

Oracle® Fusion Middleware
Portlet Development Guide for Oracle WebLogic Portal

10g Release 3 (10.3.6)

E14244-06

June 2013

Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal, 10g Release 3 (10.3.6)

E14244-06

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: William Witman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xxiii

Audience... xxiii
Documentation Accessibility ... xxiii
Related Documents ... xxiii
Conventions ... xxiv

Part I Architecture

1 Introduction

1.1 Portlet Overview .. 1-1
1.2 Portlet Development and the Portal Life Cycle .. 1-2
1.2.1 Architecture ... 1-2
1.2.2 Development .. 1-2
1.2.3 Staging ... 1-3
1.2.4 Production ... 1-3
1.3 Getting Started ... 1-3
1.3.1 Prerequisites .. 1-3
1.3.2 Related Guides ... 1-3

2 Portlet Planning

2.1 Portlet Development in a Distributed Portal Team .. 2-1
2.2 Portlets in a Non-Portal Environment ... 2-2
2.3 Planning Portlet Instances .. 2-2
2.4 Security .. 2-2
2.5 Interportlet Communication ... 2-3
2.6 Performance Planning .. 2-3

3 Portlet Types

3.1 Java Server Faces (JSF) Portlets ... 3-2
3.2 Java Server Page (JSP) and HTML Portlets ... 3-2
3.3 Java Portlets .. 3-3
3.4 Java Page Flow Portlets .. 3-3
3.5 Struts Portlets ... 3-4
3.6 Browser (URL) Portlets ... 3-4

iv

3.7 Clipper Portlets .. 3-4
3.8 Remote (Proxy) Portlets ... 3-5
3.9 Portlet Type Summary Table .. 3-5

Part II Development

4 Understanding Portlet Development

4.1 Portlet Components ... 4-1
4.1.1 Portlet Properties ... 4-2
4.1.2 Portlet Title Bar, Mode, and State .. 4-2
4.1.3 Portlet Preferences ... 4-3
4.2 Resources for Creating Portlets .. 4-3
4.3 Portlet Rendering .. 4-4
4.3.1 Render and Pre-Render Forking .. 4-4
4.3.2 Asynchronous Portlet Content Rendering ... 4-4
4.3.3 Portlets as Popups (Detached Portlets) .. 4-5
4.4 JSP Tags and Controls in Portlets ... 4-5
4.5 Backing Files .. 4-5
4.6 Support for Apache Portals Bridges ... 4-6

5 Creating Portlets

5.1 Supported Portlet Types .. 5-1
5.2 Portlets in J2EE Shared Libraries .. 5-2
5.3 Portlet Wizard Reference ... 5-3
5.3.1 Order of Creation - Resource or Portlet First ... 5-3
5.3.1.1 Creating the Resource First ... 5-3
5.3.1.2 Create the Portlet First ... 5-4
5.3.2 Starting the Portlet Wizard ... 5-6
5.3.3 New Portlet Dialog .. 5-7
5.3.4 Select Portlet Type Dialog .. 5-7
5.3.5 Portlet Details Dialogs ... 5-8
5.4 How to Build Each Type of Portlet ... 5-8
5.4.1 Building JSP and HTML Portlets ... 5-9
5.4.2 Building JSF Portlets ... 5-10
5.4.3 Building Java Portlets .. 5-14
5.4.4 Building Browser Portlets .. 5-14
5.4.5 Building Clipper Portlets ... 5-17
5.4.6 Building Struts Portlets .. 5-17
5.4.7 Building Remote Portlets ... 5-19
5.4.8 Building Java Page Flow Portlets ... 5-20
5.5 Assigning Supporting Files .. 5-22
5.5.1 Adding a Render Dependencies File ... 5-22
5.5.2 Adding a Backing File .. 5-22
5.6 Adding a Portlet to a Portal .. 5-23
5.7 Deleting Portlets ... 5-24

v

6 Building Java Portlets

6.1 Building a Java Portlet .. 6-2
6.2 Java Portlet Deployment Descriptor ... 6-4
6.3 Portlet Modes and States .. 6-5
6.4 Portlet Preferences .. 6-5
6.5 Portlet Initialization Parameters ... 6-5
6.6 Portlet Filters .. 6-6
6.7 Order of Portlet Filters .. 6-8
6.8 Public Render Parameters .. 6-9
6.8.1 Public Render Parameter Example .. 6-13
6.9 Event Handling with Java Portlets .. 6-13
6.10 Deleting Java Portlet Features ... 6-13
6.11 Using Container Runtime Options ... 6-15
6.11.1 Standard Container Runtime Options ... 6-15
6.11.2 Other Container Runtime Options Supported by WLP .. 6-16
6.12 Using Global (Shared) Properties ... 6-22
6.13 Setting Portlet-Level Container Runtime Options .. 6-25
6.14 Adding Custom Portlet Modes ... 6-25
6.15 Using Special Portlet Request Attributes .. 6-27
6.16 Using Portlet-Served Resource Links ... 6-28
6.16.1 Using Direct Links ... 6-28
6.16.2 Using Portlet-Served Resource Links ... 6-28
6.17 Exporting Java Portlets for Use on Other Systems ... 6-29
6.18 Importing Java Portlets ... 6-31
6.18.1 Importing Java Portlets Into Your Eclipse Workspace ... 6-31
6.18.1.1 Starting the Import Wizard ... 6-32
6.18.1.2 Using the Import Wizard ... 6-32
6.18.1.3 Accessing the Portlets .. 6-32
6.18.2 Importing and Deploying JSR 286 Portlets in the Administration Console 6-33
6.19 JSR-286/JSR-168 Portlet Compatibility ... 6-33
6.19.1 Generic JSR 168 Compatibility Modifications .. 6-34
6.19.2 WebLogic Portal JSR 168 Compatibility Modifications .. 6-34
6.19.3 WebCenter JSR 168 Compatibility Modifications .. 6-35
6.20 Adding an Icon to a Java Portlet ... 6-36

7 Creating Clipper Portlets

7.1 Introduction .. 7-1
7.2 Creating a Clipper Portlet ... 7-2
7.3 Modifying Clipper Portlet Properties ... 7-3
7.3.1 Using the Properties Editor .. 7-3
7.3.2 Setting Clipper Properties Manually as Preferences ... 7-3
7.4 Modifying the Appearance of a Clipper Portlet ... 7-4
7.5 Authenticating a Clipper Portlet ... 7-5
7.5.1 Form-Based Authentication .. 7-6
7.5.2 Basic HTTP Authentication .. 7-7
7.6 Configuring URL Rewriting .. 7-7

vi

7.6.1 Navigable Link Configurations ... 7-7
7.6.2 Resource URL Configurations ... 7-8
7.6.3 URL Rewriting Configuration Techniques .. 7-8
7.6.3.1 Implementing IClipperUrlFilter .. 7-8
7.6.3.2 Using Portlet Preferences .. 7-9
7.7 Clipper Portlets and HTTPS ... 7-9
7.8 Certificates and WebLogic Server .. 7-10
7.9 Refreshing the Original Clipper Portlet Page ... 7-10
7.10 Using Backing Files with Clipper Portlets .. 7-13
7.11 Updating Portlet Preferences While the Server is Running ... 7-14
7.12 Clipper Portlet Limitations .. 7-14

8 Working With JSF-Java Portlets

8.1 Overview .. 8-1
8.1.1 Supported Portlet Bridges ... 8-2
8.2 Creating Java 2.0-JSF 1.2 Portlets .. 8-3
8.3 JSR-286 and JSR-329 Architecture ... 8-4
8.4 Understanding WLP and JSF Rendering Life Cycles ... 8-5
8.4.1 WLP and JSF Life Cycles .. 8-5
8.4.2 Invocation Order of WLP and JSF Life Cycle Methods .. 8-5
8.5 Accessing WLP Context Objects from JSF Managed Beans .. 8-6
8.6 Understanding Scopes and JSF Portlets ... 8-6
8.6.1 Conceptual Scopes for Standard JSF Applications ... 8-7
8.6.1.1 JSF Standard Scopes .. 8-7
8.6.1.2 View Scope .. 8-7
8.6.1.3 Pageflow/Conversation Scope .. 8-7
8.6.2 Conceptual Scopes for Portal Applications .. 8-7
8.6.3 Implementation Patterns for Portal Scopes .. 8-8
8.6.4 Reinterpretation of the JSF Session and Request Scopes .. 8-8
8.6.5 Global Session and Portlet Group Session Scopes ... 8-9
8.7 State Sharing .. 8-9
8.7.1 State Sharing Concepts .. 8-9
8.7.2 State Sharing Patterns .. 8-9
8.7.2.1 HttpSession Versus HttpServletRequest ... 8-10
8.7.2.1.1 Store state in the HttpSession ... 8-10
8.7.2.2 Single Portlet Pattern ... 8-10
8.7.2.3 Multiple Portlet Pattern ... 8-11
8.8 Using JSF in Java Portlets ... 8-11
8.8.1 Servlet Request And Servlet Response .. 8-12
8.8.2 PortletPreferences .. 8-13
8.8.3 PortletPresentationContext .. 8-13
8.8.4 Using JSPs in JSF Portlets ... 8-13
8.9 Converting Native JSF Portlets to Standard Java JSF Portlets .. 8-13
8.9.1 Backing Files .. 8-14
8.9.2 NamingContainer .. 8-15
8.9.3 Events .. 8-15
8.9.4 Preferences ... 8-15

