
Oracle® Endeca Server

Developer's Guide

Version 7.6.1 • December 2013

Copyright and disclaimer
Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Table of Contents

Copyright and disclaimer ..2

Preface...13
About this guide ...13
Who should use this guide..13
Conventions used in this guide...13
Contacting Oracle Customer Support ..14

Part I: Overview and Concepts

Chapter 1: Oracle Endeca Server Interfaces ...16
Oracle Endeca Server overview ..16
Data flow ..17
Full list of Web services..18
About the Oracle Endeca Server API References20
About the Java client examples ..20
Dgraph configuration documents ...21

Chapter 2: Oracle Endeca Server Concepts..23
About the data model ...23

Records ...23
Attributes ..24

Assignments on standard attributes ...24
Primary keys..25
Attribute types ..26

XML representation of records and attributes27
Examples of records and standard attributes.......................................27
Managed attributes ...29

Primordial records ..30
Configurable system records ..34

Property Description Record (PDR) ...35
Dimension Description Record (DDR)..41
Global Configuration Record (GCR) ...43
Updates to schema and configuration..47

Part II: Web Services for the Endeca Server

Chapter 3: Configuration Web Service Interface53
About the Configuration Web Service ..53
Configuration Web Service operations ...54
Loading an attribute schema ..59

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Table of Contents 4

Loading configuration documents ...60
Performance impact of schema and configuration changes61
Using the Configuration Web Service in Integrator ETL62

Chapter 4: Conversation Web Service Interface63
About the Conversation Web Service ..63
Conversation Web Service operations ...64

State elements ..67
Content element config summarizations ..70

Pinning data versions ...71
Timeout default, maximum and minimum values71
Holding on to a data version...72
Requesting a pinned data version in a query.......................................74

Chapter 5: Entity and Collection Configuration Web Service Interface75
About the Entity and Collection Configuration Web Service75
Operations in the Entity and Collection Configuration Web Service...........................76

Chapter 6: Transaction Web Service Interface..79
About outer transactions ...79
When to use outer transactions ..80
About the Transaction Web Service ...80
Outer transactions and queries...81
Transaction Web Service operation description...82
Transaction Web Service operations ..83
Rolling back an outer transaction ...85
Notes about inner transactions...86
Request processing in the presence of transactions86
Transaction Web Service and Integrator ETL ..87
Performance impact of transactions ...87

Chapter 7: About Web Service Versions...88
How version numbers are assigned ...88
Obtaining a version number for a Web service ...89
Using version numbers in requests..89
Backward-compatibility of Web service versions ..90
Resolving incompatibility of Web services and client stubs.................................91

Part III: Collections, Record Filters, and Records

Chapter 8: Collections..93
About collections...93
Collection operations ..94

Collection create operations...95
Collection update operation ...97
Collection list operation ..99
Collection delete operations..100

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Table of Contents 5

Deleting a collection and its records ..101
Collection Definition Records ...104
Procedure for creating collections in the data domain105
Using collections in queries ..107

Chapter 9: Filter Rules ..110
About filter rules ..110
Filter rule operations ...112

Filter rule create operations ..112
Filter rules list operation...114
Filter rule delete operations ..115

Filter Rule Definition Records...117

Chapter 10: EQL Record Filters...118
About EQL record filters...118
SelectionFilter format...119
DataSourceFilter format...123
EQL operators for filterString filters...125
Language codes for EQL error messages..127
Range filters ...128

Between range filters...128
Less-than and greater-than range filters ...130

Geocode filters ...131
Managed attribute hierarchy filters ...132
Boolean attribute filters ...133
Using EQL filters with record and value searches134
EQLConfig requests ...135

Chapter 11: Working with Records ..136
Filtering data and non-data records ..136
Displaying records and attribute values with Studio138
Displaying records and attribute values with the API138

Configuring a record list...138
Understanding a RecordList result ...140
Paging through a large record set..141
Retrieving large numbers of records..142
Exporting large numbers of records ..143
Displaying attribute values ...143
Displaying record details ..144
Displaying record counts ..146

Performance impact of requesting large numbers of records147
Performance impact when displaying attribute values147

Chapter 12: Sorting Records ...148
About record sorting ...148
Global sort order of records ..148
Query-time sort ordering ..149

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Table of Contents 6

Troubleshooting application sort problems ...150

Chapter 13: Internationalized Data ..151
Overview of using internationalized data...151
Supported languages...152
Setting language identifiers ..154

Setting PDR language identifiers ..155
Global PDR language code ..156
Specifying a per-query language code ..156

Using custom dictionaries ...157
Creating a custom dictionary ...159

Viewing Dgraph logs ...159

Part IV: Attributes, Refinements, and Groups

Chapter 14: Working with Managed Attributes161
About managed attributes and their values ...161
Summary of operations ...166
About ranks and synonyms ..167
Adding managed attribute values ..168
Listing managed attribute values ..172
Deleting managed attribute values ...173
About static ranking..174

Adding and updating ranks ..175

Chapter 15: Working with Attributes and Refinements176
About Guided Navigation ..176
About refinements ...176
Working with refinements in Studio and other front-end applications.........................178
Schema configuration for enabling refinements ..178
Configuring the order of suggested refinements179
Configuring whether to display refinement counts179
Displaying refinements on multi-select attributes180

About multi-select attributes..180
Configuring attributes for multi-select refinement...................................181
Multi-select refinements and the user interface181
Avoiding dead-end query results ..182
Refinement counts for multi-or refinements.......................................182

Working with attributes and refinements using the API...................................183
NavigationMenuConfig..183
RefinementGroupConfig ..185
RefinementConfig ...187
PropertyListConfig...190
SelectedRefinementFilter..190
Obtaining a list of available attributes ...192
Retrieving refinements with the API: high-level overview193

Step 1: Obtaining and exposing attributes that have refinements193

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Table of Contents 7

Step 2: Applying refinements by creating a new query...........................195
Retrieving the full list of refinements (applied and suggested)195

Retrieving applied refinements for all attributes196
Retrieving applied refinements per attribute199

Increasing the number of refinements to be displayed201
How refinement counts are returned..202
Retrieving the order of refinements...203

About query-time control of refinement ordering203
Enabling the refinement order at query time204

Retrieving the full path of hierarchical refinements..................................205
Performance impact of returning and displaying refinements207

Chapter 16: Using Attribute Groups ...209
About attribute groups ..209
Configuring and using attribute groups in Studio209
Working with attribute groups using the API ..210

Creating attribute groups ..210
Retrieving lists of groups with the Conversation Web Service211
Retrieving groups with the Conversation Web Service...............................212
Examples of other operations on groups...214

Part V: Breadcrumbs, Precedence Rules, and Entities

Chapter 17: Using Breadcrumbs ..219
About breadcrumbs ..219
Implementing breadcrumbs with the API...220

BreadcrumbConfig...220
Retrieving breadcrumbs in a navigation query.....................................221
Example of breadcrumbs with spelling correction222

Chapter 18: Using Precedence Rules ..224
About precedence rules...224
Managed attribute trigger types ...225
Precedence rule create operations ...226
Creating precedence rules with Integrator ETL ..228
Precedence rule list and delete operations ...228
Precedence rules and implicit attribute value selection229

Chapter 19: Working with Entities...231
About entities ..231
Entity operations ..232
semanticEntity general syntax ..232
Sample entity requests ...237

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Table of Contents 8

Part VI: Search Features

Chapter 20: Using Record Search ...242
Record search overview ..242
Configuring attributes for record search ...244
Enabling hierarchical record search ..244
Implementing record search in Studio...245
Implementing record search with the API ..245

Obtaining the available search keys ..245
Record search filter ..246

Search query processing order..248
Step 1: Record filtering ...249
Step 2: Tokenization ...249
Step 3: Spelling correction ...249
Step 4: Thesaurus expansion...249
Step 5: Stemming ...250
Step 6: Primitive term and phrase lookup ..250
Step 7: Did You Mean ..250
Step 8: Navigation filtering ...250
Step 9: EQL ...250
Step 10: Relevance ranking ..251

Tips for troubleshooting record search ..251
Performance impact of record search ...251

Chapter 21: Working with Search Interfaces ..252
About search interfaces ...252
Implementing search interfaces ...252
Options for allowing cross-field matches ...253
Additional search interface options ...254

Chapter 22: Using Value Search ..256
About value search ..256
How value search works ..256
When to use value and record search...257
Enabling value search ..258
Utilizing value search in Studio..258
Implementing value search with the API ...258

Value search query format...259
Restricting value search to specific attributes261
Limiting the number of results per attribute261
Retrieving the number of matching results262
Ordering results...262
Specifying relevance ranking strategy for results...................................263

Interaction of value search and wildcard search263
Performance impact of value search..263

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Table of Contents 9

Chapter 23: Using Search Modes ...265
List of valid search modes ...265

All mode ..266
Partial mode ...266

Interaction of Partial mode and stop words266
AllPartial mode ...267
Any mode ...267
AllAny mode ...267
PartialMax mode ..267
Boolean mode..268

Configuring search modes in Studio ..268
Configuring search modes in the API ...268

Chapter 24: Using Boolean Search ..269
About Boolean search ..269
Boolean query syntax ..270
Using the key restrict operator ..271
About proximity search ...272

Example of using NEAR for unordered matching...................................272
Example of using ONEAR for ordered matching272

Proximity operators and nested sub-expressions.......................................273
Boolean query semantics..273
Operator precedence...274
Interaction of Boolean search with other features274
Error messages for Boolean search ..275
Implementing Boolean search in Studio ...276
Implementing Boolean search with the API ...276
Troubleshooting Boolean search ..277
Performance impact of Boolean search ...277

Chapter 25: Using Phrase Search ...278
About phrase search ...278
About positional indexing ..279
How punctuation is handled in phrase search ...279
Examples of phrase search queries ..279
Performance impact of phrase search ..280

Chapter 26: Using Snippeting in Record Searches...................................281
About snippeting ..281
Snippet formatting and size ..281
Enabling snippeting ..282
Tuning tips for snippeting..283
Retrieving snippets per query with the API ...283

Chapter 27: Using Wildcard Search ...285
About wildcard search ..285
Interaction of wildcard search with other features286

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Table of Contents 10

Ways to configure wildcard search ...286
Configuring wildcard search in record search286
Configuring wildcard search in value search287
Configuring wildcard search for a search interface..................................288

Dgraph flags for wildcard search ..289
Using wildcard search in Studio ...289
Performance impact of wildcard search ...289

Chapter 28: Search Characters ...291
About search characters ..291
Implementing search characters...291
Query matching semantics...292

Categories of characters in indexed text ...292
Indexing alphanumeric characters ...292
Indexing search characters ..293
Indexing non-alphanumeric characters ..293

Search query processing ..293
Dgraph flags for search characters...294
Performance impact of setting search characters294

Chapter 29: Spelling Correction and Did You Mean295
About Spelling Correction and Did You Mean ...295
Logic used for spelling correction ..296

How value search treats number of results297
Enabling spelling correction and updating spelling dictionaries.............................297
Spelling mode (Aspell)..298
Retrieving spelling corrections and DYM in query results.................................298
Configuring constraints for spelling dictionaries ..300
About word-break analysis...301
Troubleshooting Spelling Correction and Did You Mean302
Performance impact for Spelling Correction and Did You Mean302

Chapter 30: Using Stemming and Thesaurus303
Overview of stemming and thesaurus...303
About the stemming feature ..303

Types of stemming matches and sort order.......................................304
About the thesaurus feature..305

Adding, modifying, or deleting thesaurus entries306
Troubleshooting the thesaurus ..306

Dgraph flags for stemming and thesaurus..307
Interactions with other search features ..307
Performance impact of stemming and thesaurus.......................................309

Chapter 31: Relevance Ranking...310
About the relevance ranking feature ..310
Relevance ranking modules..310

Exact ..311

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Table of Contents 11

Field...312
First ...312
Frequency...313
Glom ..313
Interpreted ..314
Maximum Field ...314
Number of Fields..315
Number of Terms ...315
Phrase ...315

Configuring the Phrase module ...315
Phrase module options ..316
Summary of Phrase option interactions.................................317

Phrase module behavior ..319
Treatment of wildcards with the Phrase module319

Proximity..320
Spell...321
Static ..321
Stem...322
Thesaurus...322
Weighted Frequency ...322

Relevance ranking strategies ...322
Creating relevance ranking strategies...323

Implementing relevance ranking...324
Adding a Static module ...324
Ranking order for Field and Maximum Field modules324
How relevance ranking score ties between search interfaces are resolved325
Implementing relevance ranking for value search325
Specifying relevance ranking for record and value searches325

Relevance ranking sample scenarios ...326
Example 1: Using a small data set ...326
Example 2: UI reference implementation...328

Recommended strategies ...329
Recommended strategy for retail catalog data.....................................330
Recommended strategy for document repositories330

Performance impact of relevance ranking ..331

Part VII: References

Chapter 32: Dgraph Configuration Reference334
XML elements..334

COMMENT..334
DIMNAME...335
PROP..335
PROPNAME ...336
PVAL ..336

Dimsearch_config elements ..337

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Table of Contents 12

DIMSEARCH_CONFIG ...337
Recsearch_config elements ..338

RECSEARCH_CONFIG...338
Relrank_strategies elements ...339

RELRANK_APPROXPHRASE ..340
RELRANK_EXACT ..340
RELRANK_FIELD ...341
RELRANK_FIRST...341
RELRANK_FREQ ...342
RELRANK_GLOM...342
RELRANK_INTERP..343
RELRANK_MAXFIELD ...344
RELRANK_MODULE ..344
RELRANK_NTERMS...345
RELRANK_NUMFIELDS ..345
RELRANK_PHRASE...346
RELRANK_PROXIMITY ..347
RELRANK_SPELL ..348
RELRANK_STATIC..348
RELRANK_STRATEGIES ...349
RELRANK_STRATEGY...350
RELRANK_WFREQ ...352

Search_interface elements...352
MEMBER_NAME ...353
PARTIAL_MATCH...353
SEARCH_INTERFACE ...354

Stop_words elements ..356
STOP_WORD..356
STOP_WORDS...357

Thesaurus elements ...358
THESAURUS ..358
THESAURUS_ENTRY..359
THESAURUS_ENTRY_ONEWAY ...360
THESAURUS_FORM ..361
THESAURUS_FORM_FROM ..361
THESAURUS_FORM_TO ...362

Chapter 33: Suggested Stop Words ...363
About stop words ...363
List of suggested stop words ...363

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Preface
Oracle® Endeca Server is a hybrid search-analytical engine that organizes complex and varied data from
disparate sources. At the core of Endeca Information Discovery, the unique NoSQL-like data model and in-
memory architecture of the Endeca Server create an extremely agile framework for handling complex data
combinations, eliminating the need for complex up-front modeling and offering extreme performance at scale.
Endeca Server also supports 35 distinct languages.

About this guide
This guide describes the core features of the Oracle Endeca Server that you can access via applications built
with Studio, or with other front-end applications that can communicate with the Oracle Endeca Server.

Who should use this guide
This guide is intended for developers who are building applications based on the Oracle Endeca Server
software and require information about the interfaces to the Oracle Endeca Server, as well as information
about the features of the Dgraph process. The features include record and attribute search, record filters, and
navigation on refinements.

Conventions used in this guide
The following conventions are used in this document.

Typographic conventions

This table describes the typographic conventions used when formatting text in this document.

Typeface Meaning

User Interface Elements This formatting is used for graphical user interface elements such as
pages, dialog boxes, buttons, and fields.

Code Sample This formatting is used for sample code phrases within a paragraph.

Variable This formatting is used for variable values.

For variables within a code sample, the formatting is Variable.

File Path This formatting is used for file names and paths.

Symbol conventions

This table describes the symbol conventions used in this document.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Preface 14

Symbol Description Example Meaning

> The right angle bracket, File > New > Project From the File menu,
or greater-than sign, choose New, then from
indicates menu item the New submenu,
selections in a graphic choose Project.
user interface.

Path variable conventions

This table describes the path variable conventions used in this document.

Path variable Meaning

$MW_HOME Indicates the absolute path to your Oracle Middleware home directory,
which is the root directory for your WebLogic installation.

$DOMAIN_HOME Indicates the absolute path to your WebLogic domain home directory. For
example, if endeca_server_domain is the name of your WebLogic
domain, then the $DOMAIN_HOME value would be the
$MW_HOME/user_projects/domains/endeca_server_domain
directory.

$ENDECA_HOME Indicates the absolute path to your Oracle Endeca Server home directory,
which is the root directory for your Endeca Server installation.

Contacting Oracle Customer Support
Oracle Endeca Customer Support provides registered users with important information regarding Oracle
Endeca software, implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Endeca Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

https://support.oracle.com

Part I

Overview and Concepts

Chapter 1

Oracle Endeca Server Interfaces

The Oracle Endeca Server is equipped with the set of Web services that provide the interfaces to it. You use
the Web services through Integrator ETL (or other data-loading clients) to load the data; and through Studio
components (or other front-end applications for querying the data) to query the Oracle Endeca Server and
manipulate the query results. You can also use these Web services directly.

Oracle Endeca Server overview

Data flow

Full list of Web services

About the Oracle Endeca Server API References

About the Java client examples

Dgraph configuration documents

Oracle Endeca Server overview
The Oracle Endeca Server is a hybrid search-analytical engine that organizes complex and varied data from
disparate sources. At the core of Endeca Information Discovery, the NoSQL-like data model and in-memory
architecture of Endeca Server create an extremely agile framework for handling complex data combinations,
eliminating the need for complex up-front data modeling and offering extreme performance at scale.

It is useful to recognize that the term "Endeca Server" may refer to the Endeca Server software package, and
to the Endeca Server Java application hosted in the WebLogic Server. Whenever this distinction is needed,
the documentation refers to the software package as "the Oracle Endeca Server", and to the Java application
as the "Endeca Server Java application".

The Oracle Endeca Server is designed to host multiple Endeca data domains. The Oracle Endeca Server
maintains the index of records for the data domain in memory, receives queries, executes them against the
stored index, and returns the results.

Once the Endeca Server package is installed in the WebLogic Server, the WebLogic Server starts the Endeca
Server Java application. The Endeca Server software exposes almost all of its APIs as SOAP Web services.

A data domain is a logical unit of data and metadata managed by the Endeca Server. Through its interfaces,
the Endeca Server allows for the data loading, configuration, and querying of a data domain. A data domain
may impose order on subsets of its data through collections (known in Studio as data sets). A data domain is
the largest unit of data over which the Endeca Server allows queries to be expressed. It represents a discrete
set of data and includes indexed data records and system records. (Applications wishing to correlate, join, or
display data from multiple data domains must do so themselves.)

The Dgraph is the name of the process created in the Oracle Endeca Server, for each data domain. Each
Dgraph process handles requests made to the data domain. The Dgraph process of the Oracle Endeca Server
uses proprietary data structures and algorithms that allow it to provide real-time responses to client requests.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Interfaces 17

The Dgraph process stores the index created after your source data is ingested. After the index is stored, it
receives client requests via the application tier, queries the data files, and returns the results through the
Oracle Endeca Server. The communication between the Endeca Server and the Dgraph process is secure by
default.

Once a data domain is created, you only need to use the name of the data domain to manage it. You don't
need to know which port the Dgraph processes for the data domain are running on, as the Endeca Server
keeps track of that information. This name-only reference to the data domains makes it much easier to enable
and disable them and perform other data domain management operations.

The Endeca Server includes a set of commands, available through endeca-cmd, with which you create and
control data domains. Optionally, you can use the Web services of the Endeca Server for this purpose.

The Oracle Endeca Server is designed to be stateless. This design requires that a complete query be sent to
it for each request, for each Endeca data domain hosted in the Endeca Server. The stateless design facilitates
the addition of multiple Oracle Endeca Server instances for load balancing and redundancy — any instance of
an Oracle Endeca Server cluster hosting a data domain can reply to queries independently of other instances,
utilizing a shared data domain index.

Consequently, for each Endeca data domain, configuring additional Dgraph processes as nodes in a data
domain cluster increases availability of request processing for the data domain. If a node in the data domain
cluster goes down, at least one of the Dgraphs running in the cluster continues to reply to queries.

Data flow
The Oracle Endeca Server communicates with the front-end Web application using its Web services.

A typical solution that utilizes the Oracle Endeca Server consists of the following parts:

• The Oracle Endeca Server, which processes query requests. The Oracle Endeca Server Web services are
used for sending and receiving requests.

• A front-end Web application in the form of a set of application modules, which receive client requests and
pass them to the Oracle Endeca Server.

The following diagram illustrates the data flow between these parts for a typical front-end application that uses
the Oracle Endeca Server:

In this diagram, the following actions take place:

1. A client browser makes a request. The Web application server receives the request and passes it to the
Oracle Endeca Server, using its Web services.

2. The Oracle Endeca Server processes the query and returns its results.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Interfaces 18

3. The Web services retrieve and manipulate the query results and transfer them in XML format to the Web
application. The application formats the query results and returns them to the client browser, via the Web
application server.

Full list of Web services
The Oracle Endeca Server is installed with a set of versioned SOAP Web services for loading, configuring,
and querying the data, as well as for managing data domains and administering the Endeca Server cluster.
These Web services provide the interface to the Oracle Endeca Server.

Web services available for data domains

Once you install the Oracle Endeca Server and create a data domain in it, you can use the following Web
services to send requests:

• Configuration Web Service, config (see Configuration Web Service Interface on page 52)

• Conversation Web Service, conversation (see Conversation Web Service Interface on page 62)

• Transaction Web Service, transaction (see Transaction Web Service Interface on page 78)

• Data Ingest Web Service, ingest (documented in the Oracle Endeca Server Data Loading Guide)

• Cluster Web Service, cluster (documented in the Oracle Endeca Server Cluster Guide)

• Manage Web Service, manage (documented in the Oracle Endeca Server Cluster Guide)

In addition to these listed Web services, additional Web services are available with the Oracle Endeca Server:

• The EQL Parser Web Service, eql_parser is used for parsing Endeca Query Language queries and
filters. For information, see the Oracle Endeca Server API References and the Oracle Endeca Server EQL
Guide.

• The Entity and Collection Configuration Web Service, sconfig, is used to create and manage collections
(known in Studio as data sets), and entities (known in Studio as views). For information, see Entity and
Collection Configuration Web Service Interface on page 74. Also refer to the Oracle Endeca Information
Discovery Studio User's Guide for information on creating views with Studio.

• Several private Web services also exist in the Oracle Endeca Server. These interfaces are used for
internal communication.

Note: Each Web service is assigned its own version, consisting of major and minor versions. The
supported versions are listed in its WSDL document. If you are planning to use Web service calls
directly or use client-side code created with stubs generated from a Web service, ensure that you use
a supported version of the Web service. For detailed information on Web service versions, see About
Web Service Versions on page 87.

In addition to these listed Web services, the Bulk Load Interface is also included. It does not use Web services
technology. Together with the Data Ingest Web Service, the Bulk Load Interface loads the records into the
Oracle Endeca Server. For more information on the Bulk Load Interface, see the Oracle Endeca Server Data
Loading Guide (if you are planning to use this interface directly), or the Oracle Endeca Information Discovery
Integrator ETL User's Guide (if you are planning to use components in Integrator ETL that utilize calls to the
Bulk Load Interface).

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Interfaces 19

Flow for using the Web services

As you build your application, you use these Oracle Endeca Server Web services through various tools. The
usage pattern is as follows:

1. Use the Cluster Web Service to configure an Endeca Server Cluster that can host multiple Endeca data
domains. For information on the Endeca Server Cluster, see the Oracle Endeca Server Cluster Guide.

2. Use the Manage Web Service to create and manage Endeca data domains hosted in the Endeca Server
cluster. For information, see the Oracle Endeca Server Cluster Guide.

3. Use the Data Ingest Web Service and the Configuration Web Service to load data and configuration into
the data domain hosted by the Oracle Endeca Server.

4. Use the Transaction Web Service to group individual requests from other Web services into a single outer
transaction. Typically, the Transaction Web Service is useful for sending multiple data loading requests in
a single outer transaction.

5. Use the Configuration Web Service to configure the records schema and Oracle Endeca Server features.

6. Use the Conversation Web Service and the Configuration Web Service to send requests and obtain
results from the Oracle Endeca Server for your data domain. These results can subsequently be rendered
in the front-end application used by the end users.

How each Web service interacts with the Oracle Endeca Server

Each Web service can be described in the context of how it interacts with the Oracle Endeca Server:

Web service Function

Data Ingest Web Service Used to load data into the data domain hosted in the Oracle Endeca Server. It
serves as the basis for various batch processes, and is designed for easy
integration with ETL tools.

Entity and Collection Used to create and manage entities, collections, and filter rules.
Configuration Web
Service

Configuration Web Supports the process of refining the records schema for the data domain and
Service adjusting your configuration in the development environment.

Conversation Web Used to query the index stored by the Oracle Endeca Server for each data
Service domain and to provide summarizations.

Transaction Web Service Controls outer transactions in the Oracle Endeca Server, allowing you to send
multiple Web service requests (such as, for data loading), inside a single outer
transaction.

Manage Web Service Used to create and manage data domains hosted in the Endeca Server cluster.

Cluster Web Service Used to configure an Endeca Server Cluster that can host multiple data
domains.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Interfaces 20

A note on performance and interaction with the front-end application

Performance of the Endeca Server depends on the number of distinct query requests sent to it through its
various web service interfaces, including updating and non-updating query requests, such as those sent from
Studio or other front-end clients (if they are used instead of Studio). Performance is not affected by the
processing that occurs in the front-end client. For example, the number of front-end application's pages
generated to create a query has no impact on performance of underlying queries processed by the Endeca
Server.

About the Oracle Endeca Server API References
The Oracle Endeca Server API References represent a collection of automatically generated reference
documentation for each of the SOAP Web services and the Bulk Ingest Interface that are packaged with the
Oracle Endeca Server.

The Oracle Endeca Server API References are generated from the two types of files that describe a Web
service:

• A WSDL document

• An XML Schema definition (XSD)

In addition to the WSDL documentation for the packaged Web services, the Oracle Endeca Server API
References also include the documentation for the Bulk Load Interface.

The Oracle Endeca Server API References are located in the doc directory of the Oracle Endeca Server
installation. They are complemented by the Oracle Endeca Server Developer's Guide (this guide) which
discusses how to use the Conversation Web Service, the Transaction Web Service, and the Configuration
Web Service.

The Oracle Endeca Server Data Loading Guide discusses how to use the Data Ingest Web Service and the
Bulk Ingest Interface.

Finally, the Oracle Endeca Server Cluster Guide discusses how to use the Cluster and Manage Web Services.

About the Java client examples
The Oracle Endeca Server includes a collection of Java client examples for sending queries to a data domain.
Consider using these examples as one possible way to build your own front-end client code.

The examples are based on Java stubs generated with JRF 11.1.1.6.

Even though these examples represent Java classes and methods, they do not represent the supported
interfaces. The Web services and the Bulk Load Interface represent the supported interfaces to the Oracle
Endeca Server.

Important: The Java client examples are not intended to be extensible to real tasks and are not
intended to be run in a secure production environment. Use them as demonstrations of how to interact
with the generated code and how to create your own client code in Java for sending queries to the
Oracle Endeca Server.

Do not use the Java client examples as your reference for the supported interfaces. To learn about the
capabilities of each of the supported interfaces, use the Web services themselves, their corresponding WSDL
documents, and the documentation generated from them and for the Bulk Load Interface. The automatically-

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Interfaces 21

generated documentation for these interfaces, collectively known as the Oracle Endeca Server API
References, is included in the installation of the Oracle Endeca Server. In addition, the Oracle Endeca Server
documentation provides information about the interface capabilities and describes how to use them.

The Java client examples are installed in the $ENDECA_HOME/apis/examples directory of the Oracle
Endeca Server package, and include the following top-level directories:

Directory Description

generated-sources Contains the result of generating stubs using JRF.

src Contains sample code for accomplishing basic tasks using these
stubs, such as configuring a data domain, adding individual
records, and making basic queries.

In addition, the src/tests directory contains unit tests employing
the simple routines in src/main, as well as wrappers around
those unit tests.

standalone_tests Includes a JAR file containing compiled versions of unit test
wrappers, and a Perl script for running the tests.

Running the examples

All example tests run against a WebLogic instance that has its unencrypted port (7001) open, and that is not
configured securely (will not use HTTPS internally).

The Perl script for running the example tests is located in the /apis/examples/standalone_tests
directory. Before running the script:

• Verify that the Endeca Server is running.

• Download and install Perl, Java, and TestNG packages on your machine, and ensure that your PATH
environment variable includes the full paths to Perl and Java packages. The script depends on these
packages and logs errors if any of them are not found.

• Verify that the script can locate the security configuration file jpsconfig.xml. The script checks for this
file in MW_HOME. Alternatively, you can define the file's location by setting the path to it in the
environment variable oracle.security.jps.config.

If you use the Perl script with no arguments, it issues a list of available options.

To run the Perl script, specify the name of the example test to run and the full path to the TestNG JAR file.
The script runs as many tests as you specify on the command line.

Dgraph configuration documents
You can use the Configuration Web Service interface to load and modify configuration documents.

You can modify the following configuration documents:

• dimsearch_config

• recsearch_config

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Interfaces 22

• relrank_strategies

• stop_words

• thesaurus

Various features of the Oracle Endeca Server use these documents. See this guide for more information.

Note: In addition to letting you modify configuration documents, the Configuration Web Service is also
used to modify the system records — Property Description Records, Dimension Description Records,
and the Global Configuration Record. For more information, see Configuration Web Service Interface
on page 52.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 2

Oracle Endeca Server Concepts

This section introduces basic concepts associated with the schema of records in the Oracle Endeca Server,
and describes how data is structured and configured in the Oracle Endeca Server data model for each hosted
data domain.

About the data model

Primordial records

Configurable system records

About the data model
The data model in the Oracle Endeca Server consists of records and attributes.

• Records are the fundamental units of data.

• Attributes are the fundamental units of the schema. For each attribute, a record may be assigned zero,
one, or more attribute values.

Records

Attributes

XML representation of records and attributes

Examples of records and standard attributes

Managed attributes

Records

Records are the fundamental units of data in the Oracle Endeca Server. Almost all information that is
consumed by the Oracle Endeca Server, including raw data and the data schema, is represented by records.

In the context of applications powered by the Oracle Endeca Server, the following types of records are
discussed:

Record type Description

Source records Source records represent the data that is input into the application powered by the Oracle
Endeca Server, for each data domain. Source records in a variety of formats are
supported.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 24

Record type Description

Data records In most applications, you are primarily concerned with data records. Data records are the
business records of your data domain that you want to explore using the front-end
application.

System records System records represent the records schema in the index that is created by the user for
each data domain. System records are created in the Endeca Server using the schema
from the primordial records. You use these records for data modeling — changing these
records controls the behavior of your records schema and thus affects your data model.
System records are listed in the topic Configurable system records on page 34.

Primordial Primordial records are created automatically and used internally by the Endeca Server.
records They represent the most basic infrastructure of the data model. An overview of them is

given in Primordial records on page 30.

Attributes

An attribute is the basic unit of a record schema. Assignments from attributes (also known as key-value
pairs) describe records in the Oracle Endeca Server.

For a data record, an assignment from an attribute provides information about that record. For example, for a
list of book records, an assignment from the Author attribute contains the author of the book record.

Each attribute is identified by a unique name.

Each attribute on a data record is itself represented by a record that describes this attribute. Following the
book records example, there is a record that describes the Author attribute. A set of these records that
describe attributes forms a schema for your records. This set is known as system records. Each attribute in a
record in the schema controls an aspect of the attribute on a data record. For example, an attribute on any
data record can be searchable or not. This fact is described by an attribute in the schema record.

The term attribute collectively refers to both standard attributes and managed attributes:

• Standard attributes are described by system records known as Property Description Records (PDRs).

• Managed attributes are described by Property Description Records (PDRs) and Dimension Description
Records (DDRs). Each managed attribute is described by one PDR and one DDR.

Assignments on standard attributes

Records are assigned values from standard attributes. An assignment indicates that a record has a value
from a standard attribute.

A record typically has assignments from multiple standard attributes. For each assigned attribute, the record
may have one or more values. An assignment on a standard attribute is known as a key-value pair (KVP).

Not all standard attributes will have an assignment for every record. For example, for a publisher that sells
both books and magazines, the "ISBN number" standard attribute would be assigned for book records, but not
assigned (empty) for most magazine records.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 25

Standard attributes may be single-assign or multi-assign:

• A single-assign attribute is an attribute for which each record can have at most one value. For example,
for a list of books, the ISBN number would be a single-assign attribute. Each book only has one ISBN
number.

• A multi-assign attribute is an attribute for which a single record can have more than one value. For the
same list of books, because a single book may have multiple authors, the Author attribute would be a
multi-assign attribute.

By default, all standard attributes are single-assign. To make a standard attribute multi-assign, you must
update the attribute configuration.

Primary keys

In the Oracle Endeca Server data model, several types of primary keys (also known as specs) are used, for
identifying records, collections, and managed attribute values. This topic provides a summary of each of these
primary keys.

Record spec

For the Oracle Endeca Server to identify each record, it must have an assignment from exactly one primary-
key attribute. This assignment is known as a record primary key, or record spec. You can use any attribute as
a record primary key as long as the attribute is single-assign and guaranteed to be unique. That is, the PDR
(Property Description Record) for the primary-key attribute must have both the mdex-

property_IsSingleAssign and mdex-property_IsUnique attributes set to true. As a result, the attribute
may be assigned only once in any record and a given attribute value may be assigned to at most one record
(that is, no two records in a single Endeca data domain have the same value for this attribute).

The requirement for single assignment and uniqueness is enforced when you are adding initial records to the
Endeca data domain using the Data Ingest Web Service or the Bulk Load interface. If you add a new record to
the Oracle Endeca Server, it verifies that the record has an assignment for exactly one value from the primary-
key attribute.

For more information on how the record spec (record primary key) is used when new records are added to the
data domain, see the Oracle Endeca Server Data Loading Guide.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 26

Collection spec

For the Endeca Server to identify each collection, it must have an assignment from exactly one attribute,
known as uniquePropertyKey. This attribute is known as a unique primary key for a collection (or a
collection spec):

Collection attribute Description

uniquePropertyKey Required. Sets the standard attribute that provides the unique key values for
records in the collection. Once a uniquePropertyKey is configured for a
collection, it cannot be used for any other collection. In addition, this standard
attribute must not already be assigned on any record.

The PDR for the standard attribute must be created with:

• mdex-property_IsSingleAssign set to true

• mdex-property_IsUnique set to true

You specify a unique property key for a collection when adding collections. For more information, see
Collection create operations on page 95.

Note that the collection spec also serves as the record spec during the ingest of the records.

Managed attribute value spec

For the Endeca Server to identify each managed attribute value, it must have an assignment from the
managed attribute value spec, mdex-dimension-value_Spec. The managed attribute value spec is added
when you create a managed attribute.

Attribute types

The attribute type identifies the type of data allowed for the standard attribute value (key-value pair).

The Oracle Endeca Server supports the following standard attribute types:

Attribute type Description

mdex:string XML-valid character strings.

mdex:int A 32-bit signed integer. mdex:int values accepted by the Oracle Endeca Server on
all platforms can be up to the value of 2,147,483,647.

mdex:long A 64-bit signed integer. mdex:long values accepted by the Oracle Endeca Server
on all platforms can be up to the value of 9,223,372,036,854,775,807.

mdex:double A floating point value.

mdex:time Represents the hour and minutes of an instance of time, with the optional
specification of fractional seconds. The time value can be specified as a universal
(UTC) date time or as a local time plus a UTC time zone offset.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 27

Attribute type Description

mdex:dateTime Represents the year, month, day, hour, minute, and seconds of a time point, with
the optional specification of fractional seconds. The dateTime value can be
specified as a universal (UTC) date time or as a local time plus a UTC time zone
offset.

mdex:duration Represents a duration of the days, hours, and minutes of an instance of time.

mdex:boolean A Boolean. Valid Boolean values are true (or 1, which is a synonym for true) and
false (or 0, which is a synonym for false).

mdex:geocode A latitude and longitude pair. The latitude and longitude are both double-precision
floating-point values, in units of degrees.

XML representation of records and attributes

In XML, each record is represented as a collection of attribute value assignments (key-value pairs).

In all of the Oracle Endeca Server Web service interfaces, a record is represented in XML as a record
element. The record element contains attribute elements (these attributes should not be confused with the
term "attribute" used in the XML standard set of terms). Each attribute element contains the attribute values
for the specified attribute.

If a record does not have a value for an attribute, the attribute is not included for that record.

If a record has multiple values for an attribute, there is a separate attribute element for each value.

The following XML represents a single data record with three standard attributes (ProductID, BikeType,
and Color):

<Record>
<attribute name="ProductID" type="mdex:int">12345</attribute>
<attribute name="BikeType" type="mdex:string">Road Bikes</attribute>
<attribute name="Color" type="mdex:string">Red</attribute>

</Record>

Version 7.6.1 • December 2013

Examples of records and standard attributes

The following examples of records demonstrate different configurations of standard attributes and their values
(key-value pairs).

About these examples

In the examples, each row in the table represents a single record, in this case, a bicycle. The column
headings are standard attributes, and each cell contains a standard attribute value (key-value pair).

Oracle® Endeca Server: Developer's Guide

Oracle Endeca Server Concepts 28

Example 1: all records have a single assignment from each attribute

In this example:

• The ProductID attribute is the primary key, and is therefore both unique and single-assign. Each record
has exactly one assignment on the ProductID attribute, and the ProductID attribute value for a given
record is unique across the data set.

• The Name attribute is also unique and single-assign, to avoid duplicated product names across the data
set.

• No records have multiple assignments.

• Every record has an assignment for every attribute.

Name Bike Type ProductID Size Range Color Number Price
Sold

Road-450 Road Bikes 4038 42-46 CM Red 171 1457.99

Road-550-W Road Bikes 5213 38-40 CM Yellow 455 1000.48

Touring-1000 Touring Bikes 8765 54-58 CM Blue 117 2384.07

Touring-3000 Touring Bikes 4035 48-52 CM Yellow 221 742.35

Mountain-300 Mountain 3421 38-40 CM Black 223 1079.99
Bikes

Mountain-500 Mountain 4821 38-40 CM Silver 176 564.99
Bikes

The XML representation of the Road-450 record may look similar to the following example:

<Record>
<attribute name="Name" type="mdex:string">Road-450</attribute>
<attribute name="ProductID" type="mdex:int">4038</attribute>
<attribute name="BikeType" type="mdex:string">Road Bikes</attribute>
<attribute name="SizeRange" type="mdex:string">42-46 CM</attribute>
<attribute name="Color" type="mdex:string">Red</attribute>
<attribute name="NumSold" type="mdex:int">171</attribute>
<attribute name="Price" type="mdex:double">1457.99</attribute>

</Record>

Version 7.6.1 • December 2013

Notice the primary key attribute, which in this case is the ProductID attribute. This primary key attribute is
used by the Oracle Endeca Server to uniquely identify this record. At the data loading stage, you decide which
of your standard attributes is going to be the primary key attribute.

Example 2: records with no assignments or multiple assignments on an attribute

This example uses the same data as the previous example, but adds a Review Score attribute. For the
Review Score attribute, some records have multiple assignments and some have no assignments.

For example, the Road-450 record has multiple review scores and the Touring-3000 record has no review
scores.

Oracle® Endeca Server: Developer's Guide

Oracle Endeca Server Concepts 29

Name Bike Type ProductID Size Range Color Review Price
Score

Road-450 Road Bikes 4038 42-46 CM Red 35, 45, 60 1457.99

Road-550-W Road Bikes 5213 38-40 CM Yellow 80, 82 1000.48

Touring-3000 Touring Bikes 4035 48-52 CM Yellow 742.35

Mountain-500 Mountain 4821 38-40 CM Silver 76 564.99
Bikes

The XML representation of the Road-450 and Touring-3000 bikes may look similar to the following example:

<Record>
<attribute name="Name" type="mdex:string">Road-450</attribute>
<attribute name="ProductID" type="mdex:int">4038</attribute>
<attribute name="BikeType" type="mdex:string">Road Bikes</attribute>
<attribute name="SizeRange" type="mdex:string">42-46 CM</attribute>
<attribute name="Color" type="mdex:string">Red</attribute>
<attribute name="ReviewScore" type="mdex:int">35</attribute>
<attribute name="ReviewScore" type="mdex:int">45</attribute>
<attribute name="ReviewScore" type="mdex:int">60</attribute>
<attribute name="Price" type="mdex:double">1457.99</attribute>

</Record>
<Record>
<attribute name="Name" type="mdex:string">Touring-3000</attribute>
<attribute name="ProductID" type="mdex:int">4035</attribute>
<attribute name="BikeType" type="mdex:string">Mountain Bikes</attribute>
<attribute name="SizeRange" type="mdex:string">48-52 CM</attribute>
<attribute name="Color" type="mdex:string">Yellow</attribute>
<attribute name="Price" type="mdex:double">742.35</attribute>

</Record>

Version 7.6.1 • December 2013

The XML for the Road-450 record contains three ReviewScore elements, one for each score. Because the
Touring-3000 record does not have any review scores, it does not include a ReviewScore element.

Managed attributes

Managed attributes are similar to standard attributes in that they describe the records in your data set.

Unlike standard attributes, (which only provide a way to assign values to records in your data set), managed
attributes allow you to capture additional characteristics that may be present in your data. Once captured and
loaded into a running Dgraph, these characteristics become part of that data domain.

Managed attributes allow you, as a data architect, to capture the following characteristics of your records:

• A set of predefined allowed values. Some attributes on your data records may have a requirement to
have assignments only from a predefined set of allowed values. For example, an attribute currency may
have a predefined set of values (dollars and euros). A managed attribute allows you to define a set of
specific values that are allowed on a standard attribute.

• Hierarchy. Some attributes on your data records may benefit from being organized in a hierarchy. For
example, an attribute representing a ProductCategory type of Clothing may have different types of clothing
items underneath it, each represented by a standard attribute (such as Caps, Gloves, Jerseys, and so on).
A managed attribute allows you to define the hierarchy of standard attributes.

Oracle® Endeca Server: Developer's Guide

Oracle Endeca Server Concepts 30

• Additional metadata on attribute values. Finally, your source data records may have attribute values
that could include additional metadata, such as text descriptions. Managed attributes allow you to capture
these additional metadata on attribute values.

Managed attributes are often used to support hierarchical navigation. In other words, associating a managed
attribute with a standard attribute enables hierarchical navigation of records based on the standard attribute
values. For example, you can navigate a collection of books using the Library of Congress Classification
standard attribute, and refine by Literature > American > 19th century.

(Note that while managed attributes can capture the hierarchy of your attributes, they are not required to
contain hierarchy information.) When you create a managed attribute whose purpose is to represent a
hierarchy, you load a taxonomy definition that enumerates a hierarchy where each standard attribute value (in
a key-value pair for the standard attribute) is a node in the hierarchy (called a managed attribute value, or
mval).

Managed attributes are described by system records — PDRs and DDRs.

Primordial records
Primordial records are created automatically and should not be modified by the user.

When an Endeca Server data domain is created, a group of system records, called primordial records, is
created automatically within the Dgraph. These primordial records are used internally by the Dgraph and their
configuration should not be changed by the user. Changing their configuration may cause parts of the system
to fail to work or to work incorrectly.

The purpose of these primordial records is to define system properties that will, in turn, be used to define user-
created system records, such as PDRs and CDRs. For example, the mdex-property_Type record defines
the configuration for the mdex-property_Type schema attribute, which is one of the various properties that
define a PDR for a standard attribute.

The primordial records in the system are:

Primordial record Purpose

CDR (defines the schema for collection): Define properties of a Collection
Description record (CDR). A CDR, in

mdex-collection_Key
turn, defines the characteristics of

mdex-collection_PropertyKey collections, such as their spec.

mdex-collection_UniquePropertyKey

system-collection_Description

system-collection_DisplayName

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 31

Primordial record Purpose

GCR (defines global configuration): Define properties of a Global
Configuration Record (GCR). A GCR,

mdex-config_Key
in turn, defines global configuration

mdex-config_MergePolicy parameters, such as spelling
configuration.

mdex-config_SearchChars

mdex-config_SpellingDValMaxWordLength

mdex-config_SpellingDValMinWordLength

mdex-config_SpellingDValMinWordOccur

mdex-config_SpellingRecordMaxWordLength

mdex-config_SpellingRecordMinWordLength

mdex-config_SpellingRecordMinWordOccur

mdex-config_SystemRecordVersion

DDR (together with a PDR, defines a managed attribute): Define a Dimension Description
Record (DDR). A DDR, together with a

mdex-dimension_Key
PDR, in turn, defines properties for

mdex-dimension-value_Spec managed attributes. For example, a
DDR defines a primary key for the

mdex-dimension-value_Parent
managed attribute, its spec and its

mdex-dimension_EnableRefinements parent, and whether it should enable
refinements to be displayed.

mdex-dimension_IsDimensionSearchHierarchical

mdex-dimension_IsRecordSearchHierarchical

system-dimension_DefaultValue

MAVDR (defines a managed attribute value): Define properties of a Managed
Attribute Value Description Record

mdex-dimension-value_Dimension
(MAVDR). A MAVDR, in turn, defines

mdex-dimension-value_Name characteristics of managed attribute
values, such as their display name, as

mdex-dimension-value_Rank
well as rank and synonyms (if they are

mdex-dimension-value_Synonyms present).

PRDR (defines a precedence rule): Define properties of a description
record that defines precedence rules.

mdex-precedenceRule_Key
This record, in turn, defines

mdex-precedenceRule_IsLeafTrigger characteristics of precedence rules,
such as the spec for the precedence

mdex-precedenceRule_TargetAttributeKey
rule, its trigger's spec and value, its

mdex-precedenceRule_TriggerAttributeKey target spec and value.

mdex-precedenceRule_TriggerAttributeValue

mdex-property_ForeignKey Not used (reserved for future use).

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 32

Primordial record Purpose

PDR (defines a standard attribute and a managed attribute): Define properties of a Property
Description Record (PDR). A PDR

mdex-property_Key
represents characteristics for standard

mdex-property_DisplayName attributes. Note that:

mdex-property_IsPropertyValueSearchable • PDRs, in addition to defining
standard attributes, also define

mdex-property_IsSingleAssign
managed attributes (together with

mdex-property_IsTextSearchable DDRs).

mdex-property_IsUnique • mdex-property_Key is also
used to add standard attributes to

mdex-property_Language
attribute groups.

mdex-property_TextSearchAllowsWildcards

mdex-property_Type

system-navigation_Select

system-navigation_ShowRecordCounts

system-navigation_Sorting

system-property_DefaultValue

EDR (defines an entity): Define properties of an entity
description record, which, in turn,

mdex-semanticEntity_Key
defines characteristics for entity

mdex-semanticEntity_Attributes records.

mdex-semanticEntity_Definition

mdex-semanticEntity_Description

mdex-semanticEntity_DisplayName

mdex-semanticEntity_Groups

mdex-semanticEntity_IsActive

mdex-semanticEntity_Metrics

system-group_DynamicContent

system-group_DynamicOrder

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 33

Primordial record Purpose

FRDR (defines a filter rule): Define properties of a Filter Rule
Description Record (FRDR), which in

system-filterRule_Key
turn defines filter rules.

system-filterRule_DisplayName

system-filterRule_IsActive

system-filterRule_SourceCollectionKey

system-filterRule_SourcePropertyKey

system-filterRule_TargetCollectionKey

system-filterRule_TargetPropertyKey

GDR (defines an attribute group configuration): Define properties of a Group
Description Record (GDR), which, in

system-group_Key
turn defines attribute group

system-group_DisplayName configuration.

GMDR (defines attribute group membership): Define properties of a Group
Membership Description Record

system-group-membership_Key
(GMDR), which in turn defines

system-group-membership_GroupKey attribute group members.

system-group-membership_Position

system-group-membership_PropertyKey

system-navigation_RecordSource Used in the definition of various types
of primordial records.

system-parentPipeline* Define the various schema records for
the Data Enrichment module. The

system-pipeline*
Data Enrichment module is packaged
with the Endeca Server and is used
with Studio.

Listing primordial records

You can list the primordial records with:

• RecordKind filter with the nondata value (see Filtering data and non-data records on page 136)

• listProperties operation of the Configuration Web Service (see Other list attribute methods on page
192)

• PropertyListConfig summarization type (see Obtaining a list of available attributes on page 192)

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 34

Configurable system records
Some system records that store configuration information can be modified by the user.

The next three topics describe how you can configure the following system records, all of which are user-
created except for the GCR:

• Property Description Record (PDR) for a standard attribute. PDRs are used to define the format and
behavior of standard attributes and managed attributes.

• Dimension Description Record (DDR) for a managed attribute. DDRs are used to define managed
attributes and thus, among other characteristics, enable the creation of hierarchical attribute values.

• Global Configuration Record (GCR), used to control various aspects of the global configuration. The
GCR is automatically created when the data domain is created, but it can be changed afterwards by the
user.

In addition, other configurable system record types exist. They are also described in this guide:

• Managed Attribute Value Description Records (MAVDR) for a user-created managed attribute value.
For operations to create managed attribute values, see Operations for Managed Attribute Values on page
56.

• Collection Description Record (CDR) for a collection. For the operations to create and modify
collections, see Collection operations on page 94.

• Filter Rule Description Record (FRDR) for a filter rule. For the operations to create and modify filter
rules, see Filter rule operations on page 112.

• Precedence Rule Description Record (PRDR) for a precedence rule. For the operations to create and
modify precedence rules, see Using Precedence Rules on page 223.

• Entity Description Record (EDR) for an entity. For the operations to create and modify filter rules, see
Working with Entities on page 230.

• Group Description Record (GDR) for the configuration of an attribute group. For the
updateGroupConfigs operation to update the config, see Updating the group configuration on page
216.

• Group Membership Description Record (GMDR) for the membership of an attribute group. For the
operations to create and modify the attribute group membership rules, see Using Attribute Groups on
page 208.

To avoid naming collisions with customer-created records and attributes, the keys for system records use
reserved prefixes, such as mdex-property.

Property Description Record (PDR)

Dimension Description Record (DDR)

Global Configuration Record (GCR)

Updates to schema and configuration

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 35

Property Description Record (PDR)

A Property Description Record (PDR) is a system record that defines a record for a standard attribute in an
Endeca data domain.

About PDRs

The Oracle Endeca Server uses a PDR to store metadata about the standard attribute, and must have a PDR
created in order to build a schema for your data records. In addition, to create a managed attribute, both one
PDR and one DDR are required.

As records, PDRs themselves have required attributes, and can also have arbitrary, user-defined attributes.

For each standard attribute, the attributes in the associated PDR define the attribute's characteristics,
including:

• Name and type

• Display name

• Language

• Configuration parameters. For example, whether an attribute is searchable.

• Navigability settings. For example, whether to show record counts for available refinements, whether to
enable multi-select, and how to sort refinements.

Creating and updating PDRs

When an Endeca data domain acquires a new record, it stores it and constructs a PDR for any attributes that
it finds in the record. Updating a PDR immediately changes the navigation behavior of the Oracle Endeca
Server. To create or change a PDR, you can use the Data Ingest Web Service, or Integrator ETL.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 36

Required schema attributes of a PDR

PDRs have the attributes in the following table. (The word "required" means that if you do not specify them for
the PDR, their default values are used). Only the key is the required attribute when creating a PDR. If you do
not specify other attributes, their default values are used.

Schema attribute Type Description

mdex-property_Key string The key name of the standard attribute.
This attribute is mandatory.

The key name must be an NCName.
The NCName format is defined in the
W3C document Namespaces in XML
1.0 (Second Edition), located at this
URL: http://www.w3.org/TR/REC-xml-
names/#NT-NCName Although hyphens
are valid in an NCName, it is
recommended to use key names
without hyphens. The reason is that if a
hyphenated standard attribute is used in
an EQL statement, it must be enclosed
in quotes.

You can modify the name of the
standard attribute. No restrictions on
these changes exist.

mdex-property_DisplayName string The name of the standard attribute in an
easy-to-understand format. The display
name can use a non-NCName format.

You can modify the display name of an
attribute. No restrictions on these
changes exist.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-NCName

Oracle Endeca Server Concepts 37

Schema attribute Type Description

mdex-property_Type string
The data type of the standard attribute.
The possible values are:

• mdex:boolean

• mdex:dateTime

• mdex:duration

• mdex:double

• mdex:geocode

• mdex:int

• mdex:long

• mdex:string

• mdex:time

The default is mdex:string.

The data type cannot be modified.

mdex-property_Language string The language of the standard attribute
(set as an RFC-3066 language code).

The language ID is either the special
string unknown (the default if not
changed) or (if changed) the RFC-3066
language code set by the Configuration
Web Service's
setPropertyDefaultLanguage
operation.

This schema attribute can be modified,
but changing its value has a
performance cost.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 38

Schema attribute Type Description

mdex-property_IsSingleAssign boolean If set to true (the default), each record
can have at most one value for an
attribute assignment (i.e., the attribute is
single assign).

If set to false, each record may have
more than one value for an attribute
assignment (i.e., the attribute is multi-
assign).

The setting can be modified as follows:

• A single-assign setting can be
changed to a multi-assign setting
only if the PDR is non-unique (i.e.,
mdex-property_IsUnique is set
to false).

• A multi-assign setting can be
changed to a single-assign setting
only if all assignments of this
standard attribute are single assign.
If at least one record has multi-
assignments of this standard
attribute, an attempted change will
fail.

mdex-property_IsUnique boolean If set to true, no two records can have
the same value for the attribute. Note
that a setting of true requires that
mdex-property_IsSingleAssign
must also be set to true.

If set to false (the default), multiple
records can have the same value for
this attribute.

You can change the setting (from true
to false or vice-versa) only if no
assignments for this attribute have been
made (i.e., no record can have an
assignment for this attribute).

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 39

Schema attribute Type Description

mdex-property_IsTextSearchable boolean If set to true, then the standard
attribute is enabled for text search.

If set to false, the standard attribute
does not support text search.

The default is false.

This schema attribute can be changed
only for the standard attributes of type
string.

Making this change on an attribute that
has many assignments on records has
a performance cost due to re-indexing.

mdex- boolean If set to true, then wildcard search is
property_TextSearchAllowsWildcards enabled for this standard attribute.

If set to false, then wildcard search is
not enabled.

If this is set to true, then mdex-
property_IsTextSearchable must
be set to true.

The default is false.

Changing the value for this attribute has
a performance cost. A restriction for
modifying it is that mdex-
property_IsTextSearchable must
also be set to true.

mdex- boolean If set to true, the standard attribute is
property_IsPropertyValueSearchable enabled for value search. Note that only

attributes of type mdex:string can be
enabled for value search.

If set to false, the attribute is not
value-searchable.

The default is true.

This schema attribute can be changed
only for the standard attributes of type
string. Modifying the value for this
schema attribute has a performance
cost.

This schema attribute does not apply for
managed attributes, for which value
search is always enabled and cannot be
disabled.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 40

Schema attribute Type Description

system-navigation_Select string Configures the multi-select feature for a
standard attribute. The values of this
attribute supply defaults for query
parameters, which you can override.
The allowed values are:

• single. Users can select only one
refinement from this attribute.

• multi-and. Users can select
multiple refinements from the
attribute. The returned records must
have assignments from all of the
selected refinements (from A AND
B). Selecting this value only makes
sense for those attributes that are
multi-assign.

• multi-or. Users can select
multiple refinements from this
attribute. The returned records must
have assignments from at least one
of the selected refinements (from A
OR B).

The default is single.

No restrictions on modifying the values
for this schema attribute exist.

system-navigation_Sorting string The order in which to display
refinements in the navigation menu. The
allowed values are:

• lexical sorts refinements
alphabetically or by number.

• record-count sorts refinements
in descending order, by the number
of records available for each
refinement.

The default is record-count.

No restrictions on modifying the values
for this schema attribute exist.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 41

Schema attribute Type Description

system-navigation_ShowRecordCounts boolean Whether to show record counts for a
refinement.

If set to true, the record counts are
shown.

If set to false, the record counts are
not shown.

The default is true.

No restrictions on modifying the values
for this schema attribute exist.

User-defined schema attributes of a PDR

You can add assignments on other, user-defined attributes to PDRs to display various aspects of how your
data records are organized. Note that the names of these attributes must not begin with mdex, or system.

Dimension Description Record (DDR)

A Dimension Description Record (DDR), together with a PDR, defines a managed attribute.

About DDRs

The Dimension Description Record has the same name as the associated standard attribute. It is used to
enable the creation of hierarchical standard attribute values and managed attribute values, to provide a list of
predefined allowed values, and also as a placeholder for metadata on the attribute values.

Required schema attributes of a DDR

A Dimension Description Record has the following required schema attributes. (The word "required" means
that if you do not specify them for the DDR, their default values are used).

Schema attributes Type Description

mdex-dimension_Key string The primary key (spec) of the
managed attribute. It cannot be
modified. This attribute is
mandatory and must be user-
specified.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 42

Schema attributes Type Description

mdex-dimension_EnableRefinements boolean If set to true, then refinements
are displayed.

If set to false, refinements are
not displayed. In other words,
the managed attribute is hidden.

The default is true.

You can modify whether to
enable the display of
refinements on managed
attributes. No restrictions on this
change exist.

mdex-dimension-value_Spec string The primary key (spec) of the
managed attribute value.

It cannot be modified.

If, when adding a managed
attribute, you do not specify this
attribute for the DDR, the
default value is used, in this
format: mdex-
dimension_<key>_Spec,
where <key> is the key of the
attribute you are adding.

mdex-dimension-value_Parent string The key of the parent managed
attribute value.

It cannot be modified.

If, when adding a dimension,
you do not specify this attribute
for the DDR, the default value is
used, in this format: mdex-
dimension_<key>_Parent,
where <key> is the key of the
attribute you are adding.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 43

Schema attributes Type Description

mdex- boolean If set to true, then during value
dimension_IsDimensionSearchHierarchical searches, the search matches

both the assigned values and
the ancestors of those values.

If set to false, then the search
matches only the assigned
values.

The default is false.

The hierarchy setting for
attribute search can be modified
only before loading records.

mdex- boolean If set to true, then during
dimension_IsRecordSearchHierarchical record searches, the search

matches records with both the
assigned values and the
ancestors of those values.

If set to false, then the search
only matches records with the
assigned values.

The default is false.

The hierarchy setting for record
search can be modified only
before loading records.

User-defined schema attributes of a DDR

You can add assignments on other, user-defined attributes to DDRs to display various aspects of how your
data records are organized. Note that the names of these attributes must not begin with mdex, or system.

Global Configuration Record (GCR)

The Global Configuration Record (GCR) is a single record used to identify and store global configuration
information for a specific Endeca data domain.

Definition

The Global Configuration Record is created automatically in the Endeca data domain, and can be modified if
needed. This information persists if you restart that data domain.

During record updates, the Dgraph validation process validates the configuration of the Global Configuration
Record, and returns errors if its requirements are not met. The requirements are as follows:

• The mdex-config_Key attribute must be unique and single-assign. The value must be global.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 44

• The Global Configuration Record must contain valid allowable values for all of its attributes. None of its
attributes can be omitted.

• The Global Configuration Record cannot have any arbitrary, user-defined attributes.

The Global Configuration Record controls the following areas of the Endeca data domain configuration:

Area of global configuration What you can do...

Wildcard search enablement Specify whether wildcard search should be enabled or disabled for value
search in the Endeca data domain. By default, it is disabled.

Search characters List which characters you want to identify as search characters for
queries.

Merge policy Optionally, change the policy that the Endeca data domain uses in the
background to merge its generations of data files. The default policy –
balanced – is recommended, and is optimized for best performance.

Spelling correction settings Control which words are eligible for the spelling dictionary by specifying
the following parameters:

• Minimum word occurrence

• Minimum word length

• Maximum word length

Note: If you change the spelling settings in the Global
Configuration Record, you must run the
updateSpellingDictionaries operation of the Data Ingest Web
Service in order for them to take effect.

Modifying the settings in the Global Configuration Record

To change the Global Configuration Record settings, use the Configuration Web Service's
putGlobalConfigRecord operation or one of the data ingest interfaces (such as the Data Ingest Web
Service).

Required attributes of the GCR

The Global Configuration Record has required attributes, but it cannot have arbitrary, user-defined attributes.
The required attributes are:

Attribute Type Description

mdex-config_Key String The only value for this attribute is
global.

This attribute is unique and
single-assign. It cannot be
modified.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 45

Attribute Type Description

mdex-config_EnableValueSearchWildcard Boolean If set to true, then wildcard
search is enabled for value
search.

If set to false, then wildcard
search is disabled.

The default value is false.

While you can change these
values without restrictions,
changing them has a
performance cost.

mdex-config_MergePolicy String The allowed values are
balanced or aggressive.

The default is balanced.

The value for this attribute can be
modified if needed.

mdex-config_SearchChars String The characters to use as search
characters in the Oracle Endeca
Server.

The allowed values are strings
that are listed sequentially and
are not separated by commas or
spaces.

Each string is a search character.

While you can values for this
attribute without restrictions,
changing them has a
performance cost.

mdex-config_SystemRecordVersion String The version of the system
records in the Oracle Endeca
Server.

This attribute is used by the
Oracle Endeca Server and
should not be modified.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 46

Attribute Type Description

mdex-config_SpellingRecordMinWordOccur Int The minimum number of times a
word must occur in a standard
attribute value (record
assignment on a standard
attribute, in a key value pair) for it
to affect the configuration for
spelling correction.

The default value is 4.

You can modify various spelling
settings. The values for spelling
must not be negative.

mdex-config_SpellingRecordMinWordLength Int The minimum number of
characters that a word can
contain in a standard attribute
value for it to affect the
configuration for spelling
correction.

The default value is 3.

You can modify various spelling
settings. The values for spelling
must not be negative.

mdex-config_SpellingRecordMaxWordLength Int The maximum number of
characters that a word can
contain in a standard attribute
value for it to affect the spelling
correction.

The default value is 16.

You can modify various spelling
settings. The values for spelling
must not be negative.

mdex-config_SpellingDValMinWordOccur Int The minimum number of times a
word must occur in a managed
attribute value for it to affect the
spelling correction.

The default value is 1.

You can modify various spelling
settings. The values for spelling
must not be negative.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 47

Attribute Type Description

mdex-config_SpellingDValMinWordLength Int The minimum number of
characters that a word must
contain in a managed attribute
value for it to affect the spelling
correction.

The default value is 3.

You can modify various spelling
settings. The values for spelling
must not be negative.

mdex-config_SpellingDValMaxWordLength Int The maximum number of
characters that a word may
contain in a managed attribute
value for it to affect the spelling
correction.

The default value is 16.

You can modify various spelling
settings. The values for spelling
must not be negative.

Updates to schema and configuration

Some parts of your existing data domain's schema and configuration can be updated on a running data
domain without performance impact, while other modifications may have performance implications.
Additionally, a few aspects of your data domain's configuration and schema can only be modified before the
data records are loaded, or cannot be modified at all. This topic addresses these categories, to help you make
decisions about loading data and configuring your data domains.

This topic does not provide an exhaustive list of which properties on system records (or other aspects of
configuration) can be modified and under which conditions. Instead, it explains the basic principles that help
answer the following questions:

• When are updates on a running data domain supported? Are there any restrictions, such as, are
modifications allowed only before data records are loaded?

• What is the impact (including performance impact) of an update and when is it reflected in the index? For
example, does this modification cause delays in obtaining query results while the Endeca Server is re-
indexing the data domain?

To answer these questions, it helps to understand how the Endeca Server maintains the knowledge of your
data domain's records configuration. The following aspects control the various characteristics of your records
loaded into the Endeca Server:

• Index. Once you load source records into the Endeca Server, it creates an internal index. At the initial
indexing time, the source records utilize primordial records and system records. Together, these records
form the schema for the loaded source records — each primordial record serves as the basis for a system
record, and each attribute in a system record represents a particular configuration setting. Thus, once the

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 48

index is created based on source records, it already contains inside it settings that control various aspects
of these records.

Changing the items that affect the schema causes the Endeca Server to re-index its records. Examples of
modifications that cause records re-indexing include modifying which attributes in your records are
searchable, modifying the language value, and making changes to search characters. If these settings are
changed, the Endeca Server must recreate the index for the data domain.

• Additional configuration settings. Certain aspects of configuration do not affect the index, but may have
an impact on how a query is processed, such as whether a record's attribute returned in the results has a
display name (in addition to its internal value). Changes that fall into this category do not cause re-
indexing and thus do not have performance costs. These changes affect subsequent queries — these are
queries processed after the change was submitted to the Endeca Server.

1. Changes that have performance costs.

This table includes some examples of items whose modifications have performance costs associated with
a partial or complete re-indexing of loaded records:

Item Comments and restrictions on modifying (if
exist)

mdex-property_IsTextSearchable Specifies whether values from this attribute are
searchable. No restrictions on these changes exist,
except that they are only allowed for attributes of
type string. Making such a change on an
attribute that has many assignments on records
has a performance cost due to re-indexing.

mdex- Affects whether wildcards are allowed in text
property_TextSearchAllowsWildcards search on attributes. Has a performance cost. A

restriction for modifying this setting is that mdex-
property_IsTextSearchable must also be set
to true.

mdex- Affects value search on standard attributes. Has a
property_IsPropertyValueSearchable performance cost. Changing the value for this

attribute is only allowed on attributes of type string.

mdex-property_Language Specifies the language ID on an attribute. Has a
performance cost. Changes are only allowed for
supported language codes (see Supported
languages on page 152). No other restrictions on
these changes exist.

mdex-config_EnableValueSearchWildcard This setting is part of the Global Configuration
Record. It affects whether wildcards are allowed on
value search. Has a performance cost. No
restrictions on these changes exist.

Specifies search characters. Has a performance
mdex-config_SearchChars

cost. No restrictions on these changes exist.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 49

2. Changes that have no performance costs.

Examples of modifications that do not have performance costs include:

Item Restrictions on modifying (if exist)

You can modify how the records are sorted,
system-navigation_Sorting

or whether record counts are displayed, or
system-navigation_ShowRecordCounts how refinements can be selected (one, or

many). No restrictions on these changes
system-navigation_Select

exist.

You can modify the display name of an
mdex-property_DisplayName

attribute or the name of the standard
mdex-property_Key attribute. No restrictions on these changes

exist.

mdex-dimension_EnableRefinements You can modify whether to enable the
display of refinements on managed
attributes. No restrictions on this change
exist.

mdex-config_Spelling* You can modify various spelling settings.
The values for spelling must not be
negative. For the changes to take effect,
you must run the
updateSpellingDictionaries
operation to update the spelling
dictionaries.

mdex-precedenceRule_* You can modify various precedence rules
settings. No restrictions on these changes
exist.

You can modify the display name and the
mdex-dimension-value_Name

ranking of the managed attribute value
mdex-dimension-value_Rank records. No restrictions on these changes

exist. (Note, for managed attribute value
records, these are the only two items that
you can modify. All other characteristics of
the managed attribute value records —
their spec and their parent managed
attribute value, as well as the associated
managed attribute, and their synonyms —
cannot be modified at all. Instead, you need
to delete and add a new set of managed
attribute values.)

3. Exceptions. A few exceptions exist to the first two categories. These are various aspects of the schema
or configuration that for various reasons can either be modified only before assignments on the system

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 50

records exist, cannot be changed at all, or cannot be deleted once they are added. These exceptions
include the following (this list is not guaranteed to be exhaustive):

Item Restrictions on modifying (if exist)

The hierarchy setting for record search
mdex-dimension_IsDimensionSearchHierarchical

and attribute search can be modified
mdex-dimension_IsRecordSearchHierarchical only before loading records.

These items, which together define the
mdex-dimension-value_Spec and mdex-dimension-

characteristics of the managed attribute
value_Parent , which belong to the DDR of the associated

value records, cannot be modified once
managed attribute.

they are added. If you delete the
mdex-dimension-value_Dimension and mdex- associated managed attribute, you can
dimension-value_Synonyms , which belong to the delete them too.
MAVDR (Managed Attribute Value Description Record).

mdex-property_IsUnique Affects whether an assignment on this
attribute is unique across the entire
corpus. You can change the setting
(from true to false or vice-versa) only
if no assignments for this attribute have
been made (i.e., no record can have an
assignment for this attribute). Note that
a unique attribute must also be single-
assign (i.e, if you set it to true, mdex-
property_IsSingleAssign must
also be set to true).

mdex-property_IsSingleAssign Sets a standard attribute to be either
single-assign (only one assignment from
the attribute can be made on a record)
or multi-assign (multiple assignments
can be made on a record).

The setting can be modified as follows:

• A single-assign setting can be
changed to a multi-assign setting
only if the PDR is non-unique (i.e.,
mdex-property_IsUnique is set
to false).

• A multi-assign setting can be
changed to a single-assign setting
only if all assignments of this
standard attribute are single assign.
If at least one record has multi-
assignments of this standard
attribute, an attempted change will
fail.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Oracle Endeca Server Concepts 51

Item Restrictions on modifying (if exist)

These items, which include the data
mdex-config_SystemRecordVersion

type of attributes, can never be
mdex-property_Type modified.

mdex-dimension_Key

mdex-config_Key

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Part II

Web Services for the Endeca Server

Chapter 3

Configuration Web Service Interface

This section describes the operations of the Configuration Web Service.

About the Configuration Web Service

Configuration Web Service operations

Loading an attribute schema

Loading configuration documents

Performance impact of schema and configuration changes

Using the Configuration Web Service in Integrator ETL

About the Configuration Web Service
The Configuration Web Service lets you create and change the records schema and configuration, for the data
domain.

Accessing the web service

The service is declared in its WSDL document. You can access the WSDL at this URL:

<host>:<port>/endeca-server/ws/config/<dataDomain>?wsdl

Version 7.6.1 • December 2013

where the host and port represent the Oracle Endeca Server, and the dataDomain is the name of the data
domain created on the server.

Operation description
A request to the Configuration Web Service consists of a configTransaction element, which contains a
series of operations that read the configuration and schema and also update it. Operations can be combined
arbitrarily in a single service request; each of the operations can appear at most once. The operations perform
actions on PDRs (Property Description Records), DDRs (Dimension Description Records), groups, the GCR
(Global Configuration Record), and on XML configuration documents.

The effect of a Configuration Web Service request that contains put operations is to add attributes, XML
configuration documents, or the Global Configuration Record to the specified Endeca data domain:

• If a record with the specified key already exists in the data domain, it is replaced.

• If a record does not exist, it is created.

Oracle® Endeca Server: Developer's Guide

Configuration Web Service Interface 54

Request

The input to the Configuration Web Service depends on the operation used. It can include attribute schema
records (PDRs and DDRs), Global Configuration Record, groups, and a set of XML configuration documents.

Any request to the Configuration Web Service can contain an optional element OuterTransactionId that
specifies the ID of an outer transaction (if it has been started by the Transaction Web Service). The following
statements describe the interaction of configuration requests with outer transactions:

• If an outer transaction has been started by the Transaction Web Service, the configuration request may be
run against either the latest version of the data files inside the transaction, or against the pre-transaction
version of the data files:

• To run a configuration request against the latest version, the OuterTransactionId element in your
request must specify the ID issued by the Transaction Web Service when the transaction was started.
This element must be the first element specified in your request.

• To run against the published version (it could be the version published prior to the outer transaction,
or the version published after the outer transaction has been committed or rolled back), the
OuterTransactionId element must be empty or omitted.

It is incorrect to specify an outer transaction ID when an outer transaction is not in progress. All configuration
requests with incorrectly specified outer transaction IDs fail with a SOAP fault.

Response

Not all operations in the Configuration Web Service return data.

If the operation returns data, the response to the Configuration Web Service is a results element, within which
each of the submitted operations produces an element showing its own results.

If any operation does not succeed, the whole Web service transaction returns a SOAP fault and none of the
operations are applied. An operation may not succeed if an outer transaction has been started by a
Transaction Web Service, but an incorrect ID has been specified within a request sent to the Configuration
Web Service.

Example

The following example of a Configuration Web Service request is used to retrieve a list of attribute groups:

<config:configTransaction>
xmlns:config="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:mdex="http://www.endeca.com/MDEX/config/XQuery/2009/09">

<config:listGroups/>
</config:configTransaction>

Version 7.6.1 • December 2013

Configuration Web Service operations
This topic lists the operations available in the Configuration Web Service.

A request to the Configuration Web Service consists of a configTransaction element.

Oracle® Endeca Server: Developer's Guide

Configuration Web Service Interface 55

Operations for PDRs

The operations on Property Description Records (PDRs) are the following:

Operation Description

exportProperties Return all Property Description Records (PDRs) for the specified
Endeca data domain.

listProperties Return the key of the PDRs for the standard attributes present in the
schema of the Endeca data domain.

getProperties Return PDRs for the specified attribute keys. Attribute keys are
obtained from listProperties.

putProperties Add the PDRs (specified as an argument) to the schema of the
Endeca data domain. If an attribute with the same key exists, it is
replaced.

updateProperties Lets you add or modify specified assignments on the PDR.

As an argument, specify an attribute key associated with an existing
PDR and zero or more assignments.

The operation replaces the assignment on the PDR with a new
assignment if it is provided as an argument.

There is no requirement to specify the entire PDR to this operation;
there is a requirement to specify the standard attribute key.

Note: If you update an assignment on the PDR in a data set
with a large number of existing records, this operation can
increase the processing time and affects performance.

setPropertyDefaultLanguage Sets the default language for new standard attributes (PDRs) that
are created automatically by the Data Ingest Web Service (DIWS) or
the Bulk Load Interface. The default language is also used if the
mdex-property_Language property is not explicitly set during the
creation of a PDR by DIWS or the Bulk Load Interface. (Note that
PDRs created by the Configuration Web Service's putProperties
and import operations must be fully and explicitly specified.)

The default language is specified with one of the language IDs listed
in Supported languages on page 152. If a language ID is not
specified, then the default PDR language will be set to unknown.

getPropertyDefaultLanguage Returns the default language ID that is used for PDRs. The
language ID will be either unknown (the default) or the language ID
that was set by a previous setPropertyDefaultLanguage
operation.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Configuration Web Service Interface 56

Operations for DDRs

The operations on Dimension Description Records (DDRs) for managed attributes are the following:

Operation Description

exportDimensions Return all Dimension Description Records.

listDimensions Return the key of each managed attribute present in an Oracle Endeca
Server data domain.

getDimensions Return DDRs for specified managed attribute keys. Managed attribute
keys are obtained from listDimensions.

putDimensions Add the DDRs (specified as arguments) to an Oracle Endeca Server
data domain. If a managed attribute with the same key exists, it is
replaced.

updateDimensions Lets you add or modify one or more specified assignments (managed
attributes) on the DDR.

As an argument, specify a managed attribute key associated with an
existing DDR and zero or more assignments.

The operation replaces the assignment on the DDR with a new
assignment if it is provided as an argument.

There is no requirement to specify the entire DDR to this operation;
there is a requirement to specify the managed attribute key.

Note: If you update an assignment on the DDR in a data set
with a large number of existing records, this operation can
increase the processing time and affects performance.

Operations for Managed Attribute Values

The operations on managed attribute values are the following:

Operation Description

listManagedAttributeValues If a managed attribute is specified, return a
managedAttributeValues element containing all managed attribute
values for the specified managed attribute, including each managed
attribute record's spec, parent managed attribute value, associated
managed attribute, and, if specified, the name, rank and synonyms.
The values are ordered by managed attribute.

If no managed attribute is specified, return all managed attribute
values present in the index of the Endeca data domain.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Configuration Web Service Interface 57

Operation Description

putManagedAttributeValues Add or update managed attribute values. If a managed attribute value
already exists with the given spec for the given managed attribute, it is
updated. Otherwise, a new managed attribute value record is added.
For the root managed attribute value, specify "/" as the parent spec.

Operations for Attribute Groups

The operations on attribute groups are the following:

Operation Description

importGroups Remove any existing groups and add the groups with specified attributes.

exportGroups Return the full representation of each group.

listGroups Return a summary of each group.

getGroups Return the specified groups.

This operation returns groups in the order in which you specify the keys for
each group. This operation creates a summary of each existing group
which includes the group key, the display name (if it exists), and the
cardinality of the group.

This operation returns attributes for all user-specified groups and attributes
that do not belong to any user-specified groups. To request all attributes
that do not belong to any user-specified groups, specify the key system-
navigation_InternalGroup.

putGroups Add or replace each of the specified groups.

deleteGroups Delete each of the specified groups.

updateGroupConfigs Lets you add or modify specified assignments on the group description
record. As an argument, specify a system-group_Key indicating which
group to update, and zero or more assignments in the group description
record. The operation replaces the assignment on the group description
record with a new assignment if it is provided as an argument.

There is no requirement to specify the entire group description record to
this operation; there is a requirement to specify the system-group_Key
associated with the group.

For examples of Configuration Web Service requests for groups and for information on how to retrieve group
configuration information with the Conversation Web Service, see Working with attribute groups using the API
on page 210.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Configuration Web Service Interface 58

Operations for Global Configuration Record

The operations for Global Configuration Record are the following:

Operation Description

getGlobalConfigRecord Obtain the Global Configuration Record from the data domain.

putGlobalConfigRecord Replace the Global Configuration Record in the data domain.

Operations for Dgraph configuration documents

The operations for managing the Dgraph configuration documents are the following:

Operation Description

listConfigDocuments Return the names of the Dgraph process configuration documents.

getConfigDocuments Return the requested Dgraph process configuration documents.

putConfigDocuments Add or replace each of the specified Dgraph process configuration
documents.

Operations for precedence rules

The operations for managing precedence rule records are the following:

Operation Description

listPrecedenceRules Return the names of the precedence rules configured for the
data domain.

putPrecedenceRules Add or replace each of the specified precedence rules.

deletePrecedenceRules Take a list of precedence rule keys and completely delete each
rule.

exportPrecedenceRules Return the full representation of each precedence rule.

importPrecedenceRules Remove any existing precedence rules and add the specified
ones.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Configuration Web Service Interface 59

Global operations

The Configuration Web Service has the following global operations:

Operation Description

export Export all attributes, groups, configuration documents, and the Global
Configuration Record.

import Import all attributes, groups, configuration documents, and the Global
Configuration Record.

Loading an attribute schema
You can use the Configuration Web Service to load the schema (PDRs and DDRs) for your standard and
managed attributes.

It is recommended to load your attribute schema before loading your source records, so that you can modify
the resulting PDRs and DDRs as needed, without causing the Dgraph process to reindex the data set. After
the PDRs and DDRs have been configured as desired, you can then use the Data Ingest Web Service to load
your source records.

• The putProperties element loads records that describe characteristics of standard attributes (these
records are known as PDRs).

• The putDimensions element loads records that describe characteristics of managed attributes (these
records are known as PDRs and DDRs).

To illustrate the use of this operation, consider this configTransaction simple example from the
Configuration Web Service:

<config-service:configTransaction
xmlns:config="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:mdex="http://www.endeca.com/MDEX/config/XQuery/2009/09">

<config-service:putProperties>
<mdex:record>

<mdex-property_Key>ProductID</mdex-property_Key>
<mdex-property_DisplayName>Product ID</mdex-property_DisplayName>
<mdex-property_IsSingleAssign>true</mdex-property_IsSingleAssign>
<mdex-property_IsUnique>true</mdex-property_IsUnique>
<mdex-property_IsTextSearchable>false</mdex-property_IsTextSearchable>
<mdex-property_TextSearchAllowsWildcards>false</mdex-property_TextSearchAllowsWildcards>
<mdex-property_IsPropertyValueSearchable>false</mdex-property_IsPropertyValueSearchable>
<mdex-property_Type>mdex:int</mdex-property_Type>
<mdex-property_Language>en</mdex-property_Language>

</mdex:record>
<mdex:record>

<mdex-property_Key>BikeType</mdex-property_Key>
<mdex-property_DisplayName>Bike Type</mdex-property_DisplayName>
<mdex-property_IsSingleAssign>true</mdex-property_IsSingleAssign>
<mdex-property_IsTextSearchable>true</mdex-property_IsTextSearchable>
<mdex-property_IsUnique>false</mdex-property_IsUnique>
<mdex-property_TextSearchAllowsWildcards>true</mdex-property_TextSearchAllowsWildcards>
<mdex-property_IsPropertyValueSearchable>true</mdex-property_IsPropertyValueSearchable>
<mdex-property_Type>mdex:string</mdex-property_Type>
<mdex-property_Language>en</mdex-property_Language>

</mdex:record>
</config-service:putProperties>

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Configuration Web Service Interface 60

<config-service:putDimensions>
<mdex:record>

<mdex-dimension_Key>BikeType</mdex-dimension_Key>
<mdex-dimension_EnableRefinements>true</mdex-dimension_EnableRefinements>
<mdex-dimension_IsDimensionSearchHierarchical>true<

/mdex-dimension_IsDimensionSearchHierarchical>
<mdex-dimension_IsRecordSearchHierarchical>true</mdex-dimension_IsRecordSearchHierarchical>

</mdex:record>
</config-service:putDimensions>

</config-service:configTransaction>

Version 7.6.1 • December 2013

First, the example uses putProperties to create two standard attributes (ProductID and BikeType). The
ProductID attribute is configured as a single-assign, unique attribute, so that it can be used as a primary key
for records. The BikeType attribute is the standard attribute record used for the creation of the BikeType
managed attribute. Next, this example uses putDimensions to create the BikeType managed attribute.

