

An Oracle White Paper

July 2011

Oracle Insurance Policy Administration
for Life and Annuity: Leveraging Oracle
Coherence for Distributed Execution
of High Volume Transactions

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes

only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or

functionality, and should not be relied upon in making purchasing decisions. The development, release, and

timing of any features or functionality described for Oracle’s products remains at the sole discretion of

Oracle.

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

Introduction ... 2

Oracle Coherence ... 2

Clustered Caching ... 3

Oracle Insurance Policy Administration for Life and Annuity 5

Rule-based Configuration .. 5

OIPA Cycle Processing ... 6

Challenges of Cycle Processing .. 7

Powering Cycle with Oracle Coherence ... 7

Distributed Computing with the Coherence Processing Pattern 8

Scalability and High Availability in the Processing Pattern 12

OIPA Cycle Execution using the Coherence Processing Pattern 13

Extending the Processing Pattern to Support Cycle 14

Using the Processing Pattern to Submit Tasks 14

Executing a Cycle Level using ResumableTask 15

Benchmark Results for Cycle Processing 17

Conclusion .. 18

About Oracle Insurance ... 18

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

2

Introduction

This technical white paper discusses how Oracle Insurance Policy Administration for Life and Annuity

(OIPA) leverages the powerful capabilities of Oracle Coherence in-memory data grid middleware to

provide predictable scalability, performance for high-volume batch cycle processing, and seamless fail-

over support. It includes a technical discussion of how the Coherence Processing Pattern provides the

grid computing infrastructure used by the Oracle Insurance Policy Administration cycle subsystem.

The first two sections of this paper provide an overview of Oracle Coherence and the Oracle Insurance

Policy Administration products, respectively. The remaining sections of the paper describe how OIPA

implements the Oracle Incubator Processing Pattern to enable distributed batch processing of work

across a grid of interconnected Oracle Coherence powered compute nodes.

Oracle Coherence

Oracle Coherence is an in-memory data grid solution that enables organizations to predictably scale

mission-critical applications by providing fast access to frequently used data. Data grid software is

middleware that reliably manages data objects in memory across multiple servers. By automatically and

dynamically partitioning data, Oracle Coherence ensures continuous data availability and transactional

integrity even in the event of a server failure. It provides organizations with a robust scaled-out data

abstraction layer that brokers the supply and demand of data between applications and data sources.

Oracle Coherence enables the following benefits within today’s enterprise applications:

 Performance – Oracle Coherence solves latency problems and drives dramatic increases in

performance by moving data closer to applications for efficient access. In-memory performance

alleviates bottlenecks and reduces data contention, improving application responsiveness.

 Reliability – Oracle Coherence is built on a fault-tolerant mesh that provides data reliability and

accuracy. Organizations can meet data availability demands in mission-critical environments with

Oracle Coherence support for data tolerance and continuous operation. The reliability of the data grid

minimizes the need for applications to compensate for server and network failures, streamlining the

development and deployment process.

 Scalability – Oracle Coherence enables applications to scale linearly and dynamically for predictable

cost and improved resource utilization. For many applications, it offers a straightforward approach to

increasing the effective capacity of shared data sources. Oracle Coherence handles continually growing

application loads without risking data loss or interruption of service.

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

3

Figure 1. Oracle Coherence Overview

The information stored within the nodes of a data grid is evenly distributed among the cluster members.

When applications access the data grid, Oracle Coherence ensures that the data is never more than one

network hop away and thus allows for near in-memory latency to all data stored within the grid. This

approach enables very large performance improvements in data access. Furthermore, since the data is

distributed among all nodes of the data grid and each node does not have to hold all cached data, a data

grid can store very large amounts of data (in the order of magnitude of hundreds of gigabytes) without a

degradation in performance. In fact, the addition of nodes to a data grid leads to a linear increase in data

capacity available to the clients of the grid without any degradation in performance. This latter property

is what is known as a linear scalability. Finally, a data grid has the ability to store backup copies of its

data objects in separate nodes and thus also provides for high availability.

