobs. The sequence in which jobs should be worked on.

process manufacturing. Production that adds value by mixing, separating, forming, and/or performing chemical reactions. It may be done in either batch or continuous mode.

processing options. A feature of the JDE DREAM Writer that allows you to supply parameters to direct the functions of a program. For example, processing options allow you to specify defaults for certain screen displays, control the format in which information gets printed on reports, change the way a screen displays information, and enter “as of” dates.

program. A collection of computer statements that tells the computer to perform a specific task or group of tasks.

program specific help text. Glossary text that describes the function of a field within the context of the program.

prompt. (1) A reminder or request for information displayed by the system. When a prompt appears, you must respond in order to proceed. (2) A list of codes or parameters or a request for information provided by the system as a reminder of the type of information you should enter or action you should take.

PTF. Program Temporary Fix. A representation of changes to JDE software, which your organization receives on magnetic tapes or diskettes.

purchased part. An item sourced from a supplier.

purge. The process of removing records or data from a system file.

record. A collection of related, consecutive fields of data the system treats as a single unit of information. For example, a vendor record consists of information such as the vendor’s name, address, and telephone number.

reporting code. See category code.

reverse image. Screen text that displays in the opposite color combination of characters and background from what the screen typically displays (for example, black on green instead of green on black).

quantity per. The quantity of a component to be used in the production of its parent. This value is stored in the bill of material and is used to calculate the gross requirements for components during the explosion process of MRP.

queue. 1) In computers: See job queue, output queue, and print queue.
2) In manufacturing: A waiting line. The jobs at a given work center waiting to be processed. As queues increase, so do average queue time and work-in-process inventory.

rated capacity. The demonstrated capability of a system. Traditionally, capacity is calculated from such data as planned hours, efficiency, and utilization. The rated capacity is equal to hours available x efficiency x utilization.

rate-based scheduling. A method for scheduling and producing based on a periodic rate, for example, daily, weekly or monthly. Traditionally, this method has been applied to high-volume and process industries. The concept can be applied within job shops using cellular layouts and
mixed-model level schedules where the production rate is matched to the selling rate.

raw material. Purchased items or extracted materials that are converted via the manufacturing process into components and/or products. 1) The physical acceptance of an item into a stocking location. 2) The transaction reporting of this activity.

record. A collection of related, consecutive fields of data the system treats as a single unit of information. For example, a vendor record consists of information such as the vendor’s name, address, and telephone number.

release. The authorization to produce or ship material that has already been ordered.

repetitive manufacturing. A form of manufacturing where various items with similar routings are made across the same process whenever production occurs. Products may be made in separate batches or continuously. Production in a repetitive environment is not a function of speed or volume.

replacement parts. Parts that can be used as substitutes that differ from completely interchangeable service parts in that they require some physical modification, such as cutting, drilling, and so forth, before they can replace the original part.

revision level. A number or letter representing the number of times a document has been changed.

rework order. A manufacturing order to rework and salvage defective parts or products.

resource requirements planning (RRP). The process of converting the production plan and/or the master production schedule into capacity needs for key resources: work force, machinery, warehouse space, suppliers’ capabilities, and in some cases, money. Comparison of capacity required of items in the MPS to available capacity is usually done for each key resource. Synonymous with *rough cut capacity planning.*

routing. A set of information detailing the method of manufacture of a particular item. It includes the operations to be performed, their sequence, the various work centers to be involved, and the standards for setup and run. In some companies, the routing also includes information on tooling, operator skill levels, inspection operations, testing requirements, and so forth.

run. To cause the computer to perform a routine, process a batch of transactions, or carry out computer program instructions.

run size. See standard batch quantity.

safety stock. 1) In general, a quantity of stock planned to be in inventory to protect against fluctuations in demand and/or supply. 2) In the context of master production scheduling, the additional inventory and/or capacity planned as protection against forecast errors and/or short-term changes in the backlog. Overplanning can be used to create safety stock.

scrap. Unusable material that results from the production process. It is material outside of specifications and of such characteristics that rework is impractical.

scrap factor. A percentage factor in the product structure used to increase gross requirements to account for anticipated loss within the manufacture of a particular product. Synonymous with *scrap rate.*

scroll. To use the roll keys to move screen information up or down a screen at a time. When you press the Rollup key, for instance, the system replaces the currently displayed text with the next screen of text if more text is available.
selection. Found on JDE menus, selections represent functions that you can access from a given menu. To make a selection, you type its associated number in the Selection field and press Enter.

setup. 1) The work required to change a specific machine, resource, work center, or line from making the last good piece of unit A to the first good piece of unit B; 2) Teardown of the just completed production and preparation of the equipment for production of the next scheduled item.

setup cost. The costs such as scrap costs, calibration costs, downtime costs, and lost sales associated with preparing the resource for the next product.

setup leadtime. The time needed to prepare a manufacturing process to start. Setup leadtime may include run and inspection time for the first piece.

shelf life. The amount of time an item may be held in inventory before it becomes unusable.

shop calendar. See work day calendar.

shop floor control (SFC). A system for utilizing data from the shop floor to maintain and communicate status information on shop orders (manufacturing orders) and on work centers. The major subfunctions of shop floor control are: 1) assigning priority of each shop order, 2) maintaining work-in-process quantity information, 3) conveying shop order status information to the office, 4) providing actual output data for capacity control purposes, 5) providing quantity by location by shop order for work-in-process inventory and accounting purposes, and 6) providing measurement of efficiency, utilization, and productivity of the work force and machines.

shrinkage. Reductions of actual quantities of items in stock, in process, or in transit. The loss may be caused by scrap, theft, deterioration, evaporation, and so forth.

shrinkage factor. A percentage factor in the item master record that compensates for expected loss during the manufacturing cycle either by increasing the gross requirements or by reducing the expected completion quantity of planned and open orders. The shrinkage factor differs from the scrap factor in that the former affects all uses of the part and its components and the scrap factor relates to only one usage. Synonymous with shrinkage rate.

significant part numbers. Part numbers that are intended to convey certain information, such as the source of the part, the material in the part, the shape of the part, and so forth. These usually make part numbers longer. Contrast with nonsignificant part numbers.

simulation. 1) The technique of using representative or artificial data to reproduce in a model various conditions that are likely to occur in the actual performance of a system. It is frequently used to test the behavior of a system under different operating policies. 2) Within MRP II, using the operational data to perform "what if" evaluations of alternative plans to answer the question, "Can we do it?" If yes, the simulation can then be run in the financial mode to help answer the question, "Do we really want to?" Synonymous with what-if analysis.

