
Start

Oracle® Documaker

Documaker Connector
Installation Guide
version 12.2.1

Part number: E41180-01

October 2013

Copyright © 2009, 2013, Oracle and/or its affiliates. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Notice

3

CONTENTS

11 Audience

11 Documentation Accessibility

12 Related Documents

12 Conventions

Chapter 1: Introduction

14 Overview

16 Compatibility

17 Planning

Chapter 2: Installing Documaker Connector

22 Software Requirements

23 Downloading the Software

24 Installing Documaker Connector

25 Using the Setup Wizard

28 Installing from the UNIX Command Line

30 Running the Installer with a Response File

32 Checking Your Installation

36 Using the Task Tray Controller

37 Downloading Patches

38 Removing Documaker Connector

Chapter 3: Configuring Documaker Connector

40 Overview

43 Configuring Documaker

50 Configuring Oracle WebCenter Content

53 Configuring Documaker Connector

54 Using the Properties File

Contents

4

57 General Connector Configuration Properties

58 Periodic Process Properties

60 General Source Configuration Properties

61 Documaker Source Configuration

66 Oracle WebCenter Content, Core Capabilities Destination
Configuration

67 Oracle WebCenter Content, Imaging Destination Configuration

68 Other Sources and Destinations

68 Sources

70 Destinations

Chapter 4: Running Documaker Connector

78 Overview

79 Understanding the Modes of Operation

80 Processing Data

81 Controlling a Connector Server Instance

82 Using a Script to Run Documaker Connector

Appendix A: Sample Applications and Files

86 Windows Service Application

88 Example XML Extract File

92 Example Trn_Fields INI Settings

93 Example TRNDFDFL.DFD File

99 Example RCBDFDFL.DFD File

100 Using DAL to Output to a Database Table

101 Example DFD File (AOR.DFD)

108 Example DAL Scripts

THIRD PARTY SOFTWARE NOTICES

This product includes software developed by Apache Software Foundation (http://www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution
under the Generic BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any
express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.

Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en
Informatique et en Automatique, Keio University). All Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecreststudios.com).

Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-
1999 Erwin Tratar. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN
RISK! THE AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY
CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE

Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer),
and others. (http://www.libpng.org)

The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all warranties, expressed
or implied, including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing
Authors and Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages,
which may result from the use of the PNG Reference Library, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS
LICENSORS SHALL NOT BELIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved

It also includes materials licensed under Apache 1.1 and the following XPP3 license

THIS SOFTWARE IS PROVIDED "AS IS'" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The
Ultimate Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.

Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavascripts/tree/version
0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH
REGARD TO IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In
no event shall University of Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever)
resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of this software.

Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"

Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

PANTONE (R) Colors displayed in the software application or in the user documentation may not match PANTONE-identified
standards. Consult current PANTONE Color Publications for accurate color. PANTONE(R) and other Pantone LLC trademarks
are the property of Pantone LLC. (C) Pantone LLC, 2011.

Pantone LLC is the copyright owner of color data and/or software which are licensed to Oracle to distribute for use only in
combination with Oracle Documaker. PANTONE Color Data and/or Software shall not be copied onto another disk or into
memory unless part of the execution of Oracle Documaker.

11

Preface

This document contains information necessary for the installation and configuration
of Oracle Documaker Connector.

AUDIENCE
This document is intended for users who want to install or administer Documaker
Connector. Experience installing Oracle Documaker and experience as a system
administrator is necessary.

In addition to this guide, implementation of Documaker Connector with the
Documaker document source requires familiarity with Oracle Documaker
configuration and Document Automation Language (DAL) scripting.

Familiarity with configuration of the content management system you choose is also
required. This guide is not a substitute for understanding those products and their
documentation. You must have the necessary skills in both Oracle Documaker and
your content management system to configure those products to work with the
Documaker Connector.

Once familiar with the material in this guide and other prerequisite background
information, an administrator should be able to plan and execute an implementation
of Documaker Connector and manage day-to-day operation.

DOCUMENTATION ACCESSIBILITY

Accessibility of Links to External Web Sites in
Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor
makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Preface

12

RELATED DOCUMENTS
For more information, refer to the following Oracle resources:

• The Oracle Documaker documentation set, specifically:

• Documaker Installation Guide

• Documaker Administration Guide

• DAL Reference

• The Oracle WebCenter Content Core Capabilities, previously known as the
Oracle Universal Content Management (UCM), documentation set, specifically:

• Oracle Universal Content Management Product Overview

• Getting Started with Content Server

• Oracle Universal Content Management Content Server Installation Guide
for (your specific platform)

• Managing Repository Content

CONVENTIONS
The following text conventions are used in this document:

Convention Description

bold Indicates information you enter.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands, URLs, code in examples, and text that appears on the
screen.

Note The screen shots and interface examples presented in this document may differ slightly
from the actual software you receive. Late-breaking software modifications and interim
patches may change the look of the interface, but should not detract from your ability to
use the software with this document.

13

Chapter 1

Introduction

Oracle Documaker Connector works with Oracle Documaker to archive Documaker
output documents into content management repositories, such as Oracle WebCenter
Content Core Capabilities, previously known as Oracle Universal Document
Manager (UCM).

Documaker Connector is also the technology underlying the Archiver function in
Documaker Enterprise Edition Document Factory. It is an extremely flexible and
adaptable utility. You can find out more about how to customize Documaker
Connector in the Documaker Connector Developer Guide.

This chapter provides an introduction to Documaker Connector and covers these
topics:

• Overview on page 14

• Compatibility on page 16

• Planning on page 17

Chapter 1 – Introduction

14

OVERVIEW

Documaker Connector works with Oracle Documaker or other sources of documents
to archive output documents into content management repositories:

Creating document sets with Oracle Documaker

Oracle Documaker is a document publishing solution which is driven by input
transactions to produce output document sets. Documaker combines input
transaction data and a repository of forms with a powerful rules engine and
composes custom documents based on the incoming transaction data.

Each transaction is a set of variable data field values and other form-selection
criteria. Oracle Documaker applies the variable data to choose forms, create
presentation graphics such as pie charts or bar graphs, and fill in fields on the forms,
optionally performing formatting and/or calculations on the data before using it as
text on the forms.

Because the output documents were often originally designed to be printed, the
output documents and the files containing them are sometimes called print streams.

The print streams are not only printed and delivered to the recipients, but are also
sent via various forms of electronic delivery such as email or downloaded via the
Internet. Once published, the documents also usually need to be retained in that form
for reference by customer service or other agents. Electronic filing in a content
management system is the job of the Documaker Connector, or in the Documaker
Enterprise Edition Document Factory the job of the Archiver component, using
Documaker Connector destinations.

Using Documaker Connector

When used with Documaker Connector and the Documaker source component,
Documaker’s DAL (Document Automation Language) scripting is used to place
each output document in a file system directory and insert a matching record
containing the variable data and indexing information, also called metadata, into a
database table.

Documaker Connector monitors the database table for new records and then
processes those records by sending the document and indexing data into a destination
document management system. You can run Documaker Connector continuously, as
a system service, or periodically, such as after a batch run of Documaker.

Oracle

Content

System
Management

Oracle Documaker

Documaker

Document Connector

Overview

15

You configure Documaker Connector with the connection information for the source
database table and the connection information for the document management
system. The columns of the database table and the corresponding configuration of
the content management metadata varies with the implementation. To configure
these items, you need knowledge of both Documaker and the content management
system administration. For instance, you must...

• Set up the database table columns to hold the metadata you want to use in your
document management system so it can be transferred by Documaker
Connector.

• Set up Documaker to fill in those columns for each document record it will insert
in the table, using Documaker DAL scripts.

• Create metadata fields in your content management system to receive the data
from Documaker Connector.

There are also performance and volume-related configuration parameters.

Setting up Documaker Connector

Documaker Connector is highly customizable and comes with content management
destinations for both Oracle's WebCenter Content, Core Capabilities (formerly
Oracle Universal Content Management) and WebCenter Content, Imaging (formerly
Oracle Imaging and Process Management). It also comes with several testing and
general utility connectors, described later.

You can also create destination components for other content management systems
so they work with Documaker Connector. It can also be used as a framework for
creating new applications which draw documents from sources other than
Documaker — you can customize both sides of Documaker Connector.

Although you can customize the source and destination sides of Documaker
Connector, this guide is primarily concerned with the Documaker source, which
reads metadata records from a database table and document contents from files in a
directly accessible directory.

Index data (metadata) is read from the database table and referenced by the column
names in the table. The metadata is then available to the configured destination as a
name-value pair of data, named after the database table column and with the value
of that column in the row for the document being processed. It is this set of name-
value pairs that Documaker Connector processes and passes to the content
management system to use to index the document.

Note For more information about writing custom components for Documaker Connector, both
source and destination interfaces, see the Documaker Connector Developer Guide.

Chapter 1 – Introduction

16

COMPATIBILITY

Documaker Connector is tested with the following:

There are additional compatibility requirements for these applications. Consult the
product documentation for those products, and in particular the specific versions you
plan to run as a part of your system planning.

Application Version

Oracle Documaker Version 11.3 and is compatible with Documaker versions 11.2 and newer

WebCenter Content Client
interface

WebCenter Content release 10gR3, version 10.1.3

WebCenter Content release 11g, version 11.1.1.3g

Oracle WebCenter Content,
Imaging

WebCenter Content release 11g, version 11.1.1.5

Planning

17

PLANNING

Before implementing the Oracle Documaker Connector, there are a few planning
steps that need to be completed. You need these answers to configure Documaker,
WebCenter Content, and Documaker Connector.

Thinking through and making these decisions up front will make the implementation
process go much more smoothly. You will want to involve all stakeholders in the
implementation, particularly those who will access the documents from the content
management system.

You should consider several questions and make sure everyone is in agreement and
understands the implications of the decisions. This implementation and any
subsequent changes will flow through the entire process. Resolve these questions
before you implement the system:

• Which documents will be archived?

• Which output format, such as PDF, will be sent to the content management
system?

• What variable fields will be used to organize and retrieve the documents? These
fields contain the metadata used to index the documents into the content
management system.

Define the Content

First decide which of your documents you want to save in the archive. You may be
publishing several versions of the same basic document, such as different recipient
copies.

There may not be any reason to archive multiple versions of the same document. On
the other hand, if you have multiple uses for the archived documents, possibly with
different end users of the documents, you may find it convenient.

For example, you may want to archive a master copy for customer service to
reference with both customer and internal forms included, but you may also want to
serve documents to a customer web portal where they can retrieve only the forms
visible to them in their final document. Another example might include a utility
billing application which serves individual customers copies of their bill with
additional marketing or usage analysis pages, but also archives a ledger copy that
includes only the current period financial data for use in customer service or
accounting.

Define the Format

Next, for those documents, you must decide what output format you want to send to
the content management system. This should be a format which your end users can
retrieve and view easily. It must also be a format which supports all anticipated uses
of the documents you are archiving.

A popular choice is Adobe’s Portable Document Format (PDF). It is a cross-industry
standard format that provides high fidelity output, cross-platform support, and is
universally viewable. Documaker can produce these types of PDF files:

Chapter 1 – Introduction

18

• Text PDF files, where the text in the documents is searchable and can be set to
allow copying to other documents.

• Image PDF files, which can be generated by print to disk processes or document
conversion using a printer metaphor. These PDF documents contain images or
pictures of the pages, similar to scanned documents. They are generally much
larger and less useful than text PDF documents.

Determine How You Will Retrieve the Documents

Finally, you must define the information users will use to search for the documents
they want. Remember, this is data your content management system users will have
on hand to use to search for the documents they want to retrieve. This is generally a
subset of the variable data published on the documents. Here are some examples:

• Customer/account number or ID

• Customer name

• Date of issue

• Telephone number

• Postal code

This data is called metadata, meaning data about your data — in this case, data about
your documents. It must be saved into a database table which you customize, so it
can be read directly from there by the Documaker Source. Writing these database
records is done by a Document Automation Language (DAL) script, which you
create. Each row in the table represents a document to be archived and contains the
metadata by which it will be indexed in the content management system.

To design the target layout for your metadata, you need to understand the options
available in your content management system for placement of this data. This also
helps you understand how to configure Documaker Connector for your destination
content management system, since the options available in each system influence the
way the destination is configured and how the data coming out of Documaker is
mapped.

For example, some content management systems keep all the metadata together with
the documents themselves and store documents in a rather flat structure. Other
systems let you create one or more levels of folders to collect and organize
documents for the users. These folders can have metadata attached to them
(sometimes called properties) in some systems which may or may not be the same
as the document metadata. Depending on the destination system, you can map your
metadata to document or folder attributes, or some other container or object in your
content management system.

Planning

19

Using Oracle WebCenter Content

Basic metadata fields are preconfigured in the WebCenter Content server database
and you cannot edit them. The basic fields built into the system include:

Folders are an optional feature of WebCenter Content. When the feature is installed/
enabled folder objects have the same set of basic metadata and additional fields are
added to both documents and folders. For example, a Folder field is added to each
document to hold the parent folder ID if the document is in a folder.

Custom metadata is added in a single screen in the Content Server’s Configuration
Manager application. They are called information fields. When fields are added to
this list, they become attributes of all documents and folders.

Content ID Title Author

Type Security Group Revision

ID Check In Date Indexed Date

Release Date Expiration Date Checked out

Checked out by Revision Status Indexer Status

Conversion Status Indexer Cycle Workflow State

Revision Rank Publish Type Publish Status

Chapter 1 – Introduction

20

21

Chapter 2

Installing Documaker Connector

The installation of Documaker Connector places the necessary program files and
supporting software on the target system at the selected location. This chapter guides
you through installing the software and prepares you for configuring the system to
meet your requirements.

This chapter discusses these topics:

• Software Requirements on page 22

• Downloading the Software on page 23

• Installing Documaker Connector on page 24

• Using the Setup Wizard on page 25

• Installing from the UNIX Command Line on page 28

• Running the Installer with a Response File on page 30

• Checking Your Installation on page 32

• Using the Task Tray Controller on page 36

• Downloading Patches on page 37

• Removing Documaker Connector on page 38

Note Depending on the database system you chose and the content management system,
you may require underlying supporting software which is not provided as part of the
Documaker Connector installation. See the documentation about your chosen
document source and destination interfaces for specific requirements.

Chapter 2 – Installing Documaker Connector

22

SOFTWARE REQUIREMENTS

To use Documaker Connector, you need the following:

• Platform support of Java 6 (compatible JVM), including JDBC database
connectivity.

• Connection to a SQL database and file system directory which are both also
accessible to Oracle Documaker, for use with the Documaker source.

• A connection to the configured destination system, such as Oracle WebCenter
Content.

Note On Windows, Linux, and Solaris, the installer installs a compatible JVM (Java Virtual
Machine) for you.

Downloading the Software

23

DOWNLOADING THE SOFTWARE

Oracle Insurance applications are available for download at the Oracle Software
Delivery Cloud web site. The process includes:

• Logging in and agreeing to the terms and restrictions

• Searching for the applications you want to download

• Downloading those applications

Go to the Oracle Software Delivery Cloud web site to download Oracle Insurance
applications:

https://edelivery.oracle.com

http://edelivery.oracle.com

Chapter 2 – Installing Documaker Connector

24

INSTALLING DOCUMAKER CONNECTOR

Documaker Connector is installed using platform-specific setup wizards which place
the program and supporting files on the target system and perform the initial
configuration of the target system to run Documaker Connector.

For instance, on Microsoft Windows systems, this includes installation of
Documaker Connector as a Windows Service and installation of a task bar
notification icon which you can use to control the running of the service.

To install on Required user privileges See

Windows You must log in as the Administrator to install the Windows Service.
You must also have write-permission to the disk directory where
Documaker Connector will be installed. A non-Administrator can
run the Setup wizard, however, the installation of the Windows
service will fail. The program files will be installed and you can run
the program as a command-line program, but it will not be added to
the Services list in the Services control panel.

 on page 24

UNIX (in GUI
mode)

You must have write-access to the target directory. No special
privileges are required.

 on page 24

UNIX (via the
command line)

You must have write-access to the target directory. No special
privileges are required.

Installing from the
UNIX Command
Line on page 28

Installing Documaker Connector

25

USING THE SETUP WIZARD
Running the Setup wizard is similar across all platforms. These steps are from
Microsoft Windows, but should be easily used as a guideline in other environments.

From the directory into which you downloaded the Oracle Documaker Connector
media pack, unzip the media pack, locate and double click on the following program:

documakerconnectorrel(version and patch number).exe

The installation wizard starts. Follow these steps to install Documaker Connector:

1. When the Welcome window appears, click Next.

The Select Destination Directory window lets you choose the installation target
directory.

Note On UNIX systems (AIX, Linux, and Solaris), to optionally run the installation in
GUI mode you must have an X11 server running. You must also set the DISPLAY
environment variable to point to the X11 server, otherwise it will run in a console
mode. For more information,see Installing from the UNIX Command Line on page
28.

Follow these steps to run the X11 Java Swing-based GUI:

1. Start the X11 server on your computer or use the existing X11 hosted Linux
desktop environment.

2. Set the DISPLAY environment variable to point to the X11 server. Here is an
example:

DISPLAY=IPADDRESSOFX11Server:DisplayNumber

3. Run the Setup wizard.

Chapter 2 – Installing Documaker Connector

26

2. Enter a directory or click Next to accept the default directory. On Windows, the
default directory is under the Program Files directory. The directory you choose
is referred to throughout this document as the installation target directory.

Once you click Next, the Setup wizard begins to install Documaker Connector.
As part of this process, the Setup wizard...

• Puts a Java run-time environment (JRE) in a subdirectory of the target
directory called jre. On Microsoft Windows, the Setup wizard installs the
Visual C++ 2008 run time if it is not already on the machine.

