WorldSoftware

Manufacturing and Distribution Planning

Release A8.1

JDEdwards

Item #A81CEAMP
Where Do I Look?

Online Help
- Program
- Form
- Field

CD-ROM Guides

Guides

Technical Foundation
System Administration and Environment Fundamentals
- Understanding Your Environment
- Creating and Maintaining Environments
- Setting Up Security
- Upgrading Your System

Common Foundation
Prerequisite
J.D. Edwards Software Fundamentals
- Using Menus
- Getting Help
- Customizing Data
- Reporting
Important Note for Students in Training Classes

This guide is a source book for online helps, training classes, and user reference. Training classes may not cover all the topics contained here.
Welcome

About this Guide

This guide provides overviews, illustrations, procedures, and examples for the current release of J.D. Edwards software. Forms (screens and windows) shown are only examples. If your company operates at a different software level, you might find discrepancies between what is shown in this guide and what you see on your screen.

This guide includes examples to help you understand how to use the system. You can access all of the information about a task using either the guide or the online help.

Before using this guide, you should have a fundamental understanding of the system, user defined codes, and category codes. You should also know how to:

- Use the menus
- Enter information in fields
- Add, change, and delete information
- Create and run report versions
- Access online documentation

Audience

This guide is intended primarily for the following audiences:

- Users
- Classroom instructors
- Client Services personnel
- Consultants and implementation team members

Organization

This guide is divided into sections for each major function. Sections contain chapters for each task or group of related tasks. Each chapter contains the information you need to accomplish the task, run the program, or print the
report. Chapters normally include an overview, form or report samples, and procedures.

When it is appropriate, chapters also might explain automatic accounting instructions, processing options, and warnings or error situations. Some chapters include self-tests for your use outside the classroom.

This guide has a detailed table of contents and an index to help you locate information quickly.

Conventions Used in this Guide

The following terms have specific meanings when used in this guide:

- *Form* refers to a screen or a window.
- *Table* generally means “file.”

We assume an “implied completion” at the end of a series of steps. That is, to complete the procedure described in the series of steps, either press Enter or click OK, except where noted.
Table of Contents

Manufacturing and Distribution Planning Overview

Resource and Capacity Planning .. 1–1
Material Planning Operations .. 1–2
System Integration ... 1–3
Terms and Concepts ... 1–6
Planning and Production Environments 1–7
Planning a Total Business Solution 1–8
People ... 1–9
Process .. 1–10
Technology .. 1–10
Tables for Manufacturing and Distribution Planning 1–11
Menu Overview .. 1–12
Resource and Capacity Planning Menus 1–12
Fast Path Commands for Resource and Capacity Planning 1–12
Material Planning Operations Menus 1–13
Fast Path Commands for Material Planning Operations 1–13

Item Master and Branch/Plant Review

About Item Entry .. 2–1
Enter Item Master Information ... 2–5
Entering Item Master Information 2–5
Entering Basic Item Information 2–7
Entering Item Text ... 2–12
Assigning Item Responsibility .. 2–14
Entering Item Classification Codes 2–16
Entering Item Unit of Measure Information 2–21
Entering Item Manufacturing Information 2–27
Entering Item Grade and Potency Information 2–34
Entering Item Grade/Potency Information 2–34
Processing Options for Item Master Information – Revisions ... 2–37
Enter Branch/Plant Information 2–39
Entering Branch/Plant Information 2–39
Assigning an Item to a Branch/Plant 2–42
Working with Item Locations ... 2–43
Entering Item Tax Information ... 2–47
Locating Item Sources .. 2–48
Entering Item Reorder Quantities 2–49
Entering Item Branch/Plant Manufacturing Information 2–52
Duplicating Item Information for Multiple Branch/Plants 2–55
Processing Options for Item Branch Information – Revisions ... 2-56
Processing Options for Item / Branch Duplication 2-57
Processing Options for Item / Branch Duplication – Batch
 Selection ... 2-58

Forecasting Review

System Integration .. 3-2
Features ... 3-5
 Forecasting Levels and Methods 3-5
 Best Fit ... 3-6
 Forecasting Methods ... 3-7
 Demand Patterns ... 3-10
 Six Typical Demand Patterns 3-10
 Forecast Accuracy ... 3-11
Forecast Considerations .. 3-12
Forecasting Process ... 3-12
Major Tables ... 3-14
Supporting Tables ... 3-14
Menu Overview ... 3-15
 Fast Path Commands 3-15
Work with Detail Forecasts 3-16
 Working with Detail Forecasts 3-16
 Creating Detail Forecasts 3-16
 Processing Options for Forecast Generation 3-17
 Reviewing Detail Forecasts 3-20
 Processing Options for Forecast Review 3-22
Revising Detail Forecasts 3-23
 Example: Revising a Detail Forecast 3-23
 Processing Options for Detail Forecast Maintenance ... 3-26

Resource Requirements Planning

About Resource Requirements Planning 4-1
 How Do You Use Demand Forecasting? 4-2
 What Factors Should You Consider? 4-3
 How Do You Determine Long-Range Capacity Plans? 4-3
Enter Work Centers ... 4-5
 Determine Available Capacity 4-9
 Determining Available Capacity 4-9
 Entering Resource Units Manually 4-10
 Processing Options for Work Center Resource Units Revisions 4-12
 Generating Resource Units 4-12
 Processing Options for Work Center Resource Units Generation 4-13
Determine Long-Range Load 4-15
 Determining Long-Range Load 4-15
 Defining Resource Profiles Manually 4-15
 Generating Resource Profiles 4-19
 Processing Options for Resource Profile Regeneration 4-20
Single Level Master Scheduling

About Single Level Master Scheduling 5–2
 Master Scheduling Applications 5–3
 DRP and Purchased Items 5–3
 MPS and Manufactured Items 5–4
Understand Time Fences and System Messages 5–5
 About Time Fences .. 5–5
 Example: Ending Available Calculation 5–8
 Example: Available to Promise Calculation 5–9
 Example: Cumulative Available To Promise Calculation 5–9
About System Messages ... 5–10
Generate Single Level Master Schedules 5–13
 Generating Single Level Master Schedules 5–13
 Net Change Flag Update .. 5–13
 Net Change Flag Control 5–14
 Generating a Master Schedule for All Items 5–15
 Processing Options for Master Planning Schedule 5–16
 Reviewing Items for Master Schedule Selection 5–19
 Processing Options for Net Change Summary 5–20
 Generating a Master Schedule for Selected Items 5–20
Understand Forecast Consumption 5–23
 About Forecast Consumption 5–23
 Past Due Time Buckets ... 5–24
 Planning Horizon Time Periods 5–25
 Forecast Consumption Calculation 5–27
Work with Master Schedules 5–29
 Working with Master Schedules 5–29
 Reviewing DRP/MPS Time Series 5–29
Quantity Types for DRP and MPS 5–31
Valid Quantity Types for DRP.......................... 5–31
Valid Quantity Types for MPS 5–32
Processing Options for Time Series 5–35
Reviewing Planning Families 5–36
Processing Options for Planning Family Review5–37
Working with Messages 5–38
Reviewing Detail Messages 5–39
Processing Work Order Messages 5–40
Processing Purchase Order Messages 5–41
Processing Options for Message File Revisions5–48
Adding a Freeze Code to a Purchase Order 5–49
Adding a Freeze Code to a Work Order 5–51
Validate Master Schedules 5–53
Validating Master Schedules 5–53
Generating Rough Cut Capacity Plans 5–54
Processing Options for CRP/RCCP Regeneration5–57
Reviewing Work Schedules on Production Status ..5–58
Processing Options for Production Status 5–60
Reviewing Rate Schedule and Work Center Loads ..5–60
Processing Options for Line Balancing Review5–61
Set Up DRP, MPS, and RCCP 5–63
Setting Up DRP, MPS, and RCCP 5–63
Setting Up Supply and Demand Inclusion Rules5–64
Processing Options for Supply/Demand Inclusion Rules 5–66
Setting Up Message Types for DRP, MPS, and RCCP 5–67
Setting Up Time Fence Rules for DRP, MPS, and RCCP 5–68
Setting Up Forecast Consumption Periods 5–69
Setting Up a Rough Cut Capacity Display 5–72
Process Orders ... 5–73
Processing Orders 5–73
Processing Options for Work Order Generation – Print and Automatic Issue5–73

Multi-Level Master Scheduling

About Multi-Level Master Scheduling 6–1
What Are Planning Bills? 6–2
Example: Exploding Planned Orders 6–3
Set Up Multi-Level Master Schedules 6–5
Setting Up Multi-Level Master Schedules 6–5
Setting Up Order Policy Rules 6–6
Setting Up Stocking Types 6–9
Setting Up Feature Planned Percents 6–10
Generate Multi-Level Master Schedules 6–13
Generating Multi-Level Master Schedules 6–13
Manufacturing and Distribution Environments

- About Manufacturing and Distribution Environments .. 7-1
- Discrete Manufacturing .. 7-2
- Batch Manufacturing .. 7-2
- Process Manufacturing ... 7-3
- Distribution .. 7-3

Work with Batch Manufacturing

- Working with Batch Manufacturing ... 7-5
- Creating Batch Bills of Material ... 7-6
- Processing Options for Bill of Material Revisions ... 7-9
- Creating Batch Routings .. 7-10
- Processing Options for Routing Master Revisions .. 7-12
- Generating MPS for Batch Bills ... 7-13

Reviewing Batch Output from the MPS Generation

- Example: Reviewing the Time Series for Batch Output 7-15
- Example: Reviewing Action Messages for Batch Output 7-16

Work with Repetitive Manufacturing

- Working with Repetitive Manufacturing ... 7-17
- Defining Order Policy for Repetitive Items ... 7-18
- Creating Repetitive Routings ... 7-20
- Creating Line/Item Relationships .. 7-22
- Creating Rate Schedules .. 7-23
- Generating MPS for Repetitive Items ... 7-27

Reviewing Repetitive Rate Scheduled Output from MPS Generation

- Validating Load on Lines or Cells .. 7-31

Work with Process Manufacturing

- Working with Process Manufacturing .. 7-33
- Defining the Stocking Types for Processes .. 7-35
- Defining Co- and By-Products ... 7-36
- Generating MPS for the Process Industry .. 7-38

Reviewing Process Output from MPS Generation

- Example: Reviewing Time Series for Pacing Co-Products 7-40

DRP/ MPS Multi-Facility Scheduling

- About DRP/MPS Multi-Facility Scheduling ... 8-1
- What Are the Different Types of Multi-Facility Scheduling? 8-2
- Set Up Multi-Facility Schedules .. 8-5
- Setting Up Multi-Facility Schedules ... 8-5
- Setting Up Supply and Demand Relationships .. 8-6
- Processing Options for Branch Relationships Revisions 8-11
- Reviewing Branch Relationships on the Relationships Chart 8-12
- Processing Options for Branch Relationships Chart 8-13
- Generate Multi-Facility Schedules ... 8-15
- Generating Multi-Facility Schedules .. 8-15
- Processing Options for Master Planning Schedule – Multiple Plant 8-15
Single Facility Material Requirements Planning

About Single Facility MRP .. 9–1
 How Do You Use Bills of Material in MRP? 9–4
 What Are the Differences Between MRP and MPS? 9–4
 How Do You Run MRP Effectively? 9–6
Generate Material Requirements Plans 9–7
 Generating Material Requirements Plans 9–7
Work with Material Requirements Plans 9–11
 Working with Material Requirements Plans 9–11
Reviewing MRP Time Series .. 9–11
Reviewing Planning Families for MRP 9–12
Working with Messages for MRP .. 9–13
 Reviewing MRP Detail Messages 9–14
 Reviewing Quantity Types for MRP 9–15
 Processing Work Order Messages for MRP 9–17
 Processing Purchase Order Messages for MRP 9–18
Working with Scheduling Information 9–18
Reviewing MRP Pegging Demand 9–19
Processing Options for Pegging 9–20
Reviewing MRP Supply and Demand 9–21
Processing Options for Supply/Demand Inquiry 9–22
Reviewing Shop Floor Workbench for MRP 9–23
Processing Options for Shop Floor Workbench 9–27
Reviewing Leadtime for MRP ... 9–28
Processing Options for Leadtime Inquiry 9–30
Validate Material Requirements Plans 9–31
 Validating Material Requirements Plans 9–31
Generating Capacity Requirements Plans 9–32
Reviewing Capacity Requirements Plans 9–33
 Reviewing Dispatch Groups for Capacity Requirements Planning ... 9–34
Reviewing Work Center Load for Capacity Requirements Planning .. 9–35
 Reviewing Period Summaries for Capacity Requirements Planning .. 9–35
Processing Options for Print Period Summary 9–37
Reviewing MRP Work Schedules on the Dispatch List 9–37
Reviewing MRP Rate Schedule and Work Order Loads 9–38
Validating Capacity Requirements Plans 9–39
Set Up Material & Capacity Requirements Planning 9–41
Setting Up Material and Capacity Requirements Planning 9–41
Setting Up MRP Supply and Demand Inclusion Rules 9–42
Setting Up Message Types for MRP 9–43
Setting Up Time Fence Rules for MRP .. 9–43
Setting Up Forecast Consumption Periods for MRP 9–44
Setting Up the Capacity Requirements Display 9–45
Process Orders for MRP .. 9–47
Processing Orders for MRP .. 9–47

MRP Multi-Facility Scheduling

About MRP Multi-Facility Scheduling .. 10–1
Set Up Multi-Facility Requirements Plans 10–5
Setting Up Multi-Facility Requirements Plans 10–5
Setting Up MRP Supply and Demand Relationships 10–6
Reviewing MRP Branch Relationships on the Relationships Chart 10–6
Generate Multi-Facility Requirements Plans 10–9
Generating Multi-Facility Requirements Plans 10–9
Work with MRP Multi-Facility Planning Output 10–11
Working with MRP Multi-Facility Planning Output 10–11
Reviewing the Time Series for MRP Multi-Facility 10–11
Processing MRP Transfer Order Messages 10–12

Supplier Scheduling

About Supplier Scheduling .. 11–1
What Is the Effective Date Range? .. 11–2
What Is a Blanket Purchase Order? 11–2
What Is a Blanket Order Release? ... 11–3
Define Supplier Contracts .. 11–7
Defining Supplier Contracts .. 11–7
Defining Supplier Contract Information 11–7
 Processing Options for Supplier Schedule Master Revisions 11–11
Defining Supplier Split Percentages 11–12
 Processing Options for Supplier Split Percentages Revisions 11–13
Generate Supplier Schedules ... 11–15
Generating Supplier Schedules .. 11–15
 Processing Options for Supplier Schedule Generation 11–17
Revise Supplier Schedules .. 11–23
Revising Supplier Schedules .. 11–23
 Processing Options for Supplier Schedule Revisions 11–26
Release Supplier Schedules .. 11–27
Releasing Supplier Schedules ... 11–27
 Processing Options for Supplier Schedule Release Generation 11–28
Print Supplier Schedules .. 11–29
Printing Supplier Schedules .. 11–29
 Processing Options for Supplier Schedule Print 11–30
Appendices

Appendix A — Data Models .. A–1
Appendix B — Action Messages .. B–1
Appendix C — Functional Servers C–1
 Example: Voucher Processing Functional Server C–2

Glossary

Index

Exercises
Overview
Manufacturing and Distribution Planning Overview

Manufacturing and Distribution Planning consists of the following systems, as well as the execution of those plans.

- Resource and Capacity Planning
- Material Planning Operations

The Manufacturing and Distribution Planning system is a part of Enterprise Resources Planning and Execution (ERPx). ERPx allows you to coordinate your inventory, raw materials, and labor resources to deliver products according to a managed schedule. This closed-loop manufacturing system helps manage your data and optimize resources across your entire manufacturing and distribution logistics environment. ERPx formalizes the activities of company and operations planning.

Resource and Capacity Planning

Resource and Capacity Planning allows you to prepare a feasible production schedule that reflects your demand forecasts and production capability. Resource and Capacity Planning consists of:

- **Resource Requirements Planning (RRP)**

 Uses a summary forecast to estimate the time and resources that are needed to make a product family.

- **Rough Cut Capacity Planning (RCCP)**

 Compares the master production scheduling resource requirements to the capacity available in critical work centers.

 You use RCCP to determine if you should revise the master schedule to create feasible work loads or improve utilization of limited resources.

- **Capacity Requirements Planning (CRP)**

 Compares the material requirements plans to the capacity available in all work centers.

 You use CRP to determine if you should revise the material requirements plan to create feasible work loads or improve utilization of limited resources.
Material Planning Operations

Material Planning Operations provides a short-range plan to cover material requirements that are needed to make a product. Material Planning Operations analyzes demand from all your operations, including:

- Central and satellite distribution centers and warehouses
- Rate-based repetitive manufactured items
- Process and discrete manufactured items
- Engineer-to-order contracted items
- Maintenance, repair, and operational items for plant and equipment maintenance
- Supplier-managed inventory

Material Planning Operations consists of:

Distribution Requirements Planning (DRP)
Plans and controls the distribution of finished goods based upon demand. In addition, DRP provides centralized control of distribution inventories and creates a coordinated replenishment plan.

Master Production Scheduling (MPS)
A schedule of items and quantities that a company expects to manufacture.

Material Requirements Planning (MRP)
Uses the master production schedule, open orders, the bill of materials, and inventory records to calculate time-phased net requirements for every item, and creates a plan for covering material requirements.
System Integration

The Manufacturing and Distribution Planning system integrates with the following systems:

Inventory Management Supplies the basic information about each item (or ingredient), such as part number, description, unit of measure, stocking type, and location.

Configuration Management Supplies information for assemble-to-order and make-to-order items.

Forecasting Generates sales projections that are used to develop the master production schedule.

Shop Floor Control Uses bills of material and routings to schedule work activity within the plant.

Product Costing Uses bill of material, routing, and work center information to calculate the standard cost of an item.

Manufacturing Accounting Calculates costs for labor, overhead, and material for each primary unit of the parent using routing and work center information.

Sales Order Management Uses bills of material for kit processing and acts as a source of demand for purchased or manufactured items.

Purchase Management Uses expected delivery dates and recommends replenishment actions.

The following graphic illustrates the Manufacturing and Distribution Planning work flow.
Manufacturing and Distribution Planning Work Flow

- Sales History
- Extract Sales Actuals
- Forecast Generation
- Resource Requirements Profile
- Resource Requirements Profile
- Work Order
- Purchase Order
- Inventory
- Sales Orders
- DRP/MPS Generation
- RCCP Generation
- Bill of Material
- MRP Generation
- CRP Generation
- Routings
- Messages
- Process Messages
- Supplier Scheduling
- Blanket Orders
- To Purchase Order Files
The following graphic illustrates how Manufacturing and Distribution Planning integrates with other J.D. Edwards systems.
Terms and Concepts

Manufacturing and Distribution Planning encompasses:

Bills of material

The components and relationships required to produce a parent item. Use bills of material to:
- Maintain many configurations for an item without creating additional part numbers
- Define quantities of intermediate products in any unit of measure as they progress through the manufacturing process
- Enter similar items by copying bills of material, routings, and processes

Routings

The operations required to produce the parent item. Use routings to:
- Define each step of the manufacturing process with allowances for anticipated yield and scrap
- Add alternate operations to routings

Work centers

The facilities on the shop floor where the routing operations occur. Use work centers to:
- Define work center number and description
- Define the number of operators or machines
- Define setup, labor, machine, and overhead rates
- Define information for Capacity Planning

Engineering change orders (ECOs)

The document that you use to define and implement changes to your products structure. Use engineering change orders to:
- Control item changes from a single source
- Incorporate approved changes to bills of material
Planning and Production Environments

Successful planning leads to customer satisfaction. Depending upon when you meet your customer in the production process, the planning systems provide business solutions. As illustrated by arrows in the following graphic, customers impact the product development at different points in the various environments.

Make-to-Stock

You meet your customer after the product is completed. This environment generally involves retail items. Forecasting of end items is a crucial factor.

Assemble-to-order

You meet your customer after options are fabricated, but before final assembly of the product. The customer specifies the options in the final end product. Some factors to consider in this environment are:

- Items are configured according to formally set rules
- Items are forecasted and master schedules are created at the option level

Make-to-order

You meet your customer before you begin production at any level in the product structure. This includes the following factors:

- Products are customized for specific needs
- Capacity needs are forecasted
- Production requires longer lead times

Engineer-to-order

You add engineering design time into the lead time. This might use a job cost business solution.
Planning a Total Business Solution

A total business solution integrates three important elements:

People
For the most important element in your solution, you must provide education and management commitment.

Process
To develop the policies and practices to manage effectively, you can employ:
- Business process re-engineering
- Best manufacturing practices
- Formal documentation of the process that is approved by management

Technology
To acquire the best tools to do the job, you should use:
- J.D. Edwards software
- Complementary products
- AS/400 or open systems platforms
People

People are the keys to success. Involving and empowering people to get the job done are important steps in ensuring the success of your enterprise.

Management commitment

Implementing a successful business solution requires a management involvement that includes:

- Committing the time and financial resources to do it right the first time
- Empowering the implementation team with the authority, responsibility, and accountability to do the job

Implementation team

Effective and thorough work on the front-end ensures good performance in the future. To promote integrated solutions at implementation time and during use, the future owners of the process should participate in the implementation process. In addition, the team should be cross-functional.

Education and training

For knowledge of the broader business issues that are associated with Manufacturing and Distribution implementation, participants in the process should be educated in the American Production and Inventory Control Society (APICS) (or an equivalent). Ideally, this education should precede training in specific J.D. Edwards training courses. Understanding Best Practices in the industry ensures quality solutions.

Managing change

Implementing a broad-scale business solution entails great change in the way that people accomplish their work. To make this paradigm shift without disruption of product deliverance requires skills in helping employees cope with change in the workplace.

Partnership

J.D. Edwards Response Line and consulting, provides continued support. Our relationship is ongoing for your long-term future success. Business partners broaden this relationship through additional worldwide assistance.
Process

Costs, schedule, and quality are the direct outputs of the business process. Quality processes result in a quality product. The product meets customer specifications of design, schedule, and price.

J.D. Edwards supports your business process re-engineering through flexibility. The software can be tailored to reflect new processes as they evolve. Multiple plants can be at different stages of the re-engineering effort, depending upon their maturity or schedule for implementation. Some of the features that J.D. Edwards software provides are:

- User defined codes
- Processing options
- Branch/plant constants
- Manufacturing constants
- Customized menus

J.D. Edwards strongly supports Best Practices as documented by industry experts. As new practices are presented and recommended, J.D. Edwards has made a commitment to evolve the software functionality to support these findings.

Technology

Seamless integration between all the J.D. Edwards systems provides a unified solution to your enterprise planning. J.D. Edwards Inventory, Sales, and Purchasing systems are fully integrated distribution systems that support the Manufacturing and Distribution Planning system.
Tables for Manufacturing and Distribution Planning

The following is a list of the tables that are used throughout Manufacturing and Distribution Planning.

- **Item Master (F4101)**: Stores basic information about each defined inventory item, such as item numbers, description, category codes, and units of measure.

- **Branch/Plant Master (F4102)**: Defines and maintains warehouse or plant level information, such as costs, quantities, physical locations, and branch level category codes.

- **Bill of Materials Master (F3002)**: Contains information at the business unit level about bills of material, such as quantities of components.

- **Capacity Messages (F3311)**: Contains the action messages that are generated by the Resource Requirements Planning regeneration.

- **Detail Forecast (F3460)**: Contains the forecast data that RRP validates. It is also used as input to DRP/MPS/MRP.

- **Routing (F3003)**: Stores routing information, including operator sequence, work center, run, setup, and machine time.

- **Resource Units (F3007)**: Contains the available capacity for each work center by day, month, and year.

- **Work Center Master (F30006)**: Contains detail data about all defined work centers.

- **Resource Profile (F3303)**: Contains all resource profiles used in Resource Requirements Planning.
Menu Overview

J.D. Edwards systems are menu-driven. System functions are organized according to their function and frequency of use.

Manufacturing and Distribution Planning encompasses two systems:

- Resource and Capacity Planning
- Material Planning Operations

Resource and Capacity Planning Menus

The commonly used menus for Resource and Capacity Planning are listed below.

Daily Processes

- Resource Requirements Planning G3311
- Rough Cut Capacity Planning G3312
- Capacity Requirements Planning G3313

Periodic Processes

- Resource/Capacity Planning G3321

Setup Processes

- Resource/Capacity Planning G3341

Fast Path Commands for Resource and Capacity Planning

The following table illustrates the fast path commands you can use to move among the Resource and Capacity Planning menus. From any menu, enter the fast path command at the command line.

<table>
<thead>
<tr>
<th>Fast Path</th>
<th>Menu</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRRP</td>
<td>G3311</td>
<td>Daily Resource Requirements Planning</td>
</tr>
<tr>
<td>RCCP</td>
<td>G3312</td>
<td>Daily Rough Cut Capacity Planning</td>
</tr>
<tr>
<td>DCRP</td>
<td>G3313</td>
<td>Daily Capacity Requirements Planning</td>
</tr>
<tr>
<td>PCAP</td>
<td>G3321</td>
<td>Periodic Resource/Capacity Planning</td>
</tr>
<tr>
<td>CAPS</td>
<td>G3341</td>
<td>Resource/Capacity Planning Setup</td>
</tr>
</tbody>
</table>
Material Planning Operations Menus

The commonly used menus for Material Planning Operations are listed below.

Daily Processes
- DRP G3411
- MPS G3412
- MRP G3413
- Multi-Facility Planning G3414

Periodic Processes
- Forecasting G3421
- Single Site Planning G3422
- Multi-Facility Planning G3423

Setup Processes
- Forecast Setup G3441
- Requirements Setup Planning G3442
- Multi-Plant Setup G3443

Fast Path Commands for Material Planning Operations

The following table illustrates the fast path commands you can use to move among the Material Planning Operations menus. From any menu, enter the fast path command at the command line.

<table>
<thead>
<tr>
<th>Fast Path</th>
<th>Menu</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT</td>
<td>G34</td>
<td>Material Planning Operations</td>
</tr>
<tr>
<td>DDRP</td>
<td>G3411</td>
<td>Daily DRP</td>
</tr>
<tr>
<td>DMP</td>
<td>G3414</td>
<td>Daily Multi-Plant Planning</td>
</tr>
<tr>
<td>DMPS</td>
<td>G3412</td>
<td>Daily Master Production Schedule</td>
</tr>
<tr>
<td>DMRP</td>
<td>G3413</td>
<td>Daily MRP</td>
</tr>
<tr>
<td>DRP</td>
<td>G3411</td>
<td>Distribution Requirements Planning</td>
</tr>
<tr>
<td>MATS</td>
<td>G3442</td>
<td>Set Up Single Site Material Planning</td>
</tr>
<tr>
<td>MPS</td>
<td>G3412</td>
<td>Master Scheduling</td>
</tr>
<tr>
<td>MRP</td>
<td>G3413</td>
<td>Material Requirements Planning</td>
</tr>
<tr>
<td>MULTI</td>
<td>G3414</td>
<td>Multi-Plant Planning</td>
</tr>
<tr>
<td>PMP</td>
<td>G3423</td>
<td>Periodic Multi-Plant</td>
</tr>
<tr>
<td>PSS</td>
<td>G3422</td>
<td>Periodic Single Site Planning</td>
</tr>
<tr>
<td>SMAT</td>
<td>G3440</td>
<td>Set Up Material Planning</td>
</tr>
<tr>
<td>SMP</td>
<td>G3443</td>
<td>Set Up Multi-Plant Material Planning</td>
</tr>
</tbody>
</table>
Item Master and Branch/Plant Review
Item Master and Branch/Plant Review

Objectives

- To provide the system with details about the stock and non-stock items in inventory

About Item Entry

Prior to working with your inventory, you must provide the system with information about the items you stock. When you enter each inventory item, you provide the system with details such as:

- Item identifiers
- Item descriptions (foreign and domestic)
- Item rules
- Item costs and prices
- Item weights and measures

You must also provide the system with information about the location of each item, including:

- The branch/plant where each item resides
- The locations used within each branch/plant

The system uses this information to help track and process each item through your distribution and manufacturing systems.
Entering an item includes two steps:

1. Enter item master information, which includes basic information about an item.
2. Customize the item master information to suit each branch or plant that the item occupies.
When you enter item master information, the system creates a record in the Item Master table (F4101). When you enter branch/plant information for an item, the system creates records in the Item Branch Master table (F4102) and the Item Location Information table (F41021).

Item Branch Master

Item information that applies throughout the branch, such as:

- Category codes
- Planner/buyer numbers

Item Location

Item information specific to certain locations. For example:

- On-hand quantities
- General Ledger class code

To enter item information, complete the following steps:

- Enter item master information
- Enter branch/plant information
- Enter item cost information
- Enter sales price information

Before You Begin

- Read System Setup in the Inventory Management Guide
- Set up G/L class codes
- Review and modify branch/plant constants
- Set up next numbers
- Set up default locations and printers
Set up applicable user defined code tables, including:

- G/L posting categories
- Stocking type codes
- Units of measure
- Classification code categories
- Cost method codes
- Language preference codes
Enter Item Master Information

Entering Item Master Information

You must enter general information for all stock and non-stock items. The system uses this information to identify and process each item in the distribution and manufacturing systems.

To enter item information, complete the following tasks:

- Enter basic item information
- Enter item text (optional)
- Assign item responsibility (optional)
- Enter item classification codes (optional)
- Enter item units of measure information (optional)
- Enter item manufacturing information (optional)
- Enter item grade and potency information (optional)

When you enter a new item, the system creates an item master record in the Item Master Information table (F4101).
What You Should Know About

Setting up a template
You might want to set up a template that contains common values for fields. Enter an item with the common field values, then locate the item, and enter the new item information as necessary.

Deleting item master information
You cannot delete master information for an item if any of the following exists:
- Item branch records
- Bills of material
- Item cross-reference numbers
- Supplier relationships
- Sales prices

Displaying additional item information
You can set processing options to display additional item information subsequent to item master information (for example, item branch/plant information).

Displaying EDI transaction information
You can either set processing options to display the Item Master Information–UCC (Uniform Code Council) form or access the Exit to Item Master Maintenance UCC128 function from Item Master Information.

For more information on UCC128 processing, see *Setting Up UCC 128 Processing* in the *Sales Order Management* guide.
See Also

- *Entering Item Cost Information* *(P4105)* for information about entering master information that pertains to item costs
- *Entering Sales Price Information* *(P4106)* for information about entering master information that pertains to item prices

Entering Basic Item Information

From Inventory Management (G41), choose *Inventory Master/Transactions*

From Inventory Master/Transactions (G4111), choose *Item Master Information*

To enter basic item information, complete the following tasks:

- Enter item identifiers
- Enter item descriptions and search text
- Enter item processing information

Each item can have up to three identifiers. You use the identifiers to locate the item. These identifiers can represent universal product codes (UPCs), bar codes, supplier numbers, or a user defined value.

In Branch/Plant Constants, you must specify a primary item identifier. In the item master, you must also enter an item description and the text on which a user is most likely to search when trying to locate the item. You can also translate item descriptions and search text into multiple languages to accommodate those users who must locate items using alternate languages.

Item processing information consists of values that control how the system processes the item. These values pertain to stocking, packaging, accounting transactions, system interfaces, and so on.

What You Should Know About

Locating other identifiers

To locate an item using an identifier other than the primary identifier, you can perform a wildcard search by typing a special symbol, such as an asterisk (*), before the identifier. This only applies for forms that contain the Item Number field.
See Also

- Defining Branch/Plant Constants (P41204) for more information about specifying the primary item identifier

To enter item identifiers

On Item Master Information

Complete the following fields:

- Item Number—Short
- Product No (Product Number)
- Catalog No (Catalog Number)

To enter item descriptions and search text

On Item Master Information

3. To enter descriptions and search text in your native language, complete the following fields:
 - Desc (Description)
 - Srch (Search)

4. To enter descriptions and search text in alternate languages, access Item Alternative Description.

5. On Item Alternative Description, complete the following fields:
 - LP (Language Preference)
- Description
- Search Text

▶ To enter item processing information

On Item Master Information

Complete the following fields:

- Stocking Type
- G/L Class
- Line Type
- Bulk/Packed Flag
- Backorders Allowed
- Unit of Measure
- Check Availability Y/N
- ABC Codes

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Number – Short</td>
<td>An identifier for an item.</td>
</tr>
<tr>
<td></td>
<td>. Form-specific information</td>
</tr>
<tr>
<td></td>
<td>The first of three identifiers you can assign to an item. The system assigns this number if you activate the Next Number program. This field is numeric only.</td>
</tr>
<tr>
<td></td>
<td>If you leave the other two item identifier fields blank, the system copies this number to those fields.</td>
</tr>
<tr>
<td>Product No</td>
<td>An identifier for an item.</td>
</tr>
<tr>
<td></td>
<td>. Form-specific information</td>
</tr>
<tr>
<td></td>
<td>The second of three identifiers that you can assign to an item. This field is alphanumeric.</td>
</tr>
<tr>
<td></td>
<td>If you leave the third identifier field blank, the system copies this number to that field.</td>
</tr>
<tr>
<td>Catalog No</td>
<td>An identifier for an item.</td>
</tr>
<tr>
<td></td>
<td>. Form-specific information</td>
</tr>
<tr>
<td></td>
<td>The third of three identifiers you can assign to an item. This field is alphanumeric.</td>
</tr>
<tr>
<td></td>
<td>If you leave the second identifier field blank, the system copies that number to this field.</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Description</td>
<td>A brief description of an item, a remark, or an explanation.</td>
</tr>
<tr>
<td>Srch:</td>
<td>A field that specifies how the system searches for an item. Your entry should be specific and descriptive of the item. Type the words in the order in which you are likely to enter them.</td>
</tr>
<tr>
<td></td>
<td>In single-byte environments, where computer storage space can contain only Latin-based language character sets, the system inserts the first 30 characters from the item's description if you do not enter search text.</td>
</tr>
<tr>
<td></td>
<td>In double-byte environments where computer storage space can contain more complex language character sets (in languages such as Japanese, Chinese, and Korean), you must complete this field. This is a single-byte field that you complete with single-byte characters to phonetically represent the item description (which can be single-byte, double-byte, or both).</td>
</tr>
<tr>
<td>Stocking Type</td>
<td>A user defined code (41/I) that indicates how you stock an item (for example, as finished goods, or as raw materials). The following stocking types are hard-coded and you should not change them:</td>
</tr>
<tr>
<td></td>
<td>B Bulk floor stock</td>
</tr>
<tr>
<td></td>
<td>C Configured item</td>
</tr>
<tr>
<td></td>
<td>F Feature</td>
</tr>
<tr>
<td></td>
<td>K Kit parent item</td>
</tr>
<tr>
<td></td>
<td>N Non-stock</td>
</tr>
<tr>
<td>G/L Class</td>
<td>A user defined code (system 41/type 9) that controls which general ledger accounts receive the dollar amount of inventory transactions for this item.</td>
</tr>
<tr>
<td>Line Type</td>
<td>A code that controls how the system processes lines on a transaction. It controls the systems with which the transaction interfaces (General Ledger, Job Cost, Accounts Payable, Accounts Receivable, and Inventory Management). It also specifies the conditions under which a line prints on reports and is included in calculations.</td>
</tr>
<tr>
<td></td>
<td>Codes include:</td>
</tr>
<tr>
<td></td>
<td>S Stock item</td>
</tr>
<tr>
<td></td>
<td>J Job cost</td>
</tr>
<tr>
<td></td>
<td>N Non-stock</td>
</tr>
<tr>
<td></td>
<td>F Freight</td>
</tr>
<tr>
<td></td>
<td>T Text information</td>
</tr>
<tr>
<td></td>
<td>M Miscellaneous charges and credits</td>
</tr>
<tr>
<td></td>
<td>W Work order</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Bulk/Packed Flag | A code that indicates if the item is a bulk liquid product. If it is a bulk product, you must perform temperature and density/gravity conversions. To record the movement of bulk products, you must use forms designed specifically for bulk products. If you try to record movement using standard inventory forms, the system prevents the movement. Valid values are:
 P Packaged
 B Bulk liquid
 If you leave this field blank, the system uses P. |
| Backorders Allowed | A code that indicates whether you allow backorders for this item. You can allow backorders by item (through Item Master or Item Branch/Plant), or by customer (through Billing Instructions).
 Y Yes, allow backorders for this item.
 N No, do not allow backorders for this item, regardless of the backorders code assigned to the customer.
 NOTE: The system does not use this information if you have set the option on Branch/Plant Constants to indicate that you do not allow backorders in your operating environment. |
| Unit of Measure | A code (table 00/UM) that indicates the primary unit of measure for the item. The primary unit of measure should also be the smallest unit of measure in which you handle the item.
 Form-specific information
 The default for this field is the primary unit of measure you specify in processing options. |
| Check Availability Y/N| This field controls whether availability checking is performed throughout the Sales Order Management system. You might want to check availability for some items. For other items, you can assume that an adequate supply is available. Valid values are:
 Y Check availability
 N Do not check availability |
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC Codes</td>
<td>A code that specifies this item’s ABC ranking by sales amount.</td>
</tr>
<tr>
<td></td>
<td>Valid values are:</td>
</tr>
<tr>
<td></td>
<td>A Assign this item to the first (largest) amount ranking.</td>
</tr>
<tr>
<td></td>
<td>B Assign this item to the second (intermediate) amount ranking.</td>
</tr>
<tr>
<td></td>
<td>C Assign this item to the third (smallest) amount ranking.</td>
</tr>
<tr>
<td></td>
<td>D Do not include this item when you run ABC Analysis.</td>
</tr>
<tr>
<td></td>
<td>There are three types of ABC analysis, which include sales, margin, and on-hand value. Within each type of analysis, you can have three groups, including A, B, and C.</td>
</tr>
<tr>
<td></td>
<td>The ABC Code fields contain a percentage that defines the A, B, and C groups for categorizing items during ABC analysis. Each group measures a total within the type of analysis.</td>
</tr>
<tr>
<td></td>
<td>For all groups, the system compares the appropriate sales, margin, or on-hand value totals of a single item to the appropriate total for all items and calculates the value of each item. An item’s value is its percentage of the appropriate total. The system arranges the values of all items from highest to lowest value and accumulates the percentages. Then, depending on the group, the system processes the information as follows:</td>
</tr>
<tr>
<td></td>
<td>A: If an item’s value causes the accumulated total to exceed the A accumulated percentage, the system assigns the item to the B group.</td>
</tr>
<tr>
<td></td>
<td>B: When the accumulated total reaches the percentage you entered for items in the A group, it continues to add values until it reaches the percentage you entered for items in the B group. The system assigns all items whose value falls between the A and B percentages to the B group.</td>
</tr>
<tr>
<td></td>
<td>C: The C group consists of items whose accumulated value exceeds the B percentage. The percentage that you usually enter for the C group is .999.</td>
</tr>
</tbody>
</table>

Entering Item Text

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Master Information
You might want to enter text about an item that others can view or print when working with the item. When you enter item master information, you can use one of two methods to enter item text:

- Attach messages to an item
- Enter notes for an item

Item messages are predefined, so you can attach the same message to multiple items.

Unlike item messages, item notes are not predefined. If notes already exist for an item, the words See Memo appear as highlighted text at the top of Item Master Information.

Before You Begin

Before you can attach a predefined message to an item, you must create text for the message. Where you create this text depends on the message type.

To attach messages to an item

On Item Master Information

Complete the following fields:

- Print Message
- Item Flash Message

To enter notes for an item

On Item Master Information

2. On Text Messages, enter the appropriate text.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print Message</td>
<td>A code (table 40/PM) that represents a predefined message set up on Print Message Revisions. You can print the message on sales orders, purchase orders, and so forth.</td>
</tr>
<tr>
<td>Item Flash Message</td>
<td>A code (table 40/FL) that directs the system to display a specific message each time someone works with the item. The message is the description for the user defined code. If you work with an item that has a flash message, the message displays next to the item number or the system highlights the item number. If the number is highlighted, you can access the message by placing the cursor on the item number and performing the appropriate function for the program.</td>
</tr>
</tbody>
</table>

Assigning Item Responsibility

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Master Information

When you enter master information for an item, you can specify those persons or businesses that are responsible for the item, including the buyer, planner, and preferred carriers.
Before you can assign a responsible person or business to an item, each must have an address book number in the Address Book system.

To assign item responsibility

On Item Master Information

1. Complete the following fields:
 - Planner Number
 - Buyer Number

2. Access Classification Codes from Item Master Information.

3. On Classification Codes, complete the following fields:
 - Sales: Preferred Carrier
 - Purchasing: Preferred Carrier

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planner Number</td>
<td>The address number of the material planner for this item.</td>
</tr>
<tr>
<td>Buyer Number</td>
<td>The address number of the person responsible for setting up and maintaining the correct stocking levels for the item.</td>
</tr>
</tbody>
</table>
Entering Item Classification Codes

See Also

- *Entering Basic Address Book Information (P01051)* in the Address Book system for more information about adding address numbers

Entering Item Classification Codes

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Master Information

You might want to group items with similar characteristics so that you can work with the entire group at the same time. For example, for sales analysis, you can group items together for reporting purposes.

To group items, you assign classification codes to them. You can assign classification codes to items when you enter item master information or when you enter item branch/Plant information.

There are several categories of classification codes. Each category represents a different item classification or property type, such as shipping conditions. From the shipping conditions category, you can select a code that indicates the condition under which you ship an item, such as fragile.

You can assign one of four groups of classification codes. Each group relates to one of the following J.D. Edwards systems:

- Sales Order Management
- Procurement
- Inventory Management
- Advanced Warehouse Management

Complete the following optional tasks:

- Enter sales classification codes
- Enter purchasing classification codes
- Enter inventory classification codes
Enter warehouse classification codes

To enter sales classification codes

On Item Master Information

1. Access Classification Codes.

2. On Classification Codes, complete the following fields:
 - Sales Catalog Section
 - Sub Section
 - Sales Category Code 3
 - Sales Category Code 4
 - Sales Category Code 5
 - Preferred Carrier
 - Category Code 6
 - Category Code 7
 - Category Code 8
 - Category Code 9
 - Category Code 10
To enter purchasing classification codes

On Item Master Information

1. Access Classification Codes.
2. On Classification Codes, enter a classification code for each of the following fields:
 - Commodity Class
 - Commodity Sub Class
 - Supplier Rebate Code
 - Master Planning Family
 - Landed Cost Rule

To enter inventory classification codes

On Item Master Information

1. Access Classification Codes.
2. On Classification Codes, enter a classification code for each of the following fields:
 - Shipping Conditions Code
 - Shipping Commodity Class
 - Cycle Count Category

To enter warehouse classification codes

On Item Master Information

1. Access Classification Codes.
2. On Classification Codes, enter a classification code for each of the following fields:
 - Item Dimension Group
 - Warehouse Process Group 1
 - Warehouse Process Group 2
 - Warehouse Process Group 3
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Sales Catalog Section | A code (table 41/S1) that represents an item property type or classification, such as color, material content, or so forth. The system uses this code to sort and process like items.
This field is one of ten classification categories available primarily for sales purposes. |
| Sub Section | A code (table 41/S2) that represents an item property type or classification, such as color, material content, use, or so forth. The system uses this code to sort and process like items.
This field is one of ten classification categories available primarily for sales purposes. |
| Sales Category Code 3 | A code (table 41/S3) that represents an item property type or classification, such as color, material content, use, or so forth. The system uses this code to sort and process like items.
This field is one of ten classification categories available primarily for sales purposes. |
| Category Code 6 | A code (table 41/S6) that represents an item property type or classification, such as color, material content, use, or so forth. The system uses this code to sort and process like items.
This field is one of ten classification categories available primarily for sales purposes. |
| Commodity Class | A code (table 41/P1) that represents an item property type or classification, such as commodity type, planning family, or so forth. The system uses this code to sort and process like items.
This field is one of six classification categories available primarily for purchasing purposes. |
| Commodity Sub Class | A code (table 41/P2) that represents an item property type or classification, such as commodity type, planning family, or so forth. The system uses this code to sort and process like items.
This field is one of six classification categories available primarily for purchasing purposes. |
| Supplier Rebate Code | A code (UDC table 41/P3) that represents an item property type or classification, such as commodity type, planning family, or so forth. The system uses this code to sort and process like items.
This field is one of six classification categories available primarily for purchasing purposes. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Planning Family</td>
<td>A code (table 41/P4) that represents an item property type or classification, such as commodity type, planning family, or so forth. The system uses this code to sort and process like items. This field is one of six classification categories available primarily for purchasing purposes.</td>
</tr>
<tr>
<td>Landed Cost Rule</td>
<td>A user defined code (41/P5) that indicates the landed cost rule for an item. The landed cost rule determines purchasing costs that exceed the actual price of an item, such as broker fees, commissions, and so forth. You set up landed cost rules on Landed Cost Revisions. When you enter a purchase order for the item, this is the default landed cost rule. If you enter a landed cost rule for the entire purchase order, it overrides the landed cost rule for the item. This is the only purchasing classification category that is hard coded. You can use it for landed cost rules only. This field corresponds to purchasing reporting code 5.</td>
</tr>
<tr>
<td>Shipping Conditions Code</td>
<td>A code (table 41/C) that represents an item property type or classification, such as special shipping conditions. The system uses this code to sort and process like items. This field is one of three classification categories available primarily for inventory and shipping purposes.</td>
</tr>
<tr>
<td>Shipping Commodity Class</td>
<td>A user defined code (system 41/type E) that represents an item property type or classification, such as international shipment handling. The system uses this code to sort and process like items. This field is one of three classification categories available primarily for inventory and shipping purposes.</td>
</tr>
<tr>
<td>Cycle Count Category</td>
<td>A code (table 41/8) that represents the family or cycle in which an item is counted. Cycle counting means that you count different inventory items at different times. Cycle codes commonly represent item values, item locations, time frames, or product groups. This inventory classification category is hard coded. You can use it for cycle count codes only.</td>
</tr>
<tr>
<td>Item Dimension Group</td>
<td>A code (system 41/type 01) that identifies a group of items that share the same size specifications, such as height and width. An item dimension group defines the size specifications for all items that belong to the group. After you set up an item dimension group, you can assign items to the group through Classification Codes.</td>
</tr>
</tbody>
</table>
Enter Item Master Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warehouse Process Grp 1</td>
<td>A code (system 41/type 02) that identifies a group of items that you want to move the same way. An item’s process group determines the movement instructions the system uses to put away, pick, and replenish the item. You assign items to process groups using Classification Codes.</td>
</tr>
</tbody>
</table>

... Form-specific information ...

You must define at least one process group for each item to have warehouse processes take place.

You use Process Selection to define putaway, picking, and replenishment instructions for warehouse process groups.

Entering Item Unit of Measure Information

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Master Information

You must provide the system with the item units of measure that are most common to each of your distribution processes, such as sales, purchasing, and so on. For example, you might purchase an item in pallets, stock it in boxes, and ship it in individual containers.

If you work with an item in multiple units of measure, you must specify how to convert one unit of measure to another. For example, if you stock items in boxes and crates, you must specify the number of individual items in a box and the number of boxes in a crate.
In some instances, the system must work with an item in its smallest (primary) unit of measure. The item conversions you specify must enable the system to trace all units of measure back to the primary unit of measure.

You can set up unit of measure conversions that are specific to an item or to an item and branch/ plant combination. You specify whether item conversions are specific to a branch/ plant in System Constants. You can also set up units of measure that are standard for all items.

You must set up all units of measure for an item in the Unit of Measure Conversion table (F41002) or the Standard Unit of Measure Conversion table (F41003). The system verifies the item unit of measure conversions before using standard unit of measure conversions.

Complete the following tasks:

- Enter default units of measure for items
- Define item unit of measure conversions
See Also

- Setting Up Standard Units of Measure (P41003)

To enter default units of measure for items

On Item Master Information

1. Access Default Units of Measure.

2. On Default Units of Measure, complete the following field to locate the item:
 - Item Number

3. Complete the following fields:
 - Primary
 - Secondary
 - Purchasing
 - Pricing
 - Shipping
 - Production
 - Component
 - Weight
 - Volume
To define item unit of measure conversions

On Item Master Information

1. Access Default Units of Measure.
2. On Default Units of Measure, access Item Units of Measure.

3. On Item Units of Measure, complete the following fields:
 - Structured Only
 - Item Number

 The Branch field displays only if item unit of measure conversions are specific to branch/plants.

4. For each unit of measure that the system must convert for the item, complete the following fields:
 - UM (Unit of Measure To)
 - Quantity
 - UM (Unit of Measure From)
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>A code (table 00/UM) that indicates the primary unit of measure for the item. The primary unit of measure should also be the smallest unit of measure in which you handle the item.</td>
</tr>
</tbody>
</table>

Form-specific information

This is the primary stock accounting unit (PSAU) of measure that the system uses to store all inventory. If you change the primary unit of measure, the conversion factors in the item-level conversion table will no longer be valid.

The default for this field is the unit of measure that you specify for the item on Item Master Information.

| Secondary | A code that indicates an alternate unit of measure for the item. See the User Defined Code table for system 00, record type UM. |

Form-specific information

The default for this field is the primary unit of measure that you specify in processing options for Item Master Information.

| Purchasing | A user defined code (00/UM) that identifies the unit of measure in which you usually purchase the item. |

Form-specific information

The default for this field is the primary unit of measure that you specify in processing options for Item Master Information.

| Pricing | A code (system 00/type UM) that indicates the unit of measure in which you usually price the item. |

Form-specific information

The default for this field is the primary unit of measure that you specify in processing options for Item Master Information.

| Shipping | A code (table 00/UM) that indicates the unit of measure in which you usually ship the item. |

Form-specific information

The default for this field is the primary unit of measure that you specify in processing options for Item Master Information.
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>A code (table 00/UM) that indicates the unit of measure in which you produce the item.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>The default for this field is the primary unit of measure that you specify in processing options for Item Master Information.</td>
</tr>
<tr>
<td></td>
<td>This code serves as the default for:</td>
</tr>
<tr>
<td></td>
<td>• The order quantity when you create a work order</td>
</tr>
<tr>
<td></td>
<td>• The batch quantity when you create a new bill of material or routing</td>
</tr>
<tr>
<td></td>
<td>• The rate schedule quantity in Rate Schedule Revision</td>
</tr>
<tr>
<td>Component</td>
<td>A code (table 00/UM) that indicates the unit of measure for an item when it serves as a component.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>The default for this field is the primary unit of measure that you specify in the processing options for Item Master Information.</td>
</tr>
<tr>
<td></td>
<td>This code serves as the default value for:</td>
</tr>
<tr>
<td></td>
<td>• The quantity per parent when you add the component item to a bill of material or work order parts list</td>
</tr>
<tr>
<td></td>
<td>• The quantity in the assembly inclusion rules in Configuration Management</td>
</tr>
<tr>
<td>Weight</td>
<td>A user defined code (system 00/type UM) that identifies the unit of measure that the system uses to display weight for this item. You can specify ounces, grams, kilograms, and so on, as weight standards. The system uses this unit of measure for the item or overrides it for an individual item or container.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>The default for this field is the weight unit of measure you specify in processing options for Item Master Information.</td>
</tr>
<tr>
<td>Volume</td>
<td>A code (system 00/table UM) that indicates the unit of measure by metric conversion for ambient volume. For example, the unit of measure code for a gallon might be GL, or for a liter might be LT.</td>
</tr>
</tbody>
</table>
Enter Item Master Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structured Only</td>
<td>A code that determines whether the system displays all units of measure for an item and branch/plant or only the structured units of measure that have been set up for the Advanced Warehouse Management system.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>If you use the Advanced Warehouse Management system, you must structure conversions from large to small. For example:</td>
</tr>
<tr>
<td></td>
<td>• 1 Pallet (24 Cases) – Structure Code 1</td>
</tr>
<tr>
<td></td>
<td>• 1 Case (36 Boxes) – Structure Code 2</td>
</tr>
<tr>
<td></td>
<td>• 1 Box (6 Eaches) – Structure Code 3</td>
</tr>
<tr>
<td></td>
<td>You assign structure code 1 to the largest unit of measure and codes 2, 3, and so on, to the smaller units of measure.</td>
</tr>
<tr>
<td></td>
<td>NOTE: You do not have to define the primary unit of measure within a structure. This value is always the default for the lowest level.</td>
</tr>
<tr>
<td>UM</td>
<td>A user defined code (system 00/type UM) that identifies the unit of measure for an item. For example, it can be eaces, cases, boxes, and so on.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>This unit of measure to which you are converting.</td>
</tr>
<tr>
<td>Quantity</td>
<td>The factor that the system uses to convert one unit of measure to another unit of measure.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>The quantity and the unit of measure from which you are converting must equal the unit of measure to which you are converting.</td>
</tr>
</tbody>
</table>

Entering Item Manufacturing Information

From Inventory Management (G 41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G 4111), choose Item Master Information

You can define manufacturing information about an item when you enter item master information. This information includes:

Requirements planning information You enter requirements planning information to develop a planning forecast for the items that you use to run your distribution and manufacturing operations.
Leadtime information You enter leadtime information to calculate the time frames that are necessary to assemble or manufacture an item.

Engineering information You enter reference information about the drawing plans for an item, so that you can refer back to the plans as necessary.

