ORACLE

Oracle® Communications WebRTC Session
Controller

Extension Developer's Guide
Release 7.0
E40977-01

November 2013

Oracle Communications WebRTC Session Controller Extension Developer’s Guide, Release 7.0
E40977-01
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

This documentation is in preproduction status and is intended for demonstration and preliminary use only.
It may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing of any features or functionality
described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and
conditions of your Oracle Software License and Service Agreement, which has been executed and with
which you agree to comply. This document and information contained herein may not be disclosed, copied,
reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document
is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle
or its subsidiaries or affiliates.

Contents

PUrOIACE ... e ettt ettt eeneeen v
AN S Lo 1< V< T RSRRTT Y,
REIATEA DIOCUINIEIES ...ttt ettt e et e s et e e e s ate e e st e eseaseesssseessaseesssseesassesssnseessnseessnanenan v
Documentation AcCeSSIDILItYccovviiiiiiiiiiiiiiiiiic s v

1 About Extending WebRTC Session Controller

About Extending WebRTC Session Controller Functionalityccccooiiiiiin 1-1
About the WebRTC Session Controller Console Components..............cccoeevvvviinnninininncnincncnn. 1-4
About the WebRTC Session Controller Groovy Scripts ..o, 1-5
About Creating Client Applications Using the JavaScript APccccoeiiiiiiiiiniiiinns 1-5
About Translating Calls Using the Configuration APIcccccoiininiiiin, 1-6
About Extending WebRTC Session Controller Using the JsonRTC Protocol.............................. 1-6
WebRTC Session Controller Software and Protocol Conformance...............cccoeeiiniiinnnnnn. 1-6
Prerequisites for Extending WebRTC Session Controller Functionality...............ccccccoieeiininne. 1-7

2 About Building JSON to SIP Communication

About Building JSON to SIP Communication.............ccoovviviniiiiiniinin, 2-1
Securing Signaling Engine ConNections...........ccccovviviiininininniiinnicccceees 2-1
About Connecting to a Client Application ... 2-2
About Sessions and SUDSESSIONS.........eeueierierieieieiiee ettt siest ettt et et ettt stesbeseestenteeeneeneesessessens 2-2
About JSON to SIP COmMMUIECATION «.ecvvievieuiirieieereeeeeeteeteere ettt et ereeteeteeseereeseereenseeseenseeaes 2-2
About SIP to Client COmMMUNICATION.......cccveeevertiereireeterreetesteetesreesaesseeseseesesseessesseessesseessessessees 2-4
About Storing Data Within SeSsions ... 2-4

Understanding the WebRTC Session Controller Componentsc.cccoeueveinnreeniccnneececnnenes 2-5
AbOout APPLICATIONS ..ot 2-5
ADOUL PACKAZES ...ttt 2-5
ADOUL CTIEOITA cvvvevvevteeieeieiteteeteeteie et et et ete e et esessessestessessessessessessassassasessesseasassessessessessessessnsensensens 2-6

About the WebRTC Session Controller Console............cccooiririniiinininiinieieeeeeeee e 2-7

About the GIoOVY SCIPES ...t 2-8

About the Script LIDIary ... 2-10

About the Normalized Data FOrmatcccooveiiieiinieiceeeeee ettt e 2-10

3 Creating WebRTC Session Controller Applications, Packages, and Criteria

Starting the WebRTC Session Controller Console..............cccccooiiiiiniiiininiiiiiiiceceeees 3-1
Creating Criteria ..o 3-2

Creating Packages ... s 3-3

Creating APPLiCations. ... 3-3
Debugging Groovy Script Run Time Errors ... 3-4
About the WebRTC Session Controller Console Validation Tests...............cccccoevninnnininnne. 3-6

4 Customizing Messages for New SIP or JSON Data

Processing Messages With Custom SIP Dataccccoiiiiiiiiiiicccas 4-1
Example SIP Request Variable ... 4-1
Extending SIP Messages with New Headerscccccocociiiiiiiiiiiiicccccceeeeeeeennes 4-2
Protecting System Performance by Removing SIP Messages...........cccocoeorueuiiinicieiniicieneeeenene, 4-2
Removing a SIP Header in @ MESSAE.........ccccouiuiiiiiiiiiiiiiiiiiiiiiiiii s 4-2
Replacing a SIP Header in @ MESSAGEc.cceueueuiueurieieiiieicirieieieieeceeeeeeeereeeee e 4-2
Conditionally Passing SIP Headers in MeSSages..........cccceuvururueiiiicieieiicicieeccie e 4-2

Changing JSON Data to Support Protocol Changescccccceiiiniiiiiinii, 4-3

Extending WebRTC Session Controller Functionalityccccccooniiii, 4-3

5 Using Policy Data in Messages

About Using Policy Control Data with Signaling Enginecccocccooovnni 5-1
Creating and Sending Diameter Rx Request MeSsages...........cccccouorueveiriiiieiiiiinicieceeee, 5-2
Accepting and Using Diameter Rx ANswer MeSSagesccceueiviurueieinicicieieiincieeeeeiee e 5-4

6 Anchoring Media Sessions

About the WebRTC Session Controller Media Serverccocooviinnnniinnnninnne, 6-1
About Media ENgine SESSIONS........c.ccoeueiiuriririiiiiciiieicceecereeeeee e 6-3
About Using createSdpOffer to Modify INVITE SDP Data.........cccccoevvviiiiiiiiiiiine, 6-4
About Using createSdpAnswer to Process 200 Message SDP Data...........cccccovvivnininnninininnnn. 6-4
About Using createReleaseRequest to Explicitly Release Media.........ccccccoeueucuccucicccicieercennes 6-4

A JsonRTC Protocol Reference

About the JSONRTC ProtoCo]........cccooviiiiiieieiieiceeesteee ettt ettt e s e s e aesseennesneen A-1
Initiating a HTTP /HTTPS Handshake with Signaling Enginecocoooooiiniiicinnne A-1
Tearing Down a JSONRTC SESSIONc.ciiiiiiiiiiiiiiiiiiicicc s A-2
About JsonRTC Sessions and SUDSESSIONS.......c.c.ccveveieirirrieiriesieiesieieteeesesessessessessessessesseseeses A-2
About Message Reliabilityccouoviiiiiiiii e A-2

About the JsonRTC Session Controller MeSSages...........cccccuvvueuiiriniereuieinnieneinenreeseenneneneeeeeenens A-2

CONIOL HEAETSceeoiiieiiiciiciiieectrcte ettt sttt sa s ae e enes A-3

General and Action Headers ... A-5

MesSage Payloads. ..o A-6

Example Message Bodies.............ccooiiiiiiiiiiiiiii s A-7

Audience

Preface

This document describes the developer extensions for Oracle Communications
WebRTC Session Controller product.

This document is intended for developers who use WebRTC Session Controller to
make their SIP-based services available to users using WebRTC-enabled web browsers.
WebRTC Session Controller does this by making your web-based JSON messages
understandable to a SIP network, and your SIP messages understandable to
JSON-based browsers and applications. This document also explains the points where
the SIP to JSON translation is extendable to add new features and incorporate other
features and technologies. This document further explains how to take advantage of
the WebRTC Session Controller Media Engine media anchoring features, and how to
incorporate WebRTC Session Controller policy (QoS) restrictions in your
implementation.

Related Documents

For more information, see the following documents in the Oracle Communications
WebRTC Session Controller Release 7.0 documentation set:

» Oracle Communications WebRTC Session Controller Concepts

» Oracle Communications WebRTC Session Controller System Administrator’s Guide

» Oracle Communications WebRTC Session Controller Security Guide

» Oracle Communications WebRTC Session Controller Web Application Developer’s Guide
» Oracle Communications WebRTC Session Controller Configuration API Reference

» Oracle Communications WebRTC Session Controller JavaScript API Reference

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

vi

1

About Extending WebRTC Session Controller

This chapter introduces the Oracle Communications WebRTC Session Controller
Signaling Engine (Signaling Engine) and WebRTC Session Controller Media Engine
(Media Engine) features that you use to establish communication between
WebRTC-enabled browsers and SIP-based network services.

In order to use WebRTC Session Controller functionality, you must be familiar with
s The SIP transport protocol, and how it builds up and tears down calls.

s TheJSON data format.

= JavaScript, and how it communicates with web servers.

s The Java and Groovy Programming Languages that you use to create scripts that
perform JSON to SIP and SIP to JSON translations within Signaling Engine.

About Extending WebRTC Session Controller Functionality

WebRTC Session Controller builds up and tears down real-time multimedia calls
between client applications on WebRTC-enabled web browsers, and your SIP
multimedia services. WebRTC Session Controller does this by translating telecom
messages between the JSON data structure used by the client applications and the SIP
protocol used by your IMS core.

See "WebRTC Session Controller Software and Protocol Conformance" for details on
the protocol levels this release uses.

Figure 1-1 illustrates the WebRTC Session Controller architecture, lists the developer
extension points you use to customize the JSON to SIP communication, and shows
how JSON messages are translated to SIP and SIP messages to JSON.

Client applications send JSON messages to Signaling Engine, which uses Groovy
scripts to process them and translate them to SIP messages and send them on to your
SIP servers and IMS core. During Groovy processing you can use interact with a Policy
Control and Rules Function (PCRF) to include policy (QoS) information, and Media
Engine to manage the call’s media session.

About Extending WebRTC Session Controller 1-1

About Extending WebRTC Session Controller Functionality

Figure 1-1 WebRTC Session Controller Components and Developer Extension Points

Web | WebRTC Session Controller
Browser! |
|

Cliert Signaling Engine
Application @ |
JEOM Mormalized sSIP

|
@ | ME’SEEIQE N‘ESSBQE Mesg.age ™
|
|
|
|
|
|
|
|
|
|
|

SIP Server or
P-CSCF

Y

- O®

Use Groovy scripts to
manage JSON data.

Groowy
Script Use Groovy scripts to
Pracessing manage S|P data.

Use Media Engine to affect
media content and capabilities,

' Use policy data to affect calls

@ P @ and/or subscriber profiles.
¥ 4

Extend a J5 APl package

WebRTC Sassion
Controller PCRF

Media Engine @ Add a new JS APl package

This guide explains how to customize Signaling Engine Groovy scripts to:

s Change the JSON data used in messages. For example, to modify your JSON data
if the JSON specifications change.

s Change the SIP data used in messages. You can then add any additional SIP
header data that your SIP implementation requires.

s Use Media Engine to affect the media parameters (SDP data) of media sessions.
For example, you can use Media Engine to negotiate a codec supported by both
call parties.