• Sets the service.path in the dm_connector.svc.properties file to the JRE that
was installed.

• (On Windows) Runs the dm_connector_svc.exe program with an install
parameter to install the Windows Service. Running this program later with
a parameter of uninstall removes the Windows Service.

This window shows its progress:

Installing Documaker Connector

27

When finished, this window appears:

3. Click Finish to complete the installation.

Chapter 2 – Installing Documaker Connector

28

INSTALLING FROM THE UNIX COMMAND LINE
Running the installer from the UNIX command line avoids the requirement of
having a windowing or GUI environment. All interaction with the installer is
handled via the text console. The installer is packaged as a shell script. Here is an
example:

DocumakerConnectorRel121p01b15380Linuxx86.sh

Follow these steps to install the software from a UNIX command line:

1. Once the script is copied into your UNIX directory, it must be made executable
if it is not already. Use the chmod command to set the appropriate read and
executable attributes. Here is an example:

~> chmod 555 DocumakerConnectorRel121p01b15380Linuxx86.sh

2. After you set the read and executable mode of the file, run the script:

~> ./DocumakerConnectorRel121p01b15380Linuxx86.sh

The script takes a few seconds to start and begin unpacking the compressed files
contained within it. Here is an example of the text that appears on your console:

~> ./DocumakerConnectorRel121p01b15380Linuxx86.sh
Unpacking JRE ...
Preparing JRE ...
Starting Installer ...
This will install Documaker Connector on your computer.
OK [o, Enter], Cancel [c]

3. Press Enter to continue with the installation. Here is an example of the text that
appears on your console:

Where should Documaker Connector be installed?
[/home/example/DocumakerConnector]

4. Enter a different location if necessary or press Enter to accept default location
and continue with the installation. Here is an example of the text that appears on
your console:

Preparing to copy files...
Extracting files...
Downloading ...
Extracting files...
 COPYRIGHT
 README
 THIRDPARTYLICENSEREADME.txt
 Welcome.html
 bin/
 bin/tnameserv
 ... (the complete list of installed files is omitted here)
 lib/oracle-ridc-client-11g.jar
 .install4j/
 .install4j/uninstall.png
 uninstall
Finishing installation...
~> cd DocumakerConnector
~> ls
total 41

Note This example is for Linux on x86, but other UNIX platforms are very similar. The name
of the file you download for your platform or software version may differ from the exact
name shown in the example.

Installing Documaker Connector

29

-rw-r--r-- 1 example users 2930 2011-03-08 21:37 batch-file-
conn.properties

-rw-r--r-- 1 example users 1330 2011-03-17 12:55
dm_connector_svc.properties

-rw-r--r-- 1 example users 3746 2011-03-08 21:37 dmkr-ucm-
conn.properties

drwxr-xr-x 4 example users 232 2011-03-17 12:55 jre
drwxr-xr-x 2 example users 1128 2011-03-17 12:55 lib

-rw-r--r-- 1 example users 2888 2011-03-08 21:37 mock-file-
conn.properties

-rw-r--r-- 1 example users 3042 2011-03-08 21:37 mock-ftp-
conn.properties

-rw-r--r-- 1 example users 2758 2011-03-08 21:37 mock-mock-
conn.properties

-rw-r--r-- 1 example users 3154 2011-03-08 21:37 mock-ucm-
conn.properties

-rwx------ 1 example users 10337 2011-03-09 18:53 uninstall

Note During the installation on UNIX, you may see a warning message regarding the Java
system preferences store at /etc/.java/.systemPrefs/com. This warning should not affect
your installation.

Chapter 2 – Installing Documaker Connector

30

RUNNING THE INSTALLER WITH A RESPONSE FILE
You can run the installer in unattended mode from the command line. To do this you
must create a response file to provide the information the installer needs. A response
file is a text file which contains the information a user would typically provide while
running the Setup wizard or responding to command-line prompts. This information
is in this format:

name=value

To create a response file that contains the necessary data, first run the command-line
installer in one of these ways:

• Using default mode, with no arguments. After the installation finishes, the
installer creates a response file named response.varfile.

• Using the command-line installation with the -console parameter. This lets you
specify the name you want to assign to the response file.

After the installation finishes, the installer creates the response file and stores it in
the .install4j directory. This file contains name=value data captured during the
installation process. You can edit this file if necessary to modify the values. Here is
an example:

#install4j response file for (application/version)
#Wed Mar 16 16:53:12 EDT 2011
sys.languageId=en
sys.installationDir=d\:\\(application/version)

You can then pass the response file to the installer using the -varfile parameter. For
example, to run the installer in unattended mode using a response file, include these
parameters:

-q -console -c -varfile varfilename

Here is an example:

(application/version).exe -q -console -c -varfile
 response.varfile

Parameter Description

-q Runs the installer in unattended mode.

-console If the installer is executed in unattended installation mode (-q) and you include -console as the
second parameter, a console is allocated on Windows that displays the output of the installer.

-c Runs the installer in the console mode.

-varfile Varfilename specifies the name of the response.varfile to use. You can include a full path.

Note You can use a response file on both Windows and UNIX/Linux installations. For more
information about response files and install4j installations, go to this web site:

http://resources.ej-technologies.com/install4j/help/doc/

http://resources.ej-technologies.com/install4j/help/doc/

Installing Documaker Connector

31

Here is an example of the output you will see:

Extracting files...
Downloading ...
Extracting files...
Finishing installation...

Chapter 2 – Installing Documaker Connector

32

CHECKING YOUR INSTALLATION

Although there are slight differences by platform, most of the installed files are the
same regardless of the target system. The following example is from a Windows-
based installation.

Setup wizard files

The Setup wizard places its own support files in the .install4j subdirectory. This
directory should not be disturbed, as it contains information used if you decide to
remove Documaker Connector. For more information, see Removing Documaker
Connector on page 38.

Java run-time files

The Setup wizard places a Java 6 run-time environment (JRE) for the correct
platform in the jre subfolder of the installation target directory. The configuration
files for Documaker Connector are set up to use this JRE. If you need to use another
JRE, you can reconfigure the properties and script files to use another JRE in the
same or different location.

Java application and support files

All the Java JAR files for the application and the required support code are installed
in the lib subdirectory. These JAR files must be in the Java classpath for the
Documaker Connector to run (either from the command line or as a service). All of
these files are installed as part of the normal installation process, but the list is
provided here for information useful in troubleshooting or customizing the install.

The default logging properties file log4j.xml is installed in the lib folder, with the .jar
file listed in this table. Some of the files are 3rd-party libraries which are available
via the Internet. For these files, the URL you can use to download the file is provided,
in case you need it.

Name URL

commons-beanutils.jar http://commons.apache.org/beanutils/

commons-codec-1.6.jar http://commons.apache.org/codec/

commons-collections-3.2.jar http://commons.apache.org/collections/

commons-dbcp-1.2.2.jar http://commons.apache.org/dbcp/

commons-httpclient-3.1.jar http://hc.apache.org/httpclient-3.x/

commons-lang-2.3.jar http://commons.apache.org/lang/

commons-logging-1.1.1.jar http://commons.apache.org/logging/

commons-net-2.2.jar http://commons.apache.org/net/

commons-pool-1.3.jar http://commons.apache.org/pool/

DdlUtils-1.0.jar http://db.apache.org/ddlutils/

http://commons.apache.org/codec/
http://hc.apache.org/httpclient-3.x/
http://commons.apache.org/logging/
http://db.apache.org/ddlutils/
http://commons.apache.org/pool/
http://commons.apache.org/net/
http://commons.apache.org/lang/
http://commons.apache.org/collections/
http://commons.apache.org/collections/

Checking Your Installation

33

Table 1: Required Java Library Support Files (JARs)

jakarta-oro-2.0.8.jar http://jakarta.apache.org/oro/

log4j-1.2.15.jar http://logging.apache.org/log4j/1.2/

ojdbc14.jar http://www.oracle.com/technetwork/database/enterprise-
edition/jdbc-10201-088211.html

or

http://www.oracle.com/technetwork/database/enterprise-
edition/jdbc-112010-090769.html

oracle-dmkr-conn-assuresigndestination.jar Oracle proprietary file

oracle-dmkr-conn-batchloadersource.jar Oracle proprietary file

oracle-dmkr-conn-documakersource.jar Oracle proprietary file

oracle-dmkr-conn-documentdatasource.jar Oracle proprietary file

oracle-dmkr-connector.jar Oracle proprietary file

oracle-dmkr-connectorapi.jar Oracle proprietary file

oracle-dmkr-conn-filedestination.jar Oracle proprietary file

oracle-dmkr-conn-fileplusdestination.jar Oracle proprietary file

oracle-dmkr-conn-ftpdestination.jar Oracle proprietary file

oracle-dmkr-conn-ipmdestination.jar Oracle proprietary file

oracle-dmkr-conn-mockdestination.jar Oracle proprietary file

oracle-dmkr-conn-mockperiodicprocess.jar Oracle proprietary file

oracle-dmkr-conn-mockreporter.jar Oracle proprietary file

oracle-dmkr-conn-mocksource.jar Oracle proprietary file

oracle-dmkr-conn-pdfburster.jar Oracle proprietary file

oracle-dmkr-conn-ucmdestination.jar Oracle proprietary file

oracle-dmkr-ezridc.jar Oracle proprietary file

oracle-dmkr-scrambler.jar Oracle proprietary file

oracle.ucm.ridc-11.1.1.jar Get this file from your UCM installation in the directory:

<Middleware Home>\<ECM Home>\ucm\Distribution\RIDC

Name URL

Note In addition to the files supplied with the application, you must make sure the appropriate
JAR files for your database provider are also included the classpath. These files are not
included in the installation of the Documaker Connector — with the exception of the
Oracle JDBC JAR file.

http://www.oracle.com/technetwork/middleware/content-management/downloads/index-085241.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-10201-088211.html
http://logging.apache.org/log4j/1.2/
http://jakarta.apache.org/oro/

Chapter 2 – Installing Documaker Connector

34

Here are some examples of the JAR files required for the JDBC connectivity for
various databases:

Table 2: JDBC Library Support Files (JARs)

Configuration and script files and Windows utility programs

At the root of the target installation folder, scripts, and configuration property files
for Documaker Connector are placed along with utility programs useful on
Microsoft Windows. These files are described here:

Database JAR file

Oracle ojdbc14.jar (included with the application)

IBM DB2 db2jcc.jar

MySQL mysql-connector-java-5.1.5-bin.jar

Microsoft SQL Server sqljdbc.jar

Note: Vendors may revise these names with new versions of their products.

File Description

dm_connector_agent.exe

(Windows only)

This program creates the Task Tray Agent and provides convenient control of
the Documaker Connector Windows Service

dm_connector_svc.exe

(Windows only)

This program can be run as a Windows service and configured to run a Java
program, like Documaker Connector, as the actual service program.

dm_connector_svc.properties

Windows only)

The configuration file for dm_connector_svc.exe which causes it to run
Documaker Connector as the real service and sets the CLASSPATH for the
Documaker Connector program as well as the Documaker Connector
properties file. It includes the path to the JVM and the Documaker Connector
mode to be run as a service.

ecmconnector.bat

(Windows only)

Batch script which may be useful to run Documaker Connector in a command
prompt window. This file is described more later.

uninstall.exe

(Windows only)

Lets you uninstall Documaker Connector.

source-dest-conn.properties Series of example files providing a starting point for configuration of
Documaker Connector with specific combinations of a source and a
destination. The specific files are:

• batch-file-... - Oracle WebCenter Content-batchloader source to a file-
system folder destination

• batch-ucm-... - Oracle WebCenter Content-batchloader source to Oracle
WebCenter Content destination

• dmkr-ucm... - Oracle Documaker source to Oracle WebCenter Content
destination

• mock-file... - Test data source to file-system folder destination
• mock-ftp... - Test data source to FTP-server destination
• mock-mock... - Test data source to Test data (null) destination
• mock-ucm... - Test data source to Oracle WebCenter Content destination

Checking Your Installation

35

Table 3: Configuration and script files and Windows utility programs

Setting Up Documaker Connector as a Windows Service

The dm_connector_svc.exe application runs Documaker Connector as a Windows
Service. For more information, see Windows Service Application on page 86.

The dm_connector_agent.exe program places the Task Tray Agent icon in the
Windows task bar:

This icon shows the status of the Documaker Connector Windows service. Right-
click on the icon to open the log file and start and stop the Windows service without
opening the Services Control Panel.

ecmconnector.sh A UNIX shell script useful to run Documaker Connector.

vcredist_x86.exe

(Windows only)

Microsoft installer for run-time support for the above applications. Provided in
case the target install computer does not have the required support files.

File Description

Chapter 2 – Installing Documaker Connector

36

USING THE TASK TRAY CONTROLLER

When the Setup wizard finishes, you will find a Documaker Connector Start menu
folder with an uninstall option:

It also places the Documaker Connector Task Tray Agent in your Startup folder:

Select this option to start Documaker Connector Task Tray Agent. The Task Tray
Agent appears in your task bar. Here is an example:

You can start the Task Tray Agent and then use it to start the service. Right click on
the Task Tray Agent and choose the Start Connector option to start Documaker
Connector:

The icon is yellow while starting up and then turns green while running normally.

Note The default configuration of the service is to run Documaker Connector with the
Documaker Source and the WebCenter Content destination. Before running the service,
you must complete the configuration so the Documaker Source can connect to the
database and the WebCenter Content destination can reach the WebCenter Content
system. For more information, see Configuring Documaker Connector on page 39.

Downloading Patches

37

DOWNLOADING PATCHES

You can download the latest Oracle software patches at the My Oracle Support web
site. The process includes:

• Going to the My Oracle Support site (requires registration)

• Searching for the patches you want to download

• Downloading those patches

To download Oracle software patches, go to the My Oracle Support web site:

https://support.oracle.com

https://support.oracle.com/

Chapter 2 – Installing Documaker Connector

38

REMOVING DOCUMAKER CONNECTOR

Before removing Documaker Connector on a Windows system, be sure the
application is not running as a Windows Service. To do so, first check the task tray
controller or open the Services administrative tool (select Control Panel,
Administrative Tools, Services) and stop the service if it is running. Then run the
service program with the uninstall parameter to remove the registration of
Documaker Connector as a Windows Service:

dm_connector_svc uninstall

To uninstall Documaker Connector, choose the Documaker Connector Uninstaller
option form the Start menu:

On UNIX, the installer places an uninstall shell script in the installation target
directory. To uninstall Documaker Connector, run the script from the parent
directory of the installation target:

./DocumakerConnector/uninstall

39

Chapter 3

Configuring Documaker Connector

Once installed, you must configure Documaker Connector to work with your Oracle
Documaker Standard Edition (ODSE) implementation and to connect and import
into the content management system.

The topics in this chapter describe these steps, starting with Documaker where the
document sets are created, then on to the content management system where these
document sets are stored.

This chapter provides information on the following topics:

• Overview on page 40

• Configuring Documaker on page 43

• Configuring Oracle WebCenter Content on page 50

• Configuring Documaker Connector on page 53

• Other Sources and Destinations on page 68

Note Installations of Documaker Enterprise Edition (ODEE) are configured differently. The
Archiver component of Document Factory replaces the Documaker Connector. You
simply configure the proper Archiver destination to your content management system.

Chapter 3 – Configuring Documaker Connector

40

OVERVIEW

Setting up Documaker Connector to move document sets created by Documaker into
a content management system such as WebCenter Content involves these tasks:

• Configuring Documaker on page 43

• Configuring Oracle WebCenter Content on page 50

• Configuring Documaker Connector on page 53

Archiving documents with Documaker Connector is a cooperative process involving
Documaker, Documaker Connector, and your content management system. All must
be properly configured for the process to work reliably. The most critical aspect of
this configuration is the set of indexing metadata with which the documents are to be
archived. As described in Planning on page 17, you should already have decided
which variable fields will be used as metadata. If you have not completed that step,
stop now, and get that list together.

The indexing metadata must be supplied for each document by the Documaker
process (generally as part of the incoming extract variable data for each document).
Documaker must be configured to pass the desired data to Documaker Connector so
it can, in turn, use it to archive each document. Configuring each step in the process
so that they all agree on the indexing data from end to end requires care and planning.

An overview of the process follows.

Note You can do these steps in any order, but you must complete all of them before you run
Documaker Connector.

If you customize Documaker Connector to work with a source other than Documaker,
the same overall planning and strategy described here may still be applied to that source
and destination. Many of the considerations will be the same, such as

• What type of documents to produce

• What metadata is available

• How to organize it in the destination system

• How to optimize the performance of Documaker Connector processing

Both your source and destination systems will require proper configuration in addition to
the configuration of the Documaker Connector components to coordinate the transfer of
your metadata from the source to the destination, along with the documents themselves.

Overview

41

Setting Up Documaker

Your content management system probably requires configuration to create fields to
store the indexing data, or metadata. This, too, can be done before installing
Documaker Connector.

You must set up Documaker to produce the documents to be archived along with the
desired indexing data. You can do this step before or after you install Documaker
Connector. This step requires expertise in the following areas:

• Configuring Documaker

• Using Document Automation Language (DAL) scripting

• Using SQL database table definitions

Documaker Connector with the Documaker source is driven by records it retrieves
from a database table. Each record represents a document copy produced by a
Documaker batch process.

If you are using Documaker Enterprise Edition with Document Factory, these
database records are part of the Document Factory processing. Documaker Standard
Edition must write the records itself.

The database records contain some fields used to manage the import process, but
most importantly contain the data to be imported into your content management
system as indexing data. Documaker must write this data into the database record to
pass it along to the content management system. You must configure Documaker to
properly write these database records along with the documents.

These document copies are intended to be imported into your content management
system for the purpose of providing an archive of record. Oracle Documaker is
usually configured using Batch Banner and Transaction Banner DAL scripting to
control the output of the documents and to write the database records into the proper
table.