Complete the following tasks:

- Enter requirements planning information
- Enter leadtime information
- Enter engineering information

To enter requirements planning information

On Item Master Information

1. Access Manufacturing Values Entry.
2. On Manufacturing Values Entry, complete the following fields:
 - Value Order Policy
 - Planning Code
 - Planning Fence Rule
Enter Item Master Information

- Accounting Cost Qty
- Round to Whole Number
- Planning Fence
- Freeze Fence
- Message Display Fence

To enter leadtime information

On Item Master Information

1. Access Manufacturing Values Entry.
2. On Manufacturing Values Entry, complete the following fields:
 - MFG Leadtime Quantity
 - Fixed/Variable
 - Leadtime Level
 - Leadtime Manufacturing
 - Leadtime Cumulative
 - Leadtime Per Unit
 - Issue Type Code

To enter engineering information

On Item Master Information

1. Access Manufacturing Values Entry.
2. On Manufacturing Values Entry, complete the following fields:
 - Drawing Size
 - Drawing Rev. Level (Drawing Revision Level)
 - Drawing Number
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Order policy</td>
<td>A field that the system uses in conjunction with the order policy code. It can show three types of data:</td>
</tr>
<tr>
<td></td>
<td>• The value of the fixed order quantity when you select order policy code 2 (fixed order quantity).</td>
</tr>
<tr>
<td></td>
<td>• The number of additional days of supply after demand is encountered when you select order policy code 4 (periods of supply).</td>
</tr>
<tr>
<td></td>
<td>• The desired inventory level when you select order policy code 5 (rate scheduled item). If the ending available quantity does not meet or</td>
</tr>
<tr>
<td></td>
<td>exceed the desired inventory level, then MPS/MRP/DRP generation issues an “increase rate to” or a “decrease rate to” message.</td>
</tr>
<tr>
<td>Planning Code</td>
<td>A code that indicates how Master Production Schedule (MPS), Material Requirements Planning (MRP), or Distribution Requirements Planning (DRP)</td>
</tr>
<tr>
<td></td>
<td>processes this item. Valid codes are:</td>
</tr>
<tr>
<td>0</td>
<td>Not Planned by MPS, MRP, or DRP</td>
</tr>
<tr>
<td>1</td>
<td>Planned by MPS or DRP</td>
</tr>
<tr>
<td>2</td>
<td>Planned by MRP</td>
</tr>
<tr>
<td>3</td>
<td>Planned by MRP with additional independent forecast</td>
</tr>
<tr>
<td>4</td>
<td>Planned by MPS, Parent in Planning Bill</td>
</tr>
<tr>
<td>5</td>
<td>Planned by MPS, Component in Planning Bill</td>
</tr>
</tbody>
</table>

These codes are hard-coded.
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Planning Fence Rule | A code (system 34, table TF) that the system uses in conjunction with the Planning Time Fence Days field to determine how forecast demand or actual customer demand is used. For example:
 S Use customer demand before the time fence and forecast after the time fence
 F Use forecast before the time fence and forecast plus customer demand after the time fence
 For example, if you enter 5 in the Planning Time Fence Days field and S in this field, then the system uses only customer demand for the regeneration for the first 5 days. After 5 days, the system uses the forecast for the regeneration.
 Valid codes are:
 C Customer demand before, greater of forecast or customer demand after
 F Forecast before, forecast plus customer demand after
 G Greater of forecast or customer demand before, forecast after
 S Customer demand before, forecast after
 1 Zero before, forecast after
 3 Zero before, forecast plus customer demand after |
| Accounting Cost Qty | An amount that the system uses in the cost rollup program to determine the allocation of setup costs. The system totals the setup costs and divides the sum by this quantity to determine a unit setup cost. The default is 1. |
| Round to Whole Number | A code that determines if an item should be rounded to the closest whole number for planning purposes. Valid codes are:
 R Round to the closest whole number.
 Blank Do not round.
 For example, if the calculated requirements for an item are 4.6 and this field contains a Round to Whole Number code of R, the system rounds the quantity required to 5. If the calculated requirements are 4.4, the system rounds the quantity required to 4. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Fence</td>
<td>The number of days that the system uses in conjunction with the time fence rule to determine how the forecast is used. Enter the number of days from the start date, after which the time fence rule changes from the first rule to the second rule. For example, if the time fence rule is S (customer demand before the time fence, forecast after the time fence), and the planning time fence is 5 days, the system plans for the first 5 days using customer demand. After the fifth day, the system plans using the forecast.</td>
</tr>
<tr>
<td>Freeze Fence</td>
<td>The number of days from the generation start date within which the system should not generate order messages. For example, if the generation start date is 01/01/99, and the freeze time fence is 6 days, the planning system does not issue messages with dates less than or equal to 01/07/99.</td>
</tr>
<tr>
<td>Message Display Fence</td>
<td>The number of days after the generation start date that the system should not generate order messages. For example, if the generation start date is 01/01/99, and the message time fence is 60 days, the system does not issue messages with dates greater than or equal to 03/01/99. However, the planning horizon for orders continues past this date and is reflected in available to promise totals.</td>
</tr>
<tr>
<td>MFG Leadtime Quantity</td>
<td>The quantity that determines the leadtime level for a manufactured item. Each of the routing steps for the item are extended by this quantity. For the system to calculate the leadtime level, the quantity in this field must be a value other than zero.</td>
</tr>
<tr>
<td>Fixed/Variable</td>
<td>A code that determines whether the system uses fixed or variable leadtimes. This code works in conjunction with the value from either the Level Leadtime field or the Leadtime Per Unit field. Valid codes are: F Fixed leadtime – The system calculates work order start dates using the value from the Leadtime Level field. V Variable leadtime – The system calculates work order start dates using the value from the Leadtime Per Unit field.</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Level Leadtime</td>
<td>A value that represents the leadtime for an item at its assigned level in the production process, as defined on Plant Manufacturing Data. The system uses this value to calculate the start dates for work orders using fixed leadtimes. Level leadtime is different for purchased and manufactured items: You can enter level leadtime manually on Manufacturing Values Entry, or you can use the Leadtime Rollup program calculate it. To calculate level leadtime using the Leadtime Rollup program, you must first enter a quantity in the Manufacturing Leadtime Quantity field in the Item Branch table (F4102).</td>
</tr>
<tr>
<td>Manufacturing Leadtime</td>
<td>The total number of days required to build an item from its lowest level components to the final assembly. This value is the total of the level leadtimes for all manufactured items, plus the highest manufacturing leadtime for all its components. If all components are purchased, the manufacturing leadtime equals the item's level leadtime. Purchased item leadtimes are not included in the calculation of manufacturing leadtimes. You can enter the manufacturing leadtime manually or you can have the system calculate it when you run the Leadtime Rollup program.</td>
</tr>
<tr>
<td>Cumulative Leadtime</td>
<td>The total number of days required to build an item from its lowest level components to the final assembly. The system calculates the value differently for manufactured and purchased items. Manufactured – The total of all level leadtimes for all manufactured items, plus the highest cumulative leadtime of all its components. Purchased – The item's level leadtime. Purchased item leadtimes are included in the calculation of cumulative leadtimes. You can enter this value manually or you can have the system calculate it when you run the Leadtime Rollup program.</td>
</tr>
<tr>
<td>Leadtime Per Unit</td>
<td>The total number of hours required to build one unit as specified on the routing. This value is factored by the time basis code. You can enter this value manually, or you can have the system calculate it when you run the Leadtime Rollup program. The system overwrites this value when you run the Leadtime Rollup program. The system uses this field to calculate start dates for work orders when you use variable leadtimes.</td>
</tr>
</tbody>
</table>
Entering Item Grade/Potency Information

From Inventory Master/Transactions (G4111), choose Item Master Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue Type Code</td>
<td>A code that defines how the system issues each component in the bill of material from stock. In shop floor control, it indicates how the system issues a part to a work order. Valid codes are:</td>
</tr>
<tr>
<td></td>
<td>I Manual issue (default)</td>
</tr>
<tr>
<td></td>
<td>F Floor stock (no issue)</td>
</tr>
<tr>
<td></td>
<td>B Backflush (when part is reported as complete)</td>
</tr>
<tr>
<td></td>
<td>P Preflush (when parts list is generated)</td>
</tr>
<tr>
<td></td>
<td>U Super backflush (at pay-point operation)</td>
</tr>
<tr>
<td></td>
<td>S Sub-contract item (send to supplier)</td>
</tr>
<tr>
<td></td>
<td>Blank Shippable end item</td>
</tr>
<tr>
<td>You can issue a component in more than one way within a specific branch/ plant by using a different code on the bill of material and work order parts list. The bill of material code overrides the branch/plant value.</td>
<td></td>
</tr>
<tr>
<td>Drawing Size</td>
<td>A code that represents the engineering drawing size. For example:</td>
</tr>
<tr>
<td></td>
<td>A A-size drawing</td>
</tr>
<tr>
<td></td>
<td>D D-size drawing</td>
</tr>
<tr>
<td>Drawing Rev. Level</td>
<td>This number is a subset to the drawing number. It provides an additional description of the drawing and is useful should the system use an engineering drawing as a reference for this item.</td>
</tr>
<tr>
<td>Drawing Number</td>
<td>An engineering drawing number that might be the same as the part or item number.</td>
</tr>
</tbody>
</table>

Entering Item Grade and Potency Information

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Master Information

Entering Item Grade/Potency Information

After you enter item master information or item branch/plant information, you specify whether grade or potency applies to an item. Grades enable you to classify items (for example, grade A eggs and grade B eggs). Potency allows you to specify the active ingredient in a product (for example, the percentage of alcohol in liquor).

When you activate grade or potency control for an item, you can enter a standard grade or potency for the item and a range of acceptable values. If you receive or issue items that are not within the range, the system provides a
warning message. You cannot perform sales on items that are not within the range.

Item grade and potency are applicable only to items that are produced in lots. You cannot use both grade control and potency control for the same item.

See Also

- *Entering Information for Lots (P4108)* for information about specifying grade and potency values for lots

▶ **To enter item grade and potency information**

On Item Master Information

1. Access Manufacturing Values Entry.
2. On Manufacturing Values Entry, complete the following fields:
 - Grade/Potency Pricing
 - Potency Control
 - Standard Potency
 - From Potency
 - Thru Potency
 - Grade Control
 - Standard Grade
 - From Grade
 - Thru Grade

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Grade/Potency Pricing| A code that indicates whether you price the item by grade or potency range. You must control the item by grade to price it by grade, just as you must control the item by potency to price it by potency. Valid values are: Blank No potency or grade pricing
 1 Potency pricing
 2 Grade pricing |
<p>| Potency Control | A code that indicates whether you control the item by potency. |
| Standard Potency | The percentage of active ingredients normally found in an item. |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Potency</td>
<td>A number that indicates the minimum potency, or percentage of active ingredients, acceptable for an item.</td>
</tr>
<tr>
<td></td>
<td>The system displays a warning message if you try to purchase or issue items that do not meet the minimum acceptable potency. The system does not allow you to sell items that do not meet the minimum acceptable potency.</td>
</tr>
<tr>
<td>Thru Potency</td>
<td>A number that indicates the maximum potency, or percentage of active ingredients, that is acceptable for an item.</td>
</tr>
<tr>
<td></td>
<td>The system displays a warning message if you try to purchase or issue items that have a potency that exceeds the maximum potency acceptable. The system does not allow you to sell items that have a potency that exceeds the maximum potency acceptable.</td>
</tr>
<tr>
<td>Grade Control</td>
<td>A code that indicates whether you control the item by grade.</td>
</tr>
<tr>
<td>Standard Grade</td>
<td>A code (table 40/LG) that represents the normal grade for an item.</td>
</tr>
<tr>
<td>From Grade</td>
<td>A code (system 40, type LG) that indicates the minimum grade that is acceptable for an item.</td>
</tr>
<tr>
<td></td>
<td>The system displays a warning message if you try to purchase or issue items with grades that do not meet the minimum grade acceptable. The system does not allow you to sell items with grades that do not meet the minimum acceptable level.</td>
</tr>
<tr>
<td>Thru Grade</td>
<td>A code (system 40, type LG) that indicates the maximum grade that is acceptable for an item.</td>
</tr>
<tr>
<td></td>
<td>The system displays a warning message if you try to purchase or issue items with grades that exceed the maximum grade acceptable. The system does not allow you to sell items with grades that exceed the maximum grade acceptable.</td>
</tr>
</tbody>
</table>

What You Should Know About

- **Lots**
 You can specify the grade or potency of all items in a specific lot on Lot Master Revisions. If you do not specify a grade or potency, the system uses the standard grade or potency from Item Master or Item Branch Information.
Processing Options for Item Master Information - Revisions

DEFAULT VALUES:
1. Primary Unit of Measure (Blanks=EA)
2. Weight Unit of Measure (Blanks=LB)

PROCESS CONTROL:
3. Specify the from and thru dates to be used for effective dates in the Item Notes File:
 - From Date (Blank = System date)
 - Thru Date (Blank = 12/31 with the year = to the default value for the data dictionary item Century Change Year (#CYR))
4. Enter a ’1’ for each additional Item Master information screen to display when performing an add or change. If blank, the screen will not display.
 - Classification Codes.
 - Cost Revisions (Conditional).
 - Price Revisions (Conditional).
 - Units & Measures.
 - Manufacturing Values.
 - Bulk Product Information. . . .
 - UCC Codes & UOM’s

5. Enter a ’1’ to use the window version of the screens selected above. If left blank, the full screen versions will be displayed.
6. Enter a ’1’ to automatically call the Item Branch Program (P41026) when adding a new item number and return to the Item Master Screen. Enter a ’2’ to call the Item Branch program automatically and remain on the Item Branch Screen. If left blank, the Item Branch Program will not be called.

GLOBAL UPDATE:
7. Enter a ’1’ to transfer changes
made to the 2nd (LITM) and the 3rd (AITM) item numbers to the Item Branch (F4102) item records.

(F19 from Item Master Revisions allows you to update other files).

or

Enter a '2' to transfer changes to records in the selected files (see User Defined Codes 40/IC).

Press F1 to display the selected files.

DREAM WRITER VERSIONS:
Enter the version to be used for each program. If left blank, ZJDE0001 is used.

8. Item Availability (P41202)
9. Item Branch (P41026)

DRAWING INFORMATION:
10. Enter a '1' to protect item drawing information from update.
Enter Branch/Plant Information

Entering Branch/Plant Information

Information about an item might differ from warehouse to warehouse. For example, taxes might be applicable to an item in one warehouse, but not in another. You might also have different quantity requirements for each item based on the warehouse.

After you enter master information for an item, you can assign the item to different warehouses or branch/plants. You can then customize the item information for each branch/plant. You can also specify the locations in the branch/plant in which the item is stored.

Item A
Master Information

Every J.D. Edwards system that retrieves item information searches for an item’s branch/plant information before using an item’s master information.

You can enter item information for a single branch/plant or copy existing item information and duplicate it for multiple branch/plants.
To enter item branch/plant information, complete the following tasks:

- Assign an item to a branch/plant
- Work with item locations
- Enter item tax information (optional)
- Locate item sources (optional)
- Enter item reorder quantities (optional)
- Enter item branch/plant manufacturing information (optional)
- Duplicate item information for multiple branch/plants (optional)

After you enter item information for a specific branch/plant, the system creates a record in the Item Branch table (F4102).
What You Should Know About

Default values

Most fields on Item Branch/Plant Information are identical to those on Item Master Information. The system uses the default values from Item Master Information. The only fields that do not exist on Item Master Information are:

- Branch/Plant
- Sales Taxable
- Purchasing Taxable
- Country of Origin
- Supplier
- Margin Maintenance (%)
- Mix Lots/Serial Numbers

Accessing other branch/plant information

Use processing options to specify that other item information displays subsequent to item branch/plant information, such as item unit of measure defaults.
Assigning an Item to a Branch/Plant

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Branch/Plant Information

After you enter master information for an item, you must assign the item to a specific branch/plant. After assigning the branch/plant, you can locate the item and branch/plant to customize the master information.

To assign an item to a branch/plant

On Item Branch/Plant Information

Complete the following fields:

- Branch/Plant
- Item Number

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch/Plant</td>
<td>A code that identifies a separate entity within a business for which you want to track items and costs. This entity might be a warehouse location, job, project, work center, or branch/plant. The Business Unit field is alphanumeric. Form-specific information This is the branch/plant or warehouse to which this item information is applicable.</td>
</tr>
</tbody>
</table>
Working with Item Locations

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Branch/Plant Information

After you assign an item to a branch/plant, you can indicate multiple locations in which the item resides. For each branch/plant, you can assign:

- A primary location
- Multiple secondary locations

The system usually processes an item through its primary location. For example, when you receive an item, the system assigns the item to its primary location, unless you specify a secondary location.

The system prompts you for the primary location immediately after you assign an item to a branch/plant. You can assign secondary locations to an item when you enter branch/plant information. The system automatically assigns a secondary location if you enter a location other than the primary location for an item when you receive it.

If you specify location control on System Constants, you can assign an item to only those locations set up on Branch/Plant Location Master. If you do not specify location control, you can assign an item to any location.

Each time you enter a location for an item, the system creates a record in the Item Location table (F41021).

In addition to assigning locations to an item and branch/plant, you can assign multiple lot numbers to each location. You can enter lot numbers manually when you enter item locations or when you receive the items.

You can prevent the assignment of an item that belongs to multiple lots and has multiple statuses within a lot to a single location. For example, assume that a pharmaceutical company receives a portion of a lot, approves the received portion, and stores it in a warehouse. The remainder of the lot arrives but needs to be approved. The pharmaceutical company stores the unapproved portion of the lot in a staging location, rather than storing the unapproved portion with the approved portion.

Complete the following tasks:

- Assign a primary location to an item
- Assign a secondary location to an item
- Change the primary location for an item
What You Should Know About

Creating a lot

When you assign locations, you might be able to create a lot if you have set the branch/plant constants appropriately.

For more information, see Setting Up Constants (P41204).

See Also

- Entering Information for Lots (P4108) for information about defining lot details
- Working with Lot Statuses (P00051) for information about putting lots and locations on hold

To assign a primary location to an item

On Item Branch/Plant Information

3. Assign a branch/plant to an item.

4. On Primary Location, complete the following fields:
 - Location
 - Lot/SN (Lot/Serial Number)
To assign a secondary location to an item

On Item Branch/Plant Information

1. Access Item/Location Information.

2. On Item/Location Information, enter S in the following field to identify the secondary (S) locations for an item:
 - P/S (Primary/Secondary Location)

3. For each secondary location and lot, complete the following fields:
 - Location
 - Lot
 - Lot Status

To change the primary location for an item

On Item Branch/Plant Information

1. Access Item/Location Information.

2. On Item/Location Information, enter P in the following field to identify the primary (P) location for the item:
 - P/S (Primary/Secondary Location)

3. Access Primary Location.
4. On Primary Location, complete the following fields:
 - Location
 - Lot

5. Return to Item/Location Information.

6. On Item/Location Information, complete the following field:
 - P/S (Primary/Secondary Location)

 After you change the primary location for an item, the previous primary location becomes a secondary location.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Location | A code that identifies inventory locations in a branch/plant. You define the format of the location identifier by branch/plant.
 Form-specific information
 If you do not specify a location in this field, the system uses the blank location set up for the branch/plant in Branch/Plant Location Master. |
| Lot/SN | A number that identifies a lot or a serial number. A lot is a group of items with similar characteristics. |
| P/S | A value that indicates if this is the primary or secondary location for this item within this stocking location. Valid values are:
 P Primary storage location
 S Secondary storage location
 NOTE: You can only have one storage area within each branch or warehouse marked as primary. In some cases, the system uses the primary storage area as the default. |
| Lot Status| A user defined code (table 41/L) that indicates the status of the lot. If you leave this field blank, it indicates that the lot is approved. All other codes indicate that the lot is on hold.
 You can assign a different status code to each location in which a lot resides on Item/Location Information or Location Lot Status Change.
 Form-specific information
 The default for this field comes from the lot status code (including a blank value) that you assign to the item on Item Master Information or Item Branch/Plant Information.
 The code that you enter here serves as the lot status default when you assign an item to a secondary location. |
What You Should Know About

Effects on quantities
If you change an item’s primary location and any of the following quantities exist, the quantities transfer to the new primary location:
- Quantity on backorder
- Quantity on purchase order
- Quantity on work order
- Other purchasing
- Quantity on soft commit

Deleting a primary location
To delete a primary location, you must first change it to a secondary location. No quantities can exist in the locations that you delete.

Reviewing lot information
To display more specific information about the lot, access the Lot Information form. This form displays the item that belongs to the lot, the branch/plant to which the lot is assigned, the lot expiration date, the lot status, and so on.

For more information, see *Viewing Lot Availability (P41280)*.

Entering Item Tax Information

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Branch/Plant Information

You can specify whether an item is subject to tax when you enter branch/plant information. The system uses the values that you enter as default information in the Sales Order Management and Procurement systems.

- *Working With Detail Information (P42114) in the Sales Order Management Guide* and *Entering Tax Information for a Purchase Order Detail Line (P4311) in the Procurement Guide*
To enter tax information

On Item Branch/Plant Information

Complete the following fields:

- Sales Taxable
- Purchasing Taxable

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Taxable</td>
<td>A code that indicates whether the item is subject to sales tax when you sell it. The system calculates tax on the item only if the customer is also taxable.</td>
</tr>
<tr>
<td>Purchasing Taxable</td>
<td>A code that indicates whether the item is subject to sales tax when you purchase it. The system calculates tax on the item only if the supplier is also taxable.</td>
</tr>
</tbody>
</table>

Locating Item Sources

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Branch/Plant Information

You can locate the country in which an item originates and the preferred supplier for an item. Locating these sources allows you to distinguish items based on a country or supplier. You specify this information when you enter branch/plant information for an item.

To locate item sources

On Item Branch/Plant Information

Complete the following fields:

- Country of Origin
- Supplier
Enter Branch/Plant Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country of Origin</td>
<td>A code (system 00/type CN) that identifies the country in which the item originates. This is useful for organizations who must periodically separate their inventory by source.</td>
</tr>
<tr>
<td>Supplier</td>
<td>The address book number of the preferred provider of this item. You can enter the number for the supplier or you can have the system enter it each time that you receive the item from a supplier. You specify whether the system enters the supplier using processing options for Enter Receipts.</td>
</tr>
</tbody>
</table>

Entering Item Reorder Quantities

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Branch/Plant Information

You can specify the minimum, maximum, and normal reorder quantities for an item during your entry of branch/plant information. You can also specify the level of stock at which reordering takes place. The system uses these values for the Enterprise Requirements Planning and Execution system.

To enter item reorder quantities

On Item Branch/Plant Information
1. Access Item Branch Quantities.

![Image of Item Branch Quantities](image.png)

2. On Item Branch Quantities, complete the following fields:
 - Reorder Quantity
 - Maximum Reorder Qty
 - Minimum Reorder Qty
 - Reorder Point
 - Multiple Order Qty
 - Units Per Container
 - Safety Stock

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reorder Quantity</td>
<td>The estimated reorder quantity for an item. You can enter this quantity if</td>
</tr>
<tr>
<td></td>
<td>there is not enough sales history available for the system to accurately</td>
</tr>
<tr>
<td></td>
<td>calculate a reorder quantity.</td>
</tr>
<tr>
<td>Maximum Reorder Qty</td>
<td>The maximum order quantity for an item. You can base the quantity on factors</td>
</tr>
<tr>
<td></td>
<td>other than usage, such as perishability, storage capacity, and so forth.</td>
</tr>
<tr>
<td>Minimum Reorder Qty</td>
<td>The minimum order quantity for an item. You can base the quantity on factors</td>
</tr>
<tr>
<td></td>
<td>other than usage, such as perishability, storage capacity, and so forth.</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Reorder Point</td>
<td>A quantity for an item that specifies when replenishment occurs. Typically, this occurs when the total quantity on-hand plus the quantity on order equal or do not meet a specified quantity. You can enter this quantity or the system can calculate it if there is sufficient sales history. If there is no safety stock quantity defined, the system first calculates the safety stock by multiplying the square root of the average leadtime quantity. Then, the system adds the calculated safety stock quantity to the average leadtime quantity to determine the reorder point. Form-specific information Define the quantity that specifies when replenishment occurs. If you leave this field blank, the system calculates the replenishment quantity by adding the safety stock quantity (defined in the Item Location table (F41021)) to the average leadtime quantity.</td>
</tr>
<tr>
<td>Multiple Order Qty</td>
<td>A multiple for rounding up planned order quantities in MPS/MRP. The system rounds up the planned order quantity to the nearest multiple that you enter in this field.</td>
</tr>
<tr>
<td>Units Per Container</td>
<td>The standard quantity of containers that you use in the manufacturing process (typically, in a repetitive manufacturing environment). The quantity that you enter determines the number of bar code labels that you will need for shipping. It also modifies order release quantities.</td>
</tr>
<tr>
<td>Safety Stock</td>
<td>The quantity of stock kept on hand to cover high-side variations in demand.</td>
</tr>
</tbody>
</table>
Entering Item Branch/Plant Manufacturing Information

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Branch/Plant Information

You can define manufacturing information for an item that is specific to each branch/plant. This information includes:

- **Requirements planning information**
 You enter information about inventory shrinkage for the item to plan for the quantity you need to replace due to shrinkage.

- **Leadtime information**
 You enter leadtime information to calculate the time frames that are necessary to assemble or manufacture an item.

- **Engineering information**
 You enter reference information about the drawing plans for an item, so that you can refer back to the plans.

Complete the following tasks:

- Enter requirements planning information
- Enter leadtime information
- Enter engineering information

What You Should Know About

Default values
Most of the items on Plant Manufacturing Data are identical to those on Manufacturing Values Entry. The system uses the default values from Manufacturing Values Entry.
To enter requirements planning information

On Item Branch/Plant Information

1. Access Plant Manufacturing Data.
2. On Plant Manufacturing Data, complete the following fields:
 - Shrink Factor
 - Shrink Factor Method

To enter leadtime information

On Item Branch/Plant Information

1. Access Plant Manufacturing Data.
2. On Plant Manufacturing Data, complete the following fields:
 - Time Basis
 - Queue Hours
 - Standard Setup Hours
To enter engineering information

On Item Branch/Plant Information

1. Access Plant Manufacturing Data.
2. On Plant Manufacturing Data, complete the following fields:
 - ECO Reason
 - ECO Number
 - ECO Date
 - Item Revision Level

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrink Factor</td>
<td>A fixed quantity or percentage that the system uses to determine inventory shrinkage for an item. The system increases the planned order quantity by this amount in MPS/DRP generation. The shrink factor method you specify for the item determines whether the shrink factor is a percentage or a fixed quantity. If you are entering a percentage, enter 5% as 5.00 and 50% as 50.00.</td>
</tr>
<tr>
<td>Shrink Factor Method</td>
<td>A value that determines whether the shrink factor you enter for this item is a percentage or a fixed quantity. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>% Percentage of order or requested quantity</td>
</tr>
<tr>
<td></td>
<td>F Fixed amount to be added to quantity</td>
</tr>
<tr>
<td>Time Basis</td>
<td>A user defined code (system 30, type TB) that identifies the time basis or rate for machine or labor hours entered for any routing step. You can set rates per unit, per 10, per 1000, and so on. The system uses the values in the Description-2 field on the User Defined Codes form for costing and scheduling calculations. The description is what the code represents, but is not used in calculations.</td>
</tr>
<tr>
<td>Total Queue/Move Hours</td>
<td>The total time (in hours) that an order is expected to be in queue at work centers and moving between work centers. The system stores this value in the Item Branch table (F4102). You can calculate this value using the Leadtime Rollup program or you can enter it manually. When you run the Leadtime Rollup program, the system overrides manual entries with calculated values.</td>
</tr>
<tr>
<td>Setup Labor</td>
<td>The standard setup hours you expect to incur in the normal completion of this item.</td>
</tr>
</tbody>
</table>
Field Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO Reason</td>
<td>A code (table 40/CR) that identifies the reason for the engineering change order.</td>
</tr>
<tr>
<td>ECO Number</td>
<td>The number assigned to an engineering change order.</td>
</tr>
<tr>
<td>ECO Date</td>
<td>The date of the engineering change order.</td>
</tr>
<tr>
<td>Item Revision Level</td>
<td>The revision level for an item. If you enter a revision level, verify that the revision level of the routing for an item matches the revision level on the bill of material for the item.</td>
</tr>
</tbody>
</table>

Duplicating Item Information for Multiple Branch/Plants

From Inventory Management (G41), enter 27

From Inventory Advanced and Technical Operations menu (G4131), choose Item/Branch Duplication

You might have items for which the same information applies across multiple branch/plants. You can enter item information for one branch/plant and then duplicate that information for up to ten other branch/plants by doing the following:

- Use Item Branch Duplication to select individual items for duplication
- Use the Item Branch Duplication batch program to define criteria for items that you want to duplicate

For both procedures, you use processing options to specify the branches for which you are duplicating information. You can also specify additional information to duplicate, such as costs, prices, units of measure, and so on.

If you use Item Branch Duplication to select individual items for duplication, you can set processing options to display up to four search fields that allow you to locate items for a particular branch/plant.
To duplicate item information for multiple branch/plants

On Item/Branch Duplication

1. To specify the branch/plant from which you are duplicating information, complete the following field:
 - Branch Plant
2. To locate the appropriate items, enter search criteria.
3. Select the appropriate items to duplicate.
4. To activate the batch job, exit the form.

What You Should Know About

Primary locations

The system does not duplicate the primary location for an item. The system uses the blank location that you have set up for the branch/plant to which you are duplicating information.

For information about blank locations for branch/plants, see Setting Up Warehouse Locations (P4100).

Processing Options for Item Branch Information - Revisions

PROCESS CONTROL:
1. Enter a ‘1’ to select the Item
Location information screens to automatically call when performing an add or a change. If left blank, screen will not display.

 Classification Codes: ____________
 Cost Revisions (conditional): ____________
 Price Revisions (conditional): ____________
 Unit of Measure: ____________
 Quantities: ____________
 Manufacturing Values: ____________
 Item Profile: ____________
 Bulk Product Information: ____________

2. Enter ‘1’ to use the window version of the screens selected above. If left blank, the full screens will display.

DREAM WRITER VERSIONS:
3. Summary Availability (P41202) ____________
4. Item/Location Information (P41024) ____________
5. Test/Specification Revisions (P3710) ____________

REVISION LEVEL CONTROL:
6. Enter ‘1’ to protect ECO revision information from update.

Processing Options for Item / Branch Duplication

DEFAULT VALUES:
1. Enter the branch/plants to which you want to duplicate the items:
 1) ____________
 2) ____________
 3) ____________
 4) ____________
 5) ____________
 6) ____________
 7) ____________
 8) ____________
 9) ____________
 10) ____________

SCREEN DEFAULTS:
2. Enter the data selection fields you want displayed on the video (Enter the data dictionary field name.):
 Data Item One ____________
 Data Item Two ____________
 Data Item Three ____________
 Data Item Four ____________

3. Enter a ‘1’ to pre-load all selection options with a ‘1’ to duplicate those lines.

FILE UPDATES:
4. Enter a ‘1’ next to each file to duplicate. If left blank, the file will not be duplicated:
UPDATE OPTIONS:
1. Enter the branch/plants to which you want to duplicate the items:
 1) ____________
 2) ____________
 3) ____________
 4) ____________
 5) ____________
 6) ____________
 7) ____________
 8) ____________
 9) ____________
 10) ____________

2. Enter a ’1’ next to each file to duplicate. If left blank, the file will not be duplicated.

 Cost Ledger File (F4105) ____________
 Base Price File (F4106) ____________
 UOM Conversion Factors (F41002) ____________
 Bulk Depot/Product Info. (F41022) ____________
 Warehouse Item Profile (F46010) ____________
 Warehouse Item UOM/Profile (F46011) ____________
Forecasting Review
Forecasting Review

Effective management of distribution and manufacturing activities begins with understanding and anticipating the needs of the market. Implementing a forecasting system allows you to quickly assess current market trends and sales so that you can make informed decisions about your company.

Forecasting is the process of projecting past sales demand into the future. An accurate forecast helps you make operations decisions. For this reason, forecasting should be a central activity in your operations. You can use forecasts to make planning decisions about:

- Customer orders
- Inventory
- Delivery of goods
- Work load
- Capacity requirements
 - Warehouse space
 - Labor
 - Equipment
- Budgets
- Development of new products
- Workforce requirements

The Forecasting system can generate the following types of forecasts:

Detail forecasts
Detail forecasts are based on individual items.

Summary forecasts
Summary (or aggregated) forecasts are based on larger groups, such as a product line.

Planning bill forecasts
Planning bill forecasts are based on groups of items in a bill of material format that reflect how an item is sold, not how it is built.
System Integration

Forecasting is one of many systems that make up the Enterprise Requirements Planning and Execution (ERPx) system. Use the ERPx system to coordinate your inventory, raw material, and labor resources to deliver products according to a managed schedule. ERPx is fully integrated and ensures that information is current and accurate across your business operations. It is a closed-loop manufacturing system that formalizes the activities of company and operations planning, as well as the execution of those plans.

The following systems make up the J.D. Edwards ERPx product group.
Enterprise Requirements Planning and Execution

Strategic Business Plan

- Product Data Management (Systems 30 and 48)
- Product Coding (System 30)
- Configuration Management (System 32)
- Inventory Management (System 41)
- Sales Order Management (Systems 40 and 42)
- Forecasting (System 36)

Tactical Plan

- Resource Requirements Planning (System 33)

Operational Plan

- Distribution Requirements Planning (System 34)
- Master Production Schedule (System 34)
- Material Requirements Planning (System 34)
- Rough Cut Capacity Planning (System 33)
- Capacity Requirements Planning (System 33)

Execution

- Purchase Order Management (Systems 40 and 43)
- Shop Floor Control (System 31)
- Manufacturing Accounting (System 31)
- Finite Scheduler
The Forecasting system generates demand projections that you use as input for J.D. Edwards planning and scheduling systems. These systems calculate material requirements for all component levels, from raw materials to complex subassemblies.

The Resource Requirements Planning (RRP) system uses a forecast of future demand to estimate the time and resources needed to make a product.

The Master Production Schedule (MPS) system plans and schedules what a company expects to manufacture. Data from the Forecasting system is one MPS input that helps determine demand before you execute production plans.

Material Requirements Planning (MRP) is an ordering and scheduling system that explodes the requirements of all MPS parent items to the components. You can also use forecast data as demand input for lower-level MRP components that are service parts with independent demand (demand not directly or exclusively tied to production of a particular product at a particular branch or plant).

Distribution Requirements Planning (DRP) is a management system that plans and controls the distribution of finished goods. You can use forecasting data as input for DRP so you can more accurately plan the demand that you supply through distribution.
Features

You can use the Forecasting system to:

- Generate forecasts
- Enter forecasts manually
- Maintain both manually entered forecasts and forecasts generated by the system
- Summarize the sales order history data in weekly or monthly time periods
- Generate forecasts based on any or all of 12 different formulas that address a variety of forecast situations you might encounter
- Calculate which of the 12 formulas provides the best fit forecast
- Define the hierarchy that the system uses to summarize sales order histories and detail forecasts
- Create multiple hierarchies of address book category codes and item category codes, which you can use to sort and view records in the detail forecast table
- Review and adjust both forecasts and sales order actuals at any level of the hierarchy
- Integrate the detail forecast records into DRP, MPS, and MRP generations
- Force changes made at any component level to both higher levels and lower levels
- Set a bypass flag to prevent changes generated by the force program being made to a level
- Store and display both original and adjusted quantities and amounts
- Attach descriptive text to a forecast at the detail and summary levels

Flexibility is a key feature of the J.D. Edwards Forecasting system. The most accurate forecasts take into account quantitative information, such as sales trends and past sales order history, as well as qualitative information, such as changes in trade laws, competition, and government. The system processes quantitative information and allows you to adjust it with qualitative information. When you aggregate, or summarize, forecasts, the system uses changes that you make at any level of the forecast to automatically update all other levels.

You can perform simulations based on the initial forecast, which allows you to compare different situations. After you accept a forecast, the system updates your manufacturing and distribution plan with any changes you have made.

Forecasting Levels and Methods

You can generate both single-item (detail) forecasts and product line (summary) forecasts that reflect product demand patterns. Select from 12 forecasting
methods, and the system analyzes past sales to calculate the forecast. The forecast includes detail information at the item level and higher-level information about a branch or the company as a whole.

Best Fit

The system recommends the best fit forecast by applying the selected forecasting methods to past sales order history and comparing the forecast simulation to the actual history. When you generate a forecast, the system compares actual sales order histories to forecasts for the months or weeks you indicate in the processing option and computes how accurately each of the selected forecasting methods would have predicted sales. Then, the system recommends the most accurate forecast as the best fit.

The system determines the best fit in the following sequence:

1. Uses each of the methods that you selected in processing options to simulate a forecast for the holdout period.
2. Compares actual sales to the simulated forecasts for the holdout period.
3. Calculates the percent of accuracy or the mean absolute deviation to determine which forecasting method closest matched the past actual sales. The system uses the percent of accuracy or the mean absolute deviation based on the processing options that you select.
4. Recommends a best fit forecast by the percent of accuracy that is closest to 100% (over or under) or the mean absolute deviation closest to zero.
Forecasting Methods

The Forecasting system uses 12 methods for quantitative forecasting. The system also indicates which of the methods provides the best fit for your forecasting situation.

Method 1 – Percent Over Last Year
This method uses the Percent Over Last Year formula to multiply each forecast period by a percentage increase or decrease that you specify in a processing option. This method requires the periods for the best fit plus one year of sales history. It is useful for seasonal items with growth or decline.

Method 2 – Calculated Percent Over Last Year
This method uses the Calculated Percent Over Last Year formula to compare the periods specified of past sales to the same periods of past sales of the previous year. The system determines a percentage increase or decrease, then, multiplies each period by the percentage to determine the forecast.

This method requires the periods of sales order history indicated in the processing option plus one year of sales history. It is useful for short-term demand forecasts of seasonal items with growth or decline.

Method 3 – Last Year to This Year
This method uses last year's sales for the following year's forecast. This method requires the periods best fit plus one year of sales order history. It is useful for mature products with level demand or seasonal demand without a trend.

Method 4 – Moving Average
This method uses the Moving Average formula to average the months that you indicate in the processing option to project the next period. This method requires periods best fit from the processing option plus the number of periods of sales order history from the processing option. You should have the system recalculate it monthly or at least quarterly to reflect changing demand level. It is useful for mature products without a trend.
Method 5 –
Linear Approximation

This method uses the Linear Approximation formula to compute a trend from the periods of sales order history indicated in the processing options and projects this trend to the forecast. You should have the system recalculate the trend monthly to detect changes in trends.

This method requires periods best fit plus the number of periods that you indicate in the processing option of sales order history. It is useful for new products or products with consistent positive or negative trends that are not due to seasonal fluctuations.

Method 6 –
Least Square Regression (LSR)

This method derives an equation describing a straight line relationship between the historical sales data and the passage of time. LSR fits a line to the selected range of data such that the sum of the squares of the differences between the actual sales data points and the regression line are minimized. The forecast is a projection of this straight line into the future.

This method is useful when there is a linear trend in the data. It requires sales data history for the period represented by the number of periods best fit plus the number of historical data periods specified in the processing options. The minimum requirement is two historical data points.

Method 7 –
Second Degree Approximation

This method uses the Second Degree Approximation formula to plot a curve based on the number of periods of sales history indicated in the processing options to project the forecast. This method requires periods best fit plus the number of periods indicated in the processing option of sales order history times three. It is not useful for long-term forecasts.

Method 8 –
Flexible Method (Percent Over n Months Prior)

This method allows you to select the periods best fit block of sales order history starting \(n \) months prior and a percentage increase or decrease with which to modify it. This method is similar to Method 1, Percent Over Last Year, except that you can specify the number of periods that you use as the base.

Depending on what you select as \(n \), this method requires months best fit plus the number of periods indicated in the processing options of sales data. It is useful for a planned trend.
Method 9 –
Weighted Moving Average

The Weighted Moving Average formula is similar to the Method 4, Moving Average formula, because it averages the previous number of months of sales history indicated in the processing options to project the next month’s sales history. However, with this formula you can assign weights for each of the prior periods in a processing option.

This method requires the number of weighted periods selected plus months best fit data. Similar to Moving Average, this method lags demand trends, so it is not recommended for products with strong trends or seasonality. This method is useful for mature products with demand that is relatively level.

Method 10 –
Linear Smoothing

This method calculates a weighted average of past sales data. You can specify the number of periods of sales order history to use in the calculation (from 1 to 12) in a processing option. The system uses a mathematical progression to weigh data in the range from the first (least weight) to the final (most weight). Then, the system projects this information to each period in the forecast.

This method requires the months best fit plus the number of periods of sales order history from the processing option.

Method 11 –
Exponential Smoothing

This method uses one equation to calculate a smoothed average. This becomes an estimate representing the general level of sales over the selected historical range.

This method is useful when there is no linear trend in the data. It requires sales data history for the time period represented by the number of months best fit plus the number of historical data periods specified in the processing options. The minimum requirement is two historical data periods.

Method 12 –
Exponential Smoothing with Trend and Seasonality

The Exponential Smoothing with Trend and Seasonality method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires months best fit plus two years of sales data and is useful for items that have both trend and seasonality in the forecast. Use the processing options to enter the alpha and beta factor rather than have the system calculate them.
See Also

- *Forecast Calculation Examples* in Appendix B of the *Forecasting Guide*

Demand Patterns

The Forecasting system uses sales order history to predict future demand. Different examples of demand follow. Forecast methods available in the J.D. Edwards Forecasting system are tailored for these demand patterns.

Six Typical Demand Patterns

- **Horizontal Demand**
- **Positive Trend Demand**
- **Negative Trend Demand**
- **Seasonal Demand**
- **Trend-Seasonal Demand**
- **Non-Annual Cycle**
You can forecast the independent demand of the following items for which you have past data:

- Samples
- Promotional items
- Customer orders
- Service parts
- Inter-plant demands

You can also forecast demand for the following item types determined by the manufacturing environments in which they are produced:

Make-to-stock
End items to meet customers’ demand that occurs after the product is completed

Assemble-to-order
Subassemblies to meet customers’ option selections

Make-to-order
Raw materials and components stocked in order to reduce lead time

Forecast Accuracy

The following statistical laws govern the accuracy of a forecast:

- A short-term forecast is more accurate than a long-term forecast, because the farther into the future you project the forecast, the more variables can impact the forecast.
- A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel as the forecasts for individual items summarize into the group.
Forecast Considerations

You should not rely exclusively on past data to forecast future demands. The following circumstances might affect your business and require you to review and modify your forecast:

- New products that have no past data
- Plans for future sales promotion
- Changes in national and international politics
- New laws and government regulations
- Weather changes and natural disasters
- Innovations from competition
- Economic changes

You might use any of the following kinds of long-term trend analysis to influence the design of your forecasts:

- Market surveys
- Leading economic indicators
- Delphi panels

See Also

- *Forecast Calculation Examples* in Appendix B of the *Forecasting Guide*

Forecasting Process

You use Extract Sales Order History to copy data from the Sales History table (F42119) into either the Detail Forecast table (F3460) or possibly the Summary Forecast (F3400) table, depending on the kind of forecast you plan to generate.

You can generate detail forecasts or summaries of detail forecasts based on data in the Detail Forecast table. Data from your forecasts can then be revised. The process is illustrated in the following graphic.

The following graphic illustrates the sequences you follow when you use the detail forecasting programs.
Major Tables

Summary Forecast (F3400)
Contains the summary forecasts generated by the system and the summarized sales order history created by the Extract Sales Order History program.

Detail Forecast (F3460)
Contains the detail forecasts generated by the system and the sales order history created by the Extract Sales Actuals program.

Summary Constants (F4091)
Stores the summary constants that you have set up for each product hierarchy.

Sales History (F42119)
Contains past sales data, which provides the basis for the forecast calculations.

Sales Order Detail (F4211)
Provides sales order demand by the requested date. The system uses this table to update the Sales History table for forecast calculations.

Supporting Tables

Item Master (F4101)
Stores basic information about each defined inventory item, such as item numbers, description, category codes, and units of measure.

Branch/Plant Master (F4102)
Defines and maintains warehouse or plant level information, such as costs, quantities, physical locations, and branch level category codes.

Business Unit Master (F0006)
Identifies branch, plant, warehouse, or business unit information, such as company, description, and assigned category codes.

Address Book (F0101)
Stores all address information pertaining to customers, vendors, employees, prospects, and other information.

Forecast Summary Work (F34006)
Ties the summary records (F3400) to the detail records (F3460).
Menu Overview

J.D. Edwards classifies the Forecasting system's menus according to frequency of use.

Periodic Processes
- Periodic Forecasting Operations G3421

Setup Processes
- Forecasting Setup G3441

Fast Path Commands

The following chart illustrates the fast path commands that you can use to move among the Forecasting menus. From any menu, enter the fast path command at the command line.

<table>
<thead>
<tr>
<th>Fast Path Command</th>
<th>Menu</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFOR</td>
<td>G3421</td>
<td>Periodic Forecasting Operations</td>
</tr>
<tr>
<td>SFOR</td>
<td>G3441</td>
<td>Forecasting Setup</td>
</tr>
</tbody>
</table>
Working with Detail Forecasts

After you set up the actual sales history on which you plan to base your forecast, you generate the detail forecast. You can then revise the forecast to account for any market trends or strategies that might make future demand deviate significantly from the actual sales history.

Working with detail forecasts includes the following tasks:

- Creating detail forecasts
- Reviewing detail forecasts
- Revising detail forecasts

Creating Detail Forecasts

From Material Planning Operations (G34), choose Forecasting

From Periodic Forecasting Operations (G3421), choose Create Detail Forecast

Create Detail Forecast applies multiple forecasting methods to past sales histories and generates a forecast based on the method that is calculated to provide the most accurate prediction of future demand. The program can also calculate a forecast based on a selected method.
When you run Create Detail Forecast, the system:

- Extracts sales order history information from the Detail Forecast table (F3460)
- Calculates the forecasts using methods that you select
- Calculates the percent of accuracy or the mean absolute deviation for each selected forecast method
- Creates a simulated forecast for the months indicated in the processing option
- Recommends the best fit forecast method
- Creates the detail forecast in either dollars or units from the best fit forecast

The system designates the extracted actual records as type AA and the best fit model as BF. Unlike forecast types 01 through 12, these forecast type codes are not hard-coded, so you can specify your own codes. The system stores both types of records in the Detail Forecast table. The system does not automatically save the other forecast types 01 through 12 unless you set the processing options to do so.

This program allows you to:

- Specify the number of months of actual data to use to create the best fit
- Forecast for individual large customers for all methods
- Run the forecast in proof or final mode
- Create zero or negative forecasts, or both
- Run the forecast simulation interactively

Processing Options for Forecast Generation

FORECASTING METHODS:
Enter a ‘1’ by the method(s) desired:
1. Percent Over Last Year
 a. Enter the percentage of change over last year. For example, use 1.10 for a 10% increase, or 0.97 for a 3% decrease.

2. Calculated Percent Over Last Year
 a. Enter the number of periods to include in the percentage.

3. Last Year to This Year

4. Moving Average
 a. Enter the number of periods to include in the average.

5. Linear Approximation
 a. Enter the number of periods to
include in the ratio.

6. Least Squares Regression
 a. Enter the number of periods to include in regression.

7. Second Degree Approximation
 a. Enter the number of periods to include.

8. Flexible Method (Percent over N periods prior.)
 a. Enter the number of periods prior.
 b. Enter the percent over the prior period.

9. Weighted Moving Average
 a. Enter the number of periods
 b. Weight for one period prior
 c. Weight for two periods prior
 d. Weight for three periods prior
 e. Weight for four periods prior
 f. Weight for five periods prior
 g. Weight for six periods prior
 h. Weight for seven periods prior
 i. Weight for eight periods prior
 j. Weight for nine periods prior
 k. Weight for ten periods prior
 l. Weight for eleven periods prior
 m. Weight for twelve periods prior

 NOTE: Weights must add up to 1.
 If weights are entered for periods greater than the number of periods to include, they will not be used.
 If no weight is entered for a period within the number of periods to include, a zero weight will be used for that period.

10. Linear Smoothing
 a. Enter the number of periods to include in smoothing average.

11. Exponential Smoothing
 a. Enter the number of periods to include in smoothing average.
 b. Enter the alpha factor.
 If left blank, the alpha will be calculated.

12. Exponential Smoothing with Trend and Seasonality Factors
 a. Enter the alpha factor.
 If left blank, alpha will be calculated.
 b. Enter the beta factor.
 If left blank, beta will be calculated.
 c. Enter a ‘1’ to include seasonality in the calculation.
 If left blank, seasonality will not be included.
RECORD TYPES TO USE:
13. Enter the ‘Actual Type’ in which the actual information is stored. ____________
14. Enter the Forecast Type to use when creating forecasts. ____________

SUMMARY RECORDS:
15. Enter a ‘1’ to create summary records for large customers. ____________
(ABC type = ‘A’.)

FORECAST TYPE AND RANGE:
16. Enter a ‘1’ to specify weekly forecasts. If left blank, monthly forecasts will be generated. ____________
17. Enter the date to start forecasts. If left blank, today’s date will be used. ____________
18. Enter the number of periods to forecast. If left blank, three periods will be used. ____________
19. Enter the number of periods of actual data to be used to calculate the Best Fit forecast. If left blank, three periods of data will be used. ____________
20. Enter a ‘1’ to calculate best fit using Mean Absolute Deviation. If left blank, Percent of Accuracy will be used. ____________
21. Enter a ‘1’ to run the report in final mode. If left blank, the report will run in proof mode. ____________

FISCAL DATE PATTERN:
22. Enter the Fiscal Date Pattern Type to use for forecast dating. If left blank, the type specified for company ‘00000’ will be used. (See Company Names-Fiscal Patterns ‘P00105’ for more information). ____________

FORECAST AMOUNTS/QUANTITIES:
23. Enter a ‘1’ to forecast using amounts. If left blank, quantities will be used to forecast. ____________
What You Should Know About Processing Options

Saving records for forecast types 01 to 12 to the Detail Forecast table (F3460)
To save records for any of the forecast types to the Detail Forecast table (F3460), enter the corresponding number in the processing options (01 for type 01, 04 for type 04, and so on). To include any forecast types in a best fit calculation without saving the records, enter 1 (without the 0 preceding it) in the processing options for each type that you want to include.

Reviewing Detail Forecasts

From Material Planning Operations (G34), choose Forecasting

From Periodic Forecasting Operations (G3421), choose Review Forecast

You can display information by planner, master planning family, or both. You can then change the forecast type to compare different forecasts to the actual demand. You can also:

- Display the data in summary or detail mode. Detail mode lists all item numbers. Summary mode consolidates data by master planning family.
- Display all information stored in the Detail Forecast table.
- Choose between quantities and amounts to review.

To review detail forecasts

On Review Forecast
5. Complete the following fields:
 - Year
 - Forecast Type
 - Branch/Plant

6. Complete one of the following fields:
 - Master Planning Family
 - Planner Number

7. Review the following fields:
 - Quantities Forecast
 - Quantities Sales Order History
 - Percent (%)

8. To access the amounts fields, choose Amounts/Quantities.

9. Review the following fields:
 - Amounts Forecast
 - Amounts Sales Order History

10. To display data in detail mode, choose the Detail selection on an item line.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>The calendar year.</td>
</tr>
</tbody>
</table>
Manufacturing and Distribution Planning

#### Field	Explanation
Forecast Type | A code from the user defined code table 34/DF that indicates either:
- The forecasting method used to calculate the numbers displayed about the item
- The actual historical information about the item

Bch/Plt | Identifies a branch or plant.

NOTE: You can enter numbers and characters in this field. The system right-justifies them (for example, C0123 appears as _ _ _ C0123). You cannot locate business units for which you have no authority.

............. *Form-specific information*

On this form, this is the branch/plant for which you review and revise a forecast.

Master Planning Family | A code (table 41/P4) that represents an item property type or classification, such as commodity type, planning family, or so forth. The system uses this code to sort and process like items.

This field is one of six classification categories available primarily for purchasing purposes.

Planner Number | The address number of the material planner for this item.

............. *Form-specific information*

You can use this field, along with the Master Planning Family and Year fields, to display specific forecast items. For example, you can show items within a planning family that were forecasted by a specific planner for a specific year.

Quantities Forecast | The quantity of units affected by this transaction.

............. *Form-specific information*

The quantity of units in the sales order history on which a forecast is based.

Processing Options for Forecast Review

1. **Forecasts are driven by quantities.** Enter a 1 if you would prefer to see amounts as the primary forecast.

2. **You may have multiple concurrent forecasts.** Enter the default forecast type

3. **Enter the forecast type for displaying the actual quantities and amounts.**
Revising Detail Forecasts

From Material Planning Operations (G34), choose Forecasting

From Periodic Forecasting Operations (G3421), choose Enter/Change Forecast

After you generate and review a forecast, you can revise the forecast to account for changes in consumer trends, market conditions, competitors’ activities, your own marketing strategies, and so on. When you revise a forecast, you can:

- Change information in an existing forecast manually
- Add a forecast
- Delete a forecast

You can access forecasts that you want to revise by item number, branch plant, forecast type, or any combination of these elements. If your forecast is extensive, you can specify a beginning request date to limit the display.

As you revise the forecast, be aware that the following combination must be unique for each item number and branch record:

- Forecast type
- Request date
- Customer number

For example, if two records have the same request date and customer number, they must have different forecast types.

Example: Revising a Detail Forecast

You expect increased sales for a specific month. On Enter/Change Forecast, you manually increase the forecast for that month, and add a qualitative forecast for new items with no sales history.

In the following example, the forecast for the CD boxes has been increased for the week of 2/13/98 from 330 to 500 to accommodate the increased sales.
To revise detail forecasts

On Enter/Change Forecast

1. To choose the forecast you want to revise, review the following fields:
 - Branch/Plant
 - Forecast Type
 - U/M (Unit of Measure) (Optional)
 - Item Number
2. Complete the following field:
 - Quantity Adjusted
3. To access amounts, choose Amounts/Quantities.
4. Revise the following field:
 - Amount Adjusted (F15)
5. To enter descriptive text, access Forecast Text.
6. On Forecast Text, enter any descriptive text for the forecast.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bch/Plt</td>
<td>Identifies a branch or plant.</td>
</tr>
<tr>
<td></td>
<td>NOTE: You can enter numbers and characters in this field. The system right-justifies them (for example, C0123 appears as _ _ _ C0123). You cannot locate business units for which you have no authority.</td>
</tr>
<tr>
<td></td>
<td>................. Form-specific information On this form, this is the branch/plant for which you are reviewing and revising a sales order history or forecast.</td>
</tr>
<tr>
<td>Forecast Type</td>
<td>A code from the user defined code table 34/DF that indicates either:</td>
</tr>
<tr>
<td></td>
<td>- The forecasting method used to calculate the numbers displayed about the item</td>
</tr>
<tr>
<td></td>
<td>- The actual historical information about the item</td>
</tr>
<tr>
<td>U/M</td>
<td>A user defined code (00/UM) that indicates the quantity in which to express an inventory item, for example, CS (case) or BX (box).</td>
</tr>
<tr>
<td></td>
<td>................. Form-specific information The Material Requirements Planning system converts this to the primary unit of measure for planning purposes.</td>
</tr>
<tr>
<td>Item Number</td>
<td>A number that the system assigns to an item. It can be in short, long, or 3rd item number format.</td>
</tr>
<tr>
<td>Original Adjusted</td>
<td>The quantity of units affected by this transaction.</td>
</tr>
<tr>
<td></td>
<td>................. Form-specific information The original quantity of units forecasted for production during a planning period.</td>
</tr>
</tbody>
</table>
Processing Options for Detail Forecast Maintenance

DEFAULT VALUES:
1. You may have multiple concurrent forecasts. Enter the default forecast type.