= Send and receive policy information from your PCRE. You can exchange
information with a PCRF and affect the call (or the subscriber’s account) either
before or after the call’'s media session.

s Streamline communication between client applications and WebRTC Session
Controller to provide a more lightweight and efficient protocol. You can tune the
network traffic by filtering or aggregating messages to limit the call flow. For
example, you could remove some or all of the SIP 1xx informational messages
from the call flow as they arrive at WebRTC Session Controller. Or you could
aggregate related SIP messages and forward them to the client application as a
single combined message once WebRTC Session Controller has received them all.
This reduces the amount of traffic that the client application must process,
enabling you to simplify the client applications logic.

The WebRTC Session Controller Web Application Developer’s Guide explains the extension
points not covered in this document, including;:

= How to extend the default WebRTC Session Controller JavaScript API package
= How to create a WebRTC Session Controller JavaScript API package

During the JSON to SIP translation you have a lot of flexibility in what you can do
with individual messages. You can manipulate messages:

= At the field level, by adding new fields, creating a new field layout, adding
optional data, and creating a new data representation.

1-2 Oracle Communications WebRTC Session Controller Extension Developer’'s Guide

About Extending WebRTC Session Controller Functionality

= At the header level, by separating a SIP message header from the message content,
and pass on one or the other in a new message (for a different service). You can
then pass one or both to a new service.

As shown in Figure 1-1, calls can originate either from a WebRTC-enabled web
browser (client application), or from the SIP IMS core itself. Browser-originating
messages are first translated from JSON to a normalized format by Signaling Engine.
Then the normalized message is translated to the SIP protocol by Signaling Engine
Groovy scripts calling methods from the WebRTC Session Controller API.

Signaling Engine processes SIP server-originated messages in the opposite direction.
They are first translated from SIP to a normalized format using your Groovy scripts.
Then Signaling Engine translates them again from the normalized format to the JSON
format that your web browser can parse.

Figure 1-2 shows the WebRTC Session Controller console graphical interface that you
use to create, select, and modify the Groovy scripts that translate and customize
messages. In Figure 1-2 the Packages tab is selected, showing one of the default
Groovy scripts provided with this release.

Figure 1-2 The WebRTC Session Controller Console Window

Packages - Mozilla Firefox

File Edit View History Bookmarks Tools Help

‘ |@| Packages o b

ORACLE WebRTC Session Controller & weblogic] Accessibilty [Logout o

® o

Applications Script Library Configuration

A | sekcted Package: cal

3¢ B Create Criteria 3§ Delete Criteria
Package Name | Direction |Verb Type MNetwork Service
call FROM_MET ACK reqjuest default
message_notification FROM_MET BYE request default
register FROM_MET BYE Ies ponse default
FY
Groovy Script
jvnid method(TemplateContext context) { Maximize

def sipRequest = context.originatingSipMessage
def webMessage = context.webFactory.createWebMessage("shutdown")
webMessage header = [
initiator : sipAddressToString|sipRequest. from),
target 1 sipAddressToStringisipRequest. to)
I

context.sipFactory.createSipResponse(200) .send()

/4 S0P
if (sipReguest.sdp) {

webMessage . payload = [sdp : sipRequest.sdp]
} |

1 Validate script

About Extending WebRTC Session Controller 1-3

About the WebRTC Session Controller Console Components

See "Customizing Messages for New SIP or JSON Data" for details on how to use the
WebRTC Session Controller console.

About the WebRTC Session Controller Console Components

WebRTC Session Controller uses these concepts and components:

WebRTC Session Controller applications - Each application represents a single
WebRTC-enabled client application and all of its capabilities. For example, an
application could be a website that offers a video and audio chat capabilities. Each
application uses a set of WebRTC Session Controller packages.

See "About Applications" for more details and "Creating Applications" for
instructions on how to create them.

WebRTC Session Controller packages - Each WebRTC Session Controller package
is a unit of real time communication capability that WebRTC Session Controller
supports. Each package is a collection of the individual Groovy scripts (criteria)
that actually do the message processing and translation from SIP to JSON and
back. Each JavaScript client application must reference the packages that it is
allowed to use.

Each package typically includes the logical set of message processing behaviors for
an application. For example you might put all message translation scripts for
video chat calls between a web browser and a SIP phone in one package. You
would probably define a separate package for audio chat calls, and another for a
sending SMSs, and another for file transfers.

See "About Packages" for more details and "Creating Packages" for details on how
to create one.

WebRTC Session Controller criteria - Each criteria includes information to identify
a SIP or JSON message to translate, and a Groovy script to do the translation. The
translation can be from SIP to JSON or JSON to SIP. For example one criteria
accepts the BYE message from a SIP phone to stop a media stream, and translates
it to a JSON shutdown message.

You use one criteria for each type of message that you expect to receive during the
process of setting up or tearing down the WebRTC multimedia calls that WebRTC
Session Controller processes. The Groovy scripts that you create and use are where
you add code to process any new or custom SIP or JSON data that your
implementation requires.

See "About Criteria" for more details on WebRTC Session Controller criteria, and
"Creating Criteria" for details on creating criteria.

Script Library - The script library is a collection of useful groovy code and
examples that you can use or reuse in any of the criteria Groovy scripts that you
create.

See "About the Groovy Scripts" for details on using the script library.

WebRTC Session Controller console - A Graphical User Interface (GUI) that you
use to create WebRTC Session Controller applications, packages, and criteria. This
GUI also contains the Script Library, and a Configuration tab that use to configure
Signaling Engine and Media Engine.

See "About the WebRTC Session Controller Console" for information about this
GUI. See the WebRTC Session Controller System Administrator’s Guide for
information on the configuration settings.

1-4 Oracle Communications WebRTC Session Controller Extension Developer’'s Guide

About Creating Client Applications Using the JavaScript API

Web RTC Session Controller console configuration settings - Used to set
performance limits for each Signaling Controller implementation. You use these
settings to balance WebRTC Session Controller capabilities with your network
load and hardware capabilities. For example you use this tab to enable/disable
glare handling (avoiding race conditions caused by concurrent requests), and set a
maximum number of WebSocket connections.

About the WebRTC Session Controller Groovy Scripts

The WebRTC Signaling Controller Groovy scripts translate WebRTC messages between
JSON messages to SIP, and also serve as extension points that you use to customize
behavior during the translation. During the translation process you can:

Make your WebRTC-based client web applications communicate with your SIP
servers and IMS core.

Make the client-to-SIP communication more efficient by removing unimportant
messages. For example, your IMS core probably includes media servers, which
send status messages that may by unimportant to a client application. You can add
instructions to the Groovy scripts to remove any unnecessary messages from
traffic, to save bandwidth.

Redirect the messages to different SIP services. For example, during a shopping
session, offer a video chat with a customer representative. As the chat session is
being set up, you can automatically provision the chat session with subscriber
information.

Intercept, modify, or replace individual messages as they are being processed,
within the same session. For example, you could modify or replace functionality
based on the values included in the message parameters. If your message includes
subscriber information, you could apply a special deal to all residents of a specific
city; or shut off service to all residents of a city; or redirect suspicious messages to
a quarantine area. You can make these decisions based on any information
contained in the messages from your SIP servers or client application. You are only
limited by the information in your JSON and SIP messages and the capabilities of
the Groovy scripting language.

Use policy control and charging rules function (PCRF) information to affect the
call or the subscriber’s account. You can use policy information to affect the call
either before the media stream is set up or afterward.

Use Media Engine data to change the call’s Session Description Protocol (SDP)
parameters. for example, to negotiate a codec that two web browsers support.

Add other features or behaviors that your implementation requires.

About Creating Client Applications Using the JavaScript API

You use the WebRTC Session Controller JavaScript API library to create multimedia
applications that run on WebRTC-enabled browsers. These client applications use this
API to communicate with the Signaling Engine, and Signaling Engine, in turn,
translates the JSON data format to one the SIP nodes can use.

See WebRTC Session Controller Web Application Developer’s Guide for details on how to
use this API to create client applications.

About Extending WebRTC Session Controller 1-5

About Translating Calls Using the Configuration API

About Translating Calls Using the Configuration API

You use the WebRTC Session Controller Configuration API, documented in the
WebRTC Session Controller Configuration API Reference and WebRTC Session Controller
JavaScript API Reference documents to translate call messages between the JSON data
format that the client application uses, and the SIP language that your IMS core
understands. It contains separate packages for:

» Creating, sending, and receiving SIP messages
= Creating, sending, and receiving JSON messages
= Sending and receiving policy (Diameter Rx) messages

» Creating and using Java Future interface objects to delay processing until
computations by Media Engine or a PCRF are complete. For example you can
delay establishing a media session until your PCRF confirms that the subscriber is
entitled to the resources.

= Using Media Engine to translate between WebRTC-enabled browsers and entities
that do not support the same codecs. These entities can be SIP nodes, or web
browsers that do not support the codec sent in the call request.

= Administering Signaling Engine. WebRTC Session Controller API contains a
configuration MBean. See WebRTC Session Controller System Administrator’s Guide
for details on using this MBean.

About Extending WebRTC Session Controller Using the JsonRTC
Protocol

WebRTC Session Controller includes the JsonRTC WebSocket subprotocol that it uses
to communicate with client applications and extend the default JavaScript capabilities.
JsonRTC uses the JSON data interchange format and the MBWS subprotocol as the
basis for message reliability.

If you use the WebRTC Session Controller console to create applications and packages,
then you do not need to understand this protocol. However, if your implementation
requires that you extend WebRTC Session Controller with new software packages, you
use this protocol to do so.

You can use this protocol to change the extend the JSON and SIP data structures and
add new fields and headers as necessary using the optional fields in the JsonRTC
protocol. However, you must use a Groovy script to validate and use the data as
necessary. WebRTC Session Controller accepts new data freely, but ignores if you do
not process it in your Groovy scripts.

See "Extending WebRTC Session Controller Functionality" for guidelines for creating a
custom package, and "[sonRTC Protocol Reference" for details on the WebRTC Session
Controller JsonRTC Protocol.

WebRTC Session Controller Software and Protocol Conformance

WebRTC Session Controller uses the following revision levels of the software tools and
protocols:

s The JSON data format for communicating with web browsers and other HTTP
nodes.

1-6 Oracle Communications WebRTC Session Controller Extension Developer’'s Guide

Prerequisites for Extending WebRTC Session Controller Functionality

Session Description Protocol (SDP) RFC 4566 for communicating information
about message media streams. The specification is available at the SDP
specification website: http://tools.ietf.org/html/rfcd566

The default JDK version - 1.7.
The Groovy scripting engine version 2.1.3.
The SIP protocol RFC 3261 for building up, tearing down calls.

A Groovy scripting language. See this Groovy website for information and
documentation:

http://groovy.codehaus.org/JSR+223+Scripting+with+Groovy

Prerequisites for Extending WebRTC Session Controller Functionality

Before using the instructions in this guide to configure and customize your WebRTC to
SIP communication, you need to know:

How to program in the Groovy scripting language. This Groovy website can get
you started: http://groovy.codehaus.org. There are also third party tutorials and
books available.