To load an attribute schema into the Endeca data domain:

1. Make sure that the Oracle Endeca Server and the data domain are running. Access the Configuration
Web Service for the data domain: http://localhost:<port>/ws/config/dataDomain?wsdl.

2. Make a SOAP request to the Configuration Web Service as shown above.

If the request is successful, the response will look like this example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<config-types:results xmlns:config-types="http://www.endeca.com/MDEX/config/services/types/3/0"/>

</soapenv:Body>
</soapenv:Envelope>

Loading configuration documents
You can use the Configuration Web Service to load the XML configuration documents to the data domain's
configuration.

If you load your configuration documents before loading your source records, you can modify them as needed.
After they have been configured as desired, you can then use the Data Ingest Web Service to load your
source records.

You can load the following configuration documents:

• dimsearch_config

• recsearch_config

• relrank_strategies

• stop_words

• thesaurus

For more information on the syntax of these documents, see the section Dgraph Configuration Reference on
page 333.

Oracle® Endeca Server: Developer's Guide

Configuration Web Service Interface 61

The operations for managing the XML configuration documents are the following:

Operation Description

listConfigDocuments Return the names of the Dgraph process configuration documents.

getConfigDocuments Return the requested Dgraph process configuration documents.

putConfigDocuments Add or replace each of the specified Dgraph process configuration
documents.

The following example illustrates the use of the putConfigDocuments operation to load the
RECSEARCH_CONFIG configuration document. The RECSEARCH_CONFIG document creates one search
interface (named All) that consists of the ProductType, Region, and Description attributes:

<soap:Envelope>
<soap:Body>
<config:configTransaction>
<config:putConfigDocuments>

<mdex:configDocument name="recsearch_config">
<RECSEARCH_CONFIG>
<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="ALWAYS" NAME="All">
<MEMBER_NAME RELEVANCE_RANK="3">ProductType</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="2">Region</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>

</SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

</mdex:configDocument>
</config:putConfigDocuments>

</config:configTransaction>
</soap:Body>
</soap:Envelope>

Version 7.6.1 • December 2013

To load the XML configuration documents into the data domain of the Oracle Endeca Server:

1. Make sure that the Oracle Endeca Server and the data domain are running. Access the Configuration
Web Service for the data domain as in this example:
http://<host>:<port>/ws/config/<DataDomain>?wsdl.

2. Make a SOAP request to the Configuration Web Service as shown above.

If the request is successful, the response contains a SOAP success message, similar to the following:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<config-types:results xmlns:config-types="http://www.endeca.com/MDEX/config/services/types/3/0"/>

</soapenv:Body>
</soapenv:Envelope>

Performance impact of schema and configuration changes
Changes to the schema and configuration can be made on an empty index (before data is loaded), or after the
records have already been loaded into the Dgraph. Even though it is possible to change the schema for your
records after the records have been loaded, such a change is associated with performance impact.

You can use the updateProperties or updateDimensions operations of the Configuration Web Service
to update the PDRs and DDRs (the records schema) after the records have already been added to the Dgraph

Oracle® Endeca Server: Developer's Guide

Configuration Web Service Interface 62

process index. However, changes to the schema on an existing index are not recommended for performance
reasons, since such changes cause the Dgraph to reindex the data set, which is associated with an increase
in CPU and memory usage.

Note also that not all changes to the PDRs and DDRs can be done on an existing data domain containing
records.

In addition, changes to the configuration, such as to the settings of the GCR, while they can be done on a
running data domain that contains records, are also associated with performance impact in cases when the
data domain contains a large number of records.

Using the Configuration Web Service in Integrator ETL
The Configuration Web Service lets you perform operations with the schema and configuration documents. All
of these operations are supported in Integrator ETL, which uses the Configuration Web Service requests.

You can load record-based configuration files using either one of its connectors, or the WebServiceClient
component. For example, you can use a dedicated component of Integrator ETL to load schema records, or
records representing precedence rules. You can also use the WebServiceClient component of Integrator ETL
to load the Global Configuration Record and configuration documents.

For more information on Integrator ETL, see the Oracle Endeca Information Discovery Integrator ETL User's
Guide.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 4

Conversation Web Service Interface

This section describes the role and operations of the Conversation Web Service.

About the Conversation Web Service

Conversation Web Service operations

Pinning data versions

About the Conversation Web Service
The Conversation Web Service provides the primary means of querying data in the Oracle Endeca Server.

Overview

This Web service interface can be used by any front-end application powered by the Oracle Endeca Server.
The interface is used by Studio to send queries (such as navigation or search queries) to the Oracle Endeca
Server. You can also use it on its own. It is a WS-I compliant SOAP/HTTP Web service that also supports the
wrapped-document/literal pattern of binding.

The service supports fundamental Oracle Endeca Server behavior, such as:

• Guided navigation

• Record search

• Value search

• Communication between the front-end application client and the Oracle Endeca Server

• A range of summarizations

The Conversation Web Service is declared in conversation.wsdl, and uses several library helper
modules.

To view the WSDL document for the Conversation Web Service, issue the following command:

http://host:<port>/endeca-server/ws/conversation/dataDomain?wsdl

Version 7.6.1 • December 2013

where host and port represent the machine on which an instance of the Oracle Endeca Server is running,
and dataDomain is the name of the Endeca data domain.

The service's version is listed in one of its namespaces included in the WSDL, as shown in the following
example (the version in this example may not match the version of the service you have installed):

xmlns:cs_v3_0="http://www.endeca.com/MDEX/conversation/3/0"

In this example, 3 is the major version; 0 is the minor version. If more than one minor version is supported, it
is listed in its own namespace in the WSDL.

Oracle® Endeca Server: Developer's Guide

Conversation Web Service Interface 64

For reference information on the Conversation Web Service operations and for schema elements, see the
Oracle Endeca Server API References.

Conversation Web Service operations
The Conversation Web Service interface provides operations that query the Oracle Endeca Server.

Operation description

At a high level, the Conversation Web Service facilitates a dialog with users about data. A typical request
consists of the filter state and one of the content element configurations. Here is an abbreviated example:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
..
<State>
...
</State>
<RecordListConfig>
...
</RecordCountConfig>

</Request>

Version 7.6.1 • December 2013

• The state is represented by a State element in the request. It describes the records to be selected by the
request. The state may be empty or may contain components that change the filter state or reconfigure
content elements, typically as a result of user actions. A request must contain at least one state. If the
request contains multiple states, then each state must have a name.

• A summarization information about the records, included in one of the elements that are types of the
ContentElementConfig element from the Conversation Web Service. Note that in any request, the
ContentElementConfig base type itself is not included. Instead, its sub-type is included, such as
RecordListConfig type in the example. From now on, the Endeca Server documentation refers to
ContentElementConfig as "content element config". Any content element config provides
summarization information about the records or other information specified in the state. The request may
contain multiple ContentElementConfig elements.

The Conversation Web Service, unlike other Web services of the Endeca Server, implies that you create a
series of related requests, thus creating a "dialog" with your data. The sequence of actions in the
Conversation Web Service dialog is as follows:

1. A user issues a query using the front-end application.

In the Conversation Web Service, the request is reflected in the Request complex type (in the WSDL, all
complex types are listed as ComplexType).

This query is used to construct an initial filter state (which may be empty or may contain one or more
filters, as well as a collection name), and one or more content element configs. These filter state and
content element configurations are sent in a Conversation Web Service request.

2. The response to this initial request returns a Results type, which contains the original state and the
records (or other information) in one or more content element config elements.

3. When the user chooses a particular action, the front-end application submits a new request through the
Conversation Web Service. Typically, this subsequent request is constructed from the results returned by
the previous invocation of the Conversation Web Service request. Specifically, the request sends in the
state returned by the previous response and any new filters or content element configs that correspond to
the user actions.

Oracle® Endeca Server: Developer's Guide

Conversation Web Service Interface 65

4. The response returns a transformed query along with new state and the new content element configs.

Note that during this conversation, the user may request a completely different type of action, which will then
require a new and different request.

Request
The Request operation is a complex type with the following schema:

<complexType name="Request">
<sequence>
<element minOccurs="0" name="OuterTransactionId" type="cs_v2_0:NonEmptyString" />
<element default="en" minOccurs="0" name="Language" type="cs_v2_0:NonEmptyString" />
<element maxOccurs="unbounded" minOccurs="0" name="State" type="cs_v2_0:State" />
<group maxOccurs="unbounded" minOccurs="0" ref="cs_v2_0:ContentElementConfig" />
<element minOccurs="0" name="PinDataVersion" type="cs_v2_0:NonEmptyString" />
<element minOccurs="0" name="DataVersionRequested" type="cs_v2_0:NonEmptyString" />

</sequence>
</complexType>

Version 7.6.1 • December 2013

Each request may specify:

Element Description

OuterTransactionId Optional. If used, must be the first element in the request. It must be
specified only if the request runs within an outer transaction. For details
on outer transactions, see Transaction Web Service Interface on page
78.

Language Optional. Specifies a language code for error messages generated
during parsing of EQL statements. For details on this element and its
supported language codes, see Language codes for EQL error
messages on page 127.

State Required. Contains inputs that affect the set of records to operate on.
For example, a state may contain record filters (such as a record search
filter, a selected refinement filter, and EQL record filters) and the name
of a collection to search. A request can have multiple states (in which
case, each state must be named). An unnamed state can exist only if it
is the only state in the request.

Oracle® Endeca Server: Developer's Guide

Conversation Web Service Interface 66

Element Description

ContentElementConfig Optional. Represents summarization configuration information relative
to the records returned from a specific state. Different types of
ContentElementConfig exist. Types can describe, for example, a
summarization of a filter state or the data therein, such as a set of
breadcrumbs, a navigation menu, or the data for a grid or chart. The
types are:

• AttributeGroupConfig

• AvailableSearchKeysConfig

• BreadcrumbConfig

• EQLConfig

• NavigationMenuConfig

• PropertyListConfig

• RecordCountConfig

• RecordDetailsConfig

• RecordListConfig

• SearchAdjustmentsConfig

• ValueSearchConfig

PinDataVersion Optional. Specifies a timeout value during which the Endeca Server
should hold on to the current data version. This data version becomes
pinned and is maintained in memory for the duration of the timeout. The
timeout value specified with this element must fall within minimum and
maximum values listed in the EndecaServer.properties file. The
pinned version number is returned in the X-Endeca-Served-Data-
Version header of the response to a request that uses
PinDataVersion.

DataVersionRequested Optional. Specifies the number of the pinned version. The request that
includes DataVersionRequested must be issued within the timeout
period specified when the version was pinned. This resets the timeout.
If the request is issued after this timeout period, the pinned version may
have expired.

Response
The Request operation outputs a Results response, which includes the State and, optionally, one or more
of the ContentElement types that resulted from the request's ContentElement (for example, a
RecordList is returned from a RecordListConfig).

Each response from the Conversation Web Service includes in its header two version numbers — the served
version number and the latest version number:

X-Endeca-Served-Data-Version
X-Endeca-Data-Version

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Conversation Web Service Interface 67

The X-Endeca-Served-Data-Version also represents the number of the pinned data version (if you pin
it).

Error example
On failure, the SOAP fault is thrown. Its faultstring element contains information about the request that
caused the error, and the detail element includes pointers to the location of errors in the request.

State elements

Content element config summarizations

State elements
The State type contains inputs that determine the set of records to operate on.

Every request must contain at least one state, each one defining a navigation state for associated
ContentElementConfigs.

The format of the State type is:

<State>
<Name>?</Name>
<CollectionName>?</CollectionName>
<SelectedRefinementFilter Name="?" Spec="?" Id="?">

<Source FilterId="?">
<StateName>?</StateName>

</Source>
</SelectedRefinementFilter>
<TextSearchFilter Key="?" RelevanceRankingStrategy="?" Mode="?"

EnableSnippeting="?" SnippetLength="?" Language="?">?</TextSearchFilter>
<RecordKind>?</RecordKind>
<DataSourceFilter Id="?">

<filterAST>
<typ:filter/>

</filterAST>
<filterString>?</filterString>
<Source FilterId="?">

<StateName>?</StateName>
</Source>

</DataSourceFilter>
<SelectionFilter Id="?">

<filterAST>
<typ:filter/>

</filterAST>
<filterString>?</filterString>
<Source FilterId="?">

<StateName>?</StateName>
</Source>

</SelectionFilter>
</State>

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Conversation Web Service Interface 68

The meanings of the major elements are:

Element Min/Max Occurrences Description

Name min=0 max=1 The name of a State.

• In a request with multiple states, each state
must use the Name element and each name
must be distinct from other state names in
that request.

• In a request with only one state, it is optional
for the state to be named.

CollectionName min=0 max=1 The name of an existing collection to operate on.
Note that collection names are case sensitive.

SelectedRefinementFilter min=0 max=unbounded Creates a refinement navigation query from a
specific refinement. For details, see
SelectedRefinementFilter on page 190.

TextSearchFilter min=0 max=unbounded Performs a keyword search against specific
attribute values assigned to records. For details
on its format, see Record search filter on page
246.

DataSourceFilter min=0 max=unbounded Uses EQL syntax to filter the corpus of records
before any other processing is done. For details,
see EQL Record Filters on page 117.

SelectionFilter min=0 max=unbounded Uses EQL syntax to provide selection criteria for
the final record result set. Typically used in
conjunction with DataSourceFilter. For details,
see EQL Record Filters on page 117.

Rules for State usage

The rules for states in a request are:

• A state in a request is defined by the State type.

• Every request must have at least one state (i.e., one State type).

• A request can have more than one state. If multiple states are included, each state must have a unique
name.

• If only one state is in the request, the state can be unnamed (i.e., the Name element is not used in the
State definition). If the state is unnamed, then there can be one (and only one) state in the request.

• If the request contains only one unnamed state, the state can be empty (that is, <State/>). By definition,
an empty state is an unnamed state.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Conversation Web Service Interface 69

• A state can have multiple filters that use the Id element to provide an identifier (such as
SelectionFilter Id="SalesSearch"). In this case, each filter identifier must be unique within the state. If
they are not unique, Endeca Server throws an exception.

In addition, if a request has multiple states, then each config must reference one (and only one) state. If the
request has only one named state, then it is optional as to whether the config references that state (as the
state will be used in any event in the config).

Example of a multi-state request

This simple example shows a request with two named states (FlavorSearch and WineSearch), each of which
is performing a record search on a different attribute. The results are summarized by two RecordCountConfig

types, each of which uses the StateName element to associate it with one of the named states:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State>

<Name>FlavorSearch</Name>
<TextSearchFilter Key="Flavors" Mode="AllPartial" Language="en">oak</TextSearchFilter>

</State>
<State>

<Name>WineSearch</Name>
<TextSearchFilter Key="Wine" Mode="AllPartial" Language="en">merlot</TextSearchFilter>

</State>
<RecordCountConfig Id="FlavorRecs">
<StateName>FlavorSearch</StateName>StateName>

</RecordCountConfig>
<RecordCountConfig Id="WineRecs">
<StateName>WineSearch</StateName>StateName>

</RecordCountConfig>
</Request>

Version 7.6.1 • December 2013

The results of the search look like this example:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<State xmlns="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:ns2="http://www.endeca.com/MDEX/eql_parser/types"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<Name>FlavorSearch</Name>
<TextSearchFilter Key="Flavors" Mode="AllPartial" Language="en">oak</TextSearchFilter>

</State>
<State xmlns="http://www.endeca.com/MDEX/conversation/3/0"

xmlns:ns2="http://www.endeca.com/MDEX/eql_parser/types"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<Name>WineSearch</Name>
<TextSearchFilter Key="Wine" Mode="AllPartial" Language="en">merlot</TextSearchFilter>

</State>
<cs:RecordCount Id="FlavorRecs">

<cs:NumRecords>6381</cs:NumRecords>
</cs:RecordCount>
<cs:RecordCount Id="WineRecs">

<cs:NumRecords>3073</cs:NumRecords>
</cs:RecordCount>

</cs:Results>

As the results show, the record search from the FlavorSearch state returns 6381 records, while the record
search from the WineSearch state returns 3073 records.

Oracle® Endeca Server: Developer's Guide

Conversation Web Service Interface 70

Content element config summarizations

The content element configs describe which summarizations should be performed on the resulting data.

Each Conversation Web Service request should specify one the following content element configs:

Content element config Description

AttributeGroupListConfig Retrieves a list of attribute groups in a data domain. For details, see
Retrieving lists of groups with the Conversation Web Service on
page 211.

AvailableSearchKeysConfig Retrieves a list of the searchable attributes and search interfaces
available in the data domain. For details, see Obtaining the available
search keys on page 245.

BreadcrumbConfig Retrieves breadcrumbs (explicitly-selected refinements) in the
current navigation state. For details, see BreadcrumbConfig on page
220.

EQLConfig Allows arbitrary EQL statements to be evaluated. If the request has
one or more named states, this config must reference one (and only
one) of the states. For details, see EQLConfig requests on page
135.

NavigationMenuConfig Contains inputs that define what is returned in the navigation menu.
For details, see NavigationMenuConfig on page 183.

PropertyListConfig Returns all the attributes in a data domain. For details, see
Obtaining a list of available attributes on page 192.

RecordCountConfig Returns the number of records in the state. For details, see
Displaying record counts on page 146.

RecordDetailsConfig Configures the detail aspects of a returned record. For details, see
Displaying record details on page 144.

RecordListConfig Contains inputs that define what is returned in a list of records. For
details, see Configuring a record list on page 138.

SearchAdjustmentConfig Retrieves automatic spelling corrections and suggested corrections
(Did You Mean) information. For details, see Retrieving spelling
corrections and DYM in query results on page 298.

ValueSearchConfig Controls the behavior of a single value search. For details, see
Value search query format on page 259.

Usage rules

The rules for using content element configs in a request are:

• Each request may include multiple content element configs.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Conversation Web Service Interface 71

• Each content element config may reference a maximum of one state.

• If the request has one (and only one) unnamed state, then each content element config cannot have a
state reference (because the state has no name).

• If the request has one or more named states, each content element config must reference one (and only
one) of the states. The exceptions are the AttributeGroupListConfig, AvailableSearchKeysConfig,
and PropertyListConfig types, where specifying a state is optional.

Pinning data versions
The Dgraph process of the Endeca Server maintains knowledge about loaded records using the index. Since
the index can be updated continuously, at any given time, several data versions of the index are maintained in
memory. In some cases, it may be useful for the front-end applications (such as Studio), to issue queries
against a specific data version. This process is known as "pinning a data version".

Using two optional operations in the Conversation Web Service, and the settings for timeouts in the
EndecaServer.properties file, you can:

• Pin a data version for a specified timeout. Once the timeout expires, the data version is dismissed by the
Endeca Server.

• Issue queries while requesting a previously pinned data version. If the queries are issued within the
timeout period, they use the pinned version. The timeout is renewed from the time of the last valid request
that used the pinned version.

• Pin a version, wait and pin it again with a longer timeout period that is still less than the maximum timeout
listed in EndecaServer.properties. In this case, the timeout is renewed to a longer timeout you
specify.

Timeout default, maximum and minimum values

Holding on to a data version

Requesting a pinned data version in a query

Timeout default, maximum and minimum values

Each data version you would like to pin can be held only for the duration of the specified timeout. The timeout
default value, and its maximum and minimum are maintained in the EndecaServer.properties file in
$DOMAIN_HOME/config.

You can modify the file to change these values. if you do so, and run an Endeca Server cluster, the values
must be modified on all machines hosting an Endeca Server instance. The EndecaServer.properties file
has the following default values related to maintaining specific data versions in memory:

Parameter Description

endeca-ds-pin-timeout-min The default minimum value is 60000 milliseconds
(ms). This is the lowest timeout value the Dgraph
process can use when PinDataVersion request is
issued.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Conversation Web Service Interface 72

Parameter Description

endeca-ds-pin-timeout-max The default maximum value is 300000 ms. This is the
highest timeout value the Dgraph process can use
when PinDataVersion request is issued.

endeca-ds-pin-timeout-default The default value for the timeout is 120000 ms. This is
the default timeout value used by the Dgraph if you do
not specify the value in the PinDataVersion
request. (You typically use this request of the
Conversation Web Service to pin a data version).

This topic lists only those values that are related to data version pinning. For a full list of parameters in the
EndecaServer.properties file, see the Endeca Server Administrator's Guide.

Holding on to a data version

The Endeca Server lets you hold on to (or pin) a specific version of the data in memory. Holding on to a
version is useful, for example, when the front-end application (such as Studio), needs to return consistent
page results. It is also useful to hold on to a specific version if you want to export a large number of records
from the Endeca Server.

You can issue a Conversation Web Service request to hold a version in memory, so that a subsequent
request can ask for this version when performing query processing. The following statements describe the
behavior of the Endeca Server:

• When you issue a request to hold a data version, a data version is kept in memory (or is "pinned") for a
period of time you specify.

• In the request, you can optionally specify the value for the timeout. Timeout is the time after which the
version is dismissed by the Endeca Server. It is counted from the time of the most recent request that
uses this data version. If you do not specify a timeout, the default timeout from
EndecaServer.properties file is used.

• If you specify a timeout value that is less than the minimum, or greater than the maximum values, the
request returns an error.

• If you continue issuing requests against the pinned version, the timeout is renewed.

• The pinned version expires after a timeout, and is removed by the Endeca Server if you stop issuing
queries against this version.

• If you issue multiple requests in succession to hold on to a data version, each time specifying a different
timeout value within the minimum and maximum boundaries, the greater of the timeout values is used.
Consider this example, where you have already pinned a version by specifying a timeout of 10 minutes,
and your maximum timeout value is 20 minutes:

• If you issue a new request with the 15 minutes timeout, the Endeca Server increases the timeout to
this value, because it is greater than the existing timeout of 10 minutes. it also checks the new value
is less than the maximum of 20 minutes in EndecaServer.properties.

• If you issue a new request with the 7 minutes timeout, the Endeca Server checks how much time is
left in the existing timeout. If, for example, 7 minutes are left in the existing timeout of 10 minutes, this

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Conversation Web Service Interface 73

timeout is not reset. Similarly, if 8 minutes are left, the current timeout is not reset because 8 > 7.
However, if 5 minutes are left, the timeout is increased to 7 minutes.

• A version is pinned by the Endeca Server on a specific Dgraph in the data domain. To guarantee this,
Endeca Server lets you pin a data version only if your data domain uses session affinity. Session affinity
guarantees that a request is routed to the same Dgraph in the data domain, if the Dgraph is available. (If
you use a default data domain profile, session affinity is enabled by default.) For details on configuring
session affinity, see the Endeca Server Administrator's Guide.

To pin a data version:

1. Check that the data domain profile uses session affinity. Issue the following commands in succession:

endeca-cmd get-dd <data_domain_name>
endeca-cmd get-dd-profile <data_domain_profile_name>

Version 7.6.1 • December 2013

The get-dd command returns the details of your data domain, including its profile. The get-dd-
profile command returns the characteristics of the data domain profile.

The following lines in the profile indicate that session affinity is specified for the data domain:

session-id-type: header
session-id-key: X-Endeca-Session-ID

In this example, session affinity uses header (other methods are possible for session affinity. See the
Endeca Server Cluster Guide).

2. On the host and port of your Endeca Server deployment, issue a Conversation Web Service request
that specifies a timeout, as in this abbreviated example:

...
<ns:Request>
<!--Optional:-->
<ns:PinDataVersion>optional_pin_timeout</ns:PinDataVersion>

<ns:State>
....

</ns:State>

where optional_pin_timeout can be any integer value in milliseconds that is within the
boundaries of the minimum and maximum timeout values specified in the
EndecaServer.properties file in $DOMAIN_HOME/config. In that file, the defaults are as
follows: the minimum timeout is 60000 milliseconds (1 minute), and the maximum timeout is 300000
ms (5 minutes). The default listed in the file is 120000 ms (2 minutes). If the timeout is not specified in
the request, it uses the default from the file.

If successful, the Endeca Server returns an empty Conversation Web Service response, similar to the
following:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<cs:State/>
</cs:Results>

The header of the response includes:

• The X-Endeca-Served-Data-Version — this is the version that you pinned.

• The X-Endeca-Data-Version — this is latest data version.

The latest data version may or may not differ from the pinned data version. Here is an example of a header, in
which the served data version (the one you pinned), and the latest data version are the same, which is a
typical case:

Oracle® Endeca Server: Developer's Guide

Conversation Web Service Interface 74

X-Endeca-Served-Data-Version 61
X-Endeca-Data-Version 61

Version 7.6.1 • December 2013

Once you obtain the pinned data version, you can then use it in subsequent requests issued within the
specified timeout. To use the pinned version, include DataVersionRequested element in subsequent
requests, while staying within the timeout.

Requesting a pinned data version in a query

If you have previously pinned a particular data version, then within the specified timeout, you can issue a
request to the Endeca Server that will be processed against this version of the data. To do so, you specify a
previously pinned data version with DataVersionRequested element in your request.

The <DataVersionRequested> element is optional, meaning that you can include it into any Conversation
Web Service request. (Although, you cannot issue a request that contains both <PinDataVersion> and
<DataVersionRequested>). A request with <DataVersionRequested> can also optionally include an
outer transaction ID, so that all other queries are processed within this transaction, while using the same data
version.

Issuing a query request against a specific data version is useful when, for example, you would like to obtain a
large number of records from the Endeca Server (such as, to export them in bulk), or, when the user interface
of your front-end application needs to present consistent results to the user. For example, in Studio, various
components issue requests to the Endeca Server, and it is desirable for them to represent the same state of
the data, even if the data is being updated in real time, while end users continue issuing queries.

Before you request a specific version of the data with <DataVersionRequested>, use PinDataVersion in
a previous request, to indicate to the Endeca Server that you would like to hold on to a version for a specified
timeout period. The response to the version-pinning request returns the number of the pinned data version
(and a current data version number, which may differ from the pinned version number), in the header. You can
then use the pinned data version number in any subsequent requests. These requests will be processed
against the pinned version, if they are issued within the timeout period.

To request a previously pinned data version:

1. Issue a Conversation Web Service request that includes the following element:

<DataVersionRequested>VersionNum</DataVersionRequested>

where VersionNum is the number of the version you asked the Endeca Server to hold. It was
returned in the header of the PinDataVersion request.

If you continue issuing requests with this version number within the specified timeout period, the
timeout is renewed. If you attempt to issue a request with this version after the timeout has expired,
the request returns an error. If you request a version that no longer exists (or never was pinned), the
request also returns an error. To check the values for the timeout, see the
EndecaServer.properties.

Oracle® Endeca Server: Developer's Guide

Chapter 5

Entity and Collection Configuration Web
Service Interface

This section describes the operations of the Entity and Collection Configuration Web Service.

About the Entity and Collection Configuration Web Service

Operations in the Entity and Collection Configuration Web Service

About the Entity and Collection Configuration Web Service
This Web Service lets you create and manage entities, collections, and filter rules.

Overview

The Entity and Collection Configuration Web Service is a WS-I compliant SOAP/HTTP Web service that also
supports the wrapped-document/literal pattern of binding. The service is declared in sconfig.wsdl.

To view the WSDL document for the service, issue the following command:

http://host:<port>endeca-server/ws/sconfig/dataDomain?wsdl

Version 7.6.1 • December 2013

where host and port represent the host and port of Oracle Endeca Server, and dataDomain is the name of
the data domain for which entities, collections, or filter rules will be managed.

The service's version is listed in one of its namespaces included in the WSDL, as shown in the following
example (the version in this example may not match the version of the service you have installed):

xmlns:v3_0="http://www.endeca.com/endeca-server/sconfig/3/0"

In this example, 3 is the major version; 0 is the minor version. If more than one minor version is supported, it
is listed in its own namespace in the WSDL document.

For reference information on the operations and for schema elements, see the Oracle Endeca Server API
References.

Operation description

A request to the Entity and Collection Configuration Web Service depends on the operation. The operations
perform actions on entities, collections, and filter rules.

The effect of an Entity and Collection Configuration Web Service request that contains put operations is to
add entities, collections, or filter rules for this data domain. After creation, each entity, collection, or filter rule is
represented as a single logical record in the Endeca data domain. The on-disk storage of these records
means that they persist across restarts of the Endeca data domain, as they are loaded into the Dgraph
process at start-up time.

Oracle® Endeca Server: Developer's Guide

Entity and Collection Configuration Web Service Interface 76

Request

The input to the Entity and Collection Configuration Web Service depends on the operation used. For
example, it can include a key and an EQL statement that defines an entity, for put operations; it can include
the key only, for deleteEntities operation; or it can include the definition of the entity, for validate
operations.

Any request to the Entity and Collection Configuration Web Service can contain an optional element
OuterTransactionId that specifies the ID of an outer transaction (if it has been started by the Transaction
Web Service). The following statements describe the interaction of configuration requests with outer
transactions:

• If an outer transaction has been started by the Transaction Web Service, the request may be run against
either the latest version of the index files inside the transaction, or against the pre-transaction version of
the index files:

• To run a request against the latest version, the OuterTransactionId element in your request must
specify the ID issued by the Transaction Web Service when the transaction was started. This element
must be the first element specified in your request.

• To run against the published version (it could be the version published prior to the outer transaction,
or the version published after the outer transaction has been committed or rolled back), the
OuterTransactionId element must be empty or omitted.

It is incorrect to specify an outer transaction ID when an outer transaction is not in progress. All configuration
requests with incorrectly specified outer transaction IDs fail with a SOAP fault.

Response

Not all operations in the Entity and Collection Configuration Web Service return data.

If the operation returns data, the response is a results element, within which each of the submitted operations
produces an element showing its own results.

If any operation does not succeed, the whole Web service transaction returns a SOAP fault, and none of the
operations are applied. An operation may not succeed if an outer transaction has been started by a
Transaction Web Service, but an incorrect ID has been specified within a request sent to the Entity and
Collection Configuration Web Service.

Operations in the Entity and Collection Configuration Web
Service
This topic lists the operations of the Entity and Collection Configuration Web Service.

Entity operations

Entity operation Description

putEntity Add an entity with the specified entity key and definition to the data domain.

putEntities Add multiple entities with the specified entity keys and definitions to the data
domain.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Entity and Collection Configuration Web Service Interface 77

Entity operation Description

validateEntity Validate an entity (either active or inactive) with the specified entity key and
definition.

validateEntities Validate multiple entities (either active or inactive) with specified definitions.

listEntities List the entities that exist in the data domain.

deleteEntities Delete multiple entities for which entity keys are specified.

deleteAllEntities Delete all entities that exist in the data domain without specifying any of their
entity keys.

For details on using the entity operations, see Working with Entities on page 230.

Collection operations

Collection operation Description

putCollection Add a collection with the specified collection key and unique property key to
the data domain.

putCollections Add multiple collections with the specified collection keys and unique
property keys to the data domain.

updateCollections Update the configuration of an existing collection.

listCollections List the collections that exist in the data domain.

deleteCollections Delete one or more collections, as specified by their collection keys.

deleteAllCollections Delete all collections that exist in the data domain without specifying any of
their collection keys.

For details on using the collection operations, see Collections on page 92.

Filter rule operations

Filter rule operation Description

putFilterRule Add a filter rule with the specified filter rule key and rules to the data domain.

putFilterRules Add multiple filter rules with the specified filter rule keys and rules to the data
domain.

listFilterRules List the filter rules that exist in the data domain.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Entity and Collection Configuration Web Service Interface 78

Filter rule operation Description

deleteFilterRules Delete one or more filter rules, as specified by their filter rule keys.

deleteAllFilterRules Delete all filter rules that exist in the data domain without specifying any of
their filter rule keys.

For details on using the filter rule operations, see Filter Rules on page 109.

Language ID for EQL parsing error messages
The operations have an optional Language element that sets the language for error messages that result
from EQL parsing. For example, the general syntax of the putEntity operation is:

<putEntity>
<outerTransactionId>?</outerTransactionId>
<language>en</language>
<semanticEntity key="?" displayName="?" isActive="?">
...
</semanticEntity>

</putEntity>

Version 7.6.1 • December 2013

For details on this element and its supported language codes, see the description of the Language element in
EQL Language codes for EQL error messages on page 127.

Oracle® Endeca Server: Developer's Guide

Chapter 6

Transaction Web Service Interface

This section describes the operations and behavior of the Transaction Web Service.

About outer transactions

When to use outer transactions

About the Transaction Web Service

Outer transactions and queries

Transaction Web Service operation description

Transaction Web Service operations

Rolling back an outer transaction

Notes about inner transactions

Request processing in the presence of transactions

Transaction Web Service and Integrator ETL

Performance impact of transactions

About outer transactions
An outer transaction is a set of operations performed in the Oracle Endeca Server data domain that is
viewed as a single unit.

If an outer transaction is committed, this means that all of the data and configuration changes made during the
transaction have completed successfully and are committed to the index.

If any of the changes made within an outer transaction fail to complete successfully, the outer transaction fails
to commit and remains open (only one outer transaction can be open at a time). In this case, you can roll back
the entire transaction, and the changes in the index do not occur.

Note: If an outer transaction fails to complete successfully due to a Dgraph process failure, then it is
not applied (and does not need to be explicitly rolled back).

In general, the best practice is to set up operations so that successful updates are automatically committed
(this is the default), but failed updates can be rolled back either automatically or manually.

The Transaction Web Service of the Endeca Server is used for controlling outer transactions.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Transaction Web Service Interface 80

When to use outer transactions
This topic discusses outer transactions and provides recommendations for when it is useful to issue queries
and updates inside an outer transaction as opposed to running individual queries for various tasks.

Typically, you use Integrator ETL or another data loading mechanism to load data and configuration into the
Endeca Server, for a specific data domain. You load data by making Web service requests to the Data Ingest
Web Service or requests to the Bulk Load Interface. Each Web service request represents its own set of
operations in the data domain, and succeeds or fails on its own — it is in itself a transaction. These
transactions, because they do not include any other transactions inside them, are also known as inner
transactions.

If some inner transactions in the Endeca data domain succeed and others fail, the resulting data domain may
reflect only a partially updated data set (if, for example, some updates did not succeed). Typically, however,
you may want to ensure that data changes from an entire set of data-updating requests to the data domain
hosted in the Endeca Server either complete or fail as a unit, so that the resulting set of index files represents
an entirely updated data domain. You may also want to make sure that end users do not access intermediate
states of the data in the front-end application, but instead can only have access to the pre-update state of the
index files (while the data-updating graph completes), and then seamlessly transition to querying the data
domain that has been fully updated.

To guarantee that your updates either completely succeed or fail, make your requests inside an outer
transaction.

An outer transaction is a set of operations performed in the data domain that is viewed as a single unit. If an
outer transaction is committed, this means that all of the data and configuration changes made during this
transaction have completed successfully and are committed to the data domain's index.

To run an outer transaction, you can either use Integrator ETL or issue requests with the Transaction Web
Service. This way, you can run inner transactions inside an outer transaction. Typically, running inner
transactions (each of which represents a request to the Dgraph) inside an outer transaction is useful for
running updates. Once such an outer transaction completes, an update to your records is guaranteed to be
fully committed to the index of your data domain.

About the Transaction Web Service
The Transaction Web Service provides a versioned interface for controlling one or more inner transactions on
a particular data domain, inside a single outer transaction.

Each Web service request to the Oracle Endeca Server represents an inner transaction. If the request
completes successfully, the transaction is automatically committed. If the request fails, the transaction is rolled
back.

In addition to using these inner transactions that are sent as independent Web service requests, you can also
nest inner transactions inside a single outer transaction run by the Transaction Web Service.

The Transaction Web Service is a versioned Web service declared in its WSDL document, which you can
access at this URL:

http://host:<port>endeca-server/ws/transaction/<DataDomain>?wsdl

Version 7.6.1 • December 2013

where host and port represent the Oracle Endeca Server, and the DataDomain is the name of the data
domain hosted on the server. The WSDL that is returned contains a version number for the service.

Oracle® Endeca Server: Developer's Guide

Transaction Web Service Interface 81

Using outer transactions depends on whether you want to group multiple updates (which, together with other
web service requests, typically represent simple inner transactions) into a single outer transaction.

The Transaction Web Service enables you to isolate updates within a single outer transaction, while non-
updating queries continue to be processed against the pre-transaction version of the data domain's index.

Although you can issue requests to the Transaction Web Service with any Web service tool, such as soapUI,
you can use the Transaction RunGraph in Integrator ETL.

Outer transactions and queries
The Endeca Server processes two types of queries — non-updating (or read-only) queries, and updating
queries.

• The purpose of non-updating queries is, typically, to obtain query results from the index, based on search
or navigation selections made by the end users in the front-end application. Non-updating queries
represent read-only requests to the index and do not attempt to change them.

• The purpose of updating queries is to change the index or other settings in the data domain or the Dgraph
process. Updating queries represent "write" requests to the index.

The following diagram shows how both updating and non-updating queries are processed by the Endeca
Server in view of outer transactions. It illustrates that, to be processed within an outer transaction, updating
queries must specify its ID. Non-updating queries, depending on whether they specify the outer transaction ID,
are processed against different versions of the index:

The following statements describe the actions in this diagram in detail, starting from the left side of the
diagram:

• Stage 1: Before an outer transaction is started. If no outer transaction is in progress, then all queries
(updating and non-updating) are processed against the most recent published version of the index. If no
outer transaction is in progress, the queries do not need to specify any outer transaction ID.

• Stage 2: The outer transaction has been started. Queries that specify a correct outer transaction ID
(also known as queries sent inside the transaction):

• All such queries (updating and non-updating) are guaranteed to run against the most recent internal
version of the index available to the transaction. This version is not published and not available to

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Transaction Web Service Interface 82

queries outside of the outer transaction until the transaction commits. This version is published after
the transaction commits.

Queries that do not specify an outer transaction ID (also known as queries sent outside of the transaction):

• Non-updating queries run against the most recent published (pre-transaction) version of the index.

• Updating queries wait until the outer transaction is committed (or rolled back), and are computed
based on the published version of the index available at that time.

If the outer transaction has been started and requests sent to the Endeca Server specify an incorrect ID,
the requests fail.

• Stage 3: After the outer transaction has been committed. All queries (updating and non-updating) are
processed against the most recent published version of the index.

Transaction Web Service operation description
This topic describes the logic of the Web service's operations, as well as its request and response structure.

Operation description

Here is the logic of the Web service's operations:

• Before an outer transaction starts, the pre-transaction version of the index is available; it is known as the
last published version of the index.

• When a startOuterTransaction operation is issued, it starts an outer transaction. This transaction,
because it encapsulates inner transactions within it, is referred to as an outer transaction. Only one outer
transaction can be running at a time.

You can supply the ID for the transaction in the startOuterTransaction operation. If you do not
specify it, the Dgraph process issues a unique outer transaction ID in the response.

While the outer transaction is in progress, update requests to the index that reference the outer
transaction ID are processed within the outer transaction. These updates can be made through any of the
available interfaces that can issue requests to the server, including the Data Ingest Web Service, the
Configuration Web Service, and the Bulk Load Interface. Updating requests from all interfaces except the
Bulk Load that don't reference the ID wait until the outer transaction is committed (or rolled back), and are
computed based on the published version of the index. (Requests from the Bulk Load interface that don't
specify the ID are rejected while the outer transaction is in progress).

• Once an outer transaction starts, the index files are internally updated. Internal versions of the index might
become available to qualifying requests (those that reference the ID) within an outer transaction. These
versions are known as transaction versions.

• For the duration of the outer transaction, the Dgraph answers updating queries only if they specify the
transaction ID. These updating queries are answered against a transaction version of the index that is not
published until the transaction is committed. (This transaction version reflects the most recent "writes" to
the index that occurred within the outer transaction until this point.) All non-updating queries are answered
either against the last published version of the index (if they don't specify the ID), or against the
transaction version (if they specify the ID).

• The outer transaction is committed with the Transaction Web Service commitOuterTransaction
operation.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Transaction Web Service Interface 83

• Once the transaction commits, its version of the index is published. Updating requests that were waiting in
the queue (and that didn't specify the ID) are now processed against this version.

• If an outer transaction fails to commit, it remains open. You cannot start another outer transaction until you
commit or back the outer transaction that failed to commit. You can manually issue a commit or rollback
operation to recover from a failed transaction without restarting the Dgraph process for the data domain.
(This statement has one exception — if an outer transaction fails to commit because the Dgraph fails, the
transaction is not applied and does not require to be committed or rolled back).

To manually end a transaction that failed to commit and roll back the changes, you can issue the
rollBackOuterTransaction operation, specifying the ID of this outer transaction. If you roll back an
outer transaction, then updating requests that didn't specify the ID and that were waiting in the queue are
processed once the transaction is successfully rolled back.

For information on connectors that support transactions, see the Oracle Endeca Information Discovery
Integrator ETL User's Guide.

Request

The input to the Web service depends on the operation used and can include any of its operations for starting,
committing, or rolling back a transaction, or for listing the outer transaction ID.

In the startOuterTransaction operation, you can provide a transaction ID. If it is not provided, the
Dgraph process issues an ID automatically and returns it in the response. In addition, you can use the
listOuterTransaction operation to obtain the ID from the Dgraph running in your data domain.

Response

The response to the Transaction Web Service indicates whether each of the operations succeeded or failed.

If any operation does not succeed, the whole Web service transaction returns a SOAP fault and none of the
operations are applied.

Transaction Web Service operations
This topic lists the operations available in the Transaction Web Service.

A request to the Transaction Web Service consists of a Request element.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Transaction Web Service Interface 84

The operations are the following:

Operation Description

startOuterTransaction An operation to begin an outer transaction. You can optionally
provide a transaction ID in the OuterTransactionId element.

If this operation succeeds, it starts the outer transaction and
returns a transaction ID, and the Dgraph process enters
transaction mode.

If this operation does not succeed, the Dgraph process does not
start an outer transaction, and does not return a transaction ID.

While an outer transaction is in progress, the following actions
take place:

• All queries that reference the transaction ID are processed
within the transaction. Updating queries that do not
reference the transaction ID wait until the outer transaction
is committed (or rolled back) and are computed based on
the published transaction version of the index.

• Read-only queries that do not reference the transaction ID
are not rejected — they are processed against the
published version of the index.

Updates applied within the outer transaction do not become a
published version of the index until another operation,
commitOuterTransaction, returns successfully.

listOuterTransaction An operation to request an ID of a running outer transaction. If
an outer transaction is in progress, this operation returns its ID.

rollBackOuterTransaction An operation to roll back an outer transaction with the ID
specified in the OuterTransactionIdToRollBack element.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Transaction Web Service Interface 85

Operation Description

commitOuterTransaction An operation to end an outer transaction.

If an outer transaction with the specified ID is in progress, then if
the operation succeeds, the Dgraph process commits the
transaction and exits transaction mode. The Dgraph process
resumes accepting unqualified queries. The version of the index
that is propagated to all nodes becomes the last published
version.

If the operation does not succeed, the outer transaction is not
committed. The Dgraph process does not apply any updates
that referenced the transaction ID. All queries continue to use
the pre-transaction version of the index.

Note: If the outer transaction fails to commit, it remains
open, and you cannot start another outer transaction
before committing or rolling back the one that failed.
Without stopping the Dgraph process, you can manually
commit the transaction and roll back any changes using
the rollBackOuterTransaction operation,
specifying the ID of the transaction. If, in another
possible scenario, the outer transaction fails to commit
because the Dgraph fails, the transaction is not applied
and does not need to be rolled back manually.

Rolling back an outer transaction
The rollBackOuterTransaction operation is useful in operational environments that use outer
transactions. In case a running outer transaction fails, this operation lets you roll back to the previously
committed version of the index and commit the transaction.

You can run this operation directly with a tool such as soapUI or Integrator ETL. In Integrator ETL, you can
use one of two options: either through the Transaction RunGraph component and its rollback option, or by
using the WebServiceClient component, by configuring it to access the Transaction Web Service on the
particular data domain, and specifying the rollBackOuterTransaction operation to it.

The following statements describe the rollBackOuterTransaction operation:

• If you are running this operation through a tool such as soapUI, ensure that the tool accesses the
Transaction Web Service as follows:

http://localhost:<port>/ws/transaction/<DataDomain>?wsdl

Version 7.6.1 • December 2013

Use this operation only if an outer transaction has been started on the node, referencing a transaction ID
in the OuterTransactionIdToRollBack element, as in the following example:

<rollBackOuterTransaction>
<OuterTransactionIdToRollBack>myID</OuterTransactionIdToRollBack>

</rollBackOuterTransaction>

Oracle® Endeca Server: Developer's Guide

Transaction Web Service Interface 86

Note: The transaction ID can be either specified to the Transaction Web Service when you start a
transaction, or, if you don't specify it, the Web service generates the ID automatically. The
operation listOuterTransaction lists the ID. Also, if you are using the Transaction
RunGraph connector for running transactions, this connector automatically uses the ID string
"transaction".

• If you issue this operation with the outer transaction ID that does not match the ID of the currently running
outer transaction, an error message notifies you of the transaction ID that is in progress.

• If you are using this operation directly (such as in soapUI) and not in the context of Integrator ETL, you
can issue it at any point during a running outer transaction. Once issued, this operation ensures that inner
transactions running within the outer transaction are rolled back.

If you have updating requests sent to the server that didn't specify the outer transaction ID, these requests
wait for the outer transaction to finish (be committed or rolled back). If you roll back the outer transaction,
these requests start being processed by the server based on the published version of the data files that is
available after the rollback operation.

• If you are running a data domain cluster hosted in the Endeca Server cluster, and issue this operation, it is
routed to the Endeca Server hosting the leader Dgraph node for the data domain.

Once the operation completes, it stops the outer transaction, and the leader resumes serving queries on
the last version of the index available before the start of the outer transaction.

• Only one rollBackOuterTransaction operation can be processed at a time.

Notes about inner transactions
This topic discusses the treatment of requests and operations that occur within a single outer transaction.

Inner transactions are operations that occur within a single outer transaction. They represent either Web
service requests or administrative operations that run within an outer transaction. A few considerations about
inner transactions are useful to note:

• All non-updating inner transactions that specify the outer transaction ID are processed against the most
recent internal version of the index available within the outer transaction.

• Inner transactions with updates are always serial —they are applied in the order they are received.

• Read-only inner transactions are processed in parallel.

Request processing in the presence of transactions
This topic describes how requests sent from various Web services, administration URL requests, and the Bulk
Load Interface are treated by the Oracle Endeca Server, in the presence of outer transactions.

Requests from the Oracle Endeca Server interfaces can be updating and non-updating (read-only).

For read-only requests, if the correct outer transaction ID is specified as the first element in the request, they
run inside the outer transaction against the most recent version of the index. If no transaction ID is specified,
the requests run against the pre-transaction version.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Transaction Web Service Interface 87

For updating requests, if the correct ID is specified as the first element in the request, the requests run;
otherwise, the requests wait until the outer transaction is committed (or rolled back), and are computed based
on the published version of the index that becomes available at that time.

An incorrect ID in any request results in a SOAP fault.

Transaction Web Service and Integrator ETL
In Integrator ETL, you can start and commit an outer transaction using the Transaction RunGraph connector.

For information on how to run outer transactions in Integrator ETL, see the Oracle Endeca Information
Discovery Integrator ETL User's Guide.

Performance impact of transactions
Running an outer transaction does not affect performance of the Endeca Server.

However, be aware that an outer transaction that is in progress (especially if it is running update operations on
a large amount of data), will increase the disk usage, resulting in higher disk high-water mark values (Linux).

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 7

About Web Service Versions

This section discusses versions used for the Web service interfaces in the Oracle Endeca Server.

How version numbers are assigned

Obtaining a version number for a Web service

Using version numbers in requests

Backward-compatibility of Web service versions

Resolving incompatibility of Web services and client stubs

How version numbers are assigned
Interface version numbers are assigned each time the particular interface is updated.

A version number for an interface consists of major and minor versions:

• Major version is used to track changes to the service that are not backward-compatible.

• Minor version is used to track backward-compatible changes to the service.

For example, if a version number for a Web service is 3.0, its major version is 3, and its minor version is 0.

All interface changes result in a version number increase:

• Major version numbers are increased only when changes that are not backward-compatible are introduced
in the interface. These changes include removal of operations, elements, or attributes; addition of new
required attributes to existing operations; or cases when services are split or combined, or operations are
moved from one service to another.

Changes that are not backward-compatible are introduced with the following deprecation policy. When any
of the interface's artifacts change, new artifacts are added, but old ones are not removed in the new
version. Instead, old artifacts are deprecated and retained for a period of time.

The Oracle Endeca Server Migration Guide lists the following:

• Which service versions are shipped with the particular Oracle Endeca Server release.

• Which operations and/or services have been deprecated.

• The upgrade impact for each of the changes.

• Minor version numbers are increased when backward-compatible changes are introduced. Backward-
compatible changes include new operations that may be added, or new operations with new types.

Interface version numbers for each of the Web service interfaces may differ and depend on the changes to
that interface.

Interface version numbers do not correspond to the version number of the product that is being released.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

About Web Service Versions 89

After upgrading to a new version of the product, it is recommended to check the version numbers of each of
the interfaces and ensure that your clients also have the corresponding versions.

Obtaining a version number for a Web service
To request a version number for a Web service interface, obtain the WSDL document for the web service from
a running data domain in the Oracle Endeca Server. The WSDL document indicates the version of a Web
service.

You can obtain a WSDL document for a specific Web service once the Oracle Endeca Server is installed and
your data domain is running on it.

Each Web service has its own version. If a Web service has more than one minor version (for example, 3.0
and 3.1), then the newer version is backward-compatible with the older version, and all these versions are
listed in the WSDL document.

To obtain the version number from a Web service:

1. Issue a request to the Oracle Endeca Server for the WSDL document of the web service on a specific
data domain, using this syntax:

http://host:port/endeca-server/ws/WSName/<dataDomain?wsdl

Version 7.6.1 • December 2013

where host and port represent the Oracle Endeca Server, WSName is the name of the Web service,
and <dataDomain> is the name of the data domain created on the server.

For example:

http://localhost:7001/endeca-server/ws/config/books?wsdl

In the WSDL document, the major and minor versions are displayed in one of the required
namespaces, as follows:

xmlns:config-service-v3_0="http://www.endeca.com/MDEX/config/services/config/3/0"

In this example, 2 is the major version, and 0 is the minor version.

If there is more than one minor version, then all of them are supported and listed in the WSDL
document. The most recent version is backward-compatible with the other minor versions listed in the
WSDL document.

2. Repeat the process for any other Web service whose version you need to verify, using the name of
any of the available Web services.

Using version numbers in requests
Version numbers are specified in Web service requests as a required namespace.

The following statements describe how versions of the Web service interfaces affect interaction with them:

• When the client sends a version in its request, the server sends an API version in its response.

• The version of a client (such as a set of Java methods generated from contacting a service) must be
compatible with the version of the Web service.

Oracle® Endeca Server: Developer's Guide

About Web Service Versions 90

If clients contact a service whose version is incompatible with the version in their stubs, they receive a SOAP
fault. Specifically, the following cases are possible:

• If version A is specified in the client stubs, but version B is used in the Web service, and version B is
backward-compatible with version A, the request is processed normally without any messages.

• If no version is specified in the client stubs, but a version exists in the Web service, this is interpreted as a
parsing error: Unable to parse version for <operation_name> in namespace
<namespace_name>.

• If version A is specified in the client stubs, but version B is used in the Web service, and version B is not
backward-compatible with version A (that is, it represents a major version change), the Dgraph server
issues an error indicating that the version used is invalid; the Endeca Server issues an error indicating that
it could not find the specified version A in the web service WSDL available to the server.

Important: In all cases, to fix the client's incompatibility with the current Web service version,
generate new client stubs and use them with the front-end application.

Examples of specifying the version numbers in requests

These examples illustrate how to specify the version number in requests to various Web services. The
principle for specifying the version is the same, but the syntax differs slightly depending on the type of the
Web service.

In this example, the request is sent to the Configuration Web Service, with specified values for major and
minor versions in the namespace (3.0):

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>
...
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

In this example, the request is sent to the Conversation Web Service:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/3/0">
<soapenv:Header/>
<soapenv:Body>

<ns:Request>
...
</ns:Request>

</soapenv:Body>
</soapenv:Envelope>

The response also contains version numbers.

Backward-compatibility of Web service versions
Changes between minor versions are backward-compatible. Changes between major versions are not.

If a minor version change has occurred for an interface, you can continue using the previous minor version, if
this version is listed in the current WSDL document (this indicates the backward-compatibility of a particular
minor version).

Oracle® Endeca Server: Developer's Guide

About Web Service Versions 91

However, a good practice is to keep the versions used by clients updated to the latest versions of the Web
services installed with the Oracle Endeca Server.

Resolving incompatibility of Web services and client stubs
The client stubs generated from the Web services must be installed in various other front-end applications that
communicate with the Oracle Endeca Server. When you upgrade the Oracle Endeca Server, to ensure
compatibility with the newer versions of the interfaces, regenerate the client stubs.

To resolve incompatibility of Web service versions and client stubs:

1. Install new Web service versions.

This is typically done as part of an upgrade to the Oracle Endeca Server software.

2. Query each interface for its version to check which interfaces have major number changes (these
changes are not backward-compatible).

Read the Migration Guide for the upgraded version of the Oracle Endeca Server to learn about
changes to the Web service interfaces.

3. Regenerate the client stubs. If the major version had changed for any interface, you must regenerate
the client stubs. If only the minor version had changed, it is still recommended to regenerate the client
stubs, although you can continue to use your existing clients generated against the previous minor
versions.

When the stubs are compiled, the new version of the interface is read from the Web service's WSDL.

Note: If you are upgrading from an interface without a version to an interface with a version,
the initial upgrade to the client stubs requires changing all import statements in your client
code, similar to the following example.

If the import statement in the client code using stubs generated from an unversioned web
service looked similar to this example:

import com.endeca.www.mdex.transaction._2011.startOuterTransactionDocument;

Version 7.6.1 • December 2013

change the import statement to indicate the versions:

import com.endeca.www.mdex.transaction._2._0.startOuterTransactionDocument;

The namespaces for each operation indicate which versions are supported for this operation.
In this case, the startOuterTransaction operation is supported in version 2.0.

4. Start using the new stubs in your front-end application to send requests to your Endeca data domain.

Oracle® Endeca Server: Developer's Guide

Part III

Collections, Record Filters, and Records

Chapter 8

Collections

This section describes how to create, manage, and use collections.

About collections

Collection operations

Collection Definition Records

Procedure for creating collections in the data domain

Using collections in queries

About collections
In the Endeca Server, collections represent a data model in which source records are partitioned into named
collections, according to their unique key assignments, and then loaded into the Endeca Server.

Collections allow you to divide the data in a given data domain into multiple organized groupings (known in
Studio as data sets). You can therefore build an Endeca Server application with multiple collections of records,
all comprising records in a single data domain's index.

Collections have a practical meaning. It is very common to have multiple different kinds of data that users
want to search through: products for sale alongside how-to articles; vehicles alongside warranty claims;
structured HR records of employee changes alongside satisfaction surveys; and so on. These different kinds
of records are typically related and relevant to each other, but are often not useful to see mixed up with each
other. It would not be very useful, for example, to see a results list in a UI where some of the rows
represented products for sale and others represented data sheets. Collections allow you to load and organize
data, for each data domain, inside them, by their logical groupings.

Keep in mind that collections are optional in your Endeca Server application. Endeca records are not required
to be members of a collection, but you can use collections if this approach represents your data model.

Note: At least one collection (which is called a data set in Studio) must be present in an Endeca data
domain before a Studio application can be configured to connect to that data domain. For this reason,
you should always ingest your source data into one or more collections in a Studio environment.

Sample use case

Looking at the application from a high level, the Conversation Web Service has knowledge of multiple
collections of data in a single Endeca Server data domain. This means that the query state is tracked per-
collection, and most content elements (such as NavigationMenu and RecordList) can operate on a single
focal collection.

For example, consider an application for exploring product sales and online reviews. Imagine that Sales and
Reviews are two collections of records. You might have two different tabs in your application: one for exploring
Reviews, and the other for exploring Sales. Further, you might make different filters on the two tabs, so that

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Collections 94

you can narrow your Review records to only five-star reviews, while Sales records are limited by a text search
on product description. As you switch between tabs, the single State includes the separate selections for both
kinds of records, so selections for both kinds of records are not lost.

On each tab, you see only data relevant to the collection in question: on the Reviews tab, you see a menu of
available refinements containing values that are useful refinements for narrowing your Reviews (but not,
notably, attributes that only appear on Sales records). You also see a record list with a page of just Review
records without Sales records being mixed in.

Cross filtering

When switching between navigating over the Reviews records and navigating over the Sales records, it can
be useful to carry some filters between the two. For example, though a selection on 5-star Reviews only
should not filter Sales, other attributes may actually be shared. For example, if user Jane has filtered her
Reviews to only reviews written by John Doe, she may also want to automatically narrow her Sales to only
purchases made by John Doe. Endeca Server supports these cross filtering scenarios with filter rules. For
more information, see Filter Rules on page 109.

Filter rules allow you to tie the Reviewer attribute on your Reviews records to the Buyer attribute on your
Sales records. Any filter that narrows and makes a selection on one of those attributes will implicitly make an
additional selection on the other attribute. This means that if you narrow to only Reviews written by John Doe
on the Reviews tab, and then switch to your Sales view, the selection of "Buyer=John Doe" will have been
automatically added to your Sales breadcrumbs also. Cross-filtering on multiple collections thus enables an
important value proposition for Endeca applications: discovery across multiple data sets.

Collection operations
This section describes the operations used to create and manage collections.

All of the collection operations have optional outerTransactionId and language elements, as in this
syntax for the listCollections operation:

<listCollections>
<!--Optional:-->
<outerTransactionId>?</outerTransactionId>
<!--Optional:-->
<language>en</language>

</listCollections>

Version 7.6.1 • December 2013

Because their functionality is identical across all the collection operations, the two elements are described
here instead of in the descriptions for each operation.

outerTransactionId element
The optional outerTransactionId element specifies the ID of an outer transaction (if it has been started by
the Transaction Web Service). It is incorrect to specify an outer transaction ID when an outer transaction is not
in progress. All configuration requests with incorrectly specified outer transaction IDs fail with a SOAP fault.

Some of the operations (such as updateCollections) can work on multiple collections with the same request.
These operations, however, are atomic, which means that either the operation is successful (i.e., all
collections are successfully affected), or the entire operation fails if at least one of the collections cannot be
modified). To prevent leaving the collection records in a undeterministic state, you can first open an outer
transaction, run the operation with the outerTransactionId element, and then roll back the transaction if
the operation fails.

Oracle® Endeca Server: Developer's Guide

Collections 95

language element
The optional language element sets the language for error messages that result from EQL parsing. The
default language for error messages is en (English). For details on this element and its supported language
codes, see the description of the Language element in EQL: Language codes for EQL error messages on
page 127.

Collection create operations

Collection update operation

Collection list operation

Collection delete operations

Deleting a collection and its records

Collection create operations

The SConfig Web Service has two operations to create collections.

The putCollection operation creates a single collection, while the putCollections operation can create
multiple collections at once. Both operations result in a CDR (Collection Definition Record) being created in
the Dgraph.

putCollection syntax
The putCollection operation creates one collection with this syntax:

<putCollection>
<outerTransactionId>?</outerTransactionId>
<language>en</language>
<collection collectionKey="?" displayName="?" uniquePropertyKey="?">

<description>?</description>
<property key="?">?</property>

</collection>
</putCollection>

Version 7.6.1 • December 2013

The meanings of the collection attributes are as follows:

Collection attribute Description

collectionKey Required. A unique identifier for the collection. The key name does not
have to be in the NCName format, but must be unique among
collection names. The name is case-sensitive when used with other
collection operations or in queries.

displayName Optional. Defines the display name which may be used by the front-
end application, such as Studio. The display name can be any
arbitrary string.

Oracle® Endeca Server: Developer's Guide

Collections 96

Collection attribute Description

uniquePropertyKey Required. Sets the standard attribute that provides the unique key
values for records in the collection. Once a uniquePropertyKey is
configured for a collection, it cannot be used for any other collection. In
addition, this standard attribute must not already be assigned on any
record.

The PDR for the standard attribute must be created with:

• mdex-property_IsSingleAssign set to true

• mdex-property_IsUnique set to true

Note that the this standard attribute will also serve as the primary key
(record spec) for the records in this collection.

description Optional. Provides descriptive text about the collection.

property key Optional. Lets you associate a string metadata property for the
collection (for example, locale information). The key name must be in
the NCName format

putCollection example
The following putCollection soapUI example creates a collection named Products:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/sconfig/3/0">
<soapenv:Header/>
<soapenv:Body>

<ns:putCollection>
<ns:language>en</ns:language>
<ns:collection collectionKey="Products" displayName="Product data" uniquePropertyKey

="ProductID">
<ns:description>product records for the region</ns:description>
<ns:property key="Region">New England</ns:property>

</ns:collection>
</ns:putCollection>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

The existing ProductID standard attribute is used as the collection's unique property key. The collection also
has an associated metadata that defines the Region property metadata as the New England region.

putCollections operation
The putCollections operation lets you create multiple collections at once, using this syntax:

<putCollections>
<outerTransactionId>?</outerTransactionId>
<language>en</language>
<collection collectionKey="?" displayName="?" uniquePropertyKey="?">

<description>?</description>
<property key="?">?</property>

</collection>
</putCollections>

Oracle® Endeca Server: Developer's Guide

Collections 97

You can supply multiple collection elements, which have the same syntax and meanings as in the single-
use putCollection operation.

putCollectionResponse
The response for a successful putCollections operation looks like this example:

<putCollectionResponse xmlns="http://www.endeca.com/endeca-server/sconfig/3/0">
<collectionAdditionInformation numCollectionsAdded="1" numCollectionsReplaced="0"/>

</putCollectionResponse>

Version 7.6.1 • December 2013

The response shows that one new collection was added.

Collection update operation
The updateCollections operation lets you update collection configurations.

You can update the configuration of a collection, with the following restrictions and behavior:

• The collection key (the collectionKey attribute) cannot be changed. Note that you must specify the
collection key in the request so that Endeca Server can identify the collection to be updated.

• The display name (the displayName attribute) can be changed. If it is not used in the request, the
previous value is kept.

• The collection unique property key (the uniquePropertyKey attribute) cannot be changed. Note that
you do not have to specify the collection unique property key in the request.

• The description (the <description> element) can be changed. If it is not used in the request, the
previous value is kept.

• All metadata properties are first deleted by the operation, and then any that are specified (via the
<property key> element) are added. This means that if you have a metadata property that you do not
want to change but want to retain, you must re-specify it in the request.

Note that you cannot create new collections with this operation; you can only update existing collections.

The updateCollections operation lets you update multiple collections with the same request. To do so, use
multiple collectionUpdate elements within the <updateCollections> structure. Keep in mind,
however, that an updateCollections operation that updates multiple collections is atomic, which means that
either the operation is successful, (that is, all collections are successfully updated), or the entire operation fails
if at least one of the updates fail, (that is, none of the collections is updated).

updateCollections syntax
The updateCollections syntax is:

<updateCollections>
<outerTransactionId>?</outerTransactionId>
<language>en</language>
<collectionUpdate collectionKey="?" displayName="?" uniquePropertyKey="?">

<description>?</description>
<property key="?">?</property>

</collectionUpdate>
</updateCollections>

The outerTransactionId and language attributes are optional.

Oracle® Endeca Server: Developer's Guide

Collections 98

The meanings of the collection attributes are:

collectionUpdate attribute Description

collectionKey Required. The name of the collection to be updated. Note that you cannot
change the name of the collection key.

displayName Optional. If this attribute is used, the display name is changed to the
specified value. If omitted, the last assignment is kept.

uniquePropertyKey Optional. The name of the collection unique property key. If this attribute is
omitted or left blank, the last assignment is kept. Note that you cannot
change the name of the unique property key.

description Optional. If this attribute is used, the collection's description is changed to
the specified value. If omitted, the last assignment is kept.

property key Optional. You can use this attribute as follows:

• If no property key is used, then all existing metadata properties are
deleted from the collection record.

• If a property key is used, the metadata property is added to the
collection record.

updateCollections example
The following updateCollections soapUI example updates an existing collection named SalesRecs:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/sconfig/3/0">
<soapenv:Header/>
<soapenv:Body>

<ns:updateCollections>
<ns:language>en</ns:language>
<ns:collectionUpdate collectionKey="SalesRecs" displayName="Sales Order Records">

<ns:description>All sales order records for the company</ns:description>
<ns:property key="Locale">US East Coast</ns:property>

</ns:collectionUpdate>
</ns:updateCollections>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

The example updates the collection's display name and description, and adds the Locale metadata property.
Note that the collection's uniquePropertyKey parameter is not used for the request.

updateCollections response
The numCollectionsUpdated element in the updateCollectionsResponse message indicates the number
of collections that were successfully updated, as shown in this example:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>

<ns2:updateCollectionsResponse xmlns:ns2="http://www.endeca.com/endeca-server/sconfig/3/0">
<ns2:numCollectionsUpdated>2</ns2:numCollectionsUpdated>

Oracle® Endeca Server: Developer's Guide

Collections 99

</ns2:updateCollectionsResponse>
</env:Body>

</env:Envelope>

Version 7.6.1 • December 2013

In the example, two collections were updated. If the updateCollections operation was not successful, the
numCollectionsUpdated element will have 0 (zero) as its value.

Collection list operation
The listCollections operation returns a list of all the collections in a data domain.

listCollections syntax
The syntax for the listCollections operation is:

<listCollections>
<outerTransactionId>?</outerTransactionId>
<language>en</language>

</listCollections>

The outerTransactionId and language attributes are optional.

listCollections example
The following is an example of making a listCollections call from soapUI:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/sconfig/3/0">
<soapenv:Header/>
<soapenv:Body>

<ns:listCollections>
<ns:language>en</ns:language>

</ns:listCollections>
</soapenv:Body>

</soapenv:Envelope>

listCollections response

The list of returned collections might look like this example:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>

<ns2:listCollectionsResponse xmlns:ns2="http://www.endeca.com/endeca-server/sconfig/3/0">
<ns2:collectionRecord collectionKey="ProductRecs" displayName

="Product records" uniquePropertyKey="ProductId">
<ns2:description>Collects product records in the system</ns2:description>
<ns2:property key="PriceUnits">US dollars</ns2:property>
<ns2:collectionAttributes/>

</ns2:collectionRecord>
<ns2:collectionRecord collectionKey="SalesRecs" displayName="Sales orders" uniquePropertyKey

="SalesOrderCol">
<ns2:description>Collects the sales order records in the system</ns2:description>
<ns2:property key="Locale">New England</ns2:property>
<ns2:collectionAttributes/>

</ns2:collectionRecord>
</ns2:listCollectionsResponse>

</env:Body>
</env:Envelope>

Oracle® Endeca Server: Developer's Guide

Collections 100

The operation shows that the data domain currently has two collections defined: ProductRecs and SalesRecs.

Collection delete operations

There are two operations to delete collections.

The two delete operations are:

• deleteCollections deletes one or more collections, as specified by their collection keys.

• deleteAllCollections deletes all the collections at once, with no specification of their collection keys.

Note that there are no software pre-requirements for deleting a collection (that is, a collection can be deleted
at any time). However, it is highly recommended that you first delete the records in a collection before deleting
the collection itself, as described in Deleting a collection and its records on page 101.

Deleting specific collections
The deleteCollections operation allows you to delete one or more collections as specified by their collection
keys. The syntax is:

<deleteCollections>
<outerTransactionId>?</outerTransactionId>
<language>en</language>
<collectionKey collectionKey="?"/>

</deleteCollections>

Version 7.6.1 • December 2013

The collectionKey element specifies the collection key of the collection to be deleted (note that collection
names are case sensitive). The outerTransactionId and language attributes are optional.

The deleteCollections operation lets you delete multiple collections with the same request. To do so, use
multiple collectionKey elements within the <deleteCollections> structure. Keep in mind, however,
that a deleteCollections operation that deletes multiple collections is atomic, which means that either the
operation is successful (i.e., all collections are successfully deleted) or the entire operation fails if at least one
of the deletes fail (i.e., none of the collections is deleted).

This soapUI example deletes two collections:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/sconfig/3/0">
<soapenv:Header/>
<soapenv:Body>

<ns:deleteCollections>
<ns:language>en</ns:language>
<ns:collectionKey collectionKey="EmpRecs"/>
<ns:collectionKey collectionKey="ArchivedRecs"/>

</ns:deleteCollections>
</soapenv:Body>

</soapenv:Envelope>

If the request is successful, the numCollectionsDeleted element in the deleteCollectionsResponse

message indicates the number of collections that were successfully deleted, as shown in this example:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>

<ns2:deleteCollectionsResponse xmlns:ns2="http://www.endeca.com/endeca-server/sconfig/3/0">
<ns2:numCollectionsDeleted>2</ns2:numCollectionsDeleted>

</ns2:deleteCollectionsResponse>
</env:Body>

Oracle® Endeca Server: Developer's Guide

Collections 101

</env:Envelope>

Version 7.6.1 • December 2013

In the example, two collections were deleted. If the deleteCollections operation was not successful, the
numCollectionsDeleted element will have 0 (zero) as its value.

Deleting all collections at once
The deleteAllCollections operation allows you to delete all your existing collections at once, without
specifying their collection keys. The syntax for this operation is:

<deleteAllCollections>
<outerTransactionId>?</outerTransactionId>
<language>en</language>

</deleteAllCollections>

The outerTransactionId and language attributes are optional.

If the request is successful, the numCollectionsDeleted element in the deleteAllCollectionsResponse

message indicates the number of collections that were successfully deleted, as shown in this example:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>

<ns2:deleteAllCollectionsResponse xmlns:ns2="http://www.endeca.com/endeca-server/sconfig/3/0">
<ns2:numCollectionsDeleted>3</ns2:numCollectionsDeleted>

</ns2:deleteAllCollectionsResponse>
</env:Body>

</env:Envelope>

In the example, three collections were deleted. If the deleteAllCollections operation was not successful,
the numCollectionsDeleted element will have 0 (zero) as its value.

Deleting collections with entity dependencies
If you delete a collection that has an entity that depends on the collection, then the entity's isValid attribute
will be set to false. In this case, you should update the configuration of the entity to remove the dependency
on the deleted collection.

Deleting a collection and its records

This procedure describes how you first delete a collection's records and then delete the collection itself.

The procedure below uses soapUI to make the various API calls. However, you can create an Integrator ETL
graph that performs the same actions.

In the procedure, the actual deletion of the collection records is performed by the deleteRecords operation of
the Data Ingest Web Service:

<ingestChanges>
<deleteRecords>

<recordSpecifier>ResellerKey IS NOT NULL</recordSpecifier>
</deleteRecords>

</ingestChanges>

The EQL statement for the recordSpecifier element will use the collection's unique property key as a filter
for the records in the collection. That is, all records that have a non-NULL assignment for the unique property
key will be selected for deletion.

Oracle® Endeca Server: Developer's Guide

Collections 102

To delete a collection's records and then the collection itself:

1. Use the listCollections operation to obtain the name of the collection's unique property key.

In this sample response, the ResellerKey attribute is the unique property key of the Resellers
collection that is going to be deleted:

<collectionRecord collectionKey="Resellers" displayName="reseller data" uniquePropertyKey
="ResellerKey">

Version 7.6.1 • December 2013

2. Optionally, you can start an outer transaction for the delete operation, as in this example that uses the
Transaction Web Service's startOuterTransaction operation:

soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/transaction/1/0">
<soapenv:Header/>
<soapenv:Body>

<ns:startOuterTransaction>
<ns:OuterTransactionId>50</ns:OuterTransactionId>

</ns:startOuterTransaction>
</soapenv:Body>

</soapenv:Envelope>

If successful, the response should be similar to this example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<transaction:startOuterTransactionResponse xmlns:transaction="http://www.endeca.com
/MDEX/transaction/1/0">

<Started xmlns="http://www.endeca.com/MDEX/transaction/1/0">true</Started>
<OuterTransactionId xmlns="http://www.endeca.com/MDEX/transaction/1/0">50<

/OuterTransactionId>
</transaction:startOuterTransactionResponse>

</soapenv:Body>
</soapenv:Envelope>

3. Run the deleteRecords operation of ingestChanges with the unique property key of the collection:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">

<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:OuterTransactionId>50</ns:OuterTransactionId>
<ns:Language>en</ns:Language>
<ns:deleteRecords>

<ns:recordSpecifier>ResellerKey IS NOT NULL</ns:recordSpecifier>
</ns:deleteRecords>

</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

If the delete operation was successful, the response should be similar to this:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<ingest:ingestChangesResponse xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:numPropertiesCreated>0</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>0</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>334</ingest:numRecordsDeleted>

</ingest:ingestChangesResponse>
</soapenv:Body>

</soapenv:Envelope>

Oracle® Endeca Server: Developer's Guide

Collections 103

4. Use the deleteCollections operation to delete the collection.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/sconfig/3/0">
<soapenv:Header/>
<soapenv:Body>

<ns:deleteCollections>
<ns:outerTransactionId>50</ns:outerTransactionId>
<ns:language>en</ns:language>
<ns:collectionKey collectionKey="Resellers"/>

</ns:deleteCollections>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

If the deleteCollections operation was successful, the response should look like this:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>

<ns3:deleteCollectionsResponse xmlns:ns2="http://www.endeca.com/MDEX/eql_parser/types"
xmlns:ns3="http://www.endeca.com/endeca-server/sconfig/3/0">

<ns3:numCollectionsDeleted>1</ns3:numCollectionsDeleted>
</ns3:deleteCollectionsResponse>

</env:Body>
</env:Envelope>

5. Use the deleteFilterRules operation to delete the filter rules that reference the now-deleted
collection:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/sconfig/3/0">
<soapenv:Header/>
<soapenv:Body>

<ns:deleteFilterRules>
<ns:outerTransactionId>50</ns:outerTransactionId>
<ns:language>en</ns:language>
<ns:filterRuleKey filterRuleKey="ResellerRule"/>

</ns:deleteFilterRules>
</soapenv:Body>

</soapenv:Envelope>

If the delete filter rule operation was successful, the response should look like this:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>

<ns3:deleteFilterRulesResponse xmlns:ns2="http://www.endeca.com/MDEX/eql_parser/types"
xmlns:ns3="http://www.endeca.com/endeca-server/sconfig/3/0">

<ns3:numFilterRulesDeleted>1</ns3:numFilterRulesDeleted>
</ns3:deleteFilterRulesResponse>

</env:Body>
</env:Envelope>

6. If you had started an outer transaction for the delete operation, use the Transaction Web Service's
commitOuterTransaction operation to commit the transaction:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/transaction/1/0">

<soapenv:Header/>
<soapenv:Body>

<ns:commitOuterTransaction>
<ns:OuterTransactionId>50</ns:OuterTransactionId>

</ns:commitOuterTransaction>
</soapenv:Body>

</soapenv:Envelope>

If the commit was successful, the response should look like this:

Oracle® Endeca Server: Developer's Guide

Collections 104

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<transaction:commitOuterTransactionResponse xmlns:transaction="http://www.endeca.com
/MDEX/transaction/1/0">

<Committed xmlns="http://www.endeca.com/MDEX/transaction/1/0">true</Committed>
<OuterTransactionId xmlns="http://www.endeca.com/MDEX/transaction/1/0">50<

/OuterTransactionId>
</transaction:commitOuterTransactionResponse>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

Note that procedure does not delete the PDRs of the record attributes. The PDRs do not take up much
memory, and having them in the Dgraph will make it easier to re-ingest the source records if you later decide
to rebuild the collection. However, it is a good idea to check your search interfaces and attribute groups and
remove any attributes that are no longer used.

Collection Definition Records
A CDR (Collection Definition Record) defines a specific collection in the Dgraph.

A collection is represented in the Dgraph by a Collection Definition Record (CDR). A CDR is created when the
putCollection and the putCollections operations are successful. Although CDRs are not user-visible, the
listCollections operation in effect returns a representation of the CDR via the collectionRecord
element.

When the CDR is first created, it looks like this example when shown via the listCollections operation:

<collectionRecord collectionKey="Products" displayName="Product data" uniquePropertyKey="ProductID">
<description>product records for the region</description>
<property key="Region">New England</property>
<collectionAttributes/>

</collectionRecord>

Note that the collectionAttributes field is empty, which means that no records are associated with this
collection at this time.

After source records are ingested into the data domain, the attributes that are tagged on to collection-related
records (i.e., records that have a uniquePropertyKey assignment) are added to the CDR with
collectionAttribute attributes, as in this example from a listCollections operation:

<collectionRecord collectionKey="Products" displayName="Product data" uniquePropertyKey="ProductID">
<description>product records for the region</description>
<property key="Region">New England</property>
<collectionAttributes>

<collectionAttribute propertyKey="Class"/>
<collectionAttribute propertyKey="Color"/>
<collectionAttribute propertyKey="DaysToManufacture"/>
<collectionAttribute propertyKey="DealerPrice"/>
<collectionAttribute propertyKey="FinishedGoodsFlag"/>
<collectionAttribute propertyKey="ListPrice"/>
<collectionAttribute propertyKey="ModelName"/>
<collectionAttribute propertyKey="ProductID"/>
<collectionAttribute propertyKey="ProductLine"/>
<collectionAttribute propertyKey="ProductSubcategoryKey"/>
<collectionAttribute propertyKey="ReorderPoint"/>
<collectionAttribute propertyKey="SafetyStockLevel"/>
<collectionAttribute propertyKey="Size"/>
<collectionAttribute propertyKey="SizeRange"/>
<collectionAttribute propertyKey="SizeUnitMeasureCode"/>
<collectionAttribute propertyKey="StandardCost"/>
<collectionAttribute propertyKey="Status"/>

Oracle® Endeca Server: Developer's Guide

Collections 105

<collectionAttribute propertyKey="Style"/>
<collectionAttribute propertyKey="Weight"/>

</collectionAttributes>
</collectionRecord>

Version 7.6.1 • December 2013

Now the collectionAttributes field has been populated with the record attributes that comprise this
collection.

collectionRecord properties
The collectionRecord element has the properties listed in this table. The properties (with the exception of
the collectionAttribute properties) are initially set by the user via the collection attributes of a
putCollection or putCollections operation:

collectionRecord Property Description

collectionKey The name of the collection, used to specify this collection in all Endeca
Server APIs (including queries). Set via the
collection::collectionKey attribute.

displayName An arbitrary string value that can be used by applications, intended for
use as a user-friendly display name of the collection. Set via the
collection::displayName attribute.

uniquePropertyKey The standard attribute that determines which records will be part of this
collection. Set via the collection::uniquePropertyKey attribute.

description An arbitrary string value that can be used by applications, intended for
use as a description of the collection. Set via the
collection::description attribute.

property key String metadata that is associated with the collection. Set via the
collection::property key attribute.

collectionAttribute A standard attribute that belongs to the collection. These properties are
propertyKey added by the Dgraph during a record ingest operation and cannot be

modified by the user.

Procedure for creating collections in the data domain
This topic provides a high-level overview of the steps necessary to create a collection.

The procedure assumes that your are creating two collections: Products (with the ProductID standard attribute
as its unique property key) and Sales (with the SalesID standard attribute as its unique property key). It also
assumes that each source record (when ingested) will have an assignment of either the ProductID attribute (in
which case it will belong to the Products collection) or the SalesID attribute (in which case it will belong to the
Sales collection).

Oracle® Endeca Server: Developer's Guide

Collections 106

To create a collection:

1. Create an empty Endeca data domain.

For example, you can use the Endeca Server create-dd command.

2. Load the attribute schema (i.e., the PDRs for the standard attributes) into the data domain. In
particular, make sure you create the ProductID and SalesID standard attributes as single-assign,
unique attributes.

3. Create the collections, as in this example that uses the putCollections operation:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/sconfig/3/0">
<soapenv:Header/>
<soapenv:Body>

<ns:putCollections>
<ns:language>en</ns:language>
<ns:collection collectionKey="Products" displayName="Product data" uniquePropertyKey

="ProductID">
<ns:description>product records for the region</ns:description>
<ns:property key="Region">New England</ns:property>

</ns:collection>
<ns:collection collectionKey="Sales" displayName="Sales data" uniquePropertyKey

="SalesID">
<ns:description>sales information</ns:description>
<ns:property key="Currency">$</ns:property>

</ns:collection>
</ns:putCollections>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

4. Load the source records into the data domain.

As mentioned above, each source record should have an assignment of either the ProductID or
SalesID attribute, which will also serve as the record spec (primary key) for the records.

When the ingest operation has finished, the results of a listCollections operation would return the following
list (which is abbreviated for ease of reading):

<listCollectionsResponse xmlns="http://www.endeca.com/endeca-server/sconfig/3/0">
<collectionRecord collectionKey="Products" displayName="Product data" uniquePropertyKey

="ProductID">
<description>Collection of Product information</description>
<property key="Locale">US region</property>
<collectionAttributes>

<collectionAttribute propertyKey="Color"/>
<collectionAttribute propertyKey="DealerPrice"/>
...
<collectionAttribute propertyKey="Style"/>
<collectionAttribute propertyKey="Weight"/>

</collectionAttributes>
</collectionRecord>
<collectionRecord collectionKey="Sales" displayName="Sales data" uniquePropertyKey="SalesID">

<description>Collection of Sales information</description>
<property key="Currency">$</property>
<collectionAttributes>

<collectionAttribute propertyKey="FactSales_CurrencyKey"/>
<collectionAttribute propertyKey="FactSales_CustomerPONumber"/>
...
<collectionAttribute propertyKey="FactSales_TotalProductCost"/>
<collectionAttribute propertyKey="FactSales_UnitPrice"/>

</collectionAttributes>
</collectionRecord>

</listCollectionsResponse>

Oracle® Endeca Server: Developer's Guide

Collections 107

The listCollectionsResponse shows the two Products and Sales collections that were created in step 3. It
also shows that the Dgraph has populated the CDRs with the attributes from records that have an assignment
from the unique property key of a collection.

