Oracle® Communications
MetaSolv Solution

XML API Developer’'s Reference
Release 6.2.1

October 2013

ORACLE

Oracle Communications MetaSolv Solution XML API Developer’s Reference, Release 6.2.1
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered
trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Contents

PrEIACE ..o ———————— vii
F 0 Lo 1] o[PP TP PUPPP PP PRI vii
Related dOCUMENTATIONuiiiiiiiiieieie ittt e e e e e e e s e bbb e e e e e e e e e e e e e aaa vii
Additional dOCUMENTAtION FESOUIMCESeeiiiieeeiiiiiiiiitiiie et e anneees viii

IS 1= 11 o L o LRSS 1
Technical requirements and installation INStrUCLIONScoovieiiiiiiiie e 1
About the development databaseccoeeeiiiiiiiiiiii e 1
Recommended deployment CONfigUrationscoceeeiiiiiiiiiiiieiicieee e e e e 2
JMS MEeSSAQING FEQUIFEIMENTSvuiieiieeieeeieiiieitiiiee e e e e eeeeesssas st rerereaaeeeesssannnnnrenanrereeeees 4
2. INTegrationN OVEIVIEWccoouiiiiiiiiiiiiiae e e e e e e e e e e e eeeeeeeetaaba s s e e e e e e e e e e e e eeeeeeessennes 9
About the MetaSolv Solution Integration and Portal TOOIKiteeeeeiiiiiiiiiiiiiiieeeeee. 10
(070} 01110 £ 11
WEDLOGIC CONEIOIS ...ttt e e e e e e ettt e e e e e e e e e e e e e annenes 11
MetaSolv SOIULION CONLIOIScoiiiiiiee e e e e e e e e 12
MetaSolv SOIULION SCREMAviiiciece e e e e e e e e e aearaaaen 19
Oracle WEDLOGIC 10.3.1 ..ottt e et e e e e e et b et e e e e e e e e e e e e s aannbabeeaeeeaaaaeaeas 22
BaSIC iNEGratiON SIEPSuuiiiiiiiiiiiiae ittt e e e et e e e e e e e e e e e s s e abnb e e e aeaaaaaaaaeaaan 24
SPECIAI CRATACTETS ...oiiiiiiiei ettt e ettt e e e e e e e e e e e anb bbb eaeeeeee s 25
3. Developing An Integration Applicationvviiiiiiiiiiie e, 27
Planning the appliCationeuuiuiiiiiiei e e e e e e e e e e 31
Accessing WebLogiC WOIKSNOPvvvuiiiiiiiiisis e e e e e e e e e e e e e e eeeeeaennees 32
Creating a new application in WOrKSNOPc.cuvuveiiiiiirie et 33
Creating a new server in WOrKSNOPoovvvieiiiiiiiiiin e 35
Adding the MetaSolv Solution controls to WOrkShOpevvveiiiiiiiiiiie e, 39
Adding the MetaSolv Solution schemas to WOorkShopcceeeiiiiiiiiiiieieeec e, 39
Creating data transformationsoouiiiiiiiiiiiiiiir e 39
Request transformation CONIOlooviiiiiiiiiii e 40
Response transformation CONLIOluuveiiiiiiii e 50
BUilding the WOIKFIOWcoeeeeeeee e e e e e e e e e aaa e 50
Step 1: Creating the workflow process fileooovvvvoieiiiiiiiccsi e, 51
Step 2. Adding controls to the Workshop Data Palettecccoccceeeeiiiiiiiiiiinieeeeeeeee, 54
Step 3. Specifying how the request is INVOKEdooovrviiiiiiiiiiiirier e, 56
Step 4. Adding a group to the WOrkflowcceeeiiiiiiiii e, 61
Step 5. Adding the request transformation methodcviiiiiiiiiiiii e, 62
Step 6. Adding the method to process the request ..., 64
Step 7. Adding the response transformation methodccoovvviicciii e, 66
Step 8. Setting up exception handliNgeveiiiiiiiii e 68
Testing the application in WOIrKSNOPcoovvvviiiiiiiis e 75
(O 1= 11T T = T o 11 (o 76
Migrating To MetaSolVv SOIULION 6.2.1ciiiiiiii i e e e e e e e e e e e e e e aeaanaaen 76
4. PoSt Development TASKS ...cciiiiiii e 79

Updating the production databasSecccooiiiiiiiiiiiiiiess e e e ee e 79

Creating the SQL SCHIPLciiieieeeeee e e e e e e e e e e aeeeaeees 79
RUNNING the SQL SCHIPL ..o e e e e e e e aeaeaaees 80
Setting UP gatEWAY EVENLSciiiiiii i s e ar e e s 81
Creating @ gateWay EVENTuuuiiiiiiieie i e e e e e e e e ettt s s s e e e e e e e e aaaaaaaeeaeeeaennes 81
Configuring the gateway.ini file ... e 82

5. TroubleSNO0TING ..ccoiiii s 83
Appendix A: XML API Sample Codeuiiviiiiiiiiiiiieeeeeeeeeeeceiiiieee 89
Where to find the samPle fil@Sueuiiiiii e 89
Setting up the SAMPIE COUEuiii e as 90
Upgrading SAMPIE filESiiii i —————— 91
Viewing the samples in WOrKSNOPDuuuuiiiiiiiiiie e e e e e e e e e e e eeeeeeeananenees 91
L0701 ag] o0 1] 1 (=T Y= 12 1]] [92
Appendix B: Navigating The XSD ... 93
Example 1: importCUStOMEIACCOUNLccccueiiiiieeiieeeeeeeeessesinreee e e re e e e e e e e s e s ennnneeeneeees 95
Example 2: getCustomerACCOUNIBYKEYcccuuiiiiiiiiiieieeeeeeiscccciinineeer e e e e e e e e e s e e nnnnes 102
Example 3: createEntityByValUEREQUESEcccovviiiiiiiiiieiieecee e e e 109
Appendix C: XML API MethodsSeuuiiiiiiiiiiiiiiiiieieeee e 115
Customer Management AP s 116
IMPOrtCUSIOMEIACCOUNT .oeiiiiiiiiiii ettt ettt e e e e e ettt e e e e e e e e e e e e e st bbb e e e e eeeaaaaeeaaan 116
getCUuStOMErACCOUNTBYKEYcooeiiiiiiiiiiiei et a e 117
deleteCUSIOMEIREQUESTooiiiiiiei ittt e e e e e e e e e e e aas 118
Order ManagemMENt AP ettt e e e e e e e eaaaaaa s 119
queryOorderManagemMentREQUESTeuiiiiiiiieiaii e a e 120
StartOrderBYKEYREQUESTooi it e e e e 121
updateOrderManagementREGUESTcooiiiiiiiiiiiiiiiieii e e aeaees 122
0etOrderBYKEYREQUESLeeiiiiiiiieiie ittt e e e e e e e e e s 123
createOrderByValUEREQUESToooiiiiiiieeie et e e 123
assignProvisionPlanProcedureREqUESTc.eeeiiiiiiiiiii i 124
getActivationDataBYKEYREQUESLc.uuiiiiiiiiiiiie it 124
tranSTErTASKREQUESTooiiiiiiiiiie e e 125
UPdateESL1DAtaREGUESLoeviiiieiiiiiee e 125
OEtEOQLLIDAtAREQUESToiiiiiiiiiiiieeeiie it 126
updateEstimationCompletedDateREQUESTcuvviiieiiiiiiieee e 126
addTaskJEOPArAYREQUESLocuueiiiiiiiiiiie ettt e e e e e 127
0etTaSKDELAIIREQUESTviiiiieiiiiiee ettt e e e e e e e 127
TaASKJIEOPAIAYREQUESTcoiiiiiiiieiiiiiie ettt e e e s senneee s 128
OEIPSROIUEIBY TN .eeiiiiiiiiiitee ettt et e e e s bbb e e e e s sbb e e e e e anbneeeeeaas 128
PrOCESSSUPPOTUET ..eiiiiiiiiiiee ettt ettt e e et e e e e et bt e e e s abn e e e e eees 129
JEtCNAMDAIAREQUESToeeiiiiiieiie i e e e e e e 130
QEtLIdDDAtAREQUESTcoiiiiiieiee it 130
UPAAtECNAMDAAREQUEST ..ottt ettt e b e e e sabre e e e e e 131
UPdateLidDDAtAREQUESTcoiviiiieiiiiee e e 131
FEOPENTASKREGUEST ...ttt ettt e e e e enee 132
Create AttaChMENTREQUESToiuiiiiii it 132

createOrderRelationShipPREQUESTvveiiiii e 133

processBillingTelephoneNUMDBDErouiiiii e 134
INnventory ManagemeENnt AP i 135
createEntityByValUEREQUESLuuuieiiiiii i e e e e e e aaaaaeaaeees 135
getServiceReqUESIDLRSVAIUEuuuuiiiiiiii i 136
gEtENtityBYKEYREQUESL ...t a e 136
updateEntityByValUEREQUESTooviiiieiiiiiiiiie e e e e e 137
querylnventoryManagementREQUESToooviviiiiiiiiiiiiii ettt 138
BT oL Fo Y (= I AN =0 U= 138
TNRECAIL ...t e e e e e e ea s 139
L0 ANV 2= 1o F= T ToT g1 L= U= 139
= L0 o 1 I = V]| o o [T T PPt 140
getNetworkAreasBYGEOAIrEaREQUESTcccoiiiiee e a e e e e e e 140
getNetworkCompoNENISREQUESTuvuruiiiiiiie i e e e e ee e e e e e aeas 141
gEtIPAAArESSESREQUEST ...oevviiiiiiiiiie i e s e e e e e e e e e e e e e e e eeaeaaaens 141
createlnventoryAssocCiatiONREQUESTccccoeeiii e e e 142
createNewInventorylteMREQUESToiiiiiiiiii e 142
(o [U =T YA L= Yo 14 o Tox= 11 o] o IS 143
(o [UL=T Y] =t g o |8 1S1=T o o o | o o SR 143
(o< (e o= 11 o] g1 LT U= RS 144
deleteLoCatiONREQUESTvueiiieie e e e e e e e e e e e e e e e e aeaeaaaens 144
UPdateLoCatiONREQUESLccooiiieie e e e e s e e e e aaaaeaas 145
CreateLOCatiONREQUESTvieiiiii i e e e e e e e e e e e aeaaaaaeaaeens 145
getAvailablePhysiCalPOMSREQUESLuuuiiiiiiiiii e e 146
Service Order ACHVALION AP e 147
Create SOAMESSAJEREQUEST ...ttt 147
0etS0aTNSFOrOrderREMQUESTcovvieiiiiiieiiiiss et e e e e e 147
0etS0aDEfaUILSREQUESTvviiiiiiie i e e e e e e e e e e e e e e aaaens 148
0etSoalnformatioNREQUESTcoiiiii i e e e e e e e e e e e e e e e eeaeeaenns 148
0etS0aMessSageTOSENUREQUESToevvvvieiiiiiiiiiie i e e e e e e e e e e e e e e 149
SetTNSoaCoMPIEtEREQUESTccooi e e e e e e e e e e e e e e e e e ee e nreaanas 149

vi

Preface

This document explains how to use the Oracle Communications MetaSolv Solution
Integration and Portal Toolkit to integrate MetaSolv Solution with other MetaSolv Products
and with external applications. The toolkit provides a workspace and other tools for the
integration development and testing.

Audience

This document is for individuals who are responsible for using the MetaSolv Integration and
Portal Toolkit in a development environment and developing software to integrate an external
application or another MetaSolv product with MetaSolv Solution. This document assumes the
reader has a working knowledge of Oracle 11g, Windows XP Professional, Oracle WebLogic
10.3.1, and Java JEE.

Related documentation

For more information, see the following documents in Oracle Communications MetaSolv
Solution 6.2.1 documentation set:

& MSS Planning Guide: Describes information you need to consider in planning your
MetaSolv Solution environment prior to installation.

¢ MSS Installation Guide: Describes system requirements and installation procedures for
installing MetaSolv Solution.

& MSS System Administrator’s Guide: Describes post-installation tasks and administrative
tasks such as maintaining user security.

¢ MSS Database Change Reference: Provides information on the database changes for the
MetaSolv Solution 6.2.1 release. Database changes for subsequent maintenance releases
will be added to this guide as they are released.

& MSS Network Grooming User’s Guide: Provides information about the MSS Network
Grooming tool.

¢ MSS Technology Module Guide: Describes each of the MetaSolv Solution technology
modules.

& MSS Data Selection Tool How-to Guide: Provides an overview of the Data Selection Tool,
and procedures on how it used to migrate the product catalog, equipment specifications,
and provisioning plans from one release of your environment to another.

Vii

*

MSS Operational Reports: Provides an overview of using Operational Reports and
Business Objects with MSS, and procedures for running reports, updating universes, and
simple maintenance.

MSS CORBA API Developer’s Reference: Describes how MetaSolv Solution APIs work,
high-level information about each API, and instructions for using the APIs to perform
specific tasks.

MSS Custom Extensions Developer’s Reference: Describes how to extend the MetaSolv
Solution business logic with custom business logic through the use of custom extensions.

MSS Flow-through Packages Guide: Describes information and procedures you need to
install and work with the flow-through packages provided by Oracle as an example of how
to integrate MetaSolv Solution with ASAP for flow-through activation.

For step-by-step instructions for tasks you perform in MetaSolv Solution, log into the
application to see the online Help.

Additional documentation resources

You can obtain additional information about the XML APIs used to integrate MetaSolv
Solution with other applications from the following resources:

*

*

XML Schema—The XML schema used in integration for MetaSolv Solution have
documentation included directly in the schema.

Sample code—The sample code is installed with the MetaSolv Solution installation on
the workstation if you have the XML API option.

viii

Setting Up

This chapter contains general information on getting ready to develop an integration
application. It does not contain installation instructions for MetaSolv Solution.

Technical requirements and installation instructions

& See the technical requirements for the MetaSolv Solution application and client in the
MetaSolv Solution Planning Guide.

& To find complete installation instructions for the MetaSolv Solution Integration and Portal
Toolkit, see the chapter entitled "Installing MetaSolv Solution with the XML API option™
in the MetaSolv Solution Installation Guide XML API Option. Regarding the installation,
note the following:

« Single server installation is required for development.

Clustered server installation is not available for development. The installation
program for MetaSolv Solution is the same for production and development. The
WebLogic configuration is different only in the selection of Production or
Development mode.

+ The connection pool MSLVwiliPool must be established.

Connection pooling is a technique used for sharing server resources among requesting
clients. This allows for multiple clients to share a cached set of connection objects that
provide access to a database. The MSLVwliPool is used by calls generated from the
XML APIs and is mapped to the username APP_INT. This means that any records
created or updated in the MetaSolv Solution database that resulted from a XML API
call will have the last_modified_userid field set to APP_INT.

About the development database

WebLogic allows you to accept a default PointBase database when you configure the domain.
Oracle recommends that you use a test Oracle database. A tool is provided that allows you to
create an SQL script file that can be run against your production database to re-create any new
tables created in the development database. For information on the tool, see “Updating the
production database” on page 79.

SettingUp 1

Recommended deployment configurations

Recommended deployment configurations

All of the development components can be installed and run on a single machine. Components
of the development environment include:

¢ WebLogic Integration—WebLogic Server with the WebLogic Integration extensions
included.

¢ WebLogic Workshop IDE—An integrated development environment used to develop
and test customer integration and Web GUI applications.

¢ MetaSolv Solution with the XML API option—This application has a minimum
deployment of MetaSolv Solution and its client. The client is used to set up gateway
events in the MetaSolv Solution application, and it requires a Windows environment.

The following figure shows a Windows development environment.

/ Developer workstation \
ﬂVebLogic Integration Servs

MetaSolv Solution
Core Application

WebLogic Workshop
IDE

Custom
application

&vork area

Figure 1: Windows developer workstation environment

(Oracle)

In a Windows environment, all WebLogic components and the MetaSolv Solution core and
client can be installed on the same developer workstation. The XML API controls are included
in the MetaSolv Solution installation.

MetaSolv Solution XML API Developer’s Reference

Recommended deployment configurations

The following figure shows a UNIX development environment.

|
mebLogic Integration Server

MetaSolv Solution
Core Application

Developmel
(Oracle)

Figure 2: UNIX developer workstation environment

The MetaSolv Solution client requires a Windows environment so it must be loaded onto a
separate machine in a UNIX development environment.

SettingUp 3

JMS messaging requirements

JMS messaging requirements

The MetaSolv Solution installation program sets up a paging store for each JMS server. The
paging store is used exclusively for paging out non-persistent messages for the JMS
server and its destinations.

The installation program also sets the Store Enabled check box to selected. This setting is for
persistent messages, which are necessary for a guaranteed message delivery system. If you
create additional JMS destinations (queues/topics) after installation, you must select the Store
Enabled check box for these destinations manually.

In the WebLogic Server Administration Console, the Store Enabled check box is located on
the General tab of a JMS Server.

To access the Stored Enabled check box:

1. Open the Weblogic Server Administration Console by entering the following in your
internet browser:

http://host_admin:port/console
where:
host_admin is the name of the administration server
port is the administration server port number
2. When the Login window appears, enter your user name and password and click Login.

3. On the Home page, under Domain Configurations, under Services, and under Messaging,
click the JMS Servers link.

The Summary of JMS Servers page displays.
4. Select a JMS server from the list, such as cgJMSServer.

The Settings page for the JMS server that you selected displays:

4 MetaSolv Solution XML API Developer’s Reference

JMS messaging requirements

Settings for cgJMSServer

GO LGE | Logging - Targets | Monitoring © Control |~ Motes

NN R - Thresholds and Quotas = Session Pools

JMS servers act as management containers for the queues and topics in JMS modules that are targeted
onwhat persistent stare is used for any persistent messages that arrive on the destinations, and to mair

Ilze this page to define the general configuration parameters for this JMS server.

Hame: cogdMSServer

Persistent Store: | cglMSStore v |

%] Paging Directory: | |

Message Buffer Size:

Hosting Temporary Destinations

5. Scroll down.

SettingUp 5

JMS messaging requirements

Message Buffer Size:

Hosting Temporary Destinations

Module Containing Temporary Template; (none) v

Temporary Template Name: | |

Expiration Scan Interval: |3EI |

B Advanced

6. Click Advanced to expand the General tab to include additional advanced fields.

The Stored Enabled check box is now visible on the General tab of the JMS server.

6 MetaSolv Solution XML API Developer’s Reference

JMS messaging requirements

% Advanced

< %] Store Enahled>

[] &5 insertion Paused At Startup

[] &5 Production Paused At Startup

[] &5 Consumption Paused At Startup

[] Allow Persistent Downgrade

SettingUp 7

JMS messaging requirements

8 MetaSolv Solution XML API Developer’s Reference

Integration Overview

This chapter provides basic information about the MetaSolv Solution Integration and Portal
Toolkit and how you can use it to integrate with MetaSolv Solution.

High Level Overview

The figure below represents a high level overview of the MetaSolv Solution Integration. At
it’s core is the Application Business Logic, which is grouped by functional area such as
Location, Order, Work, etc. The Application Business Logic is used by both the GUI Services
and the XML API Services. GUI Services supports the application presentation layer to the
client over HTTP. The XML API Services supports integration with third party systems using
XML over HTTP or JMS. JMS is the recommended choice because it is a more reliable
messaging service. Collectively, the MetaSolv Solution Application Server runs on a
WebLogic server.

Figure 3: MetaSolv Solution Integration Overview

......... TR / TPy ﬂpp“cmiun Sewer\ ____________ -E
: h rteroperable Systens;

1
1 t
¥ML AP Services !
HML AP | Seri = H
ML over : - ., E
HT TR JMS | e NET
Appliction Business Logic) :
5|8
=
GUI Services 213 Services
suppaorts the = e supports
applicatil_m i E inteF;]F:atiun
preslentﬂtlﬂﬂ 2 g with third party
ayer. =5 Systems.

Integration Overview 9

About the MetaSolv Solution Integration and Portal Toolkit

The figure below includes information regarding tools utilized by the MetaSolv Solution
Integration, and standards that it followed.

Figure 4: MetaSolv Solution Integration Tools and Standards

APls
¢ Metazolv Controls in Weblogic Integration
\\ bk XML APIS over JMSHTTP

¢ Reference Integration Sample Code to provide
B usiness Level XML APl= for 055 Integrations

/f MataSalw Applicstion Server

GUlSardaan AMLAPIBaryican

Interopera bility Model

Appllcation Burlnann Loglc b XM Schema
b 055 to 055 Integration

Based on Industry Standards
bk 055 through Java b >
Leverages :i
» WeblLogic Integration =

¥ Webl ogic Workshop

About the MetaSolv Solution Integration and Portal
Toolkit

The MetaSolv Solution Integration and Portal Toolkit is a package that allows you to integrate
a third-party software product with MetaSolv Solution using XML APIs. The toolkit includes:
¢ Controls
¢ Schema
¢ WebLogic 10.3.1
This is a third-party software product that can be purchased as an option with MetaSolv
Solution. It provides an integration environment, transformation mapping, and a high-

level interface that represents code elements visually in the work area in WebLogic
Workshop.

The following sections describe the components of the Integration and Portal Toolkit.

10 MetaSolv Solution XML API Developer’s Reference

Controls

Controls

A Java control is code that forms a reusable component that can be used anywhere within a
platform application. The MetaSolv Solution controls referred to in this document are
individual applications that expose XML APIs for integration purposes.