single level bill of material. A display of those components that are directly used in a parent item. It shows only the relationships one level down.

single-level where-used. A list of each parent in which a specific component is directly used and in what quantity. Done by imploding the bill of material.

softcoding. A JDE term that describes an entire family of features that allows you to customize and adapt JDE software to your business environment. These features lessen
the need for you to use computer programmers when your data processing needs change.

software. The operating system and application programs that tell the computer how and what tasks to perform.

special character. Representation of data in symbols that are neither letters nor numbers. Some examples are * & # ./.

spool. The function by which the system puts generated output into a storage area to await printing and processing.

spooled file. A holding file for output data waiting to be printed or input data waiting to be processed.

standard batch quantity. The quantity of a parent that is used as the basis for specifying the material requirements for production. The "quantity per" is expressed as the quantity to make the standard batch quantity, not to make only one of the parent. It is often used by manufacturers that use some components in very small quantities or by process-related manufacturers. Synonymous with run size.

standard costs. The target costs of an operation, process, or product including direct material, direct labor, and overhead charges.

standard cost system. A cost system that uses cost units determined before production. For management control purposes, the standards are compared to actual costs and variances are computed.

standard hours. The length of time that should be required to 1) set up a given machine or operation and 2) run one part/assembly/batch/end product through that operation. This time is used in determining machine and labor requirements. It is also frequently used as a basis for incentive pay systems and as a basis of allocating overhead in cost accounting systems.

subassembly. An assembly that is used at a higher level to make up another assembly.

subfile. An area on the screen where the system displays detailed information related to the header information at the top of the screen. Subfiles might contain more information than the screen can display in the subfile area. If so, use the roll keys to display the next screen of information. See scroll.

submit. See run.

summary. The presentation of data or information in a cumulative or totaled manner in which most of the details have been removed. Many of the JDE systems offer screens and reports that are summaries of the information stored in certain files.

superflush. A technique to relieve all components down to the lowest level using the complete bill of material, based on the count of finished units produced and/or transferred to finished good inventory.

system. A collection of computer programs that allows you to perform specific business tasks. Some examples of applications are Accounts Payable, Inventory, and Order Processing. Synonymous with application.

throughput. 1) The total volume of production through a facility (machine, work center, department, plant, or network of plants). 2) In theory of constraints, the rate at which the system (firm) generates money through sales.

time series. A set of data that is distributed over time, such as demand data in monthly time period occurrences.

unit cost. Total labor, material, and overhead cost for one unit of production, for example, one part, one gallon, or one pound.

unit of measure. The unit in which the quantity of an item is managed, such as by weight, each, box, package, case, and so forth.
Product Costing and Manufacturing Accounting

use as is. A classification for material that has been dispositioned as unacceptable per the specification, yet can be used.

user defined code. The individual codes you create and define within a user defined code type. Code types are used by programs to edit data and allow only defined codes. These codes might consist of a single character or a set of characters that represents a word, phrase, or definition. These characters can be alphabetic, alphanumeric, or numeric. For example, in the user defined code type table ST (Search Type), a few codes are C for Customers, E for Employees, and V for Vendors.

user defined code (type). The identifier for a table of codes with a meaning you define for the system (for example, ST for the Search Type codes table in Address Book). JDE systems provide a number of these tables and allow you to create and define tables of your own. User defined codes were formerly known as descriptive titles.

user identification (user ID). The unique name you enter when you sign on to a JDE system to identify yourself to the system. This ID can be up to 10 characters long and can consist of alphabetic, alphanumeric, and numeric characters.

valid codes. The allowed codes, amounts, or types of data that you can enter in a specific input field. The system checks, or edits, user defined code fields for accuracy against the list of valid codes.

variable. Changing, not constant or fixed. For example, variable costs are costs that change according to varying conditions.

variable overhead. All manufacturing costs that vary directly with production volume, other than direct labor and direct materials. Variable overhead is necessary to produce the product, but cannot be directly assigned to a specific product.

variance. The difference between the expected (budgeted or planned) value and the actual value.

video. The display of information on your monitor screen. Normally referred to as the screen.

vocabulary overrides. A JDE facility that allows you to override field, row, or column title text on a screen-by-screen or report-by-report basis.

where used list. A listing of every parent item that calls for a given component, and the respective quantity required, from a bill of material file. Synonymous with implosion.

window. A software feature that allows a part of your screen to function as if it were a screen in itself. Windows serve a dedicated purpose within a facility, such as searching for a specific valid code for a field.

work center. A specific production facility, consisting of one or more people and/or machines with identical capabilities, that can be considered as one unit for purposes of capacity requirements planning and detailed scheduling. Synonymous with load center.

work day calendar. A calendar used in inventory and production planning functions that consecutively numbers only the working days so that the component and work order scheduling may be done based on the actual number of work days available. Synonymous with planning calendar, manufacturing calendar, and shop calendar.

work in process (WIP). A product or products in various stages of completion throughout the plant, including all material from raw material that has been released for initial processing up to completely processed material awaiting final inspection and acceptance as finished product. Many accounting systems also include the value
of semi-finished stock and components in this category. Synonymous with *in-process inventory*.
Index
Index

A

A7.3

costed process, 3–21
enter/change cost components
defining extra cost components, 2–54
processing options, 2–48
frozen cost update, journal entries, 2–80reset simulated costs, processing options, 2–100summarized journal entries, 4–73About batch product costing, 3–3
About calculated amounts in process industry accounting, 5–13
About manufacturing accounting, 4–1
About manufacturing accounting in ERPx environments, 5–1
About process industry accounting, 5–13
About product costing, 2–1
About product costing for kit items, 3–5
About product costing in ERPx environments, 3–1
About unaccounted units, 4–32
About unaccounted units in process industry accounting, 5–13
About work orders in accounting, 4–27
See also About unaccounted units; What are work order variances?
Account Number, defined, 4–82
Account numbers, 4–9
Accounting, 1–7
Accounting Cost Quantity defined, 2–14
setting up, 2–13
Accounting fundamentals, 4–6
Accounts and accounting numbers, 4–8
Achieving effective cost management, 1–6
Actual amounts, 5–14
Additional costing features
copying costs, 2–99
working with, 2–99
Address Number, defined, 4–47
Alternate formats, item ledger, 2–87
Amount, defined, 4–83
Amount — Frozen Cost Rollup, defined, 2–87
Amount Type (A % *), defined, 2–104
Approved, defined, 4–77
As of Date, defined, 2–63, 2–72, 3–25
Assigning cost method, without specifying a cost, 2–23
Assigning values to user defined cost components, 2–52
See also Setting up cost components; What are cost components? (P30026)
Attaching a parts list and routing instructions, 4–40
Attaching parts list and routing instructions, work order, 4–29
Automatic Accounting Instructions (AAIs)
journal entries, rate schedules program, 5–7
manufacturing tables, 4–20
reviewing, 4–19
tables, user defined, 1–3
Automatic Accounting Instructions form (P40901), 4–21