Be sure to enable both Batch and Transaction Banner processing at the individual
Batch:XXX control group being used to write the documents files as well as at the
overall Printer control group in Documaker. For more information, see Example INI
Configuration on page 46.

Once this step is completed, check the results by running Documaker and manually
validating the contents of your database table. Adjust your configuration until the
records are properly written into the database table. You do not have to have
Documaker Connector installed to complete this setup.

Chapter 3 – Configuring Documaker Connector

42

Setting Up the Content Management System

To produce these documents, Documaker must have a recipient configured that will
generate the version of the documents you want to archive. This can be a recipient
who is actually receiving the documents or a recipient you created for the purpose of
creating archive-versions of the documents.

You must configure a Documaker printer definition to produce the format you want
to archive, such as PDF, and write it to a file in the appropriate directory. A batch is
then set up for the recipient with the output printer definition. In this batch, you also
set up four banner scripts which implement the metadata output to the database and
allow for creation of file system sub-directories, and so on. This is described in the
topics that follow.

You must configure your content management system with document or folder (or
other) attribute fields appropriate to hold the desired indexing metadata. Your users
will find the documents you archive by searching for them using these metadata
fields. For example, a call center might need to search for documents based on a
customer number, telephone number, or customer name. These fields need to be in
the database fields, in addition to being in the document content.

Your system may be able to hold the data as attributes of the individual documents
and/or document containers such as folders or some other object your system
defines. In any case, you will have to make a map of the incoming metadata from
your document source to the outgoing data into your destination, field by field.
Within the destination content management system, use the administrative tools
provided by your system to create the fields or attributes to be filled by the incoming
data with each document.

Setting Up Documaker Connector

Lastly, you need to configure Documaker Connector so it uses the Documaker
source component and so the Documaker source component can...

• Find the database table produced by the Documaker DAL scripting

• Access the documents referenced or stored in the database table

Also, you must configure Documaker Connector to use the destination component
you chose and so that destination component can...

• Connect to the destination content management system

• Write the documents to the content management system so those documents can
be archived

In addition to these basic connectivity configuration requirements, Documaker
Connector has configuration options for logging its operation and adjusting
performance characteristics of the importing process which it manages. These
settings allow Documaker Connector to be scaled from a small proof of concept to a
large scale production environment.

Configuring Documaker

43

CONFIGURING DOCUMAKER

Documaker Connector with the Documaker source reads a database table for rows
containing document metadata and an operating system path to each document file.
The Documaker source performs these tasks...

• Queries the database table for rows that have a status field that indicates those
records have not been processed (STATUSCD column value of 0)

• Selects these rows with a maximum row count which equals as many records as
it is configured to consider as a maximum sized batch

• Marks them with a status value (STATUSCD column) of 3 (in progress)

• Processes each of those records

Documaker Server must be configured to properly generate both the document files
and the accompanying database records for the documents to be archived. The
configuration of Documaker Server aligns with the configuration of your content
management system so Documaker will provide the desired metadata/indexing
elements.

Once this list of data elements is determined, you can configure Documaker Server
to store the data elements in a database table for Documaker Connector. Documaker
Server can store extra data in the table that is not used for indexing, but it must at
least provide all the metadata elements which are mapped into the destination
content management system.

Documaker Server reads the variable data for each document from a data extract
input file or database. This file is supplied in either XML or CSV (comma-separated
value) format. To use the data elements in Documaker Server, the data extract values
are copied into Documaker global variables, also known as GVM variables or
GVMs, using one of these methods:

• TRN_FIELDS INI option

• Ext2GVM rule

Once the data are in GVM variables, you use DAL scripting to control a recipient
batch’s output print stream name and map the metadata in the GVM variables to
database table columns. The Batch Banner and Transaction Banner processing DAL
scripts insert the database rows.

Batch and transaction banner processing DAL is used since DAL scripts can be
triggered for the different phases of output generation. The output print stream file
name and location can be controlled as well as the post transaction processing step
to map the GVM variables and any other static data to database table columns (using
the DBPreVars DAL function) and finally insert database rows (using the DBAdd
DAL function).

Note The information in this topic generally explains the required Documaker Server setup. It
provides some examples so a knowledgeable Documaker administrator can apply the
information to their installation and generate the documents and metadata for use with
the Documaker Connector's Documaker source component.

Chapter 3 – Configuring Documaker Connector

44

Making Index Data Available in Documaker GVM Variables

You can map Documaker extract input data, which are in XML format, into GVM
variables using the Trn_Fields INI option via XPATH notation. This requires setting
up the mapping with XPATH declarations and modifying or creating the associated
TRNDFDFL.DFD (transaction) and RCBDFDFL.DFD (recipient batch) Data
Formation Definition files.

DFD files are used by the Documaker data storage abstraction interfaces. The data
can be ASCII files, database files, and so on. Documaker pulls the data from extract
files (usually in XML or ASCII format) in batch processes and pushes them into the
field names defined in the DFD file. This storage is then used as input to other batch
processes.

Overall, these files control the storage and propagation of the data through the batch
system. See the Documaker Administration Guide for configuration details. For
more information, see Example XML Extract File on page 88.

You can also use the Ext2GVM rule to map the data. See the Rules Reference for
more information on this rule.

Configuring Documaker

45

Generating Database Table Rows and Writing the Document
Files

You must create a database table and configure Documaker Server to both create the
uniquely named recipient batch output print streams and to insert a row in the table
with the name and location of the each output file. Each table row also contains the
metadata fields needed for content management ingestion. The Batch Banner and
Transaction Banner processing DAL scripts are used to write the output documents
and to insert the database table rows referencing these documents.

Batch Banner and Transaction Banner DAL processing each have a Begin and End
phase with a separate script for each phase. The phases and scripts are run in this
sequence:

Note You can find examples of these scripts and other configuration files in Sample
Applications and Files on page 85.

BatchBannerBeginScript
Loads the configuration. Sets up a

unique Job identifier. Creates a
related directory under the

configuration-defined root location.
Establishes the database

connection.

TransBannerBeginScript
Defines and creates the batching
folder unique name. Defines the

first print stream name.

TransBannerEndScript
Inserts the database table row with

the desired metadata and a
reference to the document.

BatchBannerEndScript
Performs cleanup tasks.

Chapter 3 – Configuring Documaker Connector

46

Example INI Configuration

Enable the Batch and Transaction Banner scripts using the FSISYS.INI or
FSIUSER.INI files. Typically, you enable the scripts for the chosen recipient batch
output.

In the example implementation, Batch6 is the chosen output which is the FILE
recipient’s batch and is associated with Printer6. Note that the EnableBatchBanner
and EnableTransBanner settings are required in both the Printer control group and
the Batch6 control group. Here is an example configuration snippet with the changes
and additions (in italics) to write PDF output for Batch6 and enable the DAL
scripting calls:

< BatchingByRecip >
Batch_Recip_Def = TRUE;"BATCH1";AGENT
Batch_Recip_Def = TRUE;"BATCH3";INSURED
Batch_Recip_Def = TRUE;"BATCH2";INSURED
Batch_Recip_Def = TRUE;"BATCH4";CLAIMANT
Batch_Recip_Def = TRUE;"BATCH4";OWNER
Batch_Recip_Def = TRUE;"BATCH4";LIENHOLDER
Batch_Recip_Def = TRUE;"BATCH6";FILE
DefaultBatch = ERROR

< Print_Batches >
BATCH1 = data\agent.bch
BATCH2 = data\insflat.bch
BATCH3 = data\insured.bch
BATCH4 = data\other.bch
BATCH5 = data\lienholder.bch
BATCH6 = data\file.bch

< Printer >
; Must generally enable banner processing for it to work.

EnableBatchBanner = Yes
EnableTransBanner = Yes
PrtType = PDF

< Printer6 >
Port = data\file.pdf
PrtType = PDF
AORDebug = No
AORExt = .pdf
AORFilesPerBatch = 1000
AORPath = c:\AOR\

; Enable a DAL library of scripts to be pre-loaded
< DalLibraries >

LIB = aor
; Enable the Banner and Transaction DAL Scripting
< BATCH6 >

EnableBatchBanner = Yes
EnableTransBanner = Yes
BatchBannerBeginScript = AOR_PREB
BatchBannerEndScript = AOR_POSTB
TransBannerBeginScript = AOR_PRET
TransBannerEndScript = AOR_POSTT
Printer = Printer6

Configuring Documaker

47

Example DAL Script

As indicated above in the DalLibraries control group, LIB entry, Documaker looks
in the AOR.DAL file for the scripts listed in the Batch6 control group. The
AOR.DAL file is a library with the definitions of the Batch6 DAL scripts shown in
Using DAL to Output to a Database Table on page 100.

As you can see in the file, scripts are provided for the Begin and End events at both
the Transaction and Batch levels.

This DAL scripting requires Documaker Server to be configured to connect to a
database and for the referenced table to exist in that database. The table schema must
agree with what the DAL inserts into that table. You do this by performing the
following steps:

1. Creating the database table in the target database

2. Setting up the Documaker Server INI configuration for the connection to that
database with the table

3. Setting the Documaker DFD (Data Format Definition) to contain all the field
values you want mapped from GVM variables to the database table.

Example Database Table Definition

Each row of the table must include a minimum set of columns required by both
Documaker Server and Documaker Connector to manage the list of output
documents and the document output directory. The table schema must also include
additional columns of customer-specific metadata used to archive the documents,
none of which is shown below.

This table shows the minimum required columns of the table with their default
column names. You can customize these column names and add your own columns
in the Documaker Source configuration file. The following list does not include
customer-specific metadata to be archived. In an actual implementation, you would
expand this with additional columns to define your metadata. Keep in mind this list
of columns must match the schema of your database table. For more information, see
Using DAL to Output to a Database Table on page 100.

Column Type Description

JOBID VARCHAR(50) The Documaker globally-unique job identifier which identifies a grouping of one or more Documaker
transactions for a single import run. Imports (XML or V2) can contain one or more transactions. This
column’s value is also used by default for the root directory folder of the output print stream.

TRANID VARCHAR(50) The Documaker transaction identifier for a transaction with one or more Documaker batches (recipient
batches).

This column’s value is also in some implementations to map to the document title or name and for searching
should identify the document type and purpose.

BATCHID VARCHAR (50) The Documaker batch identifier for a document, usually the same name as the recipient batch plus a
counter. For example, BATCH6x2 where the counter is incremented as the specified maximum number of
files per folder is reached. This columns value is also used by default to segment the transaction folder into
sub-folders for each group of output files.

DOCID VARCHAR (50) The globally-unique document identifier.

Chapter 3 – Configuring Documaker Connector

48

Table 4: Minimum DAL Output Database Table

NAME VARCHAR (30) The name of the document.

TYPE VARCHAR (30) The type of document.

TITLE VARCHAR (255) The title for the document.

AUTHOR VARCHAR (50) The author or owner of the document.

SECGROUP VARCHAR (30) The security group assigned to the document.

PFILE VARCHAR (255) A file URL or path to the document.

STATUSCD INTEGER This column contains the status of a document. The following values are supported:

0 – Not yet processed by Documaker Connector (new)

1 – Imported into content management (success)

2 – Import failed (failure)

3 – In process by Documaker Connector (in progress)

The default is zero (0)

STARTTIME TIMESTAMP A time stamp that indicates at which time the document import process started. This column is updated by
Documaker Connector.

ENDTIME TIMESTAMP A time stamp that indicates at which time the document import process ended. This column is updated by
Documaker Connector.

RESULTDESC VARCHAR (2000) A description of the outcome of the import process; updated by Documaker Connector at the time of import.
This column contains Success if the document import process is successful. Otherwise, it contains a
description of the error.

RETENTION TIMESTAMP A time stamp that indicates when the document expires and can be removed from the table. This value is
updated by Documaker Connector upon a successful import, based on the value of the
source.documaker.retention.time configuration property which indicates the number of days after import
when the document expires.

Column Type Description

Configuring Documaker

49

Documaker INI Setup for the Example Database Connection

Documaker Server is configured to access a database and a particular table in the
Documaker configuration INI file (FSISYS.INI or FSIUSER.INI). Documaker uses
the Open DataBase Connectivity (ODBC) interface API to the database.

Here is an example:

; Database connection info
< DBHandler:ODBC >

Class = ODBC
Server = OracleXE10g

; SubClass = ORA
CreateTable = No
CreateIndex = No

; Debug = Yes
UserID = ~ENCRYPTED 1-S6rx_NR_wt2hsjXScy0
PassWd = ~ENCRYPTED 1-S6rx_NR_wt2hsjXScy0

; Database Table reference, this case a table named AOR
< DBTable:AOR >

DBHandler = ODBC

In these example settings, Documaker Server connects via ODBC to a database
server called OracleXE10g with an encrypted user ID and password. In this database,
Documaker Server is configured to use a table called AOR (Archive Of Record).

Note The lines that begin with a semicolon (;) are comments and are not processed.

Note You can find more information on ODBC database access configuration in the
Documaker Administration Guide.

Chapter 3 – Configuring Documaker Connector

50

CONFIGURING ORACLE WEBCENTER CONTENT

If you are using Oracle WebCenter Content as your content management system, this
section provides information on what you need to set up in WebCenter Content to
index data coming from your document source, such as Documaker. Although this
topic discusses WebCenter Content configuration, it is not a substitute for the
WebCenter Content documentation or familiarity with the WebCenter Content
configuration requirements, procedures and user interfaces.

A minimal WebCenter Content system for use with Documaker Connector starts
with installation of the Oracle Content Server. Documaker Connector was developed
using Oracle Content Server 10gR3, but has been tested with later versions,
including 11g.

The metadata and documents you create and capture in Documaker and pass through
Documaker Connector must have homes in your WebCenter Content system. That
is, you must set up your WebCenter Content system with the information fields
needed to hold your incoming metadata. You must also make sure there is plenty of
space to store the documents you are sending in via Documaker Connector.

WebCenter Content allows metadata fields to be required or optional. For
WebCenter Content fields you map to incoming data, Documaker Connector checks
the fields provided in the database records to make sure the required fields are
present. If a required field definition is missing from the table, Documaker
Connector logs this information and stops.

By default, the names of the columns in the incoming table from Documaker are
used to match the data to WebCenter Content property (field) names. Not all the
table columns need be mapped to information fields in WebCenter Content. Many
of the table columns are used internally by Documaker and the Documaker Source
modules to manage the table itself, remove old records which have been processed,
and to keep track of incoming documents before they are processed into WebCenter
Content.

Within WebCenter Content, use the Configuration Manager to set up the WebCenter
Content information fields for the incoming table columns you want to capture. In
the example below, information fields have been established for these example
custom fields coming in from Documaker:

Note The information in this topic explains the minimum required WebCenter Content setup
through one set of interfaces and provides some example information so a
knowledgeable WebCenter Content administrator has a few reference points to
understand the requirements in this document.

Oracle WebCenter Content is listed in the product suite under Fusion Applications,
Oracle WebCenter Content, Document Management. On the Downloads site it is under
OTN, Middleware, WebCenter Suite, WebCenter Content.

AGENCYID BATCHID CUSTID

EFFDATE EXPDATE INDEX01, ... INDEX12

INSADD1 INSADD2 INSCITY

INSDOB INSFNAME INSLNAME

INSPHONE INSSTATE INSZIP

Configuring Oracle WebCenter Content

51

Of the columns shown in Table 4, Minimum DAL Output Database Table, on
page 48, these columns are mapped by their default names to the indicated
WebCenter Content metadata fields:

• JOBID

• TRANID

• BATCHID

BATCHID, for example, is highlighted in the following Configuration Manager
window. The remainder of the custom fields must be handled by adding more
columns to the minimum set of columns shown in Minimum DAL Output Database
Table on page 48. You can find an example of the DDL that does this in Sample
Applications and Files on page 85. In this example, all the fields shown previously
are mapped by default using the same name for both the database table column and
the WebCenter Content information field:

JOBID KEY1 KEY2

KEYID POLNUM RUNDATE

TRANCODE TRANID

Chapter 3 – Configuring Documaker Connector

52

Configuring Documaker Connector

53

CONFIGURING DOCUMAKER CONNECTOR

Once you have configured Documaker to generate the data you want and set up the
destination content management system to accept and store that data, you can
configure Documaker Connector to pass that data from the source to the destination.
Documaker Connector needs to be given your choices of source (such as
Documaker) and destination systems (such as Oracle WebCenter Content) as well as
some operational parameters that are independent of the source and destination
systems.

Your source system is the source of your data and documents. This will normally be
Documaker, as described in this document. The destination is the system where your
documents will be archived. For each system there must be a connector component
which is designed to connect to and exchange data with that source or destination and
you have to tell the connector application which components to use.

You do this by providing the names of the proper components. Some source and
destination components are provided with Documaker Connector, including the
Oracle Documaker Source, the Oracle WebCenter Content Destination, and some
testing and example components.

Chapter 3 – Configuring Documaker Connector

54

USING THE PROPERTIES FILE
Documaker Connector and the standard Oracle interface components use a single
common properties file for all configuration settings, described below. Custom
source or destination components may be configured differently, but the standard
components described in this document all use this file for their settings. If you are
developing a custom component, you should also use this means of configuration.

You can enter the name of this properties file on the command line via the -config
parameter. The default file name is connector.properties, which must be located in
the execution directory if you omit the -config parameter.

This file is referenced in the dm_connector_svc.files by uncommenting it and
commenting out the rest. The targeted file for use is based on the source and
destination combination.