vii

8.9.5 Localization .. 8-15
8.9.6 Error Pages ... 8-15
8.9.7 Portlet Modes ... 8-15
8.9.8 ServletRequest/ServletResponse ... 8-16
8.10 Using Common WLP Features With JSF Portlets .. 8-16
8.10.1 Portlet Container Features ... 8-16
8.10.1.1 Portlet Modes .. 8-16
8.10.1.2 Portlet Error Page ... 8-16
8.10.1.3 Portlet Preferences ... 8-16
8.10.1.4 Portlet Dependencies ... 8-19
8.10.2 Portal Container Features and JSF Portlets .. 8-19
8.10.2.1 Locale Provider ... 8-20
8.10.2.2 Skeleton Files ... 8-20
8.10.3 Ajax Enablement .. 8-20
8.10.3.1 Partial Page Rendering Pattern .. 8-20
8.10.3.2 Stateless API Request Pattern .. 8-21
8.10.3.3 Portlet Aware API Request Pattern ... 8-21
8.11 Understanding Navigation Within a JSF Portlet .. 8-26
8.11.1 Navigating Within a Portlet with the JSF Controller .. 8-26
8.11.2 Support for Redirects ... 8-27
8.12 Interportlet Communication with JSF Portlets ... 8-28
8.13 Namespacing .. 8-31
8.13.1 Client ID Namespacing with the View Components ... 8-31
8.13.2 Client ID Namespacing with the WLP NamingContainer 8-31
8.13.3 Javascript Namespacing with Portlet Tag Library ... 8-31
8.14 Code Examples for Common Use Cases ... 8-32
8.14.1 Uploading Images .. 8-32
8.14.1.1 File Upload with HTML tags ... 8-33
8.14.1.2 File Upload with Tomahawk tags ... 8-41
8.14.2 Login/Logout Example ... 8-41
8.14.2.1 Login Portlet Design .. 8-41
8.14.2.2 Handling Redirects with JSR-286/JSR-329 .. 8-42
8.14.2.3 Invalidating the Session with the JSR-329 Bridge .. 8-42
8.14.3 Login Portlet Implementation .. 8-42
8.14.3.1 JSF Login View .. 8-42
8.14.3.2 JSF Managed Backing Bean ... 8-43
8.14.3.3 Resource Bundle ... 8-45
8.14.3.4 Portlet Definition File .. 8-46
8.14.3.5 Redirect ... 8-49
8.14.4 Putting Login Portlet Into A Portal environment ... 8-49
8.15 Preparing JSF Portlets for Production ... 8-52
8.15.1 Configuration Tasks ... 8-52
8.15.1.1 Configuring URL Templates for Proxy Servers ... 8-52
8.15.1.2 JSF Portlets with WSRP ... 8-53
8.15.2 Handling Errors ... 8-53
8.15.3 Performance and Scalability ... 8-53
8.15.3.1 JSF Portlets in a Clustered Environment ... 8-54

viii

8.15.3.2 Portlet Render Caching .. 8-54
8.15.4 Securing JSF Portlets ... 8-55
8.15.4.1 Deny Direct Access to the Portlet Views ... 8-55
8.15.4.2 Session Timeouts ... 8-56
8.15.5 Localizing JSF Portlets ... 8-56
8.15.5.1 Configuring the Localization ... 8-56
8.16 Third-Party Libraries .. 8-57
8.16.1 Facelets .. 8-57
8.16.2 Tomahawk ... 8-57
8.17 Tips for Logging, Iterative Development, and Debugging of JSF Portlets 8-58
8.17.1 Using Iterative Development for JSF Portlets .. 8-58
8.17.1.1 Testing Outside of the Portlet Container ... 8-59
8.17.1.2 Using Application Republish .. 8-59
8.17.1.3 HttpSession Caching ... 8-59
8.17.1.4 Handling OutOfMemory Errors .. 8-59
8.17.2 Debugging ... 8-59
8.17.2.1 Attaching Source (Step 1) .. 8-59
8.17.2.2 Suggested JSF Framework Break Points (Step 2) ... 8-60
8.18 Appendix: JSFJavaPortletHelper .. 8-60

9 Developing Portlets

9.1 Portlet Properties .. 9-1
9.1.1 Editing Portlet Properties .. 9-2
9.1.2 Tips for Using the Properties View .. 9-2
9.1.3 Portlet Properties in the Portal Properties View .. 9-3
9.1.4 Portlet Properties in the Portlet Properties View ... 9-5
9.2 Portlet Preferences .. 9-12
9.2.1 Specifying Portlet Preferences ... 9-13
9.2.1.1 Specifying Preferences for Java Portlets in the Deployment Descriptor 9-13
9.2.1.2 Specifying Preferences for Other Types of Portlets using Oracle Enterprise Pack for

Eclipse ... 9-15
9.2.1.3 Configuring Portlet Preference Deployment Options 9-16
9.2.2 Using the Preferences API to Access or Modify Preferences 9-17
9.2.2.1 Getting Preferences Using the Preferences API ... 9-17
9.2.2.2 Setting Preferences Using the Preferences API .. 9-17
9.2.2.3 Getting and Setting Preferences for Java Portlets Using the Preferences API ... 9-17
9.2.2.4 Getting and Setting Portlet Preferences Using the API for Other Portlet Types 9-19
9.2.2.5 JSP Tags for Getting Portlet Preferences .. 9-19
9.2.3 Portlet Preferences SPI ... 9-20
9.2.3.1 Implement the SPI ... 9-20
9.2.3.2 Using the SPI ... 9-21
9.2.4 Best Practices in Using Portlet Preferences ... 9-22
9.2.4.1 Desktop Testing of Portlet Preferences .. 9-22
9.2.4.2 Users Must be Authenticated ... 9-22
9.2.4.3 Do Not Store Arbitrary Data as Preferences .. 9-22
9.2.4.4 Do Not Use Instance IDs Instead of Preferences ... 9-23
9.3 Using Shared Parameters ... 9-23

ix

9.3.1 Setting Shared Parameters ... 9-23
9.3.2 Accessing Shared Parameters .. 9-24
9.3.3 Persistence of Shared Parameters .. 9-24
9.3.4 Creating Shared Parameters .. 9-24
9.4 Backing Files ... 9-26
9.4.1 How Backing Files are Executed .. 9-26
9.4.2 Thread Safety and Backing Files .. 9-27
9.4.3 Scoping and Backing Files .. 9-28
9.4.4 Backing File Guidelines ... 9-28
9.4.4.1 Adding a Backing File Using Oracle Enterprise Pack for Eclipse 9-28
9.4.4.2 Adding the Backing File Directly to the .portlet File ... 9-29
9.5 Portlet Appearance and Features ... 9-30
9.5.1 Portlet Dependencies ... 9-30
9.5.1.1 Introduction ... 9-30
9.5.1.2 Identifying Portlet Dependencies .. 9-31
9.5.1.3 Creating, Editing, and Adding a Dependency File ... 9-32
9.5.1.4 Example Dependency Files ... 9-34
9.5.1.4.1 Including JavaScript in a Render Dependencies File 9-34
9.5.1.4.2 Including Meta and Style Elements in a Render Dependencies File 9-34
9.5.1.5 Considerations and Limitations .. 9-35
9.5.1.6 Scoping JavaScript Variables and CSS Styles ... 9-35
9.5.1.7 Rewriting Resource URLs .. 9-36
9.5.2 Portlet Modes .. 9-36
9.5.2.1 Adding or Removing a Mode for an Existing Portlet .. 9-37
9.5.2.2 Properties Related to Portlet Modes .. 9-38
9.5.3 Creating Custom Modes ... 9-38
9.5.4 Custom Mode Properties .. 9-42
9.5.5 Portlet States .. 9-43
9.5.5.1 Modifying Portlet States in Oracle Enterprise Pack for Eclipse 9-44
9.5.5.2 Minimizing or Maximizing a Portlet Programmatically 9-44
9.5.6 Portlet Title Bar Icons ... 9-45
9.5.7 Portlet Height and Scrolling ... 9-45
9.5.7.1 Making All Portlets Scroll .. 9-46
9.6 Getting Request Data in Page Flow Portlets ... 9-47
9.7 JSP Tags and Controls in Portlets ... 9-48
9.7.1 Viewing Available JSP Tags ... 9-48
9.7.2 Viewing Available Controls ... 9-49
9.8 Portlet State Persistence .. 9-50
9.9 Advanced Portlet Development with Tag Libraries .. 9-50
9.9.1 Adding ActiveMenus ... 9-51
9.9.1.1 Configuring the ActiveMenus Tag .. 9-52
9.9.1.1.1 Using The TypeInclude tag .. 9-52
9.9.1.1.2 Using The Type Tag ... 9-53
9.9.1.1.3 Using The TypeDefault Tag ... 9-53
9.9.1.1.4 Using The menuItem Tag ... 9-54
9.9.1.2 Using the ActiveMenus Tag .. 9-58
9.9.2 Enabling Placeable Movement ... 9-59