B

Batch Date From , defined, 4–77
Batch Date Thru, defined, 4–77
Batch Number, defined, 4–77
Batch product costing, 3–3
Batch Status, defined, 4–78
Batch Type, defined, 4–77
Bill of material inquiry, 2–59
multi-level cost report, 2–93
reviewing information, 2–5
rollup, user defined, 1–3
Bill of material and routings, 2–5
Branch/Plant, defined, 4–39
Product Costing and Manufacturing Accounting

Business units, 4–8
By-products, defined, 3–11

C
Calculate Fixed on Direct Labor, defined, 2–29
Calculate Fixed on Setup Labor, defined, 2–29
Calculate Variable on Direct Labor, defined, 2–28
Calculate Variable on Setup Labor, defined, 2–28
Category — G/L, defined, 4–19
Changing unit costs, 2–23
Character Code, defined, 2–51
Charge to Cost Center, defined, 4–40
Chart of accounts, 4–13
Co/—By product process flag, defined, 3–31
Co-/by-products, in product costing, reviewing, 3–18
Co-/By-Products Planning table, setting up, 3–29
Co-/By-Products Planning Table form (P3404), 3–30, 3–31
Column 1 Mode, defined, 4–65
Column 2 Mode, defined, 4–65
Common posting errors, 4–91
Company, defined, 4–24
Completed amounts, 5–14
Completing rate schedules, 5–3, 5–6
Completions, journal entries, 4–59
Component Scrap, processing options, 4–52
Component scrap
entering, 4–34
recording, 4–48
Component Scrap form (P31116), 4–49, 4–50
Components, defined, 2–75, 3–28
Configured items
journal entries, 4–61
product costing, 3–35
variances, 4–64
Converting item cost levels, 2–16
See also Setting up item cost levels
before you begin, 2–17
Co-products, defined, 3–11
Copy Cost Values, processing options, 2–100
Copying, frozen costs to simulated costs, 2–100
Copying costs, 2–99
additional costing features, 2–99
cautions, 2–100
Copying frozen costs to simulated costs, 2–100
Cost bucket codes
costed bill of material, setting up, 2–57
setting up, costed bill of material, 2–57
Cost Bucket Totals, defined, 2–65, 2–75, 3–28
Cost Center, defined, 4–25
Cost Code, defined, 4–40
Cost Component, defined, 2–12, 2–47, 4–24, 4–66
Cost Component Print, processing options, 2–96
Cost Component/Ledger Integrity, processing options, 2–98
Cost components, 2–3
See also Assigning values to user defined cost components (P30026); Setting up cost components (P30026)
assigning values to user defined, 2–51
setting up, 2–24
user defined, 1–3
Cost Components report, reviewing, 2–95
Cost factors and rates, user defined, 1–3
Cost Integrity Report, reviewing, 2–97
Cost Method, defined, 2–31, 2–46, 3–25
Cost methods, user defined, 1–3
Cost Revisions form (P4105), 2–22
Cost Simulation, processing options, 2–39
Cost simulation, user defined, 1–3
Cost Simulation — Refresh, processing options, 2–101
Cost variances, user defined, 1–3
Costed Bill Inquiry form (P30206), 2–60
Costed Bill of Material, processing options, 2–67
Costed bill of material, reviewing, 2–59
Costed Bill of Material Report, processing options, 2–92
Costed Bucket Key form (P30CB), 2–62
Index

Costed Process, processing options, 3–29
Costed process, reviewing, 3–21
Costed Process form (P30208), 3–22
Costed Resources form (P30206P), 3–23, 3–24
Costed Routing, processing options, 2–77
Costed routing
 operation bucket codes, 2–67
 reviewing, 2–69
Costed Routing Inquiry Detail form (P30208W), 2–71
Costed Routing Inquiry form (P30208), 2–70
Costing Exceptions, processing options, 2–35
Costing Exceptions report, creating, 2–34
Costing information, reviewing, 2–85
Creating
 journal entries
 for work order transactions, 4–55
 work in process or completions, 4–59
 work order variances, 4–66
 work orders, 4–37
Creating a simulated rollup, 2–37
 See also Assigning values to user defined cost components; Updating frozen costs;
 Updating frozen costs (P30835) before you begin, 2–38
Creating journal entries, 4–55
 See also Appendix C – Purchase price variance
Creating journal entries for work in process or completions, 4–59
Creating journal entries for work order variances, 4–67
Creating simulated costs, 2–33
Creating the costing exceptions report, 2–34
Crew Size, defined, 2–11
Cumulative yield, simulated rollup, 2–37
Currency Mode – Foreign or Domestic, defined, 4–79

D
Data Sequence Setup form (P98303), for configured items, 3–37
Date – Batch, defined, 4–77
Date – Completion (Julian), defined, 4–54
Date – For G/L (and Voucher) – Julian, defined, 4–80
Date – Order/Transaction, defined, 4–50
Date From, defined, 2–90
Description, defined, 2–20, 2–26, 2–51, 2–58, 2–68
Description – 2, defined, 2–20, 2–26, 2–58, 2–68
Design engineering, 1–6
Detail and summary, journal entries, 4–57
Detail journal entries, 4–57
Detailed calculation, 2–46
Direct Labor – Simulated, defined, 2–31
Distribution Automatic Account form (P40950), 4–22
 memo text, 4–23
Document, defined, 4–80
Document (Order No, Invoice, and so on), defined, 4–44
Document Company, defined, 4–80
Document Type, defined, 2–89, 4–24