2. Enter a '1' to default the forecast type from the heading into the detail records on an add.

DISPLAY MODE:
3. The forecast is driven by quantities. Enter a '1' if you would prefer to see amounts as the primary forecast.

Exercises
See the exercises for this chapter.
Resource Requirements Planning
Resource Requirements Planning

Objectives

- To create a profile of a work center’s load that the system uses to validate a forecast
- To determine available capacity
- To determine long-range requirements for a work center
- To review the actual and planned load on work centers, either together (as a dispatch group) or individually
- To understand the different ways you can view actual and planned load information
- To set up Resource Requirements Planning (RRP)

About Resource Requirements Planning

Strategic Business Plan

Forecasting

Tactical Plan

Master Scheduling

Resource Requirements Planning

Rough Cut Capacity Plan
You generate a resource requirements plan after you generate your long-term forecast, but before you run the Master Scheduling program. Resource Requirements Planning uses data from a forecast of future sales to estimate the time and resources that are required to make a product.

RRP can help you resolve long-range planning issues, such as:

- Expanding existing facilities
- Acquiring new facilities
- Staffing loads
- Determining capital expenditures for equipment

RRP enables you to support your company’s strategic business plan with a realistic tactical plan that:

- Is shorter in range than the strategic plan and has a planning horizon of 12 months to 3 years
- Allows planning at the product family level and is in greater detail than the strategic plan
- Validates the monetary amounts allotted to the business plan as closely as possible

How Do You Use Demand Forecasting?

Demand forecasting is the logical starting point for developing a resource requirements plan. However, it is important to remember that the demand forecast is not the actual plan, but that you use it only as an input to the plan. Because you use the forecast in place of work orders, RRP provides an estimate of the time and resources that you will need to produce a product.

Manufacturing must determine whether the production plan is supportable as is or if additional future resource requirements are needed, such as:

- Additional skilled labor
- New machinery
- New facilities or additional real estate
What Factors Should You Consider?

You must consider the following factors when you generate the resource requirement plan:

- Include allowances for forecast error
- Use inventory to absorb fluctuations in demand and to level the work center load
- Weigh the cost of carrying inventory versus the cost of lost revenues if you are out of stock

How Do You Determine Long-Range Capacity Plans?

The Resource Requirements Planning program generates a capacity plan by critical work center. In order to answer long-range planning questions, you need to know your current capacity and the requirements to support the planned work load.

Complete the following tasks:

- Enter work centers
- Determine available capacity
- Determine long-range load
- Generate resource requirements plans
- Review resource requirements plans
- Set up resource requirements plans

Entering work centers defines the work center as machine or labor-paced and whether it is a critical work center. You also specify other values, such as the percent efficiency and utilization of the work center and the crew.

After you estimate how much capacity you will need to produce a product, you must determine how much capacity you actually have. You determine a work center’s available capacity on a given day by entering resource units.

Long-range load is an estimate of how many load hours are required to meet sales projections. To determine long-range load, the system uses resource profiles. The resource profile is a list of all work centers and their load requirements for a master scheduled item.

After you have entered resource units and resource profiles, you generate the resource requirements plan to obtain long-range estimates of the capacity needs at your work centers.
After you generate the resource requirements plan, the system creates a load profile that shows the load during each planning period for critical work centers. You can view this as a spreadsheet or as a graphical display. You can also review summaries of each period.

The system records resource requirements planning information in the following tables:

<table>
<thead>
<tr>
<th>Resource Units (F3007)</th>
<th>The Resource units table contains the available capacity for each work center by day, month, and year.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Center Master (F3006)</td>
<td>The Work Center Master table contains detail data about all defined work centers.</td>
</tr>
<tr>
<td>Resource Profile (F3303)</td>
<td>The Resource Profile contains all resource profiles that are used in RRP.</td>
</tr>
<tr>
<td>Forecast (F3460)</td>
<td>The forecast table contains the forecast data that the resource requirements plan validates. It is also used as input for distribution requirements planning, material requirements planning, or the master production schedule.</td>
</tr>
</tbody>
</table>
Entering Work Centers for Resource Requirements Planning

From Resource & Capacity Planning (G33), choose Periodic Resource Planning

From Periodic Resource/Capacity Planning (G3321), choose Enter/Change Work Centers

Enter work center information that corresponds to the facilities on your shop floor. Entering work centers for RRP defines the work center as machine or labor-paced and whether it is a critical work center. You also specify other values, such as the percent efficiency and utilization of the work center and the crew.

You can also maintain general information about a work center, including:

- Pay points
- Prime load codes
- Number of machines and workers
- Crew size
- Backflush locations

Before You Begin

☐ Set up your work centers and dispatch groups as valid business units on the Single Business Unit Revisions form. See Setting Up Business Units in the General Accounting I Guide.

To enter work centers for Resource Requirements Planning

On Enter/Change Work Centers
1. Complete the following field:
 - Work Center

2. Complete the following optional fields:
 - Dispatch Group
 - Work Center Type
 - Calendar Name
 - Prime Load Code
 - Critical Work Center
 - Branch
 - Resource Offset
 - Efficiency
 - Utilization
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Work Center | An alphanumeric field that identifies a separate entity within a business for which you want to track costs. For example, a business unit might be a warehouse location, job, project, work center, or branch/plant.
You can assign a business unit to a voucher, invoice, fixed asset, and so on, for purposes of responsibility reporting. For example, the system provides reports of open accounts payable and accounts receivable by business units to track equipment by responsible department.
Security for this field can prevent you from locating business units for which you have no authority.
Note: The system uses this value for Journal Entries if you do not enter a value in the AAI table. |
| Dispatch Group | A super category code to group work centers within an overall business unit. For example, you can group like machines operating out of several work centers that report to one business unit under a dispatch group. |
| Work Center Type | Defines the type of work center. Possible values are:
 Blank Stand alone work center
 1 Production line in a repetitive environment
 2 Reporting work station within a production line

Form-specific information
For repetitive manufacturing, the system verifies the value is not valid as a work center for an operation from the routing. |
| Calendar Name | Enter the value of the calendar which corresponds to the calendar type. For example, if the calendar type is ROUTE, enter a valid route code to display the calendar for a particular route. |
| Critical Work Center| A code that identifies the work center as critical or not critical when the system calculates capacity. Valid values are:
N Not a critical work center
1 A critical work center in calculating resource requirement planning only
2 A critical work center in calculating capacity requirements planning only
3 A critical work center in calculating resource requirements planning and capacity requirements planning
4 Not a capacity work center (will not be generated in capacity planning)

NOTE: The system displays Type 3 work centers whenever type 1 or type 2 is selected in this field. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Branch/Plant | A code that represents a high-level business unit. It can be used to reference a branch or plant that might have departments or jobs, which represent lower-level business units (data item MCU), subordinate to it. For example:
- Branch/Plant (MMCU)
- Dept A (MCU)
- Dept B (MCU)
- Job 123 (MCU)
Business unit security is based on the higher-level business unit. |
| Resource Offset | A value used in the Resource Profile table (F3303) to determine the number of days that the actual use of a work center resource should be offset from the forecasted need date. |
| Efficiency | A user defined value that indicates how efficiently a work center operates. This value usually refers to people efficiency. When you enter a value in this field, and the Modify Cost by Work Center Efficiency field in the Job Shop Manufacturing Constants table (F3009) is set to Y, the system creates a new cost component (B4) from the cost calculated from the direct labor cost (B1). The system also uses this value to calculate rated capacity.
Example: If the constant is set to Y, the value of this field is 80%, and the direct labor cost is 10, the system creates a B4 cost component for 2 in the Item Cost Component Add-Ons table (F30026).
Enter percents as whole numbers, for example, enter 80% as 80.00. |
| Utilization | A percentage that indicates how intensively a work center is being used. This value usually refers to machine use. It is the ratio of the direct time charged for production activities to the planned hours. This value is also used to calculate rated capacity.
Enter percents as whole numbers, for example, enter 80% as 80.00. |
Determine Available Capacity

Determining Available Capacity

After estimating how much capacity you need to produce a product, you must determine how much capacity you actually have. You determine a work center’s available capacity on a given day by entering resource units. The system uses this information to backschedule work orders in the Shop Floor Control system and to determine available hours for capacity planning.

You can either enter resource units manually or have the system generate the resource units. Enter units manually if you need to make adjustments. Use the Generate Resource Units program to automatically recalculate the work center hours. The system generates resource units based on hours (HR) unit of measure.

Complete the following tasks:

- Enter resource units manually (optional)
- Generate resource units

Before You Begin

- Verify that work centers exist for all resource units that you enter. See Entering Work Centers for Resource Requirements Planning.
- Set a default unit of measure in the processing options.

What You Should Know About

Using different units of measure

You can assign resource units for different units of measure in different work centers. For example, you might want to estimate the square footage you need for storage of items as well as the hours needed to produce an item.
Entering Resource Units Manually

From Resource & Capacity Planning (G33), choose Periodic Resource Planning

From Periodic Resource/Capacity Planning (G3321), choose Enter/Change Resource Units

Enter resource units manually if you need to make adjustments to them. For example, you might need to make adjustments to account for machine downtime or employee vacations.

To enter resource units manually

On Enter/Change Resource Units

1. Complete the following required field:
 - Work Center

2. Complete the following optional fields:
 - Unit of Measure
 - Shift Code
 - Efficiency
 - Utilization
 - Daily Resource Units
3. Review the following field:
 - Total Resource Units

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit of Measure</td>
<td>A user defined code (system 00/type UM) that identifies the unit of measurement for an amount or quantity. For example, it can represent a barrel, box, cubic yard, gallon, an hour, and so on.</td>
</tr>
<tr>
<td>Shift Code</td>
<td>A user defined code (00/SH) that identifies daily work shifts. In payroll systems, you can use a shift code to add a percent or amount to the hourly rate on a timecard. For payroll and time entry: If an employee always works a shift for which a shift rate differential is applicable, enter that shift code on the employee’s master record. When you enter the shift on the employee’s master record, you do not need to enter the code on the timecard when you enter time. If an employee occasionally works a different shift, you enter the shift code on each applicable timecard to override the default. Form-specific information You can view the total resources available for a given day by entering an asterisk (*) in this field. For repetitive manufacturing, enter a 1–6 to allow the system to display a specific shift's units, or enter a * to view the total resource availability for the specified time period. While this program displays the total units for the shift/day for work centers defined with a standard capacity and unit of measure in those units, the system stores the data in hours.</td>
</tr>
<tr>
<td>Total Resource Units</td>
<td>The total resource units for the month.</td>
</tr>
</tbody>
</table>

What You Should Know About

Changing resource unit information

You can change the values on the Enter/Change Resource Units form to account for scheduled or unscheduled downtime, additional shifts, or vacation time. However, each time you run Refresh Resource Units, the program recalculates the form values and overwrites your manual changes based on information in the Work Center Master table (F5006), the Shop Floor Calendar program, and the Manufacturing Constants table (F5009).
Processing Options for Work Center Resource Units Revisions

Enter the value to be defaulted into the following fields:

1. Unit of Measure: ____________

Generating Resource Units

From Resource & Capacity Planning (G33), choose Periodic Resource Planning

From Periodic Resource/Capacity Planning (G3321), choose Refresh Resource Units

Run this program to automatically recalculate the work center hours. You can view the results on Enter/Change Resource Units.

You should run this program whenever you revise the hours per day on the Manufacturing Constants, the number of machines, or the number of employees assigned to work centers. You can also run the program to define resource units for specific time periods.

The system recalculates the resource units for a work center based on the following information:

- Hours per day in the Work Center Master table (F3006)
- Shop Floor Calendar
- Manufacturing Constants table

Any manual changes that you have made to the units on Enter/Change Resource Units will be overwritten when you run Refresh Resource Units.

Before You Begin

☐ Set up manufacturing constants. See Setting up DRP, MPS, and RCCP.

☐ Determine the branch/plants for which you want to generate resource units.

☐ Verify that a current shop calendar for the time period you specify is set up.
What You Should Know About

Resource unit calculations

The program uses the following resource unit calculation for machine-related hours:

- Prime load code = C or M
 Number of machines \(\times \) work hours per day

The program uses the following resource unit calculation for labor-related hours:

- Prime load code = L or B
 Number of employees \(\times \) work hours per day

Processing Options for Work Center Resource Units Generation

Enter the “Start” date for the Resource Units generation process.

Enter the “End” date for the Resource Units generation process.

Enter the Branch/Plant to be processed.
Determine Long-Range Load

Determining Long-Range Load

Long-range load is an estimate of how many load hours are required to meet sales projections. To determine long-range load, the system uses resource profiles. The resource profile is a list of all work centers and their load requirements for a master scheduled item. It is the sum of all labor, machine, and setup hours required for all work centers and is for all parts in the master schedule items’ multi-level bill of material.

You can manually enter a resource profile or have the system generate the profile. You manually enter the profile if you have not defined bills of material (BOMs) and routings for an end item. You can also use the manual method for prototype items and new products. You can have the system generate the profile if the BOMs and routings are available.

Complete the following tasks:

- Define resource profiles manually
- Generate resource profiles

Defining Resource Profiles Manually

From Resource & Capacity Planning (G33), choose Periodic Resource Planning

From Periodic Resource/Capacity Planning (G3321), choose Enter/Change Resource Profile

You manually enter the profile if you have not defined bills of material (BOMs) and routings for an end item. You can also use the manual method for prototype items and new products. If BOMs and routings are available, the system can generate the profile.

Before You Begin

- Enter item branch/plant information. See Setting Up Branch/Plant Information in the Inventory Management Guide.
To define a resource profile manually

On Enter/Change Resource Profile

1. Complete the following field:
 - Item Number
2. Complete the following optional fields:
 - Work Center
 - Units
 - Unit of Measure
 - Offset
3. Access the detail area.
4. Complete the following optional fields or allow the system to enter a default:
 - Effective From
 - Effective Thru
 - Unit Type
 - Time Basis

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>The quantity of units affected by this transaction.</td>
</tr>
<tr>
<td>Offset</td>
<td>A value used in the Resource Profile table (F3303) to determine the number of days that the actual use of a work center resource should be offset from the forecasted need date.</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Eff From</td>
<td>A date that indicates one of the following:</td>
</tr>
<tr>
<td></td>
<td>• When a component part goes into effect on a bill of material</td>
</tr>
<tr>
<td></td>
<td>• When a routing step goes into effect as a sequence on the routing for an item</td>
</tr>
<tr>
<td></td>
<td>• When a rate schedule is in effect</td>
</tr>
<tr>
<td></td>
<td>The default is the current system date. You can enter future effective dates so that the system plans for upcoming changes. Items that are no longer effective in the future can still be recorded and recognized in Product Costing, Shop Floor Control, and Capacity Requirements Planning. The Material Requirements Planning system determines valid components by effectivity dates, not by the bill of material revision level. Some forms display data based on the effectivity dates you enter.</td>
</tr>
<tr>
<td>Eff Thru</td>
<td>A date that indicates one of the following:</td>
</tr>
<tr>
<td></td>
<td>• When a component part is no longer in effect on a bill of material</td>
</tr>
<tr>
<td></td>
<td>• When a routing step is no longer in effect as a sequence on the routing for an item</td>
</tr>
<tr>
<td></td>
<td>• When a rate schedule is no longer active</td>
</tr>
<tr>
<td></td>
<td>The default is December 31 of the default year defined in the Data Dictionary for Century Change Year. You can enter future effective dates so that the system plans for upcoming changes. Items that are no longer effective in the future can still be recorded and recognized in Product Costing, Shop Floor Control, and Capacity Requirements Planning. The Material Requirements Planning system determines valid components by effectivity dates, not by the bill of material revision level. Some forms display data based on the effectivity dates you enter.</td>
</tr>
<tr>
<td>Unit Type</td>
<td>A code that indicates the type of resource unit associated with this work center. Possible types are:</td>
</tr>
<tr>
<td></td>
<td>1 Run Labor Hours</td>
</tr>
<tr>
<td></td>
<td>2 Setup Labor Hours</td>
</tr>
<tr>
<td></td>
<td>3 Machine Hours</td>
</tr>
<tr>
<td></td>
<td>9 Miscellaneous (Storage Space, and so on)</td>
</tr>
<tr>
<td>Time Basis</td>
<td>A user defined code (system 30, type TB) that identifies the time basis or rate for machine or labor hours entered for any routing step. You can set rates per unit, per 10, per 1000, and so on.</td>
</tr>
<tr>
<td></td>
<td>The system uses the values in the Description-2 field on the User Defined Codes form for costing and scheduling calculations. The description is what the code represents, but is not used in calculations.</td>
</tr>
</tbody>
</table>
Generating Resource Profiles

From Resource & Capacity Planning (G33), choose Periodic Resource Planning

From Periodic Resource/Capacity Planning (G3321), choose Generate Resource Profile

If you have defined bills of material (BOMs) and routings for an end item and all its subassemblies, you can run Generate Resource Profile to automatically generate the resource profile. The program calculates the load on a work center by extending the hours in the routing by the forecasted quantities for the master scheduled items.

Resource Profile Generation creates units of measure only in hours (HR). Enter the resource profile manually if you want to use other units of measure.

Generate Resource Profile changes or updates the resource profile using components with effectivity dates within the period that you specify. The specific items affected by the program are determined by the following factors:

- The system retrieves routings only for BOM components that are effective within the range of effectivity dates in the processing options for the regeneration.
- The system creates resource profiles only from BOM components with effectivity dates that are within the effectivity dates assigned to the item and the processing options.
- The Effective From date in the resource profile is the latest of the dates in the processing option, the BOM, or the routing Effective From dates.
- The resource profile Effective Through date is the earliest of the dates in the processing option, the BOM, or the routing Effective From dates.
The following graphic illustrates all the BOMs and routings with effectivity dates that are within the Effective From and Effective Through dates.

Before You Begin

- Enter all applicable bills of materials, work centers, and routings. See Entering Work Centers in the Product Data Management Discrete Manufacturing Guide.

Processing Options for Resource Profile Regeneration

1. Enter the effectivity dates for the regeneration:
 - Effective From: ____________
 - Effective Thru: ____________
Generate Resource Requirements Plans

Generating Resource Requirements Plans

From Resource & Capacity Planning (G33), choose Periodic Resource Planning

From Periodic Resource/Capacity Planning (G3321), choose Resource Requirements Plan

After you have entered resource units and resource profiles, you run the program that generates the resource requirements plan to obtain long-range estimates of the capacity needs at your work centers, such as:

- The number of production staff that you need to hire now to meet future production needs
- The number of additional machines you will need for a new product line
- What real estate you will need to buy for additional facilities

Because you use the forecast in place of work orders for long-range planning, the data that this program creates is an estimate of capacity needs based on the forecast. The resource profile offsets required dates for capacity.

The types of data you can create include:

- Over- or under-capacity messages
- New load profile information based on the type of work center load:
 - Rated profile is the available units from the Resource Units table (F3007).
 - Loaded profile is the forecasted load derived from the master planned items' forecasts and their resource profiles.
 - Percent resource used is the loaded profile divided by the rated profile.
 - Resource available is the rated profile minus the loaded profile
 - Accumulated resources available is a running total of the resources available
- Period summaries about work centers
Before You Begin

- Verify that resource units exist for all work centers in your facility. See Determining Available Capacity.

- Verify that resource profiles exist for all master schedule items. See Determining Long-Range Load.

- Verify that the resource profile is set up for the appropriate units of measure. You can use a maximum of five units of measure. See Determining Long-Range Load.

- Create a detail forecast for the master scheduled items using Enter/Change Forecasts. See Working with Detail Forecasts in the Forecasting Guide.

- Determine which forecast types you want to use in the generation. You can use a maximum of five. See Setting Up Summary Forecasts in the Forecasting Guide.

- Set up the shop calendar for all summary time periods for which you want to generate RRP. See Setting Up the Shop Floor Calendar in the Shop Floor Control Discrete Manufacturing Guide.

See Also

- Reviewing Resource Requirements Plans (P3313)
Processing Options for Resource Requirements Planning Regeneration

1. Enter the Start Date for Resource Requirements Planning Regeneration.

2. Enter the Planning Periods:
 (Maximum of 52 Periods.)
 - Weeks (e.g. 12 weeks)
 - Months (e.g. 24 months)

3. Past Due Information:
 Enter the number of periods:
 (0, 1, or 2 periods are allowed and 0 is the default)

4. Enter the percent under rated capacity to generate a Under Capacity Message.

5. Enter the percent over rated capacity to generate a Over Capacity Message.

6. Enter the Forecast Type to be Read.

7. Enter the Branch to be processed.

8. Enter the Unit of Measure to Process.

9. Enter a '1' to Roll the Work Centers into their Dispatch Group.

Data Selection for Critical Work Centers

The options you have for data selection determine whether to process only critical work centers or to process all work centers. The choices in the Critical Work Center data selection option are:

N Process only non-critical work centers

1 Process critical work centers in calculating Resource Requirements Planning only

2 Process critical work centers in calculating Resource Requirements Planning and Capacity Requirements Planning

4 Not a Capacity Work Center (will not be generated in the Capacity Planning System)

The system also displays Type 3 work centers whenever you select Type 1 or Type 2.
Data Selection for Branch/Plant and Dispatch Group

You can select the following data for planning facilities and dispatch groups:

- A specific planning facility and/or the dispatch groups
- A group of planning facilities and/or the dispatch groups using the *RANGE or *VALUE
Review Resource Requirements Plans

Reviewing Resource Requirements Plans

When you generate a resource requirements plan, the system creates a time series that shows the load during each planning period for a work center. You can view the time series as a spreadsheet or as a graphical display. If you have organized several work centers as a dispatch group according to common functions, similar operations, or steps in routing, you can view the group to see how the production plan affects capacity of the work centers as a group.

Complete the following tasks:

- Review dispatch groups for Resource Requirements Planning
- Review work center load for Resource Requirements Planning
- Review period summaries
- Review message detail
- Validate resource requirements plans

You can review summaries of each period to determine the load that is placed on a work center by each item or order. You can also review messages for each work center and delete, clear, or hold messages.

If the system encounters over- or under-capacity conditions, you can review the plan and identify the periods or work centers in which the conditions occur. It might be necessary to adjust the forecast or capacity and generate the RRP again.
Reviewing Dispatch Groups for Resource Requirements Planning

From Resource & Capacity Planning (G33), choose Daily Resource Planning

From Daily Resource Requirements Planning (G3311), choose Review Dispatch Group

If you have several work centers that are organized as a dispatch group, you can view the group to determine how capacity affects all of the work centers in the group. Dispatch groups enable you to organize work centers according to common functions, similar operations, or steps in routing.

When you review dispatch groups, you can also review messages about all the work centers in the group and use that information to redistribute the load within the group.

To review dispatch groups for Resource Requirements Planning

On Review Dispatch Group

1. Complete the following field:
 - Dispatch Group
2. Complete the following optional fields:
 - Critical Work Center
 - Message Type
 - Unit of Measure
 - Work Center Branch

3. Review the following field:
 - Outstanding Messages

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Type</td>
<td>A code that distinguishes different messages generated in the Distribution Requirements Planning/Master Production Schedule/Material Requirements Planning system. Valid codes are:</td>
</tr>
<tr>
<td></td>
<td>A Warning messages (user controlled)</td>
</tr>
<tr>
<td></td>
<td>B Order and expedite</td>
</tr>
<tr>
<td></td>
<td>C Cancel</td>
</tr>
<tr>
<td></td>
<td>D Defer</td>
</tr>
<tr>
<td></td>
<td>E Expedite</td>
</tr>
<tr>
<td></td>
<td>F Frozen order (user controlled)</td>
</tr>
<tr>
<td></td>
<td>G Increase order quantity to (user controlled)</td>
</tr>
<tr>
<td></td>
<td>H Decrease rate quantity to</td>
</tr>
<tr>
<td></td>
<td>I Increase rate quantity to</td>
</tr>
<tr>
<td></td>
<td>L Decrease order quantity to (user controlled)</td>
</tr>
<tr>
<td></td>
<td>M Manual reminder</td>
</tr>
<tr>
<td></td>
<td>N Create rate</td>
</tr>
<tr>
<td></td>
<td>O Order</td>
</tr>
<tr>
<td></td>
<td>P Firm order</td>
</tr>
<tr>
<td></td>
<td>S FPO adjustment suggestion</td>
</tr>
<tr>
<td></td>
<td>T Past due order</td>
</tr>
</tbody>
</table>

| Workcenter Branch | This is the branch/plant to which the work center belongs and must exist in the business unit master (F0006) and branch plant constants file (F41001). |

Processing Options for Review Dispatch Group

1. Enter the Critical Work Center Code to be displayed or a "*" for all Work Centers.
2. Enter the Capacity Mode
 - "1" = Resource Requirements Planning
 - "2" = Rough Cut Capacity Planning
 - "3" = Capacity Requirements Planning

3. Enter the Default Unit of Measure
Reviewing Work Center Load for Resource Requirements Planning

From Resource & Capacity Planning (G33), choose Daily Resource Planning

From Daily Resource Requirements Planning (G3311), choose Review Work Center Load

You can review the capacity load at each work center. Use this information to determine whether to adjust capacity or the forecast.

You can view the time series as a spreadsheet or as a graphical display. The spreadsheet provides a numerical breakdown, by planning period, of the load placed on a work center. The bar graph provides the same information as the Review Work Center Load form. The graph uses time series information from Resource Requirements Load to generate the comparison. The capacity load at the work center displays for each planning period based on several calculations.

Complete the following tasks:

- Review the work center load as a spreadsheet
- Review the work center load as a graph

Before You Begin

- Verify that your resource units and resource requirements plan are current

To review the work center load as a spreadsheet

On Review Work Center Load
1. Complete the following field:
 - Work Center

2. Review the following fields:
 - Unit of Measure
 - Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Center</td>
<td>An alphanumeric field that identifies a separate entity within a business for which you want to track costs. For example, a business unit might be a warehouse location, job, project, work center, or branch/plant. You can assign a business unit to a voucher, invoice, fixed asset, and so on, for purposes of responsibility reporting. For example, the system provides reports of open accounts payable and accounts receivable by business units to track equipment by responsible department. Security for this field can prevent you from locating business units for which you have no authority. Note: The system uses this value for Journal Entries if you do not enter a value in the AAI table. Form-specific information You enter the work center for which you want to display the capacity load.</td>
</tr>
</tbody>
</table>
What You Should Know About

Prime load code The entry in the Prime Load Code field on Enter/Change Work Center determines the type of load. For example, if you have entered machine and setup hours as the prime load code, the numbers that appear will be different than if you entered machine hours only.

Resource offset The demand is offset by the number of days set on the Resource Profile form.

Type of load The type of load is determined by the prime load code. Calculations for the types of load are:

- Rated profile – The amount of capacity available for a work center.
- Loaded profile – The capacity that is required to meet the forecast. Loaded profile = (Forecast quantity x labor or machine hours) / (efficiency x utilization) x Time Basis Code
- Percent resource used – The loaded profile divided by rated profile.
- Resource available – The rated profile minus the loaded profile.
- Accumulated resource available – A running total of resource available.

Processing Options for Work Center Load

1. Enter the Capacity Mode:
 - “1” = Resource Requirements Planning
 - “2” = Rough Cut Capacity Planning
 - “3” = Capacity Requirements Planning

2. Enter the User Defined Code for the list of row descriptions to appear:

3. Enter the default Unit of Measure:

4. Enter the version of the Dispatch List program to call.
 Default is ZJDE0001.
To review the work center load as a graph

On Work Center Load Graph

1. Complete the following field:
 - Work Center

2. Review the following field:
 - Unit of Measure

3. On Capacity Load Percent, review the amount of load.

What You Should Know About

Over-capacity work centers

The system displays the portion of the bar graph that is over 100% in a color different from the portions less than 100%.
Processing Options for Work Center Load Bar Graph

1. Enter the Capacity Mode:
 “1” = Resource Requirements Planning
 “2” = Rough Cut Capacity Planning
 “3” = Capacity Requirements Planning

2. Enter the default Unit of Measure:

3. Enter the version of the Dispatch List to call. Default is ZJDE0001.

Reviewing Period Summaries

From Resource & Capacity Planning (G33), choose Daily Resource Planning

From Daily Resource Requirements Planning (G3311), choose Review Period Summary

In addition to reviewing the capacity load of a work center, you can also evaluate the load that is placed on a work center by period and by item. You can review period summaries either online or on a printed report. You can review:

- The items that are scheduled for a work center.
- The number of units of an item that make up the load.
- The percent of the total load on the work center that is for a specific item’s forecast. This is the percent of the total load planned for the work center that the item consumes. The system summarizes the load by the period using the unit of measure that you specify.

You use this information to determine whether to adjust the forecast or the capacity at the work center.

To review period summaries

On Review Period Summary
1. Complete the following field:
 - Work Center

2. Complete the following optional fields:
 - Unit of Measure
 - Period From – To

3. Review the following fields:
 - Period End
 - Item
 - Units
 - Percent Completed
 - Total

4. Access the detail area.
5. Review the following field:
 - Order Number

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period From</td>
<td>A number that identifies either a fiscal period (numbers from 1 to 14) or a beginning date. The information displayed begins with this date or period. If you leave this field blank, the system displays all transactions up to the Thru Date. Totals are for the transactions displayed.</td>
</tr>
</tbody>
</table>
| To | A number that either identifies the period number or date for which you want to review information. If you leave this field blank, the system uses the end date of the current period for the company that contains the business unit. Valid period numbers are from 1 through 14.

……………… Form-specific information …………………
If you leave this field blank, the system displays all orders since the From date. |
Per. End	The date that an item is to arrive or that an action is to be complete.
Units	The quantity of units affected by this transaction.
Percent	The percentage of the planned amount that has been completed.
Processing Options for Period Summary

1. Enter the Capacity Mode:
 "1" = Resource Requirements Planning
 "2" = Rough Cut Capacity Planning
 "3" = Capacity Requirements Planning

2. Enter the default Unit of Measure:

3. Enter the version of the Dispatch List to call. Default is ZJDE0001.

Reviewing Message Detail

From Resource & Capacity Planning (G33), choose Daily Resource Planning

From Daily Resource Requirements Planning (G3311), choose Review Message Detail

Each time you generate a resource requirements plan, the system creates messages to identify work centers whose loads are in conflict with planned capacity. Review Message Detail indicates whether you have over-load or under-load conditions. It displays messages for each work center alphabetically by message type.

Use Review Message Detail to delete, clear, or hold messages. You can add remarks for each message as a record for the actions you take. In addition, you can access related forms to confirm or change dates, amounts, and key plant manufacturing data for the work center.
To review message detail

On Review Message Detail

1. Complete the following field:
 - Work Center

2. Review the following fields:
 - Message Type
 - Message
 - Total Units
 - Unit of Measure
 - Percentage
 - Period End
 - Planner Remarks

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Units</td>
<td>This field displays the unit quantities making up the load and resources used for each period shown in the time series for DRP/MPS/ MR P and CRP.</td>
</tr>
</tbody>
</table>
What You Should Know About

Retrieving cleared messages
When you clear or delete messages, the system no longer displays them on the Review Message Detail form. Enter a Y in the Cleared (Y) field to retrieve cleared messages.

Held messages
The system retains held messages until you manually clear or delete them. When you generate the Rough Cut Capacity Plan or Capacity Requirements Plan programs, the system deletes all current non-held messages.

Deleted messages
You can generate a plan more than once. When you regenerate a resource requirements plan, the system will not delete the following messages:
- Manually entered messages
- Messages that you have placed on hold

Processing Options for Message Revisions

1. Enter the Capacity Mode
 “1” = Resource Requirements Planning
 “2” = Rough Cut Capacity Planning
 “3” = Capacity Requirements Planning

2. Enter the Default Unit of Measure
Validating Resource Requirements Plans

Validating the resource requirements plan consists of identifying the overloaded work centers, making adjustments in forecast or resources, and generating the plan again to see if your adjustments distributed the loads among the work centers.

To validate a resource requirements plan

1. Complete the steps for reviewing the requirements plan. See Reviewing Resource Requirements Plans.
2. Revise the forecast. See Revising Summaries of Forecasts in the Forecasting Guide.
3. Complete the steps for generating the requirements plan. See Generating Resource Requirements Plans.
4. Complete the steps for reviewing the revised requirements plan. See Reviewing Resource Requirements Plans.
5. Repeat the steps until all loads at each work center are appropriate.
Set Up Resource Requirements Plans

Setting Up Resource Requirements Plans

Before you generate a resource requirements plan, you must define information for processing. The system uses setup information to determine how to select and display data.

Complete the following tasks:

☐ Set up resource requirements display

☐ Set up unit types

Setting Up Resource Requirements Display

From Resource & Capacity Planning (G33), enter 29

From Resource/Capacity Planning Setup (G3341), choose Resource Requirements Display

The Resource Requirements Display identifies the types of loads on a work center. You can review these on the Review Work Center Load form. See Reviewing Work Center Load for Resource Requirements Planning for more information on the calculations for the types of load.
To set up resource requirements display

On User Defined Code Revisions/Resource Requirements Planning

Complete the following fields:

- Code
- Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>This column contains a list of valid codes for a specific user defined code list. The number of characters that a code can contain appears in the column title.</td>
</tr>
<tr>
<td>Description</td>
<td>A user defined name or remark.</td>
</tr>
</tbody>
</table>
Setting Up Unit Types

From Resource & Capacity Planning (G33), enter 29

From Resource/Capacity Planning Setup (G3341), choose Unit Types

You need to identify all the different types of resource units that can be associated with any work center. Unit types are system 33, type UT UDCs.

To set up unit types

On User Defined Code Revisions/Unit Types

Complete the following fields:

- Code
- Description
Single Level Master Scheduling
Single Level Master Scheduling

Objectives

- To create Distribution Requirements Plans (DRP) or Master Production Schedules (MPS)
- To understand the Net Change program
- To read and use time series displays
- To understand time fence rules
- To interpret Ending Available (EA), Available to Promise (ATP), Cumulative Available to Promise (CATP), and Forecast Consumption (FCP) calculations
- To review and process action messages
- To process purchase orders with or without blanket order check
- To consolidate messages and purchase orders
- To add a freeze code on purchase orders and work orders
- To use Rough Cut Capacity Planning (RCCP) to validate the master schedule
- To set up master planning and rough cut capacity displays
- To process work orders
About Single Level Master Scheduling

A single level master schedule is a statement of what the company expects to produce based on the tactical plan and budget constraints.

A master scheduled item is critical in its impact on lower-level components or resources, such as skilled labor, key machines, or revenues. Single level implies master scheduling at the end deliverable item level.

The master scheduling process consists of:

- Determining what you need (forecast, customer orders, and interplant demands)
- Subtracting what you have (inventory, purchase orders, and work orders)
- Calculating net requirements and when you need them

You can generate master planning for all items or for a net change generation, which includes only items that have been affected by transactions since the last generation. After you generate DRP/MPS output, you can review and respond to messages.

Master scheduling consists of the following:

- Understanding time fences and system messages
- Generating single level master schedules
- Understanding forecast consumption
- Working with master schedules
- Validating master schedules
- Setting up DRP, MPS, and RCCP
- Processing orders
Master Scheduling Applications

DRP and Purchased Items

For distribution businesses, DRP provides centralized control of distribution inventories and creates a coordinated replenishment plan.
MPS and Manufactured Items

You use MPS to generate the master schedule for manufactured items. J.D. Edwards systems plan replenishment for both purchased items and manufactured items in the same generation program. Processing options control how the system runs the generation.
Understand Time Fences and System Messages

About Time Fences

Time fences are points in time in which you can make changes to either policy or operating procedures. J.D. Edwards software includes three fences:

- Freeze
- Planning
- Message Display

<table>
<thead>
<tr>
<th>Emergency Changes Only</th>
<th>Planning Fence Rule Description 1</th>
<th>Planning Fence Rule Description 2</th>
<th>Halt Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Assembly and Delivery</td>
<td>Manufacture Components</td>
<td>Purchase Material</td>
<td>Flexible Schedule</td>
</tr>
<tr>
<td>Today</td>
<td>Freeze</td>
<td>Planning</td>
<td>Message Display</td>
</tr>
</tbody>
</table>

Freeze Fence (F)

A freeze fence holds, or freezes, the master schedule. In doing so, the system does not generate any planned orders from the current date to the number of days set in the field. This enables the master scheduler to review the schedule and make adjustments manually if required. The system allows the schedule to be “frozen.”

In addition, the system does not generate any messages that require action on existing work orders (such as an expedite message) within the frozen period of time. It displays warning action messages.

J.D. Edwards recommends that you set this fence at a point in time in which you need to freeze the MPS, depending on the nature of your product and the nature of the business environment.
Planning Fence (P) A planning fence controls how the system uses the demand from forecast and customer orders in the ending available (EA) calculation. This fence also indicates where the method used to calculate ending available inventory changes from the demand rule in “Description 1” to “Description 2.”

For planning purposes, J.D. Edwards recommends that you set the planning fence at a point from the current date that equals at least 1-1/2 times the cumulative leadtime. This will depend upon the business environment and the nature of the product. Once inside the planning fence, you have committed resources to the product line.

Message Display Fence (D) A message display fence suppresses action messages beyond the number of days that you selected from the current date. When you set this fence, calculations are not affected.

J.D. Edwards recommends that you set the message display fence at the point in which you do not need to act on action messages, depending on the cumulative leadtime of the product and the business environment.

What Are Time Fence Rules?

When you use a planning time fence rule that calculates an ending available that is based on the greater of forecast or customer demand, the forecast is “consumed.” For rules C and G, this means that the forecast is reduced by the amount of the customer demand on that same time bucket. The system displays all adjusted and unadjusted values. In the previous table, this applies to rules C, G, and H.

J.D. Edwards software uses the following planning time fence rules:

Rule C Description 1
Customer demand
Description 2
Whichever is greater, forecast or customer demand

Rule F Description 1
Forecast
Description 2
Forecast plus customer demand
Rule G

Description 1

Whichever is greater, forecast or customer demand

Description 2

Forecast

Rule H

Description 1

Whichever is greater, forecast or customer demand

When you use planning fence rule H, J.D. Edwards recommends that you set the Planning Fence field on the Plant Manufacturing Data form to the end of the planning horizon.

Rule S

Description 1

Customer Demand

Description 2

Forecast

Rule 1

Description 1

Zero

Description 2

Forecast

Rule 3

Description 1

Zero

Description 2

Forecast plus customer demand

What Are the Time Series Calculations?

The Manufacturing and Distribution Planning systems provide four different time series calculations. These are:

- Ending Available
- Available to Promise
- Cumulative Available to Promise
- Forecast Consumption
Example: Ending Available Calculation

Ending Available (EA) is the amount of product available at the end of a time bucket after the system calculates the effect of all supplies and all demands for the time bucket.

The system uses the planning time fence rule and the following formula to calculate the ending available amount:

- Add within the time bucket:
 - Beginning Available (+BA)
 For the first weekly time period, +BA = quantity on hand – safety stock
 For remaining time periods, +BA = Ending Available from the previous time period (=EA)

- Subtract according to the planning time fence rule:
 - Forecast (–FCST)
 - Customer Demand (sales orders and interplant demand)
 - The remainder is the ending available (EA)

The following table shows how the system calculates the amount of product available at the end of a time period. Assume that the Lot Size = Lot for Lot, Safety Stock = 20, Planning Time Fence Rule = C, and L/T = 1.

<table>
<thead>
<tr>
<th>Periods</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Hand = 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+BA</td>
<td>80</td>
<td>60</td>
<td>45</td>
<td>45</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>−FCST</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>−SO</td>
<td>20</td>
<td>15</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−PO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=EA</td>
<td>60</td>
<td>45</td>
<td>45</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>+DRP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>(Order Start)</td>
<td></td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>45</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Available to Promise Calculation

Available to Promise (ATP) is the uncommitted portion of a company’s inventory or planned acquisitions. You use this amount to accurately promise customer orders.

As long as manufacturing produces according to the MPS and sales makes commitments according to the ATP information, this method increases customer service and reduces inventory carrying cost.

Available to Promise uses actual customer orders to identify inventory that might be promised to a customer. The planning time fence rule has no effect on ATP. Forecast is never included in ATP calculations.

The system uses the following formula to calculate the ATP quantity:

- After the first period, ATP = work orders + purchase orders + planned orders – sales orders – work order parts list demand – interplant demand – unconsumed expired lot quantities.

The system does not display negative ATP for following periods. However, the system reduces the Cumulative Available to Promise (CATP) by the negative amount.

Example: Cumulative Available To Promise Calculation

Cumulative Available to Promise (CATP) is a running total of the ATP.

For new products or seasonal products, building inventory might be part of the management strategy. In these cases, sales and marketing might not be expected to sell within the replenishment buckets. The bulk of sales might not be in the near future.

The system calculates CATP as follows:

- First period CATP = beginning available + replenishment – sum of customer orders and parent demand before the next replenishment.
- After the first period, CATP = CATP from last period + replenishment – sum of customer orders and parent demand before the next replenishment.
CATP does not assume complete depletion. Rather, the system continues to add inventory.

The following table shows how the system calculates CATP. Assume that the Lot Size = Fixed, Safety Stock = 0, Planning Time Fence Rule = C, and L/T = 1.

<table>
<thead>
<tr>
<th>Periods</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Hand = 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+BA</td>
<td>80</td>
<td>50</td>
<td>25</td>
<td>55</td>
<td>45</td>
<td>25</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>-FCST</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>-SO</td>
<td>30</td>
<td>25</td>
<td>30</td>
<td>10</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+PO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=EA</td>
<td>50</td>
<td>25</td>
<td>-5</td>
<td>45</td>
<td>25</td>
<td>-10</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>+DRP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP</td>
<td>25</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

About System Messages

After you generate DRP/MPS output, the system creates action messages that:

- Alert the master scheduler of possible adverse conditions
- Display action recommendations that the master scheduler can process

The system displays messages by type. You can identify which items require attention based on the following message types:

A Warning Message

B Order and Expedite

C Cancel

D Defer

E Expedite

F Frozen

G Increase Order Quantity To

H Decrease Rate Quantity To

I Increase Rate Quantity To

L Decrease Order Quantity To
<table>
<thead>
<tr>
<th>M</th>
<th>Manual Reminder</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Create Rate</td>
</tr>
<tr>
<td>O</td>
<td>Order</td>
</tr>
<tr>
<td>P</td>
<td>Firm Order</td>
</tr>
<tr>
<td>S</td>
<td>FPO Adjustment Suggestion</td>
</tr>
<tr>
<td>T</td>
<td>Past Due Order</td>
</tr>
</tbody>
</table>
Generate Single Level Master Schedules

Generating Single Level Master Schedules

You can regenerate a master schedule for a single item or all items. When you generate a master schedule, the system evaluates selected information, performs calculations, and recommends a time-phased planning schedule for all selected items. You should run MPS weekly, at a minimum, to keep the plan current.

You can use net change processing to include only items that have changed since the last generation. Use Net Change Review to determine which items to include in the net change generation.

Complete the following tasks:

- Generate a master schedule for all items
- Review items for master schedule selection
- Generate a master schedule for selected items

Before You Begin

- Generate a forecast for independent demand items. See Generating Detail Forecasts in the Forecasting Guide.

Net Change Flag Update

The net change flag in the Item Branch table (F4102) is activated by any transaction that causes a change in supply or demand during the next MRP run. Examples include:

- You have taken action on an order message, and the quantity, start date, or requested date changes.
- You have taken action on an Expedite or Defer message, and the recommended start date or recommended requested date is processed.
- You cancel an order.
Net Change Flag Control

The following is a list of programs that automatically activate the net change flag:

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts List Revisions</td>
<td>Any addition, change, or deletion activates the flag for that item. If a branch is changed for an item, the system updates both old and new locations.</td>
</tr>
<tr>
<td>Parts List Substitutes</td>
<td>Any selection activates the flag for both the selected item and the item being substituted.</td>
</tr>
<tr>
<td>Work Order Entry</td>
<td>Any addition or deletion activates the flag for the item. If you change an item request date or quantity, the system activates the flag for the item. If an item status changes to 99, and the quantity ordered is not equal to the quantity completed, the system activates the flag for that item. If a branch is changed for an item, both the old and new locations are updated.</td>
</tr>
<tr>
<td>Work Order Inventory Issues</td>
<td>The flag is activated only on overissues.</td>
</tr>
<tr>
<td>Work Order Inventory Completions</td>
<td>If an item status changes to 99, and the quantity ordered is not equal to the quantity completed, the system activates the flag for that item.</td>
</tr>
<tr>
<td>Inventory Adjustments</td>
<td>The system activates the flag for any item whose inventory has been adjusted.</td>
</tr>
<tr>
<td>Inventory Transfers</td>
<td>When inventory is transferred from one branch to another, the system activates the flag for the affected items in both locations.</td>
</tr>
<tr>
<td>Bill of Materials Master</td>
<td>Any addition or deletion of a component item activates the flag for the parent of the changed component. If the item, quantity per, scrap, or effectivity dates change for any component item, the system activates the flag for the parent of that component.</td>
</tr>
<tr>
<td>Message Where Used Update</td>
<td>Any change to a component item activates the flag for the parent of the changed component.</td>
</tr>
</tbody>
</table>
Detail Message Review

If you take action on an order message and the quantity, start date, or request date changes, the system activates the flag for the item. If you take action on an expedite or defer message and the recommended start date or recommended request date changes, the system activates the flag for the item.

Forecast Revisions

Any addition, change, or deletion activates the flag for the affected item.

Manufacturing Data Revisions

Any addition, change, or deletion activates the flag for the affected item.

Repost Open Quantities

A repost cancels the commit component inventory on work orders that have a status equal to the status indicated in the processing option (usually status 99).

Leadtime Rollup

This program can change critical manufacturing data in the Item Branch table.

Sales Order Entry

Any addition, change, or deletion activates the flag for the affected item.

Purchase Order Entry

Any addition, change, or deletion activates the flag for the affected item.

Net Change Review

Any manual update to the Net Change field activates the flag for the affected item.

Generating a Master Schedule for All Items

From Material Planning Operations (G34), choose Single Site Planning

From Single Site Periodic Planning (G3422), choose DRP or MPS Regeneration

DRP and MPS regenerations use the same report writer to produce a single level DRP or MPS schedule for all items that meet the data selection criteria. The program:

- Reads the selected forecast or sales orders
- Uses data from the DRP/MPS/ERP inclusion rules to calculate requirements for master planned items
- Does not explode planned orders to the bill of material components
You can also generate a master schedule for items using forecast consumption planning rule H. Forecast consumption occurs when forecasted demand is reduced by actual sales orders received or shipped up to the forecasted quantity. By consuming the forecast, you can revise your production schedules to reflect the most up-to-date information.

Before the program generates a schedule, it deletes the message and time series tables for the selected items.

See Also

- Understand Forecast Consumption

Data Selection

Base your selection on branch/plant, category codes (usually Master Planning Family), and planning code. Any selection from based-on table fields can be processed.

Data Sequence

Copy the data sequence from the DREAM Writer example. Do not change this sequence or unpredictable results might occur.

Processing Options for Master Planning Schedule

BUCKET INFORMATION:

1. Enter the Generation Start Date. (Default is current date)

2. Enter the number of past due periods, (0, 1 or 2). (Default is 0)

3. Enter the planning horizon periods. (maximum of 52 periods):
 a. Days (e.g. 5)
 b. Weeks (e.g. 25)
 c. Months (e.g. 6)

GENERATION DEFINITION:

4. Enter the Generation Mode:
 1 - Net Change
 2 - Gross Regeneration

5. Enter the Generation Type:
 1 - Single Level MPS/DRP
 2 - Planning Bill
 3 - Multi Level MPS Items
 4 - MRP with/without MPS
 5 - MRP with Frozen MPS

PHANTOM ITEMS:
6. Enter a '1' to generate messages and time series records for phantoms.

ON HAND ADJUSTMENTS:
7. Enter a '1' to decrease beginning available by safety stock quantity.
8. Enter the lot hold codes (up to 5) to be considered on hand, or enter an '*' to consider all held lots as on hand. If left blank, held lots will not be considered on hand.
9. Enter a '1' by the following Receipt Routing quantities to be considered on hand.
 a. Quantity in Transit
 b. Quantity in Inspection
 c. User Defined Quantity 1
 d. User Defined Quantity 2
 NOTE: Any quantity not included will be placed in the On Receipt bucket.

DAMPER DAYS:
10. Enter the Defer Damper days, (no defer message if less than 'X' number of days).
11. Enter the Expedite Damper days, (no expedite message if less than 'X' number of days).

SAFETY LEADTIME:
12. Enter the purchased item leadtime days.
13. Enter the manufactured item leadtime days.

FORECASTING INFORMATION:
14. Enter the Forecast Types to include. Up to 5 types can be included.
 a. Forecast Type
 b. Forecast Type
 c. Forecast Type
 d. Forecast Type
 e. Forecast Type
15. Enter the Forecast Type for MPS to create when using Planning Bills.

RATE BASED SCHEDULING INFORMATION:
16. Enter the Schedule Type for rate based items. (Default is 'AC')
17. Enter a '1' to extend rate based adjustments to lower level items.
18. Enter status code used to denote closed rates. (Default is 99)

PURCHASE ORDER INFORMATION:
19. Enter the Document Type for purchase orders. (Default is 'OP')
WORK ORDER INFORMATION:
20. Enter the Document Type for work orders. (Default is ‘WO’)

21. Enter the Work Order Status at which messages will no longer be exploded to lower level items. If left blank, all messages will be exploded to lower level items.

INCLUSION RULES:
22. Enter the Version of Supply/Demand Inclusion Rules to be used.

PERFORMANCE ISSUES:
23. Enter a ‘1’ to initialize the MPS/MRP Print Code. This code is used for selecting records during the MPS/MRP print. (See glossary for MRPD.)
 NOTE: If left blank, the run time of the generation will be reduced.

24. Enter the User Defined Code Type that contains the list of quantity types to be calculated & written to the Time Series file (F3413). User Defined Code 34/QT contains a master list of quantity types that can be written and will be used as the default.

25. Enter ‘1’ to clear the DRP/MPS/MRP files before a Regeneration. This option should be used with EXTREME CAUTION. It will totally clear the following files:
 - F3411 – Message Detail File
 - F3412 – Pegging File
 - F3413 – Time Series File
 NOTE: If a ‘1’ is entered, it will improve performance and clean up any bad data in the files.

PROCESS PLANNING:
26. Enter a ‘1’ to generate planning in Process Mode.
 NOTE: If left blank, the run time of the generation will be reduced.

LOT EXPIRATION:
27. Enter a ‘1’ to consider lot expiration dates in calculations.

FORECAST CONSUMPTION PROCESSING:
28. Enter a ‘1’ to use Forecast Consumption logic.
Reviewing Items for Master Schedule Selection

From Material Planning Operations (G34), choose Single Site Planning

From Single Site Periodic Planning (G3422), choose Net Change Review

Use the Net Change Review program to review items that have changed, either through certain planned or unplanned activities, throughout the Manufacturing and Distribution Planning systems. You can locate a selected group of items by planner number, planning family, branch/plant, and specific planning codes. You can access related time series, inventory, and scheduling information forms for any of the items.

This program allows you to set the net change flag. Secure the program so that only a few people, such as master scheduling supervisors, have access.

To review items for master schedule selection

On Net Change Review

To locate the items for net change generation, complete the following fields:

- Branch/Plant
- Master Planning Family
Manufacturing and Distribution Planning

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Master Planning Family | A code (table 41/P4) that represents an item property type or classification, such as commodity type, planning family, or so forth. The system uses this code to sort and process like items.
This field is one of six classification categories available primarily for purchasing purposes. |

Processing Options for Net Change Summary

Enter the default Planning Code to display or “*” equals all.

Generating a Master Schedule for Selected Items

From Material Planning Operations (G34), choose Single Site Planning

From Single Site Periodic Planning (G3422), choose DRP or MPS Net Change

DRP and MPS net change use the same batch program as the DRP and MPS regenerations. You can further define the data selection to include only specific items on the Net Change Review form. When you run DRP Net Change or MPS Net Change, the system:

- Evaluates selected information
- Performs calculations
- Generates a time series and messages for the selected items

The system bases item selection from Net Change Review on the following types of activities:

- Bill of material changes
- Inventory transactions
- Forecast adjustments
- Work order changes
- Purchase order changes
- Leadtime rollup that results in new leadtime values
- Sales order changes
- Changes in parent order requirements
You should run Net Change on a regular basis to continually update your schedule. The program writes to the Action Message, Pegging, and Time Series tables. You can view the information that is generated by this program online by using the time series and message review programs.

See Also

- *Generating Master Schedules for All Items (P3482)* for the processing options for this program

Data Selection Values

The data selections are similar to the DRP/MPS generation, except for the net change flag. Set this flag to ‘1’ to select items that have changed since the last generation of the program.
Understand Forecast Consumption

About Forecast Consumption

Forecast consumption is based on the assumption that actual sales orders reduce, or “consume,” the forecasted quantities. The plan begins with an estimate (forecast). Actual orders are placed that consume the estimate. Forecast consumption compares and uses the greater of forecast or sales orders in the calculation.

Forecast consumption periods (FCPs) are user defined and are stored in the Forecast Consumption Periods table (F3405). Within a FCP, the system processes sales orders against the consumed forecast (quantity type of –FCSU) on a first-in, first-out (FIFO) basis. The system creates additional time periods if the forecast consumption periods end dates do not coincide with the time series period end dates.

The additional forecast consumption time periods are incremental to the number of time periods identified in the Distribution Requirements Planning, Master Production Schedule, and Material Requirements Planning generation program. The total for all time periods cannot exceed 52.

The system only applies the forecast consumption calculations if you set the appropriate processing option.

To use a master schedule with forecast consumption, you must understand the following:

- Past due time buckets
- Planning horizon time periods
- Forecast consumption calculation
Past Due Time Buckets

You can set the number of past due buckets to 1 or 2.

- The first past due bucket (PD2) includes all activity that is scheduled to occur before the current generation date but within the current forecast consumption period.
- The second past due bucket (PD1) includes all activity that is scheduled to occur before the beginning of the current forecast consumption period.

If you use at least one past due period, the system calculates unconsumed quantity for the first time bucket as follows:

- Past due forecasts (-FCST prior to the generation date, but after the forecast consumption beginning date) are consumed by:
 - Past due sales orders (sales orders that have not shipped), but are within the forecast consumption period.
 - Sales orders that have been shipped within the forecast consumption period, but prior to the generation date.
- Any remaining -FCST is added to the -FCST in the first bucket that is not past due.
Planning Horizon Time Periods

You can specify both forecast consumption and time series period end dates on the Forecast Consumption Periods form. You specify the number of daily, weekly, and FCP periods included in the planning horizon in the processing option for the DRP/MPS regeneration program. The system does not allow more than 52 total time series and forecast consumption period buckets.