x

9.9.2.1 Using the DragDrop Tags ... 9-59
9.9.2.1.1 Using the dragDropScript Tag .. 9-60
9.9.2.1.2 Using the draggableResource Tag .. 9-60
9.9.2.1.3 Using the resourceDropZone Tag ... 9-60
9.9.3 Enabling Dynamic Content .. 9-61
9.9.3.1 Understanding the DynamicContent Tags .. 9-62
9.9.3.1.1 The Container Tag .. 9-62
9.9.3.1.2 The Container Action Script Tag ... 9-62
9.9.3.1.3 The Execute Container Action Tag ... 9-62
9.9.3.1.4 The Parameter Tags .. 9-63
9.9.3.2 Using the DynamicContent Tags ... 9-63
9.9.4 Using the User Picker .. 9-63
9.9.4.1 Using the UserPicker Tags .. 9-64
9.10 Detached Portlets ... 9-64
9.10.1 Considerations for Using Detached Portlets .. 9-64
9.10.2 Building Detached Portlets .. 9-65
9.11 Working with Inlined Portlets .. 9-65
9.11.1 Extracting Inlined Portlets ... 9-66
9.11.2 Setting the Theme of an Inlined Portlet ... 9-67
9.12 Extracting Books and Pages .. 9-67
9.13 Avoiding Committing Responses .. 9-68

10 Optimizing Portlet Performance

10.1 Performance-Related Portlet Properties ... 10-1
10.2 Portlet Caching ... 10-1
10.3 Remote Portlets .. 10-2
10.4 Portlet Forking .. 10-2
10.4.1 Configuring Portlets for Forking .. 10-3
10.4.2 Architectural Details of Forked Portlets ... 10-5
10.4.2.1 Understanding Request Latency and the Portal Life Cycle 10-5
10.4.2.2 Queuing and Dispatching Forked Portlets for Processing 10-6
10.4.2.2.1 Dispatching Pre-Render Forked Portlets to Threads 10-6
10.4.2.2.2 Dispatching Render Forked Portlets to Threads ... 10-7
10.4.2.3 Threading Details and Coordination .. 10-7
10.4.2.4 Forking Versus Asynchronous Rendering ... 10-8
10.4.3 Best Practices for Developing Forked Portlets ... 10-8
10.4.3.1 Consider Thread Safety ... 10-8
10.4.3.2 Consider the Runtime Environment for Forked Portlets 10-9
10.4.3.2.1 Isolation of Forked Portlets from the Runtime Environment 10-9
10.4.3.2.2 BackingContext and Pre-Render Forked Portlets 10-9
10.4.3.3 Use Caution with Interportlet Communication and Forked Portlets 10-10
10.5 Asynchronous Portlet Content Rendering .. 10-10
10.5.1 Implementing Asynchronous Portlet Content Rendering 10-11
10.5.2 Thread Safety and Asynchronous Rendering ... 10-13
10.5.3 Considerations for IFRAME-based Asynchronous Rendering 10-13
10.5.4 Considerations for AJAX-based Asynchronous Rendering 10-13
10.5.5 Comparison of IFRAME- and AJAX-based Asynchronous Rendering 10-14

xi

10.5.6 Comparison of Asynchronous and Conventional or Forked Rendering 10-14
10.5.7 Portal Life Cycle Considerations with Asynchronous Content Rendering 10-15
10.5.8 Asynchronous Content Rendering and IPC ... 10-15
10.5.8.1 File Upload Forms ... 10-16
10.5.8.2 Disabling Asynchronous Rendering for a Single Interaction 10-16
10.5.8.3 URL Compression ... 10-16

11 Monitoring and Determining Portlet Performance

11.1 Introduction .. 11-1
11.2 Use Case ... 11-1
11.3 Detecting a Misbehaving Portlet .. 11-2
11.4 Disabling the Bad Portlet and Enabling an Alternative Portlet 11-3

12 Configuring Local Interportlet Communication

12.1 Introduction .. 12-1
12.2 Overview of Interportlet Communication Techniques ... 12-2
12.3 Differences Between Portal Events and Java Portlet Events ... 12-2
12.4 Portlet Event Handling ... 12-3
12.4.1 Event Handlers .. 12-4
12.4.1.1 Generic Event Handlers .. 12-5
12.4.2 Event Actions ... 12-6
12.4.3 Event Types ... 12-6
12.5 Using the Portlet Event Handlers Wizard .. 12-7
12.5.1 Opening the Portlet Event Handlers Wizard ... 12-7
12.5.2 Portlet Event Handlers Wizard - Add Handler Field Descriptions 12-8
12.5.3 Portlet Event Handlers Wizard - Add Action Field Descriptions 12-9
12.5.4 Definition Labels and Interportlet Communication ... 12-10
12.6 Custom Event Handling ... 12-10
12.7 Events in Java Portlets .. 12-13
12.7.1 Overview ... 12-13
12.7.2 Adding a Processing Event ... 12-14
12.7.3 Adding a Publishing Event .. 12-16
12.7.4 Modifying a Java Portlet Event .. 12-19
12.7.5 Deleting a Java Portlet Event ... 12-19
12.8 Subscribing Java Portlets to Portal Framework Events .. 12-21
12.8.1 Custom Event Namespaces .. 12-22
12.8.2 Local Name for Notification Events ... 12-22
12.9 Public Render Parameters .. 12-22
12.10 Shared Parameters .. 12-23
12.11 IPC Special Considerations and Limitations .. 12-23
12.11.1 Using Asynchronous Portlet Rendering with IPC ... 12-23
12.11.2 Consistency of the Listen To Field ... 12-23
12.12 About QNames and Aliases ... 12-23
12.12.1 QNames and Aliases in Events .. 12-24
12.12.2 QNames and Aliases in Shared Parameters / Public Render Parameters 12-25

xii

13 Interportlet Communication Example With Event Handling

13.1 Before You Begin – Environment Setup ... 13-1
13.2 Basic IPC Example .. 13-2
13.2.1 Create the Portlets .. 13-3
13.2.1.1 Create the JSP Files and Portlets .. 13-3
13.2.2 Create the Backing File .. 13-6
13.2.3 Attach the Backing File .. 13-8
13.2.4 Add the Event Handler to bPortlet .. 13-9
13.2.5 Test the Project ... 13-12
13.2.6 Summary ... 13-14

14 Adding the Content Presenter Portlet

14.1 Using the Content Presenter Example .. 14-1
14.1.1 Starting the Content Presenter Example .. 14-2
14.1.2 Performing Inline Editing in the Content Presenter Example 14-2
14.1.2.1 Entering Inline Edits .. 14-2
14.1.2.2 Enabling Inline Editing for the Training Announcement Portlet 14-3
14.1.3 Enabling Inline Editing in Your Portlets .. 14-4
14.2 Configuring the Content Presenter Portlet in Your Portal ... 14-5
14.2.1 Configuring the Content Presenter Portlet .. 14-5
14.2.1.1 Changing How Much Content Appears in the Portlet 14-14
14.2.1.2 Using Portlet Publishing to Expose a Content Presenter Portlet 14-15

15 Adding a Third-Party Portlet

15.1 Using the Collaboration Portlets .. 15-1
15.2 Autonomy Portlets ... 15-1
15.3 Documentum Portlets .. 15-1
15.4 MobileAware Portlets .. 15-2