E
Edit report, posting, 4–90
Effective – From Date, defined, 2–65
Effective – Thru Date, defined, 2–66
Effective cost management, achieving, 1–6
Efficiency variances, 4–102
Engineering
 design, 1–6
 manufacturing, 1–6
Engineering variance, 4–98
Enter/Change Bill form (P3002), 2–6, 3–33
Enter/Change Cost Components, processing options, 2–48
Enter/Change Cost Components form (P30026), 2–86
Enter/Change Order form (P48013), 4–28, 4–38
Enter/Change Process form (P3003), 3–13, 3–14
Enter/Change Routing form (P3003), 2–9, 3–8
Enter/Change Work Center Rate form (P30061), 2–30
Entering component scrap, 4–34
hours and quantities used, 4–33
work order completions, 4–34
ERPx environments
manufacturing accounting, 5–1
product costing, 3–1
ERPx system graphic, 1–2
Estimated Hours – Labor, defined, 2–11
Example
chart of accounts, 4–14
costing a configured item, 3–36
engineering variance inquiry, 4–31
feature cost percent effect, co/-by-product
costing, 3–18
process work orders data sequence setup for
configured items, 3–37
Exceptions report, invalid account numbers,
4–67
Explanation, defined, 4–51
Explanation 2, defined, 4–83
Extras, defined, 2–65
Extras 1–3, defined, 2–73, 3–26
Extras 4–7, defined, 2–74, 3–27

F
Factor Amount, defined, 2–53
Factor Code, defined, 2–53
Factor codes, setting up, 2–49
Fast Path Commands table
manufacturing accounting, 1–12
product costing, 1–11
Feature Cost Percent, defined, 2–8, 2–66,
3–20, 3–32
Feature Planned Percent, defined, 3–32
Features, overview, 1–2
Fields
Account Number, 4–82
Accounting Cost Quantity, 2–14
Address Number, 4–47
Amount, 4–83
Amount – Frozen Cost Rollup, 2–87
Amount Type (A % *), 2–104
Approved, 4–77
As of Date, 2–63, 2–72, 3–25
Batch Date From, 4–77
Batch Date Thru, 4–77
Batch Number, 4–77
Batch Status, 4–78
Batch Type, 4–77
Branch/Plant, 4–39
Calculate Fixed on Direct Labor, 2–29
Calculate Fixed on Setup Labor, 2–29
Calculate Variable on Direct Labor, 2–28
Calculate Variable on Setup Labor, 2–28
Category – G/L, 4–19
Character Code, 2–51
Charge to Cost Center, 4–40
Co/-By product process flag, 3–31
Column 1 Mode, 4–65
Column 2 Mode, 4–65
Company, 4–24
Components, 2–75, 3–28
Cost Bucket Totals, 2–65, 2–75, 3–28
Cost Center, 4–25
Cost Code, 4–40
Cost Component, 2–12, 2–47, 4–24, 4–66
Cost Method, 2–31, 2–46, 3–25
Crew Size, 2–11
Currency Mode – Foreign or Domestic, 4–79
Date – Batch, 4–77
Date – Completion (Julian), 4–54
Date – For G/L (and Voucher) – Julian,
4–80
Date – Order/Transaction, 4–50
Date From, 2–90
Description, 2–20, 2–26, 2–51, 2–58, 2–68
Description – 2, 2–20, 2–26, 2–58, 2–68
Direct Labor – Simulated, 2–31
Document, 4–80
Document (Order No, Invoice, and so on),
4–44
Document Company, 4–80
Document Type, 2–89, 4–24
Effective – From Date, 2–65
Effective – Thru Date, 2–66
Estimated Hours – Labor, 2–11
Explanation, 4–51
Explanation 2, 4–83
Extras, 2–65
Extras 1–3, 2–73, 3–26
Extras 4–7, 2–74, 3–27
Factor Amount, 2–53
Factor Code, 2–53
Feature Cost Percent, 2–8, 2–66, 3–20, 3–32
Feature Planned Percent, 3–32
Fixed or Variable Quantity, 2–8, 3–34
G/L Date, 4–84
Gross Amount, 4–80
Index

Hours Worked, 4–48
Include Efficiency in Overhead, 2–28
Include Fixed Labor Overhead in Cost, 2–29
Include Fixed Machine Overhead in Cost, 2–29
Include Variable Labor Overhead in Cost, 2–28
Include Variable Machine Overhead in Cost, 2–29
Increase/Decrease Amount, 2–104
Ingredient (Component), 4–51
Inventory Cost Level, 2–16
Item Number, 2–7, 2–63, 3–31, 4–38
Item Number/Description, 4–65
Labor, 2–64, 2–74, 3–27
Labor Fixed O/H – Simulated, 2–31
Labor Var. O/H – Simulated, 2–31
Ledger Type, 4–84
Line/Cell Identifier, 3–9
Machine, 2–64, 2–74, 3–27
Machine Fixed O/H – Simulated, 2–31
Machine Run – Simulated, 2–31
Machine Var. O/H – Simulated, 2–31
Modify Cost by Work Center Efficiency, 2–28
Name – Alpha Explanation, 4–80
Net Added Cost, 2–47
Object Account, 4–25
Operation Scrap Percent, 2–9, 2–66
Operation Sequence Number, 4–47
Operation Status Code W.O., 4–48
Operational Planned Yield Percent, 2–12, 3–14
Order Number, 4–47
Order Type, 4–23
Output Quantity, 3–16, 3–20
Overhead, 2–64, 2–75, 3–28
Parent/Component Relationship, 4–66
Percent – Cumulative Planned Yield, 2–12, 3–15
Percent – Percent of Scrap, 2–8, 2–66
Per cents or Rates, 2–28
Purchase, 2–64
Purchasing Cost Method, 2–23
Quantities Scrapped, 4–51
Quantity, 2–65
Quantity – Requested Quantity, 2–63, 2–72, 3–25, 4–45
Quantity Amount Total, 2–90
Quantity Completed, 4–50
Quantity Ordered, 4–39, 4–50
Quantity Per, 2–7, 3–33
Quantity Shipped, 4–48, 5–4
Rate, 2–51
Rate Amount, 2–53
Rate Code, 2–53
Reason Code, 4–51
Requested, 4–39
Resource Percent, 3–20
Run Machine – Standard, 2–10
Sales/Inventory Cost Method, 2–22
Sequence Number – Operations, 3–17
Setup Labor – Simulated, 2–31
Setup Labor Hours, 2–11
Skip to Seq. No., 2–63
Skip to/Up to Op Seq, 2–73, 3–26
Status Code W.O., 4–54
Subledger, 4–83
Subledger Type, 4–83
Subsidiary, 4–25
Summarized Work Order Number, 4–74
Thru Date, 2–90
Time Basis, 2–11
Total Component Cost, 2–47
Transaction Currency Code, 4–81
Type of Hours, 4–48
Type of Routing, 3–9
Type Operation, 2–12, 3–9
Unit Cost, 2–22, 2–104
Unit of Measure, 2–7, 2–63, 3–20, 3–25
Units, 4–83
Units – Quantity Canceled/Scrapped, 4–54, 5–5
User Defined Code, 2–20, 2–26, 2–58, 2–68
User ID, 4–77
Work Center, 2–31, 2–74, 3–27
Work Date, 4–47
Fixed or Variable Quantity, defined, 2–8, 3–34
Forms
Automatic Accounting Instructions, 4–21
Co-/By-Products Planning Table, 3–30, 3–31
Component Scrap, 4–49, 4–50
Cost Bucket Key, 2–62
Cost Revisions, 2–22
Costed Bill Inquiry, 2–60
Costed Process, 3–22
Costed Resources, 3–23, 3–24
Costed Routing Inquiry, 2–70
Costed Routing Inquiry Detail, 2–71
Data Sequence Setup, 3–37
Distribution Automatic Account, 4–22
memo text, 4–23
Enter/Change Bill, 2–6, 3–33
Enter/Change Cost Components, 2–86
Enter/Change Order, 4–28, 4–38
Enter/Change Process, 3–13, 3–14
Enter/Change Routing, 2–9, 3–8
Enter/Change Work Center Rate, 2–30
Full Completion, 4–53
G/L Review, 4–77
General Ledger Batch Review, 4–79
Hours & Quantities, 4–46
Intermediate Product Revisions, 3–16
Inventory Issues, 4–44
Item Branch/Plant Information, 4–18
Item Ledger, 2–88
Item Ledger Details, 2–89
Item Master Information, 2–15
Journal Entries, 4–81, 4–82
Manufacturing Constants, 2–27
Manufacturing Data, 2–14
Operation Bucket Key, 2–71
Operation Bucket Key Window, 3–23
Process Resource Revisions, 3–17, 3–19
Rate Schedule Workbench, 5–4
Routing Revisions, 4–28
Speed Cost Maintenance, 2–103
Standard Factor Codes, 2–50
Standard Rate Codes, 2–50
Summarized Batch Selection, 4–74
Summarized Work Orders, 4–73
User Defined Code Revisions, 2–20, 2–25, 2–58, 2–68
Variance Inquiry, 4–31, 4–64
Work Order Parts List, 4–28