Clustered Caching

One of the main capabilities of Oracle Coherence, and one that is used heavily by the features discussed

within the rest of this document, is clustered caching. Clustered caching refers to the ability to maintain

data in the application tier in such a way that the application can fulfill some portion of its data access

requirements from the cache. This mitigates the application’s load on the database without violating the

application’s requirements for data correctness if that data is being changed. Oracle Coherence provides

two main types of clustered caching that are used by the Oracle Insurance Policy Administration

solution: Replicated Caching and Partitioned Caching.

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

4

Replicated Caching

The best-known form of coherent clustered caching is the fully replicated cache. Replication is the ability

to achieve guaranteed coherency of data across multiple nodes of a cluster by maintaining copies of the

data within each node and synchronizing changes. If each server maintains a local copy of cached data,

then the application logic running on each server can access local data without the need to communicate

with any other servers. As a result, data access has no measurable latency. There are a few limitations to

replicated caching. First, a change to the cache implies the need to communicate to the entire cluster.

Such communication—often accomplished by use of group network protocols—cannot by its nature

scale linearly. Second, the cache is severely limited in its in-memory size, because each cluster node is

maintaining the entire cache within its process space.

Partitioned Caching

To solve the limitations of a replicated cache model without sacrificing either the high-availability (HA)

benefits of redundancy or the coherency guarantees provided by the clustered cache, Oracle invented

the concept of a partitioned cache. With the data partitioned, the cache capacity grows linearly with the

size of the cluster, as does the processing capacity available for managing the cache. Further, in a shared-

nothing architecture, each piece of data in the cache has exactly one owner within the cluster who is

responsible for managing that data. All network communication can be point-to-point in a partitioned

model, allowing the cache throughput to scale linearly on a switched network. In order to recover from a

possible node failure, a partitioned cache needs to store, at a minimum, one redundant copy of the cache

data on a different physical node. The partitioned caching capability of Oracle Coherence provides the

foundation for distributed processing in OIPA.

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

5

Oracle Insurance Policy Administration for Life and Annuity

Oracle Insurance Policy Administration is a highly-flexible, rules-based policy administration solution

that provides full record keeping and support for all policy lifecycle transactions (e.g. policy issue, billing,

collections, policy processing, and claims). With OIPA, insurers rapidly adapt to changing business

needs and regulatory requirements while supporting straight-through processing throughout the policy

lifecycle.

OIPA is used by leading insurers to accelerate product development and speed time to market for

differentiated life, health, and annuity products. The system enables insurers to provide real-time policy

servicing of customers and sales channels throughout the policy lifecycle for increased retention and

loyalty. It also helps insurers reduce risk and support compliance while better managing the business to

optimize performance through the use of a single system for life and annuities.

Insurers require the ability to quickly bring to market innovative products that stand out from the

competition, capture more market share, and ultimately maximize profitability. OIPA is an industry

leading, fully configurable system allowing insurance companies to outpace competitors by getting to

market faster. In addition, it enables insurers to drive transactions using business rules. It also provides

real-time access to policy data, enhancing self-service capabilities for customers and distribution

channels.

Rule-based Configuration

Figure 2. OIPA enables insurers to accelerate the development and launch of life, health, and annuity products and

update existing products with new features or riders through flexible, rules-based configuration.

The rules-based architecture of OIPA enables rapid new product development, freeing insurers from the

limitations of legacy policy administration systems. The rules-driven capabilities of OIPA are unmatched

in the industry; almost all changes to the system—including products, fields, screens, languages, and

currencies—can be made without ever touching the core code or recompiling the application. The

system does the heavy lifting through pre-configured templates, rules reusability and product cloning,

and a visual Rules Palette with easy to use, drag-and-drop functionality.

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

6

One of the most important elements configured by business analysts within an OIPA system is the

concept of a transaction. Transactions define how the system updates, modifies, or deletes data in

OIPA. As an example, a premium transaction takes a payment submitted by an insured and applies that

money to a policy. A premium transaction performs a number of actions including validating inputs,

removing value from suspense, applying fees and charges, issuing commission, applying the money to

one or more funds on the policy, and adjusting the cash value of the policy. OIPA allows insurers to

configure the sequence of steps, business rules, and calculations that are performed, as well as what data

is updated as a result of the transaction processing.