WebLogic Workshop, a component of WebLogic, provides Java controls that you can use to
encapsulate business logic and to access enterprise resources such as databases, legacy
applications, and web services.

WebLogic controls
WebLogic allows the use of three different types of Java controls:
¢ Built-in controls

Built-in controls, included in the WebLogic Workshop, provide easy access to enterprise
resources. For example, the Database control makes it easy to connect to a database and
perform operations on the data using simple SQL statements, while the EJB control lets
you easily access an EJB. Built-in controls provide simple properties and methods for
customizing their behavior, and in many cases you can add methods and callbacks to
further customize a control.

For more information on WebLogic built-in controls, see the Oracle WebLogic
documentation at:

http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html

& Portal controls

A portal control is a type of built-in Java control designed for the portal environment. If
you are building a portal, you can use portal controls to expose tracking and
personalization functions in multi-page portlets.

& Custom controls

You can also build a custom Java control from scratch. A custom control can act as the
nerve center of a piece of functionality, implementing the desired overall behavior and
delegating subtasks to built-in Java controls (and/or other custom Java controls). This use
of a custom Java control ensures modularity and encapsulation. Web services, JSP pages,
or other custom Java controls can simply use the custom Java control to obtain the desired
functionality, and changes that may become necessary can be implemented in one
software component instead of many.

The MetaSolv Solution XML API controls were developed in WebLogic’s integration
environment as custom controls. The controls contain code that transforms the XML input
into the proper format for MetaSolv Solution and transforms the response that returns
from MetaSolv Solution into the proper format for the third-party application.

Integration Overview 11

Controls

MetaSolv Solution controls

Each control works with a specific portion of the MetaSolv Solution functionality. The
MetaSolv Solution controls in the Integration and Portal Toolkit include:

*

* 6 6 o o

*

The controls correspond to XML APIs. When you add a control into WebLogic Workshop to
begin integration development, the methods under each control become available to use on the
Workshop work area. You can drag the methods to the Workshop work area to create nodes in
the workflow. You can then define the necessary values for sending and receiving data using

Customer Management

Order Management

Inventory Management
Network Resource Management
Service Order Activation

LSR Management

Event Management

the method.

The following XML APl methods are exposed by each control. The methods are listed in the
order that appear in java file that defines the controls.

Customer Management API

L 4
4
L 4

importCustomerAccount
getCustomerAccountByKey
deleteCustomerRequest

Order Management API

L 4

L ZBE JEE JER JER JEE JEE JEE 2R R JER JER 2

gueryOrderManagementRequest
startOrderByKeyRequest
updateOrderManagementRequest
getOrderByKeyRequest
createOrderByValueRequest
assignProvisionPlanProcedureRequest
getActivationDataByKeyRequest
transferTaskRequest
updateE911DataRequest
getE911DataRequest
updateEstimationCompletedDateRequest
addTaskJeopardyRequest
getTaskDetailRequest

12 MetaSolv Solution XML API Developer’s Reference

Controls

taskJeopardyRequest
getPSROrderByTN
processSuppOrder
getCNAMDataRequest
getLIBDDataRequest
updateCNAMDataRequest
updateLIBDDataRequest
reopenTaskRequest
createAttachment
createOrderRelationshipRequest

L JBR 2K 2N JER JEE JEE JER NN 2

L 4

Inventory Management API

L 4

createEntityByValueRequest
getServiceRequestDLRsValue
getEntityByKeyRequest
updateEntityByValueRequest
guerylnventoryManagementRequest
updateTNRequest

tnRecall

tnValidationRequest
auditTrailRecording
getNetworkAreasByGeoAreaRequest
getNetworkComponentRequest
getlpAddressesRequest
inventoryAssociationRequest
createNewlnventoryltemRequest
gueryNetworkLocation
queryEndUserLocation
getLocationRequest
deleteLocationRequest
updateLocationRequest
createLocationRequest

L 2BK 2EE BN JER JEE JEE JEE 2R 2R JEK JEE JEE JEE 2B JEE JEK 2R JER 2

Integration Overview 13

Controls

Network Resource Management API
¢ getAvailablePhysicalPortsRequest
Service Order Activation API

¢ createSOAMessageRequest
getSoaTnsForOrderRequest
getSoaDefaultsRequest
getSoalnformationRequest
getSoaMessageToSendRequest
setTnSoaCompleteRequest

LSR Management API

getLRByKeyRequest
getDLByKeyRequest
getLSRByKeyRequest
getLSRCMBYyKeyRequest
createDSCNByValueRequest
createDSREDBYValueRequest
createLRBYyValueRequest
createLSRCMBYValueRequest
createNPLSRBYyValueRequest
gueryCCNARequest
queryLSRRequest
queryLSRForPONCCNAVERRequest
gueryPONSForCCNARequest
createLSROrderByValueRequest

L 2BR JER JEE R 2

L ZBE 2K 2R JER JEE JEE JEK JER JER JEK JEE 2N 2

L 4

Event Management API

¢ updatelnboundEventStatus
¢ getEventStatus
¢ updateOutboundEventStatus

14 MetaSolv Solution XML API Developer’s Reference

Controls

Viewing controls in WebLogic Workshop

The following figures show how a control and the methods that the control exposes for the
corresponding XML API display in WebLogic Workshop. The CustomerManagement control
is used as an example, so the figures show the CustomerManagement control, and the methods
that the CustomManagement control exposes for the corresponding XML API.

To view a control in WebLogic Workshop:
1. Inthe Navigator view, navigate to the control directory.

In this example, the control directory is located in the APl/src/com/metasolv/api/control
directory path.

2. Open afile in the control directory, such as CustomerMangagement.java.

T Mavigator &4

S a1
+-—= ,apk_src
+-[= .settings

= .xbean_bin
= .xbean_src

+-5= build
=+ schemas
=l-5= arc
=l-5=> com
=I-5= mekasaoly
=I-5= api
+-[=> common
ST control
+-[=+ activation
+-[= customer
1= events
+[= global
+ = inventary
+-[=% order
+[= s0a

(l_lﬁ!] CustnmerManagement.java)
|_.'[:i.‘] CustomerManagementInmpl java
|_.'[:i_‘] EventManagement.java
!:'Fr'] EventManagementImpl java

Integration Overview 15

Controls

CustomerManagement.java defines three controls: importCustomerAccount,
getCustomerAccountByKey, and deleteCustomerRequest, as shown below.

[J] *CustomerManagement. java &5 =08

package com.metasolv.api.control:

Fimport com.bes.control.annotations. Transactiondctribute;[]

FControlInterface()
public interface CustonerManagement
{

fTransactionlittribute (TransactionlittributeType . REQOUTRE
com.metasolv.mip.customerManagement APT . UpdateCustomerd

<impurtCustDmerAchun9(cDm.mEtaSDlv.mip.custumerﬂanagemn

Transactionittribute (TransactionittributeType .. REQUTEE
com.lwmetasolv.mip.customerManagement AP I . GetCustomer Acco
(?EtCustDmerAchuntByKeiﬁcnm.metasnlv.mip.custnmerﬂanag

fTransactionlittribute (TransactionlittributeType . REQOUTRE
com.metasolv.mip.customerManagement APT . DeleteCustomerd

(delEtECustDmerRequesgﬁcDm.mEtaSDlv.mip.custumerﬂanagemn

16 MetaSolv Solution XML API Developer’s Reference

Controls

To view the methods that a control exposes for the corresponding XML API:

1.

In the Navigator view, navigate to the workflow directory.

In this example, the workflow directory is located in the API/src/com/metasolv/api/
workflow directory path.

Open a file in the workflow directory, such as ImportCustomerAccountSync.java,
which is located in the customer subdirectory.

Notice that the customer workflow names correspond to the CustomerManagement
control names of import, get, and delete.

T Mavigator &4

T2 apr
+—= ,apk_src
+-[= .settings

= .xbean_bin
= .xbean_src
+-5= build
=+ schemas
=l-5= arc
=l-5=> com
=I-5= mekasaoly
=I-5= api
+-[=> common
+5== control
+-[== converter
+-5= dbaccess
=l = [l Ay el
+-[=+ activation
=l-5= customer
% DeleteCustomer Account, java
% GebtZustomerAccounkSync. java
('% Impcnrl:Custl:umer.ﬁ.cl:l:uuntSync.jav@
i events
G inventary
§=> order
= s0a

T R [B

Integration Overview 17

Controls

3. After you have opened the workflow, open the Data Palette view by selecting
Window, then Show View, then Data Palette.

The Data Palette view displays the XML API methods that work with the control:

. ImportCustomerdcrn 7 = O B} pataPalette 2
@, @ A ||| #-Lg variables

= '-53 Caonkrals
ImpurtCustlmer.ﬁ.ccnunt = Ei,’: cuskomerFequest”onverter

4-' int makeCustAcckkeyFromiGetCustomerAccl
2 MetaSolvCustamerAccountyalueDocument
I 2 PSRCustomerAccountBean makelpdateCy:
"_“ c?-_} = PartyRoleBean makelpdateCustomerRequ
= 2 UserDataBean makelpdateCustomerReque

= ':i,‘: customerResponseConyverter
=2 Skring convertDakeTosktringling day,ink mon
2 DeleteCustomerAccountByEevResponselo

m-—
&l

2 MetaSolyCuskomerAccounty alueDocument

3
=

1-' GetCustomer AccountBykevExceptionDacur

= GetCustomer AccountBykeyResponselacur

= IJpdateCustomerAocountByyalusExceptionl

= IJpdateCustomerAccountByyalueR esponsel
* Cj pSR.CustomerAccountEJE

iz alidk ey e Ii:j partyRoleEJE

+ Cj userDatab 1B
"

makeCustamer dccountyalueFr
omRequest

m-—
&

Each control has corresponding XSDs that define the XML format that can be received by
MetaSolv Solution and show the data fields.The XSDs are constructed using the MetaSolv
Solution Information Model (MIM), a dictionary of terms used to standardize data being
imported to or exported from MetaSolv Solution using XML.

For a description of the MetaSolv Solution XML API methods, see “Appendix C: XML API
Methods” on page 115.

18 MetaSolv Solution XML API Developer’s Reference

MetaSolv Solution schema

MetaSolv Solution schema

Schema, also known as XSDs, are documents that define how XML must be formatted when it
is sent to MetaSolv Solution as data input. Where applicable, it also defines how XML will be
formatted when MetaSolv Solution returns data. MetaSolv Solution XSDs contain
documentation that explains what values are expected, where a value appears in the MetaSolv
Solution user interface (where applicable), and the purpose of fields included in the XSDs.

The schema files are housed in two JAR files:
¢ MetaSolvSolutionUTtility.jar

This file contains the XSD files that define the MetaSolv Solution schema. This file must
be pulled into your workspace, as described in “Adding the MetaSolv Solution controls to
Workshop”. This file is located in the <INSTALLATION_DIRECTORY>/mss_samples/
EAR_content/APP-INF/lib directory.

¢ mss_xml_api_schemas.jar

This file contains the annotated versions of the XSDs that exist in the
MetaSolvSolutionUtility.jar file. This file is used for reference purpose only. Previous
versions of MetsSolv Solution contained the MetaSolvSolutionUtil.jar and
MetaSolvSolutionSchemas.jar files.

The MetaSolvSolutionUtility.jar file is a combined packaging of the
MetaSolvSolutionUtil.jar and MetaSolvSolutionSchemas.jar files.

The MetaSolv Solution schema files are grouped by function. For example, Customer
Management, Order Management, Inventory Management, etc. Each functional group defines
three separate XSD files. For example, the Customer Management XML API defines the
following three files:

¢ XmlMetaSolvCustomerManagementAPI.xsd

¢ XmlMetaSolvCustomerManagementEntities.xsd

¢ XmlMetaSolvCustomerManagementData.xsd

Similarly, the Order Management XML API defines the following three files:

¢ XmlMetaSolvOrderManagementAPI.xsd
¢ XmlMetaSolvOrderManagementEntities.xsd
¢ XmlMetaSolvOrderManagementData.xsd

Each of the files define a specific type of information:

& The *APl.xsd files define the requests and responses that correspond to the defined
control methods covered in the previous section of this chapter.

Integration Overview 19

MetaSolv Solution schema

& The *Entities.xsd files define the data structures that are input to requests or output from

responses.

¢ The *Data.xsd files define various data structures that group data together so the data can
be referenced as a complex group, rather than by each individual data element. These data
structures are commonly referenced from within an entity data structure. Think of the data
structures defined in these files as sub-structures; specifically, the data structures defined

in these files are not input to requests or output from responses.

For detailed information on navigating the XSD files, refer to “Appendix B: Navigating The

XSD”.

The following figure shows the Customer Management schema displayed in an XML editor.

Notice the listing of elements in the window.

¥ XMLSPY - [XmlMetaSolvCustomerManagementiPl. xsd]

Customer
Management API XSD
viewed in an XML

editor

7

Elements within the
API| schema contain
the XML input format
for specific API code

Figure 5: Customer Management APl methods displayed in an XML editor (XMLSpy)

j File Edit Projeck #ML DTDfSchema Schema design ¥5L Authentic
O =& =
==
annotation Pierre Gauthier MetaSoly Customer Management AP April 200
imgport loc: XmICBECustomerSchema xad
import loc: ¥miMetaSobsCustomerManagementEntities xsd
import o fossifmiCommon=chema xsd
import loc: XmietaSalCommonEntities xed
annotation Crestes the customer account if does not exist or updates th
of8 | elemert updateCustomer AccountByWalueRequest
of8 | elemert updateCustomerAccountByWalueResponse
of8 | elemert updateCustomerAccountByValueException
of8 | eletment getCustomerAccountByKeyReque st
off | eletment getCustomeraccountByKeyResponse
ofd | eletment getCustomerAccountByKeyException
comment DeleteCustomerBilling Account
ofd | 2lemnert deleteCustomer AccountByHeyRequest
of8 | elemert delete CustomerAccountByKeyResponse
comment DeleteCustomer Biling Accournt

20 MetaSolv Solution XML API Developer’s Reference

MetaSolv Solution schema

The following figure shows getCustomerAccountByKeyRequest opened and displayed on the
screen.

Figure 6: Graphical view of the schema for a method in XMLSpy

The schema include documentation on the information they contain. The following figure
shows the graphical representation of an element’s schema with documentation highlighted.

| getCustomericcountByReyRequ.-] == .metasolv-cmmekey [= |, metasoly usto, E]L
Root element tlobal Elernent Declarations in Crder to
| simnplify ®QUERY based manipulations,

| Field in GUT: Mot in SUT
| % Windaw in GUT: Mia
| Field Drescription: M

| | Required or Cptional:
| Walid Walues: Mi&
Documentation L T

Figure 7: Schema documentation shown in a graphical view in XMLSpy

Integration Overview 21

Oracle WebLogic 10.3.1

Oracle WebLogic 10.3.1

Oracle WebLogic 10.3.1 provides the environment for the MetaSolv Solution integration
process. WebLogic is a powerful software application that has many uses beyond the scope of
this document. This document documents only those portions of WebLogic and its software
components that relate directly to accomplishing a task in the integration of MetaSolv
Solution. See the Oracle WebLogic documentation at:

http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html

WebLogic contains a full-featured integrated development environment (IDE) that you can
use to create and debug your application. WebLogic Workshop provides the tools to automate
much of the coding that is required for development. The following figure shows a Workshop
workflow, which is the graphical representation of steps that combine methods and data
transformations to accomplish a task in MetaSolv Solution.

% GetCustomerfccountSyne java &3

1

GetCustomerAccountSync

p— 18
=

E@

extrackPrimarykey

(_2 o

getPSRustomerAccountBean

-

getUserDataBean

22 MetaSolv Solution XML API Developer’s Reference

Oracle WebLogic 10.3.1

getParkyRoleBean

(E £

makeExporbZustomerAccountR,
esponseFromi_ustameraccount
ke

l

(E o

makeGetCustomerAccountRes
ponseFromyalue

~ %}

“—lient Request with Return—

=

Finish
Figure 8: A WebLogic Workshop workflow for getting customer information

To integrate MetaSolv Solution with another application, you must use the following
WebLogic components:

¢ WebLogic Workshop

This component provides an integrated development, deployment, and run-time
environment for building applications. The procedures for developing a workflow and the
MetaSolv Solution samples will be described using Workshop in this document.

¢ WebLogic Integration

This component provides a framework for developing and integrating applications and
business processes from within and across an enterprise.

Integration Overview 23

Basic integration steps

Basic integration steps

The following steps show the high level process for integrating MetaSolv Solution with a
third-party application. Some steps can be performed in a different order, but the order shown
here is recommended by Oracle as a best practice.

1.

Layout the steps in your project to determine any data mapping that must be done between
your schemas and the MetaSolv Solution schemas.

This means identifying the nodes, or building blocks, in what will become the workflow
for the application.

Identify the sources and targets for all data mapping that you identify between the
schemas.

This step includes both requests into MetaSolv Solution and the responses that are
returned to your external system.

Build the transformations in WebLogic Workshop.

Build the workflow for the application in WebLogic Workshop.

Build the framework.

This step is optional. It includes setting up logging and error handling.
Test the workflow.

Some basic test capabilities are included in WebLogic Workshop. You can also use the
connector included in the mss_samples.jar file to simulate receiving and processing data
from an external application in WebLogic Workshop.

Create an ear file that contains the application and deploy it with MetaSolv Solution.

24

MetaSolv Solution XML API Developer’s Reference

Special characters

Special characters
The XML API supports the special characters listed in the table below. The first five rows

show special characters that are recognized by the API as an entity other than the special
character itself. The remaining rows list special characters that are recognized by the APl in
the same manner as the GUI.

Table 1: Special characters supported by the XML API

Special character API GUI

'
" The " must be last character.

& & &

< < <

> &4gt; >

! ! !

@ @ @

#

$ $ $

% % %

A A A

(((

)))

{ { {

} } }

[[[

]]]

Integration Overview

25

Special characters

26 MetaSolv Solution XML API Developer’s Reference

Developing An Integration Application

This chapter provides information to help get you started developing applications using the
MetaSolv Solution Integration and Portal Toolkit. The information is presented through a
simple example that shows how to use the tools in the toolkit. When you understand the tools,
and you have a clear determination of what you want to accomplish, you are ready to begin
developing applications.

This chapter also provides information on migrating from a previous release of MetaSolv
Solution. The information is presented at end of this chapter. See “Migrating To MetaSolv
Solution 6.2.1".

In this chapter, you will be shown how to accomplish the major steps in creating and
deploying a MetaSolv Solution integration application using the GetCustomerHttpSample
included in mss_samples.jar. The sections in this chapter follow the basic steps for creating an
application for MetaSolv Solution. To create an application for MetaSolv Solution in
WebLogic Workshop, you must:

1. Plan the application.

2. Create a new (empty) application in WebLogic Workshop.

3. Import the appropriate MetaSolv Solution controls into the new workflow in Workshop.
4

Create data transformation controls for your incoming XML data and for the outgoing data
you expect to receive in response.

5. Create the workflow using MetaSolv Solution controls, the transformation controls you
created, and generic controls inside Workshop.

6. Setup logging and exception handling for the application.
7. Test the workflow.
8. Create and deploy the application .ear file.

All of the steps listed are explained in the following sections. The sections describe the process
for creating the GetCustomerHttpSample included in mss_samples.jar. For information on
how to locate the samples file, see “Appendix A: XML APl Sample Code” on page 89. The
GetCustomerHttpSample is simple and easy to understand, but it contains processes that
illustrate how controls are used to integrate MetaSolv Solution with another system.

Developing An Integration Application 27

The input for the GetCustomerHttpSample comes from the Cim_customer.xsd, which is also
included in Samples.jar.The details of the example in this chapter may vary slightly from the

GetCustomerHttpSample in the mss_samples.jar file. This is done to simplify the example for
illustration purposes.

28 MetaSolv Solution XML API Developer’s Reference

This figure shows where the GetCustomerHttpSample.java file is located inside the
mss_samples.jar file after the contents are extracted and opened in a workspace. For more
information on the samples in the mss_samples.jar file, see “Appendix A: XML APl Sample
Code” on page 89.
Tt Mavigatar &5 ==
73 mss_samples
+ G:LJ- Samplelntegrations
= “:'/J- Samples
+-= ,apkt_src
+-[= settings
== .xbean_hin
== .xbean_src
+-5== build
= schemas
=I5 src
=I5== com
=I-5=" metasoly
== api
=I-5= test
+-[=> common
+-[=> conwerker
+-[= dbaccess
=I5 workFlow
+-[= activation
=l-5= customer
% CreateCustomerHttpSample. java

File for the GetCustomer &, DeleteCustomerdccount Tesk, java
workflow example %(GettustnmerHttpSample.java)

% GetCustamerTest, java

@ etCustomer TestPContral . java
% ImportCuskomerTest. java

|_J;;.I1 ImportCustomer TestPContral java

Figure 9: Directory structure for mss_samples

When you open GetCustomerHttpSample.java in Workshop, the following workflow displays.

Developing An Integration Application 29

d?t. izetiCustomerHttpSanple.java &3

e

OnExcepkion

This group handles any
exceptions that arise in the
group that it is pointing to

-

.'{._."‘. W H

,6, ﬂ gek exceplion
o —

Get Customer

Finish

This method defines how
the application is invoked

—— Ere"

Subscripkion

This method processes the
incoming request for
customer information

gebCustomerAccountBykey

El

Perform

Firish
Figure 10: Workflow for getCustomerHttpSample.java

30

MetaSolv Solutio

n XML API Developer’s Reference

Planning the application

The following figure shows a graphical view of the schema for Cim_Customer, which
provides the format for the incoming XML for the GetCustomerHttpSample shown in this
chapter.