Frozen amounts, 5–14
Frozen cost components, reviewing, 2–85
Frozen costs
 copying to simulated costs, 2–100
 updating, 2–79
 versus simulated, 2–2
Frozen Standard Update report, 2–80
Frozen Update, processing options, 2–83
Full Completion form (P31114), 4–53

Generating journal entries, 4–56
Graphic
 ERPs system, 1–2
 interaction between manufacturing accounting and general accounting, 4–2, 4–3
 journal entries for variances, 4–68
 manufacturing accounting, 1–5
 manufacturing accounting menu overview, 1–12
 material issues, 4–32
 post process, 4–88
 pre-post process, 4–87
 process work orders, 4–30
 product costing menu overview, 1–11
 standard cost, 2–2
 three tier process, 4–56
 work order completions, 4–35

Gross Amount, defined, 4–80

H

Hours & Quantities form (P311221), 4–46
Hours and quantities
 posting, 4–34
 update, 4–34

Hours Worked, defined, 4–48
How do you attach the parts list and routing instructions?, 4–29
How do you issue material to a work order?, 4–32

I

Include Efficiency in Overhead, defined, 2–28
Include Fixed Labor Overhead in Cost, defined, 2–29
Include Fixed Machine Overhead in Cost, defined, 2–29
Include Variable Labor Overhead in Cost, defined, 2–28
Include Variable Machine Overhead in Cost, defined, 2–29
Increase/Decrease Amount, defined, 2–104
Ingredient (Component), defined, 4–51
Ingredients, 3–17
 in product costing, 3–17
Intercompany settlements, 4–88
Intermediate, defined, 3–11
Intermediate Product Revisions form (P3002), 3–16
Intermediates in product costing, reviewing, 3–15
Invalid account numbers, exceptions report, 4–67
Inventory Cost Level, defined, 2–16
Inventory Issues form (P31113), 4–44
Issuing parts
backflushing, 4–33
manual, 4–33
preflushing, 4–33
super backflushing, 4–33
Issuing parts to the work order, 4–43
Item Branch/Plant Information form (P41026), 4–18
Item Cost Ledger Exception report, 2–80
Item Cost Level Conversion, processing options, 2–19
Item cost levels
converting, 2–16
setting up, 2–15
Item Cost Revisions, processing options, 2–24, 2–105
Item costs, setting up, 2–19
Item ledger
alternate formats, 2–87
reviewing, 2–87
Item Ledger Details form (P4111W), 2–89
Item Ledger form (P4111), 2–88
Item Ledger Inquiry, processing options, 2–90
Item Ledger/Account Integrity, processing options, 4–94
Item Ledger/Account Integrity report, reviewing, 4–92
Item Master Information form (P4101), 2–15
Item Number, defined, 2–7, 2–63, 3–31, 4–38
Item Number/Description, defined, 4–65

creating, work in process or completions, 4–59
detail, 2–81
detail and summary, 4–57
entering transactions, 4–55
for configured items, 4–61
generating, 4–56
posting transactions, 4–55
reviewing transactions, 4–55
status codes, 4–75
summarized, 4–57
summary, 2–81
three-tier process, 4–55
work in process, 4–59
work order transactions, creating, 4–55
Journal Entries for Variances, processing options, 4–72
Journal Entries for Work in Process or Completions, processing options, 4–62
Journal entries for work order variances, user defined, 1–3
Journal Entries form (P09101), 4–81, 4–82
Journal Entries Rate Schedules program
automatic accounting instructions, 5–7
overview, 5–5
variance calculations, 5–7

K
Kit items, product costing, 3–5

L
Labor, defined, 2–64, 2–74, 3–27
Labor Fixed O/H – Simulated, defined, 2–31
Labor Var. O/H – Simulated, defined, 2–31
Ledger Type
defined, 4–84
optional, 4–12
Level of detail, 4–10
Line/Cell Identifier, defined, 3–9