An instance of a transaction is known as an activity. The execution of an activity involves the execution

of all processing associated with its underlying transaction within a single atomic unit of work. The

execution of an activity also involves the auditing of all of the changes so that they can easily be reversed

or undone.

In most cases, activities that are entered into the system are scheduled for execution at a later time. In a

typical OIPA system, Customer Service Representatives (CSRs) may create hundreds or even thousands

of pending activities during the day. These pending activities are subsequently executed during a

scheduled batch process.

OIPA Cycle Processing

Cycle is the component of an OIPA system that is responsible for the scheduled execution of pending

activities. The activities executed by cycle are classified into different levels, where each Cycle Level

determines the type of work item to be processed and the sequence of execution:

 Pre-Company – process all pending company level activities that are configured to be executed before

any policy activities are processed.

 Pre-Plan – process all pending plan level activities that are configured to be executed before any policy

activities are processed.

 Pre-Client – process all pending client level activities that are configured to be executed before any

policy activities are processed.

 Policy – process all pending policy activities in the insurance database

 Post-Client – process all pending client level activities that are configured to be executed after any

policy activities are processed.

 Post-Plan – process all pending plan level activities that are configured to be executed after any policy

activities are processed.

 Post-Company – process all company level activities that are configured to be executed after any policy

activities are processed.

The association of levels with activities allows business analysts to define the sequence within which

policy level activities execute. An example is the importing of the latest fund unit values into the system

so that policy level activities that affect cash value can be executed properly. Fund unit values would

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

7

have to be imported before policy level cycle can execute, because many policy level activities require the

latest fund unit values in order to process successfully. Other examples are the execution of calculations

for downstream reporting or exporting of data into a data warehouse. This should happen after policies

are processed, as policy level processing results in the modification of a significant amount of

operational data, which should be current before it is imported into a data warehouse.

Challenges of Cycle Processing

The requirements of the OIPA Cycle system lead to inherent time and volume challenges as described in

this section. The next section will describe how Oracle Coherence’s capabilities enable Cycle to meet

these challenges.

Time Constraints

OIPA Cycle processing places a large demand on database and system resources and can slow down the

online OIPA application. Cycle is typically scheduled to execute off business hours in order to minimize

the impact to the OIPA application users. The increasing globalization of insurance companies expands

the OIPA application availability and therefore shortens the time intervals that Cycle has to complete

processing.

High Volume Processing

Cycle activities must be able to meet varying processing volume demands with specific time constraints.

There are peak periods when the volume of pending activities can be significantly greater than normal.

Example peak periods include end-of-month, end-of-quarter, and end-of-year processing when many, if

not all, active policies in the system have pending activities to process. During these peak periods when

the number of pending activities possibly number hundreds of thousands or even millions, Cycle must

still be able to meet time constraints.

Powering Cycle with Oracle Coherence

A consideration of the challenges presented by Cycle requirements makes it clear that the use of a

distributed computing infrastructure that allows for the parallel execution of process intensive tasks

across a number of processing nodes is needed. Furthermore, the infrastructure would also need to

adhere to the following additional requirements:

 Fault Tolerance – The pending tasks from a failed Cycle processing node should fail over to another

node and be scheduled for processing.

 Scalability – The sizing requirements for the grid are different based on the customer. While some

customers may be relatively small in terms of processing requirements, other customers need the

ability to execute many millions of pending insurance activities in parallel.

 Simplicity – The need to achieve distributed computing capability without the system being overly

cumbersome and difficult to understand and setup.

 Extensible – The ability to execute custom tasks

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

8

 Proven – The underlying architecture must be proven at many existing production installations.

After careful consideration of these requirements, the OIPA team concluded that the best approach in

addressing Cycle’s demanding needs would be through the use of Oracle Coherence.