16 Using the Collaboration Portlets

16.1 What Are Collaboration Portlets .. 16-1
16.2 Adding Collaboration Portlets to Your Portal .. 16-2
16.2.1 Step 1: Add Collaboration Facets ... 16-2
16.2.2 Step 2: Add Collaboration Repository to Your Domain .. 16-3
16.2.3 Step 3: Create a Role for Collaboration Portlet Users ... 16-3
16.2.4 Step 4. (Optional) Configure a Repository ... 16-3
16.2.5 Step 5. Entitle the Collaboration Data Repository ... 16-4
16.2.6 Step 6. Add Users to the New Role .. 16-4
16.2.7 Step 7. Configure the Collaboration Portlets .. 16-4
16.2.8 Step 8. Add Collaboration Portlets to Your Desktop ... 16-5
16.3 Configuring Collaboration Portlets for a Shared View ... 16-5
16.3.1 Overview of User and Common Area Portlets .. 16-5
16.3.2 Configuring a Common Area Portlet ... 16-6
16.4 Using the Collaboration Portlet Source Code ... 16-6
16.4.1 Copying the Source Code to Your Project ... 16-7
16.4.2 Source Code Disclaimers .. 16-7

xiii

16.5 Using the Calendar Portlet ... 16-7
16.5.1 Adding a Calendar Appointment .. 16-7
16.5.2 Managing Your Calendar ... 16-9
16.6 Using the Mail Portlet .. 16-10
16.6.1 Configuring the Mail Portlet .. 16-10
16.6.1.1 Removing a Mail Account .. 16-12
16.6.2 Sending E-Mail ... 16-12
16.6.3 Viewing Mail ... 16-13
16.6.4 Managing Mail ... 16-13
16.6.5 Searching Mail ... 16-14
16.7 Using the Contacts Portlet .. 16-14
16.7.1 Adding a Contact ... 16-14
16.7.2 Filtering and Navigating Contacts ... 16-17
16.7.3 Managing Contacts .. 16-17
16.7.4 Searching Contacts ... 16-17
16.8 Using the Tasks Portlet ... 16-18
16.8.1 Adding a Task .. 16-18
16.8.2 Managing Tasks ... 16-19
16.9 Using the Discussion Forums Portlet ... 16-20
16.9.1 Adding a Category and a Discussion Forum ... 16-20
16.9.2 Adding a Discussion Topic .. 16-21
16.9.3 Replying to a Discussion Topic .. 16-22
16.9.4 Managing Discussion Forums .. 16-23
16.10 Setting Up the Rich Text Editor .. 16-23
16.10.1 Enabling Rich Text Editing ... 16-23
16.10.1.1 Modifying Portlet Preferences for Rich Text Editing 16-24

Part III Staging

17 Assembling Portlets into Desktops

17.1 Portlet Library .. 17-1
17.2 Managing Portlets Using the Administration Console ... 17-2
17.2.1 Copying a Portlet in the Library .. 17-2
17.2.2 Modifying Library Portlet Properties ... 17-2
17.2.3 Modifying Desktop Portlet Properties ... 17-3
17.2.4 Deleting a Portlet ... 17-4
17.2.5 Managing Portlets on Pages ... 17-4
17.2.5.1 Adding Portlets to a Page ... 17-4
17.2.5.2 Positioning Elements on a Page ... 17-4
17.2.6 Overview of Portlet Categories .. 17-5
17.2.6.1 Creating a Portlet Category ... 17-5
17.2.6.2 Modifying Portlet Category Properties ... 17-5
17.2.6.3 Adding Portlets to a Portlet Category ... 17-6
17.2.7 Overview of Portlet Preferences .. 17-6
17.2.8 Creating a Portlet Preference ... 17-6
17.2.9 Editing a Portlet Preference ... 17-7

xiv

17.2.10 Overview of Delegated Administration ... 17-8
17.2.11 Overview of Visitor Entitlements .. 17-8

18 Deploying Portlets

18.1 Deploying Portlets ... 18-1

Part IV Production

19 Managing Portlets in Production

19.1 Pushing Changes from the Library into Production .. 19-1
19.2 Transferring Changes from Production Back to Development 19-1

A Oracle Enterprise Pack for Eclipse Portlet Database Data

A.1 Database Structure for Portlet Data ..A-1
A.1.1 Removing Portlets from Production ..A-2
A.2 Portlet Resources in the Database ..A-2
A.2.1 Types of Database Tables ...A-2
A.2.2 Management of Portlet Data ..A-3
A.2.3 How the Database Shows Removed Portlets ...A-3

xv

List of Examples

6–1 Example of a portlet.xml file for a Simple Hello World Java Portlet 6-4
6–2 Filter and Filter Mapping Elements Before Delete Operation... 6-14
6–3 Filter and Filter Mapping Elements After Delete Operation... 6-15
7–1 Example Form-Based Authentication Preferences .. 7-6
7–2 Example Basic HTTP Authentication Preferences .. 7-7
7–3 IClipperUrlFilter Methods... 7-8
7–4 Configured .portlet File Sample... 7-13
8–1 Sample JSF-JSP .. 8-3
8–2 GenericFacesPortlet ... 8-14
8–3 Changing entry in portlet.xml.. 8-14
8–4 A JSF View .. 8-17
8–5 The JSF Managed Bean ... 8-17
8–6 The JavaScript Function That Invokes the WLP-Specific XMLHttpRequest 8-22
8–7 The JSF JSP That Triggers the Ajax Call Using an 'onclick' Handler................................ 8-22
8–8 The JSF managed bean that provides the Ajax data API ... 8-23
8–9 The Java Portlet with serveResource Implemented.. 8-23
8–10 Dependencies Sample ... 8-24
8–11 A Fake DataService Servlet Returning Data for the Request... 8-25
8–12 Servlet Mapping... 8-26
8–13 Navigation Configuration in faces-config.xml .. 8-27
8–14 Command Button That Uses the Navigation Rule ... 8-27
8–15 Redirect in a Navigation Case.. 8-27
8–16 autoDispatchEvents Set to False .. 8-28
8–17 Java Portlet Example ... 8-29
8–18 portlet.xml... 8-29
8–19 .jsp File to Call a Bean.. 8-30
8–20 Faces Bean Method for "ExampleBean" That Sends the Event.. 8-30
8–21 Javascript Namespacing Example ... 8-32
8–22 JSP File For Uploading Files Using Plain HTML Elements ... 8-33
8–23 FormDataHelper .. 8-33
8–24 JavaFileUploadPortlet ... 8-39
8–25 The login.jsp for the JSF 1.2 Login Portlet .. 8-42
8–26 JSF Managed Bean Calls the JSFJavaPortletHelper Class .. 8-43
8–27 Registering the Login Managed Bean in faces-config.xml... 8-45
8–28 Login.jsp .. 8-46
8–29 The Portlet Definition File for the Login Portlet (JSF 1.2 Java Portlet)............................. 8-46
8–30 portlet.xml File .. 8-46
8–31 LoginServlet .. 8-47
8–32 welcome.portlet File ... 8-49
8–33 Entry in the portlet.xml file .. 8-49
8–34 welcome.jsp... 8-50
8–35 demo.portal... 8-50
8–36 Configure URL Generation That Refers to a Proxy Server ... 8-53
8–37 Prefix Servlet Mapping in web.xml... 8-55
8–38 web.xml Settings For Tomahawk .. 8-57
8–39 JSFJavaPortletHelper Class... 8-60
9–1 Specifying Portlet Preferences in portlet.xml with a Single Value 9-13
9–2 Specifying Portlet Preferences with Values Specified Separately..................................... 9-14
9–3 Specifying a Read-Only Portlet Preference Value... 9-14
9–4 Portlet Displays a Form to Edit Preferences .. 9-18
9–5 Portlet Updates the Preferences in the processAction() Method 9-18
9–6 Implementing the SPI Using the Interface IPreferencesAppStore.................................... 9-20
9–7 Example Code Showing Default Entries that Must be Changed...................................... 9-21
9–8 Getting and Setting Shared Parameter Values .. 9-25

xvi

9–9 Backing File Example .. 9-28
9–10 Adding a Backing File to a .portlet File ... 9-29
9–11 Portlet Dependencies Configuration File Example... 9-32
9–12 Including JavaScript ... 9-34
9–13 Use of Meta and Styling Elements... 9-35
9–14 Sample Custom Mode JSP .. 9-39
9–15 Sample Backing File... 9-40
9–16 Code Sample of GetActiveMenusResourceServlet ... 9-52
9–17 You Can Use the typeInclude Tag with the Type Tag in the activemenus-config.xml File.....