M
Machine, defined, 2–64, 2–74, 3–27
Machine Fixed O/H – Simulated, defined, 2–31
Machine Run – Simulated, defined, 2–31
Machine Var. O/H — Simulated, defined, 2–31
Manual transactions, 4–56
Manufacturing, 1–6
Manufacturing journal entries, posting, 4–85
Manufacturing AAIs, processing options, 4–25
Manufacturing accounting
 account numbers, 4–9
 accounting equation, 4–6
 accounts and account numbers, 4–8
 automatic accounting instructions, 4–19
 automatic accounting instructions table, 4–20
 business units, 4–8
 chart of accounts, 4–13
 entering hours and quantities, 4–33
 fast path commands table, 1–12
 general accounting system overview, 4–1
 general ledger transactions, 4–7
 issuing materials to a work order, 4–32
 level of detail, 4–10
 menu overview, 1–12
 graphic, 1–12
 object and subsidiary accounts, 4–8, 4–9
 prerequisites, 1–4
 processing work orders, 4–29
 relationship with product costing, 1–4
 setting up, 4–17
 subledger accounting, 4–11
 system overview graphic, 4–4
 work order variances, 4–14
 work orders, 4–27
Manufacturing accounting tables, reviewing, 4–107
Manufacturing constants, setting up, 2–26
Manufacturing Constants form (P3009), 2–27
Manufacturing Data form (P41027), 2–14
Manufacturing engineering, 1–6
Master routings, 2–39
Material usage variance, 4–101
Menu overview, 1–11
 manufacturing accounting, 1–12
 product costing, 1–11
Modify Cost by Work Center Efficiency, defined, 2–28
Multi-Level Costed Bill Report, processing options, 2–95
Multi-facility costing, user defined, 1–3
Multi-level costed bill of material report, reviewing, 2–93

N
Name — Alpha Explanation, defined, 4–80
Net Added Cost, defined, 2–47
Net added cost, 2–2

O
Object Account, defined, 4–25
Object and subsidiary accounts, 4–8
 object — major, 4–9
 subsidiary — minor, 4–9
Open work order valuation, 4–104
Operation bucket codes, setting up, costed routing, 2–67
Operation Bucket Key form (P30CO), 2–71
Operation Bucket Key Window form (P30CO), 3–23
Operation scrap, simulated rollup, 2–37
Operation Scrap Percent, defined, 2–9, 2–66
Operation Sequence Number, defined, 4–47
Operation Status Code W.O., defined, 4–48
Operational Planned Yield Percent, defined, 2–12, 3–14
Order Number, defined, 4–47
Order Type, defined, 4–23
Original journal entry document, to review, 4–81
Output Quantity, defined, 3–16, 3–20
Overhead, defined, 2–64, 2–75, 3–28

P
Parent/Component Relationship, defined, 4–66
Percent — Cumulative Planned Yield, defined, 2–12, 3–15
Percent — Percent of Scrap, defined, 2–8, 2–66
Percent bills of material, reviewing, 3–32
Per cents or Rates, defined, 2–28
Planned variance, 4–99, 4–100
Post General Ledger, processing options, 4–88
Post process, 4–87
Posting
edit report, 4–90
general ledger, 4–85
journal, 4–92
manufacturing journal entries, 4–85
pre-process, 4–87
pre-post process, 4–86
Posting edit codes
setting up, 4–12
subledgers, 4–12
Posting errors, common, 4–91
Posting manufacturing journal entries, 4–85
See also Creating journal entries (P31802); Reviewing general ledger batches (P00201)
before you begin, 4–88
Posting to the general ledger, 4–85
Pre-post process, 4–86
Process industry accounting, 5–13
calculated amounts, 5–13
unaccounted units, 5–13
costing, working with, 3–11
Process Resource Revisions form (P3002P), 3–17, 3–19
Process Work Orders, processing options, 4–40
Process work orders, for configured items, 3–35
Processes in product costing, reviewing, 3–13
Processing options
Component Scrap, 4–52
Copy Cost Values, 2–100
Cost Component Print, 2–96
Cost Component/Ledger Integrity, 2–98
Cost Simulation, 2–39
Cost Simulation – Refresh, 2–101
Costed Bill of Material, 2–67
Costed Bill of Material Report, 2–92
Costed Process, 3–29
Costed Routing, 2–77
Costing Exceptions, 2–35
Enter/Change Cost Components, 2–48
Frozen Update, 2–83
Item Cost Level Conversion, 2–19
Item Cost Revisions, 2–24, 2–105
Item Ledger Inquiry, 2–90
Item Ledger/Account Integrity, 4–94
Journal Entries for Variances, 4–72
Journal Entries for Work in Process or Completions, 4–62
Manufacturing AAIs, 4–25
Multi-Level Costed Bill Report, 2–95
Post General Ledger, 4–88
Process Work Orders, 4–40
Rate Base Journal Entries, 5–11
Update Sales Order Cost/Price, 2–101
Product costing
accounting fundamentals, 4–6
configured items, 3–35
ERPs environments, 3–1
ingredients, 3–17
kit items, 3–5
menu overview, 1–11
operating graphic, 1–11
overview, 2–1
prerequisites, 1–4
rate based, 3–7
relationship with manufacturing accounting, 1–4
setting up, 2–13
Product costing and manufacturing accounting, overview, 1–1
Product costing and manufacturing accounting integration, 1–4
Product costing for kit items
feature costing percentages, 3–5
simulate cost rollup program, 3–5
Product costs, updating, 2–103
Programs and IDs
P00051 (user defined code revisions), 2–20, 2–25, 2–58, 2–68
P00191 (standard factors), 2–50
P00191 (standard rates), 2–50
P00201 (G/L review), 4–77
P09101 (journal entries), 4–81, 4–82
P09202 (general ledger batch review), 4–79
P3002 (enter/change bill), 2–6, 3–33
P3002 (intermediate product revisions), 3–16
P30026 (enter/change cost components), 2–86
P3002P (process resource revisions), 3–17, 3–19
P3003 (enter/change process), 3–13, 3–14
P3003 (enter/change routing), 2–9, 3–8
P30061 (enter/change work center rate), 2–30
P3009 (manufacturing constants), 2–27
P30206 (costed bill inquiry), 2–60
P30206P (costed resources), 3–23, 3–24
P30208 (costed process), 3–22
P30208 (costed routing inquiry), 2–70
P30208W (costed routing inquiry detail), 2–71
P30CB (cost bucket key), 2–62
P30CO (operation bucket key window), 3–23
P30CO (operation bucket key), 2–71
Product Costing and Manufacturing Accounting