If you specify a number of planning horizon weeks in the processing options and the time series end does not coincide with a forecast consumption period end, the system creates another time series bucket to reflect the forecast consumption period.

If you define the forecast consumption periods by month and the forecast consumption period end does not coincide with the month end date in the Shop Floor Calendar, the system displays the forecast consumption date (not the month end date) as a time series bucket.

You can set a processing option so that the system highlights all the forecast consumption periods on Time Series Inquiry. This helps you differentiate between the time series and the forecast consumption periods.

The following example illustrates the forecast at the end of the forecast consumption period. Note that:

- The 1/23/98 sales orders consume the forecast that is placed at the end of the forecast consumption period.
- The system subtracts quantity type -SO from quantity type -FSCU to calculate the quantity type -FCST (1242 - 290 = 952).
- The beginning available (+BA) for 1/30/98 is 155, so a planned order of 797 is suggested (952-155 = 797).
The following example illustrates a weekly forecast spread over a monthly consumption period. The sales order (290) is greater than the forecast for the time series period ending 01/23/98 (249). However, the planned order is for 249. Sales are subtracted from the forecast within the FCP, not within the time series period.
Forecast Consumption Calculation

You define forecast consumption periods to represent a period in which selected forecasts are partially, fully, or over-consumed by sales orders. This allows you to include more than one time series bucket in calculating the forecast consumption. That is, you can designate a longer period of time (the forecast consumption period) for the system to compare the gross forecasts to the combined gross sales and shipments.

Forecast consumption uses the Planning Fence Rule H. With forecast consumption processing, the system uses the following quantity types:

- **FCSU**: Forecast for a specific item from the detail forecast table
- **SOU**: Actual sales orders from the sales order detail table
- **SO**: Sales orders that exceed the forecast displays only when –SO is greater than –FCST
- **SHIP**: Shipments that occur within the forecast consumption period
- **FCST**: Unconsumed forecast
- **WO, PLO**: Replenishment orders that cover the greater of forecast or actual orders over the FCP.

In the following example, work orders for 50 and 150 units are open. The forecast is positioned at the beginning of the forecast consumption period, and the shipped quantity (140) consumes some of the forecast (1242 – 140 = 1102). Work order messages suggest expediting and increasing the existing work order from 50 on 01/16/98 to 657 on 01/02/98. This balances supply with demand on 01/02/98.

The sales order positioned after the forecast does not consume the forecast. A separate supply (the work order on 01/23/98) covers the sales order.
Building planned orders to the forecast at the beginning of the forecast consumption period minimizes expediting.

See Also

- Setting Up Forecast Consumption Periods (P3405)
- Understand Time Fence Rules and System Messages
Work with Master Schedules

Working with Master Schedules

DRP/MPS output consists of information in the time series and action messages. Use the time series information to decide whether to accept the planning that is suggested by the system or to override it. You should review the action messages for individual item numbers to determine which action, if any, to take.

Working with the master schedule consists of the following tasks:

- Reviewing DRP/MPS time series
- Reviewing planning families
- Working with messages
- Adding a freeze code to a purchase order
- Adding a freeze code to a work order

Reviewing DRP/MPS Time Series

From Material Planning Operations (G34), choose DRP

From DRP Daily Operations (G3411), choose DRP Time Series

Alternatively, to review information for Master Production Schedule, choose Daily MPS from the Material Planning Operations menu. Then, choose MPS Time Series from the MPS Daily Operations menu.

Use the DRP or MPS time series inquiry programs to review the master schedule. This is a record of time-phased supply and demand netting for selected items. This data is derived from the most recent generation or net change run. Use processing options in the DRP/MPS generation program to set up daily, weekly, or monthly time periods (buckets).
When you review a time series, you can:

- Review the following information for an item:
 - MPS adjusted and unadjusted quantities
 - Time-phased inventory activity in any unit of measure
 - Available to promise quantities in any valid unit of measure
- Identify the following information:
 - Time fences and item level leadtime
 - Cumulative leadtime occurrences
 - Manufacturing leadtime occurrences
- Choose rows of information to select, suppress, or both
- Toggle between two different quantity type displays that you specify in user defined code quantity lists
- Run an online single item DRP or MPS generation
- Summarize the following:
 - All demand lines into one DEM line
 - All supply lines into one SUP line
- Choose the following:
 - Supply/Demand Inquiry, to view all actions that affect the item's quantities
 - Pegging Inquiry, to determine from where higher level demands are being generated
 - Message File Revisions, to review message detail and take any appropriate actions
 - Manufacturing Data Revisions, to verify item setup details
 - Detail Forecast Revisions, to review item forecasts and sales history
 - Rate Schedule Revisions, to review item rate schedules

To review the time series, complete one of the following tasks:

- Review DRP time series
- Review MPS time series
Quantity Types for DRP and MPS

Use the DRP or MPS Time Series Inquiry form to review the quantity types that the system has generated for the master schedule.

When you access DRP or MPS Time Series/ATP Inquiry, you can display different quantity types for the master schedule by creating a new user defined code table and changing the processing option to display this new table. You can also display two different tables, such as adjusted and unadjusted quantities, by changing the processing options.

Each table displays only those items that are pertinent to its application. For example, table 34/DR displays only those data items applicable to DRP items. If the code is not defined in table 34/DR, it will not appear on the DRP Time Series/ATP Inquiry form or report. DRP and MPS calculations are not affected by the appearance of this code.

If you do not specify a particular user defined code list, all quantity types display. However, the time series calculation is not affected by the quantity types that are not pertinent to the application.

Valid Quantity Types for DRP

The following lists the valid quantity types and descriptions that are defined for DRP in user defined code table 34/DR:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+BA</td>
<td>+ Beginning Available</td>
</tr>
<tr>
<td>+IR</td>
<td>+ In Receipt Routing</td>
</tr>
<tr>
<td>+PO</td>
<td>+ Purchase Orders</td>
</tr>
<tr>
<td>-LEXP</td>
<td>- Lot Expired</td>
</tr>
<tr>
<td>-FCST</td>
<td>- MPS/Forecast</td>
</tr>
<tr>
<td>-SHIP</td>
<td>- Shipped Quantity</td>
</tr>
<tr>
<td>-SO</td>
<td>- Sales Orders</td>
</tr>
<tr>
<td>-ID</td>
<td>- Interplant Demand</td>
</tr>
<tr>
<td>=EA</td>
<td>= Ending Available</td>
</tr>
<tr>
<td>+DRP</td>
<td>+ Distribution Requirements Plan</td>
</tr>
<tr>
<td>ATP</td>
<td>Available to Promise</td>
</tr>
<tr>
<td>CATP</td>
<td>Cumulative Available to Promise</td>
</tr>
</tbody>
</table>
Valid Quantity Types for MPS

The following lists the valid quantity types and descriptions that are defined for MPS in user defined code table 34/MS:

+BAU + Beginning Available (Unadjusted)
+BA + Beginning Available
+IR + In Receipt Routing
+POU + Purchase Orders (Unadjusted)
+PO + Purchase Orders
+WOU + Work Orders (Unadjusted)
+WO + Work Orders
+RSU + Rate Schedule (Unadjusted)
+RS + Rate Schedule
-LEXP – Lot Expired
-FCSU – MPS/Forecast (Unadjusted)
-FCST – MPS/Forecast
-SHIP – Shipped Quantity
-SOU – Sales Orders (Unadjusted)

What You Should Know About

Period quantities

Period quantities are either:

- Adjusted — assumes that the user will process the messages.
- Unadjusted — assumes that the action messages will not be processed. The U at the end of quantity types indicates that period quantities are unadjusted.

Time series calculation

When you use a planning time fence rule that calculates the ending available that is based on the greater of forecast or customer demand, such as G, C, or H, the forecast is consumed. This means that the forecast is reduced by the amount of the customer demand in that same period.

ATP unadjusted calculation (ATPU)

Unadjusted ATP assumes that no action messages have been processed.

Negative ATP/ATPU

After you run the MPS generation, ATP/ATPU that have a negative value appear blank on the Time Series/ATP Inquiry form, except for the first period.
Cumulative available to promise unadjusted (CATPU) calculation

The following calculation assumes the user has not acted on the messages:

- CATPU = running total of ATPU

If ATPU is negative inside the planning time fence, then the system displays the resulting CATPU, whether it is positive or negative, in all previous time periods.

Suppressing blank lines

You can use a function key to suppress the quantity types that have no data in them.

Graphic display

You can choose to display the time series in a graph format.

To review DRP time series

On DRP Time Series/ATP Inquiry
To locate the time series for your item, complete the following fields:

- Branch/Plant
- Item Number

To review MPS time series

On MPS Time Series Inquiry

To locate the time series for your item, complete the following fields:

- Branch/Plant
- Item Number
Processing Options for Time Series

ITEM RECALCULATION:
1. Enter the Dream Writer version to use when submitting single item MPS/MRP/DRP recalculation. If left blank, version ZJDE0001 will be used.

PAST DUE PERIODS:
2. Enter the number of past due periods. (0, 1, or 2 are allowed values. 0 is the default.)

VALUES TO DISPLAY:
3. Enter the User Defined Code for the list of row descriptions to appear. (Required)
4. Enter the User Defined Code for the list of alternate rows to appear when using the row toggle function key. (Optional)

SUPPLY/DEMAND SUMMARY:
5. Enter a '1' to summarize the supply lines into one line and the demand lines into one line.

VERSIONS TO EXECUTE:
Enter the Dream Writer version to use for each program listed. If left blank, version ZJDE0001 will be used.

6. MPS/MRP/DRP Message Inq. (P3411)
7. Supply/Demand Inquiry (P4021)
8. Detail Forecast Revisions (P3460)
9. MPS/MRP/DRP Pegging Inq. (P3412)
10. Rate Schedule Revisions (P3104)

FORECAST CONSUMPTION PROCESSING
11. Enter '1' to process using Forecast Consumption Period logic
Reviewing Planning Families

From Material Planning Operations (G34), choose DRP

From DRP Daily Operations (G3411), choose DRP Planning Family Review

After you generate DRP/MPS, you can review all item numbers that have messages. You can display the list of items that have messages using the following filters:

- Branch/Plant
- Thru Date
- Planning Code
- Message Type
- Stocking Type
- Planner Number
- Buyer Number
- Master Planning Family

To review planning families

On Planning Family Review
To locate your planning family, complete the following fields:

- Branch/Plant
- Master Planning Family

Processing Options for Planning Family Review

MPS TYPE CODES:
1. Enter the MPS Type Code to be displayed or a ‘*’ for all MPS Types.

MANUFACTURING SCHEDULING WORKBENCH:
2. Enter the version of Manufacturing Scheduling Workbench to be used. Default is ZJDE0001.

MESSAGE FILE REVISIONS:
3. Enter the version of Message File Revisions to be used. Default is ZJDE0001.

ITEM AVAILABILITY:
4. Enter the version of Item Availability to be used. Default is ZJDE0001.

TIME SERIES:
5. Enter the version of Time Series to be used. Default is ZJDE0001.

DETAIL FORECAST MAINTENANCE:
6. Enter the version of Detail Forecast Maintenance to be used. Default is ZJDE0001.

SUPPLIER SCHEDULING REVISIONS:
7. Enter the version of Supplier Schedule Revisions to be used. Default is ZJDE0001.

SUPPLIER MASTER:
8. Enter the version of Supplier Master to be used. Default is ZJDE0001.

PURCHASE ORDER ENTRY:
9. Enter the version of Purchase Order Entry to be used. Default is ZJDE0001.

PURCHASE ORDER GENERATION:
10. Enter a ‘1’ to default the tax area from the “Ship-To” address book number. If left blank, the tax area will be defaulted from the “Supplier” address number.
Working with Messages

As an alternative to processing messages using Planning Family Review, you can access the messages directly using the Detail Message Review program.

Working with messages consists of the following tasks:

- Reviewing detail messages
- Processing work order messages
- Processing purchase order messages

Work order messages on Detail Message Review have an order type of WO. Purchase order messages on Detail Message Review have an order type of OP.

The action messages for DRP/MPS/MRP are defined in user defined code list 34/MT. The character codes are hard-coded. Do not change the character codes in this list.

Depending on the organization of your company, the person working with the DRP/MPS/MRP action messages should coordinate with Shop Floor or Purchasing personnel before taking action on messages affecting these departments.

What You Should Know About

Placing messages on hold
You can place a message on hold so that the system does not change the message during the next generation (for example, to preserve a manual reminder). Because the system does not indicate that a message is on hold, J.D. Edwards recommends that you add a planner remark that indicates the message is on hold.

Clearing messages
You can remove a message from Detail Message Review if you do not choose to process it. To view the message again after it has been removed, enter a Y in the Cleared field.

Deleting messages
You can delete any message that you have reviewed but did not process.
Reviewing Detail Messages

From Material Planning Operations (G34), choose Daily DRP

From Daily DRP Operations (G3411), choose DRP Detail Message Review

After you generate DRP/MPS, you review the action messages for the individual item numbers. After you review the message, you can place the message on hold, or clear, delete, or process the message.

To review detail messages

On DRP Detail Message Review

Complete the following fields to locate the messages for the item:

- Branch/Plant
- Item Number
Processing Work Order Messages

From Material Planning Operations (G34), choose Daily DRP

From Daily DRP Operations (G3411), choose DRP Detail Message Review

After you review the messages, you can process them. When you process a message, the system creates work order headers in the Work Order Master table (F4801) and assigns work order numbers. No parts list or routing is attached at this time.

After you process the work order messages, the master schedule is firm through the date that the orders were processed. These firm orders will not be automatically replanned in subsequent MPS generations.

To process work order messages

On DRP Detail Message Review

1. To locate the message for the item, complete the following fields:
 - Branch/Plant
 - Item Number

2. To process the message, choose the appropriate selection option.
Based on the message type, the system processes the work order as follows:

- Released
- Canceled
- Deferred
- Expedited
- Increased

What You Should Know About

Processing messages When you process a message, the system removes it from the Detail Message Review form. To view the message again, enter a Y in the Cleared field and scroll to the end of the message list.

Fixed order quantity (FOQ) When you use FOQ, MPS/DRP does not generate an Increase message for an existing order to cover demand. Instead, the system generates Order messages in multiples of FOQ as needed to cover the demand.

Order status When you create or update an order, you can modify the status to indicate the stage of production. To do so, enter a new status in the Status field in the fold area. The system displays this field only for those messages that are related to order processing.

Processing Purchase Order Messages

From Material Planning Operations (G34), choose Daily DRP

From Daily DRP Operations (G3411), choose DRP Detail Message Review

You can process a purchase order message using one of following methods:

- Process a single action message without blanket order checking or consolidation
- Process one or more action messages with blanket order checking
- Process messages using purchase order consolidation to place more than one item on a purchase order
- Process purchase order messages using a planning family
- Process messages using the Supplier Scheduling system
J.D. Edwards recommends that you set up different versions of the previous methods to expedite processing messages. That is, set up one version to process a single action message without blanket order checking or consolidation, another version to process one or more action messages with blanket order checking, and so on.

Complete the following tasks:

- Process a single action message
- Process messages using consolidation
- Cancel items on a purchase order

Depending on how you set the processing option for the DRP/MPS generation program, the program creates either a purchase requisition (OR) or a purchase order (OP). The program places a user ID on the purchase order and uses the system date as the date that the purchase order was created.

In addition, the program creates the purchase order in the purchasing unit of measure, even though the action message displays the primary unit of measure. The program makes the proper unit of measure conversions. After the next DRP/MPS regeneration, the quantities associated with processed messages appear in the time series display on the +PO quantity type row.

Processing messages will firm that portion of the DRP/MPS replenishment plan. Subsequent DRP/MPS regeneration will not change the timing or quantities associated with previously processed messages. However, if the new regeneration finds a mismatch between the supply and demand quantities or dates, the program issues a message recommending realignment of the existing +POs.

What You Should Know About

| Processing messages using blanket order checking | A processing option controls whether the system verifies the existence of a blanket order for the item you are processing. If the part has any open blanket orders, the system displays the Blanket Order Release form in the Purchasing system. The system releases the amount that you are processing against the blanket order. |
| Consolidating multiple item numbers | You can consolidate several order lines for the same supplier into one purchase order. Do this by setting a processing option for DRP Detail Message Review. |
Process messages using a planning family

You can process messages by family using DRP Planning Family Review. After you select all the items that you want to process, DRP Detail Message Review appears for each item that you selected. Process the messages for each item in the same way you process messages using consolidation.

Freezing purchase orders

When you sign a purchasing contract with a supplier, you can freeze purchase orders in time and quantity so that DRP/MPS does not generate any action messages to change orders.

See Also

- *Processing Orders (P31410)*
- *Generating Supplier Schedules (P3482)* for information on processing messages using this system
- *Reviewing Planning Families (P3401)*

To process a single action message

On Detail Message Review
1. Complete the following required fields:
 - Demand Branch
 - Item Number
2. Enter the selection option next to the message that you want to process.
3. To process the message, accept the record.
4. Exit the program.

 The system displays Suppliers Selected For Order.

5. On Suppliers Selected For Order, choose the selection option to create the order.

 The system assigns a purchase order number and displays it in the Order field.

6. To close the window, choose the appropriate selection option.
7. To display the message you processed, complete the following field:
 - Cleared

To process messages using consolidation

The system creates one purchase order header with as many detail line items as necessary. Dates correspond to the messages. If a part has more than one supplier, you can change the supplier number in the message detail area. The system produces a purchase order for each supplier.

On DRP Daily Operations

1. Access the processing options for DRP Detail Message Review.
2. To consolidate all messages for the same supplier into one purchase order, set the appropriate processing option.
3. Choose DRP Detail Message Review.

4. On DRP Detail Message Review, complete the following required fields to locate the messages for the item:
 - Demand Branch
 - Item Number

5. Enter the selection option next to the messages that you want to process.
6. To process the messages, accept the record.
7. Exit the program.

The system displays Suppliers Selected For Order.

8. On Suppliers Selected For Order, choose the selection option next to the suppliers for whom you want a purchase order created.
9. To create the purchase order, choose the appropriate selection option.

The system assigns a purchase order number and displays it in the Order field.

10. To close Suppliers Selected For Order, choose the appropriate selection option.

11. To display the messages you processed, complete the following field:
 - Cleared

 ➤ To cancel items on a purchase order

If there are items that you do not want to include, you can delete them from the purchase order.

On Suppliers Selected For Order

1. Enter the selection option next to the supplier for whom you want items to be canceled.

 The system displays Item Selected For Order.
2. On Items Selected For Order, enter the selection option next to the items that you want to cancel.

 The corresponding message reappears as an unprocessed message on DRP Detail Message Review.

3. Accept the record.

4. To close Items Selected For Order, choose the appropriate selection option.
Processing Options for Message File Revisions

PURCHASE ORDER INFORMATION:
1. Enter a ‘1’ to consolidate all messages for a supplier on one purchase order.
2. Enter the version of Purchase Order Entry (P4311) to be called. (Default is ZJDE0001)
3. Enter the version of Open Purchase Orders (P430301) to be called. (Default is ZJDE0001)
4. Enter the version of the Supplier Master to be called. (Default is ZJDE0001)

WORK ORDER INFORMATION:
5. Enter the status for Cancelled Orders.
6. Enter the version of Work Order Entry (P48013) to be called. (Default is ZJDE0001)
7. Enter the version of Open Work Orders (P31225) to be called. (Default is ZJDE0001)

BLANKET ORDER INFORMATION:
8. Enter the Document Type associated with Blanket Orders. If left blank open blanket orders will not be used.
9. Enter the version of Blanket Order Release (P43060) to be called. (Default is ZJDE0001)

PEGGING INQUIRY:
10. Enter the version of Pegging Inquiry (P3412) to be called. (Default is ZJDE0001)

SUPPLY AND DEMAND INQUIRY:
11. Enter the version of Supply and Demand Inquiry (P4021) to be called. (Default is ZJDE0001)

RATE SCHEDULE REVISIONS:
12. Enter the version of Rate Schedule Revisions (P3104) to be called. (Default is ZJDE0001)

TIME SERIES:
13. Enter the version of Time Series (P3413) to be called. (Default is ZJDE0001)

BILL AVAILABILITY:
14. Enter the version of Bill Availability (P30205) to be called.
TRANSFER ORDERS:
15. Enter the version of Transfer Order Entry (P4242) to be called. (Default is ZJDE0001)

SUPPLY/DEMAND DEFAULT:
16. Enter the default mode for viewing Supply/Demand Branch Messages:
 D - Demand Branch in header
 S - Supply Branch in header
 If left blank, the data dictionary default is used.

Adding a Freeze Code to a Purchase Order

From Stock Based Purchasing (G43A), choose Purchase Order Processing
From Purchase Order Processing (G43A11), choose Enter Purchase Orders

You can freeze the time and quantity values in the purchase order so that DRP/MPS does not generate any action messages to change the order. You freeze purchase orders before negotiations are final or when a purchasing contract has been signed with a supplier.

To add a freeze code to a purchase order

On Enter Purchase Orders
1. To locate your purchase order, complete the following fields:
 - Branch/Plant
 - Order Number

2. On the item line, enter the option to access Purchasing Information.

3. On Purchasing Information, complete the following field to identify the purchase order as frozen:
 - Freeze Code

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Number</td>
<td>The number that identifies an original document. This can be a voucher, an order number, an invoice, unapplied cash, a journal entry number, and so on.</td>
</tr>
</tbody>
</table>
| Freeze Code | A code that indicates if the order is frozen. MPS/MRP will not plan for frozen orders. Valid codes are:
 Y Yes, freeze the order
 N No, do not freeze the order (Default) |
Adding a Freeze Code to a Work Order

From Shop Floor Control (G31), choose Discrete – Daily Order Preparation

From Daily Order Preparation – Discrete (G3111), choose Enter/Change Order

You can freeze the time and quantity values in the work order so that DRP/MPS does not generate any action messages to change the order. You freeze work orders when the order is within the freeze time fence.

To add a freeze code to a work order

On Enter/Change Order

![Image of Enter/Change Order window]

1. To locate the work order, complete the following field:
 - Work Order Number

2. To identify the work order as frozen, complete the following field:
 - Freeze Code

Exercises

See the exercises for this chapter.
Validate Master Schedules

Validating Master Schedules

After you create the master schedule, validate it to ensure that you have sufficient work center capacity. Use the Rough Cut Capacity Planning (RCCP) batch program to generate capacity planning information.

In the J.D. Edwards software, the same batch program generates capacity planning information for both RCCP and Capacity Requirements Planning (CRP). The only difference is in the work centers that you identified in the data selection.

The system uses the following inputs to RCCP:

- Firm MPS work orders and routing instructions
- Planned MPS work orders and routing instructions

If critical work centers appear in the routings of component work orders that are generated by Material Requirements Planning (MRP), then the system can also include MRP orders in RCCP, because both RCCP and CRP use the same batch program.

The system generates the following outputs from RCCP:

- Over-capacity and under-capacity messages
- Work center load
- Work center load graph
- Period summary

Rough Cut Capacity Planning consists of:

- Identifying critical work centers
- Identifying the pacing resource for critical work centers
- Calculating the rated capacity for critical work centers
- Calculating the MPS load for critical work centers
The pacing resource for critical work centers is either labor or machine, depending on which one would increase the work centers’ capacity. A work center is paced by labor if adding additional employees to the work center increases capacity. A work center is paced by machine if adding machines adds capacity.

Validating the master schedule consists of the following tasks:

- Generating Rough Cut Capacity Plans
- Reviewing work schedules on Production Status
- Reviewing rate schedule and work center loads

What You Should Know About

Revising resource units
The resource units indicate the hours that are associated with a work center for each workday on the Work Day Calendar. The system uses this information to backschedule work orders in the Shop Floor Control system and to calculate available hours for capacity planning. You can manually enter or revise resource unit information for each work center and for each workday using the Enter/Change Resource Units program.

Recalculating work center hours
Use the Refresh Resource Units program to recalculate the work center hours. You can use this program only for processing data. It does not produce a printed report. However, you can view the results of the most recent refresh operation on Work Center Resource Units.

Generating Rough Cut Capacity Plans

From Resource & Capacity Planning (G33), choose Periodic Rough Cut Capacity

From Periodic Resource/Capacity Planning (G3321), choose Rough Cut Capacity Planning

Use the Rough Cut Capacity Plan (RCCP) to compare prospective MPS resource requirements to the capacity available in critical work centers. RCCP indicates if you should revise the master schedule to create feasible work loads or improve use of limited resources.
Before You Begin

☐ Report hours and quantities for operations that are complete or partially complete to ensure that the figures for Released Load remaining for existing work orders are correct. See *Working with Hours and Quantities* in the *Shop Floor Control Discrete Manufacturing Guide*.

☐ Verify that resource units exist for all critical work centers in your generation. See *Setting Up Resource Units* in the *Shop Floor Control Discrete Manufacturing Guide*.

☐ Set up supply and demand inclusion rules for RCCP. See *Setting Up Supply and Demand Inclusion Rules*.

☐ Run Master Production Schedule. See *Generating Supplier Schedules*.

What You Should Know About

Reviewing RCCP

After you generate RCCP, you can review the capacity load to determine if you need to change capacity or the scheduled load.

Reviewing work center load

Use Review Work Center Load to display the loads and capacity information for the work center that you select. The information is dependent on the Prime Load code that you entered for the work center on Work Center Revisions.

Use the Work Center Load Graph program to view the load versus rated capacity (percent) bar chart for a work center. The numbers across the top are the percent of the rated capacity consumed by load during that period. The information is dependent on the Prime Load code that you entered for the work center on Work Center Revisions.

Reviewing period summary

Use Review Period Summary to review specific items that make up the capacity load for a defined period for a work center. You can view the detail of all current and future orders that have been scheduled to enter a work center.

The system summarizes the load by period using the unit of measure that you select. The system also displays the percent of total load planned for that period for an item on an order.
Calculating rated capacity

To calculate rated capacity for critical work centers, the system uses the following standard formula:

- Number of employees (or machines) x hours per day x efficiency factor x utilization factor

You can manually calculate efficiency by dividing standard hours by actual hours. For example, if it takes a crew 10 hours to complete a job that has standard hours established at 8 hours, the crew is working at 80% efficiency (8 / 10 = .80).

For reference, the inverse (actual hours / standard hours) is called realization. The goal is to approach 1.0 realization.

Utilization is calculated by finding the number of hours in a day that the work center is actually available for working load to standards. Therefore, 100% use is an unrealistic goal because preventative maintenance, employee breaks, and other typical needs affect utilization.

Calculating MPS load

You calculate the MPS load for critical work centers by using either the routing table for planned work orders (+PLO) or the routing instruction table for firm work orders (+WO) with a routing attached. If the work order is firm (header created) but does not have a routing instruction attached, the system uses the routing table. The formulas for calculating MPS load are:

- Planned orders x pacing hours from the routing table
- Firm orders x pacing hours from the routing instruction table

The entry in the Prime Load Code field in the Work Center Master table determines the type of pacing at the work center.

Operations are backscheduled using the same logic in the Shop Floor Control system. This operation schedule places load into the proper time frame. You must enter the time basis code and order quantity into the equation for load calculation.

The system uses the following formula to calculate the load for an operation:

- Work order quantity x number of packing hours on routing/time basis code

The system generates messages that indicate if your load is either over- or under-capacity.
See Also

- Entering Resource Units Manually (P3007)
- Reviewing Dispatch Groups for Resource Requirements Planning (P3301)
- Reviewing Period Summaries (P3312)
- Reviewing Message Detail (P3311)
- Reviewing Work Schedules (P31220)
- Reviewing Work Center Loads (P3313)
- Reviewing Rate Schedule and Work Center Loads (P31224)

Processing Options for CRP/RCCP Regeneration

1. Enter the percent under rated capacity to generate a Under Capacity Message.

2. Enter the percent over rated capacity to generate a Over Capacity Message.

3. Enter the Branch to be processed.

4. Enter the Version of Supply/Demand Inclusion Rules to use.

5. Enter the Capacity Mode
 “2” = Rough Cut Capacity Planning
 “3” = Capacity Requirements Planning

6. Back-Scheduling Information:
 - Enter the Unit of Measure Code

7. Enter a ’1’ to Roll the Work Centers into their Dispatch Group.

8. Enter a ’1’ to modify the released order quantity and dates using MRP messages.
Reviewing Work Schedules on Production Status

From Resource & Capacity Planning (G33), choose Daily Rough Cut Capacity
From Daily Rough Cut Capacity Planning (G3312), choose Production Status

Use Production Status to locate and update work center scheduling information. This workbench environment serves as a starting point for work center scheduling and the release of work to the floor. Use this program to:

- Access work order information, including the header, the parts list, and the routing instructions
- Display work order information, such as work center, remaining labor, and machine and setup hours
- Sort work orders by start date, requested date, or operations status codes
- Change the work order status code, start date, or requested date

To review work schedules on production status

On Production Status

1. Complete the following fields:
 - Work Center
 - Operation Status
2. Complete the following optional field:
 - Sequence

3. For additional information for a work order, access the detail area.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thru Operation Status</td>
<td>A user defined code (system 31, type OS) used as an end point to select work order information to display.</td>
</tr>
</tbody>
</table>
| Sequence | A code that determines the sequence in which transactions are displayed. You use the From and Thru Date ranges to select transactions according to the sequence. Valid codes are:
 1 Display work orders in start date order.
 2 Display work orders in requested date order. |
| Machine | This is the actual machine time in hours recorded against the work order. |
| Setup | The standard setup hours you expect to incur in the normal completion of this item. |
| Qty Remaining | This is the remaining quantity for an operation. The remaining quantity is calculated by subtracting the quantity completed from the standard quantity. |
Processing Options for Production Status

SCREEN DEFAULTS:
1. Enter defaults for the following:
 a. From Status
 b. Thru Status
 c. The number of days prior to today’s date for the From Date.
 d. The number of days after today’s date for the Thru Date.

Reviewing Rate Schedule and Work Center Loads

From Resource & Capacity Planning (G33), choose Daily Rough Cut Capacity

From Daily Rough Cut Capacity Planning (G3312), choose Line Balancing Review

Use Line Balancing Review to review the work scheduled at either a work center or line for a day, week, or month. You can also select a specific date range for which to view the load for the work center. If you need to adjust the scheduled load at the work center, you can access several different forms to make adjustments.

You can use Line Balancing Review for rate scheduled items and as an alternative for viewing load on a work center. A processing option allows you to include work order-generated loads before or after rate loads.

➤ To review rate schedule and work center loads

On Line Balancing Review
To locate your work center schedule, complete the following fields:

- Branch/Plant
- Line/Cell
- Date From
- Thru

Processing Options for Line Balancing Review

SCREEN DEFAULTS:
1. Enter defaults for the following:
 a. Document Type (Default is ‘AC’)
 b. Shift

DREAM WRITER VERSIONS:
2. Enter the version of Rate Revisions (P3109) to call. If left blank, version ‘2JDE0001’ will be used.

Exercises

See the exercises for this chapter.
Set Up DRP, MPS, and RCCP

Setting Up DRP, MPS, and RCCP

Before you can successfully generate DRP, MPS, and RCCP output, you must define the information to use during processing. The system uses setup information to determine how to select and display data.

You must set up some of this information in other systems, such as Shop Floor Control and Inventory Management.

Complete the following tasks:

☐ Set up supply and demand inclusion rules
☐ Set up message types for DRP, MPS, and RCCP
☐ Set up time fence rules for DRP, MPS, and RCCP
☐ Set up forecast consumption periods
☐ Set up a rough cut capacity display
Setting Up Supply and Demand Inclusion Rules

From Material Planning Operations (G34), enter 29

From Material Planning Setup (G3440), choose Requirements Planning Setup

From Material Planning Setup (G3442), choose Supply/Demand Inclusion Rules

You set up supply and demand inclusion rules to display the supply, demand, and available quantities for an item. The source of these quantities in supply and demand equations are as follows:

- **On-hand inventory**
 - Quantity on hand
 - Hard commits
 - Quantity on sales orders
 - Quantity on work orders

- **Purchase orders**
 - Open quantity on purchase orders

- **Manufacturing work orders**
 - Quantity entered on work order
 - Quantity shipped

- **Safety stock**
 - Safety stock

- **Sales orders**
 - Quantity entered on sales order
 - Quantity shipped
 - Quantity canceled

- **Work order requirements**
 - Quantity required
 - Quantity issued

- **Co-/by-products supply from work orders**
 - Quantity ordered
 - Quantity completed

- **Co-/by-products supply from rates**
 - Quantity Ordered
 - Quantity completed
To set up supply and demand inclusion rules

On Supply/Demand Inclusion Rules

1. To locate the status values for your inclusion code, complete the following fields:
 - Inclusion Code
 - Skip to Order Type

2. Choose the work order statuses to include in supply and demand calculations.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion Code</td>
<td>For World, identifies a group of items that the system can process together, such as reports, business units, or subledgers. For OneWorld, the name of the version. It is created when the version is added.</td>
</tr>
</tbody>
</table>
A user defined code (00/DT) that identifies the type of document. This code also indicates the origin of the transaction. J.D. Edwards has reserved document type codes for vouchers, invoices, receipts, and timesheets, which create automatic offset entries during the post program. (These entries are not self-balancing when you originally enter them.)

The following document types are defined by J.D. Edwards and should not be changed:

- **P** Accounts Payable documents
- **R** Accounts Receivable documents
- **I** Payroll documents
- **I** Inventory documents
- **O** Purchase Order Processing documents
- **J** General Accounting/Joint Interest Billing documents
- **S** Sales Order Processing documents

Form-specific information

If you are using the Skip to Order Type field, you can enter an order type code and press Enter to display only rules about that order type. To see the whole set of order types included in the resource rules, leave this field blank and use the Roll keys.

Processing Options for Supply/Demand Inclusion Rules

1. Enter the Document Types for Work Order and Rate you want to setup Inclusion Rules for.
 The document types can be stacked one after the other for multiple document types. If left blank, ‘WOAC’ will be used.
Setting Up Message Types for DRP, MPS, and RCCP

From Material Planning Operations (G34), enter 29

From Material Planning Setup (G3440), choose Requirements Planning Setup

From Material Planning Setup (G3442), choose Action Messages

Message types are already defined for all the messages that the system can create when you generate DRP, MPS, and so on. Because the character code is hard coded, you can change the description, but not the function of the message type.

To set up message types for DRP, MPS, and RCCP

On Action Messages

1. To set up an action message, complete the following fields:
 - Code
 - Description

2. To locate the action messages for RCCP, enter 33 in the following field:
 - System Code
Setting Up Time Fence Rules for DRP, MPS, and RCCP

From Material Planning Operations (G34), enter 29

From Material Planning Setup (G3440), choose Requirements Planning Setup

From Material Planning Setup (G3442), choose Time Fence Rules

Time fences are points of time at which you can make changes to either policy or operating procedures. The system supports three time fences:

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Code</td>
<td>A user defined code (98/SY) that identifies a J.D. Edwards system.</td>
</tr>
</tbody>
</table>

Freeze Fence (F)

Within this time period, orders are neither created nor replanned.

Planning Fence (P)

Within this time period, the system uses demand from the forecast and customer orders to calculate ending available product.

Message Display Fence (D)

After this time period, messages are neither created nor displayed.
To set up time fence rules for DRP, MPS, and RCCP

On User Defined Code Revisions/Time Fence Rules

Complete the following fields:

- Code
- Description
- Description-2

Setting Up Forecast Consumption Periods

From Material Planning Operations (G 34), enter 29

From Material Planning Setup (G 3440), choose Requirements Planning Setup
From Material Planning Setup (G 3442), choose Forecast Consumption Periods

You define the end date for each forecast consumption period on Forecast Consumption Periods. The system stores this information in the Forecast Consumption Periods table. The periods apply system-wide. You cannot have different forecast consumption periods for different locations or branch/plants.

The system adds the forecast consumption time periods to the number of time series periods that you specified in the processing options for the DRP/MPS generation program. The total for all time periods cannot exceed 52.
Before You Begin

☐ Verify that the following information has been set up:

- Planning fence rule H in user defined code table 34/TF
- The order types in user defined code list 40/CF, to include in shipped order calculations
- The –SHIP quantity type in user defined code list 34/QT, to calculate shipped orders quantity
- The order types in user defined code list 40/IU, to update inventory (includes order type SO)
- The Planning Fence Rule field on Plant Manufacturing Data, with a value of H
- The Planning Fence field on Plant Manufacturing Data, with a value beyond the end of the planning horizon
- The appropriate processing options in the DRP/MPS generation program

You must set up the planning fence field on Plant Manufacturing Data with a value beyond the end of the planning horizon. (J.D. Edwards recommends a planning fence of 999). If you do not set the planning fence beyond the planning horizon, the batch programs (DRP/MPS/MRP Regeneration and Net Change) will not work properly.

To set up forecast consumption periods

On Forecast Consumption Periods
Complete the following fields:

- Period End Date
- Period Type

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Date</td>
<td>A date on which the defined period ends.</td>
</tr>
<tr>
<td>Period Type</td>
<td>A type of record to be used in conjunction with Forecast Consumption. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>FC Forecast consumption period</td>
</tr>
<tr>
<td></td>
<td>TS Time series bucket</td>
</tr>
</tbody>
</table>

Setting Up a Rough Cut Capacity Display

From Resource & Capacity Planning (G33), enter 29

From Resource/Capacity Planning Setup (G3341), choose Rough Cut Capacity Display

Use Rough Cut Capacity Display to specify row descriptions for RCCP displays and reports. The digit code is hard-coded.

To set up a rough cut capacity display

On Rough Cut Capacity Display

Complete the following fields:

- Code
- Description
Process Orders

Processing Orders

From Shop Floor Control (G31), choose Daily Order Preparation

From Daily Order Preparation – Discrete (G3111), choose Order Processing

After you run MPS Regeneration or MPS Net Change, use Order Processing to process multiple work orders. The program:

- Attaches the parts list
- Attaches the routing instructions
- Sets an initial order status
- Generates the shop packet, including:
 - Parts list
 - Routing instructions
 - Shop packet summary
 - Component shortages

Before You Begin

☐ Verify that work orders have been entered manually or have been processed using the MPS Planning Messages program. See Generating Supplier Schedules.

See Also

- Processing Work Orders (P31410) in the Shop Floor Control Discrete Manufacturing Guide

Processing Options for Work Order Generation - Print and Automatic Issue

GENERATION INFORMATION:
1. Enter one of the following: ______________
 1 – Parts List only
 2 – Routing only
 3 – Both Parts List and Routing
If left blank, neither Parts List nor Routing will be generated.

2. Enter a ‘1’ to use the W.O. Date for Effectivity checking. (Default is the W.O. Start Date.)

UPDATE INFORMATION:
3. Enter the new Status Code for the Work Order Header. If left blank, status will not be changed.

WORK ORDER PRINT INFORMATION:
4. Enter a ’1’ to print Work Orders. If printing Work Orders:

PARTS LIST PRINT INFORMATION:
5. Enter a ’1’ to print Parts List
6. Enter a ’1’ to print the 2nd line of information, which is scrap and related work center.
7. Enter a ’1’ to print Parts List on a new page.
8. Enter the DREAM Writer Version of the Parts List to print. If left blank, XJDE0001 is used. (See Form ID P31415.)
9. Enter a ’1’ to print a consolidated Parts List.

ROUTING INSTRUCTIONS PRINT INFO:
10. Enter a ’1’ to print Routing
11. Enter a ’1’ to print Routing on a new page.
12. Enter the DREAM Writer Version to be executed for the desired sequencing of the Routing. If left blank, the operation sequence is used. (See Form ID P314151.)

BACKSCHEDULING INFORMATION:
13. Enter the Unit of Measure for backscheduling.

SHOP PACKET SUMMARY INFORMATION:
14. Enter a ’1’ to print the Shop Packet Summary.

SHORTAGE REPORT INFORMATION:
15. Enter the DREAM Writer Version of the Shortage Report to execute. If left blank, no shortage report will be printed. (See Form ID P31418.)

BAR CODE INFORMATION:
16. Enter the DREAM Writer Version to be executed for the desired print overrides for Bar Coding. (See Form ID P31413.)

INVENTORY ISSUE INFORMATION:
17. Enter the DREAM Writer Version of Batch Inventory Issues to execute. If left blank, the Inventory Issues program will not be called. (See Form ID P31420)
PURCHASE ORDER INFORMATION:
(Used for Sub-Contract Routings)
18. Enter the Document Type
19. Enter the Line Type
20. Enter the Beginning Status
21. Enter a ‘1’ to default the tax area
 from the 'Ship-To' address book
 number. If left blank, the tax area
 will default from the Supplier
 address book number.

SALES ORDER INFORMATION:
22. Enter the new Line Type for kit
 and configured components. This
 is used to avoid issuing inventory
 from Sales Order processing. The
 Line Type used should be inventory
 interface 'N'. If left blank, Line
 Type will not be changed.

23. Enter the Next Status for Sales
 Order kit and configured component
 lines. (This is used to bypass
 the normal flow of the order, i.e.,
 Pick Slip.) If left blank, status
 will not be changed.
24. Enter a ‘1’ to print Sales Order
 Text lines.

CONFIGURED ITEM COSTS:
25. Enter one of the following options
 for calculating the standard cost
 for configured items in the WO
 Variance file (F3102).
 1 - Always calculate the standard
 cost.
 2 - Only calculate the standard
 cost if it has not already
 been done (no variance records
 exist.)
 If left blank, standard cost will
 not be calculated.

BOM SUBSTITUTES:
26. Enter ‘1’ to allow the use of
 Bill of Material substitutes in
 case of a shortage.

PURCHASING JOURNAL ENTRIES:
27. Enter a ‘1’ to load the Work Order
 Number into the Subledger field of
 the purchasing J/E’s.

BLANKET/QUOTE PROCESSING:
28. Enter a ‘1’ for automatic blanket
 order release processing.

BUILD AGAINST PRIOR REVISIONS:
29. Enter a ‘1’ to permit building
 work orders against prior revision
 levels. The revision level in the
 work order header (F4801) will be
 used to select the parts list to
 attach to the work order. If left
blank, prior revision level bills will not be selected.

WAREHOUSE PROCESSING:
30. Enter the request processing mode:
 1 - Generate requests only
 2 - Generate requests and process using the subsystem.
 If left blank, requests will not be generated.

31. If processing pick requests using the subsystem, enter the DREAM Writer version to use. If left blank, XJDE0002 will be used.
 (see Form ID P46171)

32. Enter the default staging location for moving goods out of the warehouse. The parts picked from the warehouse are staged at this location prior to use within manufacturing. (F1=Location Window)

33. Enter a ‘1’ if the default staging location should be checked for availability. If the part is available at the staging location a request will NOT be generated. This option only applies to parts without work center locations.

GENERIC TEXT PRINT OPTIONS:
35. Enter a ‘1’ to print component generic text on the Parts List.
36. Enter a ‘1’ to print operation generic text on the Routing.
37. Enter a ‘1’ to update parts list and routing if order quantity or dates have changed

38. Enter which symbology to use when using bar codes.
 ’1’= Code 3 of 9 (Code 39)
 ’2’= Code 128
 ’ ’= Not print bar codes

39. Enter a ‘1’ to prevent commitments for rates.

Exercises
See the exercises for this chapter.
Multi-Level Master Scheduling
Multi-Level Master Scheduling

Objectives

- To understand planning bills
- To set up order policy rules for reordering inventory
- To classify the types of items that you stock
- To define the percentage of demand for a specified feature based on projected sales
- To generate a multi-level master schedule

About Multi-Level Master Scheduling

You set up and generate multi-level master schedules to:

- Define demand information on a family basis and make changes as needed
- Define planning bills to acquire the options and features you expect to sell
- Update a product plan with a change in customer demand or design specifications
- Customize your schedule generation to include only the information you require
- Explode planned orders down to component items

Multi-level master schedules support assemble-to-order production and delivery.

When several different material purchasing options are available, your planners can make informed decisions within the available time frame. The system uses planning bills to notify planners when special attention is needed.
Multi-level master scheduling consists of the following tasks:

- Setting up multi-level master schedules
- Generating multi-level master schedules

The system records multi-level master schedule information in the following tables:

Bill of Materials Master (F3002)
Contains warehouse or plant level information about bills of materials, such as costs and quantities of components, features and options, and levels of detail for each bill.

Item Master (F4101)
Contains basic information about each item defined to inventory, such as item numbers, description, alpha description, category codes, and units of measure.

Item Branch (F4102)
Contains warehouse or plant level information, such as costs, quantities, physical location, and branch level category codes.

What Are Planning Bills?

Planning bills are groups of items in a bill of material format that reflect how an item is sold. Planning bills help you manage the acquisition of a variety of options and features that might be included in a saleable end item.

Planning bills allow you to configure a “pseudo” end item. With a pseudo item you don’t have to assign a unique part number or maintain a bill of materials for every combination of options and features that might be included in the end product.

You define planning bills to acquire the options and features in the proportion that you expect to sell. A final assembly schedule coordinates the material selection and assembly after you order the product options.
An example of this is an automobile with engine options:

![Diagram of automobile with engine options](image)

A part number can be assigned to the engine feature for planning purposes. Obviously, the two engine options cannot be assembled together, so the engine feature never actually exists in inventory. It is a pseudo item.

The planner does not know which automobile will ship with which engine next month, but the ratio of engines consumed is fairly constant. The above planning bill of material identifies the percentages of each type of engine that you expect to ship.

By exploding this bill against the master schedule for the T1000 family of automobiles, the system can calculate the total requirements for each type of engine.

Example: Exploding Planned Orders

You use a planning bill to configure a pseudo parent item that represents the engine feature. The engine feature includes both V-8 and V-6 engines, and can never actually exist in inventory. It is a pseudo item. The stocking type, however, identifies the engine feature in the planning bill of material as a phantom. Phantoms call for a special type of processing where the leadtime is zero and the order policy is lot-for-lot.

In this example, the system uses phantom processing to pass planned order releases from the parent (T1000 automobile) directly through to the planned order releases of the engine feature. The system uses the feature planning percentages to explode the planned order releases for the engine feature down
to the gross requirements for V-8 and V-6 engines.

MRP acquires the required engine components, such as pistons, blocks, and so on, in order to build these engines. When you receive an order for a T1000 automobile with a specific combination of options, the desired engine is committed to the saleable end item after you attach the parts list to the final assembly work order.

See Also

- *Single Level Master Scheduling* for an overview of master scheduling concepts and terms
- *Setting Up Planning Bills (P3002)* in the Forecasting Guide
Set Up Multi-Level Master Schedules

Setting Up Multi-Level Master Schedules

You must set up planning data for a multi-level master schedule to:

- Develop rules and procedures for ordering
- Classify the types of items that you stock
- Identify the features that you expect to sell

The system uses the planning data to generate and maintain a multi-level master schedule for the hypothetical parent item. It explodes the parent item to the component level.

Setting up multi-level master scheduling consists of the following tasks:

- Setting up order policy rules
- Setting up stocking types
- Setting up feature planned percents

Before You Begin

- Verify that DRP, MPS, or RCCP has been set up
- Understand the concepts and terms described in Single Level Master Scheduling.

See Also

- Setting Up DRP, MPS, and RCCP (P34004) for information on how to define distribution or production and rough cut capacity data that you want the system to use during processing
- Single Level Master Scheduling for more information on the master scheduling process
Setting Up Order Policy Rules

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Branch/Plant Information

You must set up order policy rules to control how multi-level master scheduling calculates dates and quantities. The order policy rules that you set up are:

- Planning code – Include the item in the DRP, MRP, or MPS planning runs.
- Order policy code – Designate several different rules for reordering inventories, including fixed order quantity, lot for lot, or number of days supplied. For example, purchasing a 90-day supply of V-8 engines.
- Leadtime level for phantom items – Indicate the transfer or purchase leadtime for an item to ensure that you have it in stock on time.

What You Should Know About

Assigning a planning code

The system uses planning codes to process the item. Use planning codes 1, 2, or 3 for multi-level master scheduling. Use planning codes 4 and 5 for forecasting with a planning bill.

Assigning leadtime level for a phantom item

You must set the leadtime of the phantom to zero so that the parent planned orders are recorded directly to the options as a gross requirement without being offset by the leadtime. The system multiplies the planned orders by the feature planning percentage before placing the planned orders as component gross requirements.
To set up order policy rules

On Item/Branch Plant Information

1. Choose Plant Manufacturing Data.

2. To locate the item for which you want to plan orders, complete the following fields:
 - Branch/Plant
 - Item Number

3. To control how multi-level master scheduling calculates dates and quantities, complete the following fields:
 - Order Policy Code
 - Planning Code
 - Level Leadtime
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Policy Code</td>
<td>A code that designates the rules for inventory reordering in the MPS/MRP/DRP systems. Valid codes are: 0: Reorder point (not planned by MPS/MRP/DRP), 1: Lot-for-lot or as required, 2: Fixed order quantity, 3: Economic order quantity (EOQ), 4: Periods of supply, 5: Rate scheduled item. The codes above are hard-coded.</td>
</tr>
<tr>
<td>Planning Code</td>
<td>A code that indicates how Master Production Schedule (MPS), Material Requirements Planning (MRP), or Distribution Requirements Planning (DRP) processes this item. Valid codes are: 0: Not Planned by MPS, MRP, or DRP, 1: Planned by MPS or DRP, 2: Planned by MRP, 3: Planned by MRP with additional independent forecast, 4: Planned by MPS, Parent in Planning Bill, 5: Planned by MPS, Component in Planning Bill. These codes are hard-coded.</td>
</tr>
<tr>
<td>Level Leadtime</td>
<td>A value that represents the leadtime for an item at its assigned level in the production process, as defined on Plant Manufacturing Data. The system uses this value to calculate the start dates for work orders using fixed leadtimes. Level leadtime is different for purchased and manufactured items. You can enter level leadtime manually on Manufacturing Values Entry, or you can use the Leadtime Rollup program calculate it. To calculate level leadtime using the Leadtime Rollup program, you must first enter a quantity in the Manufacturing Leadtime Quantity field in the Item Branch table (F4102).</td>
</tr>
</tbody>
</table>
Setting Up Stocking Types

From Inventory Management (G41), choose Inventory Master/Transactions
From Inventory Master/Transactions (G4111), choose Item Master Information

Set up a stocking type to identify how you stock an item (for example, as finished goods or raw materials).

To set up a stocking type

On Item Master Information

1. To locate the item for which you want to plan orders, complete the following field:
 - Item Number

2. To indicate how you stock the item for which you want to plan orders, complete the following field:
 - Stocking Type
Setting Up Feature Planned Percents

From Product Data Management (G30), choose Daily PDM Discrete

From Daily PDM Discrete (G3011), choose Enter/Change Bill

Set up a feature planned percent to define the percentage of demand for a specified feature based on projected sales.

When you set up a feature planned percent, you can change the percentages on which the hypothetical parent item is based. This allows you to account for any planning variations on which you might base planned orders.

To set up a feature planned percent

On Enter/Change Bill

Field	Explanation
Stocking Type | A user defined code (41/I) that indicates how you stock an item (for example, as finished goods, or as raw materials). The following stocking types are hard-coded and you should not change them:
B | Bulk floor stock
C | Configured item
F | Feature
K | Kit parent item
N | Non-stock
1. To locate the item for which you want to plan orders, complete the following fields:
 - Branch/Plant
 - Parent Item

2. Access the detail area.

3. Complete the following field:
 - Feature Planned Percent

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Parent Item | A number that the system assigns to an item. It can be in short, long, or 3rd item number format. Form-specific information
<p>| | Header: The Parent field contains the item number of the parent item. |
| | Detail: The Component Item field contains the item number of the component item. |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Planned %</td>
<td>The percentage of demand for a specified feature based on projected sales. For example, a company might sell 35% of their computers with a standard keyboard and 65% of them with an extended keyboard, based on customer demand. The Material Planning system uses this percentage to accurately plan for a feature’s component items. Enter percents as whole numbers: 5% as 5.0. The default value is 100%.</td>
</tr>
</tbody>
</table>
Generate Multi-Level Master Schedules

Generating Multi-Level Master Schedules

From Material Planning Operations (G34), choose Single Site Planning

From Single Site Periodic Planning Operations (G3422), choose MPS Regeneration

When you run the MPS Regeneration program, the system compiles a master schedule. Choose the MPS Net Change program when you want to include only those items that have changed since the last generation. You can create a version of the MPS Net Change program specifically for multi-level master scheduling.

When you generate a multi-level master schedule, the system explodes planned orders to the bill of material components. This generation program identifies the percentages of all component items. By exploding the bill of material against the total number of expected sales of a parent item, you can obtain the total requirements for each item at each level in the bill of material.

When you generate a master schedule, the system evaluates selected information, performs calculations, and recommends a time-phased planning schedule for all selected items.

Before You Begin

☐ Set up multi-level master scheduling.

See Also

- *Setting Up Multi-Level Master Schedules (P3482)*
- *Generating Single Level Master Schedules (P3482)* for more information on generating master schedules and to review the processing options
- *Working with Master Schedules (P3482)* for information on how to review time series and action messages that are an output of generating a multi-level master schedule
- *Validating Master Schedules (P3482)* for information on how to validate the master schedule, to ensure that you have sufficient work center capacity
What You Should Know About Processing Options

Generation definition
You must set the processing option to specify the type of schedule you want to generate. You must use generation type 3 to process multi-level MPS items. If there is a forecast for the product family, you must also define this forecast in the appropriate processing option.

Phantom items
Set the appropriate processing option to generate messages and time series records for phantom items.

Exercises
See the exercises for this chapter.
Manufacturing and Distribution Environments
Manufacturing and Distribution Environments

Objectives

- To use the Manufacturing and Distribution Planning (MDP) system to manage a variety of manufacturing and distribution environments

About Manufacturing and Distribution Environments

Today’s customer-driven manufacturing strategies require flexible manufacturing and distribution systems.

The following graphic shows manufacturing and distribution environments that vary along a continuum from discrete, low-volume production of customized designs to process, high-volume production of commodities.

Depending on the products manufactured, companies tend to create manufacturing and distribution environments along the diagonal of the graph. Competitive advantages occur when a company can move upward and to the right (that is, manufacture more volume along with more variety).
Sometimes a firm can gain a competitive advantage by creating a mixed-mode manufacturing environment. In mixed mode, some high-volume products and some high-variety products are made within the same company, but in different manufacturing and distribution environments.

The Manufacturing and Distribution Planning system’s shared database provides mixed-mode capability. Manufacturing and Distribution Planning can simultaneously manage discrete items for a job shop, rate based items for a flow shop, and continuous items for a process industry.