9-53
9–18 Pointing to Another XML File Called username.xml ... 9-53
9–19 The menuItem Tag... 9-54
9–20 The CheckUserRights.java Class with the showMenuItem Tag 9-57
9–21 Code Entry in the web.xml File ... 9-59
9–22 The sourceId Request Dropped onto a resourceDropZone... 9-60
9–23 Coding the moveIssue Action.. 9-61
10–1 Forking Properties Set in a .portlet File .. 10-4
11–1 Portlet Rendering Time Detection ... 11-2
11–2 Enabling an Alternate Portlet and Disabling a Misbehaving Portlet 11-4
12–1 Event Definitions and Mapping Elements Before a Disassociate Operation 12-20
12–2 Event Definitions and Mapping Elements After Disassociate Operation 12-20
13–1 New JSP Code for bPortlet.jsp ... 13-5
13–2 Backing File Code for Listening.java... 13-7
16–1 Add Context Parameters and Values to the End of the web.xml File............................ 16-24

xvii

xviii

List of Figures

1–1 Portal Desktop with Portlets .. 1-1
4–1 Portlet Components.. 4-2
5–1 Portlet Being Copied to a Project from Merged Projects View .. 5-3
5–2 Portlet Wizard Prompt Following Drag and Drop of a Resource 5-4
5–3 Example Portlet Wizard Details Dialog Following Drag and Drop of a Resource 5-4
5–4 Portlet Wizard New File Dialog.. 5-5
5–5 Portlet Wizard - Select Portlet Type Dialog .. 5-5
5–6 Portlet Wizard Prompt Following Drag and Drop of a Resource 5-6
5–7 Portlet Wizard - Portlet Details Example for JSP Resource .. 5-6
5–8 Portlet Wizard - Select Portlet Type Dialog .. 5-8
5–9 Portlet Wizard - JSP Portlet Details Dialog ... 5-9
5–10 Portlet Wizard - New Portlet Dialog .. 5-11
5–11 Portlet Wizard - JSF Portlet Details Dialog for JSF 1.2 Configuration.............................. 5-12
5–12 Portlet Editor for a JSF 1.2 Configuration Portlet.. 5-14
5–13 Portlet Wizard - New Portlet Dialog... 5-15
5–14 Portlet Wizard - Browser Portlet Details Dialog ... 5-16
5–15 Struts Config File Dialog... 5-18
5–16 Struts Actions Dialog... 5-18
5–17 Portlet Wizard - JPF Portlet Details Dialog .. 5-21
5–18 Assign Supporting Files Dialog ... 5-22
5–19 Dragging a Portlet from the Palette onto a Portal Page in Editor View 5-24
6–1 Portlet Wizard - Java Portlet Details Dialog ... 6-2
6–2 Java Portlet Appearance and Properties ... 6-4
6–3 Adding a Filter .. 6-7
6–4 Defining a Portlet Filter.. 6-8
6–5 You Can Drag and Drop Filters to Reorder Them ... 6-9
6–6 Adding a Public Render Parameter... 6-10
6–7 Define or Choose a Portlet Public Render Param Dialog... 6-10
6–8 Provide QName Components Dialog ... 6-11
6–9 Provide List of QName Alias(es) Dialog .. 6-12
6–10 Deleting a Filter .. 6-14
6–11 Global Shared Properties .. 6-23
6–12 Provide List of Container Runtime Option(s) Dialog... 6-23
6–13 Provide List of Portlet URL Listener(s) Dialog.. 6-24
6–14 Local Container Runtime Options... 6-25
6–15 Selecting Custom Modes... 6-26
6–16 Define or Choose a Custom Portlet Mode Dialog .. 6-26
6–17 Select Portlet(s) to Export Dialog... 6-30
6–18 Edit Title(s) Dialog... 6-30
7–1 Selecting Web Clipper Portlet ... 7-2
7–2 Specifying the URL of a Remote Web Site .. 7-3
7–3 Portlet Preferences Bar ... 7-4
7–4 Preference Name and Value Fields .. 7-4
7–5 Event Handlers Link.. 7-11
7–6 Portlet Event Handlers Dialog Box .. 7-11
7–7 Event Handler Dialog Box Expanded... 7-12
7–8 Specifying the Backing File Method.. 7-13
8–1 A view of the example portlet.. 8-22
8–2 JSF Login ... 8-41
8–3 Logout.. 8-42
8–4 First Time/ Not Authenticated.. 8-52
8–5 Authenticated ... 8-52
8–6 Portlet Cache Configuration... 8-55
9–1 Editing Portlet Properties - JSP Portlet Properties View Example 9-2

xix

9–2 Portlet Instance Properties in the Portal Properties View .. 9-4
9–3 Properties View Example Showing Portlet Properties.. 9-5
9–4 Portlet Preferences Context Menu... 9-15
9–5 Portlet Preferences Properties View.. 9-16
9–6 Provide Shared Parameter Components Dialog ... 9-25
9–7 Backing File Life Cycle .. 9-27
9–8 Adding a Backing File Using Oracle Enterprise Pack for Eclipse 9-29
9–9 Assign Supporting Files Dialog ... 9-29
9–10 Editing a Dependencies File ... 9-34
9–11 Portlet Mode and State Buttons in Editor... 9-37
9–12 Portlet Mode and State Buttons in a Running Portlet ... 9-37
9–13 Available Portlet Modes - Title Bar Context Menu... 9-37
9–14 Portlet Mode - Available Modes Submenu .. 9-38
9–15 Selecting a Custom Mode .. 9-39
9–16 Adding a New Custom Mode.. 9-41
9–17 Displaying Mode Properties... 9-41
9–18 Specifying a Content File and a Backing File... 9-41
9–19 Testing the Example .. 9-42
9–20 Portlet State - Title Bar Context Menu .. 9-44
9–21 Portlet Height and Scrolling Presentation Properties Example .. 9-46
9–22 Portlet Height and Scrolling—Portlet Appearance Results... 9-46
9–23 Design Palette Showing Available JSP Tags ... 9-48
9–24 Dragging a JSP Tag into the Design View – Properties for Add User JSP Tag 9-49
9–25 Insert > Control Menu Selection .. 9-49
9–26 Select Control Dialog .. 9-50
9–27 Editing the web.xml File in Oracle Enterprise Pack for Eclipse.. 9-52
9–28 Inlined Portlet in the Portlet Editor .. 9-66
9–29 Extract Portlet to New File.. 9-67
10–1 Forking Properties ... 10-3
10–2 Simple Portal Schematic Example ... 10-5
10–3 Flow of Portal Life Cycle Methods .. 10-6
12–1 Portlet Event Handlers Wizard.. 12-8
12–2 Expanded Event Handlers Dialog .. 12-8
12–3 Custom Event Handler Dialog... 12-11
12–4 Fire Custom Event Dialog... 12-13
12–5 Selecting a Processing Event Type .. 12-14
12–6 Define or Choose a Portlet Event Definition Dialog... 12-15
12–7 Provide QName Components Dialog ... 12-16
12–8 Provide List of QName Alias(es) Dialog .. 12-16
12–9 Selecting a Publishing Event Type .. 12-17
12–10 Define or Choose a Portlet Event Definition Dialog... 12-18
12–11 Editing a Java Portlet Event Definition... 12-19
13–1 Select Portlet Type ... 13-4
13–2 Portlet Details ... 13-4
13–3 JSP File Showing Edited Body Text .. 13-5
13–4 Updated bPortlet JSP Source .. 13-6
13–5 New Backing File Folder in Package Explorer View .. 13-6
13–6 New Java Class Dialog .. 13-7
13–7 Listening.java with Updated Backing File Code... 13-8
13–8 bPortlet with Outer Border Selected to Display Properties... 13-9
13–9 Attaching the Backing File in the Properties View ... 13-9
13–10 Event Handlers Button.. 13-10
13–11 Portlet Event Handlers Dialog Box .. 13-10
13–12 Event Handler Dialog Box Expanded... 13-11
13–13 Adding portlet_1.. 13-11

xx

13–14 Event Drop-down List .. 13-11
13–15 Adding the Backing File Method... 13-12
13–16 Portal Layout with aPortlet and bPortlet Added .. 13-13
13–17 ipcLocal Portal in Browser.. 13-13
13–18 ipcPortal Showing the Effect of Minimizing aPortlet ... 13-14
14–1 Click the Edit HTML Button that Appears in the Text of the Portlet............................... 14-2
14–2 Enter Text in the Signature Line .. 14-3
14–3 Click Edit to Enable Inline Editing for this Portlet.. 14-4
14–4 Determine How Much Content You Want to Display ... 14-7
14–5 Narrow Your Search with a Keyword .. 14-8
14–6 Custom List of Specific Content Items.. 14-9
14–7 Query Filter and Sort Filter... 14-10
14–8 Select a Template and View.. 14-12
14–9 Enter a Description for the Portlet and Pick a Theme .. 14-12
14–10 Preview or Save the Portlet .. 14-13
14–11 A Single Content Item Displayed in the Content Presenter Portlet 14-14
16–1 Repository Structure for a Discussion Forum ... 16-5
16–2 Repeating Calendar Appointment .. 16-8
16–3 New Calendar Appointment.. 16-9
16–4 Configuring the Mail Servers ... 16-11
16–5 Click the Edit Icon to View the Mail Preferences Window ... 16-12
16–6 New E-Mail Message... 16-13
16–7 Adding a New Business Contact ... 16-16
16–8 New Contact ... 16-16
16–9 Viewing All Contacts... 16-17
16–10 New Task with an Attachment .. 16-19
16–11 High Priority Task ... 16-19
16–12 New Category... 16-21
16–13 New Discussion Forum... 16-21
16–14 The New Discussion Topic Appears in the Discussion Forums Portlet 16-22
16–15 The Rich Text Editor in a Portlet.. 16-25
16–16 The Bottom Toolbar in a Portlet that Allows Rich Text Editing 16-25