Using collections in queries
You can specify a collection in a query state.

The CollectionName element of the State type lets you specify the name of a collection to be used in a
query. You can specify a maximum of one collection per state. However, you can use multiple states in a
query, with each state potentially specifying a collection name.

Once you associate a collection with a state, then operations performed by that state will reference that
collection. For example, a record search in a state with a collection name will search for records only in that
collection. However, if the collection has one or more filter rules configured, then a SelectionFilter or
SelectedRefinementFilter query will trigger that filter rule, which will make use of records in the target
collection. For more information on filter rules (see Filter Rules on page 109).

The query syntax for specifying a collection name is:

<Request>
...
<State>

<Name>?</Name>
<CollectionName>?<CollectionName>
...

</State>
...

</Request>

Version 7.6.1 • December 2013

where:

• Name is the name of the state.

• CollectionName is the name of an existing collection.

If you have a named state, you can then specify it in a ContentElementConfig in the query.

Example of using collections in queries

This query has one state (SalesRecs) that specifies the Sales collection and a second state (Resellers)
associated with the Resellers collection. In addition, there is a filter rule that has the Sales collection as the
source collection and the Resellers collection as the target collection. The RecordCountConfig type is
associated with the SalesRecs state and will list the number of records from the query:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<Language>en</Language>
<State>

<Name>SalesRecs</Name>
<CollectionName>Sales</CollectionName>
<SelectionFilter Id="SalesFltr">

<filterString>FactSales_SalesAmount > 1000</filterString>
</SelectionFilter>

</State>
<State>

<Name>ResellerRecs</Name>
<CollectionName>Resellers</CollectionName>

</State>
<RecordListConfig Id="Results">

<StateName>SalesRecs</StateName>
</RecordCountConfig>

Oracle® Endeca Server: Developer's Guide

Collections 108

</Request>

Version 7.6.1 • December 2013

The results from the query may look like this abbreviated example:

<cs:Results ...>
<State ...>

<Name>SalesRecs</Name>
<CollectionName>Sales</CollectionName>
<DataSourceFilter>

<filterString>"FactSales_ProductKey" IS NOT NULL</filterString>
</DataSourceFilter>
<SelectionFilter Id="SalesFltr">

<filterString>FactSales_SalesAmount > 1000</filterString>
</SelectionFilter>

</State>
<State ...>

<Name>ResellerRecs</Name>
<CollectionName>Resellers</CollectionName>
<DataSourceFilter>

<filterString>"DimReseller_ResellerKey" IS NOT NULL</filterString>
</DataSourceFilter>
<SelectionFilter>

<filterString>"DimReseller_AnnualSales" > 1000</filterString>
<AppliedFilterRule>

<Source FilterId="SalesFltr">
<StateName>SalesRecs</StateName>

</Source>
<TargetPropertyKey>DimReseller_AnnualSales</TargetPropertyKey>

</AppliedFilterRule>
</SelectionFilter>

</State>
<cs:RecordCount Id="Results">

<cs:NumRecords>115</cs:NumRecords>
</cs:RecordCount>

</cs:Results>

In the response, note that the ResellerRecs state shows that a SelectionFilter implicit filter was run on the
Resellers collection. The AppliedFilterRule element lists the source (filter ID and state) of the implicit
filter.

Note that if you specified a non-existent collection, the query will fail with this fault string:

<Fault>
<faultcode>env:Server</faultcode>
<faultstring>OES-000190: Collection 'Producs' does not exist.</faultstring>
<detail>

<Fault xmlns:ns2="http://www.endeca.com/MDEX/eql_parser/types"
xmlns:ns3="http://www.endeca.com/MDEX/conversation/3/0"/>

</detail>
</Fault>

Automatic addition of data source filter
During processing of a query, Endeca Server will automatically create and add a DataSourceFilter to all
states that provide a collection name. The filter is similar to the example above:

<cs:Results ...>
<State ...>

<Name>ResellerRecs</Name>
<CollectionName>Resellers</CollectionName>
<DataSourceFilter>

<filterString>"DimReseller_ResellerKey" IS NOT NULL</filterString>
</DataSourceFilter>
<SelectionFilter>

<filterString>"DimReseller_AnnualSales" > 1000</filterString>
<AppliedFilterRule>

Oracle® Endeca Server: Developer's Guide

Collections 109

<Source FilterId="SalesFltr">
<StateName>SalesRecs</StateName>

</Source>
<TargetPropertyKey>DimReseller_AnnualSales</TargetPropertyKey>

</AppliedFilterRule>
</SelectionFilter>

</State>
...

</cs:Results>

Version 7.6.1 • December 2013

The purpose of adding the DataSourceFilter with the collection's unique property key ("ProductKey" in the
example) is to limit the search to the records in the collection.

Using collections in EQLConfig queries
A FROM clause in an EQL query cannot directly reference a collection, but it can reference a state. However, if
the state specifies a collection name, then the collection can be used via the state.

This simple EQL query uses the EQLConfig type:

<Request>
<Language>en</Language>
<State>

<Name>TotalSales</Name>
<CollectionName>Sales</CollectionName>

</State>
<ns:EQLConfig Id="EQLQuery">

<StateName>TotalSales</StateName>
<EQLQueryString>

RETURN Results AS
SELECT ARB(FactSales_SalesAmount) AS totalAmount
FROM TotalSales
GROUP BY FactSales_OrderQuantity

</EQLQueryString>
</EQLConfig>

</Request>

The FROM clause specifies the TotalSales state as the source. Because the TotalSales state specifies the
Sales collection, the records from that collection are used.

Oracle® Endeca Server: Developer's Guide

Chapter 9

Filter Rules

This section discusses how filter rules work, and how to create and apply them.

About filter rules

Filter rule operations

Filter Rule Definition Records

About filter rules
When filter rules are enabled, filters present in the client request will cause the request to be processed as if it
also included other filters that are automatically generated by the filter rules.

Filter rules express a relationship between a source attribute (in the context of a source collection), and a
target attribute (in the context of a target collection). A filter rule implements a map from a filter on the source
attribute in the source collection to a filter on the target attribute in the target collection. A filter rule is
directional; that is, it maps only from the source attribute to the target attribute, but not backwards.

Note: In Studio, filter rules are called refinement rules.

Only the SelectionFilter and SelectedRefinementFilter components support filter rules. (The
DataSourceFilter, TextSearchFilter, and RecordKind components do not support filter rules.)

Note that the Conversation Service does not provide a means to specify which filter rules should be applied.
Instead, all currently configured filter rules that are applicable to a request will be applied to that request.

Choosing the source and target attributes

When you refine a source collection by the source attribute of a filter rule, the target collection is also refined
by the target attribute. Therefore, filter rules work best when the source and target attributes have the same or
similar sets of values.

For example, assume that a Sales collection contains a BikeType attribute that lists the model of a bicycle that
was sold. The Resellers collection also contains a BikeModel attribute that contains similar data. You then
create a filter rule that uses the Sales BikeType attribute as the source attribute and the Resellers BikeModel
attribute as the target attribute. When you then refine the Sales collection by its BikeType attribute, the
Resellers collection will likewise be refined by its BikeModel attribute. Programmatically, this means:

// This explicit filter is first applied to the Sales collection.
<SelectionFilter Id="SalesFltr">

<filterString>BikeType = 'mountain'</filterString>
</SelectionFilter>

// This implicit filter is then applied to the Resellers collection.
<SelectionFilter Id="SalesFltr">

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Filter Rules 111

<filterString>BikeModel = 'mountain'</filterString>
</SelectionFilter>

Version 7.6.1 • December 2013

The term "explicit filter" means that the SelectionFilter filter appears in the state that references the Sales
collection, but is not present in the state for the Resellers collection. However, when the query is run, the filter
in the Sales state (which uses the source attribute) is implicitly constructed for the Resellers collection (using
the target attribute).

For these reasons, the data type of both source and target attributes must be the same (for example, both are
mdex:string). If you are using the SelectionFilter component, then both source and target attributes
must have the same mdex-property_IsSingleAssign setting (i.e., both must be single-assign attributes
or both must be multi-assign attributes).

Conditions for the application of filter rules

The following conditions must exist in order for a filter rule to be applied in a query:

• The query must be made via the SelectionFilter or SelectedRefinementFilter components.

• A filter rule must exist that references one source attribute (from as the source collection) and one target
attribute (from the target collection).

• The filter rule must have an active status (that is, its isActive flag must be set to true).

• The query must have one state that references the source collection and a second state that references
the target collection.

• The filter rule will be applied only to managed attribute and standard attribute refinement selections.

• A filter rule will be considered to match a filter if the single filter attribute matches the source attribute of
the filter rule and the collection associated with the request component containing the filter matches the
source collection of the filter rule.

• In a SelectionFilter query, only one attribute (managed or standard) can be used in the EQL query
statement. The reason is that only one attribute from the explicit query can be substituted in the implicit
query. (Note that the SelectedRefinementFilter syntax allows only one attribute to be specified.)

To elaborate on the last bullet item, these are valid and invalid examples of SelectionFilter queries for filter
rules:

// Valid because only one attribute (SalesAmount) is used.
// The filter rule is applied.
<SelectionFilter Id="SalesFltr">

<filterString>SalesAmount > 1000</filterString>
</SelectionFilter>

// Valid because only one attribute (SalesAmount) is used.
// The filter is applied.
<SelectionFilter Id="SalesFltr">

<filterString>SalesAmount < 100 OR SalesAmount > 500</filterString>
</SelectionFilter>

// Invalid because two attributes (SalesAmount and QuantityOrder) are used.
// The query is processed, but the filter rule is not applied.
<SelectionFilter Id="SalesFltr">

<filterString>SalesAmount > 1000 OR QuantityOrder > 500</filterString>
</SelectionFilter>

Keep in mind that when a filter rule is applied, the request returns two sets of records: one for each collection.
It is up to the design of the front-end application as to how to handle the resulting record sets.

Oracle® Endeca Server: Developer's Guide

Filter Rules 112

For information on how to construct a query that references collections and applies a filter rule, see Using
collections in queries on page 107.

Filter rule operations
This section describes the operations used to create and manage filter rules.

All of the filter rule operations have optional outerTransactionId and language elements, as in this
syntax for the listFilterRules operation:

<listFilterRules>
<!--Optional:-->
<outerTransactionId>?</outerTransactionId>
<!--Optional:-->
<language>en</language>

</listFilterRules>

Version 7.6.1 • December 2013

Because their functionality is identical across all the filter rule operations, the two elements are described here
instead of in the descriptions for each operation.

outerTransactionId element
The optional outerTransactionId element specifies the ID of an outer transaction (if it has been started by
the Transaction Web Service). It is incorrect to specify an outer transaction ID when an outer transaction is not
in progress. All configuration requests with incorrectly specified outer transaction IDs fail with a SOAP fault.

Most of the operations (such as deleteFilterRules) can work on multiple filter rules with the same request.
These operations, however, are atomic, which means that either the operation is successful (i.e., all filter rules
are successfully affected) or the entire operation fails if at least one of the filter rules cannot be modified). To
prevent leaving the filter rule records in a undeterministic state, you can first open a transaction, run the
operation with the outerTransactionId element, and then roll back the transaction if the operation failed.

language element
The optional language element sets the language for error messages that result from EQL parsing. The
default language for error messages is en (English). For details on this element and its supported language
codes, see the description of the Language element for the Conversation Web Service in Language codes for
EQL error messages on page 127.

Filter rule create operations

Filter rules list operation

Filter rule delete operations

Filter rule create operations

There are two operations to create filter rules.

The putFilterRule operation creates or updates a single filter rule while the putFilterRules operation can
create or update multiple filter rules at once. Both operations result in an FRDR (Filter Rule Definition Record)
being created or updated in the Dgraph.

Oracle® Endeca Server: Developer's Guide

Filter Rules 113

With both operations, if the filter rule already exists, then the operation will work in update mode rather than
create mode.

putFilterRule syntax
The putFilterRule operation creates one filter rule with this syntax:

<putFilterRule>
<outerTransactionId>?</outerTransactionId>
<language>en</language>
<filterRule filterRuleKey="?" displayName="?" sourceCollectionKey="?" sourcePropertyKey="?"

targetCollectionKey="?" targetPropertyKey="?" isActive="?"/>
</putFilterRule>

Version 7.6.1 • December 2013

The meanings of the filter rule attributes are as follows:

Filter rule attribute Meaning

filterRuleKey A unique identifier for the filter rule to be created or updated. For a
create mode, the key name does not have to be in the NCName
format but must be unique among filter rule names. Required.

displayName Defines the display name which may be used by the front-end
application such as Studio. The display name can be any arbitrary
string. Optional.

sourceCollectionKey Specifies the name (a collectionKey attribute value) of an existing
collection that will be the source collection. Required.

sourcePropertyKey Specifies the name (an mdex-property_Key attribute value) of an
existing PDR that will be the source property. The source property
must belong to the source collection. Required.

targetCollectionKey Specifies the name (a collectionKey attribute value) of an existing
collection that will be the target collection. Required.

targetPropertyKey Specifies the name (an mdex-property_Key attribute value) of an
existing PDR that will be the target property. The target property must
belong to the target collection. The target property and the source
property must be the same data type (mdex-property_Type). For
example, both can be an mdex:string data type. Note that if you
make a SelectionFilter query, then both the target and source
properties must have the same mdex-property_IsSingleAssign
setting. Required.

isActive Specifies a boolean value that determines whether this filter rule is
active (true) or inactive (false). An Inactive filter rule is not used as
part of a query. An inactive state thus allows you to save an
incomplete filter rule (which you will later correct) or to save the filter
rule for later use (at which time you will activate it). A filter rule must be
active in order for it to be used in queries. Note that when saving an
entity, isActive must be explicitly set. Required.

Oracle® Endeca Server: Developer's Guide

Filter Rules 114

putFilterRule example
The following putFilterRule soapUI example creates a filter rule named ProductRule:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/sconfig/3/0">
<soapenv:Header/>
<soapenv:Body>

<ns:putFilterRule>
<ns:language>en</ns:language>
<ns:filterRule filterRuleKey="ProductRule" displayName="filter for products and sales"

sourceCollectionKey="Products" sourcePropertyKey="ProductName"
targetCollectionKey="Sales" targetPropertyKey="SalesOrderNumber" isActive="true"/>

</ns:putFilterRule>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

Because the isActive is set to true, the filter rule is active and can be used in queries.

putFilterRuleResponse
The response for a successful putFilterRule operation looks like this example:

<putFilterRuleResponse xmlns:ns2="http://www.endeca.com/endeca-server/sconfig/3/0">
<ns2:filterRuleAdditionInformation numFilterRulesAdded="1" numFilterRulesReplaced="0"/>

</ns2:putFilterRuleResponse>

For a create operation, the numFilterRulesAdded attribute in the response shows the number of new filter
rules. For an update operation, the numFilterRulesReplaced lists the number of filter rules that were
updated.

putFilterRules syntax
The putFilterRules operation lets you create multiple filter rules at once, using this syntax:

<putFilterRules>
<outerTransactionId>?</outerTransactionId>
<language>en</language>
<filterRule filterRuleKey="?" displayName="?"

sourceCollectionKey="?" sourcePropertyKey="?"
targetCollectionKey="?" targetPropertyKey="?" isActive="?"/>

</putFilterRules>

You can supply multiple filterRule elements, which have the same syntax and meanings as in the single-
use putFilterRule operation.

Filter rules list operation
The listFilterRules operation returns a list of all the filter rules in a data domain.

listFilterRules operation
The syntax for the listFilterRules operation is:

<listFilterRules>
<outerTransactionId>?</outerTransactionId>
<language>en</language>

</listFilterRules>

Oracle® Endeca Server: Developer's Guide

Filter Rules 115

The outerTransactionId and language attributes are optional.

listFilterRules example
The following is an example of making a listFilterRules call from soapUI:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/sconfig/3/0">
<soapenv:Header/>
<soapenv:Body>

<ns:listFilterRules>
<ns:language>en</ns:language>

</ns:listFilterRules>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

listFilterRules response
The result from a listFilterRules operation looks like this example:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>

<ns2:listFilterRulesResponse xmlns:ns2="http://www.endeca.com/endeca-server/sconfig/3/0">
<ns2:filterRule filterRuleKey="ProductRule" displayName="filter for products and sales?"

sourceCollectionKey="Products" sourcePropertyKey="EnglishProductName"
targetCollectionKey="Sales" targetPropertyKey="FactSales_SalesOrderNumber" isActive

="true"/>
</ns2:listFilterRulesResponse>

</env:Body>
</env:Envelope>

The listFilterRulesResponse shows that one filter rule (named ProductRule) has been created.

Filter rule delete operations

There are two operations to delete filter rules.

The two delete operations are:

• deleteFilterRules deletes one or more filter rules, as specified by their keys.

• deleteAllFilterRules deletes all the filter rules at once, with no specification of their keys.

Note that there are no pre-requirements for deleting a filter rule (i.e., it can be deleted at any time).

Deleting specific filter rules
The deleteFilterRules operation allows you to delete one or more filter rules as specified by their keys. The
syntax is:

<deleteFilterRules>
<outerTransactionId>?</outerTransactionId>
<language>en</language>
<filterRuleKey filterRuleKey="?"/>

</deleteFilterRules>

The filterRuleKey element specifies the key name of the filter rule to be deleted. The
outerTransactionId and language attributes are optional.

Oracle® Endeca Server: Developer's Guide

Filter Rules 116

The deleteFilterRules operation lets you delete multiple filter rules with the same request. To do so, use
multiple filterRuleKey elements within the <deleteFilterRules> structure. Keep in mind, however,
that a deleteFilterRules operation that deletes multiple filter rules is atomic, which means that either the
operation is successful (i.e., all filter rules are successfully deleted) or the entire operation fails if at least one
of the deletes fail (i.e., none of the filter rules is deleted).

This soapUI example deletes two filter rules:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/sconfig/3/0">
<soapenv:Header/>
<soapenv:Body>

<ns:deleteFilterRules>
<ns:language>en</ns:language>
<ns:filterRuleKey filterRuleKey="SalesRules"/>
<ns:filterRuleKey filterRuleKey="RegionRules"/>

</ns:deleteFilterRules>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

If the request is successful, the numFilterRulesDeleted element in the deleteFilterRulesResponse

message indicates the number of filter rules that were successfully deleted, as shown in this example:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>

<ns2:deleteFilterRulesResponse xmlns:ns2="http://www.endeca.com/endeca-server/sconfig/3/0">
<ns2:numFilterRulesDeleted>2</ns2:numFilterRulesDeleted>

</ns2:deleteFilterRulesResponse>
</env:Body>

</env:Envelope>

In the example, two filter rules were deleted. If the deleteFilterRules operation was not successful, the
numFilterRulesDeleted element will have 0 (zero) as its value.

Deleting all filter rules at once
The deleteAllFilterRules operation allows you to delete all your existing filter rules at once, without
specifying their filter rule keys. The syntax for this operation is:

<deleteAllFilterRules>
<outerTransactionId>?</outerTransactionId>
<language>en</language>

</deleteAllFilterRules>

The outerTransactionId and language attributes are optional.

If the request is successful, the numFilterRulesDeleted element in the deleteAllFilterRulesResponse

message indicates the number of filter rules that were successfully deleted, as shown in this example:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>

<ns2:deleteAllFilterRulesResponse xmlns:ns2="http://www.endeca.com/endeca-server/sconfig/3/0">
<ns2:numFilterRulesDeleted>3</ns2:numCollectionsDeleted>

</ns2:deleteAllFilterRulesResponse>
</env:Body>

</env:Envelope>

In the example, three filter rules were deleted. If the deleteAllFilterRules operation was not successful,
the numFilterRulesDeleted element will have 0 (zero) as its value.

Oracle® Endeca Server: Developer's Guide

Filter Rules 117

Filter Rule Definition Records
An FRDR (Filter Rule Definition Record) defines a specific filter rule in the Dgraph.

A filter rule is represented in the Dgraph by a Filter Rule Definition Record (FRDR). An FRDR is created when
the putFilterRule and putFilterRules operations are successful. Although FRDRs are not user-visible, the
listFilterRules operation in effect returns a representation of the FRDR via the filterRule element.

The following is example from a listFilterRules operation:

<ns3:listFilterRulesResponse xmlns:ns2="http://www.endeca.com/MDEX/eql_parser/types"
xmlns:ns3="http://www.endeca.com/endeca-server/sconfig/3/0">
<ns3:filterRule filterRuleKey="ProductRule" displayName="filter for products" sourceCollectionKey

="Products"
sourcePropertyKey="EnglishProductName" targetCollectionKey="Resellers" targetPropertyKey

="DimReseller_ProductLine"
isActive="true"/>

<ns3:filterRule filterRuleKey="SalesRule" displayName="filter for sales" sourceCollectionKey
="Sales"

sourcePropertyKey="FactSales_SalesAmount" targetCollectionKey="Resellers" targetPropertyKey
="DimReseller_AnnualSales"

isActive="true"/>
</ns3:listFilterRulesResponse>

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Chapter 10

EQL Record Filters

This section describes how to configure and use EQL record filters.

About EQL record filters

SelectionFilter format

DataSourceFilter format

EQL operators for filterString filters

Language codes for EQL error messages

Range filters

Geocode filters

Managed attribute hierarchy filters

Boolean attribute filters

Using EQL filters with record and value searches

EQLConfig requests

About EQL record filters
EQL record filters let you define arbitrary subsets of the total record set, and dynamically restrict search and
navigation results to these subsets.

The Conversation Web Service has two filtering components that allow you to use the Endeca Query
Language (EQL) to provide filters for your query using EQL syntax:

• DataSourceFilter

• SelectionFilter

Both filters are used in the state of the query. The filter language for both filters is basically the record-filtering
WHERE clause expression from EQL.

More details on the filter syntax and available EQL operators are provided in later topics.

DataSourceFilter
The DataSourceFilter component filters the corpus of records before any other processing is done. In other
words, this filter is applied first, and makes the universe of data that is visible to your query smaller. This
means that filtered-out records will not contribute to spell correction, and will not be available as part of
AllBaseRecords in EQL. The DataSourceFilter supports queries against collections (as specified in the
state).

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

EQL Record Filters 119

Because DataSourceFilter restricts the searchable records to a specified subset of the total records in the
Dgraph, it can be used as a security filter to prevent users from obtaining records that they are not authorized
to view. In EQL terms, AllBaseRecords corresponds to the records that pass the DataSourceFilter filter.

Note while processing a query, Endeca Server automatically adds a DataSourceFilter to any state that
contains a collection name. For more information, see Automatic addition of data source filter on page 108.

SelectionFilter
After the universe of records has been narrowed by DataSourceFilter, the SelectionFilter component is
used for additional application-level filtering. It specifies the criteria for the final record result set. The results
that are returned are the records that match all of the filters specified in the query.

The SelectionFilter supports queries against collections (as specified in the state). Any filter rules
associated with those collections are automatically invoked in the query. If an implicit filter is generated by a
request, the resulting information about that implicit filter is returned in the AppliedFilterRule element.

SelectionFilter also determines which data is available for refinement computation. NavStateRecords
corresponds to the records that pass all filters (including SelectionFilter).

Using multiple EQL filters in a query
A state can have multiple DataSourceFilter and/or SelectionFilter filters. In this case, each filter must
have a unique name within the state.

If two or more filters are specified (for example, two SelectionFilter elements), the returned record set
represents an intersection of the multiple searches. For example, if one SelectionFilter filter is searching
for Color=red and the other SelectionFilter filter is searching for Color=blue, then each record in the
resulting record set will have both "red "and "blue" assignments (rather than having a union of all "red" records
and all "blue" records).

Dgraph enablement

No Dgraph process configuration flags are necessary to enable EQL record filters.

SelectionFilter format
The SelectionFilter type is a record filter that uses EQL query syntax.

There are two versions of SelectionFilter:

• filterString, in which the filter is expressed as an EQL string.

• filterAST, in which the filter is expressed as ExpressionBase sub-types.

When used with a collections that have filter rules, both versions will run the collection filter rule, which entails
generating an implicit filter on the target collection.

SelectionFilter filterString version
The syntax for the filterString version of the SelectionFilter is:

<SelectionFilter Id="?">
<filterString>?</filterString>
<AppliedFilterRule>

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

EQL Record Filters 120

<Source FilterId="?">
<StateName>?</StateName>

</Source>
<TargetPropertyKey>?</TargetPropertyKey>

</AppliedFilterRule>
</SelectionFilter>

Version 7.6.1 • December 2013

The meanings of the attributes are:

Attribute Meaning

Id Optional. An identifier for this filter configuration. The identifier is
needed only when using filter rules. The identifier must be unique
among other filter identifiers in the state.

filterString Required. Specifies a filter string using the EQL WHERE clause syntax.
The WHERE expression uses one or more attributes whose values are
to be tested, and one or more test conditions. For details on the
syntax, see EQL operators for filterString filters on page 125.

AppliedFilterRule Optional. Used for collections and filter rules. If present, indicates that
the filter was implicitly generated and supplies relevant information.

Source Optional. Information about the source of the implicit filter. If the
implicit filter has been derived via a filter rule, the Source names the
identifier of the filter and the State where it came from.

FilterId Optional. The identifier of an implicit filter.

StateName Optional. Specifies the name of a named state from which the implicit
filter came.

TargetPropertyKey Optional. The key that is derived from the filter rule. This is the target
attribute that was used when the filter rule was applied.

Use of the AppliedFilterRule element
The AppliedFilterRule elements are used to display information about the source of an applied filter. If a
filter was implicitly created via a filter rule, the StateName and FilterId elements indicate its origin

The TargetPropertyKey element (if present) indicates the name of the target attribute used in the
generated filter. One use of this target attribute in your front-end application is in generating breadcrumbs
reflecting the filter-rule-applied filter.

To illustrate these elements, assume that you have this environment:

• two collections named Sales and Resellers

• the Sales collection has an attribute named FactSales_SalesAmount, which is used for the
SelectionFilter (which has an identifier of SalesFltr)

• a filter rule uses the Sales collection FactSales_SalesAmount attribute as the source property key and the
Resellers collection DimReseller_AnnualSales attribute as the target property key

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 121

The request has two states (SalesQuery and Resell), one for each collection (note that some SOAP elements
are removed for ease of reading):

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<Language>en</Language>
<State>

<Name>ProdRecs</Name>
<CollectionName>Sales</CollectionName>
<SelectionFilter Id="SalesFltr">

<filterString>FactSales_SalesAmount > 1000</filterString>
</SelectionFilter>

</State>
<State>

<Name>ResellerRecs</Name>
<CollectionName>Resellers</CollectionName>

</State>
<RecordCountConfig Id="NumRecs">

<StateName>ProdRecs</StateName>
</RecordCountConfig>

</Request>

Version 7.6.1 • December 2013

The Results information might look like this:

<cs:Results>
<State>

<Name>SalesQuery</Name>
<CollectionName>Sales</CollectionName>
<DataSourceFilter>

<filterString>"FactSales_ProductKey" IS NOT NULL</filterString>
</DataSourceFilter>
<SelectionFilter Id="SalesFlt">

<filterString>FactSales_SalesAmount > 500</filterString>
</SelectionFilter>

</State>
<State>

<Name>Resell</Name>
<CollectionName>Resellers</CollectionName>
<DataSourceFilter>

<filterString>"DimReseller_ResellerKey" IS NOT NULL</filterString>
</DataSourceFilter>
<SelectionFilter>

<filterString>"DimReseller_AnnualSales" > 500</filterString>
<AppliedFilterRule>

<Source FilterId="SalesFlt">
<StateName>SalesQuery</StateName>

</Source>
<TargetPropertyKey>DimReseller_AnnualSales</TargetPropertyKey>

</AppliedFilterRule>
</SelectionFilter>

</State>
<cs:RecordCount Id="NumRecs">

<cs:NumRecords>180</cs:NumRecords>
</cs:RecordCount>

</cs:Results>

The SalesQuery state in the results shows the following:

• A DataSourceFilter (using the Sales collection key FactSales_ProductKey) was implicitly applied to the
Sales collection to filter out any non-Sales records for the explicit SelectionFilter query.

• The SelectionFilter (which has an identifier of SalesFlt) was explicitly applied to the
FactSales_SalesAmount attribute of the Sales collection.

• This state does not have an AppliedFilterRule element because no filter rule was implicitly applied to
it.

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 122

The Resell state in the results shows the following:

• A DataSourceFilter (using the Resellers collection key DimReseller_ResellerKey) was implicitly applied
to the Resellers collection to filter out any non-Resellers records for the implicit SelectionFilter query.

• An SelectionFilter was implicitly applied to the DimReseller_AnnualSales attribute of the Resellers
collection.

• The Source element shows that the implicit SelectionFilter came from the SalesQuery state and had
an identifier of SalesFlt in that state.

• The TargetPropertyKey element shows that the DimReseller_AnnualSales attribute was the target
property key of the filter rule.

The resulting record set will be from the state that is listed for the config (except for EQLConfig, which uses
the records from all the states). In this example, the RecordCountConfig specifies the SalesQuery state,
which means that the resulting 180 records are Sales records.

SelectionFilter filterAST version
The syntax for the filterAST version of the SelectionFilter is:

<SelectionFilter Id="?">
<filterAST>

<typ:filter/>
</filterAST>
<AppliedFilterRule>

<Source FilterId="?">
<StateName>?</StateName>

</Source>
<TargetPropertyKey>?</TargetPropertyKey>

</AppliedFilterRule>
</SelectionFilter>

Version 7.6.1 • December 2013

The Id and AppliedFilterRule attributes are the same as the filterString version.

An AST (Abstract Syntax Tree) is a way to represent an expression in the EQL language. Each node in an
AST represents some expression. If that expression has sub-expressions on which it operates, those sub-
expressions are children of the node in the AST. The AST filter itself is constructed from these
ExpressionBase sub-types, such as the AttributeRefExpression, ComparisonExpression, and
DoubleLiteral types used in this example:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:typ="http://www.endeca.com/MDEX/eql_parser/types"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header/>
<soapenv:Body>

<ns:Request>
<ns:Language>en</ns:Language>
<ns:State>

<ns:Name>SalesQuery</ns:Name>
<ns:CollectionName>Sales</ns:CollectionName>
<ns:SelectionFilter Id="SalesFlt">
<ns:filterAST>

<typ:filter xsi:type="typ:ComparisonExpression" comparison=">">
<typ:leftOperand xsi:type="typ:AttributeRefExpression" attributeKey

="FactSales_SalesAmount"/>
<typ:rightOperand xsi:type="typ:DoubleLiteral" value="500"/>

</typ:filter>
</ns:filterAST>

</ns:SelectionFilter>

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 123

</ns:State>
<ns:State>

<ns:Name>Resell</ns:Name>
<ns:CollectionName>Resellers</ns:CollectionName>

</ns:State>
<ns:RecordCountConfig Id="NumRecs">

<ns:StateName>SalesQuery</ns:StateName>
</ns:RecordCountConfig>

</ns:Request>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

Note that this query is basically the same as the filterString version, with the filter being specified in an AST
format rather than a string.

DataSourceFilter format
The DataSourceFilter type is similar in format to the SelectionFilter type.

The DataSourceFilter type is also available in filterString and filterAST versions.

Note that unlike the SelectionFilter type, the DataSourceFilter does not run filter rules associated with
collections. It is for this reason that the AppliedFilterRule elements are not supported in a
DataSourceFilter.

DataSourceFilter filterString version
The syntax for the filterString version of the DataSourceFilter is:

<DataSourceFilter Id="?">
<filterString>?</filterString>

</SelectionFilter>

The meanings of the attributes are:

Attribute Meaning

Id Optional. An identifier for this filter configuration. The identifier must be
unique among other filter identifiers in the state.

filterString Required. Specifies a filter string using the EQL WHERE clause syntax.
The WHERE expression uses one or more attributes whose values are to
be tested, and one or more test conditions. For details on the syntax, see
EQL operators for filterString filters on page 125.

This example shows the use of both EQL filters:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:typ="http://www.endeca.com/MDEX/eql_parser/types">

<soapenv:Header/>
<soapenv:Body>

<ns:Request>
<ns:Language>en</ns:Language>
<ns:State>

<ns:Name>AmountQuery</ns:Name>
<ns:DataSourceFilter Id="SourceFltr">

<ns:filterString>COUNTRY_NAME = 'France'</ns:filterString>

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 124

</ns:DataSourceFilter>
<ns:SelectionFilter Id="AmntFltr">

<ns:filterString>AMOUNT_SOLD > 1000</ns:filterString>
</ns:SelectionFilter>

</ns:State>
<ns:RecordCountConfig Id="Results">

<ns:StateName>AmountQuery</ns:StateName>
</ns:RecordCountConfig>

</ns:Request>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

In the example, the DataSourceFilter first filters out all records that do not have a value of "France" in their
COUNTRY_NAME assignment. From the remaining records, the SelectionFilter then returns all records
that have an AMOUNT_SOLD assignment with a value greater than 1000.

DataSourceFilter filterAST version
The syntax for the filterAST version of the DataSourceFilter type is:

<DataSourceFilter Id="?">
<filterAST>

<typ:filter/>
</filterAST>

</DataSourceFilter>

The meaning of the Id attribute is the same as the filterString version.

Like with the SelectionFilter type, the AST filter is constructed from ExpressionBase sub-types, such as
AttributeRefExpression, ComparisonExpression, and StringLiteral types.

This example duplicates the one above, except for the use of a filterAST instead of a filterString:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:typ="http://www.endeca.com/MDEX/eql_parser/types"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header/>
<soapenv:Body>

<ns:Request>
<ns:Language>en</ns:Language>
<ns:State>

<ns:Name>AmountQuery</ns:Name>
<ns:DataSourceFilter Id="SourceFltr">
<ns:filterAST>

<typ:filter xsi:type="typ:ComparisonExpression" comparison="=">
<typ:leftOperand xsi:type="typ:AttributeRefExpression" attributeKey="COUNTRY_NAME"

/>
<typ:rightOperand xsi:type="typ:StringLiteral" value="France"/>

</typ:filter>
</ns:filterAST>

</ns:DataSourceFilter>
<ns:SelectionFilter Id="AmntFltr">
<ns:filterAST>

<typ:filter xsi:type="typ:ComparisonExpression" comparison=">">
<typ:leftOperand xsi:type="typ:AttributeRefExpression" attributeKey="AMOUNT_SOLD"/>
<typ:rightOperand xsi:type="typ:DoubleLiteral" value="1000"/>
</typ:filter>
</ns:filterAST>

</ns:SelectionFilter>
</ns:State>
<ns:RecordCountConfig Id="Results">

<ns:StateName>AmountQuery</ns:StateName>
</ns:RecordCountConfig>

</ns:Request>
</soapenv:Body>

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 125

</soapenv:Envelope>

Version 7.6.1 • December 2013

In the example, note that the rightOperand of the DataSourceFilter is of type StringLiteral because
COUNTRY_NAME is a string attribute, while the rightOperand of the SelectionFilter is of type
DoubleLiteral because AMOUNT_SOLD is an attribute of type double.

EQL operators for filterString filters
The filterString version of EQL record filters are specified with WHERE clause types of Boolean expressions.

The WHERE expression uses one or more attributes whose values are to be tested, and one or more test
conditions. For example, the expression can use numeric and string value comparison operators, NULL value
evaluation operators, and logical operators, as well as some functions. Note that unlike an EQL statement, the
WHERE keyword itself is not used in the query string.

The following table lists the operators that can be used in an EQL record filter expression:

Operator Description Example

= Equal (tests the equality between two COUNTRY_NAME = 'France'
expressions)

<> Not equal (tests the condition of two PROD_WEIGHT_CLASS <> 2
expressions not being equal to each
other)

> Greater than (tests the condition of PROD_MIN_PRICE > 1000
one expression being greater than the
other)

< Less than (tests the condition of one QUANTITY_SOLD < 500
expression being less than the other)

>= Greater than or equal (tests the PROD_MIN_PRICE >= 75
condition of one expression being
greater than or equal to the other
expression)

<= Less than or equal (tests the condition PROMO_COST <= 1500
of one expression being less than or
equal to the other expression)

BETWEEN low Specifies an inclusive range of values. FISCAL_YEAR BETWEEN 2000 AND 2006
AND high Use AND to separate the low

(starting) and high (ending) values.

IS NULL Specifies a search for NULL values in CUST_EMAIL IS NULL
a single-assign attribute.

IS NOT NULL Specifies a search for values that are PROD_STATUS IS NOT NULL
not NULL in a single-assign attribute.

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 126

Operator Description Example

IS EMPTY Specifies a search for an empty set LOCALES IS EMPTY
(i.e., from a multi-assign attribute).

IS NOT EMPTY Specifies a search for a non-empty LOCALES IS NOT EMPTY
set (i.e., from a multi-assign attribute).

AND Combines two conditions and PROD_MIN_PRICE > 1000 AND
evaluates to TRUE when both of the COUNTRY_NAME = 'Spain'
conditions are TRUE.

OR Combines two conditions and PROD_LIST_PRICE > 50 OR
evaluates to TRUE when either PROD_CATEGORY = 'Hardware'
condition is TRUE.

NOT Reverses the value of any Boolean NOT(COUNTRY_REGION = 'Europe' AND
expression. AMOUNT_SOLD > 1000)

Note that you cannot use aggregating functions (such as SUM) in the query.

Syntax for single-assign versus multi-assign attributes
The EQL syntax for the WHERE expression will depend on whether an attribute is configured as a single-assign
or multi-assign attribute. For example, if the Flavors attribute is a single-assign string attribute, then this
comparison syntax would work:

<filterString>Flavors = 'Peach'</filterString>

Version 7.6.1 • December 2013

But if Flavors is a multi-assign attribute, then that syntax would fail with this error message:

Cannot compare mdex:string-set and mdex:string

The reason for the error is that in EQL a multi-assign attribute is treated as a set (of data type mdex:string-
set), and a string (such as 'peach') cannot be compared to a string-set. (In other words, in EQL a single-
assign attribute is of data type mdex:string while a multi-assign attribute is considered as being of data type
mdex:string-set.) Thus, the expression would have to use the multi-assign syntax, such as these three
examples:

<filterString>SOME i IN Flavors SATISFIES (i = 'Peach')</filterString>

<filterString>IS_MEMBER_OF('Peach', Flavors)</filterString>

<filterString>'Peach' IN Flavors</filterString>

This caveat for single-assign versus multi-assign attributes applies to all data types. For more information on
working with multi-assign data in EQL, see the Oracle Endeca Server EQL Guide.

Using single quotes with string values

When using string value comparison operators, make sure that you use single quotes around the text value
field. For example, if the COUNTRY_NAME standard attribute is of type mdex:string, then the usage would
be:

COUNTRY_NAME = 'Spain' // Correct

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 127

COUNTRY_NAME = "Spain" // Incorrect because double quotes are not allowed

COUNTRY_NAME = Spain // Incorrect because the attribute stores string values

Version 7.6.1 • December 2013

Also keep in mind that string comparisons are case-sensitive. Thus:

COUNTRY_NAME = 'spain'

would not match if all COUNTRY_NAME values were "Spain" (i.e., no "spain" values).

When using numeric value comparison operators, do not use quotes of any kind around the value field. For
example, if the AMOUNT_SOLD standard attribute is of type mdex:double, then the usage would be:

AMOUNT_SOLD = 500 // Correct

AMOUNT_SOLD = "500" // Incorrect because the attribute stores numeric values

Escaping special XML characters

If you are making direct queries against the Conversation Web Service (for example, by using the soapUI
tool), you may need to escape some XML characters to prevent parsing errors. For example, you should use
the < escape character instead of the < (less than) character. Note that examples in this section will use the
unescaped version for ease of reading.

Language codes for EQL error messages
You can set the language to be used for EQL parsing error messages.

The Request complex type has an optional Language element that sets the language for error messages that
result from EQL parsing. The supported languages and their corresponding language codes are:

• Chinese (simplified): zh_CN

• Chinese (traditional): zh_TW

• English: en

• French: fr

• German: de

• Italian: it

• Japanese: ja

• Korean : ko

• Portuguese: pt

• Spanish: es

If a language code is not specified, then en (English) is used as the default.

Note that this Language element serves a different purpose from the Language attribute in the
TextSearchFilter type (for record search) and the ValueSearchConfig type (for value search).

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 128

Example of setting a language code
The following example shows where in the request you would specify the Language element for EQL parsing
error messages:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<Language>fr</Language>
<State>

<SelectionFilter Id="AmtFilter">
<filterString>AMOUNT_SOLD > 1000</filterString>

</SelectionFilte>
</State>
...

</Request>

Version 7.6.1 • December 2013

In this example, fr (French) is set as the language in which all EQL parsing error messages are returned.

Range filters
EQL filters allow a user, at request time, to specify an arbitrary, dynamic range of values that are then used to
limit the records returned for a navigation query.

The remaining refinement values for the records in the result set are also returned. For example, a range filter
would be used if a user were querying for bicycle gloves within a specific price range, for example between
$10 and $40.

It is important to remember that range filters are simply modifiers for a navigation query. Only records returned
by the basic navigation request are considered when evaluating the range filter. You can use a range filter in a
query on any of the record attributes.

Between range filters

Less-than and greater-than range filters

Between range filters
Use the EQL BETWEEN operator to construct between range filter queries.

A between range filter query returns records with a standard or managed attribute value that falls between a
lower bound and an upper bound.

BETWEEN operator syntax
The syntax for BETWEEN is:

attribute BETWEEN lowerBound AND upperBound

where attribute is the attribute whose value will be tested.

BETWEEN is inclusive, which means that it returns TRUE if the value of attribute is greater than or equal to
the value of lowerBound and less than or equal to the value of upperBound.

Supported data types for attribute and the range values are integer, double, dateTime, duration, time,
string, and Boolean. With one exception, attribute must be of the same data type as lowerBound and
upperBound. The exception is that you can use a mix of integer and double, because the integer is promoted
to a double.

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 129

Between single-assign examples

This first example shows a between range filter query for a single-assign attribute (UNIT_PRICE) of type
double:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<Language>es</Language>
<State>
<DataSourceFilter Id="DataFlt">

<filterString>COUNTRY_NAME = 'Spain'</filterString>
</DataSourceFilter>
<SelectionFilter Id="BtwFlt">

<filterString>UNIT_PRICE BETWEEN 500 AND 1000</filterString>
</SelectionFilter>

</State>
<RecordListConfig Id="Recs" MaxPages="20">

<RecordsPerPage>5</RecordsPerPage>
</RecordListConfig>

</Request>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

This example first limits the data source records to those that have a COUNTRY_NAME assignment of 'Spain'
and then returns all records whose UNIT_PRICE value is between 500 and 1000. Because both bound
elements are inclusive, the returned records include those with UNIT_PRICE values of 500 and 1000.

This second example shows a between range filter query for a single-assign attribute (COUNTRY_NAME) of
type string:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State>
<DataSourceFilter Id="DataFlt">

<filterString>AMOUNT_SOLD > 100</filterString>
</DataSourceFilter>
<SelectionFilter Id="BtwFlt">

<filterString>COUNTRY_NAME BETWEEN 'Argentina' AND 'Japan'</filterString>
</SelectionFilter>

</State>
<RecordListConfig Id="Recs" MaxPages="20">

<RecordsPerPage>5</RecordsPerPage>
</RecordListConfig>

</Request>
</soapenv:Body>

</soapenv:Envelope>

This example first limits the data source records to those that have an AMOUNT_SOLD assignment of 100 or
greater and then returns all records whose COUNTRY_NAME assignment value is a country name between
Argentina and Japan (such as Canada and Italy).

Between multi-assign example

This example shows a between range filter query for a single-assign attribute (Quantity) of type integer:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<Language>en</Language>
<State>

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 130

<SelectionFilter>
<filterString>SOME i IN Quantity SATISFIES (i BETWEEN 10 AND 30)</filterString>

</SelectionFilter>
</State>
<RecordListConfig Id="recs">

<Column>Quantity</Column>
</RecordListConfig>

</Request>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

The example would return all records whose Quantity assignment is between 10 and 30.

Less-than and greater-than range filters

Two EQL operators allow you to make less-than and greater-than range filter queries.

You make these types of queries as follows:

• To make a less-than query, use only the < (less-than) operator. Because you are specifying only the
upper bound of the range, all returned records will fall below this bound (i.e., be less than the upper
bound).

• To make a greater-than query, use only the > (greater-than) operator. Because you are specifying only
the lower bound of the range, all returned records will be above this bound (i.e., be greater than the lower
bound).

Note that both operators are inclusive, so that records that are equal to the specified boundary value will be
returned.

Greater-than example

The following is an example of a greater-than query with two single-assign attributes:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<Language>de</Language>
<State>
<DataSourceFilter Id="DataFlt">

<filterString>FISCAL_YEAR = 2002</filterString>
</DataSourceFilter>
<SelectionFilter Id="GtFlt">

<filterString>AMOUNT_SOLD > 500</filterString>
</SelectionFilter>

</State>
<RecordListConfig Id="RecList MaxPages="20">

<RecordsPerPage>5</RecordsPerPage>
</RecordListConfig>

</Request>
</soapenv:Body>

</soapenv:Envelope>

This example first filters out all records except those from fiscal year 2002, and then returns all records that
have sold 500 or more items.

An example of a less-than query would be the same except for the use of the < (less-than) operator.

For the multi-assign attribute (named AnnualRevenue in this example), the filter string would look like this:

<SelectionFilter Id="SalesFlt">
<filterString>SOME i IN AnnualRevenue SATISFIES (i > 150000)</filterString>

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 131

</SelectionFilter>

Version 7.6.1 • December 2013

This example returns every record in which an AnnualRevenue assignment is greater than 150000.

Geocode filters
When used with a standard attribute of type geocode, the EQL DISTANCE function indicates a filter based on
the distance of that geocode attribute from a given reference point.

The DISTANCE function returns the distance (in kilometers) between two geocodes. The syntax for DISTANCE
is:

DISTANCE(geoAttribute, TO_GEOCODE(latitude,longtitude))

where geoAttribute is a standard attribute of type geocode.

The TO_GEOCODE function creates a geocode from a given latitude and longitude pair, both of which must be
of type double:

• The latitude of the location is specified in whole and fractional degrees (positive values indicate north
latitude, and negative values indicate south latitude).

• The longitude of the location in whole and fractional degrees (positive values indicate east longitude, and
negative values indicate west longitude).

The distance limits in geocode filters are always expressed in kilometers. The records are filtered by the
distance from the geocode reference point to the latitude/longitude pair.

Note that both DISTANCE and TO_GEOCODE operate only on single-assign geocode attributes.

Between geocode filters
Use the BETWEEN operator to indicate that the distance from the geocode attribute to the reference point is
between two bounds:

• The lower bound specifies a greater-than distance (in kilometers) from the geocode attribute to the
reference point.

• The upper bound specifies a less-than distance (in kilometers) from the geocode attribute to the reference
point.

The following example uses the BETWEEN operator:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<Language>en</Language>
<State>
<DataSourceFilterString>
COUNTRY_NAME = 'United States of America'

</DataSourceFilterString>
<SelectionFilterString>
DISTANCE(Location, TO_GEOCODE(40.758224, -73.917404)) BETWEEN 1 AND 500

</SelectionFilterString>
</State>
<RecordListConfig Id="RecordList MaxPages="20">

<RecordsPerPage>5</RecordsPerPage>
</RecordListConfig>

</Request>
</soapenv:Body>

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 132

</soapenv:Envelope>

Version 7.6.1 • December 2013

The query returns only records whose location (in the Location property) is between 1 and 500 kilometers from
the reference point.

Less-than and greater-than geocode filters

You can make queries that return records that are less-than or greater-than a specific number of kilometers
from the reference point:

• To make a less-than geocode query, use only the < (less-than) operator. Because you are specifying only
the upper bound of the distance from the reference point, all returned records will fall below this bound.

• To make a greater-than geocode query, use only the > (greater-than) operator. Because you are
specifying only the lower bound of the range, all returned records will be above this bound.

The following is an example of a greater-than geocode query:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State>
<DataSourceFilterString>
COUNTRY_NAME = 'United States of America'

</DataSourceFilterString>
<SelectionFilterString>
DISTANCE(Location, TO_GEOCODE(40.758224, -73.917404)) > 200

</SelectionFilterString>
</State>
<RecordListConfig Id="RecordList MaxPages="20">

<RecordsPerPage>5</RecordsPerPage>
</RecordListConfig>

</Request>
</soapenv:Body>

</soapenv:Envelope>

The query returns only records whose location (in the Location property) is equal to or greater than 200
kilometers from the reference point.

An example of a less-than query would be the same except for the use of the < (less-than) operator.

Managed attribute hierarchy filters
An EQL record filter can specify managed attribute values for the search criteria.

You can use two EQL hierarchy functions to specify managed attribute values:

Hierarchy function

IS_ANCESTOR(managedAttribute, Include the record if the named attribute is the attribute
valueSpec) specified or an ancestor. If the attribute is not a member of

the specified hierarchy, it is a query-time error.

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 133

Hierarchy function

IS_DESCENDANT(managedAttribute, Include the record if the named attribute is the attribute
valueSpec) specified or a descendant, and if the specified value spec

matches. If the attribute is not a member of the specified
hierarchy, it is a query-time error.

For both functions, managedAttribute is the name of a managed attribute, and valueSpec (specified as a
string) is the spec (not the value name) of the managed attribute value.

Example
This example uses the IS_DESCENDANT function:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State>
<DataSourceFilter Id="DataFlt">

<filterString>COUNTRY_NAME = 'United States of America'</filterString>
</DataSourceFilter>
<SelectionFilter Id="MavFlt">

<filterString>IS_DESCENDANT(ProductCategory, '140')</filterString>
</SelectionFilter>

</State>
<RecordListConfig Id="Recs" MaxPages="20">

<RecordsPerPage>5</RecordsPerPage>
</RecordListConfig>

</Request>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

The search is filtered on the managed attribute value that has a spec of "140" and is a descendant of the
ProductCategory managed attribute. Each returned record should have the following assignment:

<cs:Record>
...
<cs:attribute name="ProductCategory" type="mdex:string" displayName="Endurance Racing">140<

/cs:attribute>
...

</cs:Record>

Boolean attribute filters
Filtering by Boolean attribute assignments is supported.

You can specify the Boolean value as true or false (in either upper- or lower-case).

For example, this query filters on assignments of false in the Boolean single-assign attribute named
AFFINITY_CARD:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<Language>fr</Language>
<State>
<DataSourceFilter>

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 134

<filterString>COUNTRY_NAME = 'France'</filterString>
</DataSourceFilter>
<SelectionFilter Id="BoolFlt">

<filterString>AFFINITY_CARD = false</filterString>
</SelectionFilter>

</State>
<RecordListConfig Id="Recs" MaxPages="20">

<RecordsPerPage>5</RecordsPerPage>
</RecordListConfig>

</Request>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

Each returned record should have the following assignment:

<cs:Record>
...
<cs:attribute name="AFFINITY_CARD" type="mdex:boolean">false</cs:attribute>
...

</cs:Record>

Using EQL filters with record and value searches
Either or both of the EQL record filters can be used with a record search or a value search.

The DataSourceFilterString component is especially useful (for example, as a security filter) to restrict the
searchable records for these types of searches.

This example uses the DataSourceFilter EQL filter with a record search filter:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<Language>en</Language>
<State>

<Name>JulyRpts</Name>
<DataSourceFilter Id="MonthFltr">

<filterString>FISCAL_MONTH_NAME = 'July'</filterString>
</DataSourceFilter>
<TextSearchFilter Key="PROD_CATEGORY" RelevanceRankingStrategy="numFields"
Mode="AllPartial" EnableSnippeting="false" Language="en">
electronics

</TextSearchFilter>
</State>
<RecordListConfig Id="Recs" MaxPages="30">

<StateName>JulyRpts</StateName>
<Column>PROD_CATEGORY</Column>
<RecordsPerPage>5</RecordsPerPage>

</RecordListConfig>
</Request>

</soapenv:Body>
</soapenv:Envelope>

The DataSourceFilter filter first limits all the searchable records to those from the fiscal month of July. Then
the TextSearchFilter uses the PROD_CATEGORY attribute for its record search.

Oracle® Endeca Server: Developer's Guide

EQL Record Filters 135

EQLConfig requests
The EQLConfig complex type allows you to send arbitrary EQL statements for evaluation.

Consider the following EQL statement:

RETURN SalesTransactions AS SELECT SUM(FactSales_SalesAmount)
WHERE (DimDate_FiscalYear=2008) AS Sales2008,
SUM(FactSales_SalesAmount)
WHERE (DimDate_FiscalYear=2007) AS Sales2007,
((Sales2008-Sales2007)/Sales2007 * 100) AS pctChange,
COUNTDISTINCT(FactSales_SalesOrderNumber)
AS TransactionCount
GROUP

Version 7.6.1 • December 2013

To send it for processing to the Oracle Endeca Server, use the EQLConfig type, including the statement inside
the EQLQueryString element, as in this example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:typ="http://www.endeca.com/MDEX/lql_parser/types">

<soapenv:Header/>
<soapenv:Body>
<ns:Request>
<ns:Language>en</ns:Language>
<ns:State/>
<ns:EQLConfig Id="EQLRequest">

<ns:EQLQueryString>
RETURN SalesTransactions AS SELECT SUM(FactSales_SalesAmount)
WHERE (DimDate_FiscalYear=2008) AS Sales2008,
SUM(FactSales_SalesAmount) WHERE (DimDate_FiscalYear=2007) AS Sales2007,
((Sales2008-Sales2007)/Sales2007 * 100) AS pctChange,
countDistinct(FactSales_SalesOrderNumber)
AS TransactionCount
GROUP

</ns:EQLQueryString>
</ns:EQLConfig>
</ns:Request>
</soapenv:Body>

</soapenv:Envelope>

The contents of the EQLQueryString element must be a valid EQL statement.

The following abbreviated response returned from the Conversation Web Service contains the calculated
results of the EQL statements:

<cs:EQL Id="EQLRequest">
<cs:ResultRecords NumRecords="1" Name="SalesTransactions">
<cs:DimensionHierarchy/>
<cs:AttributeMetadata name="Sales2007" type="mdex:double"/>
<cs:AttributeMetadata name="Sales2008" type="mdex:double"/>
<cs:AttributeMetadata name="TransactionCount" type="mdex:long"/>
<cs:AttributeMetadata name="pctChange" type="mdex:double"/>

<cs:Record>
<Sales2007 type="mdex:double">2.79216705182E7</Sales2007>
<Sales2008 type="mdex:double">3.62404846965997E7</Sales2008>
<TransactionCount type="mdex:long">3796</TransactionCount>
<pctChange type="mdex:double">29.793397114178</pctChange>

</cs:Record>
</cs:ResultRecords>

</cs:EQL>

Oracle® Endeca Server: Developer's Guide

Chapter 11

Working with Records

This section describes how to filter data and non-data records, display records, and their details and attribute
values, configure a record list, and retrieve a large number of records.

Filtering data and non-data records

Displaying records and attribute values with Studio

Displaying records and attribute values with the API

Performance impact of requesting large numbers of records

Performance impact when displaying attribute values

Filtering data and non-data records
The RecordKind filter is used to restrict records to a particular kind.

You use the RecordKind filter if you wish to perform some queries only against data records, or other queries
only against PDRs or against all system records.

The RecordKind filter allows the following values:

Value Description

data Restricts records to actual data records that you load to the data domain.

properties Restricts records to those records that declare record attributes (PDRs). Note
that default list includes the PDRs for the primordial records.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Records 137

Value Description

nondata Restricts records to those records that do not represent data records, and
instead represent these record types:

• GCR (Global Configuration Record)

• PDR (standard attribute, both primordial and user-created description
records)

• DDR (managed attribute description records)

• MAVDR (managed attribute value description records)

• CDR (collection description records)

• FRDR (filter rule description records)

• PRDR (precedence rule description records)

• EDR (entity description records)

• GDR (attribute group configuration description records)

• GMDR (attribute group membership description records)

When using the RecordKind filter, you can restrict the State from which all other search and filtering
operations in the Endeca Server will be performed. It is useful to use the RecordKind filter in cases when you
want to issue subsequent queries only on a subset of records in the corpus, for example, only on those
records that represent actual data records.

The following soapUI example illustrates how to use the RecordKind filter to return all CDRs:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<Language>en</Language>
<State>

<Name>RecKind</Name>
<RecordKind>nondata</RecordKind>
<SelectionFilter>

<filterString>"mdex-collection_Key" is not null</filterString>
</SelectionFilter>

</State>
<RecordListConfig Id="RecList">
<StateName>RecKind</StateName>
<RecordsPerPage>5</RecordsPerPage>

</RecordListConfig>
</Request>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

Note that RecordKind results are not visible in the user interface — they do not appear in breadcrumbs, for
example.

Oracle® Endeca Server: Developer's Guide

Working with Records 138

Displaying records and attribute values with Studio
The Results Table component displays records in a tabular format. The Results List component displays
records in a format similar to regular Web search results. The Data Explorer component displays each record
as a set of key-value pairs.

For details on adding and configuring a Results Table, Results List, or Data Explorer component in your
Studio application, see the Oracle Endeca Information Discovery Studio User's Guide.

Displaying records and attribute values with the API
This section describes how to use the Conversation Web Service to request records and their attribute values
from the data domain.

Configuring a record list

Understanding a RecordList result

Paging through a large record set

Retrieving large numbers of records

Exporting large numbers of records

Displaying attribute values

Displaying record details

Displaying record counts

Configuring a record list
You use the RecordListConfig complex type to configure settings for lists of records returned from a query.

For example, with RecordListConfig, you can configure how many records should be included per page in
the list, how many pages of records should be returned, which attributes should be returned for each record
included in the list, and the attribute by which to sort the record list. As a result of a query containing
RecordListConfig, a RecordList is returned.

In the RecordListConfig complex type, you define what information should be returned in the record list. The
format of the RecordListConfig type is:

<RecordListConfig Id="?" MaxPages="20">
<StateName>?</StateName>
<Column>?</Column>
<RecordsPerPage>?</RecordsPerPage>
<Page>?</Page>
<Sort Key="?" Direction="?"/>

</RecordListConfig>

Version 7.6.1 • December 2013

The elements and attributes that are specified in the RecordListConfig complex type are the following:

Element/Attribute Description

Id Required. An arbitrary identifier for this RecordListConfig.

Oracle® Endeca Server: Developer's Guide

Working with Records 139

Element/Attribute Description

MaxPages Optional. Specifies an integer that is the maximum number of record pages to
be returned. If this attribute is omitted, a default value of 20 is used for the
query.

StateName Specifies an existing named state in the request, using these rules:

• If the request has multiple named states, then the StateName element
must reference one (and only one) of the named states.

• If the request has only one named state, then it is optional as to whether
the StateName element is used to reference that named state (as the
state will be used in any event in the RecordListConfig).

• If the request has an unnamed state, then the StateName element
cannot be used.

Column Optional. Specifies an attribute that will be returned in the RecordList with
the record. You can specify multiple instances of the Column element. Note
that you do not have to specify the primary key, because it is automatically
returned. If no Column elements are specified, then all the record's standard
and managed attributes are returned.

RecordsPerPage Optional. Specifies an integer that is the maximum number of records
(Record elements) to be displayed in the ContentElement of the result. If
this element is omitted, a default value of 10 is used.

Page Optional. Specifies an integer that is the page to be displayed (that is, it
provides an offset into the overall list of pages). The offset is a zero-based
index, which means that 0 (zero) specifies the first page. This element allows
users to page through a long result set, either directly or step by step. If an
offset is greater than the total number of pages, then the record list returned
will not include records. If this element is omitted, a default value of 0 is used.

Sort Key Direction Optional. Specifies a sort order for the record list. Key specifies the standard
or managed attribute used for the sort. Direction specifies an Ascending
(the default) or Descending sort order.

Example of a RecordListConfig

This soapUI example searches for records with the Flavors attribute having an assignment of "peaches":

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:typ="http://www.endeca.com/MDEX/eql_parser/types">
<soapenv:Header/>
<soapenv:Body>

<ns:Request>
<ns:Language>en</ns:Language>
<ns:State>

<ns:Name>MyRecSearch</ns:Name>
<ns:TextSearchFilter Key="Flavors" Mode="AllPartial" EnableSnippeting="false"

Language="en">peach</ns:TextSearchFilter>
</ns:State>

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Working with Records 140

<ns:RecordListConfig Id="RecordList" MaxPages="20">
<ns:StateName>MyRecSearch</ns:StateName>
<ns:Column>Flavors</ns:Column>
<ns:RecordsPerPage>5</ns:RecordsPerPage>
<ns:Page>1</ns:Page>
<ns:Sort Key="Flavors" Direction="Ascending"/>

</ns:RecordListConfig>
</ns:Request>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

The RecordListConfig type configures how the returned record list should look.

Understanding a RecordList result
The records returned from the query are contained in the RecordList element.

A list of records is returned with every query result received from the Oracle Endeca Server. The list of
records is represented as a RecordList complex type that is returned in a Results response by the
Conversation Web Service.

The RecordList type will typically have multiple RecordListEntry types. Each record is returned in a Record

element within a RecordListEntry.

The following sample snippet shows a RecordList with one record, one pagination control, and one column:

<cs:Results
xmlns:cs="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<cs:State>

...
</cs:State>
<cs:RecordList Id="RecordList">

<cs:NumRecords>2231</cs:NumRecords>
<cs:TotalPages>224</cs:TotalPages>
<cs:RecordRange First="1" Last="10"/>
<cs:RecordListEntry>
<cs:Record>

<cs:attribute name="AFFINITY_CARD" type="mdex:boolean">false</cs:attribute>
<cs:attribute name="AMOUNT_SOLD" type="mdex:double">550.370000</cs:attribute>
...

<cs:attribute name="WEEK_ENDING_DAY" type="mdex:dateTime">2000-03-26T00:00:00.000Z
</cs:attribute>

</cs:Record>
<cs:ComputedProperties/>

</cs:RecordListEntry>
...
<cs:DimensionHierarchy>

<cs:DimensionValueWithPath>
<cs:DimensionValue DimensionName="Channel" Spec="3">Direct Sales</cs:DimensionValue>
<cs:DimensionValue DimensionName="Channel" Spec="Direct">Direct</cs:DimensionValue>
<cs:DimensionValue DimensionName="Channel" Spec="/">Channel</cs:DimensionValue>

</cs:DimensionValueWithPath>
</cs:DimensionHierarchy>
<cs:Column ColumnKey="AMOUNT_SOLD" DisplayName="Amount Sold" SpecColumn="false"/>
...

</cs:RecordList>
</cs:Results>

The elements in the RecordList contain the following information:

• NumRecords specifies the total number of records (Record elements) that were returned from the query.

• TotalPages lists the total number of pages of records.

Oracle® Endeca Server: Developer's Guide

Working with Records 141

• RecordRange lists the starting and ending records for this page set.

• DimensionHierarchy lists paths of managed attributes whose values have assignments in the requested
record list. Also contains DimensionValueWithPath.

• Each RecordListEntry contains a specific record in a Record element and a ComputedProperties

element that has any computed attributes (such as geocode distance or snippets) for that record.

In addition, the attributes on the Column element contain the following information for a specific standard or
managed attribute on a record:

• ColumnKey identifies the name (in an NCName format) of the attribute.

• DisplayName specifies the name of the attribute in an easy-to-understand format. (Once you define
display names, they appear in the front-end application.)

• SpecColumn identifies whether the attribute is the primary key for the records. If set to true, identifies this
property as the primary key attribute for the records. The SpecColumn allows you to select a record for
viewing its record details.

A typical implementation will display a summarized list of matching records for the user’s current navigation
state. In the application front end, the record list is often displayed as a table, with each row corresponding to
a specific record. Each row displays some identifying information about that specific record, such as a name,
title, or identification number. Your application front end can iterate through this record list, extract the
identifying information for each record, and display a table containing the results.

Paging through a large record set
If many records are returned, you can use the Page attribute to specify the page to be displayed.

A query to the Oracle Endeca Server may return more records than can be displayed all at once. A common
user interface mechanism for overcoming this is to create pages of results, where each page displays a
subset of the entire result set.

The RecordList in the Results response includes these page-relevant fields:

• NumRecords specifies the total number of records that were returned from the query.

• TotalPages lists the total number of pages of records.

• RecordRange lists the starting and ending records for this page set.

The following is an abbreviated example of these fields - a RecordList with a total of seven record pages and
three records per page:

<RecordList Id="RecordList">
<NumRecords>2231</NumRecords>
<TotalPages>224</TotalPages>
<RecordRange First="1" Last="10"/>
...

</cs:RecordList>

Version 7.6.1 • December 2013

The RecordList is the initial access point for providing the paging controls for the entire record set. By
default, the query returns a maximum of ten records for display. To override this setting, use the
RecordsPerPage

element in the RecordListConfig type, as in this example that sets five records per page for display:

<RecordListConfig Id="RecordList" MaxPages="20">
<RecordsPerPage>5</RecordsPerPage>
...

</RecordListConfig>

Oracle® Endeca Server: Developer's Guide

Working with Records 142

The default page offset for a record set is zero, meaning that the first ten records are displayed. The default
offset can be overridden with the Page attribute, as in this example that sets the offset to the third page of
records:

<RecordListConfig Id="RecordList" MaxPages="20">
...
<Page>3</Page>

</RecordListConfig>

Version 7.6.1 • December 2013

If the number of total pages is 1:

<TotalPages>1</TotalPages>

then no paging controls are needed.

Retrieving large numbers of records

To obtain a large number of records that can later be exported, you request them as part of the
RecordListConfig type in the Conversation Web Service.

A query that requests a large number of records that could later be exported is the same as any valid
navigation query requesting a list of records. This topic contains examples of Conversation Web Service
request and response formats for such a query. No configuration is necessary to request a large number of
records. Any record that is returned as part of the RecordListConfig request is available to be exported.

When creating the navigation query for a list of records that will be exported, you do not need to specify the
number of records that should be returned. The Conversation Web Service returns records in the record list as
it would for any other request for records. If you are using Studio, the setting that limits the number of records
for export is configured in Studio. For information on configuring this setting, see the Oracle Endeca
Information Discovery Studio Administration and Customization Guide.

Example request
To request a record list with a Conversation Web Service request, use the RecordListConfig type. There is
no requirement to specify any new parameters in the RecordListConfig. Simply set the RecordsPerPage to
the number of records desired for export, and Page to 0.

In this abbreviated example, you can see the format for RecordListConfig:

<RecordListConfig Id="RecordList" MaxPages="40">
<Column>WineType</Column>
<Column>Price</Column>

<RecordsPerPage>20</RecordsPerPage>
<Page>0</Page>
<Sort Key="Num" Direction="Ascending" />

</RecordListConfig>

Example response

The following abbreviated example shows a returned list:

<cs:RecordList Id="RecordList">
<cs:NumRecords>19</cs:NumRecords>
<cs:TotalPages>40</cs:TotalPages>
<cs:RecordRange First="1" Last="19"/>
<cs:RecordListEntry>

<cs:Record>
...

</cs:Record>

Oracle® Endeca Server: Developer's Guide

Working with Records 143

<cs:ComputedProperties/>
</cs:RecordListEntry>

...
</cs:RecordList>

Version 7.6.1 • December 2013

Exporting large numbers of records

Endeca Server does not have a dedicated facility for the bulk export of records. Instead, you can pin a version
of the index, and request a large number of records from this version, with paging through the results. The
records are returned in an XML format and thus require parsing as a post-processing step.

The following procedure implies that you use the Endeca Server only, but do not use Studio. This procedure
relies on direct methods within the Endeca Server. If you have installed Studio, you can use its facility to
export large numbers of records.

To export records in bulk from the Endeca Server with the Conversation Web Service:

1. Pin a data version, using a request with PinDataVersion element, specifying an
optional_pin_timeout. For details, see Holding on to a data version on page 72.

For example:

...
<ns:Request>
<!--Optional:-->
<ns:PinDataVersion>optional_pin_timeout</ns:PinDataVersion>

<ns:State>
....

</ns:State>

The request should return the version number in its header: X-Endeca-Served-Data-Version.
This is the version number that you pinned.

2. Issue a subsequent request that references this version number in the DataVersionRequested

element. This request should also include a RecordListConfig type. For details, see Retrieving large
numbers of records on page 142.

If the request is successful, it returns the requested records.

It is up to you, as the front-end application developer, to determine what to do with the retrieved records. For
example, you can display each record’s attribute values. You can also write code to properly format the
returned attribute values for export to an external file, such as a Microsoft Excel spreadsheet, or a CSV file. To
help with performance of parsing received records, use a SAX parser. See, for example, Parsing an XML file
using SAX.

Displaying attribute values

You can send a request asking to display attribute values assigned on records.

Records are returned in Record elements. Each attribute value on a record is returned in a format like this
example:

<attribute name="AMOUNT_SOLD" type="mdex:double">550.370000</attribute>

The name field lists the name of the standard or managed attribute, while the type field shows the data type
of that attribute. Managed attributes also have the displayName that is used for UI purposes.

This example shows a record with four standard attribute values and one managed attribute value:

Oracle® Endeca Server: Developer's Guide

http://docs.oracle.com/javase/tutorial/jaxp/sax/parsing.html
http://docs.oracle.com/javase/tutorial/jaxp/sax/parsing.html

Working with Records 144

<cs:Record>
<cs:attribute name="AFFINITY_CARD" type="mdex:boolean">false</cs:attribute>
<cs:attribute name="AMOUNT_SOLD" type="mdex:double">550.370000</cs:attribute>
<cs:attribute name="CALENDAR_MONTH_DESC" type="mdex:string">2000-03</cs:attribute>
<cs:attribute name="Channel" type="mdex:string" displayName="Direct Sales">3</cs:attribute>
<cs:attribute name="PROMO_FK" type="mdex:long">999</cs:attribute>

</cs:Record>

Version 7.6.1 • December 2013

Your front-end application can iterate through the record, extract the attribute values for the record, and
display a table containing the results.

Displaying record details
The RecordDetailsConfig type defines the configuration for a record details query.

A record details query is a query for a single, specific record. Configuration information for this type of query is
provided in a RecordDetailsConfig component. This component lets you configure aspects of the returned
record, such as its primary key (record specifier) and which standard attributes and/or managed attributes
should be returned.

RecordDetailsConfig syntax
The format of the RecordDetailsConfig type is:

<RecordDetailsConfig Id="?">
<StateName>?</StateName>
<RecordSelector Name="?" Spec="?"/>
<Column>?</Column>

</RecordDetailsConfig>

The meanings of the RecordDetailsConfig elements and attributes are as follows:

Element/Attribute Meaning

Id Required. An arbitrary identifier for this RecordDetailsConfig.

RecordSelector Name Required. A RecordSelector selects a record based on a Key/Value pair
Spec that is unique to that record (typically, this is the record specifier). Name

specifies the key (name) of the unique attribute while Spec is the value of
the key.

Column Optional. Specifies a standard or managed attribute that should be returned
with the record. You can specify multiple instances of the Column element.
Note that you do not have to specify the primary key, because it is
automatically returned. If no Column elements are specified, then all the
record's assignments are returned.

Oracle® Endeca Server: Developer's Guide

Working with Records 145

Element/Attribute Meaning

StateName Specifies an existing named state in the request, using these rules:

• If the request has multiple named states, then the StateName element
must reference one (and only one) of the named states.

• If the request has only one named state, then it is optional as to whether
the StateName element is used to reference that named state (as the
state will be used in any event in the RecordDetailsConfig).

• If the request has an unnamed state, then the StateName element
cannot be used.

RecordDetailsConfig example

The following request is for details on the record with a primary key of 34750:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>
<RecordDetailsConfig Id="RecDetails">

<RecordSelector Name="WineID" Spec="34750"/>
<Column>WineType</Column>
<Column>Description</Column>

</RecordDetailsConfig>
</Request>

Version 7.6.1 • December 2013

Two record assignment attributes (WineType and Description) will be returned in the results, as well as the
primary key (WineID) of the record.

RecordDetails result
The record details returned from the record query are contained in the RecordDetails element. The
RecordDetails element is wrapped in a Results component, together with the original State.

The following example details of the requested record is returned in a RecordDetails component by the
Conversation Web Service:

<cs:RecordDetails Id="RecDetails">
<cs:Record>

<cs:attribute name="Description" type
="mdex:string">ring">Dense and vegetal, with peach flavors.</cs:attribute>

<cs:attribute name="WineID" type="mdex:int">34750</cs:attribute>
<cs:attribute name="WineType" type="mdex:string" displayName="Red">Red</cs:attribute>

</cs:Record>
<cs:DimensionHierarchy>

<cs:DimensionValueWithPath>
<cs:DimensionValue DimensionName="WineType" Spec="Red">Red</cs:DimensionValue>
<cs:DimensionValue DimensionName="WineType" Spec="/">WineType</cs:DimensionValue>

</cs:DimensionValueWithPath>
</cs:DimensionHierarchy>
<cs:Column ColumnKey="Description" DisplayName="Description" SpecColumn="false"/>
<cs:Column ColumnKey="WineID" DisplayName="WineID" SpecColumn="true"/>
<cs:Column ColumnKey="WineType" DisplayName="WineType" SpecColumn="false"/>
...

</cs:RecordDetails>

The assigned attributes of the requested record are in the Record element.

Oracle® Endeca Server: Developer's Guide

Working with Records 146

In addition, the attributes on the Column elements contain the following additional property information:

• ColumnKey identifies the name (in an NCName format) of the standard or managed attribute.

• DisplayName specifies the name of the attribute in an easy-to-understand format.

• SpecColumn identifies whether the attribute is a primary key (i.e., whether it is a single-assign property
with a unique key/value pair). Note that all unique, single-assign properties in the Dgraph are returned,
even if they are not assigned to the record.

The application front end can iterate through this record details list, extract the identifying information for the
record, and display a table containing the results.

Displaying record counts
The RecordCountConfig type is used for counting the records in the state.

RecordCountConfig syntax
The format of the RecordCountConfig type is:

<RecordCountConfig Id="?">
<StateName>?</StateName>

</RecordCountConfig>

Version 7.6.1 • December 2013

The meanings of the RecordCountConfig elements and attributes are as follows:

Element/Attribute Meaning

Id Required. An arbitrary identifier for this RecordCountConfig.

StateName Specifies an existing named state in the request, using these rules:

• If the request has multiple named states, then the StateName
element must reference one (and only one) of the named states.

• If the request has only one named state, then it is optional as to
whether the StateName element is used to reference that named
state (as the state will be used in any event in the
RecordCountConfig).

• If the request has an unnamed state, then the StateName element
cannot be used.

RecordCountConfig example
This example performs a record search and uses a RecordCountConfig to count the number of records that
were returned:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State>

<TextSearchFilter Key="Flavors" Mode="AllPartial" Language="en">oak</TextSearchFilter>
</State>
<RecordCountConfig Id="NumRecs"/>

</Request>

Note that the StateName was not used because the state is not named.

Oracle® Endeca Server: Developer's Guide

Working with Records 147

Performance impact of requesting large numbers of records
Requesting a large number of records at once can reduce memory usage in your front-end application if the
response is handled by a streaming parser in the front-end application.

Performance impact when displaying attribute values
Displaying too many attribute values can affect performance.

The main purpose of attribute values is to enable navigation through the records. Therefore, the default
behavior of the Oracle Endeca Server is to return attribute values on records only when a record query
request has been made (not for navigation-type query requests). You can change this behavior. However,
requesting the Oracle Endeca Server to return too many attribute values can cause a performance hit.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 12

Sorting Records

Sorting allows you to define the order of records returned with each navigation query. It can be configured
globally or per-query.

About record sorting

Global sort order of records

Query-time sort ordering

Troubleshooting application sort problems

About record sorting
When making a basic navigation request, you may define a series of attributes and order (Ascending or
Descending) of pairs.

The Oracle Endeca Server returns query results in a Descending order on the primary key for returned
records. You cannot change the default record sort order for the system.

All of the records corresponding to a particular navigation state are considered for sorting, not just the records
visible in the current request. For example, if a navigation state applies to 100 bicycles, all 100 bicycles are
considered when sorting, even though only the first ten bicycle records may be returned with the current
request.

Record sorting only affects the order of records. It does not affect the ordering of attributes or attribute values
that are returned for query refinement.

Note that all attributes are automatically enabled for record sorting when they are created. Therefore, no
attribute configuration is required for sorting.

Global sort order of records
This topic discusses the global sort order of records.

Once the records have been added to the data domain, the Oracle Endeca Server maintains data files for the
records in memory. The following rules apply to how the records are sorted in the results returned by the
Oracle Endeca Server in response to queries:

• Records are sorted according to the sort order that you specified, if any.

• Even if you specified a sort order, it may not have uniquely determined the resulting order of records —
this usually happens when some records only differ in attributes that were not included in the sort
specification. In such cases, the Dgraph process tie-breaks the sorting results at random.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Sorting Records 149

• Subsequent requests with the same query will result in the same order (the tie-break is consistent) unless
you have modified the records in any way between requests. For example, the order will change if you
delete any of the records and add them to the data domain again, even if they are identical.

Note that when a sorted record result list is requested, string values will be sorted case-insensitively, with ties
broken with a case-sensitive comparison (upper-cased letters will rank above lower-cased letters). For
example, for the six records A, B, C, a, b, and c, the resulting sort order will be:

A
a
B
b
C
c

Version 7.6.1 • December 2013

Query-time sort ordering
On a per-query basis, you can specify a key on which to sort the records and a sort direction.

You can add a Sort type to a RecordListConfig configuration that lets you specify a key to sort on and the
sort direction. The Sort format is:

<Sort Key="keyName" Direction="dirOrder"/>

where:

• keyName is the name of a standard or managed attribute based on which sorting is performed.

• dirOrder is either Ascending for an ascending order, or Descending for a descending order.

Note that the attribute name and the sort order are both case sensitive.

The following example shows how to specify a sort order:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<Language>en</Language>
<State>

<Name>AllRecs</Name>
<RecordKind>data</RecordKind>

</State>
<RecordListConfig Id="RecordList" MaxPages="20">

<StateName>AllRecs</StateName>
<RecordsPerPage>10</RecordsPerPage>
<Page>1</ns:Page>
<Sort Key="ModelName" Direction="Ascending"/>

</RecordListConfig>
</Request>

</soapenv:Body>
</soapenv:Envelope>

The example specifies an ascending sort order based on the ModelName attribute.

Oracle® Endeca Server: Developer's Guide

Sorting Records 150

Troubleshooting application sort problems
This topic presents some approaches to solving sorting problems.

If the returned records do not seem to respect the sort key parameter, there are some potential problems:

• Was the attribute specified as numeric when it is actually alphanumeric? Or vice versa? In this case, the
Oracle Endeca Server returns a valid response, but the sorting may be incorrect.

• If a record has multiple attribute value assignments from a single attribute, the Oracle Endeca Server sorts
the records based on the first value associated with the key. If the application is displaying the last value,
the records will not appear to be sorted correctly. In general, attributes that are used for sorting should
only have one value assigned per record.

• If certain records in a data domain lack a sort-key value, they will always appear last in a result set.
Therefore, if you reverse a sort order on a record set containing such records, the order of the entire
record set will not be reversed — the records without a sort key value always sort at the end of the set.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 13

Internationalized Data

This section describes how to include internationalized data in an Endeca data domain.

Overview of using internationalized data

Supported languages

Setting language identifiers

Using custom dictionaries

Viewing Dgraph logs

Overview of using internationalized data
Oracle Endeca Server support for the Unicode Standard version 4.0 allows an Endeca data domain to process
and serve data in many of the world’s languages.

At either data ingest time (or later via a Configuration Web Service operation), you can specify that a given
standard attribute will use internationalized data when it is provided in a native encoding. At query time, you
can specify the language to be used for the record search or value search.

The section makes the following assumptions:

• If working with Chinese, you are familiar with the encoding and character sets (Traditional versus
Simplified, Big5, GBK, and so on).

• If working with Chinese or Japanese, you know that these languages do not use white space to delimit
words.

• If working with Japanese, you are familiar with the shift_jis variants and how the same character can be
represented either the Yen symbol or the backslash character.

For more information about the Unicode Standard and character encoding, see http://unicode.org.

Overview of supported language features

The following is a high-level list of which features are supported for international languages:

Feature Language support

Auto-correction spelling Language-specific auto spelling correction is available for supported
languages (i.e., spelling dictionaries are available for all supported
languages).

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

http://unicode.org

Internationalized Data 152

Feature Language support

Stemming and lemmatization Language-specific stemming and lemmatization is available. Note that
stemming is not available for segmented (non-whitespace) languages,
such as Japanese, Chinese, and Thai.

Did You Mean (DYM) Language-specific DYM is available for all supported languages.
suggestions

Snippeting Available for all supported languages.