P3102 (variance inquiry), 4–31, 4–64
P3108 (summarized work orders), 4–73
P3108W (summarized batch selection), 4–74
P3111 (work order parts list), 4–28
P31113 (inventory issues), 4–44
P31114 (full completion), 4–53
P31116 (component scrap), 4–49, 4–50
P3112 (routing revisions), 4–28
P311221 (hours & quantities), 4–46
P3114 (rate schedule workbench), 5–4
P3404 (co-/by-products planning table), 3–30, 3–31
P40901 (automatic accounting instructions), 4–21
P40950 (distribution automatic account), 4–22
memo text, 4–23
P4101 (item master information), 2–15
P41026 (item branch/plant information), 4–18
P41027 (manufacturing data), 2–14
P4105 (cost revisions), 2–22
P4105 (speed cost maintenance), 2–103
P4111 (item ledger), 2–88
P4111W (item ledger details), 2–89
P48013 (enter/change order), 4–28, 4–38
P98303 (data sequence setup), 3–37
Purchase, defined, 2–64
Purchasing, 1–6
Purchasing Cost Method, defined, 2–23

Q
Quantities Scrapped, defined, 4–51
Quantity, defined, 2–65
Quantity — Requested Quantity, defined, 2–63, 2–72, 3–25, 4–45
Quantity Amount Total, defined, 2–90
Quantity Completed, defined, 4–50
Quantity Ordered, defined, 4–39, 4–50
Quantity Per, defined, 2–7, 3–33
Quantity Shipped, defined, 4–48, 5–4

R
Rate, defined, 2–51
Rate Amount, defined, 2–53
Rate Base Journal Entries, processing options, 5–11
Rate based accounting, overview, 5–3
Rate based costing
routing, 3–8
working with, 3–7
Rate Code, defined, 2–53
Rate costs
actual, 5–6
completed, 5–7
current, 5–6
frozen, 5–6
planned, 5–6
Rate Schedule Workbench form (P3114), 5–4
Rate schedules, completing, 5–6
Rates, work center, 2–30
Reason Code, defined, 4–51
Recording
completions to work order, 4–52
component scrap, 4–48
hours and quantities used, 4–45
Recording completions to the work order, 4–52
Recording component scrap, 4–48
Recording hours and quantities used, 4–45
Removing a cost method, 2–24
Reports
Completed Work Order Valuation, 4–105
Cost Components, 2–96
Cost Integrity, 2–97
Costed Bill, 2–92
Efficiency Variances — Amounts, 4–102
Engineering Variances — Amounts, 4–98
Frozen Standard Update, 2–80
General Ledger Post — General Accounting, 4–92
Item Cost Ledger Exception, 2–80
Item Ledger/Account Integrity, 4–93
Manufacturing Accounting Tables, 4–107
Manufacturing Variance Journal Entries, for completed work orders, 4–71
Manufacturing WIP Journal Entries, for Work Orders in Process, 4–61
Material Usage Variances — Amounts, 4–101
Multi-Level Costed Bill, 2–94
Open Work Order Valuation, 4–104
Planned Variance — Amounts, 4–99, 4–100
Posting Reports, 5–10
Rate Base Acct Exceptions, 5–9
Standard Cost Simulation, 2–56
Total/WIP and Other Variances — Amounts, 4–103
user defined, 1–3
Work Order Activity — Amounts, 4–96
Work Order Activity — Units, 4–97
Work Order Variances — Amounts, 4–106
Requested, defined, 4–39
Resource Percent, defined, 3–20
Reviewing
automatic accounting instructions, 4–19
costed process, 3–21
general ledger batches, 4–75
manufacturing accounting tables, 4–107
percent bills of material, 3–32
product costing for intermediates, 3–15
product costing for processes, 3–13
summarized work orders, 4–73
variances, 4–63
Reviewing a costed bill of material, 2–59
See also Setting up cost bucket codes for a costed bill of material
Reviewing a costed process, 3–21
See also Appendix A — Calculations in cost rollup
Reviewing a costed routing, 2–69
See also Appendix A — Calculations in cost rollup; Setting up operation bucket codes for a costed routing
Reviewing a multi-level costed bill of material report, 2–93
Reviewing a single level costed bill of material report, 2–91
Reviewing and revising simulated cost components, 2–44
See also Creating a simulated rollup
Reviewing bills of material and routings, 2–5
Reviewing co-/by-products in product costing, 3–18
Reviewing completed work order valuation, 4–105
Reviewing costing information, 2–85
Reviewing efficiency variances, 4–102
Reviewing engineering variance, 4–98
Reviewing frozen cost components, 2–85
Reviewing general ledger batches, 4–75
See also Creating journal entries (P31802) before you begin, 4–76
Reviewing manufacturing accounting tables, 4–107
Reviewing material usage variances, 4–101
Reviewing open work order valuation, 4–104
Reviewing other reports, 4–94
Reviewing percent bills of material, 3–32
Reviewing planned variance (to current), 4–99
Reviewing planned variance (to standard), 4–100
Reviewing product costing for intermediates, 3–15
Reviewing product costing for processes, 3–13
Reviewing product costing in bills of material, 2–5
Reviewing routing information, 2–9
Reviewing summarized work orders, 4–73
Reviewing the cost components report, 4–95
Reviewing the cost integrity report, 2–97
Reviewing the item ledger, 2–87
Reviewing the Item Ledger/Account Integrity report, 4–92
See also Creating journal entries before you begin, 4–93
Reviewing the posting edit report, 4–90
Reviewing the posting journal report, 4–92
Reviewing the Standard Cost Simulation report, 2–55
Reviewing total/WIP and other variances, 4–103
Reviewing variances, 4–63
See also Appendix B — Calculations for variances
Reviewing work order activity (amounts), 4–96
Reviewing work order activity (units), 4–97
Reviewing work order amount variances, 4–106
Revising, work order, 4–31
Routing information, reviewing, 2–9
Routing Revisions form (P3112), 4–28
Run Machine — Standard, defined, 2–10