Figure 3. The use of Oracle Coherence allows OIPA to achieve the challenging performance and scalability needs

driven by insurers' demand for high-volume, nightly batch processing.

Oracle Coherence provides a repository of projects, known as the Coherence Incubator, that represent

best practices for common solutions. The Processing Pattern is a Coherence Incubator project that

provides a generalized approach for the submission and asynchronous processing of work within a

Coherence cluster. This makes the Processing Pattern a good fit as a foundation for a distributed

computing platform. This fit, combined with OIPA’s existing and successful use of Oracle Coherence as

a distributed cache, provided the basis for choosing the Processing Pattern as the foundation for the

implementation for OIPA’s distributed computing needs.

Distributed Computing with the Coherence Processing Pattern

The Processing Pattern leverages Oracle Coherence as the connection, communication, and

management mechanism to enable distribution and execution of work across a network of computers,

also known as a cluster. It allows clients to submit work to the cluster, ensures that the work gets

processed, and reports the results of the execution back to the client. The Processing Pattern provides a

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

9

framework that allows implementers to define their own types of work to be processed and customizes

how work is dispatched and processed.

The Processing Pattern provides a simple interface so that clients do not have to be concerned with how

work is distributed and processed. Clients of the Processing Pattern see the cluster as a single process,

and are not aware of the number and types of computers that are being used.

Figure 4. The Processing Pattern distributes work using a submissions cache that is partitioned across the cluster.

The Processing Pattern is built on top of the clustered caching capability of Oracle Coherence. When

work is submitted using the Processing Pattern, it is stored in a partitioned cache where Oracle

Coherence assigns the storage for the submission to one of the nodes connected to the cluster. When

the submission is stored on the node, Oracle Coherence also makes a backup copy of the submission

and stores the copy on a different node in the cluster to provide failover capability in the event that one

of the nodes fails. When a node fails, the submissions in the backup storage are automatically

distributed among the remaining operational nodes in the cluster. This automatic failover feature of

Oracle Coherence is used by the Processing Pattern to support re-dispatching of queued tasks in the

event of node failure.

Distributing Tasks in the Processing Pattern

There are different methods of distributing work using the Processing Pattern. The method used by

OIPA Cycle includes two phases: dispatching and processing. The sequence of steps for this two phase

submission process is as follows:

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

10

Figure 5. The Processing Pattern distributes work in two phases: dispatching and processing.

 When a task is submitted to the Processing Pattern, it is bundled with a submission and stored in the

submission partitioned cache. When the submission arrives at a node, an event is fired notifying

registered listeners that a new submission has arrived. The Processing Pattern has a listener (the

DispatchController) that is registered to receive new submission events.

 The DispatchController dispatches the new submission through a set of registered Dispatchers. The

registered dispatchers form a chain of dispatchers, each one capable of performing some processing

on part of the incoming submission.

 The DefaultTaskDispatcher is the most important type of Dispatcher used by OIPA Cycle. It

consults one or more TaskDispatchPolicy instances to determine which TaskProcessors are available

to process the new submission. A TaskProcessor maps to a node in the cluster that is capable of

processing the Submission. One type of TaskDispatchPolicy is the attribute-matching policy, which

maps a submission to a TaskProcessor based on attributes on the submission. Another type is the

round robin policy, which guarantees uniform dispatching of submissions across all nodes in the

cluster. OIPA Cycle uses both of these policies to route submissions to the appropriate

TaskProcessors and perform round robin load balancing of work.

 Once the DefaultTaskDispatcher has selected a TaskProcessor, the DefaultTaskDispatcher assigns the

submission to the TaskProcessor’s work queue using a Coherence partitioned cache.

 The new submission entry is received by a TaskProcessor using another registered listener on the

TaskProcessor partitioned cache. The TaskProcessor can be a different node than the node that

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

11

dispatched the submission. The TaskProcessor accepts the submission and schedules it for

processing by unbundling the task associated with the submission and placing the task in a thread

pool.