The configurations are contained in the properties file support:

• General Connector configuration

• Source component configuration

• Destination component configuration

The first topic, General Connector Configuration, provides parameters for the
connector application which are independent of the source and destination, including
identifying which source and destination components to use. The other topics are
properties entirely dependent on the particular components chosen in the first topic.
This document describes these components:

Files Description

dmkr-ucm-conn.properties Use dmkr-ucm-conn.properties if the source is dmkr and
destination is ucm

 mock-mock-conn.properties Use mock-mock-conn.properties if the source is mock and
destination

 mock-file-conn.properties Use mock-file-conn.properties if the source is mock and
destination

batch-ucm-conn.properties Use batch-ucm-conn.properties if the source is batch and
destination is ucm

Sources • Documaker, using the AOR table
• Mock, which generates fake documents and metadata
• BatchLoader, which works with the WebCenter Content Batch Loader utility files

Destinations • Oracle WebCenter Content/Content Server
• Oracle WebCenter Content Imaging (formerly Imaging and Process Management (IPM))
• Mock, which accepts documents and metadata and discards them
• FTP, which sends documents to a receiving FTP site
• File, writes documents into folders in a local file system
• AssureSign, submits documents to the AssureSign e-signature service

Configuring Documaker Connector

55

Note in the following tables, that some of the property names are quite long. To save
space in the tables, some groupings of properties that start with common prefixes are
listed without the prefix. The common prefix is given above the group of properties
in a separate line in the table labeled Property Name Prefix. These properties are
written starting with a period (.), which is also shown as part of the prefix as a
reminder that the property name includes the prefix shown above it. A single period
is always used between the prefix and the rest of each property name when it is used
in the file.

Standard Source Configuration Properties

The following list of properties is available to any source implementation. Any
additional properties needed by the implementation should be documented in the
implementation’s guide.

Destination Configuration Properties

The following list of properties is available to any destination implementation. any
additional properties needed by the implementation should be documented in the
implementation’s guide.

Note There are mock source and destination components that provide fake documents and
data or let you send them to nowhere as a destination. You can use these together to
test the installation of Documaker Connector or individually to test a specific source or
destination. For example, you can set up the mock destination to test the Documaker
source configuration without really archiving the test documents.

Name Description Default

source.name The fully qualified name of the source implementation -

source.administration.name The fully qualified name of the SourceAdministration
implementation

-

source.count The number of instances of the source
implementation to create

1

source.max.records The maximum number of documents to return when
the getMetaData method is called

1

source.administration.cleanupwait The number of seconds between source system
cleanup calls.

10

source.import.delete.imported.files Delete the imported files from the file system. True

source.import.delete.imported.files.count The number of files to be deleted during each
cleanUp call.

50

source.persistence.path The directory path to contain any result data that
cannot be updated in the source system.

-

Name Description Default

destination.name The fully qualified name of the destination implementation -

destination.administration.name The fully qualified name of the DestinationAdministration
implementation

-

Chapter 3 – Configuring Documaker Connector

56

Handling Passwords in the Property File

For all properties in Documaker Connector, you can encrypt the property value by
writing the value with a prefix of ~ENCRYPT. This is particularly useful for
passwords, so the property file is not left with an unprotected password in it.
Documaker Connector does this automatically if the property...

• File is not write-protected by the connector application

• Value is written with a prefix of ~ENCRYPT

If Documaker Connector sees ~ENCRYPT when it reads the property file, it encrypts
the property value and then writes that encrypted value back to the file with a prefix
of ~ENCRYPTED.

For example, if the property file contains this line:

source.documaker.password=~ENCRYPT oracle

When you run Documaker Connector, it changes the line to read:

source.documaker.password=~ENCRYPTED 1-S6rx_NR_wt2hsjXScy0

Note that there is no way to make Documaker Connector to decrypt an encrypted
property value string.

destination.active.wait The number of seconds to wait for the destination system to
return as active

10

Note This applies to the Documaker Connector engine and all the sources and destinations
you set up to have their configurations stored in the main Documaker Connector
properties file. It is possible that custom code could handle password protection in
another way.

Configuring Documaker Connector

57

GENERAL CONNECTOR CONFIGURATION PROPERTIES
These properties apply to the Oracle Documaker Connector application, regardless
of what document source and destination is configured. These items include the
choices of source and destination components.

Most of the core application properties configure the common logging service. These
properties let you specify the amount information that is logged (this affects
performance), where the log files are written, how the log files are named, and how
the log is split into multiple files over time.

When you run Documaker Connector in Server mode from the command line, it can
be controlled by another copy of itself running in Commander mode. The
Commander mode copy sends control messages across the network to the server
mode copy. To prevent unauthorized or accidental control messages from being
processed, a password may be required. These properties control the port on which
the server Connector listens for commands and the password used to validate
incoming commands on the port.

The channel.count controls the number of parallel channels Documaker Connector
creates and manages. Using multiple channels allows processing to scale within a
single Documaker Connector application. Each channel uses a copy of the source
and destination which are all created and initialized separately. Consequently, each
channel creates separate connections to the source and destination systems.

If run in server mode, each Documaker Connector channel loops continuously,
calling its source until no more documents are available to be processed. It then
sleeps for engine.datarequest.wait seconds and tries again to import documents.

Complete Property Name Description Default

General Connector Configuration Properties

log.level Sets the logging level to either FATAL, ERROR, WARN, INFO, or DEBUG. WARN

log.destination Specifies where the log is written, either CONSOLE or FILE. CONSOLE

log.path Specifies the base log file name. connector.log

log.maxsize Specifies the maximum log file size in kilobytes. 100 (Kb)

log.history Specifies the number of rolled-over history log generations to retain. One (1)

command.port Specifies the command channel port number. 23232

command.password Specifies the password which must be provided by a client with each command request. See
Handling Passwords in the Property File on page 56 for more information.

none

channel.count Specifies the number of document import channels. Each channel has a source and
destination component created for it.

One (1)

engine.datarequest.wait Specifies the number of seconds to wait after an empty data request is received. Five (5)

source.name Specifies the Java class name for the source component. none

destination.name Specifies the Java class name for the destination component. none

[id.]phase.name Specifies the Java class name for a phase listener you want to include in the processing cycle. none

Chapter 3 – Configuring Documaker Connector

58

Table 5: General Connector Configuration Properties

Phase Listeners

Documaker Connector’s imports process consists of several phases. You can include
additional functionality at each phase using a phase listener. A phase listener is an
add-in to Documaker Connector processing that supplements the basic transfer and
import operation handled by the source and destination.

When you configure a phase listener, it automatically runs at all the appropriate
points in the process. You can configure any number of phase listeners, as long as
what each of them does is compatible with the others.

To configure multiple phase listeners, you must assign an ID to each phase listener
except the first. The phase listener with no ID is considered the default, although you
assign an ID to all of them if you prefer. Assigning IDs gives you a way to refer to
each phase listener as you specify the properties to configure them.

For example, you might configure two phase listeners that work independently.
Imagine that both of them have an output.directory property where they write results.
You can configure these phase listeners to use different directories, as shown here:

alpha.phase.name = alpha’s classname
bravo.phase.name = bravo’s classname
alpha.output.directory = \alphaDir\
bravo.output.directory = \bravoDir\

PERIODIC PROCESS PROPERTIES
While the Documaker Connector application runs, there may be work that can be
done on a time available or periodically scheduled basis, rather than as part of
transfer and import processing. You can configure these periodic processes
independently of both the source and destination, but configuring these processes is
typically handled when you configure either the source or the destination and the
applicable settings are packaged with them. They are configured with the
periodic.process settings.

Each periodic process can be replicated into multiple copies. Together, these copies
are called a periodic process collection. If you have multiple, different processes to
run, you create multiple collections.

To configure multiple periodic processes, you must assign an ID to each collection
except the first. A collection with no ID is considered the default, although you can
assign an ID to all of them if you prefer. Assigning IDs gives you a way to refer to
each periodic process collection as you specify the properties to configure them.

Note You can include any alphanumeric character in an ID.

Configuring Documaker Connector

59

An example of a periodic process is the one which deletes the source documents after
they are imported using the Documaker source. You may want to leave the
documents in the source location for a period of time so the import process can be
verified as successful. After this time period and long after the import processing was
completed, you can have a periodic process delete the document files. This process
is included in the Documaker source jar file and can be configured as shown here to
run one copy (instance.count=1), forever (repetition.count=0), or every hour
(repetition.wait=3600000):

periodic.process.collection.instance.class =
oracle.documaker.ecmconnector.documakersource.DocumakerSourceProcess

periodic.process.collection.instance.count = 1
periodic.process.repetition.count = 0
periodic.process.repetition.wait = 3600000

Table 6: Periodic Process Properties

Property Description Default

Periodic Process Properties
Property Name Prefix: periodic.process.

.collection.instance.count The number of instances of the periodic process class to be created for the collection. One (1)

.collection.instance.class The name of the Java class to be run by the process collection. none

.repetition.count The number of times the periodic process should execute. Set to zero (0) for infinite
repetitions.

One (1)

.repetition.wait The wait time in milliseconds between iterations of the periodic process. 5000 (five
seconds)

Chapter 3 – Configuring Documaker Connector

60

GENERAL SOURCE CONFIGURATION PROPERTIES
Some properties are expected to be common to multiple sources or destination
implementations. It is, however, up to any particular source or destination as to
whether the property is applicable and how it is specifically implemented. Those
properties are defined and described in this topic, so components that choose to
implement them can share a common definition. The description of each source or
destination which implements these properties should include these properties if
they implement them.

Table 7: Source Component General Configuration Properties

Complete Property Name Description Default

Source Component General Configuration Properties
Property Name Prefix: source.

.import.delete.imported.files It is up to each source component to decide if this property is to be used.

True indicates Documaker Connector should delete the imported files after they have been
successfully imported. This occurs on a time-available basis in a background thread since the
batches can be large. How many the thread does at a time is determined by the
import.delete.imported.files.count setting.

If you set this to False, you must manually delete these files.

True

.import.delete.imported.files.count It is up to each source component to decide if this property is to be used.

Maximum number of files to delete in a single cycle.

50

.persistence.path The directory which contains any result data that could not be updated to the source system.
If the source component cannot relay all the results to the source system (such as the
database) this directory is used to save the data if Documaker Connector is shut down.

none

Configuring Documaker Connector

61

DOCUMAKER SOURCE CONFIGURATION
You can configure Documaker Server, as discussed on page 43, to write records to
an Archive of Record (AOR) database table and write documents such as PDF files
into a disk directory. This source component works with that configuration and
performs these tasks:

• Reads records from the database table

• Passes the metadata and document data to the Documaker Connector destination
you specified

• Posts status updates into the database table to note the progress of the archive
process and then later to mark it as complete

The Documaker source is configured to make a Java DataBase Connectivity (JDBC)
connection to an SQL database table. The Documaker DAL scripts provided in the
banner processing configuration for Documaker write a record into this table for
each document. The Documaker source queries the table, as described in
Configuring Documaker on page 43. Each record’s information is then passed
through Documaker Connector to the configured destination and the destination is
told to import the document. The status result is returned to the Documaker source,
so it can update the database table.

Since you can configure the Connector application to create multiple channels
between the source and destination, the Documaker source can create a pool of
database connections from which each channel can draw a connection as needed.

A connection is used to query the document records and then later to set the status
results after the import is complete. For optimal performance, the number of
channels and database connections should be the same. Most of the Documaker
source configuration properties set the characteristics and behavior of this database
connection pool.

Configure the use of the Documaker source with:

source.name=oracle.documaker.ecmconnector.documakersource.DocumakerS
ource
periodic.process=oracle.documaker.ecmconnector.documakersource.Docum
akerSourceProcess

Note This component is not used with Documaker Document Factory and the Archiver, which
supply their own document source.

Property Name Description Default

Database Connection Properties
Property Name Prefix: source.documaker.

.driver.name The JDBC driver name to use.

.url The JDBC database URL.

.username The JDBC account name used for authentication to the database.

.password The JDBC password used for authentication to the database. See Handling Passwords in
the Property File on page 56 for more information.

Chapter 3 – Configuring Documaker Connector

62

.table Sets the JDBC database table name.

.timeout.seconds The JDBC connection timeout interval, in seconds. 0

.connection.property.name The JDBC custom connection property‘s name. Used for connections to databases which
require connection properties beyond those listed above. Each value is passed to JDBC
paired with each name listed.

none

Database Connection Performance Tuning Properties

.pool.size The number of database connections to create in a pool. 25

.max.active.connections The maximum active connections in the connection pool. 50

.min.idle.connections The minimum idle connections in the connection pool. 15

.max.idle.connections The maximum number of database connections left idle in the pool. Additional idle
connections are closed.

25

.max.wait.seconds The maximum number of seconds to wait for a connection from the connection pool if one
is not immediately available.

30

.max.open.prepared.statements The maximum number of opened prepared SQL statements to keep for the connection
pool.

15

.min.evictable.idle.time.millis The number of milliseconds a connection must be idle before it is cleaned up. 60000 (10
minutes)

.time.between.eviction.runs.millis The number of milliseconds between idle connection cleanup. 300000 (5
minutes)

.tests.per.eviction.run The maximum number of connections tested for idle each iteration. 25

.test.on.borrow Indicates whether to test connection objects when obtaining a connection. True

.test.while.idle Indicates whether to test connection objects while idle. True

.validation.query The query string used to test if a connection is alive. This query is made if the
source.documaker.test.on.borrow property is True. A default string is created if this
property is left empty.

The default refers to the source.documaker.table attribute shown in the Database
Connection Properties table. If, however, a query string is provided, it is used without
modification by the Documaker Source.

select count(1)
from tableName

.max.records The maximum number of records that should be retrieved from the Documaker AOR table
as a group to process.

One (1)

.check.length If True, the source validates the length of the data retrieved for each column before passing
that data to the destination. The length of the data retrieved is checked against the length
of the destination metadata for that column and if the length of the data exceeds the space
available, a LengthCheckException is thrown.

False

.retention.time The number of days an imported record will stay in the AOR table before it is removed. none

.excluded.columns A comma-separated list of columns in the Documaker AOR table that should be hidden
from the destination and not be available as document metadata.

none

.contents.columnname The name of the column in the AOR table that contains the document contents, if the
..include.file.contents property is True.

none

Property Name Description Default

Configuring Documaker Connector

63

Table 8: Documaker Source Configuration Properties

The keys to this configuration are the JDBC settings that link Documaker Connector
to the database table written by Documaker. The driver name is the class name of a
class in the program's CLASSPATH. The Oracle driver, for example, is distributed
in the ojdbc14.jar file and is chosen by configuring:

source.documaker.driver.name=oracle.jdbc.driver.OracleDriver

The driver is directed to the database host with a URL:

source.documaker.url=jdbc:oracle:thin:@localhost:1521:xe

The URL always starts with jdbc: indicating the protocol used. This is followed by
a DBMS-indicating preface, such as

• oracle:

• mysql:

• microsoft:sqlserver:

• db2:

• jtds:sqlserver:

The remainder of the URL format is controlled by the specific DBMS driver. For
Oracle, the remainder is represented by this format:

driver-type:[username/password]@database_specifier

.row.identifier The name of the column in the AOR table that contains the row identifier, if the
..include.file.contents property is True.

none

Property Name Description Default

Parameter Description

driver-type Choose thin, oci, or kprb. This affects the format for the database_specifier property.

username/password (Optional) Documaker Connector expects this information as separate configuration
items:

source.documaker.username=username

source.documaker.password=password

See Handling Passwords in the Property File on page 56 for more information.

database_specifier For thin, you can use a string like this one:

@//host_name:port_number/service_name

This connects to an Oracle XE database running on the same computer as Documaker
Connector using port 1521. You can find more information on the Oracle JDBC product
on the Oracle Technology Network. You can find information for the URL format for your
database in your DBMS documentation or on the Internet.

Chapter 3 – Configuring Documaker Connector

64

Configure the database table name as shown here:

source.documaker.table=tablename

The tablename, as well as column names specified elsewhere, can be case-sensitive
or case-blind depending on the database settings. One list of column names is
provided in the excluded.columns property. These columns are hidden from the
destination and cannot be used as document metadata. Generally, these columns are
used to manage the table content by Documaker or the Documaker Source:

source.documaker.excluded.columns=column, column, ...

The Documaker Source opens a pool of multiple connections to the database. This
pool is shared across all of the instances of the Documaker Source you set up in the
Connector parameter:

channel.count=number_of_instances

The size and behavior of this pool are controlled by several properties. The pool can
grow to a maximum number of connections given by

source.documaker.max.active.connections=max_number_of_
connections

but the pool starts with the number given in this property:

source.documaker.pool.size=initial_number_of_connections

If the pool is at its maximum size, a request for a connection will have to wait. The
longest it will wait before failing and causing an error is set here:

source.documaker.max.wait.seconds=wait_seconds

Once the pool is created and connections begin to be used, additional connections
are opened and added to the idle pool if the number of idle connections drops below
the configured minimum, but only up to the maximum count given above as
source.documaker.max.active.connections. Specify the minimum number of idle
connections here:

source.documaker.min.idle.connections=desired_idle_connections

As connections become idle, they remain in the pool until the number of idle
connections rises above the configured maximum:

source.documaker.max.idle.connections=max_idle_connections

The pool is managed by a periodic process which checks these numbers. This
process is called eviction and runs at a specified interval. At each run, Documaker
Connector checks the idle connections to see if they have been idle long enough to
be eligible for eviction from the pool — closed. That minimum time is also
configurable.

source.documaker.time.between.eviction.runs.millis=eviction_
interval_milliseconds

source.documaker.min.evictable.idle.time.millis=evict_min_idle_
milliseconds

Configuring Documaker Connector

65

While connections are sitting idle in the pool, they can become stale if there is a
network problem or the DBMS chooses to close the connection due to a time-out
setting, for example. The Documaker Connector Source can maintain these
connections and avoid timeout intervals by periodically running test transactions
during eviction processing. Because this can be time-consuming, especially if the
idle pool is large, you can limit it to a few connections per interval, rather than doing
all of them every time:

source.documaker.test.while.idle={true | false}
source.documaker.tests.per.eviction.run=number_of_connections_

to_test

Similarly, before a connection is pulled from the pool to use, it can be tested if this
property is set:

source.documaker.test.on.borrow={true | false}

The transaction that is run to check the connection is usually named SELECT 1
FROM tablename. You can select a different transaction by setting this property:

source.documaker.validation.query=SQL_query

Chapter 3 – Configuring Documaker Connector

66

ORACLE WEBCENTER CONTENT, CORE CAPABILITIES
DESTINATION CONFIGURATION
This destination archives documents into Oracle Universal Content Management/
Content Server. It supports pushing metadata and documents into a flat WebCenter
Content archive via streaming the document content as well as having WebCenter
Content pull the document in from a common disk location. WebCenter Content
folders are not supported. Direct connection to Content Server is supported via the
Remote IDC (RIDC) protocol.