EilﬂegHeyConmmn |

—] custacetin FH{ -]

Eimegl-{eyﬂef

= custCompanytlame idi
Cim_Customer E]_(_.,._E_ panyt | Thigis the data

elerfent from the

CustAddress incoming XML that
represents the

custpmer account

—| CustAcetTransaction identifier

Figure 11: Schema for the incoming request XML

Planning the application

This section describes how to plan for your application. Oracle recommends as a best practice
that you list out the information you need before you begin work on the application in
Workshop. The information you need includes:

L 2

4
L 4

The WebLogic domain to which the application will be assigned in Workshop. You can
use an existing domain or create a new domain.

MetaSolv Solution controls you will require.

A list of the data that needs to be transformed from your XML format to the MetaSolv
Solution MIM format.

Here is the information needed for the GetCustomerHttpSample used in this chapter.

MetaSolv Solution controls required:

MetaSolv Customer Management API

Transformations required:

Incoming XML.: customer account identifier
Outgoing XML.: customer account identifier, customer’s company name

The output was limited to two data items to keep the example simple. Although this
example uses simple inputs and outputs, the transformations for a normal integration effort
can become complex and therefore requires careful planning. The problem of knowing
which data from your XML maps into which data in the MetaSolv Solution schema is
eased by the documentation in the MetaSolv Solution schema. See “MetaSolv Solution
schema” on page 19 for more information about the MetaSolv Solution schemas.

Developing An Integration Application 31

Accessing WebLogic Workshop

Accessing WebLogic Workshop
The following procedures are all performed within WebLogic Workshop.
To access WebLogic Workshop:
1. Perform either step a or step b:
a. For Windows:

From the Start menu, select Programs, then Oracle WebLogic, then Workshop for
WebLogic 10gR3.

b. For UNIX:
$BEA_HOME/workshop_10.3/Workshop.sh

If this is the first time starting WebLogic Workshop, or if Workshop was previously
open on an application from another WebLogic domain, you might see a warning
about fixing the domain. If so, click Continue to ignore the warning, then close the
open application.

32 MetaSolv Solution XML API Developer’s Reference

Creating a new application in Workshop

Creating a new application in Workshop
To create a new application in Workshop:

1. From the menu, select File, then New, then Other.

The Select a Wizard window displays.

Select a wizard —
|
Wizards:
||:|r|:u:ess app (s

= = Weblogic Integration

Process Application

[]5how all Wizards,

o = 1 =l
(2) = Back Mext = Finish Cancel

2. Inthe Wizards field, enter process app.

3. Select Process Application and click Next.

Developing An Integration Application 33

Creating a new application in Workshop

O Process Application 0| x

The Process Application window displays.

Process Application ,
|

|-_| |_I

_reaktes a new Process application containing EAR, Web and Ukiliey projects,

EAR Project Mame: | SampleApplication

The EAR. Project is a container for J2EE application resources, Ik references other projects belonging to
the Process Application,

¥eb Project Mame: | SampleaPl

The Weh Project is a container far Processes and related resources such as Transformations and
Controls,

Utility Project Mame: | Sarnplelkiliky

The Ukility Project is a container For Transformations, Contrals, Schemas and other resources that o
intend ko share across other projects,

W iadd Weblogic Integration System and Contraol Schemas ko Ukility Project

7 < Back Finish Cancel
4. In EAR Project Name, enter an ear project name such as SampleApplication.
5. In Web Project Name, enter a Web project name such as SampleAPI.
6. In Utility Project Name, enter a utility project name such as SampleUtility.
7. Select the Add WebLogic Integration System and Control Schemas to Utility Project
check box.
8. Click Finish.

34

MetaSolv Solution XML API Developer’s Reference

Creating a new server in Workshop

Creating a new server in Workshop
To create a new server in Workshop:
1. From the menu, select File, then New, then Other.

The Select a Wizard window displays.

Select a wizard

Define a new server |

Wizards:

|server [Esg

= = Server

[]5how all Wizards,

o = 1 =l
(2) = Back Mext = Finish Cancel

2. Inthe Wizards field, enter server.

3. Select Server and click Next.

Developing An Integration Application 35

Creating a new server in Workshop

The New Server window displays:

O Mew: Server

Define a New Server

Choose the bype of server bo create

Server's host name: | localhost

Select the server bype:

Download additional server adapkers

|type filer kexk

[-=~ BEA Syskems, Inc.

[== Basic

= Caucho Technology

= IBM

[~ JBoss

[== Mort Bavy

[= Objectweb

== Oracle
E Oracle 041 Standalone Server 10.1.3
E COracle OC4]1 Standalone Server 1001,3.1

[0 B G B

Yeblogic Server v10,3

|3

||

Cracle WeblLogic Server w10,3

Server runtime: | Dracle Weblogic Server w10,3

W | [Lnstalled Runtimes. ..

[< Back ” Mext =

|

4. By default, Oracle WebLogic Server v10.3 is selected. Click Next.

36 MetaSolv Solution XML API Developer’s Reference

Creating a new server in Workshop

The following window displays:

O Mew: Server

Oracle Weblogic Server v10.3

@ Specify a WweblLogic domain direckory QORALCLE
Marme; | Cracle WeblLogic Server w10,3 at localhosk
Server Type: (®)Local () Remote

Configuration

Darmain Direckary: | V| [Brnwse...]

Click here ko launch Configuration Wizard to creake a new domain

Disable Automatic Publishing To Server
[] always start webLogic Server in debug mode

This option may degrade performance of some applications when not debugging, but allows Eclipse
ko transition From running ko debugging an application without restarting the server,

5. Perform either step a or step b, depending on your environment:
a. For Server Type, choose Local.

+ In Domain Directory, enter the name of the domain directory that is specific to
your installation of MetaSolv Solution by clicking Browse to navigate to the
directory.

b. For Server Type, choose Remote.

Developing An Integration Application 37

Creating a new server in Workshop

The fields on the window change based on your selection of Remote.

O Mew: Server

Oracle Weblogic Server v10.3
Define a WeblLogic Server QORALLE
Mame: | Oracle WebLogic Server v10.3 at 10.147.241.166 |
Server Type: () Local (%) Remote
Configuration
Remote Host: | 10,147,241, 166 |
Part: | 7020 |
User: | adrnin |
Password; | sssssene |
Re-enter Password: | T |
':':’:' [< Back][Mext =] [Finish l [Cancel

]

+ Inthe Configuration fields, enter the information applicable to your
environment.

6. Click Finish.

The server displays in the Servers view. You can start and stop the server from within
WebLogic Workshop by right-clicking on the server in the Servers view and selecting the

appropriate option.

38 MetaSolv Solution XML API Developer’s Reference

Adding the MetaSolv Solution controls to Workshop

Adding the MetaSolv Solution controls to Workshop

The MetaSolv Solution controls are located in the MetaSolvSolutioninterface.jar file, which
is located in the mss_integration.ear file.

To add the MetaSolv Solution controls:

1.
2.
3.

Locate and open the mss_integration.ear file.
Extract the MetaSolvSolutionlInterface.jar file to a local working directory.

Copy the MetaSolvSolutionlnterface.jar file into your Workshop workspace.
Specifically, copy the file into the SampleApplication/EarContent/APP-INF/lib directory
path, where SampleApplication is the name you provided when creating your application
by following the steps in “Creating a new application in Workshop”.

Adding the MetaSolv Solution schemas to Workshop

The MetaSolv Solution controls are located in the MetaSolvSolutionUtility.jar file, which is
located in the mss_integration.ear file.

To add the MetaSolv Solution controls:

1.
2.
3.

Locate and open the mss_integration.ear file.
Extract the MetaSolvSolutionUtility.jar file to a local working directory.

Copy the MetaSolvSolutionUTtility.jar file into your Workshop workspace. Specifically,
copy the file into the SampleApplication/EarContent/APP-INF/lib directory path, where
SampleApplication is the name you provided when creating your application by following
the steps in “Creating a new application in Workshop”.

Extract the schemas directory located in the MetaSolvSolutionUtility.jar file and add it
to the schemas folder (SampleUtility/schemas directory) of the newly created Utility
project.

Copy the channel file located in the src directory to the SampleUtility\src directory.

Note: After the controls and schemas are added, clean and build the project.

Creating data transformations

The next step in creating an application is the creation of controls for transforming data. The
GetCustomerHttpSample has data transformations for the request data (incoming) and the
response data (outgoing). A transformation file for each set of data must be created. The
following figure shows a simple example of the process.

Developing An Integration Application 39

Creating data transformations

) Response XML output

XML input Request data is data is for response
for request : . transformed from is sent
B . transformed into MetaSolv Solution "
is received 3 MIM format into to the

from an MetaSolv Solution processes the e—"]

MIM format request . external
external system’s system
system format

Figure 12: Transforming XML input and output files

The following procedure shows the steps used to create a transformation file for the
Cim_Customer example XSD.

Request transformation control
To create a transformation file for the incoming data:
1. Inthe Navigator view, select a directory for the location of the new transformation file.
You can create a directory or place the file in an existing directory.

2. From the menu, select File, then New, then Other.

40 MetaSolv Solution XML API Developer’s Reference

Creating data transformations

The Select a Wizard window displays.

O Mew

Select a wizard

Wizards;

- @)X

——

|transFu:urmatiu:un

S

[=-[= Data Transfarmation
E@ Tukorial: ¥Query Transformation
% %0uery Transformation

== Weblogic Integration
% TransFormation

Tutarial: ¥Query Transformation
muery Transformation
== Wehblogic Inteqgration Contrals
IIC% Cynamic Transformation

[]show all wizards,

Cancel

3. Inthe Wizards field, enter Transformation.

4. WebLogic Integration, select Transformation and click Next.

Developing An Integration Application

41

Creating data transformations

The New Transformation window displays.

O New Transformation |L| E'E'
Transformation :
This wizard creates a new Tranformation File with *.java extension for use within %
a Process,
Source Folder: | sampledPI) s | [Browse. ..]
Package: | kransform |
Mame: | My CustomerRequestConverter |

€3 com.bea.transform, TransformSource

Do wiou wank to add comments as configured in the properties of the current project?

[]=enerate comments

':':’:' [Finish l [Cancel

5.

6.

In Name, enter a name such as MyCustomerRequestConverter and click Finish.

This creates a new Transformation file named MyCustomerRequestConverter.java.

In the Package Explorer, right-click on the Transformer file you just created
(MyCustomerRequestConverter.java), and select Transformer, then Add, then
XQueryTransformation Method.

42

MetaSolv Solution XML API Developer’s Reference

Creating data transformations

The New XQueryTransformation window displays.

2 New XQuery Transformation |:|@|Fg|

Transformation method name and XQuery file name P ﬁ"

Enter the name of the method to be added in the transformation file, Also, enter I
the name of the XQuery file name to be created. “_ —

TransfFormation Method Mame: | myMakeGetCustRequest |

®Ouery File Mame: | myMakeGetCustRequest, xq |

7. In Transformation Method Name, enter a name for your method, such as
myMakeGetCustRequest.

8. In XQuery File Name, enter an XQuery file name that corresponds to the name of the
method you entered, such as myMakeGetCustRequest.xg. (The names you enter should be
the same, with the exception of the file extension.)

9. Click Next.

Developing An Integration Application 43

Creating data transformations

The New XQuery Transformation for Source Types window displays.

2 New XQuery Transformation

Source Types < -
Select source bypes for the kransformation, JJ a

fvailable Source Types Selected Source Types
@Ml O Mon-sML () Simple
=2-&
[=1-1== MetaSolvSolutionUtility
== schemas
(= mim
= mss
[ossj
[= system
= Unkyped

Parameter Mame:

0 | <Back || met> | Ani

10. Choose XML for the Available Source Types option.
11. Expand the treeview to the schemas directory.
12. Locate the schema that defines your source data.

This example shows the mapping of an inbound customer account ID to the customer
account 1D defined for getCustomerAccountByKeyRequest.

44

MetaSolv Solution XML API Developer’s Reference

Creating data transformations

2 New X0Query Transformation |:| Elﬁ_(I

Source Types <5 ‘}
Select source bypes for the kransformation, g JJ

fvailable Source Types Selected Source Types
@M O non-kL O Simple = cirn_Cuskomer 1 -
=-E2 Typed ~ =@ CuskacctiD
= 'L:‘,J- MetaSolySolutionUklit @ integkeyComm
== schemas @ integkeyRef
== mim ﬂ custCompanyhame
(=[] CimCustomer3amp =@ Custaddress
= @ Cimn_Cuskamer @ custaddrComp
@ Custacctl @ custaddrFloor
@ custComp. @ custaddrEldgh
@ Custaddre @ custaddrElocks
@ CustacctT @ custAddrLoth—
|¥| ®mlCBECoreSchen @ custaddrEldgh
[¥] ®mlCEECrosssche ™ @ custaddrTown
< * @ custaddrCity
Bararmeter Marne: @ custaddrPrefe ¥
cim_Customer 2 < >

':':’:' < Back ” Bext = l :

13. From within the schema, select an element, and click Add.
The selected element displays in the Selected Source Types section.

This example shows the selection of the Cim_Customerl element defined within the
CimCustomerSample.xsd file.

14. Click Next.

Developing An Integration Application 45

Creating data transformations

The New XQuery Transformation for Target Types window displays.

2 New XQuery Transformation

Target Types

I
Select the target type For the transformation, JJ :
%" t-a‘:

Available Targek Types Selected Target Type
&Ml O Mon-EML O Simple
=z m
[=1-1== MetaSolvSolutionUtility
== schemas
(= mim
[= mss
[= ossj
[= system
= Unkyped

15. Locate the schema that defines your target data.

46 MetaSolv Solution XML API Developer’s Reference

Creating data transformations

2 New XQuery Transformation

Target Types @ j‘

Select the target type For the transformation,

Available Targek Types

&Ml O Mon-EML O Simple .
|X| ®rlCBEProductSchema. xsd L =@ key
|X| ¥mlCBEResourceSchema. xsd =@ metaSokaCustomerd
|X| wmlCBEServiceSchema,xsd = G? applicationConte
|X| wmiMetasol+ZommonEntities, xsd @ factorylas:
= %] #miMetaSolyCustomertlanagenmer @ uRL
@ @ deleteCustomer AccountBykes =@ systemProp
[H deleteCustomer AccountBykes = G‘ property
@ gebCustomerAccountBykeyEx— Q nar
@ getCustomerAccountBykevRe @ walu
getCustomer AccountBykevRe G-? applicationDM
@ updateCustomerdccountByy's @ tvpe
@ updateCustomerfdocountByh's G-? custamer&ocour
@ updateCustomerdocountByh's
|X] ¥mlMetasolyCustomertanagemer %
¢ | B < | B

@ T -

16. From within the schema, select an element and click Add.
The selected element displays in the Selected Target Type section.

This example shows the selection of the getCustomerAccountByKeyRequest element
defined within the XmIMetaSolvCustomerManagement.xsd file.

17. Click Finish.

Developing An Integration Application 47

Creating data transformations

The XQuery Transformation that you created displays.

% *ryMakeGEetCustRequest, g 4

Source Target
= @ cim_Customerl = @ getCustaomerAccountBykevRequest

=@ CusthcctlD =@ key
G integk ey Cammmon - = e metaSolvCustomerAccountkey
@ integkevRef = G-? applicationConkext

@ custCompanyMame @ factoryclass

=@ Custaddress @ URL
@ rustaddrCompanyiame =@ systemProperties
@ custaddrFloor = G" property
@ custaddrEldgame @ name
@ custaddrElockMum i@ value
@ custaddrLotMum G? applicationCiid
@ custaddrEldghum @ tvpe
9 skaddiTown |1 g e G; customerAccountPrimarykey
@ custaddrcity
@ custaddrPrefecture
@ custaddrCountry
@ custaddrZip

=@ CusthcckTransaction
G kransterifTransactionID

18. Map elements from source to target by dragging and dropping them from the Source

section to the Target section.

This example shows the mapping of the source element, integkeyCommon, to the target
element, customerAccountPrimaryKey. In this example, there is only one element to be
mapped from the incoming XML because the customer account number is the only data
required to export customer information.

Setting a constant value

When using the XML APIs, some elements require a value. If no incoming value is
mapped to the elements from the source XML file, you must create a constant value for
the element. Continuing with the getCustomerAccountByKeyRequest example, the
element type requires a value.

You can hover the cursor over an element to see documentation on the element and
determine whether a value must be assigned As a best practice, this information should be
determined beforehand from the schema using an XML editor. The following figure
shows the type element with the documentation displayed for the element. If Min Occurs

48

MetaSolv Solution XML API Developer’s Reference

Creating data transformations

is 0, the value is not required. In this example, Min Occurs is 1, indicating that the value
is required.

Targek

= @ getZustomerfccountBykeyRequest
=@ key
=@ metaSolvCustomerAccountkey
@& applicationContext
@ applicationom
o

G; cuskamerAccountPrimarykew

Mode Mame: bype

Mamespace Prefix: nsl

Mamepsace URL http://java.sun.com;/products,/oss/=ml/Common
fin Dccurs: 1

Max Occurs: 1

Simple-Type (Field): skring

To set a constant value:

1. Inthe Target section, right-click an element (in this example, type) and select Create
constant to set a value for the element.

The Create Constant dialog box displays.

2 Create Constant E|

Constant Yalue

****|

(04 l [Cancel

2. Enter """ and click OK.

3. Click Save and close the XQuery Transformation file.

Developing An Integration Application 49

Building the workflow

Response transformation control

The response transformation for the GetCustomerAccountByKeyRequest example is created
in the same manner as the request transformation. A new Transformation file is created, a new
method is created for the Transformation file, and the source and target elements are selected,

but they are selected in the reverse order.

The following figure shows the mapping for the response transformation. Two elements are
mapped for the response: customerNr (to integkeyCommon) and tradingName (to

custCompanyName).

% *ryMakeCustResponse, =g o

Source

Target

=@ walue

subigraphId

access_ustomerMr

i)

cuskacctParentId
accounkskatus
accountSecurity
acnaharne
billingInterfaced

accountType
exbractCreationDate

]

exckernalCustomerkey
disconnectReasoncCd

O X X T A L R XX X X T M L)

emaildddress

@
—_
1]
x
=
=

Building the workflow

= getCustomer AccountBvkeyResponsel

=@ metasolvCustomeraccountyalue
6-? lastUpdateversionMumber
=

metasolyCustomerAccountkey

tradlngNal‘ﬂE

ELIStl:IITIErNr

r

= Cim_Cuskamer

=@ CustacctID

.............................. =W iri=k ey Common
@ integkevRef

.................... Ef custCompanyMame

=I-4@ Custaddress
cuskAddrCompanyanne
cuskaddrFloor
cuskAddrEldghame
cuskaddrBlockMurm
cuskaddrLoktMun
cuskAddrBldghum
cuskAddr Town
cuskaddriZity
cuskaddrPrefecture
cuskAddrCountry
cuskAddrZip
=@ CustacctTransaction

G kransverifTransactionlD

QOO0 OOO®

This section describes how to create a workflow in Workshop. The workflow contains all of
the control and transformation methods necessary to complete the integration tasks you
require. Workshop gives you the ability to construct the workflow graphically and generate the

code automatically.

50 MetaSolv Solution XML API Developer’s Reference

Building the workflow

Step 1: Creating the workflow process file
Each workflow has a .java process file. This section explains how to create the process file and

th

e workflow in Workshop.

To create a workflow in Workshop:

1.

In the Navigator view, select a directory for the location of the new .java process file.

You can create a directory or place the file in an existing directory.

From the menu, select File, then New, then Other.

The Select a Wizard window displays.

Select a wizard

Wizards:

- B

||:IFEIIIESS

== wWebLogic Integration
d‘% ebismnl Participant Process

@ Process Application

d‘% RosettaMet Participant Process

E;é_l Tukarial: Hella World Process Application

E;% Tutarial: Request Quote Process Application
== Wehblogic Inkeqration Contrals

O'% Process

[]5how All Wizards,

®

3.

In the Wizards field, enter process.

4. Under WebLogic Integration, select Process and click Next.

Developing An Integration Application

51

Building the workflow

The New Process window displays.

O Hew Process |L| EI[E
Process
This wizard creates a new Process file with * java extension, L
I
Source Folder: | APIfsrc | [Browse. ..]
Package: | com.metasaly, api workflow, customer |

Mame: | GetZusktomer |

(1) com.bea.jpd. ProcessDefinition

Do wiou wank to add comments as configured in the properties of the current project?
|:| Generake comments

'i':’:' [Finish l [Cancel

5. In Name, enter a name such as GetCustomer and click Finish.

52

MetaSolv Solution XML API Developer’s Reference

Building the workflow

An empty workflow displays reflecting the name of the process, which in this example is
GetCustomer. The creation of the process provides the .java file extension.

. *GetCustomer . java 5 = 0O

GetCustomer
|

P——

Double Sk fo Salect Start
Lvent

L

=

Firish

Design | Source

After an empty workflow is created, you can add the controls to be used in the workflow
to the Data Palette as described in the following section.

Developing An Integration Application 53

Building the workflow

Step 2. Adding controls to the Workshop Data Palette

This section describes how to add controls to the Workshop Data Palette for use in a
workflow.