Details of your WebRTC client application message requirements.
Details of your SIP message requirements.

Details of any policy information that you provide to a PCREF to affect subscriber
profiles or accounts, and any policy information that you intend to use to affect
calls.

Details of the security groups that your WebLogic server uses. For details on using
security roles, see the discussion on users, groups, and security roles in Oracle
Fusion Middleware Securing Resources and Policies for Oracle Weblogic Server.

Details on the other security considerations that your network requires. See
WebRTC Session Controller Security Guide for information about setting up a secure
WebRTC Session Controller implementation.

About Extending WebRTC Session Controller 1-7

Prerequisites for Extending WebRTC Session Controller Functionality

1-8 Oracle Communications WebRTC Session Controller Extension Developer’'s Guide

2

About Building JSON to SIP Communication

This chapter explains how you use WebRTC Session Controller Signaling Engine
(Signaling Engine) to build up and tear down calls, and translate them between the
JSON data format and the SIP protocol.

About Building JSON to SIP Communication

Figure 2-1 shows the sessions and subsessions used in making a simple JSON to SIP
call flow. Client applications first set up JSON sessions that include WebSocket
connections to start communicating with Signaling Engine. Signaling Engine then
starts subsessions to communicate with the client application, and SIP sessions to
communicate with your IMS core. The sections that follow explain information you
need to know to set up this communication.

Figure 2—1 Signaling Engine Call Flow Overview

Client Signaling
Application Engine SIP Server
WebRTC JSON
Session/
WebSocket
Media | Sub o 1
Session ubsession SIP Sessionw
Media | ||| Subsession 2 -
Session SIP Session x
Medi .
ad_la » | Subsession 3
Session SIP Session y

Securing Signaling Engine Connections

See the Oracle Communications WebRTC Session Controller Security Guide for information
on securing:

= Signaling Engine-SIP connections.

About Building JSON to SIP Communication 2-1

About Building JSON to SIP Communication

s Client application to Signaling Engine connections.
= Internal Signaling Engine internal components and processes.

s WebRTC to SIP connections.

About Connecting to a Client Application

Signaling Engine uses the JsonRTC protocol to communicate between client
applications and the WebRTC Session Controller console. Signaling Engine establishes
communication using an HTTP /HTTPS handshake message using a value of
webrtc.oracle.com for Sec-WebSocket-Protocol.

See "JsonRTC Protocol Reference" and WebRTC Session Controller Web Application
Developer’s Guide for details on this protocol and how to use it to develop client
applications.

About Sessions and Subsessions

Figure 2-1 shows an overview of how Signaling Engine handles JSON sessions,
WebSockets, and subsessions, and how they relate to SIP sessions. First, Signaling
Engine opens a protocol session using the WebRTC Session Controller Configuration
API, and within that session Signaling Engine then opens a WebSocket connection.
Inside the WebSocket connection, Signaling Engine uses the JsonRTC protocol to open
a subsession to pass messages between the browser and the Signaling Engine. Finally
Signaling Engine opens a SIP session to communicate with your IMS core.

There is usually a 1:1 relationship between WebRTC sessions and WebSocket
connections. However if a network problem interrupts the WebRTC session, the
WebSocket connection can be reestablished with session information (rehydrated) if
the problem is fixed before the connection timeout limit is reached. If the time limit is
reached, the WebRTC session exits. See WebRTC Session Controller System
Administrator’s Guide for details.

Each subsession is associated with a WebRTC Session Controller package, which
defines the allowable actions for the WebSocket and its subsessions. Each subsession is
responsible for maintaining the media session between the client application and the
peer (media server, SIP phone, web client, and so on). When call is torn down, the
media stream and the subsession are closed.

Usually each Signaling Engine subsession has one corresponding SIP session.
However, a SIP session may not always required. If for example, a SubSession that just
sends a SIP MESSAGE outside of a dialog would not create a media session or require
a SIP session.

There is usually only one JSON session per WebSocket. However, each JSON session
can have multiple WebSocket connections which run in parallel. If a WebSocket is
disconnected unexpectedly, Signaling Engine can start a new one to continue using the
existing subsessions. This enables you to continue sessions if a WebSocket connection
is unexpectedly terminated by a network failure, HTML refresh, or other service
interruption.

About JSON to SIP Communication

Figure 2-2 shows the JSON and SIP message flow for a call originating from the client
application and how the messages relate to JSON sessions, WebSocket connections,
subsessions, and SIP sessions.

2-2 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

About Building JSON to SIP Communication

Figure 2-2 Default WebRTC Session Controller FROM_APP Call Flow Detail

Client Signaling
Application Engine SIP Server
WebRTC Handshake N
JSON >
Session/ Handshake
WebSocket - response
Connection
cannaalh sip
Subsession 1 REGISTER » ‘ffEESHDn
b connect/! 200 /0K
. response
Subsession
: 8 tart SIP
SCar]
INVITE - MSesslun
100/Trying
startfinitial 180/Ringing
response
200/0K
= tart/final response |
complete
ACE
< Medlia
Session
BEYE
shutdown ™
= 200/0K

The client application initiates communication with Signaling Engine by sending a
wsc.session object (not shown), which includes the handshake and connect message.

The call shown in Figure 2-2 originates from a client application (WebRTC-enabled
browser) using the RFC WebSocket protocol. In this case Signaling Engine translates
the JSON data into SIP protocol messages for the SIP server to respond do. The call
recipient (not shown) may be a SIP device served by the SIP server itself, or another
WebRTC browser using another Signaling Engine implementation.

As Figure 2-2 shows, Signaling Engine translates the JSON messages to SIP and passes
them to the SIP server, and translates the SIP messages to JSON and passes them back
to the client. Signaling Engine groups the Groovy-based translation code segments
into applications, packages, and criteria. Each application represents all JSON to SIP
communication for a collection of related Signaling Engine features. Each of the
features is composed of a package, which is a collection of individual criteria that each
perform a single translation action. These criteria contain the individual Groovy
scripts that perform each action.

See "About SIP to Client Communication” for a description of how Signaling Engine
processes messages that originate in your IMS core.

About Building JSON to SIP Communication 2-3

About Building JSON to SIP Communication

About SIP to Client Communication

This section explains how Signaling Engine processes messages what originate from

your IMS core. For example, if a subscriber using a SIP phone attempts to

communicate with a Signaling Engine client application. The call could originate from

any SIP device or another Signaling Engine implementation. From the Signaling
Engine perspective, these calls originate from a SIP server.

Figure 2-3 shows a sample call flow initiated by a SIP phone and how Signaling
Engine translates the SIP messages from the phone’s SIP server to the JSON data
format that the client application can use for communication.

Figure 2-3 Default Signaling Engine FROM_NET Call Flow Detail

Client Signaling
Application Engine SIP Proxy SIP Phone
Handshake
Handshake
WebRT _ response
Sessionf =
WebSocket _
Connection connect -
EEZISTEER o
connect! P 200 /0K
_ response
h 5”:-' INVITE
Sessio <
Subse ssiun\ "\‘
u INVITE
- S:a].::.. 100/Trying
starcfinitial >
response
180/Calling
=tartffinal response "
ACK "
complete
Media Session
< >
BYE
shutdown
_ 200/ 0K

About Storing Data Within Sessions

As you are building up and tearing down calls, you will probably need to store data
within Signaling Engine for different messages to use, such as customer subscriber
data. Signaling Engine provides an attribute store to hold data that you use within
sessions. You use the getSessionStore() class in the

2-4 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

Understanding the WebRTC Session Controller Components

oracle.wsc.feature.webrtc.template package (TemplateContext interface) to retrieve
data from the attribute store. The attribute store is created when a WebSocket session
or SIP session is created within Signaling Engine, and is persistent until that session is
torn down.

Understanding the WebRTC Session Controller Components

Using the WebRTC Session Controller console, you equate one WebRTC-enabled client
application to a WebRTC Session Controller application. Each Signaling Engine
application in turn, is a collection of WebRTC Session Controller packages that each
roughly equate to a single real time WebRTC feature. Each package contains any
number of Groovy scripts, called criteria, that each perform a single translation
function on a single type of call message. The sections below provide more detail on
applications, packages, and criteria.

About Applications

A WebRTC Session Controller application represents a single client application or
service that sends messages between a browser and a SIP server through WebRTC
Session Controller. Each application must have at least two packages, one for
translating from the SIP server to the application and one for translating from the
application to the SIP server. Each application has:

s Aninformal name.
= An active/inactive setting.
= Aninformal description.

= References to the WebRTC Session Controller packages that contain the Groovy
scripts that performs message processing and translation.

= A Request URI that the application uses to communicate with a SIP server or
proxy.

s The WebLogic security group. The security groups is required, and the Weblogic
Server contains some default security groups that you can use. For details on using
security groups, see the discussion on users, groups, and security roles in Oracle
Fusion Middleware Securing Resources and Policies for Oracle Weblogic Server.

= Alist of Allowed Domains that serve as a white list of domains the application is
allowed to contact.

= Resource limits that allow you to protect system performance by limiting an
application’s impact on Signaling Engine. These resource limits can also serve as
application white- and black-lists for individual applications.

See "About Packages" for details on the packages that comprise an application.

About Packages

Each WebRTC Session Controller package contains a group of criteria that contain the
Groovy scripts to translate a logical group of messages from JSON to SIP or SIP to
JSON. For example, Signaling Engine provides an example call package that includes
all of the JSON (FROM_APP) and SIP (FROM_NET) criteria to build up and tear down
a JSON to SIP call, including:

= JSON start messages (request, response, and error)

= JSON complete message

About Building JSON to SIP Communication 2-5

Understanding the WebRTC Session Controller Components

= JSON prack message

= JSON shutdown message

= SIP INVITE messages (request and response)
s SIP CANCEL message

= SIP ACK messages (request and response)

s SIP UPDATE messages (request and response)
s SIP PRACK message

= SIP BYE messages (request and response)

A package generally contains criteria for a single client application. Each package can
be used by any number of Signaling Engine applications.

See the WebRTC Session Controller console to inspect the default packages provided,
and "About Criteria" for details about the criteria that comprise a package.

About Criteria

Each WebRTC Session Controller criteria matches one kind of JSON or SIP message
and runs the code in a Groovy script against it. For example, one criteria translates an
INVITE request message from SIP to JSON, and another translates the response back
from JSON to your SIP format.

Each criteria uses this information to identify the messages it translates:

= A FROM_APP or FROM_NET direction that specifies whether the message
originated in a WebRTC-enabled browser, or your SIP IMS core.

= A verb matching the type of JSON or SIP request or response. For example, an
UPDATE verb matches SIP UPDATE requests and response messages, and a
complete verb matches a JSON complete request or response message.

