ORACLE

Oracle Endeca Platform Services

Advanced JDBC Column Handler
Usage Guide

Version: 6.1.2
June 2013

The Advanced JDBC Column Handler is an extension to the standard
Endeca JDBC record adapter. It provides support for obtaining data
from database column types that are not supported by the standard
Endeca JDBC record adapter, such as CLOBs and BLOBs.

Endeca Platform Services Advanced JDBC Column Handler Usage Guide

Copyright and Disclaimer
Copyright © 2003, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer
software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication,

disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any
kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Copyright © 2003, 2012, Oracle and/or its affiliates. All
rights reserved. 2 0f 10

Endeca Platform Services Advanced JDBC Column Handler Usage Guide

Table of Contents

1] 4 oo LU Yox 1o] o PRSP 4
YT =] I = To LU T =T 4 1=1) SRR 4
ENdeca REQUITEIMENLESiiiiiiiiiii ettt ettt et e e e st e e e e sbe e e e e anbre e e e anbneeeeanes 4
N1 2] O] 1Y = PR RRPPR 4
Ta Y =11 F= 1T oY o PSPPI 4
CoNfiGUrAtioN OPLIONSceiiuiiiieiitie ettt ettt et bt e st bt e e s st e e e s s e e e e s annn e e e s annneeens 4
Sy (o] g1 aTo D=1 = W o] o T I 1 PSR 5
L0 LT o =TT PP P PPPPTPRN 6
L0 11] ¥ o1V PO PSP TP PP PPTPPI 8
[LIRS Y] (=] 1 1O 111 0 LU | PSR 8
Importing Character Data with IMPORT_PROP ..., 8
Processing Binary Data with the Document CONVErter...........ccoooeeiiieii e, 9
TrOUDIESNOOTING .uuuviiiiiiiiiiiiiiii s 9
[oTo Lo [9Te I @011 18| ST P PP PPPPPPPPPPRPNE 9
BN 2T O I 1Y = PSPPSR 10

Copyright © 2003, 2012, Oracle and/or its affiliates. All
rights reserved. 3 of 10

Endeca Platform Services Advanced JDBC Column Handler Usage Guide

Introduction

The Endeca Data Transformation Layer provides a Java-based database adapter for use
with any database that has a JDBC driver. This JDBC adapter can be used as a record
adapter type to retrieve Endeca records as rows of a SQL query result. Not all database
column types are supported by this out-of-the-box Endeca JDBC adapter (see the JDBC
Input Format section of Endeca Developer Studio Help for a list of supported database
column types). The Advanced JDBC Column Handler extends the set of supported
database column types by providing handlers for the following column types:

LONGVARCHAR
CLOB

BLOB
LONGVARBINARY
BINARY
VARBINARY

System Requirements

Endeca Requirements

The Advanced JDBC Column Handler works with Endeca versions 4.8.x or later. There
are no special system requirements beyond the installation of Oracle Endeca Guided
Search.

JDBC Driver
The JDBC Driver for the specific database type is required for using the JDBC record
adapter and should be located somewhere on the file system.

Installation

The Advanced JDBC Column Handler is distributed as a zip file
(advJdbcColumnHandler-[VERSION].zip) which is a self-contained tree. The file can
be unpacked at any location using WinZip, or any other compression utility that supports
this format. Unpacking the file creates the subdirectory structure
Endeca\Solutions\advJdbcColumnHandler-[VERSION]\.

Once the distribution has been unpacked, copy the AdvJDBCColumnHandler jar file
somewhere within the local project directory tree. Common locations for this file are
within a lib/ or java/ subdirectory.

Configuration Options

Also, if the column handler’s default settings should be overridden, copy the
sample/sample_columnHandler.properties file to somewhere within the local project
directory tree. For example, place this file in the lib/ or java/ subdirectory. Be sure to
rename the file to columnHandler.properties. The follow table lists the configuration
options used in the columnHandler.properties file:

binaryDataChunkSize The size (in bytes) of the incremental data chunk
read and written while processing binary columns.
This is a performance optimization setting; changing
this value will not affect the values ultimately
returned by the Advanced JDBC Column Handler.

Copyright © 2003, 2012, Oracle and/or its affiliates. All
rights reserved. 4 of 10

Endeca Platform Services Advanced JDBC Column Handler Usage Guide

Default setting: 1024

charDataChunkSize The size (in bytes) of the incremental data chunk
read and written while processing character-data
columns. This is a performance optimization
setting; changing this value will not affect the values
ultimately returned by the Advanced JDBC Column
Handler.