Adding controls to a workflow

To add a control to the Data Palette:
1. To open the Data Palette view, do the following:
a. From the menu, select Window, then Show View, then Other.
The Show View window is displayed.
b. Type data palette to filter the views.
c. Select Data Palette and click OK.

2. From the menu list, select Local Controls.

Portal Bvent Contrals

EJ Data Palette 52 - 5. Mavigator T = O
F~Y ariables Portal Wisitor Tools Controls »

L XML Partal Toaol Controls b

L2 Mon-xML Fortal GroupSpace Controls r

L Java Local Controls [

2l Contrals Integration Contrals b
3

[

Portal Cantrals

3. Select the control file (for example, OrderManagement or CustomerManagement) that
you want to add to the Data Palette.

= NP O UStOT e COU TSy TICE L OFLrol - COTrLetas ol apluwa FETTow
%InbDundEventStatusLIpdateF'ContrUI - cormmetasoly apisworkflon Mavigatar v =0
InventoryManagement - cornumetasobaapi.control Partal Wisitor Toaols Contrals 4
MetworkResourcebdanagement - cormumetasolvapi.control Partal Toal Contraols 4
OrderManagement - com.metasobsapi.contral Paortal GroupSpace Contrals 4
= OuthoundEventStatusUpdatePCantral - cor.metasalv.apiworkflow Local Controls r
%ProcessBiIIingTeIephoneNumberPContml - cormurmetasolyapiaorkflow Integration Controls 4
& ProcessSuppOrderPControl - cam.metasoheapiworkflow Paortal Event Controls r
%Quer}fEndUserLacatiDnPCnntmI - comumetasoly apiworkflon Partal Controls 4
&QueryInventoryManagementSyncPContrnl - cornmetasolapisnorkflow Partal GroupSpace Search Contrals #
= QuergMetworkLocationPControl - cormumetasobaapioorkflow Jal Service Control

The control and its methods are displayed in the Data Palette view and you can use them
within the workflow. You can drag and drop any controls or data transformation controls
that you created into the Data Palette.

54 MetaSolv Solution XML API Developer’s Reference

Building the workflow

Adding data transformation controls to a workflow

This section describes how to add data transformation controls to the Workshop Data Palette
for use in a workflow.

To add a data transformation control to the Data Palette:
1. Open the Data Palette view:
a. From the menu, select Window, then Show View, then Other.
The Show View window displays.
b. Enter data palette to filter the choices.
c. Select Data Palette and click OK.

2. In the Navigator view, navigate to the directory where the data transformation control is
located.

This example shows the addition of the CustomerRequestConverter and the
CustomerResponseConverter controls, which are located in the API/src/com/metasolv/
converter/customer directory.

3. Select the control file, such as CustomerRequestConverter.java or
CustomerResponseConverter.java.

4. Drag and drop the selected file to the controls directory in the Data Palette view.

The control and its methods display in the Data Palette view where they are available for
use within the workflow.

Ed DataPalette 53 ¥ =08

Lk Variahles
=gl

= '::3.‘: cusktormerkequestConverter
= int makeCustAcckkeyFromGetCustomer AcckBykevRequesticom, mekasaly, mip, customerMan
2 MetasalvCustomerbecountyalueDocument makeCustamerAccountYalueFromPequest{canm.r
2 PSRCustomerfAccountBean makellpdateCustomerRequestFromCustomerAccounty alueDoc(
2 PartyRaoleBean makelpdateCustomerRequestFromPartyRale(cam, metasaly, mip. cuskomert
4-" UserDatabean makeUpdateCustomerRequestFromilserDatalcom, metasoly, mip, customert:
= l:.‘}_u': customerResponseConverter
2 Skring corvertDakeTaStringlint davw,int month,int vear)
= DeleteCustomerdccountBykeyResponsebocument makeDeleteCuskomerdccountR esponsel
4-' MetadolyCustomerdccountYalueDocument makeE xportCustamer AccountResponseFromCus
4-' GetCustomerfccountBykevExceptionDocument makeGekCustAccountExceptiondjava.lang.
4-' GetCustomerfccountBykeyvResponsebocument makeGetCustomerAccountResponseFromy,
2 UpdateCustomerAccountByyalueE xceptionDocument makelUpdateCustomerE xcepkionijava
= UpdateCustomerdccountByialuer esponsebocument makelpdateCustomerR esponseFram]

4 b

Developing An Integration Application 55

Building the workflow

Step 3. Specifying how the request is invoked

To specify how the request is invoked:

1. Within the process workflow, double-click on the default Start Event node.

The following dialog box displays:.

’ N

ke

How wwould wou like this process to start?

(%) Invoked via a Client Request
{3 Invioked synchronoushy via a Client Request with Return

{3 Subscribe synchronously o a Message Eroker channel and start via an event

{3 Invoked via one of several Client Requests or Subscriptions (Event Choice)

" Subscribe bo a Message Broker channel and start via an event {Timer, Email, File, Adapter, etc.)

2. Choose the Invoked via a Client Request option, and click Close.

The Client Request node now displays in the workflow.

= *GetCustomer.java (7 = O

®F

GetZustormer

=

Client Reguest

L

=

Finish

Design | Source

Close

o

56 MetaSolv Solution XML API Developer’s Reference

Building the workflow

3. Double-click the Client Request node.
The Client Request dialog box displays.

r

e h
i -
- Specify a method name and select one or more parameter bypes,

. clientReguest
Client Request bt [iEme:

-

|4 General Settings

Sekkings:
Help
Wigw Code

Close

Double-clicking any node within a workflow results in the node’s properties dialog box
displaying. The properties dialog box allows you to name the method that the node
represents, and to provide the information that is necessary for the method to successfully

execute.
4. Complete the following information in the dialog box:
a. On the General Settings tab, click Add.

-

Developing An Integration Application 57

Building the workflow

The following dialog box displays:

Parameker Mame: | requestCimiCust

Tvpe Mame: noMamespace, Cimnicus

Simple | #ML Mom-%ML
=I[== rnim L

=l K] CimCustomerSample, xsd
Cimn_Customer
wrlCBECoreSchema. xsd
wmlCBECross5chema, xsc
wmlCBECuskomerSchema
wmlCBEDataTypesschem

wmlCEELocationschema.:
£ »

w

O O B B
=[] [[[=] &

(2 Ik] [Cancel

b. Click the XML tab.

c. Navigate to the location of the schema that defines the incoming XML, and select the
appropriate element.

This example shows the selection of the Cim_Customer element that is defined within
the CimCustomerSample.xsd file. The Type Name field is automatically populated
when you select an element.

d. InParameter Name, enter a parameter name for the incoming XML element that was
selected.

This example shows a parameter name of requestCimCust.
e. Click OK.

This returns you back to node’s properties dialog box.
f. Click the Receive Data tab.

58 MetaSolv Solution XML API Developer’s Reference

Building the workflow

The Receive Data tab, shown below, allows you to define variables for the incoming data.
=

“

| N
= {(®)variable Assignment () Transformation
Client Reguest
~ Client Sends: Select variables to assign;
|+ General Settings CirmCustarme. . nt cimCust w
Receive Data

Help
Wiew Code

Close

ks =

g. Choose the Variable Assignment option.

h. Under Select variables to assign, click the list arrow, and then select Create new
variable.

Developing An Integration Application 59

Building the workflow

The Create Variable dialog box displays.

O Create Yariable [5__<|

Yariable Mame: | requestCimCust |

Tvpe Mame: | noMarmespace. CimiZustomerDocurment | [Eiru:uwse...]

Simple | ¥ML | Mon-%ML

== mim *'_\
= %] CimCuskomersample.xsd =3
Cimn_Cuskormer
|X| ®mlCBECoreschema, xsd
|X| ®mlCBECross3chema, xsd
|| wrnl”BECustomerSchema. xsd i
(@ 0K,] [Cancel

i. Click the XML tab.

j. Navigate to the location of the schema that defines the incoming XML, and select the
appropriate element.

This example shows the selection of the Cim_Customer element that is defined within
the CimCustomerSample.xsd file. The Type Name field is automatically populated
when you select an element.

k. In Variable Name, enter a variable name for the incoming XML element that was
selected.

This example shows a parameter name of requestCimCust.
I. Click OK.

m. On the node properties dialog box, click Close.

60 MetaSolv Solution XML API Developer’s Reference

Building the workflow

Step 4. Adding a group to the workflow

The group box allows you to pull nodes that have a process in common together. In this
example, the group box holds nodes that share the same exception processing. In this example,
the group contains three methods to accomplish the following tasks:

¢ Transform incoming data from the requestor’s format into the MIM format understood by
MetaSolv Solution

& Process the request to export customer information
¢ Transform data from the MIM format into the requestor’s XML format

To add a group to the workflow:
1. Open your workflow.

In this example, the workflow is the GetCustomer.java file.
2. From the menu, select Insert, then Group.

3. Enter a name for the group, such as GetCustomerGroup, and press <Enter> on your
keyboard.

The empty group is added to the workflow below the Client Request node.

= *GetCustomer java 5

®®

GetCustormer

e

Client Reguest

W

GetZustomerGroup

W

=

Finish

Developing An Integration Application 61

Building the workflow

Step 5. Adding the request transformation method

This step adds the method to transform the data from the requestor’s XML format into the
MIM format used by MetaSolv Solution.

To add the request transformation method:
1. Inthe workflow, click on the group.
In the example, the group name is GetCustomerGroup.
2. From the menu, select Insert, then Control Send with Return.

3. Enter a name for the control, such as requestTransformation, and press <Enter> on your
keyboard.

The control is added to the group within the workflow.

L

.

requestTransfarmation

GetCustomerGroup

W

For the GetCustomer example, the name is requestTransformation. This is a generic
Workshop method. You can use the MetaSolv Solution methods under the
MetaSolvCustomerManagement control, but this demonstrates the use of a generic
method.

4. Double-click the requestTransformation node to open the node properties dialog box.

Notice that there are now three tabs: General Settings, Send Data, and Receive Data.
Previously, the node properties dialog box was shown for the client request node, which
only sends data, so there were only two tabs: General Settings and Send Data. The
requestTransformation node sends and receives data, so there are three tabs: General
Settings, Send Data, and Receive Data.

5. On the General Settings tab, click the list arrow for the Control field, and select a control.

For this example, select MyCustomerConverterRequest.

62

MetaSolv Solution XML API Developer’s Reference

Building the workflow

10.
11.
12.

13.
14.
15.

16.
17.

18.

19.
20.
21.

Based on the control you select, a list of methods that are defined for the control display.
Select a method.

For this example, select myMakeGetCustRequest.

Click the Send Data tab.

Choose the Transformation option.

Click Select Variable.

Select the variable that you defined in the Client Request node, requestCimCust.

Click Edit Transformation.

Map the appropriate elements for your transformation and close the transformation
mapping to return to the requestTransformation node properties dialog box.

Click the Receive Data tab.
Choose the Variable Assignment option.

Under Select variables to assign, click the list arrow, and then select Create new
variable.

The Create Variable dialog box displays. The purpose of the Receive Data tab is to create
a new variable to receive the transformed data.

Click the XML tab.

Navigate to the location of the schema that defines the XML, and select the appropriate
element.

The Type Name field is automatically populated when you select an element.

In Variable Name, enter a variable name for the outgoing XML element that was
selected.

This example shows a parameter name of requestMimCust.
Click OK.

On the node properties dialog box, click Close.

Developing An Integration Application 63

Building the workflow

Step 6. Adding the method to process the request

Instead of a generic Workshop method that would have to be modified, this step uses a
MetaSolv Customer Management APl method created for processing this type of request.

To add the getCustomerAccountByKey method to the workflow:

1.

© o N o a

In the Data Palette view, expand the controls directory, and expand the
MetaSolvCustomerManagement control to display its methods.

Locate the getCustomerAccountByKey method.

Drag and drop the method from the Data Palette view into the workflow. Drop it into the
GetCustomerGroup, below the requestTransformation node.

The group within the workflow now looks like this:

$

-

requestTranformation

getCustomerAccountBykey

GetCustameraroup

L

Double-click the getCustomerAccountByKeyRequest node.

The node properties dialog box displays.

On the General Settings tab, accept the defaults.

Click the Send Data tab.

Choose the Transformation option.

Click Select Variable.

Select the variable that you defined in the Client Request node, requestMimCust.

64

MetaSolv Solution XML API Developer’s Reference

Building the workflow

10.
11.
12.

13.
14.

15.

16.
17.
18.

In this scenario, which is using a MetaSolv Solution provided converter, you do not need
to click Edit Transformation, as the transformation is already defined for you.

Click the Receive Data tab.
Choose the Variable Assignment option.

Under Select variables to assign, click the list arrow, and then select Create new
variable.

The Create Variable dialog box displays. The purpose of the Receive Data tab is to create
a new variable to receive the transformed data.

Click the XML tab.

Navigate to the location of the schema that defines the XML, and select the appropriate
element.

The Type Name field is automatically populated when you select an element.

In Variable Name, enter a variable name for the outgoing XML element that was
selected.

This example shows a parameter name of responseMimCust.
Click OK.

On the node properties dialog box, click Close.

Developing An Integration Application 65

Building the workflow

Step 7. Adding the response transformation method

This step uses a MetaSolv Customer Management APl method created for processing this
type of response.

To add the response transformation method:

1. Inthe Data Palette view, expand the controls directory, and expand the
CustomerResponseConverter control to display its methods.

2. Locate the makeGetCustomerAccountResponseFromValue method.

3. Drag and drop the method from the Data Palette view into the workflow. Drop it into the
GetCustomerGroup, below the getCustomerAccountByKey node.

The group within the workflow now looks like this:

L

Jy
®

requestTranformation

getCustomer AccountByvkey

=

rakeGetCustomerfocountRes
ponseFromyaue

GetCustameraroup

W

4. Double-click the makeGetCustomerAccountResponseFromValue node.
The node properties dialog box displays.
5. On the General Settings tab, accept the defaults.

66 MetaSolv Solution XML API Developer’s Reference

Building the workflow

© o N o

10.
11.
12.

13.
14.

15.

16.
17.
18.

Click the Send Data tab.

Choose the Transformation option.

Click Select Variable.

Select the variable that you defined in the Client Request node, responseMimCust.

In this scenario, which is using a MetaSolv Solution provided converter, you do not need
to click Edit Transformation, as the transformation is already defined for you.

Click the Receive Data tab.
Choose the Variable Assignment option.

Under Select variables to assign, click the list arrow, and then select Create new
variable.

The Create Variable dialog box displays. The purpose of the Receive Data tab is to create
a new variable to receive the transformed data.

Click the XML tab.

Navigate to the location of the schema that defines the XML, and select the appropriate
element.

The Type Name field is automatically populated when you select an element.

In Variable Name, enter a variable name for the outgoing XML element that was
selected.

This example shows a parameter name of responseCimCust.
Click OK.

On the node properties dialog box, click Close.

Developing An Integration Application 67

Building the workflow

Step 8. Setting up exception handling

This section explains how to handle exceptions in the workflow. Data is logged in a file
named appserverlog.xml.

To set up exception handling for the workflow:
1. Within the group, right-click and select Add Exception Path.

Note: If you right-click outside of the group, you will not see the Add Exception Path
menu option.

The exception path is added to the group.

‘L a—
‘a]

requestTranformation
{_E 1 Exception path for the
=4 1 methods grouped inside the
getCoustomerdocountBykey dotted line

I:E

makeGetCustomersccountRes
ponseFramyalle

GetCustomerGroup

W

To catch any exception returned by the XML APIs for one of the methods in the group,
you must write a try-catch expression, which is defined in the Text view.

2. At the bottom of the GetCustomer.java workflow file that you are working in, click the
Source tab to view the source code. The code is shown in the following figure.

68 MetaSolv Solution XML API Developer’s Reference

Building the workflow

= *GetCustomer java £2

'

<
Design | Source

public void clientRequest (noMNamespace. CimCustomerDocwment reguestii

fFf HSTART: CODE GEMERATED — PROTECTED 3ECTICH - wou can safely
A input transform

A parameter assignment

this.requestCimCust = requestCimCust;

£4 HEND + CODE GENERATED - PROTECTED 3IECTICON - wou can safely

= public void customerBegquestConverterMakeCusthectEeyFromGetCustomerd

throws Exception {
J/ HITART: CODE GEMNERATED - PROTECTED SECTION - wou can safely
A input transform
Ff return mwethod call
int obhjFeturn = customerRequestConverter.makeCusthicctEeyFromeeat
A output transform
thiszs.requestCimCust = transformwations.custowerPegquestConvertern
A4 output assignments
¢ HEND : CODE GEMNERATED — PROTECTED 3IECTION - wou can safely

= public void customerManagementoetCustomericcountEyvEev () throws Exce

J/ HSTART: CODE GEMNERATED — PROTECTED ZIECTICH - wou can safely
A input transform

Af return method call
customerManagemwent . getCustower AccountByEey (nall)

AF output transform

A4 output assignments

ff HEND i CODE GENERATED - PROTECTED 3JIECTICN - wou can safely

= public void customerResponseConverterMakeExportCustomerAccountRespo

throws Exception
Jf HITART: CODE GEMNERATED - PROTECTED SECTICHN - wou can safely
A input transform
A4 return method call
customerResponseConverter .makeExportCustomer AccountResponseFron
A4 output transform
A output assignments
// H#EWD : CODE GENERATED - PROTECTED SECTICN - wou can safely

Developing An Integration Application 69

Building the workflow

Notice that there is one method per node in the workflow: The client request node, plus the
three nodes within the group. The code that displays in green text is generated by
Workshop and you cannot change this code.

The try-catch expression is needed for external processes that occur in the MetaSolv
Solution core. The transformation processes are local and do not require a try-catch

expression. In this example, the lines of code to wrap in the try-catch expression are
circled in the above figure.

The following is an example of the try-catch expression code. The catch expression
references the Logger object, so the import statement is also included in the example:

import com.metasolv.api.common.Logger;

try

}

// #START: CODE GENERATED - PROTECTED SECTION - you can safely add code
above this comment in this method. #//

// input transform

// return method call
customerManagement.getCustomerAccountByKey(null);
// output transform

// output assignments

// #END : CODE GENERATED - PROTECTED SECTION - you can safely add code
below this comment in this method. #//

catch (Exception e)

{

String message=com.metasolv.api.common.ProcessUtils.ExtractMessageFrom
ProcessException(e);

Logger . logDebugMsg (*'DEBUG : customerRequestConverterMakeCustAcctKeyFromGet
CustomerAcctByKeyRequest problem™, message);

throw new Exception(message);

At the bottom of the GetCustomer.java source file that you are working in, click the
Design tab to return to the graphical view of the workflow.

70

MetaSolv Solution XML API Developer’s Reference

Building the workflow

Click the OnException node in the workflow.
From the menu, select Insert, then Perform.

Enter a name for the control, such as getErrorMessage, and press <Enter> on your
keyboard.

The control is added below the OnException node.

—4&

OnException

W

| e =
getErrorMessage
€@

requestTranformation

getCustomer AccountBvkey

€@

makeGetCustomerdccountRes
ponseFromyalue

GetCustameraroup

W

Developing An Integration Application 71

Building the workflow

7. Double-click the getErrorMessage node.
The node properties dialog box displays.

i =
_ h
=
Jawa Method Mame: getErrorMessage] ¥
getErrorMessage
Help
Wiew Code

" =

8. In Java Method Name, enter getErrorMessage.
9. Click the View Code link.

Workshop generates the method based on the method name you just entered.

public void getErrorMessage() throws Exception

{
}

10. Manually define the following variables in the code in two places: As class variables, and
as method variables.

« errorMessage
+ exceptionToString
public class GetCustomer implements ProcessDefinition

{

String errorMessage;

String exceptionToString;

public void getErrorMessage() throws Exception

{

72 MetaSolv Solution XML API Developer’s Reference

Building the workflow

this.errorMessage = this.errorMessage + "‘####" +
context.getExceptionlnfo.getException.getLocalizedMessage();

this.exceptionToString = this.exceptionToString + "####" +
context.getExceptioninfo.getException.toString();

context.getExceptionlnfo.getException.printStackTrace();
} //end method

} 7/ end class

11. At the bottom of the GetCustomer.java source file that you are working in, click the
Design tab to return to the graphical view of the workflow.

12. Click Close to close the getErrorMessage node properites dialog box.

13. Click the GetErrorMessage node in the workflow.

14. From the menu, select Insert, then Client Response.

15. Leave the name as Client Repsonse, and press <Enter> on your keyboard.

The Exception path within the workflow now looks like this:

—4&

OnException

bl

L i
| ¥
=

getErrorMessage
|

@— L
Hs ®

Client Response

16. Double-click the Client Response node.

Developing An Integration Application 73

Building the workflow

17. On the General Settings tab, in Method Name, enter a method name such as
errorClientResponse.

18. Click Add.

19. In the dialog box that displays, choose the Java option.

20. Expand the Java Types directory, and select String.

This selection automatically populates the Type field.

21. In Name, enter errorMessage.

errorMessage is the name of one of the exception variables that you manually defined in

the code.
22. Click OK.

23. Repeat steps 18-22 to add exceptionToString, the other exception variable that you
manually defined in the code.

The following figure shows both variables defined for the errorClientResponse method on

the General Settings tab.

e ey

|§|) =

Client Response

Specify a method name and select one or more parameter bypes,

Method Mame: EfrorclientResponse

24. Click the Send Data tab.

25. For each variable, select the appropriate variable in the Select variables to assign list.

G String errorMessage Add...
M General Settings String excepkionTaSkring
Remove

|+A Send Data
=

Help

Wiew Code

Close

74

MetaSolv Solution XML API Developer’s Reference

Testing the application in Workshop

26. Click Close to close the Client Request node properties dialog box.

27. On the menu, click Save to save the workflow.

Testing the application in Workshop
When the workflow is complete, you can test it in Workshop.
To test a workflow:
1. Onthe Server tab, right-click the server and select Add and Remove Projects.