= A type of message for the criteria to match. For example request or response. See
"JsonRTC Protocol Reference" for the list of supported type values.

= A Network Service name. Each default criteria uses a Script Library call to return
the network service of the call. A default network service name is the default.

See "About the Groovy Scripts" for details on the Groovy scripts.

By default, WebRTC Session Controller contains useful criteria that you can use to
build and tear down calls, and use as stubs to add functionality that your
implementation requires. You can use these default criteria as provided but you will
probably modify them to fit your implementation’s needs.

This is the default FROM_NET/INVITE/request/default criteria Groovy script:

def sipRequest = context.originatingSipMessage
def webMessage = context.webFactory.createWebRequest ("start")
webMessage.header = [
initiator : sipAddressToString(sipRequest.from),
target : sipAddressToString (sipRequest.to)
]
// SDP
if (sipRequest.sdp) ({
webMessage.payload = [sdp : sipRequest.sdp]
}
def sdpString = sipRequest.sdp

2-6 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

About the WebRTC Session Controller Console

if (context.mediaFactory.isAvailable() && sdpString!=null) ({

def sdpOffer = context.mediaFactory.createSdpOffer("1", sdpString,
Constants.ME_CONFIG_NAME, null, sipAddressToString (sipRequest.to),
sipAddressToString (sipRequest.from)) ;

def ascFuture = sdpOffer.send()

context.getTaskBuilder ("processMediaResponseToSendWebMsg") .withArg ("ascFuture",
ascFuture) .withArg ("webMessage" ,webMessage) .onSuccess (ascFuture) .build() ;
}
else(

webMessage. send ()

}

About the WebRTC Session Controller Console

You use the WebRTC Session Controller console to create, organize, use, and extend
the applications, packages, and criteria for your implementation.

At the highest level, you use the Applications tab to create and manage applications,
that roughly equate to a single web client application. See "Creating Applications" for
details on creating applications.

Figure 2—4 shows the WebRTC Session Controller console with the Packages tab
exposed. Each package is listed with its direction, verb, type, and network service. The
Groovy script used in each criteria is shown on the bottom right of the pane. You enter
or change the Groovy script for each package in this pane. You can also reference any
existing Groovy code stored in the Scripting Library tab. The See "Creating Packages"
for details on creating packages for your applications.

About Building JSON to SIP Communication 2-7

About the Groovy Scripts

Figure 2-4 WebRTC Session Controller Console Packages Tab

ORACLE

Applications

X W
Fackage Name

WebRTC Session Controller & webkegic {J) Accessibiity 3 Logout o

Script Library Configuration
Sekected Package: call

Create Criera 3§ Delete Criteria

call
message_notification

register

| Direction |Verb Type Network Service
FROM_MET UFDATE response cefault
FROM_AFP complkete message cefault
FROM_AFP prack request ciefault
FROM_AFF shutcown message ciefault
FROM_AFPP start errar ckefault
From_are - || 5% request cisfault
jFHOM_AF'F' response clefault
Groovy Script
void method(Tem plateContext context) { Maximize J

def from = getFromAddress(context)
def to = getToAddress(context)
def sipRequest
if(context.sipSessionstate &L context.sipSessionState = SipSession.State.EARLY) { [|

sipRequest = context.sipFactory.createSipRequesti"UPDATE", from, to)
T else {

sipRequest = context.sipFactory.createSipRequest|"INVITE", from, to)
¥

if (sipRequest.initial) {

| Validate script

The Script Library tab is a repository of validated Groovy scripting code that you can
reference in any of your packages.

About the Groovy Scripts

Groovy is a scripting languages based on, and very similar to the Java programming
language. Each Signaling Engine package contains its own individual Groovy scripts
that translate messages matching its criteria specifications. The translation is either
from WebRTC Session Controller’s normalized format to SIP, or SIP to the normalized
format depending on the direction you set. Packages require that you set up one
criteria for translating in one direction, and a corresponding criteria for translating
messages in the other direction. Signaling Engine then translates the normalized
format to a format that your browser/application uses and back again.

Most packages use synchronous communication, so most criteria are created in pairs;
one that translates messages from the client application (JSON) to SIP, and the other to
translate from SIP to JSON. However the traffic can be asynchronous, as with SMS
messages for example.

Figure 2-5 shows how criteria use Signaling Engine components to translate messages.
The register package shown contains two criteria, one for FROM_NET messages and
the other for FROM_APP messages.

2-8 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

About the Groovy Scripts

Figure 2-5 Signaling Engine Criteria Components

Applications Packages Script Library Configuration
Selected Package: register
b4 -y Create Criteria 3% Delete Criteria

Package Mame | Direction |‘-.|ferh Type |Netwnrk Service

call FROM_MET REGISTER res ponse cefault

message;ﬁi[eﬂ‘@[FROM_AFPP connect request cefault |

. te —o—__'_'_ s

register .

Goovy ript — WSC Java API

) oracle.wsc feature. webrtc template
void method(TemplateContext context) { pﬂnxlmlze
{# Create REGISTER reguest
def from = getFromAddress(context)
def to = getToAddress|context)
j def sipReq = context.sipFactory.createSipRequest("REGISTER", from, to)

ff Set request URI
sipReq. requestURI =
context.sipFactory . createSipAddress | Constants . PROXY SIP URI) . URI

Every criteria uses this Java signature:
void method (TemplateContext context) { Groovy script }
At run time, Signaling Engine converts the criteria identifying information (FROM_

APP or FROM_NET, the verb, message type, and network service) to a method name.
However, you only encounter this method name while debugging criteria operations.

The signature calls the TemplateContext interface of the
oracle.wsc.feature.webrtc.template package in the WebRTC Session Controller
JsonRTC protocol to act on the Groovy script. This interface includes all of the other
JsonRTC protocol interfaces that specify the specific Java methods that you can use to
get information from or set information to a message.

See WebRTC Session Controller Configuration API for details on this API.

Finally every criteria contains a Groovy script that acts on the information obtained
from the context. It is in these scripts that you add any new functionality or redirection
instructions that change the behavior or destination of the message. In addition to
simple translation, you can add any other processing that your implementation
requires to each message. For example, you could:

= Map JSON information to SIP fields so that your SIP server accepts it.

= Map SIP header information to a form that your web application can use.
= Route the message to a specific URL based on its JSON information.

= Route the message to a specific URL based on its SIP information.

= Incorporate features such as redirecting a message to a different URL for example,
to prevent bill shock.

See WebRTC Session Controller Configuration API for details on the packages and
methods of the APL

About Building JSON to SIP Communication 2-9

About the Script Library

About the Script Library

The Groovy scripts you create for a package will probably use some functionality
provided in the script library. The script library contains a set of useful methods that
you can add to as required by your implementation. To use one of these methods,
select the Script Library tab, click Lock and Edit, make your changes, then click
Commit. Example methods in the Script Library include code to:

= Return a user address based on the characteristics of a SIP string.
= Set the SIP routing URL.

= Set the SIP message contact parameter.

= Copy SDP data to a SIP header.

The Groovy code that you create in a package’s criteria is appended to the code in the
script library at run time. So you can reuse any of the library code in the scripts that
you create for each individual package. You can also add more code to the library as
needed, and use it in other individual packages.

After changing the code in either a package or the library, you need to validate it to
ensure that it compiles correctly. You use the Validate Script button on the Package tab
to validate an individual script, and the Validate Library button on the Script Library
tab to validate the library.

About the Normalized Data Format

As pictured in Figure 1-1 Signaling Engine converts messages into a normalized data
format in the process of translating them between SIP and JSON. All messages are
converted to the normalized format, regardless of whether they originated in a
WebRTC client application, or from your IMS core.

The syntax for the normalized format is straightforward:

Map<String, Object>

For example, this JSON data format message:

{

"age":25,

"name" : {

"first":"joe",

"last":"smith"

Iy

"messages":["msg 1", "msg 2", "msg 3"]

}

Is translated to this normalized message format, which is a hash map representation of
the message:

{"age"=25,
{"name“:{ n first“:"joe" , "last":" smith” } } ,
{"messages"=["msgl", "msg2", "msg3"]}}

Notice that the messages array is a nested hash map of its own.

Table 2-1 lists a variety of actions that you might perform while creating a Groovy
translation script and the Groovy code that performs the action.

2-10 Oracle Communications WebRTC Session Controller Extension Developer's Guide

About the Normalized Data Format

Table 2-1 Java and Groovy Actions on the Normalized Format

Translation Action Groovy Code

Get the age def age = map.age

Get the first name def firstName = map.name.first
Get the list of messages def messages = map.messages

Get message 2 from the list | def message2 = messages|[1]

Modify the last name map.name.last = "doe"

Add a middle name map.name.middle = "bob"

About Building JSON to SIP Communication 2-11

About the Normalized Data Format

2-12 Oracle Communications WebRTC Session Controller Extension Developer's Guide

3

Creating WebRTC Session Controller
Applications, Packages, and Criteria

This chapter explains how to create the applications, packages, and criteria that
WebRTC Session Controller Signaling Engine (Signaling Engine) uses to establish and
modify communication between your client applications and IMS core.

Starting the WebRTC Session Controller Console

You use the WebRTC Session Controller console GUI to create and manage the
applications, packages, and criteria that Signaling Controller uses to translate and
modify messages between client applications and your IMS core.

This procedure requires a running WebLogic server, and that you know the WebLogic
username and password that you created for the domain. See the discussion on getting
started in WebRTC Session Controller System Administrator’s Guide for instructions on
creating and starting a WebLogic domain.

To start the WebRTC Session Controller console:
1. Start the WebRTC Session Controller domain server.
2. Open a web browser.
3. Access this URL:
http://localhost:port/wsc-console
or this command if HTTP security is configured:
https://localhost:port/wsc-console
Where:

localhost is the IP address of the system running the WebLogic domain or the value
localhost.

port is the port of the domain. The default port is 7001.

This command starts the WebRTC Session Controller console on a local system
using the default port:

http://localhost:7001/wsc-console

4. The WebLogic user login screen appears. Enter the username and password you
set when creating the WebLogic domain.

The WebRTC Session Controller console window appears.

Creating WebRTC Session Controller Applications, Packages, and Criteria 3-1

Creating Criteria

The item marked weblogic in this screen capture is the username of the user or
group logged into the WebRTC Session Controller console. In this case it shows the
default user, Weblogic.

The Accessibility item brings up the WebRTC Session Controller console
accessibility tools. For details see the discussion on starting the WebRTC Session
Controller console in the WebRTC Session Controller Installation Guide.

The Logout item logs the current user out of the WebRTC Session Controller
console.

Creating Criteria

Each Signaling Engine criteria contains a single Groovy script that performs all
translation and processing tasks for a single type of JSON or SIP message. You must
create separate criteria for all possible JSON or SIP message that your Signaling Engine
implementation processes. In synchronous request/response communication, you
must create a separate criteria for each request and response message.