Default setting: 1024
outputDataDir The directory to which data files will be written (see

File System Output). Relative paths to an output
directory will be relative to forge’s working directory.

Default setting: ../incoming

charDataToDisk If this setting is “true” character data will be written
out to the filesystem (encoded according to the
value of the charDataOutputEnc property), and the
path to the output file will be returned as the
property's value. If false, the character data will be
returned as the property’s value. Set this option to
true for very large char columns.

Default setting: false

charDataOutputEnc Output encoding to use when writing character data
to disk. A valid Java charset name must be
specified. Some common encoding charsets are
listed below:
e TUS-ASCII
e TI50-8859-1
e UTF-8
e UTF-16BE
e UTF-16LE
e UTF-16

This setting is only used if charDataToDisk is
“true”.

Default setting: UTF-8

Storing Data on Disk

If binary columns will be used, or if character data columns will be output to the
filesystem, you must be sure the output directory exists. Unless overridden by the
outputDataDir setting described above, the default output directory will be the incoming
directory parallel to Forge’s working directory. For example, the following directory tree
shows this incoming directory, assuming forge input is configured as forge’s working
directory:

Copyright © 2003, 2012, Oracle and/or its affiliates. All
rights reserved. 5 of 10

Endeca Platform Services Advanced JDBC Column Handler Usage Guide

=) data
[dgid=_output
I dgraph_input
[forge_input
I3 forge_output
I incoming
I state

Note the incoming directory is accessible at . . /incoming relative to the pipeline files
within forge input/.

Upon initialization, the Advanced JDBC Column Handler will check to see if the
outputDataDir is writable. If it is not, the Advanced JDBC Column Handler will throw a
warning into the Forge log, similar to the following:

WARN 09/24/06 14:00:49.958 UTC FORGE {forge,baseline}:
(com.endeca.soleng.itl.jdbc.AdvancedJDBCColumnHandler) : outputDataDir
../incoming not writable

Because the Advanced JDBC Column Handler does not require a writable directory if
only character columns are used and character data is not spooled to disk, Forge will
continue processing when it encounters a hon-writable outputDataDir. However, if
binary columns are used or if character data is explicitly spooled to disk, Forge will not
return any valid data for those columns, and will log additional warnings to the Forge log
for each row and column in the database it is not able to process. These warnings will
appear similar to the following:

WARN 09/24/06 14:02:34.828 UTC FORGE {forge,baseline}:
(com.endeca.soleng.itl.jdbc.AdvancedJDBCColumnHandler): IOException while
dumping MyBinaryData column

Usage

Create a JDBC record adapter as usual, with PASS THROUGH values like
DB_DRIVER_CLASS, DB_URL, and SQL. See the JDBC section in Endeca Developer
Studio Help for more information on how to create a JDBC record adapter.

Add one new PASS THROUGH with name COLUMN_HANDLER_CLASS and value
com.endeca.soleng.itl.jdbc.AdvancedJDBCColumnHandler. Below is an example of
a complete JDBC record adapter with this additional pass through:

Copyright © 2003, 2012, Oracle and/or its affiliates. All
rights reserved. 6 of 10

Endeca Platform Services Advanced JDBC Column Handler Usage Guide

Record Adapter : Records In x|

[ame:
I Records In

| Record Index | Transformer Pass Throughs | Car A I PI

DE_DRIVER (CLASS = CoM.ibrn.dbZ . jdbe. app DEZDriv
DE_URL = jdbc:dbz: DEMAME

DE_COMMECT_PROP = user=dbuser

DE_COMMNECT _PROP = passwiord=w1ckeds3cr3t

Mame: Yalue:
| COLUMM_HANDLER_CLA | com.endeca,soleng.jdbct

Add | rodify | Remove |
T Help | (a]'4 I Cancel |

This example generates the following code:

<RECORD ADAPTER COL DELIMITER="" DIRECTION="INPUT"

FILTER EMPTY PROPS="TRUE" FORMAT="JDBC" FRC PVAL IDX="FALSE"
MULTI="FALSE" NAME="Records In" PREFIX="" REC DELIMITER=""
REQUIRE DATA="TRUE" ROW DELIMITER="" STATE="FALSE" URL="">

<COMMENT>My JDBC test adapter</COMMENT>
<PASS THROUGH NAME="DB DRIVER CLASS">
COM.ibm.db2.jdbc.app.DB2Driver