Configure the use of the Oracle WebCenter Content destination with:

destination.name=oracle.documaker.ecmconnector.ucmdestination.
UCMDestination

Table 9: WebCenter Content, Core Capabilities Destination Configuration Properties

WebCenter Content Data Mapping

Use of the destination.ucm.column.map.COLUMNNAME is straightforward. The
placeholder COLUMNNAME is replaced by an AOR table column-name and the
value assigned is the name of the Content Server metadata field. Both names are
unique in their namespaces. Here are some examples:

destination.ucm.column.map.NAME=dDocName
destination.ucm.column.map.AUTHOR=dDocAuthor
destination.ucm.column.map.TITLE=dDocTitle
destination.ucm.column.map.TYPE=dDocType

A single COLUMNNAME can be mapped to multiple WebCenter Content fields by
listing it on multiple lines. It is an error to attempt to map multiple incoming
COLUMNNAME fields to the same WebCenter Content metadata field name.

Property Name Description Default

UCM Destination Properties
Property Name Prefix: destination.ucm.

.username The WebCenter Content/Content Server user name.

.password The WebCenter Content/Content Server password. See Handling Passwords in the Property File on
page 56 for more information.

.connectionstring_# The possible connection strings to try in order. The appended number indicates desirability, with zero
(0) being the most desirable.

.column.map.COLUMNNAME Maps the source column COLUMNNAME to a WebCenter Content field name (property value).

.importmethod Specifies whether to import the source document by file (1) or by stream (0). one (1)

Configuring Documaker Connector

67

ORACLE WEBCENTER CONTENT, IMAGING
DESTINATION CONFIGURATION
Formerly known as the Oracle Imaging and Process Management (IPM) product,
WebCenter Content, Imaging adds another set of capabilities to WebCenter Content,
Core Capabilities (formerly UCM). As such, it has its own set of interfaces which
you must use to import documents into the imaging system, rather than directly into
the underlying core capabilities system.

Configure the IPM destination with:

destination.name =
oracle.documaker.ecmconnector.ipmdestination.IPMDestination

This table shows the configuration properties:

Table 10: WebCenter Content, Imaging Destination Configuration Properties

Note This destination was developed before the product naming change, so it is referred to
as the IPM destination.

Property Name Description Default

IPM Destination Properties
Property Name Prefix: destination.ipm.

.connection.string The string used to reach the proper WebCenter Content, Imaging system. none

.user.name The WebCenter Content, Imaging user name to use to connect. none

.password The WebCenter Content, Imaging password for the connection. none

.application.id The WebCenter Content, Imaging application ID. none

.application.name The WebCenter Content, Imaging application name. none

Chapter 3 – Configuring Documaker Connector

68

OTHER SOURCES AND DESTINATIONS

SOURCES
Use these properties to configure Documaker Connector with other sources.

BatchLoaderSource Properties

The BatchLoaderSource is a sample source component you can use with the
WebCenter Content batch loader script files (although the only action supported is
import). The BatchLoaderSource reads import records from batch files that it gets
from a batch queue file. These records contain the data necessary to import a
document into a destination (specifically, the WebCenter Content, but other
destinations could be used with the proper batch files).

Configure the use of the BatchLoaderSource with:

source.name=oracle.documaker.ecmconnector.batchloadersource.
BatchLoaderSource
periodic.process=oracle.documaker.ecmconnector.batchloadersource.
BatchLoaderProcess

Table 11: BatchLoaderSource Properties

Property Description Default

source.batchloader.batchfile The name of a batch file to be read for import records. This is mainly used when
you are running the Connector in Singleton mode.

none

source.batchloader.batchqueuefile The name of the batch queue file that contains the list of batch files. As the files are
processed, they are removed from this file. New files can be added at any time.
This is mainly used when you are running the Connector is running in Server mode.

none

source.import.delete.imported.files Used as specified. For more information, see Table 5 on page 58. False

source.import.delete.imported.files.count Used as specified. For more information, see Table 5 on page 58. Zero (0)

batchloader.source.max.records The maximum number of records to read from the batch files before processing
starts.

One (1)

source.batchloader.errordirectory The directory where error files will be written for each batch file. The error file
names will be in one of these formats:

<batch file name>.SOURCEERRORS

for errors in the batch file itself (bad data or action) or

<batch file name>.IMPORTERRORS

for errors from the import attempts.

none

source.persistence.path See General Source Configuration Properties on page 60.

Other Sources and Destinations

69

DocumentDataSource Properties

There are no properties for this source component. This component is provided only
for use in custom applications written to use the Connector. It cannot be configured
and used as a stand-alone source component.

Mock Source Properties

Use these properties to set up a mock source component. The mock source lets you
test your implementation without having actual incoming documents. It generates
fake documents and metadata based on its configuration and can also generate errors
to test how Documaker Connector and the destination handle errors.

You can use it to configure and test the destination before your source is ready to
generate test documents. Developers can also use it to generate test data when
developing a destination.

Configure the use of the mock source with:

source.name=oracle.documaker.ecmconnector.mocksource.MockSource

Table 12: Mock Source Properties

Property Description Default

Mock Source Properties
Property Name Prefix: source.mock.

.empty.lists.allowed Determines if the empty document lists can be returned from the acquireDocuments
method call.

False

.author The author property for each mock document data. none

.title The title property for each mock document data. none

.type The document type property for each mock document data. none

.secgroup The security group property for each mock document data. none

.filepath The file path property for each mock document data. none

.import.errors Specifies whether to generate random import errors. False

.import.error.threshold The threshold value above which an import error is generated. 75 (out of 100)

.runcount The number of import cycles to execute before the source closes itself. This is useful
for testing in Singleton mode.

Zero (0), which means no limit.

Chapter 3 – Configuring Documaker Connector

70

DESTINATIONS
Use these properties to configure Documaker Connector with other destinations.

AssureSign Destination Properties

This destination submits/launches documents in the AssureSign system for digital
signatures. You must have an AssureSign account.

Configure the use of the AssureSign Destination with:

destination.name=oracle.documaker.ecmconnector.assuresigndestination
.AssureSignDestination

These values configure the destination component's proxy host values. These may be
needed to access the AssureSign service. If not, they should not be configured.

You must specify either the destination.assuresign.template.identifier or the
destination.assuresign.template.name. The identifier takes precedence. Each
template parameter has a name and a value. An identifier is prepended to this prefix
and also to the destination.assuresign.template.parameter.value property to link the
two. Here is an example:

Note Visit this web site for more information:

http://www.assuresign.com/

Property Description Default

AssureSign Destination Properties
Property Name Prefix: destination.assuresign.

.username The AssureSign account name you want to use to launch documents. none

.contextidentifier The AssureSign account context identifier. none

.javax.net.ssl.trustStore The trust store to use with requests to the AssureSign service. none

.javax.net.ssl.trustStorePassword The password for accessing the trust store that contains the AssureSign certificate. none

Note: The trustStore and trustStorePassword properties override the defaults specified by the JVM running the Connector. You may want to erase
these values all together. To do this, set the value for either or both of these properties to “(erase)”.

You must specify either the destination.assuresign.template.identifier or the destination.assuresign.template.name. The identifier takes precedence

Property Description Default

.https.proxyHost The name of the proxy host necessary to read the AssureSign service. none

.https.proxyPort The port number at which to access the proxy host. none

.https.proxyUser (Optional) the user name for accessing the proxy host. none

.https.proxyPassword (Optional) The password for accessing the proxy host. none

.template.identifier The default template identifier you want to use when launching each document. none

.template.name (Optional) The default template name used to determine the template ID. none

http://www.assuresign.com/

Other Sources and Destinations

71

You can override many of these values in the document data you provide with each
import request.

The system returns these values in the document's data after an import or launch:

Table 13: AssureSign Destination Properties

Property Description Default

.template.parameter.name The prefix defining a template parameter name. none

.template.parameter.value The prefix defining a template parameter value. Here is an example:

destination.assuresign.template.parameter.name.sig1= Signatory
1 Name
destination.assuresign.template.parameter.value.sig1=John Smith

none

.import.method This property specifies the method for acquiring the document's contents. You can enter file or stream. none

.agreement.statement The default agreement statement text you want added to the standard AssureSign agreement text.
Choose from file or stream.

file

.compliance.statement The default compliance statement text you want added to the standard AssureSign compliance text. none

.extended.disclosures The default extended disclosures text you want added to the standard AssureSign extended disclosures
text.

none

Property Description Default

.document.type This property specifies the type of document to be imported, such as PDF, DOC, or DOCX. none

.order.number (Optional) The order number associated with the launched document. none

.document.name The document's name.

.expiration.date (Optional) The expiration date for signatories of the launched document. See the AssureSign
documentation for more information.

none

Property Description Default

.document.identifier The AssureSign identifier for this document. none

.authorization.token The authorization token associated with a particular document in the AssureSign system. none

Chapter 3 – Configuring Documaker Connector

72

File Destination Properties

Use the File destination to write output documents into a file system directory. By
default, the system creates subdirectories in the specified base directory based on
each batch identifier.

Optionally, you can have the system write separate side-car files, which contain
some or all of the metadata for each document, to a destination directory you specify.
The metadata files are requested by specifying a pattern for their names.

The default output file names and the optional side-car metadata file content can be
formatted and controlled using a simple template tag-substitution language. The
template tag values are drawn from each document's metadata and the batch
identifier (BATCHID).

Once the system writes a document into the destination directory, its new file name
is added to the document's metadata as the value of this name:

destination.file.generated.file.name

If you specified a side-car metadata file, its name is added using this name:

destination.file.generated.side.file.name

Using this destination as an intermediate stop can be a convenient aide in
constructing a bridge to another destination that is not directly supported. Stand-
alone, possibly custom, import programs can pick up the files and process them into
an archive system.

Configure the use of the File destination with:

destination.name=oracle.documaker.ecmconnector.filedestination.FileD
estination

Note The File destination includes functionality previously in the FilePlus destination.

Note See Using templates on page 73 for more information.

Property Description Default

File Destination Properties
Property Name Prefix: destination.file.

.base.directory The root directory where the output document files will be placed. The system creates this
directory if it does not exist.

none

.side.base.directory The root directory where the metadata files will be placed. The system creates this directory if it
does not exist.

Same as
base.directory

.name.pattern The pattern for the destination file name. This pattern can use the document metadata items as
well as the batch ID.

If this property is not provided, the source document name is used.

source document
name

.side.name.pattern (Optional) The metadata file name pattern. If you do not want the metadata file included in the
output, leave this property empty. If this property is provided, you must also provide the .template
or .template.path.

none

.subdirectory.pattern The pattern for the destination file subdirectory to be used or created under the .base.directory
location.

${BATCHID}

Other Sources and Destinations

73

Table 14: File Destination Properties

Using templates

The templates referenced in the File Destination Properties use simple tag
substitutions. You can use the value of any file metadata property in a template
expression by enclosing the property name in braces and preceding it with a dollar
sign. This creates a tag such as the one shown here:

${name}

This tag is then replaced with the value of the specified property for the document.

All incoming property values are converted to strings of characters when referenced
in a tag. The substr function provides a way to use only a portion of a value string.
The substr function and parameters replace the property name in the tag and are
written this way:

${substr(name, start[,end])}

For example, if an incoming property name is USER_ID and the value is user:John
Doe, then the following tag produces the value John Doe:

${substr(USER_ID,5)}

Likewise, this tag becomes John when processed:

${substr(USER_ID,5,9)}

Date(time) values retain their type as a date when carried in parameters. When
referenced as a template tag, however, the date is converted to a string. The default
format of this conversion is influenced by the locale and date settings on the system
running Documaker Connector.

.side.subdirectory.pattern The pattern for the metadata file subdirectory to be used or created under the .side.base.directory
location.

${BATCHID}

.template.path The path to a template file for the side metadata file to be written with each output document. none

.template Used if the .template.path property is unspecified. This is the metadata file contents template as
a single string.

none

Property Description Default

Parameter Description

name The name of the parameter to substring.

start The zero-based position of the first character to use.

end The optional one-based position of the last character to use. The default is the end of the value.

Chapter 3 – Configuring Documaker Connector

74

Use this syntax to control the date and time format:

${name?string.dateformat[_timeformat]}

How everything looks exactly is affected by your local system settings. Instead of
using the default formats, you can specify the exact format using the Java date format
syntax for pattern:

${name?string(pattern)}

Here are some examples:

${myDate?string("yyyy-MM-dd HH:mm:ss zzzz")}
2012-04-27 12:34:56 Eastern Daylight Time

${myDate?string("EEE, MMM d, ''yy")}
Fri Apr 27, '12

${myDate?string("EEEE, MMMM dd, yyyy, hh:mm a '('zzz')'")}
Friday, April 27, 2012, 12:34 PM (EDT)

Documaker Connector uses an open source library called FreeMarker to provide
much of the template functionality. For more information, see the FreeMarker
documentation located at this web site:

http://freemarker.sourceforge.net/docs/ref_builtins_date.html

Keep in mind you can only use the capabilities of the library that are supported by
our implementation within Documaker Connector. For example, parameter values
are all strings or dates. All other types are converted to strings.

Parameter Description

name The name of the date parameter to format

xxxformat Specify one of these options: short, medium, long, full, short_long, or long_short.

short : 4/27/12 12:34 PM

medium: Apr 27, 2012 12:34:56 PM

long: April 27, 2012 12:34:56 PM EDT

full: Friday, April 27, 2012 12:34:56 PM EDT

short_long: 4/27/12 12:34:56 PM EDT

long_short: April 27, 2012 12:34 PM

http://freemarker.sourceforge.net/docs/ref_builtins_date.html

Other Sources and Destinations

75

FTP Destination Properties

You can use this destination component in a limited production environment or for
debugging purposes. The FTP Destination configures an FTP site as the document
destination. Documents are copied by batch to the receiving site as an archive.

Configure the use of the FTP Destination with:

destination.name=oracle.documaker.ecmconnector.ftpdestination.
FTPDestination

Table 15: FTP Destination Properties

Mock Destination Properties

Use these properties to set up a mock destination. A mock destination simply accepts
the incoming documents and discards them. Use this destination to test your source
configuration with test documents before your destination is ready to receive
documents or to test without cluttering your destination system with test documents.

Developers building a custom source can use this destination to discard test data.
You can also set this destination to generate random errors to test up-stream error
processing while developing a custom source.

Configure the use of the Mock Destination with:

destination.name=oracle.documaker.ecmconnector.mockdestination.
MockDestination

Table 16: Mock Destination Properties

Property Description Default

FTP Destination Properties
Property Name Prefix: destination.ftp.

.server The FTP server name. none

.username The user name needed to log onto the FTP server. none

.password The password needed to log into the FTP server. You can encrypt the password using the
~ENCRYPT function.

none

.base.directory The root directory on the FTP server where files should be copied. none

Property Description Default

Mock Destination Properties
Property Name Prefix: destination.mock.

.import.errors Specifies whether to generate random import errors. False

.import.error.threshold The threshold value above which an import error should be generated. 75 (out of 100)

Chapter 3 – Configuring Documaker Connector

76

77

Chapter 4

Running Documaker Connector

This chapter describes how to run Documaker Connector. It covers these topics:

• Overview on page 78

• Processing Data on page 80

• Controlling a Connector Server Instance on page 81

• Using a Script to Run Documaker Connector on page 82

Chapter 4 – Running Documaker Connector

78

OVERVIEW

You can run Documaker Connector in these different modes:

• (Singleton mode) As a batch-import utility application which processes a set of
incoming documents and then terminates when there is no more data to process.

• (Server mode) As a continuous batch-import daemon or service application
which periodically polls the source for new incoming data, processes any
available data and then sleeps until the next polling interval. This can be running
as a Windows Service or as a UNIX daemon or as some other faceless
background task.

• (Commander mode) As a controller application sending commands to another
copy of the program running in the server mode.

These modes are described in the following topics. Command line execution is
generally done with a script or batch file to lessen the complexity of the Java
command line. The basic format is:

java [–cp classpath] [systemparams] mainclass [parameters]

Item Description

classpath classpath is installation dependent. Generally, it includes three sets of Java JAR files in a
delimited list (using a semicolon on Windows and a colon elsewhere as the delimiter):

Here are the general Java run-time support classes:

log4j-1.2.15.jar
commons-beanutils.jar
commons-dbcp-1.2.2.jar
commons-pool-1.3.jar
ojdbc14.jar
DdlUtils-1.0.jar
commons-lang-2.3.jar
commons-collections-3.2.jar
Jakarta-oro-2.0.8.jar

Here are the support classes for the core application, including the configurable sources and
destinations:

Connector.jar
DocumakerSource.jar
UCMDestination.jar

Here are the support classes for the configurable sources and destinations:

commons-codec.jar
commons-httpclient-3.1.jar
commons-logging-1.1.1.jar
oracle.ucm.ridc-11.1.1.jar

systemparams Parameters passed directly to the JVM.

mainclass mainclass controls which version of the program is run. The possible values for mainclass
correspond to the three modes of execution listed above. It must be one of:

• oracle.documaker.ecmconnector.applications.Singleton
• oracle.documaker.ecmconnector.applications.Server
• oracle.documaker.ecmconnector.applications.Commander

parameters Application-defined information described below, that depends on the specific mainclass
chosen.