Before creating a new criteria, look through the Groovy code in the default packages,
and in the Script Library to see whether there is already some code that accomplishes
what your message requires.

Criteria are applied to messages based on this information included in each criteria:

Direction - Either FROM_APP for messages originated in a WebRTC-enabled
browser, or FROM_NET for messages originating from your IMS core (SIP server
Or proxy).

Verb - Identifies the message action verb (SIP method or JSON action) that the
criteria matches. For example PUT, GET, INVITE, complete, shutdown, and so
on.

Type - The type of message; can be one of:
- request

- response

- message

- error

- acknowledgment

Network Service - Identifies the application that the message is being used for.

To create a Signaling Engine criteria:

1.

a & 0N

Start the WebRTC Session Controller console.

See "Starting the WebRTC Session Controller Console" for details on starting the
Signaling Engine console.

Select the Packages tab.

Select the package to add criteria for from the Package Name table.
Click Lock and Edit at the top of the window.

Click Create Criteria.

A blank criteria appears at the top of the criteria table and a Groovy script pane
appears below the criteria table.

3-2 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

Creating Applications

6. In the Direction field, select either FROM_APP or FROM_NET. If the criteria
affects calls originating in a WebRTC-enabled browser, select FROM_APP. If the
criteria is for calls originating in the IMS core, select FROM_NET.

7. In the Verb field, Enter a SIP method name or HTTP request that identifies the
message to affect.

8. In the Type field, enter (request or response) as appropriate.

9. Inthe Network Service field enter the network service for messages that you want
to affect.

10. In the Groovy Script window enter a Groovy script as appropriate for this criteria.

The Groovy script defines all actions for this criteria. See "About the Groovy
Scripts" for more information.

11. Click Validate Script to ensure that your Groovy script meets the Signaling Engine
validation requirements.

See "About the WebRTC Session Controller Console Validation Tests" for a list of
the validation tests and error messages.

12. Click Commit to save your new criteria. See "About the Groovy Scripts" for
details.

13. Click Commit to make your changes take effect.

Creating Packages

A package is a collection of all the criteria (Groovy scripts) necessary to translate the
telecom messages in a session from JSON to SIP and back. So creating a new package
really just creates a shell that you fill with criteria. This procedure assumes that you
have already created the criteria required.

To create a package:
1. Start the Signaling Engine console.

See "Starting the WebRTC Session Controller Console" for details on starting the
Signaling Engine console.

2. Click Lock and Edit.

3. Click the Create Package. icon (blank page with "+" sign).
The Create Package dialog box appears.

4. Enter a logical name for the new package and click OK.

Your new package now appears in the package table which is arranged
alphabetically.

5. Click Commit to make your changes take effect.

Creating Applications

Each application is a collection of packages that contain the criteria that translate (and
probably change) WebRTC application to SIP network communication for a single
program. This procedure assumes that you have already created the criteria and
packages required.

Applications reference your WebLogic security groups. Create any security groups
your implementation requires before following this procedure.

Creating WebRTC Session Controller Applications, Packages, and Criteria 3-3

Debugging Groovy Script Run Time Errors

To create an Application:

1.

10.

11.

12

13

14

Start the WebRTC Session Controller console.

See "Starting the WebRTC Session Controller Console" for details on starting the
Signaling Engine console.

Select the Applications tab.

Click the Lock and Edit button.

Click Create.

The Create Application dialog box appears.

Enter a logical name for the application.

Click OK

The Applications table appears with the new application in the top row.

Select the Active check box if you want the application to take effect immediately.
Description - Enter an informative description of the application.

Request-URI - Enter the URI that messages are allowed to originate from. The
WebRTC application’s name. The default location is /ws/webrtc/application_name.

Resource Limits - Select the pencil icon to enter resource limits and the Resource
Limits screen appears. Enter positive integers to set maximum session limits; enter
0 to prohibit any sessions, and -1 to allow unlimited sessions.

- Max sessions - Enter the grand total number of sessions that the original
session can spawn.

— Max sessions per user - Enter the total number of sessions that a subscriber is
allowed to spawn.

— Max sub sessions per user -Enter the total number of sessions that each user is
allowed to spawn within a session.

— Max sub sessions per session - Enter the total number of sub sessions
spawned by a single session.

Click OK.

Allowed Domains - Click the pencil icon to edit the list of cross-origin resource
sharing (CORS) domains to share data with this application. Allowed Domains
window appears. Enter all domains to allow cross-origin resources sharing
(CORS) with this application. Click OK when finished.

Packages - Click the pencil icon to edit the list of packages that apply to this
application. The Packages window appears. Move all packages that apply to this
application to the Selected Packages list. Move all others to the Existing Packages
list. Click OK when finished.

Any warning icons disappear and the new application is shown in the
applications table.

Click Commit to make your changes take effect.

Debugging Groovy Script Run Time Errors

You can diagnose Groovy script problems using the stack trace in the domain_
homelwsc.log file, which contains Signaling Engine stack trace messages. You identify
the individual Groovy script by searching for the individual criteria method name that

3-4 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

Debugging Groovy Script Run Time Errors

contains the criteria information. See "About the Groovy Scripts" for details on the
signature that each script uses, and the method it invokes.

Figure 3-1 shows an illustration of a formatting problem in the register package, in the
FROM_APP/connect/request/default criteria shown highlighted. The red arrows
show the problem, the sipReq variable is used before it is declared.

Figure 3—1 Groovy Script With a Formatting Error

[_'
Applications ' Packages Script Library ' Configuration
A sekcted Package: register
b4 Iy Create Criteria 3% Delete Criteria

Package Mame | Direction |‘-.|ferh Type Metwork Service

call FROM_MET REGISTER res ponse cefault
message_naotification FROM_AFPF connect request cefault

reqister -

roovy Script
i id method(TemplateContext context) { Maximize

Variable |sg =—— 5ipReg.setSipContactParameter("+sip.instance”, sipInstance)

’/ﬁsipﬂeq = context.sipFactory.createSipRequest("REGISTER", from, to)
Yariable Defined '

/¢ Create REGISTER request
def from = getFromAddress(context)
def to = getToAddress|context)

/¢ 5et request URI
sipReq. requestURI =
context.sipFactory. createSipAddress (Constants . PROXY SIP_URI) .URI

| Validate script

This is a violation of Java syntax, and as you would expect, the operation failed and
these debugging messages were written to the wsc.log file:

Caused by: groovy.lang.MissingPropertyException: No such property: sipReq for
class: Script2

at
org.codehaus.groovy.runtime.ScriptBytecodeAdapter.unwrap (ScriptBytecodeAdapter.jav
a:50)

at
org.codehaus.groovy.runtime.callsite.PogoGetPropertySite.getProperty (PogoGetProper
tySite.java:49)

at
org.codehaus.groovy.runtime.callsite.AbstractCallSite.callGroovyObjectGetProperty (
AbstractCallSite.java:231)

at Script2.pkg register_dir FROM_APP_ typ_ request_verb_connect_netsvc_
default (Script2.groovy:705)

at sun.reflect.NativeMethodAccessorImpl.invoke0 (Native Method)

at
sun.reflect.NativeMethodAccessorImpl.invoke (NativeMethodAccessorImpl.java:57)

at
sun.reflect.DelegatingMethodAccessorImpl.invoke (DelegatingMethodAccessorImpl.java:
43)

at java.lang.reflect.Method.invoke (Method.java:606)

Creating WebRTC Session Controller Applications, Packages, and Criteria 3-5

About the WebRTC Session Controller Console Validation Tests

at org.codehaus.groovy.reflection.CachedMethod. invoke (CachedMethod.java:90)
at groovy.lang.MetaMethod.doMethodInvoke (MetaMethod.java:233)

at groovy.lang.MetaClassImpl.invokeMethod (MetaClassImpl.java:1085)

at groovy.lang.MetaClassImpl.invokeMethod (MetaClassImpl.java:952)

at groovy.lang.MetaClassImpl.invokeMethod (MetaClassImpl.java:909)

at groovy.lang.Closure.call(Closure.java:411)

at

org.codehaus.groovy.jsr223.GroovyScriptEngineImpl.callGlobal (GroovyScriptEngineImp

1.java:411)
at

org.codehaus.groovy.jsr223.GroovyScriptEngineImpl.callGlobal (GroovyScriptEngineImp

1.java:405)
at

org.codehaus.groovy.jsr223.GroovyScriptEngineImpl. invokeImpl (GroovyScriptEngineImp

1.java:394)

The package and criteria values of the offending Groovy script are identified in this

line from wsc.log:

Script2.pkg_register dir_FROM APP_typ_ request_verb_connect_netsvc_
default (Script2.groovy:705)

This messages shows the method name that Signaling Engine creates from each
criteria’s package name and criteria values (highlighted).

In this example, the criteria with the syntax error is in the register package. Within that
package the criteria with the problem has a FROM_APP direction; a request type; a
connect verb; and a default network service. This matches the syntax error of the
FROM_APP/connect/request/default criteria shown in Figure 3-1.

About the WebRTC Session Controller Console Validation Tests

The WebRTC Session Controller console runs validation tests to confirm that your
Groovy scripts, Groovy library, packages, and applications are all valid. It runs the
validation tests each time you commit changes to an application, package, or criteria,
or click the Validate Script or Validate Library buttons.

Table 3-1 lists the validation error types and their error messages.

Table 3-1 WebRTC Session Controller Groovy Script Validity Tests

Error Type

Error Message

APPLICATION_NAME_NOT_UNIQUE

Application name application_name is not unique.

RESOURCE_LIMITS_PROFILE_NAME_IS_
NOT_UNIQUE

Resource limits profile name resource_limit_profile_name is not
unique.

INVALID_RESOURCE_NAME

Invalid resource name resource_name, do not enter invalid
characters.

INVALID_APP_NAME

The application_name application contains invalid characters.

INVALID_REQUEST_URI

The request_URI request URI contains invalid characters.

INVALID_SECURITY_EXPRESSION

The security_expression security expression contains invalid
characters.

INVALID_ALLOWED_DOMAINS_
EXPRESSION

The domains_expression domains expression contains invalid
characters.

INVALID_RESOURCE_LIMITS_NAM

Invalid resource name resource_name in application_name
application.