Thesaurus One language-agnostic thesaurus is available for use with queries in any
of the supported languages (i.e., language-specific thesauruses are not
supported).

Search characters Available only for the unknown language identifier.

Stop words Available only for the unknown language identifier.

Language auto-detection Auto-detection of languages at ingest or query time is not supported. The
user must explicitly specify the language for the PDR or the query.

Language collation Language-specification collation (sorting) is not available for the
supported languages.

Diacritic folding

Diacritic folding is the default behavior for all supported languages (including "unknown") during record
searches. This feature is the automatic mapping of ISO-Latin1 international characters to ASCII equivalents in
record search queries. It basically ignores character accents so that search queries containing international
characters will match against Anglicized result text. For example, an English query for "café" will match "café"
in records. Note that you cannot disable this diacritic folding behavior.

Supported languages
You use a language code to identify a language.

Language codes must be specified as valid RFC-3066 language code identifiers. The supported languages
and their language code identifiers are:

• Arabic — ar

• Catalan — ca

• Chinese, simplified — zh_CN

• Chinese, traditional — zh_TW

• Croatian — hr

• Czech — cs

• Danish — da

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Internationalized Data 153

• Dutch — nl

• English, American — en

• English, British — en_GB

• Finnish — fi

• French — fr

• German — de

• Greek — el

• Hebrew — he

• Hungarian — hu

• Italian — it

• Japanese — ja

• Korean — ko

• Norwegian Bokmal — nb

• Norwegian Nynorsk — nn

• Persian — fa

• Polish — pl

• Portuguese — pt

• Portuguese, Brazilian — pt_BR

• Romanian — ro

• Russian — ru

• Serbian, Cyrillic — sr_Cyrl

• Serbian, Latin — sr_Latn

• Slovak — sk

• Slovenian — sl

• Spanish — es

• Swedish — sv

• Thai — th

• Turkish — tr

• unknown (i.e., none of the above languages) — unknown

The language codes are case insensitive.

Note that an error is returned if you specify an invalid language code.

With the language codes, you can specify the language of the text to the Dgraph during a record search or
value search query, so that it can correctly perform language-specific operations.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Internationalized Data 154

How country locale codes are treated
A country locale code is a combination of a language code (such as es for Spanish) and a country code (such
as MX for Mexico or AR for Argentina). Thus, the es_MX country locale means Mexican Spanish while es_AR
is Argentinian Spanish.

If you specify a country locale code for a Language element, the software ignores the country code but
accepts the language code part. In other words, a country locale code is mapped to its language code and
only that part is used for tokenizing queries or generating search indexes. For example, specifying es_MX is
the same as specifying just es. The exceptions to this rule are the codes listed above (such as pt_BR).

Note, however, that if you create a standard attribute and specify a country locale code in the mdex-
property_Language field, the attribute will be tagged with the country locale code, even though the country
code will be ignored during indexing and querying.

Language-specific dictionaries and indices
The Dgraph has two spelling correction engines. If the mdex-property_Language property in a PDR is set
to en, then spelling correction will be handled through the English spelling engine (and its English spelling
dictionary); if it is set to any other value, then spelling correction will use the non-English spelling engine (and
its language-specific dictionaries). All dictionaries are generated from the data records in the Dgraph, and
therefore require that the standard attribute PDRs be tagged with a language ID.

All dictionary files are stored in the data domain's index directory.

Setting language identifiers
The following topics describe how to specify language identifiers for your application.

In an Oracle Endeca Server application, language can be specified in two places:

• The language of a standard or managed attribute can be specified in the PDR of that attribute.

• The language of a search query can be specified with search configuration options.

Keep in mind that the following language-identification scenarios are not supported:

• A global language identifier (for all of your data and queries) is not supported. However, you can set a
global PDR language code that is used when PDRs are automatically created by the DIWS (Data Ingest
Web Service) and Bulk Load interfaces.

• A per-record language identifier is not supported. Language codes can be set only on attributes, not on
records.

• The use of multiple language identifiers for a single search query is not supported. That is, each query can
have a maximum of one language identifier, which means that the language can vary on a per-query
basis. A per-query language identifier should be used in your front-end application if the language varies
on a per-query basis.

Language effect on documents and searches

For every document, the language of the corresponding PDR determines:

• How it is tokenized

• How it is normalized

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Internationalized Data 155

• In what language word forms are returned for its terms

• Which language's wordform expansion indexes do the returned forms contribute to

• Which language's spelling dictionary its terms contribute to

For every search, the language configured on the search determines:

• How it is tokenized

• How it is normalized

• In what language are word forms returned for its terms

• Which language's spelling dictionary to use for spelling-related re-queries

Setting PDR language identifiers

Global PDR language code

Specifying a per-query language code

Setting PDR language identifiers

A language can be set for each standard attribute.

A Property Description Record (PDR) has an mdex-property_Language field that specifies the language of
that standard attribute. This field takes one of the supported language codes listed in Supported languages on
page 152.

This brief example creates a standard attribute named Beschreibung, whose language will be German (the de
language code):

<mdex:record>
<mdex-property_Key>Beschreibung</mdex-property_Key>
<mdex-property_Type>mdex:string</mdex-property_Type>
<mdex-property_Language>de</mdex-property_Language>
...

</mdex:record>

Version 7.6.1 • December 2013

If it is not explicitly set, mdex-property_Language defaults to the unknown language identifier when the
standard attribute is created by the system.

For example, your data may have an English standard attribute called Description with its language code set
to en, and a Spanish attribute called Descripción with a language code of es. In this case, because an
individual record can have both English and Spanish text, you can see that an attribute language code is more
appropriate than a per-record language code.

Changing the PDR language code
Typically, you set the mdex-property_Language property when creating the record schema for your data
set. However, the language code can later be changed via the Configuration Web Service's
updateProperties operation.

The following is an example of the updateProperties operation, in which the language of the Province
standard attribute is changed to French:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09">

Oracle® Endeca Server: Developer's Guide

Internationalized Data 156

<soapenv:Header/>
<soapenv:Body>

<ns:configTransaction>
<ns:updateProperties>

<ns1:record>
<mdex-property_Key>Province</mdex-property_Key>
<mdex-property_Language>fr</mdex-property_Language>

</ns1:record>
</ns:updateProperties>

</ns:configTransaction>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

Keep in mind that changing the value of mdex-property_Language for an existing attribute will force a
regeneration of the text search indexes, which is a potentially time-consuming operation.

Global PDR language code

The global PDR language code determines which language code is used when a PDR is automatically
created.

If a standard attribute is automatically created at ingest time (by the Data Ingest Web Service or the Bulk Load
interface), or if you do not specify a language code when creating your attribute schema, then the value of the
mdex-property_Language property for a PDR will be set to the global PDR language code. This is also the
case if you partially define a PDR but do not set the mdex-property_Language property.

The value of the global PDR language code is unknown by default. However, you can use the Configuration
Web Service's setPropertyDefaultLanguage operation to change it to a value of your choice. This
example sets the language code to de (German):

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:configTransaction>
<ns:setPropertyDefaultLanguage>de</ns:setPropertyDefaultLanguage>

</ns:configTransaction>
</soapenv:Body>

</soapenv:Envelope>

The setting of this value is stored on disk in the index files for the specific Endeca data domain, so that it is
available across restarts of that data domain. You can use the Configuration Web Service's
getPropertyDefaultLanguage operation to retrieve the current setting of the global PDR language code.

Specifying a per-query language code

Record search and value search queries can specify the language used for those queries.

The TextSearchFilter type has a Language attribute that you use to tell the Dgraph what language record
(full-text) queries are in. Likewise, the ValueSearchConfig type has a similar Language attribute for value
search queries. This per-query language code enables the Dgraph to select the appropriate dictionary for a
given query.

If no per-query language ID is specified, the Dgraph uses the unknown language identifier.

The following code snippets show how to set English (using its language code of "en") as the language of any
text portion of the query (such as search terms).

Oracle® Endeca Server: Developer's Guide

Internationalized Data 157

Example of language setting for record search
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State>

<Name>MyRecSearch</Name>
<TextSearchFilter Key="Description" Mode="AllPartial" EnableSnippeting="false"

Language="en">mountain</TextSearchFilter>
</State>
<RecordListConfig Id="RecordList" MaxPages="20">

<StateName>MyRecSearch</StateName>
<Column>Description</Column>
<RecordsPerPage>5</RecordsPerPage>

</RecordListConfig>
</Request>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

Example of language setting for value search
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">

<State>
<Name>MyProductSearch</Name>
<RecordKind>data</RecordKind>

</State>
<ValueSearchConfig Id="ValueSearch" MaxPerProperty="5"

RelevanceRankingStrategy="static (nbins,descending)" Mode="Any" Language="en">
<StateName>MyProductSearch</StateName>
<SearchTerm>aluminum</SearchTerm>

</ValueSearchConfig>
</Request>

</soap:Body>
</soap:Envelope>

Using custom dictionaries
You can optionally add a custom dictionary to supplement a default dictionary for any supported language.

The use of a custom dictionary may be necessary if searches for terms that you know exist in your data are
not producing the expected results. The custom dictionary is a UTF-8 encoded file that is line oriented and tab
delimited. Each line in the file represents an entry to supplement the primary dictionary.

The generic syntax for a line in the custom dictionary file is:

COMMAND value1 value 2 ...

The COMMAND should be set only to STEM (for dictionary terms) or COMPOUND (for decompounding). Each
value is tab delimited and depends on the COMMAND.

Dictionary terms

One use of a custom dictionary is to add new dictionary terms. (A dictionary term is also called a lemma.)
Once a term is added to the dictionary, all morphological rules will apply to it. For example, adding a new noun
will allow its plural form to stem to the lemma.

The generic syntax for a STEM line in the custom dictionary file is:

Oracle® Endeca Server: Developer's Guide

Internationalized Data 158

STEM new_term POS [,POS2 ...]

Version 7.6.1 • December 2013

Each line beginning with STEM represents a lemma entry that includes:

• new_term is a tab-delimited simple text string that represents a lemma.

• POS is a valid part of speech listed below. At least one part of speech is required. Multiple parts of speech
are delimited by a comma. Note that the parts of speech are case sensitive.

You can specify the part of speech attributes by their full name or abbreviation (in parentheses):

• noun (N) - a simple noun, like table, book, procedure

• nounProper (propN) - a proper name, for person, place, etc., typically capitalized, like Zachary,
Supidito, Susquehanna

• verb (V) - any verb in its dictionary form, like deconstruct, upsell, skate

• adjective (Adj) - modifiers of nouns, typically can be compared (green, greener, greenest), like fast,
trenchant, pendulous

• adverb (Adv) - any general modifier of a sentence that may modify an adjective or verb or may stand
alone, like slowly, yet, perhaps

• preposition (Prep) - a word that forms a prepositional phrase with a noun, like off, beside, from. Used
for postpositions too, in languages that have postpositions of similar function.

• punct (Punct) - any non-letter symbol that is treated as a unit by itself, like %, $,]

• pronoun (Pro) - any pronominal form, including personal pronouns (I, they), demonstrative pronouns
(those, this), relative pronouns (who, which, wherever)

• interrog (Wh) - an interrogative word, like who, why, when, where, how

• determiner (Det) - words that carry grammatical information about a noun group, for example
definite/indefinite, like the, a, an

• particle (Part) - small, invariant words that convey grammatical information; also used for
interjections.

• conjunction (Conj) - conjunctions that introduce a subordinate clause, e.g. although, because, while,
and conjunctions that introduce a coordinate clause, e.g. and, or, yet

• numCardinal (Card) - cardinal numbers, like thirteen, 100, five

• numOrdinal (Ord) - ordinal numbers, like thirteenth, 100th, fifth

For example, this German custom dictionary shows three entries. Each entry is marked with the N attribute to
indicate it is a noun:

STEM aalglatt N
STEM aalglatte N
STEM aalglatter N

Decompounding

You can manually configure a custom dictionary to define components of compound words. This can be useful
if existing language dictionaries do not align with the usage of the language in a region or market, or if existing
libraries have not kept up with changes to the language. A record search query for any of the components in a
compound word also returns the compound as a match.

Oracle® Endeca Server: Developer's Guide

Internationalized Data 159

For example, the German orthography reform of 1996 introduced a standard set of rules for compound words,
but these rules are not always followed. For this and similar such cases, you may wish to explicitly configure
dictionary entries that mark the divisions within compound words.

The generic syntax for a COMPOUND line in the custom dictionary file is similar to the STEM syntax, including
the POS attributes.

For example, you may wish to decompound the German word "Binnenschiffahrt" (which refers to transport
along inland rivers). You might wish to add two versions: one that adheres to the German orthography reform
standards of 1996 and one that reflects the earlier spelling of the word:

COMPOUND Binnenschifffahrt Binnen|Schiff|Fahrt N
COMPOUND Binnenschiffahrt Binnen|Schiff|Fahrt N

Version 7.6.1 • December 2013

Note that the component words of a compound word must each exist in the dictionary. For the example above,
this means that the dictionary must include individual entries for "binnen", "schiff", and "fahrt".

Creating a custom dictionary

Creating a custom dictionary

This topic provides the steps to create your custom dictionary file.

To create a custom dictionary:

1. Start a text editor that supports UTF-8 characters and enables you to edit the language you want to
supplement.

2. Create a new UTF-8 encoded file.

3. Add words to the dictionary. Start each word on a separate line that begins with the command STEM
or COMPOUND, followed by the word or character, any optional attributes, and then a carriage return.

4. Optionally, add comments to the file.

Comments must begin with a pound sign (#). You can also have blank lines in this file.

5. Save the dictionary file with the filename dictionary.<lang_code>.dict, where <lang_code>
is one of the supported language codes (such as dictionary.de.dict for a German custom
dictionary).

Note that the dictionary name does not need to include a region code unless you are using a
language such as simplified Chinese (zh_CN) or Brazilian Portuguese (pt_BR). For example:
dictionary.zh_CN.dict.

6. Place the file in the $ENDECA_HOME/endeca-server/dgraph/olt directory.

7. Re-index your data by re-ingesting it with your ETL tool.

Viewing Dgraph logs
Log messages output by the Dgraph are in UTF-8 encoding.

Most common UNIX/Linux shells and terminal programs are not set up to display UTF-8 by default and will
therefore display some valid characters as question marks (?). If you find unexpected question marks in the
data, first validate that it is not simply a display issue. Try the od command on Linux, or use a UTF-8
compatible display.

Oracle® Endeca Server: Developer's Guide

Part IV

Attributes, Refinements, and Groups

Chapter 14

Working with Managed Attributes

Managed attributes are those attributes that, unlike standard attributes, carry additional information in them,
such as hierarchy, a set of predefined values, and a set of synonyms or ranks. This section describes how to
build the necessary parts of the records schema (PDRs and DDRs) that define managed attributes
themselves.

About managed attributes and their values

Summary of operations

About ranks and synonyms

Adding managed attribute values

Listing managed attribute values

Deleting managed attribute values

About static ranking

About managed attributes and their values
Managed attribute values represent specific value assignments on managed attributes in your data domain.
Through managed attribute values, you can express hierarchical relationships and other useful information
(such as synonyms and ranking), on record refinements in your data domain.

Typically, you use managed attribute values for these purposes:

• To represent hierarchy information on data records. For example, a managed attribute "location" can have
values for countries, such as USA and Canada, states, such as MA and NY, and cities, such as Boston
and New York City. All these managed attribute values are organized in an hierarchy — they have
information about themselves via a unique spec that identifies them in the Endeca Server index, and their
parent managed attribute value. In other words, you can create a parent managed attribute value "USA", a
child managed attribute value "MA (Massachusetts)", and a grand-child managed attribute value "Boston".

• To hold a set of predefined values. For example, for a managed attribute "currency", you can define a
limited set of values, "dollars" and "euros".

• To hold a set of synonyms for each value. For example, you can add a synonym "Beantown" to a
managed attribute value "Boston".

• To add predefined static ranks to managed attribute values, to control how they are sorted when displayed
to the end users in the front-end application, such as Studio.

You add managed attribute values before loading the source records into the data domain. Next, when you
load source records that include these values (such as "MA", or "Boston"), the Endeca Server recognizes
them as managed attribute values, thus letting your end users navigate and search on them, utilizing their
hierarchy, as well as static ranks and synonyms (if specified).

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Managed Attributes 162

Inside the Endeca Server index for each data domain, each of the added managed attribute values, (such as
"MA" and "Boston" in our example), are themselves represented as records. These records are described by
the PDRs, DDRs, and Managed Attribute Value Description Records (MAVDRs) that are created in the index,
when you add managed attributes and their values.

A request to add a managed attribute value record using the Configuration Web Service has this structure:

<ns:configTransaction>
<ns:putManagedAttributeValues>

<ns1:mav>
<name>?</name>
<spec>?</spec>
<parent>?</parent>
<managedAttribute>?</managedAttribute>
<synonym>?</synonym>
<synonym>?</synonym>
<rank>?</rank>

</ns1:mav>
</ns:putManagedAttributeValues>

</ns:configTransaction>

Version 7.6.1 • December 2013

In this structure, the spec, parent, and managedAttribute elements are required, all other elements are
optional.

The following table describes each of the elements in the mav element of putManagedAttributeValues. For
each of these elements, their value represents an assignment on some attribute. The corresponding attribute
can belong to one of the description records (PDR, MAVDR) created in the index once you add this particular
managed attribute value:

Element Type Description

name string (Optional). The display name of the managed attribute value record. You
define this property when adding a managed attribute value. For example,
you can define a managed attribute value with the name "Boston":

<mav><name>Boston</name>...</mav>

Inside the schema for your data records, when you create this managed
attribute value, its MAVDR is created. The MAVDR gets an assignment on
mdex-dimension-value_Name:

<attribute name="mdex-dimension-value_Name" type
="mdex:string">Boston</attribute>

Oracle® Endeca Server: Developer's Guide

Working with Managed Attributes 163

Element Type Description

spec string (Required). A unique identifier, or a spec, of the managed attribute value
record. For example, you can define a managed attribute value with the
spec "bos":

<mav>
<spec>bos</spec>
...

</mav>

Inside the schema for your data records, this value, in turn, is an
assignment on the mdex-dimension_my_attr_key_Spec attribute that
is created when you add a DDR for the associated managed attribute with
the key my_attr_key. For example, for a managed attribute with the key
"location", when you create its DDR, another record is automatically
created, — namely, a PDR for mdex-dimension_location_Spec. It is
always created as unique and single-assign, as values on it uniquely
identify managed attribute values that you will be adding. Next, when you
add a managed attribute value, such as "bos", the value "bos" becomes an
assignment on mdex-dimension_location_Spec:

<attribute name="mdex-dimension_location_Spec" type
="mdex:string">bos</attribute>

Note: If, when creating the DDR for the managed attribute with the
key value, you don't specify your own value for its mdex-
dimension-value_Spec attribute, the naming structure of the
format mdex-dimension_value_Spec is used automatically by
the Endeca Server when it creates the PDR for the managed
attribute value spec.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Managed Attributes 164

Element Type Description

parent string (Required). The spec of the parent managed attribute value. Only one is
allowed. To continue with the example, for a managed attribute value with
the spec "bos", the parent managed attribute value spec is "MA" (it must
already exist, in order to be specified):

<mav>
<spec>bos</spec>
<parent>MA</parent>
...

</mav>

Inside the schema for your data records, this value, in turn, is an
assignment on the mdex-dimension_my_attr_key_Parent attribute
that is created when you add a DDR for the associated managed attribute
with the key my_attr_key. For example, for a managed attribute with the
key "location", when you create its DDR, another record is automatically
created, — namely, a PDR for mdex-dimension_location_Parent. It
is always created as single-assign. Next, when you add a managed
attribute value, such as "MA", the value "MA" becomes an assignment on
mdex-dimension_location_Parent, for another managed attribute
value, "bos":

<attribute name="mdex-dimension_location_Parent" type
="mdex:string">MA</attribute>

Note: If, when creating the DDR for the managed attribute with the
key value, you don't specify your own value for its mdex-
dimension-value_Parent attribute, the naming structure of the
format mdex-dimension_value_Parent is used automatically
by the Endeca Server, when it creates the PDR for the parent
managed attribute value.

managedAttribute string (Required). The key (or spec) of the managed attribute to which this
managed attribute value relates. Only one is allowed. You define it when
adding a managed attribute value. For example, for the value Boston
(whose spec is "bos"), the managed attribute key it is associated with is
"location":

<mav>
<spec>bos</spec>
<managedAttribute>location</managedAttribute>
...

</mav>

Inside the schema for your data records, this value, "location", is a key of
the managed attribute "location", in the DDR that defines this managed
attribute:

<mdex-dimension_Key>location</mdex-dimension_Key>

In the MAVDR for a managed attribute value you are adding, it becomes
an assignment to the managed attribute "location":

<attribute name="mdex-dimension-value_Dimension" type
="mdex:string">location</attribute>

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Managed Attributes 165

Element Type Description

rank integer (Optional). Static rank of the managed attribute value. Only one is allowed.
This rank is an integer number according to which the Endeca Server
ranks the managed attribute values within each managed attribute's
hierarchy, when returning them to the end users. This rank affects the
order in which values are displayed in the front-end application, such as
Studio. You can optionally specify the rank, when adding a managed
attribute value with the putManagedAttributeValue operation. mdex-
dimension-value_Rank

<ns1:mav>
<spec>bos</spec>
<rank>3</rank>
...

</mav>

Inside the schema for your data records, the value of rank, such as "3",
becomes an assignment on the mdex-dimension-value_Rank attribute
of the MAVDR for the managed attribute you are adding:

<attribute name="mdex-dimension-value_Rank" type="mdex:integer">3<
/attribute>

synonym string (Optional). List of one or more synonyms, for the managed attribute value.
You can optionally specify one or more synonyms, when adding a
managed attribute value. For example, for the value Boston, the synonyms
can be "Beantown", and "the Hub":

<ns1:mav>
<spec>bos</spec>
<synonym>Beantown</synonym>
<synonym>the Hub</synonym>
...

</mav>

Inside the schema for your data records, the value of any synonym, such
as "Beantown", becomes an assignment on the mdex-dimension-
value_Synonyms attribute of the MAVDR for the managed attribute you
are adding:

<attribute name="mdex-dimension-value_Synonyms" type
="mdex:string">Beantown</attribute>

To conclude, each managed attribute value record is identified by its own pair of spec and parent values that
are unique to this managed attribute value. The following example illustrates how to add a managed attribute
value, for a specific managed attribute.

Example

Let's consider an example where you would like to create a managed attribute "location", with a set of
managed attribute values associated with it. You start by creating a managed attribute itself. Since each
managed attribute requires a PDR and a DDR, you first create the PDR with the spec "location", as in this
abbreviated example:

<mdex-property_Key>location</mdex-property_Key>

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Working with Managed Attributes 166

Next, you create an associated DDR for this managed attribute, also with the spec "location":

<mdex-dimension_Key>location</mdex-dimension_Key>

Version 7.6.1 • December 2013

Once you create this DDR, the Endeca Server automatically creates two additional PDR records (if you do not
specify your own values for them in the DDR):

<mdex-property_Key type="mdex:string" xmlns="">mdex-dimension_location_Parent</mdex-property_Key>
<mdex-property_Key type="mdex:string" xmlns="">mdex-dimension_location_Spec</mdex-property_Key>

Next, you can add three managed attribute values, using the putManagedAttributeValues operation of the
Configuration Web Service (which will create a MAVDR for each added managed attribute value, internally):

<ns:configTransaction>
<ns:putManagedAttributeValues>
<ns1:mav>

<name>USA</name>
<spec>US</spec>
<parent>/</parent>
<managedAttribute>location</managedAttribute>

</ns1:mav>
<ns1:mav>

<name>Massachusetts</name>
<spec>MA</spec>
<parent>US</parent>
<managedAttribute>location</managedAttribute>

</ns1:mav>
<ns1:mav>

<name>Boston</name>
<spec>bos</spec>
<parent>MA</parent>
<managedAttribute>location</managedAttribute>

</ns1:mav>
</ns:putManagedAttributeValues>

</ns:configTransaction>

(For simplicity, namespaces are omitted in this example. They represent
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0" and
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09", respectively.)

When a managed attribute value is created, the Endeca Server "attaches" it to a specific managed attribute. In
this example, for a managed attribute "location", when you create a managed attribute value "Boston", the
managed attribute's value spec, "bos", is assigned on the mdex-dimension_location_Spec that was
created automatically when the "location" managed attribute was created, by adding its DDR. Similarly, the
managed attribute's value parent ,"MA", is assigned on the mdex-dimension_location_Parent.

Note: Ranks and synonyms are omitted in this example. For information on how to add synonyms,
see Adding managed attribute values on page 168. For information on how to add ranks, see Adding
and updating ranks on page 175.

Summary of operations
You can add and list managed attribute values. You can optionally assign their names, synonyms, or ranks at
creation time. You can also update the display name and the rank of the managed attribute values without

Oracle® Endeca Server: Developer's Guide

Working with Managed Attributes 167

stopping the data domain. You can delete managed attribute values by deleting the PDR that defines an
associated managed attribute.

The following list summarizes operations you can perform:

• Additions. You can add a new managed attribute value using different methods:

• Using the Data Ingest Web Service addRecords operation. You do this before loading data records,
by creating the appropriate assignments on the new description record, (MAVDR). For information,
see the Oracle Endeca Server Data Loading Guide.

• Using the Configuration Web Service operation putManagedAttributeValues.

• Updates. You can update managed attribute value records only with changes to ranking and display
name, using the putManagedAttributeValues operation, or an operation in the Data Ingest Web Service.
You cannot change their hierarchy or other characteristics, once you add them.

• Deletions. The only way to delete an individual managed attribute value is to delete the PDR for an
associated managed attribute. When you delete a PDR, the Endeca Server deletes the managed attribute
and all its values.

• Additionally, you can add ranks and synonyms for managed attribute values. See About ranks and
synonyms on page 167.

About ranks and synonyms
When you add managed attribute values, you can specify their synonyms and ranks.

Ranks and synonyms work as follows:

• Rank. You can assign a static rank to each managed attribute value. This lets you impose an order on
values in your refinements, when returning refinement values to the end users. You can update the static
ranking of managed attribute values on an active data domain. Rank is specified by assignments on
mdex-dimension-value_Rank attribute. You can add rank when adding a managed attribute value with
the Data Ingest Web Service addRecords sub-operation. An easier way to add rank is with
putManagedAttributeValues of the Configuration Web Service (this automatically makes a rank
assignment on mdex-dimension-value_Rank).

• Synonyms. You can specify one or more synonyms in a managed attribute value so that end users can
search for other text strings and still obtain the same records as they would get while searching for the
original managed attribute value name. To add synonyms when adding attribute values to the Endeca
data domain, use the putManagedAttributeValues operation of the Configuration Web Service.
Alternatively, you can add assignments on mdex-dimension-value_Synonyms attribute, when adding
managed attribute values through Data Ingest Web Service. You can add synonyms only to child
managed attribute values, not to top-most (root) attribute values (which are automatically created with the
value "/").

You can add synonyms only when you initially create managed attribute value records and before loading
the data records that have assignments from managed attribute values This means that synonyms can
only be added only to an empty data domain that contains only the schema for the source records (non-
data records), but does not yet contain data records. Once added, synonyms cannot be updated. If you
want to update synonyms, you must delete the managed attribute value (which, in turn, requires deleting
the associated managed attribute).

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Managed Attributes 168

Adding managed attribute values
Typically, you add more than one managed attribute value. To add a set of them, you first define a managed
attribute with which the values will be associated. Next, you add the managed attribute values, associating
them with the managed attribute.

The procedure in this topic utilizes an example to illustrate how to add a set of managed attribute values that
define a hierarchy. It builds an hierarchy of managed attribute values for the managed attribute "location", by
adding parent managed attribute value "USA", followed by managed attribute values "Massachusetts", and
"New York State", and their descendant managed attribute values "Boston", and "New York".

Note: You can add managed attribute values using two different web services in the Endeca Server,
Configuration Web Service and Data Ingest Web Service. This topic discusses adding them with
putManagedAttributeValues of the Configuration Web Service. Since, after they are added,
managed attribute values are represented as records in the Endeca Server index for the data domain,
you can also use the Data Ingest Web Service to add them as non-data records, before adding any
data records. For information, see the Oracle Endeca Server Data Loading Guide.

The examples of Configuration Web Service requests in this topic are abbreviated and do not show
namespaces. They use the following namespaces:
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0" and
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09".

Before you add one or more managed attribute values, note the following requirements:

• A managed attribute must exist in the index of the data domain. This means that its associated PDR and
DDR must be created. Note that if a DDR does not exist, you can create it in the same request in which
you are adding managed attribute values.

• When creating a DDR (as shown in the procedure in this topic), you can omit specifying the values for
mdex-dimension-value_Parent and mdex-dimension-value_Spec, as these properties on the
DDR are optional. If you do not explicitly provide values for them in the putDimension request that
creates a DDR for the managed attribute, the Endeca Server automatically creates them and assigns their
names. For example, for a managed attribute "location", if parent and spec are not specified, mdex-
dimension_location_Parent, and mdex-dimension_location_Spec are created. If you specify
these properties, you can provide your own names. Whether or not you specify these properties, once you
add a DDR, the Endeca Server creates two PDR records in the index, for each of these properties. These
two description records represent non-data records, and are needed to provide the internal structure that
uniquely identifies each added managed attribute value record (via its value on the spec), and also defines
the hierarchy (via its values on both the spec and the parent attributes).

• When creating the top-most managed attribute value for the managed attribute, specify the sign "/" for its
parent managed attribute value. This is because, when a managed attribute is created, the spec for the
root managed attribute value is also created automatically in the index, and its value is "/".

• When you add a managed attribute value with putManagedAttributeValues, its name, synonyms, and
rank attributes are optional. All other parameters (spec, parent managed attribute value, and managed
attribute spec) are required.

• You can optionally add its synonyms, which the Endeca Server will use in searches. Since it is not
possible to change or update synonyms on already added managed attribute values, plan which
synonyms you are going to require. If you later need to add more synonyms, delete the existing managed
attribute (this deletes all associated managed attribute values), and replace it with new values and
synonyms.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Managed Attributes 169

• You can update a managed attribute value with a new name. In this case, when you use the
putManagedAttributeValues for an existing value but specify a new name, the value is updated with this
name.

• You can also add static ranks (and update them) to the managed attribute values. Ranks are not included
in the examples in this topic. For information on adding them, see Adding and updating ranks on page
175.

• You can add more than one managed value attribute in one operation. However, if any of the values are
specified incorrectly, causing the Endeca Server to issue an error, the entire Configuration Web Service
request fails and no values are added.

To add a set of managed attribute values:

1. In soapUI or another tool for issuing web service requests, access the Configuration Web Service, as
in this example:

http://localhost:7001/endeca-server/ws/config/data_domain?wsdl

Version 7.6.1 • December 2013

where localhost and 7001 are host and port of the Endeca Server, and data_domain is the name
of the data domain.

2. Start by creating a structure needed for the managed attribute.

(a) Create a PDR "location":

<ns:configTransaction>
<ns:putProperties>
<ns1:record>

<mdex-property_DisplayName>location</mdex-property_DisplayName>
<mdex-property_IsSingleAssign>false</mdex-property_IsSingleAssign>
<mdex-property_IsTextSearchable>true</mdex-property_IsTextSearchable>
<mdex-property_IsUnique>false</mdex-property_IsUnique>
<mdex-property_IsPropertyValueSearchable>true<

/mdex-property_IsPropertyValueSearchable>
<mdex-property_Key>location</mdex-property_Key>
<mdex-property_TextSearchAllowsWildcards>true<

/mdex-property_TextSearchAllowsWildcards>
<mdex-property_Type>mdex:string</mdex-property_Type>

</ns1:record>
</ns:putProperties>

</ns:configTransaction>

This creates the standard attribute "location", which is needed to create a managed attribute.
Notice that in this example, the value for the mdex-property_IsSingleAssign property is
false. The setting of false is required if you want to assign multiple values on the associated
managed attribute.

(b) Create a DDR "location":

<ns:configTransaction>
<ns:putDimensions>
<ns1:record>

<mdex-dimension_Key>location</mdex-dimension_Key>
<mdex-dimension_EnableRefinements>true</mdex-dimension_EnableRefinements>
<mdex-dimension_IsDimensionSearchHierarchical>true<

/mdex-dimension_IsDimensionSearchHierarchical>
<mdex-dimension_IsRecordSearchHierarchical>true<

/mdex-dimension_IsRecordSearchHierarchical>
</ns1:record>

</ns:putDimensions>
</ns:configTransaction>

This creates the managed attribute "location" to which you are adding a set of managed attribute
values.

Oracle® Endeca Server: Developer's Guide

Working with Managed Attributes 170

This request also creates two PDRs in the index for spec and parent, as evident if you run
listProperties. Namely, this creates:

<mdex-property_Key type="mdex:string" xmlns="">mdex-dimension_location_Parent<
/mdex-property_Key>
<mdex-property_Key type="mdex:string" xmlns="">mdex-dimension_location_Spec<

/mdex-property_Key>

Version 7.6.1 • December 2013

• The mdex-dimension_location_Spec is the name of the attribute whose assignment is
the spec of the managed attribute value you are adding, and it uniquely identifies the
managed attribute value record.

• The mdex-dimension_location_Parent is the name of the attribute whose assignment is
the spec of the parent managed attribute value, for this managed attribute value.

The assignments on spec and parent attributes are important — this is the mechanism by which
the Endeca Server creates managed attribute values as records, inside its index for the data
domain.

If you do not include these two attributes in the request for creating a DDR (as shown in the
example in step 2.b), the names of the spec and parent PDRs are assigned automatically, by
appending the name of the current managed attribute ("location"). However, if you explicitly
include them in the request, you can provide your own names, as in the following alternative
example. It shows how to add a managed attribute "location" with explicitly specified loc_parent
and loc_spec values for these two attributes:

<ns:configTransaction>
<ns:putDimensions>
<ns1:record>

<mdex-dimension_Key>location</mdex-dimension_Key>
<mdex-dimension-value_Parent>loc_parent</mdex-dimension-value_Parent>
<mdex-dimension-value_Spec>loc_spec</mdex-dimension-value_Spec>
<mdex-dimension_EnableRefinements>true</mdex-dimension_EnableRefinements>
<mdex-dimension_IsDimensionSearchHierarchical>true<

/mdex-dimension_IsDimensionSearchHierarchical>
<mdex-dimension_IsRecordSearchHierarchical>true<

/mdex-dimension_IsRecordSearchHierarchical>
</ns1:record>

</ns:putDimensions>
</ns:configTransaction>

Note that loc_parent must be of type string, be single-assign and have no assignments from
data records. The loc_spec attribute should be of type spring, unique, single-assign and have no
assignments from data records.

This example is not used in the rest of this procedure.

Now that you have added a managed attribute "location", you can start adding managed attribute
values to it, organized in a hierarchy.

3. Add the managed attribute value record, "USA":

<ns:configTransaction>
<ns:putManagedAttributeValues>
<ns1:mav>

<name>USA</name>
<spec>US</spec>
<parent>/</parent>
<managedAttribute>location</managedAttribute>

</ns1:mav>
</ns:putManagedAttributeValues>

</ns:configTransaction>

Oracle® Endeca Server: Developer's Guide

Working with Managed Attributes 171

Notice that because this is going to be the top-most value in the hierarchy, it includes "/" as its
parent managed attribute value. This sign, "/", must be specified for the root managed attribute
value. Additionally, the associated managed attribute for this value is "location". It must exist before
you create a managed attribute value.

4. In a similar way, add the "Massachusetts" and "New York State" managed attribute values, under the
parent value "USA", for the same managed attribute "location":

<ns:configTransaction>
<ns:putManagedAttributeValues>
<ns1:mav>

<name>Massachusetts</name>
<spec>MA</spec>
<parent>US</parent>
<managedAttribute>location</managedAttribute>

</ns1:mav>
<ns1:mav>

<name>New York State</name>
<spec>NY</spec>
<parent>US</parent>
<managedAttribute>location</managedAttribute>

</ns1:mav>
</ns:putManagedAttributeValues>

</ns:configTransaction>

Version 7.6.1 • December 2013

5. Add the managed attribute values "Boston" and "New York City", under their respective parent
managed attribute values "Massachusetts" and "New York State", for the same managed attribute
"location":

<ns:configTransaction>
<ns:putManagedAttributeValues>
<ns1:mav>

<name>Boston</name>
<spec>bos</spec>
<parent>MA</parent>
<managedAttribute>location</managedAttribute>
<synonym>BeanTown</synonym>
<synonym>The Hub</synonym>

</ns1:mav>
<ns1:mav>

<name>New York city</name>
<spec>nyc</spec>
<parent>NY</parent>
<managedAttribute>location</managedAttribute>
<synonym>NYC</synonym>
<synonym>the Big Apple</synonym>

</ns1:mav>
</ns:putManagedAttributeValues>

</ns:configTransaction>

Alternatively, you could also add all managed attribute values (for country, states and cities) in a
single request.

Notice that each of the managed attribute values has two synonyms. For information on synonyms,
see Summary of operations on page 166.

Now that you have created these managed attribute values, you can list them with
listManagedAttributeValues operation of the Configuration Web Service.

Oracle® Endeca Server: Developer's Guide

Working with Managed Attributes 172

Listing managed attribute values
You can list either all managed attribute values, or list only values added for a specific managed attribute with
listManagedAttributeValues operation in the Configuration Web Service.

To list which managed attribute values exist in the system:

1. Issue a request with listManagedAttributeValues, using one of the two options:

• To list all managed attribute values, regardless for which managed attribute they are added, use:

<ns:configTransaction>
<ns:listManagedAttributeValues>
</ns:listManagedAttributeValues>

</ns:configTransaction>

Version 7.6.1 • December 2013

• To list managed attribute values for a specific managed attribute, use:

<ns:configTransaction>
<ns:listManagedAttributeValues>
<mdex-dimension_Key>managed_attribute_name</mdex-dimension_Key>

</ns:listManagedAttributeValues>
</ns:configTransaction>

where mdex-dimension_Key is the name of the DDR for the specific managed attribute.

Example

For example, this request:

<ns:configTransaction>
<ns:listManagedAttributeValues>
<mdex-dimension_Key>location</mdex-dimension_Key>

</ns:listManagedAttributeValues>
</ns:configTransaction>

Returns the following result, listing all managed attribute values for the managed attribute "location":

<config-types:results xmlns:config-types="http://www.endeca.com/MDEX/config/services/types/3/0">
<managedAttributeValues xmlns="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<mav>
<name xmlns="">Boston</name><spec xmlns="">bos</spec><parent xmlns="">MA</parent>
<managedAttribute xmlns="">location</managedAttribute>

</mav>
<mav>
<name xmlns="">Massachusetts</name><spec xmlns="">MA</spec><parent xmlns="">US</parent>
<managedAttribute xmlns="">location</managedAttribute>

</mav>
<mav>
<name xmlns="">New York city</name><spec xmlns="">nyc</spec><parent xmlns="">NY</parent>
<managedAttribute xmlns="">location</managedAttribute>

</mav>
<mav>
<name xmlns="">USA</name><spec xmlns="">US</spec>
<parent xmlns="">/</parent><managedAttribute xmlns="">location</managedAttribute>

</mav>
<mav>
<name xmlns="">New York state</name><spec xmlns="">NY</spec>
<parent xmlns="">US</parent><managedAttribute xmlns="">location</managedAttribute>

</mav>
</managedAttributeValues>

</config-types:results>

Oracle® Endeca Server: Developer's Guide

Working with Managed Attributes 173

Deleting managed attribute values
You can only delete all managed attribute values for a specific managed attribute, by deleting its PDR (this
deletes the associated DDR and all assignments on it). You cannot delete a single managed attribute value.
Since managed attribute values are represented in the index as records, to delete them, you use the Data
Ingest Web Service operations for deleting records.

To delete a set of managed attribute values:

1. Use the DeleteRecords operation of the IngestChanges element in the Data Ingest Web Service
request, to delete a PDR for the associated managed attribute.

For example, assume a managed attribute named "location" (both its PDR key and DDR key are
named "location"). The following request of the Data Ingest Web Service deletes the PDR and its
associated DDR:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns="http:/
/www.endeca.com/MDEX/ingest/3/0" xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">

<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:Language>en</ns:Language>
<ns:deleteRecords>

<ns:recordSpecifier>"mdex-property_Key" = location</ns:recordSpecifier>
</ns:deleteRecords>

</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

As a result of this step, the PDR for the managed attribute, its associated DDR, and all the managed
attribute values are deleted.

Note that this request does not delete the parent PDR (in this example, let it be named "loc_parent"),
and spec PDR (named "loc_spec").

2. (Optional). You can also delete the two PDRs created for the mdex-dimension-value_Spec and
mdex-dimension-value_Parent properties of the DDR. These two properties, and their
associated PDRs are created by the Endeca Server when you add a DDR. They are not deleted
automatically when you delete a DDR though. If you are not using these non-data PDR records for
any other assignments in your data domain, you can also delete them, when deleting managed
attribute values. Since they are records, you also delete them with the Data Ingest Web Service, using
the request similar to the one in this topic, and specifying:

For the spec PDR named "loc_spec":

...
<ns:recordSpecifier>"mdex-property_Key" = loc_spec</ns:recordSpecifier>
...

For the parent PDR named "loc_parent":

...
<ns:recordSpecifier>"mdex-property_Key" = loc_parent</ns:recordSpecifier>
...

For more information on deleting records, see the Oracle Endeca Server Data Loading Guide.

Oracle® Endeca Server: Developer's Guide

Working with Managed Attributes 174

About static ranking
When you add managed attribute values with PutManagedAttributeValues, you can add (and later update),
the static ranking of the particular value, within this managed attribute. Static ranking affects how the Endeca
Server displays the values when returning refinements to the end users.

You specify static ranking as rank, in this structure of the Configuration Web Service:

<ns:putManagedAttributeValues>
<ns1:mav>
<name>?</name>
<spec>?</spec>
<parent>?</parent>
<managedAttribute>?</managedAttribute>
<synonym>?</synonym>
<rank>?</rank>

</ns1:mav>
</ns:putManagedAttributeValues>

Version 7.6.1 • December 2013

Note: You can only control ranking if you use the PutManagedAttributeValues of the Configuration
Web Service. This interface operation lets you add ranks and also resolves ties and prevents
duplicate ranks. However, if you use the Data Ingest Web Service for adding managed attribute
values (as records, via ingestChanges:addRecords request, while you can still add ranks, this
operation does not resolve ranking ties.

The following statements describe how the Endeca Server uses rank values:

• Managed attribute values within a specific managed attribute are ordered according to their ranks (if they
are specified), in the ascending order. If you did not specify a rank for any of the values, the Endeca
Server considers their rank as zero (0), and ranks the values accordingly.

• Ranking occurs within all values that are added for the specific managed attribute. Ranking is independent
of the managed attribute's hierarchy. For example, for a managed attribute "location", two managed
attribute values, "MA", and "NY State" can be ranked 1, and 2, accordingly. Then, the child values of MA,
"Boston" and "Springfield" can be ranked 3, and 4.

• You can specify a rank when initially adding or updating a managed attribute value, or by using
putManagedAttributeValues to update an existing value. In the case of an update, a new rank is used
and any affected values are reordered.

• If the rank of any managed attribute value (when using the putManagedAttributeValues request) is tied
with the rank of any another value of the same managed attribute, the ranks of the pre-existing values
change according to the following algorithm. For each value A that is being added, if A is assigned a rank
(A) and there is already a value B of rank (B) that is equal to rank (A), then B is assigned a rank (B)+1
instead. If the new rank(B)+1 is tied with the rank for an existing value C, ties are broken again as if B is a
new value. (That is, C's rank become rank©)+1). This process repeats until there are no ties. The ranks of
all other values specified in the request remain as specified unless changed by a subsequent request.

• (For putManagedAttributeValues requests only). No two managed attributes specified in the same
request may have the same rank (the Configuration Web Service request is rejected). The entire request
fails if any of the values is specified incorrectly. (Note that if you use the Data Ingest Web Service request,
then this checking does not occur.)

Oracle® Endeca Server: Developer's Guide

Working with Managed Attributes 175

• Overall, you can order refinements (which comprise both standard and managed attribute values), either
globally or per query.

• For the global order, you specify either the record-count, or lexical values on the system-
navigation_Sorting property in the associated PDR for the attribute (both standard and
managed).

• For the per-query order, you specify OrderByRecordCount="false" in the RefinementConfig of
the specific Conversation Web Service request, for that query. The query-time control overrides the
global order.

Depending on which of these methods is used, the Endeca Server uses the following logic for breaking
ties with static ranking specified for managed attribute values:

• If record-count is enabled, Endeca Server first uses record-count, then it breaks ties with static
ranks on managed attribute values, and returns the results.

• If lexical is enabled, Endeca Server uses static rank numbers first, and then orders refinements
based on their lexical order. In other words, if any managed attribute values have rank numbers
associated with them, Endeca Server takes into account these rank numbers when returning and
sorting these refinements. Note that if no rank is specified, a rank of 0 is assumed. This means that in
practice, lexically-ordered refinements may be returned first, followed by those that have a static rank
on their managed attribute values. As a workaround, in such cases, you can add negative ranks,
which will result in ranked managed attribute values sorted earlier than unranked values.

Adding and updating ranks

Adding and updating ranks
To add or update a static rank for the managed attribute value, use putManagedAttributeValues operation.
A static rank is optional, and is used by the Endeca Server when ranking values when they are returned as
refinements, to the end users.

For information on how static ranking behaves and how the Endeca Server assigns ranks and break ties with
existing ranks, see About static ranking on page 174.

To add or update a static rank:

1. Use a request similar to the following:

<ns:configTransaction>
<ns:putManagedAttributeValues>
<ns1:mav>

<name>Boston</name>
<spec>bos</spec>
<parent>MA</parent>
<managedAttribute>location</managedAttribute>
<rank>2</rank>

</ns1:mav>
</ns:putManagedAttributeValues>

</ns:configTransaction>

Version 7.6.1 • December 2013

This request specifies the rank 2 for the managed attribute value "Boston". The Endeca Server uses
this rank value to return the managed attribute value Boston.

Oracle® Endeca Server: Developer's Guide

Chapter 15

Working with Attributes and Refinements

This section discusses attributes and Guided Navigation. It also describes how to retrieve and display
refinements in your front-end Web application powered by the Endeca Server.

About Guided Navigation

About refinements

Working with refinements in Studio and other front-end applications

Schema configuration for enabling refinements

Configuring the order of suggested refinements

Configuring whether to display refinement counts

Displaying refinements on multi-select attributes

Working with attributes and refinements using the API

Performance impact of returning and displaying refinements

About Guided Navigation
Guided Navigation is a key feature of the Endeca Server.

The Endeca Server is designed to facilitate an interactive query model that allows end users to discover
information in their data without knowing exactly what they are looking for from the start.

It is designed around the idea of a "conversation" where the users make repeated queries, and with each one
receive a set of matching data and also hints about how to further narrow down their results. This process is
known as Guided Navigation.

About refinements
Refinements allow end users to explore their data records using Guided Navigation.

To utilize Guided Navigation, users first select a refinement and expand and collapse the available values. For
a refinement that has a hierarchy, users can expand the refinement more than once.

To use refinements to narrow their results, end users select a specific refinement value. For example, to
narrow results from all refrigerators to only white ones, users might choose the value "white" for the color
refinement.

As they explore, users need to know what values are currently available for refinement. At any given step in
the exploration process, the Endeca Server returns the list of available values for each refinement, and

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Attributes and Refinements 177

displays to the users only those refinements (attribute values) for which records exist in the resulting record
set.

In other words, after a user creates a query using record and value search, only valid remaining refinement
values are provided to the user to further refine that query. This allows the user to reduce the number of
matching records without creating an invalid query.

To conclude, refinements are values presented to the users during Guided Navigation. They contain attribute
values for the records loaded into the data domain.

How refinements relate to attributes

Once the source records are loaded into the data domain, the Endeca Server uses attributes on the Endeca
records for refinements. In other words, the attribute values for refinements are derived from attributes defined
on records. Attributes, in turn, are typically generated from attributes on the source records. Attributes consist
of key-value pairs.

In addition, managed attributes can have a multi-level hierarchy, can be enumerated, and can have specs.
They can also be searched and displayed using their display names. These characteristics of managed
attributes affect the ways in which you control refinements.

Types of refinements in the user interface

In the user interface, refinements fall into two categories, depending on how they are displayed in the user
interface:

• Suggested refinements are those that can be used for further navigation. When you select a specific
refinement, you change (or refine), the resulting set of records. Suggested refinements are always
returned by the Endeca Server, if they are available in the current navigation state.

• Applied refinements show your current location in the guided navigation process. These refinements are
already selected. Applied refinements can be of two sub-types:

• Explicitly-selected refinements are those that the end users have chosen during their navigation
process, for example, by clicking them in the navigation menu.

• Implicit refinements are those that were implicitly applied by the end user's explicit selections of
other refinements. For example, in a data set containing both city and state attributes, selecting
"Cambridge" implicitly selects "Massachusetts" (if all records tagged with "Cambridge" are also tagged
with "Massachusetts"). In other words, a refinement is considered implicit if selecting it does not
narrow the resulting record set.

By default, Endeca Server does not return applied refinements, and only retrieves those refinements that
are still available for navigation (suggested). However, in some instances, it is useful to request the full list
of refinements, both suggested and applied (which includes implicits).

It is common to build separate user interfaces to display suggested refinements and applied refinements
separately.

Collapsing and expanding refinements

When the Endeca Server computes refinements, it takes into account whether you want to expand or collapse
the suggested refinements in the user interface.

The computation of available refinement values can be expensive, especially if there are many attributes
defined on records in your data domain. In cases when the number of attributes is large, it is often not useful

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Attributes and Refinements 178

for a user interface to display values for every available attribute at once, because there would be too many
options for users to consider.

To address this, the Endeca Server supports the notion of "expanding" and "collapsing" suggested
refinements displayed in the user interface:

• If a returned attribute is configured as collapsed, the Endeca Server computes whether it is a valid
refinement, but does not compute all available values.

• If a returned attribute is configured as expanded, in addition to determining whether it is a valid refinement,
the Endeca Server also computes and returns all available values.

Working with refinements in Studio and other front-end
applications
Refinements are handled slightly differently in Studio than in other front-end applications powered by the
Endeca Server.

Studio uses the Available Refinements component, which utilizes the Conversation Web Service, while other
applications should rely directly on the Conversation Web Service:

• Studio. In Studio, each component affected by the Available Refinements component automatically uses
suggested refinements and information received from refinements computation, such as the order of
refinements or a number of refinements for a given attribute.

• Other front-end applications. For other front-end applications powered by the Endeca Server, including
custom-built applications, you can use the Conversation Web Service requests to work with refinements
and build the user interface around them, utilizing the principles of Guided Navigation. For example, you
can:

• Request all available refinements from the Endeca Server, so that you can display them as suggested
refinements in the user interface.

• Request a list of applied refinements from the Endeca Server, so that the current navigation state is
reflected in the user interface, showing the users their relative location as they navigate the data.

• Configure the behavior of refinements, such as number of refinements to be displayed, or the order in
which to display them, or whether to return records tagged with implicit refinements.

In the Conversation Web Service, suggested refinements are included in the navigation menu
configuration, and the current navigation state configuration lets you include applied refinements, both
implicit and explicitly-selected.

For information on how to use the Conversation Web Service requests for refinements, see Working with
attributes and refinements using the API on page 183.

Schema configuration for enabling refinements
The schema configuration for your records specifies whether attributes are enabled to be used as refinements.

If you want to use values from standard attributes as refinements, no configuration is needed. If a standard
attribute is present on some records, the corresponding refinement values are automatically identified by the
Endeca Server to let you create a new query or refine an existing query. Further, there are no Dgraph
configuration flags necessary to enable the basic displaying of refinements.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Attributes and Refinements 179

For managed attributes, you can control in the schema whether they should become available as refinements.
In the managed attribute's DDR (Dimension Description Record), the mdex-
dimension_EnableRefinements attribute is set to true by default. This setting is typically not changed,
as it allows refinements to be displayed. If you set the configuration attribute to false, refinements will not be
displayed, that is, the values from the managed attribute will be hidden.

Although this setting is typically not changed, as with any schema configuration, you can change the value of
the mdex-dimension_EnableRefinements attribute using the Configuration Web Service (before the
records are loaded) — this will suppress the display of refinements. For information, see Configuration Web
Service Interface on page 52.

Configuring the order of suggested refinements
Refinements can be displayed using either the default order for the attributes, or the order that you specify per
query.

The system-navigation_Sorting attribute in the attribute's PDR controls the default order of the
available refinement values. system-navigation_Sorting can be set to these values:

• record-count sorts refinement values in descending order, by the number of records available for each
refinement value. This is the default.

• lexical sorts refinement values in alphabetical or numeric order. For example, if the end user in the
front-end application chooses the values Red (15 records), Green (25 records), and Blue (5 records), then
if the sorting is lexical, the values are displayed in this order: Blue (5 records), Green (25 records) Red (15
records).

You configure the default order for the values of suggested refinements by sending the configuration request
to the Oracle Endeca Server with the Configuration Web Service, or by using Integrator ETL.

For information on how to change the value for the system-navigation_Sorting in the PDR, see
Configuration Web Service Interface on page 52, or in the Oracle Endeca Server API References, see the
section about the Configuration Web Service. For information on using Integrator ETL for the same purpose,
see the Oracle Endeca Information Discovery Integrator ETL User's Guide.

You can also control the order of suggested refinements for each query. The query-time control overrides the
order that is set globally for refinements in the PDR. For information, see About query-time control of
refinement ordering on page 203.

Configuring whether to display refinement counts
Refinement counts represent the number of records (in the current navigation state) available beneath a
given refinement value. These counts are computed dynamically at run-time by the Oracle Endeca Server and
can be displayed in the user interface.

By showing the user the number of records that will be returned for each refinement, refinement counts can
enhance the front-end application’s navigation controls by providing more context at each point in the user's
Guided Navigation process.

By default, attributes are enabled to display refinement counts, and no further configuration is needed to
display them. So long as there are attribute values returned for a given request, refinement value counts are
also returned as an attribute attached to each attribute value.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Attributes and Refinements 180

You configure whether to show record counts for an attribute by changing the value in the system-
navigation_ShowRecordCounts attribute in the PDR, using either the Configuration Web Service or
Integrator ETL.

The valid settings for system-navigation_ShowRecordCounts are:

• true means that record counts are enabled and will display. This is the default.

• false means that record counts are disabled and will not be displayed.

For information on how to change the value for the system-navigation_ShowRecordCounts in the PDR,
see Configuration Web Service Interface on page 52 and the Oracle Endeca Server API References, the
section about the Configuration Web Service. For information on using Integrator ETL for the same purpose,
see the Oracle Endeca Information Discovery Integrator ETL User's Guide.

For information on how to retrieve the record counts for a refinement, see How refinement counts are returned
on page 202.

You can also control the number of available refinements to display, in addition to the number of records
under each refinement. For information, see Increasing the number of refinements to be displayed on page
201.

Displaying refinements on multi-select attributes
This section describes refinements for attributes that can have multiple values. It discusses how to configure
attributes for multi-select refinements and also how displaying such refinements affects the user interface.

About multi-select attributes

Configuring attributes for multi-select refinement

Multi-select refinements and the user interface

Avoiding dead-end query results

Refinement counts for multi-or refinements

About multi-select attributes

If an attribute on your records can have more than one value, it is known as multi-select. For example, an
attribute "Flavor" on wine records can have values "Apple" and "Apricot".

The schema for your records controls whether a standard attribute can have a single value, or multiple values.
Attributes with multiple values can be of two types:

• multi-select AND attributes (also referred to as multi-and)

• multi-select OR attributes (also referred to as multi-or)

Respectively, refinements on such attributes are also known as multi-select refinements.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Attributes and Refinements 181

Configuring attributes for multi-select refinement
You configure whether an attribute is multi-select by changing the value in the system-
navigation_Select attribute of a PDR for a particular attribute defined on records in your data domain,
using the Configuration Web Service or Integrator ETL.

The system-navigation_Select attribute of a PDR can have the following settings:

• multi-and configures the attribute as a multi-select AND attribute.

• multi-or configures the attribute as a multi-select OR attribute.

• single configures the attribute as a single-select attribute. This is the default.

You can perform this configuration using Configuration Web Service requests (before records are loaded).

The multi-select setting is only supported for non-hierarchical, or standard, attributes.

Multi-select refinements and the user interface

If an attribute is configured as multi-and or multi-or, this affects the way the Endeca Server calculates the
refinements for such attributes, and therefore, has implications for the display of such refinements in the user
interface.

The default Guided Navigation behavior of the Oracle Endeca Server is to allow users to add only a single
value from an attribute to the navigation state. This means that when users select a refinement from an
attribute (by clicking it in the user interface, in the list of suggested refinements), that attribute is removed from
the list of suggested refinements available for future refinement in the query results. For example, after
selecting "Apple" from the Flavors attribute, the Flavors attribute is removed from the user interface's
navigation controls. However, sometimes it is useful at navigation time to allow the user to select more than
one value from an attribute. For example, the user interface can provide a user with the ability to show wines
that have both "Apple" and "Apricot" values from the "Flavor" attribute.

To summarize, even though the fact that an attribute is tagged as multi-select is transparent to the front-end
application's developer, the behavior of multi-select attributes may require changes in the user interface. Once
an attribute is tagged as multi-select, the semantics of how the Oracle Endeca Server interprets navigation
queries and returns available refinements changes. After tagging an attribute as multi-select, the Endeca
Server allows multiple attribute values from the same attribute to be added to the navigation state. The
Endeca Server behaves differently for the two types of multi-select attributes:

• A refinement for a
multi-and attribute. The Endeca Server treats the list of attribute values selected from a multi-and
attribute as a Boolean AND operation. That is, the Endeca Server will return all records that satisfy the
Boolean AND of all the attribute values selected from an attribute that is multi-and. For example, it will
return all records that have been tagged with "Apple" AND "Apricot". If the user continues the refinement
process by clicking one of the suggested refinements, the Endeca Server will also continue to return
refinements for a multi-and attribute. The list of available refinements will be the set of attribute values
that have not been chosen, and are still valid refinements for the results.

• multi-or refinement. If the navigation state contains multiple values from a multi-or refinement, then all
of the records in that state contain at least one of the selected values. A multi-or attribute is analogous
to a multi-and attribute, except that a Boolean OR operation is performed instead (that is, all records
that have been tagged with "Apple" OR "Apricot" are returned). The Endeca Server will always return all
attribute values for a multi-or attribute that have not already been selected – this means that the set of
suggested refinements in the user interface does not correlate to the set of remaining records. Also note

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Attributes and Refinements 182

that as more multi-or attribute values are added to the navigation state, the set of record results gets
larger instead of smaller, because adding more terms to an OR expands the set of results that satisfy the
query.

• single configures the attribute as a single-select attribute. This means that only one value can be selected
for an attribute at a time. This is the default.

Avoiding dead-end query results
Be careful when rendering the selected attribute values of multi-or attributes. It is possible to create an
interface that might result in dead ends when removing selected attribute values.

Consider this example: an attribute Alpha has been flagged as multi-or, and contains values 1 and 2.
Attribute Beta contains value 3.

Assume the user’s current query contains all three values. The user’s current navigation state would represent
the query:

"Return all records tagged with (1 or 2) and 3"

Version 7.6.1 • December 2013

If the user then removes one of the values from Attribute Alpha, a dead end could be reached. For example, if
the user removes value 1, the new query becomes:

"Return all records tagged with 2 and 3"

This could result in a dead end if no records are tagged with both value 2 and 3.

Due to this behavior, it is recommended that the user interface be designed so that the user must be forced to
remove all values from a multi-or attribute when making changes to the list of selected attribute values.

Refinement counts for multi-or refinements
Refinement counts on an attribute that is multi-or indicate how many records in the result set will be tagged
with the refinement if you select it. When no selections are made yet, the refinement count equals the total
number of records in the result set if that refinement were selected. However, for subsequent refinements, the
refinement count may differ from the total results set.

Consider the following example that illustrates this use case. A cuisine refinement is configured as multi-
or. In the data set, there are 2 records that have assignments only to a Chinese attribute, and 3 records that
have assignments only to a Japanese attribute. There is also 1 record that has assignments on both of these
attributes.

When the user requests Chinese or Japanese as refinements during navigation, the resulting record list
includes all 6 records, out of which 2 have only Chinese attribute, 3 have only Japanese attribute, and 1 has
both:

Records Assignment on a Chinese attribute Assignment on a Japanese attribute

1 x

2 x

3 x x

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 183

Records Assignment on a Chinese attribute Assignment on a Japanese attribute

4 x

5 x

6 x

If the user first selects only Chinese, the navigation state shows that there is one remaining follow-on
refinement (Japanese) with the refinement count of 4 records (3 with only Japanese assignment on a
attribute and 1 that has both Chinese and Japanese attribute assignments on them). When the user
navigates on that refinement, the resulting record list includes all 6 records. This illustrates that a record count
for a Japanese refinement shows the number of records (4) tagged with that refinement, within the entire
record set (6).

Working with attributes and refinements using the API
This section provides examples of Conversation Web Service requests and responses that work with
attributes and refinements.

NavigationMenuConfig

RefinementGroupConfig

RefinementConfig

PropertyListConfig

SelectedRefinementFilter

Obtaining a list of available attributes

Retrieving refinements with the API: high-level overview

Retrieving the full list of refinements (applied and suggested)

Increasing the number of refinements to be displayed

How refinement counts are returned

Retrieving the order of refinements

Retrieving the full path of hierarchical refinements

NavigationMenuConfig
The NavigationMenuConfig is the element in the Conversation Web Service request where instructions are
specified for how to return refinements and how those refinements should behave. This gives you a lot of
control in which information about refinements you would like to retrieve, to build the Guided Navigation
experience for the end users. For example, the request can specify whether to compute and return values for
all refinements, whether to return a full path of the hierarchical refinements, what should be the maximum

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Attributes and Refinements 184

number of refinements returned, and whether to retrieve already applied refinements, such as those that were
applied implicitly.

The NavigationMenuConfig has the following syntax:

<NavigationMenuConfig
Id="?"
ExposeAllRefinements="?"
ReturnFullPath="false"
MaximumRefinementCount="?"
IncludeAllExplicitSelections="false"
IncludeAllImplicitSelections="false">

<StateName>?</StateName>
<RefinementGroupConfig ...>

...
</RefinementGroupConfig>
<RefinementConfig .../>

</NavigationMenuConfig>

Version 7.6.1 • December 2013

NavigationMenuConfig contains the following parameters:

Attribute Description

Id Required. An identifier for this query configuration.

ExposeAllRefinements Optional. Indicates whether to expose refinements (that is, whether
to compute refinement values) for all attributes in the group (the
default is false). Setting this to true is equivalent to sending a
RefinementConfig with Expose="true" for each standard
attribute and managed attribute.

ReturnFullPath Optional. If set to true, each set of refinements will be
accompanied with the path to the root for that set of refinements.
The default is false.

MaximumRefinementCount Optional. An integer that specifies a maximum limit on the number
of refinements returned per standard or managed attribute. The
default is 10.

IncludeAllExplicitSelections Optional. Specifies whether to return all explicitly-selected
refinements, in addition to returning suggested refinements, (which
are always returned, if available). The default is false.

IncludeAllImplicitSelections Optional. Specifies whether to return all implicitly-selected
refinements, in addition to returning suggested refinements. The
default is false.

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 185

Attribute Description

StateName Specifies a named state, using these rules:

• If the request has multiple named states, then the StateName
element must reference one (and only one) of the named
states.

• If the request has only one named state, then it is optional as
to whether the StateName element is used to reference that
named state (as the state will be used in any event in the
NavigationMenuConfig).

• If the request has an unnamed state, then the StateName
element cannot be used.

RefinementGroupConfig Returns a list of refinements from attributes included in attribute
groups.

The options under this element let you enable the expand/collapse
options in the UI for refinements in a group, compute values behind
all refinements in a group, and control the behavior of individual
attributes in a group.

This element contains the RefinementConfig element. To perform
operations on individual attributes in a group, instead of performing
operations on all of them (for example, to override settings for an
individual attribute), you can use multiple RefinementConfig

elements in a RefinementGroupConfig.

Note that you can also include RefinementConfig element into
NavigationMenuConfig on its own, without enclosing it in
RefinementGroupConfig. This is useful if you have attributes that
are not included in groups.

RefinementConfig Controls the behavior of an individual attribute in a
NavigationMenuConfig. It specifies which attributes, out of all valid
refinements returned with a navigation query, should return actual
refinement values, and includes specifications about the order and
number of refinement values.

You can omit RefinementConfig in your request if you do not need
any of its optional items.

RefinementGroupConfig
The RefinementGroupConfig element returns a list of refinements from those attributes that are included in
attribute groups.

Use the RefinementGroupConfig and RefinementConfig elements of the Conversation Web service request
to expose refinement values for attributes. These elements allow you to perform operations on many attributes
at once without enumerating all of them.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Attributes and Refinements 186

By default, attributes in groups and refinements are collapsed. If you would like to expose attributes that have
refinements, either use RefinementConfig on each attribute whose refinements you want to expose, or use
ExposeAllPropertyRefinements and expose refinements for all attributes at once.

The RefinementGroupConfig element contains the RefinementConfig element. The
RefinementGroupConfig syntax is:

<RefinementGroupConfig Name="?" Expose="?" ExposeAllPropertyRefinements="?">
<RefinementConfig .../>

</RefinementGroupConfig>

Version 7.6.1 • December 2013

RefinementGroupConfig contains the following parameters:

Attribute Description

Name Required. The name of the attribute group.

Expose Required. A boolean that indicates whether to evaluate attributes in
the group as potential refinements at all. Using the Expose
attribute is important when you have groups of attributes and would
like to be able to expand and collapse them in the user interface of
the front-end application. For example, if you wanted country name
refinements, then in order to obtain them, you use Expose in the
initial request which enables the expand/collapse options in the UI.
Next, you request these refinements in a separate Conversation
Web Service request.

ExposeAllPropertyRefinements Optional. Indicates whether to expose refinements (that is, whether
to compute refinement values) for all attributes in the group.

RefinementConfig Controls the behavior of an individual attribute in a
NavigationMenuConfig. It specifies which attributes, out of all valid
refinements returned with a navigation query, should return actual
refinement values, and includes specifications about the order and
number of refinement values. Also includes specifications on
whether to return a full list of refinements (both suggested and
applied, including those that are implicit).

The RefinementConfig element is used in a NavigationMenuConfig element, as in this example. Notice two
Expose attributes, used for two different levels of exposure — first, the attributes in the group are exposed
and next, the refinements under those attributes are exposed. In other words, this request exposes the
attributes in the group, and then the refinement values for the OrderQuantity attribute that is part of the
group Sales-Transaction:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>
<NavigationMenuConfig Id="NavigationMenu">
<RefinementGroupConfig Name="Sales-Transaction" Expose="true">
<RefinementConfig Name="OrderQuantity" Expose="true" MaximumCount="100" />

</RefinementGroupConfig>
</NavigationMenuConfig>

</Request>

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 187

To perform operations on individual attributes in a group, instead of performing operations on all of them (for
example, to override settings for an individual attribute), you can use multiple RefinementConfig elements in
a RefinementGroupConfig.

RefinementConfig
The RefinementConfig element controls the behavior of an individual attribute in a NavigationMenuConfig.

It specifies which attributes, out of all valid refinements returned with a navigation query, should return actual
refinement values, and includes specifications about the order and number of refinement values. Also includes
specifications on whether to return a full list of refinements (both suggested and applied, including those that
are implicit). You can omit RefinementConfig in your request if you do not need any of its optional items.

Note: For hierarchical refinements that are derived from managed attributes, you can additionally
retrieve their full path. For information, see Retrieving the full path of hierarchical refinements on page
205.

The RefinementConfig syntax is:

<RefinementConfig
Name="?"
Spec="?"
Expose="false"
OrderByRecordCount="false"
MaximumCount="?"
IncludeExplicitSelections="false"
IncludeImplicitSelections="false"/>

Version 7.6.1 • December 2013

For a given attribute, you can use only one RefinementConfig element.

The descriptions of the attributes are:

Attribute Description

Name Required. The name of the attribute.

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 188

Attribute Description

Spec Optional. Used for walking down a hierarchy, without following the
refinements as you navigate down the refinement tree. The Spec
identifies the refinement parent for the query.

For example, in an empty state, a NavMenu for the initial navigation
state shows managed attribute ProductCategory to be available.
The user expands ProductCategory; this puts a
RefinementConfig Name="ProductCategory" into the
RefinementConfig and sends it in to the Endeca Server. The
NavMenu shows ProductCategory refinements, including
Electronics, which is expandable. The user expands
Electronics; this puts a RefinementConfig
Name="ProductCategory" Spec="Electronics" into the
RefinementConfig and sends it to the Endeca Server.

Next, the response received from the Endeca Server contains
NavMenu with the ProductCategory refinement starting at
Electronics.

For a refinement with hierarchy (which is based on values from a
managed attribute), refinement values will be returned for any child
managed attribute values of this spec. For example, Spec="/" refers
to a root managed value (such as for WineType), while
Spec="Merlot" refers to a child managed value.

Expose Optional. Specify false (the default) to compute whether this attribute
is a refinement at all, or true to compute whether it is a refinement
and also to retrieve and expose individual refinements (if any are
present).

OrderByRecordCount Optional. Specify true to order by record count based on the
individual query (dynamic ordering) or false (the default) to use the
default order from the Dgraph, specified by the system-
navigation_Sorting attribute in the PDR. For details, see Enabling
the refinement order at query time on page 204.

MaximumCount Optional. An integer that specifies a maximum limit on the number of
refinements returned per standard or managed attribute. If this setting
is not specified, the number of refinements returned per attribute in the
Conversation Web Service response is dictated by the value of the
MaximumRefinementCount attribute in the NavigationMenuConfig

element in the Conversation Web Service request. If that value is not
specified, the default is 10.

IncludeExplicitSelections Optional. Controls whether explicitly-selected refinements are returned
(along with suggested refinements, which are always returned, if
available), for this specific attribute. The default is false. This setting
controls retrieval of explicitly-selected refinements per individual
attribute — it overrides the global setting for retrieving explicitly-
selected refinements in NavigationMenuConfig.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Attributes and Refinements 189

Attribute Description

IncludeImplicitSelections Optional. Controls whether implicitly-selected refinements are returned,
for this specific attribute. The default is false. This setting controls
retrieval of implicitly-selected refinements per individual attribute — it
overrides the global setting for retrieving implicit refinements in
NavigationMenuConfig.

Notes on RefinementConfig
Note: Keep in mind that the RefinementConfig element is an optional query parameter. However,
attributes for which RefinementConfig is not included will not return refinements (unless
ExposeAllPropertyRefinements is used in the group). In other words, by default, attributes in
groups and refinements are collapsed. If you would like to expose attributes that have refinements,
either use RefinementConfig on each attribute whose refinements you want to expose, or use
ExposeAllPropertyRefinements and expose refinements for all attributes at once. The following
examples illustrate these use cases.

The Expose attribute is also optional and defaults to false. Expose="false" helps improve performance.

For example, in a simple data set with three attributes in a user-defined group "Sales-Characteristics", the
query:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>
<NavigationMenuConfig Id="NavigationMenu">
<RefinementGroupConfig Name="Sales-Characteristics" Expose="false"/>

</NavigationMenuConfig>
</Request>

Version 7.6.1 • December 2013

will return information in HasRefineableProperties, but will not return refinements themselves. This is
faster for the Oracle Endeca Server to compute. (To retrieve all attributes in the group, Expose should be set
to true).

However, this query for the ProductType managed attribute:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>
<NavigationMenuConfig Id="NavigationMenu">

<RefinementGroupConfig Name="Sales-Characteristics" Expose="true">
<RefinementConfig Name="ProductType" Expose="true" />

</RefinementGroupConfig>
</NavigationMenuConfig>

</Request>

will return all three managed attributes (since they are included in the Sales-Characteristics group), as well as
the top-level refinement attribute values for the ProductType managed attribute. This is slightly more
expensive for the Oracle Endeca Server to compute, and returns the three root managed attribute values as
well as the top-level managed attribute values for ProductType, but is necessary for selecting a valid
refinement.

A more advanced query option returns all the top-level managed attribute value refinements for all attributes
requested (instead of a single attribute). This option involves setting the ExposeAllRefinements attribute to
true. If an application sets this attribute to true, the query:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 190

<NavigationMenuConfig Id="NavigationMenu" ExposeAllRefinements="true">
<RefinementGroupConfig Name="Sales-Characteristics" Expose="true"/>

</NavigationMenuConfig>
</Request>

Version 7.6.1 • December 2013

will return three managed attributes, as well as all valid top-level managed attribute values for each of these
attributes.

This is the equivalent of the query:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>
<NavigationMenuConfig Id="NavigationMenu">

<RefinementGroupConfig Name="Sales-Characteristics" Expose="true">
<RefinementConfig Name="UnitPrice" Expose="true" />
<RefinementConfig Name="OrderQuantity" Expose="true" />
<RefinementConfig Name="CustomerPONumber" Expose="true" />
</RefinementGroupConfig>

</NavigationMenuConfig>
</Request>

This is the most expensive type of query for the Oracle Endeca Server to compute, and returns three root
managed attribute values as well as all the top-level managed attribute values, creating a larger network and
page size strain. This method, however, is effective for creating custom navigation solutions that require all
possible refinement values to be displayed at all times.

PropertyListConfig
In a query, the PropertyListConfig type returns a list of all available attributes for the data domain.

It contains an element Property, which includes pertinent information about an attribute including its key,
display name, and other options. The PDR (and DDR, if present) is included for those front-end clients of the
Conversation Web Service that prefer to read descriptor records directly.

The PropertyListConfig syntax is:

<PropertyListConfig Id="?">
<StateName>?</StateName>

</PropertyListConfig>

The meanings of the PropertyListConfig elements and attributes are as follows:

Element/Attribute Description

Id Required. An arbitrary identifier for this PropertyListConfig.

StateName Optional. Specifies an existing named state in the request. Note that
specifying a state has no effect on the results (even in a request with
multiple states).

SelectedRefinementFilter
The SelectedRefinementFilter type allows you to create a refinement navigation query from a specific
refinement.

The SelectedRefinementFilter type (which is used in the State) has this syntax:

<SelectedRefinementFilter Name="?" Spec="?" Id="?">

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 191

<AppliedFilterRule>
<Source FilterId="?">

<StateName>?</StateName>
</Source>
<TargetPropertyKey>?</TargetPropertyKey>

</AppliedFilterRule>
</SelectedRefinementFilter>

Version 7.6.1 • December 2013

The meanings of attributes for the SelectedRefinementFilter type are as follows:

Attribute Description

Name Required. The name of the standard attribute or managed attribute.

Spec Required. The format depends on the type of the Name attribute:

• For a managed attribute, Spec is the specifier of a managed attribute
value. For example, Spec="/" refers to a root managed value (such as
for the WineType managed attribute), while Spec="Merlot" refers to a
child managed value of WineType.

• For a standard attribute, Spec is a specific value of an assignment. For
example, if Flavors is a multi-assign standard attribute, then
Spec="Almond" refers to a value of "Almond" for a record assignment
from the Flavors attribute.

Id Optional. An identifier for this filter configuration. The identifier is needed only
when using filter rules. The identifier must be unique among other filter
identifiers in the state.

AppliedFilterRule Optional. Used for collections and filter rules. If present, indicates that the
filter was implicitly generated and supplies relevant information.

Source Optional. Information about the source of the implicit filter. If the implicit filter
has been derived via a filter rule, the Source names the Id of the filter and
the State where it came from.

FilterId Optional. The identifier of an implicit filter.

StateName Optional. Specifies the name of a named state from which the implicit filter
came from.

TargetPropertyKey Optional. The key that is derived from the filter rule. This is the target attribute
that was used when the filter rule was applied.

AppliedFilterRule elements
The AppliedFilterRule elements are used to display information about the source of an applied filter. If a
filter is implicitly created via a filter rule, the StateName and FilterId indicate its origin If the
TargetPropertyKey element is present, it indicates the name of the target attribute used in the generated
filter.

The use of the AppliedFilterRule elements is the same as in the SelectionFilter. For more
information, see Use of the AppliedFilterRule element on page 120.

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 192

Obtaining a list of available attributes

When configuring attributes for refinements, it is useful to first obtain a list of available attributes. You can do
this, utilizing PropertyListConfig request of the Conversation Web Service, or listProperties and
RecordKind requests from the Configuration Web Service.

The following soapUI sample request illustrates how to obtain a list of attributes with PropertyListConfig in
the Conversation Web Service:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>
<PropertyListConfig Id="MyAttrs"/>

</Request>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

Note that this sample request uses an empty, unnamed state.

The following abbreviated example shows the characteristics of the managed attribute ProductCategory.
Using this output, you can view the values of PDRs and DDRs for the attribute ProductCategory, indicating
whether the attribute is searchable, and specifying other characteristics contained in the PDR and DDR for
this managed attribute:

<cs:Property Key="ProdType" Type="mdex:string" Dimension="true" DisplayName="Product Type" Refinable
="true">

<cs:PropertyRecord>
<cs:attribute name="mdex-property_DisplayName" type="mdex:string">Wine Type</cs:attribute>
<cs:attribute name="mdex-property_IsPropertyValueSearchable" type="mdex:boolean">true<

/cs:attribute>
<cs:attribute name="mdex-property_IsSingleAssign" type="mdex:boolean">false</cs:attribute>
<cs:attribute name="mdex-property_IsTextSearchable" type="mdex:boolean">true</cs:attribute>
<cs:attribute name="mdex-property_IsUnique" type="mdex:boolean">false</cs:attribute>
<cs:attribute name="mdex-property_Key" type="mdex:string">ProdType</cs:attribute>
<cs:attribute name="mdex-property_Language" type="mdex:string">unknown</cs:attribute>
<cs:attribute name="mdex-property_TextSearchAllowsWildcards" type="mdex:boolean">true<

/cs:attribute>
<cs:attribute name="mdex-property_Type" type="mdex:string">mdex:string</cs:attribute>
<cs:attribute name="system-navigation_Select" type="mdex:string">single</cs:attribute>
<cs:attribute name="system-navigation_ShowRecordCounts" type="mdex:boolean">true</cs:attribute>
<cs:attribute name="system-navigation_Sorting" type="mdex:string">record-count</cs:attribute>

</cs:PropertyRecord>
<cs:DimensionRecord>

<cs:attribute name="mdex-dimension-value_Parent" type
="mdex:string">mdex-dimension_ProdType_Parent</cs:attribute>

<cs:attribute name="mdex-dimension-value_Spec" type="mdex:string">mdex-dimension_ProdType_Spec<
/cs:attribute>

<cs:attribute name="mdex-dimension_EnableRefinements" type="mdex:boolean">true</cs:attribute>
<cs:attribute name="mdex-dimension_IsDimensionSearchHierarchical" type="mdex:boolean">true<

/cs:attribute>
<cs:attribute name="mdex-dimension_IsRecordSearchHierarchical" type="mdex:boolean">true<

/cs:attribute>
<cs:attribute name="mdex-dimension_Key" type="mdex:string">WineType</cs:attribute>

</cs:DimensionRecord>
</cs:Property>

Other list attribute methods
Besides the PropertyListConfig type, you can use two other methods to get a list of the attributes in a data
domain.

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 193

The listProperties operation of the Configuration Web Service returns all the attributes in the data domain,
as in this example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:configTransaction>
<ns:listProperties/>

</ns:configTransaction>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

Another method is using the RecordKind filter with the nondata value. For usage information, see Filtering
data and non-data records on page 136.

Retrieving refinements with the API: high-level overview

Displaying attribute refinement values is the core concept behind Guided Navigation. This topic provides a
high-level overview of the procedure for retrieving and then applying refinements.

If your refinements are derived from attributes that are configured in groups, then before retrieving them you
need to expose groups in the user interface. If the group is collapsed, the Endeca Server does not compute
refinements for the attributes within the group. If the group is exposed, the Endeca Server computes
refinements, but it may or may not expose them, depending on your request. If you issue a request that asks
to expose already computed refinements, they are computed.

To display refinements in the front-end application so that they can be navigated upon, create two related
Conversation Web Service requests:

1. In the first request, you accomplish two goals:

1. Identify which attributes have valid refinements. See Step 1: Obtaining and exposing attributes that
have refinements on page 193.

2. Retrieve (or expose) the list of suggested refinements from the Endeca Server, using
Expose="true" in RefinementGroupConfig (for groups of attributes), or RefinementConfig (for
individual attributes). See Step 2: Applying refinements by creating a new query on page 195.

2. In a subsequent request, select and apply one of the retrieved selected refinements, in response to a user
gesture in your user interface. Use the SelectedRefinementFilter type to select the refinement.

Step 1: Obtaining and exposing attributes that have refinements

The first step in displaying refinements is to retrieve those attributes that potentially have refinements.

You can retrieve refinements in two ways, depending on whether their attributes are included in groups:

• If you are using attribute groups, you retrieve refinements on groups with RefinementGroupConfig. For its
format, see RefinementGroupConfig on page 185.

• If you are not using attribute groups, you retrieve individual refinements with RefinementConfig. For its
format, see RefinementConfig on page 187.