Overview

79

UNDERSTANDING THE MODES OF OPERATION
As described above, Documaker Connector has three modes of operation. The mode
is selected based on the mainclass specified on the command line:

• oracle.documaker.ecmconnector.applications.Singleton

Batch or one-shot mode – In this mode, Documaker Connector creates the
configured number of Documaker Source instances, calls each one once to fetch
and process a single batch of transactions (if any are available) and then
terminates. No socket is opened for commands and there is no subsequent
polling of the Documaker Source instances. In the case of the Documaker
source, this allows for a single pass through any records in the database table for
each configured source instance.

This is typically used for a non-persistent, static document source, rather than
with the Oracle Documaker source. For example, you could use this to read a
named input text file. Such a source does not continually receive new
documents, so once the configured source of documents (such as the single
named input file) is exhausted, there is no need for Documaker Connector to
continue to run. This would function similarly to the WebCenter Content
BatchLoader application.

• oracle.documaker.ecmconnector.applications.Server

Server or Normal continuous mode – Documaker Connector runs until it
receives a shutdown command, polling the source instances for documents to
process. To receive control commands, Documaker Connector opens a TCP/IP
socket and listens for incoming messages. The port number can be controlled by
a configuration parameter and a password can be established which must be
supplied along with any commands.

• oracle.documaker.ecmconnector.applications.Commander

Command mode – Documaker Connector can also be run solely to send a
command to another copy of Documaker Connector running in Server mode.
You specify the command as a parameter on the command line. When run in this
mode, Documaker Connector sends the command to the designated host name
and port with the supplied password, if any, and immediately terminates.

Chapter 4 – Running Documaker Connector

80

PROCESSING DATA

For the Singleton and Server modes, you can use the optional systemparams
argument to point the program to a configuration file. In this case, the parameters
argument is not used.

You can define the config symbol with the full or relative path to the configuration
file. The command lines then look like this:

java [–cp classpath] [-Dconfig=configpath] mainclass

where mainclass is the Singleton or Server class reference and classpath provides all
the necessary support and program classes. If you omit –Dconfig=configpath, the
program looks for a for a file called connector.properties in the execution directory.

The parameters argument is not used for these cases. All configuration parameters
come from the config properties file.

Controlling a Connector Server Instance

81

CONTROLLING A CONNECTOR SERVER INSTANCE

For the Commander mode, there are no systemparams. The command line looks like
this:

java [–cp classpath] oracle.docu…tions.Commander parameters

mainclass is replaced by the
oracle.documaker.ecmconnector.applications.Commander class reference.

Because the Commander mode uses far fewer support classes than actually running
a connector workload, a much simpler classpath provides all the necessary support
classes. The actual classpath is installation dependent. For the Commander mode, it
only needs these JAR files:

• log4j-1.2.15.jar

• connector.jar

The Commander mode opens a connection to another copy of the connector
application (the target copy) which is already running, presumably in a faceless
background mode on the same or another host computer.

It then sends a command to the other program copy. The only available command at
this time is the shutdown command, which stops the other program’s execution in an
orderly way. You specify the location of the other program copy in the command line
parameters. Here is a description of the parameters:

Here is an example of a Commander mode command line on Windows:

java -cp log4j-1.2.15.jar;Connector.jar
oracle.documaker.ecmconnector.Commander –host 127.0.0.1 –port 23232 -
pword boogie –command shutdown

Since this command line uses defaults, an equivalent command would be to just
provide a password:

java -cp log4j-1.2.15.jar;Connector.jar
oracle.documaker.ecmconnector.Commander -pword boogie

These commands reach out to another copy of the application running in Server
mode on the same machine with the default port number and shut it down.

Parameter Description

-host This is the host IP address or DNS name of the computer running the target copy. The default
is localhost.

-port This is the port on which the target program is configured to listen for commands. The default
is 23232.

-pword This is a password configured on the target required to allow command input. There is no
default.

-command This is the command to send. Only the shutdown command is currently implemented, which is
also the default value.

Chapter 4 – Running Documaker Connector

82

USING A SCRIPT TO RUN DOCUMAKER CONNECTOR

Included in the installations are scripts you can use to start and stop Documaker
Connector via a command prompt window. The name of the script varies, depending
on the platform.

These scripts work the same way and have the same parameters. Here is the syntax:

ecmconnector (parameters)

The parameters include:

If action type is either start or runonce, these run parameters are required:

The options for source and destination are shown here:

For this platform Use

Windows ecmconnector.bat

UNIX ecmconnector.sh

Parameter Description

-libdir path (Optional) Sets the Java classpath prefix for where to find all the Documaker Connector JAR
files. The default path is ./lib

-action (type] Specifies the type of action to perform on this run. You must choose one of these options: start,
runonce, or stop.

start (run parameters) Runs the ECMConnector in server mode.

runonce (run parameters) Runs the ECMConnector in singleton mode.

stop (terminate parameters) Terminates a currently running ECMConnector.

-source (source) Specifies the document source component.

-destination (destination) Specifies the destination component.

Source Description Destination Description

dmkr DocumakerSource ucm UCMDestination

batch BatchLoaderSource file FileDestination

mock MockSource ftp FTPDestination

mock MockDestination

Using a Script to Run Documaker Connector

83

If action type is stop, all of these are optional terminate parameters:

Here are some examples:

ecmconnector.bat -action start -source dmkr -destination ucm
ecmconnector.bat -action start -source mock -destination mock -libdir
ecmconnector.bat -action stop -pword please -libdir ./mylibdir
ecmconnector.bat -action stop -libdir

Parameter Description

-pword password (Optional) Specifies the password needed to access the running instance.
The default is no password.

-hostname server_host (Optional) Specifies the name of the server where the running instance is.
The default is localhost.

-port port (Optional) Specifies the port number at which the running instance accepts
commands. The default is 23232.

Note The usage is ecmconnector.bat -action [start/runonce/stop] -source
[dmkr/batch/mock] -destination [ucm/file/ftp/mock]

Chapter 4 – Running Documaker Connector

84

85

Appendix A

Sample Applications and Files

This appendix provides examples of the Windows Service Applications and sample
setup files:

• Windows Service Application on page 86

• Example XML Extract File on page 88

• Example Trn_Fields INI Settings on page 92

• Example TRNDFDFL.DFD File on page 93

• Example RCBDFDFL.DFD File on page 99

• Using DAL to Output to a Database Table on page 100

Appendix A – Sample Applications and Files

86

WINDOWS SERVICE APPLICATION

The dm_connector_svc.exe service application is a launcher/wrapper for
Documaker Connector. This application is set up to run as a Windows Service. It can
perform the service installation itself or uninstall the service by being run from the
command line. If run from the command line, include one of these parameters:

Here is an example:

dm_connector_svc.exe install

If the program is run without parameters, it must run as a Windows Service.

The dm_connector_svc.properties File

The application looks for a dm_connector_svc.properties file and uses the contents
to load and run a java application as a service. The service configuration is read from
the file:

dm_connector_svc.properties

The properties in this file and the default values provided in the case of Documaker
Connector are shown in this table:

Table 17: Connector Service Wrapper Properties

install Installs the Windows Service and terminates.

uninstall Removes the Windows Service and terminates.

console Runs the java application as a console application, for troubleshooting purposes.

Property Name Description

Oracle Documaker Connector Service Wrapper Properties
Property Name Prefix: service.

.debugging Set to one (1) to enable debug-level logging to the file dm_connector_svc-service.log.

.jvm.args.length Count of service.jvm.args.# arguments.

The properties starting with the service.jvm.args prefix define the parameters passed to the JVM when it is created. These
are not the parameters passed to the main() function in Java (see the service.main prefix items).

.jvm.args.1 First argument to the JVM.

.jvm.args.2 Second argument to the JVM.

.startup.class Path to the Java class which contains the main() function called to start the Java application.

.path Directories prepended to the PATH for the service session.

The main use of this is to define the JVM used to run the program.

.main.args.length Count of service.main.args.# arguments.

The properties starting with the service.main prefix define the parameters that are passed to the Java main function.

.main.args.1 First argument to the main Java class.

Windows Service Application

87

Running Multiple Services

You can set up multiple copies of the executable service program,
dm_connector_svc.exe, in the same directory under different names with separate
properties file names and they will not interfere with one another. The different
copies can run the same or different Java programs, but in this case you would set
them to run Documaker Connector. You can use this to set up multiple copies of
Documaker Connector running as services for different purposes and with different
configurations.

To set up multiple copies, duplicate both the executable service program,
dm_connector_svc.exe, and the matching properties file,
dm_connector_svc.properties.

Rename the duplicate copies with any name you like, but the two root file names,
such as dm_connector_svc, must be identical. For example, name the duplicate
copies myservice.exe and myservice.properties. Inside the copied properties file,
(myservice.properties), change the Windows Service name and description which
will be registered when the service is installed:

service.name=My Dmkr Connector
service.description=My second copy of the Documaker Connector

Also set the name of the Connector properties file that contains your configuration
as the second argument to the program:

service.jvm.args.2=-Dconfig\=dmkr-ucm-conn.properties

The \= (backslash and equal sign) is required to preserve the = (equal sign) when the
file is processed.

Appendix A – Sample Applications and Files

88

EXAMPLE XML EXTRACT FILE

This example shows you how to use TRN_FIELDS INI control group to map index
data in Documaker. The example includes the following XML extract file plus the
following setup files:

• Example Trn_Fields INI Settings on page 92

• Example TRNDFDFL.DFD File on page 93

• Example RCBDFDFL.DFD File on page 99

• Using DAL to Output to a Database Table on page 100

This example XML file supplies the input variable data to Documaker. This example
contains two transactions, each of which generates one or more output documents.
Each transaction is an XML document and each starts with the <?xml...> header
record indicated in bold.

The XML is concatenated into a stream into Documaker. In this example, the italic
text is mapped data which is used as metadata in the destination system.

<?xml version="1.0" encoding="UTF-8"?>
<InterfaceRequest>

<Header>
<Key1>DOCCDEMO</Key1>
<Key2>LIFE</Key2>
<KeyID>67-875747</KeyID>
<Run_Date>01-OCT-2008 04:12:58 PM</Run_Date>
<TRANCODE>NB</TRANCODE>
<DOCTYPE>LIFE</DOCTYPE>
<PRODUCT>Foundation Life</PRODUCT>
<SECGROUP>Archived</SECGROUP>
<AUTHOR>Steven Doe</AUTHOR>
<CABINET>CAB1</CABINET>

</Header>
<SystemRequest>

<MessageID>1236474</MessageID>
<Target>EPOLICY</Target>
<Target>

<GO>35235</GO>
<mode>print</mode>

</Target>
<CMD>Print</CMD>

</SystemRequest>
<Data>

<POLICY_NUMBER>67-875747</POLICY_NUMBER>
<POLICY_ISSUE_DATE>01-OCT-2008 04:12:58 PM</

POLICY_ISSUE_DATE>
<EFFDATE>01-NOV-2008 12:00:00.00 AM</EFFDATE>
<EXPDATE>01-NOV-2009 12:00:00.00 AM</EXPDATE>
<CLASS_OF_RISK>A</CLASS_OF_RISK>
<STATE_CODE>TX</STATE_CODE>
<PAYEE>Carl Doe</PAYEE>
<CUSTID>cjd01</CUSTID>
<INSURED>

<PREFIX>Mr.</PREFIX>
<FNAME>Carl</FNAME>
<MNAME></MNAME>
<LNAME>Doe</LNAME>
<SEX>M</SEX>
<ADDRESS1>2727 Paces Ferry Road</ADDRESS1>
<ADDRESS2>Apartment 900</ADDRESS2>

Example XML Extract File

89

<CITY>Atlanta</CITY>
<STATE>GA</STATE>
<ZIP>30339</ZIP>
<BIRTHDATE>15-JUL-1980</BIRTHDATE>
<INSSSAN>123456789</INSSSAN>
<DAYPHONE>2148762789778</DAYPHONE>
<NIGHTPHONE>2148974464</NIGHTPHONE>
<BIRTHCITY>Anaheim</BIRTHCITY>
<BIRTHSTATE>CA</BIRTHSTATE>
<DRIVERSTATE>FL</DRIVERSTATE>
<DRIVERLICENSE>987987YIU</DRIVERLICENSE>

</INSURED>
<AGENT>

<PREFIX>Mr.</PREFIX>
<FNAME>John</FNAME>
<LNAME>Doe</LNAME>
<ADDRESS1>1100 Abernathy Road</ADDRESS1>
<CITY>Atlanta</CITY>
<STATE>GA</STATE>
<ZIP>30328</ZIP>
<EMAIL>johndoe@example.com</EMAIL>
<PHONE>2148582200</PHONE>
<AgentNo>R98798</AgentNo>
<CustServPhone>8882637436</CustServPhone>
<CustServOpenTime>8:00</CustServOpenTime>
<CustServCloseTime>5:00</CustServCloseTime>
<CustServTimeZone>eastern</CustServTimeZone>

</AGENT>
<POLICY_DATA>

<PolicyValue>10000000</PolicyValue>
<PolicyIssueDate>01032005</PolicyIssueDate>
<PolicyEndDate>01032025</PolicyEndDate>
<IssueState>GA</IssueState>
<CostofInsurance>99200</CostofInsurance>
<CostofInsuranceRate>992</CostofInsuranceRate>
<CostofInsurance_Option>Level</CostofInsurance_Option>
<Smoker>N</Smoker>
<DeathBenefitType>Increasing</DeathBenefitType>
<AnnualPremium>101900</AnnualPremium>
<PremiumFrequency>Monthly</PremiumFrequency>
<PremiumAmount>8492</PremiumAmount>
<FlatExtra>0</FlatExtra>
<AdminCharges>2700</AdminCharges>
<MultipleExtra>0</MultipleExtra>

</POLICY_DATA>
<BENEFICIARY>

<Name>Mary Doe</Name>
<Relationship>Wife</Relationship>

</BENEFICIARY>
<BENEFICIARY>

<Name>Holly Doe</Name>
<Relationship>Daughter</Relationship>

</BENEFICIARY>
</Data>

</InterfaceRequest>
<?xml version="1.0" encoding="UTF-8"?>
<InterfaceRequest>

<Header>
<Key1>DOCCDEMO</Key1>
<Key2>LIFE</Key2>
<KeyID>99-456789</KeyID>
<Run_Date>12-OCT-2008 10:31:12.01 AM</Run_Date>
<TRANCODE>NB</TRANCODE>
<DOCTYPE>LIFE</DOCTYPE>

Appendix A – Sample Applications and Files

90

<PRODUCT>Foundation Life</PRODUCT>
<SECGROUP>Archived</SECGROUP>
<AUTHOR>Carl Doe</AUTHOR>
<CABINET>CAB1</CABINET>

</Header>
<SystemRequest>

<MessageID>1236474</MessageID>
<Target>EPOLICY</Target>
<Target>

<GO>35235</GO>
<mode>print</mode>

</Target>
<CMD>Print</CMD>

</SystemRequest>
<Data>

<POLICY_NUMBER>99-456789</POLICY_NUMBER>
<POLICY_ISSUE_DATE>10-OCT-2008 10:31:12.01 AM</

POLICY_ISSUE_DATE>
<EFFDATE>01-NOV-2008 12:00:00.01 AM</EFFDATE>
<EXPDATE>01-NOV-2009 12:00:00.01 AM</EXPDATE>
<CLASS_OF_RISK>A</CLASS_OF_RISK>
<STATE_CODE>GA</STATE_CODE>
<PAYEE>Steven Doe</PAYEE>
<CUSTID>ssdoe</CUSTID>
<INSURED>

<PREFIX>Mr.</PREFIX>
<FNAME>Steven</FNAME>
<MNAME>S</MNAME>
<LNAME>Doe</LNAME>
<SEX>M</SEX>
<ADDRESS1>2727 Paces Ferry Road</ADDRESS1>
<ADDRESS2>Apartment 900</ADDRESS2>
<CITY>Atlanta</CITY>
<STATE>GA</STATE>
<ZIP>30339</ZIP>
<BIRTHDATE>14-FEB-1970</BIRTHDATE>
<INSSSAN>012345678</INSSSAN>
<DAYPHONE>2148762789778</DAYPHONE>
<NIGHTPHONE>2148974464</NIGHTPHONE>
<BIRTHCITY>Pittsburg</BIRTHCITY>
<BIRTHSTATE>PN</BIRTHSTATE>
<DRIVERSTATE>GA</DRIVERSTATE>
<DRIVERLICENSE>987987YIU</DRIVERLICENSE>

</INSURED>
<AGENT>

<PREFIX>Mr.</PREFIX>
<FNAME>John</FNAME>
<LNAME>Doe</LNAME>
<ADDRESS1>1100 Abernathy Road</ADDRESS1>
<CITY>Atlanta</CITY>
<STATE>GA</STATE>
<ZIP>30328</ZIP>
<EMAIL>johndoe@example.com</EMAIL>
<PHONE>2148582200</PHONE>
<AgentNo>R98798</AgentNo>
<CustServPhone>8882637436</CustServPhone>
<CustServOpenTime>8:00</CustServOpenTime>
<CustServCloseTime>5:00</CustServCloseTime>
<CustServTimeZone>eastern</CustServTimeZone>

</AGENT>
<POLICY_DATA>

<PolicyValue>10000000</PolicyValue>
<PolicyIssueDate>01032005</PolicyIssueDate>
<PolicyEndDate>01032025</PolicyEndDate>

Example XML Extract File

91

<IssueState>GA</IssueState>
<CostofInsurance>99200</CostofInsurance>
<CostofInsuranceRate>992</CostofInsuranceRate>
<CostofInsurance_Option>Level</CostofInsurance_Option>
<Smoker>N</Smoker>
<DeathBenefitType>Increasing</DeathBenefitType>
<AnnualPremium>101900</AnnualPremium>
<PremiumFrequency>Monthly</PremiumFrequency>
<PremiumAmount>8492</PremiumAmount>
<FlatExtra>0</FlatExtra>
<AdminCharges>2700</AdminCharges>
<MultipleExtra>0</MultipleExtra>

</POLICY_DATA>
<BENEFICIARY>

<Name>Mary Doe</Name>
<Relationship>Wife</Relationship>

</BENEFICIARY>
<BENEFICIARY>

<Name>Anna Doe</Name>
<Relationship>Daughter</Relationship>

</BENEFICIARY>
</Data>

</InterfaceRequest>

Appendix A – Sample Applications and Files

92

EXAMPLE TRN_FIELDS INI SETTINGS

The Trn_Fields control group in the FSISYS.INI or FSIUSER.INI file defines new
GVM variable names for the subset of data fields in the example XML extract file
that you want to reference and use for destination system metadata — this file creates
new simple names for the fields italicized in the Example XML Extract File on page
88.