xxi

List of Tables

3–1 Portlet Type Summary Table ... 3-5
5–1 Portlet Wizard - JSP Portlet Data Entry Fields .. 5-9
5–2 Portlet Wizard - JSF Portlet Data Entry Fields for a JSF 1.2 Configuration.................... 5-12
5–3 Portlet Wizard - JSF Portlet Data Entry Fields for a JSF 1.1 Configuration.................... 5-13
5–4 Portlet Wizard - Browser Portlet Data Entry Fields... 5-16
5–5 Portlet Wizard - JPF Portlet Data Entry Fields ... 5-21
6–1 Portlet Wizard - Java Portlet Data Entry Fields... 6-3
7–1 Preferences for Determining the Text to Clip .. 7-5
7–2 HTTP Request Preferences ... 7-6
7–3 Authentication Credential Preferences... 7-6
7–4 Authentication Credential Preferences... 7-7
8–1 Resulting Portlet Types for JSF Portlets.. 8-2
8–2 Scope of Portlet Context Objects.. 8-6
8–3 Managed Bean Scope Implementation Strategies ... 8-8
8–4 Comparison of Scoping Levels .. 8-8
9–1 Portlet Instance Properties in the Properties View ... 9-4
9–2 Properties in the Portlet Properties View... 9-6
9–3 Portlet Preference Properties... 9-16
9–4 Methods that Allow a Portlet to Access its Preference Values... 9-17
9–5 Methods that Allow a Portlet to Change Preference Values .. 9-17
9–6 JSP Tags for Getting Portlet Preferences.. 9-19
9–7 Mode Properties .. 9-42
9–8 Presentation Properties .. 9-43
9–9 Toggle Button Properties ... 9-43
10–1 Portlet Forking Properties.. 10-4
10–2 IFRAME-based and AJAX-based Asynchronous Portlet Summary Table................... 10-14
10–3 Comparison of Behaviors - Forked/Conventional Rendering and Asynchronous

Rendering 10-14
12–1 Interportlet Communication Features of WLP... 12-2
12–2 Event Handlers.. 12-4
12–3 Event Actions... 12-6
12–4 Events Available to a Portal Event Handler ... 12-6
12–5 Portlet Event Handlers Wizard - Add Handler.. 12-9
12–6 Portlet Event Handlers Wizard - Add Action... 12-10
12–7 Custom Event Dialog Fields.. 12-11
12–8 Namespaces and Local Names Portal Framework Events ... 12-21
13–1 IPC Example - Environment Setup Values ... 13-2
17–1 Modifying Library Portlet Properties .. 17-3
17–2 Modifying Desktop Portlet Properties... 17-3
17–3 Modifying Portlet Category Properties ... 17-5
17–4 Creating a Portlet Preference... 17-6
17–5 Editing a Portlet Preference... 17-8

xxii

xxiii

Preface

The primary focus of this guide is developing and administering portlets. Topics like
interportlet communication, analytics, and integration of third-party portlets are
discussed. In addition, the Content Presenter portlet is discussed. The Content
Presenter portlet allows users to retrieve and display different kinds of content in a
portal in real time, without assistance from the IT Department or software developers.

Audience
This guide is intended for developers and portal administrators. Developers use
Oracle Enterprise Pack for Eclipse (OEPE) to create portlets, to write the business logic
used by portlets, to create web applications, and to perform other related tasks, like
implementing data transfer and interportlet communication. Portal administrators use
the WebLogic Portal Administration Console to assemble and configure assemblages
of portlets called desktops.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the WebLogic Portal
documentation set:

■ Oracle WebLogic Portal Portal Development Guide

■ Oracle WebLogic Portal Federated Portals Guide

■ Oracle WebLogic Portal Security Guide

■ Oracle WebLogic Portal Tutorials

xxiv

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Architecture

During the architecture phase, you plan the configuration of the portlets that comprise
your portal.

For a detailed description of the architecture phase of the portal life cycle, see the
Oracle Fusion Middleware Overview for Oracle WebLogic Portal.

Part I contains the following chapters:

■ Chapter 1, "Introduction"

■ Chapter 2, "Portlet Planning"

■ Chapter 3, "Portlet Types"

1

Introduction 1-1

1Introduction

This chapter introduces Oracle WebLogic Portal portlet concepts and describes the
content of this guide.

This chapter includes the following sections:

■ Section 1.1, "Portlet Overview"

■ Section 1.2, "Portlet Development and the Portal Life Cycle"

1.1 Portlet Overview
Portlets are modular panes within a web browser that surface applications,
information, and business processes. Portlets can contain anything from static HTML
content to Java controls to complex web services and process-heavy applications.
Portlets can communicate with each other using events and other techniques. A single
portlet can also have multiple instances—in other words, it can appear on a variety of
different pages within a single portal, or even across multiple portals if the portlet is
enabled for Web Services for Remote Portlets (WSRP). You can customize portlets to
meet the needs of specific users or groups.

Figure shows an example portal desktop with its associated portlets outlined in red.

Figure 1–1 Portal Desktop with Portlets

Portlet Development and the Portal Life Cycle

1-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

WebLogic Portal supports the development of portlets through Oracle Enterprise Pack
for Eclipse, which is a client-based tool. You can develop portals without Oracle
Enterprise Pack for Eclipse through coding in any tool of choice such as JBuilder, VI or
Emacs; portlets can be written in Java or JSP, and can include JavaScript for client-side
operations. However, to realize the full development-time productivity gains afforded
to the WebLogic Portal customer, you should use Oracle Enterprise Pack for Eclipse as
your portal and portlet development platform.

For a description of each type of portlet that you can build using WebLogic Portal,
refer to Chapter 3, "Portlet Types."

1.2 Portlet Development and the Portal Life Cycle
The tasks in this guide are organized according to the portal life cycle, which includes
best practices and sequences for creating and updating portals. For more information
about the portal life cycle, refer to the Oracle Fusion Middleware Overview for Oracle
WebLogic Portal. The portal life cycle contains four phases: architecture, development,
staging, and production.

1.2.1 Architecture
During the architecture phase, you plan the configuration of your portal. For example,
you can create a detailed specification outlining the requirements for your portal, the
specific portlets you require, where those portlets will be hosted, and how they will
communicate and interact with one another. You also consider the deployment
strategy for your portal. Security architecture is another consideration that you must
keep in mind at the portlet level.

The chapters describing tasks within the architecture phase include:

■ Chapter 2, "Portlet Planning"

■ Chapter 3, "Portlet Types"

1.2.2 Development
Developers use Oracle Enterprise Pack for Eclipse to create portlets, pages, and books.
During development, you can implement data transfer and interportlet
communication strategies.

In the development stage, careful attention to best practices is crucial. Wherever
possible, this guide includes descriptions and instructions for adhering to these best
practices.

The chapters describing tasks within the development phase include:

■ Chapter 4, "Understanding Portlet Development"

■ Chapter 5, "Creating Portlets"

■ Chapter 7, "Creating Clipper Portlets"

■ Chapter 10, "Optimizing Portlet Performance"

■ Chapter 11, "Monitoring and Determining Portlet Performance"

■ Chapter 12, "Configuring Local Interportlet Communication"

■ Chapter 14, "Adding the Content Presenter Portlet"

■ Chapter 15, "Adding a Third-Party Portlet"

Getting Started

Introduction 1-3

1.2.3 Staging
Oracle recommends that you deploy your portal, including portlets, to a staging
environment, where it can be assembled and tested before going live. In the staging
environment, you use the WebLogic Portal Administration Console to assemble and
configure desktops. You also test your portal in a staging environment before
propagating it to a live production system. In the testing aspect of the staging phase,
there is tight iteration between staging and development until the application is ready
to be released.