Working with manufacturing and distribution environments includes the following tasks:

- Working with batch manufacturing
- Working with rate based manufacturing
- Working with process manufacturing

Discrete Manufacturing

Discrete manufacturing uses bills of material and routings. The bill of material contains individual parts or components, such as a nut, bolt, wire, or a plastic or metal part of a fixed or variable quantity. Products are further divided into subassemblies that are used in various larger assemblies.

Typical examples of products of discrete manufacturing are:

- Cars
- Furniture
- Electronics
- Airplanes

Discrete manufacturing is usually further characterized by the strategy used, such as:

- Make-to-stock, using either a highly repetitive or process order based system
- Any of the “to-orders,” such as make-to-order, assemble-to-order, or engineer-to-order
- The “one-off” or job shop environment

Batch Manufacturing

With batch manufacturing, you produce products from formulas or recipes in a standard run or lot size that is determined by vessel size or standard run length.
Rate Based Manufacturing

Use rate based manufacturing for highly repetitive production for which you do not need to account for each work order’s labor and inventory in detail.

Process Manufacturing

Process manufacturing uses recipes or formulas and resources or ingredients. The manufacturing process either consumes or produces these resources. Many processes create co-products and by-products. In a process or discrete formula, the quantity of a component can vary according to its grade or potency.

Unique features of process manufacturing are:

- Pacing co-products
- Planned co-products (by-products are unplanned)
- Additional processing options in MPS/MRP

Distribution

Distribution systems work together with manufacturing systems to ensure that the right item is in the right place at the right time to meet customer demand. Supply and demand components must balance to ensure that this can occur. For example, the Inventory Management system does the following:

- Stores item information for the manufacturing systems
- Stores sales and purchasing costs and quantities available by location
- Tracks holds for locations from which you should not sell
- Updates the inventory account balances in the general ledger with any change in inventory valuation, count variances, or movement

What You Should Know About

| MRP | MRP does not recognize configured (string) differences for a given configured item. |
Working with Batch Manufacturing

With batch manufacturing, a product is made from a formula or recipe in a standard run or lot size determined by vessel size or standard run length. Typical products for batch manufacturing include:

- Pharmaceuticals
- Foods
- Glues
- Fermented beverages
- Paints

The objective for batch manufacturing is to process work orders with a batch quantity that corresponds to a batch bill of material and to use these orders for MRP processing. Just as the bill type uniquely defines a bill of material, you can use the batch quantity with bill type to further define a unique bill.

With this manufacturing method, some restrictions on capacity determine the size of the batch produced. For example, you might need to fill the vats to a certain level for the process to perform properly.

In addition, the system specifically defines the component quantities for the batch. For example, a 50-gallon vat requires a given quantity of one component, but the system does not necessarily double the component for a 100-gallon vat. Such components are often enzymes or catalysts.

Vats are often physically located close to a more repetitive downstream process. For example, in the making of bread, the process mixes the dough in a batch and leaves it to rise before forming individual loaves and sending it for baking and packaging.

You often express units of measure for batches in terms of volume or weight, such as:

- Liters or gallons
- Kilograms or pounds
After you create a batch bill of material and batch routing for the work order header, process the batch work order to attach the parts list and routing instructions to the work order header. Then, generate a master schedule of batch work orders and review the output.

Working with batch manufacturing consists of the following tasks:

- Creating batch bills of material
- Creating batch routings
- Processing batch work orders
- Generating MPS for batch bills
- Reviewing batch output from the MPS generation (optional)

Creating Batch Bills of Material

From Product Data Management (G30), choose Daily PDM Discrete

From Daily PDM Discrete (G3011), choose Enter/Change Bill

You use batch bills of material to accommodate physical constraints. For example, some industries, such as the pharmaceutical or food industries, use ovens or vats to make products in fixed quantities or batches. You can enter many combinations of batch sizes and bill types.

Before You Begin

- Set the appropriate processing option to display the Batch Quantity field.
To create a batch bill of material

On Enter/Change Bill

1. To locate the bill of material for the parent item, complete the following fields:
 - Parent Item
 - Branch/Plant
 - Bill Type

 If more than one type of batch bill exists, the system prompts you to make the proper selection from the following:
 - Bill type
 - Batch quantity
 - Unit of measure

2. To create a new batch bill of material for the parent item, complete the following fields:
 - Batch Quantity
 - Batch Unit of Measure

3. To view additional information, access the detail area.
Field | Explanation
--- | ---
Parent Item | A number that the system assigns to an item. It can be in short, long, or 3rd item number format.

See Also

- Working with Bills of Material in the Product Data Management Process
- Manufacturing Guide for more information about batch bills of material
Processing Options for Bill of Material Revisions

INVENTORY VALIDATION:
1. Enter a ’1’ to validate for an existing Branch/Item record.

VERSIONS TO EXECUTE:
Enter the DREAM Writer version to use for each program listed. If left blank, version ‘ZJDE0001’ will be used.
NOTE: Processing options 2a – 2b are ONLY used to set Printer Overrides. No Data Selection or Sequencing is possible.

2a. Single Level BOM Print (P30410) ____________
2b. -or- Multi-Level BOM Print (P30415) ____________
3. ECO Workbench (P30225) ____________
4. Component Maintenance (P3015) ____________

VERSION TO EXECUTE FROM REVISIONS WINDOW:
5. Enter the version of the ECO header to call from the Revisions Window (P30BREV). If left blank version ZJDE0001 will be used.

COMPONENT BRANCH:
6. Enter a ’1’ to change the Component Branch (ADDITIONS ONLY) to that which is displayed at the top of the screen.

FIELD DISPLAY:
7. Enter a ’1’ by the following fields to activate them:
 a. Bill Type
 b. Batch Quantity

SCREEN DEFAULTS:
8. Enter the default Bill Type:
8b. Enter a ’1’ to default the as of date to the current date. If left blank, all dates will be shown.

COMPONENT SEQUENCING:
9. Enter a ’1’ to sequence components by component line number
 ’2’ to sequence components by operation sequence number
 (If left blank, components will be sequenced by component line number)

REVISION LEVEL CONTROL:
10. Enter a ’1’ to protect Component Revision Level from update.
Creating Batch Routings

From Product Data Management (G30), choose Daily PDM Discrete
From Daily PDM Discrete (G3011), choose Enter/Change Routing

Batch routings are useful in industries, such as pharmaceuticals or foods, where products are manufactured in fixed quantities or batches. Each batch bill, as defined by the batch quantity, has its own routing.

You can create different routings for the same item by branch, type, batch quantity produced, or a combination.

Before You Begin

☐ Set the appropriate processing option to activate routing batch and type functions.

To create batch routings

On Enter/Change Routing

1. To locate the routing for the item, complete the following fields:
 • Item Number
 • Batch Quantity
2. To create a new batch routing for the item, complete the following fields:
 - Batch Quantity
 - Batch Unit of Measure

 If the bill type and quantity on the work order do not match a batch bill, the system generates an error and creates the work order header for the amount specified.

3. To view additional information, access the detail area.

4. Complete the following optional fields:
 - Resource Units Consumed
 - Replenishment Location
 - UOM

See Also

- *Working with Routings* in the *Product Data Management Process Manufacturing Guide* for more information about batch routings
Processing Options for Routing Master Revisions

FIELD DISPLAY:
1. Enter a ’1’ by the following fields to activate them:
 a. Line/Cell ______________________
 b. Routing Type ______________________
 c. Batch Quantity ______________________

DEFAULT PROCESSING:
2. Enter the values to preload to the screen at initial inquiry. If left blank, no value will be preloaded.
 a. Routing Type ______________________

UPDATE OPTIONS:
3. Enter a ’1’ to update the Component Operation Scrap Percent in the Bill of Material for the components on the operation and the Cumulative Yield Percent on the Routing, when updating the operation yield percent.

COMPONENT BRANCH:
4. Enter a ’1’ to change Component Branch to that of Parent Branch when copying a routing.

Processing Batch Work Orders

From Shop Floor Control (G31), choose Process – Daily Order Preparation

From Daily Order Preparation – Process (G3113), choose Enter/Change Order or Order Processing

Use either Enter/Change Order or Order Processing to attach a parts list or routing instructions to the work order header. Because the bill or routing must exist for the associated type on the work order header, the attachment process will fail if the system cannot validate the bill or routing types.

If a batch quantity exists on the bill or routing, the quantity on the work order header and the type must match the bill or routing. Otherwise, the copy function will fail for the bill, routing, or both.

See Also

- Creating Work Orders (P48013) in the Shop Floor Control Process Manufacturing Guide for information about attaching parts lists and routing instructions interactively
- Processing Work Orders (P31410) in the Shop Floor Control Process Manufacturing Guide for information about attaching parts lists and routing instructions using the batch program
Generating MPS for Batch Bills

From Material Planning Operations (G34), choose Single Site Planning
From Single Site Periodic Planning Operations (G3422), choose MPS
Regeneration

Use MPS Regeneration to generate a master schedule for all items or for selected
items. These programs function differently depending on whether more than
one batch bill exists.

If only one batch bill exists, MPS uses the batch quantity as follows:

- As a multiple, if the net requirements are greater than the batch quantity
- As a minimum, if the net requirements are less than the batch quantity

In either case, the program generates a separate planned order for each batch
quantity. For example:

<table>
<thead>
<tr>
<th>Batch Quantity</th>
<th>MPS Requirement</th>
<th>Resulting MPS Planned Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1500</td>
<td>1000 1000</td>
</tr>
<tr>
<td>1000</td>
<td>967</td>
<td>1000</td>
</tr>
</tbody>
</table>

If one batch bill is greater than all of the batch quantities, the program uses the
largest batch quantity in combination with any of the other quantities to most
accurately satisfy the requirement. For example:

<table>
<thead>
<tr>
<th>Batch Quantity</th>
<th>MPS Requirement</th>
<th>Resulting MPS Planned Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 600 800 1000</td>
<td>1500 3000</td>
<td>1000 1000 1000</td>
</tr>
</tbody>
</table>
If multiple batch bills exist and the net requirement is less than the largest batch quantity, the program uses the next highest batch quantity to satisfy the requirement. For example:

<table>
<thead>
<tr>
<th>Batch Quantity</th>
<th>MPS Requirement</th>
<th>Resulting MPS Planned Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>780</td>
<td>800</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Also

- *Generating Single Level Master Schedules (P3482)* for the processing options for this program

Reviewing Batch Output from the MPS Generation

From Material Planning Operations (G34), choose MPS

From MPS Daily Operations (G3412), choose MPS Time Series Inquiry or MPS Detail Message Review

After you generate a master schedule, use MPS Time Series Inquiry and MPS Detail Message Review to review the time series and messages from the MPS generation.

The time series is a record of time-phased supply and demand netting for selected items. The messages reflect how the system used batches to generate order quantities for net requirements for each time period.

Reviewing batch output consists of the following:

- Reviewing the time series for batch output
- Reviewing action messages for batch output

See Also

- *Reviewing DRP/MPS Time Series (P3413)* for more information on MPS Time Series Inquiry, and for the processing options
- *Working with Messages (P3411)* for the processing options for MPS Detail Message Review
To review the time series for batch output

On MPS Time Series Inquiry

To locate the time series for your item, complete the following fields:

- Branch/Plant
- Item Number

Example: Reviewing the Time Series for Batch Output

Review the net quantities for planned orders (+PLO) for the item during the 01/09/98 and 01/16/98 time periods. Planned orders (+PLO) are based on batch sizes of:

- 1/9/98: 3000 and 1000 = 4000
- 1/16/98: 3000 and 3000 = 6000

What You Should Know About

** Suppressing blank lines** You can use a function key to suppress the quantity types that have no quantity in the time series.
To review action messages for batch output

On MPS Detail Message Review

To locate the message for your item, complete the following fields:

- Demand Branch
- Item Number

Example: Reviewing Action Messages for Batch Output

Review the messages that reflect how batches were used to generate order quantities for net requirements for each time period.
Work with Repetitive Manufacturing

Use repetitive manufacturing for highly repetitive production that relies on a production “rate.” Repetitive manufacturing enables you to specify a rate schedule by effective date in daily, weekly, or monthly quantities.

Repetitive manufacturing reflects the following characteristics:

- Production volume is stable and predictable.
- Leadtime is short.
- Factory layout is product oriented and often characterized as cellular manufacturing: Dissimilar operations are physically grouped so that the product flows rapidly from one operation to the next.
- Setups are short, so that switching between products does not impact the time available for production.
- Group technology is often incorporated into the design engineering and manufacturing engineering to accommodate some variety with low impact on cost or production speed.
- Unit of measure is often “each.” However, it can also be volume- or weight-related when it is used in an environment that is similar to process manufacturing as opposed to discrete.

Some examples of repetitive products are:

- Electronic goods
- Automobiles
- Durable consumer goods (washing machines, refrigerators, and so on)

To plan for repetitive items, you:

- Identify the item as a rate scheduled item for a specific branch/plant
- Create a routing for the item
- Attach the rate scheduled item to a line
After you process the repetitive items, generate a master schedule and output that you can review. This output consists of time series and messages. You can then validate the load on lines or cells by viewing the effects of a rate schedule on a given work center and adjusting the priorities of the schedule.

Working with repetitive manufacturing consists of the following tasks:

- Defining order policy for repetitive items
- Creating repetitive routings
- Creating line/item relationships
- Creating rate schedules
- Generating MPS for repetitive items
- Reviewing repetitive rate based output from MPS generation
- Validating load on lines or cells (optional)

Defining Order Policy for Repetitive Items

From Inventory Management (G41), choose Inventory Master/Transactions
From Inventory Master/Transactions (G4111), choose Item Branch/Plant Information

You must identify the item as a repetitive item for a specific branch/plant for the MPS/MRP/DRP system to process the item as repetitive.

► To define order policy for repetitive items

On Item Branch/Plant Information
1. To locate the item record, complete the following fields:
 - Branch/Plant
 - Item Number

2. Choose Manufacturing.

3. On Plant Manufacturing Data, identify the item as a rate scheduled item in the following field:
 - Order Policy Code
Creating Repetitive Routings

From Product Data Management (G30), choose Daily PDM Discrete

From Daily PDM Discrete (G3011), choose Enter/Change Routing

A routing is a list of the operations and resources that are required to complete a process. The repetitive routing includes line and cell information in the header as well for each operation.

To create repetitive routings

On Enter/Change Routing

1. To locate the routing for your item, complete the following fields:
 - Branch/Plant
 - Line/Cell
 - Item Number
2. Access the detail area.
3. Review the information for each operation sequence:
 - Line/Cell
 - Resource Units Consumed
 - Replenishment Location

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line/Cell</td>
<td>Defines a production line or cell. Detailed work center operations can be defined inside the line or cell. For rate based manufacturing to use this value for reporting, this value must match the line cell in the header.</td>
</tr>
<tr>
<td>Resource Units Consumed</td>
<td>Indicates how many of the line's resource units are needed to produce one item.</td>
</tr>
<tr>
<td>Replenishment Location</td>
<td>A code that identifies inventory locations in a branch/plant. You define the format of the location identifier by branch/plant.</td>
</tr>
</tbody>
</table>
Creating Line/Item Relationships

From Shop Floor Control (G31), Choose Shop Floor Control Setup (G3141)

From Shop Floor Control Setup (G3141), choose Line/Item Relationships

To define the schedule data for the rate, choose Line/Item Relationships. Line/Item Relationships defines on which production line the product will be assembled. It also defines shift and period information for that line.

On Line/Item Relationships

Complete the following fields:

- Branch/Plant
- Item Number
- Line/Cell
- Capacity Units
- Shift
- Period

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Units</td>
<td>Indicates how many of the line's resource units are needed to produce one item.</td>
</tr>
</tbody>
</table>
Creating Rate Schedules

From Repetitive Daily Processing (G3141), choose Enter/Change Rate Schedule

A rate schedule is a request to produce a certain quantity of items on a specified periodic basis for a given length of time. Rate schedules eliminate the need to create multiple work orders for items you want to produce monthly, weekly, or daily in regular quantities. You generally use rate schedules in repetitive manufacturing.

To create a rate schedule, you:

- Specify engineering information, such as schedule types and effective dates.
- Specify production information, such as the item and quantities on which the rate is based.

You can use processing options to define a default schedule type, schedule period, and spread value. You can also choose to display only active schedules. In addition, you can access associated forms by indicating the version of these forms in the processing options. You can use these forms to view and modify information for routing, work center, MPS/MRP/DRP time series, rate generation, and scheduling.
Before You Begin

☐ Set up your work centers. See Setting Up Work Centers in the Shop Floor Control Discrete Manufacturing Guide.

☐ Set up your routing instructions. See Creating Work Orders in the Shop Floor Control Discrete Manufacturing Guide.

☐ Set up your line/item relationships. See Creating Line Item Relationships.

▶ To create rate schedules

On Enter/Change Rate Schedule

1. Complete the following fields:
 - Branch/Plant
 - Schedule Type
 - Item Number
 - Line/Cell
 - Effective From
 - Effective To
 - Quantity
 - Unit of Measure

2. Access the detail area.
3. Review the following default information:

- Period
- Shift
- Category 1
- Category 2
- Category 3
- Quantity Completed
- Quantity Scrapped

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule Type</td>
<td>A user defined code (system 31, type ST) that identifies the type of schedule, for example, AC for actual schedule and PI for planned schedule.</td>
</tr>
<tr>
<td>Quantity</td>
<td>The quantity of units affected by this transaction.</td>
</tr>
<tr>
<td>Category 1</td>
<td>A user defined code (00/W1) that indicates the current stage or phase of development for a work order. You can assign a work order to only one phase code at a time. NOTE: Certain forms contain a processing option that allows you to enter a default value for this field. If you enter a default value on a form for which you have set this processing option, the system displays the value in the appropriate fields on any work orders that you create. The system also displays the value on the Project Setup form. You can either accept or override the default value.</td>
</tr>
</tbody>
</table>
Field

Category 2
User defined code system 00, type W2, which indicates the type or category of a work order.

Note: A processing option for some forms lets you enter a default value for this field. The value then displays automatically in the appropriate fields on any work orders you create on those forms and on the Project Setup form. (You can either accept or override the default value.)

Category 3
User defined code system 00, type W3, which indicates the type or category of a work order.

Note: A processing option for some forms lets you enter a default value for this field. The value then displays automatically in the appropriate fields on any work orders you create on those forms and on the Project Setup form. (You can either accept or override the default value.)

Qty Scrapped
The number of units canceled in Sales Order or Work Order Processing, using either the entered or the primary unit of measure defined for this item.

In manufacturing, this can also be the number of units scrapped to date.

Qty Completed
The number of units committed for shipment in Sales Order Entry, using either the entered or the primary unit of measure defined for this item.

In the Manufacturing system and Work Order Time Entry, this field can indicate completed or scrapped quantities. The quantity type is determined by the type code entered.

What You Should Know About

Deleting a rate schedule
You can only delete a rate schedule if it has never been used. Active rate schedules cannot be deleted. You must close out the schedule.

Duplicating schedules
You can enter duplicate rate schedules.

Creating rates automatically
You automatically create a rate when you process a Create Rate message in Detail Message Review.
See Also

- Creating Rate Schedules in the Shop Floor Control Process Manufacturing Guide for more information on processing options

Generating MPS for Repetitive Items

From Material Planning Operations (G34), choose Single Site Planning

From Single Site Periodic Planning Operations (G3422), choose MPS Regeneration

When you run the MPS Net Change or Regeneration program, the system:

- Evaluates selected information
- Performs calculations
- Generates a time series and messages for the selected items

What You Should Know About

Rate Scheduling Information

You must set the processing options to generate the master production schedule.

Enter the type of rate schedule that you want to use for processing.

You can also set a processing option to extend rate adjustments to lower-level items.

See Also

- Generating Master Schedules for All Items (P3482) for the processing options for this program
- Generating Master Schedules for Selected Items (P3482)
Reviewing Repetitive Rate Scheduled Output from MPS Generation

From Material Planning Operations (G34), choose MPS

From MPS Daily Operations (G3412), choose MPS Time Series Inquiry or MPS Detail Message Review

After you generate a master production schedule, use MPS Time Series Inquiry and MPS Detail Message Review to review the time series and messages that the system has generated.

The time series is a record of time-phased supply and demand netting for selected items. The system links the planned order releases for the parent item to the gross requirements of component items.

If a component does not have its own rate schedule, the system applies the demand from the parent item. The demand from the rate scheduled parent follows the same logic as regular work orders. When a rate schedule is added for a component of a rate based parent, the calculation includes the information for the component in both the rate schedule (+RS) and unadjusted rate schedule (-RS) lines of data. The component is processed as supply, and regular MRP logic applies.

The messages reflect how the system used rate scheduled items to generate quantities for net requirements for each time period. The MPS/MRP program produces three main action messages that pertain to repetitive items:

I = Increase rate to Updates an existing rate to the increased quantity.
H = Decrease rate to Updates an existing rate to the decreased quantity.
N = Create rate Treats messages as a group from the MPS/MRP Detail Message Review form. You may answer more than one message at a time. The system creates one rate that averages the total of all Create Rate messages processed.

When the system processes messages to create and update rates, it does not check the validity of the dates received. The MPS/MRP regeneration produces messages with valid dates. However, you can change these dates before processing the message. To avoid creating invalid rates, ensure the validity of the dates you enter whenever you change message dates before processing.

Reviewing repetitive rate scheduled output consists of the following tasks:

- Reviewing the time series for rate scheduled output
- Reviewing action messages for rate scheduled output
To review the time series for rate scheduled output

On MPS Time Series Inquiry

To locate the time series for your item, complete the following fields:

- Branch/Plant
- Item Number

What You Should Know About

Suppressing blank lines You can use a function key to suppress the quantity types that have no data in the time series.

Creating Rates Instead of creating a single rate for a given schedule period type over a date range, the system creates a series of rates to cover the entire period. For instance, instead of having one weekly rate in effect for four weeks, the system creates four weekly rates, each in effect for a week.
To review action messages for rate scheduled output

On MPS Detail Message Review

1. To locate the messages for your item, complete the following fields:
 - Demand Branch
 - Item Number
2. To view additional message information, access the detail area.
What You Should Know About

Creating Rates

Instead of creating a single rate for a given schedule period type over a date range, the system creates a series of rates to cover the entire period. For instance, instead of having one weekly rate in effect for four weeks, the system creates four weekly rates, each in effect for a week.

When you process a Create Rate message, the system can attach the parts list and routing automatically.

See Also

- *Working with Messages (P3411)* for the processing options for this program

Validating Load on Lines or Cells

From Shop Floor Control (G31), choose Repetitive

From Repetitive Daily Processing (G3115), choose Schedule Review

Use Schedule Review to validate the load on lines or cells. You can view the effects of a rate schedule on a given work center and adjust the priorities of the schedule.

You can also:

- View rate schedule load for:
 - A specific work center by day, week, or month
 - A specific date range
- Revise rate schedules
- Revise resource units
- Review rate based load only, or rate based load and work order load together

▶ To validate load on lines or cells

On Schedule Review
To locate the schedule, complete the following fields:

- Branch/Plant
- Line/Cell or Work Center
- Effective From
- Effective To

See Also

- *Reviewing Rate Schedule and Work Center Loads* for the processing options for this program
Work with Process Manufacturing

Working with Process Manufacturing

Process manufacturing produces products such as liquids, fibers, powders, or gasses. Pharmaceuticals, foodstuffs, and beverages are typical examples of process products and represent a significant share of the manufacturing market. Products such as these are usually manufactured by a two-step process:

- Mixing or blending
- Filling or packaging

There might also be intermediate steps, such as curing, baking, or preparation.

Process manufacturing uses recipes or formulas and resources or ingredients. These resources can be either consumed or produced during the manufacturing process. In a process recipe or formula, the quantity of a component can vary according to its grade or potency.

The process produces co-products and by-products. A co-product is a saleable end item that results from a process. A by-product is a material that is produced incidental to or as a residual of the process.

The different types of processing in process manufacturing are:

- Batch
- Continuous

In batch processing, you usually produce a product in a standard run or lot size determined by vessel size, line rates, or standard run length. Because of the life cycle of the product after its completion, you typically schedule items made this way in short production runs. Co-products and by-products can be generated during batch processing. Typical items produced with batch processing include:

- Pharmaceuticals
- Foods
- Inks and paints
- Glues
- Oil or chemical products
In the continuous flow environment, production runs typically continue for an extended duration. Equipment is dedicated to one product or product line. This method of manufacturing is characterized by difficulty in matching output volume with demand and varying yield from process operations. Examples are petroleum-based products and water purification. Co-products and by-products are generally more prevalent in continuous processing than in batch processing.

Usually, both batch and continuous processing methods require extensive record keeping, recording of quality and tolerance values during the process, and strict adherence to lot tracing and tracking.

Working with process manufacturing consists of the following tasks:

- Defining stocking types for processes
- Defining co- and by-products
- Generating MPS for the process industry
- Reviewing process output from MPS generation

The following illustration shows that MPS calculates the time series for co-products. Demand for the co-product generates MPS order messages to drive the production process. Co-products that are 100% planned by the process do not receive order messages. The figure shows that the process also makes a by-product. This by-product might have some value, but it is not the central purpose of the process. For example, potatoes would not be processed primarily to obtain potato peels.
To identify items for process manufacturing, you must define the item’s stocking type to distinguish process items from co-products or discrete items. You must then specify both the percentage of the demand for co-products that is satisfied from process work orders and the percentage that is satisfied from work orders for the co-products. You can then generate and review a master schedule of all process work orders and output. This output consists of time series and messages for the co- and by-products.

Defining the Stocking Types for Processes

From Inventory Management (G41), choose Inventory Master/Transactions

From Inventory Master/Transactions (G4111), choose Item Master Information

You define the stocking type to distinguish the process from its co-products or discrete items.

▶ **To define the stocking type for the process**

On Item Master Information

![Image of Item Master Information screen]

1. To locate your item record, complete the following field:
 - Product Number
2. Complete the following field:
 - Stocking Type
Defining Co- and By-Products

From Product Data Management (G30), enter 29

From Product Data Management (G3041), choose Product Costing Setup

From Product Costing Setup (G3042), choose Co/By-Products Planning Table

Use the Co/By-Products Planning Table to set up co- and by-product processes for MPS and MRP. This table specifies the percentage of the demand for co-products that is satisfied from process work orders and the percentage that is satisfied from the work orders for the co-products.

You can also specify special circumstances. For example, by entering 75% in the table, you specify that 75% of demand is satisfied from process work orders and 25% from co-product work orders. The system automatically satisfies the remainder by planning co-product work orders.

If a co-product can be produced by more than one process, both processes appear in the table when you locate the co-product. For example, a 75% – 25% relationship can exist between the two processes.

To define co- and by-products

On Co-/By-Products Planning Table
1. To locate the co-/by-product table, complete the following fields:
 - Co-/By-Product
 - Branch/Plant

2. Complete the following fields:
 - Process/Item
 - Process
 - Plan Percentage
 - Cost Percentage

3. Access the detail area.

4. Complete the following fields:
 - Effective From
 - Effective Thru Date

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co/By-Product</td>
<td>A number that the system assigns to an item. It can be in short, long, or 3rd item number format.</td>
</tr>
</tbody>
</table>
Generating MPS for the Process Industry

From Material Planning Operations (G34), choose Single Site Planning

From Single Site Periodic Planning Operations (G3422), choose MPS Regeneration

When you choose MPS Regeneration, the system:

- Evaluates selected information
- Performs calculations
- Generates a time series and messages for the selected items

See Also

- Generating Master Schedules for Selected Items (P3482) for the processing options for this program

What You Should Know About

Process Planning

Set the process planning processing option for the net change versions you use for MRP and MPS planning.

Set this option to create the resource list records for co-/by-products when the system creates the process work order. If you leave this field blank, the system creates the resource list records for the co-/by-products when it creates the ingredients list.

Forecast Consumption

Forecast consumption does not apply to process manufacturing. Leave this processing option blank for the net change versions for MRP and MPS and when you run the regeneration programs.
Reviewing Process Output from MPS Generation

From Material Planning Operations (G34), choose MPS

From MPS Daily Operations (G3412), choose Time Series Inquiry or MPS Detail Message Review

After you generate a master schedule, use MPS Time Series Inquiry and MPS Detail Message Review to review the time series and messages that the system has generated.

Many processes produce multiple co-products. In these cases, one co-product might have a higher demand than other co-products. This is the pacing co-product. For example, a process might produce both plastic and ethylene-glycol (anti-freeze). Producing to meet demand for plastic might result in excess anti-freeze production, forcing a decrease in the price of anti-freeze in order to sell it. The pacing co-product requires the greater amount of the process to be produced in a given time period (based on demand) to obtain the co-product quantity required.

The time series is a record of time-phased supply and demand netting for selected co- and by-products. Co-products that are 100% planned by the process do not receive order messages. Instead, the system creates warning messages for co-products that are planned by a process.

Reviewing process output from the MPS generation includes the following tasks:

- Reviewing time series for co- and by-products
- Reviewing messages for processes
To review time series for co- and by-products

On MPS Time Series Inquiry

To locate the time series for your co- or by-product, complete the following fields:

- Branch/Plant
- Item Number

What You Should Know About

Process item numbers Process item numbers do not have a time series.

Suppressing blank lines You can use a function key to suppress the quantity types that have no data in the time series.

Example: Reviewing Time Series for Pacing Co-Products

In the potato chip example, there is a peeling process (888). This process produces the following co-products:

- Potato slices
- Peelings
View the MPS Time Series Inquiry for the pacing co-product. Notice that the planned orders (+PLO) satisfy the demand requirements and that the Ending Available (=EA) is balanced by 01/09/98.

View the time series for the product which is not the pacing co-product. Review the quantities in period 01/23/98.

In this example, you continually build ending available (EA) inventory. To get enough potato slices to cover demand, you continue to accumulate peelings, even though you have no demand for it.
To review messages for processes

On MPS Detail Message Review

1. To locate the messages for your item, complete the following fields:
 - Demand Branch
 - Item Number

Review the detail messages for the co-product 7771. Co-products that are 100% planned by the process do not receive order messages. Warning messages are typical for co-products planned by a process.

2. To locate the messages for process 777, complete the following field:
 - Item Number

The net requirement for the co-products act as requirements for the process. The +PLO for potato chips is ordered on the potato chip process.
What You Should Know About

Co-product messages Co-products that are 100% planned by the process do not receive order messages.

See Also

- Working with Master Schedules (P3413) for the processing options for MPS Time Message Inquiry
- Working with Messages (P3411) for the processing options for Detail Message Review
DRP/ MPS Multi-Facility Scheduling
DRP/ MPS Multi-Facility Scheduling

Objectives

- To understand multi-facility scheduling concepts
- To define supply and demand relationships between your branch/plants
- To use the branch relationships chart to review your supply and demand relationships in a graphical hierarchical format
- To generate a multi-facility schedule
- To review the time series for the multi-facility schedule
- To review and process transfer messages for the multi-facility schedule

About DRP/ MPS Multi-Facility Scheduling

In a multi-facility operation, planned orders at the demand facility are the source of demand at the supply facility. You set up and maintain multi-facility schedules to:

- Manage the movement of material through distribution networks and multiple production facilities
- Formalize the process of transferring items among your facilities
- Create internal transfer orders to help ensure traceability of material and their costs between facilities
- Ensure that the branch from which you are ordering has enough inventory in stock to fill the order
- Schedule production according to realistic time frames

Multi-facility schedules allow greater control of your enterprise. You can define facility relationships at any level of detail for an entire facility, a product group, master planning family, or an individual item number. In addition, you can incorporate all your facilities into a single planning schedule.

DRP/ MPS multi-facility scheduling consists of the following tasks:

- Setting up multi-facility schedules
- Generating multi-facility schedules
- Working with multi-facility planning output
The system records multi-facility information in the following tables:

Bill of Materials Master (F3002)
- Contains warehouse or facility level information about bills of material, such as:
 - Costs and quantities of components
 - Features and options
 - Levels of detail for each bill

Branch Relationships Master (F3403)
- Contains the supply/demand relationship among the branches.

MPS/MRP/DRP Lower Level Requirements (F3412)
- Contains the source of gross requirements that are posted to items from parent items.

MPS/MRP/DRP Message Review (F3411)
- Contains the action messages generated by an MPS or MRP scheduling run.

MPS/MRP/DRP Summary (F3413)
- Contains the time series data for forms and reports.

Item Master (F4101)
- Contains basic information about each item that has been defined in inventory, such as:
 - Item numbers and descriptions
 - Category codes
 - Units of measure

Item Branch (F4102)
- Contains warehouse or plant level information, such as:
 - Costs
 - Quantities
 - Location
 - Branch level category codes

What Are the Different Types of Multi-Facility Scheduling?

Two types of multi-facility scheduling are available:

- Consolidation
- Branch relationships
Consolidation multi-facility scheduling allows you to:

- Combine all planning activity under one specific facility
- View total requirements throughout your network for an overall corporate projection
- View individual facilities’ contribution to supply and demand, item availability, and sales
- Select processing options that generate planning for non-consolidated branches
- Consolidate all planning requirements at a selected branch
- Create schedules for each of your individual facilities as well as an overall plan for the parent company

Branch relationships multi-facility scheduling allows you to:

- Use the branch/plant relationships to explode demand through the supply network
- Provide a manufacturing or transfer facility code for a component item within a bill of material
- Pick or manufacture a part at another nearby facility without creating an inter-facility transfer order
- Specify any number of different supply facilities for each component
- Pass all or part of the demand from the demand plant to the supply plant
Set Up Multi-Facility Schedules

Setting Up Multi-Facility Schedules

You set up multi-facility schedules to track supply, demand, and movement of material among the individual facilities of your enterprise. Multi-facility scheduling provides a flexible method for planning supply and resupply activities.

In multi-facility scheduling you must set up a table of supply and demand relationships among your facilities. The system uses these relationships to generate and maintain multi-facility schedules.

Setting up multi-facility schedules consists of the following tasks:

- Setting up supply and demand relationships
- Reviewing branch relationships on the relationships chart
- Reviewing the branch relationships report

The following describes how to set up multi-facility schedules using bill of material components.

Before You Begin

- Verify that DRP, MPS, or RCCP has been set up
- Understand the concepts and terms described in Single Level Master Scheduling

See Also

- Setting Up DRP, MPS, and RCCP (P00051) for information on how to define DRP, MPS, or RCCP data to use during processing
- Single Level Master Scheduling for more information on the master scheduling process
Setting Up Supply and Demand Relationships

From Material Planning Operations (G34), choose Multi-Facility Planning

From Multi-Facility Periodic Planning Operations (G3423), enter 29

From Multi-Facility Setup (G3443), choose Branch Relationships Revisions

Use Branch Relationships Revisions to set up supply and demand relationships for any level of detail you choose, including:

- Branch/plant
- Product group
- Master planning family
- Individual item number

This approach allows you to maintain your supply and demand relationships in one central location and reduce inventory errors caused by complex facility relationships. In addition, when you set up your supply and demand relationships, you can include the following optional features:

Mark up
You can have the system automatically mark up the cost of an item when you create a transfer order. The system can adjust the cost by a fixed amount or percentage.

Availability Checking
You can ensure that the branch from which you are ordering has enough inventory in stock to fill the order. If the required quantity is not available, the system checks subsequent facilities in the sequence that you define.

Effective dates
Use effectiveness dates to control the demands that are placed on your supply branches. If an effective date that was assigned to a supply branch has expired, the system checks for another facility.

NOTE: To allow the system to generate transfer order messages, you must activate availability checking.
To set up supply and demand relationships

On Branch Relationship Revisions

1. Complete the following field:
 - Supply Plant

2. Complete the following optional fields:
 - Supply/Demand
 - Family
 - Item
 - Transit Leadtime

3. Access the detail area.
4. Complete the following optional fields:
 - Branch Level
 - Branch Priority
 - Availability Check

5. Allow the system to enter defaults or complete the following fields:
 - Effective From
 - Effective Thru
 - Source Percent
 - Percent to Fill
 - Markup Percent
 - Fixed
 - Include/Exclude
 - Unit Extended
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Supply/Demand | This field allows you to view messages from the viewpoint of either the supply or demand branch. Changing this field from S to D also changes the Supply Plant field immediately below the Action Code field to Demand Plant.
 S Supply branch/plant
 D Demand branch/plant |
| Form-specific information | If you are viewing messages for the supply branch/plant, the fold area shows branch/plants generating demand for each resupply order.
If you are viewing messages for the demand branch/plant, the fold area shows branch/plants to which each resupply order is directed. |
| Fmy | A code (table 41/P4) that represents an item property type or classification, such as commodity type, planning family, or so forth. The system uses this code to sort and process like items.
This field is one of six classification categories available primarily for purchasing purposes. |
| Trans | A value that represents the leadtime for an item at its assigned level in the production process, as defined on Plant Manufacturing Data. The system uses this value to calculate the start dates for work orders using fixed leadtimes. Level leadtime is different for purchased and manufactured items:
You can enter level leadtime manually on Manufacturing Values Entry, or you can use the Leadtime Rollup program calculate it. To calculate level leadtime using the Leadtime Rollup program, you must first enter a quantity in the Manufacturing Leadtime Quantity field in the Item Branch table (F4102). |
| Branch Level | Determines the level at which a component branch should be processed in multi-plant processing. The lowest level branches (which are assigned a higher numerical value) are processed first, followed by the higher level branches (which are assigned a lower numerical value).
NOTE: Assign branch levels carefully so that the planning system generates all demand before allocating supply. |
<p>| Branch Priority | Determines the sequence within a level that the branches are processed in multi-plant DRP/MPS/MRP. Use this field along with the Branch Level field to check inventory availability first in one branch, and then another. |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avl Chk</td>
<td>Indicates if the planning system will check availability of the item or family at the supply branch/plant. If you enable availability checking on the item or family being demanded, the available inventory at the branch/plant will be committed until there is a zero balance. If you disable availability checking, the inventory balance in the supplying branch/plant can be negative.</td>
</tr>
<tr>
<td>Source Percent</td>
<td>The system uses source percent to determine what percent of the planned order should be supplied by the source branch.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Demand Branch — ATL</td>
</tr>
<tr>
<td></td>
<td>Supply Branch — DEN source percent = 40%, CHI source percent = 60%</td>
</tr>
<tr>
<td></td>
<td>If ATL needs 100 parts, the system generates a message to transfer 40 parts from DEN and 60 parts from CHI.</td>
</tr>
<tr>
<td></td>
<td>A source percent of 100 transfers the entire supply from that Branch/Plant.</td>
</tr>
<tr>
<td>Percent to Fill</td>
<td>A field used during multi-plant processing to determine what percent of an order should be filled to place a transfer order message. For example:</td>
</tr>
<tr>
<td></td>
<td>• Percent to Fill – 75%</td>
</tr>
<tr>
<td></td>
<td>• Demand – 200</td>
</tr>
<tr>
<td></td>
<td>• If the supply branch has 150 (75 percent of 200) or more available, then the planning system places the transfer order message.</td>
</tr>
<tr>
<td></td>
<td>The system generates the transfer order message when the percent to fill is zero.</td>
</tr>
<tr>
<td></td>
<td>NOTE: In order to allow the system to generate transfer order messages, you must activate availability checking.</td>
</tr>
<tr>
<td>Markup Percent</td>
<td>The percent markup is the percent of the cost that the system uses as mark up when the item is transferred from one branch to another.</td>
</tr>
<tr>
<td>Fixed</td>
<td>The amount to use to mark up the cost when the item is transferred from one branch to another.</td>
</tr>
<tr>
<td>Inc/Exclude</td>
<td>A code that indicates whether the system includes or excludes the item/category code in the Branch Relationships Master table (F3405) when generating a multi-plant schedule. If an item/category code is excluded, then that item/category code will be purchased or manufactured at the demand branch.</td>
</tr>
</tbody>
</table>
Set Up Multi-Facility Schedules

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Unt/Ext | This code determines if the fixed cost markup is to be added to the unit cost or the extended cost. Valid values are:
 U Add markup to the unit cost
 E Add markup to the extended cost |

What You Should Know About

Deleting supply and demand relationships
When you delete a supply and demand relationship, the system deletes the entire record.

Locating existing supply and demand relationships
When locating a relationship, you can narrow your search by entering either an item number or planning family. Enter an item number to display all plants that either supply or demand a certain part. Enter the planning family to display all plants that either supply or demand parts that belong to a specific master planning family.

Defining the branch level
You must set the appropriate processing option to determine the level of the component branch to be one level higher than the header for the source branch.

The branch level, along with the branch priority, determines the sequence in which the system processes supply and demand plants. The system processes the branches with the highest numerical branch level first.

Processing Options for Branch Relationships Revisions

SUPPLY OR DEMAND MODE:
1. Enter the default mode for entry of Branch Relationships.
 ‘D’ = Demand branch in header.
 ‘S’ = Supply branch in header.

DISPLAY FORMAT:
2. Enter a ‘1’ to display the sales transfer format. The default is to display the branch relationship format.

LEVEL UPDATE:
3. Enter a ‘1’ to automatically update the Branch Level field.
Reviewing Branch Relationships on the Relationships Chart

From Material Planning Operations (G34), choose Multi-Facility Planning

From Multi-Facility Periodic Planning Operations (G3423), enter 29

From Multi-Facility Setup (G3443), choose Branch Relationships Chart

Use the Branch Relationships Chart to review your supply and demand relationships in a graphical, hierarchical format. The Branch Relationships Chart displays the:

- Branch
- Level of the branch
- Supply branches for the corresponding demand branch

To review branch relationships on the relationships chart

On Branch Relationships Chart

1. To locate the branch/plant for which you want to display supply and demand relationships, complete the following field:
 - Branch
2. To narrow your search to a specific level of detail, complete one of the following optional fields:
 - Item
 - Plan Family

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Branch | A code that represents a high-level business unit. It can be used to reference a branch or plant that might have departments or jobs, which represent lower-level business units (data item MCU), subordinate to it. For example:
 - Branch/Plant (MMCU)
 - Dept A (MCU)
 - Dept B (MCU)
 - Job 123 (MCU)
 Business unit security is based on the higher-level business unit. |
| Plan Family | A user defined code (system 41, type P4) under which you can organize logically related items.
 You can simplify the master planning process by concentrating on only the top 10% of the inventory value. This is similar to using the ABC Analysis, except that you can use this code to allow exceptions to ABC rules.
 Generally, you should only include items with high inventory investment in Master Planning. Excess stock can be carried for inventory items with little financial impact. |
Generate Multi-Facility Schedules

Generating Multi-Facility Schedules

From Material Planning Operations (G34), choose Periodic Multi-Facility Planning

From Multi-Facility Periodic Planning Operations (G3423), choose MPS Regeneration

After you have set up the supply and demand relationships among your branch/plants, you can use MPS Regeneration to generate a multi-facility schedule. Alternatively, you can use MPS Net Change to generate a multi-facility schedule.

When you generate a multi-facility schedule, the system evaluates selected information, performs calculations, and recommends a time-phased planning schedule for all selected items.

Before You Begin

☐ Set up DRP/MPS multi-facility scheduling. See Setting Up Multi-Facility Schedules.

Processing Options for Master Planning Schedule – Multiple Plant

BUCKET INFORMATION:
1. Enter the Generation Start Date. (Default is current date)

2. Enter the number of past due periods, (0, 1 or 2). (Default is 0)

3. Enter the planning horizon periods, (maximum of 52 periods):
 a. Days (e.g. 5)
 b. Weeks (e.g. 25)
 c. Months (e.g. 6)

GENERATION DEFINITION:
4. Enter the Generation Mode:
 1 – Net Change
 2 – Gross Regeneration

5. Enter the Generation Type:
 1 – Single Level MPS/DRP
3 - Multi Level MPS Items
4 - MRP with/without MPS
5 - MRP with Frozen MPS

PHANTOM ITEMS:
6. Enter a ‘1’ to generate messages and time series records for phantoms.

ON HAND ADJUSTMENTS:
7. Enter a ‘1’ to decrease beginning available by safety stock quantity.
8. Enter the lot hold codes (up to 5) to be considered on hand, or enter a ‘*’ to consider all held lots as on hand. If left blank, held lots will not be considered on hand.
9. Enter a ‘1’ by the following Receipt Routing quantities to be considered on hand.
 a. Quantity in Transit
 b. Quantity in Inspection
 c. User Defined Quantity 1
 d. User Defined Quantity 2
 NOTE: Any quantity not included will be placed in the On Receipt bucket.

DAMPER DAYS:
10. Enter the Defer Damper days, (no defer message if less than ‘X’ number of days).
11. Enter the Expedite Damper days, (no expedite message if less than ‘X’ number of days).

SAFETY LEADTIME:
12. Enter the purchased item leadtime days.
13. Enter the manufactured item leadtime days.

FORECASTING INFORMATION:
14. Enter the Forecast Types to include. Up to 5 types can be included.
 a. Forecast Type
 b. Forecast Type
 c. Forecast Type
 d. Forecast Type
 e. Forecast Type

RATE BASED SCHEDULING INFORMATION:
15. Enter the Schedule Type for rate based items. (Default is ‘AC’)
16. Enter a ‘1’ to extend rate based adjustments to lower level items.
17. Enter status code used to denote closed rates. (Default is 99)

PURCHASE ORDER INFORMATION:
18. Enter the Document Type for purchase orders. (Default is ‘OP’)

WORK ORDER INFORMATION:
19. Enter the Document Type for work orders. (Default is ‘WO’)

20. Enter the Work Order Status at which messages will no longer be exploded to lower level items. If left blank, all messages will be exploded to lower level items.

INCLUSION RULES:
21. Enter the Version of Supply/Demand Inclusion Rules to be used.

PERFORMANCE ISSUES:
22. Enter a ’1’ to initialize the MPS/MRP Print Code. This code is used for selecting records during the MPS/MRP print. (See glossary for MRPD.)

NOTE: If left blank, the run time of the generation will be reduced.

23. Enter the User Defined Code Type that contains the list of quantity types to be calculated & written to the Time Series file (F3413). User Defined Code 34/QT contains a master list of quantity types that can be written and will be used as the default.

24. Enter a ’1’ clear the DRP/MPS/MRP files before a Regeneration. This option should be used with EXTREME CAUTION. It will totally clear the following files:
 - F3411 - Message Detail
 - F3412 - Pegging
 - F3413 - Time Series

NOTE: If a ’1’ is entered, it will improve performance and clean up any bad data in the files.

25. Enter a ’1’ to process each branch from the Branch Relationship table at each level that branch occurs: This is only used when the Branch Relationships are used for Multi-Facility and will increase the generation time.

26. Enter the default branch for retrieving the Shop Floor Calendar to reduce processing time. If left blank, the calendar for each branch will be used.

MULTI-FACILITY INFORMATION:
27. Enter one of the following methods of Multi-Facility processing:
1 - Simple Consolidation
 a. Enter a '1' to also run a regular generation on the non-consolidated branches.
 b. Enter the Branch to consolidate to.

2 - Use Branch Relationships
 a. Enter the Category Code (1-5) to be used.
 b. Enter a '1' to make all manufactured items in the originating branch.

28. Enter the Document Type for transfer orders. (Default is 'OT')

PROCESS PLANNING:
29. Enter a '1' to generate planning in Process mode.
 NOTE: If left blank, the run time of the generation will be reduced.

LOT EXPIRATION:
30. Enter a '1' to consider lot expiration dates in calculations.

FORECAST CONSUMPTION PROCESSING:
31. Enter a '1' to use Forecast Consumption logic.

What You Should Know About Processing Options

Generation definition

You must specify in the processing option the type of plan to generate the multi-facility DRP or MPS items. Depending upon the type of master schedule you need, you can use any of the generation types listed in the processing option.

Interplant Relationships

Transfer orders are not supported for configured items. Issues of stocked configured items are not costed correctly. These incorrectly costed items cause problems for manufacturers who want to build a configured subassembly in a different branch/plant than the configured parent.
Multi-facility information (26)

You must set the appropriate processing option to control whether to run a consolidated or a full multi-facility DRP or MPS Regeneration.

Consolidation adds the item’s time series data in the same time buckets for selected branch/plants and includes the combined totals into a consolidation branch/plant.

The system combines the supply and demand data for selected branch/plants and includes the combined totals into a consolidation branch/plant. The system generates a new time series only for the consolidation branch and not the individual branches.

Transfer orders (27)

Transfer order messages are an output of multi-facility scheduling. You must set the appropriate processing option to identify the document type to use for transfer orders.

When the system processes a transfer order, it creates a sales order at the supply plant and a purchase order at the demand plant.
Work with Multi-Facility Planning Output

Working with Multi-Facility Planning Output

Multi-facility planning output consists of information in the time series and transfer order messages. Use the time series information to either accept the planning that is suggested by the system or to override it. You should review the transfer order messages for individual item numbers to determine which action, if any, you need to take.

Working with multi-facility planning output consists of the following tasks:

- Reviewing the multi-facility time series
- Processing multi-facility transfer order messages
- Reviewing transfer messages

Before You Begin

- Generate a current multi-facility schedule. See Generating Multi-Facility Schedules.

Reviewing Multi-Facility Time Series

From Material Planning Operations (G34), choose Daily Multi-Facility Planning

From Multi-Facility Planning Daily Operations, (G3414), choose Time Series Inquiry

Use Time Series Inquiry to review the times series for the multi-facility schedule. The multi-facility schedule is a record of time-phased supply and demand for selected items.

This data is derived from the most recent regeneration or net change run. Processing options in the DRP/MPS regeneration program enable you to set up daily, weekly, or monthly time periods (buckets).

The time series for multi-facility items uses quantity type ID (inter-plant demand) to indicate the net demand that the system transfers to the supply branch/plant for all demand branch/plants.
To review the multi-facility time series

On Time Series Inquiry

To locate the time series for your item, complete the following fields:

- Branch/Plant
- Item Number

See Also

- Reviewing DRP/MPS Time Series (P3413)

Processing Multi-Facility Transfer Order Messages

From Material Planning Operations (G34), choose Daily Multi-Facility Planning

From Multi-Facility Planning Daily Operations, (G3414), choose Detail Message Review

Use Detail Message Review to review the transfer order messages for the multi-facility schedule. Multi-facility scheduling creates messages that are appropriate to the demand and supply facilities. If you choose to process the messages, the system automatically creates transfer orders. You can transfer items between facilities either at cost or at a fixed or percent markup.
To process multi-facility transfer order messages

On Detail Message Review

1. To locate the transfer order messages for your item, complete the following fields:
 - Demand Branch
 - Item Number
2. Choose Process Message for those transfer order messages that you want to process.
3. On Transfer Order, accept the order to create the following:
 - Transfer order for the item
 - Purchase order number for the demand plant
 - Sales order number for the supply plant

4. Review the information for the new orders in the following fields:
 - Order Date
 - Cancel Date
 - Requested Date
 - Promised Date
 - Sales Order Number
 - Purchase Order Number
 - Ship From Branch
 - Ship To Branch
 - Landed Cost
 - Quantity
 - Item
 - Unit of Measure
 - Price
 - Extended Cost
 - Line Type
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Date</td>
<td>The date that an order was entered into the system. This date determines which effective level that the system uses for inventory pricing.</td>
</tr>
<tr>
<td>Cancel Date</td>
<td>The date that the order should be canceled if the goods have not been sent to the customer or the goods have not been received from the supplier. This is a memo-only field and does not cause the system to perform any type of automatic processing.</td>
</tr>
<tr>
<td>Req. Date</td>
<td>The requested date for a Purchase Order created thru Direct Ship or Transfer Order entry. If you leave this field blank, the system uses today’s date, which can be overridden at any time.</td>
</tr>
<tr>
<td>Ship To Brn</td>
<td>A code that identifies a business unit in the company.</td>
</tr>
<tr>
<td>Landed Cost</td>
<td>A user defined code (41/P5) that indicates the landed cost rule for an item. The landed cost rule determines purchasing costs that exceed the actual price of an item, such as broker fees, commissions, and so forth. You set up landed cost rules on Landed Cost Revisions.</td>
</tr>
<tr>
<td>Price</td>
<td>The list or base price to be charged for one unit of this item. In sales order entry, all prices must be set up in the Base Price table (F4106).</td>
</tr>
<tr>
<td>Extended Price</td>
<td>The number of units multiplied by the unit price.</td>
</tr>
</tbody>
</table>

Reviewing Transfer Messages

From Manufacturing Planning Operations (G34), choose Multi-Facility Planning

From Multi-Facility Planning (G3414), choose Transfers

Use Transfers as a convenient utility to analyze planned transfer orders created during a multi-plant DRP/MPS/MRP generation. You can also use Transfers to view other activity associated with branches or plants, such as:

- Pegging
- ATP
- Forecast
- Manufacturing data
- Available capacity
- Supply and demand
To review transfer messages

On Transfers

1. Complete the following fields:
 - From Branch
 - To Branch

 The system displays the planned transfer orders created during the multi-plant generation.

2. To review the messages for a transfer order, enter a 1 in the following field:
 - Option

See Also

- Working with Messages (P3411)

Exercises

See the exercises for this chapter.
Single Facility Material Requirements Planning
Single Facility Material Requirements Planning

Objectives

- To generate Material Requirements Planning (MRP)
- To validate the material requirements plan
- To review MRP action messages
- To set up Capacity Requirements Planning (CRP)
- To set up MRP and capacity requirements display
- To generate and process work orders

About Single Facility MRP

Material Requirements Planning (MRP) uses information from the bill of material and inventory records to calculate the time-phased net material requirements for every component item and subassembly. MRP suggests a replenishment plan to support the production of the quantities that are specified in the Master Production Schedule.

A single facility requirements plan critically impacts lower-level components or resources, such as skilled labor or revenues. Single facility implies material requirements planning at the component level.

The MRP process consists of:

- Determining what you need (forecast, customer orders, and interplant demands)
- Subtracting what you have (inventory, purchase orders, and work orders)
- Calculating what you need and when you need it

You can process a material requirements plan in one of two ways:

- Freeze the MPS and generate MRP
- Validate the MPS and then generate a combination of MPS and MRP

When you process a material requirements plan, the system summarizes gross material requirements for each assembly, component, and raw material part number. The requirements plan supports the MPS for each time period in the planning horizon.
You can generate a material requirements plan for all items or for a net change generation, which includes only the items that have changed since the last generation. After you generate MRP output, you can review and respond to messages.