 At some point, the task is picked up by a thread from the thread pool and processed. The code that is

executed is application specific, so the task can do anything that the application requires. As an

example, OIPA Cycle has a type of task called the CycleTask, which is responsible for processing all

pending activities on a single unit of work such as a policy.

 Once the task is completed, the TaskProcessor stores the result of the task in a SubmissionResult

partitioned cache. The result of processing gets transmitted to the originating client through

additional event listeners.

Handling Long Running Tasks with Resumable Tasks

A Resumable Task is a special type of task provided by the Processing Pattern that provides additional

features of reporting progress, yielding, resuming, and returning a result. These capabilities make

Resumable Tasks well-suited for executing long running tasks such as asynchronously executing a Web

service or governing a process that takes a long time to complete like an OIPA Cycle Level. That task

can then go through a sleep/wake cycle checking on the status of processing until it is complete.

When a Resumable Task is executed, it can store the progress made by saving information using a

checkpoint. Thus, if the Task needs to be restarted, it can start from the latest checkpoint rather than

starting from the beginning. For clients that want to be informed of the progress of a Task, the progress

is reported back by listening for events on that task. It can also return a special object called a Yield that

indicates the task is not yet finished and needs to be re-scheduled for execution. The Yield object is

used to store the intermediate state of the task, as well as specify a delay before running the task again.

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

12

Figure 6. The above diagram shows the states of a Resumable Task.

Scalability and High Availability in the Processing Pattern

The Processing Pattern relies on the scalability and high availability capabilities provided by Oracle

Coherence to scale and provide resiliency of failure to the tasks managed by the Processing Pattern. If a

node crashes during execution of a task, that task is automatically restarted on another node in the

cluster. Similarly, capacity can be added to the cluster without the need for stopping or reconfiguring

existing nodes. As soon as a node joins the cluster, the Processing Pattern takes advantage of the

additional capacity.

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

13

OIPA Cycle Execution using the Coherence Processing Pattern

Figure 7. OIPA Cycle executes catch processing using Oracle Coherence and the Processing Pattern

OIPA Cycle is built on top of the Oracle Coherence Processing Pattern to enable the distributed and

parallel processing of activities during the batch processing of pending activities in the OIPA system.

OIPA Cycle implements the Processing Pattern framework and provides custom tasks that execute the

Cycle process. There are two components to Cycle, the Cycle Client and the Cycle Agent. The Cycle

Client is a simple console application that requests a Cycle Level be completed by submitting a task to

the grid for processing. The Cycle Agent is a processing node that is connected to a cluster of Cycle

Agents and provides the distributed computing capability for OIPA and Cycle.

Cycle acts as a workload manager; the actual work of processing activities is done by the OIPA run-time.

Each Cycle Agent is bundled with the same OIPA libraries that the OIPA Web Application uses and

simply delegates to these libraries to process the pending activities in the OIPA system. In this sense,

Cycle provides the plumbing that connects the distributed computing capability of the Coherence

Processing Pattern with the activity processing capability of OIPA.

Cycle uses its own queue that exists in the underlying OIPA database in order to direct the execution of

a Cycle Level. The Cycle table in the database holds a record for every task that is to be processed

during the execution of a single Cycle Level. For example, when running the Policy Cycle Level, each

record in the table contains an identifier for a policy that has pending activities that need to be

processed. Cycle maintains its own queue instead of using the Processing Pattern’s internal queue for a

two reasons. First, the number of tasks that need to be executed may number in the millions; submitting

millions of tasks at one time would overwhelm the grid. Second, Cycle needs to audit each task

individually to support downstream reporting on the nightly batch process. Keeping the queue in the

database allows Cycle to distribute manageable chunks of work to the grid for processing and persist the

results of each task.

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

14

Extending the Processing Pattern to Support Cycle

The Processing Pattern is a purpose-built platform that enables grid computing. It leverages Oracle

Coherence as the clustering technology and builds on top of it the dispatching, assignment, scheduling,

execution, and management of tasks in the cluster. One of the benefits of using the Processing Pattern

is the simplicity of the framework that you need to extend in order to leverage the grid computing

infrastructure that it provides. The following diagram illustrates two custom task implementations:

Figure 8. Cycle classes that extend the Processing Pattern are illustrated above.