</PASS THROUGH>

<PASS_THROUGH NAME="DB URL">
jdbc:db2 : DBNAME
</PASS_THROUGH>

<PASS_THROUGH NAME="DB_CONNECT_PROP">
user=dbuser
</PASS THROUGH>

<PASS THROUGH NAME="DB CONNECT PROP">
password=wlckeds3cr3t
</PASS_THROUGH>

<PASS THROUGH NAME="SQL">

select id, CLOB COL as clob, LVC COL as longvarchar, RESUME FILE
as blob from SCHEMA.SUMTABLE T fetch first 10 rows only
</PASS_THROUGH>

<PASS THROUGH NAME="COLUMN HANDLER CLASS">
com.endeca.soleng.itl.jdbc.AdvancedJDBCColumnHandler

</PASS_THROUGH>

</RECORD_ADAPTER>

Whether forge will be run on the command line or from a control script, the
AdvJDBCColumnHandler.jar file will need to be added to the --javaclasspath

Copyright © 2003, 2012, Oracle and/or its affiliates. All
rights reserved. 7 of 10

Endeca Platform Services Advanced JDBC Column Handler Usage Guide

argument. Also, if the columnHandler.properties configuration file will be used to
override any default options the directory containing the columnHandler.properties
needs to be added to the --javaclasspath argument as well. The following example
shows this argument when running forge from the command line:

forge --javaClasspath
/path/to/AdvJIDBCColumnHandler.jar:/path/to/JDBCDriver.jar:/path/to/propst
ile directory /path/to/Pipeline.epx

And in a control script:

forge : Forge

working machine = $ (foundry machine)

working dir $ (project root)/data/forge input

pipeline $ (project root)/data/forge input/Pipeline.epx

forge options = —--javaClasspath
$ (project root)/java/AdvJIDBCColumnHandler.jar:
/path/to/JDBCDriver.jar:/path/to/propsfile dir
ectory

If your project requires additional JAR files, such as those required by the JDBC driver,
be sure to include those references as well. Also note that Unix systems use a colon to
delimit multiple JARs, while Windows uses a semicolon. For more information on setting
the classpath, see the section "Overriding Java home and class path settings" within the
Endeca Developer Studio Help.

Output

File System Output

The Advanced JDBC Column handler optionally writes character data (CLOB,
LONGVARCHAR types) to the filesystem, but by default these character values are
returned inline as the Endeca property’s value. If configured for output to the file system
using the charDataToDisk option mentioned above, the files will be created in the
outputDataDir directory (also configurable) and would have filenames of the form

clob dataN.tmp. N, in this case is a random number suffix to keep these temporary files
distinct.

The binary column type handlers always write their data to the file system, in the
outputDataDir directory. These file names are of the form blob dataN.tmp. The
relative path to each file is returned as the Endeca property’s value. For example
../incoming/blob data22607.tmp. The pipeline must then read this file in a
subsequent record manipulator.

Importing Character Data with IMPORT_PROP

If the charDataToDisk option is enabled, character data will be written to the filesystem.

One typical way to use acquire the data in these files is to build a record manipulator that
uses the IMPORT_PROP expression to read in the character data. An example of such

a record manipulator is shown below:

<RECORD MANIPULATOR FRC_PVAL IDX="TRUE" NAME="BLOB Manip.">
<RECORD_SOURCE>Records In</RECORD_SOURCE>
<EXPRESSION LABEL="" NAME="IF" TYPE="VOID" URL="">

<COMMENT>if a reference to a CLOB file exists...</COMMENT>
<EXPRESSION LABEL="" NAME:"PROP_EXISTS" TYPE="INTEGER" URL="">

<EXPRNODE NAMEZ"PROPiNAME" VALUEZ"CLOB7COL7NAME"/>
</EXPRESSION>

Copyright © 2003, 2012, Oracle and/or its affiliates. All
rights reserved. 8 of 10

Endeca Platform Services Advanced JDBC Column Handler Usage Guide

<EXPRESSION LABEL="" NAME="IMPORT PROP" TYPE="VOID" URL="">
<COMMENT>pull in the char data and remove the file</COMMENT>
<EXPRNODE NAME="PROP NAME" VALUE="CLOB_COL_NAME"/>
<EXPRNODE NAME="REMOVE FILES" VALUE="TRUE" />
<EXPRNODE NAME="ENCODING" VALUE="UTF-8"/>
</EXPRESSION>

</EXPRESSION>
</RECORD MANIPULATOR>

Processing Binary Data with the Document Converter

One typical usage scenario for binary column data is to read in documents like PDFs or
Word files from the database. In this case, the Advanced JDBC Column Handler would
write out this binary column data to the temporary files mentioned above. Then the
pipeline would invoke the Document Converter to convert these binary-formatted files into
plaintext Endeca properties indexed for search. The following example pipeline
component could be used to do this conversion:

<RECORD MANIPULATOR FRC PVAL IDX="TRUE" NAME="BLOB Manip.">
<RECORD_SOURCE>Records In</RECORD SOURCE>
<EXPRESSION LABEL="" NAME="IF" TYPE="VOID" URL="">

<COMMENT>if a reference to a BLOB file exists...</COMMENT>

<EXPRESSION LABEL="" NAME="PROP EXISTS" TYPE="INTEGER" URL="">
<EXPRNODE NAME="PROP NAME" VALUE="BLOB COL NAME"/>

</EXPRESSION>

<EXPRESSION LABEL="" NAME="RENAME" TYPE="VOID" URL="">

<COMMENT>... rename the BLOB property,</COMMENT>
<EXPRNODE NAME="OLD NAME" VALUE="BLOB COL NAME"/>
<EXPRNODE NAME="NEW NAME" VALUE="Endeca.Document.Body"/>
</EXPRESSION>

<EXPRESSION LABEL="" NAME="CONVERTTOTEXT" TYPE="VOID" URL="">
<COMMENT>extract the searchable text from the file,</COMMENT>

<EXPRNODE NAME="RESPONSE_TIMEOUT" VALUE="300"/>
</EXPRESSION>

<EXPRESSION TYPE="VOID" NAME="REMOVE EXPORTED PROP">
<COMMENT>and then remove the file from the filesystem.</COMMENT>
<EXPRNODE NAME="PROP NAME" VALUE="Endeca.Document.Body"/>
<EXPRNODE NAME="REMOVE PROPS" VALUE="TRUE"/>
</EXPRESSION>

</EXPRESSION>
</RECORD_MANIPULATOR>

Note that the binary column’s property name should be renamed to
Endeca.Document.Body, since this is the property sought by the Document converter
module. After this manipulator processes a record, it will create properties like
Endeca.Document.Text, which contains the converted document text and
Endeca.Document.Encoding, which reflects the binary file format detected. For more
information on the Document converter module, see the VOID CONVERTTOTEXT
section of the Data Foundry Expression Reference.

Troubleshooting

Logging Output

Copyright © 2003, 2012, Oracle and/or its affiliates. All
rights reserved. 9 of 10

Endeca Platform Services Advanced JDBC Column Handler Usage Guide

Logging output will be directed to the Forge log. Non-fatal warning messages may be
seen here. For example, if a column handler encounters some sort of stream-reading
error, the following log message would appear in the forge logfile:

WARN 09/22/06 14:00:49.958 UTC FORGE {forge,baseline}:
(com.endeca.soleng.itl.jdbc.AdvancedJDBCColumnHandler): Could not read
data from LONGVARCHAR column “text”: out of memory

The record returned for this row will have a null value for the property in question.
Processing will continue with the next row in the SQL query result. The only fatal errors
which stop forge from running will occur if an unsupported column type is encountered.
Unsupported Java SQL column types include the following:

ARRAY
DISTINCT
JAVA_OBJECT
OTHER

REF

STRUCT

If any of these column types are returned in the SQL result, forge will produce an error
message like the following:

ERROR 07/31/06 13:29:07.903 UTC FORGE {forge,baseline}:
(AdapterRunner) : Unsupported Java SQL column type ARRAY

JDBC Driver

The Advanced JDBC Column Handler processes data retrieved by the JDBC database
driver. If you encounter any problems, the first step is to ensure that the database driver
is performing correctly. Testing the database driver outside of forge will verify this; a
good first step is to test the driver using a standalone Java program.

Oracle drivers in particular can be troublesome. If you experience errors using the
column handler with Oracle's JDBC drivers, you should check the following guidelines:

1. |If you are using Oracle 9i or later, make sure that you are using the JDBC driver
implementation that came with your Oracle server installation. If you have a
patched revision of the Oracle server (e.g. 9.2.0.6), it is likely that the patch
contains an updated JDBC driver. Check to make sure that you are using the
patched JDBC driver.

2. If you are using earlier versions of Oracle 9i, try using the OCI driver instead of
the thin driver. Later versions of the Oracle 9i thin driver have full support for
CLOBs and BLOBs, but earlier Oracle 9i drivers do not.

3. If you are using Oracle 8i or earlier, please contact Oracle Endeca Customer
Support.

4. |If you still have issues, please contact Oracle Endeca Customer Support. Please
provide them with your JDBC configuration settings (without passwords please!)
and the version numbers for both the Oracle server and the JDBC driver that you
are using.

Copyright © 2003, 2012, Oracle and/or its affiliates. All
rights reserved. 10 of 10