The chapters describing tasks within the staging phase include:

■ Chapter 17, "Assembling Portlets into Desktops"

■ Chapter 18, "Deploying Portlets"

1.2.4 Production
A production portal is live and available to end users. A portal in production can be
modified by administrators using the WebLogic Portal Administration Console and by
users using Visitor Tools. For instance, an administrator might add additional portlets
to a portal or reorganize the contents of a portal.

The chapter describing tasks within the production phase is:

■ Chapter 19, "Managing Portlets in Production"

1.3 Getting Started
This section describes the basic prerequisites to using this guide and lists guides
containing related information and topics.

1.3.1 Prerequisites
In general, this guide assumes that you have performed the following prerequisite
tasks before you attempt to use this guide to develop portlets:

■ Review the Section 1.3.2, "Related Guides" and become familiar with the basic
operation of the tools used to create portals, portlets, and desktops,

■ Review the Oracle Enterprise Pack for Eclipse tutorials and documentation to
become familiar with the Eclipse-based development environment and the
recommended project hierarchy.

■ Complete the tutorial Oracle Fusion Middleware Tutorials for Oracle WebLogic Portal.

1.3.2 Related Guides
Oracle recommends that you review the following guides:

■ Oracle Fusion Middleware Overview for Oracle WebLogic Portal

■ Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Whenever possible, this guide includes cross references to material in related guides.

Getting Started

1-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

2

Portlet Planning 2-1

2Portlet Planning

Proper planning is essential to portlet development. A properly planned portlet
structure and organizational model can provide a cohesive and consistent portal
interface, flexible scalability, and high performance without requiring frequent
adjustments within your production system.

This chapter focuses on planning considerations and decisions that should precede the
development of your portlets. Global portal-wide planning information is provided in
the Oracle Fusion Middleware Overview for Oracle WebLogic Portal, which summarizes the
types of issues to consider in the architecture phase across your portal environment.
The various WebLogic Portal feature guides, such as the Oracle Fusion Middleware
Federated Portals Guide for Oracle WebLogic Portal, describe architectural issues in detail
for each feature area.

This chapter includes the following sections:

■ Section 2.1, "Portlet Development in a Distributed Portal Team"

■ Section 2.2, "Portlets in a Non-Portal Environment"

■ Section 2.3, "Planning Portlet Instances"

■ Section 2.4, "Security"

■ Section 2.5, "Interportlet Communication"

■ Section 2.6, "Performance Planning"

2.1 Portlet Development in a Distributed Portal Team
If you will be creating portlets within an environment that includes a remote
(distributed) development team, you must carefully plan your implementation.
Considerations for team development include:

■ Using shared resources – You can have common portlets, such as the login
portlet.

■ Sharing a common domain – You can have a common domain among team
members with different Oracle home directories.

■ Integrating remotely developed portlets into the portal – You need to manage
settings that are common to the portal application, which must match across the
entire development project.

Team development of a WebLogic Portal web site revolves around well-designed
source control and a correctly configured shared domain for development. For
detailed instructions on setting up your development environment, refer to the Team

Portlets in a Non-Portal Environment

2-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Development chapter of the Oracle Fusion Middleware Production Operations Guide for
Oracle WebLogic Portal.

2.2 Portlets in a Non-Portal Environment
In some cases, you might want to expose portlets in a web page even though that web
application is not based on WebLogic Portal. For example, you might want to expose
portlets with WSRP from a producer environment that does not include any WebLogic
Portal components. You might be running a Struts web application in a basic
WebLogic Server domain, or a Java page flow application in a basic Oracle Enterprise
Pack for Eclipse domain. In either case, WebLogic Portal is not part of the server
configuration. The exposed portlets can then be consumed by remote portlets running
in a regular WebLogic Portal domain.

For more information on developing portlets for a non-WebLogic Portal environment,
see "Configuring a WebLogic Server Producer" in the Oracle Fusion Middleware
Federated Portals Guide for Oracle WebLogic Portal.

2.3 Planning Portlet Instances
In the Development phase, you use Oracle Enterprise Pack for Eclipse to create
portlets and place them onto a portal. In the Staging phase, you use the
Administration Console to add portlets to portal desktops. Each time you add a portlet
to a desktop, you create an instance of that portlet. Portlet instances allow for multiple
variations of the same portlet definition. By using portlet instances, portal users and
administrators can configure multiple views of the same portlet through the use of
portlet preferences, and reduce the overall number of distinct portlets; this portlet
reuse improves portal performance and management efficiency. A common example
of portlet instances is a stock watch portlet in which there is a single or multi-valued
preference for ticker symbols such as ORCL, which would configure the portlet to
display Oracle stock information.

Try to plan your portal hierarchy to reuse portlets when practical. For more
information about portlet instances and how portlet instances are related to portlets in
the Administration Console's portlet library, refer to Section 17.1, "Portlet Library."

2.4 Security
You can control access to portlet resources for two categories of users:

■ Portal visitors – You control access to portal resources using visitor entitlements.
Visitor access is determined based on visitor entitlement roles.

■ Portal administrators – You control portal resource management capabilities
using delegated administration. Administrative access is determined based on
delegated administration roles.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. Apache Struts is
also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations" in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Performance Planning

Portlet Planning 2-3

During the architecture phase, you plan how to organize security policies and roles,
and how that fits into your system-wide security strategy. You implement your
security plans by setting up delegated administration and visitor entitlements using
the WebLogic Portal Administration Console.

For an overall look at managing security for your portal environment, refer to the
Oracle Fusion Middleware Security Guide for Oracle WebLogic Portal. Specific security
considerations for feature areas are contained in those documents; for example,
recommendations for security in WSRP-enabled environments are contained in the
Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal.

2.5 Interportlet Communication
Interportlet communication (IPC) allows multiple portlets to use or react to data. You
can use interportlet communication within a single portal web application, or within
federated portal applications.

For more information on interportlet communication within a single portal web
application, refer to Chapter 12, "Configuring Local Interportlet Communication." For
more information on interportlet communication within federated portal applications,
refer to the Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal.

2.6 Performance Planning
Try to plan for good performance within your portlet architecture to minimize the
fine-tuning that is required in a production environment.

Here are some examples of performance optimizations that you can plan into your
overall portal strategy:

■ Portlet caching – You can cache the portlet within a session instead of retrieving it
each time it recurs during a session (on different pages, for example).

■ Remote portlets – With remote portlets, any portal controls within the application
(portlet) that you are retrieving are rendered by the producer and not by your
portal. The expense of calling the control life cycle methods is borne by resources
not associated with your portal. You must balance this advantage against the
delay that might be caused by network latency issues.

■ Customized portlet properties – Customizing your portlet settings can help you
improve performance; for example, you can set process-expensive portlets to be
processed in a multi-threaded (forkable) environment.

■ Asynchronous portlet rendering - Asynchronous portlet rendering allows you to
render the content of a portlet independently from the surrounding portal page.
You can use either AJAX technology or IFRAME technology to implement
asynchronous rendering.

Plan your performance optimizations before you begin developing portlets so that you
can implement any pre-requisites that are required. For detailed instructions on
developing high-performance portlets, refer to Chapter 10, "Optimizing Portlet
Performance." For post-development WebLogic Portal performance recommendations,
refer to the Performance Tuning Guide.

Performance Planning

2-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

3

Portlet Types 3-1

3Portlet Types

As part of your portlet implementation plan, Oracle recommends that you examine
the different types of portlets that are available in WebLogic Portal and decide which
types are best suited for the tasks that you want to accomplish.

If you are looking for a way to interface with Java controls, use Struts-based
infrastructure, and deliver rich navigation elements, then you might choose to
implement Java Page Flow or Struts portlets. If you are looking for a simple portlet or
you want to convert an existing JSP page into a portlet, you might consider using a JSP
portlet. If you work for an independent software company or other enterprise that is
concerned with portability across multiple portal vendors, then you might choose to
use JSR 286-compliant Java portlets whenever possible. If you want to implement
asynchronous portlet rendering in your portal, you can use nearly any of the portlet
types described in this chapter.

This chapter differentiates the various portlet types to help you in your
decision-making process. This chapter contains the following sections:

■ Section 3.1, "Java Server Faces (JSF) Portlets"

■ Section 3.2, "Java Server Page (JSP) and HTML Portlets"

■ Section 3.3, "Java Portlets"

■ Section 3.4, "Java Page Flow Portlets"

■ Section 3.5, "Struts Portlets"

■ Section 3.6, "Browser (URL) Portlets"

■ Section 3.7, "Clipper Portlets"

■ Section 3.8, "Remote (Proxy) Portlets"

■ Section 3.9, "Portlet Type Summary Table"

Tip: Java Server Faces (JSF) technology provides the best
interoperative facilities with the rest of the Oracle Fusion Middleware
and WebCenter products.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. Apache Struts is
also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations" in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Java Server Faces (JSF) Portlets

3-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

3.1 Java Server Faces (JSF) Portlets
The Java Server Faces (JSF) specification, JSR 127, defines a user interface framework
that simplifies development and maintenance of Java applications that run on a server
and are displayed and used from a client.