; XPATH to data elements in XML import file listed above,
; stores data in named GVMs
;
; GVM Name = XPATH to XML input file field for value
; ----------- ---
< Trn_Fields >

Key1 = !/InterfaceRequest/Header/Key1
Key2 = !/InterfaceRequest/Header/Key2
KeyID = !/InterfaceRequest/Header/KeyID
TranCode = !/InterfaceRequest/Header/TRANCODE
RunDate = !/InterfaceRequest/Header/Run_Date
Product = !/InterfaceRequest/Header/PRODUCT
SecGroup = !/InterfaceRequest/Header/SECGROUP
DocType = !/InterfaceRequest/Header/DOCTYPE
Cabinet = !/InterfaceRequest/Header/CABINET
Author = !/InterfaceRequest/Header/AUTHOR
CurrUser = !/InterfaceRequest/Header/CURRUSER
CustID = !/InterfaceRequest/Header/CUSTID
PolNum = !/InterfaceRequest/Data/POLICY_NUMBER
InsFName = !/InterfaceRequest/Data/INSURED/FNAME
InsLName = !/InterfaceRequest/Data/INSURED/LNAME
InsAdd1 = !/InterfaceRequest/Data/INSURED/ADDRESS1
InsAdd2 = !/InterfaceRequest/Data/INSURED/ADDRESS2
InsCity = !/InterfaceRequest/Data/INSURED/CITY
InsState = !/InterfaceRequest/Data/INSURED/STATE
InsZIP = !/InterfaceRequest/Data/INSURED/ZIP
InsPhone = !/InterfaceRequest/Data/INSURED/DAYPHONE
InsDOB = !/InterfaceRequest/Data/INSURED/BIRTHDATE
WIPReason = !/InterfaceRequest/Data/WIPREASON
Index01 = !/InterfaceRequest/Data/AGENT/AgentNo
Index02 = !/InterfaceRequest/Data/EFFDATE
Index03 = !/InterfaceRequest/Data/EXPDATE
Index04 = !/InterfaceRequest/Data/AGENT/AgentNo
Index05 = !/InterfaceRequest/Data/EFFDATE
Index06 = !/InterfaceRequest/Data/EXPDATE
Index07 = !/InterfaceRequest/Data/AGENT/AgentNo
Index08 = !/InterfaceRequest/Data/EFFDATE
Index09 = !/InterfaceRequest/Data/EXPDATE
Index10 = !/InterfaceRequest/Data/AGENT/AgentNo
Index11 = !/InterfaceRequest/Data/EFFDATE
Index12 = !/InterfaceRequest/Data/EXPDATE
AgencyID = !/InterfaceRequest/Data/AGENT/AgentNo
EFFDate = !/InterfaceRequest/Data/EFFDATE
EXPDate = !/InterfaceRequest/Data/EXPDATE

Example TRNDFDFL.DFD File

93

EXAMPLE TRNDFDFL.DFD FILE

With the fields mapped into GVM variables, the attributes of each new GVM
variable are described to Documaker using the Fields and Field:XXX control groups.
The GVM variables defined in the Trn_Fields control group are shown in italics.

< Fields >
FieldName = PKG_Offset
FieldName = TRN_Offset
FieldName = X_Offset
FieldName = NA_Offset
FieldName = POL_Offset
FieldName = SentToManualBatch
FieldName = KEY1
FieldName = KEY2
FieldName = KEYID
FieldName = TRANCODE
FieldName = RUNDATE
FieldName = CURRUSER
FieldName = AGENCYID
FieldName = EFFDATE
FieldName = EXPDATE
FieldName = PRODUCT
FieldName = SECGROUP
FieldName = AUTHOR
FieldName = CABINET
FieldName = DOCTYPE
FieldName = ONE
FieldName = TWO
FieldName = CUSTID
FieldName = POLNUM
FieldName = INSFNAME
FieldName = INSLNAME
FieldName = INSADD1
FieldName = INSADD2
FieldName = INSCITY
FieldName = INSSTATE
FieldName = INSZIP
FieldName = INSPHONE
FieldName = INSDOB
FieldName = WIPREASON
FieldName = INDEX01
FieldName = INDEX02
FieldName = INDEX03
FieldName = INDEX04
FieldName = INDEX05
FieldName = INDEX06
FieldName = INDEX07
FieldName = INDEX08
FieldName = INDEX09
FieldName = INDEX10
FieldName = INDEX11
FieldName = INDEX12

< Field:PKG_Offset >
INT_Type = LONG
EXT_Type = CHAR_ARRAY_NO_NULL_TERM
EXT_Length= 10
Key = No
Required = No

< Field:TRN_Offset >
Int_Type = LONG
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length = 10

Appendix A – Sample Applications and Files

94

Key = No
Required = No

< Field:X_Offset >
Int_Type = LONG
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 10
Key = No
Required = No

< Field:NA_Offset >
Int_Type = LONG
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 10
Key = No
Required = No

< Field:POL_Offset >
Int_Type = LONG
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 10
Key = No
Required = No

< Field:SentToManualBatch >
Int_Type = CHAR_ARRAY
Int_Length= 3
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 2
Key = No
Required = No

< Field:KEY1 >
Int_Type = CHAR_ARRAY
Int_Length= 101
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 100
Key = Yes
Required = Yes

< Field:KEY2 >
Int_Type = CHAR_ARRAY
Int_Length= 101
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 100
Key = Yes
Required = Yes

< Field:KEYID >
Int_Type = CHAR_ARRAY
Int_Length= 101
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 100
Key = No
Required = No

< Field:TRANCODE >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:RUNDATE >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:CURRUSER >
Int_Type = CHAR_ARRAY

Example TRNDFDFL.DFD File

95

Int_Length= 101
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 100
Key = No
Required = No

< Field:AGENCYID >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:EFFDATE >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:EXPDATE >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:PRODUCT >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:SECGROUP >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:AUTHOR >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:CABINET >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:DOCTYPE >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:ONE >
Int_Type = CHAR_ARRAY
Int_Length= 11

Appendix A – Sample Applications and Files

96

Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 10
Key = Yes
Required = Yes

< Field:TWO >
Int_Type = CHAR_ARRAY
Int_Length= 11
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 10
Key = Yes
Required = Yes

< Field:CUSTID >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:POLNUM >
Int_Type = CHAR_ARRAY
Int_Length= 101
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 100
Key = No
Required = No

< Field:INSFNAME >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INSLNAME >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INSADD1 >
Int_Type = CHAR_ARRAY
Int_Length= 101
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 100
Key = No
Required = No

< Field:INSADD2 >
Int_Type = CHAR_ARRAY
Int_Length= 101
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 100
Key = No
Required = No

< Field:INSCITY >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INSSTATE >
Int_Type = CHAR_ARRAY
Int_Length= 4
Ext_Type = CHAR_ARRAY_NO_NULL_TERM

Example TRNDFDFL.DFD File

97

Ext_Length= 3
Key = No
Required = No

< Field:INSZIP >
Int_Type = CHAR_ARRAY
Int_Length= 12
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 11
Key = No
Required = No

< Field:INSPHONE >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INSDOB >
Int_Type = CHAR_ARRAY
Int_Length = 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:WIPREASON >
Int_Type = CHAR_ARRAY
Int_Length= 26
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 25
Key = No
Required = No

< Field:INDEX01 >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INDEX02 >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INDEX03 >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INDEX04 >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INDEX05 >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30

Appendix A – Sample Applications and Files

98

Key = No
Required = No

< Field:INDEX06 >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INDEX07 >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INDEX08 >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INDEX09 >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INDEX10 >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INDEX11 >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

< Field:INDEX12 >
Int_Type = CHAR_ARRAY
Int_Length= 31
Ext_Type = CHAR_ARRAY_NO_NULL_TERM
Ext_Length= 30
Key = No
Required = No

Example RCBDFDFL.DFD File

99

EXAMPLE RCBDFDFL.DFD FILE

For this example, the RCBDFDFL.DFD file is identical to the TRNDFDFL.DFD
file.

Appendix A – Sample Applications and Files

100

USING DAL TO OUTPUT TO A DATABASE TABLE

Here is an example of the DDL statements you could use to create a database table
for use by Documaker Server and Documaker Connector. Documaker DAL writes
to this table and Documaker Connector reads the records to determine which
incoming documents to process.

CREATE TABLE "ORACLE"."AOR" (
"JOBID" VARCHAR2(50) NOT NULL,
"TRANID" VARCHAR2(50) NOT NULL,
"BATCHID" VARCHAR2(50) NOT NULL,
"DOCID" VARCHAR2(50) NOT NULL,
"NAME" VARCHAR2(30),
"TYPE" VARCHAR2(30),
"TITLE" VARCHAR2(255),
"AUTHOR" VARCHAR2(50),
"SECGROUP" VARCHAR2(30),
"CABINET" VARCHAR2(30),
"PFILE" VARCHAR2(255),
"STATUSCD" INTEGER DEFAULT 0 NOT NULL,
"STARTTIME" TIMESTAMP,
"ENDTIME" TIMESTAMP,
"RESULTDESC" VARCHAR2(2000),
"RETENTION" TIMESTAMP,
"CATEGORY" VARCHAR2(30),
"KEY1" VARCHAR2(100),
"KEY2" VARCHAR2(100),
"KEYID" VARCHAR2(100),
"TRANCODE" VARCHAR2(30),
"RUNDATE" TIMESTAMP,
"CURRUSER" VARCHAR2(30),
"AGENCYID" VARCHAR2(30),
"EFFDATE" TIMESTAMP,
"EXPDATE" TIMESTAMP,
"CUSTID" VARCHAR2(30),
"POLNUM" VARCHAR2(100),
"INSFNAME" VARCHAR2(30),
"INSLNAME" VARCHAR2(30),
"INSADD1" VARCHAR2(30),
"INSADD2" VARCHAR2(30),
"INSCITY" VARCHAR2(30),
"INSSTATE" VARCHAR2(5),
"INSZIP" VARCHAR2(30),
"INSPHONE" VARCHAR2(30),
"INSDOB" DATE,
"INDEX01" VARCHAR2(30), "INDEX02" VARCHAR2(30), "INDEX03"

VARCHAR2(30),
"INDEX04" VARCHAR2(30), "INDEX05" VARCHAR2(30), "INDEX06"

VARCHAR2(30),
"INDEX07" VARCHAR2(30), "INDEX08" VARCHAR2(30), "INDEX09"

VARCHAR2(30),
"INDEX10" VARCHAR2(30), "INDEX11" VARCHAR2(30), "INDEX12"

VARCHAR2(30),
PRIMARY KEY ("JOBID", "TRANID", "BATCHID", "DOCID") VALIDATE

);

CREATE INDEX "ORACLE"."AORIDX1" ON "ORACLE"."AOR" ("DOCID");

Note Below is shown a typical example. For information on the minimum requirements, see
Minimum DAL Output Database Table on page 48.

Using DAL to Output to a Database Table

101

EXAMPLE DFD FILE (AOR.DFD)
This DFD (Data Format Definition) file describes the database table schema to
Documaker. In this example, with a database table called AOR, this file is called
AOR.DFD and is used to define the interface between Documaker and the data table
AOR in the Oracle database used for storage of the extract data.

The DFD file is used in the DAL script where you will see references to AOR in the
DBAdd, DBOpen, and DBPrepare function calls. This file is loaded via DBOpen so
Documaker knows what columns are available. Documaker also uses that
information to insert the row in the AOR table.

In the example, this file is in the deflib subdirectory, per the call in the DAL script:

DBOPEN(AOR_TableName, "ODBC", ".\deflib\aor.dfd", "READ&WRITE&CREATE_IF_NEW")

Here is an example of the AOR.DFD file:

< Fields >
FieldName = JOBID
FieldName = TRANID
FieldName = BATCHID
FieldName = DOCID
FieldName = NAME
FieldName = TYPE
FieldName = TITLE
FieldName = AUTHOR
FieldName = SECGROUP
FieldName = PFILE
FieldName = CATEGORY
FieldName = CABINET
FieldName = STATUSCD
FieldName = KEY1
FieldName = KEY2
FieldName = KEYID
FieldName = TRANCODE
FieldName = RUNDATE
FieldName = CURRUSER
FieldName = AGENCYID
FieldName = EFFDATE
FieldName = EXPDATE
FieldName = INSFNAME
FieldName = INSLNAME
FieldName = INSADD1
FieldName = INSADD2
FieldName = INSCITY
FieldName = INSSTATE
FieldName = INSZIP
FieldName = INSPHONE
FieldName = INSDOB
FieldName = INDEX01
FieldName = INDEX02
FieldName = INDEX03
FieldName = INDEX04
FieldName = INDEX05
FieldName = INDEX06
FieldName = INDEX07
FieldName = INDEX08
FieldName = INDEX09
FieldName = INDEX10
FieldName = INDEX11
FieldName = INDEX12

< Field:JOBID >
Int_Type = CHAR_ARRAY

Appendix A – Sample Applications and Files

102

Int_Length = 47
Ext_Type = CHAR_ARRAY
Ext_Length = 47
Key = Y
Required = Y

< Field:TRANID >
Int_Type = CHAR_ARRAY
Int_Length = 47
Ext_Type = CHAR_ARRAY
Ext_Length = 47
Key = Y
Required = Y

< Field:BATCHID >
Int_Type = CHAR_ARRAY
Int_Length = 47
Ext_Type = CHAR_ARRAY
Ext_Length = 47
Key = Y
Required = Y

< Field:DOCID >
Int_Type = CHAR_ARRAY
Int_Length = 47
Ext_Type = CHAR_ARRAY
Ext_Length = 47
Key = Y
Required = Y

< Field:NAME >
Int_Type = CHAR_ARRAY
Int_Length = 47
Ext_Type = CHAR_ARRAY
Ext_Length = 47
Key = N
Required = Y

< Field:TYPE >
Int_Type = CHAR_ARRAY
Int_Length = 10
Ext_Type = CHAR_ARRAY
Ext_Length = 10
Key = N
Required = Y

< Field:TITLE >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = Y

< Field:AUTHOR >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = Y

< Field:SECGROUP >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = Y

< Field:PFILE >
Int_Type = CHAR_ARRAY
Int_Length = 255

Using DAL to Output to a Database Table

103

Ext_Type = CHAR_ARRAY
Ext_Length = 255
Key = N
Required = Y

< Field:CATEGORY >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:CABINET >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:STATUSCD >
Int_Type = LONG
Int_Length = 1
Ext_Type = LONG
Ext_Length = 1
Key = N
Required = Y

< Field:KEY1 >
Int_Type = CHAR_ARRAY
Int_Length = 100
Ext_Type = CHAR_ARRAY
Ext_Length = 100
Key = N
Required = N

< Field:KEY2 >
Int_Type = CHAR_ARRAY
Int_Length = 100
Ext_Type = CHAR_ARRAY
Ext_Length = 100
Key = N
Required = N

< Field:KEYID >
Int_Type = CHAR_ARRAY
Int_Length = 100
Ext_Type = CHAR_ARRAY
Ext_Length = 100
Key = N
Required = N

< Field:TRANCODE >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:RUNDATE >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:CURRUSER >
Int_Type = CHAR_ARRAY
Int_Length = 100
Ext_Type = CHAR_ARRAY

Appendix A – Sample Applications and Files

104

Ext_Length = 100
Key = N
Required = N

< Field:AGENCYID>
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:EFFDATE >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:EXPDATE >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N

< Field:CUSTID >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:POLNUM >
Int_Type = CHAR_ARRAY
Int_Length = 100
Ext_Type = CHAR_ARRAY
Ext_Length = 100
Key = N
Required = N

< Field:INSFNAME >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:INSLNAME >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:INSADD1 >
Int_Type = CHAR_ARRAY
Int_Length = 100
Ext_Type = CHAR_ARRAY
Ext_Length = 100
Key = N
Required = N

< Field:INSADD2 >
Int_Type = CHAR_ARRAY
Int_Length = 100
Ext_Type = CHAR_ARRAY
Ext_Length = 100
Key = N

Using DAL to Output to a Database Table

105

Required = N
< Field:INSCITY >

Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:INSSTATE >
Int_Type = CHAR_ARRAY
Int_Length = 3
Ext_Type = CHAR_ARRAY
Ext_Length = 3
Key = N
Required = N

< Field:INSZIP >
Int_Type = CHAR_ARRAY
Int_Length = 11
Ext_Type = CHAR_ARRAY
Ext_Length = 11
Key = N
Required = N

< Field:INSPHONE >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:INSDOB >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:WIPREASON >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:INDEX01 >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:INDEX02 >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:INDEX03 >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

Appendix A – Sample Applications and Files

106

< Field:INDEX04 >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = N
Required = N

< Field:INDEX05 >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = No
Required = No

< Field:INDEX06 >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = No
Required = No

< Field:INDEX07 >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = No
Required = No

< Field:INDEX08 >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = No
Required = No

< Field:INDEX09 >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = No
Required = No

< Field:INDEX10 >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = No
Required = No

< Field:INDEX11 >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = No
Required = No

< Field:INDEX12 >
Int_Type = CHAR_ARRAY
Int_Length = 30
Ext_Type = CHAR_ARRAY
Ext_Length = 30
Key = No
Required = No

< Keys >

Using DAL to Output to a Database Table

107

KeyName = BATCH
KeyName = DOCID

< Key:BATCH >
Expression = JOBID+TRANID+BATCHID
FieldList = JOBID,TRANID,BATCHID

< Key:DOCID >
Expression = DOCID
FieldList = DOCID

Appendix A – Sample Applications and Files

108

EXAMPLE DAL SCRIPTS
These scripts are referenced in the DAL configuration of the Documaker INI file.
This configuration was described earlier, but is presented here for reference:

; Enable the Banner and Transaction DAL Scripting
< Printer >
; Must generally enable banner processing for it to work.