The only requirement to provide custom task processing for Cycle is the implementation of the

ResumableTask interface. The ResumableTask interface has a single run method that passes in a

TaskEnvironment and returns an Object. The TaskEnvironment object provides access to intermediate

state and gives the custom task the ability to checkpoint information and report progress. The return

parameter gives the ability for the custom task to return a Yield object, which moves the task into a sleep

state and schedule it for future execution.

The CycleProcessTask class is the Cycle task that governs the execution of an entire Cycle Level, such as

Policy Level Cycle or Pre-Company Level Cycle. The CycleProcessTask class is discussed below; it is

responsible for loading the Cycle queue in the database and replenishing the grid with work until the

Cycle Level is complete.

The CycleTask class is responsible for processing all of the pending activities on a unit of work, (for

example, a single policy). When a CycleTask object completes processing, it updates a record in the

Cycle table with the results.

Using the Processing Pattern to Submit Tasks

The Processing Pattern provides a simple service facade called the ProcessingSession that is used to

submit tasks to the grid for processing. The ProcessingSession supports different ways of waiting for

the results of a task to complete, including blocking for the task to be finished (synchronous) or

receiving event notifications (asynchronous).

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

15

Figure 9. Cycle uses the ProcessingSession provided by the Processing Pattern for Task Submission.

OIPA encapsulates interaction with the Processing Pattern through a service façade called the

GridProcessingService. When the Cycle Client submits a task to process, the Cycle Client submits a

TaskContext object, which is an OIPA class that contains the definition of the task to process. The

GridProcessingService handles the creation of the actual task object using a TaskFactory, and submits

the task along with the Submission configuration to the ProcessingSession for processing. The Cycle

Client blocks pending the result of the task completing.

Besides task submission, the ProcessingSession provides the following capabilities:

 Check that a task already exists.

 Attach to an existing task and receive its result. This is particularly useful to handle failure scenarios

and allows a new client to attach to an existing task that was submitted by a failed client.

 Cancel the execution of an already running task.

Executing a Cycle Level using ResumableTask

The Resumable Task provided by the Processing Pattern gives Cycle the ability to submit and monitor

the long running nightly batch process, which could take several hours to complete. When the Cycle

Client runs a Cycle Level, it calls the execute method on the GridProcessingService, which blocks the

Cycle Client until the Cycle Level is complete. The Processing Pattern creates a Submission for the task

and stores it in the Submissions Partitioned Cache where it is delivered by Coherence to one of the

Cycle Agents. This section describes the custom processing that is done in the CycleProcessTask object

when it is executed in the grid.

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

16

Figure 10. Custom processing that can be completed in CycleProcessTask object when it is executed in the grid.

 The Cycle Client submits a CycleProcessTask object to the grid for processing. The Cycle Client

blocks and waits for the CycleProcessTask object to complete. The CycleProcessTask object is initially

in a Pending state, awaiting execution.

 The Processing Pattern assigns the CycleProcessTask object to a Cycle Agent node for processing.

The first time the CycleProcessTask object is executed, it changes its state to Submitted.

 In the Submitted state, the CycleProcessTask object prepares the cycle process, which calls a stored

procedure to populate the Cycle table with data. Each entry in the Cycle table represents a unit of

work to be processed (i.e. a Policy, Plan, Company, or Client). Once the cycle level is prepared, the

CycleProcessTask object moves into a Running state.

 In the Running state, the CycleProcessTask object replenishes the OIPA Processing Grid with work.

It selects a batch of work out of the Cycle table in the database, and submits each work item in the

batch to the grid as a CycleTask object. The CycleTask class is another implementation of the

ResumableTask interface. The CycleTask object is submitted using the GridProcessingService, which

is the same method that the CycleProcessTask object was submitted. Each CycleTask object is

dispatched and executed on a Cycle Agent by the Processing Pattern. Once complete, each CycleTask

object updates its corresponding record in the Cycle database.