3-6 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

About the WebRTC Session Controller Console Validation Tests

Table 3-1 (Cont.) WebRTC Session Controller Groovy Script Validity Tests

Error Type Error Message
PACKAGE_NAME_NOT_UNIQUE Package name package_name is not unique..
SCRIPT_NAME_NOT_UNIQUE Script name script_name is not unique for package package_name.
MODULE_NAME_NOT_UNIQUE Module name module_name is not unique.
INVALID_PKG_NAME The package_name package contains invalid characters.
INVALID_CRITERIA_VERB The wverb_name verb name contains invalid characters.
INVALID_CRITERIA_TYPE The type_name type contains invalid characters.
INVALID_CRITERIA_NETWORK The network_name network contains invalid characters.
PKG_REQUIRED At least one package is required for the application application_
name.
INVALID_PACKAGE_REFERENCE Package name package_name is referenced from app application_
name but it does not exist.
GROOVYALL_COMPILATION_ERRORS Error occurred for the criteria criteria, in the package package_
name and the error message is reason at line number line_number.
GROOVY_COMPILATION_ERRORS Error is reason, at line number line_number.
DUPLICATE_CRITERIA Duplicate criteria found for criteria direction, verb, type, network_
service in package package_name.
GROOVYALL_SCRIPT_RESTRICTION Error occurred for the criteria criteria, in the package package_
name and the error message is reason.
GROOVY_SCRIPT_LIBRARY_ Script library validation error is reason at line number line_
COMPILATION_ERRORS number.
ME_INVALID_LOGIN Invalid credentials found, for the media engine.
ME_ADDRESS_IS_NOT_UNIQU Media engine address address is not unique.
ME_PORT_IS_INVALID Invalid media engine port port_number.
ME_NODE_NOT_REACHABLE Server not reachable with address address and port port_number.
ME_LIFE_CYCLE_ERROR Media engine life cycle is not initiated for the server server_name
and port port_number.
INVALID_MODULE_NAME The module_name moduel contains invalid characters.
INVALID_MODULE_REFERENCE Nonexistant module module_name is referenced from application
application_name.
INVALID_SCRIPT_TYPE The script script_name contains an error of type error_type.
GROOVY_SCRIPT_LIBRARY_RESTRICTIONS | Error occurred in script library reason.
GROOVY_SCRIPT_RESTRICTIONS Error message is reason.

Creating WebRTC Session Controller Applications, Packages, and Criteria 3-7

About the WebRTC Session Controller Console Validation Tests

3-8 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

Customizing Messages for New SIP or JSON
Data

This chapter contains examples of how to use Oracle Communications WebRTC
Session Controller Signaling Engine (Signaling Engine) to process customized SIP data
in messages, and add new JSON data to support protocol changes.

Processing Messages With Custom SIP Data

This section provides some examples for how to translate SIP messages which contain
custom SIP data.

Example SIP Request Variable

The examples in this chapter assume that you have created a custom sipReq variable
as shown in this example:

// Create REGISTER request

def from = getFromAddress (context)

def to = getToAddress (context)

def sipReq = context.sipFactory.createSipRequest ("REGISTER", from, to)

// Set request URI
sipReq.requestURI = context.sipFactory.createSipAddress (Constants.PROXY_SIP_
URI) .URI

// Set contact user
if (from.URI?.user) {
sipReq.setContactUser (from.URI.user)

// Set sip.instance to allow container to use SIP Outbound
// for routing purposes as defined in RFC 5626

def sipInstance = "\"<urn:uuid:" + java.util.UUID.randomUUID() + ">\""
sipReq.setSipContactParameter ("+sip.instance", sipInstance)
sipReq.setSipContactParameter ("reg-id", "1")

context.subSessionStore.put ("sip.instance", sipInstance)

// Enable GRUU support (disabled by default)
//sipReq.setHeader ("Supported", "gruu")

// P-Charging-Vector example

//def icidvValue = context.uniqueId

//def myIp = java.net.InetAddress.localHost.hostAddress
//sipReq.setHeader ("P-Charging-Vector", "icid-value=" + icidvValue +

Customizing Messages for New SIP or JSON Data 4-1

Processing Messages With Custom SIP Data

//";icid-generated-at=" + myIp)

sipReq.send ()

Extending SIP Messages with New Headers

This Groovy code snippet from the default register package, in the FROM_
APP/connect/request/default criteria (commented out) adds support for a Globally
Routable User agent URI (GRUU).

sipReq.setHeader ("Supported", "gruu")

Protecting System Performance by Removing SIP Messages

You can save network bandwidth by removing unimportant messages during
processing. For example, you would use this code snippet to remove provisional SIP

responses (the 1xx SIP messages). You would put this in the Groovy script for the
FROM_NET/INVITE/response criteria:

if (sipResponse.status < 200) {
// Ignore provisional responses

} else if (sipResponse.status < 300)
// Proceed with processing

}

{...

}

Removing a SIP Header in a Message

Use this Groovy code snippet to remove a header. Headers cannot be renamed.

sipReq.removeHeader ("headername")

Replacing a SIP Header in a Message

You use the setHeader method to replace a header in a SIP message. Setting a header
overwrites its value.

Conditionally Passing SIP Headers in Messages

This example Groovy code snippet probes for a JSON parameter called
myWebParmeter and if present it copies the value to a SIP header.

def myWebParameter = context.webMessage?.header.?myParameter
if (myWebParameter) {

sipRequest.setHeader ("MyHeader", myWebParameter)

}

You pass SIP headers as extension headers (extHeader) in the JSON API. See WebRTC

Session Controller Web Application Developer’s Guide for examples of using extension
headers.

4-2 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

Extending WebRTC Session Controller Functionality

Changing JSON Data to Support Protocol Changes

If the JSON protocol specification changes, you can add processing for additional data
in your Groovy scripts. WebRTC Session Controller ignores new JSON data if you do
not use it in processing.

Extending WebRTC Session Controller Functionality

If your implementation requires client application logic that WebRTC Session
Controller or Javascript does not support by default, you need to create new software
packages to implement it. The procedure below offers guidelines for creating a new
package. The exact steps and sequence depend on your requirements.

See "JsonRTC Protocol Reference" for details on the JsonRTC protocol that WebRTC
uses to communicate with client applications. Also see "Prerequisites for Extending
WebRTC Session Controller Functionality" for information on other protocols you may
need to understand.

To create a new package:

1.

Design your new package.

Include the new JSON to SIP message mapping and any new JSON and SIP data,
formats, and headers.

Use the WebRTC Session Controller console to create the criteria and Groovy script
processing necessary to implement your new package.

See "Creating Criteria"for details on creating criteria.

Create or extend the tools necessary to use the package with a client application.

If you use the JavaScript Development Environment client operating system,
see the WebRTC Session Controller Web Application Developer’s Guide for more
information.

If you use a different client operating system, see that operating system
documentation for details. You may also find the WebRTC Session Controller
Web Application Developer’s Guide helpful.

Write the client application.

To develop JavaScript client applications see the WebRTC Session Controller Web
Application Developer’s Guide for more information.

To develop client applications in another operating system, see that operating
system documentation for information on how to communicate with WebRTC
Session Controller.

Customizing Messages for New SIP or JSON Data 4-3

Extending WebRTC Session Controller Functionality

4-4 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

O

Using Policy Data in Messages

This chapter explains how Oracle Communications WebRTC Session Controller
Signaling Engine (Signaling Engine) uses policy data from policy charging rule
functions (PCRFs) to affect subscriber calls and profiles.

About Using Policy Control Data with Signaling Engine

Signaling Engine supports using its Groovy script translation capability to make policy
(QoS) decisions by using the policy information contained in Diameter Rx interface
messages. Signaling Engine acts as a Diameter application function (AF) by
exchanging Diameter Rx messages with your policy control and charging rules
function (PCRF) in a 3GPP architecture.

Signaling Engine supports sending AA Request (AAR) and Session Termination
Request (STR) Diameter Rx messages from Signaling Engine to your PCRF, and using
the data from AA Answer (AAA) and Session Termination Answer (STA) messages
that it receives in return.

The Diameter Rx messages and their responses are frequently used with the
pcrfFuture interface that enables you to delay processing until a later message arrives.
Oracle expects that most implementations will send Diameter AAR requests and then
delay the media session until they receive an AAA confirming that the subscriber is
entitled to the service.

The AAR and AAA messages can be exchanged any time before a call’s media stream,
and the STR and STA messages are exchanged after the stream. So you can affect your
PCRF and PCEF affect the subscriber profile before the media stream resources are
used, update the subscriber’s profile after the media stream resources have been
consumed, or both.

See WebRTC Session Controller Statement of Conformance for the complete list of
Diameter Rx commands and AVPs that Signaling Engine Supports.

Before the AAR and STR messages can be useful, you must configure your PCRF to
accept and make policy decisions based on the AVPs that you send them. If your
implementation requires it, you must also configure a PCEF to enforce those decisions.

Figure 5-1 shows an example call flow in which Signaling Engine exchanges messages
with a PCRF both before and after the call’s multimedia stream. Diameter Rx AAR,
AAA, STR, and STA messages are shown in red in the call flow.

Using Policy Data in Messages 5-1

About Using Policy Control Data with Signaling

Engine

Figure 5-1 Signaling Engine Call Flow with PCRF Support

Media
Session

r

shutdown

Diameter Rx=-AAR

i ignalin
Cl‘lsm' > ? g SIP Server
Application Engine
Handshake -
Handshake
_ response
Connact
»
REGISTER -
Eall
connect/ < 200/0K
« response
-+
start -
= INVITE N
=tart/initial < 180/Trying
_ response
4
s Lartifinal response
-+
compleats PCRF
™

Y

F3

Diameater Rx=-A0.8

ACE

Y

EYE

F

Diameter Rx-5TR

Diameter Rx-STA

Y

F

Creating and Sending Diameter Rx Request messages

You use the createRxAAR and createRxSTR methods in the WscDiameterFactory
interface of the oracle.wsc.feature.webrtc.template.diameter package to create AAR
and STR messages. These methods accept a map of AVPs that you create, and adds
them to a Diameter Rx message that your PCRF can parse. Your PCRF then accepts the

200/0K

Y

AVPs and take whatever action that you have configured it.

These AVPs are automatically added to each outgoing request and need not be

specified in a Groovy
= Session-Id
s Origin-Host

s Origin-Realm

script:

5-2 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

About Using Policy Control Data with Signaling Engine

= Auth-Application-Id
s Destination-Realm

You must specify any other AVPs that your implementation requires in your Groovy
scripts. See WebRTC Session Controller Conformance Statement for details on the AVPs
supported.