EnableBatchBanner = Yes
EnableTransBanner = Yes
PrtType = PDF

< Batch6 >
EnableBatchBanner = Yes
EnableTransBanner = Yes
BatchBannerBeginScript = AOR_PREB
BatchBannerEndScript = AOR_POSTB
TransBannerBeginScript = AOR_PRET
TransBannerEndScript = AOR_POSTT
Printer = Printer6

In the example presented earlier, they are called during processing of the Batch6
grouping. The code for the routines is shown below, with the main entry points listed
above shown below in the order they are called. The TransBanner routines are called
repeatedly for each transaction that is part of the batch, before the final call to
BatchBannerEndScript.

BatchBannerBeginScript = AOR_PREB
TransBannerBeginScript = AOR_PRET
TransBannerEndScript = AOR_POSTT

BatchBannerEndScript = AOR_POSTB

BatchBannerBeginScript = AOR_PREB
BEGINSUB AOR_PREB
* --
* Begin batch
* Clear variables once per recipient batch
* --

#AOR_Debug=GETINIBOOL(,PRINTERID(),"AORDebug")

IF #AOR_Debug
RPLogMsg(NL() & " ** AOR_PREB:" & NL())

END
AOR_RecipBatch = AOR_RecipBatch
#AOR_BatchCount = #AOR_BatchCount
#AOR_Processed = #AOR_Processed
#AOR_Count = #AOR_Count
AOR_TableName = AOR_TableName
#AOR_Init = #AOR_Init
IF AOR_RecipBatch != RECIPBATCH()

PUTINIBOOL(,"RunMode","CheckNextRecip",0)
#AOR_PerBatch =

GETINISTRING(,PRINTERID(),"AORFilesPerBatch","999")
AOR_RecipBATCH = RECIPBATCH()
#AOR_SubBatch = 0
#AOR_Count = 0
#AOR_BatchCount = 0

END
AOR_BatchID = RECIPBATCH()
IF #AOR_Init = 0

AOR_JobID = UNIQUESTRING()
AOR_TableName = GETINISTRING(,PRINTERID(),"AORTable","AOR")

Using DAL to Output to a Database Table

109

DBOPEN(AOR_TableName,"ODBC",".\deflib\aor.dfd",
"READ&WRITE&CREATE_IF_NEW")

DBPREPVARS(AOR_TableName,"AORTABLERecord")
END
#AOR_Init = 1
#AOR_DoEOB = 1

ENDSUB

TransBannerBeginScript = AOR_PRET
BEGINSUB AOR_PRET
* --
* Begin Transaction
* Set up new file name for recipient batch output file
* --
IF #AOR_Debug

RPLogMsg(NL() & " ** AOR_PRET:" & NL())
END
AOR_BatchID = AOR_BatchID
AOR_BatchDir = AOR_BatchDir
#AOR_Batch = #AOR_Batch
#AOR_Count = #AOR_Count
#AOR_PerBatch = #AOR_PerBatch
#AOR_Processed = #AOR_Processed
AOR_TransID = GVM("KEY1") & "-" & GVM("KEY2") & "-" & \

GVM("KEYID") & "-" & GVM("TRANCODE")
#AOR_Count += 1
IF (#AOR_Count > #AOR_PerBatch)

#AOR_Count -=1
CALL("AOR_EOB")
#AOR_Count = 1

END
TranFile = CALL("AOR_NEWFILE")
#AOR_Exists = PATHEXIST(AOR_BatchDir)
IF #AOR_Exists = 0

PATHCREATE(AOR_BatchDir)
#AOR_Exists = PATHEXIST(AOR_BatchDir)
IF #AOR_Exists = 0

RPErrorMsg(NL() & "** AOR batch directory " & \
AOR_Batchdir & "does not exist!")

END
END
#AOR_DoEOB = 0
SETDEVICENAME(TranFile)
BREAKBATCH()

ENDSUB

TransBannerEndScript = AOR_POSTT
BEGINSUB AOR_POSTT
* --
* End Transaction
* Insert new table row with metadata for archive
* from GVM variables and reference to uniquely named
* recipient print stream output.
* --

 IF #AOR_Debug
 RPLogMsg(NL() & " ** AOR_POSTT:" & NL())
 END
 #AOR_PerBatch = #AOR_PerBatch
 AOR_BatchDir = AOR_BatchDir
 #AOR_Count = #AOR_Count

Appendix A – Sample Applications and Files

110

 #AOR_Debug = GETINIBOOL(,PRINTERID(),"AORDebug")
 AOR_TableName = AOR_TableName
 AOR_BatchID = AOR_BatchID
 AOR_TransID = AOR_TransID
 AOR_JobID = AOR_JobID
*
* Change to match variables defined in "rcbdfdfl.dfd"
* as needed for the implementation
*

* Documaker Connector job processing fields example for UCM
 AORTABLERecord.JOBID = AOR_JobID
 AORTABLERecord.BATCHID = AOR_BatchID
 AORTABLERecord.TRANID = AOR_TransID
 AORTABLERecord.DOCID = AOR_FName
* TITLE required field by UCM 30 characters max, shows up in search
results
 AORTABLERecord.TITLE = AOR_TransID
* ContentID/Name assigment
 AORTABLERecord.STATUSCD = 0
* Documaker UCMImporter required field for specifying full name of
* file to import
 AORTABLERecord.PFILE = DEVICENAME()
* UCM required field has to exist in UCM pick list for types or
* will fail to import
 IF HAVEGVM("DOCTYPE")
 AORTABLERecord.TYPE = GVM("DOCTYPE")
 END
* UCM required field
 IF HAVEGVM("AUTHOR")
 AORTABLERecord.AUTHOR = GVM("AUTHOR")
 END
* UCM required field has to exist in UCM pick list for security groups
or will
* fail to import
 IF HAVEGVM("SECGROUP")
 AORTABLERecord.SECGROUP = GVM("SECGROUP")
 END
* UCM mapped custom meta-data, if doesn't exist as same exact name in
UCM custom
* fields it will not map but will not error. If UCM custom field was
set as
* required and no data is mapped UCM will fail transaction.
* Truncates by default to the max
* length of UCM data type.
 IF HAVEGVM("CABINET")
 AORTABLERecord.CABINET = GVM("CABINET")
 END
 IF HAVEGVM("KEY1")
 AORTABLERecord.KEY1 = GVM("KEY1")
 END
 IF HAVEGVM("KEY2")
 AORTABLERecord.KEY2 = GVM("KEY2")
 END
 IF HAVEGVM("KEYID")
 AORTABLERecord.KEYID = GVM("KEYID")
 END
 IF HAVEGVM("TRANCODE")
 AORTABLERecord.TRANCODE = GVM("TRANCODE")
 END
 IF HAVEGVM("RUNDATE")
 AORTABLERecord.RUNDATE = GVM("RUNDATE")
 END
 IF HAVEGVM("CURRUSER")

Using DAL to Output to a Database Table

111

 AORTABLERecord.CURRUSER = GVM("CURRUSER")
 END
 IF HAVEGVM("AGENCYID")
 AORTABLERecord.AGENCYID = GVM("AGENCYID")
 END
 IF HAVEGVM("EFFDATE")
 AORTABLERecord.EFFDATE = GVM("EFFDATE")
 AORTABLERecord.TITLE = AOR_TransID & "-" & GVM("EFFDATE")
 END
 IF HAVEGVM("EXPDATE")
 AORTABLERecord.EXPDATE = GVM("EXPDATE")
 END
 IF HAVEGVM("CUSTID")
 AORTABLERecord.CUSTID = GVM("CUSTID")
 END
 IF HAVEGVM("POLNUM")
 AORTABLERecord.POLNUM = GVM("POLNUM")
 END
 IF HAVEGVM("INSFNAME")
 AORTABLERecord.INSFNAME = GVM("INSFNAME")
 END
 IF HAVEGVM("INSLNAME")
 AORTABLERecord.INSLNAME = GVM("INSLNAME")
 END
 IF HAVEGVM("INSADD1")
 AORTABLERecord.INSADD1 = GVM("INSADD1")
 END
 IF HAVEGVM("INSADD2")
 AORTABLERecord.INSADD2 = GVM("INSADD2")
 END
 IF HAVEGVM("INSCITY")
 AORTABLERecord.INSCITY = GVM("INSCITY")
 END
 IF HAVEGVM("INSSTATE")
 AORTABLERecord.INSSTATE = GVM("INSSTATE")
 END
 IF HAVEGVM("INSZIP")
 AORTABLERecord.INSZIP = GVM("INSZIP")
 END
 IF HAVEGVM("INSPHONE")
 AORTABLERecord.INSPHONE = GVM("INSPHONE")
 END
 IF HAVEGVM("INSDOB")
 AORTABLERecord.INSDOB = GVM("INSDOB")
 END
 IF HAVEGVM("INDEX01")
 AORTABLERecord.INDEX01 = GVM("INDEX01")
 END
 IF HAVEGVM("INDEX02")
 AORTABLERecord.INDEX02 = GVM("INDEX02")
 END
 IF HAVEGVM("INDEX03")
 AORTABLERecord.INDEX03 = GVM("INDEX03")
 END
 IF HAVEGVM("INDEX04")
 AORTABLERecord.INDEX04 = GVM("INDEX04")
 END
 IF HAVEGVM("INDEX05")
 AORTABLERecord.INDEX05 = GVM("INDEX05")
 END
 IF HAVEGVM("INDEX06")
 AORTABLERecord.INDEX06 = GVM("INDEX06")
 END
 IF HAVEGVM("INDEX07")

Appendix A – Sample Applications and Files

112

 AORTABLERecord.INDEX07 = GVM("INDEX07")
 END
 IF HAVEGVM("INDEX08")
 AORTABLERecord.INDEX08 = GVM("INDEX08")
 END
 IF HAVEGVM("INDEX09")
 AORTABLERecord.INDEX09 = GVM("INDEX09")
 END
 IF HAVEGVM("INDEX10")
 AORTABLERecord.INDEX10 = GVM("INDEX10")
 END
 IF HAVEGVM("INDEX11")
 AORTABLERecord.INDEX11 = GVM("INDEX11")
 END
 IF HAVEGVM("INDEX12")
 AORTABLERecord.INDEX12 = GVM("INDEX12")
 END
 #Rtn = DBADD(AOR_TableName,"AORTABLERecord")
ENDSUB

BatchBannerEndScript = AOR_POSTB
BEGINSUB AOR_POSTB
* --
* End Batch
* Any necessary clean-up.
* --

 IF #AOR_Debug
 RPLogMsg(NL() & " ** AOR_POSTB:" & NL())
 END

 #AOR_Debug = GETINIBOOL(,PRINTERID(),"AORDebug")
 #AOR_Processed = #AOR_Processed
 #AOR_Count = #AOR_Count
 #AOR_PerBatch = #AOR_PerBatch
 AOR_BatchDir = AOR_BatchDir
 AOR_TableName = AOR_TableName

 IF (#AOR_DoEOB = 1 AND #AOR_Count > 0)
 DBCLOSE(AOR_TableName)
 CALL("AOR_EOB")
 #AOR_Count = 0
 END
ENDSUB

Using DAL to Output to a Database Table

113

Internal Routine: AOR_NEWFILE
BEGINSUB AOR_NEWFILE
* --
* Create a new output file name.
* Called by Pre-Transaction DAL script.
* --
 IF #AOR_Debug
 RPLogMsg(NL() & " ** AOR_NEWFILE:" & NL())
 END
 AOR_Ext = GETINISTRING(,PRINTERID(), "AORExt", ".pdf")
 AOR_BatchDir = AOR_BatchDir
 CALL("AOR_NEWPATH")
 AOR_Drive = FILEDRIVE(AOR_BatchDir)
 AOR_Path = FILEPATH(AOR_BatchDir)
 AOR_Last = FILENAME(AOR_BatchDir)
 AOR_FName = UNIQUESTRING()
 AOR_NewFName=FULLFILENAME(AOR_Drive,AOR_Path &
AOR_Last,AOR_FName,AOR_Ext)
 RETURN(AOR_NewFName)
ENDSUB

Internal Routine: AOR_NEWPATH
BEGINSUB AOR_NEWPATH
* --
* Create a new output folder.
* Called by AOR_NEWFILE DAL script.
* --
 IF #AOR_Debug
 RPLogMsg(NL() & " ** AOR_NEWPATH:" & NL())
 END
 #AOR_BatchCount = #AOR_BatchCount
 AOR_BatchID = AOR_BatchID
 AOR_BatchDir = AOR_BatchDir
 #AOR_Count = #AOR_Count
 AORPath = GETINISTRING(,PRINTERID(),"AORPath")
 AOR_Drive = FILEDRIVE(AORPath)
 AOR_Path = FILEPATH(AORPath)
 AOR_Last = FILENAME(AORPath)
 AOR_Rootdir = FULLFILENAME(AOR_Drive, AOR_Path, AOR_Last, "")
 IF #AOR_Count = 1
 #AOR_BatchCount += 1
 AOR_Drive = FILEDRIVE(AOR_RootDir)
 AOR_Path = FILEPATH(AOR_RootDir)
 AOR_Last = FILENAME(AOR_RootDir)
 AOR_BatchDir = FULLFILENAME(AOR_Drive,AOR_Path &
AOR_Last,AOR_JobID,"")
 AOR_Drive = FILEDRIVE(AOR_BatchDir)
 AOR_Path = FILEPATH(AOR_BatchDir)
 AOR_Last = FILENAME(AOR_BatchDir)
 AOR_BatchDir =
FULLFILENAME(AOR_Drive,AOR_Path&AOR_Last,AOR_BatchID&"x"&#AOR_BatchC
ount,"")
 END
ENDSUB

Appendix A – Sample Applications and Files

114

Internal Routine: AOR_EOB
BEGINSUB AOR_EOB
* --
* Create transact.dat file listing the contents of
* each batch folder created with count of output files,
* maximum output files per batch folder, statistical
* information. Existence of this file is indicates a
* batch folder has been completed and is used by the
* Documaker Connector source for housekeeping functions.
* Called by Post Batch DAL script.
* --
 IF #AOR_Debug
 RPLogMsg(NL() & " ** AOR_EOB:" & NL())
 END
 #AOR_PerBatch = #AOR_PerBatch
 #AOR_Count = #AOR_Count
 AOR_BatchDir = AOR_BatchDir
 AORRootDir = AORRootDir
 IF #AOR_DoEOB = 1
 AOR_LogFile = FULLFILENAME(,AOR_BatchDir,"transact",".dat")
 DBOPEN(AOR_LogFile,"ASCII",".\deflib\aort.dfd", \
 "READ&WRITE&TRUNCATE&CREATE_IF_NEW")
 DBPREPVARS(AOR_LogFile,"AOREOTRecord")

 AOREOTRecord.Record = FILENAME(AOR_BatchDir) & " " & \
 #AOR_PerBatch & " " & \
 #AOR_Count
 DBADD(AOR_LogFile,"AOREOTRecord")
 DBCLOSE(AOR_LogFile)
 END
ENDSUB

	Start
	Notice
	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Introduction
	Overview
	Compatibility
	Planning

	Installing Documaker Connector
	Software Requirements
	Downloading the Software
	Installing Documaker Connector
	Using the Setup Wizard
	Installing from the UNIX Command Line
	Running the Installer with a Response File

	Checking Your Installation
	Using the Task Tray Controller
	Downloading Patches
	Removing Documaker Connector

	Configuring Documaker Connector
	Overview
	Configuring Documaker
	Configuring Oracle WebCenter Content
	Configuring Documaker Connector
	Using the Properties File
	General Connector Configuration Properties
	Periodic Process Properties
	General Source Configuration Properties
	Documaker Source Configuration
	Oracle WebCenter Content, Core Capabilities Destination Configuration
	Oracle WebCenter Content, Imaging Destination Configuration

	Other Sources and Destinations
	Sources
	Destinations

	Running Documaker Connector
	Overview
	Understanding the Modes of Operation

	Processing Data
	Controlling a Connector Server Instance
	Using a Script to Run Documaker Connector

	Sample Applications and Files
	Windows Service Application
	Example XML Extract File
	Example Trn_Fields INI Settings
	Example TRNDFDFL.DFD File
	Example RCBDFDFL.DFD File
	Using DAL to Output to a Database Table
	Example DFD File (AOR.DFD)
	Example DAL Scripts