S

Sales, 1–6
Sales order price/cost, updating, 2–101
Sales/Inventory Cost Method, defined, 2–22
Sales/inventory cost method, 2–16
Sequence Number – Operations, defined, 3–17
Setting up
 co-/by-product planning table, 3–29
 factor codes, 2–49
 G/L class codes, 4–17
 manufacturing accounting, 4–17
 optional ledger types, 4–12
 posting edit codes, 4–12
 standard rate codes, 2–49
 subledger types, 4–11
Setting up accounting cost quantities, 2–14
Setting up cost bucket codes for a costed bill of material, 2–57
Setting up cost components, 2–25
See also Appendix A – Calculations in cost rollup: Assigning values to user defined cost components; Assigning values to user defined cost components (P30026); What are cost components? (P30026)
Setting up G/L class codes, 4–17
Setting up item cost levels, 2–15
Setting up item costs, 2–19
See also Updating product costs (P4105)
Setting up manufacturing accounting, 4–17
Setting up manufacturing constants, 2–27
Setting up operation bucket codes for a costed routing, 2–67
Setting up product costing, 2–13
Setting up simulated rates for a work center, 2–30
Setting up standard rate and factor codes, 2–49
See also Assigning values to user defined cost components
Setting up the co-/by-products planning table, 3–30
Setup Labor – Simulated, defined, 2–31
Setup Labor Hours, defined, 2–11
Simulate cost rollup program, 2–49
Simulated cost components, 2–45
 reviewing and revising, 2–44
 working with, 2–43
Simulated costs, creating, 2–33
Simulated rates for a work center, setting up, 2–29
Simulated rollup
 creating, 2–37
 cumulative yield, 2–37
 operation scrap, 2–37
Simulated versus frozen costs, 2–2
Single level costed bill of material report, reviewing, 2–91
Skip to Seq. No., defined, 2–63
Skip to/Up to Op Seq. defined, 2–73, 3–26
Speed Cost Maintenance form (P4105), 2–103
Standard cost, graphic, 2–2
Standard cost simulation report, 2–55
Standard costs, 2–1
Standard Factor Codes form (P00191), 2–50
Standard rate codes, setting up, 2–49
Standard Rate Codes form (P00191), 2–50
Status Code W.O., defined, 4–54
Status codes, journal entries, 4–75
Subledger, defined, 4–83
Subledger accounting, 4–11
Subledger Type, defined, 4–83
Subledger types, setting up, 4–11
Subsidiary, defined, 4–25
Summarized Batch Selection form (P3108W), 4–74
Summarized Work Order Number, defined, 4–74
Summarized work orders, reviewing, 4–73
Summarized Work Orders form (P3108), 4–73
Summary journal entries, 4–57
System defaults, 4–64
System integration, 1–1

T

Tables
 Account Balances (F0902), 1–8
 Account Ledger (F0911), 1–8
 Account Master (F0901), 1–8
 Address Book (F0101), 1–10
 Automatic Accounting Instruction (AAI) Values (F4095), 1–9
 Batch Control (F0011), 1–9
 Bill of Material Master (F3002), 1–8, 2–33
Branch/Plant Master (F4102), 1–9
Business Unit Master (F0006), 1–10
Cost Components (F30026), 1–8
Cost Ledger (F4105), 1–8, 2–33
Item Ledger (F4111), 1–8
Item Master (F4101), 1–9
Manufacturing Constants (F3009), 1–8, 2–33
Manufacturing Data (F41027), 1–8
Parts List (F3111), 1–9
Routing Instructions (F3112), 1–9
Routing Master (F3003), 1–8, 2–33
User Defined Codes (F0005), 1–9
Work Center Master (F30006), 1–8
Work Center Rates (F30008), 1–8, 2–33
Work Order Master (F4801), 1–9
Work Order Variances (F3102), 1–9
T-accounts, 4–6
Thru Date, defined, 2–90
Time Basis, defined, 2–11
Total Component Cost, defined, 2–47
Total cost, 2–2
Total/WIP and other variances, 4–103
Transaction Currency Code, defined, 4–81
Transactions
manual, 4–56
with variances, 4–59
Type of Hours, defined, 4–48
Type of Routing, defined, 3–9
Type Operation, defined, 2–12, 3–9

U
Unaccounted units, 4–32
in process industry accounting, 5–13
Unit Cost, defined, 2–22, 2–104
Unit of Measure, defined, 2–7, 2–63, 3–20, 3–25
Units, defined, 4–83
Units – Quantity Canceled/Scrapped, defined, 4–54, 5–5
Update Sales Order Cost/Price, processing options, 2–101
Update sales price/cost program caution, 2–101
overview, 2–101
Updating
product costs, 2–103
sales order price/cost, 2–101
Updating frozen costs, 2–79
before you begin, 2–81
Updating product costs, 2–103
See also Setting up item costs (P4105)
Updating sales order price/cost, 2–101
Updating unit costs, 2–23
User defined
automatic accounting instruction tables, 1–3
bill of material rollup, 1–3
cost components and add-ons, 1–3
cost components, assigning values to, 2–51
cost factors and rates, 1–3
cost methods, 1–3
cost simulation, 1–3
cost variances, 1–3
journal entries for work order variances, 1–3
multi-facility costing, 1–3
reports, 1–3
variances, 1–3
work order journal entries, 1–3
User Defined Code, defined, 2–20, 2–26, 2–58, 2–68
User Defined Code Revisions form (P00051), 2–20, 2–25, 2–58, 2–68
User ID, defined, 4–77

V
Variance calculations, journal entries rate schedules program, 5–7
Variance Inquiry form (P3102), 4–31, 4–64
Variances
configured items, 4–64
reviewing, 4–63
user defined, 1–3

W
What are cost components?, 2–3
What are standard costs?, 2–1
What are work order variances?, 4–14
What happens when you create a work order?, 4–28
Product Costing and Manufacturing Accounting

What happens when you record completions to a work order?, 4–34
What happens when you record component scrap?, 4–34
What happens when you record hours and quantities used?, 4–33
What happens when you revise a work order?, 4–31
What is a work order?, 4–27
What is subledger accounting?, 4–11
What is the chart of accounts, 4–13
Why maintain standard costs?, 2–2
Work Center, defined, 2–31, 2–74, 3–27
Work center, rates, 2–30
Work Date, defined, 4–47
Work in process, journal entries, 4–59
Work order, 4–27
attaching parts list and routing instructions, 4–29, 4–40
completions, 4–34
creating, 4–37
issuing materials to, 4–32
issuing parts to, 4–43
recording completions, 4–52
recording hours and quantities used, 4–45
revising, 4–31
working with, 4–37
Work order activity amounts, 4–96
units, 4–97
Work order journal entries, user defined, 1–3
Work Order Parts List form (P3111), 4–28
Work order valuation, completed, 4–105
Work order variances, 4–14, 4–106
creating journal entries, 4–66
Working with additional costing features, 2–99
process industry costing, 3–11
rate based costing, 3–7
simulated cost components. See Appendix A – Calculations in cost rollup; Creating simulated costs work orders, 4–37
Working with additional costing features, 2–99
Working with process industry costing, 3–11
Working with rate based accounting, 5–3