The system uses the following inputs to MRP:

- **Demand**
 - Service part’s forecast and sales orders
 - Parent’s planned and firm work order demand
- **Supply**
 - Firm work orders
 - Rate schedules
 - Purchase orders
 - Inventory
 - In-receipt routing
- **Product data**
 - Item Branch (F4102)
 - Bill of Materials Master (F3002)

The system generates the following outputs from MRP:

- **Messages**
 - Action
 - Warning
- **Time series with calculated quantities for:**
 - Ending Available (EA)
 - Available to Promise (ATP)
 - Cumulative Available To Promise (CATP)
 - Planned orders

Material requirements planning consists of the following tasks:

- Generating material requirements plans
- Working with material requirements plans
- Validating material requirements plans
- Setting up material and capacity requirements planning
- Processing orders for MRP
The system records material planning information in the following tables:

Bill of Materials Master
(F3002)
Contains warehouse or facility level information about bills of material, such as:
- Costs and quantities of components
- Features and options
- Levels of detail for each bill

Work Order Master
(F4801)
Contains supply rate information and work orders.

Branch Relationships Master
(F3403)
Contains the supply and demand relationship among the branches.

Forecast Consumption Periods
(F3405)
Contains the forecast consumption periods that you defined on Forecast Consumption Periods.

MPS/MRP/DRP Detail Message Review
(F3411)
Contains the action messages that were generated by an MPS or MRP scheduling run.

MPS/MRP/DRP Lower Level Requirements
(F3412)
Contains the source of gross requirements that are posted to items from parent items.

MPS/MRP/DRP Summary
(F3413)
Contains the time series data for forms and reports.

Forecast
(F3460)
Contains the forecast data that MRP uses for calculations.

Item Master
(F4101)
Contains basic information about each item that has been defined in inventory, such as:
- Item numbers and descriptions
- Category codes
- Units of measure

Item Branch
(F4102)
Contains warehouse or plant-level information, such as:
- Costs
- Quantities
- Location
- Branch level category codes
How Do You Use Bills of Material in MRP?

The bill of material provides product structure information that MRP uses to explode the master production schedule to all component items. If a parts list does not exist for a work order, MRP generation uses the standard bill of material to explode demand.

The following features determine which components explode, how to modify the quantity, and how the system calculates schedule dates:

- Effectivity checking
- Feature planning percentage
- Quantity per
- Bill of material scrap factor
- Leadtime offset
- Operation scrap
- Fixed or variable quantity per assembly

What Are the Differences Between MRP and MPS?

MPS generally has independent demand, while MRP has dependent demand. Independent demand is demand for an item that is unrelated to the demand for other items, such as demand for finished goods. Dependent demand is demand that is directly related to or derived from the bill of material structure for other items or end products. MRP might also include forecast and sales orders if items are sold as service (spare) parts. The majority of demand, however, is demand from parent orders. The demands on MRP include:

- Parent’s firm work orders
- Parent’s planned work orders
- Interplant demands
- Service part forecast
- Service part sales orders
The following illustration compares the flow of MRP to that of MPS.
How Do You Run MRP Effectively?

MRP runs most effectively when you ensure the accuracy and validity of the following items:

Master schedule
Ensure that the master schedule is at least 95% accurate. Accuracy is measured by comparing the creation of an end product to the performance of the schedule.

Bill of material
Ensure that the bill of material is at least 98% accurate and contains the correct components and quantities. Accuracy is measured by comparing how the item is built in the factory to the correct components and quantities contained in the bill of material.

If you find a discrepancy between the parts list and the bill of material, you cannot count the bill of material as accurate.

Inventory
Ensure that your inventory count is at least 95% accurate. You can achieve this accuracy through the cycle count process.

Leadtimes
Ensure that your leadtimes are valid.

Note that the system gives you planned leadtimes. In execution, the actual time it takes to complete an order can vary.

See Also

- *About Time Fences and System Messages (P3413)*
Generate Material Requirements Plans

Generating Material Requirements Plans

From Material Planning Operations (G34), choose Single Site Planning

From Single Site Periodic Planning Operations (G3422), choose MRP Regeneration

Use MRP Regeneration to produce a single facility MRP planning schedule for the items that you select. Alternatively, you can use MRP Net Change to produce a single facility MRP planning schedule. You can generate a material requirements plan for:

- A single item
- All items
- Only items that are affected by transactions since the last generation

When you generate a material requirements plan, the system evaluates selected information, performs calculations, and recommends a time-phased replenishment plan for all selected items.

MRP regeneration uses the same programs as DRP/MPS regeneration. The following summarizes these programs:

MRP Regeneration

MRP Regeneration is a batch program that produces an MRP schedule for all items that are selected in the data selection criteria. When you run MRP Regeneration, the system:

- Reads the selected forecast
- Uses data from the MRP inclusion rules to calculate requirements for master planned items
- Generates a time series and messages for the selected items and components of selected items
Manufacturing and Distribution Planning

MRP Net Change
MRP Net Change is the same batch program as MRP Regeneration. The data selection is further defined to include only the items that you selected on Net Change Review. When you run MRP Net Change, the system:

- Evaluates selected information
- Performs calculations
- Generates a time series and messages for the selected items and components of selected items

Before You Begin

- Verify that MRP/CRP has been set up.

- Understand the concepts and terms described in *Single Level Master Scheduling*. See *Single Level Master Scheduling*.

- Generate a forecast for independent demand items. See *Generating Detail Forecasts* in the *Forecasting Guide*.

What You Should Know About

Bill of material
MRP uses the bill of material to explode demand to all component items. If a parts list does not exist for a work order, MRP generation uses the standard bill of material to explode demand.

You should define a bill of material type M (standard manufacturing bill) for work order headers without a parts lists and for parent planned orders. The MRP generation uses bill type M to sequence items according to how the product is built.

Low level code
The system uses the low level code to determine when to generate a time series for an item. MRP generation explodes lower level demand only for manufactured items. The system does not explode demand to levels below a purchased item, even if that item has a bill of material.

Generation type
You must use generation types 4 and 5 to generate a master planning schedule for MRP items. If the status of MPS is frozen, generation type 5 explodes only the component items of the master scheduled item. Select generation type 4 to explode MPS items and component items.
Frozen orders

If you identify work orders or purchase orders for an item as frozen, the program does not replan any orders for the item. Instead, you receive a frozen order message for that item.

Data selection

To run an MRP regeneration, base your selection on branch/plant, category codes, and planning code. The system can process any selection from based-on table fields.

To run a net change generation, set the net change flag to 1 to select items that have changed since the last generation of the program.

See Also

- *Setting Up MRP and Capacity Planning (P0005A)* for information on how to define MRP/CRP data to use during processing
- *Reviewing Items for Master Schedule Selection (P3402)* for information on how to use the Net Change Review program to review items that have changed, either through planned or unplanned activities
- Processing Options for *Master Planning Schedule*
Work with Material Requirements Plans

Working with Material Requirements Plans

MRP output consists of information in the time series and action messages. Use the time series information to decide whether to accept the planning suggested by the system or to override it. You should review the action messages for individual item numbers to determine which action, if any, that you need to take.

Working with the material requirements plan consists of the following tasks:

- Reviewing MRP time series
- Reviewing planning families for MRP
- Working with messages for MRP
- Working with scheduling information

Reviewing MRP Time Series

From Material Planning Operations (G 34), choose MRP

From MRP Daily Operations (G 3413), choose Time Series Inquiry

Use the MRP Time Series Inquiry program to review the item series for the material requirements plan. The time series is a record of time-phased supply and demand netting for selected items. The system retrieves this data from the most recent generation or net change run. Use processing options to set up daily, weekly, or monthly time periods (buckets).

MRP Time Series Inquiry uses the same program as DRP/MPS Time Series/ATP Inquiry. You can vary the settings in the processing options to accommodate the different requirements for MRP.

Before You Begin

- Generate a current material requirements plan that includes the start and end dates for the planning periods that you want to review. See Generating Material Requirements Plans.
See Also

- *Reviewing DRP/MPS Time Series (P3413)*

Reviewing Planning Families for MRP

From Material Planning Operations (G34), choose MRP

From MRP Daily Operations (G3413), choose MRP Planning Family Review

After you generate MRP, you can review all item numbers that have messages. You can display the list of items with messages by using the following filters:

- Branch/Plant
- Thru Date
- Planning Code
- Message and Stocking Type
- Planner Number
- Buyer Number
- Master Planning Family

MRP Planning Family Review uses the same program as DRP/MPS Planning Family Review. You can vary the settings in the processing options to accommodate the different requirements for MRP.

See Also

- *Reviewing Planning Families (P3401)*
Working with Messages for MRP

From Material Planning Operations (G34), choose MRP

From MRP Daily Operations (G3413), choose Detail Message Review

Access the messages directly using the Detail Message Review program. Complete the following tasks:

- Review MRP detail messages
- Review quantity types for MRP
- Process work order messages for MRP
- Process purchase order messages for MRP

Each time that you run a generation for MRP, the system produces action messages to identify situations in which demand requires one of the following:

- Changing the existing supply orders
- Placing new orders

Use MRP Detail Message Review to review exception messages from the latest planning generation. These messages might help you evaluate planned and existing orders. You can review the most critical messages first and review other items in the order that you will process them.

MRP Detail Message Review uses the same program as DRP Detail Message Review. You can vary the settings in the processing options to accommodate the different requirements for MRP.
See Also

- Working with Messages (P3411) for information on the Detail Message Review processing options

Reviewing MRP Detail Messages

Detail messages include all of the messages on Detail Message Review. After you generate MRP, you review the action messages for the individual item numbers. After you review the message, you can place the message on hold, or clear, delete, or process the message.

What You Should Know About

Component warning messages

Based on the messages for the parent item, the direct components also receive warning messages.

At the component level, there are special S messages that are similar to warning messages (A). Both types of messages originate from the parent. The S messages, however, indicate that the parent demand is firm planned.

See Also

- Working with Messages (P3411)
Reviewing Quantity Types for MRP

Use MRP Detail Message Review to review the quantity types that are generated for the material requirements plan. These quantity types include:

<table>
<thead>
<tr>
<th>Quantity Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned order (+PLO)</td>
<td>Represents recommended replenishment orders for an item.</td>
</tr>
<tr>
<td>Planned work order (−PWO)</td>
<td>Represents demand for components that will be consumed when you manufacture the parent’s planned work order.</td>
</tr>
<tr>
<td>Work order (+WO)</td>
<td>Represents a manufacturing order that is currently in process or that has been authorized to be worked on.</td>
</tr>
<tr>
<td>Firm work order (−FWO)</td>
<td>Represents demand for components that will be consumed while manufacturing the parent’s released work order.</td>
</tr>
<tr>
<td>Firm planned order (+FPO)</td>
<td>Processed similarly to planned orders, but allows the planner to firm up requirements at the next level. The system does not allow the component items to assume the action messages from the parent level. A status code of +1 for document type WO indicates a firm planned order.</td>
</tr>
</tbody>
</table>

The following describes how the system uses document types, quantity types, and work order codes during the MRP generation process. Status codes are user defined.

Planned orders (+PLO): MRP automatically changes schedule dates and quantity for each planning generation.

- The status code for document type +PLO is P.
- The component demand is −PWO.
Firm orders (WO)

MRP creates messages that require the planner to balance supply and demand.

+WO does not always equal +WOU in schedule dates or quantities.

A status code for document type WO of 10 indicates that the system has released the work order.

The component demand is ~FWO and ~FWOU. Message type A warns of parent supply and demand imbalances. A firm work order does not always equal a firm work order unadjusted in schedule dates or quantity.

Firm orders (WO)

These orders contain parts lists and routing instructions. MRP creates messages that require the planner to balance supply and demand.

+WO does not always equal +WOU in schedule dates or quantities.

A status code for document type WO of 40 indicates that the system has committed inventory to the order and has attached a parts list and routing instructions.

The component demand is ~FWO and ~FWOU. Message type A warns of parent supply and demand imbalances. A firm work order does not always equal a firm work order unadjusted in schedule dates or quantity.

Firm orders (WO)

The system plans these orders when you run the MRP planning generation. MRP creates messages that require the planner to balance supply and demand. The messages contain FPO planner remarks.

+WO does not always equal +WOU in schedule dates or quantities.

The component demand is ~FWO and ~FWOU. Message type S warns of firm planned order parent supply and demand imbalances. A firm work order always equals a firm work order unadjusted in schedule dates or quantity.
Work orders (WO)

The system creates the work order based on the requested date and the date set by the freeze fence on Plant Manufacturing Data. MRP does not create action message types inside the freeze fence. Supply and demand imbalance inside the freeze fence is satisfied by order message type O immediately outside the freeze fence.

+WO does not always equal +WOU in schedule dates or quantities.

Any status code for document type WO inside the freeze fence.

The component demand is –FWO and –FWOU. The system does not create any messages from the parent demand.

Work orders (WO)

Frozen orders. MRP does not create action messages for this work order. It creates warning message types (A) and frozen order message types (F). New order message type O is created to satisfy additional demand.

Any status code for document type WO indicates a freeze code on the work order header.

The component demand is –FWO and –FWOU. The system does not create any messages from the parent demand.

Processing Work Order Messages for MRP

Work order messages appear on Detail Message Review with an order type of WO. When you process work order messages, the master schedule becomes firm through the date of the processed orders. These firm orders will not be automatically replanned in subsequent MPS generations.
Processing Purchase Order Messages for MRP

Purchase order messages appear on Detail Message Review with an order type of OP. When you process a purchase order message, you can:

- Process a single action message without blanket order checking or consolidation.
- Process one or more action messages with blanket order checking.
- Process messages using purchase order consolidation to place more than one item on a purchase order.
- Process purchase order messages using a planning family.
- Process messages using the Supplier Scheduling system.

See Also

- Processing Work Order Messages (P3411)
- Processing Purchase Order Messages (P3411)
- Reviewing Planning Families (P3401)

Working with Scheduling Information

In daily operations, you might need to identify detail information about items, work centers, or planning families. Use the MRP inquiry programs to determine the status of items or work centers.

Complete the following tasks:

- Review MRP pegging demand
- Review MRP supply and demand
- Review shop floor workbench for MRP
- Review leadtime for MRP
Reviewing MRP Pegging Demand

From Material Planning Operations (G34), choose MRP

From MRP Daily Operations (G3413), choose Pegging Inquiry

Use Pegging Inquiry to determine the source of demand for dependent requirements. Pegging Inquiry displays only those parents that contain planned or open orders. Pegging Inquiry allows you to:

- Display the work orders for a particular item
- Trace the source of demand for each item
- Display the different levels in a bill of material, so that you can peg demand from the beginning level through the parent item

You can trace the path of dependent requirements up through parent items to the final assembled item and even to the sales order or forecast. You can use this information to determine if you need to reschedule or change orders.

To review MRP pegging demand

On Pegging Inquiry

1. To locate the item for which you want to review pegging demand, complete the following fields:
 - Item Number
 - Branch/Plant
2. To narrow your search to a specific date, complete the following optional field:
 - Requested

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requested</td>
<td>The date that an item is to arrive or that an action is to be complete.</td>
</tr>
</tbody>
</table>

 Form-specific information

As of date for pegging.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td>The system provides for three separate item numbers.</td>
</tr>
<tr>
<td>1. Item Number (short) – An eight-digit, computer assigned, completely non-significant item number.</td>
<td></td>
</tr>
<tr>
<td>2. 2nd Item Number – The 25-digit, free form, user defined alphanumeric item number.</td>
<td></td>
</tr>
<tr>
<td>3. 3rd Item Number – Another 25-digit, free form, user defined alphanumeric item number.</td>
<td></td>
</tr>
</tbody>
</table>

 Form-specific information

On this form, you see the item number for the parent of this component part.

Processing Options for Pegging

MESSAGE FILE REVISIONS:
1. Enter the version of Message File Revisions to be used. Default is ZJDE0001.

TIME SERIES:
2. Enter the version of Time Series to be used. Default is ZJDE0001.

SUPPLY/DEMAND INQUIRY:
3. Enter the version of Supply/Demand Inquiry to be used. Default is ZJDE0001.
Reviewing MRP Supply and Demand

From Material Planning Operations (G34), choose MRP Daily Operations (G3413), choose Supply/Demand Inquiry

Use Supply and Demand Inquiry to review the current demand for a selected item. Supply and Demand Inquiry allows you to:

- Display the current inventory position, including all scheduled supply and demand.
- Review item quantity supply, demand, and order availability in date order.

To review MRP supply and demand

On Supply/Demand Inquiry

1. To locate the item for which you want to review supply and demand, complete the following fields:
 - Item Number
 - Branch/Plant
2. To narrow your search to a specific order date, complete the following optional field:
 - Thru Date
Processing Options for Supply/Demand Inquiry

DISPLAY OPTIONS:

1. Enter a ‘1’ to deduct Safety Stock from Availability.

2. Enter a ‘1’ by the following Routing Quantities to be considered on hand. Any quantity not included will be displayed on the appropriate date.
 - 1 - Quantity in Transit
 - 2 - Quantity in Inspection
 - 3 - User Defined Quantity 1
 - 4 - User Defined Quantity 2

3. Enter a ‘1’ to summarize all In Receipt Routing steps into one line.

DISPLAY OPTIONS (cont.):

4. Enter a ‘1’ to summarize Item Location records.

5. Enter one of the following:
 - ‘ ’ = No Available to Promise Line
 - ‘1’ = Available to Promise Line
 - ‘2’ = Cumulative ATP Line

6. Enter the version of Supply/Demand Inclusion Rules to be used.

7. Enter a ‘1’ to display the window format if called from another program.

DREAM WRITER VERSIONS:

Enter the Dream Writer version to use for each program listed. If left blank, version ZJDE0001 will be used.

8. Purchase Order Entry (P4311)
9. Purchase Order Inquiry (P430301)
10. Sales Order Entry (P4211)
11. Sales Order Inquiry (P42045)
12. Scheduling Workbench (P31225)
13. MPS/MRP/DRP Pegging Inq. (P3412)
14. MPS/MRP/DRP Time Series (P3413)
15. MPS/MRP/DRP Message Detail (P3411)

OPTIONAL RECORDS:
16. Enter a ‘1’ to include Planned Orders from MPS/MRP/DRP generations. If left blank, Planned Orders will not be displayed.

17. Enter the Forecast Type to include
a. Forecast Type
b. Forecast Type
c. Forecast Type
d. Forecast Type
e. Forecast Type

OPTIONAL RECORDS (cont.):
18. Enter the number of days (+/-) from today’s date that you wish to begin including Forecast records. A blank will use today’s date to begin including Forecast records.

19. Enter a ‘1’ to omit ‘Bulk’ Stocking Type records from screen. If left blank, ‘Bulk’ items will be included.

OPTIONAL RECORDS (cont.):
20. Enter the rate based Schedule Type to use. If left blank, no rate based schedules will be displayed.

POTENCY:

LOT EXPIRATION:
22. Enter ‘1’ to reduce Quantity available due to lot expiration. (Note: This option will not work with ATP. If you use this option, option 5 must be set to blank or 2.)

Reviewing Shop Floor Workbench for MRP

From Material Planning Operations (G34), choose MRP
From MRP Daily Operations (G3413), choose Shop Floor Workbench

After a work order is on the shop floor, you must review the order and check capacity at the planned production line. You might need to change a schedule to keep the Material Requirements Planning schedule valid.
To review shop floor workbench for MRP

On Shop Floor Workbench

1. To locate the branch/plant for which you want to display the shop floor workbench, complete the following field:
 - Branch/Plant

2. To narrow your search to a specific work order, complete the following fields:
 - Process/Item
 - Customer
 - Planner
 - Parent Work Order Number
 - Status
 - Search Cross-Reference
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Process/Item | A number that the system assigns to an item. It can be in short, long, or 3rd item number format.
\textit{Form-specific information}
Header: Enter an item number in the header to see all work orders for the item entered. You can further define and restrict your search by entering values in any of the other header fields. Leave the header Item Number field blank to see work order information about all items.
Detail: The Item Number field in the detail section of the form indicates what item the work order on that line is for. |
| Customer | A number that identifies an entry in the Address Book system. Use this number to identify employees, applicants, participants, customers, suppliers, tenants, and any other Address Book members.
\textit{Form-specific information}
Header: Enter a customer number in this field to see all work orders for that customer. You can use this field with other fields in the header to define more specific search criteria.
Fold Area: The Customer field in the fold area contains the Address Book number of the customer who ordered the items on the work order listed. The system automatically enters the customer number if you create a work order was created from a sales order. |
| Planner | The address book number of a manager or planner.
\textit{Form-specific information}
HEADER: Enter a planner number in this field to see all work orders scheduled by that planner. You can use this field with other fields in the header to define more specific search criteria.
FOLD AREA: The Planner field in the fold area contains the planner number for the planner who scheduled the work order listed. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent W.O. No</td>
<td>This is the parent work order number. You can use this number to:</td>
</tr>
<tr>
<td></td>
<td>1. Enter default values for newly added work orders, for example, Type, Priority, Status, or Manager.</td>
</tr>
<tr>
<td></td>
<td>2. Group work orders for project setup and reporting</td>
</tr>
<tr>
<td></td>
<td>... Form-specific information ...</td>
</tr>
<tr>
<td></td>
<td>Enter the number of a parent work order in this field to see all work orders organized under that parent order. You can use this field with other fields in the header to define more specific search criteria.</td>
</tr>
<tr>
<td>Status</td>
<td>A user defined code (00/SS) that describes the status of a work order or engineering change order. Any status change from 90 thru 99 automatically updates the date completed.</td>
</tr>
<tr>
<td></td>
<td>... Form-specific information ...</td>
</tr>
<tr>
<td></td>
<td>You can update the status for the work order on this screen without accessing the work order header.</td>
</tr>
<tr>
<td>Search X–Ref</td>
<td>An alphanumeric value used as a cross-reference or secondary reference number. Typically, this is the customer number, supplier number, or job number.</td>
</tr>
<tr>
<td></td>
<td>... Form-specific information ...</td>
</tr>
<tr>
<td></td>
<td>Header: Enter a reference number in this field to see all work orders with that reference number. You can use this field with other fields in the header to define more specific search criteria.</td>
</tr>
<tr>
<td></td>
<td>Fold Area: The Refer (Reference) field in the fold area contains a reference number for the work order listed. The system automatically enters the sales order number here if the work order was created from a sales order.</td>
</tr>
</tbody>
</table>

What You Should Know About

Rate scheduled items

You can review rate scheduled items on the Line Scheduling Workbench.

See *Repetitive Manufacturing* in the *Shop Floor Control Guide*.
Processing Options for Shop Floor Workbench

DREAM WRITER VERSIONS
Enter the Dream Writer version to use when calling each program listed. If left blank, version 'ZJDE0001' will be used.
1. Sales Order Inquiry (P42045) ____________
2. Purchase Order Inquiry (P430301) ____________
3. Work Order Completions (P31114) ____________
4. Work Order Entry (P48013) ____________
5. Sales Order Entry (P4211) ____________
6. Purchase Order Entry (P43111) ____________

DISPLAY OPTIONS:
7. Enter a '1' to display Requested Date or enter a '2' to display Start Date. (Default is '1').
8. Enter a '1' to sequence the records by Requested date. Enter a '2' to sequence the records by Start date. If left blank, the sequence will be based on values for the Customer, Parent Work Order Number, Cross Reference, Item or Planner fields.

SCREEN DEFAULTS:
9. Enter defaults for the following:
 a. Category Code 1 ____________
 b. Category Code 2 ____________
 c. Category Code 3 ____________
 d. Type ____________
 e. Priority ____________
 f. Planner Number ____________
 g. From Status ____________
 h. Thru Status ____________
 i. Item Number ____________
 j. Customer Number ____________
 k. Search Cross Reference ____________
 l. Document Type ____________

PROCESS MANUFACTURING PROCESSING:
10. Enter a '1' to automatically create the WO Routing Instructions when creating the WO Parts List on-line.
11. Enter a '1' to automatically create the WO Parts List when creating the WO Routing Instructions on-line.

COMMITMENT AND SUBSTITUTE PROCESSING:
12. Enter commitment option for creating the WO Parts List on-line.
 Blank = Commit to Primary location
 '1' = Commit per Commitment Control in Mfg Constants (P3009)
 '2' = Same as '1', but use substitutes for shortages
 '3' = Same as '1', but only use substitutes if their quantity available can cover shortages
 '4' = Same as '1' but display substitute availability
window when substitute qty available can cover shortage

Reviewing Leadtime for MRP

From Material Planning Operations (G34), choose MRP

From MRP Daily Operations (G3413), choose Leadtime Inquiry

Use Leadtime Inquiry to review leadtimes for a component or ingredient.

► **To review leadtime for MRP**

On Leadtime Inquiry

1. To locate the item for which you want to display leadtimes, complete the following fields:
 - Branch/Plant
 - Parent Item

2. To display specific types of bills of material, complete the following optional field:
 - Mode

3. Review the information in the following fields:
 - Parent Leadtime Level
 - Level
- Manufacturing
- Cumulative

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Indicates the display mode for the bill of material.</td>
</tr>
<tr>
<td></td>
<td>1 Single Level Bill of Material. Shows level one (direct) components only.</td>
</tr>
<tr>
<td></td>
<td>2 Multi-Level Bill of Material. Shows all levels of components, with proximity to the parent item indicated by level 1, 2, 3, and so forth.</td>
</tr>
<tr>
<td></td>
<td>3 Indented Bill of Material. The multi-level bill of material with each level indented for differentiation.</td>
</tr>
<tr>
<td></td>
<td>You can also set this value in the processing options.</td>
</tr>
<tr>
<td>Level</td>
<td>A value that represents the leadtime for an item at its assigned level in the production process, as defined on Plant Manufacturing Data.</td>
</tr>
<tr>
<td></td>
<td>The system uses this value to calculate the start dates for work orders using fixed leadtimes. Level leadtime is different for purchased and</td>
</tr>
<tr>
<td></td>
<td>manufactured items:</td>
</tr>
<tr>
<td></td>
<td>You can enter level leadtime manually on Manufacturing Values Entry, or you can use the Leadtime Rollup program calculate it. To calculate level</td>
</tr>
<tr>
<td></td>
<td>leadtime using the Leadtime Rollup program, you must first enter a quantity in the Manufacturing Leadtime Quantity field in the Item Branch</td>
</tr>
<tr>
<td></td>
<td>table (F4102).</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>The total number of days required to build an item from its lowest level components to the final assembly. This value is the total of the level</td>
</tr>
<tr>
<td></td>
<td>leadtimes for all manufactured items, plus the highest manufacturing leadtime for all its components.</td>
</tr>
<tr>
<td></td>
<td>If all components are purchased, the manufacturing leadtime equals the item’s level leadtime. Purchased item leadtimes are not included in the</td>
</tr>
<tr>
<td></td>
<td>calculation of manufacturing leadtimes.</td>
</tr>
<tr>
<td></td>
<td>You can enter the manufacturing leadtime manually or you can have the system calculate it when you run the Leadtime Rollup program.</td>
</tr>
</tbody>
</table>
Field | Explanation
--- | ---
Cumulative | The total number of days required to build an item from its lowest level components to the final assembly. The system calculates the value differently for manufactured and purchased items.

Manufactured – The total of all level leadtimes for all manufactured items, plus the highest cumulative leadtime of all its components.

Purchased – The item’s level leadtime. Purchased item leadtimes are included in the calculation of cumulative leadtimes.

You can enter this value manually or you can have the system calculate it when you run the Leadtime Rollup program.

Processing Options for Leadtime Inquiry

LEADTIME PREFERENCE:

1. Enter a ‘1’ to use the leadtime values from the Item Branch File (F4102) or leave blank to display calculated leadtimes.
Validate Material Requirements Plans

Validating Material Requirements Plans

After you generate the material requirements plan, you must validate it to ensure that you have sufficient work center capacity. Use Capacity Requirements Planning (CRP) to determine whether the material plan can be executed with the resources that are available.

You also use CRP to:

- Analyze all active work centers
- Identify the pacing resource for work centers, which is either labor or machine, depending on which one would increase the work centers’ capacity
- Calculate the rated capacity for work centers
- Calculate the MRP load for work centers

In the J.D. Edwards software, the same batch program generates capacity planning information for both CRP and Rough Cut Capacity Planning (RCCP). You can vary the settings in the processing options to accommodate the different requirements for CRP.

The primary differences between CRP and RCCP are:

- CRP analyzes all active work centers instead of only the critical work centers.
- CRP offers more alternatives to level an overloaded time frame.

The system uses the following inputs to CRP:

- Firm MRP work orders and routing instructions
- Planned MRP work orders and routings
- Service parts’ forecast
- Service parts’ sales orders
- Inter-plant demands
The system generates the following outputs from CRP:

- Over-capacity and under-capacity messages
- Work center load
- Work center load graph
- Period summary

Validating the material requirements plan consists of the following tasks:

- Generating Capacity Requirements Plans
- Reviewing Capacity Requirements Plans

The programs that you use to validate the material planning schedule are the same programs that you use to validate the master schedule for DRP, MPS, and RCCP.

What You Should Know About

Synchronizing the MRP and CRP systems

CRP follows the same level of operational planning as MRP. You should synchronize the following items for both MRP and CRP:

- The planning horizon
- The work order document types and statuses in the supply/demand inclusion rules

See Also

- *Validating Master Schedules (P3382)* for detailed information on these programs

Generating Capacity Requirements Plans

From *Resource & Capacity Planning (G33)*, choose *Periodic Capacity Requirement*

From *Periodic Resource/Capacity Planning (G3321)*, choose *Capacity Requirements Plan*

Use the Capacity Requirements Plan program to compare prospective MRP resource requirements to the capacity available in work centers. CRP indicates if you should revise the material requirements plan to create feasible work loads or improve use of limited resources.
Before You Begin

- Report hours and quantities for operations that are complete or partially complete to ensure that the figures for Released Load are correct. See Working with Hours and Quantities in the Shop Floor Control Discrete Manufacturing Guide.

- Verify that resource units exist for all work centers in your generation. See Setting Up Resource Units in the Shop Floor Control Discrete Manufacturing Guide.

- Set up supply and demand inclusion rules. See Setting Up Supply and Demand Inclusion Rules for MRP.

- Run MRP generation. See Generating a Material Requirements Plan.

See Also

- Generating Rough Cut Capacity Plans (P3382) for information on the processing options

- Entering Resource Units Manually (P3007)

Reviewing Capacity Requirements Plans

When you generate a capacity requirements plan, the system creates a time series that shows the load during each planning period for a work center. You can view the time series as a spreadsheet or as a graphical display. If you have organized several work centers as a dispatch group according to common functions, similar operations, or steps in routing, you can view the group to see how capacity affects all of the work centers in the group.

You can review summaries of each period to determine the load that is placed on a work center by each item or order. You can also review messages for each work center and delete, clear, or hold messages. If the system encounters over- or under-capacity conditions, you can review the plan and identify the periods or work centers in which the conditions occur. It might be necessary to adjust the forecast or capacity and generate CRP again.

Reviewing the capacity requirements plan includes the same programs used to review the resource requirements plan.

Complete the following tasks:

- Review dispatch groups for capacity requirements planning

- Review work center load for capacity requirements planning

- Review period summaries for capacity requirements planning
Review MRP work schedules on the dispatch list

Review MRP rate schedule and work order loads

Validate capacity requirements plan

Reviewing Dispatch Groups for Capacity Requirements Planning

From *Resource & Capacity Planning (G33)*, choose *Daily Capacity Requirements*

From *Daily Capacity Requirements Planning (G3313)*, choose *Review Dispatch Group*

If you have several work centers that are organized as a dispatch group, you can view the group to determine how capacity affects all of the work centers in the group. Dispatch groups enable you to organize work centers according to common functions, similar operations, or routing steps.

When you review dispatch groups, you can also review messages about all the work centers in the group and use that information to redistribute the load within the group.

When you review dispatch groups for CRP you use the same program as when you review dispatch groups for Resource Requirements Planning. You can vary the settings in the processing options to accommodate the different requirements for CRP.

See Also

- *Reviewing Dispatch Groups for Resource Requirements Planning (P3301)*
 for information on the processing options
Reviewing Work Center Load for Capacity Requirements Planning

From Resource & Capacity Planning (G33), choose Daily Capacity Requirements

From Daily Capacity Requirements Planning (G3313), choose Review Work Center Load

You can review the capacity load at each work center. Use this information to determine whether to adjust capacity or the forecast. You can view the time series as a spreadsheet or as a graphical display. The spreadsheet provides a numerical breakdown, by planning period, of the load placed on a work center.

The bar graph provides the same information as Review Work Center Load. The graph uses time series information from Resource Requirements Load to generate the comparison. The system displays the capacity load at the work center for each planning period based on several calculations.

Review Work Center Load for CRP uses the same program as Review Work Center Load for Resource Requirements Planning. You can vary the settings in the processing options to accommodate the different requirements for CRP.

Before You Begin

- Verify that your resource units and capacity requirements plan are current.

See Also

- Reviewing Work Center Load for Resource Requirements Planning (P3313) for information on the processing options

Reviewing Period Summaries for Capacity Requirements Planning

From Resource & Capacity Planning (G33), choose Periodic Capacity Requirements

From Periodic Resource and Capacity Planning (G3321), choose Period Summary Report

In addition to reviewing the capacity load of a work center, you can also evaluate the load placed on a work center by item. You can review period summaries either online or through a printed report. You can review:

- The items that are scheduled for a work center
- The number of units of an item that make up the load
- The percent of the total load on the work center that is for a specific item’s forecast
You use this information to determine whether to adjust the forecast or the capacity at the work center.

When you review period summaries for CRP you use the same program as when you review period summaries for Resource Requirements Planning. You can vary the settings in the processing options to accommodate the different requirements for CRP.

To evaluate the load placed on a work center by item, you can review the Period Summary Report.

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Item Description</th>
<th>Order Number</th>
<th>Date</th>
<th>HR</th>
<th>100.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>5120</td>
<td>Oak Desk With Chair</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/02/98</td>
<td>1</td>
<td>.12</td>
</tr>
<tr>
<td>1261</td>
<td>Multivitamin Tablets</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/02/98</td>
<td>7</td>
<td>1.54</td>
</tr>
<tr>
<td>1261</td>
<td>Multivitamin Tablets</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/02/98</td>
<td>7</td>
<td>1.54</td>
</tr>
<tr>
<td>5120</td>
<td>Oak Desk With Chair</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/09/98</td>
<td>6</td>
<td>55.05</td>
</tr>
<tr>
<td>5120</td>
<td>Oak Desk With Chair</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/09/98</td>
<td>531</td>
<td>44.70</td>
</tr>
<tr>
<td>5120</td>
<td>Oak Desk With Chair</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/09/98</td>
<td>3</td>
<td>.25</td>
</tr>
<tr>
<td>333</td>
<td>OAK SHELF UNIT</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/09/98</td>
<td>1</td>
<td>.08</td>
</tr>
<tr>
<td>5120</td>
<td>Oak Desk With Chair</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/16/98</td>
<td>1059</td>
<td>65.65</td>
</tr>
<tr>
<td>5120</td>
<td>Oak Desk With Chair</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/23/98</td>
<td>555</td>
<td>34.41</td>
</tr>
<tr>
<td>5120</td>
<td>Oak Desk With Chair</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/23/98</td>
<td>1614</td>
<td>100.00</td>
</tr>
<tr>
<td>5120</td>
<td>Oak Desk With Chair</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/30/98</td>
<td>531</td>
<td>93.82</td>
</tr>
<tr>
<td>5120</td>
<td>Oak Desk With Chair</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/30/98</td>
<td>9</td>
<td>1.59</td>
</tr>
<tr>
<td>12706</td>
<td>Forklift</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/30/98</td>
<td>6</td>
<td>1.06</td>
</tr>
<tr>
<td>12706</td>
<td>Vitamin A</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/30/98</td>
<td>3</td>
<td>.53</td>
</tr>
<tr>
<td>12706</td>
<td>Vitamin A</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/30/98</td>
<td>3</td>
<td>.53</td>
</tr>
<tr>
<td>12706</td>
<td>Vitamin A</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/30/98</td>
<td>3</td>
<td>.53</td>
</tr>
<tr>
<td>12706</td>
<td>Vitamin A</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/30/98</td>
<td>2</td>
<td>.35</td>
</tr>
<tr>
<td>12706</td>
<td>Vitamin A</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/30/98</td>
<td>1</td>
<td>.18</td>
</tr>
<tr>
<td>12706</td>
<td>Minerals, complex</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/30/98</td>
<td>1</td>
<td>.18</td>
</tr>
<tr>
<td>12706</td>
<td>Minerals, complex</td>
<td>FO Firm Work Order W/Parts List</td>
<td>01/30/98</td>
<td>1</td>
<td>.18</td>
</tr>
<tr>
<td>333</td>
<td>OAK SHELF UNIT</td>
<td>FO Firm Work Order W/Parts List</td>
<td>02/06/98</td>
<td>1</td>
<td>.12</td>
</tr>
<tr>
<td>333</td>
<td>OAK SHELF UNIT</td>
<td>FO Firm Work Order W/Parts List</td>
<td>02/06/98</td>
<td>1</td>
<td>.12</td>
</tr>
</tbody>
</table>
Processing Options for Print Period Summary

1. Enter the Capacity Mode:
 “1” = Resource Requirements Planning
 “2” = Rough Cut Capacity Planning
 “3” = Capacity Requirements Planning

2. Enter Unit of Measure:

3. Enter the Starting Period Date:
 Blanks will default to today’s date.

4. Enter the Ending Period Date:
 Blanks will show all data after start date.

Reviewing MRP Work Schedules on the Dispatch List

From Resource & Capacity Planning (G33), choose Daily Capacity Requirements

From Daily Capacity Requirements Planning (G3313), choose Dispatch List

Use the Dispatch List to locate and update work center scheduling information. This workbench environment serves as a starting point for work center scheduling and the release of work to the floor. Use this program to:

- Access work order information, such as the header and parts list
- Display work order information, such as work center, remaining labor, machine hours, and setup hours
- Sort work orders by start date, requested date, or status code operation
- Change the work order status code, start date, or requested date

The Dispatch List for MRP uses the same program as the Dispatch List for DRP/MPS. You can vary the settings in the processing options to accommodate the different requirements for MRP.
What You Should Know About

Leveling an overloaded time frame If a work center is overloaded, you might consider the following alternatives to distribute material and labor requirements to make the work center load as even as possible:

- Offering Overtime
- Changing higher-level demand level by level
- Alternating routings
- Adding shifts
- Bringing in resources from other work centers
- Outsourcing

See Also

- *Reviewing Work Schedules on the Dispatch List (P31220)* for the processing options for this program

Reviewing MRP Rate Schedule and Work Order Loads

From Resource & Capacity Planning (G33), choose Daily Capacity Requirements

From Daily Capacity Requirements Planning (G3313), choose Schedule Review

Use Schedule Review to review the rate schedule load and the work order load for a work center for a day, week, or month. You can also select a specific date range to view the load for the work center. If you need to adjust the scheduled load at the work center, you can access several different forms to make adjustments.

Schedule Review is used primarily for rate based items and is an alternative for viewing load on a work center. A processing option allows you to include work order generated loads before or after rate loads.

When you review schedules for MRP you use the same program as when you review schedules for DRP and MPS. You can vary the settings in the processing options to accommodate the different requirements for MRP.

See Also

- *Reviewing Rate Schedule and Work Center Loads (P31224)* for the processing options for this program
Validating Capacity Requirements Plans

Validating the capacity requirements plan consists of identifying the overloaded work centers, making adjustments in forecast or resources, and generating the plan again to see if the adjustments you have made have evenly distributed the loads on the work centers.

To validate a capacity requirements plan

1. Complete the steps for reviewing the requirements plan.
 See Reviewing CRP.

2. Revise the forecast.
 See Revising Summaries of Forecasts in the Forecasting Guide.

3. Complete the steps for generating the requirements plan.
 See Generating Capacity Requirements Planning.

4. Complete the steps for reviewing the revised requirements plan.
 See Reviewing Capacity Requirements Planning.

5. Repeat the steps until all loads at each work center are appropriate.
Set Up Material & Capacity Requirements Planning

Setting Up Material and Capacity Requirements Planning

Before you can run a successful Material Requirements Planning (MRP) regeneration, you must define the information to use during processing. The system uses setup information to determine how to select and display data.

If you use other J.D. Edwards software, you must set up some of this information in other systems, such as Shop Floor Control and Inventory Management.

Complete the following tasks:

- Set up MRP supply and demand inclusion rules
- Set up message types for MRP
- Set up time fence rules for MRP
- Set up forecast consumption periods for MRP
- Set up capacity requirements displays

The programs that you use to set up MRP and CRP are the same programs that you use to set up Distribution Requirements Planning, Master Production Schedule, and Rough Cut Capacity Planning.

See Also

- Setting Up DRP, MPS, and RCCP (P3482) for detailed information on these programs
Setting Up MRP Supply and Demand Inclusion Rules

From Material Planning Operations (G34), enter 29

From Material Planning Setup (G342), choose Supply/Demand Inclusion Rules

You set up supply and demand inclusion rules to display the supply, demand, and available quantities for an item. These quantities and their formulas are as follows:

<table>
<thead>
<tr>
<th>Inclusion Type</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-hand inventory</td>
<td>Quantity on hand – hard commits – quantity on sales orders – quantity on work orders</td>
</tr>
<tr>
<td>Purchase orders</td>
<td>Open quantity on purchase orders</td>
</tr>
<tr>
<td>Manufacturing work orders</td>
<td>Quantity entered on work order – quantity shipped</td>
</tr>
<tr>
<td>Safety stock</td>
<td>Safety stock</td>
</tr>
<tr>
<td>Sales Orders</td>
<td>Quantity entered on sales order – quantity shipped – quantity canceled</td>
</tr>
<tr>
<td>Work order requirements</td>
<td>Quantity required – quantity issued</td>
</tr>
<tr>
<td>Co-/by-products supply from work orders</td>
<td>Quantity ordered – quantity completed</td>
</tr>
<tr>
<td>Co-/by-products supply from rates</td>
<td>Quantity ordered – quantity completed</td>
</tr>
</tbody>
</table>

See Also

- *Setting Up Supply/Demand Inclusion Rules (P34004)*
Setting Up Message Types for MRP

From Material Planning Operations (G34), enter 29
From Material Planning Setup (G3442), choose Action Messages

Message type character codes are already defined for all the messages that the system can create when you generate a material requirements plan. Because the character code is hard coded, you can change the description, but not the function of the message type. You can change the description for clarity in your environment.

See Also

- Setting Up Message Types for DRP, MPS, and RCCP (P00051) for information on how to change the message type descriptions

Setting Up Time Fence Rules for MRP

From Material Planning Operations (G34), enter 29
From Material Planning Setup (G3442), choose Time Fence Rules

Time fences are points in time at which you can make changes to either policy or operating procedures. The Manufacturing and Distribution Planning system supports three time fences:

- **F (Freeze Fence)**: Within this time period, orders are neither created nor replanned.
- **P (Planning Fence)**: Within this time period, the system uses the demand from the forecast and customer orders to calculate the ending available product.
- **D (Message Display Fence)**: After this time period, messages are neither created nor displayed.

See Also

- Setting Up Time Fence Rules for DRP, MPS, and RCCP (P00051) for information on how to specify time fence rules
Setting Up Forecast Consumption Periods for MRP

From Material Planning Operations (G34), enter 29

From Material Planning Setup (G3442), choose Forecast Consumption Periods

You define forecast consumption periods to identify a period of time in which forecasts are consumed by sales orders. The system stores this information in the Forecast Consumption Periods table (F3405).

Before You Begin

- Verify that the following information has been set up:
 - Planning fence rule H in user defined code table 34/TF
 - The order types in user defined code table 40/CF, to include in shipped order calculations
 - The –SHIP quantity type in user defined code table 34/QT, to calculate shipped orders quantity
 - The Planning Fence Rule field on the Plant Manufacturing Data form, with a value of H
 - The order types in user defined code list 40/IU, to update inventory (includes order type SO)
 - The Planning Fence field on Plant Manufacturing Data, with a value beyond the end of the planning horizon
 - The appropriate processing options in the DRP/MPS generation program

You must set up the planning fence field on Plant Manufacturing Data with a value beyond the end of the planning horizon (J.D. Edwards recommends a planning fence of 999). If you do not set the planning fence beyond the planning horizon, the batch programs (DRP/MPS/MRP Regeneration and Net Change) will not work properly.

See Also

- Setting Up Forecast Consumption Periods for more detailed information on this program
Setting Up the Capacity Requirements Display

From Resource and Capacity Planning (G33), enter 29

From Resource/Capacity Planning Setup (G3341), choose Capacity Requirements Display

Use Capacity Requirements Display to specify row descriptions for CRP on all forms and reports. The digit code is hard coded.

To set up the capacity requirements display

On Capacity Requirements Display

![Capacity Requirements Display](image)

Complete the following fields:

- Code
- Description
Processing Orders for MRP

From Shop Floor Control (G31), choose Discrete Daily Order Preparation

From Daily Order Preparation – Discrete (G3111), choose Order Processing

After you run MRP Regeneration or MRP Net Change, use the Order Processing batch program to process multiple work orders. The system:

- Attaches the parts list
- Attaches the routing instructions
- Sets an initial order status
- Generates the shop packet, including:
 - Parts list
 - Routing instructions
 - Shop packet summary
 - Component shortages

The program that you use to process orders for MRP is the same program that you use to process orders for Distribution Requirements Planning, Master Production Schedule, and Rough Cut Capacity Display.

See Also

- *Processing Work Orders (P31410)* in the *Shop Floor Control Discrete Manufacturing Guide*

Exercises

See the exercises for this chapter.
MRP Multi-Facility Scheduling
MRP Multi-Facility Scheduling

Objectives

- To understand key MRP multi-facility scheduling concepts
- To define supply and demand relationships among your branch/plants
- To use the branch relationships chart to review your supply and demand relationships in a graphical hierarchical format
- To generate a multi-facility requirements plan
- To review the time series for the multi-facility requirements plan
- To review and process transfer messages for the multi-facility requirements plan

About MRP Multi-Facility Scheduling

In an MRP multi-facility operation, planned orders at the demand facility are the source of demand at the supply facility. You set up and maintain multi-facility schedules to:

- Manage the movement of component material through multiple production facilities
- Use assembly lines at one plant to begin the assembly of a product and a different plant for final assembly
- Handle all resupply movements throughout the manufacturing network
- Formalize the processing of transfer items among your manufacturing plants
- Create internal transfer orders to help ensure traceability of material and their costs between facilities
- Ensure that the branch from which you are ordering has enough inventory in stock to fill the order, or schedule the supply plant to produce it
- Schedule production according to realistic time frames

You can define facility relationships at any level of detail for an entire facility, a product group, master planning family, or an individual item number. In addition, you can incorporate all your facilities into a single planning schedule.
In MRP, the system transfers items among your manufacturing plants at the component level. The system transfers component items by:

- Generating a purchase order at the demand plant for the supply plant
- Generating a sales order from the demand plant at the supply plant

In the following example, the demand plant (M55) receives components from three different supply plants. Supply plants can also manufacture the end deliverable item.

![Diagram showing MRP process]

A breakdown of the percent received from each supply branch/plant indicates that M55 satisfies 80 percent of its required demands from the three supply branch/plants. In this case, the demand plant assembly also supplies the remaining 20 percent of the end item.

MRP multi-facility scheduling consists of the following tasks:

- Setting up multi-facility requirements plans
- Generating multi-facility requirements plans
- Working with MRP multi-facility planning output
The system records MRP multi-facility information in the following tables:

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill of Materials Master (F3002)</td>
<td>Contains warehouse or plant level information about bills of material, such as costs and quantities of components, features and options, and levels of detail for each bill.</td>
</tr>
<tr>
<td>Branch Relationships Master (F3403)</td>
<td>Contains the supply and demand relationships among the branches.</td>
</tr>
<tr>
<td>Forecast Consumption Periods (F3405)</td>
<td>Contains the periods that you defined on the Forecast Consumption Periods form.</td>
</tr>
<tr>
<td>MPS/MRP/DRP Lower Level Requirements (F3412)</td>
<td>Contains the source of gross requirements that are required to build parent items.</td>
</tr>
<tr>
<td>Item Master (F4101)</td>
<td>Contains basic information about each item that has been defined in inventory, such as item numbers, description, alpha description, category codes, and units of measure.</td>
</tr>
<tr>
<td>Item Branch (F4102)</td>
<td>Contains warehouse or plant level information, such as costs, quantities, physical location, and branch level category codes.</td>
</tr>
<tr>
<td>MPS/MRP/DRP Detail Message Review (F3411)</td>
<td>Contains the action messages generated when you run a Master Production Schedule, Material Requirements Plan or Distribution Requirements Plan.</td>
</tr>
</tbody>
</table>
Set Up Multi-Facility Requirements Plans

Setting Up Multi-Facility Requirements Plans

You set up a multi-facility material requirements plan to track supply, demand, and movement of material among the individual facilities in your company. MRP multi-facility scheduling provides a flexible method for planning supply and resupply activities.

You must set up a table of the supply and demand relationships among your facilities. The system uses these relationships to generate and maintain multi-facility requirements planning schedules.

Setting up MRP multi-facility scheduling consists of the following tasks:

☐ Setting up MRP supply and demand relationships

☐ Reviewing MRP branch relationships on the relationships chart

MRP multi-facility scheduling uses the same programs as DRP/MPS multi-facility scheduling. The programs are summarized here.

Before You Begin

☐ Verify that MRP and CRP have been set up.

☐ Understand the concepts and terms described in Single Facility Material Requirements Planning. See Generating Material Requirements Plans.

See Also

- Setting Up MRP and Capacity Planning (P00051) for information on how to define MRP and CRP data to use during processing

- Setting Up Multi-Facility Schedules (P3403) for additional information on multi-facility scheduling
Setting Up MRP Supply and Demand Relationships

From Material Planning Operations (G34), enter 29
From Material Planning Setup (G3440), choose Multi-Plant Setup
From Multi-Plant Setup (G3443), choose Branch Relationships Revisions

Use Branch Relationships Revisions to set up MRP supply and demand relationships for any level of detail you choose, including:

- Branch/plant
- Product group
- Master planning family
- Individual item number

The MRP Branch Relationship Revisions program and the DRP/MPS Branch Relationship Revisions program use the same processing options. You can vary the settings in the processing options to accommodate the different requirements for a material requirements plan.

See Also

- Setting Up Supply and Demand Relationships (P3403) for the processing options for this program

Reviewing MRP Branch Relationships on the Relationships Chart

From Material Planning Operations (G34), enter 29
From Material Planning Setup (G3440), choose Multi-Plant Setup
From Multi-Plant Setup (G3443), choose Branch Relationships Chart

Use the Branch Relationships Chart to review your MRP supply and demand relationships in a graphical, hierarchical format. The Branch Relationships Chart displays the:

- Branch
- Level of the branch
- Supply branches for the corresponding demand branch
The MRP Branch Relationships Chart program and the DRP/MPS Branch Relationships Chart program use the same processing options. You can vary the settings in the processing options to accommodate the different requirements for a material requirements plan.

See Also

- *Reviewing Branch Relationships on the Relationships Chart (P34031)* for detailed information on this program
Generate Multi-Facility Requirements Plans

Generating Multi-Facility Requirements Plans

From Material Planning Operations (G34), choose Periodic Multi-Facility Planning
From Multi-Facility Periodic Planning Operations (G3423), choose MRP Regeneration

After you have set up the MRP supply and demand relationships among your branch/plants, you can use MRP regeneration to generate a multi-facility requirements planning schedule.

When you generate a multi-facility requirements planning schedule, the system evaluates selected information, performs calculations, and recommends a time-phased planning schedule for all selected items.

The Multi-facility MRP Regeneration program uses the same set of processing options as multi-facility DRP regeneration. You can vary the settings in the processing options to accommodate the different requirements for a material requirements plan.

Before You Begin

☐ Set up MRP multi-facility scheduling. See Setting Up Multi-Facility Schedules.

See Also

• Generating Multi-Facility Schedules (P3483) for detailed information on the regeneration program

What You Should Know About

Generation definition You must specify in the processing option the type of generation to use to process multi-facility MRP items. Depending on the type of requirements plan you need, you can use generation type 4 or 5.
Multi-plant consolidation

You must set the appropriate processing option to control whether you run a consolidated or a full multi-facility MRP Regeneration.

Consolidation is the process of adding the item's time series data in the same time buckets for selected branch/plants and consolidating it into a Consolidation Branch/Plant.

The system combines the supply and demand data for selected branches and consolidates it to a consolidation branch. The system generates a new time series only for the consolidation branch and not the branches that were combined.

Transfer orders

Transfer order messages are an output of multi-facility scheduling. You must set the appropriate processing option to identify the document type to use for transfer orders.

When the system processes a transfer order, it creates a sales order at the supply plant and a purchase order at the demand plant.
Work with MRP Multi-Facility Planning Output

Working with MRP Multi-Facility Planning Output

MRP multi-facility planning output consists of information in the time series and transfer order messages. Use the time series information to accept the planning that is suggested by the system or to override it. You should review the transfer order messages for individual item numbers to determine which action, if any, you need to take.

Reviewing MRP multi-facility planning output consists of the following tasks:

- Reviewing the time series for MRP multi-facility
- Processing MRP transfer order messages

Before You Begin

- Generate a current multi-facility material planning schedule. See Generating Multi-Facility Requirements Plans.

Reviewing the Time Series for MRP Multi-Facility

From Material Planning Operations (G34), choose MRP

From MRP Daily Operations (G3413), choose Time Series Inquiry

Use the MRP Time Series/ATP Inquiry program to review the item series for the multi-facility requirements plan. The time series is a record of time-phased supply and demand netting for selected items. The system retrieves this data from the most recent generation or net change run. Use the processing options to set up daily, weekly, or monthly time periods (buckets).

The MRP Time Series/ATP Inquiry program uses the same set of processing options as the DRP/MPS Time Series/ATP Inquiry program. You can vary the settings in the processing options to accommodate the different requirements for a material requirements plan.
See Also

- Reviewing the Time Series (P3413) for the processing options for this program
- Reviewing MRP Time Series (P3413)
- Reviewing DRP/MPS Time Series (P3413)

Processing MRP Transfer Order Messages

From Material Planning Operations (G34), choose MRP

From MRP Daily Operations (G3413), choose Detail Message Review

Use Detail Message Review to review the transfer order messages for the multi-facility material planning schedule. MRP multi-facility scheduling creates messages that relate to the demand and supply plants. If you choose to process the messages, the system automatically creates transfer orders. You can transfer items between plants at cost or at a fixed or percent markup.

The MRP Detail Message Review program uses the same set of processing options as the DRP/MPS Detail Message Review program. You can vary the settings in the processing options to accommodate the different requirements for a material requirements plan.