As an alternative to using RefinementConfig, to retrieve refinements that are not explicitly included in any
user-configured attribute groups, you can request a group system-navigation_InternalGroup. This

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 194

group exists in the Oracle Endeca Server and includes all refinements that are not members of any other
groups.

In the request, either you are using RefinementGroupConfig, or RefinementConfig, you include them in a
NavigationMenuConfig. For its format, see NavigationMenuConfig on page 183.

Refinements are returned in a NavigationMenu content element. If your attributes belong to groups, this
element contains a NavigationMenuItemGroup element with NavigationMenuItem elements for each
managed attribute with refinements.

Retrieving suggested refinements for attribute groups
Consider this request in which the WineType refinement is requested and exposed:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>
<NavigationMenuConfig Id="NavigationMenu" IncludeAllExplicitSelections="false"

IncludeAllImplicitSelections="false">
<RefinementGroupConfig Name="WineCharacteristics" Expose="true">
<RefinementConfig Name="WineType" Expose="true"/>

</RefinementGroupConfig>
</NavigationMenuConfig>

</Request>

Version 7.6.1 • December 2013

Notice that IncludeAllExplicitSelections and IncludeAllImplicitSelections are set to false.
This is the default — the request asks to retrieve only those refinements that are still available for navigation
(known as suggested refinements), and does not return refinements that have already been applied (which
include explicitly-selected and implicit). For information on how to retrieve a full list of refinements, see
Retrieving the full list of refinements (applied and suggested) on page 195.

The request returns the following query results. Notice that the query results show the WineType refinement
and the refinement values on it — Red, White, and Sparkling.

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<State xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<cs:NavigationMenu" Id="NavigationMenu">
<cs:NavigationMenuItemGroup Name="WineCharacteristics" HasRefinablePRoperties="true">

<cs:NavigationMenuItem Name="WineType" DisplayName="Wine Type" MultiSelect="None" HasMore
="false">

<cs:ExposureControl Exposed="true"/>
<cs:Refinement Name="WineType" Spec="Red" Label="Red" Count="31021"/>
<cs:Refinement Name="WineType" Spec="White" Label="White" Count="23031"/>
<cs:Refinement Name="WineType" Spec="Sparkling" Label="Sparkling" Count="3020"/>
<cs:RootDimensionValue DimensionName="WineType" Spec="/"/>
<cs:FullPath>

<cs:DimensionValue DimensionName="WineType" Spec="/">WineType</cs:DimensionValue>
</cs:FullPath>

</cs:NavigationMenuItem>
</cs:NavigationMenuItemGroup>

</cs:NavigationMenu>
</cs:Results>

In this example, the NavigationMenuItem element is used for the managed attribute included in a group:

<cs:NavigationMenuItem Name="WineType" DisplayName="Wine Type" MultiSelect="None" HasMore="false">
<cs:ExposureControl Exposed="true"/>

Notice the ExposureControl type:

<cs:ExposureControl Exposed="true"/>

The <cs:ExposureControl Exposed=""true"> statement indicates the current exposure status of a top-
level refinement included in NavigationMenuItem.

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 195

Further examining this example, each refinement in this group is returned in a Refinement element, as shown
in this example for the Red managed attribute value:

<cs:Refinement Name="WineType" Spec="Red" Label="Red" Count="31021"/>

Version 7.6.1 • December 2013

The Count element indicates that 31,021 records would be in the result set if you were to refine on the Red
refinement.

Retrieving suggested refinements for attributes not included in groups
Consider the following request for a Region refinement:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>
<NavigationMenuConfig Id="NavigationMenu" IncludeAllExplicitSelections="false"

IncludeAllImplicitSelections="false">
<RefinementConfig Name="Region" Expose="true" IncludeExplicitSelections="false"

IncludeImplicitSelections="false"/>
</NavigationMenuConfig>

</Request>

This request will return individual suggested refinements from a record set, listing all records for which values
exist in the Region attribute. In addition to suggested refinements, you can also optionally return applied
refinements for this attribute. For information, see Retrieving applied refinements per attribute on page 199.

Note: If you have precedence rules configured, they will suppress attributes that have valid
refinements until a trigger for the precedence rule is met. For information on precedence rules, see
Using Precedence Rules on page 223.

Step 2: Applying refinements by creating a new query

Once refinement values have been retrieved/exposed, these values typically are used to create additional
refinement navigation queries.

Based on the result in Step 1, the user has requested a list of red wines, which are defined by the Red
managed attribute value. A follow-on request uses the SelectedRefinementFilter type to retrieve the
records:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State>

<Name>RefState</Name>
<SelectedRefinementFilter Name="WineType" Spec="Red" Id="MyRef">
</SelectedRefinementFilter>

</State>
<RecordListConfig Id="RecList" MaxPages="10">

<StateName>RefState</StateName>
<Column>WineType</Column>
<Column>Wine</Column>
<RecordsPerPage>5</RecordsPerPage>

</RecordListConfig>
</Request>

The resulting RecordList entries are then displayed to the user by the front-end code.

Retrieving the full list of refinements (applied and suggested)

By default, once end users make selections from a list of suggested refinements, Endeca Server narrows the
result set. It does not return those refinements that have already been selected and returns remaining
available, or suggested, refinements. However, in some cases, it may be useful to ask Endeca Server to

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 196

return both suggested and already-applied refinements, (including both types of applied refinements: explicitly-
selected and implicit).

Retrieving the full list of refinements — both applied and suggested — is useful only in specific
implementations, and requires a special treatment in the user interface of the front-end application powered by
the Endeca Server, to distinguish which of the refinements have been applied.

Note: When applied refinements are returned together with suggested refinements, a decision needs
to be made in the user interface for how to handle them, to indicate to the end users which
refinements have already been selected and which are still available for navigation. For example, one
possibility is to display applied refinements along with suggested refinements, but make applied
refinements un-selectable (with some indication that they are already selected implicitly).

The Conversation Web Service has controls that allow you to decide whether to retrieve the full list of
refinements (or any combination of suggested, implicitly- and explicitly-selected refinements), globally for any
attribute with a RefinementConfig in the containing NavigationMenuConfig, or for individually-specified
attributes. Specifying these settings per attribute overrides the global settings. Further, these settings only
apply when the RefinementConfig contains Expose=true.

For information, see:

• Retrieving applied refinements for all attributes on page 196

• Retrieving applied refinements per attribute on page 199

Retrieving applied refinements for all attributes

By default, Endeca Server does not return applied (explicitly-selected or implicit) refinements once the end-
user makes a query and selects some refinements as part of the Guided Navigation experience. In other
words, by default, all refinements that are returned are guaranteed to narrow the result set in the future, if end
users select any of them. However, you can issue a Conversation Web Service request for the navigation
menu that should retrieve not only suggested refinements, but also applied (explicitly-selected and implicit)
refinements, for all attributes used as refinements.

The following two settings in the NavigationMenuConfig element of the Conversation Web Service control
whether to return explicitly-selected and implicit refinements for all attributes:

• IncludeAllExplicitSelections specifies whether Endeca Server should retrieve explicitly-selected
refinements. The default is false.

• IncludeAllImplicitSelections specifies whether Endeca Server should retrieve implicit
refinements. The default is false.

You can use any combination of true and false values.

Once the refinements are retrieved, ExposeAllRefinements="true" is the setting that controls whether
they are also returned in the web service response.

A NavigationMenuConfig has the following structure:

<ns:NavigationMenuConfig Id="?"
ExposeAllRefinements="?"
ReturnFullPath="false"
MaximumRefinementCount="?"
IncludeAllExplicitSelections="false"
IncludeAllImplicitSelections="false">
</ns:StateName>
<ns:RefinementConfig Name="?"
Spec="?" Expose="false" OrderByRecordCount="false" MaximumCount="?"

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 197

IncludeExplicitSelections="false" IncludeImplicitSelections="false"/>
</ns:NavigationMenuConfig>

Version 7.6.1 • December 2013

Example: retrieving a full list of applied refinements for all attributes

In these examples, the namespaces are omitted and they are:
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:typ="http://www.endeca.com/MDEX/eql_parser/types"

In the following example request, a query is made in a particular navigation state (assuming that the users
have navigated to this state). It includes a refinement filter inside the state, and thus narrows the results to a
specific Winery, named "A.R.Lenoble". The request retrieves the list of suggested refinements that are still
available, and also retrieves, for all refinements, those refinements that have been already applied (explicitly-
selected and implicit):

<ns:Request>
<ns:State>
<ns:Name>ref_state</ns:Name>
<ns:SelectedRefinementFilter Name="Winery" Spec="A.R. Lenoble"/>
</ns:State>
<ns:NavigationMenuConfig Id="NavigationMenu" ExposeAllRefinements="true"
ReturnFullPath="true"
IncludeAllExplicitSelections="true"
IncludeAllImplicitSelections="true">
<ns:StateName>ref_state</ns:StateName>
<ns:RefinementConfig Name="WineType" Expose="true"/>
<ns:RefinementConfig Name="Region" Expose="true"/>
<ns:RefinementConfig Name="Winery" Expose="true"/>

</ns:NavigationMenuConfig>
</ns:Request>

This request specifies true for both types of applied refinements—implicit and explicitly-selected—at the
navigation level. This means, that if the current navigation state for the Winery ""A.R.Lenoble" includes any
such refinement, the response will include retrieve it, along with the list of suggested refinements. Note that
the full list of applied refinements is returned in the request only if ExposeAllRefinements="true". In
addition, this request also asks to expose all refinement values for three attributes: "WineType", "Region", and
"Winery".

The response to this request is (namespaces are omitted):

<cs:Result>
<State>
<Name>ref_state</Name>
<SelectedRefinementFilter Name="Winery" Spec="A.R. Lenoble"/>

</State>
<cs:NavigationMenu Id="NavigationMenu">

<cs:NavigationMenuItem Name="Region" DisplayName="Region" MultiSelect="None"
HasMore="false">

<cs:ExposureControl Exposed="true"/>
<cs:RootDimensionValue DimensionName="Region" Spec="/"/>
<cs:ImplicitRefinement Name="Region" Spec="Champagne" Label="Champagne"/>

</cs:NavigationMenuItem>
<cs:NavigationMenuItem Name="Winery" DisplayName="Winery" MultiSelect="None"
HasMore="false">

<cs:ExposureControl Exposed="true"/>
<cs:RootDimensionValue DimensionName="Winery" Spec="/"/>
<cs:SelectedRefinement Name="Winery" Spec="A.R. Lenoble" Label="A.R. Lenoble" Count="3"/>

</cs:NavigationMenuItem>
<cs:NavigationMenuItem Name="WineType" DisplayName="Wine Type" MultiSelect="None"
HasMore="false">

<cs:ExposureControl Exposed="true"/>

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 198

<cs:Refinement Name="WineType" Spec="Brut Rose" Label="Brut Rose" Count="1"/>
<cs:Refinement Name="WineType" Spec="Brut Blanc de Blancs" Label="Brut Blanc de Blancs" Count

="1"/>
<cs:Refinement Name="WineType" Spec="Brut" Label="Brut" Count="1"/>
<cs:RootDimensionValue DimensionName="WineType" Spec="/"/>
<cs:FullPath>
<cs:DimensionValue DimensionName="WineType" Spec="/">WineType</cs:DimensionValue>
<cs:DimensionValue DimensionName="WineType" Spec="Sparkling">Sparkling</cs:DimensionValue>

</cs:FullPath>
<cs:ImplicitRefinement Name="WineType" Spec="Sparkling" Label="Sparkling"/>

</cs:NavigationMenuItem>
</cs:NavigationMenu>

</cs:Results>

Version 7.6.1 • December 2013

In this response, the State is returned first, reflecting the selected filter for the winery "L.A.Lenoble". It is
followed by a NavigationMenu, which includes three NavigationMenuItem elements, for each of the
attributes—"Region", "Winery", and "WineType".

For the attribute "Region", the response includes the implicitly-selected refinement value "Champagne":

<cs:NavigationMenuItem Name="Region" DisplayName="Region" MultiSelect="None"
HasMore="false">
<cs:ExposureControl Exposed="true"/>
<cs:RootDimensionValue DimensionName="Region" Spec="/"/>
<cs:ImplicitRefinement Name="Region" Spec="Champagne" Label="Champagne"/>

</cs:NavigationMenuItem>

For the attribute "WineType", the response includes another implicit refinement, "Sparkling":

<cs:NavigationMenuItem Name="WineType" ...>
...
<cs:ImplicitRefinement Name="WineType" Spec="Sparkling" Label="Sparkling"/>

</cs:NavigationMenuItem>

This is because, in this data set, there are only three wines from the "A.R. Lenoble" winery which is located in
the Champagne region and produces only Champagnes. So, by specifying winery as "A.R. Lenoble" in the
state's filter: SelectedRefinementFilter Name="Winery" Spec="A.R. Lenoble", users also implicitly
select two refinements: Region with value "Champagne" and WineType with value "Sparkling".

Notice also that for the attribute "Wine", the refinement "A.R. Lenoble" is returned as a
SelectedRefinement for Winery, since it is selected in the query state of the request:

<cs:NavigationMenuItem Name="Winery" ...>
...
<cs:SelectedRefinement Name="Winery" Spec="A.R. Lenoble" Label="A.R. Lenoble" Count="3"/>

</cs:NavigationMenuItem>

The user interface can use this information to display these already-applied refinements as un-selectable
(because they have already been selected). It can also optionally indicate to the users which of these
refinements have been selected implicitly.

Additionally, this response includes a list of suggested refinements that are still available in this navigation
state. These are present only for the refinement "WineType":

<cs:NavigationMenuItem Name="WineType" ...>
...
<cs:Refinement Name="WineType" Spec="Brut Rose" Label="Brut Rose" Count="1"/>
<cs:Refinement Name="WineType" Spec="Brut Blanc de Blancs" Label="Brut Blanc de Blancs" Count="1"

/>
<cs:Refinement Name="WineType" Spec="Brut" Label="Brut" Count="1"/>

Finally, since all three requested refinements in the request are on managed attributes, (which have
hierarchy), additional information about hierarchy is returned for each refinement, inside
RootDimensionValue, and FullPath elements.

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 199

To summarize, this method lets you control, for all your attributes, whether applied refinements are retrieved.
In addition to this global control, you can specify per each attribute, whether you would like to retrieve
explicitly-selected refinements, implicit refinements, or both of them. Retrieving a full list of applied refinements
per each attribute overrides the retrieving them for all attributes. For information see Retrieving applied
refinements per attribute on page 199.

Retrieving applied refinements per attribute

You can issue a Conversation Web Service request that retrieves, for a refinement of your choice, not only
suggested refinements, but also applied refinements (both explicitly-selected and implicit).

By default, Endeca Server does not return explicitly-selected or implicit refinements once end-users make a
query and select some refinements as part of the Guided Navigation experience. In other words, by default, all
refinements that are returned are guaranteed to narrow the result set in the future, if end users select any of
them. However, you can specify in the Conversation Web Service requests to retrieve the full set of
refinements (suggested and applied). You can do so globally for all refinements, or for a specific refinement.

The following two attributes in the RefinementConfig element, (this is a sub-element of the
NavigationMenuConfig), control whether to retrieve explicitly-selected and implicit refinements, per each
specified attribute:

• IncludeExplicitSelections specifies whether Endeca Server should retrieve explicitly-selected
refinements, for this attribute. The default is false.

• IncludeImplicitSelections specifies whether Endeca Server should retrieve implicit refinements,
for this attribute. The default is false.

You can use any combination of true and false values.

Once the refinements are retrieved, Expose="true" is the setting that controls whether they are also
returned in the web service response.

The settings made per attribute (in the RefinementConfig for each attribute) override the analogous settings
made for all attributes (in the NavigationMenuConfig).

Example: retrieving a full list of applied refinements for a specific attribute

In these examples, the namespaces are omitted and they are:
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:typ="http://www.endeca.com/MDEX/eql_parser/types"

The following example of a request assumes that a query is made in a particular navigation state. In this state,
end users have already made a selection for the winery "L.A.Lenoble". This request performs two tasks — it
retrieves the next list of suggested refinements still available to users, and also, for each of the three specified
attributes, asks to retrieve those refinements that have been already applied (explicitly-selected and implicit):

<ns:Request>
<ns:State><ns:Name>ref_state</ns:Name>
<ns:SelectedRefinementFilter Name="Winery" Spec="A.R. Lenoble"/>
</ns:State>
<ns:NavigationMenuConfig Id="NavigationMenu" ExposeAllRefinements="true" ReturnFullPath="true"
IncludeAllExplicitSelections="false" IncludeAllImplicitSelections="false">
<ns:StateName>ref_state</ns:StateName>
<ns:RefinementConfig Name="WineType" Expose="true" IncludeExplicitSelections

="true" IncludeImplicitSelections="true"/>
<ns:RefinementConfig Name="Region" Expose="true" IncludeExplicitSelections

="true" IncludeImplicitSelections="true"/>

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 200

<ns:RefinementConfig Name="Winery" Expose="true" IncludeExplicitSelections
="true" IncludeImplicitSelections="true"/>
</ns:NavigationMenuConfig>

</ns:Request>

Version 7.6.1 • December 2013

In this request:

• In NavigationMenuConfig, the global settings for returning explicitly-selected and implicit refinements are
set to "false":

IncludeAllExplicitSelections="false" IncludeAllImplicitSelections="false"

• In each RefinementConfig, the request specifies true for both implicit and explicitly-selected
refinements for these attributes: "WineType", "Region" and "Winery". This means, that if the navigation
state for this refinement includes any such refinements, the response will include them:

<ns:RefinementConfig Name="Region" Expose="true"
IncludeExplicitSelections="true"
IncludeImplicitSelections="true"/>

The settings on RefinementConfig override those on NavigationMenuConfig, which means that if
applied refinements are present for these attributes, they will be retrieved. Note also the setting
Expose="true". This setting controls whether the retrieved refinements are actually returned to you in
the web service response.

Here is an abbreviated response to this request (with namespaces omitted):

<cs:Results>
<Name>ref_state</Name>
<SelectedRefinementFilter Name="Winery" Spec="A.R. Lenoble"/>
</State>
<cs:NavigationMenu Id="NavigationMenu">
<cs:NavigationMenuItem Name="Region" DisplayName="Region" MultiSelect="None" HasMore="false">
<cs:ExposureControl Exposed="true"/>
<cs:RootDimensionValue DimensionName="Region" Spec="/"/>
<cs:ImplicitRefinement Name="Region" Spec="Champagne" Label="Champagne"/>

</cs:NavigationMenuItem>
<cs:NavigationMenuItem Name="Winery" DisplayName="Winery" MultiSelect="None" HasMore="false">
<cs:ExposureControl Exposed="true"/>
<cs:RootDimensionValue DimensionName="Winery" Spec="/"/>
<cs:SelectedRefinement Name="Winery" Spec="A.R. Lenoble" Label="A.R. Lenoble" Count="3"/>

</cs:NavigationMenuItem>
<cs:NavigationMenuItem Name="WineType" DisplayName="Wine Type" MultiSelect="None" HasMore="false">
<cs:ExposureControl Exposed="true"/>
<cs:Refinement Name="WineType" Spec="Brut Rose" Label="Brut Rose" Count="1"/>
<cs:Refinement Name="WineType" Spec="Brut Blanc de Blancs" Label="Brut Blanc de Blancs" Count="1"

/>
<cs:Refinement Name="WineType" Spec="Brut" Label="Brut" Count="1"/>
<cs:RootDimensionValue DimensionName="WineType" Spec="/"/>
<cs:FullPath>
<cs:DimensionValue DimensionName="WineType" Spec="/">WineType</cs:DimensionValue>
<cs:DimensionValue DimensionName="WineType" Spec="Sparkling">Sparkling</cs:DimensionValue>
</cs:FullPath>
<cs:ImplicitRefinement Name="WineType" Spec="Sparkling" Label="Sparkling"/>

</cs:NavigationMenuItem>
</cs:NavigationMenu>

</cs:Results>

Let's review this response.

For the attribute "Region", no suggested refinements are available, but there is one implicit refinement
"Champagne":

<cs:NavigationMenuItem Name="Region" ... >
...
<cs:RootDimensionValue DimensionName="Region" Spec="/"/>

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 201

<cs:ImplicitRefinement Name="Region" Spec="Champagne" Label="Champagne"/>
</cs:NavigationMenuItem>

Version 7.6.1 • December 2013

This is because, in this data set, there are only three wines from the "A.R. Lenoble" winery which is located in
the Champagne region and produces only Champagnes. So, by specifying winery as "L.A.Lenoble" in the
state's filter: SelectedRefinementFilter Name="Winery" Spec="A.R. Lenoble", users also implicitly
select two refinements: Region with value "Champagne", and WineType with value "Sparkling".

For the attribute "WineType", a list of suggested refinements is returned, followed by one implicit refinement
"Sparkling":

<cs:NavigationMenuItem Name="WineType" ... >
...
<cs:Refinement Name="WineType" Spec="Brut Rose" Label="Brut Rose" Count="1"/>
<cs:Refinement Name="WineType" Spec="Brut Blanc de Blancs" Label="Brut Blanc de Blancs" Count="1"/>
<cs:Refinement Name="WineType" Spec="Brut" Label="Brut" Count="1"/>
...
<cs:ImplicitRefinement Name="WineType" Spec="Sparkling" Label="Sparkling"/>

</cs:NavigationMenuItem>

Finally, for the attribute "Winery", while there are no remaining suggested refinements, there is one selected
refinement, "A.R. Lenoble":

<cs:NavigationMenuItem Name="Winery" ... >
...
<cs:SelectedRefinement Name="Winery" Spec="A.R. Lenoble" Label="A.R. Lenoble" Count="3"/>

</cs:NavigationMenuItem>

To conclude, the user interface can use this information to display these refinements as un-selectable
(because they have already been selected). It can also optionally indicate to the users that some of these
refinements have been selected implicitly.

For each of these attributes, the request also includes information in the RootDimensionValue, and
FullPath elements, because these are managed attributes with hierarchy.

Increasing the number of refinements to be displayed

The number of refinements that are displayed defaults to 10. If this number is not sufficient, you can increase
it using NavigationMenuConfig in the Conversation Web Service request.

Generally, when the request from the Conversation Web Service asks for attributes to return in response to a
query, it asks for all of them that were requested with a RefinementGroupConfig element.

To provide a meaningful navigation experience, the Oracle Endeca Server returns only those attributes that
actually have refinements on them and that are not filtered by precedence rules. In other words, the attributes
are returned based on the navigation state.

For the request to return refinements if they are present in the data set, the Expose attribute should be set to
true in the RefinementConfig. Its default value is false.

The Conversation Web Service uses the following logic to identify the number of refinements to be displayed:

• The number of refinements that are displayed defaults to 10. If this number is not sufficient, you can
increase it using NavigationMenuConfig in the Conversation Web Service request. You can override it in
a global setting or per each refinement value, which are both optional and are not specified by default:

• The global configuration setting controls this number for all attributes in a particular navigation menu.
You specify it in the MaximumRefinementCount attribute of the RefinementConfig element. The
setting is per content element, not per query.

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 202

• Further, the setting per each refinement value controls the number returned for each attribute. You
specify it in the attribute MaximumCount in the RefinementConfig element.

For example, in this configuration for the navigation menu, MaximumRefinementCount is set to 15. In addition,
for the WineType refinement value, MaximumCount is set to 40. MaximumCount is not set in each of the other
refinement values.

<NavigationMenuConfig Id="NavigationMenu" MaximumRefinementCount="15">
<RefinementGroupConfig Name="WineCharacteristics" Expose="true">
<RefinementConfig Name="WineType" Spec="/" MaximumCount="40"/>
<RefinementConfig Name="Year"/>
<RefinementConfig Name="Score"/>

</RefinementGroupConfig>
</NavigationMenuConfig>

Version 7.6.1 • December 2013

This request returns up to 40 refinement values for WineType. It returns up to 15 refinement values for each
of the other two refinement values (Year and Score).

The attribute HasMore (with possible Boolean values true or false) in the response specifies whether the
total refinement count exceeds the value returned with the MaximumRefinementCount.

The following example shows a response where the HasMore attribute is set to true in the
NavigationMenuItem type of the Conversation Web Service response:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<State xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<cs:NavigationMenu" Id="NavigationMenu">
<cs:NavigationMenuItemGroup Name="WineCharacteristics" HasRefinablePRoperties="true">

<cs:NavigationMenuItem Name="WineType" DisplayName="Wine Type" MultiSelect="Or" HasMore="true">
<cs:ExposureControl Exposed="true"/>
<cs:Refinement Name="WineType" Spec="Red" Label="Red" Count="31021"/>
<cs:Refinement Name="WineType" Spec="White" Label="White" Count="23031"/>
<cs:Refinement Name="WineType" Spec="Sparkling" Label="Sparkling" Count="3020"/>
<cs:RootDimensionValue DimensionName="WineType" Spec="/"/>
<cs:FullPath>

<cs:DimensionValue DimensionName="WineType" Spec="/">WineType</cs:DimensionValue>
</cs:FullPath>

</cs:NavigationMenuItem>
</cs:NavigationMenuItemGroup>

</cs:NavigationMenu>
</cs:Results>

How refinement counts are returned

The application user interface can display the number of records returned for each refinement. These record
counts are returned in a Count attribute.

Each refinement is returned in a Refinement element, as shown in this example:

<cs:Refinement Name="WineType" Spec="Red" Label="Red" Count="31021"/>

In the example, a record count of 31021 is returned for the Red managed attribute value.

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 203

Retrieving the order of refinements

A core capability of the Oracle Endeca Server is the ability to dynamically order and present the most popular
refinement values to the user.

There are two ways in which you can configure the display order of refinements in the Conversation Web
Service:

• By specifying the value for system-navigation_Sorting in the PDR, for a standard or managed
attribute.

• By using query-time control of the display order specified in the OrderByRecordCount attribute in the
RefinementConfig element of the Conversation Web Service request. Note that by using this method,
you can override the system-navigation_Sorting settings for a given attribute. For detailed
information, see About query-time control of refinement ordering on page 203 and Enabling the refinement
order at query time on page 204.

About query-time control of refinement ordering

The Oracle Endeca Server allows you to switch refinement ordering on and off on a per-query basis.

A use case for this refinement ordering would be an application that renders refinements as a tag cloud. Such
an application may adjust the size of the tag cloud at query time, depending on user preferences or the page
from which the query originates.

You set the refinement ordering at the refinement value level that you want to control. For managed attributes,
ordering is applied to that managed attribute value and all its children. For example, assume that you have a
managed attribute named WineType that has three child attribute values (named Red, White, and Sparkling),
which in turn have two child attribute values each. The attribute's hierarchy would look like this:

You would set the ordering depending on which level of the hierarchy you want to order and present, for
example:

• If you set the ordering on the root attribute value (which has the same name and ID as the managed
attribute itself), the refinements in the Red, White, and Sparkling attribute values will be returned.

• If there are multiple child attribute values, you can set an order on only one sibling. In this case, the
refinements from the other siblings will not be exposed. For example, if you set an order on the Red
attribute value, only the refinements of the Merlot and Chianti attribute values will be returned. The
refinements from the White and Sparkling attribute values will be not be shown, even if you explicitly set
orders for them.

The settings of the per query ordering of refinements are not persistent. That is, each query must have its own
configuration, because it is not carried over from the previous query.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Attributes and Refinements 204

Enabling the refinement order at query time

The OrderByRecordCount attribute sets the refinement order at query time.

Setting the OrderByRecordCount attribute to true in the RefinementConfig element sets the order in which
refinements will be displayed, at query time, as in this example:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>
<NavigationMenuConfig Id="NavigationMenu"

<RefinementGroupConfig Name="WineCharacteristics" Expose="true">
<RefinementConfig
Name="WineType"
Expose="true"
OrderByRecordCount="true"
MaximumCount="100" />

</RefinementGroupConfig>
</NavigationMenuConfig>

</Request>

Version 7.6.1 • December 2013

This setting overrides the setting (either lexical or record-count) for refinement order that you can
specify in the system-navigation_Sorting in the PDR for a refinement.

Refinement order for managed attribute values

When you create a managed attribute value, you can optionally specify a static rank, which ranks the
managed attribute values within each managed attribute's hierarchy. The two tables below show how the rank
value (if it exists) affects the resulting refinement order.

For unranked managed attribute values, the refinement order is as follows:

OrderByRecordCount setting system-navigation_Sorting Resulting sort order used
setting

true lexical record-count

true record-count record-count

false lexical lexical

false record-count lexical

not used in RefinementConfig lexical lexical

not used in RefinementConfig record-count record-count

For ranked managed attribute values, the refinement order is as follows:

OrderByRecordCount setting system-navigation_Sorting Resulting sort order used
setting

true lexical record-count

true record-count record-count

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 205

OrderByRecordCount setting system-navigation_Sorting Resulting sort order used
setting

false lexical rank value

false record-count rank value

not used in RefinementConfig lexical rank value

not used in RefinementConfig record-count record-count

Retrieving the full path of hierarchical refinements

For managed attribute groups (which are groups of those attributes that contain hierarchy), you can request
hierarchy information about a refinement with the ReturnFullPath specified in NavigationMenuConfig. In
addition, for managed attribute values, hierarchy information is returned with DimensionHierarchy and
DimensionValueWithPath types in any record list request.

Hierarchy information represents refinements behind a particular managed attribute. For example, if a
ProductCategory managed attribute contains one level of hierarchy (CAT_COMPONENTS) and the current
query is at the category components level, the full path of hierarchical refinements can be represented by the
following list:

ProductCategory > CAT_COMPONENTS > Brakes

Version 7.6.1 • December 2013

Refinement values, in this case specific components, may still exist for the Brakes refinement to refine the
query even further.

About navigation on attributes with hierarchy

Managed attributes in the Endeca Server represent a hierarchical relationship where records assigned to a
particular value are implicitly assigned to all of the ancestors of that value. In the wine records example, the
classification hierarchy includes the path Wine Type : Red > Merlot. This means that any record tagged to
"Merlot" is implicitly tagged to "Red."

Refining to, or grouping by, "Red" will display all records mapped to "Merlot" (as well as any records mapped
directly to "Red"). With hierarchical attributes, refinements continue to be generated for follow-on navigation.
For example, the user may be able to click "Merlot" to see just the Merlots, excluding items tagged directly to
"Red", or items tagged to "Cabernet" or another sibling of "Merlot."

To summarize, the expected behavior of managed attributes with hierarchy is that at any point in the
navigation, the Endeca Server not only returns attributes tagged with the user-selected value, but also those
attributes that are implicitly tagged with the value that is above it in hierarchy. In other words, it is not possible
to retrieve attribute values at single levels. This consideration is important when deciding which types of
attributes — standard or managed, you should create for the records in your data domain. If, for example, the
users of your front-end application would like to retrieve all records tagged with a particular value, then this
value should belong to a standard (and not managed) attribute where hierarchy is not utilized.

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 206

Retrieving hierarchy information for attribute groups
To request the full path of hierarchical refinements for an attribute group, use the ReturnFullPath attribute
on NavigationMenuConfig. The ReturnFullPath has the following values:

Attribute Description

ReturnFullPath Specifies whether to return the full path of hierarchical refinements with
the response. This setting is relevant in navigation queries for
refinements and breadcrumbs.

If set to true, the returned refinement contains the full path to its parent
refinement values, as in ProductCategory > CAT_COMPONENTS >
Brakes.

If set to false, returns only the refinement, without the path to its
ancestors. The default is false.

The format of the NavigationMenuConfig is shown in this example. It uses the ReturnFullPath attribute
set to true for the existing attribute group "ProductCategories":

<NavigationMenuConfig Id="NavigationMenu" ReturnFullPath="true">
<RefinementGroupConfig Name="ProductCategories" Expose="true">
<RefinementConfig Name="CAT_COMPONENTS" Expose="true" MaximumCount="3"/>

</RefinementGroupConfig>
</NavigationMenuConfig>

Version 7.6.1 • December 2013

For a flat managed attribute with no hierarchy, the refinement parent will always be the attribute root, because
there would be no further refinements if a value had already been selected for the attribute.

Refinements for a given managed attribute can only be returned from the Oracle Endeca Server on the same
level within the attribute. For example, the Oracle Endeca Server could never return a list of refinement
choices that included a mix of countries, states, and regions. In all cases where hierarchy is explicitly defined
for an attribute, only refinements on an equal level of hierarchy will be returned for a given query.

Retrieving hierarchy information for managed attribute values

To retrieve hierarchy information on managed attribute values, you can use a query that requests a record list,
with the RecordListConfig type.

In the response to a RecordListConfig query, the following two types include hierarchy and path information
for managed attributes:

• The DimensionHierarchy complex type returns a collection of paths from specified managed attributes.

• The DimensionValueWithPath complex type specifies a path to a refinement attribute value from the root
of that managed attribute.

For example, consider this abbreviated example of a record list query:

<ns:RecordListConfig Id="RecordList" MaxPages="60">
<ns:Column>ProductCategory</ns:Column>
<ns:RecordsPerPage>200</ns:RecordsPerPage>
<ns:Page>2</ns:Page>
<ns:Sort Key="Description" Direction="Ascending"/>

</ns:RecordListConfig>

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 207

This request returns hierarchy information and hierarchy paths for the managed attribute ProductCategory.
In the following abbreviated example of the response, you can see the returned hierarchy information:

<cs:DimensionHierarchy>
<cs:DimensionValueWithPath>

<cs:DimensionValue DimensionName="ProductCategory"
Spec="4">Handlebars</cs:DimensionValue>
<cs:DimensionValue DimensionName="ProductCategory"
Spec="CAT_COMPONENTS">Components</cs:DimensionValue>

<cs:DimensionValue DimensionName="ProductCategory"
Spec="/">ProductCategory</cs:DimensionValue>

</cs:DimensionValueWithPath>
<cs:DimensionValueWithPath>

<cs:DimensionValue DimensionName="ProductCategory"
Spec="6">Brakes</cs:DimensionValue>

<cs:DimensionValue DimensionName="ProductCategory"
Spec="CAT_COMPONENTS">Components</cs:DimensionValue>

<cs:DimensionValue DimensionName="ProductCategory"
Spec="/">ProductCategory</cs:DimensionValue>

</cs:DimensionValueWithPath>
</cs:DimensionHierarchy>

Version 7.6.1 • December 2013

Performance impact of returning and displaying refinements
This topic summarizes performance impact for returning and displaying refinements, refinement ordering,
refinement counts, and using multi-select managed attributes.

Performance impact of returning and displaying refinements

Run-time performance of the Dgraph process of the Endeca Server is directly related to the number of
refinement values being computed for display. Only request refinement values if you are planning to display
them in the front-end application. If any refinement values are being computed by the Dgraph process, but not
being displayed by the application, this negatively affects performance. Attributes containing large numbers of
refinements also affect performance.

Additionally, even exposing a large number of attributes (not their individual values/refinements) within each
attribute group can have performance implications. This is because, for a query that returns a large number of
attributes, Endeca Server needs to compute whether any valid refinements exist for each of the attributes.
While this computation has a lower performance cost than listing the actual refinements, it can still have
performance impact, because, even if an attribute does not have any valid refinements, Endeca Server checks
all the assignments on records to determine this.

Finally, retrieving a full list of refinements (both suggested refinements and applied refinements, which
includes explicitly-selected and implicit), has performance implications.

If you must return a large number of attributes, to offset performance costs, consider increasing the system
cache: Determine the amount of free RAM on the system, while the Dgraph is under load. If you are seeing a
fair amount of free memory, consider increasing the cache size by that amount.

Performance impact of refinement ordering
You can use the data domain configuration flag, --refinement-sampling-min, to specify the minimum
number of records to sample during refinement computation (for managed attributes only). This option is
useful because sampling the entire navigation state during the refinement computation can be one of the more
performance intensive operations for the Dgraph.

Oracle® Endeca Server: Developer's Guide

Working with Attributes and Refinements 208

For most applications, larger values for the data domain configuration flag, --refinement-sampling-min,
reduce performance without improving the quality of refinement ordering. For some applications with extremely
large, non-hierarchical attributes (if they cannot be avoided), larger values can meaningfully improve
refinement ordering quality with minor performance cost. You specify this flag as:

endeca-cmd --put-dd-profile <profile-name> --refinement-sampling-min

Version 7.6.1 • December 2013

Performance impact of refinement counts

Dynamic statistics on records are expensive computations. You should only enable a managed attribute for
dynamic statistics if you intend to use the statistics. Because the Dgraph does additional computation for
additional statistics, there is a performance cost for those refinement counts that you are not using.

Performance impact of multi-select managed attributes

Tagging an attribute as multi-select has an impact on performance. Users will take longer to refine the list of
results, because each selection from a multi-select attribute still allows for further refinements from that
attribute. Also, refinements for multi-or attributes are more expensive.

Oracle® Endeca Server: Developer's Guide

Chapter 16

Using Attribute Groups

This section discusses how to implement attribute groups.

About attribute groups

Configuring and using attribute groups in Studio

Working with attribute groups using the API

About attribute groups
Attribute groups are ordered lists of attributes. They are stored in the Oracle Endeca Server as records.

Attribute groups are useful for organizing a large number of attributes in the user interface of your front-end
application, such as Studio. You can define a set of attribute groups to be displayed, assign attributes to each
group, and determine the display order of the groups and attributes.

Because you define the attribute groups, you can group the attributes in any way that makes sense for your
data. Do not confuse attribute groups with entity attribute groups (also called view attribute groups). Entity
attribute groups are created with the Entity and Collection Configuration Web Service and are described in the
chapter Working with Entities on page 230.

You can assign an attribute to more than one of your attribute groups. There is also a default Other attribute
group containing all of the attributes that you have not assigned to a group.

There is no impact on Endeca Server performance from using attribute groups — the Endeca Server
evaluates attribute groups at run-time.

Configuring and using attribute groups in Studio
In Studio, lists of attributes can be displayed in attribute groups.

This includes:

• For application administrators, when configuring Studio components

• For end users, when viewing components such as the Available Refinements component

From the Attribute Groups page, power users can:

• Create and delete attribute groups

• Add and remove the attributes in each attribute group

• Set the default display order of the attributes within each group. You cannot change the group display
order.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Attribute Groups 210

For information on using and configuring attribute groups in Studio, see the Oracle Endeca Information
Discovery Studio User's Guide.

Note: In addition to creating attribute groups in Studio, you can also create them by sending
Configuration Web Service requests to the Oracle Endeca Server.

Working with attribute groups using the API
This section provides examples for using use Configuration Web Service requests to create and manage
groups.

The Configuration Web Service has the following operations for attribute groups:

• putGroups

• listGroups

• getGroups

• exportGroups

• importGroups

• updateGroupConfigs

• deleteGroups

Each of these operations requires specifying configTransaction as the top-level element, followed by one
of the group operations. For a list of operation descriptions, see Configuration Web Service operations on
page 54.

For additional information about the Conversation Web Service WSDL and the Configuration Web Service
WSDL, see the Oracle Endeca Server API References.

Creating attribute groups

Retrieving lists of groups with the Conversation Web Service

Retrieving groups with the Conversation Web Service

Examples of other operations on groups

Creating attribute groups

You can use the Configuration Web Service to create attribute groups.

The putGroups operation creates one or more attribute groups. For example, this request illustrates how to
create an attribute group named Ratings that has three standard attributes (PriceRange, ReviewScore, and
Designation):

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09">

<soapenv:Header/>
<soapenv:Body>
<ns:configTransaction>
<ns:putGroups>

<ns1:group key="Ratings" displayName="Product Ratings">
<mdex-property_Key>PriceRange</mdex-property_Key>
<mdex-property_Key>ReviewScore</mdex-property_Key>

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Using Attribute Groups 211

<mdex-property_Key>Designation</mdex-property_Key>
</ns1:group>

</ns:putGroups>
</ns:configTransaction>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

Keep in mind that the group name (the key attribute) must use an NCName format.

To create an attribute group in the Endeca data domain:

1. Make sure that the Oracle Endeca Server and the data domain are running. Access the Configuration
Web Service for the data domain: http://localhost:<port>/ws/config/dataDomain?wsdl.

2. Make a SOAP request to the Configuration Web Service as shown above, indicating the key of the
new group, and its display name. (Omit specifying other optional attributes because they are not used
by the Endeca Server).

If the request is successful, the response will look like this abbreviated example:

<soapenv:Body>
<config-types:results xmlns:config-types="http://www.endeca.com/MDEX/config/services/types/3

/0"/>
</soapenv:Body>

3. Issue a request for listing groups, to verify that this group is included, as in the following example:

<ns:configTransaction>
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09">

<ns:listGroups/>
</ns:configTransaction>

The response should include a Ratings group.

Retrieving lists of groups with the Conversation Web Service
To retrieve a list of attribute groups, use a request with the AttributeGroupListConfig type.

The AttributeGroupListConfig syntax is:

<AttributeGroupListConfig Id="?">
<StateName>?</StateName>

</AttributeGroupListConfig>

where:

• Id is an optional attribute that provides an arbitrary identifier for this configuration.

• StateName is an optional attribute that specifies the name of a state in the request. Note that specifying a
state has no effect on the results (even in a request with multiple states).

To retrieve a list of groups:

1. Use a request similar to the following example:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>
<AttributeGroupListConfig Id="AttrGroups"/>

</Request>

The Conversation Web Service request contains a list of groups that are currently defined, specifying each
group's display name and the number of attributes in each group. Information about each group is returned
inside the GroupSummary element of the AttributeGroupList response, as shown in this example:

Oracle® Endeca Server: Developer's Guide

Using Attribute Groups 212

<cs:Results ...>
<ns:State .../>
<cs:AttributeGroupList Id="AttrGroups">

<cs:GroupSummary Key="WineGroup" Cardinality="4">
<cs:Record>

<cs:attribute name="system-group_DisplayName" type="mdex:string">Wine Refs</cs:attribute>
<cs:attribute name="system-group_Key" type="mdex:string">WineGroup</cs:attribute>

</cs:Record>
<cs:GroupMembers>

<cs:attribute name="mdex-property_Key">WineType</cs:attribute>
<cs:attribute name="mdex-property_Key">Wine</cs:attribute>
<cs:attribute name="mdex-property_Key">Region</cs:attribute>
<cs:attribute name="mdex-property_Key">Flavors</cs:attribute>

</cs:GroupMembers>
</cs:GroupSummary>

</cs:AttributeGroupList>
</cs:Results>

Version 7.6.1 • December 2013

In this example, one group (named WineGroup) is returned. The Cardinality attribute specifies the number
of attributes in the group. The attributes for each group member are also listed.

Note: In a response, you may also notice a group system-navigation_InternalGroup (not
shown in this example), which contains all of the attributes that are not members of any other user-
created groups. This group is used by the Oracle Endeca Server and Studio and is not intended to be
used in your application.

Retrieving groups with the Conversation Web Service

Any request that asks for refinements is also requesting groups, if the attributes to be returned are configured
as part of groups.

In other words, the Conversation Web Service returns groups for those types of queries that return
refinements. Any attributes returned from the Conversation Web Service as refinements are returned as part
of their respective groups.

The request for groups is implemented with the RefinementGroupConfig element of the Conversation Web
service request. This element contains one or more RefinementConfig elements that list which attributes, out
of all valid properties returned with a navigation query, should return actual refinement values. Note that only
the top-level refinement values are returned.

The complex type RefinementGroupConfig has the following format:

<complexType name="RefinementGroupConfig">
<sequence>
<element maxOccurs="unbounded" minOccurs="0"
name="RefinementConfig" type="cs_v3_0:RefinementConfig"/>

</sequence>
<attribute name="Name" type="cs_v3_0:NonEmptyString" use="required"/>
<attribute name="Expose" type="boolean" use="required"/>
<attribute name="ExposeAllPropertyRefinements" type="boolean"/>

</complexType>

Note: The type "cs_v2_0:RefinementConfig" indicates the version of the web service. In this
example, the version is 2.0. It may or may not correspond to the version of the Conversation Web
Service that you are using and that is currently supported.

Oracle® Endeca Server: Developer's Guide

Using Attribute Groups 213

The meanings of the attributes are:

Attribute Description

Name Required. The name of the group.

Expose Required. Specify true to expose all top-level attributes in
the group, or false (the default) to just show the root of the
group.

Note: If an attribute is a managed attribute, it
contains a hierarchy of attributes under its root.
Whether these nested attributes are exposed is
controlled by the Expose attribute on the
RefinementConfig element for each attribute
within a managed attribute. The default for Expose
is false.

ExposeAllPropertyRefinements Optional. If set to true, specifies whether to expose all
attribute refinements underneath each managed attribute
that has them. The default is false.

This setting supersedes the Expose attribute on the
RefinementConfig element for each attribute refinement.

Groups are returned in a NavigationMenuItemGroup element that contains one or more NavigationMenu

elements, each of which returns refinements in the NavigationMenuItem. Here is the format for the
NavigationMenuItemGroup:

<complexType name="NavigationMenuItemGroup">
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="NavigationMenuItem"

type="cs_v3_0:NavigationMenuItem"/>
</sequence>
<attribute name="HasRefineableProperties" type="boolean"/>
<attribute name="Name" type="string" use="required"/>

</complexType>

Version 7.6.1 • December 2013

The required attribute HasRefineableProperties specifies whether a group has attributes that could be
refined further.

Note: From the perspective of controlling the groups behavior in the front-end application, another
attribute may be useful. It is the ExposureControl attribute of type Boolean, on the
NavigationMenuItem. If set to false (the default), it does not expose refinements contained within
NavigationMenuItem. If set to true, it exposes the collection of refinements.

To request groups:

1. In the Conversation Web Service request, for each group, specify its name and whether to expose all
top-level attributes in the group by specifying the value of Expose attribute on the
RefinementGroupConfig element. Optionally, you can also use this attribute on the refinements
within the group.

In this example, two groups are requested, WineGroup and ProvenanceGroup, but exposing top-
level properties is requested for WineGroup only:

Oracle® Endeca Server: Developer's Guide

Using Attribute Groups 214

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>
<NavigationMenuConfig MaximumRefinementCount="10" ReturnFullPath="true"
ExposeAllRefinements="false" Id="Navigation">
<RefinementGroupConfig Name="WineGroup" Expose="true">

<RefinementConfig Name="Flavors" Expose="true" MaximumCount="2"/>
</RefinementGroupConfig>
<RefinementGroupConfig Name="ProvenanceGroup" Expose="false"/>

</NavigationMenuConfig>
</Request>

Version 7.6.1 • December 2013

The Conversation Web Service result includes results for one group, WineGroup, for which refinements were
requested to be exposed.

Note: When a group is retrieved with the Conversation Web Service, the attribute ordering is
determined by the order in which attributes were listed when the group was initially defined (either in
Studio, or using the Configuration Web Service).

<cs:NavigationMenu Id="Navigation">
<cs:NavigationMenuItemGroup Name="WineGroup" HasRefineableProperties="true">

<cs:NavigationMenuItem Name="WineType" DisplayName="Wine Type" MultiSelect="None" HasMore
="true">

<cs:ExposureControl Exposed="false"/>
<cs:RootDimensionValue DimensionName="WineType" Spec="/"/>
<cs:FullPath>

<cs:DimensionValue DimensionName="WineType" Spec="/">WineType</cs:DimensionValue>
</cs:FullPath>

</cs:NavigationMenuItem>
<cs:NavigationMenuItem Name="Wine" DisplayName="Wine Name" MultiSelect="None" HasMore="true">

<cs:ExposureControl Exposed="false"/>
</cs:NavigationMenuItem>
<cs:NavigationMenuItem Name="Region" DisplayName="Region Grown" MultiSelect="None" HasMore

="true">
<cs:ExposureControl Exposed="false"/>

</cs:NavigationMenuItem>
<cs:NavigationMenuItem Name="Flavors" DisplayName="Flavors" MultiSelect="None" HasMore="true">

<cs:ExposureControl Exposed="true"/>
<cs:Refinement Name="Flavors" Spec="Almond" Label="Almond" Count="1312"/>
<cs:Refinement Name="Flavors" Spec="Anise" Label="Anise" Count="1626"/>

</cs:NavigationMenuItem>
</cs:NavigationMenuItemGroup>

</cs:NavigationMenu>

Examples of other operations on groups

Using operations of the Configuration Web Service, you can obtain a group summary with the group's key,
name and the number of standard attributes. You can also obtain a number of attributes in a specific group, as
well as import, export and update groups (although these operations are used primarily through Studio).

Getting group summary information
The listGroup operation returns summary information about the attribute groups that are currently defined
in the Endeca data domain. The group summary information consists of:

• The name of the group (the key attribute), which uses the NCName format.

• The display name of the group (the displayName attribute), which uses a non-NCName-format. This
name is typically used in front-end displays where a user-friendly format is needed.

Oracle® Endeca Server: Developer's Guide

Using Attribute Groups 215

• The number of standard attributes that are members of the group (the cardinality attribute). Note that
the names of the member standard attributes are not listed.

The listGroup operation takes no arguments. For example:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:configTransaction>
<ns:listGroups/>

</ns:configTransaction>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

The response should look similar to this example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<config-types:results xmlns:config-types="http://www.endeca.com/MDEX/config/services/types/3
/0">

<groupSummaries xmlns="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<groupSummary key="Channels" cardinality="6" displayName="Channels"/>
<groupSummary key="Countries" cardinality="10" displayName="Countries"/>
<groupSummary key="Customers" cardinality="30" displayName="Customers"/>
<groupSummary key="Products" cardinality="22" displayName="Products"/>
<groupSummary key="Promotions" cardinality="11" displayName="Promotions"/>
<groupSummary key="Sales" cardinality="16" displayName="Sales"/>
<groupSummary key="Times" cardinality="38" displayName="Times"/>
<groupSummary key="system-navigation_InternalGroup" cardinality="54"/>

</groupSummaries>
</config-types:results>

</soapenv:Body>
</soapenv:Envelope>

This group summary example shows that there are seven user-created attribute groups (such as Channels
and Products). The group named system-navigation_InternalGroup is a collection of system
primordial attributes (such the attributes on PDRs).

Getting the member attributes of a specific group
The getGroups operation can retrieve information about one or more specific attributes, using this structure
in the request:

<ns:getGroups>
<ns1:groupSummary key="?" displayName="?" cardinality="?"/>

</ns:getGroups>

where key is the only required attribute indicating the name of the specific group. Note that the name is case
sensitive.

For example, this request:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:configTransaction>
<ns:getGroups>

<ns1:groupSummary key="Channels"/>
</ns:getGroups>

Oracle® Endeca Server: Developer's Guide

Using Attribute Groups 216

</ns:configTransaction>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

returns this information about the Channels attribute group:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<config-types:results xmlns:config-types="http://www.endeca.com/MDEX/config/services/types/3
/0">

<groups xmlns="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<group key="Channels" displayName="Channels">

<mdex-property_Key type="mdex:string" xmlns="">CHANNEL_CLASS</mdex-property_Key>
<mdex-property_Key type="mdex:string" xmlns="">CHANNEL_CLASS_ID</mdex-property_Key>
<mdex-property_Key type="mdex:string" xmlns="">CHANNEL_DESC</mdex-property_Key>
<mdex-property_Key type="mdex:string" xmlns="">CHANNEL_ID</mdex-property_Key>
<mdex-property_Key type="mdex:string" xmlns="">CHANNEL_TOTAL</mdex-property_Key>
<mdex-property_Key type="mdex:string" xmlns="">CHANNEL_TOTAL_ID</mdex-property_Key>

</group>
</groups>

</config-types:results>
</soapenv:Body>

</soapenv:Envelope>

Getting detailed information about groups
The exportGroups operation is basically a combination of the listGroup and getGroups operations. That
is, it returns a list of your attribute groups with detailed information about each group in the getGroups
format. Note that while the system-navigation_InternalGroup is listed, no details are provided on its
member attributes.

The exportGroups syntax is:

<ns:configTransaction>
<ns:exportGroups/>

</ns:configTransaction>

Importing groups
To utilize importGroups, use this structure in the request:

<ns:importGroups>
<ns1:group key="?" displayName="?">

<mdex-property_Key>?</mdex-property_Key>
</ns1:group>

</ns:importGroups>

where mdex-property_Key is the primary key of the group.

This request replaces the specified group with another group of the same name, but with the new list of
attributes. For example, if an existing group contained three attributes, you can use importGroups to replace
this group with a group that will contain only two of them. The keys for the attributes you want to include must
be specified in the importGroups request.

Updating the group configuration
The updateGroupConfigs operation replaces the assignment on the group description record with a new
assignment. The operation's syntax is:

<ns:updateGroupConfigs>
<ns1:record>

Oracle® Endeca Server: Developer's Guide

Using Attribute Groups 217

<system-group_DisplayName>?</system-group_DisplayName>
<system-group_Key>?</system-group_Key>

</ns1:record>
</ns:updateGroupConfigs>

Version 7.6.1 • December 2013

You specify a system-group_Key indicating which group to update, and zero or more assignments in the
group description record, such as an assignment on the display name, if an existing group does not have one.

For example, the group system-navigation_InternalGroup is a group that contains all attributes that do
not belong to any user-specified groups. This group is created automatically and does not have a display
name initially. To provide a display name "Other attributes" for this group, send the following request to the
Configuration Web Service running on the particular data domain:

<config-service:updateGroupConfigs>
<mdex:record>
<system-group_DisplayName>Other Attributes</system-group_DisplayName>
<system-group_Key>system-navigation_InternalGroup</system-group_Key>

</mdex:record>
</config-service:updateGroupConfigs>

Oracle® Endeca Server: Developer's Guide

Part V

Breadcrumbs, Precedence Rules, and
Entities

Chapter 17

Using Breadcrumbs

The section discusses how to implement breadcrumbs.

About breadcrumbs

Implementing breadcrumbs with the API

About breadcrumbs
Breadcrumbs let you summarize any Guided Navigation selections, keyword searches, or range filters
specified by the end user.

Breadcrumbs represent the following information that was passed to the navigation state by the Conversation
Web Service response:

• Selected refinement values that were used to query for the current record set.

• Keyword searches that were used to query for the current record set.

• Range filters that have been selected for the query.

Any standard or managed attribute value available in the index of the particular data domain can be selected
as a breadcrumb.

Breadcrumbs honor EQL record filters (such as security filters), but do not display them.

Breadcrumbs can reflect spelling correction and DYM (Did You Mean) information returned by the Dgraph
process of the Oracle Endeca Server in response to keyword search queries.

In Studio, the Selected Refinements component lets you display breadcrumbs made with navigation queries
(when users select refinement values or range filters for navigation), and keyword search queries.

For example, here is how user selections made in the Available Refinements component are reflected in the
Selected Refinements component:

• When the user selects a refinement in the Available Refinements component, it is reflected as a
breadcrumb in the Selected Refinements component.

• The user can select an additional refinement in the Available Refinements component, thereby
narrowing down the scope of the record set for the query.

• Alternatively, the user can remove a refinement value from the Selected Refinements component, which
increases the scope of the record set for the query.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Breadcrumbs 220

Implementing breadcrumbs with the API
This section describes how to issue queries requesting breadcrumbs using the Conversation Web Service.

The Conversation Web Service returns breadcrumb results for these types of queries:

• Navigation

• Search

• Range filters

For more information on the Conversation Web Service interface, see the Oracle Endeca Server API
References. This reference contains documentation generated from the interface WSDL document.

BreadcrumbConfig

Retrieving breadcrumbs in a navigation query

Example of breadcrumbs with spelling correction

BreadcrumbConfig
The request for breadcrumbs is implemented with the BreadcrumbConfig type.

The BreadcrumbConfig type has this syntax:

<BreadcrumbConfig Id="?" ReturnFullPath="true">
<StateName>?</StateName>

</BreadcrumbConfig>

Version 7.6.1 • December 2013

The attributes are:

Attribute Description

Id Required. An arbitrary identifier for this BreadcrumbConfig.

ReturnFullPath Optional. Specifies whether to return the full path of all suggested
hierarchical refinements with the response:

• If set to true, the returned breadcrumb contains the full path to its
parent refinement values, as in Wine > Red > Merlot.

• If set to false, returns only the refinement, without the path to its
ancestors. If not specified, the default is false.

This setting is relevant only in navigation queries that request
breadcrumbs; it is ignored in search or range filter queries requesting
breadcrumbs.

Oracle® Endeca Server: Developer's Guide

Using Breadcrumbs 221

Attribute Description

StateName Specifies an existing named state in the request, using these rules:

• If the request has multiple named states, then the StateName element
must reference one (and only one) of the named states.

• If the request has only one named state, then it is optional as to
whether the StateName element is used to reference that named state
(as the state will be used in any event in the BreadcrumbConfig).

• If the request has an unnamed state, then the StateName element
cannot be used.

Adding supplemental information

If spelling is enabled in the data domain configuration, and in addition to breadcrumbs, you may want the
Conversation Web Service response to contain supplemental information about spelling suggestions and DYM
(Did You Mean), a second SearchAdjustmentConfig type is required. If this type is included, spelling
correction or DYM suggestions are returned with the breadcrumbs in the response.

If spelling is enabled, spelling correction occurs for breadcrumb results even if the SearchAdjustmentConfig

is not included. However, while spelling correction takes place, the spelling correction and DYM suggestions
are not returned in the response.

In the response, breadcrumbs are returned in the order in which they were added (requested).

Retrieving breadcrumbs in a navigation query

An initial Conversation Web Service request that is made in response to a user-initiated navigation query (in
which no selections have been made in the navigation state) does not yet return breadcrumbs. However, a
subsequent request (in which the user made selections within the available attribute values) returns
breadcrumbs, which represent explicitly-selected refinements.

In the Conversation Web Service request, make sure you specify the selection for a specific refinement, as
well as the BreadcrumbConfig type.

In this example, the navigation state includes a selection of the WineType refinement, as well as the
BreadcrumbConfig type:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State>

<Name>Breadstate</Name>
<SelectedRefinementFilter Name="WineType" Spec="/" Id="MyWines">
</SelectedRefinementFilter>

</State>
<BreadcrumbConfig Id="BreadcrumbInfo" ReturnFullPath="true">

<StateName>Breadstate</StateName>
</BreadcrumbConfig>

</Request>

Version 7.6.1 • December 2013

The Conversation Web Service result includes the original State request, followed by the Breadcrumbs type
that lists attribute values identified as breadcrumbs, based on the user-selected navigation state, as in this
sample result:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/3/0"

Oracle® Endeca Server: Developer's Guide

Using Breadcrumbs 222

xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<State xmlns="http://www.endeca.com/MDEX/conversation/3/0"

xmlns="http://www.endeca.com/MDEX/eql_parser/types">
<Name>Breadstate</Name>
<SelectedRefinementFilter Name="WineType" Spec="/" Id="MyWines"/>

</State>
<cs:Breadcrumbs Id="BreadcrumbInfo">

<cs:RefinementBreadcrumb Name="WineType" DisplayName="Wine Type" Spec="/">
<cs:DimensionValue DimensionName="WineType" Spec="/">WineType</cs:DimensionValue>

</cs:RefinementBreadcrumb>
</cs:Breadcrumbs>

</cs:Results>

Version 7.6.1 • December 2013

Example of breadcrumbs with spelling correction

Breadcrumbs returned by the Conversation Web Service in response to a record or value search query can
reflect spelling correction.

There are two forms of spelling correction:

• Automatic spelling correction for record search and value search.

• Explicit spelling suggestions for record search (that is, Did You Mean)

The following requirements must be met to implement breadcrumbs that also return spelling correction
information in response to a query:

• The spelling must be enabled in the data domain. To enable spelling, after you install the Oracle Endeca
Server and create a data domain, run the updateSpellingDictionaries operation of the Data Ingest
Web Service.

• The request must include the BreadcrumbConfig type. This ensures that breadcrumbs are returned:

<BreadcrumbConfig Id="BreadcrumbInfo" ReturnFullPath="false">
<StateName>Breadstate</StateName>

</BreadcrumbConfig>

• If you would like to return DYM and spelling correction results with breadcrumbs, the request must include
the SearchAdjustmentConfig type:

<SearchAdjustmentConfig Id="SearchAdjust">
<StateName>Breadstate</StateName>

</SearchAdjustmentConfig>

The request in this example specifies a navigation state that includes a search for a user-entered word "pech"
(a misspelling for "peach"). It illustrates a search request with a breadcrumb that needs to be corrected for
spelling:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State>

<Name>RecState</Name>
<TextSearchFilter Key="Flavors" RelevanceRankingStrategy="numfields"
Mode="AllPartial" EnableSnippeting="false" Language="en">pech</TextSearchFilter>

</State>
<RecordCountConfig Id="NumRecs">

<StateName>RecState</StateName>
</RecordCountConfig>
<BreadcrumbConfig Id="Crumbs" ReturnFullPath="true">

<StateName>RecState</StateName>
</BreadcrumbConfig>
<SearchAdjustmentConfig Id="CorrectSpell">

<StateName>RecState</StateName>
</SearchAdjustmentConfig>

Oracle® Endeca Server: Developer's Guide

Using Breadcrumbs 223

</Request>

Version 7.6.1 • December 2013

The response from the Conversation Web Service contains the original State from the request with search
filter applied, as well as the original (not yet spelling-corrected) term of "pech". The SearchAdjustments

response includes the automatically-corrected term "peach" in the AdjustedTerms element for
AppliedAdjustment:

...
<cs:SearchAdjustments Id="CorrectSpell">

<cs:AppliedAdjustment>
<cs:TextSearchFilter Key="Flavors" Mode="AllPartial"

RelevanceRankingStrategy="numfields">pech</cs:TextSearchFilter>
<cs:AdjustedTerms>peach</cs:AdjustedTerms>

</cs:AppliedAdjustment>
</cs:SearchAdjustments>

</cs:Results>

For more information on the SearchAdjustments responses, see Retrieving spelling corrections and DYM in
query results on page 298.

Oracle® Endeca Server: Developer's Guide

Chapter 18

Using Precedence Rules

This section describes how to configure and use precedence rules.

About precedence rules

Managed attribute trigger types

Precedence rule create operations

Creating precedence rules with Integrator ETL

Precedence rule list and delete operations

Precedence rules and implicit attribute value selection

About precedence rules
Precedence rules provide a way to delay the display of attributes until they offer a useful refinement of the
navigation state.

Precedence rules are defined in terms of a trigger attribute and a target attribute, where a user's selection of
the trigger reveals the previously unavailable target attribute to the user. That is, precedence rules are
triggered by implicit or explicit selections of either managed attribute values or standard attribute values.
These triggers cause either managed attributes or standard attributes to be included as available refinements.

Precedence rule triggers can be expressed as:

• Managed attribute value (mval): triggered when a particular mval is selected. This can be configured to
control whether the mval itself must be selected, or whether any child of the mval will trigger the rule.
Using a root mval for a managed attribute effectively causes any selection within that managed attribute to
trigger the rule.

• Standard attribute value (sval): triggered when a particular sval is selected.

• Standard attribute: triggered when any value in a particular standard attribute is selected

The precedence rule target can be a managed attribute or a standard attribute. If it is a managed attribute, the
mdex-dimension_EnableRefinements property on its DDR should be set to true so that refinements
can be displayed.

Note that either attribute type can trigger the other type. That is, a managed attribute value configured as a
trigger can display a standard attribute, while a standard attribute (or standard attribute value) can be a trigger
for a managed attribute target.

To illustrate the concept of precedence rules, assume that one might not want both the Country and State
managed attributes to appear simultaneously in a geographical data set. A precedence rule could be defined
so that the State managed attribute would appear only after a managed attribute value from the Country
managed attribute is selected. This simplifies the user's navigation choices and avoids information overload by
hiding the State managed attribute until it is relevant to the navigation state.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Precedence Rules 225

Treatment of target attributes associated with multiple precedence rules

A target managed or standard attribute associated with more than one precedence rule is exposed when at
least one associated trigger is selected.

For example, assume we have three managed attributes: Author, Region, and Language. We have two
precedence rules:

Region > Author
Language > Author

Version 7.6.1 • December 2013

In this case, the Author managed attribute is displayed after a managed attribute value from either the Region
or Author managed attribute is selected.

Precedence rules with non-existent sources

If the source attribute in a precedence rule does not exist in the data domain, but its destination attribute does
exist, then the precedence rule will never be triggered. This behavior effectively hides the destination attribute
from refinements. To correct this behavior, either remove the rule or create the source attribute in the data
domain.

Precedence rules versus hierarchical managed attributes

The creation of managed attributes can be facilitated with precedence rules. Consider the task of creating a
Geography managed attribute as a hierarchy of country, state, and city. The hierarchy would need to be
created manually, with Country as the root managed value. Each country managed value would have its
corresponding states as children and each state its corresponding cities. In this scenario, the onus is on the
knowledge worker to create and maintain this potentially enormous hierarchy.

Precedence rules offer a much simpler solution. The knowledge worker can produce the same results by
creating three individual managed (or standard) attributes (Country, State, and City) and configuring
precedence rules such that the State attribute is not presented until a country has been chosen and the City
attribute is not presented until a state has been chosen. Because each attribute is flat, this solution involves
much less initial and maintenance effort. Clearly, creating a managed attribute hierarchy by hand is a much
more difficult task than creating the three flat attributes, configuring precedence rules, and letting contraction
do the work to give the application the desired behavior (that is, to mimic the hierarchy).

Managed attribute trigger types
During configuration, you can specify a rule type for managed attribute triggers.

Managed value triggers are either leaf or non-leaf, while standard attribute triggers are not typed. Non-leaf
precedence rules display the target attribute if the trigger managed value or its descendants are in the
navigation state. Leaf precedence rules display the target attribute only after descendants of the trigger
managed value have been selected.

The two types differ in how the trigger value of the managed attribute is interpreted:

• For the non-leaf type, if the navigation state contains the trigger managed value or any of its descendants,
then the target attribute is displayed.

• For the leaf type, only leaf managed values (managed values with no children) that are descendants of the
specified trigger managed value cause the target attribute to be displayed. The presence of the specified
trigger managed value in the navigation state does not cause the target attribute to appear. Hence, a leaf
precedence rule requires that the trigger managed value have children.

Oracle® Endeca Server: Developer's Guide

Using Precedence Rules 226

When managed value triggers are created, the isLeafTrigger attribute sets the type.

Non-leaf rule example

In this non-leaf rule example, we have a Color managed attribute with a child managed value named blue.
We can construct a non-leaf precedence rule with blue as the trigger managed value and the managed
attribute ShadesOfBlue as the target.

When the user drills into Color and selects blue, the target managed attribute ShadesOfBlue is displayed in
the user interface.

Leaf rule example

For leaf type rules, we will use a hierarchical managed attribute named Country and a second managed
attribute named State. The Country attribute hierarchy looks like this:

Country
- North America

- Canada
- Mexico
- United States

- Europe
- England
- Spain
- Italy

Version 7.6.1 • December 2013

Logically, a user should choose a country before choosing a state. We can use a leaf precedence rule to
suppress the display of the State attribute until a leaf value in the Country managed attribute (an actual
country as opposed to a continent) has been selected. To achieve this, a leaf precedence rule is constructed
with the Country root managed value as the trigger and the State managed attribute as the target.

If the user drills into Country and selects an intermediate child managed value (North America or Europe), the
target State attribute is not displayed. However, once the user has selected a leaf value from the Country
managed attribute (United States, Canada, Mexico, England, Spain, or Italy) the State managed attribute
appears.

Precedence rule create operations
The Configuration Web Service has two operations to create precedence rules.

The two create operations are:

• The putPrecedenceRules operation creates each of the given precedence rules or updates them if they
already exist. Existing rules that are not specified in the operation are not affected.

• The importPrecedenceRules operation first removes all existing precedence rules, and then adds the
given ones. Use this operation when you want a new set of precedence rules.

The precedence rules take effect as soon as they are loaded into the Dgraph. The precedence rule is stored
by the Dgraph process as a record in its data files, so that the precedence rules are automatically reloaded
each time the Dgraph process is re-started.

Both operations use the same schema syntax for the precedenceRule element:

<mdex:precedenceRule
key="ruleName"
triggerAttributeKey="triggerAttrName"
triggerAttributeValue="mval|sval"

Oracle® Endeca Server: Developer's Guide

Using Precedence Rules 227

targetAttributeKey="targetAttrName"
isLeafTrigger="true|false"/>

Version 7.6.1 • December 2013

The meanings of the precedenceRule attributes are as follows:

precedenceRule attribute Meaning

key Specifies a unique identifier for the precedence rule (that is, it is the
name of the rule). The identifier is a string, which does not have to
follow the NCName format.

triggerAttributeKey Specifies the name of the Endeca standard attribute or managed
attribute that will trigger the precedence rule. That is, the specified
attribute must be selected before the user can see the target attribute.

triggerAttributeValue Optional. If used, specifies the attribute value (either managed value
spec or standard attribute value) that must be selected before the user
can see the target attribute. If not used, then any value in the trigger
attribute will trigger the rule. Use of triggerAttributeValue in effect
further refines the trigger to a specific standard or managed value.

targetAttributeKey Specifies the name of the Endeca standard or managed attribute that
appears after the trigger attribute value is selected.

isLeafTrigger If the trigger is a managed attribute, isLeafTrigger specifies a
Boolean value that denotes the type of the trigger attribute value:

• If true, the trigger attribute is a leaf type, which means that the
precedence rule will fire only if a leaf value is selected. That is,
querying any leaf managed value from the trigger managed
attribute will cause the target managed value to be displayed
(many triggers, one target).

• If false (the default), the trigger attribute is a non-leaf type, which
means that the precedence rule will fire when any value is
selected. That is, if the managed value specified as the trigger or
any of its descendants are in the navigation state, then the target
is presented (one trigger, one target).

Note that isLeafTrigger does not apply to Endeca standard
attributes. You must specify it when you create a precedence rule, but
whichever value you use is ignored by the Dgraph when the
precedence rule is run.

putPrecedenceRules example
The following is an example of a putPrecedenceRules operation that creates a precedence rule named
CityRule:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:configTransaction>

Oracle® Endeca Server: Developer's Guide

Using Precedence Rules 228

<ns:putPrecedenceRules>
<ns1:precedenceRule

key="CityRule"
triggerAttributeKey="DimGeography_StateProvinceName"
triggerAttributeValue="Victoria"
targetAttributeKey="DimGeography_City"
isLeafTrigger="true"/>

</ns:putPrecedenceRules>
</ns:configTransaction>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

Creating precedence rules with Integrator ETL
You can use Integrator ETL to load precedence rules into the Endeca data domain.

Using Integrator ETL to create precedence rules is an alternate method to explicitly using the
putPrecedenceRules and importPrecedenceRules operations of the Configuration Web Service.

To create precedence rules in Integrator ETL:

1. Create an input source file (such as a text file or a CSV file) that defines your precedence rules.

2. In Integrator ETL, create a graph that will read the input file, create the precedence rules, and send
them to the Oracle Endeca Server.

Note that the precedence rules take effect as soon as they are loaded into the Dgraph.

The Oracle Endeca Information Discovery Integrator ETL User's Guide provides details on creating the
precedence rules and loading them into the Endeca data domain.

Precedence rule list and delete operations
The Configuration Web Service has operations for listing and deleting precedence rules.

Listing precedence rules
The listPrecedenceRules and exportPrecedenceRules operations return information about your current set
of precedence rules. The following is an example of the listPrecedenceRules operation:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:configTransaction>
<ns:listPrecedenceRules/>

</ns:configTransaction>
</soapenv:Body>

</soapenv:Envelope>

If there are no precedence rules defined, the response would be:

<config-types:results xmlns:config-types="http://www.endeca.com/MDEX/config/services/types/3/0">
<precedenceRules xmlns="http://www.endeca.com/MDEX/config/XQuery/2009/09"/>

</config-types:results>

Oracle® Endeca Server: Developer's Guide

Using Precedence Rules 229

If there are defined precedence rules, the response will include one or more precedenceRule elements, as
shown in this example:

<config-types:results xmlns:config-types="http://www.endeca.com/MDEX/config/services/types/3/0">
<precedenceRules xmlns="http://www.endeca.com/MDEX/config/XQuery/2009/09">

<precedenceRule key="AUS_Rule" triggerAttributeKey="DimGeography_CountryRegionName"
triggerAttributeValue="Australia" targetAttributeKey="DimGeography_StateProvinceName"
isLeafTrigger="false"/>

<precedenceRule key="City_Rule" triggerAttributeKey="DimGeography_StateProvinceName"
triggerAttributeValue="Victoria" targetAttributeKey="DimGeography_City"
isLeafTrigger="false"/>

</precedenceRules>
</config-types:results>

Version 7.6.1 • December 2013

Deleting precedence rules
The deletePrecedenceRules operation deletes one or more specified precedence rules. The only attribute
that you need to specify is the name of the precedence rule in the key attribute, as in this example:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:configTransaction>
<ns:deletePrecedenceRules>

<ns1:precedenceRule key="City_Rule"/>
</ns:deletePrecedenceRules>

</ns:configTransaction>
</soapenv:Body>

</soapenv:Envelope>

If the delete operation is successful, the response will be:

<config-types:results xmlns:config-types="http://www.endeca.com/MDEX/config/services/types/3/0"/>

If the delete operation fails because the specified precedence rule does not exist, the response will be similar
to this example:

<soapenv:Fault>
<faultcode>soapenv:Client</faultcode>
<faultstring>endeca-err:MDEX0001 : Invalid input : No record has an assignment of
value 'Citty_Rule' for property 'mdex-precedenceRule_Key'</faultstring>

</soapenv:Fault>

In the example, the operation failed because the name of the precedence rule was misspelled.

Precedence rules and implicit attribute value selection
When all records in the navigation state are assigned a given attribute value, that attribute value is an implicit
selection.

In addition to being selected explicitly by the application, attribute values (either standard attribute values or
managed attribute values) can be selected implicitly. For example, if all Champagnes are from France, then
the explicit selection of WineType>Champagne causes the implicit selection of Region>France. Implicit
selection is a function of the set of records in the navigation state, regardless of what combination of search,
navigation, and record filters was used to obtain them.

Implicitly-selected attribute values trigger precedence rules in exactly the same way as explicitly-selected
attribute values. This behavior helps ensure a consistent user experience, by providing the same attributes for

Oracle® Endeca Server: Developer's Guide

Using Precedence Rules 230

refinement of a given result set, regardless of whether that result set was obtained through search, navigation,
or a combination of the two.

For this reason, two navigation paths leading to the same set of records will always have exactly the same set
of navigation selections (differing only in whether the selections are implicit or explicit). Because of this
equivalence, the set of precedence rules fired in both states will be identical.

When precedence rules are overridden

Implicit selection of a precedence rule's trigger attribute value fires the rule. Under some circumstances,
implicit selection of the rule's target managed value also fires it. Specifically, when a precedence rule's target
managed value is implicit in the navigation state, and when refinements are available underneath that target
managed value, the precedence rule fires and the target attribute is displayed. This occurs even when none of
the rule's trigger values have been implicitly or explicitly selected. The Oracle Endeca Server treats any
precedence rules targeting the parent managed attributes of these managed values as having fired, even
though the rules' trigger values have not been selected.

For this reason, precedence rule target attributes may appear when no precedence rule trigger has been
selected.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 19

Working with Entities

This section describes how to create and manage entities.

About entities

Entity operations

semanticEntity general syntax

Sample entity requests

About entities
Entities provide you with intuitive, conceptual views on top of various categories in your data. They reflect the
relational complexity between categories of data that is present in the Oracle Endeca Server's flat data model,
but that is not immediately visible.

An entity (or view, in Studio) represents a logical set of records that are derived from the physical records by
aliasing, filtering, and grouping. An entity has its own metadata, which include names, types, and display
names of the attributes, and the names and definitions of metrics.

Note: In Studio, entities are known as views. The Entity and Collection Configuration Web Service
interface is used by Studio to create and manage views. For information on creating and managing
views in Studio, see the Oracle Endeca Information Discovery Studio User's Guide.

When you create entities on top of various data categories, you map business concepts to complex data
structures, based on how you would like to analyze data. Entities reestablish the relationship between
categories of data once all data is loaded into the Oracle Endeca Server.

You define entities by specifying metadata on them, such as their metrics. This allows you, as the data
architect, to inform the business analyst about the relationship between different categories in your data, and
to suggest metrics that can be requested on the entities. For example, metrics can provide information on
which entities are useful to be grouped by, or to be aggregated upon.

Once you create entities, they serve as (aggregated) logical views of your data, allowing business analysts to
run analytic queries on them.

You create entities using the putEntity or putEntities operations of the Entity and Collection Configuration
Web Service. You can only create entities if the underlying attributes are already defined in your schema and
exist in your data domain.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Entities 232

Entity operations
The following table lists the entity-related operations in the Entity and Collection Configuration Web Service.

Operation Description

listEntities List the entities that exist in the data domain. One use for this operation is to
export the existing entities, for example during an upgrade procedure, in order to
later import them to the Endeca data domain with the putEntities operation.

validateEntity Validate an entity (either active or inactive) with the specified key and definition.

validateEntities Validate multiple entities (either active or inactive) with specified definitions.

putEntity Add an entity with the specified key and definition to the data domain.

The key must be valid according to the NCName format. The NCName format is
defined in the W3C document Namespaces in XML 1.0 (Second Edition), located
at this URL: http://www.w3.org/TR/REC-xml-names/#NT-NCName

For an entity to be created, its building blocks—the physical records and
attributes—must already exist in the data domain.

If an entity with the specified key already exists in the corpus, it is replaced by the
new entity with the same key. Note that the EQL statements defining the entity
must be valid if the entity is active.

If an entity does not exist, the entity is created. Note that the entity is not created
if its isActive flag is set to true and its EQL definition is not valid.

putEntities Add multiple entities with the specified keys and definitions to the data domain.
The keys must be valid according to the NCName format.

deleteEntities Delete multiple entities for which keys are specified.

deleteAllEntities Delete all entities that exist in the corpus without specifying any of their keys.

semanticEntity general syntax
The semanticEntity complex type defines an entity and all its attributes.

The semanticEntity syntax is:

<semanticEntity key="?" displayName="?" isActive="?">
<definition>?</definition>
<description>?</description>
<attributes>

<semanticAttribute name="?" displayName="?" datatype="?"
isDimension="?" isKeyColumn="?" description="?">
<property key="?">?</property>

</semanticAttribute>
</attributes>
<metrics>

<metric name="?" displayName="?" datatype="?" description="?">

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

http://www.w3.org/TR/REC-xml-names/#NT-NCName

Working with Entities 233

<definition>?</definition>
<property key="?">?</ns:property>

</metric>
</metrics>
<groups>

<group key="?" displayName="?">
<semanticAttributeKey name="?"/>
<property key="?">?</property>

</group>
</groups>
<property key="?">?</property>

</semanticEntity>

Version 7.6.1 • December 2013

The meanings of its elements and attributes is as follows:

Name of Description
element or
attribute

key Required. A unique identifier for the entity, which you provide when creating an entity. For
example, you may create an entity with the key Sales. The key name must be in the
NCName format.

displayName Optional. Defines the display name which may be used by the front-end application such
as Studio. The display name can use a non-NCName format.

isActive Required. A boolean value that specifies whether this entity is active (true) or inactive
(false). An Inactive entity's definition is not evaluated as part of a put operation or
as an EQL query, and that definition is not concatenated onto queries. An inactive status
thus this allows you to save entities with invalid or incomplete EQL definitions (which you
will later correct) or to save the entity for later use (at which time you will activate it). An
entity must be active if other EQL queries refer to it. When saving an entity, isActive
must be explicitly set.

definition Required. An EQL statement defining the entity. This EQL statement must create (or filter
out) a virtual collection of records, based on the EQL expressions included in it. The EQL
definition of an entity consists of one or more DEFINE statements separated by
semicolons. The definition can refer to a named state.

The definition must include a DEFINE statement that matches the name (key attribute) of
the entity. For example, the DEFINE statement for the Sales entity might be:

<definition>
DEFINE Sales AS SELECT FactSales_SalesAmount AS SalesAmount,
DimReseller_ProductLine AS ProductLine,
DimSalesTerritory_SalesTerritoryCountry AS SalesTerritoryCountry,
DimDate_FiscalYear AS FiscalYear,
FactSales_SalesOrderNumber AS SaleOrderNumber
</definition>

description Optional. Provides descriptive text about the entity.

attributes Optional. Represents a list of attributes in an entity. The attributes element may
contain zero or more semanticAttribute elements. See below for details.

Oracle® Endeca Server: Developer's Guide

Working with Entities 234

Name of Description
element or
attribute

metrics Optional. Provides a list of one or more suggested metric elements. The metrics
element may contain zero or more metric elements. See below for details.

groups Optional. Lets you create one or more entity attribute groups. See below for details.

property Optional. Note that this is the property element for the entire semanticEntity. Lets
you specify a string metadata global property for the entire entity. The key name must be
in the NCName format.

attributes element
The attributes element may contain one or more semanticAttribute elements. Each attribute in an
entity must correspond to an attribute specified in the EQL statement included in definition. Each
semanticAttribute element defines a member attribute of the entity.

The syntax of the semanticAttribute element is:

<semanticAttribute name="?" displayName="?" datatype="?"
isDimension="?" isKeyColumn="?" description="?">
<property key="?">?</property>

</semanticAttribute>

Version 7.6.1 • December 2013

For each semanticAttribute element, specify the following:

• name specifies a unique identifier for the attribute. The identifier must follow the NCName format.

• displayName is the name of the entity attribute in an easy-to-understand format. The display name can
use a non-NCName format.