 After replenishing the grid, the cycle goes into a Suspended state by returning a Yield object, and it is

rescheduled for processing. The CycleProcessTask object goes through this sleep/wake process,

replenishing the processing grid until all of the work items in the Cycle table are complete.

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

17

 The CycleProcessTask object moves to a “Complete” state when there is no more work left to

do and all work items have completed processing. When the state is updated to Complete, instead of

returning a Yield object, the CycleProcessTask object returns the result of the Cycle Level which is

further returned to the Cycle Client. The Cycle Client stops blocking, and exits with a normal status.

If the CycleProcessTask object failed, the Cycle Client terminates with an error status.

Benchmark Results for Cycle Processing

In January of 2011, Oracle Insurance conducted a benchmark lab to test the performance capability of

OIPA Cycle. The benchmark test was on OIPA Version 9.3 running on Oracle Exadata Database

Machine X2-2 and Sun SPARC Enterprise M9000 application servers. The test used a representative

sample of a full nightly batch cycle for a large-scale system supporting 100 million active policies (split

evenly between term life and variable annuities). The system executed the batch cycle in less than two

and a half hours.

The findings show that OIPA, through its use of Oracle Coherence as described in this paper, enables

insurers to improve scalability, availability, and performance. These improvements allow them to exceed

customer service needs while lowering total cost of ownership.

The technology combination of OIPA and Oracle Coherence provides a solution that allows insurers to

drastically improve the performance of their batch processing, expand the time that systems are available

for processing policies, and deliver quality service to customers. This solution also enables insurers to

reduce risk and cost by providing them with an expanded window of time to perform other vital nightly

processes such as gain/loss and trade reports necessary for variable annuity processing.

As previously noted, insurers face unprecedented pressure to deliver higher levels of customer service,

reduce risk, and improve speed to market. The extreme performance of Oracle Insurance Policy

Administration, leveraging Oracle Coherence and running on Oracle Exadata Database Machine X2-2,

supports these requirements for even the largest Tier One carriers. It enables faster batch runs that

provide an extended window for system availability to service customers and conduct essential

transactions, while reducing server costs and opening up new opportunities for hardware consolidation.

Oracle Insurance Policy Administration for Life and Annuity: Leveraging Oracle Coherence for Distributed Execution of High Volume Transactions

18

Conclusion

Insurers realize that they can no longer continue to rely on aging and inflexible policy administration

systems that lock them into legacy business practices and impede their ability to sustain, scale, and fuel

growth. Modernizing their critical core platform with an adaptive policy administration system—one

with powerful transaction processing capability that allows for an optimized use of their existing

computing resources—helps them achieve this objective. Insurers who leverage the powerful

processing capabilities of Oracle Insurance Policy Administration powered by Oracle Coherence are well

positioned to support their evolving needs for scalability, performance and long-term growth for high-

volume transaction, and batch cycle processing.

About Oracle Insurance

Oracle believes that insurers should be able to leverage technology to help transform their business.

Oracle Insurance provides adaptive, rules-drive systems that enable insurance companies to change

business processes as their business needs change. This positions insurers to readily respond to dynamic

market conditions and take advantage of new opportunities as they arise.

For more information about Oracle Insurance, please visit www.oracle.com/insurance, contact us by

email at insurance_ww.oracle.com or call 1.800.735.6620 to speak to an Oracle Insurance representative.

For more information about Oracle Coherence, please visit

http://www.oracle.com/us/products/middleware/coherence/index.html.

http://www.oracle.com/insurance
http://www.oracle.com/us/products/middleware/coherence/index.html

Oracle Insurance Policy Administration for Life

and Annuity: Leveraging Oracle Coherence for

Distributed Execution of High Volume

Transactions

July 2011

Author: Paul Cleary

Contributing Authors: Reza Shafii, Christer

Fahlgren

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2011, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license

and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open

Company, Ltd. 0711