See Also

- Reviewing MRP Detail Messages (P3411) for additional information on messages generated for MRP
- Processing Multi-Facility Transfer Order Messages (P3411) for information on processing transfer order messages
- Working with Messages (P3411) for the processing options for this program

Exercises

See the exercises for this chapter.
Supplier Scheduling
Supplier Scheduling

Objectives

- To understand the key supplier scheduling concepts
- To identify the steps you use to create a supplier schedule
- To enter supplier information that is related to anticipated shipment quantities and the dates that you expect the supplier to meet
- To generate a supplier schedule and create a purchase order
- To update planned ship quantities in the supplier schedule
- To review and release the current supplier schedule

About Supplier Scheduling

You set up and maintain supplier schedules to:

- Support item-specific relationships for scheduled shipments at the supplier’s site
- Set up blanket purchase orders and material shipping arrangements with each supplier
- Generate a shipping schedule for all supplier scheduled demand within your release horizon
- Generate multiple supplier schedules for a single item
- Adjust the shipping schedule for unplanned events and create blanket purchase order releases

Working with supplier schedules consists of the following tasks:

- Defining supplier contracts
- Generating supplier schedules
- Revising supplier schedules
- Releasing supplier schedules
- Printing supplier schedules (optional)
Setting up supplier schedules provides your suppliers with consistent shipping information and advanced demand profiles to support your goal of just-in-time production and delivery. Using supplier schedules enables you to convert your DRP/MPS/MRP plans into a realistic shipping schedule.

Your buyers maintain timely information to monitor contract terms against your current needs. The supplier schedule identifies both short- and long-term needs for purchased items at your facility. Suppliers can then use your supplier schedule to plan their production and shipping schedules.

The system records supplier schedule information in the following tables:

Supplier Schedule Master (F4321)
Contains most of the data that controls scheduling arrangements with the supplier. This table also contains information required for creating and maintaining the schedule, including:
- Ship leadtime
- Schedule days
- Ship pattern
- Shipment quantity
- Delivery location

The system uses information from the Supplier Schedule Master table for each line item on a blanket order that you use in the supplier scheduling process.

Supplier Split Percentages (F43211)
Contains the data that identifies predetermined split percentages between suppliers, by item.

What Is the Effective Date Range?

The effective date range for a blanket purchase order is specified by the beginning order entry date and the expiration requested date.

What Is a Blanket Purchase Order?

A blanket purchase order is a standing order that you issue to a supplier for a large quantity of goods with no specific delivery date.

The process of scheduling supplier items begins in J.D. Edwards Purchase Management system with the creation of a blanket purchase order. You must create a blanket purchase order for every item that you want to schedule for supplier delivery.

Use Enter Blanket Order in the Purchasing Management system to enter blanket orders for items. You can review all blanket orders for a single item when you set up a supplier schedule.
Supplier release scheduling allows you to set up multiple blanket orders for the same supplier. The system uses a technique similar to effectivity dates to determine the active order. The system uses the blanket order date as the start date and the requested date as the end date.

What Is a Blanket Order Release?

You use a blanket order release for suppliers to whom you periodically release orders for delivery of some, but not all, of the goods on a purchase order.

For example, you might issue a blanket order release for 16,000 items from a supplier. In addition, you might have an agreement to take delivery of up to 2,000 units of the item each month until the order is filled.

When Supplier Scheduling processes the order suggestions, the system creates a purchase order against the blanket order. Receipts for the generated orders reduce the total quantity open on the blanket purchase order.
The following illustrates how the system uses blanket purchase orders and blanket order releases.

See Also

- *Entering Blanket Orders* in the *Procurement Guide*

What Are the Steps for Creating a Supplier Schedule?

The following graphic illustrates the steps you follow to create a supplier schedule.
Blanket Order Entry
- Enter an order for a specific supplier for specified items for a specific data range.

Define Supplier Contract
- Define the details of your contract with the supplier on the Enter/Change Supplier Information form.

Run MPS/MRP/DRP Generation
- Run the MPS/MRP/DRP generation to plan order quantities in terms of time and quantity.

Review Expedite/Defer Messages from MRP
- Review any order, expedite, defer, and cancel messages.

Supplier Split Percentage (Optional)
- Define predetermined split percentages between suppliers by item.

Generate Supplier Schedule
- Generate a draft of your supplier schedule prior to committing to a final schedule.

Review and Revise Supplier Schedule
- Update system-scheduled quantities to compensate for last-minute changes to the schedule.

Approve and Release Supplier Schedule
- Release quantities from the blanket order and create purchase orders for all quantities within the releasable time fence.

Print Supplier Schedule (Optional)
- Print a report showing the shipment schedule and the releasable quantities.
Define Supplier Contracts

Defining Supplier Contracts

You must enter the terms of your contract with each of your suppliers. The system uses these contract terms to generate and maintain supplier schedules.

In addition, if you want to generate multiple supplier schedules for a single item, you must define predetermined split percentages between the suppliers, by item.

Complete the following tasks:

- Define supplier contract information
- Define supplier split percentages

Defining Supplier Contract Information

From Material Planning Operations (G34), choose MRP

From MRP Daily Operations (G3413), choose Enter/Change Supplier Info

When you define a supplier contract, you can also define time fence periods for freezing delivery quantities, releasable schedule days, and future requirements. The rules for defining time fences are described below:

- **Frozen days** Specify the time frame from the generation start date within which deliveries are frozen.

- **Release days** Determine the period of time from the generation start date that purchase orders will be created for orders. Any quantities that are scheduled outside this period are still considered in planning status and do not produce actual purchase orders.
Fabrication days
Determine the time period from the generation start date, within which the customer guarantees fabrication costs for the quantities they ordered on the schedule, even if the order is canceled. This rule is optional.

Raw material days
Determine the time period from the generation start date, within which raw material costs are guaranteed by the customer, even if the order is canceled. This rule is optional.

Before You Begin

- Create a blanket purchase order for every item that you want to schedule through supplier scheduling. See *Entering Blanket Orders* in the *Procurement Guide*.

- Define the pattern of shipments that you want to receive from the supplier in the user defined code list (40/SP).

To define supplier contract information

On Enter/Change Supplier Info
1. To set up schedule information for each line on the blanket order, complete the following fields:
 - Order Number
 - Line Number
 - Releasable Days
 - Shipment Pattern

2. Complete the following optional fields:
 - Deliver to Location
 - Shipment Quantity
 - Shipping Units/Container
 - Shipment Leadtime
 - Frozen Days
 - Fabrication Days
 - Raw Material Days

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Number</td>
<td>The number that identifies an original document. This can be a voucher, an order number, an invoice, unapplied cash, a journal entry number, and so on.</td>
</tr>
<tr>
<td>Line Number</td>
<td>A number that identifies multiple occurrences, such as line numbers on a purchase order or other document. Generally, the system assigns this number, but in some cases, you can override it.</td>
</tr>
<tr>
<td>Releasable Days</td>
<td>A time fence that indicates the number of workdays from the generation start date to use when identifying the cutoff date for actual blanket order releases. The system uses the time fence when the supplier schedule release generation program is run.</td>
</tr>
<tr>
<td>Schedule D/W/M</td>
<td>The number of workdays, weeks and months that will be displayed on the supplier schedule.</td>
</tr>
<tr>
<td>Ship Pattern</td>
<td>User defined codes (system 40/type SP) that identify the shipping and delivery arrangement you have established with the supplier for this item. It can be specific Workday Calendar days on which the supplier agrees to make shipments, a range of days, such as a specific week during the month, or some other arrangement unique to your business. You can add new codes to suit your needs. NOTE: A date followed by an asterisk (*) indicates an invalid ship date.</td>
</tr>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Deliver to Loc</td>
<td>The location a shipment should be delivered to, such as a particular receiving dock or work center.</td>
</tr>
<tr>
<td>Shipment Quantity</td>
<td>This is the quantity the supplier is willing to ship as a minimum.</td>
</tr>
<tr>
<td>Ship Units/Cont</td>
<td>The standard quantity of containers that you use in the manufacturing process (typically, in a repetitive manufacturing environment). The quantity that you enter determines the number of bar code labels that you will need for shipping. It also modifies order release quantities.</td>
</tr>
<tr>
<td>Ship Leadtime</td>
<td>The time it takes a shipment to move from the supplier's dock to the customer's dock. The system uses this value to offset the required date to determine the actual date that the shipment should take place. Also known as Transit Time.</td>
</tr>
<tr>
<td>Frozen Days</td>
<td>The number of workdays from the generation start date that the quantity buckets will be frozen with no changes and releases possible. This value is also used to calculate the cumulative frozen quantity (see CFRO).</td>
</tr>
<tr>
<td>Fabrication Days</td>
<td>The number of workdays, from the generation start date, that the customer guarantees the fabrication costs for the quantity ordered.</td>
</tr>
<tr>
<td>Raw Mater'l Days</td>
<td>The number of workdays, from the generation start date, that the customer guarantees the raw material costs for the quantity ordered.</td>
</tr>
</tbody>
</table>

What You Should Know About

Deleting supplier information
When you delete supplier information, the system deletes the entire record, including the history.

Shipment leadtime
Shipment leadtime determines the number of days that are required for the items on the scheduled blanket order release to leave the supplier's dock and arrive at your delivery location.

Depending on where the supplier is located, the shipment leadtime might be zero, or as many days as it takes for the supplier to transport the released shipment to your facility.

Level leadtime
The level leadtime for a purchased item should include the shipment leadtime.
Shipping units per container

The Shipping Units Per Container field identifies the container requirements of the supplier. When the system generates the supplier schedule, it calculates the shipping units per container as a multiple and adjusts the planned quantities as needed.

Shipment quantity

The Shipment Quantity field identifies the minimum shipment quantity that the supplier is willing to accept.

Defining shipment patterns for supplier deliveries

You define shipment patterns in the user defined code table (40/SP).

The first character of the 2-character code specifies the weeks for which you want to define a shipment pattern. The second specifies the days of the week. For example, WA indicates weekly deliveries, Monday through Friday.

The first through fifth week of the month are interpreted as the first through the fifth occurrence of the day in the month. For example, 4D would be considered the fourth Monday of the month.

Processing early and past due receipts

When you generate a schedule, the system sorts outstanding blanket order releases into appropriate time periods. The system accumulates past due quantities and quantities that you received prior to the requested date.

When you regenerate the schedule, the system displays the quantities in the Past Due and Early Receipt fields on Enter/Change Supplier Information.

The system expresses past due amounts as positive numbers in the Past Due field and adds the amounts to the cumulative received quantity. The system expresses early receipt amounts in the Early Receipt field.

Processing Options for Supplier Schedule Master Revisions

DREAM WRITER VERSIONS:

Enter the version of each program.
If left blank, ZJDE0001 will be used.

1. Purchase Order Entry (P4311)
2. Open Order Inquiry (P430301)
3. Supplier Schedule (P34301)
4. Supplier Split Percentage (P43211)

DEFAULT SCREEN VALUES:

5. Enter the Document Type to display.
Defining Supplier Split Percentages

From Material Planning Operations (G34), choose MRP

From MRP Daily Operations (G3413), choose Supplier Split Percentages

Buyers often order from multiple suppliers for the same item to avoid relying on a single supplier. Supplier scheduling allows multiple suppliers to supply a single item based on a predetermined split percentage. Use Supplier Split Percentages to define the predetermined split percentages among the suppliers, by item.

To define supplier split percentages

On Supplier Split Percentages

1. To define split percentages among suppliers, complete the following fields:
 - Item Number
 - Branch/Plant
 - Split Percent
 - Effective From
 - Effective Thru

2. Complete the following optional field:
 - As of Date
Define Supplier Contracts

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split Percent</td>
<td>The percentage applied. For Supplier Release Scheduling: The percentage of the planned quantity that the system applies to the corresponding supplier.</td>
</tr>
</tbody>
</table>

Processing Options for Supplier Split Percentages Revisions

DREAM WRITER VERSIONS:
1. Enter the version of the purchase order inquiry program. If left blank ZJDE0001 will be used.
Generate Supplier Schedules

Generating Supplier Schedules

From Material Planning Operations (G34), choose Single Site Planning

From Single Site Planning Operations (G3422), choose Generate Supplier Schedule

Use Generate Supplier Schedule to generate a draft of your supplier schedule prior to committing to a final schedule. You can review the draft of your supplier schedule using Enter/Change Schedule.

When you generate the supplier schedule, the system uses the messages from the most recent MRP generation, blanket orders, and the information defined in the Supplier Schedule Master table to create a supplier schedule. The system determines demand from the MRP messages.

In addition, the system creates multiple supplier schedules for a single item. It does this by splitting the MRP messages by the predetermined percentages that you defined in the Supplier Split Percentages table.

Before You Begin

☑ Verify that the following information has been set up:

- The DRP or MPS system
- An active blanket order for the item
- Associated supplier information for the order
- The blanket order, order type, line type, and status in the version of supply/demand inclusion rules that are used during supplier schedule generation

☑ Run the MPS/MRP/DRP generation so that the system can:

- Create order messages for supplier scheduled items
- Produce a time-series material plan so you can analyze the impact of choosing to accept or reject planning suggestions

☑ Review and act on any messages on the Message Detail Review form
What You Should Know About

MRP messages
Supplier scheduling uses the messages generated from the most recent MRP generation to determine schedules. Use Detail Message Review to review these messages and change them as you see fit.

In addition, you can set the appropriate processing option to clear these messages after schedule generation. The system clears only those messages inside the releasable time fence.

After you clear the MRP messages, supplier scheduling creates a purchase order for every message that is included in the releasable time fence.

Multiple supplier scheduling
Supplier Scheduling uses the information in the Supplier Split Percentages table (F43211) to create quantity records for multiple suppliers. The system calculates these quantities by multiplying the MRP message quantity by the percentage defined in the Supplier Split Percentages table.

See Also
- *Setting Up DRP, MPS, and RCCP (P00051)*
- *Generating Single Level Master Schedules (P3482)*
- *Working with Messages (P3411)*
- *Reviewing MRP Time Series (P3413)*
- *Revising Supplier Schedules (P34301)*
When you run Generate Supplier Schedule, the system prints a Schedule Generation Exception report that details any possible discrepancies that might make your supplier schedule ineffective.

Processing Options for Supplier Schedule Generation

PROCESSING:

1. Enter the beginning date for the generation. (Default is Today)

2. Enter the document type to look for when retrieving an item’s blanket order. If left blank, ‘OB’ will be used.

3. Enter the version of Supply/Demand Inclusion rules to use for active blanket order selection. (Required)

SUPPLIER STATUS UPDATE:

4. Enter the status to use for updates to the Supplier Schedule. If left blank, no status update will occur.

MPS/MRP/DRP MESSAGES:

5. Enter a ’1’ to change MPS/MRP/DRP Messages to a cleared status after processing. If left blank, all messages will remain uncleared after schedule generation.

INITIALIZATION & REGENERATION:

6. Enter a ’1’ to rerun the generation using previously cleared MPS/MRP/DRP messages. If left blank, only uncleared MPS/MRP/DRP messages will be used.

7. Enter a ’1’ to ignore frozen time fence days and allow operations inside the normal frozen time fence. If left blank, no quantities will be placed inside the frozen time fence date.
Revising Supplier Schedules

From Material Planning Operations (G34), choose MRP
From MRP Daily Operations (G3413), choose Enter/Change Schedule

Use Enter/Change Schedule to review and revise the supplier schedule that you generated. You might need to override system-scheduled quantities to compensate for last-minute changes to the schedule.

After you review the schedule and make any necessary revisions, you must accept the information on Enter/Change Schedule to commit to a final schedule.

Enter/Change Schedule allows you to:

- Review planned, released, and historical quantity information
- Display the current supplier schedule
- Review cumulative quantity information
- Update planned quantities in the schedule before you release them
- Finalize the supplier schedule
To revise a supplier schedule for a single item

On Enter/Change Schedule

1. To display one or more blanket orders that exist for the selected item, complete the following fields:
 - Item Number
 - Branch/Plant

 The system displays Blanket Order Selection.

2. On Blanket Order Selection, choose the blanket order with the supplier information that you want to display.
The system closes Blanket Order Selection and populates the Enter/Change Schedule form with supplier scheduling information.

3. On Enter/Change Schedule, review the following information:
 - Status
 - Last Release Purchase Order
 - Last Receipt
 - Receipt Quantity
 - Cumulative Receipt
 - Cumulative Frozen
 - Cumulative Fabricated
 - Cumulative Raw Material
 - Past Due

4. Accept the record or complete the following field to update planned quantities in the schedule:
 - Planned

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>The current status of the supplier schedule. This is updated as the schedule moves through the system.</td>
</tr>
<tr>
<td></td>
<td>Form-specific information</td>
</tr>
<tr>
<td></td>
<td>This field is display only.</td>
</tr>
<tr>
<td>Last Receipt</td>
<td>The date that the last shipment of the item was received.</td>
</tr>
<tr>
<td>Receipt Qty</td>
<td>The quantity received on the most recent shipment.</td>
</tr>
<tr>
<td>Cum Receipt</td>
<td>The quantity received to date against a blanket purchase order.</td>
</tr>
<tr>
<td>Cum Frozen</td>
<td>The quantity inside the Frozen Time Fence that the customer is planning to release or has already released to the supplier.</td>
</tr>
<tr>
<td>Cum Fabricate</td>
<td>The running total of the item for which you could be exposed to fabrication costs by the supplier. This is calculated as the quantity planned for release up to the fabrication time fence.</td>
</tr>
<tr>
<td>Cum Raw Matrl</td>
<td>The quantity for which you could be exposed to raw material costs by the supplier. This is calculated as the quantity planned for release up to the raw material time fence.</td>
</tr>
<tr>
<td>Planned</td>
<td>A description of the information contained on the supplier schedule row.</td>
</tr>
</tbody>
</table>
What You Should Know About

Changing supplier information

The Planned field is the only field that you can change on the Enter/Change Schedule form. The system recalculates the quantities in the Cumulative Frozen, Fabricate, and Raw Material fields when a change is made.

Any changes that you make to the schedule will not affect the most recent MPS, MRP, or DRP generation. After you release the supplier schedule and create purchase orders for the blanket order releases, the next MPS, MRP, or DRP generation treats the purchase orders as available supply items.

Processing Options for Supplier Schedule Revisions

DREAM WRITER VERSIONS:
Enter the version of each program:
If left blank, ZJDE0001 is used.

1. Open Order Inquiry. (P430301) ____________
2. Supply/Demand Inquiry. (P4021) ____________
3. Purchase Order Entry. (P4311) ____________
4. Vendor/Blanket Information (P4321) ____________
5. Pegging Inquiry (P3412) ____________
6. Single Item Release (P34410) ____________

SUPPLY/DEMAND INCLUSION RULES:
Enter the version of Supply/Demand Inclusion Rules to use for active blanket order selection. (Required)

DEFAULT VALUES:
Enter the Document Type to default to the screen. If left blank, no default will be moved to screen.

SCHEDULE STATUS UPDATE:
Enter the status to use for updates to the Vendor Schedule. If left blank, schedule status unchanged.

Enter the status beyond which changes cannot be made to the Vendor Schedule. If left blank, schedule is always open to change.
Release Supplier Schedules

Releasing Supplier Schedules

From Material Planning Operations (G34), choose Single Site Planning

From Single Site Periodic Planning Operations (G3422), choose Release Supplier Schedule

After you finalize a schedule using Enter/Change Schedule, you can release the current supplier schedule. After the schedule is processed, the system updates the planned quantities inside the time fence.

Release Supplier Schedule uses the following:

- Outstanding purchase orders
- Existing blanket purchase orders
- Supplier release information that is specific to each blanket order

The program uses this information to create:

- Purchase orders for all quantities that are needed inside the time fence
- Blanket orders that are scheduled for a specific item within a branch/plant
- A shipping schedule based on when you need the items, the shipping leadtime, and other defined variables
- A single purchase order with multiple lines for each different release date and multiple lines for each item released for the supplier

Before You Begin

☐ Generate a current supplier schedule. See Generating Supplier Schedules.
What You Should Know About

Clearing MRP messages Supplier scheduling uses the messages from the most recent MRP generation to determine demand.

You can set the appropriate processing option to clear these messages after you release the supplier schedule. The system clears only those messages inside the releasable time fence.

Processing Options for Supplier Schedule Release Generation

PURCHASE ORDER OPTIONS:
1. Enter the Line Type to create. ____________
2. Enter the Beginning Line Status. ____________
3. Enter the Document Type to create. ____________
 (Above values are required)
4. Enter a '1' to default the tax area from the “Ship-To” address book number. If left blank, the tax area will be defaulted from the “Supplier” address number. ____________

STATUS UPDATES:
5. Enter the status to use for updates to the Supplier Schedule. If left blank, no change will be made to the schedule’s current status. ____________
6. Enter a '1' to clear MPS/MRP/DRP messages inside the releasable time fence. If left blank, no action. ____________

BLANKET/QUOTE PROCESSING:
7. Enter a '1' for automatic blanket order release processing. If left blank, automatic blanket release will not be performed. ____________

PRICE CONTROL:
8. Enter a '1' to use the price based on the Purchase Price Level flag in the Item Master. If left blank, the price from the Blanket Order will be used. ____________
Print Supplier Schedules

Printing Supplier Schedules

From Material Planning Operations (G34), choose Single Site Planning

From Single Site Planning Periodic Operations (G3422), choose Print Supplier Release

You can use Print Supplier Release to print the supplier schedule. This report shows the shipment schedule, releasable quantities, and all blanket orders that are scheduled for a specific item within a branch/plant.

The system uses the information that you have entered on the other forms along with the version of supply/demand inclusion rules that you select to create the report.

Before You Begin

- Run the Release Supplier Schedule batch process. See Releasing Supplier Schedules.
Supplier Schedule Print

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Desc.</th>
<th>Branch/Plt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>1x10x6' Oak 84S</td>
<td>CHI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Address</th>
<th>Purchase Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Raymond Allen</td>
<td>410 17th Avenue, Fairfax VA 22040</td>
<td>OP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blanket Order</th>
<th>Release Number</th>
<th>LastReceived Qt</th>
<th>Cum Receipt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 OB</td>
<td>92102701</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOB</th>
<th>Deliver to</th>
<th>Cum Fabricat</th>
<th>Cum Raw Matl</th>
<th>Units.</th>
<th>Net Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup with our Truck</td>
<td>CHI</td>
<td>2000</td>
<td>2000</td>
<td>EA Each</td>
<td>4600-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Past Due</th>
<th>09/14/98</th>
<th>F</th>
<th>09/15/98</th>
<th>R</th>
<th>09/16/98</th>
<th>L</th>
<th>09/17/98</th>
<th>M</th>
<th>09/18/98</th>
<th>9/21/98</th>
<th>09/22/98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Released</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Planned</td>
<td></td>
</tr>
<tr>
<td>Cum Receipt.</td>
<td>510</td>
<td>510</td>
<td>510</td>
<td>510</td>
<td>510</td>
<td>510</td>
<td>510</td>
<td>510</td>
<td>510</td>
<td>4600-</td>
<td></td>
</tr>
<tr>
<td>Net Change</td>
<td></td>
</tr>
</tbody>
</table>

Processing Options for Supplier Schedule Print

PROCESSING:

1. Enter the document type to use when retrieving an item’s blanket order. If left blank, ‘OB’ will be used.

2. Enter the version of Supply/Demand Inclusion rules to use for active blanket order selection. (Required)

Schedule Status Update:

3. Enter the status to use for updates to the supplier schedule. If left blank, no change will be made to the schedule’s current status.

Associated Text:

4. Enter a ‘1’ to print associated blanket order text. If left blank, no associated text will be printed.

Exercises

See the exercises for this chapter.
Appendices
Appendix A — Data Models
Capacity Management

- **Business Unit Master** (F0006)
 - Business Unit No.
 - Business Unit Desc.
 - Business Unit Type
 - Company
 - Level of Detail
 - Category Codes 1-23

- **Work Center Master** (F30006)
 - Work Center ID
 - Hours
 - Date (Start & Complete)
 - Operation No.

- **Work Order Routing** (F3112)
 - Work Center ID
 - Work Order No.
 - Hours
 - Percents

- **Capacity Messages** (F3311)
 - Work Center ID
 - Work Order No.
 - Date

- **Period Summary** (F3312)
 - Work Center ID
 - Date
 - Hours
 - Percents

- **Work Center Resource Units** (F3007)
 - Resource Units
 - Unit of Measure

- **Capacity Load** (F3313)
 - Work Center ID
 - Date
 - Hours
 - Percents

- **Table Relationships**
 - 1 = 1 record
 - M = many record

The diagram illustrates the relationships between different modules in a capacity management system, showing how data flows and is connected between different master and summary tables.
The action messages for DRP/MPS/MRP are defined in user defined code table 34/MT. The character codes are hard-coded. Do not change the character codes in this table.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Planner Remarks</th>
<th>Action Taken When Message Processed</th>
<th>Work Orders</th>
<th>Purchase Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Warning message</td>
<td>WO missing part list</td>
<td>Displays work order. You can copy the bill of material to create a parts list.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Warning message</td>
<td>BOM does not exist for item</td>
<td>Error message, record invalid.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Warning message</td>
<td>Cancel parts list</td>
<td>Error message, record invalid. You must clear or delete message.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Warning message</td>
<td>Defer parts list</td>
<td>Error message, record invalid. You must clear or delete message.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Warning message</td>
<td>Leadtime is zero</td>
<td>Clears message. Displays work order.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Order & Expedite</td>
<td>Blank</td>
<td>Clears message and creates a firm order message. Creates work order.</td>
<td>Clears message and creates a firm order message. Creates purchase order.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Cancel</td>
<td>Blank</td>
<td>Clears message. The system deletes work order parts list if there are no outstanding issues. Changes status to 99.</td>
<td></td>
<td>Clears closed message on purchase order line item. Changes status to 999.</td>
</tr>
<tr>
<td>D</td>
<td>Defer</td>
<td>Blank</td>
<td>Clears message and changes work order item required date. If a D message is generated, an L (Decrease Rate) message will not be generated.</td>
<td></td>
<td>Clears message and changes purchase order line item required date.</td>
</tr>
<tr>
<td>E</td>
<td>Expedite</td>
<td>Blank</td>
<td>Clears message and changes work order start date.</td>
<td></td>
<td>Clears message and changes purchase order line item start date.</td>
</tr>
<tr>
<td>Type</td>
<td>Description</td>
<td>Planner Remarks</td>
<td>Action Taken When Message Processed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Work Orders</td>
<td>Purchase Orders</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Frozen order</td>
<td>Frozen order</td>
<td>No action required. The message remains until deleted or cleared.</td>
<td>No action required. The message remains until deleted or cleared.</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Increase order quantity</td>
<td>Manual adjustment necessary</td>
<td>Displays work order. You must manually change the ordered quantity. The system recalculates and changes the number of required components.</td>
<td>Displays purchase order. You must manually change the ordered quantity.</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Decrease rate quantity</td>
<td>Blank</td>
<td>Displays the rate schedule. You must manually change the rate quantity for the suggested date.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Increase rate quantity</td>
<td>Blank</td>
<td>Displays the rate schedule. You must manually change the rate quantity for the suggested date.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Decrease order quantity</td>
<td>Manual adjustment necessary</td>
<td>Displays work order. You must manually change the ordered quantity. The system recalculates and changes the number of required components.</td>
<td>Displays purchase order. You must manually change the ordered quantity.</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Manual reminder</td>
<td>User entered text</td>
<td>No action required. The message remains until deleted or cleared.</td>
<td>No action required. The message remains until deleted or cleared.</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Create rate</td>
<td>Blank</td>
<td>Clears message and creates the rate schedule. Displays rate schedule revisions.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Order</td>
<td>Blank</td>
<td>Clears message and creates a firm order message. Creates work order.</td>
<td>Clears message and creates a firm order message. Creates purchase order.</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Firm order</td>
<td>Firm order</td>
<td>No action required. The message remains until deleted or cleared.</td>
<td>No action required. The message remains until deleted or cleared.</td>
<td></td>
</tr>
</tbody>
</table>
Action Messages in DRP/MPS/MRP

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Planner Remarks</th>
<th>Action Taken When Message Processed</th>
<th>Work Orders</th>
<th>Purchase Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>FPO adjustment suggestion</td>
<td></td>
<td>No action required. The message remains until deleted or cleared. Action is taken on the parent item's message.</td>
<td>No action required. The message remains until deleted or cleared. Action is taken on the parent item's message.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase Parts List</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decrease Parts List</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expedite Parts List</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defer Parts List</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Past due order</td>
<td>Blank</td>
<td>No action required. The message remains until deleted or cleared.</td>
<td>No action required. The message remains until deleted or cleared.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C — Functional Servers

Several J.D. Edwards programs access functional servers. The purpose of functional servers is to provide a central location for standard business rules about entering documents, such as vouchers, invoices, and journal entries. These business rules establish the following:

- Data dictionary default values
- Field edits and valid values
- Error processing
- Relationships between fields or applications

The advantages of a functional server are:

- It reduces maintenance of entry programs because edit rules reside in one central location.
- You can standardize documents across all applications because you create them using the same business rules.
- Generally, the user interface (appearance and interaction) of a form is now separate from how a program works.

The steps for setting up business rules for an entry program are:

1. Create a DREAM Writer version for a specific functional server program (for example, X0411Z1 for voucher entry).
2. Set the processing options within the version according to your company requirements.
3. Specify the version you want the entry program to use in the processing options for that entry program.

You can have all your entry programs use the same DREAM Writer version (and thus, use the same rules) or you can set up different DREAM Writer versions. J.D. Edwards provides DREAM Writer version ZJDE0001 as the default functional server version for your entry programs.

Only the person responsible for system-wide setup should make changes to the functional server version. For more information about how to set up DREAM Writer versions, see the Technical Foundation Guide.
Example: Voucher Processing Functional Server

The following graphic shows the programs that use the voucher processing functional server. J.D. Edwards provides two demo versions of the functional server, ZJDE0001 and ZJDE0002.
Glossary
Glossary

This glossary defines terms in the context of your use of J.D. Edwards systems and the accompanying documentation.

AAI. See *automatic accounting instruction.*

access. To locate the information or functions provided by the system through menus, forms, and reports.

aggregate leadtime. See *cumulative leadtime.*

alphabetical character. Represents data by using letters and other symbols from the keyboard (such as *, &, and #). Contrast with *alphabetic character* and *numeric character.*

alphabetic character. Represents data in a combination of letters, numbers, and other symbols (such as *, &, and #). Contrast with *alphabetic character.*

alternate operation. Replacement for a normal operation in the manufacturing process or routing for an item.

alternate routing. A routing, usually less preferred than the primary routing, but resulting in an identical item.

assemble-to-order. A product for which key components (bulk, semi-finished, intermediate, subassembly, fabricated, purchased, packaging, and so on) used in the assembly or finishing process are planned and stocked in anticipation of a customer order. Receipt of an order initiates assembly of the finished product. This is useful when a large number of finished products can be assembled from common components. Contrast with *make-to-order.*

assembly. A group of items or subassemblies that are put together and constitute an end item.

assembly inclusion rule. A logic statement that specifies under which conditions to use a part, adjust the price or cost, perform a calculation, or use a routing operation for configured items.

associated service type. See *linked service type.*

audit trail. The detailed, verifiable history of a processed transaction. The history typically shows all additions, changes, and deletions of records.

automatic accounting instruction (AAI). A code that refers to an account in the chart of accounts. AAIs define rules for programs that automatically generate journal entries. This includes interfaces between Accounts Payable, Accounts Receivable, Financial Reporting, and the General Accounting system. Each system that interfaces with the General Accounting system has AAIs. For example, AAIs can direct the Post General Journal program to post a debit to a specific expense account and an automatic credit to a specific accounts payable account.

backflush. The deduction from inventory records of the components or ingredients as a result of the production process. See also *super backflush.*

backscheduling. A technique for calculating operation start dates and due dates. The schedule is computed starting with the due date for the order and working backward to determine the required start date and due dates for each operation.

batch. A group of like records or transactions that the computer treats as a single unit during processing. For identification purposes, the system usually assigns each batch a unique identifier, known as a “batch number.”
batch bill of material. A recipe or formula in which the statement of quantity per is based on the standard batch quantity of the parent.

batch header. Information the system uses as identification and control for a group of transactions or records in a batch.

batch job. A task or group of tasks you submit for processing that the system treats as a single unit during processing, for example, printing reports and purging files. The system performs these tasks with little or no user interaction.

batch processing. A method by which the system selects jobs from the job queue, processes them, and sends output to the ouqueue.

batch type. A code that designates to which J.D. Edwards system the associated transactions pertain, thus controlling which records are selected for processing. For example, the Post General Journal program selects for posting only unposted transaction batches with a batch type of 0.

bill of material (BOM). A listing of all the subassemblies and raw materials that go into a parent assembly showing the quantity of each required to make the assembly. The BOM is used with the master production schedule to determine the items for which purchase requisitions and production orders must be released. There are a variety of display formats for bills of material, including: single level, multi-level, indented, planning, and costed.

Boolean logic operand. In J.D. Edwards’ reporting program, the parameter of the Relationship field. The Boolean logic operand tells the system to perform a comparison between certain records or parameters. Available operands are:

- **EQ** = Equal To
- **LT** = Less Than
- **LE** = Less Than or Equal To
- **GT** = Greater Than
- **GE** = Greater Than or Equal To

bucked system. An MRP, DRP, or other time-phased system in which all time-phased data is accumulated into time periods or “buckets.” If the period of accumulation is one week, then the system is said to have weekly buckets.

bucketless system. An MRP, DRP, or other time-phased system in which all time-phased data is processed, stored, and usually displayed using dated records rather than defined time periods or “buckets.”

bulk issue. Items issued from stores to work-in-process inventory, but not based on a job order, such as miscellaneous fasteners. They are issued in quantities estimated to cover requirements of individual work centers and production lines. The issue may be used to cover a period of time or to fill a fixed-size container.

business unit. See facility.

by-product. A material of positive or negative value produced as a residual of or incidental to the production process. The ratio of by-product to primary product is usually predictable. By-products may be discarded, sold as is, or used for other purposes.

capacity requirements planning (CRP). The function of establishing, measuring, and adjusting limits or levels of capacity. It is the process of determining in detail how much labor and machine resources are required to accomplish the tasks of production. Open shop orders and planned orders in the MRP system are input to CRP, which “translates” these orders into hours of work by work center and by time period.

category code. In user defined codes, a temporary title for an undefined category. For example, if you are adding a code that designates different sales regions, you could
change category code 4 to Sales Region, and define E (East), W (West), N (North), and S (South) as the valid codes. Syn: reporting code.

certificate of analysis. A document which includes all of the tests performed and resulting test data for an item lot sold to a customer.

character. Any letter, number, or other symbol that a computer can read, write, and store. See also alphabetic character, alphanumeric character, numeric character.

closed-loop MRP. A system built around material planning that includes the additional planning functions of sales and operations (production planning, master production scheduling, and capacity requirements planning). After this planning phase is complete and the plans have been accepted as realistic and attainable, the execution functions come into play. These include the manufacturing control functions of input-output (capacity) measurement, detailed scheduling and dispatching, as well as anticipated delay reports from both the plant and supplier. The term “closed-loop” implies that not only are each of these elements included in the overall system, but also that feedback is provided by the execution functions so that the planning can be kept valid at all times.

committed material. Material on hand or on order that is assigned to specific future production or customer orders. Syn: reserved material.

cooproduct. An end item produced as the result of a process. There are usually two or more co-products. See also end item.

component. Raw material, ingredient or subassembly that goes into a higher level assembly, process, or other item. This term may also include packaging materials for finished items.

component availability. The availability of component inventory for the manufacture of a specific parent order or group of orders or schedules.

component changeout. See component swap.

component swap. In Equipment/Plant Management, the substitution of an operable component for one that requires maintenance. Typically, you swap components to minimize equipment downtime while servicing one of the components. When you perform a component swap, you can update the parent and component relationship for each component, as well as the status of each component.

composite leadtime. See cumulative leadtime.

configuration management. A rules-based method of ordering assemble-to-order or make-to-order products. Characteristics of the product are defined as part of the Sales Order Entry process. Characteristics are edited using Boolean logic and then translated into the required components and routing steps. The resulting configuration is also priced and costed based on characteristics defined.

configured item segment. A conceptual characteristic of a configured item defined during sales order entry. For example, when ordering a configured personal computer, the customer may specify what type of hard drive is required by simply stating the number of megabytes of capacity, rather than a part number for the hard drive.

constants. Parameters or codes that rarely change. The system uses constants to standardize information processing by an associated system. Some examples of constants are: validating bills of material online and including fixed labor overhead in costing.
manufacturing location. The point on the production line where a component or subassembly is used in the production process. Used in kanban processing.

corrective maintenance. Any maintenance work that falls outside the scope of preventive or predictive maintenance. Corrective maintenance can be planned, unplanned, or emergency. Examples of corrective maintenance include emergency repairs and maintenance performed to respond to equipment failure. Contrast with preventive maintenance and predictive maintenance.

corrective work order. In Equipment/Plant Management, a work order that is used to formally request and schedule corrective maintenance and other unscheduled maintenance, such as emergency repairs. Corrective work orders are not generated by the preventive maintenance system. You use corrective work orders to record and communicate all details pertaining to the corrective maintenance task.

cost component. An element of an item’s cost, for example, material, labor, or overhead.

costed bill of material. A type of bill of material that extends the quantity per of every component in the bill by the cost of the components. See also bill of material.

cost rollup. A simulated scenario in which work center rates, material and labor costs are used to determine the total cost of an item.

crew size. The number of people required to perform an operation. The associated standard time should represent the total time for all crew members to perform the operation.

critical path leadtime. See cumulative leadtime.

cross segment edit. A logic statement that establishes the relationship between configured item segments. These edits are used to prevent ordering of configurations which cannot be produced.

CRP. See capacity requirements planning.

cumulative leadtime. The longest planned length of time involved to accomplish the activity in question. For any item planned through MRP, cumulative leadtime is found by reviewing the leadtime for each bill of material path below the item. Whichever path adds up to the greatest number defines cumulative leadtime. Syn: aggregate leadtime, composite leadtime, and critical path leadtime.

current cost. The cost associated with an item at the time a parts list and routing are attached to a work order or rate. Cost is based on the latest bill of material and routing for the item.

data dictionary. A database table consisting of the definitions, structures, and guidelines for the use of fields, messages, and help text. The data dictionary table does not contain the actual data itself.

date pattern. A period of time set for each period in standard and 52-period accounting.

demand. A need for a particular product or component. The demand could come from any number of sources, such as customer order, forecast, an interplant requirement, or a request from a branch warehouse for a service item.

dependent demand. Demand that is directly related to or derived from the bill of material structure for other items or end products. Such demands are calculated and should not be forecast. A given inventory item may have both dependent and independent demand at any given time. For example, an item may simultaneously be the component of an assembly and also sold as a service item.
direct labor. Labor that is specifically applied to the product being manufactured.

direct material. Material that becomes a part of the final product in measurable quantities.

discrete manufacturing. Production of distinct items such as cars, appliances, or computers.

dispatch list. A list of sequenced manufacturing orders or rates. The dispatch list contains detailed information on location, quantity, and capacity requirements. Dispatch lists are usually generated daily and are oriented by work center or line.

DREAM Writer. Data Record Extraction And Management Writer. A flexible data manipulator and cataloging tool. You use this tool to select and sequence the data that is to appear on a programmed report.

effective date. See **effectivity date**.

effectivity date. The date on which a component or an operation is to be added or removed from a bill of material or an assembly process. Effectivity dates are used in the explosion process to create demands for the correct items. Normally, bills of material and routings provide for an effectivity “start date” (from) and “stop date” (through), signifying the beginning and end of a particular relationship. Syn: **effective date**.

efficiency. A measure (as a percentage) of the actual output to the standard output expected. Efficiency measures how well something is performing relative to expectations; it does not measure output relative to any input. For example, if there is a standard of 100 pieces per hour and 780 units are produced in one eight-hour shift, the efficiency is 780 divided by 800, then multiplied by 100% or 97.5%.

electronic commerce. See **electronic data interchange (EDI)**.

electronic data interchange (EDI). The paperless (electronic) exchange of trading documents, such as purchase orders, shipment authorizations, advanced shipment notices, and invoices, using standardized document formats. Syn: **electronic commerce**.

end item. A product sold as a completed item or repair item. Any item subject to a customer order or sales forecast. Syn: **parent item, finished good, and co-product**.

engineering change order (ECO). A work order used to implement and track a change in a manufactured product. This can be a change in design, quantity of items required, assembly or production process, and so forth.

engineer-to-order. Products whose customer specifications require unique engineering design or significant customization. Each customer order results in a unique set of item numbers, bills of material, and routings.

enterprise resource planning (ERP). A closed-loop, integrated system that enables manufactures and distributors to coordinate all of the activities necessary to ultimately fulfill customer demand. This includes activities associated with suppliers, customer, inventory, shop floor, product costing and accounting, forecasting, and planning and scheduling.

expedite. To rush production or purchase orders that are needed in less than the normal leadtime. To take extraordinary action because of an increase in relative priority.

explosion. The process of calculating the demand for the components of a parent item by multiplying the parent item requirements by the quantity per specified in the bill of material. Syn: **requirements explosion**. Contrast with **implosion**.

explosion level. See **low-level code**.
exponential smoothing. A type of weighted moving average forecasting technique in which past observations are geometrically discounted according to their age. The heaviest weight is assigned to the most recent data. The smoothing is termed “exponential” because data points are weighted in accordance with an exponential function of their age.

facility. Identifies a separate entity within a business for which you want to track costs. For example, a facility might be a warehouse location, job, project, work center, or branch/Plant. Syn: business unit.

family. See master planning family.

feature. A characteristic of a product or service, such as an option, accessory, or attachment.

FIFO. See first in, first out.

finished good. See end item.

firm planned order (FPO). A planned order that can be frozen in quantity and time. The system is not allowed to automatically change it; this is the responsibility of the planner in charge of the item that is being planned. This technique can help planners respond to material and capacity problems by firming up selected planned orders. Additionally, firm planned orders are the normal method of stating the master production schedule.

first in, first out (FIFO). A method of inventory valuation for accounting purposes, based on the assumption that oldest inventory (first in) is the first to be used (first out). There is no relationship with the actual physical movement of specific items.

fixed cost. An expense that does not vary with the production volume, for example, setup cost.

fixed order quantity. A lot-sizing technique in MRP or inventory management that always causes planned or actual orders to be generated for a predetermined fixed quantity, or multiples thereof, if net requirements for the period exceed the fixed order quantity.

fixed quantity. Indicates that the amount of a component or ingredient used in the manufacturing process of an end item remains the same, regardless of the quantity of the end item produced. Contrast with variable quantity.

fixed overhead. Manufacturing costs other than direct labor and direct materials, that continue even if products are not produced. Although fixed overhead is necessary to produce the product, it cannot be directly traced to the final product.

forecast. An estimate of future demand. A forecast can be determined by 1) mathematical means using historical data, 2) subjective estimates from informal sources, or 3) a combination of both techniques.

forecast consumption. In Manufacturing and Distribution Planning, forecast consumption occurs when forecast demand is reduced by actual sales orders received or shipped, up to the forecast quantity.

FPO. See firm planned order.

frozen cost. After a frozen update, the cost of an item, operation, or process, as used by the Manufacturing Accounting system.

frozen update. A program that freezes the current simulated costs, thereby finalizing them for use by the Manufacturing Accounting system.

Gantt chart. A control chart designed to show graphically the relationship between planned performance and actual performance.

grade. Identifies a rating for an item which is based on how well the item meets required specifications.

header. Information at the beginning of a table. This information is used to identify or provide control information for the group of records that follows.
hidden selections. Menu selections you cannot see until you enter HS in a menu's Selection field. They include items such as Display Submitted Jobs (33), Display User Job Queue (42), and Display User Print Queue (43). The Hidden Selections window displays three categories of selections: user tools, operator tools, and programmer tools.

implosion. The process of determining the where-used relationship for a given component. Implosion can be single level (showing only the parents on the next higher level) or multi-level (showing the ultimate top-level parent). Syn: where-used. Contrast with explosion.

indented bill of material. A form of multi-level bill of material that lists the highest level parent items at the left margin and all the components going into these parents indented to the right of the margin. All subsequent levels of components are indented farther to the right. If a component is used in more than one parent within a given product structure, it will appear under every subassembly in which it is used.

indented where-used. A type of bill of material listing for one component every parent item and subassembly, and the respective quantities required. Each of these parent items calls for the given component item in a bill of material table. The component item is shown closest to the left margin of the listing in the bill, with each parent indented to the right, and each of their respective parents indented even further to the right.

indirect costs. Costs that are not directly incurred by a particular job or operation. Certain utility costs, such as plant heating, are often indirect. An indirect cost is typically distributed to the product through the overhead rates.

indirect labor. Work required to support production in general without being related to a specific product, for example, administrative work.

indirect materials. Items that become part of the final product, or substances that are consumed in the manufacture of a product that have a negligible value relative to the value of the final product or the use of which cannot effectively be determined. Examples of indirect materials include masking tape, rags, and oils. These components might or might not be included in the bill of material.

ingredient. In process manufacturing industries, the raw material or component of a recipe or formula.

in-process inventory. See work-in-process (WIP).

intermediate. Material processed beyond raw material and used in higher level items. Intermediates are not stocked in inventory, sold to customers, or planned by MRP.

issue. The physical movement of items from a stocking location and, often, the transaction reporting of this activity.

item. Any unique manufactured or purchased part, material, intermediate, subassembly, or product, based on form, fit, or function.

item master. A record for an item. This record contains descriptive data and control values (leadtimes, lot sizes, and so on), and might contain data on inventory status, requirements, planned orders, and costs. Item records are linked together by product structure records that define the bill of material for an item.

Just-in-Time (JIT). A type of manufacturing based on planned elimination of all waste and continuous improvement of productivity. The primary elements of Just-in-Time manufacturing are to have only the required inventory when needed; to improve quality to zero defects; to reduce leadtimes by reducing setup times, queue lengths, and lot sizes; to revise incrementally the operations themselves; and to keep costs to a minimum.
kanban. Information cards attached to a group or bin of items that travel in and out of a work center. Kanbans indicate to producing work centers what has been consumed and what needs to be produced next. Some companies use various shapes, sizes, and colors of cards for each recognition and to indicate an item’s priority.

kit. The components of a parent item that have been pulled from stock and readied for movement to a production area.

labor cost. The dollar amount of added value due to labor performed during manufacturing.

last in, first out (LIFO). Method of inventory valuation for accounting purposes, based on the assumption that the most recently received (last in) is the first to be used or sold (first out). There is no relationship with the actual physical movement of specific items.

leadtime. 1) A span of time required to perform a process (or series of operations). 2) In a distribution context, the time between recognition of the need for an order and the receipt of goods. Individual components of leadtime can include order preparation time, queue time, move or transportation time, and receiving and inspection time.

leadtime offset. A technique used in MRP where a planned order receipt in one time period requires the release of that order in an earlier time period based on the leadtime for the item.

ledger type. A ledger used by the system for a particular purpose. For example, all transactions are recorded in the AA (actual amounts) ledger type in their domestic currency. The same transactions may also be stored in the CA (foreign currency) ledger type.

level. Every item or assembly in a product structure is assigned a code signifying the relative level in which that item or assembly is used within the product structure. Normally the end items are assigned to level 0 with the components and subassemblies of the item assigned to level 1 and so forth. The MRP explosion process starts from level 0 and proceeds downward one level at a time.

LIFO. See *last in, first out.*

linked service type. A service type that is associated with a primary service type. Linked service types are cancelled and the maintenance tasks are performed when the primary service type to which they are linked comes due. You can specify whether the system generates work orders for linked service types, as well as the status the system assigns to work orders that have already been generated. Syn: *associated service type.* See also *primary service type, service type.*

load. The amount of planned work scheduled and actual work released for a work center, or operation for a specific span of time. It is usually expressed in terms of standard hours of work or, when items consume similar resources at the same rate, units of production.

load center. See *work center.*

lot. A control quantity produced together that shares the same production components. Lots are uniquely identified to allow for traceability.

lot number control. Assignment of unique numbers to each instance of receipt. This number carries forth into subsequent manufacturing processes. Thus, in review of an end item lot, each lot consumed can be identified as having been used for the manufacture of this specific end item lot.

low-level code. A number that identifies the lowest level in any bill of material at which a particular component appears. Net
requirements for a given component are not calculated until all the gross requirements have been calculated down to that level. Low-level codes are calculated and maintained automatically. Syn: explosion level.

machine hours. The amount of time, in hours, that a machine is required to produce a product. Machine hours, rather than labor hours, may be used for planning capacity and scheduling, and for allocating costs.

maintenance loop. See maintenance route.

maintenance route. A method of performing PMs for multiple pieces of equipment from a single preventive maintenance work order. A maintenance route includes pieces of equipment that share one or more identical maintenance tasks that can be performed at the same time for each piece of equipment. Maintenance routes eliminate the need to create separate maintenance work orders for each piece of equipment, yet still accommodate all of the features of the preventive maintenance cycle. Syn: maintenance loop.

maintenance work order. A term used to distinguish work orders created for the performance of equipment and plant maintenance from other work orders within J.D. Edwards systems, such as manufacturing work orders, utility work orders, engineering change orders, and so on.

make-to-order. A product that is produced after receipt of a customer’s order. The final product is usually a combination of standard purchased items and items custom-designed to meet the special needs of the customer. Frequently, long leadtime components are planned prior to the order arriving to reduce the delivery time to the customer. Contrast with assemble-to-order.

make-to-stock product. A product that is shipped from finished goods “off-the-shelf,” and is finished prior to a customer order arriving. Master scheduling and final assembly scheduling are conducted at the finished goods level.

manufacturing calendar. See work day calendar.

manufacturing and distribution planning. Consists of Resource and Capacity Planning and Material Planning Operations. Resource and Capacity Planning allow you to prepare a feasible production schedule that reflects your demand forecasts and production capability. Material Planning Operations provides a short-range plan to cover material requirements that are needed to make a product.

manufacturing leadtime. The total time required to manufacture an item, exclusive of lower level purchasing leadtime. It includes the time for queue, setup, run, and move.

master planning. A classification scheme that includes the following activities: forecasting and order servicing (which together constitute demand management); production and resource planning; and master scheduling (which includes the final assembly schedule, the master schedule, and the rough cut capacity plan).

master planning family. A group of products used in material planning that have similar characteristics.

master production schedule (MPS). A detailed statement of how many items are planned to be produced and when. The MPS focuses on products to be made and, through the detailed planning system, identifies the resources (materials, work force, plant equipment, and capital) needed and the timing of the need. See also material requirements planning.

material requirements planning (MRP). A set of techniques that uses bill of material, inventory data, and the master production
schedule to calculate the time-phased net material requirements for every component item and subassembly. MRP suggests a replenishment plan to support the production of the quantities that are specified in the Master Production Schedule. See also master production schedule.

model work order. In Equipment and Plant Maintenance, a work order that functions as a template for the creation of other work orders. You can assign model work orders to service types. When the service type comes due, the system automatically generates a work order based on information from the model work order.

MPS. See master production schedule.

MRP. See material requirements planning.

net added cost. The net added cost represents the cost to manufacture an item at the current level in the bill of material. Thus for manufactured parts, the net added cost includes labor, outside operations, and cost extras applicable to this level in the bill of material, but not materials (lower-level items). For purchased parts, the net added cost also includes the cost of materials.

next number facility. A facility used to control the automatic numbering of such items as new purchase orders, sales orders, and work orders. The next number facility provides a method to increment numbers to reduce transposition and typing errors.

nonconforming product. Items which do not meet the requirements of a relevant specification, contract, regulation, or quality test.

nonsignificant item numbers. Item numbers that are assigned to each item but do not convey any information about the item. They are identifiers, not descriptors. Contrast with significant item numbers.

numeric character. Represents data using the numbers 0 through 9. Contrast with alphabetic character and alphanumeric character.

operand. See Boolean logic operand.

operation sequence. The sequential steps for an item to follow in its flow through the plant. For instance, operation 10: cut bar stock; operation 20: grind bar stock; operation 30: shape; operation 40: polish; operation 50: inspect and send to stock. This information is maintained in the routing table.

overhead. Costs incurred in the operation of a business that cannot be directly related to the individual products or services produced. These costs, such as light, heat, supervision, and maintenance, are grouped into department overhead, factory overhead, and general overhead. They are distributed to units of product or service by some standard allocation method.

overlap. The percentage by which an operation overlaps the previous operation in the sequence. For example, a 20% overlap means that a step can begin when the previous step is 80% complete.

parent/child relationship. See parent/component relationship.

parent/component relationship. 1) In Equipment/Plant Management, a hierarchical relationship of the components of a piece of equipment to the parent equipment. For example, a manufacturing line could be a parent and the machinery on the line could be components of the line. In addition, each piece of machinery could be a parent of still more components. 2) In Product Data Management, a hierarchical relationship of the components and subassemblies of a parent item to that parent item. For example, an automobile is a parent item and its components and subassemblies include: engine, frame, seats, and windows. Syn: parent/child relationship.

parent item. See end item.

pay on consumption. The concept of not incurring a liability for items received from a supplier until the material is used in the production process.
pegging. In MRP, the ability to identify for a given item the sources of its gross requirements, allocations, or both. Pegging can be thought of as “live where-used” information.

phantom bill of material. A bill of material used primarily for nonstocked items. A phantom bill of material represents an item that is physically built, but rarely stocked. It is instead used in the next step or level of manufacturing. MRP uses the bill to drive the requirements through the phantom item to its components.

picking. The process of withdrawing from stock the components to make the products or the finished goods to be shipped to a customer.

pick list. A document that lists the material to be picked for manufacturing or shipping orders.

planning calendar. See *work day calendar*.

planned order. A suggested order quantity, release date, and due date created by MRP processing when it encounters net requirements. Planned orders at one level are exploded into gross requirements for components at the next lower level. Planned orders, along with released orders, serve as input to capacity requirements planning to show the total capacity requirements by work center in future time periods. See also *firm planned order*.

planning bill of material. An artificial grouping of items or events in bill of material format, used to facilitate master scheduling or material planning, and forecasting. Syn: *pseudo bill of material*.

planning family. A means of grouping end items whose similarity of design and manufacture facilitates being planned in aggregate.

planning horizon. The amount of time the master schedule extends into the future. This is normally set to cover a minimum of cumulative leadtime, plus time for lot sizing low-level components, and for capacity changes of primary work centers.