• datatype specifies a valid data type, such as mdex:string. Valid types are listed in the mdex.xsd.

• isDimension is set to true on attributes on which it is useful to do a GROUP BY. For example,
attributes such as Size, Region, or Category should have isDimension="true", indicating that they are
managed attributes containing a hierarchy, and are candidates for GROUP BY statements in EQL.

• isKeyColumn is set to true if this attribute is part of the entity's composite key. The composite key on
an entity is the set of entity attributes with isKeyColumn set to true. The default is false.

• description provides a brief description of the attribute.

• property sets the name (key) and value of the string metadata for this attribute. The key name must be
in the NCName format.

This abbreviated example shows one of the several attributes based on which a Sales entity is created:

<attributes>
<semanticAttribute name="SalesAmount" displayName="Sales Amount" datatype="mdex:double"

isDimension="false" isKeyColumn="true" description="sales info">
<property key="locale">EN</property>

</semanticAttribute>
...

</attributes>

Oracle® Endeca Server: Developer's Guide

Working with Entities 235

metrics element
The metrics element can contain one or more metric elements. The syntax of the metric element is:

<metrics>
<metric name="?" displayName="?" datatype="?" description="?">

<definition>?</definition>
<property key="?">?</property>

</metric>
</metrics>

Version 7.6.1 • December 2013

Specify these attributes for the metric element:

• name specifies a unique identifier for the metric. The identifier must follow the NCName format.

• displayName is the name of the metric in an easy-to-understand format. The display name can use a
non-NCName format.

• datatype specifies a valid data type, such as mdex:double.

• description provides a brief description of the metric.

• definition is an EQL statement defining the metric. The definition element must contain an
arithmetic formula in EQL used for aggregation when querying against the entity's attributes.

• property sets the name (key) and value of the string metadata for this metric. The key name must be in
the NCName format.

Each metric must contain at least one aggregation function, such as SUM(X), or AVG(Y), where X and Y are
attributes defined for the entity.

For example, an entity may include the attribute SalesAmount, and a metric TotalSales, defined as the
sum of the values of the SalesAmount attribute:

<metrics>
<metric name="TotalSales" displayName="Total Sale" datatype="mdex:double">
<definition>sum(SalesAmount)</definition>
<property key="currency">$</property>

</metric>
</metrics>

groups element

An entity attribute group (also called a view attribute group) consists of a set of entity attributes (which have
been set via semanticAttribute elements).

The entity attribute group can also have a set of properties (key-value pairs) that are associated with the
group. These properties let you provide metadata for the group, which can then be used by your front-end
application (such as Studio). For example, you can use this metadata for order control (i.e., specifying which
attribute will be used to sort the results).

Each group is defined by a group element and consists of attributes from this entity. The syntax of the
metric element is:

<groups>
<group key="?" displayName="?">

<semanticAttributeKey name="?">
<property key="?">?</property>

</group>
</groups>

Oracle® Endeca Server: Developer's Guide

Working with Entities 236

The meanings of the group attributes are:

• group key is a unique identifier for the entity attribute group. The identifier does not have to follow the
NCName format.

• displayName lets you specify a more user-friendly name for the group.

• semanticAttributeKey (via its name attribute) specifies which entity attribute is added to the group.
Thus, the name attribute of semanticAttributeKey corresponds to the name attribute of the
semanticAttribute element described above.

• property sets the name (key) and value of the string metadata for this group. The key name must be in
the NCName format.

This example creates an entity named Product, which has an entity attribute group named ProdDescription:

<semanticEntity key="Product" displayName="Product" isActive = "true">
<definition>
DEFINE Product AS SELECT productId AS productId, description AS description, price AS price
</definition>
<attributes>

<semanticAttribute name="productId" datatype="mdex:string"
isDimension="true" isKeyColumn="true">

</semanticAttribute>
<semanticAttribute name="description" datatype="mdex:string"

isDimension="true" isKeyColumn="false">
</semanticAttribute>
<semanticAttribute name="price" datatype="mdex:double"

isDimension="true" isKeyColumn="false">
<property key="currency">$</property>

</semanticAttribute>
</attributes>
<metrics/>
<groups>

<group key="ProdDescription" displayName="ProductId and Description Group">
<semanticAttributeKey name="productId"/>
<semanticAttributeKey name="description"/>
<property key="sortBy">productId</property>

</group>
</groups>
<property key="SalesArea">North America</property>

</semanticEntity>

Version 7.6.1 • December 2013

The group has two entity attributes as members ("productId" and "description"). It also has a metadata
property (named "sortBy") whose value can be used to sort the results by the "productId" attribute.

Example of an entity

To put the previously described portions of an entity definition together, consider the following use case.

When you load a list of sales transactions, you also are loading information about customers, products, and
suppliers. You can create entities for each of them. Consider creating a Sales entity as a virtual set of
records derived from the following attributes: SalesAmount, ProductLine, and FiscalYear.

When you define the Sales entity, you also provide metrics for it, allowing business analysts to issue queries
in EQL against this entity. These metrics could be the TotalSales, defined as a sum of SalesAmount, or
the AvgSales, defined as an average of SalesAmount.

This example illustrates a Sales entity defined on top of several entity attributes and listing two metrics that
could be used in subsequent analytic queries against this entity:

<semanticEntity key="Sales" displayName="Sales Transactions" isActive="true">
<definition>

Oracle® Endeca Server: Developer's Guide

Working with Entities 237

DEFINE Sales AS
SELECT FactSales_SalesAmount AS SalesAmount,
DimReseller_ProductLine AS ProductLine,
DimSalesTerritory_SalesTerritoryCountry AS SalesTerritoryCountry,
DimDate_FiscalYear AS FiscalYear,
FactSales_SalesOrderNumber AS SaleOrderNumber

</definition>
<description>Sales transaction information</description>
<attributes>
<semanticAttribute name="SalesAmount" displayName="Sales Amount"

datatype="mdex:double" isDimension="false" isKeyColumn="true">
<property key="locale">EN</property>

</semanticAttribute>
<semanticAttribute name="ProductLine" displayName="Product Line"

datatype="mdex:string" isDimension="true" isKeyColumn="false">
</semanticAttribute>
<semanticAttribute name="SalesTerritoryCountry" displayName="Sales Territory Country"

datatype="mdex:string" isDimension="true" isKeyColumn="false">
</semanticAttribute>
<semanticAttribute name="FiscalYear" displayName="Year" datatype="mdex:int"

isDimension="true" isKeyColumn="false">
</semanticAttribute>
<semanticAttribute name="SaleOrderNumber" displayName="Sale Order Number"

datatype="mdex:string" isDimension="false" isKeyColumn="false">
</semanticAttribute>

</attributes>
<metrics>
<metric name="TotalSales" displayName="Total Sale" datatype="mdex:double">
<definition>sum(SalesAmount)</definition>
<property key="currency">$</property>

</metric>
<metric name="AvgSales" displayName="Average Sale" datatype="mdex:double">
<definition>avg(SalesAmount)</definition>

</metric>
</metrics>
<groups/>
<property key="SalesArea">North America</property>
</semanticEntity>

Version 7.6.1 • December 2013

Cache re-validation

Entities are re-validated during every cache refill. Any EQL query that uses an invalid entity will generate an
error and the entity's isValid flag will be set to false. Note that Endeca Server does validation only on the
Definition and the Metrics provided.

Sample entity requests
This topic includes examples of requests for listing, adding, deleting, and validating entities.

Listing entities

The following example of the request lists all entities that are present in the corpus:

<listEntities>
<language>en</language>

</listEntities>

The response to this request returns a list of entities that are already added. The following
listEntitiesResponse shows one sample entity:

<ns3:listEntitiesResponse xmlns:ns2="http://www.endeca.com/MDEX/eql_parser/types"

Oracle® Endeca Server: Developer's Guide

Working with Entities 238

xmlns:ns3="http://www.endeca.com/endeca-server/sconfig/3/0">
<ns3:validatedSemanticEntity isValid="true" key="SalesTrans" displayName

="Sales Transaction" isActive="true">
<ns3:definition>DEFINE SalesTrans AS
SELECT FactSales_SalesAmount AS SalesAmount,
DimReseller_ProductLine AS ProductLine</ns3:definition>
<ns3:description>Sales transaction information</ns3:description>
<ns3:attributes>

<ns3:semanticAttribute name="SalesAmount" displayName="Sales Amount" datatype="mdex:double"
isDimension="false" isKeyColumn="true" description="Amounts">

<ns3:property key="locale">EN</ns3:property>
</ns3:semanticAttribute>
<ns3:semanticAttribute name="ProductLine" displayName="Product Line" datatype="mdex:string"

isDimension="true" isKeyColumn="false" description="prod"/>
<ns3:semanticAttribute name="SaleOrderNumber" displayName="Sale Number" datatype

="mdex:string"
isDimension="false" isKeyColumn="false" description="Orders"/>

</ns3:attributes>
<ns3:metrics>

<ns3:metric name="TotalSales" displayName="Total Sales" datatype="mdex:double" description
="Totals">

<ns3:definition>sum(SalesAmount)</ns3:definition>
<ns3:property key="currency">$</ns3:property>

</ns3:metric>
<ns3:metric name="AvgSales" displayName="Average Sales" datatype="mdex:double" description

="Averages">
<ns3:definition>avg(SalesAmount)</ns3:definition>

</ns3:metric>
</ns3:metrics>
<ns3:groups/>
<ns3:property key="SalesArea">North America</ns3:property>
<ns3:parsedDefinition>

<ns2:statements returnTable="false" statementKey="SalesTrans">
<ns2:selects attributeKey="SalesAmount">

<ns2:expression xsi:type="ns2:AttributeRefExpression" attributeKey
="FactSales_SalesAmount"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
</ns2:selects>
<ns2:selects attributeKey="ProductLine">

<ns2:expression xsi:type="ns2:AttributeRefExpression" attributeKey
="DimReseller_ProductLine"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
</ns2:selects>

</ns2:statements>
</ns3:parsedDefinition>

</ns3:validatedSemanticEntity>
</ns3:listEntitiesResponse>

Version 7.6.1 • December 2013

In the validatedSemanticEntity element, the isValid attribute specifies whether the entity has been
successfully validated.

If the entity has a dependency, the dependentEntities element will list that dependency.

Validating an entity

Before adding an entity, it is useful to validate the syntax of the EQL statements in the entity definition.

To validate an entity, issue a request either with validateEntity (which validates a single entity) or with
validateEntities (which can validate multiple entities). With both operations, you specify the entities
inside the semanticEntity elements. Note that the entity is validated regardless of whether it is active or
inactive.

The following abbreviated example illustrates the validateEntity request:

<validateEntity>

Oracle® Endeca Server: Developer's Guide

Working with Entities 239

<semanticEntity key="Sales" displayName="Sales Data" isActive="true">
...
</semanticEntity>

</validateEntity>

Version 7.6.1 • December 2013

If the request validates successfully, validateEntityResponse does not contain errors. Note that if the
entity validation fails, the isValid flag on the entity record is set to false (regardless of its previous setting).

Adding an entity

You can add one entity using a putEntity operation, or add multiple entities using putEntities.

In this abbreviated example, a putEntity operation is used in a request to add one entity, Sales, with two
metrics, TotalSales and AvgSales:

<putEntity xmlns="http://www.endeca.com/endeca-server/sconfig/3/0">
<semanticEntity key="Sales" displayName="Sales Data" isActive="true">
<definition>

DEFINE Sales AS SELECT FactSales_SalesAmount
AS SalesAmount, DimReseller_ProductLine AS ProductLine,
DimSalesTerritory_SalesTerritoryCountry AS SalesTerritoryCountry,
DimDate_FiscalYear AS FiscalYear,
FactSales_SalesOrderNumber AS SaleOrderNumber

</definition>
<description>Sales territorial information</description>
<attributes>

<semanticAttribute name="SalesAmount" displayName="Sales Amount" datatype="mdex:double"
isDimension="false" isKeyColumn="true"/>
<semanticAttribute name="ProductLine" displayName="Product Line" datatype="mdex:string"

isDimension="true" isKeyColumn="true"/>
<semanticAttribute name="SalesTerritoryCountry" displayName="Sales Territory Country"

datatype="mdex:string" isDimension="true" isKeyColumn="false"/>
<semanticAttribute name="FiscalYear" displayName="Year" datatype="mdex:int"

isDimension="true" isKeyColumn="false"/>
<semanticAttribute name="SaleOrderNumber" displayName="Sale Order Number"

datatype="mdex:string" isDimension="false" isKeyColumn="false"/>
</attributes>
<metrics>
<metric name="TotalSales" displayName="Total Sale" datatype="mdex:double">
<definition>sum(SalesAmount)</definition>

</metric>
<metric name="AvgSales" displayName="Average Sale" datatype="mdex:double">
<definition>avg(SalesAmount)</definition>

</metric>
</metrics>
<groups/
</semanticEntity>
</putEntity>

The abbreviated example response from the Entity and Collection Configuration Web Service informs you how
many entities were created or replaced:

<putEntityResponse xmlns="http://www.endeca.com/endeca-server/sconfig/3/0">
<entityAdditionInformation numEntitiesAdded="1" numEntitiesReplaced="0"/>

</putEntityResponse>

Deleting an entity

To delete individual entities (one or more), use the deleteEntities operation, specifying keys for the
entities to be deleted, as in this example:

<deleteEntities xmlns="http://www.endeca.com/endeca-server/sconfig/3/0">
<semanticEntityKey key="SalesInfo"/>

Oracle® Endeca Server: Developer's Guide

Working with Entities 240

</deleteEntities>

Version 7.6.1 • December 2013

The response indicates the number of entities deleted:

<deleteEntitiesResponse xmlns="http://www.endeca.com/endeca-server/sconfig/3/0">
<numEntitiesDeleted>1</numEntitiesDeleted>

</deleteEntitiesResponse>

Oracle® Endeca Server: Developer's Guide

Part VI

Search Features

Chapter 20

Using Record Search

This section discusses record search, which is an Oracle Endeca Server equivalent of full-text search, and is
one of the fundamental building blocks of Oracle Endeca Server search capabilities.

Record search overview

Configuring attributes for record search

Enabling hierarchical record search

Implementing record search in Studio

Implementing record search with the API

Search query processing order

Tips for troubleshooting record search

Performance impact of record search

Record search overview
Record search (also called text search) allows a user to perform a keyword search against specific attribute
values assigned to records.

The resulting records that have matching attribute values are returned, along with any valid refinement values.

Because record search returns a navigation page, it is important to remember that the record search
parameter acts as a record filter in the same way that an attribute value does, even though it is not a specific
value.

Controlling record search

The following statements describe various aspects of record search behavior and how you can control it:

• Record search works against named collections, as described in Specifying a collection for record search
on page 247.

• Although search interfaces are not mandatory for record searches, you can create a search interface if
you want to specify one or more standard attributes to search. For information on search interfaces, see
Working with Search Interfaces on page 251.

• There are no Dgraph configuration flags necessary to enable record searching. If an attribute was properly
enabled for record searching, it will automatically be available for record searching.

• You can use the data domain --search-max configuration flag to specify the maximum number of terms
for record search for the data domain profile. The default is 10.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Record Search 243

• You can use the data domain --search-char-limit configuration flag to specify the maximum length
(in characters) of a search term for record search. The default is 132 characters. Any term exceeding this
length will not be indexed for any form of record search, and thus that term will not be found.

Supported languages for record search

For the list of supported languages for record search, see Supported languages on page 152.

You can specify the language ID in the Language attribute of the TextSearchFilter type, as in this example:

<TextSearchFilter Key="PROD_CATEGORY" RelevanceRankingStrategy="numfields"
Mode="AllPartial" EnableSnippeting="false" Language="en">
hardware

</TextSearchFilter>

Version 7.6.1 • December 2013

This example uses en (American English) as the language for the record search query.

Example of record search

For example, consider the following records:

Rec ID Managed attribute Values for the Values for the attribute "Description":
values for the attribute "Name":
managed attribute
BikeType:

1 Road Bikes Road-450 can do double-duty for racing or long-range
mileage...

2 Road Bikes Road-550-W its speed comes at the sake of comfort...

3 Touring Bikes Touring-1000 combines comfort and performance...

4 Mountain Bikes Mountain-500 this mountain bike has serious racing
performance...

When the user performs a record search on the Description attribute using the keyword comfort, the
following objects are returned:

• 2 records (records 2 and 3)

• 2 refinement attribute values (Road Bikes and Touring Bikes)

When performing a record search on the Description attribute using the keyword racing, these objects are
returned:

• 2 records (records 1 and 4)

• 2 refinement attribute values (Road Bikes and Mountain Bikes)

Note: In addition to basic record search, other features affect the behavior of record search, such as
spelling support, relevance ranking of results, wildcard syntax, multiple attribute record searches, and
attribute group record searches. These are discussed in detail in their respective sections.

Oracle® Endeca Server: Developer's Guide

Using Record Search 244

Configuring attributes for record search
The first step in implementing basic record search is to configure a standard attribute for record searching
using either the Configuration Web Service directly or Integrator ETL (whose components use this service).

The mdex-property_IsTextSearchable attribute of a PDR enables the attribute for record searching.
The valid settings for this attribute are:

• If set to true, the attribute is enabled for record search.

• If set to false, the attribute is not enabled for record search. This is the default.

You can change the value for this attribute using the updateProperties operation of the Configuration Web
Service. It is recommended to change this setting on a data domain that does not yet contain any source
records. Running this operation on a data domain with a large number of existing records causes the Dgraph
process to reindex the data domain and has performance impact.

Enabling hierarchical record search
If you want to consider ancestor managed attribute values when matching a record search query, you can
enable hierarchical record search.

By default, a record search that uses a managed attribute as the search key returns only those records that
are assigned an attribute value whose text matches the search terms. In other words, when a managed
attribute is used as the record search key, the text strings considered by record search for matching are the
individual names of the attribute values within the attribute. The managed attribute name is automatically
added as a searchable string.

(Additionally, if you added synonyms when creating managed attribute value records, end users can search
for other text strings and still obtain the same records as they would get while searching for the original
attribute value name.)

As part of creating searchable strings, record search does not consider implicit ancestor attribute values.

For example, consider the following managed attributes hierarchy:

In this hierarchy, the Jersey attribute (with an ID of 12) is an ancestor of the Sleeveless attribute (ID of
13). A search against the Clothing attribute for the keyword sleeveless matches any records assigned

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Record Search 245

the attribute value 13. But a search in Clothing for sleeveless jersey does not match these records,
because record search does not normally consider implicit ancestor attribute value assignments.

In such cases, you may want record search to consider ancestor attribute values when matching a record
search query. You can enable this sort of hierarchical record search by setting the mdex-
dimension_IsRecordSearchHierarchical attribute to true in the managed attribute's DDR (Dimension
Description Record), using the operations in the Configuration Web Service.

Implementing record search in Studio
Record search queries in a Studio application are made from the Search Box component.

To make record search queries in Studio, you must add and configure the Search Box component. For details
on this component, see the Oracle Endeca Information Discovery Studio User's Guide.

Implementing record search with the API
This section describes how to issue record search queries using the Conversation Web Service API.

For more information on the Conversation Web Service interface, see the Oracle Endeca Server API
References. This reference contains documentation generated from the interface WSDL document.

Obtaining the available search keys

Record search filter

Obtaining the available search keys
The AvailableSearchKeysConfig complex type allows you to retrieve a list of the searchable attributes and
search interfaces available in the data domain.

The AvailableSearchKeysConfig type identifies the items that are searchable — search interfaces and
searchable properties. This type has the following format:

<AvailableSearchKeysConfig Id="?">
<StateName>?</StateName>

</AvailableSearchKeysConfig>

Version 7.6.1 • December 2013

where:

• Id is an optional attribute that provides an arbitrary identifier for this configuration.

• StateName is an optional attribute that specifies the name of a state in the request. Note that specifying a
state has no effect on the results (even in a request with multiple states).

Sample request for available search keys
This example shows how to make a request for available search keys using the AvailableSearchKeysConfig

type:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State/>
<AvailableSearchKeysConfig Id="MySearchKeys"/>

</Request>

Oracle® Endeca Server: Developer's Guide

Using Record Search 246

Note that the StateName element is not used because the state is an empty, unnamed state.

Response for available search keys
The response contains an AvailableSearchKeys component that lists all of the searchable keys in a single
alphabetically ordered list, as shown in this example:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/3/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<State xmlns="http://www.endeca.com/MDEX/conversation/3/0" x
mlns:ns2="http://www.endeca.com/MDEX/eql_parser/types"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"/>

<cs:AvailableSearchKeys>
<cs:AvailableSearchKey Interface="true">

<cs:Key>AllWineSearch</cs:Key>
<cs:DisplayName>AllWineSearch</cs:DisplayName>

</cs:AvailableSearchKey>
<cs:AvailableSearchKey Interface="false">

<cs:Key>Description</cs:Key>
<cs:DisplayName>Wine Description</cs:DisplayName>

</cs:AvailableSearchKey>
<cs:AvailableSearchKey Interface="false">

<cs:Key>WineType</cs:Key>
<cs:DisplayName>Wine Type</cs:DisplayName>

</cs:AvailableSearchKey>
</cs:AvailableSearchKeys>

</cs:Results>

Version 7.6.1 • December 2013

Each AvailableSearchKey element lists the name of a searchable attribute or search interface (the Key sub-
element), and the display name (which can have a non-NCName format). The Interface attribute
distinguishes whether the search key is a searchable attribute or a search interface. If the search key is a
search interface, the attribute is set to true. If the search key is not a search interface and is a searchable
attribute, the attribute is set to false.

In this sample response, one search interface, AllWineSearch, and two attributes, Description and
WineType, are listed as available search keys.

Record search filter
A basic record search requires a TextSearchFilter type.

The syntax for a search request is shown in this example:

<TextSearchFilter Key="Prod_Category" RelevanceRankingStrategy="numfields"
Mode="AllPartial" EnableSnippeting="true" SnippetLength="5" Language="en">
electronics

</TextSearchFilter>

The text content of the TextSearchFilter type contains the search term(s). In the example, a record search
is being made for the "electronics" keyword in the Prod_Category standard attribute.

Oracle® Endeca Server: Developer's Guide

Using Record Search 247

The meanings of attributes for the TextSearchFilter type are as follows:

Search attribute Description

Key Required. Specifies which standard or managed attribute will be
evaluated when searching. You specify an attribute as a value for
this parameter. You can also specify a search interface as a
value.

EnableSnippeting Optional. If set to true, enables snippeting. If set to false,
disables snippeting. For details on snippeting, see Using
Snippeting in Record Searches on page 280.

SnippetLength Optional. Specifies the length of the snippet.

Mode Optional. Specifies a match mode, which are described in List of
valid search modes on page 265. If not specified, defaults to All.
Note that the Boolean match mode cannot be used.

RelevanceRankingStrategy Optional. Specifies a relevance ranking strategy. For details on
relevance ranking, see Relevance Ranking on page 309.

Language Optional. Specifies a language code for the search. Valid
language codes are listed in the topic Supported languages on
page 152.

searchTerm Required. Specifies one or more terms to search for. The
maximum number of characters in each search term is set by the
--search-char-limit configuration flag (in the Endeca
command put-dd-profile), which defaults to 132 characters.

Specifying a collection for record search

You can run a record search query against the records in a specific collection. To do so, specify the collection
name in the <CollectionName> element of the State type.

For example, this query will search the records of the Sales collection:

<Request>
<State>
<Name>MySalesSearch</Name>
<CollectionName>Sales</CollectionName>
<TextSearchFilter Key="Prod_Category" RelevanceRankingStrategy="numfields"

Mode="AllPartial" EnableSnippeting="true" SnippetLength="5" Language="en">
electronics

</TextSearchFilter>
</State>
<RecordListConfig Id="SalesList" MaxPages="20">

<StateName>MySalesSearch</StateName>
<Column>SalesAmount</Column>
<RecordsPerPage>5</RecordsPerPage>

</RecordListConfig>
</Request>

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Using Record Search 248

In the example, the name of the State is MySalesSearch and it specifies the Sales collection. In turn, the
RecordListConfig type uses the StateName element to associate the MySalesSearch state to the config.

Search query processing order
This section summarizes how the Dgraph process of the Oracle Endeca Server processes record search
queries.

While this summary is not exhaustive, it covers the processing steps likely to occur is most application
contexts. The process outlined here assumes that other features (such as spelling correction and thesaurus)
are being used.

The Dgraph process uses the following high-level steps to process record search queries:

1. Record filtering

2. Tokenization

3. Spelling correction

4. Thesaurus expansion

5. Stemming

6. Primitive term and phrase lookup

7. Did you mean

8. Navigation filtering

9. EQL

10. Relevance ranking

Note: For Boolean search queries, tokenization, auto correction, and thesaurus expansion are
replaced with a separate parsing phase.

Step 1: Record filtering

Step 2: Tokenization

Step 3: Spelling correction

Step 4: Thesaurus expansion

Step 5: Stemming

Step 6: Primitive term and phrase lookup

Step 7: Did You Mean

Step 8: Navigation filtering

Step 9: EQL

Step 10: Relevance ranking

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Record Search 249

Step 1: Record filtering

If a record filter is specified, whether for security or any other reason, the Oracle Endeca Server applies it
before any search processing.

The result is that the search query is performed as if the data set only contained records allowed by the record
filter.

Step 2: Tokenization

Tokenization is the process by which the Dgraph analyzes the search query string, yielding a sequence of
distinct query terms.

Step 3: Spelling correction

If spelling correction is enabled and triggered, the Dgraph process of the Oracle Endeca Server implements
them as part of the record search processing.

If the spelling correction feature is enabled and triggered, the Dgraph creates spelling suggestions by
enumerating (for each query term) a set of alternatives, and considering some of the combinations of term
alternatives as whole-query alternatives. Each of these whole-query alternatives is subject to thesaurus
expansion and stemming.

For example, if the tokenized query is employee moral, then employee may generate the set of alternatives
{employer, employee, employed}, while moral may generate the set of alternatives {moral, morale}.

The two query alternatives generated as spelling suggestions might be employer moral and employee
morale.

For details on the auto-correction feature, see Spelling Correction and Did You Mean on page 294.

Step 4: Thesaurus expansion

The tokenized query, as well as each query alternative generated by spelling suggestion, is expanded by the
Oracle Endeca Server based on thesaurus matches. This topic describes the behavior of the thesaurus
expansion feature.

Thesaurus expansion replaces each expanded query term with an OR of alternatives.

For example, if the thesaurus expands pentium to intel and laptop to notebook, then the query
pentium laptop will be expanded to:

(pentium OR intel) AND (laptop OR notebook)

Version 7.6.1 • December 2013

This assumes the match mode is All. The other match modes (with the exception of Boolean) behave
analogously.

If there is a multiple-word thesaurus match, then OR is used on the query itself to accommodate the various
ways of partitioning the query terms.

For example, if high speed expands to performance, then the query high speed laptop will be
expanded to:

(high AND speed AND (laptop OR notebook)) OR (performance
AND (laptop OR notebook))

Oracle® Endeca Server: Developer's Guide

Using Record Search 250

Multiple-word thesaurus matches only apply when the words appear in exact sequence in the query. The
queries speed high laptop and high laptop speed do not activate the expansion to performance.

For more details on thesaurus expansion, see the section on this feature.

Step 5: Stemming

Query terms, unless they are delimited with quotation marks to be treated as exact phrases, are expanded by
the Oracle Endeca Server using stemming.

The expansion for stemming applies even to terms that are the result of thesaurus expansion. A stemmed
query term is an OR expression of its word forms.

For example, if the query pentium laptop was thesaurus-expanded to:

(pentium OR intel) AND (laptop OR notebook)

Version 7.6.1 • December 2013

it will be stemmed to:

(pentium OR intel) AND (laptop OR laptops OR notebook
OR notebooks)

assuming that only the improper nouns have plurals in the word form dictionary.

For more details on stemming, see the section on this feature.

Step 6: Primitive term and phrase lookup

Primitive term and phrase lookup is the lowest level of search processing performed by the Oracle Endeca
Server.

The Oracle Endeca Server evaluates each search term as is, and matches it to the set of documents
containing that precise word or phrase (given the tokenization rules) in the data files being searched. Search
is never case-sensitive, even for phrases.

Step 7: Did You Mean

The Oracle Endeca Server performs the "Did You Mean" processing as part of the record search processing.

"Did You Mean?" processing is analogous to the spelling correction processing, only that the results are not
included, but rather the spelling suggestions are returned.

For details on the "Did You Mean?" feature, see Spelling Correction and Did You Mean on page 294.

Step 8: Navigation filtering

The Oracle Endeca Server performs all filtering based on the navigation state after the search processing.
This order is important, because it ensures that the spelling suggestions remain consistent as the navigation
state changes.

Step 9: EQL

The Endeca Query Language (EQL) builds on the core capabilities of the Oracle Endeca Server to enable
applications that examine aggregate information such as trends, statistics, analytical visualizations,

Oracle® Endeca Server: Developer's Guide

Using Record Search 251

comparisons, and so on, all within the Guided Navigation interface. If EQL is used, it is applied near the end of
processing.

For more information about EQL, see the Oracle Endeca Server EQL Guide.

Step 10: Relevance ranking

Relevance ranking is the last step in the Oracle Endeca Server processing for the record search. Each of the
navigation-filtered search results is assigned a relevance score, and the results are sorted in descending order
of relevance.

For details on this feature, see the section Relevance Ranking on page 309.

Tips for troubleshooting record search
This topic includes tips for troubleshooting record search.

Due to the user-specified interaction of this feature (as opposed to the system-controlled interaction of Guided
Navigation, in which the Oracle Endeca Server controls the refinement values presented to the user), a user is
allowed to submit a keyword search that does not match any records. Therefore, it is possible for a user to
make a dead-end request with zero results when using record search. Applications utilizing record search
need to account for this.

In production systems, these attributes are typically hard-coded at the application level, because the
application requires specific search keys to be used for specific functionality.

If an attribute is not enabled for record searching but an application attempts to perform a record search
against this attribute, the Oracle Endeca Server successfully returns a null result set. The Dgraph process
error log, however, outputs the following message: In fulltext search: [Wed Sep 3 12:28:02 2010]
[Warning] Invalid fulltext search key "Description" requested.

The data domain configuration flag, -v, causes the Dgraph processes of the data domain to output detailed
information about its record search configuration. To verify whether the data domain is recognizing a particular
parameter, use the -v data domain flag in the data domain profile and check the output. You can specify this
flag with the endeca-cmd put-dd-profile --args -v command.

Finally, record search can be enabled for standard attributes and for managed attribute values.

Performance impact of record search
Each attribute enabled for record searching increases the size of the Dgraph index.

The specific size of the increase is related to the size of the unique word list generated by the specific attribute
in the data set. Therefore, only attributes that are specifically needed by an application for record searching
should be configured as such.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 21

Working with Search Interfaces

A search interface is a named collection of standard and managed attributes, each of which is enabled for
record search.

About search interfaces

Implementing search interfaces

Options for allowing cross-field matches

Additional search interface options

About search interfaces
A search interface allows you to control record search behavior for groups of one or more attributes.

A search interface may also contain:

• A number of attributes, such as name, cross-field information, and so on.

• An ordered collection of one or more ranking strategies.

Some of the features that can be specified for a search interface include:

• Relevance ranking

• Matching across multiple attributes

• Keyword in context results

• Partial match

You can use a search interface to control the behavior of search against a single standard or managed
attribute, or to simultaneously search across multiple attributes.

For example, if a data set contains both an Actor standard attribute and Director managed attribute, a
search interface can provide the user the ability to search for a person’s name in both. A search interface’s
name is used just like a normal attribute when performing record searches. By default, a record search query
on a search interface returns results that match any of the attributes in the interface.

Implementing search interfaces
You implement search interfaces with Integrator ETL.

In Integrator ETL, you can use the WebClient component to send a request to the Oracle Endeca Server
using the Configuration Web Service. This request sends the RECSEARCH_CONFIG document to the Oracle
Endeca Server, thus creating a search interface. For information on how to configure a search interface using
Integrator ETL, see the Oracle Endeca Information Discovery Integrator ETL User's Guide.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Working with Search Interfaces 253

If you are not using Integrator ETL, you can create a request with the putConfigDocuments operation of the
Configuration Web Service and send the RECSEARCH_CONFIG XML document to the Oracle Endeca Server.
For information, see Configuration Web Service operations on page 54.

Before implementing search interfaces, make sure that all the attributes that are going to be included in a
search interface have already been enabled for record search. In addition, if the search interface will include a
relevance ranking strategy, make sure that the relevance ranking strategy has been configured.

If you are implementing wildcard search in a search interface, search interfaces can contain a mixture of
wildcard-enabled and non-wildcard-enabled members (although only the former will return wildcard-expanded
results).

You implement a search interface via the RECSEARCH_CONFIG XML configuration document. The resulting
search interface should look similar to this example of a search interface named AllFields that uses a
relevance ranking strategy named All:
<RECSEARCH_CONFIG>
<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"

CROSS_FIELD_RELEVANCE_RANK="0"
DEFAULT_RELRANK_STRATEGY="All" NAME="AllFields">

<MEMBER_NAME RELEVANCE_RANK="4">ProductType</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="3">ProductName</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="2">SalesRegion</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>

</SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

Version 7.6.1 • December 2013

Options for allowing cross-field matches
The CROSS_FIELD_BOUNDARY attribute specifies when the Dgraph process of the Oracle Endeca Server
should try to match search queries across attribute boundaries.

The three settings for CROSS_FIELD_BOUNDARY are:

Setting Description

ALWAYS
The Dgraph always looks for matches across attribute boundaries, in addition to
matches within an attribute. If you choose to use cross-field matching, the ALWAYS
setting is recommended.

For example, in the Sony camera user query, if CROSS_FIELD_BOUNDARY is set to
ALWAYS, the Dgraph returns all matches with Brand = Sony and Product_Type =
camera.

ON_FAILURE The Dgraph only tries to match queries across attribute boundaries if it fails to find any
matches within a single attribute. Note that in most cases, the ALWAYS setting provides
better results than the ON_FAILURE setting.

NEVER The Dgraph does not look across boundaries for matches. This is the default.

By default, record search queries using a search interface return the union of the results from the same record
search query performed against each of the interface members.

Oracle® Endeca Server: Developer's Guide

Working with Search Interfaces 254

For example, assume a search interface named MoviePeople that includes actor and director
attributes. Searching for deniro against this interface returns the union of records that results from searching
for deniro against the actor attribute and against the director attribute.

Less frequently, you may wish to allow a match to span multiple attributes. For example, in the same
MoviePeople search interface, a query for clint eastwood returns records where either an actor
standard attribute or a director attribute is assigned a value containing the words clint and eastwood.
This behavior is useful for this query, where the search terms all relate to a single concept (the actor/director
Clint Eastwood).

However, in some cases returning a union of the results from the same record search query performed
against each search interface member is unnecessarily limiting. For example, in a home electronics catalog
application, a customer searching for Sony camera might be interested in a broad range of products, but this
record search would only return the few products that have the terms Sony and camera in the product name.

In such cases, you can use the CROSS_FIELD_BOUNDARY attribute when you create a search interface. This
attribute specifies when the Dgraph should try to match search queries across attribute boundaries, but within
the members of the search interface.

How cross-field matches work in multi-assign cases

When a search interface member (that is, a searchable attribute) is multi-assigned on a record, the multi-
assigns are treated by the Dgraph process of the Oracle Endeca Server as separate matches, just as if they
were values from different attributes. A search that matches two or more terms in separate multi-assign values
for the same attribute is treated as a cross-field match by the Dgraph process.

For example, assume a record has the following attribute values:

P_Tag: Tom Brady
P_Tag: Jersey

Version 7.6.1 • December 2013

A search against P_Tag for "tom brady jersey" is treated as a cross-field match, even though all results were
found in the same attribute (P_Tag).

Additional search interface options
You can configure other features for the search interface by specifying other match-related attributes to the
SEARCH_INTERFACE element.

The following table lists the attributes (other than the CROSS_FIELD_BOUNDARY attribute) that you can specify
with the SEARCH_INTERFACE element.

Attribute Purpose

DEFAULT_RELRANK_STRATEGY For record search, assigns a default relevance
scoring function to a search interface.

CROSS_FIELD_RELEVANCE_RANK Specifies the relevance rank score for cross-field
matches. The value should be an unsigned 32-bit
integer.

The default value for
CROSS_FIELD_RELEVANCE_RANK is 0.

Oracle® Endeca Server: Developer's Guide

Working with Search Interfaces 255

Attribute Purpose

STRICT_PHRASE_MATCH Specifies that the Dgraph process should
interpret a query strictly when comparing white
space in the query with punctuation in the source
text.

If set to FALSE, partial word tokens connected in
the source text by punctuation can be matched to
a phrase query where the partial tokens are
separated by spaces instead of matching
punctuation.

The default value of this attribute is TRUE.

You can also use the PARTIAL_MATCH element to specify if partial query matches should be supported for the
SEARCH_INTERFACE that contains this element.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 22

Using Value Search

This section discusses how the Oracle Endeca Server performs value search and how to configure it for your
application.

About value search

How value search works

When to use value and record search

Enabling value search

Utilizing value search in Studio

Implementing value search with the API

Interaction of value search and wildcard search

Performance impact of value search

About value search
Value search allows users to perform keyword searches across attributes for values with matching names.

End users of applications powered by the Oracle Endeca Server can search all types of attribute values,
including values for standard and managed attributes. The front-end application can present these values to
the end-user, allowing the user to select them and create a new navigation request.

Value search is enabled differently for attributes:

• Standard attributes. You can make standard attributes of type string value searchable. To configure a set
of standard attributes of type string whose values will be considered for search, modify the values of the
IsPropertyValueSearchable attribute on the PDRs.

• Managed attributes. All managed attributes are evaluated for value search by default, and you cannot
disable value search for them.

How value search works
Value search returns single values that match the user’s search terms, organized by attribute.

To be considered a valid result, a value must match all of the search terms that the user provides in the
request to the Oracle Endeca Server.

Example of value search
For example, a value search for road might return:

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Value Search 257

Attribute Values

Bikes Road Bikes

Components Road Frames, Road Gloves, Road Wheels

Reviews Best all-around road bike

When to use value and record search
Value search is sometimes confused with record search. This topic provides examples of when to use each
type of search.

Understanding the differences between the two basic types of keyword search (record search and value
search) is important before creating a solution for a specific business problem. Use the following
recommendations:

Type of keyword When to use
search

Value search In general, data sets with little descriptive text and extensive attribute values of
type string that represent the most frequently searched terms (for example, autos)
are a good fit for value search.

Keyword searches are usually suitable for such keywords as make, model, or
year. These keywords are also likely candidates for being configured as managed
attributes in your application.

Record search Data sets with descriptive text or names (such as news articles) are better suited
for record search. This is because a reasonable set of attribute values for such a
data set cannot be expected to cover all the terms required to handle keyword
search.

In such cases, text search allows an application to search directly against record
text (such as the body of an article).

For many applications, a combination of value search and record search is the best solution. In this case,
separate value search and text search queries are executed simultaneously for the same keywords:

• If a value matches, the user is given the opportunity to select that value in place of the record search
query to produce results.

• If no values match, the user is still left with the matching records for a record search query.

Keep in mind that navigation queries and value search queries are completely independent. In the scenario
described above, where both queries are executed simultaneously, neither query affects the other. Record
search is a variation of a navigation query. Record search could return results even though value search does
not, and vice-versa.

Finally, keep in mind that both record search and value search can be run against named collections.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Value Search 258

Enabling value search
You enable a standard attribute for value search by changing the values in the mdex-property-
IsPropertyValueSearchable attribute in the PDR.

Managed attributes are always enabled for value search in the Oracle Endeca Server. In addition, you can
also enable standard attributes of type string for value search. In this case, these attributes are searched by
the Oracle Endeca Server. Only the standard attributes of type string can be enabled for value search.

The mdex-property-IsPropertyValueSearchable attribute in the PDR specifies whether an attribute in
your data set is value searchable. The valid settings for this attribute are:

• true means that the attribute is enabled for value search. This is the default.

• false means that the attribute is not enabled for value search.

If, in addition to enabling value search for specific attributes of type string, you also would like to enable
wildcard search for all value search queries, set the mdex-config_EnableValueSearchWildcard
attribute in the Global Configuration Record (GCR) to true.

To enable value search, you can send a request to change the attribute in the PDR using the Configuration
Web Service, or you can use Integrator ETL.

For information on how to use the Configuration Web Service, see the section in this guide and the Oracle
Endeca Server API References (which contains documentation for the WSDL).

For information on how to use Integrator ETL to enable a standard attribute for value search, see the Oracle
Endeca Information Discovery Integrator ETL User's Guide.

Note that you can use the data domain --search-char-limit configuration flag to specify the maximum
length (in characters) of a search term for value search. The default is 132 characters. Any term exceeding
this length will not be indexed for any form of value search. Keep in mind that you specify this flag via the a
put-dd-profile command.

Utilizing value search in Studio
Value search supports the refinement search available in the Available Refinements component, and the
ability to utilize typeahead search in the Search Box component.

For additional information on configuring Studio components that utilize value search, see the Oracle Endeca
Information Discovery Studio User's Guide.

Implementing value search with the API
This section provides examples of Conversation Web Service requests and responses, and describes
parameters you can use for value search.

Value search query format

Restricting value search to specific attributes

Limiting the number of results per attribute

Retrieving the number of matching results

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Value Search 259

Ordering results

Specifying relevance ranking strategy for results

Value search query format
To make a value search query, use a ValueSearchConfig type, specifying a SearchTerm element and,
optionally, the attributes within which you would like to search.

A ValueSearchConfig type controls the behavior of a single value search query. The syntax for this type is:

<ValueSearchConfig Id="?" MaxPerProperty="?" RelevanceRankingStrategy="?" Mode="?" Language="?">
<StateName>?</StateName>
<SearchTerm>?</SearchTerm>
<RestrictToProperties>

<Property>?</Property>
</RestrictToProperties>

</ValueSearchConfig>

Version 7.6.1 • December 2013

The SearchTerm element specifies search term(s) used by the Oracle Endeca Server for a search either
against all value-searchable attributes, or those that you specify in RestrictToProperties. You can
optionally limit the number of search matches returned for each attribute using MaxPerProperty.

The ValueSearchConfig type has the following parameters (some of which are optional):

Parameter Description

Id Optional. An identifier for this query configuration.

MaxPerProperty Optional. Limits the number of matches returned per record attribute. If
this attribute is omitted, all found matches for the record attribute are
returned.

RelevanceRankingStrategy Optional. Specifies a relevance ranking strategy to use on the results.
If you omit this attribute and do not specify a relevance ranking
strategy, the value for the strategy provided in the DIMSEARCH_CONFIG

configuration document is used. If the document does not specify a
strategy, the results are ranked using the following three strategies in
this order (to break ties): interp, exact, and static.

Mode Optional. Specifies a search mode, such as Any, or AllPartial. If
Mode is not used, the query defaults to using the All search mode.

Language Optional. Specifies a language ID for the search. Valid language IDs
are listed in the topic Supported languages on page 152.

RestrictToProperties Optional. If not specified, the request searches within all attributes. If
specified, the request searches within specified attributes.

SearchTerm Required. Contains the search term(s) (also known as keywords) used
to conduct value search. The maximum number of characters in each
search term is set by the --search-char-limit configuration flag
(in the Endeca command put-dd-profile), which defaults to 132
characters.

Oracle® Endeca Server: Developer's Guide

Using Value Search 260

Parameter Description

StateName Specifies an existing named state in the request, using these rules:

• If the request has multiple named states, then the StateName
element must reference one (and only one) of the named states.

• If the request has only one named state, then it is optional as to
whether the StateName element is used to reference that named
state (as the state will be used in any event in the
RecordListConfig).

• If the request has an unnamed state, then the StateName
element cannot be used.

Specifying a collection for value search

You can run a value search query against the records in a specific collection. To do so, specify the collection
name in the <CollectionName> element of the State type, and then reference the name of the State in the
StateName element of the ValueSearchConfig type.

response
The results of a value search query are returned in a Results complex type, which includes the ValueSearch

type. In the ValueSearch response, the following information is returned:

• The PropertyMatches element appears only for those standard and managed record attributes in which
matches were found, and contains values for those matches.

• TotalValuesCount specifies the number of values returned for each value-searchable attribute.

• HasMore specifies whether there exist more attribute matches, beyond those that are returned. Because
the request may limit the number of result values, the list of results returned may contain returned values
and also indicate that a additional matching values exist that are not returned.

Example of a value search query

The following example illustrates the format of a typical value search request in the Conversation Web
Service:

<Request>
<State>
<Name>MyProductSearch</Name>
<CollectionName>Products</CollectionName>

</State>
<ValueSearchConfig Id="ProdSearch" MaxPerProperty="5"

RelevanceRankingStrategy="static (nbins,descending)" Mode="Any" Language="en">
<StateName>MyProductSearch</StateName>
<SearchTerm>aluminum</SearchTerm>

</ValueSearchConfig>
</Request>

Version 7.6.1 • December 2013

In this request, a search is conducted for the term envoy within the records of the Products collection. The
number of requested results to return per attribute is set to 5 and English (en) is the language for the search.

Oracle® Endeca Server: Developer's Guide

Using Value Search 261

In the example, the name of the State is MyProductSearch and it specifies the Products collection. In turn,
the ValueSearchConfig type uses the StateName element to associate the MyProductSearch state to the
config.

Restricting value search to specific attributes

Value search queries could potentially contain many results.

You can use the RestrictToProperties attribute to limit the number of returned results to a list of one or
more specified attributes. You can also use the MaxPerProperty attribute to help control the results returned
from the corpus. Without these controls, the size of the resulting response from the Conversation Web Service
could cause slow response times between your front-end application and the Oracle Endeca Server.

If a managed attribute is searched, you can use RestrictToProperties to search within a whole managed
attribute and its entire hierarchy of values, but you cannot restrict value search to a subtree within a particular
root value in the hierarchy.

To restrict value search to searching specific attributes, use RestrictToProperties, as shown in this
abbreviated example:

<ValueSearchConfig
...
<RestrictToProperties>

<Property>ProductCategory</Property>
<Property>BikeRacks</Property>

</RestrictToProperties>
</ValueSearchConfig>

Version 7.6.1 • December 2013

Limiting the number of results per attribute

Another way to limit value search results is to specify the number of values to return for each record attribute,
using the MaxPerProperty attribute of ValueSearchConfig.

To set the number of attribute values to return for each attribute, use the MaxPerProperty attribute with an
integer that specifies the number of values to return per attribute.

For example, the following query:

<ValueSearchConfig
...
MaxPerProperty="2">
<SearchTerm>Handlebars</SearchTerm>
<RestrictToProperties>
...

</ValueSearchConfig>

Oracle® Endeca Server: Developer's Guide

Using Value Search 262

returns 2 results for each attribute.

Retrieving the number of matching results

The standard response to any value search request always includes information about the total number of
matched values found, and whether all of them have been returned in this request. This information is
returned in the TotalValuesCount and HasMore attributes on the PropertyMatches element.

A PropertyMatches element appears in the response only for those attributes in which matches were
found, and contains attribute values for those matches. It contains two attributes that provide information on
the number of values found and returned:

Attribute Description

TotalValuesCount Specifies the total number of matched values found per property.

HasMore Specifies whether any results were cut off because of a limit specified
in the request with MaxPerProperty.

In the response, the Match type element lists details of a single value within a particular attribute that matched
a value search. Additionally, if the matched value belongs to a managed attribute, then the FullPath is also
present in the response, as in the following abbreviated example of the response:

<cs:PropertyMatches Name="ProductType" DisplayName="Product Category"
TotalValuesCount="1" HasMore="false">

<cs:Match>
<cs:MatchingValue DisplayName="Gloves">20</cs:MatchingValue>
<cs:FullPath>

<cs:DimensionValue DimensionName="ProductType" Spec="/">ProductType</cs:DimensionValue>
<cs:DimensionValue DimensionName="ProductType" Spec="CAT_CLOTHING">Clothing<

/cs:DimensionValue>
<cs:DimensionValue DimensionName="ProductType" Spec="20">Gloves</cs:DimensionValue>

</cs:FullPath>
</cs:Match>

</cs:PropertyMatches>

Version 7.6.1 • December 2013

Ordering results

Value search results consist of values grouped by record attribute. Attributes in the result list are returned in
ascending alphabetical order.

The ordering of values, within each attribute, is as follows:

• If you specify a relevance ranking strategy, the order of results is ranked according to it.

• If you do not specify a relevance ranking strategy, the Dgraph uses the value for this strategy provided in
the DIMSEARCH_CONFIG configuration document (you can send an updated version of this document to
the Dgraph by using the Configuration Web Service).

• Further, if the document does not provide a strategy, the Dgraph ranks the results using the three
strategies in this order to break ties: interp, exact, and static(nbins,descending).

Oracle® Endeca Server: Developer's Guide

Using Value Search 263

Specifying relevance ranking strategy for results

To rank the order of results received in response for a value search request, you can use the
RelevanceRankingStrategy attribute.

If you specify a relevance ranking strategy, the order of results is ranked according to it. To rank the order of
results of the value search request, specify the value for the RelevanceRankingStrategy attribute in the
ValueSearchConfig type of your Conversation Web Service request, as in this abbreviated example:

<ValueSearchConfig
...
RelevanceRankingStrategy="static (nbins,descending)">
...

</ValueSearchConfig>

Version 7.6.1 • December 2013

Interaction of value search and wildcard search
By default, value search allows wildcards at the end of the search term (such as gua* for the search term
guarantee).

To enable wildcards elsewhere in a search term, you must set the mdex-
config_EnableValueSearchWildcard attribute in the Global Configuration Record (GCR) to true, for
the standard attribute in your records.

The following examples illustrate how the Oracle Endeca Server treats wildcards in value searches:

• A wildcard search at the end of the search term, such as gua*, is conducted by the Dgraph for all
standard attributes for which value search is enabled.

• Wildcard searches of type *uara and g*ara are conducted by the Dgraph only if the GCR attribute
mdex-config_EnableValueSearchWildcard is set to true for the corresponding standard attribute
on your records. The default value for this attribute is false, meaning that wildcard search is disabled for
value search.

Performance impact of value search
This topic discusses value search and its impact on Oracle Endeca Server performance.

Limit value search scope and the number of returned results

If you submit a value search query, the query is generally very fast. The runtime performance of value search
directly corresponds to the number of values and the size of the resulting set of matching values. In general,
this feature performs at a much higher number of operations per second than navigation requests. The most
common performance problem is when the resulting set of values is exceptionally large (greater than 1,000),
thus creating a large results page. To avoid it, limit the number of results per request, using value search
parameters.

The query will be faster if you limit the scope and the number or results returned. You can do this using the
options for configuring search configurations and type-ahead suggestions on the Search Box component in
Studio.

Oracle® Endeca Server: Developer's Guide

Using Value Search 264

Decide which attributes to make value searchable

All managed attributes are always value searchable (you cannot toggle the value search setting for them). In
addition, standard attributes of type string can be made value searchable. The mdex-
property_IsPropertyValueSearchable attribute on the PDR controls whether the attribute in your
record set is enabled for value search.

Before changing a value search setting for an attribute, examine your data to decide which of the attributes in
your record set need to be value searchable. Next, turn off value search for attributes you will not be using for
navigation, such as those standard attributes that contain long chunks of text.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 23

Using Search Modes

By default, search operations built on top of the Oracle Endeca Server return results that contain text matching
all user search terms. In other words, search is conjunctive by default. However, in some cases a less
restrictive matching is desirable, so that results are returned that contain fewer user search terms. This section
describes the available search modes for record search and value search operations.

List of valid search modes

Configuring search modes in Studio

Configuring search modes in the API

List of valid search modes
The search mode can be specified independently for each record search operation contained in a navigation
query, as well as for the value search query.

Valid search modes are the following:

Search mode Description

All Match all user search terms (that is, perform a conjunctive search). This is
the default mode.

Partial Match some user search terms.

Any Match at least one user search term.

AllAny Match all user search terms if possible, otherwise match at least one. The
AllAny search mode is not recommended in cases where queries can
exceed two words. For example, a query on womens small brown shoes
would return results on each of these four words and thus be essentially
useless. In general, AllPartial is a better strategy.

AllPartial Match all user search terms if possible, otherwise match some. Because
you can configure this mode to match at least two or three words in a multi-
word query, AllPartial is generally a better choice than AllAny.

PartialMax Match a maximal subset of user search terms.

Boolean Match using a Boolean query.

All mode

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Search Modes 266

Partial mode

AllPartial mode

Any mode

AllAny mode

PartialMax mode

Boolean mode

All mode
In All mode (the default mode), results must contain text matching each user search query term.

Partial mode
In Partial mode, results must contain text matching at least a certain number of user search query terms,
according to the rules listed in this topic.

In Partial mode, results must contain text matching search query terms, according to the following rules:

• The MIN_WORDS_INCLUDED setting specifies the minimum number of user query terms that each result
must match. If there are not enough terms in the original query to satisfy this rule, then the entire query
must match.

• The MAX_WORDS_OMITTED setting specifies the maximum number of user query terms that can be
ignored in the user query. If MAX_WORDS_OMITTED value is set to zero, any number of words can be
ignored.

You can specify both of these settings with the PARTIAL_MATCH element in a SEARCH_INTERFACE
configuration.

In Partial mode, result sets always include all of the results that an All query have produced, and possibly
additional results as well.

See also Interaction of Partial mode and stop words on page 266.

Interaction of Partial mode and stop words

The presence of a stop word in a query reduces the minimum term count requirement for a document to
match when Partial mode is used. The example in this topic explains the interaction between stop words
and Partial mode.

The Oracle Endeca Server treats stop words in a query as terms that match every document in the entire
document set when counting how many terms must match a given query.

Therefore, the presence of a stop word in a query reduces the minimum term count requirement for a
document to match by one, the presence of two stop words reduces it by two, and so on.

In practical terms, it means the result set may be both larger and more general than expected.

For example, consider a four-term query (such as Medical Society of America) against a search interface
configured to allow Partial modes to require three terms to match. If one of those four terms (in this case
of) is a stop word, only two of the other terms have to match, meaning results such as Botanical Society
of America or Medical Society Reunion would be included in the set.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Search Modes 267

AllPartial mode
In AllPartial mode, the Oracle Endeca Server first uses All mode to return results matching all search
terms, if any are available.

If no such All results are available, the Oracle Endeca Server returns the results that Partial would have
produced. This allows a more conservative matching policy than Partial, because high-quality conjunctive
results are returned if they exist and Partial results are used as a fallback on conjunctive misses.

This behavior, however, can be affected if cross-field matches are applied to the search interface. A search
that matches "any" or "partial" inside of the same field might be returned before a search that matches "all" of
the terms but has to cross field boundaries to do so.

In addition, spelling correction can also alter the results. A search that matches any or partial spell-corrected
terms in the same field may return before a non-spell-corrected search that matches all terms in different
fields. To the user, this looks like there were no records matching all of the terms, even though there may be
many that match cross-field.

Note: AllPartial is recommended for record search in a typical catalog application. The default
configuration for Partial, which works well, can be adjusted to be more inclusive or conservative.

Any mode
In Any mode, results need only match a single user search term.

An Any result set always includes all of the results that an All or Partial query have produced, and
possibly additional results as well.

Note: The Any mode is not recommended for use with record search in typical catalog applications.

AllAny mode
In AllAny mode, the Oracle Endeca Server first uses All mode to return results matching all search terms, if
any are available.

If no such All results are available, the Oracle Endeca Server returns the results that Any would have
produced.

Note: The AllAny mode is useful for value search.

PartialMax mode
PartialMax mode is a variant of the AllPartial mode: All results are returned if they exist.

If no such All results exist, then results matching all but one term are returned; otherwise, results matching
all but two terms are returned; and so forth.

PartialMax mode is subject to the MIN_WORDS_INCLUDED and MAX_WORDS_OMITTED settings used in the
Partial mode. Hence, a PartialMax result set includes results if (and only if) the corresponding Partial
result set includes results, and it contains a subset of the Partial results (possibly the entire set).

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Search Modes 268

Boolean mode

The Boolean search mode implements Boolean search, which allows users to specify complex expressions
that describe the exact search criteria with which they would like to search.

Configuring search modes in Studio
You configure search modes in the edit view of the Search Box component in Studio.

In addition, if you want to configure the minimum number of words for partial match modes and maximum
number of words that may be omitted for partial match modes, you can specify these settings with the
PARTIAL_MATCH element in a SEARCH_INTERFACE XML configuration element, which is part of
RECSEARCH_CONFIG. For information, see Recsearch_config elements on page 338.

Configuring search modes in the API
In the Conversation Web Service, the SearchMode simple type enumerates the search modes available when
performing a text search.

You can specify a specific type of search mode as a value of the Mode attribute in the TextSearchFilter

type of your request, and in the ValueSearchConfig type.

The following example uses the AllPartial search mode in a TextSearchFilter:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">

<State>
<TextSearchFilter Key="MySearchInterface" RelevanceRankingStrategy="numfields"
Mode="AllPartial" EnableSnippeting="false" Language="en">
aluminum

</TextSearchFilter>
</State>
<RecordListConfig Id="RecordList" MaxPages="30">

<Column>ProductCategory</Column>
<RecordsPerPage>5</RecordsPerPage>

</RecordListConfig>
</Request>

</soap:Body>
</soap:Envelope>

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Chapter 24

Using Boolean Search

This section describes how to enable Boolean search for record search and value search.

About Boolean search

Boolean query syntax

Using the key restrict operator

About proximity search

Proximity operators and nested sub-expressions

Boolean query semantics

Operator precedence

Interaction of Boolean search with other features

Error messages for Boolean search

Implementing Boolean search in Studio

Implementing Boolean search with the API

Troubleshooting Boolean search

Performance impact of Boolean search

About Boolean search
The Boolean search mode implements Boolean search. It lets users specify complex expressions describing
the exact search criteria for their searches.

Endeca Server search operations use the All mode by default, which results in conjunctive searches.
However, users often want more precise control over their exact search query.

For example, consider the following request: "Show me all records that match either red or blue
and also match the word car."

To express this request, the following query is required: (red OR blue) AND car. The OR in this query is a
disjunctive operator that matches all records that are either red or blue. This set is then intersected with the
set of results for the word car and the result of that operation is returned from the Oracle Endeca Server.

Unlike the All and Any modes, Boolean search also lets users specify negation in their queries.

For example, the query camcorder AND NOT digital will search for all records in the data domain that have
the word camcorder and will then remove all records that have the word digital from that set before
returning the result.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Boolean Search 270

The set of Boolean operators implemented by the Oracle Endeca Server are:

• AND

• OR

• NOT

• NEAR, used for unordered proximity search

• ONEAR, used for ordered proximity search

In addition, you can use parentheses to create sub-expressions such as:

red AND NOT (blue OR green)

Version 7.6.1 • December 2013

As with other search query modes, you can also run Boolean search queries against search interfaces;
however, they may only be run against a single search interface.

Finally, the colon (:) character is a key restrict operator that you can use to limit a search to a single attribute
regardless of whether or not these attributes are included in the same search interface.

Boolean query syntax
The complete grammar for expressing Boolean queries, in a BNF-like format, is included in this topic.

The following sample code expresses Boolean queries, in a BNF-like format:

orexpr: andexpr ;
| andexpr OR orexpr ;

andexpr: parenexpr ;
| parenexpr andexpr ;
| parenexpr AND andexpr ;
| parenexpr andnotexpr ;

andnotexpr: AND NOT orexpr ;
| NOT orexpr ;

parenexpr: LPAREN orexpr RPAREN ;
| terms ;

terms: word_or_phrase KEY_RESTRICT keyexpr ;
| word_or_phrase NEAR/NUM word_or_phrase ;
| word_or_phrase ONEAR/NUM word_or_phrase ;
| multiple_word_or_phrase ;

multiple_word_or_phrase: word_or_phrase ;
| word_or_phrase multiple_word_or_phrase ;

keyexpr: LPAREN nr_orexpr RPAREN ;
| word_or_phrase ;

nr_orexpr: nr_andexpr ;
| nr_andexpr OR nr_orexpr ;

nr_andexpr: nr_parenexpr ;
| nr_parenexpr nr_andexpr ;
| nr_parenexpr AND nr_andexpr ;
| nr_parenexpr nr_andnotexpr ;

nr_andnotexpr: AND NOT nr_orexpr ;
| NOT nr_orexpr ;

nr_notexpr: nr_parenexpr ;
| NOT nr_parenexpr ;

nr_parenexpr: LPAREN nr_orexpr RPAREN ;
| nr_terms ;

nr_terms: multiple_word_or_phrase ;
word_or_phrase: word ;

| phrase ;

AND: '[Aa]' '[Nn]' '[Dd]' ;
OR: '[Oo]' '[Rr]' ;
NOT: '[Nn]' '[Oo]' '[Tt]' ;

Oracle® Endeca Server: Developer's Guide

Using Boolean Search 271

NEAR: '[Nn]' '[Ee]' '[Aa]' '[Rr]' ;
ONEAR: '[Oo]' '[Nn]' '[Ee]' '[Aa]' '[Rr]' ;

NUM: '[0-9] ;
| NUM NUM ;

LPAREN: '(' ;
RPAREN: ')' ;
KEY_RESTRICT: ':' ;

Version 7.6.1 • December 2013

Using the key restrict operator
This topic explains how to use the key restrict operator (:) in queries that contain Boolean search.

The colon (:) character is a key restrict operator that is used to limit a search to specified attributes,
regardless of whether the attributes are included in the search interface.

For example, if you have two attributes (Actor and Director), you can issue a query that involves a
Boolean expression consisting of both the Actor and Director attributes (for example, "Search for
records where the director was DeNiro and the actor does not include Pacino."). The two
attributes do not need to be included in the same search interface.

Users can successfully conduct a search on this using the following query, which will return the desired result:

Actor:Deniro AND NOT Director:Pacino

The key restrict feature is useful because it allows you to search for attributes that are outside of the search
interface configuration.

The key restrict operator (:) binds only to the words or expressions adjacent to it. The resulting search is case-
sensitive. The key restrict syntax is:

attribute:value

Note that there cannot be spaces between the attribute and colon, nor between the colon and the value.

To illustrate how the operator binds only to the words or expressions adjacent to it, consider this query:

car maker:aston martin

The query will search for the word "car" against the specified search interface, the word "aston" against the
attribute named maker, and the word "martin" against the specified search interface.

If you intend to search for the phrase "aston martin" against the attribute named maker, then you would use
double quotes for the phrase:

maker:"aston martin"

You can also use the conjunctive search format using parentheses:

maker:(aston martin)

This query does a conjunctive (All) search for the words "aston" and "martin" against the maker attribute.

Oracle® Endeca Server: Developer's Guide

Using Boolean Search 272

About proximity search
The proximity operators, NEAR and ONEAR, allow users to search for a pair of terms that must occur within a
given distance from each other in a document.

The document is matched if both terms are present in the document, and if the terms are within the specified
number of words from each other.

Wildcards are not supported in term specifications.

The syntax for using the proximity operators is as follows:

term1 NEAR/num term2
term1 ONEAR/num term2

Version 7.6.1 • December 2013

In this example:

• Each term (term1 and term2) can be a single word or a multi-word phrase (which must be specified
within quotation marks).

• The num parameter is an integer that specifies the maximum number of words between the two terms.
That is, if num is 5, then term1 and term2 can be separated by no more than five words.

Example of using NEAR for unordered matching

Example of using ONEAR for ordered matching

Example of using NEAR for unordered matching
Use the NEAR operator for unordered proximity searches.

That is, term1 can appear within num words before or after term2 in the document.

For example, if a user specifies:

"Mark Twain" NEAR/8 Hartford

Then both of these sentences will be considered matches:

"Mark Twain wrote some of his best books in Hartford."
"Tour the Hartford, Connecticut home where Mark Twain lived
and worked from 1874 to 1891."

Phrases are treated as one word. In the first sentence, for example, the software starts counting with the word
"wrote" (not "Twain").

Example of using ONEAR for ordered matching
Use the ONEAR operator for ordered proximity searches.

term1 must appear within num words before term2 in the document.

For example, if a user specifies:

"Mark Twain" NEAR/8 Hartford

The following sentence would not be considered a match:

"Tour the Hartford,
Connecticut home where Mark Twain lived and

Oracle® Endeca Server: Developer's Guide

Using Boolean Search 273

worked from 1874 to 1891."

Version 7.6.1 • December 2013

It is not a match because the word "Hartford" must appear after the phrase "Mark Twain" in the text
(assuming that the next eight words are not "Hartford").

Proximity operators and nested sub-expressions
This topic contains examples of using proximity operators with nested sub-expressions.

Using the two proximity operators as sub-expressions to the other Boolean operators is supported. For
example, the expression:

(chardonnay NEAR/5 California) AND Sonoma

is a valid expression because NEAR is being used as a sub-expression to the AND operator.

However, you cannot use the non-proximity operators (AND, OR, NOT) as sub-expressions to the NEAR and
ONEAR operators.

For example, the following is not a valid expression:

(chardonnay OR merlot) NEAR/5 California

This invalid expression, however, could be specified as:

(chardonnay NEAR/5 California) OR (merlot NEAR/5 California)

The proximity operators are therefore leaf operators. That is, they accept only words and phrases as sub-
expressions, but not the other Boolean operators.

Using proximity operators with the key restrict operator also has the same limitations when used as sub-
expressions.

For example, the following query is not valid:

("car maker" : aston) NEAR/3 martin

However, the following format for a key restrict operator is acceptable:

"car maker" : (aston NEAR/3 martin)

Boolean query semantics
This topic discusses the meaning of AND, OR, AND NOT, and other operators allowed in Boolean search
queries.

The following statements describe semantics of Boolean query operators:

• The AND operator executes an intersection of its two operands.

• The OR operator executes a union of the two operands.

• The AND NOT operator executes a set subtract, subtracting the second operand from the first.

• The parentheses operators have two meanings, depending on their usage:

• They can be used to group sub-expressions, as in "(red or blue) and car"

• Or, they can be used as AND operators in themselves.

Oracle® Endeca Server: Developer's Guide

Using Boolean Search 274

For example, the query "(red or blue) car" automatically treats the ")" as a ") AND". Thus the
query would be treated as "(red or blue) and car".

The same is true for usage of the left parenthesis.

• Words or phrases grouped together without any explicit operators (such as "red car or blue
bicycle") are also queried conjunctively.

Thus the example query would return the results for "(red and car) or (blue and bicycle)".
Similarly, "red car" "blue bicycle" will return the results for "red car" AND "blue bicycle".

• As the examples demonstrate, operator names are not case sensitive, although field names are.

Operator precedence
The NOT operator has the highest precedence, followed by the AND operator, followed by the OR operator. You
can always control the precedence by using parentheses.

For example, the expression "A OR B AND C NOT D" is interpreted as "A OR (B AND C AND (NOT D))".

Interaction of Boolean search with other features
The following table describes whether various features are supported for queries that execute a Boolean
search (including the proximity operators).

Feature Support with Boolean search Comments

Stemming Yes

Thesaurus No
matching

Misspelling No Auto-correct and “Did you mean?” are not supported.
correction

Relevance No
ranking

Wildcard Yes for the AND, OR, and NOT Proximity operators do not support wildcards.
search operators.

Stop words No Stop words are treated as normal words and are not
filtered from queries.

Phrase Yes
search

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Boolean Search 275

Error messages for Boolean search
Syntactically invalid queries generate error messages described in this topic.

Sample query Error message Comments

NOT sony Top-level negation is not allowed. The final result set is not
allowed to be the result
of a negation operation.

(Unexpected end of expression.

Sony OR NOT Aiwa The <first | second> clause of the OR Neither clause of an OR
at position <position> is a expression can be the
negation. Neither clause of an OR result of a negation
expression may be a negation. operation.

Sony OR Unexpected end of expression.

Sony AND Unexpected end of expression.

Sony NOT Unexpected end of expression.
Expecting an opening left
parenthesis, a word, or a phrase.

(Sony Unexpected end of expression.
Expecting closing right
parenthesis.

Manufacturer:(Sony OR The key restrict operator may not be
Item: Camera) used within another key restrict

expression.

Manufacturer: Unexpected end of expression. The
key restrict operator must be
followed by a word, a phrase, or a
left parenthesis.

Manufacturer:OR The key restrict operator must be
followed by a word, a phrase, or a
left parenthesis.

Foo:Sony Unknown search index name "Foo" used The name must exactly
for restrict operator match the name used in

the data.

Sony AND OR Aiwa Expecting a term or phrase.
Repeated operators are
an error.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Boolean Search 276

Implementing Boolean search in Studio
You configure Boolean search in Studio, in the edit view of the Search Box component.

When you set up the attributes to search on in the Search Box component, you also set a match mode that
should be used for search. To use Boolean search for the search mode, you set the match mode to Boolean.

Attributes should be configured appropriately for record search and/or value search.

Implementing Boolean search with the API
Using requests to the Conversation Web Service, you can specify a Boolean search mode for any search
request that performs value or attribute search, or a search request against defined search interfaces. You
can also use Boolean search in record and attribute filters. This topic includes examples of these requests.

Before using search on any attributes, ensure that attributes are configured for either record search and/or
managed attribute value search. For information, see Enabling value search on page 258.

Boolean search in value search

In this example, Boolean search mode is used for a value search made with the ValueSearchConfig type:

<ValueSearchConfig Id="ValSearch" MaxPerProperty="5" Mode="Boolean" Language="en">
<StateName>MySearch</StateName>
<SearchTerm>"Bike Racks" AND "Handlebars"</SearchTerm>

</ValueSearchConfig>

Version 7.6.1 • December 2013

Boolean search in attribute filters

When you set up the attributes for which to search using the TextSearchFilter type, you also set a match
mode that should be used for search. To use boolean search for the search mode, you set the match mode to
Boolean. The following example illustrates the TextSearchFilter that uses Boolean search:

<State>
<Name>MyRecSearch</Name>
<TextSearchFilter Key="Description" Mode="Boolean" EnableSnippeting="false"
Language="en">"peach" AND "apple"</TextSearchFilter>

</State>

Boolean search in search interfaces

Before you use Boolean search against search interfaces, you need to configure one or more search
interfaces that include all of the attributes that you want to search. This is done through the
putConfigDocuments operation of the Configuration Web Service, by sending in an XML configuration
document RECSEARCH_CONFIG. For information on how to send XML configuration documents to the Oracle
Endeca Server, see Loading configuration documents on page 60.

Now you can create a single Boolean search request against the defined search interfaces:

<State>
<Name>MyRecSearch</Name>
<TextSearchFilter Key="AllSales" Mode="Boolean" EnableSnippeting="false"
Language="en">English : one AND Spanish : dos</TextSearchFilter>

</State>

Oracle® Endeca Server: Developer's Guide

Using Boolean Search 277

Troubleshooting Boolean search
If you encounter unexpected behavior while using Boolean search, use the data domain configuration flag, -v,
when starting the data domain in the Oracle Endeca Server. This flag prints detailed output, including standard
errors, describing its execution of the Boolean query. You can specify it as endeca-cmd put--dd-profile
--args -v.

Performance impact of Boolean search
The performance of Boolean search is a function of the number of records associated with each term in the
query, and also the number of terms and operators in the query.

As the number of records increases, and as the number of terms and operators increase, queries become
more expensive.

The performance of proximity searches is as follows:

• Searches using the proximity operators are slower than searches using the other Boolean operators.

• Proximity searches that operate on phrases are slower than other proximity searches and slower than
normal phrase searches.

• Searches using the NEAR operator are about twice as slow as searches using the ONEAR operator,
because word positioning must be calculated forwards and backwards from the target term.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 25

Using Phrase Search

Phrase search allows users to specify a literal string to be searched.

About phrase search

About positional indexing

How punctuation is handled in phrase search

Examples of phrase search queries

Performance impact of phrase search

About phrase search
Phrase search allows users to enter queries for text matching of an ordered sequence of one or more specific
words.

By default, an Oracle Endeca Server search query matches any text containing all of the search terms entered
by the user. Order and location of the search words in the matching text is not considered. For example, a
search for John Smith returns matches against text containing the string John Smith and also against text
containing the string Jane Smith and John Doe.

In some cases, the user may want location and order to be considered when matching searches. If one were
searching for documents written by John Smith, one would want hits containing the text John Smith in the
author field, but not results containing Jane Smith and John Doe.

Phrase search allows the user to put double-quote characters around the search term, thus specifying a literal
string to be searched. Results of a phrase search contain all of the words specified in the user’s search (not
stemming, spelling, or thesaurus equivalents) in the exact order specified.

For example, if the user enters the phrase query "run fast", the search finds text containing the string run
fast, but not text containing strings such as fast run, run very fast, or running fast, which might be
returned by a normal non-phrase query.

Additionally, phase search queries do not ignore stop words. For example, if the word the is configured as a
stop word, a phrase search for "the car" does not return results containing simply car (not preceded by
the).

Also, phrase search enables stop words to be disabled. For example, if the is a stop word, a phrase search
for "the" can retrieve text containing the word the.

Because phrase searches only consider exact matches for contained words, phrase search also provides a
means to return only true matches for a particular word, avoiding matches due to features such as stemming,
thesaurus, and spelling.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Phrase Search 279

For example, a normal search for the word corkscrew might also return results containing the text
corkscrews or wine opener. Performing a phrase search for the word "corkscrew" only returns results
containing the word corkscrew verbatim.

About positional indexing
To enable faster phrase search performance and faster relevance ranking with the Phrase module, your
project builds data files out of word positions. This process is called positional indexing.

The Oracle Endeca Server creates a set of positional data files for standard and managed attribute values.

Phrase search is automatically enabled in the Oracle Endeca Server at all times. For phrase search query
processing, the Oracle Endeca Server examines potential matching text to verify the presence of the
requested phrase query string. This examination process can be slow in the following cases:

• The amount of text data is large (perhaps containing attribute values representing lengthy descriptions)

• The text that is being processed is offline (in the case of document text)

The Oracle Endeca Server uses positional data files to improve performance in these scenarios. Positional
indexing improves performance of multi-word phrase search, proximity search, and certain relevance ranking
modules. The thesaurus uses phrase search, so positional indexing improves performance of multi-word
thesaurus expansions as well. Positional indexing is enabled by default for attributes in your data domain.

How punctuation is handled in phrase search
Unless they are included as special characters, all punctuation characters are stripped out, during both
indexing and query processing. When punctuation is stripped out during query processing, the previously
connected terms have to remain in their original order.

Examples of phrase search queries
You request phrase matching in the Conversation Web Service requests by enclosing a set of one or more
search terms in quotation marks.

You can include phrase search queries in either record search or value search operations. You can combine
phrase search with non-phrase search terms or other phrase terms.

The following examples illustrate a phrase search query.

A record search for a phrase "Mountain Bikes" is as follows:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">

<State>
<TextSearchFilter Key="MySearchInterface" RelevanceRankingStrategy="numfields"
Mode="AllPartial" EnableSnippeting="false" Language="en">
"Mountain Bikes"</TextSearchFilter>

</State>
<RecordListConfig Id="RecordList" MaxPages="30">

<Column>ProductCategory</Column>
<RecordsPerPage>5</RecordsPerPage>

</RecordListConfig>
</Request>

Version 7.6.1 • December 2013Oracle® Endeca Server: Developer's Guide

Using Phrase Search 280

</soap:Body>
</soap:Envelope>

Version 7.6.1 • December 2013

A value search for values containing the phrase "Touring Bikes" is similar to the following abbreviated
example:

<Request>
<State>
<Name>MyProductSearch</Name>
<CollectionName>Products</CollectionName>

</State>
<ValueSearchConfig Id="ProdSearch" MaxPerProperty="5"

RelevanceRankingStrategy="static (nbins,descending)" Mode="Any" Language="en">
<StateName>MyProductSearch</StateName>
<SearchTerm>"Touring Bikes"</SearchTerm>
<RestrictToProperties>
<Property>ProductCategory</Property>

</RestrictToProperties>
</ValueSearchConfig>

</Request>

Performance impact of phrase search
Phrase search queries are generally more expensive to process than normal conjunctive search queries.

In addition to the work associated with a conjunctive query, a phrase search operation must verify the
presence of the exact requested phrase.

The cost of phrase search operations depends mostly on how frequently the query words appear in the data.
Searches for phrases containing relatively infrequent words (such as proper names) are generally very rapid,
because the base conjunctive search narrows the results to a small set of candidate hits, and within these hits
relatively few possible match positions need to be considered.

On the other hand, searches for phrases containing only very common words are more expensive. For
example, consider a search for the phrase "to be or not to be" on a large collection of documents.
Because all of these words are quite common, the base conjunctive search does not narrow the set of
candidate hit documents significantly. Then, within each candidate result document, numerous possible word
positions need to be scanned, because these words tend to be frequently reused within a single document.

Even very difficult queries (such as "to be or not to be") are handled by the Oracle Endeca Server within
a few seconds (depending on hardware), and possibly faster on moderate sized data sets. If such queries are
expected to be very common, adequate hardware must be employed to ensure sufficient throughput. In most
applications, phrase searches tend to be used far less frequently than normal searches. Also, most phrase
searches performed tend to contain at least one information-rich, low-frequency word, allowing results to be
returned rapidly (that is, in less than a second).

Oracle® Endeca Server: Developer's Guide

Chapter 26

Using Snippeting in Record Searches

Snippeting provides the ability to return an excerpt from a record in context, as a result of a user query.

About snippeting

Snippet formatting and size

Enabling snippeting

Tuning tips for snippeting

Retrieving snippets per query with the API

About snippeting
The snippeting feature provides the ability to return an excerpt from a record — called a snippet — to an
application user who performs a record search query.

A snippet contains the search terms that the user provided, along with a portion of the term’s surrounding
content to provide context. With the added context, users can more quickly choose the individual records they
are interested in.

A snippet can be based on the term itself or on any thesaurus or spell-correction equivalents. At least one
instance of a term or equivalent is highlighted per snippet, regardless of the number of times the term or its
equivalents appear in the snippet. A thesaurus or spell-corrected alternative may be highlighted instead of the
term itself, even if both appear within the snippet.

You enable snippeting on individual members (fields) in a search interface that typically have many lines of
content. For example, fields such as Description, Abstract, DocumentBody, and so on are good candidates to
provide snippeting results. You can also enable snippeting on a per-query basis.

The result of a query with snippeting enabled contains at least one snippet in which enough terms are
highlighted to satisfy the user's query. That is, if it is an AND query, the result contains at least one of each
term, and if it is an OR query, it contains at least one of the alternatives.

In Studio, only the Data Explorer, Results List, and Results Table components support snippeting. On these
components, for attributes that support snippeting, when users perform a search, the search snippet is
displayed.

Snippet formatting and size
A snippet consists of search terms, surrounding context words, and ellipses.

A snippet can contain any number of search terms bracketed by SnippetTerm tags. The tags call out search
terms and allow you to more easily reformat the terms for display in your front-end application.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Snippeting in Record Searches 282

The snippet size is the total number of search terms and surrounding context words. Although you can
configure the total number of words in a snippet In order to adhere to the size setting for a snippet, it is
possible that the Oracle Endeca Server may omit some search terms and context words from a snippet. This
situation becomes more likely if an application user provides a large number of search terms and the
maximum snippet size is comparatively small.

A snippet consists of one or more segments. If there are multiple segments, they are delimited by ellipses in
between them. Ellipses (...) indicate that there is text omitted from the snippet occurring before or after the
ellipses.

Example of a snippet

For example, here is a snippet made up of two segments with a maximum size set at 20 words. The snippet
resulted from a search for the search terms, Scotland and British, which are enclosed within
<SnippetTerm> tags.

<SearchSnippet>
<SnippetText>...in Edinburgh </SnippetText>
<SnippetTerm>Scotland</SnippetTerm>
<SnippetText>, and has been employed by Ford for 25 years...He first joined Ford's
</SnippetText>
<SnippetTerm>British</SnippetTerm>
<SnippetText> operation. Mazda motor...</SnippetText>

</SearchSnippet>

Version 7.6.1 • December 2013

Enabling snippeting
You enable snippeting globally for the Oracle Endeca Server via the RECSEARCH_CONFIG configuration
document.

The Oracle Endeca Server has several configuration documents that configure some features. You can edit
them using the format specified in the Dgraph Configuration Reference appendix in this guide. After these
documents are edited, you can send them to the Oracle Endeca Server using the Configuration Web Service
or Integrator ETL.

The RECSEARCH_CONFIG document allows inclusion of SEARCH_INTERFACE, which in turn lets you specify
the snippet size for each of its members. The following example shows the syntax:

<RECSEARCH_CONFIG>
<SEARCH_INTERFACE NAME="MySearch">
<MEMBER_NAME SNIPPET_SIZE="12">Description</MEMBER_NAME>

</SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

The presence of the SNIPPET_SIZE attribute enables snippeting for the MEMBER_NAME attribute, and the
value of SNIPPET_SIZE specifies the maximum number of words a snippet can contain. Omitting this
attribute or setting its value to zero disables snippeting.

Each member of a search interface is enabled and configured separately. In other words, snippeting results
are enabled and configured for each member of a search interface and not for all members of a single search
interface.

Note: A search interface member is an attribute that has been enabled for search and that has been
added to the SEARCH_INTERFACE element.