2. Click Add (>) to move the created project from Available Projects section to Configured
Projects section.

3. If the server status shows Republish, right-click the server, and then click Publish.
This deploys the application on the server.

4. Right-click the GetCustomer.java file (workflow file), select Run As, then Run on
Server.

The workshop test browser opens.
5. Select the Test SOAP tab.

Workshop creates an XML file for the Client Request method based on the requestor’s
XSD. In the case of the example used in this chapter, the test XML file was created from
the Cim_Customer XSD.

o Workshop Test Browser

EBX

« = @3 < ||http:,l’,l’localhost:?DD1,I’SampIes,l’com,l’metas0Iv,l’api,l’test,l’workﬂow,l’customer,l’GetCustomer.jpd?.EXPLORE=.TESTXML

Getc ustom er.ip d P rocess Created by BEA WeblLogic Waorkshop
http: Alocalhost: 7001 /Sarmples/com/metasoly fapitestiworkflow
[Overview | [Console | [Test Form | [Test SO&F | [Message Broker | [Process Graph | customer fGetCustomer. jod

Test operations

clientRequest

— cIintReqest

1i ot lns="Hhi z i Ed
MetaSolvCustomerManagement: GetCustomerAccount. getCustomerAccountByk ey == ;j ,:em’ equest xmlns eSS SpEmMri. or —
4= callback. clientResponse - <Cim_Customer xmlns=""s
Ed Clear Lo <CusthcotID> i
SOAP body: <:?_nt,eg}(eyc ommo,-'int,eg}(eyc OO
<integEeyRd < fintegKeyRef>
“fCustioetID>
ot ConpanyNane»string</ cust ConpanyNane =
- . “Custiddresss
Value typed in the field <custiddrConpanyNamerstring</custiddrlo W
for the test. This is the
only input (Customer
Account Number) on the

incoming request

Developing An Integration Application 75

Creating a build

Creating a build
To create a build:
1. From the File menu, select Project, then Build All.
To create a build and an ear file:
1. From the File menu, select Export.
The Export window is displayed.
Under Other, select EAR file with JSP pre-compilation.
Click Next.
Specify the destination path where you want to extract the EAR file.
Click Finish.
The EAR file is extracted.

o &~ 0D

Note: When you create an ear file in Workshop, it is automatically deployed to the WebLogic
Server.

Migrating To MetaSolv Solution 6.2.1

The previous release of the MetaSolv Solution XML APIs used WebLogic Workshop 8.1. The
MetaSolv Solution 6.2.1 XML APIs use WebLogic Workshop 10.3.1. So, if you are migrating
from a previous release of MetaSolv Solution, you must migrate the XML API-related files to
the newer version of WebLogic Workshop.

The following procedure assumes that you have already installed MetaSolv Solution 6.2.1,
which includes the WebLogic Workshop 10.3.1 installation. For detailed information on
performing the actual installation, see MetaSolv Solution Installation Guide.

To migrate the XML API-related files:

1. Install WebLogic patches.
For detailed information on installing WebLogic patches, see the Installing WebLogic
Server Patches section, located in Chatper 3 of MetaSolv Solution Installation Guide.

2. Open WebLogic Workshop 8.1.

76 MetaSolv Solution XML API Developer’s Reference

Migrating To MetaSolv Solution 6.2.1

3. Create a test project that includes a basic workflow such as the one shown in the following
JPD file.

. Helloworld, java &2 =0

L

Hellogsync

e

RecevieReguest

}2@

TestTransform

e ®

Sendresponse

=

Finish

Design | Source

4. Successfully build the project in WebLogic Workshop 8.1.
5. Open WebLogic Workshop 10.3.1.
6. On the Workspace Laucher window, select an empty workspace and go to the Workbench.

In this example, the empty workspace is named migration_project.
7. From the menu, select Project and disable the Build Automatically option.
8. From the menu, select Windows, then Preferences.
9. In the navigation tree, select Validation.
10. Deselect the XML Schema Validator check boxes (Manual and Build).
11. Deselect the XML Validator check boxes (Manual and Build).

Developing An Integration Application 77

Migrating To MetaSolv Solution 6.2.1

12.
13.

14.
15.

16.

17.
18.

19.

20.

21.
22.
23.

24,

Click OK.

From the menu, select File, then Import.
The Import window opens.

In the Select an import source text box, enter workshop to filter the selections.

Select Workshop 8.1 Application and click Next.
The Workshop 8.1 Application Upgrade window opens.

Click Browse and navigate to the test project you created in step 3.
This populates the Workshop 8.1 Application field.

Click Next.
Select the three check boxes for:
+ Properties File Upgrader options

+ JPD Document Upgrader options
+ JSP File Migrator options

Click Finish.

This migrates the 8.1 application to a 10.3.1 application, with the resultant 10.3.1
application being placed in the empty workspace you created in step 6. In this example,
the empty workspace was named migration_project.

Before you build the project, you must update the JAR files in the migration_project/
<APPLICATION_DIR>/EAR_content/APP-INF/lib directory. To do this:

Navigate to the directory and remove the following JAR files:

+ MetaSolvSolutionSchemas.jar
+ MetaSolvSolutionUtil.jar

In the same directory, verify that the following JAR file is present. If the file is not present,
copy it from the mss_integration.ear file to the directory.

+ MetaSolvSolutionUtility.jar
Successfully build the project in WebLogic Workshop 10.3.1.
Run the JPD to test the migrated application.

After successfully migrating and testing the test project, perform the migration on on all
existing XML API projects. To do this, repeat steps 13 through 20 for each existing XML
API project. (For step 16, select an existing XML API project instead of selecting the test
project.)

After successfully migrating and testing all existing XML API proejcts, reselect the XML
Schema Validator and XML Validator check boxes that you deselected in steps 10 and
11.

78

MetaSolv Solution XML API Developer’s Reference

Post Development Tasks

Updating the production database

During development, the MetaSolv Solution XML API application requires the creation of a
number of tables within the database used for WebLogic Integration conversation state
tracking. The related database is defined within the WebLogic data-source named
bpmArchDataSource. This data-source is configured during creation of the WebLogic domain
using the Configuration wizard. To move the application into a production mode, you must
recreate the tables in the production database.

To create the production database tables, you must complete the following tasks:
1. Create an SQL script to create tables in the production Oracle database.

2. Run the SQL script against the production database to add the tables.

Creating the SQL script
The following shell scripts tableTool.sh can be used to generate the Integration state tables:
Windows: tableTool.bat
UNIX: tableTool.sh
Prerequisites
You must have Oracle WebLogic.
To create the SQL script:
1. Copy the following files to a directory on the server:

& ManifestTableGenerationTemplate.xsl
¢ ManifestTableRemoval Template.xsl
¢ tableTool.class

¢ tableTool.sh

2. To generate the Integration State Tables SQL scripts, execute the tableTool.sh script with
the following arguments:

JtableTool.sh [JAVA_HOME] [mss_integration.ear] [createTable | dropTable]

Post Development Tasks 79

Updating the production database

Arguments:

[JAVA_HOME] is the location of the JDK.
For example: /opt/bea/jdk160 05

[mss_integration.ear] is the location of the mss_integration.ear.
For example: /opt/bea/user_projects/domains/paetec/lib/mss_integration.ear

[createTable | dropTable] If createTable is specified, the SQL script
tableGenerationTemplate.sql is generated. The SQL script can be used to create the
Integration state tables.

If dropTable is specified, the SQL script tableRemovalTemplate.sqgl is generated. This
SQL script can be used to drop the Integration state tables.

Example: The following example shows the command to generate a create table SQL
script for the Integration state tables:

JtableTool.sh /opt/bea/jdk160_05 /opt/bea/user_projects/domains/newtel/lib/
mss_integration.ear createTable

Example: The following example shows the command to generate the drop table SQL
script for the Integration state tables:

JtableTool.sh /opt/bea/jdk160_05 /opt/bea/user_projects/domains/newtel/lib/
mss_integration.ear dropTable

Running the SQL script

The SQL file is designed for configuring an Oracle database on a UNIX or Windows platform.
The SQL syntax may vary slightly by database vendor. Modifications to the syntax of the
commands may be required for successful creation of the tables. Some tables may already be
present.

If some commands do not execute due to pre-existence of the table, you may ignore the error.
A number of the tables within the script are common tables required by integration
applications and may already be present on your system.

Note that the SQL file to drop tables is provided for your convenience.

The Java Naming and Directory Interface (JNDI) name must be exactly as shown. The names
are case sensitive. Names must include the periods (.) and underscores (_) as shown.

To run the SQL script:
1. Connect to the WebLogic Integration database as a user having create table privileges.
2. Runthe SQL file.

80

MetaSolv Solution XML API Developer’s Reference

Setting up gateway events

Setting up gateway events

In addition to the configuration required to make the MetaSolv Solution adapter functional at
installation, MetaSolv Solution must be configured to receive data and return data.

The Integration server continuously checks the MetaSolv Solution database for events that are
ready to be sent to an external application. The Integration server also monitors the external

application for updates to the status of a gateway event. When an external application sends a
status update, the Integration server records the new status in the MetaSolv Solution database.

The following sections describe how to set up gateway events for communication between
MetaSolv Solution and the adapter.

Creating a gateway event

Gateway events are set up in the MetaSolv Solution user interface. Complete information on
how to create a gateway event is located in MetaSolv Solution online Help.

To access the MetaSolv Solution online Help for gateway events:
1. On the main toolbar, click Work Management.

2. On the Work Management toolbar, click Gateway.

3. Press F1 for Help.

The Help window that appears is specifically for the Gateway window. You will find a number
of links on this window that explain gateway events and how to create them. The basic steps
for creating a gateway event are outlined below. Each step is described in detail in the online
Help.

Basic steps for creating a gateway event:
1. Create a new gateway event.

For example xxx_integration_order_event. This is done on the Gateway window in
MetaSolv Solution. MetaSolv Solution creates a gatewayEvent and assigns an eventlD.

2. Add a binding to the gateway.

Set the Binding Type to IOR and provide the location path to the NameService.ior file.
The path should be similar to the following examples:

Windows
c:\MetasolV\Appserver\lOR\NameService.ior
UNIX
Metasolv/Appserver/IOR/NameService.ior

The Service Name should be the same as the name of the WebLogic server that will
receive events tied to the gateway.

Post Development Tasks 81

Setting up gateway events

3. Associate the gateway event with a task on the desired request.

Configuring the gateway.ini file

You must make sure the Integration server is configured in the gateway.ini file. This is a
configuration file for MetaSolv Solution and it is located on the machine running the
MetaSolv Solution application server. The file can be found in the \appserver\gateway
directory.

Use an ASCII editor to open the gateway.ini file. Make sure the INTEGRATIONSERVER
line located in the ThreadProcs section is uncommented. If INTEGRATIONSERVER is
commented, uncomment it and save the changes.

The following sample shows an uncommented INTEGRATIONSERVER line (in bold

typeface).

[ThreadProcs]

INTEGRAT IONSERVER=com.mslv. integration. integrationServer .S3Startup

EVENTPROC=MetaSolv.eventServer.S3Startup

EVENT2PROC=MetaSolv.event2Server .Event2ServerStartup

SYSTEMTASKSERVERPROC=com.mslv.core.api.internal .WM.systemTaskServer.
SystemTaskServer

SIGNALSERVERPROC=com.metasolv.system.StartServer INTERNET_SIGNAL_SER
VER=MetaSolv.CORBA_WDIINTERNETSERVICES .WDIRoot ,MetaSolv.Sig

nalServer WDl InternetSignalServerRootimpl

82 MetaSolv Solution XML API Developer’s Reference

Troubleshooting

This chapter provides the information on troubleshooting servers, JDBC connections and error
messages.

JRE update failure

Problem: In a Windows environment, a JRE update failure occurs during installation when
multiple servers share the same WebLogic_Home directory, where WebLogic_Home is the
directory in which the WebLogic server is installed.

Cause: Other servers are running and using the files needed for installation.

Solution: Shut down the servers and jorbd processes (java) and rerun the installation program
on the server where the failure occurred, then restart all servers.

DEBUG_PORT

Problem: The default for this port is the value 8453 and currently it cannot be changed. This
occurs only in development mode.

Solution: Currently none.

Testing JDBC connections

Generally, you should leave the JDBC connections settings on their default values. However,
if you experience connection issues, there are some advanced options you can set to allow you
to test your JDBC connections. To access these advanced options, do the following:

1. Open the WebLogic Server Administration Console by entering the following in your
internet browser:

http://host_admin:port/console

where:

host_admin is the name of the administration server
port is the administration server port number

2. When the Login window appears for either console, enter your user name and password
and click Login.

Troubleshooting 83

3. On the home page, expand Domain Configurations, then Services, then JDBC, and then
click the Data Sources link.

The Summary of JDBC Data Sources page displays.

4. In the Data Sources table, under the Name column, click the link that represents the
applicable JDBC data source.

The Settings page for the specific JDBC data source you selected displays.
Click the Configuration tab.
Click the Connection Pool tab.

Scroll down, and click Advanced to display the advanced options.

© N o o

Use these options to test connections, change timeouts, and so on.

g These options can have an impact on performance. After you have finished testing your
connections, set these options back to their default values to maintain a higher
performance level.

For more information about these advanced options, refer to the Oracle WebLogic
documentation at:

http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html

Firewall closes idle connections

If you have configured a firewall between the database and WebLogic Server, and this firewall
closes idle connections after a certain amount of time, the JDBC pool refresh functionality can
be used to ensure that connections from the pool are not closed by the firewall. A common
error message thrown after such a closed connection is used follows:

Java.sql .SQLException: ORA-03113: end-of-file on communication channel
at weblogic.db.oci.OciCursor.getCDAException(OciCursor.java:240)

at weblogic.jdbc.oci.Statement.executeQuery(Statement. java:916)

at ...

This error occurs because the socket connection is considered okay from both the WebLogic
Server and the database side. So both may try to write into this socket connection and fail,
because it has been closed by the firewall without notification or error message to the
participating parties. Please use the refresh functionality to ensure that the connections are not
idle long enough for the firewall to close them.

Configuring refresh functionality can be done by setting the RefreshMinutes property so
that connections are tested at least one time during the idle period. To enable the refresh
functionality, TestTableName property also has to be set. For more information, see:

http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html

84 MetaSolv Solution XML API Developer’s Reference

However, every JMS server takes one connection from the JDBC pool if a JDBC store is
defined. This connection is considered as reserved by the pool, so that the refresh functionality
will not test and refresh those connections. A typical error message would be:

JMSServer "myJMSServer", store failure while writing message for queue myQueue,
java.io.lOException

This kind of situation can be solved by either one of the following options:

& Send at least one dummy JMS message during the idle period, so that the firewall will not
close the connection

¢ Disable the connection closure by the firewall

& Define a separate JDBC pool that will be used as JDBC store for JMS servers and use
weblogic.Admin RESET_POOL to reopen the connections at least one time during the
idle period

This problem has been addressed in later WebLogic Server versions (WLS 6.1 SP7, WLS 7.0
SP3, and WLS 8.1 SP1), so that if JIMS is idle, the database is pinged every 5 minutes to keep
the connection fresh and prevent the firewall from closing these connections

Table errors

If you are getting table or view errors after deploying to production, read the following
sections to make sure you have properly deployed your application.

¢ Development mode and production mode

When you are developing, deploying and testing an application with WebLogic Workshop,
the instance of WebLogic Server you are deploying to runs by default in development
mode. In development mode, WebLogic Server behaves in ways that make it easier to
iteratively develop and test an application: it automatically deploys the current application
in an exploded format, server resources such as database tables and JMS queues necessary
for the application to run are automatically created, and so on.

When the development cycle is complete, and the application is ready for use, you deploy
it to an instance (or instances) of WebLogic Server running in production mode. In
production mode applications are not automatically deployed and the server resources
necessary for running an application are not automatically generated.

& Manual Creation of Server Resources

When deploying EAR files to a production server, a certain amount of manual resource
creation is necessary. When an application is built in an EAR file, a wlw-manifest.xml file
is produced and placed in the application's META-INF directory. This file lists the JMS

Troubleshooting 85

gueues and database tables that need to be manually created on the target WebLogic
Server for the application to run properly.

g When you are developing and testing an application with WebLogic Workshop, the
creation of the necessary JMS queues and datatables on WebLogic Server takes place
automatically on demand.

Required database tables are indicated by a <con:conversation-state-table /> tag. These
tables are used by web services to store conversational state. For each occurrence of the
<con:conversation-state-table /> tag in the wiw-manifest.xml file, you must create a
corresponding data table on WebLogic Server.

Required JMS queues are indicated by pairs of <con:async-request-queue> and
<con:async-request-error-queue> tags. For each occurrence of these tags in the wlw-
manifest.xml file, you must create a corresponding JMS queue on WebLogic Server and
you must associate the members of the pair by referencing the <con:async-request-error-
queue> in the ErrorDestination attribute of the <con:async-request-queue>.

Optionally, you may want to enforce role restrictions on any controls that receive external
callbacks. Controls that can receive external callbacks are indicated within a
<con:external-callbacks/> tag in the wlw-manifest.xml file. Since the compilation
process turns control files into individual methods on an EJB, you enforce the role
restrictions on these post-compilation EJB methods.

MetaSolv Solution adapter error message

Problem: The MetaSolv Solution adapter returns the following message to the client during a
XML API invocation when the MetaSolv Solution application server is down:

java.lang.Exception: Error connecting to Metasolv Solution Server

Below is a sample response.

<ns:clientResponse xmlns:ns="http://www.openuri.org/">

<inv:createEntityByValueException xmlns:inv="http://www._.metasolv.com/MIP
InventoryManagementAPI"">

<inv:createException>

<com:message xmlns:com="http://java.sun.com/products/oss/xml/Common'>
jJava.lang.Exception: Error connecting to Metasolv Solution Server

</com:message>

</inv:createException>

</inv:createEntityByValueException>

</ns:clientResponse>

Solution: If you receive this error, restart the MetaSolv Solution application server, then the
Integration server.

86 MetaSolv Solution XML API Developer’s Reference

XQuery transformation errors

Problem: XQuery transformation error:
FORGO0005: expected exactly one item, got 0 items, passes null as the input to the xquery.

Solution: This scenario is internally handled in WebLogic Server 8.1. To resolve this issue in
WebLogic Server 10.3.1, specify the input value as optional.

Problem: XQuery transformation error:

Error converting Xquery parameter to Java parameter "convertStringTolnt" in external
function “String."

Solution: This scenario is internally handled in WebLogic Server 8.1. To resolve this issue in
WebLogic Server 10.3.1, you must do typecasting.

Java Process Definition (JPD) issues

Problem: While executing the customized JPDs, the output contains different namespaces in
the result data.

Solution: Use the following factory.parse method to the output data:

this.orderResponse =
com.metasolv.mip.orderManagementAPI.CreateOrderByValueResponseDocument.Factory.p
arse(this.orderResponse.toString());

Problem: After you build a JPD and deploy it to the server on WebLogic Workshop on a
Linux machine, the server crashes displaying any of the following SIGSEGV errors:

An unexpected error has been detected by Java Runtime Environment:

SIGSEGV (0xb) at pc=0x062565bc, pid=5420, tid=2243156880

Java VM: Java HotSpot(TM) Server VM (10.0-b19 mixed mode linux-x86)
Problematic frame:

#V [libjvm.so+0x2565bc]

If you would like to submit a bug report, please visit:

http://java.sun.com/webapps/bugreport/crash.jsp

The crash happened outside the Java Virtual Machine in native code.

See problematic frame for where to report the bug.

Solution: Add the following to the workshop.ini file.

-XX:CompileCommand=exclude,org/eclipse/core/internal/dtree/
DataTreeNode,forwardDeltaWith

Troubleshooting 87

WebLogic Workshop issues on Linux

Problem: By default the WLI installer installs both the Sun and JRockit JDKs. When
configuring workshop, JRockit is selected automatically.

Solution: Update the workshop.ini file to point to a Sun JRE.

Using XML APIs on Cluster Environment

Problem: You cannot run the XML APIs through Test SOAP (HTTP) in a cluster
environment. The XML APIs work fine only in Production mode in a Cluster environment.

Solution: See the following Web page for more information:

https://support.us.oracle.com/oip/faces/secure/km/
DocumentDisplay.jspx?id=1150266.1&h=Y

Sample API errors

Problem: When running the Sample APIs, you receive the following error:
“com.bea.wli.knex.runtime.jcx.dispatcher.JcxDispClass cannot be cast to
com.bea.wli.knex.runtime.jws.dispatcher.JwsDispClass”

Solution: Ensure that you have applied the patches mentioned in the 6.2.1 Installation guide.

JMS issue

Problem: After you migrate from WebLogic Server 8.1 to 10.3.1, you cannot use the JMS
defined in WebLogic Server 8.1 to pass messages from one queue to another.

Solution: Define WLI JMS in WebLogic Server 10.3.1.