This example defines an AAR message and specifically defines the AVPs used (for
example: Subscription-Id, Subscription-Id-Type, and Subscription-Id-Data):

def avps = [

'Subscription-Id': [

'Subscription-Id-Type':2, //END_USER_SIP_URI

'Subscription-Id-Data': "bob@example.com"
1,
'Framed-IP-Address': [

0x84,

0x08,

0x88,

0x65] as bytel],
'AF-Application-Identifier':"WSE".getBytes("utf-8"),
'Media-Type':0, //Audio
'AF-Charging-Identifier':'charing-id-55'.getBytes("utf-8"), //Audio
'Media-Component-Description': [

'Media-Component-Number': [0, 1],

'Media-Sub-Component': [

[
'Flow-Number':1,
'Flow-Description': 'permit out 8001 from assigned 34 to 24.2.1.6/18
8000

'Flow-Number':1,
'Flow-Description':'permit out 8005 from assigned 36 to 24.2.1.6/18
8001"
1
1,
'Flow-Status':2

def aar = context.diameterFactory.createRxAAR (avps)

After creating a Diameter request message, you must explicitly send it using a send
method call. send is a method in the WscDiameterRequest interface in the
oracle.wsc.feature.webrtc.template.diameter package. This example sends an AAR
message, and provides example success and error conditions:

def pcrfFuture = aar.send();
//success

context.getTaskBuilder ("processSuccessFromPcrf") .withArg ("sipRequest", sipRequest)
.withArg ("pcrfFuture", pcrfFuture).onSuccess (pcrfFuture).build();

//error
context.getTaskBuilder ("processErrorFromPcrf") .withArg ("sipRequest", sipRequest)

.withArg ("pcrfFuture", pcrfFuture).onError (pcrfFuture) .build();

This example lists the pcrfSuccessHandler and pcrfErrorHandler methods that you
would define to handle the success and failure conditions.

Using Policy Data in Messages 5-3

About Using Policy Control Data with Signaling Engine

You use the methods in the PcrfFuture interface in the
oracle.wscfeature.webrtc.template.diameter package to determine if any future
objects are ready for use by your Groovy scripts. This interface extends the
oracle.wsc.feature.webrtc.template.future interface.

This example checks the AVP values in the response to confirm that the subscriber
bob@example.com uses a media type of 0.

def avps = context.taskArgs.pcrfFuture.get().getAvps()

if (avps.'Subscription-Id'?.'Subscription-Id-Data'=="'bob@example.com") {
//add logic here.

}else if (avps. 'Media-Type'==0) {

//provide alternative

}

Accepting and Using Diameter Rx Answer Messages

You use the getAvps, getCommandCode, and getResultCode methods in the
WscDiameterResponse interface of the oracle.wscfeature.webrtc.template.diameter
package to process the Diameter Rx AAA and STA messages returned by your PCRFE.
getCommandCode, returns the command code identifying the type of message (265
for AAR and AAA, and 275 for STR and STA). getResultCode returns the integer
values for the Result-Code AVP. getAvps returns a map of all the AVPs in the AAA or
STA message. You use this method in groovy scripts you create to obtain the data
necessary to perform policy actions, and take those actions.

5-4 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

6

Anchoring Media Sessions

This chapter explains how to use the Oracle Communications WebRTC Session
Controller Media Engine (Media Engine) features to anchor media sessions.

About the WebRTC Session Controller Media Server

You use Media Engine to:

m Establish communication between a WebRTC-enabled browser and a SIP/PSTN
device.

= Establish communication between two end points (WebRTC-enabled browsers, or
SIP or PSTN based devices) that do not share a common codec they can use to
communicate directly.

= Enable a content service provider to forcibly anchor a call for example, to lawfully
intercept it.

In the WebRTC Session Controller JsonRTC protocol, you use the WscMediaFactory
interface in the oracle.wsc.feature.webrtc.template.media package to interact with
Media Engine. It includes these methods:

= createSdpOffer - Can contain the media session ID, SDP data,
fromMediaConfigName, and toMediaConfigName to use, and the From and To
URLSs to use for communication. See "About Media Engine Sessions" for details on
the supported sessions.

= createSdpAnswer - Contains the media session ID and SDP data.

n createReleaseRequest - Contains the media session ID to release. This method
releases the media or resources currently being used by the callee.

= isAvailable - Confirms that a Media Engine can be used. This is useful in cases
where your Groovy script uses the Media Engine functionality if one is available,
or does its own internal processing (attempts to connect the two client directly) if
not.

See WebRTC Session Controller Configuration API Reference for details on this interface
and these methods.

Figure 6-1 shows a flow of SDP data between two clients, in this case a
WebRTC-enabled browser and a SIP endpoint. The two Signaling Engines may be
different nodes in a clustered implementation, or they may be the same instance. This
flow also shows where the processSdpOffer, processSdpAnswer, and
createReleaseRequest actions occur.

Anchoring Media Sessions 6-1

About the WebRTC Session Controller Media Server

Figure 6-1 Media Engine SDP Flow

Client
Application

Start with SDP1

Signaling Media SIP
Engine Engine IMS Core Endpoint

L

createSdpOffer
sbPz

F

INVITE with SDP2

INVITE with
SDP2

.
L

200 with SDPa

200/0K with S0Pa

ail.
-

createSdpAnswer
SDPb
Start response
o with SOPb
Media Session
=’ - { L
BYE
BYE
craateRalaasaRagpast
QK
shutdaown h

In a typical scenario, Signaling Engine sends a createSdpOffer message to the Media
Engine that includes all possible codecs that the caller supports. The Media Engine
then returns modified SDP data including a list of the codecs that it supports and
allows.

Further, the callee’s SDP data, including a list of supported codecs, is sent from the SIP
proxy to Signaling Engine in a 200/OK message, as shown in Figure 6-1. Signaling
Engine then sends a createSdpAnswer to Media Engine with the list of codecs. If any
codecs sent by Signaling Engine match the codecs supported by the Media Engine, the
Media Engine returns the codecs it supports. Or, if Media Engine is configured to do
so, it may attempt to convert the media stream to a alternate codec that the callee can
use.

6-2 Oracle Communications WebRTC Session Controller Extension Developer's Guide

About the WebRTC Session Controller Media Server

Once the media session has terminated, you send a createReleaseRequest message to
the media server to release any resources the media server has allocated.

This code snippet from the Signaling Engine default call package, FROM_
NET/INVITE/request criteria shows how to set up media anchoring;:

if (Constants.ME_CONFIG_NAME NET && sdpString!=null) ({

def sdpOffer = context.mediaFactory.createSdpOffer("1", sdpString, Constants.ME_
CONFIG_NAME_NET, null, sipAddressToString(sipRequest.to),
sipAddressToString (sipRequest.from)) ;

def ascFuture = sdpOffer.send()

context.getTaskBuilder ("processMediaResponseToSendWebMsg") .withArg ("ascFuture",
ascFuture) .withArg ("webMessage",webMessage) .onSuccess (ascFuture) .build() ;
}
else(

webMessage. send ()

}

This Groovy code tests whether a Media Engine is available, and if so sends a
createSdpOffer request to the Media Engine with SDP data. If no Media Engine is
available sends a webMessage.

This code snippet from the Script Library shows one example of handling a reply from
Media Engine:

void processMediaResponseToSendWebMsg (TemplateContext context) {
def resp = context.taskArgs.ascFuture.get();
def newSdp = resp.getSdp();
def webMessage = context.taskArgs.webMessage
if (webMessage.payload) {
webMessage.payload.sdp = newSdp
} else {
webMessage.payload = [sdp : newSdp]
}
webMessage.send ()

}
It processes the response and sends the new SDP data back to the original caller.

About Media Engine Sessions

Table 6-1 lists the supported Media Engine session types, lists their Media Engine
config names, and describes how they are used.

Table 6-1 Media Engine Session Types

Session Type Config Name Description

Web to Web web-to-web-anchor-co | Used when WebRTC-enabled browsers are

Conditional nditional allowed to communicate directly. If for some

Anchoring reason they cannot communicate directly, they
can communicate through WebRTC Session
Controller

Web to Web web-to-web-anchor-a | Forces all media flows through Media Engine.

Forced nchored

Anchoring

Web to SIP web-to-sip For WebRTC-enabled browser to PSTN
communication. All media flows through Media
Engine.

Anchoring Media Sessions 6-3

About the WebRTC Session Controller Media Server

Table 6-1 (Cont.) Media Engine Session Types

Session Type Config Name Description

SIP to Web sip-to-web Used for making calls from a SIP phone/PSTN
to a WebRTC client application. All media flows
through Media Engine.

About Using createSdpOffer to Modify INVITE SDP Data

You use the createSdpOffer method to direct Media Engine to process SDP data sent
by the calling end point. You either send SDP data with this method for Media Engine
to process, or send the name of a media configuration that the node uses to determine
for itself which SDP data to use. The Media Engine replies to Signaling Engine with
the new or modified SDP data. Signaling Engine then uses the SDP data returned in
the call’s media session.

createSdpOffer includes these parameters:
= A setof SDP data to use.

= A media configuration name. The Media Engine uses the media configuration to
select SDP data to return to the Signaling Engine. Media configuration names
must be preconfigured on the Media Engine. See "About Media Engine Sessions"
for details.

s A fromURL
= AtoURL

You can send a session_id value with createSdpOffer to identify a specific media
session. For example, createSdpAnswer requires a session_id to function.

You use the send() method from the oracle.wsc.feature.webrtc.template interface,
WscMessage package to send createSdpOffer. See WebRTC Session Controller
Configuration API Reference for details on send().

About Using createSdpAnswer to Process 200 Message SDP Data

A SIP 200/0OK message that accepts a session invitation contains SDP data to use in
that session. You use the createSdpAnswer method in a Groovy script to accept and
process that SDP.

About Using createReleaseRequest to Explicitly Release Media

All media sessions are released automatically when the call terminates. You can also
force Media Engine to release all media for a session immediately by sending the
session ID to the createReleaseRequest method in a Groovy script.

6-4 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

A

JSoOnRTC Protocol Reference

This appendix provides reference information for the WebRTC Session Controller
JsonRTC Protocol used by WebRTC Session Controller Signaling Engine (Signaling
Engine).

About the JsonRTC Protocol

WebRTC Session Controller uses this protocol to communicate with WebRTC-enabled
browser client applications. It establishes the sessions and subsessions that you use to
pass messages between WebRTC Session Controller and its client applications inside
WebSocket connections.

You can also use this protocol to create new WebRTC Session Controller packages for
your WebRTC Session Controller implementation.

See "About Building JSON to SIP Communication" for more information about how
WebRTC Session Controller handles WebSocket connections, sessions, and
subsessions.

While WebRTC Session Controller uses this protocol to communicate with
JavaScript-based applications by default, this protocol also communicates with client
applications based on different operating systems. Your client application must open
the WebSockets necessary for the JsonRTC protocol subsessions to communicate with.

Initiating a HTTP/HTTPS Handshake with Signaling Engine

The JsonRTC protocol is a sub protocol of the WebSocket protocol, and you establish a
handshake with a WebSocket protocol to initiate communication between the two. The
handshake establishes a connection between the client (usually an application in a
browser) and the Signaling Engine server inside HTTP/HTTPS. Once the client
receives the handshake response, communication can proceed. The handshake is an
HTTP GET /chat message using webrtc.oracle.com as the value for
Sec-WebSocket-Protocol. For Example:

GET /chat HTTP/1.1

Host: server.wsc_IP.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25j7ZQ==
Origin: http://client_IP.com
Sec-WebSocket-Protocol: webrtc.oracle.com
Sec-WebSocket-Version: 13

Where:

wsc_IP is the domain name of the Signaling Engine server.