PM. Refers to one or more service types that are due to be performed for a piece of equipment, based on the service intervals for each service type. When you complete a PM, a new PM cycle begins for the service types included in the PM.

potency. Identifies the percent of a process item in solution. For example, 80% solution could be used in a process which called for 100%, but would require 25% more in terms of quantity to meet the requirement (100 / 80 = 1.25).

predictive maintenance. A maintenance strategy that uses computerized data collection and analysis of equipment operating parameters to predict the point at which equipment is expected to fail and then schedules the appropriate procedures just before the expected equipment failure. Predictive maintenance can significantly reduce costs and equipment downtime by eliminating unnecessary preventive maintenance procedures. In addition, by predicting and averting catastrophic equipment failure, predictive maintenance reduces overall maintenance costs and allows for equipment to be operated for its full service life. Contrast with *corrective maintenance* and *preventive maintenance*.

preference profile. The ability to define default values for specified fields for a user defined hierarchy of items, item groups, customers, and customer groups.

preflush. An automatic deduction by the system of materials from inventory when the parts list and routing are attached.

preventive maintenance. Maintenance tasks and procedures that are routine and repetitive, such as periodic lubrications and filter replacements. Preventive maintenance procedures are designed to eliminate breakdowns and the need for corrective maintenance. Contrast with *corrective maintenance* and *predictive maintenance*.
preventive maintenance cycle. Refers to the sequence of events that make up a preventive maintenance task, from its definition to its completion. Because most preventive maintenance tasks are commonly performed at scheduled intervals, parts of the preventive maintenance cycle repeat, based on those intervals.

preventive maintenance schedule. Defines the service types that apply to a specific piece of equipment, as well as the intervals at which each service type is scheduled to be performed.

primary location. The designation of a certain storage location as the standard, preferred location for an item.

primary service type. A service type to which you can link related service types. For example, for a particular piece of equipment, you might set up a primary service type for a 1000-hour inspection and a linked service type for a 500-hour inspection. The 1000-hour inspection includes all tasks performed at 500 hours. When a primary service type is scheduled to be performed, the system schedules the linked service type. See also *linked service type.*

priority. 1) The relative importance of jobs in a queue. 2) The sequence in which jobs should be completed.

process manufacturing. Production that adds value by mixing, separating, forming, or performing chemical reactions. It may be done in either batch or continuous mode.

product data management (PDM). The Product Data Management (PDM) system enables a business to organize and maintain information about each item it manufactures. Features of this system, such as bills of material, work centers, and routings, define the relationships between components and how they can be combined to manufacture an item. PDM also provides data for other manufacturing systems including Manufacturing Accounting, Shop Floor Control, and Manufacturing and Distribution Planning.

product family. See master planning family.

production line. A series of work centers or machines allocated to the production of a limited number of items with similar routings.

pseudo bill of material. See *planning bill of material.*

purchased part. An item bought from a supplier.

quality control. The process of measuring quality conformance by comparing the actual with a standard for the characteristic and acting on the difference.

quality management. A system that allows testing of products based on user defined tests and acceptable result values. Test results can be entered in a consistent fashion at any time in the sales, purchasing, production, or shipping process.

quantity per. The quantity of a component to be used in the production of its parent. This value is stored in the bill of material and is used to calculate the gross requirements for components during the explosion process of MRP, and to calculate the quantity on the parts list for a work order.

queue. The jobs waiting to be processed at a given work center. As queues increase, so do average queue time and work-in-process inventory.

rated capacity. The demonstrated capability of a system. Capacity is calculated from such data as planned hours, efficiency, and utilization. The rated capacity = available hours x efficiency x utilization.

raw material. Purchased items or extracted materials that are converted through the manufacturing process into components or products.
receipt. 1) The physical acceptance of an item into a stocking location. 2) The transaction reporting of this activity.

record. A collection of related, consecutive fields of data the system treats as a single unit of information. For example, a supplier record consists of information such as the supplier's name, address, and telephone number.

release. Authorization to produce or ship material that has already been ordered.

repetitive manufacturing. Producing items in high-volume concentration, often with entire production lines dedicated to a family of products.

replacement parts. Parts that can be used as substitutes. They differ from completely interchangeable service parts in that they require some physical modification, such as cutting, drilling, and so forth, before they can replace the original part.

replenishment point. The location on or near a production line where requests for additional components or subassemblies are to be delivered.

reporting code. See category code.

requirements explosion. See explosion.

reserved material. See committed material.

resource requirements planning (RRP). The process of converting the production plan into capacity needs for key resources: workforce, machinery, warehouse space, suppliers' capabilities, and in some cases, money. Comparison of capacity required of items in the MPS to available capacity is usually done for each key resource.

revision level. A number or letter representing the number of times a document or item has been changed.

rework order. A manufacturing order to rework and salvage defective parts or products.

rollup. See cost rollup.

rough cut capacity planning (RCCP). The process of converting the master production schedule into capacity needs for key resources: workforce, machinery, warehouse space, suppliers’ capabilities, and in some cases, money. Comparison of capacity required of items in the MPS to available capacity is usually done for each key resource.

routing. Information detailing the method of manufacture or maintenance of a particular item. It includes the operations to be performed, their sequence, the various work centers involved, and the standards for setup and run. In some companies, the routing also includes information on tooling, operator skill levels, inspection operations, testing requirements, and so on.

run size. See standard batch quantity.

safety stock. 1) In general, a quantity of stock planned to be in inventory to protect against fluctuations in demand or supply. 2) In the context of master production scheduling, the additional inventory or capacity planned as protection against forecast errors or short-term changes in the backlog. Overplanning can be used to create safety stock.

scheduling workbench. A multiple-function program which allows the sequencing of work orders and/or rates on a production line. Sequencing can be automatic based on user defined category code definition or manual. Sequencing includes forward, finite scheduling, including the option to cross shifts or days.

scrap. Unusable material that results from the production process. It is material outside of specifications and of such characteristics that rework is impractical.

scrap factor. A percentage factor in the product structure used to increase gross requirements to account for anticipated loss within the manufacture of a particular product. Syn: scrap rate.

scrap rate. See scrap factor.
selection. Found on J.D. Edwards menus, selections represent functions that you can access from a given menu. To make a selection, you type its associated number in the Selection field and press Enter.

sequencing. Determining the order in which a facility processes different jobs.

serial number. A unique number assigned to identify a specific item with a lot size of one.

service interval. Refers to the frequency at which a service type is to be performed. Service intervals can be based on dates, periods, or statistical units that are user defined. Examples of statistical units are hours, miles, and fuel consumption.

service type. An individual preventive maintenance task or procedure, such as an inspection, lubrication, or overhaul. Service types can apply to a specific piece of equipment or to a class of equipment. You can specify that service types come due based on a predetermined service interval, or whenever the task represented by the service type becomes necessary.

setup. 1) The work required to change a specific machine, resource, work center, or line from the last good piece of unit A to the first good piece of unit B. 2) Teardown of the just completed production and preparation of the equipment for production of the next scheduled item.

setup cost. The labor costs associated with setting up an operation for the next product.

shelf life. The amount of time an item may be held in inventory before it becomes unusable.

shop calendar. See work day calendar.

shop floor calendar. See work day calendar.

shop floor control. A system that uses data from Product Data Management, Master Production Schedule, and Material Requirements Planning to create, maintain, and communicate status on shop orders (work orders). The major subfunctions of shop floor control are: 1) assigning priority of each shop order, 2) maintaining work-in-process quantity information, 3) conveying shop order status information to the office, 4) providing actual output data for capacity control purposes, 5) providing quantity by location by shop order for work-in-process inventory and accounting purposes, and 6) providing measurement of efficiency, utilization, and productivity of machines and labor resources.

shrinkage. Reductions of actual quantities of items in stock, in process, or in transit. The loss might be caused by scrap, theft, deterioration, evaporation, and so forth.

shrink factor. A percentage factor in the item master record that compensates for expected loss during the manufacturing cycle either by increasing the gross requirements or by reducing the expected completion quantity of planned and open orders. The shrink factor differs from the scrap factor in that the former affects all uses of the part and its components and the scrap factor relates to a single component. Syn: shrinkage rate.

shrinkage rate. See shrink factor.

significant item numbers. Item numbers that are intended to convey certain information, such as the source of the part, the material in the part, the shape of the part, and so forth. Contrast with nonsignificant item numbers.

simulated cost. After a cost rollup, the cost of an item, operation, or process according to the current cost scenario. This cost can be finalized, by performing a frozen update. You can create simulated costs for a number of cost methods, for example, standard, future, and simulated current costs. See also cost rollup.

simulation. 1) The technique of using representative or artificial data to reproduce a model of various conditions that are likely to occur in the actual performance of a
system. It is frequently used to test the behavior of a system under different operating policies. 2) Within MRP, using the operational data to perform “what if” evaluations of alternative plans to determine the feasibility of the model.

single level bill of material. A display of those components that are directly used in a parent item. It shows only the relationships one level down.

single level where-used. A type of bill of material listing each parent in which a specific component is directly used and in what quantity.

specification. A statement of the technical requirements of an application or item and the process involved to ensure the requirements are met.

standard batch quantity. The quantity of a parent that is used as the basis for specifying the material requirements for production. The “quantity per” is expressed as the quantity needed to make the standard batch quantity, not to make only one of the parent. It is often used by manufacturers that use some components in very small quantities or by process-related manufacturers. Syn: run size.

standard cost. The expected, or target cost of an item, operation, or process. Standard costs represent only one cost method in the Product Costing system. You can also calculate, for example, future costs or current costs. However, the Manufacturing Accounting system uses only standard frozen costs.

standard costing. A cost system that uses cost units determined before production. For management control purposes, the system compares standards to actual costs and computes variances.

standard hours. The length of time that should be required to 1) set up a given machine or operation and 2) run one part, assembly, batch, or end product through that operation. This time is used in determining machine and labor requirements. It is also frequently used as a basis for incentive pay systems and as a basis for allocating overhead in cost accounting systems.

subassembly. An assembly that is used at a higher level to make up another assembly.

substitution. Using alternate components in production when the primary item is not available.

super backflush. Creates backflush transactions against a work order at pay points defined in the routing. This allows you to relieve inventory at strategic points throughout the manufacturing process. See also backflush.

supplier scheduling. Provides suppliers with consistent shipping information and advanced demand profiles to support just-in-time production and delivery. The supplier scheduling system includes a business agreement and delivery schedule for each supplier. Supplier scheduling includes a formal priority planning system and EDI functionality to provide the supplier with valid due dates.

supply chain. The link from the initial raw materials to the consumption of the finished product.

supplying location. The location from which inventory is transferred once quantities of the item on the production line have been depleted. Used in kanban processing.

threshold percentage. In Equipment/Plant Management, the percentage of a service interval that you define as the trigger for maintenance to be scheduled. For example, you might set up a service type to be scheduled every 100 hours with a threshold percentage of 90 percent. When the equipment accumulates 90 hours, the system schedules the maintenance.

throughput. The total volume of production through a facility (machine, work center, department, plant, or network of plants).
time series. A set of data that is distributed over time, such as demand data, in monthly time periods.

traceability. The ability to trace the production history of a product for quality or warranty purposes. This is usually done through the use of lot or serial numbers to link raw materials from the supplier to the end product. Lot/SN traceability can be a government requirement in certain regulated industries, such as the pharmaceutical or automotive industries. See also lot.

unit cost. Total labor, material, and overhead cost for one unit of production.

unit of measure. The unit by which the quantity of an item is managed, such as by weight, each, box, package, case, and so forth.

variable overhead. All manufacturing costs that vary directly with production volume, other than direct labor and direct materials. Variable overhead is necessary to produce the product, but cannot be directly assigned to a specific product.

variable quantity. In manufacturing, a variable quantity of a component or ingredient indicates that the amount required varies based on the quantity of the end product produced. Contrast with fixed quantity.

variance. 1) In Product Costing and Manufacturing Accounting, the difference between two methods of costing the same item. For example, the difference between the frozen standard cost and the current cost is an engineering variance. Frozen standard costs come from the Cost Components table, and the current costs are calculated using the current bill of material, routing, and overhead rates. 2) In Equipment/Plant Management, the difference between revenue generated by a piece of equipment and costs incurred by the equipment.

where-used. A listing of every parent item that calls for a given component, and the respective quantity required, from a bill of material file. Syn: implosion.

work center. A specific production facility with identical capabilities, consisting of one or more people, machines, or both. A work center can be considered as one unit for purposes of capacity requirements planning and detailed scheduling. Syn: load center.

work day calendar. A calendar used in planning functions that consecutively lists only the working days so that component and work order scheduling can be done based on the actual number of work days available. Syn: planning calendar, manufacturing calendar, and shop floor calendar.

work-in-process (WIP). A product or products in various stages of completion throughout the plant, including all material from raw material that has been released for initial processing up to completely processed material awaiting final inspection and acceptance as finished product. Syn: in-process inventory.

work order life cycle. In Equipment/Plant Management, refers to the sequence of events through which a work order must pass to accurately communicate the progress of the maintenance tasks it represents.
Index
Index

A

About DRP/MPS multi-facility scheduling, 8–1
About forecast consumption, 5–23
About manufacturing and distribution environments, 7–1
About resource requirements planning (RRP), 4–1
About single level master scheduling, 5–2
About supplier scheduling, 11–1
About time fences, 5–5
Adding a freeze code to a purchase order, 5–49
Adding a freeze code to a work order, 5–51
Assemble-to-order, 3–11
definition, 1–7
Available capacity, determining, 4–9
Available to promise, negative, 5–32
Available to promise (ATP), unadjusted calculation, 5–32

B

Batch bills of material, creating, 7–6
Batch manufacturing, working with, 7–5
Batch processing, 7–33
Batch routings, creating, 7–10
Batch work orders, processing, 7–12
Best fit forecasting, 3–6
Bill of material, MRP, 9–8
Bill of material master, net change flag, 5–14
Bill of material master (F3002), tables, 9–3
Bill of Material Revisions, processing options, 7–9
Bills of material, using in MRP, 9–4
Blank lines, suppressing, 7–40
Blanket order release, supplier scheduling, 11–3
Blanket purchase order, supplier scheduling, 11–2
Blanket purchase orders, effective date range, 11–2
BOM. See bill of material
Branch Relationships Chart, processing options, 8–13
Branch relationships chart, reviewing, 8–12
Branch relationships chart form (P34031), 8–12
Branch relationships for MRP, reviewing on chart, 10–6
Branch relationships master (F3403), tables, 9–3
Branch Relationships Revisions, processing options, 8–11
Branch Relationships Revisions form (P3403), 8–7
Branch/plant and dispatch group, data selection, 4–24
Branch/plant information
assigning an item to a branch plant, 2–42
duplication of
form, 2–55
item information across multiple branch/plants, 2–55
primary locations, 2–56
entering branch/plant information, 2–39
entering item manufacturing information, 2–52
entering item reorder quantities, form, 2–49
entering item tax information, 2–47
form, 2–41
item locations
changing primary locations, 2–45
deleting primary locations, 2–47
effects on quantities, 2–47
form, 2–44
item manufacturing information
DRP/MPS/MRP, 2–53
form, 2–53
locating item sources, 2–48
overview, 2–39
taxes, 2–47
working with item locations, 2–43
Manufacturing and Distribution Planning

C

Calculating rated capacity for critical work centers, 5–56
Calculations
 available to promise, 5–9
 cumulative available to promise, 5–9
 ending available, 5–8
 forecast consumption, 5–27
 time series, 5–7
Cancelling items on a purchase order, 5–46
Capacity requirements display, setting up, 9–45
Capacity requirements display form
 (P00051), 9–45
Capacity Requirements Planning. See CRP
Capacity requirements planning, reviewing work center load, 9–35
Capacity Requirements Planning (CRP), 1–1
Capacity requirements plans
 generating, 9–32
 reviewing for MRP, 9–33
Changing, supplier information, 11–26
Changing resource unit information, 4–11
Classification Codes form, sample, 2–15,
 2–17
Classification Codes program (P41011),
 2–17
Cleared messages, retrieving, 4–37
Clearing MRP messages, releasing a supplier schedule, 11–28
Co- and by-products, defining, 7–36
Co-/By-Products Planning Table form
 (F3404), 7–36
Consolidated messages, processing, 5–44
Consolidating multiple item numbers,
 processing messages, 5–42
Continuous processing, 7–34
Co-product messages, 7–43
Creating rate schedules, 7–23
Creating rates automatically, 7–26
Creating repetitive routings, 7–20
Critical work centers, calculating MPS load, 5–56
CRP. See Capacity requirements planning
CRP/RCCP Regeneration, processing options, 5–57
Cumulative available to promise (CATP),
 unadjusted calculation, 5–33

D

Cumulative available to promise unadjusted calculation, 5–33
Customer contact, overview, 1–7

Data selection
 branch/plant and dispatch group, 4–24
 generating a master schedule for all items, 5–16
 MRP, 9–9
Data selection for critical work centers,
 RRP, 4–23
Data selection values, generating a master schedule for selected items, 5–21
Default Units of Measure form, sample,
 2–23
Defining order policy for repetitive items,
 7–18
Defining supplier contract information,
 11–7
Defining supplier contracts, 11–7
Defining supplier split percentages, 11–12
Deleted messages, review detailed messages form, 4–37
Deleting
 rate schedule, 7–26
 supplier information, 11–10
 supply and demand relationships, 8–11
Demand forecasting, how to use, 4–2
Demand patterns, forecasting features, 3–10
Detail Forecast Maintenance, processing options, 3–26
Detail forecasts, 3–1
 generating, 3–16
 reviewing, 3–20
 revising, 3–23
 working with, 3–16
Detail message review
 net change flag, 5–15
 retrieving cleared messages, 4–37
Detail message review (F3411), tables, 9–3
Detail message review form (P3411), 8–23
Detail messages
 clearing, 5–38
 component warnings, 9–14
 deleting, 5–38
 fixed order quantity, 5–41

A8.1 (8/97)
placing on hold, 5–38
processing, 5–41
reviewing, 5–39
working with, 5–38
Determining available capacity, 4–9
 See also Entering work centers
Determining long-range capacity plans, 4–3
Determining long-range load, 4–15
Differences between MRP and MPS, 9–4
Discrete manufacturing, 7–2
 manufacturing and distribution
 environments, 7–2
Dispatch groups
 reviewing, for resource requirements
 planning, 4–26
 reviewing for capacity requirements
 planning, 9–34
Dispatch list, reviewing MRP work
 schedules, 9–37
Distribution Requirements Planning. See
 DRP
Distribution requirements planning
 See also DRP
 valid quantity types, 5–31
Distribution systems, 7–3
DRP, valid quantity types, 5–31
DRP Detail Message Review form (P3411),
 5–43
DRP Planning Family Review form (P3401),
 5–37
DRP Time Series/ATP Inquiry form (P3413),
 5–33
DRP time series/ATP inquiry form (P3413),
 8–22
DRP/MPS time series
 quantity types, 5–31
 reviewing, 5–29
DRP/MPS/RCCP, setting up, 5–63

E

Effective date range
 blanket purchase orders, 11–2
 supplier schedule, 11–2
Ending available calculations, time series,
 5–8
Engineer-to-order
 definition, 1–7
 raw materials & components, 3–11
Enter purchase orders form, 5–50
Enter/Change Bill form (P3002), 6–10, 7–7
Enter/Change Forecast form (P3460), 3–23
Enter/Change Order form (P48013), 5–51
Enter/change resource profile form
 (P3303), 4–16
Enter/change resource units form (P3007),
 4–10
Enter/Change Routing form (P3003), 7–10
Enter/change routing form (P3003), 7–20
Enter/change schedule form (P34301),
 11–24
Enter/change supplier info form (P4321),
 11–8
Enter/Change Work Center form (P3006),
 4–6
Entering resource units manually, 4–10
Entering work centers, for resource
 requirements planning, 4–5
ERPx environments. See Manufacturing and
distribution environments
Examples
 exploding planned orders, 6–3
 revising a detail forecast, 3–23
Exploding planned orders, example, 6–3

F

Fast path commands
 forecasting, 3–15
 material planning operations, 1–13
 resource and capacity planning, 1–12
Feature planned percents, setting up, 6–10
Firm planned order (+FPO), quantity types,
 9–15
Firm work order (–FWO), quantity types
 for MRP, 9–15
Fixed order quantity (FOQ), detail
 messages, 5–41
Forecast accuracy, statistical laws, 3–11
Forecast considerations, 3–12
Forecast consumption, 10–3
 about, 5–23
 past due time buckets, 5–24
 planning horizon time periods, 5–25
Forecast consumption (F3405), tables, 9–3
Forecast consumption periods
 setting up, 5–69
 setting up for MRP, 9–44
Forecast consumption periods form
(P3405), 5–70
Forecast features, forecast accuracy, 3–11
Forecast Generation, processing options,
3–17
Forecast Review, processing options, 3–22
Forecast revisions, net change flag, 5–15
Forecast Text form (P0016), 3–25
Forecasting
 fast path commands, 3–15
 features, 3–5
Forecasting features, demand patterns, 3–10
Forecasting levels and methods, 3–6
 best fit forecasting, 3–6
Forecasting methods, qualitative
forecasting, 3–7
Forecasting overview, 3–1
Forecasting process, 3–12
Form, enter/change schedule, 11–24
Forms
 branch relationships chart, 8–12
 Branch Relationships Revisions, 8–7
 capacity requirements display, 9–45
 Classification Codes, 2–15, 2–17
 Co-/By-Products Planning Table, 7–36
 Default Units of Measure, 2–23
 Detail message review, 8–23
 DRP Detail Message Review, 5–43
 DRP Planning Family Review, 5–37
 DRP Time Series/ATP Inquiry, 5–33
 DRP time series/ATP inquiry, 8–22
 enter purchase orders, 5–50
 Enter/Change Bill, 6–10, 7–7
 Enter/Change Forecast, 3–23
 Enter/Change Order, 5–51
 enter/change resource profile, 4–16
 Enter/change resource units, 4–10
 Enter/Change Routing, 7–10
 enter/change routing, 7–20
 enter/change supplier info, 11–8
 Enter/Change Work Center, 4–6
 forecast consumption periods, 5–70
 Forecast Text, 3–25
 General User Defined Codes, 4–41
 Item Alternative Description, 2–8
 Item Branch Quantities, 2–49
 Item Branch/Plant Information, 2–41
 item branch/plant information, 7–18
 Item Master Information, 2–6, 6–9, 7–35
 Item Units of Measure, 2–24
 Item/Branch Duplication, 2–56
 Item/Location Information, 2–45
 Leadtime Inquiry, 9–28
 Line balancing review, 5–60
 Manufacturing Data, 2–52
 Message Types, 5–67
 MPS Detail Message Review, 7–16, 7–42
 MPS detail message review, 7–30
 MPS Time Series Inquiry, 5–34
 MPS Time Series/ATP Inquiry, 7–15,
 7–29, 7–40
 MRP detail message review, 9–13
 net change review, 5–19
 Pegging Inquiry, 9–19
 Plant Manufacturing Data, 2–53
 plant manufacturing data, 6–7, 7–19
 Primary Location, 2–44
 production status, 5–58
 purchasing information, 5–50
 Rate Generation Rule, 7–22
 review dispatch groups, 4–26
 Review Forecast, 3–20
 Review Message Detail, 4–36
 Review Period Summary, 4–32
 Review Work Center Load, 4–29
 Rough Cut Capacity Display, 5–72
 Schedule Review, 7–32
 shop floor workbench, 9–24
 supplier split percentages, 11–12
 Supply/Demand Inclusion Rules, 5–65
 Text Messages, 2–13
 Time Fence Rules, 5–69
 Transfer order, 8–24
 User Defined Code Revisions, 4–40
 Work Center Load Graph, 4–31
Freeze code
 adding to a work order, 5–51
 adding to purchase order, 5–49
 Freeze fence, 5–5, 9–43
 Freezing purchase orders, 5–43
 Frozen orders, MRP, 9–9
Generating
master schedule for all items, 5–15
master schedule for selected items, 5–20
RCCP, 1–2
See also Generating a supplier schedule; Reviewing work schedules RRP. See Determining long range load; Validating RRP.
single level master schedule, 1–2
See also Processing options for MPS
Generating a master schedule for all items, 5–15
data selection, 5–16
data sequence, 5–16
Generating a master schedule for selected items, data selection values, 5–21
Generating a single level master schedule
net change flag control, 5–14
net change flag update, 5–13
Generating a supplier schedule, MRP
messages, 11–16
Generating capacity requirements plans, 9–32
See also Entering resource units manually; Generating RCCP
Generating detail forecasts, 3–16
Generating material requirements plans. See Reviewing items for master schedule selection; Setting up MRP and capacity planning; Single level master scheduling
Generating MPS for batch bills. See
Generating single level master schedules
Generating MPS for repetitive items. See
Generating master schedules for all items;
Generating master schedules for selected items
Generating MPS for the process industry, 7–38
Generating multi-facility requirements plans, 10–9
See also Generating multi-facility schedules
Generating multi-facility schedules. See Set up DRP/MPS multi-facility scheduling
Generating multi-level master schedules. See Generating single level master schedules; Setting up multi-level master schedules; Setting up multi-level master schedules; Validating master schedules; Working with master schedules
Generating resource requirements plans, 4–21
Generating rough cut capacity plans, 5–54
Generating single level master schedules, 5–13
Generating supplier schedules, 11–15
See also Generating single level master schedule; Multi-facility master schedule; Reviewing supplier schedules; Setting up DRP/MPS/RCCP
Generation definition, 8–18
MRP multi-facility requirements plan, 10–9
Generation type, MRP, 9–8
Graphic, ERPx system, 3–3

H

Held messages, review detail messages form, 4–37

I

Index master (F4101), tables, 9–3
Interplant relationships, 8–18
Inventory adjustments, net change flag, 5–14
Inventory transfers, net change flag, 5–14
Item / Branch Duplication, processing options, 2–57
Item / Branch Duplication – Batch Selection, processing options, 2–58
Item Alternative Description form, sample, 2–8
Item Alternative Description program (P41016W), 2–8
Item branch (F4102), tables, 9–3
Item Branch Information – Revisions, processing options, 2–56
Item Branch Quantities form, sample, 2–49
Item Branch Quantities program (P41022), 2–49
Item Branch/Plant Information form, sample, 2–41
Item branch/plant information form (P41026), 7–18
Item Branch/Plant Information program (P41026), 2–41
Item Master information
assigning item responsibility, 2–14
classification codes
 purchasing, 2–18
 warehouse, 2–18
deleting, 2–6
entering, 2–5
entering basic item information, 2–7
entering grade and potency information, 2–34
entering item classification codes, 2–16
entering item manufacturing information, 2–27
entering item units of measure information, 2–21
grade and potency information
 for lots, 2–36
 for sales, 2–37
item descriptions, form, 2–8
item identifiers, 2–8
item processing information, 2–9
item text, entering, 2–13
manufacturing information, requirements planning, 2–28
messages, attaching to an item, 2–13
notes, entering for an item, 2–13
overview, 2–5
processing information, 2–8
setting up a template, 2–6
units of measure information
 conversions, 2–24
form, 2–23
Item Master Information – Revisions, processing options, 2–37
Item Master Information form, sample, 2–6
Item Master Information form (P4101), 6–9, 7–35
Item Master Information program (P4101), 2–7
Item Units of Measure form, sample, 2–24
Item Units of Measure program (P41002), 2–24
Item/Branch Duplication form, sample, 2–56
Item/Branch Duplication program (P41015), 2–56
Item/Location Information form, sample, 2–45
Items. See setting up items

L

Leadtime, reviewing for MRP, 9–28
Leadtime Inquiry, processing options, 9–30
Leadtime Inquiry form (P30207), 9–28
Leadtime level, phantom item, 6–6
Leadtime rollup, net change flag, 5–15
Level leadtime, supplier scheduling, 11–10
Levels and methods
 best fit forecasting, 3–6
 calculated percent over last year, 3–7
 exponential smoothing, 3–9
 flexible method, 3–8
 forecasting, 3–5
 geometrically weighted moving average, 3–9
 last year to this year, 3–7
 linear approximation, 3–8
 moving average, 3–7
 percent over last year, 3–7
 second degree approximation, 3–8
 weighted moving average, 3–9
Line Balancing Review, processing options, 5–61
Line balancing review form (P3152), 5–60
Line scheduling workbench, reviewing for material requirements planning, 9–23
Load on lines or cells, validating, 7–31
Locating supply and demand relationships, 8–11
Long-range capacity plan, determining, 4–3
Long-range load, determining, 4–15
Low level code, MRP, 9–8

M

Made-to-stock end items, 3–11
Major tables, 3–14
Make-to-order
 definition, 1–7
 raw materials & components, 3–11
Make-to-stock, definition, 1–7
Manufacturing
 batch, 7–2
 discrete, 7–2
 distribution systems, 7–3
 process, 7–3
 rate based, 7–3
Manufacturing and distribution environments
 about, 7–1
 batch manufacturing, 7–2
 discrete manufacturing, 7–2
 process manufacturing, 7–3
 rate based manufacturing, 7–3
Manufacturing and distribution planning
 customer contact, 1–7
 overview, 1–1
 planning and a total business solution, 1–8
 system integration, 1–3
 terms and concepts, 1–6
Manufacturing Data form, sample, 2–52
Manufacturing data revisions, net change flag, 5–15
Manufacturing Values Entry program (P41013), 2–28
Master Planning Schedule, processing options, 5–16
Master planning schedule, valid quantity types, 5–32
Master Planning Schedule – Multiple Plant, processing options, 8–15
Master production schedule
 See also MPS
 generating for repetitive items, 7–27
Master schedule
 generating for all items, 5–15
 generating for selected items, 5–20
Master schedule for all items, generating, 5–15
Master schedule selection, reviewing items, 5–19
Master schedules
 validating, 5–53
 working with, 5–29
Master scheduling
 multi-level, 6–1
 single level, 5–2
Material and capacity requirements planning, setting up, 9–41
Material planning operations
 fast path commands, 1–13
 menus, 1–13
 overview, 1–2
Material requirements plan. See MRP
Material requirements planning
 processing orders, 9–47
 setting up forecast consumption periods, 9–44
 tables, 9–3
material requirements planning
 multi-facility scheduling, 10–1
Material requirements plans
 generating, 9–7
 processing work order messages, 9–17
 validating, 9–31
Menu overview, 1–12, 3–15
Menus
 material planning operations, 1–13
 resource and capacity planning, 1–12
Message detail, reviewing, 4–35
Message display fence, 9–43
 time fences, 5–6
Message File Revisions, processing options, 5–48
Message Revisions, processing options, 4–37
Message types
 setting up, 5–67
 setting up for material requirements plans, 9–43
Message Types form (P00051), 5–67
Message where used update, net change flag, 5–14
Messages
 attaching to an item, 2–12, 2–13
 clearing, 5–38
 co-product, 7–43
 deleted, review detailed messages form, 4–37
 deleting, 5–38
 held, review detail messages form, 4–37
 placing on hold, 5–38
 processing, 5–41
 rate based scheduling, 7–28
 working with, 5–38
Messages for MRP, working with, 9–13
MPS
 generating for batch bills, 7–13
 reviewing batch output, 7–14
valid quantity types, 5–32
MPS detail message review, action messages, 7–28
MPS Detail Message Review form (P3411), 7–16, 7–42
MPS detail message review form (P3411), 7–30
MPS generation, reviewing repetitive rate schedule output, 7–28
MPS load, calculating for critical work centers, 5–56
MPS Time Series form (P3413), 5–34
MPS Time Series/ATP Inquiry form (P3413), 7–15, 7–29, 7–40
MPS/MRP/DRP detail message review (F3411), tables, 9–3
MPS/MRP/DRP lower level requirements (F3412), tables, 10–3
MPS/MRP/DRP lower requirements (F3412), tables, 9–3
MPS/MRP/DRP Summary, tables (F3413), 9–3
MRP
See also Material requirements planning bills of material, 9–8
data selection, 9–9
frozen orders, 9–9
generation type, 9–8
low level code, 9–8
net change, 9–8
regeneration, 9–7
running effectively, 9–6
single facility, 9–1
working with, 9–11
MRP and CRP systems, synchronizing, 9–32
MRP and MPS, differences, 9–4
MRP detail message review form (P3411), 9–13
MRP detail messages
component warnings, 9–14
reviewing, 9–14
MRP messages
clearing, 11–28
generating a supplier schedule, 11–16
MRP multi-facility planning output, working with, 10–11
MRP multi-facility requirements plan
multi-facility consolidation, 10–10
transfer orders, 10–10
MRP multi-facility scheduling, tables, 10–3
MRP rate schedule and work order loads, reviewing, 9–38
MRP supply and demand, reviewing, 9–21
MRP Supply/demand inclusion rules, setting up, 9–42
MRP time series, reviewing, 9–11
Multi-facility planning output, working with, 8–21
Multi-facility requirements plan
generation definition, 10–9
setting up, 10–5
Multi-facility requirements plans, generating, 10–9
Multi-facility schedule
generating, 8–15
setting up, 8–5
Multi-facility scheduling
DRP/MPS, 8–1
material requirements planning, 10–1
tables, 8–2
types, 8–2
Multi-facility time series, reviewing, 8–21
Multi-level master schedule, 6–1
generation definition, 6–14
phantom items, 6–14
planning codes, 6–6
Multi-level master schedules
generating, 6–13
setting up, 6–5
Multi-level master scheduling
See also Single level master scheduling about, 6–1
planning bills, 6–2
Multi-plant consolidation, 8–19
MRP multi-facility requirements plan, 10–10

N

Negative ATP/ATPU, 5–32
Net change, MRP, 9–8

Net change flag
bill of material master, 5–14
detail message review, 5–15
forecast revisions, 5–15
inventory adjustments, 5–14
inventory transfers, 5–14
leadtime rollup, 5–15
manufacturing data revisions, 5–15
message where used update, 5–14
net change review, 5–15
purchase order entry, 5–15
repost open quantities, 5–15
sales order entry, 5–15
work order entry, 5–14
work order inventory completions, 5–14
work order inventory issues, 5–14
Net change flag control, single level master schedule, 5–14
Net change flag update, single level master schedule, 5–13
Net change review, net change flag, 5–15
Net change review form (P3402), 5–19
Net Change Summary, processing options, 5–20
Notes, entering for an item, 2–12, 2–13

O

Order policy rules, setting up, 6–6
Order status, purchase order messages, 5–41
Orders, processing, 5–73
Over-capacity work centers, 4–31
Overloaded time frame, leveling, 9–38
Overview
 forecasting, 3–1
 system integration, 3–2

P

Parts list revisions, 5–14
Parts list substitutes, 5–14
Past due time buckets, forecast consumption, 5–24
Pegging, processing options, 9–20
Pegging demand, reviewing, 9–19
Pegging Inquiry form (P3412), 9–19
Period quantities, 5–32
Period summaries
 reviewing, 4–32
 reviewing for capacity requirements planning, 9–35
Period Summary, processing options, 4–35
Period summary, reviewing, 5–55
Phantom item, leadtime level, 6–6
Planned order (+PLO), quantity types for MRP, 9–15
Planned work order (–PLO), quantity types for MRP, 9–15
Planning and a total business solution, manufacturing and distribution planning, 1–8
Planning bill forecasts, 3–1
Planning bills, multi-level master scheduling, 6–2
Planning codes, multi-level master schedule, 6–6
Planning families, reviewing, 5–36
Planning families for MRP, reviewing, 9–12
Planning Family Review, processing options, 5–37
Planning fence, 5–6, 9–43
Planning horizon time periods, forecast consumption, 5–25
Plant Manufacturing Data form, sample, 2–53
Plant manufacturing data form (P41027), 6–7, 7–19
Primary Location form, sample, 2–44
Prime load code, work centers, 4–30
Print Period Summary, processing options, 9–37
Printing a supplier schedule, 11–29
 See also Releasing a supplier schedule
Process industry, generating MPS, 7–38
Process manufacturing
 batch processing, 7–33
 continuous processing, 7–34
 working with, 7–33
Process output, reviewing from MPS generation, 7–39
Processing, purchase order messages. See Generating a supplier schedule; Processing orders; Reviewing planning families
Processing consolidated messages, 5–44
Processing messages
 blanket order checking, 5–42
 consolidating multiple item numbers, 5–42
 planning family, 5–43
Manufacturing and Distribution Planning

Processing MRP transfer order messages, 10–12

See also Processing multi-facility transfer order messages; Reviewing MRP detail messages; Working with messages

Processing options
Bill of Material Revisions, 7–9
Branch Relationships Chart, 8–13
Branch Relationships Revisions, 8–11
CRP/RCCP Regeneration, 5–57
Detail Forecast Maintenance, 3–26
Forecast Generation, 3–17
Forecast Review, 3–22
Item / Branch Duplication, 2–57
Item / Branch Duplication – Batch Selection, 2–58
Item Branch Information – Revisions, 2–56
Item Master Information – Revisions, 2–37
Leadtime Inquiry, 9–30
Line Balancing Review, 5–61
Master Planning Schedule, 5–16
Master Planning Schedule – Multiple Plant, 8–15
Message File Revisions, 5–48
Message Revisions, 4–37
Net Change Summary, 5–20
Pegging, 9–20
Period Summary, 4–35
Planning Family Review, 5–37
Print Period Summary, 9–37
Production Status, 5–60
Resource Profile Regeneration, 4–20
Resource Requirements Planning Regeneration, 4–23
Review Dispatch Group, 4–27
Routing Master Revisions, 7–12
Shop Floor Workbench, 9–27
Supplier Schedule Generation, 11–17
Supplier Schedule Master Revisions, 11–11
Supplier Schedule Print, 11–30
Supplier Schedule Release Generation, 11–28
Supplier Schedule Revisions, 11–26
Supplier Split Percentages Revisions, 11–13
Supply/Demand Inclusion Rules, 5–66
Supply/Demand Inquiry, 9–22

Time Series, 5–35
Work Center Load, 4–30
Work Center Load Bar Graph, 4–32
Work Center Resource Units Generation, 4–13
work center resource units revisions, 4–12
Work Order Generation – Print and Automatic Issue, 5–73
Processing orders, 5–73

See also Generating supplier schedules
Processing purchase order messages, 5–41
Processing purchase order messages for MRP, 1–2, 9–18

See also Processing purchase order messages; Review planning families for MRP
Processing receipts, supplier scheduling, 11–11
Processing work order messages, 5–40
Processing work order messages for MRP, 9–17
Processing work orders, 5–73
Production Status, processing options, 5–60
Production status form (P31226), 5–58
Programs and IDs
P00051 (capacity requirements display), 9–45
P00051 (message types), 5–67
P00051 (rough cut capacity display), 5–72
P00051 (time fence rules), 5–69
P0016 (forecast text), 3–25
P0016 (text messages), 2–13
P3002 (enter/change bill), 6–10, 7–7
P3003 (enter/change routing), 7–10, 7–20
P3006 (enter/change work center), 4–6
P3007 (enter/change resource units), 4–10
P30207 (leadtime inquiry), 9–28
P31041W (rate generation rule), 7–22
P31222 (schedule review), 7–32
P31225 (shop floor workbench), 9–24
P31226 (production status), 5–58
P3152 (line balancing review), 5–60
P3303 (enter/change resource profile), 4–16
P34004 (supply/demand inclusion rules), 5–65
P3401 (DRP planning family review), 5–37
P3402 (net change review), 5–19
P3403 (branch relationships revisions), 8–7
P34031 (branch relationships chart), 8–12
P3405 (forecast consumption periods), 5–70
P3411 (detail message review), 8–23
P3411 (DRP detail message review), 5–43
P3411 (MPS detail message review), 7–16, 7–30, 7–42
P3411 (MRP detail message review), 9–13
P3412 (pegging inquiry), 9–19
P3413 (DRP time series/ATP inquiry), 5–33, 8–22
P3413 (MPS time series inquiry), 5–34
P3413 (MPS time series/ATP inquiry), 7–15, 7–29, 7–40
P34201 (review forecast), 3–20
P34301 (enter/change schedule), 11–24
P3460 (enter/change forecast), 3–23
P41002 (item units of measure), 2–24
P4101 (item master information), 2–7, 6–9, 7–35
P41013 (manufacturing values entry), 2–28
P41015 (item/branch duplication), 2–56
P41016W (item alternative description), 2–8
P41022 (item branch quantities), 2–49
P41026 (item branch/plant information), 2–41, 7–18
P41027 (plant manufacturing data), 6–7, 7–19
P4252 (transfer order), 8–24
P430112 (purchasing information), 5–50
P43111 (enter purchase orders), 5–50
P4321 (enter/change supplier info), 11–8
P43211 (supplier split percentages), 11–12
P48013 (enter/change order), 5–51
Purchase order entry, net change flag, 5–15
Purchase order messages
 order status, 5–41
 processing, 5–41
Purchase order messages for MRP,
 processing, 9–18
Purchase orders
 cancelling items, 5–46
 freezing, 5–43
 processing messages, 5–41
Purchasing information form (P430112), 5–50

Q

Qualitative forecasting, forecasting methods, 3–7
Quantity types for DRP and MPS, 5–31
Quantity types for MRP
 firm planned order (+FPO), 9–15
 firm work order (–FWO), 9–15
 planned order (+PLO), 9–15
 planned work order (–PLO), 9–15
 reviewing, 9–15
 work order (+WO), 9–15

R

Rate based scheduling, messages, 7–28
Rate based scheduling information, setting processing options, 7–27
Rate Generation Rule form, 7–22
Rate schedule and work center load,
 reviewing, 5–60
Rate schedules
 creating, 7–23
 deleting, 7–26
Rated capacity, calculating for critical work centers, 5–56
Rates, creating automatically, 7–26
RCCP
 calculating rated capacity, 5–56
 reviewing, 5–55
 work center load, reviewing, 5–55
Recalculating work center hours, 5–54
Regeneration, MRP, 9–7
Relationships, interplant, 8–18
Releasing a supplier schedule, 11–27

See also Generating a supplier schedule
Repetitive items, generating a master production schedule, 7–27
Repetitive manufacturing
 defining order policy, 7–18
 working with, 7–17
Repetitive routings, creating, 7–20
Repost open quantities, net change flag, 5–15
Resource and capacity planning
about, 1–1
fast path commands, 1–12
menus, 1–12
Resource offset, work center, 4–30
Resource profile, defining manually, 4–15
Resource Profile Regeneration, processing options, 4–20
Resource requirements display, setting up, 4–39
Resource requirements plan (RRP), validating, 4–38
Resource requirements planning. See RRP
Resource Requirements Planning (RRP), factors, 4–3
Resource requirements planning (RRP)
about, 4–1
definition, 1–1
long-range capacity planning, 4–3
reviewing dispatch groups, 4–26
Resource Requirements Planning
Regeneration, processing options, 4–23
Resource requirements plans (RRP)
generating, 4–21
reviewing, 4–25
setting up, 4–39
Resource units
calculations, 4–13
changing information, 4–11
entering manually, 4–10
generating, 4–12
revising, 5–54
Review Dispatch Group, processing options, 4–27
Review Forecast form (P34201), 3–20
Reviewing
DRP time series, 5–33
MPS time series, 5–34
MRP detail messages, 9–14
See also Reviewing detail messages
MRP pegging demand, 9–19
MRP supply and demand, 9–21
process output from MPS generation. See Processing options for message file revisions; Working with messages
certainty types for MRP, 9–15
repetitive output from MPS generation, 7–28
See also Processing options for message file revisions; Processing options for schedule review;
Processing options for time series
Reviewing batch output from the MPS schedule. See Reviewing DRP/MPS time series
Reviewing branch relationships on the relationship chart, 8–12
Reviewing capacity requirements plans, 9–33
Reviewing detail messages, 5–39
Reviewing dispatch groups for capacity requirements planning. See Reviewing dispatch groups for resource requirements planning
Reviewing dispatch groups for resource requirements plan, 4–26
Reviewing items for master schedule selection, 5–19
Reviewing leadtime for MRP, 9–28
Reviewing line scheduling workbench for material requirements planning, 9–23
Reviewing MRP branch relationships on the relationships chart, 10–6
See also Reviewing branch relationships on the relationships chart
Reviewing MRP rate schedule and work order loads, 9–38
Reviewing MRP work schedules on the dispatch list, 9–37
Reviewing multi-facility time series, 8–21
Reviewing period summaries for capacity requirements planning, 9–35
Reviewing planning families, 5–36
Reviewing process output from the MPS generation. See Working with master schedules; Working with messages
Reviewing rate schedule and work center load, 5–60
Reviewing repetitive items. See Revising detail forecasts
Reviewing repetitive rate schedule output from MPS generation, 7–28
Reviewing resource requirements plans, 4–25
Reviewing the rough cut capacity plan, 5–55
Reviewing the schedule generation exception report, 11–17
Reviewing the time series. See Reviewing DRP/MPS time series
Reviewing the time series for MRP multi-facility, 10–11
Reviewing time series, for pacing co-products, 7–40
Reviewing transfer messages, 8–25
See also Working with messages
Reviewing work center load, 4–28
Reviewing work center load for capacity requirements planning, 9–35
Reviewing work schedules on production status, 5–58
Revising detail forecasts, 3–23
Revising resource units, 5–54
Revising supplier schedules, 11–23
Rough cut capacity display, setting up, 5–72
Rough Cut Capacity Display Form (P00051), 5–72
Rough cut capacity plan, reviewing period summary, 5–55
Rough Cut Capacity Planning. See RCCP Rough cut capacity planning (RCCP), definition, 1–1
Rough cut capacity plans, generating, 5–54
Routing Master Revisions, processing options, 7–12
RRP, data selection for critical work centers, 4–23
Running MRP effectively, 9–6

S

Sales order entry, net change flag, 5–15
Schedule generation exception report, reviewing, 11–17
Schedule Review Form (P31224), 7–32
Scheduling, multi-facility, DRP/MPS, 8–1
Scheduling information, working with, 9–18
Setting processing options, rate based scheduling, 7–27
Setting up multi-facility schedule. See Setting up DRP/MPS/RCCP
resource requirements display, 1–2
See also Reviewing work center load
Setting up MRP supply/demand inclusion rules, 9–42
Setting up a multi-facility schedule, 8–5
Setting up a multi-level master schedule, 6–5
Setting up DRP, MPS, and RCCP, 5–63
Setting up feature planned percents, 6–10
Setting up forecast consumption periods, 5–69
Setting up forecast consumption periods for MRP, 9–44
Setting up items, overview, 2–1
Setting up material and capacity requirements planning, 9–41
Setting up message types for material requirements plans, 9–43
See also Setting up message types
Setting up MRP Supply and Demand Relationships. See Setting up supply and demand relationships
Setting up MRP supply and demand relationships, 10–6
Setting up MRP supply/demand inclusion rules. See Setting up supply/demand inclusion rules
Setting up multi-facility material requirements plans, 1–2
Setting up multi-facility requirements plans, 10–5
See also Setting up MRP and capacity planning; Single facility MRP
Setting up multi-facility schedules. See Setting up DRP, MPS, and RCCP; Single level master scheduling
Setting up multi-level master schedules. See Setting up DRP, MPS, and RCCP; Single level master scheduling
Setting up order policy rules, 6–6
Setting up resource requirements display, 4–39
Setting up resource requirements plans, 4–39
Setting up rough cut capacity display, 5–72
Setting up stocking types, 6–9
Setting up supply and demand inclusion rules, 5–64
Setting up supply and demand relationships, 8–6
Setting up the capacity requirements display, 9–45
Setting up time fence rules for MRP, 9–43
See also Setting up time fence rules
Shipments leadtime, supplier scheduling, 11–10
Shipments patterns for supplier deliveries, 11–11
Shipments quantity, supplier scheduling, 11–11
Shipping units per container, supplier scheduling, 11–11
Shop Floor Workbench, processing options, 9–27
Shop floor workbench form (P31225), 9–24
Single facility material requirements planning
See also About time fences and system messages
planning information tables, 9–3
Single facility MRP, 9–1
about, 9–1
Single level master schedule
net change flag control, 5–14
net change flag update, 5–13
Single level master schedules, generating, 5–13
Single level master scheduling
about, 5–2
applications, 5–3
DRP and purchased items, 5–3
MPS and manufactured items, 5–4
time fences, 5–5
Statistical laws, forecast accuracy, 3–11
Steps for creating a supplier schedule, 11–4
Stocking type, defining for process manufacturing, 7–35
Stocking types, setting up, 6–9
Summary forecasts, 3–1
Supplier contract, deleting information, 11–10
Supplier contract information, defining, 11–7
Supplier contracts, defining, 11–7
Supplier information
changing, 11–26
deleting, 11–10
Supplier schedule
creating, 11–4
effective date range, 11–2
printing, 11–29
releasing, 11–27
Supplier Schedule Generation, processing options, 11–17
Supplier schedule master (F4321), tables, 11–2
Supplier Schedule Master Revisions, processing options, 11–11
Supplier Schedule Print, processing options, 11–30
Supplier Schedule Release Generation, processing options, 11–28
Supplier Schedule Revisions, processing options, 11–26
Supplier schedules
generating, 11–15
revising, 11–23
Supplier scheduling, 11–1
blanket order release, 11–3
blanket purchase order, 11–2
defining shipment patterns, 11–11
level leadtime, 11–11
multiple, 11–16
processing receipts, 11–11
shipment leadtime, 11–10
shipment quantity, 11–11
shipping units per container, 11–11
tables, 11–2
Supplier split percentages, defining, 11–12
Supplier split percentages (F43211), tables, 11–2
Supplier split percentages form (P43211), 11–12
Supplier Split Percentages Revisions, processing options, 11–13
Supply and demand inclusion rules, setting up, 5–64
Supply and demand relationships
defining branch level, 8–11
deleting, 8–11
effective dates, 8–6
inventory availability, 8–6
locating, 8–11
mark up, 8–6
setting up for material requirements plans, 10–6
Supply/Demand Inclusion Rules, processing options, 5–66
Supply/Demand Inclusion Rules form (P34004), 5–65
Supply/Demand Inquiry, processing options, 9–22
Suppress blank lines, 5–33
Suppressing, blank lines, 7–29, 7–40
Synchronizing MRP and CRP systems, 9–32
System integration, 3–2
manufacturing and distribution planning, 1–3
System messages, DRP/MPS, 5–10

T
Tables
Address Book, 3–14
bill of materials master, 9–3
bill of materials master (F3002), 1–11, 6–2, 10–3
branch relationships master (F3403), 9–3, 10–3
Branch/Plant Master, 3–14
branch/plant master (F4102), 1–11
Business Unit Master, 3–14
capacity messages (F3511), 1–11
Co-/By-Products Planning Table (F3404), 7–36
Detail Forecast, 3–14
detail forecast (F3460), 1–11
Forecast (F3460), 4–4
forecast (F3460), 9–3
forecast consumption, 9–3
Forecast Summary Work, 3–14
item branch (F4102), 6–2, 9–3, 10–3
Item Master, 3–14
item master (F4101), 1–11, 6–2, 9–3, 10–3
MPS/MRP/DRP detail message review (F3411), 10–3
MPS/MRP/DRP lower level requirements (F3412), 9–3, 10–3
MPS/MRP/DRP summary (F3413), 9–3
MRP multi-facility scheduling, 10–3
multi-facility scheduling, 8–2
Resource Profile (F3503), 4–4
resource profile (F3503), 1–11
Resource Units (F3007), 4–4
resource units (F3007), 1–11
routing (F3503), 1–11
Sales History, 3–14
Sales Order Detail, 3–14
Summary Constants, 3–14
Summary Forecast, 3–14
supplier schedule master (F4321), 11–2
supplier scheduling, 11–2
supplier split percentages (F43211), 11–2
Work Center Master (F3006), 4–4
work center master (F3006), 1–11
work order master (F4801), 9–3
tables, MPS/MPR/DRP detail message review (F3411), 9–3
Terms and concepts, manufacturing and distribution planning, 1–6
Text Messages form, sample, 2–13
Text Messages program (P0016), 2–13
Time buckets, past due, forecast consumption, 5–24
Time fence rules, 5–6
setting up, 5–68
Time fence rules for MRP, setting up, 9–43
Time Fence Rules form (P00051), 5–69
Time fences
about, 5–5
freeze fence, 5–5
message display fence, 5–6
planning fence, 5–6
single level master scheduling, 5–5
Time frames, leveling overload, 9–38
Time Series, processing options, 5–35
Time series
available to promise calculation, 5–9
cumulative available to promise calculation, 5–9
ending available calculations, 5–8
forecast consumption calculation, 5–27
pacing co-products, example, 7–40
reviewing for MRP multi-facility, 10–11
suppressing blank lines, 7–15, 7–29
Time series calculation, 5–32
Time series calculations, 5–7
Transfer messages, reviewing, 8–25
Transfer order form (P4242), 8–24
Transfer order messages
processing, 8–22
processing for MRP, 10–12
Transfer orders, 8–19
interplant, 8–18
MRP multi-facility requirements plan, 10–10
Type of load, work centers, 4–30
Types of multi-facility scheduling, 8–2
Manufacturing and Distribution Planning

U

Unit types, setting up, 4–41
User Defined Code Revisions form, 4–40
Using bills of material in MRP, 9–4

V

Valid quantity types, DRP, 5–31
Validating capacity requirements plans, 9–39
 See also Generating capacity requirements plans
Validating load on lines or cells. See Reviewing rate schedule and work center loads
Validating master schedules, 5–53
Validating material requirements plans, 9–31
 See also Validating master schedules
Validating the resource requirements plan, 4–38

W

Work Center Load, processing options, 4–30
Work center load
 reviewing, for resource requirements planning, 4–28
 reviewing for RCCP, 5–55
Work Center Load Bar Graph, processing options, 4–32
Work Center Resource Units Generation, processing options, 4–13
Work center resource units revisions, processing options, 4–12
Work centers
 different units of measure, 4–9
 entering for RRP, 4–5
 over-capacity, 4–31
 prime load code, 4–30
 recalculating hours, 5–54
 resource offset, 4–30
 type of load, 4–30
Work order (+WO), quantity types for MRP, 9–15
Work order entry, net change flag, 5–14

Work Order Generation – Print and
Automatic Issue, processing options, 5–73
Work order inventory completions, net change flag, 5–14
Work order inventory issues, net change flag, 5–14
Work order master (F4801), tables, 9–3
Work order messages, processing for material requirements plans, 9–17
Work orders
 adding a freeze code, 5–51
 processing, 5–73
 processing for material requirements planning, 9–47
 processing messages, 5–40
Work schedules, reviewing on production status, 5–58
Working with batch manufacturing, 7–5
Working with detail forecasts, 3–16
Working with master schedules, 5–29
Working with material requirements plans.
 See Generating material requirements plans;
 Reviewing DRP/MPS time series; Reviewing planning families; Working with messages
Working with messages, 5–38
Working with MRP, 9–11
Working with MRP multi-facility planning output, 10–11
 See also Generating multi-facility requirements plans
Working with multi-facility planning output, 8–21
Working with multi-facility schedules. See Generating multi-facility schedules
Working with process manufacturing, 7–33
Working with rate based manufacturing, 7–17
Working with repetitive manufacturing, 7–17
Working with scheduling information, 9–18