88

MetaSolv Solution XML API Developer’s Reference

https://support.us.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1150266.1&h=Y
https://support.us.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1150266.1&h=Y
https://support.us.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1150266.1&h=Y

A

Appendix A: XML API Sample Code

The MetaSolv Solution installation provides a sample application, mss_samples, as a reference
and guideline for developing Workshop applications to interface with MetaSolv Solution
XML APIs. If you are a developer setting up a workstation to do integration development, this
application is designed to help you understand and work with the XML APIs.

Each sample is a test of a method included in the XML APIs. The sample code is placed in the
following directory names: customer, events, order, and inventory so that you can quickly find
the method you want.

The samples demonstrate the following information:

L 2

* 6 o o

Initialization

Error handling
Asynchronous interaction
Http transmission

JMS transmission

Where to find the sample files

The sample application is provided in the jar file mss_xml_apiR#_b#.jar

where:

R# is the release version

b# is the build version

For example: mss_xml_api_R603_b185.jar

The file contains the following entries:

L 2

*

mss_samples.jar—This file contains the code, libraries and other files required for
WebLogic Workshop-based development for the mss_samples application.

mss_samples.ear—This is the representation of an ear file that results from a successful
build of the application.

ReleaseNotes.doc—This contains any release specific notes, including enhancements and
fixes.

XML API Sample Code 89

Setting up the sample code

During installation, the jar file containing the sample code is stored on the application server in
the following location:

MSLV_Home/server/appserver/samples

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed
server is the name of the WebL ogic server

You can extract the contents of the jar file and place it in any location. The following
procedure shows how to set up a sample application from the samples directory in a Windows
environment.

Setting up the sample code

To set up the XML API sample code on a Windows workstation:
1. Extract the contents of mss_samples.jar file into your Eclipse workspace directory.

The directory can be an existing one or you can create a new directory. For example:
WebLogic_Home\luser_projects\workspaces\mss_samples.

2. Open the Workshop IDE and select the workspace that contains the extracted
mss_samples.jar file.

3. Add a server to the provided project.To do this, follow the detailed instructions in
“Creating a new server in Workshop”, which are breifly outlined here:

a. Select File, then New, then Other.
b. Inthe Wizards field, enter server.

c. Select Server and click Next.

d. By default, Oracle WebLogic Server v10.3 is selected. Click Next.

e. Oracle recommends keeping the server and the domain on the same machine in a
development environment, so for Server Type choose Local.

f. In Domain Directory, click Browse to navigate to the following directory:
C:/beal03mpl/user_projects/domains/test/base_domain
Click Next.
Copy the respective projects from Available projects to Configured Projects.
i. Open the Servers view to see your cofigured server.

4. In the Package Explorer view, select the highest level available, right-click, and select
Build Application.

90

MetaSolv Solution XML API Developer’s Reference

Upgrading sample files

5.

This process can take from 15 to 45 minutes, depending on the size of the machine you are
building the application on. When the build process is finished, a message appears in the
Build tab indicating the build was successful.

When the build is complete, restart the application server.

Execute the workflows or browse through the workflows to see how they are constructed.

Upgrading sample files

When you move from one release to another, you must also upgrade the sample file.

To upgrade a sample file:

1.

4
5.
6
7

Upgrade the MetaSolv Solution core application.
See MetaSolv Solution Installation Guide XML API Option for instructions.
Log on to the WebLogic Server Administration Console.

On the Home page, under Domain Configurations, under Your Deployed Resources, click
Deployments.

The Summary of Deployments page displays.

Scroll down to see the list of deployments in the Deployments table.
Select the check box to the left of the mss_samples deployment.
Click Delete.

Repeat the steps in the previous procedure to add the new sample deployment.

Viewing the samples in Workshop

To view the samples in Workshop:

1.
2.
3.

In the Navigator view, locate the mss_samples directory.
Navigate to the src/com/metasolv/api/workflow directory.

Double-click a .java file under one of the following workflow subdirectories: customer,
events, inventory, order.

The workflow appears on the Workshop canvas.

XML API Sample Code 91

Composite sample

Composite

sample

A composite order is also included in the samples. The composite order combines multiple
methods to get a desired result. The following figure shows where in the directory structure the
composite order sample is located and how the workflow looks displayed in Design View.

[# (] SampleSchemas
= Modules

[51 (] Libraries
i Security Roles

-

EE

ik

{ZL] =

importCustomer Account

@ ©

addCustAccikey ToOrderRequest

| | Application " Files x Iﬁ CreateCompositOrderTest. jpd - {Samplelntegrations Hoomimet asobelaplibestiworkflowl b3
mgs_samples e] -
= /23 SampleIntegrations CreateCompositOrder
= 2 com
=2y metasoh 1
B 23 api .
[= 24 test E “f_) “
& [conwerter Cliert Request
=28 workFlow 1
=] = = L
4% CreateCompositOrderTest.jpd {2
42 CreateCompositOrder TestPContr OniException
48 CreateCompositCrder TestPCon
(I WEB-INF
B 5] Samples E E

extractError

l;l,é) =

Error Response

[00 ~ |

|| [Design view [Source View

92 MetaSolv Solution XML API Developer’s Reference

B

Appendix B: Navigating The XSD

The information in this appendix describes how to navigate through the Request and Response
structures defined in the xsd. The Request and Response structures defined in the xsd are used
by the control methods as input and output parameters. Several examples will show screen
shots of the xsd in various states of expansion. You can view the xsd in such a manner by
using a tool such as XMLSpy.

XMLSpy offers several ways to view xml. You may be used to a more traditional view of xml,
such as the text view shown below. However, this can become very difficult to read when
dealing with large structures because typically elements within the structure reference other
structures, which you then have scroll around to locate. Therefore, these examples show how
to view the xml using the "Schema/WSDL Design View", which allows you to the view top
level structures and then expand and collapse them as needed. Viewing the xml structure in
this manner automatically pulls in the referenced structures, so there is no need to scroll
around to locate them.

=element name="update Customer AccountByYalueRequest"=
=annotation=
=appinfo=ietaSoly Customer Management=/appinfo=
=documentation=Crestes a nevw customer account or modifies an existing customer account,
Response: updateCustomerdccourtByalueResponse.
=fdocumentation=
=fannotation=
=complexTypes
=EEHUENCES
=element ref="metazolv-cmme: value"=
=lzequences=
=fcomplexTypes
=felemert:=
=glement name="update Customer AccountByY slueResponse"s
=annotation=
=appinfo=MetaSoly Customer Management=/appinfo=
=sdocumentation=Returns the customer account key corresponding to & customer crested or updated in the system.
Response: Customer account key.
=fdocumentation=
=fannotation=
=complexTypes
= EEHUENCES
=element ref="metasol-cmmekey't=
=lzeguences
aicomplexTypes
=lelement=

Before going through the examples, note that the following two screen shots apply to all
examples. The examples will explain how to navigate through an xml structure by expanding

Navigating The XSD 93

the structure as you read it. If you wish to collapse the structures, you can collapse an
individual structure by clicking on the "-" as shown below.

1erAccountValueChoice

| metasolv-ermme

lme_ﬁisulv—trhm&:metaSoluCue‘lo.. -

t Declarations in Crder to
R based manipulations,

dlabal
sirnplify

Or, you can collapse the entire structure by clicking on the collapse button as shown below.
This button is only visible in the upper left corner, so you must scroll all the way up and all the
way to the left to see it.

e
(@ metasolv-cmme:MetaSolvCustomerAccountValue

94 MetaSolv Solution XML API Developer’s Reference

Example 1: importCustomerAccount

This example shows how a typical XML API import method works. The
importCustomerAccount method is defined in the CustomerManagement control class as
follows. You can see a full list of controls in Appendix B.

com.metasolv.mip.customerManagementAPIl .UpdateCustomerAccountByValueRes
ponseDocument
importCustomerAccount(com.metasolv.mip.customerManagementAPIl .UpdateCus
tomerAccountByValueRequestDocument request);

Request structure

The method defines one input parameter, “request”, which is defined as type
com.metasolv.mip.customerManagementAPI.UpdateCustomerAccountByValueRequestDocu
ment. This tells us that an xml structure named updateCustomerAccountByValueRequest is
defined in the CustomerManagementAPI.xsd. Therefore, we will examine the xml structure
updateCustomerAccountByValueRequest, which is the input to the control method
importCustomerAccount.

The following steps will walk you through viewing and understanding the
UpdateCustomerAccountByValueRequest structure.

1. Open the CustomerManagementAPI.xsd, using an xml tool such as XMLSpy.

2. If the xml file comes up as text view, change the view by selecting a different view as
shown below.

L DTDfSchema Schemadesign ®5L Authentic Convert View Browser Tools ‘Window Help

G #h O & |[7 B o RER® O
\ v
=element name="updateCustomer AccountByValueRequest"= ~—
=annotation=

=gppinfo=MetaSoly Customer Management=/appinfos
=documertation=Creates a newwy customer account or modifies
Response; updateCustomer AccourtByValueResponse.
=idocumentation:=
=fannatation:=
=complexTypes
=zEQUEnTEs
=element ref="metasalv-cmme: value"l=
=fseyuences
=fcomplexTypes
=felement=
<element name="updateCustomer AccourtByWalueResponse'=
=annotation:
=appinfo=MetaSoly Customer Management=/appinfos=
=documentstion=Returns the customer account key corresponding to & customer created or updsted in the system.
Response: Customer account key.
=igocumentation:s
=fannatation=
=complexTypes
<zEgUEnCE:
<glement ref="metasolv-cmine key"f=
=fsEyUences
=fcomplexTypes
=lelemert=

existing customer account.

Request in text view

Navigating The XSD 95

3. The top-level structures are now clearly listed. Expand the

updateCustomerAccountByValueRequest structure by clicking on the expand button as

indicated below.

b |

Fierre Gauthier MetaZoly Customer Management AP1 April 2004
o AmICBECustomer Schema xsd
AmiMetaSoleCustomerdanagemertEntities xed
CdassilAmiCommonSchema.xsd

r¥miMetaSolCommonEntities xsd

Creates the customer account if does not exist or updates the o

nzhttp:djava sun.comiproductsiossmliCBE/Customer

iz bt ihesae metazaly commPiCustomerhanagementEntitie s
iz btk dava sun.comioroductshiosstmliC ommaon

iz it dheeeene metasoly comMIPMIPCommonEntities

ustomer account if it does exist. VWalue with or without a populate:

fl.l|1dateCustumerﬁccountBy\falueReques‘t

fannCrestes a newy customer account or modifies an existing cus

updateCustomerAccountByValueResponse
updateCustomerAccountByValueException
getCustomer AccountByKeyRequest
getCustomerAccountByKeyResponse
getCustomer AcnoumByKeyfxcepﬁon

deleteCustomerAccountBykeyRequest
deleteCustomerAccountByleyResponse

DeleteCustomerBiling Accourt changes CRO0253949

DeleteCustomerBiling Accourt End CROD253949

i Returns the customer account key corresponding to & custol
ann Returns an Error messace if the upda‘teCustomerAccourﬁEly'
ann: Retrieves the customer socourt information by using & suppl
arn Returns the customer accourt information corresponding to 1]
anr Returns an error message if the getCustomer AccourtByKey

ann: 0 o
ann: 0 o

4. You are now viewing the contents of the updateCustomerAccountByValueRequest

structure. Further expand the udpateCustom

erAccountByValueRequest structure by

clicking on the expand button as indicated below.

&l

96

MetaSolv Solution XML API Developer’s Reference

5. You are now viewing elements that define a data type. These elements will house the data
that comprise the customer account being imported. For example,
lastUpdateVersionNumber and subGraphld. The metaSolvCustomerAccountKey defines
another structure. Click the "+" to further expand the structure.

—LmetasoIv—cn1me:meta$ovau¥o.. |
Global El : J |

" accessCustomerlir

Ilindoo i |
Sccolnt wir
InfofGeneral tab

6. You are now viewing additional elements that define a data type, such as applicationDN,
type, and customerAccountPrimaryKey.

| metasolv-emme:MetaSolvCustomer AccountValus

feld in GULT Mot in GUI

Unbindriy ir 51T B

Navigating The XSD 97

7. Scroll down, and you can view field properties, such as Field in GUI, Window in GUI,
Field Description, Required or Optional, and Valid Values.

. 3l Rl
T the name ac it will
Appear on customer invoices.

Field in GLT Account Type

Window In GUL Custamer
Account windew - Account
InfofGeneral tab

ek Mg & Custormer
account is & parent account

| | | |
| | A hilling-account iz an | |
| | L

Mo ust astablish at
feazt ane billing sccaunt Far
each custarmar,

Required or Cptlonal i
Required

Walid Malues: Custorner
Billing

= extractCreationDate

Field inGUI: Mo field in
SUIL

98 MetaSolv Solution XML API Developer’s Reference

Response structure

The method defines it’s return as type
com.metasolv.mip.customerManagementAPI.UpdateCustomerAccountByValueResponseDoc
ument. This tells us that an xml structure named updateCustomerAccountByValueResponse is
defined in the CustomerManagementAPI.xsd. Therefore, we will examine the xml structure
updateCustomerAccountByValueResponse, which is what is returned by the control method
importCustomerAccount.

The following steps will walk you through viewing and understanding the
UpdateCustomerAccountByValueResponse structure.

1. Open the CustomerManagementAPI.xsd, using an xml tool such as XMLSpy.

2. If the xml file comes up as text view, change the view by selecting a different view as
shown below.

L DTDfschema Schemadesign x50 Authentic Conwert Wiew Browser Tools wWindow Help

4 0 & |07 7 28 BB L@E

=element name="updateCustomer AccourtBy WalueRequest"=
=annotation=
=appinfo=hetaZaly Customer Management=/appinfos
=documentation=Creates a nevw customer account or modifies an existing customer sccount.
Response: updateCustomer AccourtByyalueResponss.
=focumentation=
=fannotation=
=complexTypes
=SEQUENCES
=element ref="metasolv-cmme:valug'"t=
=fzeguences
=lcomplexTypes
=felement=
=element name="updateCustomer AccountByvYalueResponse"=
=annotation=
=appinfo=hetaSoly Customer Management=iappinfo=
=documentation=Returns the customer account key correspon
Response: Customer account key.
=fdocumentstions
=fannotation=
=complexTypes
<SEGUENCE: .
=element ref="metasolv-cmme:key"= Response In text view
=fzequences
=icomplexTypes
=felemert=

to & customer created or updated inthe system.

Navigating The XSD 99

3. The top-level structures are now clearly listed. Expand the

updateCustomerAccountByValueResponse structure by clicking on the expand button as
indicated below.

fad

Fierre Gauthier MetaZoly Customer Management AP &pril 2004

}{mICBECuétdmerSchema.xsd . riz:httpsijava sun.comifproduct sioss HmlCBECustomer
}{mlMetaSoIvCustomerManagémentEnt'rties.xsd iz tp ey .metasc-lv.cbmmdIPJ‘CustomerManagementEm'rties
fozsifdmlCommonSchems xsd riz:Http: dava sun.comfroduct sfoss mliCommon

| KmibetaSolyCommonEntities xad iz Http: eewewy metazoly . comMIPMIPCommonErtities

Creates the customer account if does not exist or updates the customer account if it does exist. Walue with or without & populate:
updateCustomerAccountByValueRequest

updateCustomerAccountByValueResponse
updateCustomerAccountByValueException
getCustomerAccountByKeyRequest

ann:Creates a nevy customer account or modifies an existing cus
farn Returns the customer accourt key corresponding to o custo)
ann Returns an error message if the updateCustomer AccountBy”
ann Retrieves the customer'accoui'd information by usi'ng a suppl
getCustomerAccountByKeyResponse anr Returns the customer account information corresponding to
getCustomerAccountByKeyException ann Returns an error message if the getCustomer AccountBykey
DeleteCustomer/Biling Account changes CROO253949

deleteCustomerAccountByKevRequest ann 0 o
deleteCustomerAccountByKeyRe sponse aninc0
DeleteCustomer/Biling Account End CRO0253349

4. You are now viewing the contents of the updateCustomerAccountByValueResponse
structure. Further expand the udpateCustomerAccountByValueResponse structure by
clicking on the expand button as indicated below.

=l

updateCustomerdccoumbByValu...[H ==

key

et creabed oropdated

’memsol\r-cmme:key =

100 MetaSolv Solution XML API Developer’s Reference

5. You are now viewing elements that define a data type. These elements will house the data
that is returned in the response regarding the customer account that was imported. For
example, applicationDN, type, and customerAccountPrimaryKey.

| metasolv-emme:MetaSolvCustomerAccountKeyChoice

W-cmime:key | = ,met_asolu-crnme:metaﬁotvﬁusto..

Glak: pank Declarations in Order ta
sirnp JERY based manipulstions,

Windowe i GUITE BIA

Field Cescnption: &

Faquired ar Spti

Walid Yalues: Mia

Navigating The XSD 101

Example 2: getCustomerAccountByKey

This example shows how a typical XML API export method works.The
getCustomerAccountByKey method is defined in the CustomerManagement control class as
follows. You can see a full list of controls in Appendix B.

com.metasolv.mip.customerManagementAPl .GetCustomerAccountByKeyResponse
Document
getCustomerAccountByKey(com.metasolv.mip.customerManagementAPIl .GetCust
omerAccountByKeyRequestDocument request);

Request structure

The method defines one input parameter, “request”, which is defined as type
com.metasolv.mip.customerManagementAPl.GetCustomerAccountByKeyRequestDocument.
This tells us that an xml structure named getCustomerAccountByKeyRequest is defined in the
CustomerManagementAPIl.xsd. Therefore, we will examine the xml structure
getCustomerAccountByKeyRequest, which is the input to the control method
getCustomerAccountByKey.

The following steps will walk you through viewing and understanding the
GetCustomerAccountByKeyRequest structure.

1. Open the CustomerManagementAPI.xsd, using an xml tool such as XMLSpy.

2. If the xml file comes up as text view, change the view by selecting a different view as
shown below.

L DTD{Schema Schemadesign 5L Authentic Conwert Miew Browser Tools indgw Help
=] 88 O #y (7Y 2 BRBEQE O
N

=glement name="getCustomer &ccountByKevRequest's
=annotation=
=appinfostetaSaoly Customer Manasemert=/appinfo=
=gocumentation=Retrieves the customer account informatio
Response: getCustomerAccountByKeyResponsesidocumentstion=
=fannotations=
=complexTypes
=ZeLEence= . .
=element ref="metasoly-cmme:key"f= Rec]uest In text view
=lgequence=
=hcomplexTypes
=felement=
=glement name="getCustomer &ccourtBykeyResponse">=
=annotation=
=appinfostetaSaoly Customer Managemert=/appinfo=
=documentation=Returngs the customer account information carresponding to the customer account key.
Response: Customer account informstion=/documentation=
=fannotations=
=complexTypes
=ZeLence=
=element ref="metasolv-cmme:valug"t=
=lgequence=
=lcomplexTypes
=lelement=

Y Lzing & supplied customer accaunt key.

102 MetaSolv Solution XML API Developer’s Reference

3. The top-level structures are now clearly listed. Expand the

getCustomerAccountByKeyRequest structure by clicking on the expand button as

indicated below.

®

Fierre Gauthier MetaSoly Customer Mansgement AP &pril 2004
oc ¥mICBECUstomerSchema xsd

I ¥mivetaSolyCustomerManagementErtities xad

s fogsimiCommonSchema xsd
XmivetaSolkyCommaonErtities xed

updateCustomerAccountByValueRequest
updateCustomerAccountByValueResponse
updateCustomer AccountByValueException

Crestes the customer account if doss not exizt o updates the customer account if it does exist. Value with or without 5 populste

getCustomer AccountByKeyRequest

getCustomerAccountByKeyResponse
getCustomerAccountByKevException

deleteCustomerAccountByKeyRequest
deleteCustomerAccountByKeyResponse

DeleteCustomerBilling Account changes CRO0253949

DelsteCustomer Billing Accourt End CRO0253349

i hittp: Mava sun.comfroduct slos slxmiCBE Customer

izt e metasoly comMPICustomertanagementEntities
iz http: fava sun.comipraduct 2ios slanlfComman

izt e metasoly comdiPmIPCommonEntities

Creates & nevwy customer account or modifies an existing cu
‘Returns the customer accourt key corresponding to-a custo
‘Returns an errar message if the updateCustomer AccourtBy
Retrieves the éustomer account information by using & supp
Returns the customer sccount informsation corresponding to
Returns an error message if the getCustomerAcoountBykey|

u}
o

4. You are now viewing the contents of the getCustomerAccountByKeyReqgeust structure.

Further expand the getCustomerAccountByKeyRequest structure by clicking on the

expand button as indicated below.

El

2 metasolv-cmme

Navigating The XSD

103

5. You are now viewing elements that define a data type. These elements will house the data
that is required to get the customer account. For example, applicationDN, type, and
customerAccountPrimaryKey.

|
Element Braclarationsin Ordar ta |
RQLIERY bated rranipulations, |

Field in GUL Mot in GUT |

Windows i GUT M |

Field Drescrptions #1& |
Required or Cptional; |
alid Walues: HiA |
e e et e e e e o e e

104 MetaSolv Solution XML API Developer’s Reference

Response structure

The method defines it’s return as type
com.metasolv.mip.customerManagementAPI.GetCustomerAccountByKeyResponseDocumen
t. This tells us that an xml structure named getCustomerAccountByKeyResponse is defined in
the CustomerManagementAPIl.xsd. Therefore, we will examine the xml structure
getCustomerAccountByKeyResponse, which is what is returned by the control method
getCustomerAccountByKey.

The following steps will walk you through viewing and understanding the
UpdateCustomerAccountByValueRequest structure.