Oracle® Endeca Server: Developer's Guide

Using Snippeting in Record Searches 283

You can enable and configure any number of individual search interface members. Each member that you
enable produces its own snippet. Enabling a member in one search interface does not affect that member if it
appears in other search interfaces. For example, enabling the Description attribute for Search Interface A does
not affect the Description attribute in Search Interface B.

To enable snippeting:

1. In any text editor, edit the RECSEARCH_CONFIG document, similar to the following example:

<RECSEARCH_CONFIG>
<SEARCH_INTERFACE NAME="MySearch">
<MEMBER_NAME SNIPPET_SIZE="10">Description</MEMBER_NAME>

</SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

Version 7.6.1 • December 2013

In this example, the snippet size is set to 10 for an attribute "Description".

2. Use the Configuration Web Service or Integrator ETL to send the RECSEARCH_CONFIG document to
the data domain in the Oracle Endeca Server.

For information on the Configuration Web Service, see the section in this guide, or the Oracle Endeca
API References. For information on Integrator ETL, see the Oracle Endeca Information Discovery
Integrator ETL User's Guide.

Tuning tips for snippeting
Enabling snippeting affects query runtime performance.

You can minimize the performance impact on query runtime by limiting the number of words in an attribute
that the Oracle Endeca Server evaluates to identify the snippet. This approach is especially useful in cases
where a snippet-enabled attribute stores large amounts of text.

Provide the data domain configuration flag, --snippet-cutoff, to the data domain profile, to restrict the
number of words that the Oracle Endeca Server evaluates in an attribute. For example, endeca-cmd put-
dd-profile --snippet-cutoff 300 evaluates the first 300 words of the attribute to identify the snippet.

If the --snippet-cutoff flag is not specified in the data domain profile, or is specified without a value, the
snippeting feature defaults to a cutoff value of 500 words.

If a snippet is too short, and you are not seeing enough context words in it, increase the value for
SNIPPET_SIZE in the configuration document. See Enabling snippeting on page 282, for the detailed format
of the configuration.

Retrieving snippets per query with the API
You can enable snippets for a particular attribute on a per-query basis using the TextSearchFilter type in
the Conversation Web Service.

To request snippets with the Conversation Web Service, use the TextSearchFilter type with the specified
search interface or text-search enabled attribute. If you specify a search interface, it will be one for which
snippeting is enabled for its members in the RECSEARCH_CONFIG XML document. The Conversation Web
Service returns snippets as part of the RecordListEntry element (which also returns the records
themselves).

Oracle® Endeca Server: Developer's Guide

Using Snippeting in Record Searches 284

Setting the EnableSnippeting attribute to true in the TextSearchFilter type enables snippeting per
query, for the specified attribute or search interface. The SnippetLength attribute sets the length of the
snippet; the search term specifies the snippet term:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">

<State>
<TextSearchFilter Key="Description" Mode="AllPartial"
EnableSnippeting="true" SnippetLength="4" Language="en">
gearing

</TextSearchFilter>
</State>
<RecordListConfig Id="RecordList" MaxPages="30">

<Column>Description</Column>
<RecordsPerPage>5</RecordsPerPage>

</RecordListConfig>
</Request>

</soap:Body>
</soap:Envelope>

Version 7.6.1 • December 2013

Note: Use these settings only if you need to specify snippeting information for a single attribute for
which there is no search interface configured. These settings do not override the settings that globally
enable snippeting for members of the search interface in the RECSEARCH_CONFIG > SEARCH_INTERFACE

elements.

Response

The following response from the Conversation Web Service returns snippeting information as part of the
RecordListEntry:

<cs:ContentElement xsi:type="cs:RecordList" Id="RecordList"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<cs:NumRecords>61157</cs:NumRecords>
<cs:TotalPages>1224</cs:TotalPages>
<cs:RecordRange First="751" Last="800"/>

...
<cs:RecordListEntry>
<cs:Record>
<Description type="mdex:string">A true multi-sport bike that offers

streamlined riding and a revolutionary design. Aerodynamic design lets you
ride with the pros, and the gearing will conquer hilly roads.

</Description>
<FactSales_RecordSpec type="mdex:string">SO44563-19</FactSales_RecordSpec>

</cs:Record>
<cs:ComputedProperties>
<cs:SearchSnippets Key="Description">

<cs:SearchSnippet>
<cs:SnippetText>...and the gearing will conquer hilly </cs:SnippetText>
<cs:SnippetTerm>gearing<cs:SnippetTerm>
<cs:SnippetText> the gearing will conquer...</cs:SnippetText>

</cs:SearchSnippet>
</cs:SearchSnippets>

</cs:ComputedProperties>
</cs:RecordListEntry>

Oracle® Endeca Server: Developer's Guide

Chapter 27

Using Wildcard Search

Wildcard search allows users to match query terms to fragments of words in text processed by an Endeca
data domain.

About wildcard search

Interaction of wildcard search with other features

Ways to configure wildcard search

Dgraph flags for wildcard search

Using wildcard search in Studio

Performance impact of wildcard search

About wildcard search
Wildcard search is the ability to match user query terms to fragments of words in indexed text.

Normally, Oracle Endeca Server search operations (such as record search and value search) match user
query terms to entire words in the indexed text. For example, searching for the word run only returns results
containing the specific word run. Text containing run as a substring of larger words (such as running or
overrun) does not result in matches.

With wildcard search enabled, the user can enter queries containing the special asterisk or star operator (*).
The asterisk operator matches any string of zero or more characters. Users can enter a search term such as:

run

Version 7.6.1 • December 2013

This will match any text containing the string run, even if it occurs in the middle of a larger word such as
brunt.

Wildcard search is useful for performing text search on data fields such as part numbers, ISBNs, and SKUs.
Unlike cases where search is performed against normal linguistic text, in searches against data fields it may
be convenient or even necessary for the user to enter partial string values. Details on how data fields that
include punctuation characters are processed are provided in this section.

For example, suppose users were searching a database of integrated circuits for Intel 486 CPU chips. The
database might contain records with part numbers such as 80486SX and 80486DX, because these are the full
part numbers specified by the manufacturer. But to end users, these chips are known by the more generic
number 486. In such cases, wildcard search is a natural feature to bridge the gap between user terminology
and the source data.

Note: To optimize performance, the Dgraph process performs wildcard indexing for words that are
shorter than 1024 characters. Words that are longer than 1024 characters are not indexed for wildcard
search.

Oracle® Endeca Server: Developer's Guide

Using Wildcard Search 286

Interaction of wildcard search with other features
The table in this topic describes whether various features are supported for queries that execute a wildcard
search.

Feature Support with Comments
wildcard search

Stemming No

Thesaurus matching No

Misspelling correction No Auto-correct and “Did You Mean?” are not supported.

Relevance ranking Yes

Snippeting No

Phrase search No

Why Did It Match Yes

Word interp Yes

Ways to configure wildcard search
To send the configuration for wildcard search to the Oracle Endeca Server, you can use the Configuration
Web Service directly or use Integrator ETL.

For information on how to load the schema using the Configuration Web Service, see the section in this guide.

For information on how to configure wildcard search in record search for attributes, see the Oracle Endeca
Information Discovery Integrator ETL User's Guide.

Configuring wildcard search in record search

Configuring wildcard search in value search

Configuring wildcard search for a search interface

Configuring wildcard search in record search
You make an attribute wildcard searchable in record searches by changing the value of the mdex-
property_TextSearchAllowsWildcards attribute in the PDR, using either a request to the Configuration

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Wildcard Search 287

Web Service for loading the schema, or by sending this configuration to the Oracle Endeca Server through a
connector in Integrator ETL.

The mdex-property_TextSearchAllowsWildcards attribute of a PDR enables wildcard searches in
record search against the attribute. The valid settings for this attribute are:

• If set to true, an attribute is wildcard searchable during record searches.

• If set to false, an attribute is not wildcard searchable during record searches. The default is false.

Note that an attribute must be record searchable in order for it to allow wildcard search in record searches.
This means that before you set mdex-property_TextSearchAllowsWildcards to true, make sure that
mdex-property_IsTextSearchable is set to true.

Note: Enabling wildcard search for an attribute that contains large portions of text (either via
numerous or large attribute values with text content) can take a long time to process. Before making
this change, examine your data to decide which of the attributes in your record set need to be wildcard
searchable. Also, turn off wildcard search in record searches for those attributes on which it won't be
used by the users of your front-end application.

Example: enabling wildcard search for an attribute

For example, the following web service request to the Configuration Web Service enables wildcard search for
the attribute VehicleModel:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<config:configTransaction
xmlns:config="http://www.endeca.com/MDEX/config/services/types/3/0"
xmlns:mdex="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<config:updateProperties>
<mdex:record>
<mdex-property_Key>VehicleModel</mdex-property_Key>
<mdex-property_TextSearchAllowsWildcards>true</mdex-property_TextSearchAllowsWildcards>

</mdex:record>
</config:updateProperties>

</config:configTransaction>
</soap:Body>

</soap:Envelope>

Version 7.6.1 • December 2013

Configuring wildcard search in value search

You configure wildcard search during value searches in the Global Configuration Record (GCR), using either a
request to the Configuration Web Service or Integrator ETL.

Unlike the option for enabling wildcard search in text search, which is performed by editing each attribute in its
PDR (which affects only a single attribute), the GCR globally affects the enablement of wildcard search in
value search for all attributes.

The mdex-config_EnableValueSearchWildcard attribute in the GCR specifies whether wildcard search
should be enabled or disabled for value search across all attributes in the Oracle Endeca Server data domain.
The valid settings for this attribute are:

• If set to true, wildcards are supported for value search.

• If set to false, wildcards are not supported for value search. The default is false.

If you change this setting for the GCR on a data set with a large number of existing records, the operation can
take a long time to process, due to re-indexing. Thus, it is recommended to change this setting in the data

Oracle® Endeca Server: Developer's Guide

Using Wildcard Search 288

domain before you load records (after evaluating whether your application requires wildcard search on value
search for all attributes).

Wildcard queries at the end of the search term (for example, gua* for the search term guarantee) are
always enabled even if wildcard search is disabled for value search for the attribute.

Configuring wildcard search for a search interface

You can enable wildcard matching for a search interface by adding one or more wildcard-enabled attributes to
the search interface.

First, add the desired attributes. Wildcard search can be partially enabled for a search interface. That is, some
members of the search interface are wildcard-enabled while the others are not.

Searches against a partially wildcard-enabled search interface follow these rules:

• The search results from a given member follow the rules of its configuration. That is, results from a
wildcard-enabled member follow the rules of wildcard search, while results from non-wildcard members
follow the rules for non-wildcard searches.

• The final result is a union of the results of all the members (whether or not they are wildcard-enabled).

You should keep these rules in mind when analyzing search results. For example, assume that in a partially
wildcard-enabled search interface, Property-W is wildcard-enabled while Property-X is not. In addition,
the asterisk (*) is not configured as a search character. A record search issued for woo* against that search
interface may return the following results:

• Property-W returns records with woo, wood, and wool.

• Property-X only returns records with woo, because the query against this attribute treats the asterisk as
a word break. However, it does not return records with wool and wood, even though records with those
words exist.

However, because the returned record set is a union, the user will see all the records. A possible source of
confusion might be that if snippeting is enabled, the records from Property-X will not have wood and wool
highlighted (if they exist), while the records from Property-W will have all the search terms highlighted.

To enable wildcard search in a search interface:

1. Enable wildcard search in text search for members of the search interface. (This is controlled by the
mdex-property_TextSearchAllowsWildcards attribute on the PDR, for each attribute member
of the search interface).

Wildcard search in text search can be partially enabled for a search interface. That is, some members
of the search interface can be enabled for wildcard search in text search, while the others are not.

2. Add the desired attributes to the search interface in the RECSEARCH_CONFIG document. For the
structure of this document, see the appendix in this guide.

3. Use the Configuration Web Service or Integrator ETL to send this document to the Oracle Endeca
Server. For information, see the section about the Configuration Web Service in this guide, or the
Oracle Endeca Information Discovery Integrator ETL User's Guide.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Wildcard Search 289

Dgraph flags for wildcard search
There are no Dgraph flags required to enable wildcard search. If wildcard is enabled in record search for an
attribute, and is also enabled for value search, the Dgraph process automatically enables the use of the
asterisk operator (*) in appropriate search queries.

The following considerations apply to wildcard search queries that contain punctuation, such as abc*.d*f:

The Dgraph process rejects and does not process queries that contain only wildcard characters and
punctuation or spaces, such as *., * *. Queries with wildcards only are also rejected.

The maximum number of matching terms for a wildcard expression is 100 by default. You can modify this
value with the data domain configuration flag, --wildcard-max.

In case of wildcard search with punctuation, you may want to increase --wildcard-max, if you would like to
increase the number of returned matched results. You can specify the value for this flag when creating a data
domain profile: endeca-cmd --put-dd-profile --wildcard-max 110.

Using wildcard search in Studio
No specific Studio development is required to use wildcard search.

If wildcard search is enabled for record search and value search, users can use the Search Box component
to enter search queries containing asterisk operators to request partial matching. If wildcard search is enabled
for value search, type-ahead suggestions can be used in the Search Box.

Whereas the simplest use of wildcard search requires users to explicitly include asterisk operators in their
search queries, some applications automate the inclusion of asterisk operators as a convenience, or control
the use of asterisk operators using higher-level interface elements.

For example, an application might render a radio button next to the search box with options to select Whole-
word Match or Substring Match. In Substring Match mode, the application might automatically add asterisk
operators onto the ends of all user search terms. Interfaces such as this make wildcard search more easily
accessible to less sophisticated user communities, for which use of the asterisk operator might be unfamiliar.

Performance impact of wildcard search
To optimize performance of wildcard search, use the following recommendations.

• Account for increased time needed for indexing. In general, if wildcard search is enabled in the Oracle
Endeca Server (even if it is not used by the users), it increases the time and disk space required for
indexing. Therefore, consider first the business requirements for your Endeca application to decide
whether you need to use wildcard search.

Note: To optimize performance, the Dgraph process of the data domain performs wildcard
indexing for words that are shorter than 1024 characters. Words that are longer than 1024
characters are not indexed for wildcard search.

• In addition, if the wildcard search is not enabled before you load the records, and you issue a
Configuration Web Service request to enable it, after a large number of records exist in the data domain,
this causes re-indexing and is associated with increased processing time.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Wildcard Search 290

• Do not use "low information" queries. For optimal performance, use wildcard search queries with at
least 2-3 non-wildcarded characters in them, such as abc* and ab*de, and avoid wildcard searches with
one non-wildcarded character, such as a*. Wildcard queries with extremely low information, such as a*,
require a significant amount of time to process.

Queries that contain only wildcards, or only wildcards and punctuation or spaces, such as *. (star
followed by period), or * * (star space star), are rejected by the Oracle Endeca Server.

• Analyze the format of your typical wildcard query cases. This lets you be aware of performance
implications associated with one specific wildcard search pattern.

Do you have queries that contain punctuation syntax in between strings of text, such as ab*c.def*?

For strings with punctuation, the Dgraph processes of the data domain generate lists of words that match
each of the punctuation-separated wildcard expressions. Only in this case, Dgraph processes of the data
domain use the --wildcard-max <count> setting to optimize their performance. Increasing the --
wildcard-max <count> improves the completeness of results returned by wildcard search for strings
with punctuation, but negatively affects performance. Thus you may want to find the number that provides
a reasonable trade-off. You can specify this flag for the data domain profile, with endeca-cmd --put-
dd-profile --wildcard-max <value>.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 28

Search Characters

This section describes the semantics of matching search queries to result text.

About search characters

Implementing search characters

Query matching semantics

Search query processing

Dgraph flags for search characters

Performance impact of setting search characters

About search characters
The Oracle Endeca Server supports configurable handling of punctuation and other non-alphanumeric
characters in search queries.

This section does the following:

• Describes the semantics of matching search queries to result text (that is, records in record search or
attribute values in value search) when either the query or result text contains non-alphanumeric
characters.

• Explains how you can control this behavior using the search characters feature of the Oracle Endeca
Server.

Note: Search characters are supported only for the unknown language identifier. If the search query
is tagged with one of the supported language codes, the search character feature is not used.

Implementing search characters
Search indexing distinguishes between alphanumeric characters and non-alphanumeric characters, and
supports the ability to mark some non-alphanumeric characters as significant for search operations.

You mark a non-alphanumeric character as a search character in the Global Configuration Record.

Search characters are configured globally for all search operations. For example, adding the plus (+) character
marks it as a search character for value search and record search operations.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Search Characters 292

To mark a non-alphanumeric character as a search character:

1. Edit the contents of the mdex-config_SearchChars element of the Global Configuration Record in
any text editor, as in the following example.

This example marks "+" and "_" characters as search characters. You can add more than one
character; they are not separated by any delimiters.

<mdex-config_SearchChars>+_</mdex-config_SearchChars>

Version 7.6.1 • December 2013

2. To send the changes to the Oracle Endeca Server, use the Configuration Web Service or Integrator
ETL.

Query matching semantics
The semantics of matching search queries to text containing special non-alphanumeric characters in the
Oracle Endeca Sever is based on indexing various forms of source text containing such characters.

Basically, user query terms are required to match exactly against indexed forms of the words in the source
text to result in matches. Thus, to understand the behavior of query matching in the presence of non-
alphanumeric characters, one must understand the set of forms indexed for source text.

Categories of characters in indexed text

Indexing alphanumeric characters

Indexing search characters

Indexing non-alphanumeric characters

Categories of characters in indexed text

The Oracle Endeca Server treats characters in indexed text based on three categories.

The categories are:

• Alphanumeric characters including ASCII characters as well as non-punctuation characters in ISO-Latin1.

• Non-alphanumeric search characters (configured using the search characters feature, as described
below).

• Other non-alphanumeric characters (this category is the default for all non-alphanumeric characters not
explicitly configured to be in group 2).

During data processing, each word in the source text (that is, searchable attributes for record search, attribute
values for value search) is indexed based on the alternatives for handling characters from the three
categories, which is described in subsequent topics.

Indexing alphanumeric characters

Alphanumeric characters are included in all forms.

Because Oracle Endeca Server search operations are not case sensitive, alphabetic characters are always
included in lowercase form, a technique commonly referred to as case folding.

Oracle® Endeca Server: Developer's Guide

Search Characters 293

Indexing search characters

Search characters are non-alphanumeric characters that are specified as searchable.

Search characters are included as part of the token.

Indexing non-alphanumeric characters

How non-alphanumeric characters that are not defined as search characters are treated depends on whether
they are considered punctuation characters or symbols.

• Non-alphanumeric characters considered to be punctuation are treated as white space. In a multi-word
search with the words separated by punctuation characters, word order is preserved as if it were a phrase
search. The following characters are considered to be punctuation: ! @ # & () – [{ }] : ; ', ? / *

• Non-alphanumeric characters that are considered to be symbols are also treated as white space.
However, unlike punctuation characters, they do not preserve word order in a multi-word search. If a
symbol character is adjacent to a punctuation character, the symbol character is ignored. That is to say,
the combination of the symbol character and the punctuation character is treated the same as the
punctuation character alone.

For example, a search on ice-cream would return the same results as a phrase search for "ice cream",
while a search for ice~cream would return the same results as simply searching for ice cream. A search
on ice-~cream would behave the same way as a search on ice-cream.

Symbol characters include the following: ` ~ $ ^ + = < > "

Search query processing
The semantics of matching search query terms to result text containing non-alphanumeric characters are
described in this topic.

• During query processing, each user query term is transformed to replace all non-alphanumeric characters
that are not marked as search characters with delimiters (spaces).

• Non-alphanumeric characters considered to be punctuation (! @ # & () – [{ }] : ; ', ? / *) are treated
as white space and preserve word order. This means that the equivalent of a quoted phrase search is
generated. For that reason, all search features that are incompatible with quoted phrase search, such
as spelling correction, stemming, and thesaurus expansion, are not activated. (For details, see Using
Phrase Search on page 277.)

• Non-alphanumeric characters that are considered to be symbols (` ~ $ ^ + = < > “) are also treated as
white space. However, unlike punctuation characters, they do not preserve word order in a multi-word
search.

• Alphabetic characters in the user query are replaced with lowercase equivalents, to ensure that they
match against case-folded indexed strings.

• Each query term in the transformed query must exactly match some indexed string from the given source
text for the text to be considered a hit.

As noted above, when parsing user-entered search terms, a query with non-searchable characters is
transformed to replace all non-alphanumeric characters (that are not marked as search characters) with white
space, but the treatment of word order depends on whether the character in question is considered to be a

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Search Characters 294

punctuation character or a symbol. The search behavior preserves the word order and proximity of the search
term only in the case of punctuation characters.

For example, a search query for ice-cream will replace the hyphen (a punctuation character) with white space
and return only records with this text:

• ice-cream

• ice cream

Records with this text are not returned because the word order and word proximity of text do not match the
original query term:

• cream ice

• ice in the cream container

However, assuming the match mode is All, a search for ice~cream would return non-contiguous results for
[ice AND cream].

Dgraph flags for search characters
There are no Dgraph process flags necessary to enable the search characters feature. The Oracle Endeca
Server automatically detects the additional search characters.

Performance impact of setting search characters
Implementing search characters is an operation that changes the attribute on the GCR, and thus is a
configuration change. If you issue this operation in an empty data domain, it runs quickly. If you issue this
operation on an index with a large number of existing records using the Configuration Web Service, the
processing of this operation can have performance impact largely caused by re-indexing.

Performance impact of this operation (as well as other updating or configuration changing operations)
consists of the following aspects:

• Such operations cause re-indexing, which is associated with CPU and memory usage costs. In particular,
the operation for changing an attribute on the GCR will not finish until re-indexing is completed.

• Such operations are considered updating operations, which means that no other updates can be
processed until a specific update is completed (for example, all updating Web service requests will wait in
the queue during this update).

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 29

Spelling Correction and Did You Mean

This section describes the behavior of the Spelling Correction and Did You Mean features.

About Spelling Correction and Did You Mean

Logic used for spelling correction

Enabling spelling correction and updating spelling dictionaries

Spelling mode (Aspell)

Retrieving spelling corrections and DYM in query results

Configuring constraints for spelling dictionaries

About word-break analysis

Troubleshooting Spelling Correction and Did You Mean

Performance impact for Spelling Correction and Did You Mean

About Spelling Correction and Did You Mean
The Oracle Endeca Server supports two complementary forms of Spelling Correction.

The two forms of Spelling Correction are:

• Automatic Spelling Correction for record search and value search.

• Explicit spelling suggestions ("Did You Mean?") for record search.

The Automatic Spelling Correction feature enables search queries to return expected results when the spelling
used in the query terms does not match the spelling used in the result text (that is, when the user misspells
search terms). The Did You Mean feature returns suggested versions of a misspelled word, so that the user
can re-issue the query with the new spelling.

Both features can be used in a single application, and both are supported by the same underlying spelling
engine and Spelling Correction module.

Automatic Spelling Correction operates by computing alternate spellings for user query terms, evaluating the
likelihood that these alternate spellings are the best interpretation, and then using the best alternate spell-
corrected query forms to return extra search results. For example, a user might search for records containing
the text Abrham Lincoln. With spelling correction enabled, the Oracle Endeca Server returns the expected
results: those containing the text Abraham Lincoln.

Did You Mean (DYM) functionality allows an application to provide the user with explicit alternative
suggestions for a keyword search. For example, assume that a user gets six results when searching for valle
in a data set. The terms valley and vale, however, are much more prevalent in that data set. When the DYM
feature is enabled, the Oracle Endeca Server will respond with the six results for valle, but will also suggest

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Spelling Correction and Did You Mean 296

that valley or vale may be what the end-user actually intended. If multiple suggestions are returned, they will
be sorted and presented according to the closeness of the match.

The behavior of spelling correction features is application-aware, because the spelling dictionary for a given
data set is derived directly from the indexed source text, populated with the words found in all searchable
values and attributes. The Oracle Endeca Server returns spelling-corrected results as normal search results,
for both value search and record search operations.

For example, in a set of records containing computer equipment, a search for graphi might spell-correct to
graphics. In a different data set for sporting equipment, the same search might spell-correct to graphite.

Also keep in mind that the results of spelling corrections and DYM suggestions depend on the language
specified for the query, which is set with the Language element of the TextSearchFilter type (for record
search) and the ValueSearchConfig type (for value search). For example, using the search term pech in an
English language search may result in a spelling correction (such as to peach), while no correction might be
done for a French language search (because pêche is a word in French).

Logic used for spelling correction
At a high level, the spelling engine in Oracle Endeca Server performs the following steps related to spelling
correction for a given search query.

1. If the search terms generate more than a certain number of hits without any correction, then the spelling
engine does not generate any corrections or suggestions.

For the automatic correction, the threshold for the number of hits is 1. For the Did You Mean feature, the
threshold for the number of hits is 20.

2. For each term in the query, the spelling engine finds the 32 corrections with the lowest spelling scores. A
low spelling score signifies that the correction is similar to the search term.

For the Aspell mode that the Dgraph process uses for English, the spelling score is based on phonetic
distance. The 32 corrections are pruned to corrections with a spelling score below a certain threshold. For
the automatic correction, the spelling threshold is 125, for Did You Mean, the spelling threshold is 175.

3. The spelling engine tests each correction in place of the original search term it corrects. Only those
corrections which increase the number of hits (relative to the original query) without reducing the number
of terms matched are eligible to be returned.

4. The spelling engine selects the best correction based on which of the eligible corrections has the highest
number of hits. For record search, this is the number of records matched. For value search, this is the
number of records associated with the set of values matched.

Note: For more information about the difference in the treatment of results between record search
and value search, see the topic How value search treats number of results on page 297.

To change the Dgraph process configuration for Automatic Spelling Correction and DYM, you can rebuild the
spelling dictionary with the updateSpellingDictionaries operation of the Data Ingest Web Service.

Suggestions for automatic correction are not exposed by the Oracle Endeca Server, that is, you cannot update
the dictionary manually in the installed product.

In the Global Configuration Record, you can configure the indexing parameters such as minimum word
occurrences and maximum and minimum word length. These parameters let you set boundaries to indicate to
the Dgraph process of the Oracle Endeca Server which words to include in the spelling dictionary.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Spelling Correction and Did You Mean 297

How value search treats number of results

How value search treats number of results

Value search results may vary if spelling correction is performed.

An important note applies to the options and behavior associated with value search spelling correction: in
situations where the number of results is evaluated by an option or in the scoring of words or queries
performed by the spelling engine, value search uses an alternate definition of number of results. Instead of
using the simple number of hits returned to the user as this value (which is perfectly reasonable in the case of
record search), value search instead uses the number of records associated with the set of value search
results computed for a given query.

In other words, value search follows an additional level of indirection to weight the value of results computed
by spelling suggestion queries according to the number of records that these values would lead to if selected
in a navigation query. This alternate definition of number of results allows consistent behavior between
spelling corrections computed for value and record search operations when given the same query terms.

Enabling spelling correction and updating spelling
dictionaries
The updateSpellingDictionaries operation of the Data Ingest Web Service performs two functions at
once: when it runs, it enables spelling correction and DYM features, and also rebuilds the spelling dictionaries
for this data domain.

The operation allows you to rebuild the spelling dictionaries for spelling correction from the data corpus while
continuing to issue queries and updates to the Oracle Endeca Server, and without stopping and restarting the
Dgraph process. Run this operation after you have added data records to the data domain, to enable spelling
correction in the Dgraph process for this data domain.

Important: In a cluster of Dgraphs serving a specific data domain (also known as the data domain
cluster), this operation runs successfully on the Dgraph node that can accept updating requests for
this data domain (this is the leader Dgraph node). The Endeca Server automatically routes this
operation to the leader node in the data domain cluster.

During the data ingest process, you can run the updateSpellingDictionaries operation periodically to
update the spelling dictionary used by the Dgraph for Automatic Spelling Correction and DYM.

The updateSpellingDictionaries operation performs the following actions:

• Crawls the text search index for all terms which meet the constraint settings.

The constraint settings include minimum word occurrences and maximum and minimum number of
characters, for records and attribute values. The Dgraph uses these constraints to update the spelling
dictionary. You can change them in the Global Configuration Record.

• Updates the spelling dictionaries stored in the Dgraph for processing of all queries arriving after this
update to the data files. The Dgraph uses these updated dictionaries when processing all future queries.

The Dgraph applies the updated settings while continuing to run queries and without needing to restart.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Spelling Correction and Did You Mean 298

For information on how to run the updateSpellingDictionaries operation directly on the Endeca Server,
see the Oracle Endeca Server Data Loading Guide, or, if you use Integrator ETL for data loading, see its
documentation.

Spelling mode (Aspell)
Spelling features of the Oracle Endeca Server compute contextual suggestions at the full query level.

That is, suggestions may include one or more corrected query terms, which can depend on context such as
other words used in the query. To determine these full query suggestions, the Dgraph process relies on the
low-level Aspell spelling module to compute single-word suggestions, that is, words similar to a given user
query term and contained within the application-specific dictionary.

Aspell spelling module

The Oracle Endeca Server supports one internal spelling module, Aspell. It supports sound-alike corrections
(using English phonetic rules). It does not support corrections to non-alphabetic/non-ASCII terms (such as
café, 1234, or A&M).

Retrieving spelling corrections and DYM in query results
You can retrieve automatic spelling corrections and suggested corrections (Did You Mean) information in a
query using the SearchAdjustmentConfig type in your Conversation Web Service request.

If spelling is enabled in the data domain and you want the Conversation Web Service response to contain
supplemental information about spelling corrections and spelling suggestions (DYM), a
SearchAdjustmentConfig type is required. If it is included, spelling corrections and/or DYM suggestions are
returned as part of the response.

It is important to realize that if spelling is enabled, spelling auto-correction occurs even if the
SearchAdjustmentConfig type is not included. However, while spelling correction takes place, the spelling
corrections and DYM suggestions are not returned in the response.

SearchAdjustmentConfig syntax
The format for a SearchAdjustmentConfig is:

<SearchAdjustmentConfig Id="?">
<StateName>?</StateName>

</SearchAdjustmentConfig>

Version 7.6.1 • December 2013

where the attributes mean:

Attribute Meaning

Id A required attribute that provides an arbitrary identifier for this configuration.

Oracle® Endeca Server: Developer's Guide

Spelling Correction and Did You Mean 299

Attribute Meaning

StateName Specifies an existing named state in the request, using these rules:

• If the request has multiple named states, then the StateName element
must reference one (and only one) of the named states.

• If the request has only one named state, then it is optional as to whether
the StateName element is used to reference that named state (as the
state will be used in any event in the RecordListConfig).

• If the request has an unnamed state, then the StateName element
cannot be used.

SearchAdjustmentConfig example
This record search example includes the SearchAdjustmentConfig type, to ensure that spelling correction
adjustments and DYM suggestions are returned in the response:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State>

<TextSearchFilter Key="Flavors" Mode="AllPartial" EnableSnippeting="false" Language="en">pech<
/TextSearchFilter>

</State>
<RecordListConfig Id="RecList" MaxPages="10">

<Column>Flavors</Column>
<RecordsPerPage>5</RecordsPerPage>

</RecordListConfig>
<SearchAdjustmentConfig Id="SpellCorrect"/>

</Request>

Version 7.6.1 • December 2013

Note that in the example, the word "peach" is misspelled as "pech".

Automatic spelling correction response
The response from the Conversation Web Service contains the original State from the request with search
filter applied, as well as the original (not yet spelling-corrected) term of "pech". The response also includes the
SearchAdjustments type:

<cs:SearchAdjustments Id="SpellCorrect">
<cs:AppliedAdjustment>

<cs:TextSearchFilter Key="Flavors" Mode="AllPartial">pech</cs:TextSearchFilter>
<cs:AdjustedTerms>peach</cs:AdjustedTerms>

</cs:AppliedAdjustment>
</cs:SearchAdjustments>

The SearchAdjustments response includes the automatically-corrected term "peach" in the AdjustedTerms

element for AppliedAdjustment. The name of the element ("AppliedAdjustment") tells you that the corrected
spelling was automatically applied to the query, and the results (2593 records in this example) reflect that
correction.

Explicit spelling suggestions (DYM) response
For explicit spelling suggestions, the SearchAdjustments response contains a SuggestedAdjustment

element (instead of an AppliedAdjustment element), as in this example from a search that used the
misspelling of "pechr" instead of "peach":

<cs:SearchAdjustments Id="SpellCorrect">

Oracle® Endeca Server: Developer's Guide

Spelling Correction and Did You Mean 300

<cs:SuggestedAdjustment RecordCountIfApplied="2593">
<cs:TextSearchFilter Key="Flavors" Mode="AllPartial">pechr</cs:TextSearchFilter>
<cs:SuggestedTerms>peach</cs:SuggestedTerms>

</cs:SuggestedAdjustment>
</cs:SearchAdjustments>

Version 7.6.1 • December 2013

The name of the element ("SuggestedAdjustment") tells you that the term is just a DYM suggestion, which
means that it was not applied to the query. The RecordCountIfApplied element shows that if the suggestion
had been applied, 2593 records would have been returned. To retrieve those records, re-send the record
search query with the suggested term of "peach" for the search term.

Configuring constraints for spelling dictionaries
The Oracle Endeca Server selects words for the spelling dictionary based on pre-defined constraints.
Modifying these constraints can be useful for improving performance of spell-corrected searches.

The constraint settings are available in the Global Configuration Record.

You can use these configuration settings to tune and improve the types of spelling corrections produced by
the Oracle Endeca Server. For example, setting the minimum number of word occurrences can direct the
attention of the spelling correction algorithm away from infrequent terms and towards more popular (frequently
occurring) terms, which might be deemed more likely to correspond to intended user search terms.

To configure the settings which the Dgraph process of the Oracle Endeca Server uses to generate spelling
dictionary entries:

1. In the editor of your choice, edit the constraints in the GCR that the Dgraph should use for adding
words to the spelling dictionary.

You can separately edit settings for entries in the dictionary for record search and value search. In
other words, for each attribute assignment on a record, and for each attribute value, you could specify
the following settings in the Global Configuration Record:

Attribute Type Description

mdex-config_SpellingRecordMinWordOccur Int Specifies the minimum number of
times a word must occur in a
standard attribute value (record
assignment on an attribute) for it to
be indexed for spelling correction.
The default value is 4.

mdex-config_SpellingRecordMinWordLength Int Specifies the minimum number of
characters that a word must contain
in a standard attribute value (record
assignment on an attribute) for it to
be indexed for spelling correction.
The default value is 3.

mdex-config_SpellingRecordMaxWordLength Int Specifies the maximum number of
characters that a word may contain
for it to be indexed for spelling
correction. The default value is 16.

Oracle® Endeca Server: Developer's Guide

Spelling Correction and Did You Mean 301

Attribute Type Description

mdex-config_SpellingDValMinWordOccur Int Specifies the minimum number of
times a word must occur in a
managed attribute value for it to be
indexed for spelling correction. The
default value is 1.

mdex-config_SpellingDValMinWordLength Int Specifies the minimum number of
characters that a word must contain
in a managed attribute value for it
to be indexed for spelling
correction. The default value is 3.

mdex-config_SpellingDValMaxWordLength Int Specifies the maximum number of
characters that a word may contain
for it to be indexed for spelling
correction. The default value is 16.

2. To send the updated GCR to the Oracle Endeca Server, use the Configuration Web Service directly or
use Integrator ETL. For information, see either the section on Configuration Web Service in this guide,
or, if you are using Integrator ETL, see the Oracle Endeca Information Discovery Integrator ETL
User's Guide.

3. Run the updateSpellingDictionaries operation of the Data Ingest Web Service on the data domain in
order for these changes to take effect.

About word-break analysis
Word-break analysis allows the Spelling Correction feature to consider alternate queries computed by
changing the word divisions in the user’s query.

For example, if the query is Back Street Boys, word-break analysis could instruct the Oracle Endeca Server
to consider the alternate Backstreet Boys.

The following statements describe how word-break analysis works in the Dgraph process of the Oracle
Endeca Server:

• It is enabled by default.

• As part of the word-break analysis, the Dgraph process removes breaks from the original term, or adds
breaks to the original term if needed.

• The maximum number of word breaks that the Dgraph adds to or removes from a query is one.

• The minimum length for a new term created by word-break analysis is two characters. The Dgraph does
not correct words that are smaller than 2 characters. For example, it does not correct anear to a near. It
could correct to an ear if there are actual terms in the data corpus that match both an and ear.

• When word-break analysis is applied to a query, it requires that the substrings that the term is broken up
into appear in the data in succession. For example, starting with the query box17, word-break analysis
would find box 17, as well as box-17, assuming that the hyphen (-) has not been specified as a search
character. However, it would not find 17 old boxes, because the target terms do not appear in order.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Spelling Correction and Did You Mean 302

Troubleshooting Spelling Correction and Did You Mean
If spell-corrected results are not returned for words with expected spell-corrected options in the data, use
these suggestions for troubleshooting.

• When debugging spelling behavior, pay close attention to the errors of the Dgraph on startup, where
problems in spelling configuration are typically reported.

• Did You Mean can in some cases correct a word to one on the stop words list.

Performance impact for Spelling Correction and Did You
Mean
Spelling correction performance is impacted by the size of the dictionary in use.

Spell-corrected keyword searches with many words, in systems with very large dictionaries, can take a
disproportionately long time to process relative to other Oracle Endeca Server requests. Those searches can
cause requests that immediately follow such a search to wait while the spelling recommendations are being
sought and considered.

It is important to carefully analyze the performance of the system together with application requirements
before deploying a production application.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 30

Using Stemming and Thesaurus

This section describes the tasks involved in implementing the Stemming and Thesaurus features.

Overview of stemming and thesaurus

About the stemming feature

About the thesaurus feature

Dgraph flags for stemming and thesaurus

Interactions with other search features

Performance impact of stemming and thesaurus

Overview of stemming and thesaurus
The Oracle Endeca Server supports stemming and thesaurus features that allow keyword search queries to
match text containing alternate forms of the query terms or phrases.

The definitions of these features are as follows:

• The stemming feature allows the system to consider alternate forms of individual words as equivalent for
the purpose of search query matching. For example, it is often desirable for singular nouns to match their
plural equivalents in the searchable text, and vice versa.

• The thesaurus feature allows the system to return matches for related concepts to words or phrases
contained in user queries. For example, a thesaurus entry may allow searches for Mark Twain to match
text containing the phrase Samuel Clemens.

Both the thesaurus and stemming features rely on defining equivalent textual forms that are used to match
user queries to searchable text data. Because these features are based on similar concepts, and because
they are typically configured to operate in conjunction to achieve desired query matching effects, both features
and their interactions are discussed in one section.

About the stemming feature
The stemming feature broadens search results to include word roots and word derivations.

Stemming is enabled by default in an Endeca data domain.

Stemming is intended to allow words with a common root form (such as the singular and plural forms of
nouns) to be considered interchangeable in search operations. For example, search results for the word shirt
will include the derivation shirts, while a search for shirts will also include its word root shirt.

Stemming equivalences are defined among single words. For example, stemming is used to produce an
equivalence between the words automobile and automobiles (because the first word is the stem form of the

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Stemming and Thesaurus 304

second), but not to define an equivalence between the words vehicle and automobile (this type of concept-
level mapping is done via the thesaurus feature).

Stemming equivalences are strictly two-way (that is, all-to-all). For example, if there is a stemming entry for
the word truck, then searches for truck will always return matches for both the singular form (truck) and its
plural form (trucks), and searches for trucks will also return matches for truck. In contrast, the thesaurus
feature supports one-way mappings in addition to two-way mappings.

Note: The stemming implementation does not include decompounding. Decompounding is the ability
to decompose a compound word (such as kindergarten) into its single word components (kinder and
garten) and then find occurrences based on the smaller words.

Supported languages for stemming

The list of supported languages for stemming is in the topic, Supported languages on page 152.

You should specify a language ID for each of your attributes (via the mdex-property_Language property in
the attribute's PDR). At ingest time, the Dgraph creates a separate stemming dictionary for each configured
language. The dictionaries are stored in the Endeca data domain and cannot be modified by the user.

Types of stemming matches and sort order

Types of stemming matches and sort order

Stemming can produce one of three match types.

If stemming is enabled, a search on a given term (T) will produce one or more of these results:

• Literal matches: Any occurrence of T will always produce a match.

• Stem form matches: Matches will occur on the stem form of T (assuming that T is not a stem form). For
example, if T is children, then child (the stem form) will also match.

• Inflected form matches: Matches will occur on all inflected forms of the stem form of T. For example, if T
is the verb ran (as in Jane ran in the Boston Marathon), then matches will include the stem form (run) and
inflected forms (such as runs and running). (Note that although this example is in English, stemming for
inflected verb forms is not supported for English; see below for support details.)

The order of the returned results depends on the sorting configuration:

• If relevance ranking is enabled and the Interpreted (interp) module is used, literal matches will always
have higher priority than stem form and inflected form matches.

• If relevance ranking is not enabled but you have set a record sort order, the results will come back in that
sort order.

• If relevance ranking is not enabled and there is no record sort order, the order of the results is completely
arbitrary.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Stemming and Thesaurus 305

About the thesaurus feature
The thesaurus feature allows you to configure rules for matching queries to text containing equivalent words or
concepts.

The thesaurus is intended for specifying concept-level mappings between words and phrases. Even a modest
number of well-thought-out thesaurus entries can greatly improve your users’ search experience.

Note: Only one global thesaurus is supported for an Endeca data domain. In other words, language-
specific thesauruses are not supported (for example, one thesaurus for English, a second for French,
and so on).

The thesaurus feature is at a higher level than the stemming feature, because thesaurus matching and query
expansion respects stemming equivalences, whereas the stemming module is unaware of thesaurus
equivalences.

For example, if you define a thesaurus entry mapping the words automobile and car, and there is a stemming
equivalence between car and cars, then a search for automobile will return matches for automobile, car, and
cars. The same results will also be returned for the queries car and cars.

The thesaurus supports specifying multi-word equivalences. For example, an equivalence might specify that
the phrase Mark Twain is interchangeable with the phrase Samuel Clemens. It is also possible to mix the
number of words in the phrase-forms for a single equivalence. For example, you can specify that wine opener
is equivalent to corkscrew.

Multi-word equivalences are matched on a phrase basis. For example, if a thesaurus equivalence between
wine opener and corkscrew is defined, then a search for corkscrew will match the text stainless steel wine
opener, but will not match the text an effective opener for wine casks.

Thesaurus equivalences can be either one-way or two-way:

• One-way mapping specifies only one direction of equivalence. That is, one "From" term is mapped to one
or more "To" terms, but none of the "To" terms are mapped to the "From" term. Only one "From" term can
be specified.

For example, assume you define a one-way mapping from the phrase red wine to the phrases merlot and
cabernet sauvignon. This one-way mapping ensures that a search for red wine also returns any matches
containing the more specific terms merlot or cabernet sauvignon. But you avoid returning matches for the
more general phrase red wine when the user specifically searches for either merlot or cabernet sauvignon.

• Two-way (or all-to-all) mapping means that the direction of a word mapping is equivalent between the
words. For example, a two-way mapping between stove, range, and oven means that a search for one of
these words will return all results matching any of these words (that is, the mapping marks the forms as
strictly interchangeable).

When you define a two-way mapping, you do not specify a "From" term. Instead, you specify two or more
"To" terms.

Unlike the stemming module, the thesaurus feature lets you define multiple equivalences for a single word or
phrase. These multiple equivalences are considered independent and non-transitive.

For example, we might define one equivalence between football and NFL, and another between football and
soccer. With these two equivalences, a search for NFL will return hits for NFL and hits for football, a search for
soccer will return hits for soccer and football, and a search for football will return all of the hits for football,
NFL, and soccer. However, searches for NFL will not return hits for soccer (and vice versa).

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Stemming and Thesaurus 306

This non-transitive nature of the thesaurus is useful for defining equivalences containing ambiguous terms
such as football. The word football is sometimes used interchangeably with soccer, but in other cases football
refers to American football, which is played professionally in the NFL. In other words, the term football is
ambiguous.

When you define equivalences for ambiguous terms, you do not want their specific meanings to overlap into
one another. People searching for soccer do not want hits for NFL, but they may want at least some of the hits
associated with the more general term football.

Thesaurus entries are essentially used to produce alternate forms of the user query, which in turn are used to
produce additional query results. Note that a maximum of three terms in a single search query are subject to
thesaurus replacement. This means that up to 3 words in a user’s search query can be replaced with
thesaurus entries. If more than three words match thesaurus entries, none of the extra words will be expanded
by the thesaurus engine. This thesaurus-expansion limit cannot be changed.

This behavior is particularly important in the presence of overlapping thesaurus forms. For example, suppose
that you define an equivalence between red wine and vino rosso, and a second equivalence between wine
opener and corkscrew. The query red wine opener might match the thesaurus entries in two different ways:
red wine could be mapped to vino rosso based on the first entry; or wine opener could be mapped to
corkscrew based on the second entry.

Using the maximal-expansion rule, this issue is resolved by expanding to all possible queries. In other words,
the Oracle Endeca Server returns hits for all of the queries: red wine opener, vino rosso opener, and red
corkscrew.

Adding, modifying, or deleting thesaurus entries

Troubleshooting the thesaurus

Adding, modifying, or deleting thesaurus entries
Thesaurus entries are added in the THESAURUS XML document.

All XML configuration documents are present in the data files of the Oracle Endeca Server. You can edit them
using the format specified in the Dgraph Configuration Reference, found in this guide. After these documents
are edited, you can send them to the Oracle Endeca Server using the Configuration Web Service or Integrator
ETL, thus specifying the configuration you want.

To add a one-way or two-way thesaurus entry, or modify and delete existing thesaurus entries:

1. In any editor, edit the contents of the THESAURUS XML document.

2. Use Integrator ETL or the request created with the Configuration Web Service to send the
THESAURUS document to the Oracle Endeca Server.

Troubleshooting the thesaurus

The following thesaurus clean-up rules should be observed to avoid performance problems related to
expensive and non-useful thesaurus search query expansions.

• Do not create a two-way thesaurus entry for a word with multiple meanings. For example, khaki can refer
to a color as well as to a style of pants. If you create a two-way thesaurus entry for khaki = pants, then
a user’s search for khaki towels could return irrelevant results for pants.

• Do not create a two-way thesaurus entry between a general and several more-specific terms, such as:

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Stemming and Thesaurus 307

top = shirt = sweater = vest

Version 7.6.1 • December 2013

This increases the number of results the user has to go through while reducing the overall accuracy of the
items returned. In this instance, better results are attained by creating individual one-way thesaurus
entries between the general term top and each of the more-specific terms.

• A thesaurus entry should never include a term that is a substring of another term in the entry.

For example, consider the two-way equivalency:

Adam and Eve = Eve

If users type Eve, they get results for Eve or (Adam and Eve) (that is, the same results they would have
gotten for Eve without the thesaurus). If users type Adam and Eve, they get results for (Adam and Eve) or
Eve, causing the Adam and part of the query to be ignored.

• Stop words such as and or the should not be used in single-word thesaurus forms. For example, if the has
been configured as a stop word, an equivalency between thee and the is not useful.

You can use stop words in multi-word thesaurus forms, because multi-word thesaurus forms are handled
as phrases. In phrases, a stop word is treated as a literal word and not a stop word.

• Avoid multi-word thesaurus forms where single-word forms are appropriate. In particular, avoid multi-word
forms that are not phrases that users are likely to type, or to which phrase expansion is likely to provide
relevant additional results.

For example, the two-way thesaurus entry:

Aethelstan, King Of England (D. 939) = Athelstan, King Of England (D. 939)

should be replaced with the single-word form:

Aethelstan = Athelstan

• Thesaurus forms should not use non-searchable characters. For example, the one-way thesaurus entry:

Pikes Peak -> Pike’s Peak

should be used only if the apostrophe (') is enabled as a search character.

Dgraph flags for stemming and thesaurus
Stemming and thesaurus data that has been configured is automatically enabled for use during text indexing
and search query processing. In addition, there is no Oracle Endeca Server configuration necessary to
configure thesaurus and stemming information.

Interactions with other search features
As core features of the Oracle Endeca Server search subsystem, stemming and the thesaurus have
interactions with other search features.

The following sections describe the types of interactions between the various search features.

Search characters

The search character set configured for the application dictates the set of available characters for stemming
and thesaurus entries. By default, only alphanumeric ASCII characters may be used in stemming and

Oracle® Endeca Server: Developer's Guide

Using Stemming and Thesaurus 308

thesaurus entries. Additional punctuation and other special characters may be enabled for use in stemming
and thesaurus entries by adding these characters to the search character set.

The Oracle Endeca Server matches user query terms to thesaurus forms using the following rule: all
alphanumeric and search characters must match against the stemming and thesaurus forms exactly; other
characters in the user search query are treated as word delimiters. For details on search characters, see
Search Characters on page 290.

Spelling

Spelling correction is a closely-related feature to stemming and thesaurus functionality, because spelling auto-
correction essentially provides an additional mechanism for computing alternate versions of the user query. In
the Oracle Endeca Server's Dgraph process, spelling is handled as a higher-level feature than stemming and
thesaurus. That is, spelling correction considers only the raw form of the user query when producing alternate
query forms.

Alternate spell-corrected queries are then subject to all of the normal stemming and thesaurus processing. For
example, if the user enters the query telvision and this query is spell-corrected to television, the results will
also include results for the alternate forms televisions, tv, and tvs.

Note that in some cases, the thesaurus feature is used as a replacement or in addition to the system's
standard spelling correction features. In general, this technique is discouraged. The vast majority of actual
misspelled user queries can be handled correctly by the spelling correction subsystem. But in some rare
cases, the spelling correction feature cannot correct a particular misspelled query of interest; in these cases it
is common to add a thesaurus entry to handle the correction. If at all possible, such entries should be avoided
as they can lead to undesirable feature interactions.

Stop words

Stop words are words configured to be ignored by the Oracle Endeca Server search query engine. A stop
word list typically includes words that occur too frequently in the data to be useful (for example, the word bottle
in a wine data set), as well as words that are too general (such as clothing in an apparel-only data set).

If the is marked as a stop word, then a query for the computer will match to text containing the word computer,
but possibly missing the word the.

Stop words are not currently expanded by the stemming and thesaurus equivalence set. For example,
suppose you mark item as a stop word and also include a thesaurus equivalence between the words item and
items. This will not automatically mark the word items as a stop word; such expansions must be applied
manually.

Stop words are respected when matching thesaurus entries to user queries. For example, suppose you define
an equivalence between Muhammad Ali and Cassius Clay and also mark M as a stop word (it is not
uncommon to mark all or most single letter words as stop words). In this case, a query for Cassius M. Clay
would match the thesaurus entry and return results for Muhammad Ali as expected.

Phrase search

A phrase search is a search query that contains one or more multi-word phrases enclosed in quotation marks.
The words inside phrase-query terms are interpreted strictly literally and are not subject to stemming or
thesaurus processing. For example, if you define a thesaurus equivalence between Jennifer Lopez and JLo,
normal (unquoted) searches for Jennifer Lopez will also return results for JLo, but a quoted phrase search for
"Jennifer Lopez" will not return the additional JLo results.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Using Stemming and Thesaurus 309

Relevance ranking

It is typically desirable to return results for the actual user query ahead of results for stemming and/or
thesaurus transformed versions of the query. This type of result ordering is supported by the Relevance
Ranking modules. In particular, the module that is affected by thesaurus expansion and stemming is Interp.
The module that is not affected by thesaurus and stemming is Freq.

Performance impact of stemming and thesaurus
Stemming and thesaurus equivalences generally add little or no time to data processing and indexing, and
introduce little space overhead (beyond the space required to store the raw string forms of the equivalences).

In terms of online processing, both features will expand the set of results for typical user queries. While this
generally slows search performance (search operations require an amount of time that grows linearly with the
number of results), typically these additional results are a required part of the application behavior and cannot
be avoided.

The overhead involved in matching the user query to thesaurus and stemming forms is generally low, but
could slow performance in cases where a large thesaurus (tens of thousands of entries) is asked to process
long search queries (dozens of terms). Typical applications exhibit neither extremely large thesauri nor very
long user search queries.

Because matching for stemming entries is performed on a single-word basis, the cost for stemming-oriented
query expansion does not grow with the size of the stemming database or with the length of the query.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Chapter 31

Relevance Ranking

This section describes the tasks involved in implementing the Relevance Ranking feature.

About the relevance ranking feature

Relevance ranking modules

Relevance ranking strategies

Implementing relevance ranking

Relevance ranking sample scenarios

Recommended strategies

Performance impact of relevance ranking

About the relevance ranking feature
Relevance ranking allows you to control the order in which search results are displayed to the end user of a
front-end application powered by the Oracle Endeca Server.

Typically, the relevance ranking feature is used to ensure that the most important search results are displayed
earliest to the user, because users of search-oriented information retrieval systems are often unwilling to page
through large result sets.

Relevance ranking can be used to independently control the result ordering for both record search and value
search queries. You can establish a system-default relevance ranking for both record search and value
search. In addition, you can assign relevance ranking on a per-query basis for both search types.

The importance of a search result is generally an application-specific concept. Thus, the relevance ranking
feature provides a flexible, configurable set of result ranking modules. These modules can be used in
combinations (called relevance ranking strategies) to produce a wide range of relevance ranking effects.
Results are scored according to the order of ranking modules within the strategy.

Note: Because relevance ranking is a complex and powerful feature, this documentation provides
recommended strategies that you can use as a point of departure for further development. For details,
see the "Recommended strategies" topic in this section.

Relevance ranking modules
Relevance ranking modules are the building blocks from which you build the relevance ranking strategies to
apply to your search interfaces.

This section describes the available set of relevance ranking modules and their scoring behaviors.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Relevance Ranking 311

Exact

Field

First

Frequency

Glom

Interpreted

Maximum Field

Number of Fields

Number of Terms

Phrase

Proximity

Spell

Static

Stem

Thesaurus

Weighted Frequency

Exact
The Exact module provides a finer grained (but more computationally expensive) alternative to the Phrase
module.

The Exact module groups results into three strata based on how well they match the query string:

• The highest stratum contains results whose complete text matches the user’s query exactly.

• The middle stratum contains results that contain the user’s query as a subphrase.

• The lowest stratum contains other hits (such as normal conjunctive matches). Any match that would not
be a match without query expansion lands in the lowest stratum. Also in this stratum are records that do
not contain relevance ranking terms.

The Exact module is computationally expensive, especially on large text fields. It is intended for use only on
small text fields (such as managed attribute values or small managed attribute values like part IDs). This
module should not be used with large or offline documents. Use of this module in these cases will result in
very poor performance and/or application failures due to request timeouts. The Phrase module, with and
without approximation turned on, does similar but less sophisticated ranking that can be used as a higher
performance substitute.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Relevance Ranking 312

Field
The Field module ranks documents based on the search interface field with the highest priority in which it
matched.

Only the best field in which a match occurs is considered. The Field module is often used in relevance
ranking strategies for catalog applications, because the category or product name is typically a good match.
Field assigns a score to each result based on the static rank of the standard or managed attribute member
(or members) of the search interface that caused the document to match the query. Static field ranks are
assigned based on the order in which members of a search interface are listed in the search interface
configuration. The first member has the highest rank.

By default, matches caused by cross-field matching are assigned a score of zero. The score for cross-field
matches can be set explicitly in the CROSS_FIELD_RELEVANCE_RANK attribute of the SEARCH_INTERFACE
element. This element is used only for search interfaces that have the Field module and are configured to
support cross-field matches. All non-zero ranks must be non-equal and only their order matters.

For example, a search interface might contain both Title and DocumentContent standard attributes, where hits
on Title are considered more important than hits on DocumentContent (which in turn are considered more
important than cross-field matches). Such a ranking is implemented by assigning the highest rank to Title, the
next highest rank to DocumentContent, and setting the CROSS_FIELD_RELEVANCE_RANK attribute to a low
integer such as 0 or 1.

The Field module is only valid for record search operations. This module assigns a score of zero to all
results for other types of search requests. In addition, Field treats all matches the same, whether or not they
are due to query expansion.

First
Designed primarily for use with unstructured data, the First module ranks documents by how close the
query terms are to the beginning of the document.

The First module groups its results into variably-sized strata. The strata are not the same size, because
while the first word is probably more relevant than the tenth word, the 301st is probably not so much more
relevant than the 310th word. This module takes advantage of the fact that the closer something is to the
beginning of a document, the more likely it is to be relevant.

The First module works as follows:

• When the query has a single term, First’s behavior is straight-forward: it retrieves the first absolute
position of the word in the document, then calculates which stratum contains that position. The score for
this document is based upon that stratum; earlier strata are better than later strata.

• When the query has multiple terms, First behaves as follows: The first absolute position for each of the
query terms is determined, and then the median position of these positions is calculated. This median is
treated as the position of this query in the document and can be used with stratification as described in the
single word case.

• With query expansion (using stemming, spelling correction, or the thesaurus), the First module treats
expanded terms as if they occurred in the source query. For example, the phrase glucose intolerence
would be corrected to glucose intolerance (with intolerence spell-corrected to intolerance). First then
continues as it does in the non-expansion case. The first position of each term is computed and the
median of these is taken.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Relevance Ranking 313

• In a partially matched query, where only some of the query terms cause a document to match, First
behaves as if the intersection of terms that occur in the document and terms that occur in the original
query were the entire query. For example, if the query cat bird dog is partially matched to a document on
the terms cat and bird, then the document is scored as if the query were cat bird. If no terms match, then
the document is scored in the lowest strata.

Note: The First module does not work with Boolean searches, cross-field matching, or wildcard
search. It assigns all such matches a score of zero.

Frequency
The Frequency (Freq) module provides result scoring based on the frequency (number of occurrences) of the
user’s query terms in the result text.

Results with more occurrences of the user search terms are considered more relevant.

The score produced by the Frequency module for a result record is the sum of the frequencies of all user
search terms in all fields (standard or managed attributes in the search interface in question) that match a
sufficient number of terms. The number of terms depends on the match mode, such as all terms in a query
with search mode All, a sufficient number of terms in a query with search mode Partial, and so on. Cross-
field match records are assigned a score of zero. Total scores are capped at 1024; in other words, if the sum
of frequencies of the user search terms in all matching fields is greater than or equal to 1024, the record gets
a score of 1024 from the Freq module.

For example, suppose we have the following record:

{Title="test record", Abstract="this is a test", Text="one test this is"}

Version 7.6.1 • December 2013

An All search for test this would cause Frequency to assign a score of 4, since this and test occur a total of 4
times in the fields that match all search terms (Abstract and Text, in this case). The number of phrase
occurrences (just one in the Text field) doesn't matter, only the sum of the individual word occurrences. Also
note that the occurrence of test in the Title field does not contribute to the score, since that field did not match
all of the terms.

An All search for one record would hit this record, assuming that cross field matching was enabled. But the
record would get a score of zero from Freq, because no single field matches all of the terms. Freq ignores
matches due to query expansion (that is, such matches are given a rank of 0).

Note: Due to performance issues, do not use the Frequency module with standalone relevance
ranking (that is, per-query relevance ranking).

Glom
The Glom module ranks single-field matches ahead of cross-field matches and also ahead of non-matches
(records that do not contain the search term).

The Glom module serves as a useful tie-breaker function in combination with the Maximum Field module.
It is only useful in conjunction with record search operations. If you want a strategy that ranks single-field
matches first, cross-field matches second, and no matches third, then use the Glom module followed by the
Number of Terms (Nterms) module.

Glom treats all matches the same, whether or not they are due to query expansion.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 314

Glom interaction with search modes
The Glom module considers a single-field match to be one in which a single field has enough terms to satisfy
the conditions of the match mode. For this reason, in the Any search mode, cross-field matches are
impossible, because a single term is sufficient to create a match. Every match is considered to be a single-
field match, even if there were several search terms.

For Partial search mode, if the required number of matches is two, the Glom module considers a record to
be a single-field match if it has at least one field that contains two or more or the search terms. You cannot
rank results based on how many terms match within a single field.

For more information about search modes, see Using Search Modes on page 264.

Interpreted
Interpreted (interp) is a general-purpose module that assigns a score to each result record based on the
query processing techniques used to obtain the match.

Matching techniques considered include partial matching, cross-attribute matching, spelling correction,
thesaurus, and stemming matching.

Specifically, the Interpreted module ranks results as follows:

1. All non-partial matches are ranked ahead of all partial matches. For more information, see Using Search
Modes on page 264.

2. Within the above strata, all single-field matches are ranked ahead of all cross-field matches. For more
information, see Working with Search Interfaces on page 251.

3. Within the above strata, all non-spelling-corrected matches are ranked above all spelling-corrected
matches. See Spelling Correction and Did You Mean on page 294 for more information.

4. Within the above strata, all thesaurus matches are ranked below all non-thesaurus matches. See Using
Stemming and Thesaurus on page 302 for more information.

5. Within the above strata, all stemming matches are ranked below all non-stemming matches. See Using
Stemming and Thesaurus on page 302 for more information.

Maximum Field
The Maximum Field (maxfield) module behaves identically to the Field module, except in how it scores
cross-field matches.

Unlike Field, which assigns a static score to cross-field matches, Maximum Field selects the score of the
highest-ranked field that contributed to the match.

Note the following:

• Because Maximum Field defines the score for cross-field matches dynamically, it does not make use of
the cross-field setting in the search interface.

• Maximum Field is only valid for record search operations. This module assigns a score of zero to all
results for other types of search requests.

• Maximum Field treats all matches the same, whether or not they are due to query expansion.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Relevance Ranking 315

Number of Fields
The Number of Fields (Numfields) module ranks results based on the number of fields in the associated
search interface in which a match occurs.

Note that we are counting whole-field rather than cross-field matches. Therefore, a result that matches two
fields matches each field completely, while a cross-field match typically does not match any field completely.

Note: Numfields treats all matches the same, whether or not they are due to query expansion. The
Numfields module is only useful in conjunction with record search operations.

Number of Terms
The Number of Terms (or Nterms) module ranks matches according to how many query terms they match.

For example, in a three-word query, results that match all three words will be ranked above results that match
only two, which will be ranked above results that match only one, which will be ranked above results that had
no matches.

With multiple term searches, Nterms only ranks the terms in the field with the most existence of the term. For
example, assume that a search is made for 5 terms (a, b, c, d, and e) and you have a record with two fields:

Field 1: a b c
Field 2: d e

Version 7.6.1 • December 2013

This record is ranked as if it matched three terms, the maximum number that matched in any single field.

Note the following about Nterms:

• The Nterms module is only applicable to search modes where results can vary in how many query terms
they match. These include Any, Partial, Any, and AllPartial. For details on these search modes,
see Using Search Modes on page 264.

• Nterms treats all matches the same, whether or not they are due to query expansion.

Phrase
The Phrase module states that results containing the user’s query as an exact phrase, or a subset of the
exact phrase, should be considered more relevant than matches simply containing the user’s search terms
scattered throughout the text.

Records that have the phrase are ranked higher than records that do not contain the phrase.

Configuring the Phrase module

Phrase module behavior

Treatment of wildcards with the Phrase module

Configuring the Phrase module

The Phrase module is configured by editing the RELRANK_PHRASE XML element.

You add a Phrase module with the RELRANK_PHRASE element, which is a sub-element of the
RELRANK_STRATEGY element.

The following example shows a relevance ranking strategy named PhraseMatch with a Phrase module:

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 316

<RELRANK_STRATEGIES>
<RELRANK_STRATEGY NAME="PhraseMatch">
<RELRANK_PHRASE APPROXIMATE="TRUE" QUERY_EXPANSION="FALSE" SUBPHRASE="TRUE"/>

</RELRANK_STRATEGY>
</RELRANK_STRATEGIES>

Version 7.6.1 • December 2013

To configure the Phrase module:

1. In any editor, edit the contents of the RELRANK_STRATEGIES configuration document to add or
modify the RELRANK_PHRASE element.

For details on these elements, see the appendix in this guide. The resulting contents should look
similar to the example above.

2. Send the changes to the Oracle Endeca Server using the Configuration Web Service or Integrator
ETL.

Details on the three options are explained in the following topic.

Phrase module options

Summary of Phrase option interactions

Phrase module options

The Phrase module has a variety of options that you use to customize its behavior.

These options are configured via Boolean attributes:

• The APPROXIMATE attribute sets the use of approximate subphrase/phrase matching.

• The QUERY_EXPANSION attribute determines whether to apply query expansion (spell correction,
thesaurus, and stemming).

• The SUBPHRASE attribute enables ranking based on length of subphrases.

These attributes belong to the RELRANK_PHRASE element.

Approximate matching
Approximate matching provides higher-performance matching, as compared to the standard Phrase module,
with somewhat less exact results.

With approximate matching enabled, the Phrase module looks at a limited number of positions in each result
that a phrase match could possibly exist, rather than all the positions. Only this limited number of possible
occurrences is considered, regardless of whether there are later occurrences that are better, more relevant
matches.

The approximate setting is appropriate in cases where the runtime performance of the standard Phrase
module is inadequate because of large result contents and/or high site load.

Query expansion

Applying spelling correction, thesaurus, and stemming adjustments to the original phrase is generically known
as query expansion. With query expansion enabled, the Phrase module ranks results that match a phrase’s
expanded forms in the same stratum as results that match the original phrase.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 317

Consider the following example:

• A thesaurus entry exists that expands "US" to "United States".

• The user queries for "US government".

The query "US government" is expanded to "United States government" for matching purposes, but the
Phrase module gives a score of two to any results matching "United States government" because the
original, unexpanded version of the query, "US government", only had two terms.

Subphrasing

Subphrasing ranks results based on the length of their subphrase matches. In other words, results that match
three terms are considered more relevant than results that match two terms, and so on.

A subphrase is defined as a contiguous subset of the query terms the user entered, in the order that he or she
entered them. For example, the query "fax cover sheets" contains the subphrases "fax", "cover", "sheets", "fax
cover", "cover sheets", and "fax cover sheets", but not "fax sheets".

Content contained inside nested quotes in a phrase is treated as one term. For example, consider the
following phrase:

the question is "to be or not to be"

Version 7.6.1 • December 2013

The quoted text ("to be or not to be") is treated as one query term, so this example consists of four query
terms even though it has a total of nine words.

When subphrasing is not enabled, results are ranked into two strata: those that matched the entire phrase and
those that did not.

Summary of Phrase option interactions

The three configuration settings for the Phrase module can be used in a variety of combinations for different
effects.

The following matrix describes the behavior of each combination.

Subphrase Approximate Expansion Description

Off Off Off Default. Ranks results into two strata: those that
match the user’s query as a whole phrase, and those
that do not.

Off Off On Ranks results into two strata: those that match the
original, or an extended version, of the query as a
whole phrase, and those that do not.

Off On Off Ranks results into two strata: those that match the
original query as a whole phrase, and those that do
not.

Looks only at the first possible phrase match within
each record.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 318

Subphrase Approximate Expansion Description

Off On On Ranks results into two strata: those that match the
original, or an extended version, of the query as a
whole phrase, and those that do not.

Looks only at the first possible phrase match within
each record.

On Off Off Ranks results into N strata, where N equals the
length of the query and each result’s score equals the
length of its matched subphrase.

On Off On Ranks results into N strata, where N equals the
length of the query and each result’s score equals the
length of its matched subphrase.

Extends subphrases to facilitate matching, but ranks
based on the length of the original subphrase (before
extension).

Note that this combination can have a negative
performance impact on query throughput.

On On Off Ranks results into N strata, where N equals the
length of the query and each result’s score equals the
length of its matched subphrase.

Looks only at the first possible phrase match within
each record.

On On On Ranks results into N strata, where N equals the
length of the query and each result’s score equals the
length of its matched subphrase.

Expands the query to facilitate matching, but ranks
based on the length of the original subphrase (before
extension).

Looks only at the first possible phrase match within
each record.

Note: You should only use one Phrase module in any given search interface and set all of your
options in it.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Relevance Ranking 319

Phrase module behavior

This topic describes some aspects of the behavior of the Phrase module with other features of the Oracle
Endeca Server.

Effect of search modes
Oracle Endeca Server provides a variety of search modes to facilitate matching during search (Any, All,
Partial, and so on). These modes only determine which results match a user’s query, they have no effect
on how the results are ranked after the matches have been found. Therefore, the Phrase module works as
described in this section, regardless of search mode. The one exception to this rule is Boolean. Phrase, like
the other relevance ranking modules, is never applied to the results of Boolean queries.

Results with multiple matches

If a single result has multiple subphrase matches, either within the same field or in several different fields, the
result is slotted into a stratum based on the length of the longest subphrase match.

Stop words
When using the Phrase module, stop words are always treated like non-stop word terms and stratified
accordingly.

For example, the query "raining cats and dogs" will result in a rank of two for a result containing "fat cats and
hungry dogs" and a rank of three for a result containing "fat cats and dogs" (this example assumes subphrase
is enabled).

Cross-field matches

An entire phrase, or subphrase, must appear in a single field in order for it to be considered a match. In other
words, matches created by concatenating fields are not considered by the Phrase module.

Notes about the Phrase module
Keep the following points in mind when using the Phrase module:

• If a query contains only one word, then that word constitutes the entire phrase and all of the matching
results will be put into one stratum (score = 1). However, the module can rank the results into two strata:
one for records that contain the phrase, and a lower-ranking stratum for records that do not contain the
phrase.

• Because of the way hyphenated words are positionally indexed, it is recommended to enable subphrase if
your results contain hyphenated words.

Treatment of wildcards with the Phrase module

The Phrase module translates each wildcard in a query into a generic placeholder for a single term.

For example, the query "sparkling w* wine" becomes "sparkling * wine" during phrase relevance ranking,
where "*" indicates a single term. This generic wildcard replacement causes slightly different behavior
depending on whether subphrasing is enabled.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Relevance Ranking 320

When subphrasing is not enabled, all results that match the generic version of the wildcard phrase exactly are
still placed into the first stratum. It is important, however, to understand what constitutes a matching result
from the Phrase module’s point of view.

Consider the search query "sparkling w* wine" with the Any mode enabled. In Any mode, search results only
need to contain one of the requested terms to be valid, so a list of search results for this query could contain
phrases that look like this:

sparkling white wine
sparkling refreshing wine
sparkling wet wine
sparkling soda
wine cooler

Version 7.6.1 • December 2013

When phrase relevance ranking is applied to these search results, the Phrase module looks for matches to
"sparkling * wine" not "sparkling w* wine". Therefore, there are three results—"sparkling white wine", "sparkling
refreshing wine", and "sparkling wet wine"—that are considered phrase matches for the purposes of ranking.
These results are placed in the first stratum. The other two results are placed in the second stratum.

When subphrasing is enabled, the behavior becomes a bit more complex. Again, we have to remember that
wildcards become generic placeholders and match any single term in a result. This means that any subphrase
that is adjacent to a wildcard will, by definition, match at least one additional term (the wildcard). Because of
this behavior, subphrases break down differently. The subphrases for "cold sparkling w* wine" break down into
the following (note that w* changes to *):

cold
sparkling *
* wine
cold sparkling *
sparkling * wine
cold sparkling * wine

Notice that the subphrases "sparkling", "wine" and "cold sparkling" are not included in this list. Because these
subphrases are adjacent to the wildcard, we know that the subphrases will match at least one additional term.
Therefore, these subphrases are subsumed by the "sparkling *", "* wine", and "cold sparkling *" subphrases.

Like regular subphrase, stratification is based on the number of terms in the subphrase, and the wildcard
placeholders are counted toward the length of the subphrase. To continue the example above, results that
contain “cold” get a score of one, results that contain "sparkling *" get a score of two, and so on. Again, this is
the case even if the matching result phrases are different, for example, "sparkling white" and "sparkling soda".

Finally, it is important to note that, while the wildcard can be replaced by any term, a term must still exist. In
other words, search results that contain the phrase "sparkling wine" are not acceptable matches for the phrase
"sparkling * wine", because there is no term to substitute for the wildcard. Conversely, the phrase "sparkling
cold white wine" is also not a match, because each wildcard can be replaced by one, and only one, term.
Even when wildcards are present, results must contain the correct number of terms, in the correct order, for
them to be considered phrase matches by the Phrase module.

Proximity
Designed primarily for use with unstructured data, the Proximity module ranks how close the query terms
are to each other in a document by counting the number of intervening words.

Like the First module, this module groups its results into variable sized strata, because the difference in
significance of an interval of one word and one of two words is usually greater than the difference in
significance of an interval of 21 words and 22. If no terms match, the document is placed in the lowest
stratum.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 321

Single words and phrases get assigned to the best stratum because there are no intervening words. When the
query has multiple terms, Proximity behaves as follows:

1. All of the absolute positions for each of the query terms are computed.

2. The smallest range that includes at least one instance of each of the query terms is calculated. This
range’s length is given in number of words.

The score for each document is the strata that contains the difference of the range’s length and the
number of terms in the query; smaller differences are better than larger differences.

Under query expansion (that is, stemming, spelling correction, and the thesaurus), the expanded terms are
treated as if they were in the query, so the proximity metric is computed using the locations of the expanded
terms in the matching document.

For example, if a user searches for big cats and a document contains the sentence, "Big Bird likes his cat"
(stemming takes cats to cat), then the proximity metric is computed just as if the sentence were, "Big Bird likes
his cats."

Proximity scores partially matched queries as if the query only contained the matching terms. For example,
if a user searches for cat dog fish and a document is partially matched that contains only cat and fish, then the
document is scored as if the query cat fish had been entered.

Note: Proximity does not work with Boolean searches, cross-field matching, or wildcard search. It
assigns all such matches a score of zero.

Spell
The Spell module ranks spelling-corrected matches below other kinds of matches.

Spell assigns a rank of 0 to matches from spelling correction, and a rank of 1 from all other sources. That is,
it ignores all other sorts of query expansion.

Static
The Static module assigns a static or constant data-specific value to each search result, depending on the
type of search operation performed and depending on optional parameters that can be passed to the module.

For record search operations, the first parameter to the module specifies an attribute, which will define the sort
order assigned by the module. The second parameter can be specified as ascending or descending to
indicate the sort order to use for the specified attribute.

For example, using the module Static(Availability,descending) would sort result records in
descending order with respect to their assignments from the Availability standard attribute. Using the module
Static(Title,ascending) would sort result records in ascending order by their Title standard attribute
assignments.

In a catalog application, setting the Static module by Price, descending leads to more expensive products
being displayed first.

For value search, the first parameter should be specified as nbins. Specifying nbins causes the static
module to sort result values by the number of associated records in the full data set.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Relevance Ranking 322

Stem
The Stem module ranks matches due to stemming below other kinds of matches.

Stem assigns a rank of 0 to matches from stemming, and a rank of 1 from all other sources. That is, it ignores
all other sorts of query expansion.

Thesaurus
The Thesaurus module ranks matches due to thesaurus entries below other sorts of matches.

Thesaurus assigns a rank of 0 to matches from the thesaurus, and a rank of 1 from all other sources. That
is, it ignores all other sorts of query expansion.

Weighted Frequency
Like the Frequency module, the Weighted Frequency (Wfreq) module scores results based on the frequency
of user query terms in the result.

Additionally, the Weighted Frequency module weights the individual query term frequencies for each result by
the information content (overall frequency in the complete data set) of each query term. Less frequent query
terms (that is, terms that would result in fewer search results) are weighted more heavily than more frequently
occurring terms.

The Weighted Frequency module ignores matches due to query expansion (that is, such matches are given a
rank of 0).

Note: Due to performance issues, it is not recommended to use the Weighted Frequency module with
standalone relevance ranking (that is, per-query relevance ranking).

Relevance ranking strategies
Relevance ranking modules define the primitive search result ordering functions provided by the Oracle
Endeca Server. These primitive modules can be combined to compose more complex ordering behaviors
called relevance ranking strategies.

You may also define and apply a strategy that consists of a single module, rather than a group of modules.

You can specify a relevance ranking strategy either in the request issued by the Conversation Web Service,
and/or in the RECSEARCH_CONFIG configuration XML document.

The scores assigned by a strategy are composed from the scores assigned by its constituent modules. This
composite score is constructed so that records are first ordered by the first module. After that, ties are broken
by the subsequent modules in order. If any ties remain after all modules have been consulted, they are
resolved by the default sort. If after that any ties still remain, the order of records is determined by the system.

Note that the order of results returned for a query where there are multiple text searches with relevance
ranking enabled in the query is that the relevance rank of a given record will be the maximum of the relevance
ranks of the searches for that record.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Relevance Ranking 323

Relevance ranking strategies are used in two main contexts in the Oracle Endeca Server:

• You can configure relevance ranking to a search interface in the RECSEARCH_CONFIG configuration
document, and send this document to the Oracle Endeca Server using the Configuration Web Service or
Integrator ETL.

• You can specify a relevance ranking strategy for a particular attribute to override the strategy specified for
the selected search interface. This allows relevance ranking behavior to be fully customized on a per-
query basis. In other words, in a Conversation Web Service request, you can send a per-query relevance
ranking strategy. For details, see Specifying relevance ranking for record and value searches on page
325.

Creating relevance ranking strategies

Creating relevance ranking strategies
You create relevance ranking strategies by modifying the RELRANK_STRATEGIES configuration document.

All configuration documents are present in the data files of the Oracle Endeca Server, for a particular data
domain and its corresponding Dgraph process. You can edit them using the format specified in the Dgraph
Configuration Reference appendix in this guide. After these documents are edited, you can send them to the
Dgraph using the Configuration Web Service or Integrator ETL, thus specifying the configuration you want.

You create a relevance ranking strategy by adding one or more RELRANK_STRATEGY elements to the root
RELRANK_STRATEGIES document.

Each RELRANK_STRATEGY element, in turn, contains one or more relevance ranking module elements, such
as the RELRANK_INTERP and RELRANK_FIELD module elements in this WineMatch example:

<RELRANK_STRATEGIES>
<RELRANK_STRATEGY NAME="WineMatch">
<RELRANK_INTERP/>
<RELRANK_STATIC NAME="Flavors" ORDER="ASCENDING"/>
<RELRANK_FIELD/>

</RELRANK_STRATEGY>
</RELRANK_STRATEGIES>

Version 7.6.1 • December 2013

Keep in mind that the order of the module sub-elements defines the order in which the strategies are applied
to the search results.

To create a relevance ranking strategy:

1. Edit the contents of the RELRANK_STRATEGIES document to add or modify the RELRANK_STRATEGY
elements.

For details on these elements, see the appendix in this guide. The resulting contents of the edited
document should look similar to the example above.

2. Send the RELRANK_STRATEGIES document to the Dgraph using the Configuration Web Service or
Integrator ETL.

The new relevance ranking strategy can now be added to a search interface.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 324

Implementing relevance ranking
You can create and control relevance ranking for both record search and value search at a system-default
level.

You can apply record search relevance ranking as you are creating a search interface, or afterwards. A search
interface is a named group of at least one attribute. You create search interfaces so you can apply behavior
such as relevance ranking across a group.

You set the search interface for record search by modifying the RECSEARCH_CONFIG configuration document
and sending it to the Oracle Endeca Server with the Configuration Web Service, or using a connector in
Integrator ETL. For information about configuring relevance ranking in search interfaces, see Working with
Search Interfaces on page 251.

For information on using relevance ranking for value search, see Implementing relevance ranking for value
search on page 325.

Adding a Static module

Ranking order for Field and Maximum Field modules

How relevance ranking score ties between search interfaces are resolved

Implementing relevance ranking for value search

Specifying relevance ranking for record and value searches

Adding a Static module

Keep the following in mind when you add a Static module to the ranking strategy.

The Static module is the only one that you can add multiple times. When you add a Static module, be sure to
set the two Static attributes:

• The NAME attribute sets the name of an attribute that is used for static relevance ranking.

• The ORDER attribute specifies how records should be sorted with respect to the specified Endeca attribute
sets. The two values are ASCENDING and DESCENDING.

Ranking order for Field and Maximum Field modules

The Field and Maximum Field modules rank results based on which attribute member of the selected search
interface caused the match.

In a search interface, higher relevance-ranked values (in the RELEVANCE_RANK attribute of the MEMBER_NAME
element) correspond to greater importance. This behavior means that the Field and Maximum Field modules
will score results caused by higher-ranked Endeca attributes ahead of those caused by lower-ranked
attributes.

In this example:

<MEMBER_NAME RELEVANCE_RANK="2">P_Type</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="1">P_Description</MEMBER_NAME>

Version 7.6.1 • December 2013

records tagged with P_Type will be ranked ahead of records with P_Description.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 325

To change the relevance ranking behavior for these modules, change the RELEVANCE_RANK integer settings
as appropriate. For example, change P_Description to a RELEVANCE_RANK="2" setting and P_Type to a
RELEVANCE_RANK="1" setting.

How relevance ranking score ties between search interfaces are resolved

In the case of multiple search interfaces and relevance ranking score ties, ties are broken based on the
relevance ranking sort strategy of the search interface with the highest relevance ranking score for a given
record.

If two different records belong to different search interfaces, the record from the search interface specified
earlier in the query comes first.

Implementing relevance ranking for value search

You can define a system-default relevance ranking strategy for value search operations.

To define a system-default relevance ranking strategy for value search operations, modify the
RELRANK_STRATEGY attribute of the DIMSEARCH_CONFIG configuration document. To do so, create a text file
with the configuration document and send it to the Oracle Endeca Server, using the Configuration Web
Service or Integrator ETL.