JsonRTC Protocol Reference A-1

About the JsonRTC Session Controller Messages

client_IP is the domain name of the client.

The handshake reply must include a 101 Switching Protocols entry to allow the
connection, as shown in this example handshake reply:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+x00=
Sec-WebSocket-Protocol: webrtc.oracle.com

Once the client receives the handshake response, the client and Signaling Engine
server can communicate further.

Immediately after establishing a WebSocket connection, the client sends a JsonRTC
CONNECT message to establish the WebRTC Session Controller JsonRTC session.
Once WebRTC Signaling Controller accepts the CONNECT message, it responds by
sending back a session_id. If the WebSocket connection is broken unexpectedly, for
example by a network problem, the client can re-establish the session by starting a new
websocket connection with the original session_id in a CONNECT message.

Tearing Down a JsonRTC Session

You tear down a JsonRTC session by closing the WebSocket connection.

About JsonRTC Sessions and SubSessions

See "About Sessions and Subsessions" for details on how this protocol establishes and
manipulates sessions and subsessions.

JsonRTC uses a session_id field instead of a Message Broker WebSocket Subprotocol
(MBWS) connection_name to identify the WebSocket session. The session_id field
value must be unique across time and space to work with geographically redundant
clusters.

The subsession_id is the session_id value with a c or s prefix added to it.

Also see "Initiating a HTTP/HTTPS Handshake with Signaling Engine" for more
information about using session_id to reconnect a session.

About Message Reliability

This protocol uses the MessageBroker WebSocket Subprotocol (MBWS) as basis for
message reliability. For more information on MBWS, see the MBWS specification:

http://tools.ietf.org/html/draft-hapner-hybi-messagebroker-subprotocol-03

About the JsonRTC Session Controller Messages

The basic communication unit used between a WebRTC-enabled client application and
the WebRTC Session Controller JsonRTC protocol is a message. Signaling Engine
communication can be synchronous or asynchronous. Each messages includes these
components:

s Control Headers
s General and Action Headers
= Message Payloads

This section also includes "Example Message Bodies" that you can use for reference.

A-2 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

Control Headers

Control Headers

The control header specifies information that the client and server use to handle
(control) the message. It includes the message type, session ID, message state, and so
on. Typically Signaling Engine uses this information itself, not applications or Groovy
scripts.

type
The control type of JSON message. Can be one of:

request
A message that requires a response. A protocol frame with control type request
may also contain a payload header.

response
This message is a response to a request message. A protocol frame with control
type request may also contain a payload header.r.

message
A message that does not require a response. For example notification, or publish.
A protocol frame with control type request may also contain a payload header.

acknowledge
A message that acknowledges another message. Can not contain a payload header.

error
Indicates that an error has arrived. Can not contain a payload header.

package_type

Optional. The call, presence, and message_notification types are defined by default.
Identifies the Signaling Engine package that the message applies to. If no package_
type is specified, Signaling Engine assumes that the default call package is used for all
messages except messages those with a CONNECT action. CONNECT messages
attempt to establish a session and are not associated with a package. See "Creating
Packages" for details about the Signaling Engine packages.

session_id

Identifies a WebSocket session. The server creates the session ID and returns it to the
client in the CONNECT response. A CONNECT message containing a session ID
reestablishes a JsonRTC session. This value must be completely unique so that it may
be used across redundant clusters. This has the same role as the MessageBroker
WebSocket Subprotocol (MBWS) connection-name.

sequence
A serial number that uniquely identifies a message in a JsonRTC session. Both the
client and server keep their own serial number counts, starting with 1.

ack_sequence

Optional. Identifies a message to acknowledge. Used to confirm that the client
received the message with the ack_sequence value. A value if 0 means the message
was not received. All messages with a lower value than the ack_sequence are also
considered acknowledged.

JsonRTC Protocol Reference A-3

Control Headers

subsession_id

Identifies a subsession with a session. The sequence numbers are incremented each
time a new session is started. The client and server keep separate subsession ID
counts. This subsession ID typically includes a c prefix if the subsession originated
with the client and an s prefix if it originated with the server. An implementation can
also choose to use a globally unique identifier as the subsession ID.

For example the second client-originated subsession has the value "subsession_
id""c2". The seventh server-originated session uses the value "subsession_id":"s7"

correlation_id

A string that identifies a specific message within a session. It can simply be a sequence
number incremented each time a new message is sent. The client and server keep
separate message counts. Messages from the client have a “c” suffix and messages
from the server have an “s" suffix.

For example the third client-originated message has the value “correlation_id”:"c3".
The sixth server-originated message has the value "correlation_id":"s6".

message_state

Identifies the message state as Initial, Subsequent, or Final. A state of Initial is assumed
if no state is present. Only Subsequent or Final messages need specify the message_
state.

For example: "message_state":"Final"

version
Identifies the JsonRTC protocol version that message sender supports (client or
server). If none is present in the message version "1.0" is assumed.

A-4 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

General and Action Headers

General and Action Headers

The general header (header) includes fields that Signaling Engine uses to build up and
tear down calls. These fields are specific to one or more packages and are available to
use in both client applications and Groovy scripts.

action
The purpose of the message. Can be one of:

CONNECT
Establishes a session with the server. These general headers are only used with the
CONNECT action.

cslr
Optional. Sent with the session_id of a session to reconnect. Uses the sequence
number of the last message received from the client to identify the session.

cslw
Optional. Sent with the session_id of a session to reconnect. Uses the lower
bound of the messages in the client’s retained window to identify the session.

csuw
Optional. Sent with the session_id of a session to reconnect. Uses the upper
bound of the messages in the client’s retained window to identify the session.

sslr
Optional. Sent with the session_id of a session to reconnect. Uses the sequence
number of the last message received by the server to identify the session.

START
Starts a session with a specific package.

COMPLETE
Announces that the media session has been established.

NOTIFY
Equivalent to Notification of Notification Server.

SHUTDOWN
Shuts down session opened by a specific request.

initiator
Optional. Identifies the URI of the user initiating the HTTP request. If this value exists,
it may be set by the client or the HTTP session.

target
Optional. Identifies the URI of the Signaling Engine server being targeted by the
message.

error_code
Optional. In error type messages, lists the error message.

JsonRTC Protocol Reference A-5

Message Payloads

Message Payloads

The message payload is specific to Signaling Engine package that the message is used
for. The default call package the payload is an SDP offer or answer. The default
message-notification package includes JSON data with message text. If you created a
presence package, that package probably includes presence data.

A-6 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

Example Message Bodies

Example Message Bodies

The following sections show message body examples.

Connect Request Message
{

"control": {
"type":"request",
"sequence":"1",
"version":"1.0"

+,

"header": {
"action":"connect",
"initator":"bob@example.com",

}

}

CONNECT Response Message
{

"control": {
"type":"response",
"sequence":"1",
"correlation_id":"cl",
"subsession_id":"cl",
"session_id":"Hyi89JUThhjjR",

"version":"1.0"

},
"header": {
"action":"connect"
}
}
START Request Message
{
"control": {
"type":"request",
"sequence":"2",
Iy
"header": {
"action":"start",
"initator":"bob@example.com",
"target":"alice@example.com",
Iy
"payload": {
"<offer_sdp>"
}
}

START Response Message
{

"control": {
"type":"response"
"sequence":"2",
"correlation_id":"c2"
"subsession_id":"c2"

b

JsonRTC Protocol Reference A-7

Example Message Bodies

"header": {
"action":"start"

b,

"payload": {
"<pranswer_sdp>"

}
SHUTDOWN Message
{
"control": {
"type": "message"
"sequence":"4",
"subsession_id":"c2"
3,
"header": {
"action":"shutdown"
}
}

ERROR Message
{

"control": {
"type":"error"
"sequence":"6",
"correlation_id":"c2"
"subsession_id":"c2"
"error_code":"480"

A-8 Oracle Communications WebRTC Session Controller Extension Developer’s Guide

	Contents
	Preface
	Audience
	Related Documents
	Documentation Accessibility

	1 About Extending WebRTC Session Controller
	About Extending WebRTC Session Controller Functionality
	About the WebRTC Session Controller Console Components
	About the WebRTC Session Controller Groovy Scripts
	About Creating Client Applications Using the JavaScript API
	About Translating Calls Using the Configuration API
	About Extending WebRTC Session Controller Using the JsonRTC Protocol
	WebRTC Session Controller Software and Protocol Conformance
	Prerequisites for Extending WebRTC Session Controller Functionality

	2 About Building JSON to SIP Communication
	About Building JSON to SIP Communication
	Securing Signaling Engine Connections
	About Connecting to a Client Application
	About Sessions and Subsessions
	About JSON to SIP Communication
	About SIP to Client Communication
	About Storing Data Within Sessions

	Understanding the WebRTC Session Controller Components
	About Applications
	About Packages
	About Criteria

	About the WebRTC Session Controller Console
	About the Groovy Scripts
	About the Script Library
	About the Normalized Data Format

	3 Creating WebRTC Session Controller Applications, Packages, and Criteria
	Starting the WebRTC Session Controller Console
	Creating Criteria
	Creating Packages
	Creating Applications
	Debugging Groovy Script Run Time Errors
	About the WebRTC Session Controller Console Validation Tests

	4 Customizing Messages for New SIP or JSON Data
	Processing Messages With Custom SIP Data
	Example SIP Request Variable
	Extending SIP Messages with New Headers
	Protecting System Performance by Removing SIP Messages
	Removing a SIP Header in a Message
	Replacing a SIP Header in a Message
	Conditionally Passing SIP Headers in Messages

	Changing JSON Data to Support Protocol Changes
	Extending WebRTC Session Controller Functionality

	5 Using Policy Data in Messages
	About Using Policy Control Data with Signaling Engine
	Creating and Sending Diameter Rx Request messages
	Accepting and Using Diameter Rx Answer Messages

	6 Anchoring Media Sessions
	About the WebRTC Session Controller Media Server
	About Media Engine Sessions
	About Using createSdpOffer to Modify INVITE SDP Data
	About Using createSdpAnswer to Process 200 Message SDP Data
	About Using createReleaseRequest to Explicitly Release Media

	A JsonRTC Protocol Reference
	About the JsonRTC Protocol
	Initiating a HTTP/HTTPS Handshake with Signaling Engine
	Tearing Down a JsonRTC Session
	About JsonRTC Sessions and SubSessions
	About Message Reliability

	About the JsonRTC Session Controller Messages
	Control Headers
	General and Action Headers
	Message Payloads
	Example Message Bodies