1. Open the CustomerManagementAPI.xsd, using an xml tool such as XMLSpy.

2. If the xml file comes up as text view, change the view by selecting a different view as
shown below.

L DTDj5chema Schemadsesign ®SL Authentic Convert Miew Browser Tools dfindgw Help
= . #b &y 707l ERERE @O

=glement name="getCustomer AccountBykKeyReqguest"=
=annaotation=
=appinfo=mMetaSaly Customer Management=fappintos
=documentstion=Retrieves the customer account informstion by using & supplied customer account key.
Rezponse: getCustomer dccourtBykKeyResponse<idocumentation:=
=fannatation=
=COmplexTypes
SEELencE=
=glement ref="metazoly-cmme:key"f=
=lzeguences
=fcomplexTypes
=lelement=
=glement name="getCustomer AccountByKeyResponse'=
=annaotation=
=appinfo=mMetaSaly Customer Management=fappinfos
=documertstion=Returns the customer account information c
Rezponse; Customer account informstion=rdacumentation:=
=fannatation=
<COmplexTypes
SEeLencE= > .
<glement ref="matasoly-cmme valug"is Response in text view
=lzeguences=
=fcomplexTypes
=lelement=

esponding to the customer account key.

Navigating The XSD 105

3. The top-level structures are now clearly listed. Expand the
getCustomerAccountByKeyResponse structure by clicking on the expand button as
indicated below.

X

Pierre Gauthier MetaSoly Customer Management AP &pril 2004

i-'.u?:}(mICEECustomerSchema.xsd riz:hittpe dfava sun comiproductzfoss omlCBECustomer
SrmikdetaSalvCustomerdanagementEntities xsd bttty metazoly .comtiPiCustomerilanagementEntities
fozsjifmiCommaonSchems . xed kit Mava . sun.comiroductsfosstanl i Camman

coAmiMetaSolyCommonEntities xsd iz bt dtvenee metaz ol comMIPMIPCommonEntities
Creates the customer account if does not exist or updates the customer account if it does exist, Value with or without & populated
updateCustomerAccountByValueReque st ann Creates a newy customer account or modifies an existing cus

updateCustomerAccountByValueResponse
updateCustomerAccountByValueException
getCustomer AccountByKeyRequest

ann Returns the customer accourt key corresponding to a custol
Returnz an error message if the upda{eCustﬁmerAccoumBy'
Rettieves the customer account information by using a supgl
getCustomerAccountByKeyResponse nn RBeturns the customer account information corresponding to
getCustomer AccoutByKeyvException ann Returns an error message if the getCustomerAccountBy ey
DeleteCustomerBiling Accourt changes CRO0253949

deleteCustomerAccountByKeyRequest ann 0 u]
deleteCustomerAccountByKeyResponse ann. O u]
DeleteCustomerilling Accourt End CRUD253949

4. You are now viewing the contents of the getCustomerAccountByKeyResponse structure.
Further expand the getCustomerAccountByKeyResponse structure by clicking on the
expand button as indicated below.

El

getCustomerAccountByl{eyResp.E]—E—jﬂ—Lmetasolv-i:mme:vélue

106 MetaSolv Solution XML API Developer’s Reference

5. You are now viewing elements that define a data type. These elements will house the data
that is returned in the response regarding the customer account being exported. For
example, lastUpdateVersionNumber, subGraphld, and accessCustomerNr. The
metaSolvCustomerAccountKey defines another structure. Click the "+" to further expand
the structure.

er (s}
simplify KU ipulations,
~accessCustomertr

Fieldin GUL &CHA

Ao
InfefiGeneral t

Fizld L

standard o
a P
o o ol

6. You are now viewing additional elements that define a data type, such as applicationDN,
type, and customerAccountPrimaryKey.

| metasolv-cmme:MetaSolvCustomer AccountValue

Fmetésoh—cmme:meta%lvcus_to..

Global Elemeant Declara
simplify RGUERY basad m.

Navigating The XSD 107

7. Scroll down, and you can view field properties, such as Field in GUI, Window in GUI,
Field Description, Required or Optional, and Valid Values.

Appear on custamer jroices,

Field in GUI &ccount Type

Window In GUL Custarner
Account window - Account
InforGeneral tab

I | | [
| | est. 3, amer | |
| account is & parent account |

| A hilling-account is an |
| | P

arcount that arders products

Mo rnust astablizh at
least one billing sceaunt far
each custarner,

Fequired or Dptlonal
Reguired

alid Malues: Custonmer
Billing

= extractCreationDate

Field in-GUL: Mo field in
UL

108 MetaSolv Solution XML API Developer’s Reference

Example 3: createEntityByValueRequest

This example shows how a typical XML API method that defines choices of structures within
the Request and Response structures works.The createEntityByValueRequest method is
defined in the InventoryManagement control class as follows. You can see a full list of
controls in Appendix B.

com.metasolv.mip. inventoryManagementAPl .CreateEntityByValueResponseDoc
ument
createEntityByValueRequest(com.metasolv._mip.inventoryManagementAPl .Cre
ateEntityByValueRequestDocument request);

Request structure

The method defines one input parameter, “request”, which is defined as type
com.metasolv.mip.inventoryManagementAPI.CreateEntityByValueRequestDocument. This
tells us that an xml structure named createEntityByValueRequest is defined in the
InventoryManagementAPI.xsd. Therefore, we will examine the xml structure
createEntityByValueRequest, which is the input to the control method
createEntityByValueRequest.

The following steps will walk you through viewing and understanding the
CreateEntityByValueRequest structure.

1. Open the InventoryManagementAPI.xsd, using an xml tool such as XMLSpy.

2. If the xml file comes up as text view, change the view by selecting a different view as
shown below.

L DTDjSchema Schema design %5L Authentic Conwert View Browser Tools ‘Window Help
a # 08 D70 CE EREEE
\S Z
al-m===============Cresie an Ertity Roct Flements==s=s=s===sssmss=p ———
=glement name="cresteErtityByvalueReguest"s
=annotation=
=documentstion=Crestes a PSR, End User, or Metark location object in the system and returns the key for the nevy object.
Currently, only PER location iz implemented.
Rezponse: cresteErtityByYalueResponse <idocumertation=
=fannotation=
=complexTypes=
=5eHUENCE: S .
=element ref="metasalv-imapi:cresteEntiy alus"’= RequeSt in text view
=lzequence:
=fcomplexTypes
=lelement=
=element name="createErtityByYalueResponse"s
=annotation:=
=documentstion=Returns the location key corresponding to & location created in the system. Currently, only PSR location is
implemerted.
Response: For & PSR service location, the End User Location Key and Address Key are returned =idocument stion=
=fannotation=
=complexTypes
=zequences
=element ref="metasolv-imapi. createErtityyalueResponze"l=
<ISEGUEnCE:
=foomplexTypes
=lelement=

Navigating The XSD 109

3. The top-level structures are now clearly listed. Expand the createEntityByValueRequest
structure by clicking on the expand button as indicated below.

Pt
Fierre Gauthier MetaZoly Inventory fanagement AP April 2004
||:--'_.}{mICEIELocationSchema .xéd) ' i hittpsdfava . sun.comioroductsiossimliCBE L acation
iz AmICBECoreSchems. Kad ris:bittg: Mava sun.comiroductsiossiam CBE Core
loc: KmiMetaSolvinyentoryManagementErtities xsd iz btk dtvewewe metazoly comtdiPAnvertoryianagementErtities

LossitmlCommonSchema xad iz hittp: dava sun .comiproductsiosstomliCammon
¥mitetaSaolvCommonErntities xad hittp: Shaewey metazaly commiPMIPC ommonErntities
====(regte an Ertity Root Elements:

ereateEntityByValueRequest iannCrestes & PSR, End User, or Metwoark location object in the
createEntityByValueResponse ann Returns the locstion key corresponding to & location crests
createEntityByValueException rin:Returns an error Mmessage if the createEnt'rtyElyValueRequ_

=lpdate an Entity Roaot Elements=:
updateEntityByValueRequest

:Changes the attributes of & locstion. Cnly the sttributes tha

updateEntityByValueResponse ann: Returns the locstion key corresponding to a location updst
updateEntityByValueException anrcReturns an error message if the updateErttyByValueReogu
getEntityByl ann: Retrieves the location information by using the supplied loc
getEntityBykKeyResponse ann Returns the location information corresponding to the locat;
getEntityByKeyException ann Returns an error message if the geiEnt'rtyElyKeyRequest el
= =ery an Entity= '
querylnventoryManagementRequest ann Retrieves the inventary for guery &larmErichmentalue, gu
queryinventoryManagementResponse ann: Returns the invertory information corresponding to the qug
querylnventoryManagementException anrcReturns an error message if the guerylnventor yidanagemes
=== ====A]| Supporting Complex Types and Elements===
reate an Fotity Syanodind Comnley Twies and Flement:

4. You are now viewing the contents of the createEntityByValueRegeust structure. Further
expand the createEntityByValueReqeust structure by clicking on the expand button as
indicated below.

El

110 MetaSolv Solution XML API Developer’s Reference

5. You are now viewing sub-structures that are a choice. For example, if you wish to create a
PSR Service Location you would populate the first choice of sub-structures with input
data; if you wish to create a Network Location you would populate the third choice of sub-
structures with input data. Do not include the remaining empty choice structures in the
request.

| metasolv-imapi:CreateEntityValueChoice

| —Ln1e1asolv-imapi:crea‘tePSRSe-r vic..

[et

ByValueRequest Jlmetasolw-imapi:l:m-.iteEllti‘t_\,ﬂnlalllne =] =

Used in createE

alugResponse,

Navigating The XSD 111

Response structure

The method defines it’s return as type
com.metasolv.mip.inventoryManagementAPI.CreateEntityByValueResponseDocument. This
tells us that an xml structure named createEntityByValueResponse is defined in the
InventoryManagementAPIl.xsd. Therefore, we will examine the xml structure
createEntityByValueResponse, which is what is returned by the control method
createEntityByValueRequest.

The following steps will walk you through viewing and understanding the
CreateEntityByValueRequest structure.

1. Open the InventoryManagementAPI.xsd, using an xml tool such as XMLSpy.

2. If the xml file comes up as text view, change the view by selecting a different view as
shown below.

L DT0fSchema Schemadesign =SL Authentic Conwvert View Browser Tools Window Help

oh & [y 2l | @@

- SN—

alo===: ====("reate an Entity Root Elements======
=element name="createEntityByValueReguest"=
=annotation:=
=documentation=Creates a PSR, End User, or Metwork location object in the system and returns the key for the new object.
Currently, only PSR locstion iz implemented.
Response: cresteEntityBy'valueResponse =idocumentstion=
=fannotation=
=complexTypes
=SEEGUENCES
=element ref="metasolv-imapi createEntity alue"s=
=fzequences
=fcomplexTypes
=felement=
=element name="createEntityBy*v/alueResponse"=
=annatation=
=gocumentation=Returns the location key correspon
implemented.
Response: For a PSR service location, the End User Location Key and &ddres:
=fannotation:=
=complexTypes
=EEQUENCES . .
=element ref="metasolv-imapi createEntity" alueResponse"i= Response in text view
=lseyUence:
=fomplexTypes
=lelemert=

0 & location created inthe system. Currently, anly PSR locstion iz

are returned. <idocumentation=

112

MetaSolv Solution XML API Developer’s Reference

3. The top-level structures are now clearly listed. Expand the createEntityByValueResponse
structure by clicking on the expand button as indicated below.

o

Pierre Gauthier MetaSaoly Invertary Mansgement 4P Lpril 2004
Iz XmICBEL ocationSchema xsd
oo KmICBECoreSchema. xed
loc XmietaSolvinventaoryianagementEntities xsd
cdogsiimiCommonschema xsd
loc: KimiMetaSolyCommonEntities xed

==========(rgate an Ertity Root Elements========
createEntityByValueRequest
createEntityByValueResponse
createEntityByValueException
====LIpciate an Entty Root Elements
u|1(IateEmﬁyBWalueRequest
updateEntityByValueResponse
updateEntityByValueException

getEntit_yByKeyRequesl
getEntityByKeyResponse
getEntityByKeyException

{u]

querylnventoryhanagementRequest
querylnventoryManagementResponse
queryinventoryManagemenmException

COmImEnt

reate an Fritty Sunoortine Comales Twee

iz http: dava sun.comfroductsiossimlCBE L ocation

i hittpedfava sun.comiproductsfozstemiCBE Core
h‘l‘tp:IIWWW.metasolv.c0mJ‘MIF;nnventoryManagememErﬂ'rties
riz:hittp: Mava sun.comioroductsiossmliC amman

Fitkg it metasoly comd PAIPC ommonEntitiss

rr: Crestes a PSR, End User, or Network location object in the
1 Returns the location key corresponding 1o a location crestq
1t Returns an errar message if the createEntityByvalueRegu
i Changes the attributes of a location, Only the attributes tha
1 Returns the location key corresponding to & location updst
rcReturns an error message if the updateEntityByWalueRegu

S Retrievgs the lacstion infarmstion by using the supplied loc
anr: Returns the locstion informstion corresponding to the locsd
ann Returns an error message if the getErtityBykeyReguest el

i Retrieves the inventory for query AlarmErichmentalue, cu
Returns the inventory information corresponding to the qug
tReturns an error message if the gueryinventoryhansgeme

a0 Flemert:

4. You are now viewing the contents of the createEntityByValueResponse structure. Further
expand the createEntityByValueResponse structure by clicking on the expand button as

indicated below.

El

Fatum: loc increateEntityalueRespons

createEntityByValueResponse [%]—E-—)E—L metasolyv-imapi:createEntityValu..[-]

Navigating The XSD

113

5. You are now viewing sub-structures that are a choice. For example, if you created a PSR
Service Location, the first choice of sub-structures will be populated in the response; if
you created a Network Location, the third choice of sub-structures will be populated in the
in the response. Only one of the sub-structures will be returned in response.

| metasolv-imapi:CreateEntibyResponseChoice

—Lmetasolv-imapi:l:reatePSRServil:..

—L_metasolv-imapi:createEmIU$erL...

| Irnplernanted.,

2 = = | T Used in createEntityalusResponse, Containz
fValueResponse ,metasolv-lmapl:t:remeEntlthIu.. = he walzes of an ey, Curvently;
(ETe i

v

]
= = —— = 5 2rnented, |
Used in createEntingalueRazponse; Coritains

aninwantory of 3l names-and numt
are of interest, Ay

114 MetaSolv Solution XML API Developer’s Reference

Appendix C: XML API Methods

The information provided for each method includes:

Control name

XML-defined Request name

XML-defined Response hame

Description of method

Input structure

Response structure

MetaSolv Solution Path > Page (where applicable)
Additional information (where applicable)

L ZBK 2ER 2R 2R JER JER 2N 4

XML APl Methods 115

Customer Management API

Customer Management API

The Customer Management APl is a collection of methods that provide the ability to import
and maintain customer accounts in the MetaSolv Solution database from an outside source,
without using the MetaSolv Solution GUI. The XmIMetaSolvCustomerManagementAPI.xsd
defines the following methods:

importCustomerAccount

updateCustomerAccountByValueRequest
updateCustomerAccountByValueResponse

Description This method either creates or
updates the specified customer
account based on the input data

Input Structure MetaSolvCustomerAccountValue | MetaSolvCustomerAcountValue
Choice

Response Structure | MetaSolvCustomerAccountKey

MetaSolv Solution | Order Management > Customer
Path > Page Account

Table 2: importCustomerAccount

Additional Information

This method provides the ability to import a new customer account, and to update an existing
customer account. When the customerNr and suppType are not populated, the code processes
the request as an import. When the customerNr and suppType are populated, the code
processes the request as an update. When importing a new customer, the customerNr and
suppType must not be populated. Also, importing a new customer requires additional data that
is not required for an update.

116

MetaSolv Solution XML API Developer’s Reference

Customer Management API

getCustomerAccountByKey
getCustomerAccountByKeyRequest
getCustomerAccountByKeyResponse

Description

This method returns existing
customer account information
based on the input customer
account key.

Input Structure

MetaSolvCustomerAccountKey
Choice

MetaSolvCustomerAccountKey

Response Structure

MetaSolvCustomerAccountValue
Choice

MetaSolvCustomerAccountValue

MetaSolv Solution
Path > Page

Order Management > Customer
Account

Table 3: getCustomerAccountByKey

XML API Methods

117

Customer Management API

deleteCustomerRequest

deleteCustomerAccountByKeyRequest
deleteCustomerAccountByKeyResposne

Description

This method deletes an
existing customer account
based on the input customer
account key.

Input Structure

MetaSolvCustomerAccountKey
Choice

MetaSolvCustomerAccountKey

Response Structure

status (String)

MetaSolv Solution
Path > Page

Order Management > Customer
Account

Table 4: deleteCustomerRequest

118 MetaSolv Solution XML API Developer’s Reference

Order Management API

Order Management API

The Order Management API is a collection of methods that provide the ability to import and
maintain orders in the MetaSolv Solution database from an outside source, without using the
MetaSolv Solution GUI. Orders include Internal Service Requests (ISRs) and Product Service
Requests (PSRs). Local Service Requests (LSRs) are handled by a separate API, Local Service
Request API. The XmIMetaSolvOrderManagementAPI1.xsd defines the following methods:

XML APl Methods 119

Order Management API

gueryOrderManagementRequest
gueryOrderManagementRequest
gueryOrderManagementResponse

Description

This method returns various order
information based on the choice of
input structure.

Input Structure

MetaSolvQueryValueChoice

ValidateOrderQueryValue,
GetTaskGWEventQueryValue,
GetServReqTasksQueryValue,
GetServiceRequestDLRsValue,
GetDLRInfosByOrderAndService
ItemldValue,
GetDLRInfosByServiceltemldin
ServiceValue,
GetServitemReferenceValue,
GetServitemsValue,
GetProductCatalog,or
GetOrderStatus

Response Structure

MetaSolvQueryResponseChoice

ValidateOrderQueryResponse,
GetTaskGWEventQueryResponse,
GetServReqTasksQueryResponse,
GetServiceRequestDLRsResponse,
GetDLRInfosByOrderAndServicelt
emldValue,
GetDLRInfosByServiceltemldin
ServiceValue,
GetServitemReferenceValue,
GetServitemsValue,
GetDLRInfosByOrderAndServicelt
emldResponse,
GetDLRInfosByServiceltemldinSer
viceResponse,
GetServiltemReferenceResponse,
GetServitemsResponse,
GetProductCatalogResponse, or
GetOrderStatusResponse

MetaSolv Solution
Path > Page

Table 5: queryOrderManagementRequest

120

MetaSolv Solution XML API Developer’s Reference

Order Management API

startOrderByKeyRequest
startOrderByKeyRequest
startOrderByKeyResponse

Description This method initiates the ‘Finish

Order’ processing for the input

order.
Input Structure MetaSolvOrderKeyChoice OrderKey
Response Structure | MetaSolvOrderKeyChoice OrderKey

MetaSolv Solution | Order Management > Product
Path > Page Service Request or

Order Management > Internal
Service Request

Table 6: startOrderByKeyRequest

Additional Information

This method needs to be called after a successful response from createOrderByValueRequest,
and before calling assignProvisionPlanProcedureRequest. It is the API equivalent of clicking
the GUI link for "Finish Order".

XML API Methods 121

Order Management API

updateOrderManagementRequest
updateOrderManagementRequest
updateOrderManagementResponse

Description

This method updates various order
information, based on the choice
input structure and the input data.

Input Structure

MetaSolvUpdateProcedureValueC
hoice

UpdateServicesInOrderProcedure
Value,
UpdateOrderTaskGWEventValue,
CompleteTaskProcedureValue,
UpdateOrderTaskEventProcedure
Value, or
ReopenTaskProcedureValue

Response Structure

MetaSolvUpdateProcedureValueR
esponseChoice

UpdateServicesIinOrderProcedure
Response,

UpdateOrderTask GWEvent
Response,
CompleteTaskProcedureResponse,
UpdateOrderTaskEventProcedure
Response, or
ReopenTaskProcedureResponse

MetaSolv Solution
Path > Page

Table 7: updateOrderManagementRequest

122

MetaSolv Solution XML API Developer’s Reference

Order Management API

getOrderByKeyRequest
getOrderByKeyRequest
getOrderByKeyResponse

Description This method returns order
information based on the input
order key.
Input Structure MetaSolvOrderKeyChoice OrderKey
Response Structure | MetaSolvOrderValueChoice MetaSolvPSROrderValue or

MetaSolvISROrderValue

MetaSolv Solution | Order Management > Product
Path > Page Service Request or

Order Management > Internal
Service Request

Table 8: getOrderByKeyRequest

createOrderByValueRequest
createOrderByValueRequest
createOrderByValueResponse

Description This method creates a new PSR or
ISR order based on the input data.

Input Structure MetaSolvOrderValueChoice MetaSolvPSROrderValue or
MetaSolvISROrderValue

Response Structure | MetaSolvOrderKeyChoice OrderKey

MetaSolv Solution | Order Management > Product
Path > Page Service Request or

Order Management > Internal
Service Request

Table 9: createOrderByValueRequest

Additional Information

This method will create a PSR order or an ISR order, depending on the choice of the input
structure. Both input structures define the same sub-structure, OrderHeaderType, which is
where the mutual required data is defined.

XML API Methods 123

Order Management API

assignProvisionPlanProcedureRequest
assignProvisionPlanProcedureRequest
assignProvisionPlanProcedureResponse

Description This method assigns a
provisioning plan to an order
based on the input data.