The RELRANK_STRATEGY attribute specifies the name of a relevance ranking strategy for value search. The
content of this attribute should be a relevance ranking string, as in this example:

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE" RELRANK_STRATEGY="interp,exact"/>

Version 7.6.1 • December 2013

The default ranking strategy for value search operations, which is applied if you do not make any changes to
it, is:

interp,exact,static

Specifying relevance ranking for record and value searches

You can specify a relevance ranking strategy for both record search queries and value search queries in the
Conversation Web Service.

Both types of queries let you specify either an existing relevance ranking strategy or the names of the
relevance ranking modules.

Record search
For record search, the RelevanceRankingStrategy attribute of the TextSearchFilter element lets you
specify a relevance ranking strategy for the query, as in this example:

<Request xmlns="http://www.endeca.com/MDEX/conversation/3/0">
<State>

<TextSearchFilter Key="Flavors" Mode="AllPartial" RelevanceRankingStrategy="exact" Language
="en">

grapefruit
</TextSearchFilter>

</State>
<RecordListConfig Id="RecList" MaxPages="10">

<Column>Flavors</Column>
<RecordsPerPage>5</RecordsPerPage>

</RecordListConfig>

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 326

<SearchAdjustmentConfig Id="SpellCorrect"/>
</Request>

Version 7.6.1 • December 2013

For more information on the TextSearchFilter, see Record search filter on page 246.

Value search
For value search, the RelevanceRankingStrategy attribute of the ValueSearchConfig type allows you to
specify a relevance ranking strategy for the query.

<Request>
<State/>
<ValueSearchConfig Id="ProdSearch" MaxPerProperty="5"

RelevanceRankingStrategy="static (nbins,descending)" Mode="Any" Language="en">
<SearchTerm>racks</SearchTerm>
<RestrictToProperties>

<Property>ProductCategory</Property>
<Property>BikeRacks</Property>

</RestrictToProperties>
</ValueSearchConfig>

</Request>

For more information on the ValueSearchConfig type, see Value search query format on page 259.

Relevance ranking sample scenarios
This section contains two examples of relevance ranking behavior to further illustrate the capabilities of this
feature.

In the first example, we first look at the effects of various relevance ranking strategies on a small sample data
set that supports record search, examining the range of possible result orderings possible using only a limited
set of ranking modules.

In the second example, we look at how adding a simple relevance ranking strategy can affect user results in
the reference implementation.

Note: These extremely simple scenarios are provided for illustrative purposes only. For more realistic
examples, see Recommended strategies on page 329.

Example 1: Using a small data set

Example 2: UI reference implementation

Example 1: Using a small data set

This scenario shows the effects of various relevance ranking strategies on a small data set.

This example illustrates the richness of relevance ranking tuning possible with the modular relevance ranking
system of the Oracle Endeca Server. Using two modules on a data set of three records, we found that all four
possible combinations of the modules into strategies resulted in different orderings, all of which were different
from the default ordering.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 327

The example uses the following example record set:

Record Title attribute Author attribute

1 Great Short Stories Mark Twain and other authors

2 Mark Twain William Lyon Phelps

3 Tom Sawyer Mark Twain

Creating the search interface

In a text editor, we have defined a search interface named Books, which contains both Title and Author
standard attributes. The relevance rank is determined by the order in which the Endeca attributes appear in
the members list.

Assume that we have not defined an explicit default sort order for the records, in which case their default order
is determined by the system.

Without relevance ranking

Suppose that the user enters a record search query against the Books search interface for Mark Twain.
Clearly all three of the records are hits, because each record has at least one searchable attribute value
containing at least one occurrence of both the words Mark and Twain. But in what order should the results be
presented to the user? Without relevance ranking enabled, the results will be returned in their default order: 1,
2, 3.

If relevance ranking were enabled, the order depends on the relevance ranking strategy selected.

With an Exact ranking strategy
Suppose we have selected the Exact relevance ranking strategy, either by assigning this as the default
strategy for the Books search interface or by using query-level search options.

In this case, the order of results would be based only on whether results were Exact, Phrase, or other
matches. Because records 2 and 3 have attributes whose complete values exactly match the user query Mark
Twain, these results would be returned ahead of record 1, with the tie being broken by the default sort set by
the system (remember that we have not defined a default sort).

With a Field ranking strategy
Now, assume that we have selected the Field relevance ranking strategy.

The order of results would be based only on which Endeca attribute caused the match, with Author matches
being prioritized over Title matches. Because records 1 and 3 match on Author, these are returned ahead of
record 2 (again, with ties broken by the default sort imposed by the system).

With a Field,Exact ranking strategy
Now, consider using a combination of these two strategies: Field,Exact.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Relevance Ranking 328

In this case, the primary sort is determined by the first module, Field, which again dictates that records 1 and
3 should be returned ahead of record 2. But in this case, the Field tie between records 1 and 3 is resolved by
the Exact module, which prioritizes record 3 ahead of record 1. Thus, the order of results returned is: 3, 1, 2.

With an Exact,Field ranking strategy
Finally, consider combining the same two modules but in a different priority order: Exact,Field.

In this case, the primary sort is determined by the Exact module, which again prioritizes records 2 and 3
ahead of record 1. In this case, the Exact tie between records 2 and 3 is resolved by the Field module,
which orders record 3 ahead of record 2 because record 3 is an Author match. Thus, the order of results
returned is: 3, 2, 1.

Example 2: UI reference implementation

This scenario shows how adding a relevance ranking module can change the order of the returned records.

This example, which is somewhat more realistically scaled, uses a wine data set. It demonstrates how
relevance ranking can affect the results displayed to your users.

In this scenario, we use the thesaurus and relevance ranking features to enable end users’ access to Flavor
results similar to the one they searched on, while still seeing exact matches first.

First, we establish the following two-way thesaurus entries:

<THESAURUS>
<THESAURUS_ENTRY>
<THESAURUS_FORM>cab</THESAURUS_FORM>
<THESAURUS_FORM>cabernet</THESAURUS_FORM>

</THESAURUS_ENTRY>
<THESAURUS_ENTRY>
<THESAURUS_FORM>cinnamon</THESAURUS_FORM>
<THESAURUS_FORM>spice</THESAURUS_FORM>
<THESAURUS_FORM>nutmeg</THESAURUS_FORM>

</THESAURUS_ENTRY>
<THESAURUS_ENTRY>
<THESAURUS_FORM>tangy</THESAURUS_FORM>
<THESAURUS_FORM>tart</THESAURUS_FORM>
<THESAURUS_FORM>sour</THESAURUS_FORM>
<THESAURUS_FORM>vinegary</THESAURUS_FORM>

</THESAURUS_ENTRY>
<THESAURUS_ENTRY>
<THESAURUS_FORM>dusty</THESAURUS_FORM>
<THESAURUS_FORM>earthy</THESAURUS_FORM>

</THESAURUS_ENTRY>
</THESAURUS>

Version 7.6.1 • December 2013

Before applying these thesaurus equivalencies, if we search on the Dusty flavor, 83 records are returned, and
if we search on the Earthy flavor, 3,814 records are returned.

After applying these thesaurus equivalencies, if we search on the Dusty attribute, results for both Dusty and
Earthy are returned. (Because some records are flagged with both the Dusty and Earthy descriptors, the
number of records is not an exact total of the two.)

Wine (by order returned) Relevant attribute

A Tribute Sonoma Mountain Earthy

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 329

Wine (by order returned) Relevant attribute

Against the Wall California Earthy

Aglianico Irpinia Rubrato Dusty

Aglianico Sannio Earthy

Because the application is sorting on Name in ascending order, the Dusty and Earthy results are intermingled.
That is, the first two results are for Earthy and the third is for Dusty, even though we searched on Dusty,
because the two Earthy records came before the Dusty one when the records were sorted in alphabetical
order.

Now, suppose that while we want our users to see the synonymous entries, we want records that exactly
match the search term Dusty to be returned first. We therefore would use the Interpreted ranking module to
ensure that outcome.

Wine (by order returned) Relevant attribute

Aglianico Irpinia Rubrato Dusty

Bandol Cuvee Speciale La Miguoa Dusty

Beaujolais-Villages Reserve du Chateau de Dusty
Montmelas

Beauzeaux Winemaker’s Collection Napa Valley Dusty

With the Interpreted ranking strategy, the results are different. When we search on Dusty, we see the records
that matched for Dusty sorted in alphabetical order, followed by those that matched for Earthy. The wine
Aglianico Irpinia Rubrato, which was returned third in the previous example, is now returned first.

Recommended strategies
This section provides some recommended strategies that depend on the implementation type.

Relevance ranking behavior is complex and powerful and requires careful, iterative development. Typically,
selection of the ideal relevance ranking strategy for a given application depends on extensive experimentation
during application development. The set of possible result ranking strategies is extremely rich, and because
setting ranking strategies is highly dependent on the quantity and type of data you are working with, a strategy
that works well in one situation could be unsatisfactory in another.

For this reason, this documentation provides recommended strategies for different types of implementations
and suggests that you use them as a point of departure in creating your own strategies. The following sections
describe recommended general strategies for each product in detail.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Relevance Ranking 330

Testing your strategies

When testing your own strategies, it is a good idea to try searching on diverse examples: single word terms,
multi-word terms that you know are an exact match for records in your data, and multi-word terms that contain
additional words to the ones in your data. In this way you will see the full range of relevance ranking effects.

Recommended strategy for retail catalog data

Recommended strategy for document repositories

Recommended strategy for retail catalog data

This topic describes a good starting strategy to try if you are a retailer working with a catalog data set.

The strategy assumes the following:

• The search mode is AllPartial. By using this mode, you ensure that a user’s search would return a
two-words-out-of-five match as well as a four-words-out-of-five match, just at a lower priority.

• The strategy is based on a search interface with members such as Category, Name, and Description, in
that order. The order is significant because a match on the first member ranks more highly than a cross-
field match or match on the second or third member. For details, see Working with Search Interfaces on
page 251.

The strategy is as follows:

• NTerms

• MaxField

• Glom

• Exact

• Static

The modules in this strategy work like this:

1. NTerms, the first module, ensures that in a multi-word search, the more words that match the better.

2. MaxField puts cross-field matches as high in priority as possible, to the point where they could tie with
non-cross-field matches.

3. The next module, Glom, decomposes cross-field matches, effectively breaking any ties resulting from
MaxField. Together, MaxField and Glom provide the proper ordering, depending upon what matched.

4. Applying the Exact module means that an exact match in a highly-ranked member of the search interface
is placed higher than a partial or cross-field match.

5. Optionally, the Static module can be used to sort remaining ties by criteria such as Price or SalesRank.

Recommended strategy for document repositories

This topic describes a good starting strategy to try if you are working with a document repository.

The strategy assumes the following:

• The search mode is AllPartial. By using this mode, you ensure that a user’s search would return a
two-words-out-of-five match as well as a four-words-out-of-five match, just at a lower priority.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Relevance Ranking 331

• The strategy is based on a search interface with members such as Title, Summary, and DocumentText, in
that order. The order is significant because a match on the first member ranks more highly than a cross-
field match or match on the second or third member.

The strategy is as follows:

• NTerms

• MaxField

• Glom

• Phrase (with or without approximate matching enabled)

• Static

The modules in this strategy work like this:

1. NTerms, the first module, ensures that in a multi-word search, the more words that match the better.

2. MaxField puts cross-field matches as high in priority as possible, to the point where they could tie with
non-cross-field matches.

3. The next module, Glom, decomposes cross-field matches, effectively breaking any ties resulting from
MaxField. Together, MaxField and Glom provide the proper ordering, depending upon what matched.

4. Applying the Phrase module ensures that results containing the user’s query as an exact phrase are
given a higher priority than matching containing the user’s search terms sprinkled throughout the text.

5. Optionally, the Static module can be used to sort the remaining ties by criteria such as ReleaseDate or
Popularity.

Performance impact of relevance ranking
Relevance ranking can impose a significant computational cost in the context of affected search operations
(that is, operations where relevance ranking is actually enabled).

You can minimize the performance impact of relevance ranking in your implementation by making module
substitutions when appropriate, and by ordering the modules you do select sensibly within your relevance
ranking strategy.

Making module substitutions

Because of the linear cost of relevance ranking in the size of the result set, the actual cost of relevance
ranking depends heavily on the set of ranking modules used. In general, modules that do not perform text
evaluation introduce significantly lower computational costs than text-matching-oriented modules.

Although the relative cost of the various ranking modules is dependent on the nature of your data and the
number of records, the modules can be roughly grouped into four tiers:

• Exact is very computationally expensive.

• Proximity, Phrase with Subphrase or Query Expansion options specified, and First are all high-cost
modules, presented in the order of decreasing cost.

• WFreq can also be costly in some situations.

• The remaining modules (Static, Phrase with no options specified, Freq, Spell, Glom, Nterms,
Interp, Numfields, Maxfield, and Field) are generally relatively cheap.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Relevance Ranking 332

In order to maximize the performance of your relevance ranking strategy, consider a less expensive way to get
similar results. For example, replacing Exact with Phrase may improve performance in some cases with
relatively little impact on results.

Note: Choose the set of modules used for relevance ranking most carefully when the data set is large
or contains large/offline file content that is used for search operations.

Ordering modules sensibly

Relevance ranking modules are only evaluated as needed. When higher-priority ranking modules determine
the order of records, lower-priority modules do not need to be calculated. This can have a dramatic impact on
performance when higher-cost modules have a lower priority than a lower-cost module.

While you have the freedom to order modules as you like, for best performance, make sure that the cheaper
modules are placed before the more expensive ones in your strategy.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Part VII

References

Chapter 32

Dgraph Configuration Reference

This reference describes the XML elements in the Dgraph configuration documents. The reference describes
each element's format, attributes, and sub-elements, and provides an example of its usage.

XML elements

Dimsearch_config elements

Recsearch_config elements

Relrank_strategies elements

Search_interface elements

Stop_words elements

Thesaurus elements

XML elements
These common elements are available for use in multiple XML configuration files.

COMMENT

DIMNAME

PROP

PROPNAME

PVAL

COMMENT

The COMMENT element associates a comment with a pipeline component and preserves the comment when
the file is rewritten. This element provides an alternative to using inline XML comments of the form <!-- ... -->.

Format
<!ELEMENT COMMENT (#PCDATA)>

Version 7.6.1 • December 2013

Attributes

The COMMENT element has no attributes.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 335

Sub-elements

The COMMENT element has no sub-elements.

Example

This example includes an informational comment.

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE"
<COMMENT>Displays ancestor managed values.</COMMENT>

/DIMSEARCH_CONFIG>

Version 7.6.1 • December 2013

DIMNAME

The DIMNAME element specifies the name of a managed attribute.

Format
<!ELEMENT DIMNAME (#PCDATA)>

Attributes

The DIMNAME element has no attributes.

Sub-elements

The DIMNAME element has no sub-elements.

Example

This example shows the name of a managed attribute.

<RECORD>
<DIMNAME="ProductType">
...

</RECORD>

PROP

The PROP element represents an Endeca standard attribute. it can optionally contain a PVAL element.

Format
<!ELEMENT PROP (PVAL?)>
<!ATTLIST PROP

NAME CDATA #REQUIRED
>

Attributes

The PROP element has the following attributes.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 336

NAME

Identifies the name of the standard attribute.

Sub-elements

The PROP element can optionally contain a PVAL element (or it can have no PVAL elements).

Example

This example shows a standard attribute name.

<RECORD>
<PROP NAME="Endeca.Title">

<PVAL>The Simpsons Archive</PVAL>
</PROP>
...

</RECORD>

Version 7.6.1 • December 2013

PROPNAME

The PROPNAME element represents an Endeca standard attribute.

Format
<!ELEMENT PROPNAME (#PCDATA)>

Attributes

The PROPNAME element has no attributes.

Sub-elements

The PROPNAME element has no sub-elements.

Example

This example shows a standard attribute name.

<RECORD>
<PROPNAME="P_Price">
...

</RECORD>

PVAL

The PVAL element represents a standard attribute value.

Format
<!ELEMENT PVAL (#PCDATA)>

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 337

Attributes

The PVAL element has no attributes.

Sub-elements

The PVAL element has no sub-elements.

Example

This example shows a standard attribute value.

<PROP NAME="Endeca.Title">
<PVAL>The Simpsons Archive</PVAL>

</PROP>

Version 7.6.1 • December 2013

Dimsearch_config elements
The Dimsearch_config element controls how value searches behave.

This file configures filtering and relevance ranking for value search. These options are configured in the file's
DIMSEARCH_CONFIG root element.

DIMSEARCH_CONFIG

DIMSEARCH_CONFIG

A DIMSEARCH_CONFIG element sets up the configuration of standard and managed attributes for value
searches. Value searches search against the text collection that consists of the names of all the attribute
values in the data set.

Format
<!ELEMENT DIMSEARCH_CONFIG (COMMENT?, PARTIAL_MATCH?)>
<!ATTLIST DIMSEARCH_CONFIG

FILTER_FOR_ANCESTORS (TRUE | FALSE) "FALSE"
RELRANK_STRATEGY CDATA #IMPLIED

>

Attributes

The DIMSEARCH_CONFIG element has the following attributes.

FILTER_FOR_ANCESTORS

When set to TRUE, the results of a value search return only the highest ancestor attribute value. This means
that if both bike clothes and bike vests match a search query for "bike" and FILTER_FOR_ANCESTORS is set
to true, only the bike clothes attribute value is returned. When set to FALSE, then both attribute values are
returned. The default value is FALSE.

RELRANK_STRATEGY

Specifies the name of a relevance ranking strategy for value search.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 338

Sub-elements

The following table provides a brief overview of the DIMSEARCH_CONFIG sub-elements.

Sub-element Brief description

COMMENT Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

PARTIAL_MATCH Specifies if partial query matches should be supported for the
managed attribute.

Example

This example shows a configuration that displays ancestor attribute values.

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE"/>

Version 7.6.1 • December 2013

Recsearch_config elements
The Recsearch_config element configures record search.

RECSEARCH_CONFIG

RECSEARCH_CONFIG

A RECSEARCH_CONFIG element sets up the configuration of attributes for record searches.

Record searches search against the text collection that consists of the names of all the attribute values in the
data set.

Format
<!ELEMENT RECSEARCH_CONFIG

(COMMENT?
, SEARCH_INTERFACE*
)

>
<!ATTLIST RECSEARCH_CONFIG

WORD_INTERP (TRUE | FALSE) "FALSE"
>

Attributes

The RECSEARCH_CONFIG element has the following attributes.

WORD_INTERP

Specifies whether to enable word interpretation forms (see-also suggestions) of user query terms considered
by the text search engine while processing record search requests. The default value is FALSE.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 339

Sub-elements

The following table provides a brief overview of the RECSEARCH_CONFIG sub-elements.

Sub-element Brief description

COMMENT Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an alternative
to using inline XML comments of the form <!-- ... -->.

SEARCH_INTERFACE Represents a named collection of standard and/or managed attributes.

Example

This example shows the configuration for a business implementation.

<RECSEARCH_CONFIG>
<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"

CROSS_FIELD_RELEVANCE_RANK="0"
DEFAULT_RELRANK_STRATEGY="All" NAME="All">

<MEMBER_NAME RELEVANCE_RANK="4">ProductType</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="3">Name</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="2">Region</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>

</SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

Version 7.6.1 • December 2013

Relrank_strategies elements
The Relrank_strategies elements contain the relevance ranking strategies for an application.

The strategies are grouped in the root element RELRANK_STRATEGIES. Each strategy is expressed in a
RELRANK_STRATEGY element, which in turn is made of individual relevance ranking modules such as
RELRANK_EXACT, RELRANK_FIELD, and so on.

For more information, see Relevance Ranking on page 309.

RELRANK_APPROXPHRASE

RELRANK_EXACT

RELRANK_FIELD

RELRANK_FIRST

RELRANK_FREQ

RELRANK_GLOM

RELRANK_INTERP

RELRANK_MAXFIELD

RELRANK_MODULE

RELRANK_NTERMS

RELRANK_NUMFIELDS

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 340

RELRANK_PHRASE

RELRANK_PROXIMITY

RELRANK_SPELL

RELRANK_STATIC

RELRANK_STRATEGIES

RELRANK_STRATEGY

RELRANK_WFREQ

RELRANK_APPROXPHRASE

The RELRANK_APPROXPHRASE element implements the Approximate Phrase relevance ranking module.

This module is similar to RELRANK_PHRASE, except that in the higher stratum, only the first instance of an
exact match of the user's phrase is considered, which improves system performance.

Note: The RELRANK_APPROXPHRASE element is no longer supported. Use the
RELRANK_PHRASE element with the APPROXIMATE attribute instead.

Format
<!ELEMENT RELRANK_APPROXPHRASE EMPTY>

Version 7.6.1 • December 2013

Attributes

The RELRANK_APPROXPHRASE element has no attributes.

Sub-elements

The RELRANK_APPROXPHRASE element has no sub-elements.

RELRANK_EXACT

The RELRANK_EXACT element implements the Exact relevance ranking module.

This module groups results into strata based on how well they match a query string, with the highest stratum
containing results that match the user's query exactly.

Format
<!ELEMENT RELRANK_EXACT EMPTY>

Attributes

The RELRANK_EXACT element has no attributes.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 341

Sub-elements

The RELRANK_EXACT element has no sub-elements.

Example

In this example, the ranking strategy MyStrategy includes the RELRANK_EXACT element.

<RELRANK_STRATEGY NAME="MyStrategy">
<RELRANK_STATIC NAME="Availability" ORDER="DESCENDING"/>
<RELRANK_EXACT/>
<RELRANK_STATIC NAME="Price" ORDER="ASCENDING"/>

</RELRANK_STRATEGY>

Version 7.6.1 • December 2013

RELRANK_FIELD
The RELRANK_FIELD element implements the Field relevance ranking module.

This module assigns a score to each result based on the static rank of the standard attribute or managed
attribute member of the search interface that caused the document to match the query.

Format
<!ELEMENT RELRANK_FIELD EMPTY>

Attributes

The RELRANK_FIELD element has no attributes.

Sub-elements

The RELRANK_FIELD element has no sub-elements.

Example

In this example, the field module is included in a strategy called All_Fields.

<RELRANK_STRATEGY NAME="All_Fields">
<RELRANK_EXACT/>
<RELRANK_INTERP/>
<RELRANK_FIELD/>

</RELRANK_STRATEGY>

RELRANK_FIRST
The RELRANK_FIRST element implements the First relevance ranking module.

This module ranks documents by how close the query terms are to the beginning of the document. This
module takes advantage of the fact that the closer something is to the beginning of a document, the more
likely it is to be relevant.

Format

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 342

<!ELEMENT RELRANK_FIRST EMPTY>

Version 7.6.1 • December 2013

Attributes

The RELRANK_FIRST element has no attributes.

Sub-elements

The RELRANK_FIRST element has no sub-elements.

Example
In this example, the ranking strategy All includes the First relevance ranking module.

<RELRANK_STRATEGY NAME="All">
<RELRANK_FIRST/>
<RELRANK_INTERP/>
<RELRANK_FIELD/>

</RELRANK_STRATEGY>

RELRANK_FREQ

The RELRANK_FREQ element implements the Frequency relevance ranking module.

This module provides result scoring based on the frequency (number of occurrences) of the user's query
terms in the result text.

Format
<!ELEMENT RELRANK_FREQ EMPTY>

Attributes

The RELRANK_FREQ element has no attributes.

Sub-elements

The RELRANK_FREQ element has no sub-elements.

Example

This example implements a strategy called Frequency.

<RELRANK_STRATEGY NAME="Frequency">
<RELRANK_FREQ/>

</RELRANK_STRATEGY>

RELRANK_GLOM
The RELRANK_GLOM element implements the Glom relevance ranking module.

This module ranks single-field matches ahead of cross-field matches.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 343

Format
<!ELEMENT RELRANK_GLOM EMPTY>

Version 7.6.1 • December 2013

Attributes

The RELRANK_GLOM element has no attributes.

Sub-elements

The RELRANK_GLOM element has no sub-elements.

Example

This example implements a strategy called Single_Field.

<RELRANK_STRATEGY NAME="Single_Field">
<RELRANK_GLOM/>

</RELRANK_STRATEGY>

RELRANK_INTERP
The RELRANK_INTERP element implements the Interpreted (Interp) relevance ranking module.

This module provides a general-purpose strategy that assigns a score to each result document based on the
query processing techniques used to obtain the match. Matching techniques considered include partial
matching, cross-attribute matching, spelling correction, thesaurus, and stemming matching.

Format
<!ELEMENT RELRANK_INTERP EMPTY>

Attributes

The RELRANK_INTERP element has no attributes.

Sub-elements

The RELRANK_INTERP element has no sub-elements.

Example

In this example, the Interpreted module is included in a strategy called All_Fields.

<RELRANK_STRATEGY NAME="All_Fields">
<RELRANK_EXACT/>
<RELRANK_INTERP/>
<RELRANK_FIELD/>

</RELRANK_STRATEGY>

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 344

RELRANK_MAXFIELD
The RELRANK_MAXFIELD element implements the Maximum Field (Maxfield) relevance ranking module.

This module is similar to the Field strategy module, except it selects the static field-specific score of the
highest-ranked field that contributed to the match.

Format
<!ELEMENT RELRANK_MAXFIELD EMPTY>

Version 7.6.1 • December 2013

Attributes

The RELRANK_MAXFIELD element has no attributes.

Sub-elements

The RELRANK_MAXFIELD element has no sub-elements.

Example

This example implements a strategy called High_Rank.

<RELRANK_STRATEGY NAME="High_Rank">
<RELRANK_MAXFIELD/>

</RELRANK_STRATEGY>

RELRANK_MODULE

The RELRANK_MODULE element is used to refer to and compose other relevance ranking modules into
strategies.

Format
<!ELEMENT RELRANK_MODULE (RELRANK_MODULE_PARAM*)>
<!ATTLIST RELRANK_MODULE

NAME CDATA #REQUIRED
>

Attributes

The RELRANK_MODULE element has the following attribute.

NAME

NAME refers to another defined relevance ranking module.

Sub-elements

The RELRANK_MODULE element has no supported sub-elements. RELRANK_MODULE_PARAM is not
supported.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 345

Example

In this example, a strategy called Best Price is defined. Later, this strategy is included in another strategy
definition using the RELRANK_MODULE element.

<RELRANK_STRATEGY NAME="Best Price">
<RELRANK_STATIC NAME="Price" ORDER="ASCENDING"/>

</RELRANK_STRATEGY>
<RELRANK_STRATEGY NAME="MyStrategy">

<RELRANK_STATIC NAME="Availability" ORDER="DESCENDING"/>
<RELRANK_EXACT/>
<RELRANK_MODULE NAME="Best Price"/>

</RELRANK_STRATEGY>

Version 7.6.1 • December 2013

RELRANK_NTERMS
The RELRANK_NTERMS element implements the Number of Terms (Nterms) relevance ranking module.

This module assigns a score to each result record based on the number of query terms that the result record
matches. For example, in a three-word query, results that match all three words are ranked above results that
match only two words, which are ranked above results that match only one word.

This module applies only to search modes where the number of results can vary in how many query terms
they match. These search modes include Partial, Any, AllPartial, and AllAny.

Format
<!ELEMENT RELRANK_NTERMS EMPTY>

Attributes

The RELRANK_NTERMS element has no attributes.

Sub-elements

The RELRANK_NTERMS element has no sub-elements.

Example
In this example, the Nterms module is included in a strategy called NumberOfTerms.

<RELRANK_STRATEGY NAME="NumberOfTerms">
<RELRANK_NTERMS/>

</RELRANK_STRATEGY>

RELRANK_NUMFIELDS
The RELRANK_NUMFIELDS element implements the Number of Fields (Numfields) relevance ranking
module.

This module ranks results based on the number of fields in the associated search interface in which a match
occurs.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 346

Format
<!ELEMENT RELRANK_NUMFIELDS EMPTY>

Version 7.6.1 • December 2013

Attributes

The RELRANK_NUMFIELDS element has no attributes.

Sub-elements

The RELRANK_NUMFIELDS element has no sub-elements.

Example
This example implements the Numfields relevance ranking module.

<RELRANK_STRATEGY NAME="NumFields">
<RELRANK_NUMFIELDS/>

</RELRANK_STRATEGY>

RELRANK_PHRASE
The RELRANK_PHRASE element implements the Phrase relevance ranking module.

This module states that results containing the user’s query as an exact phrase, or a subset of the exact
phrase, should be considered more relevant than matches simply containing the user’s search terms scattered
throughout the text. Note that records that have the phrase are ranked higher than records which do not
contain the phrase.

Format
<!ELEMENT RELRANK_PHRASE EMPTY>
<!ATTLIST RELRANK_PHRASE

SUBPHRASE (TRUE | FALSE) "FALSE"
APPROXIMATE (TRUE | FALSE) "FALSE"
QUERY_EXPANSION (TRUE | FALSE) "FALSE"

>

Attributes

The RELRANK_PHRASE element has the following attributes.

SUBPHRASE

If set to TRUE, enables subphrasing, which ranks results based on the length of their subphrase matches.

If set to FALSE (the default), subphrasing is not enabled, which means that results are ranked into two strata:
those that matched the entire phrase and those that did not.

APPROXIMATE

If set to TRUE, approximate matching is enabled. In this case, the Phrase module looks at a limited number
of positions in each result that a phrase match could possibly exist, rather than all the positions. Only this
limited number of possible occurrences is considered, regardless of whether there are later occurrences that
are better, more relevant matches.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 347

QUERY_EXPANSION

If set to TRUE, enables query expansion, in which spelling correction, thesaurus, and stemming adjustments
are applied to the original phrase. With query expansion enabled, the Phrase module ranks results that match
a phrase’s expanded forms in the same stratum as results that match the original phrase.

Sub-elements

The RELRANK_PHRASE element has no sub-elements.

Example
This example of the Phrase module enables approximate matching and query expansion, and disables
subphrasing.

<RELRANK_STRATEGY NAME="PhraseMatch">
<RELRANK_PHRASE APPROXIMATE="TRUE"
QUERY_EXPANSION="TRUE" SUBPHRASE="FALSE"/>

</RELRANK_STRATEGY>

Version 7.6.1 • December 2013

RELRANK_PROXIMITY
The RELRANK_PROXIMITY element implements the Proximity relevance ranking module.

This module ranks how close the query terms are to each other in a document by counting the number of
intervening words.

Format
<!ELEMENT RELRANK_PROXIMITY EMPTY>

Attributes

The RELRANK_PROXIMITY element has no attributes.

Sub-elements

The RELRANK_PROXIMITY element has no sub-elements.

Example
This example implements a strategy called All that includes the Proximity module.

<RELRANK_STRATEGY NAME="All">
<RELRANK_PROXIMITY/>
<RELRANK_INTERP/>
<RELRANK_FIELD/>

</RELRANK_STRATEGY>

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 348

RELRANK_SPELL
The RELRANK_SPELL element implements the Spell relevance ranking module.

This module ranks matches that do not require spelling correction ahead of spelling-corrected matches.

Format
<!ELEMENT RELRANK_SPELL EMPTY>

Version 7.6.1 • December 2013

Attributes

The RELRANK_SPELL element has no attributes.

Sub-elements

The RELRANK_SPELL element has no sub-elements.

Example

This example implements a strategy called TrueMatch.

<RELRANK_STRATEGY NAME="TrueMatch">
<RELRANK_SPELL/>

</RELRANK_STRATEGY>

RELRANK_STATIC
The RELRANK_STATIC element implements the Static relevance ranking module.

This module assigns a constant score to each result, depending on the type of search operation performed.

Format
<!ELEMENT RELRANK_FREQ EMPTY>
<!ATTLIST RELRANK_STATIC

NAME CDATA #REQUIRED
ORDER (ASCENDING|DESCENDING) #REQUIRED

>

Attributes

The RELRANK_STATIC element has the following attributes.

NAME

Specifies the name of a standard or managed attribute that is used for static relevance ranking.

ORDER

Specifies how records should be sorted with respect to the specified standard or managed attribute.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 349

Sub-elements

The RELRANK_STATIC element has no sub-elements.

Example

In this example, the BestPrice strategy consists of the Price managed attribute sorted from lowest to highest.

<RELRANK_STRATEGY NAME="BestPrice">
<RELRANK_STATIC NAME="Price" ORDER="ASCENDING"/>

</RELRANK_STRATEGY>

Version 7.6.1 • December 2013

RELRANK_STRATEGIES

A RELRANK_STRATEGIES element contains any number of relevance ranking strategies for an application.

Each strategy is specified in a RELRANK_STRATEGY element.

Format
<!ELEMENT RELRANK_STRATEGIES

(COMMENT?
, RELRANK_STRATEGY*
)

>

Attributes

The RELRANK_STRATEGIES element has no attributes.

Sub-elements

The following table provides a brief overview of the RELRANK_STRATEGIES sub-elements.

Sub-element Brief description

COMMENT Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an alternative
to using inline XML comments of the form <!-- ... -->.

RELRANK_STRATEGY Contains a list of relevance ranking strategies that affect the order in
which search results are returned to a user.

Example

This example shows several strategies grouped under the root element RELRANK_STRATEGIES.

<RELRANK_STRATEGIES>
<RELRANK_STRATEGY NAME="Bestseller Strategy">
<RELRANK_STATIC NAME="Bestseller" ORDER="DESCENDING"/>

</RELRANK_STRATEGY>
<RELRANK_STRATEGY NAME="Electronics Strategy">
<RELRANK_FIELD/>
<RELRANK_EXACT/>

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 350

<RELRANK_INTERP/>
<RELRANK_STATIC NAME="Bestseller" ORDER="DESCENDING"/>
<RELRANK_STATIC NAME="Product_Name" ORDER="ASCENDING"/>

</RELRANK_STRATEGY>
</RELRANK_STRATEGIES>

Version 7.6.1 • December 2013

RELRANK_STRATEGY

The RELRANK_STRATEGY element contains a list of relevance ranking strategies that affect the order in
which search results are returned to a user.

Each sub-element of RELRANK_STRATEGY represents a specific type of strategy. If you want several
relevance ranking strategies to affect search results, then the order of the sub-elements, which represent the
strategies, is significant. The order of the sub-elements defines the order in which the strategies are applied to
the search results.

Format
<!ELEMENT RELRANK_STRATEGY (

RELRANK_STATIC
| RELRANK_EXACT
| RELRANK_PHRASE
| RELRANK_APPROXPHRASE
| RELRANK_GLOM
| RELRANK_SPELL
| RELRANK_FIELD
| RELRANK_MAXFIELD
| RELRANK_INTERP
| RELRANK_FREQ
| RELRANK_WFREQ
| RELRANK_NTERMS
| RELRANK_PROXIMITY
| RELRANK_FIRST
| RELRANK_NUMFIELDS
| RELRANK_MODULE
)+>

<!ATTLIST RELRANK_STRATEGY
NAME CDATA #REQUIRED

>

Attributes

The RELRANK_STRATEGY element has the following attribute.

NAME

Specifies the name of the strategy.

Sub-elements

The following table provides a brief overview of the RELRANK_STRATEGY sub-elements.

Sub-element Brief description

RELRANK_STATIC Assigns a constant score to each result, depending on the type of search
operation perform.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 351

Sub-element Brief description

RELRANK_EXACT Groups results into strata based on how well they match the query string,
with the highest stratum containing results that match the user's query
exactly.

RELRANK_PHRASE Considers results containing the user’s query as an exact phrase, or a
subset of the exact phrase, to be more relevant than matches simply
containing the user’s search terms scattered throughout the text.

RELRANK_APPROXPHRASE Not supported.

RELRANK_GLOM Ranks single-field matches ahead of cross-field matches.

RELRANK_SPELL Ranks true matches ahead of spelling-corrected matches.

RELRANK_FIELD Assigns a score to each result based on the static rank of the attribute
member of the search interface that caused the document to match the
query.

RELRANK_MAXFIELD Similar to the Field strategy, except it selects the static field-specific
score of the highest-ranked field that contributed to the match.

RELRANK_INTERP A general-purpose strategy that assigns a score to each result document
based on the query processing techniques used to obtain the match.

Matching techniques considered include partial matching, cross-attribute
matching, spelling correction, thesaurus, and stemming matching.

RELRANK_FREQ Provides result scoring based on the frequency (number of occurrences)
of the user's query terms in the result text.

RELRANK_WFREQ Scores results based on the frequency of user query terms in the result,
while weighing the individual query term frequencies for each result by
the information content (overall frequency in the complete data set) of
each query term.

RELRANK_NTERMS Assigns a score to each result record based on the number of query
terms that the result record matches.

RELRANK_PROXIMITY Ranks how close the query terms are to each other in a document by
counting the number of intervening words.

RELRANK_FIRST Ranks documents by how close the query terms are to the beginning of
the document.

RELRANK_NUMFIELDS Ranks results based on the number of fields in the associated search
interface in which a match occurs.

RELRANK_MODULE Used to refer to other RELRANK elements and compose them into
cohesive strategies.

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Dgraph Configuration Reference 352

Example

This example presents a ranking strategy called Product_Search_Rank, which itself is composed of multiple
strategies.

<RELRANK_STRATEGY NAME="Product_Search_Rank">
<RELRANK_MODULE NAME="IsAvailable"/>
<RELRANK_FIELD/>
<RELRANK_PHRASE/>
<RELRANK_MODULE NAME="BestPrice"/>

</RELRANK_STRATEGY>

Version 7.6.1 • December 2013

RELRANK_WFREQ
The RELRANK_WFREQ element implements the Weighted Frequency (Wfreq) relevance ranking module.

This module scores results based on the frequency of user query terms in the result, while weighing the
individual query term frequencies for each result by the information content (overall frequency in the complete
data set) of each query term.

Format
<!ELEMENT RELRANK_WFREQ EMPTY>

Attributes

The RELRANK_WFREQ element has no attributes.

Sub-elements

The RELRANK_WFREQ element has no sub-elements.

Example

This example implements a strategy called Term_Freq.

<RELRANK_STRATEGY NAME="Term_Freq">
<RELRANK_WFREQ/>

</RELRANK_STRATEGY>

Search_interface elements
The Search_interface elements are used to build and configure search interfaces.

The file's root element is SEARCH_INTERFACE. Search interfaces control record search behavior for groups
of standard and managed attributes.

MEMBER_NAME

PARTIAL_MATCH

SEARCH_INTERFACE

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 353

MEMBER_NAME

The MEMBER_NAME element specifies the name of an Endeca standard or managed attribute that is part of
a SEARCH_INTERFACE.

For information on search interfaces, see Working with Search Interfaces on page 251.

Format
<!ELEMENT MEMBER_NAME (#PCDATA)>
<!ATTLIST MEMBER_NAME

RELEVANCE_RANK CDATA #IMPLIED
SNIPPET_SIZE CDATA "0"

>

Version 7.6.1 • December 2013

Attributes

The MEMBER_NAME element has the following attributes.

RELEVANCE_RANK

RELEVANCE_RANK is an unsigned integer that specifies the relevance rank of a match on the specified
Endeca standard or managed attribute. Higher numbers correspond to greater importance.

SNIPPET_SIZE

The presence of SNIPPET_SIZE enables snippeting for a MEMBER_NAME and the value of SNIPPET_SIZE
specifies the maximum number of words a snippet can contain. Omitting this attribute or setting its value equal
to zero disables snippeting. For more information, see Using Snippeting in Record Searches on page 280.

Sub-elements

The MEMBER_NAME element has no sub-elements.

Example

In the following example for a search interface named ProductSearch, four attributes are listed in
MEMBER_NAME elements, each with its own relevance rank. The MEMBER_NAME element for the
Description attribute also enables snippeting.

<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"
CROSS_FIELD_RELEVANCE_RANK="0"
DEFAULT_RELRANK_STRATEGY="ProductRelRank" NAME="ProductSearch">

<MEMBER_NAME RELEVANCE_RANK="4">ProductType</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="3">Name</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="2">SalesRegion</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="1" SNIPPET_SIZE="10">Description</MEMBER_NAME>

</SEARCH_INTERFACE>

PARTIAL_MATCH

The PARTIAL_MATCH element specifies if partial query matches should be supported for the
SEARCH_INTERFACE that contains this element.

For details about searching and search modes, see the information on search features in this guide.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 354

Format
<!ELEMENT PARTIAL_MATCH EMPTY>
<!ATTLIST PARTIAL_MATCH

MIN_WORDS_INCLUDED CDATA #IMPLIED
MAX_WORDS_OMITTED CDATA #IMPLIED

>

Version 7.6.1 • December 2013

Attributes

The PARTIAL_MATCH element has the following attributes.

MIN_WORDS_INCLUDED

Specifies that search results match at least this number of terms in the search query. This value must be an
integer greater than zero. The default value of this attribute is two.

MAX_WORDS_OMITTED

Specifies the maximum number of query terms that may be ignored in the search query. This value must be a
non-negative integer. If set to zero or left unspecified, any number of words may be omitted (i.e., there is no
maximum). The default value of this attribute is two.

Sub-elements

The PARTIAL_MATCH element has no sub-elements.

Example

In this example, the search interface is subject to partial matching in which at least two of the words in the
search query are included, and no more than one is omitted.

<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="ALWAYS"
CROSS_FIELD_RELEVANCE_RANK="0"
DEFAULT_RELRANK_STRATEGY="BikeRelRank" NAME="BikePartSearch">

<MEMBER_NAME RELEVANCE_RANK="2">Body</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>
<PARTIAL_MATCH MAX_WORDS_OMITTED="1" MIN_WORDS_INCLUDED="2"/>

</SEARCH_INTERFACE>

SEARCH_INTERFACE

The SEARCH_INTERFACE element is a named collection of Endeca standard attributes and/or managed
attributes.

Both standard attributes and managed attributes can co-exist in a SEARCH_INTERFACE. The Endeca
attributes in the group are specified in MEMBER_NAME elements.

If a standard attribute or managed attribute is not included in any SEARCH_INTERFACE element, then an
implicit SEARCH_INTERFACE element is created with the same name as the standard attribute or managed
attribute and that single standard attribute or managed attribute as its only member. The value for the
CROSS_FIELD_RELEVANCE_RANK is set to 0.

Format
<!ELEMENT SEARCH_INTERFACE

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 355

(MEMBER_NAME+
, PARTIAL_MATCH?
)

>
<!ATTLIST SEARCH_INTERFACE

NAME CDATA #REQUIRED
DEFAULT_RELRANK_STRATEGY CDATA #IMPLIED
CROSS_FIELD_RELEVANCE_RANK CDATA #IMPLIED
CROSS_FIELD_BOUNDARY (ALWAYS

|ON_FAILURE
|NEVER) "NEVER"

STRICT_PHRASE_MATCH (TRUE|FALSE) #IMPLIED
>

Version 7.6.1 • December 2013

Attributes

The SEARCH_INTERFACE element has the following attributes.

NAME

A unique name for this search interface.

DEFAULT_RELRANK_STRATEGY

For record search, a default relevance scoring function assigned to a SEARCH_INTERFACE. For example, if
your search interface is called Flavors, the DEFAULT_RELRANK_STRATEGY attribute has the value
"Flavors_strategy".

CROSS_FIELD_RELEVANCE_RANK

Specifies the relevance rank score for cross-field matches. The value should be an unsigned 32-bit integer.
The default value for CROSS_FIELD_RELEVANCE_RANK is 0.

CROSS_FIELD_BOUNDARY

Specifies when the search engine should try to match search queries across standard attribute/managed
attribute boundaries, but within the members of the SEARCH_INTERFACE:

• If its value is set to ON_FAILURE, the search engine will only try to match queries across standard
attribute/managed attribute boundaries if it fails to find any match within a single standard
attribute/managed attribute.

• If its value is set to ALWAYS, the engine will always look for matches across standard attribute/managed
attribute boundaries, in addition to matches within a standard attribute/managed attribute.

• If its value is set to NEVER, the engine will not look across boundaries for matches. This is the default.

STRICT_PHRASE_MATCH

Specifies that the Dgraph should interpret a query strictly when comparing white space in the query with
punctuation in the source text. If set to FALSE, partial word tokens connected in the source text by
punctuation can be matched to a phrase query where the partial tokens are separated by spaces instead of
matching punctuation. The default value of this attribute is TRUE.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 356

Sub-elements

The following table provides a brief overview of the SEARCH_INTERFACE sub-elements.

Sub-element Brief description

MEMBER_NAME Specifies the name of an attribute that is part of a
SEARCH_INTERFACE.

PARTIAL_MATCH Specifies if partial query matches should be supported for the
SEARCH_INTERFACE that contains this element.

Example

This example establishes a search interface called AllFields, which contains four members.

<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="ALWAYS"
CROSS_FIELD_RELEVANCE_RANK="0"
DEFAULT_RELRANK_STRATEGY="All" NAME="AllFields">

<MEMBER_NAME RELEVANCE_RANK="4">ProductType</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="3">ProductName</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="2">SalesRegion</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>

</SEARCH_INTERFACE>

Version 7.6.1 • December 2013

Stop_words elements
The Stop_words elements contain words that should be eliminated from a query before it is processed by the
Dgraph.

Each stop is specified in a STOP_WORD element.

STOP_WORD

STOP_WORDS

STOP_WORD

The STOP_WORD element identifies words that should be eliminated from a query before it is processed.

Examples of common stop words include the words "the" and "of".

Format
<!ELEMENT STOP_WORD (#PCDATA)>

Attributes

The STOP_WORD element has no attributes.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 357

Sub-elements

The STOP_WORD element has no sub-elements.

Example

This example shows a common set of stop words.

<STOP_WORDS>
<STOP_WORD>a</STOP_WORD>
<STOP_WORD>an</STOP_WORD>
<STOP_WORD>of</STOP_WORD>
<STOP_WORD>the</STOP_WORD>

</STOP_WORDS>

Version 7.6.1 • December 2013

STOP_WORDS

A STOP_WORDS element specifies the stop words enabled in your application.

Each stop word is represented by a STOP_WORD element.

Format
<!ELEMENT STOP_WORDS

(COMMENT?
, STOP_WORD*
)

>

Attributes

The STOP_WORDS element has no attributes.

Sub-elements

The following table provides a brief overview of the STOP_WORDS sub-elements.

Sub-element Brief description

COMMENT Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an alternative
to using inline XML comments of the form <!-- ... -->.

STOP_WORD Identifies words that should be eliminated from a query before it is
processed.

Example

This example shows a common set of stop words.

<STOP_WORDS>
<STOP_WORD>a</STOP_WORD>
<STOP_WORD>an</STOP_WORD>
<STOP_WORD>of</STOP_WORD>

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 358

<STOP_WORD>the</STOP_WORD>
</STOP_WORDS>

Version 7.6.1 • December 2013

Thesaurus elements
The Thesaurus elements contain thesaurus entries for your application.

Thesaurus entries provide a means to account for alternate forms of a user's query. These entries provide
concept-level mappings between words and phrases. For details, see Using Stemming and Thesaurus on
page 302.

THESAURUS

THESAURUS_ENTRY

THESAURUS_ENTRY_ONEWAY

THESAURUS_FORM

THESAURUS_FORM_FROM

THESAURUS_FORM_TO

THESAURUS

A THESAURUS element contains the term equivalence mappings for an application.

THESAURUS is the root element for all thesaurus entries.

Note that the order of sub-elements within THESAURUS is significant. You should add sub-elements in the
order in which they are listed in the format section.

For example, THESAURUS_ENTRY sub-elements appear before THESAURUS_ENTRY_ONEWAY. See the
example below.

Format
<!ELEMENT THESAURUS

(COMMENT?
, THESAURUS_ENTRY*
, THESAURUS_ENTRY_ONEWAY*
)

>

Attributes

The THESAURUS element has no attributes.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 359

Sub-elements

The following table provides a brief overview of the THESAURUS sub-elements.

Sub-element Brief description

COMMENT Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

THESAURUS_ENTRY Indicates a set of word forms (contained in THESAURUS_FORM
elements) that are equivalent.

THESAURUS_ENTRY_ONEWAY Specifies single-direction equivalency mappings.

Example

This example shows the thesaurus entries for an application.

<THESAURUS>
<THESAURUS_ENTRY>
<THESAURUS_FORM>france</THESAURUS_FORM>
<THESAURUS_FORM>french</THESAURUS_FORM>

</THESAURUS_ENTRY>
<THESAURUS_ENTRY_ONEWAY>
<THESAURUS_FORM_FROM>bike accessory</THESAURUS_FORM_FROM>
<THESAURUS_FORM_TO>helmet</THESAURUS_FORM_TO>
<THESAURUS_FORM_TO>pannier</THESAURUS_FORM_TO>
<THESAURUS_FORM_TO>tire</THESAURUS_FORM_TO>

</THESAURUS_ENTRY_ONEWAY>
</THESAURUS>

Version 7.6.1 • December 2013

THESAURUS_ENTRY

The THESAURUS_ENTRY element indicates a set of word forms that are equivalent.

The word forms are contained in THESAURUS_FORM elements. A search for any of these forms (including
stemming-matched versions) returns hits for all of the forms.

Format
<!ELEMENT THESAURUS_ENTRY (THESAURUS_FORM+)>

Attributes

The THESAURUS_ENTRY element has no attributes.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 360

Sub-elements

The following table provides a brief overview of the THESAURUS_ENTRY sub-element.

Sub-element Brief description

THESAURUS_FORM Indicates a set of word forms that are equivalent.

Example

In this example, the noun and adjective forms of a word are made equivalent.

<THESAURUS>
<THESAURUS_ENTRY>
<THESAURUS_FORM>france</THESAURUS_FORM>
<THESAURUS_FORM>french</THESAURUS_FORM>

</THESAURUS_ENTRY>
</THESAURUS>

Version 7.6.1 • December 2013

THESAURUS_ENTRY_ONEWAY

A THESAURUS_ENTRY_ONEWAY element specifies a single-direction mapping.

Searches for any of the "from" forms (THESAURUS_FORM_FROM elements) also return hits for all of the "to"
forms (THESAURUS_FORM_TO elements). The other direction is not enabled; that is, searches for the "to"
forms do not return results for either the "from" forms or the other "to" forms.

Format
<!ELEMENT THESAURUS_ENTRY_ONEWAY

(THESAURUS_FORM_FROM
, THESAURUS_FORM_TO+
)

>

Attributes

The THESAURUS_ENTRY_ONEWAY element has no attributes.

Sub-elements

The following table provides a brief overview of the THESAURUS_ENTRY_ONEWAY sub-elements.

Sub-element Brief description

THESAURUS_FORM_FROM Specifies the "from" form in a one-way word mapping.

THESAURUS_FORM_TO Specifies the "to" form in a one-way word mapping.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 361

Example
In this example, searches for bike accessory would return hits for bike accessory as well as for helmet,
pannier, and tire. Since the equivalence is one-way, more specific searches such as helmet or pannier
would not return results for the more general concept bike accessory.

<THESAURUS_ENTRY_ONEWAY>
<THESAURUS_FORM_FROM>bike accessory</THESAURUS_FORM_FROM>
<THESAURUS_FORM_TO>helmet</THESAURUS_FORM_TO>
<THESAURUS_FORM_TO>pannier</THESAURUS_FORM_TO>
<THESAURUS_FORM_TO>tire</THESAURUS_FORM_TO>

</THESAURUS_ENTRY_ONEWAY>

Version 7.6.1 • December 2013

THESAURUS_FORM

The THESAURUS_FORM element contains a word form that is used by the THESAURUS_ENTRY element to
set an equivalence.

Format
<!ELEMENT THESAURUS_FORM (#PCDATA)>

Attributes

The THESAURUS_FORM element has no attributes.

Sub-elements

The THESAURUS_FORM element has no sub-elements.

Example

In this example, the noun and adjective forms of a word are made equivalent.

<THESAURUS>
<THESAURUS_ENTRY>
<THESAURUS_FORM>france</THESAURUS_FORM>
<THESAURUS_FORM>french</THESAURUS_FORM>

</THESAURUS_ENTRY>
</THESAURUS>

THESAURUS_FORM_FROM

The THESAURUS_FORM_FROM element provides the "from" form within a
THESAURUS_ENTRY_ONEWAY element.

Format
<!ELEMENT THESAURUS_FORM_FROM (#PCDATA)>

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 362

Attributes

The THESAURUS_FORM_FROM element has no attributes.

Sub-elements

The THESAURUS_FORM_FROM element has no sub-elements.

Example
In this example, searches for bike part would return hits for bike part as well as for handlebar and
derailleur. Because the equivalence is one-way, more specific searches such as handlebar or
derailleur would not return results for the more general concept bike part.

<THESAURUS_ENTRY_ONEWAY>
<THESAURUS_FORM_FROM>bike part</THESAURUS_FORM_FROM>
<THESAURUS_FORM_TO>handlebar</THESAURUS_FORM_TO>
<THESAURUS_FORM_TO>derailleur</THESAURUS_FORM_TO>

</THESAURUS_ENTRY_ONEWAY>

Version 7.6.1 • December 2013

THESAURUS_FORM_TO

The THESAURUS_FORM_TO element provides the "to" form within a THESAURUS_ENTRY_ONEWAY
element.

Format
<!ELEMENT THESAURUS_FORM_TO (#PCDATA)>

Attributes

The THESAURUS_FORM_TO element has no attributes.

Sub-elements

The THESAURUS_FORM_TO element has no sub-elements.

Example
In this example, searches for bike part would return hits for bike part as well as for handlebar and
derailleur. Because the equivalence is one-way, more specific searches such as handlebar or
derailleur would not return results for the more general concept bike part.

<THESAURUS_ENTRY_ONEWAY>
<THESAURUS_FORM_FROM>bike part</THESAURUS_FORM_FROM>
<THESAURUS_FORM_TO>handlebar</THESAURUS_FORM_TO>
<THESAURUS_FORM_TO>derailleur</THESAURUS_FORM_TO>

</THESAURUS_ENTRY_ONEWAY>

Oracle® Endeca Server: Developer's Guide

Chapter 33

Suggested Stop Words

Stop words are words that are set to be ignored by the Oracle Endeca Server.

About stop words

List of suggested stop words

About stop words
Typically, common words (like "the") are included in the stop word list. In addition, the stop word list can
include the extraneous words contained in a typical question, allowing the query to focus on what the user is
really searching for.

Stop words must be single words only, and cannot contain any non-searchable characters. If more than one
word is entered as a stop word, neither the individual words nor the combined phrase will act as a stop word.
Non-searchable characters within a stop word will also cause this behavior. Entering "full-bodied" as a stop
word acts just as if you had entered "full bodied", and does not have any effect on searches.

Note: Stop words are supported only for searches that are marked with the unknown language
identifier.

Stop words are counted in any search mode that calculates results based on number of matching terms.
However, the Oracle Endeca Server reduces the minimum term match and maximum word omit requirement
by the number of stop words contained in the query.

Note: Did You Mean can in some cases correct a word to one on the stop words list.

List of suggested stop words
The following table provides a list of words that are commonly added to the stop word list; you may find it
useful as a point of departure when you configure a list for your application.

In addition to some or all of the words listed below, you might want to add terms that are prevalent in your
data set. For example, if your data consists of lists of books, you might want to add the word book itself to the
stop word list, since a search on that word would return an impracticably large set of records.

You can add stop words to the Oracle Endeca Server using the Configuration Web Service, or using Integrator
ETL.

a any for is show where

about are from me the why

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Suggested Stop Words 364

above can have not under with

an do how or what you

and find I over when your

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Index

CDRs for collections 104A
charactersadding

indexing alphanumeric 292managed attribute values 168
indexing non-alphanumeric 293

AllAny search mode 267 indexing search 293
AllPartial search mode 267 collections
All search mode 266 about 93

CDRs 104alphanumeric characters, indexing 292
creating 95

Any search mode 267 deleting 100
API References 20 deleting associated records 102

listing 99Aspell dictionary, about 298
updating 97assignments 24 use in EQL statements 109

attribute groups use in queries 107
about 209 using transactions 94
configuring in Studio 209 using with record search 247, 260
examples of Configuration Web Service COMMENT element 334requests 214

configuration documents, Dgraph 21retrieving 212
Configuration Web Serviceattributes 24

adding XML configuration documents 60configuring as record searchable 244
description 53multi-select 181
examples with attribute groups 210performance impact when displaying 147
Integrator ETL 62unique 25
list of operations 55available search keys, retrieving 245 loading an attribute schema 59
performance impact 61

B configuring
snippeting 282between range filter queries 128
value search 258boolean attribute type 27

content element configs 70Boolean search
Conversation Web Service 64about 269

retrieving refinement information 183error messages 275
examples of Conversation Web Service counts, value search 262
requests 276 cross-field matching 253interaction with other features 274

custom dictionarykey restrict operator 271
about 157operator precedence 274
creating 159proximity search 272

semantics 273
syntax 270 D

breadcrumbs 219 data model, Oracle Endeca Server 23
BreadcrumbConfig syntax 220

DataSourceFilter 119example with spelling correction 222
navigation query 221 data version
requesting with the Conversation Web pinning 72
Service 220 requesting 74
returning in the Conversation Web Service 221 dateTime attribute type 27

bulk export 143 DDR 41
dead-end query results, avoiding 182

C deleteAllCollections operation 101
categories of characters in indexed text 292 deleteAllFilterRules operation 116

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Index 366

deleteCollections operation 100 deleting 115
FRDRs 117deleteFilterRules operation 115
listing 114

deleting using transactions 112
managed attribute values 173

FRDRs for filter rules 117
Dgraph configuration documents 21

functions
diacritic folding for record search 152 IS_ANCESTOR 133
Did You Mean feature IS_DESCENDANT 133

in record search 250
Dimension Description Record 41 G
DIMNAME element 335 geocode attribute type 27
Dimsearch_config geocode filter 131

about 337
Global Configuration Record 43DIMSEARCH_CONFIG element 337
global order of refinements, configuring 179DIMSEARCH_CONFIG element 337
greater-than range filter queries 130double attribute type 26
groupsduration attribute type 27

requesting a list 211
returning in Conversation Web Service 212

E Guided Navigation 176
enabling hierarchical record search for managed
attributes 244 H
Endeca records

hierarchical record search 244displaying details with API 144
hierarchy, requesting for refinements 205entities

about 231
active 233 I
adding 237

implementingdeleting 237
Boolean search 276list of operations 232
Phrase relevance ranking 315

Entity and Collection Configuration Web Service phrase search 278
description 75 search characters 291
entity operations 232 search interfaces 252
examples of requests 237 search modes 268
list of all operations 76 wildcard search 285

entity attribute groups 235 wildcard search for a search interface 288
wildcard search in record search 287EQLConfig type 135

implicit refinements 177EQL filters
enabling for all attributes 196DataSourceFilter format 123
enabling per attribute 199expressions 125
global and per-attribute control 196SelectionFilter format 119

indexEQL record filters
requesting version 74about 118

geocode filters 131 indexing
language for error messages 127 non-alphanumeric characters 293
managed attribute value filters 132 search characters 293
range filters 128 index version
using Boolean attributes 133 pinning 72

exporting a large number of records 142 inner transactions 80
integer attribute type 26

F internationalized data
filtering data and non-data records 136 about 151

language identifiers 153filter rules
per-query language code 156about 110
using a custom dictionary 157active 113

creating 113 IS_ANCESTOR function 133

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Index 367

IS_DESCENDANT function 133 non-leaf type precedence rules 226

J O
Java client examples 20 ONEAR Boolean operator 272

one-way thesaurus entries 305
K Oracle Endeca Server

overview 16key restrict operator for Boolean search 271
record search query processing order 248

OrderByRecordCount attribute for refinementL order 204
language codes ordering value search results 262

per-property 155
outer transactionsper-query language 156

about 79setting default for PDR auto-creation 156
committing 83supported 153
operations 83

Leaf precedence rules 226 performance impact 87
less-than range filter queries 130 processing of updates 81

when to use in Integrator ETL graphs 80listCollections operation 99
overview of Oracle Endeca Server 16listFilterRules operation 114

listProperties operation 192
Plong attribute type 26

paging through a record set 141
PARTIAL_MATCH element 354M
PartialMax mode 267managed attributes 29

enabling for refinements 178 Partial mode and stop words 266
RefinementConfig element 187 Partial search mode 266
use in EQL record filters 132

PDR 35
managed attribute values 161

per-attribute language ID 155adding 168
adding, updates and deletions 167 performance impact
deleting 173 displaying attributes 147
listing 172 displaying refinements 207
ranking 174 multi-select attributes 208
ranks 167 phrase search 280
synonyms 167 record search 251

refinement ordering 207MEMBER_NAME element 353
refinement statistics 208

multi-assign attributes 24 search characters 294
multi-select AND 181 snippeting 283

value search 263multi-select attributes
wildcard search 289avoiding dead-end query results 182

configuring 181 per-query language code 156
displaying 181 Phrase relevance ranking module, configuring 315
handling in an application 181

phrase searchperformance impact 208
examples of queries 279

multi-select OR implementing 278
about 181 performance impact 280
refinement counts 182

pinned data version
min, max and default values 71

N pinning
navigation filtering 250 data version 72
NavigationMenuConfig type 184 positional indexing, about 279
NEAR Boolean operator 272 precedence rules

about 224non-alphanumeric characters, indexing 293

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Index 368

creating with Configuration Web Service displaying in Studio 138
operations 226 examples 27
deleting 229 paging through a record set 141
implicit attribute value selection 229 sorting 148
Leaf type 226 types of 23
listing 228 XML representation 27
loading via Integrator ETL 228 record search
non-leaf type 226 about 242
targets 224 auto correction 249
triggers 224 available search keys 245

primary key 25 examples 243
features for controlling it 242primitive term and phrase lookup 250
hierarchical record search 244

primordial records 30 making an attribute record searchable 244
processing order for record search queries 248 Oracle Endeca Server search processing

logic 248PROP element 335
performance impact 251Property Description Record 35 specifying relevance ranking strategies 326

PropertyListConfig type 190 stemming 250
supported languages 243PROPNAME element 336
TextSearchFilter type 246putCollection operation 95
thesaurus expansion 249

putCollections operation 96 tokenization 249
putFilterRule operation 113 troubleshooting 251

using collections 247, 260putFilterRules operation 114
using in Studio 245

putManagedAttributeValues 168 when to use 257
PVAL element 336 record spec 25

RecordsPerPage element 141
Q records schema, about 29

query expansion in Phrase module, configuring 317 Recsearch_config
query matching semantics 292 about 338

RECSEARCH_CONFIG element 338
RECSEARCH_CONFIG element 338R
RefinementConfig element 187range filters

between query format 128 refinement counts
geocode 131 configuring whether to return 180
greater-than query format 130 displaying 180
less-than query format 130 for multi-select OR refinements 182
overview 128 RefinementGroupConfig element 186

ranking refinement order
adding or updating, for managed attributes 175 OrderByRecordCount attribute 204
for managed attribute values 174 performance impact 207

ranking managed attribute values 167 query-time control 203
ranking results for value search 263 refinements 176

accessing hierarchy 205RecordCountConfig type 146
and attributes 177record details applied 177displaying with API 144 configuring global order 179

RecordDetailsConfig type 144 configuring which applied refinements are
retrieved, globally 196RecordDetails element 145
configuring which applied refinements arerecord filtering during record searches 249
returned 196

RecordKind type 136 displaying 193
RecordListConfig element 138 displaying counts 180

implicit and explicitly-selected 177records
limiting the number 201bulk export 143
performance impact of 207definition of 23

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Index 369

query-time control of ordering 203 RELRANK_MAXFIELD element 344
retrieving with Conversation Service API 183 RELRANK_MODULE element 344
sorting 179 RELRANK_NTERMS element 345
suggested 177 RELRANK_NUMFIELDS element 345

RELRANK_PHRASE element 346refinement statistics
RELRANK_PROXIMITY element 347disabling 180
RELRANK_SPELL element 348performance impact 208
RELRANK_STATIC element 348retrieving 194, 202
RELRANK_STRATEGIES element 349

relevance ranking RELRANK_STRATEGY element 350
Exact module 311 RELRANK_WFREQ element 352
Field module 312

RELRANK_STRATEGIES element 349First module 312
Frequency module 313 RELRANK_STRATEGY element 350
Glom module 313 RELRANK_WFREQ element 352
Interpreted module 314

requestinglist of modules 310
data version 74Maximum Field module 314

retrieving records with the Conversation WebNumber of Fields module 315
Service 142Number of Terms module 315

overview 310 rollback 83, 85
performance impact 331 outer transaction 83
Phrase module 315
Proximity module 320 Srecommended strategies 329
resolving tied scores 325 SearchAdjustmentConfig type 298
sample scenarios 326 search characters
specifying for queries 325 categories of characters 292
Spell module 321 implementing 291
Static module 321 indexing alphanumeric 292
Stem module 322 indexing specified search characters 293
Thesaurus module 322 performance impact 294
Weighted Frequency module 322 query matching semantics 292

RELRANK_APPROXPHRASE element 340 using 291
RELRANK_EXACT element 340 Search_interface

about 352RELRANK_FIELD element 341
MEMBER_NAME element 353RELRANK_FIRST element 341 PARTIAL_MATCH element 354

RELRANK_FREQ element 342 SEARCH_INTERFACE element 354
RELRANK_GLOM element 342 SEARCH_INTERFACE element 354
RELRANK_INTERP element 343 search interfaces

about 252RELRANK_MAXFIELD element 344
configuring wildcard search for 288RELRANK_MODULE element 344
cross-field matching 253

RELRANK_NTERMS element 345 implementing 252
RELRANK_NUMFIELDS element 345 search modes
RELRANK_PHRASE element 346 All 266

AllAny 267RELRANK_PROXIMITY element 347
AllPartial 267

RELRANK_SPELL element 348 Any 267
RELRANK_STATIC element 348 implementing 268

list of, valid 265Relrank_strategies
PartialMax mode 267about 339
Partial mode 266RELRANK_APPROXPHRASE element 340
query parameters 268RELRANK_EXACT element 340

RELRANK_FIELD element 341 search query processing 293
RELRANK_FIRST element 341 search query processing order 248
RELRANK_FREQ element 342

SelectedRefinementFilter type 190RELRANK_GLOM element 342
RELRANK_INTERP element 343 SelectionFilter 119

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Index 370

single-assign attributes 24 T
snippeting targets for precedence rules 224

about 281
TextSearchFilter type 246configuring 282

enabling per query 283 thesaurus
performance impact 283 about 358

THESAURUS element 358sorting records
THESAURUS_ENTRY element 359changing sort order for queries 149
THESAURUS_ENTRY_ONEWAY element 360global sort order 148
THESAURUS_FORM element 361overview 148
THESAURUS_FORM_FROM element 362troubleshooting problems 150
THESAURUS_FORM_TO element 362

sorting refinements 179 See stemming and thesaurus
Spelling Correction and DYM THESAURUS element 358

about 295
THESAURUS_ENTRY element 359Aspell module 298

configuring 300 THESAURUS_ENTRY_ONEWAY element 360
performance impact 302 thesaurus expansion 249
retrieving with Conversation Web Service 298

THESAURUS_FORM element 361troubleshooting 302
THESAURUS_FORM_FROM element 362using word-break analysis 301
THESAURUS_FORM_TO element 362standard attributes

assignments 24 time attribute type 27
examples 27 timeout valuesmulti-assign 24 pinned data version 71single-assign 24

tokenization in record search 249types 26
XML representation 27 transactions

nested 86standard attributes vs managed attributes 29
running on a single node 81State type in requests 67

Transaction Web Servicestemming and thesaurus description 80about 303 Integrator ETL 87about the thesaurus 305 list of operations 83adding thesaurus entries 306
triggers for precedence rules 224en_word_forms_collection.xml 303

interaction with other features 307 troubleshooting record search 251
performance impact 309 two-way thesaurus entries 305
sort order of stemmed results 304
troubleshooting the thesaurus 306

USTOP_WORD element 356
Unicode Standard in Endeca applications 151stop words

about 356, 363 unique attributes 25
and Did You Mean 302 updateCollections operation 97
and Partial mode 266

update processing in outer transactions 81list of suggested 363
updateSpellingDictionaries operation 297STOP_WORD element 356

STOP_WORDS element 357
STOP_WORDS element 357 V
string attribute type 26 value search

about 256Studio, implementing record search in 245
and wildcard search interaction 263synonyms used for search 167
Conversation Web Service API 258

system records 34 enabling standard attributes for it 258
Dimension Description Record 41 limiting results per attribute 261
Global Configuration Record 43 number of matched results 262
Property Description Record 35 ordering results 262

performance impact 263
query format 259
ranking results 263

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

Index 371

restricting to specified attributes 261 about 285
results from spelling corrections 297 configuring for a search interface 288
specifying relevance ranking strategies 326 configuring in text search 287
troubleshooting 257 configuring in value search 287
using in Studio 258 false positive matches and performance 289
when to use 257 front-end application tips 289

implementing 285ValueSearchConfig type 259
interaction with other features 286

versions, Web service backward-compatible 91 in value searches 263
views 231 performance impact 289

retrieving error messages 289
word-break analysis, about 301W
WSDL documentation 20Web services

API architecture 17
backward-compatible versions 91 X
major and minor versions 88

XML elementsobtaining a version 89
COMMENT 334resolving version incompatibility 91
DIMNAME 335using versions in requests 89
PROP 335version incompatibility, treatment of 89
PROPNAME 336

wildcard search PVAL 336

Oracle® Endeca Server: Developer's Guide Version 7.6.1 • December 2013

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Customer Support

	Part I: Overview and Concepts
	Chapter 1: Oracle Endeca Server Interfaces
	Oracle Endeca Server overview
	Data flow
	Full list of Web services
	About the Oracle Endeca Server API References
	About the Java client examples
	Dgraph configuration documents

	Chapter 2: Oracle Endeca Server Concepts
	About the data model
	Records
	Attributes
	Assignments on standard attributes
	Primary keys
	Attribute types

	XML representation of records and attributes
	Examples of records and standard attributes
	Managed attributes

	Primordial records
	Configurable system records
	Property Description Record (PDR)
	Dimension Description Record (DDR)
	Global Configuration Record (GCR)
	Updates to schema and configuration

	Part II: Web Services for the Endeca Server
	Chapter 3: Configuration Web Service Interface
	About the Configuration Web Service
	Configuration Web Service operations
	Loading an attribute schema
	Loading configuration documents
	Performance impact of schema and configuration changes
	Using the Configuration Web Service in Integrator ETL

	Chapter 4: Conversation Web Service Interface
	About the Conversation Web Service
	Conversation Web Service operations
	State elements
	Content element config summarizations

	Pinning data versions
	Timeout default, maximum and minimum values
	Holding on to a data version
	Requesting a pinned data version in a query

	Chapter 5: Entity and Collection Configuration Web Service Interface
	About the Entity and Collection Configuration Web Service
	Operations in the Entity and Collection Configuration Web Service

	Chapter 6: Transaction Web Service Interface
	About outer transactions
	When to use outer transactions
	About the Transaction Web Service
	Outer transactions and queries
	Transaction Web Service operation description
	Transaction Web Service operations
	Rolling back an outer transaction
	Notes about inner transactions
	Request processing in the presence of transactions
	Transaction Web Service and Integrator ETL
	Performance impact of transactions

	Chapter 7: About Web Service Versions
	How version numbers are assigned
	Obtaining a version number for a Web service
	Using version numbers in requests
	Backward-compatibility of Web service versions
	Resolving incompatibility of Web services and client stubs

	Part III: Collections, Record Filters, and Records
	Chapter 8: Collections
	About collections
	Collection operations
	Collection create operations
	Collection update operation
	Collection list operation
	Collection delete operations
	Deleting a collection and its records

	Collection Definition Records
	Procedure for creating collections in the data domain
	Using collections in queries

	Chapter 9: Filter Rules
	About filter rules
	Filter rule operations
	Filter rule create operations
	Filter rules list operation
	Filter rule delete operations

	Filter Rule Definition Records

	Chapter 10: EQL Record Filters
	About EQL record filters
	SelectionFilter format
	DataSourceFilter format
	EQL operators for filterString filters
	Language codes for EQL error messages
	Range filters
	Between range filters
	Less-than and greater-than range filters

	Geocode filters
	Managed attribute hierarchy filters
	Boolean attribute filters
	Using EQL filters with record and value searches
	EQLConfig requests

	Chapter 11: Working with Records
	Filtering data and non-data records
	Displaying records and attribute values with Studio
	Displaying records and attribute values with the API
	Configuring a record list
	Understanding a RecordList result
	Paging through a large record set
	Retrieving large numbers of records
	Exporting large numbers of records
	Displaying attribute values
	Displaying record details
	Displaying record counts

	Performance impact of requesting large numbers of records
	Performance impact when displaying attribute values

	Chapter 12: Sorting Records
	About record sorting
	Global sort order of records
	Query-time sort ordering
	Troubleshooting application sort problems

	Chapter 13: Internationalized Data
	Overview of using internationalized data
	Supported languages
	Setting language identifiers
	Setting PDR language identifiers
	Global PDR language code
	Specifying a per-query language code

	Using custom dictionaries
	Creating a custom dictionary

	Viewing Dgraph logs

	Part IV: Attributes, Refinements, and Groups
	Chapter 14: Working with Managed Attributes
	About managed attributes and their values
	Summary of operations
	About ranks and synonyms
	Adding managed attribute values
	Listing managed attribute values
	Deleting managed attribute values
	About static ranking
	Adding and updating ranks

	Chapter 15: Working with Attributes and Refinements
	About Guided Navigation
	About refinements
	Working with refinements in Studio and other front-end applications
	Schema configuration for enabling refinements
	Configuring the order of suggested refinements
	Configuring whether to display refinement counts
	Displaying refinements on multi-select attributes
	About multi-select attributes
	Configuring attributes for multi-select refinement
	Multi-select refinements and the user interface
	Avoiding dead-end query results
	Refinement counts for multi-or refinements

	Working with attributes and refinements using the API
	NavigationMenuConfig
	RefinementGroupConfig
	RefinementConfig
	PropertyListConfig
	SelectedRefinementFilter
	Obtaining a list of available attributes
	Retrieving refinements with the API: high-level overview
	Step 1: Obtaining and exposing attributes that have refinements
	Step 2: Applying refinements by creating a new query

	Retrieving the full list of refinements (applied and suggested)
	Retrieving applied refinements for all attributes
	Retrieving applied refinements per attribute

	Increasing the number of refinements to be displayed
	How refinement counts are returned
	Retrieving the order of refinements
	About query-time control of refinement ordering
	Enabling the refinement order at query time

	Retrieving the full path of hierarchical refinements

	Performance impact of returning and displaying refinements

	Chapter 16: Using Attribute Groups
	About attribute groups
	Configuring and using attribute groups in Studio
	Working with attribute groups using the API
	Creating attribute groups
	Retrieving lists of groups with the Conversation Web Service
	Retrieving groups with the Conversation Web Service
	Examples of other operations on groups

	Part V: Breadcrumbs, Precedence Rules, and Entities
	Chapter 17: Using Breadcrumbs
	About breadcrumbs
	Implementing breadcrumbs with the API
	BreadcrumbConfig
	Retrieving breadcrumbs in a navigation query
	Example of breadcrumbs with spelling correction

	Chapter 18: Using Precedence Rules
	About precedence rules
	Managed attribute trigger types
	Precedence rule create operations
	Creating precedence rules with Integrator ETL
	Precedence rule list and delete operations
	Precedence rules and implicit attribute value selection

	Chapter 19: Working with Entities
	About entities
	Entity operations
	semanticEntity general syntax
	Sample entity requests

	Part VI: Search Features
	Chapter 20: Using Record Search
	Record search overview
	Configuring attributes for record search
	Enabling hierarchical record search
	Implementing record search in Studio
	Implementing record search with the API
	Obtaining the available search keys
	Record search filter

	Search query processing order
	Step 1: Record filtering
	Step 2: Tokenization
	Step 3: Spelling correction
	Step 4: Thesaurus expansion
	Step 5: Stemming
	Step 6: Primitive term and phrase lookup
	Step 7: Did You Mean
	Step 8: Navigation filtering
	Step 9: EQL
	Step 10: Relevance ranking

	Tips for troubleshooting record search
	Performance impact of record search

	Chapter 21: Working with Search Interfaces
	About search interfaces
	Implementing search interfaces
	Options for allowing cross-field matches
	Additional search interface options

	Chapter 22: Using Value Search
	About value search
	How value search works
	When to use value and record search
	Enabling value search
	Utilizing value search in Studio
	Implementing value search with the API
	Value search query format
	Restricting value search to specific attributes
	Limiting the number of results per attribute
	Retrieving the number of matching results
	Ordering results
	Specifying relevance ranking strategy for results

	Interaction of value search and wildcard search
	Performance impact of value search

	Chapter 23: Using Search Modes
	List of valid search modes
	All mode
	Partial mode
	Interaction of Partial mode and stop words

	AllPartial mode
	Any mode
	AllAny mode
	PartialMax mode
	Boolean mode

	Configuring search modes in Studio
	Configuring search modes in the API

	Chapter 24: Using Boolean Search
	About Boolean search
	Boolean query syntax
	Using the key restrict operator
	About proximity search
	Example of using NEAR for unordered matching
	Example of using ONEAR for ordered matching

	Proximity operators and nested sub-expressions
	Boolean query semantics
	Operator precedence
	Interaction of Boolean search with other features
	Error messages for Boolean search
	Implementing Boolean search in Studio
	Implementing Boolean search with the API
	Troubleshooting Boolean search
	Performance impact of Boolean search

	Chapter 25: Using Phrase Search
	About phrase search
	About positional indexing
	How punctuation is handled in phrase search
	Examples of phrase search queries
	Performance impact of phrase search

	Chapter 26: Using Snippeting in Record Searches
	About snippeting
	Snippet formatting and size
	Enabling snippeting
	Tuning tips for snippeting
	Retrieving snippets per query with the API

	Chapter 27: Using Wildcard Search
	About wildcard search
	Interaction of wildcard search with other features
	Ways to configure wildcard search
	Configuring wildcard search in record search
	Configuring wildcard search in value search
	Configuring wildcard search for a search interface

	Dgraph flags for wildcard search
	Using wildcard search in Studio
	Performance impact of wildcard search

	Chapter 28: Search Characters
	About search characters
	Implementing search characters
	Query matching semantics
	Categories of characters in indexed text
	Indexing alphanumeric characters
	Indexing search characters
	Indexing non-alphanumeric characters

	Search query processing
	Dgraph flags for search characters
	Performance impact of setting search characters

	Chapter 29: Spelling Correction and Did You Mean
	About Spelling Correction and Did You Mean
	Logic used for spelling correction
	How value search treats number of results

	Enabling spelling correction and updating spelling dictionaries
	Spelling mode (Aspell)
	Retrieving spelling corrections and DYM in query results
	Configuring constraints for spelling dictionaries
	About word-break analysis
	Troubleshooting Spelling Correction and Did You Mean
	Performance impact for Spelling Correction and Did You Mean

	Chapter 30: Using Stemming and Thesaurus
	Overview of stemming and thesaurus
	About the stemming feature
	Types of stemming matches and sort order

	About the thesaurus feature
	Adding, modifying, or deleting thesaurus entries
	Troubleshooting the thesaurus

	Dgraph flags for stemming and thesaurus
	Interactions with other search features
	Performance impact of stemming and thesaurus

	Chapter 31: Relevance Ranking
	About the relevance ranking feature
	Relevance ranking modules
	Exact
	Field
	First
	Frequency
	Glom
	Interpreted
	Maximum Field
	Number of Fields
	Number of Terms
	Phrase
	Configuring the Phrase module
	Phrase module options
	Summary of Phrase option interactions

	Phrase module behavior
	Treatment of wildcards with the Phrase module

	Proximity
	Spell
	Static
	Stem
	Thesaurus
	Weighted Frequency

	Relevance ranking strategies
	Creating relevance ranking strategies

	Implementing relevance ranking
	Adding a Static module
	Ranking order for Field and Maximum Field modules
	How relevance ranking score ties between search interfaces are resolved
	Implementing relevance ranking for value search
	Specifying relevance ranking for record and value searches

	Relevance ranking sample scenarios
	Example 1: Using a small data set
	Example 2: UI reference implementation

	Recommended strategies
	Recommended strategy for retail catalog data
	Recommended strategy for document repositories

	Performance impact of relevance ranking

	Part VII: References
	Chapter 32: Dgraph Configuration Reference
	XML elements
	COMMENT
	DIMNAME
	PROP
	PROPNAME
	PVAL

	Dimsearch_config elements
	DIMSEARCH_CONFIG

	Recsearch_config elements
	RECSEARCH_CONFIG

	Relrank_strategies elements
	RELRANK_APPROXPHRASE
	RELRANK_EXACT
	RELRANK_FIELD
	RELRANK_FIRST
	RELRANK_FREQ
	RELRANK_GLOM
	RELRANK_INTERP
	RELRANK_MAXFIELD
	RELRANK_MODULE
	RELRANK_NTERMS
	RELRANK_NUMFIELDS
	RELRANK_PHRASE
	RELRANK_PROXIMITY
	RELRANK_SPELL
	RELRANK_STATIC
	RELRANK_STRATEGIES
	RELRANK_STRATEGY
	RELRANK_WFREQ

	Search_interface elements
	MEMBER_NAME
	PARTIAL_MATCH
	SEARCH_INTERFACE

	Stop_words elements
	STOP_WORD
	STOP_WORDS

	Thesaurus elements
	THESAURUS
	THESAURUS_ENTRY
	THESAURUS_ENTRY_ONEWAY
	THESAURUS_FORM
	THESAURUS_FORM_FROM
	THESAURUS_FORM_TO

	Chapter 33: Suggested Stop Words
	About stop words
	List of suggested stop words

	Index