Input Structure AssignProvisionPlanProcedure ProvisionPlanValue
Value
Response Structure | MetaSolvOrderKeyChoice OrderKey

MetaSolv Solution
Path > Page

Table 10: assignProvisionPlanProcedureRequest

getActivationDataByKeyRequest
getActivationDataByKeyRequest
getActivationDataByKeyResponse

Description This method returns activation
information based on the input
order key and service key.

Input Structures OrderKey

MetaSolvServiceKey

Response Structure | MetaSolvServiceActivationType

MetaSolv Solution
Path > Page

Table 11: getActivationDataByKeyRequest

124 MetaSolv Solution XML API Developer’s Reference

Order Management API

transferTaskRequest
transferTaskRequest
transferTaskResponse
Description This method transfers tasks
between work queues based on the
input data.
Input Structure TransferTaskValueType orderKey, taskNumber,
currentWorkQueue,
newWorkQueue

Response Structure | OrderKey

MetaSolv Solution
Path > Page

Table 12: tranferTaskRequest

updateE911DataRequest
updateE911DataReqgest
updateE911DataResponse

Description This method updates E911 data
based upon the input data.

Input Structure E911DataType

Response Structure

MetaSolv Solution
Path > Page

Table 13: updateE911DataRequest

XML API Methods 125

Order Management API

getE911DataRequest

getE911DataRequest
getE911DataResponse

Description This method returns E911 data,
based upon the input data.

Input Structure

Response Structure |E911DataType

MetaSolv Solution
Path > Page

Table 14: getE911DataRequest

updateEstimationCompletedDateRequest
updateEstimatedCompletionDateRequest
updateEstimatedCompletionDateResponse

Description This method updates the estimated
completion dates of tasks based on
the input order and specified tasks
associated with the order.

Input Structure UpdateEstimatedCompletionDate
ValueType

Response Structure | status (String)

MetaSolv Solution
Path > Page

Table 15: updateEstimationCompletedDateRequest

126 MetaSolv Solution XML API Developer’s Reference

Order Management API

addTaskJeopardyRequest
addTaskJeopardyRequest
addTaskJeopardyResponse

Description This method adds task jeopardy
information based on the input
task data.

Input Structure AddTaskJeopardyRequestValue
Type

Response Structure | status (String)

MetaSolv Solution
Path > Page

Table 16: addTaskJeopardyRequest

getTaskDetailRequest

getTaskDetailRequest
getTaskDetailResponse

Description This method returns task detail
information based on the input
data.

Input Structure GetTaskDetailRequestValueType

Response Structure | GetTaskDetailResponseValue
Type

MetaSolv Solution
Path > Page

Table 17: getTaskDetailRequest

XML API Methods 127

Order Management API

TaskJeopardyRequest

getTaskJeopardyRequest
getTaskJeopardyResponse

Description This method returns task jeopardy
information based on the input
task data.

Input Structure GetTaskJeopardyRequestValue
Type

Response Structure | GetTaskJeopardyResponseValueT
ype

MetaSolv Solution

Path > Page

Table 18: TaskJeopardyRequest
getPSROrderByTN

getPSROrderByTNRequest
getPSROrderByTNResponse

Description This method returns PSR order
information based on the input
telephone number.

Input Structure GetPSROrderByTNRequestValue
Type

Response Structure | MetaSolvOrderValueChoice MetaSolvPSROrderValue or
MetaSolvISROrderValue

MetaSolv Solution
Path > Page

Table 19: getPSROrderByTN

128 MetaSolv Solution XML API Developer’s Reference

Order Management API

processSuppOrder

processSuppOrderRequest
processSuppOrderResponse

Description This method processes a
supplement order based on the
input data.

Input Structure ProcessSuppOrderRequestValue
Type

Response Structure | message (String)

MetaSolv Solution
Path > Page

Table 20: processSuppOrder

XML API Methods 129

Order Management API

getCNAMDataRequest
getCNAMDataRequest
getCNAMDataResponse

Description This method returns CNAM data
based upon the input data.

Input Structure

Response Structure | CNAMDataType

MetaSolv Solution
Path > Page

Table 21: getCNAMDataRequest

getLidbDataRequest

getLIDBDataRequest
getLIDBDataResponse

Description This method returns LIDB data
based on the input data.

Input Structure

Response Structure | LIDBDataType

MetaSolv Solution
Path > Page

Table 22: getLidbDataRequest

130 MetaSolv Solution XML API Developer’s Reference

Order Management API

updateCNAMDataRequest

updateCNAMDataRequest
updateCNAMEDataResponse

Description This method updates CNAM data
based on the input data.

Input Structure CNAMDataType

Response Structure | status (String)

MetaSolv Solution
Path > Page

Table 23: updateCNAMDataRequest

updateLidbDataRequest

updateLIDBDataRequest
updateLIDBDataResponse

Description This method updates LIDB data
based on the input data.

Input Structure LIDBDataType

Response Structure | status (String)

MetaSolv Solution
Path > Page

Table 24: updateLidbDataRequest

XML API Methods 131

Order Management API

reopenTaskRequest
reopenTaskRequest
reopenTaskResponse

Description This method reopens a task based
on the input data.

Input Structure ReopenTaskValueType

Response Structure | MetaSolvOrderValueChoice MetaSolvPSROrderValue or
MetaSolvISROrderValue

MetaSolv Solution
Path > Page

Table 25: reopenTaskRequest

createAttachmentRequest

createAttachmentRequest
createAttachmentResponse

Description This method creates an xml
document attachment that is
associated with a PSR based on
the input data.

Input Structure CreateAttacmentType

Response Structure | message (String)

MetaSolv Solution
Path > Page

Table 26: createAttachmentRequest

132 MetaSolv Solution XML API Developer’s Reference

Order Management API

createOrderRelationshipRequest
createOrderRelationshipRequest
createOrderRelationshipResponse

Description This method creates a parent/child
relationship based on the two
input orders.

Input Structures OrderKey (parent)
OrderKey (child)

Response Structure | message (String)

MetaSolv Solution | Service Request>Service Request
Path > Page Hierarchy

Table 27: createOrderRelationshipRequest

Additional Information

This method only supports the order relationship type of parent/child. This is important to note
because MetaSolv Solution supports several different relationship types, but this method only
supports the relationship type of parent/child.

XML API Methods 133

Order Management API

processBillingTelephoneNumber
billingTelephoneNumber
billingTelephoneNumberResponse

Description This method receives a structure to
be passed to process the number as
Billing Telephone Number.

Input Structures documentNumber (long)
servitemld(long)
BtnFunction-Enum(enum defined
in same xsd file, as a String with
value of 0 or 1)

nbrinvid(long)

Response Structure |documentNumber (integer)

MetaSolv Solution | Order Management > Product
Path > Page Service Request

Table 28: processBillingTelephoneNumber

134 MetaSolv Solution XML API Developer’s Reference

Inventory Management API

Inventory Management API

The Inventory Management API is a collection of methods that provide the ability to import
and maintain inventory in the MetaSolv Solution database from an outside source, without
using the MetaSolv Solution GUI. Inventory items include Locations (PSR Service Locations,
End User Locations, and Network Locations), Telephone Numbers, Physical Ports, and IP
Addresses. The XmIMetaSolvinventoryManagementAPI.xsd defines the following methods:

createEntityByValueRequest
createEntityByValueRequest
createEntityByValueResponse

Description

This method creates a new entity
based on the choice of input
structure.

Input Structure

CreateEntityValueChoice

CreatePSRServiceLocationValue,
CreateEndUserLocationValue,
CreateNetworkLocationValue, or
CreateNumberInventoryValue

Response Structure

CreateEntityResponseChoice

CreatePSRServiceLocation
Response,
CreateEndUserLocationResponse,
CreateNetworkLocationResponse,
or
CreateNumberInventoryResponse

MetaSolv Solution
Path > Page

Table 29: createEntityByValueRequest

XML API Methods

135

Inventory Management API

getServiceRequestDLRsValue
createEntityByValueRequest
createEntityByValueResponse

Description

Input Structure

Response Structure

MetaSolv Solution
Path > Page

Table 30: getServiceRequestDLRsValue

getEntityByKeyRequest
getEntityByValueRequest
getEntityByValueResponse

Description

This method returns various entity
information based on the choice of
input structure.

Input Structure

GetEntityByKeyValueChoice

GetPSRServicelLocationByKey,
GetEndUserLocationByKey,
GetNetworkLocationByKey,
GetDIrByKey

Response Structure

GetEntityByKeyResponseChoice

GetPSRServiceLocationResponse
GetEndUserLocationResponse,
GetNetworkLocationResponse,
GetDIrByKeyResponse

MetaSolv Solution
Path > Page

Table 31: getEntityByKeyRequest

136

MetaSolv Solution XML API Developer’s Reference

Inventory Management API

updateEntityByValueRequest
updateEntityByValueRequest
updateEntityByValueResponse

Description This method updates an existing
entity based on the choice of input
structure.
Input Structure UpdateEntityValueChoice UpdatePSRServicelLocationValue

or UpdatePreAssignTelephone
NumberValue

Response Structure |UpdateEntityResponseChoice UpdatePSRServicelLocation
Response or
UpdatePreAssignTelephone
NumberResponse

MetaSolv Solution
Path > Page

Table 32: updateEntityByValueRequest

XML API Methods 137

Inventory Management API

querylnventoryManagementRequest
guerylnventoryManagementRequest
guerylnventoryManagementResponse

Description

This method returns various
inventory management
information based on the choice of
input structure.

Input Structure

MetaSolvinventoryQueryValue
Choice

QueryAlarmEnrichmentValue,
QueryEquipmentCapacityValue,
QueryTelephoneNumber
InventoryValue,
QueryMSAGInventoryValue

Response Structure

MetaSolvinventoryQuery
ResponseChoice

QueryAlarmEnrichmentResponse,
QueryEquipmentCapacity
Response,

QueryTelephoneNumber
InventoryResponse,
QueryMSAGResponse

MetaSolv Solution

Path > Page

Table 33: querylnventoryManagementRequest
updateTNRequest

updateTNRequest

updateTNResponse

Description This method updates an existing

telephone number based on the
input data.

Input Structure

UpdateTNRequestValueType

Response Structure

UpdateTNResponseValue (int)

MetaSolv Solution
Path > Page

Table 34: updateTNRequest

138

MetaSolv Solution XML API Developer’s Reference

Inventory Management API

tnRecall

processTNRecallRequest
processTNRecallResponse

Description This method recalls a telephone
number based on the input data.

Input Structure tn (String)

Response Structure | ProcessTNRecallResponseValue
Type

MetaSolv Solution
Path > Page

Table 35: tnRecall

tnValidationRequest

processTNValidationRequest
processTNValidationResponse

Description This method validates the TN.

Input Structure tn (String)

Response Structure |ProcessTNValidationResponse
Value (String)

MetaSolv Solution
Path > Page

Table 36: tnValidationRequest

XML API Methods 139

Inventory Management API

auditTrailRecording
Request
Response

Description

Input Structure

Response Structure

MetaSolv Solution
Path > Page

Table 37: auditTrailRecording

getNetworkAreasByGeoAreaRequest
getNetworkAreasByGeoAreaRequest
getNetworkAreasByGeoAreaResponse

Description This method returns Network
Avrea information based on the
input Geographical Area.

Input Structure GeoAreaCriteria

Response Structure | NetworkArea

MetaSolv Solution
Path > Page

Table 38: getNetworkAreasByGeoAreaRequest

140 MetaSolv Solution XML API Developer’s Reference

Inventory Management API

getNetworkComponentsRequest
getNetworkComponentsRequest
getNetworkComponentsResponse

Description This method returns Network
Component information based on
the input data.

Input Structure getNetworkComponentsRequest
ValueType

Response Structure | NetworkComponent

MetaSolv Solution
Path > Page

Table 39: getNetworkComponentsRequest

getlpAddressesRequest

getlpAddressesRequest
getlpAddressesResponse

Description This method returns ip address
information based on the input
data.

Input Structure IpAddressCriteria

Response Structure | IpAddressesValue (sequence)

MetaSolv Solution
Path > Page

Table 40: getlpAddressesRequest

XML API Methods 141

Inventory Management API

createlnventoryAssociationRequest
createlnventoryAssociationRequest
createlnventoryAssociationResponse

Description This creates a relationship
between two inventory items
based on the input data.

Input Structure ImportlnventoryAssociation

Response Structure | status

MetaSolv Solution
Path > Page

Table 41: createlnventoryAssociationRequest

createNewlnventoryltemRequest

createNewlnventoryltemRequest
createNewlnventoryltemResponse

Description This method creates a new
inventory item based on the input
data.

Input Structure Inventoryltem

Response Structure | MetaSolvNumberlnventoryKey

MetaSolv Solution
Path > Page

Table 42: createNewlInventoryltemRequest

142 MetaSolv Solution XML API Developer’s Reference

Inventory Management API

gueryNetworkLocation

gueryNetworkLocationRequest
gueryNetworkLocationResponse

Description This method retrieves multiple
network locations from the MSS
database based on the input data.

Input Structure NetworkLocationQueryValue

Response Structure | NetworkLocationResultValue

MetaSolv Solution
Path > Page

Table 43: queryNetworkLocation

gueryEndUserLocation

gueryEndUserLocationRequest
gueryEndUserLocationResponse

Description This method retrieves multiple
end user locations from the MSS
database based on the input data.

Input Structure EndUserLocationQueryValue

Response Structure | EndUserLocationResultValue

MetaSolv Solution
Path > Page

Table 44: queryEndUserLocation

XML API Methods 143

Inventory Management API

getLocationRequest
getLocationRequest
getLocationResponse

Description This method retrieves a specific
location from the MSS database
based on the input data key.

Input Structure NetworkLocationKey

Response Structure | LocationValue

MetaSolv Solution
Path > Page

Table 45: getLocationRequest

deleteLocationRequest
deleteLocationByKey
deleteLocationResponse

Description This method deletes a specific
location from the MSS database
based on the input data key.

Input Structure NetworkLocationKey

Response Structure | NetworkLocationKey

MetaSolv Solution
Path > Page

Table 46: deleteLocationRequest

144 MetaSolv Solution XML API Developer’s Reference

Inventory Management API

updateLocationRequest
updateLocationRequest
updatelLocationResponse

Description This method updates a specific
location in the MSS database
based on the input data.

Input Structure LocationValue

Response Structure | NetworkLocationKey

MetaSolv Solution
Path > Page

Table 47: updateLocationRequest

createLocationRequest

createLocationRequest
createLocationResponse

Description This method creates a new
location in the MSS data base
based on the input data.

Input Structure LocationValue

Response Structure | NetworkLocationKey

MetaSolv Solution
Path > Page

Table 48: createLocationRequest

XML API Methods 145

Inventory Management API

getAvailablePhysicalPortsRequest

getAvailablePhysiclaPortsRequest
getAvailablePhysicalPortsResponse

Description This method returns a sequence of
available physical ports based on
the input data.

Input Structure getAvailablePhysicalPortsRequest
ValueType

Response Structure |PhysicalPort (sequence)

MetaSolv Solution
Path > Page

Table 49: getAvailablePhysicalPortsRequest

Additional Information

Note that this method is defined in a different control class than the rest of the methods defined
in this section. While the InventoryManagementAPI.xsd defines the structures for this method,
the InventoryManagement control class does not define the control. Rather, the control is
defined in the NetworkResourceManagement control class. The
NetworkResourceManagement will continue to grow in future releases, at which point a new
xsd will be created.

146

MetaSolv Solution XML API Developer’s Reference

Service Order Activation API

Service Order Activation API

The Service Order Activation APl is a collection of methods that provide the ability to activate
services, previously placed on orders, in the MetaSolv Solution database from an outside
source, without using the MetaSolv Solution GUI. The
XmlMetaSolvinventoryManagementAPI.xsd defines the following methods:

createSOAMessageRequest

createSOAMessageRequest
createSOAMessageResponse

Description This method creates a SOA
message based on the input data.

Input Structure SOATransactionType, OrderKey

Response Structure | SOATransactionKey

MetaSolv Solution
Path > Page

Table 50: createSOAMessageRequest

getSoaTnsForOrderRequest
getSOATNsForOrderRequest
getSOATNsForOrderResponse

Description This method returns SOA
telephone numbers based on the
input order.

Input Structure OrderKey

Response Structure | SOATelephoneNumberType
(sequence)

MetaSolv Solution
Path > Page

Table 51: getSoaTnsForOrderRequest

XML APl Methods 147

Service Order Activation API

getSoaDefaultsRequest
getSOADefaultsRequest
getSOADefaultsResponse

Description This method returns the SOA
defaults based on the input data.

Input Structure OrderKey,
SOATelephoneNumberType

Response Structure | SOADefaultsType

MetaSolv Solution
Path > Page

Table 52: getSoaDefaultsRequest

getSoalnformationRequest

getSOAInformationRequest
getSOAInformationResponse

Description This method returns SOA
information based on the input
data.

Input Structure OrderKey,

SOATelephoneNumberType

Response Structure | SOAInformationType

MetaSolv Solution
Path > Page

Table 53: getSoalnformationRequest

148 MetaSolv Solution XML API Developer’s Reference

Service Order Activation API

getSoaMessageToSendRequest
getSOAMessagesToSendRequest
getSOAMessagesToSendResponse

Description

This method returns SOA
messages to send based on the
input data.

Input Structure

OrderKey,
checkGatewayEventReactivated
(boolean)

Response Structure

SOATransactionType (sequence)

MetaSolv Solution
Path > Page

Table 54: getSoaMessagesToSendRequest

setTnSoaCompleteRequest

setTNSOACompleteRequest
setTNSOACompleteResponse

Description

This method sets SOA for the
telephone number to complete.

Input Structure

OrderKey,
SOATelephoneNumberType

Response Structure

successfulCompletion (boolean)

MetaSolv Solution
Path > Page

Table 55: setTnSoaCompleteRequest

XML API Methods 149

Service Order Activation API

150 MetaSolv Solution XML API Developer’s Reference

	Contents
	Preface
	Audience
	Related documentation
	Additional documentation resources

	Setting Up
	Technical requirements and installation instructions
	About the development database
	Recommended deployment configurations
	JMS messaging requirements

	Integration Overview
	About the MetaSolv Solution Integration and Portal Toolkit
	Controls
	WebLogic controls
	MetaSolv Solution controls

	MetaSolv Solution schema
	Oracle WebLogic 10.3.1
	Basic integration steps
	Special characters

	Developing An Integration Application
	Planning the application
	Accessing WebLogic Workshop
	Creating a new application in Workshop
	Creating a new server in Workshop
	Adding the MetaSolv Solution controls to Workshop
	Adding the MetaSolv Solution schemas to Workshop
	Creating data transformations
	Request transformation control
	Response transformation control

	Building the workflow
	Step 1: Creating the workflow process file
	Step 2. Adding controls to the Workshop Data Palette
	Step 3. Specifying how the request is invoked
	Step 4. Adding a group to the workflow
	Step 5. Adding the request transformation method
	Step 6. Adding the method to process the request
	Step 7. Adding the response transformation method
	Step 8. Setting up exception handling

	Testing the application in Workshop
	Creating a build
	Migrating To MetaSolv Solution 6.2.1

	Post Development Tasks
	Updating the production database
	Creating the SQL script
	Running the SQL script

	Setting up gateway events
	Creating a gateway event
	Configuring the gateway.ini file

	Troubleshooting
	Appendix A: XML API Sample Code
	Where to find the sample files
	Setting up the sample code
	Upgrading sample files
	Viewing the samples in Workshop
	Composite sample

	Appendix B: Navigating The XSD
	Example 1: importCustomerAccount
	Example 2: getCustomerAccountByKey
	Example 3: createEntityByValueRequest

	Appendix C: XML API Methods
	Customer Management API
	importCustomerAccount
	getCustomerAccountByKey
	deleteCustomerRequest

	Order Management API
	queryOrderManagementRequest
	startOrderByKeyRequest
	updateOrderManagementRequest
	getOrderByKeyRequest
	createOrderByValueRequest
	assignProvisionPlanProcedureRequest
	getActivationDataByKeyRequest
	transferTaskRequest
	updateE911DataRequest
	getE911DataRequest
	updateEstimationCompletedDateRequest
	addTaskJeopardyRequest
	getTaskDetailRequest
	TaskJeopardyRequest
	getPSROrderByTN
	processSuppOrder
	getCNAMDataRequest
	getLidbDataRequest
	updateCNAMDataRequest
	updateLidbDataRequest
	reopenTaskRequest
	createAttachmentRequest
	createOrderRelationshipRequest
	processBillingTelephoneNumber

	Inventory Management API
	createEntityByValueRequest
	getServiceRequestDLRsValue
	getEntityByKeyRequest
	updateEntityByValueRequest
	queryInventoryManagementRequest
	updateTNRequest
	tnRecall
	tnValidationRequest
	auditTrailRecording
	getNetworkAreasByGeoAreaRequest
	getNetworkComponentsRequest
	getIpAddressesRequest
	createInventoryAssociationRequest
	createNewInventoryItemRequest
	queryNetworkLocation
	queryEndUserLocation
	getLocationRequest
	deleteLocationRequest
	updateLocationRequest
	createLocationRequest
	getAvailablePhysicalPortsRequest

	Service Order Activation API
	createSOAMessageRequest
	getSoaTnsForOrderRequest
	getSoaDefaultsRequest
	getSoaInformationRequest
	getSoaMessageToSendRequest
	setTnSoaCompleteRequest