According to the Java Server Faces Specification, available from the Java Community
Process web site at
http://jcp.org/aboutJava/communityprocess/final/jsr127/index2.ht
ml.

JSF's core architecture is designed to be independent of specific protocols and markup.
However it is also aimed directly at solving many of the common problems
encountered when writing applications for HTML clients that communicate via HTTP
to a Java application server that supports servlets and JavaServer Pages (JSP) based
applications. These applications are typically form-based, and are comprised of one or
more HTML pages with which the user interacts to complete a task or set of tasks. JSF
tackles the following challenges associated with these applications:

■ Managing UI component state across requests

■ Supporting encapsulation of the differences in markup across different browsers
and clients

■ Supporting form processing (single multi-page form, or more than one form per
page)

■ Providing a strongly typed event model that allows the application to write
server-side handlers (independent of HTTP) for client generated events

■ Validating request data and providing appropriate error reporting

■ Enabling type conversion when migrating markup values (Strings) to and from
application data objects (which are often not Strings)

■ Handling error and exceptions, and reporting errors in human-readable form back
to the application user

■ Handling page-to-page navigation in response to UI events and model
interactions.

For instructions on building Java Server Faces portlets, refer to Section 5.4.2, "Building
JSF Portlets."

3.2 Java Server Page (JSP) and HTML Portlets
JSP portlets and HTML portlets point to JSP or HTML files for their content. These
portlets can be simple to implement and deploy, and they provide basic functionality
quickly. However, this type of portlet does not enforce separation of business logic
and the presentation layer. As the application grows, the portlet often becomes harder
to maintain as you try to update the web application and share code. JSP portlets are
not well-suited for advanced portlet navigation.

When using JSP pages as part of a page flow portlet, you must make sure that requests
adhere to WebLogic Portal scoping requirements. For more information about JSP

Note: Oracle recommends JSF as the best approach to implementing
portal applications. As one of the active members of the JSF expert
group, Oracle has committed itself to evolve and support JSF.

Java Page Flow Portlets

Portlet Types 3-3

portlets and page flow scoping, refer to the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

For instructions on building JSP portlets, see Section 5.4.1, "Building JSP and HTML
Portlets."

3.3 Java Portlets
JSR 268 (Java Portlet) is a Java specification that aims at establishing portability
between portlets and portals. One of the main goals of the specification is to define a
set of standard Java APIs for portal and portlet vendors. These APIs cover areas such
as presentation, aggregation, security, and portlet life cycle.

A Java portlet is expressed as a Java class. This type of portlet accommodates
portability across platforms, and does not require the use of portal server-specific JSP
tags. The behavior is similar to a servlet. Java portlets produced using WebLogic
Portal can be used universally by any other vendor's application server container that
supports JSR 268.

For instructions on building Java portlets, refer to Chapter 6, "Building Java Portlets."

3.4 Java Page Flow Portlets

A Java page flow portlet uses Apache Beehive page flows to retrieve its content. This
portlet type allows you to separate the user interface code from navigation control and
other business logic, and provides the ability to implement both simple and advanced
portlet navigation.

The Page Flow framework is built on top of the Struts application framework. The
Struts framework is a popular, reliable standard that is widely used to quickly create
robust and navigable web applications. The page flow framework adds valuable data
binding facilities to the Struts standard, and the portal framework provides a scoping
capability for page flow portlets so that multiple page flows can be supported in a
single portal. You can use resources such as Java controls and web services.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Note: Oracle recommends you choose an alternative supported
Portlet type, such as JSF, over Java Page Flow / Apache Beehive
technology. WLP will continue to support Page Flows and Apache
Beehive, however the technology will be deprecated over time and
will not see significant new enhancements.

Struts Portlets

3-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

For instructions on building Java page flow portlets, refer to Section 5.4.8, "Building
Java Page Flow Portlets."

3.5 Struts Portlets

Struts portlets are based on the Struts framework, which is an implementation of the
Model-View-Controller (MVC) architecture. The MVC architecture provides a model
for separating the different components and roles of the application logic. This
development framework helps you create portlets that are easier to maintain over
time.

Typically, native Struts development requires management and synchronization of
multiple files for each action, form bean, as well as the Struts configuration file. Even
in the presence of tools that help edit these files, developers are still exposed to all the
underlying plumbing, objects, and configuration details.

For instructions on building Struts portlets, refer to Section 5.4.6, "Building Struts
Portlets."

3.6 Browser (URL) Portlets
Browser portlets display HTML content from an external URL. Unlike other portlet
types that are limited to displaying data contained within the portal project, browser
portlets display URL content that is external from the portal project.

An advantage of browser portlets is that no development tasks are required to
implement it, either from the Oracle Enterprise Pack for Eclipse workbench or from
the WebLogic Portal Administration Console. However, keep in mind that WebLogic
Portal does not provide a mechanism to develop content for this type of portlet; the
definition of the portlet merely contains the external URL to display. For example, no
mechanisms exist to dynamically influence the external content's URL; no support
exists for portlet preferences, portlet modes, and so on. Browser portlets do not track
the URL through the user's interaction with remote content – page refreshes cause the
content of the URL specified in the portlet definition to be displayed.

WebLogic Portal implements a browser portlet using an IFRAME. You can override
the default implementation mechanism using more advanced development
techniques.

The content of the browser portlet is completely disconnected from the portal. The
embedded application must manage the navigational state of the portlet.

For instructions on building Browser portlets, refer to Section 5.4.4, "Building Browser
Portlets."

3.7 Clipper Portlets
Clipping is an easy technique for including content in your portal. You can clip all or
part of another web site. Users can effectively view and interact with content from

Note: Apache Struts is an optional framework that you can integrate
with WLP. See "Apache Beehive and Apache Struts Supported
Configurations" in the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

Portlet Type Summary Table

Portlet Types 3-5

another web site without leaving the portal. For detailed information on creating
clipper portlets, see Chapter 7, "Creating Clipper Portlets."

3.8 Remote (Proxy) Portlets
WebLogic Portal supports the Web Services for Remote Portlets (WSRP) standard, a
product of the OASIS standards body. Portlets that are written to meet this standard,
which includes a WSDL portlet description, can be hosted within a producer
application, and surfaced in a consumer application. Moreover, the WebLogic Portal
Administration Console facilitates access to WSRP producer applications in a local
portal.

WebLogic Portal can act as either a WSRP remote producer or as a consumer. When
acting as a consumer, WebLogic Portal's remote—or proxy—portlets are
WSRP-compliant. These portlets present content that is collected from
WSRP-compliant producers, allowing you to use external sources for portlet content,
rather than having to create its content or its structure yourself.

Because setting up a remote portlet is a fundamental task in creating a federated
portlet environment, the task of creating a remote portlet is described in detail within
the Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal.

3.9 Portlet Type Summary Table
Table 3–1 summarizes the characteristics of each portlet type so that you can quickly
determine the advantages and disadvantages of each type.

Table 3–1 Portlet Type Summary Table

Type Advantages Disadvantages

JSF Allows component-based development of
pages that can handle their own intra-page
events.

Simplifies separation of the user interface
code from navigation control and other
business logic.

Provides the ability to implement both
simple and advanced portlet navigation.

Allow you to quickly leverage Java controls,
web services, and business processes.

Note: Oracle recommends JSF as the best
approach to implementing portal
applications. As one of the active members
of the JSF expert group, Oracle has
committed itself to evolve and support JSF.

All postbacks to a JSF application are expected to
be done using a POST; the GET method is not
supported.

JSP/HTML Simple to implement and deploy.

Provides basic functionality without
complexity.

Does not enforce separation of business logic
and presentation layer.

Not well-suited for advanced portlet navigation.

Java (JSR 286) Accommodates portability across platforms.

Does not require the use of portal
server-specific JSP tags.

Behavior is similar to a servlet

Lack of advanced portlet features that are
available with some other portlet types.

Requires a deeper understanding of the J2EE
programming model.

Portlet Type Summary Table

3-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Java Page Flow Allows separation of the user interface code
from navigation control and other business
logic.

Provides the ability to implement both
simple and advanced portlet navigation.

Allow you to quickly leverage Apache
Beehive controls, web services, and business
processes.

Provides a visual environment to build rich
applications based on struts.

Note: Page Flows are a feature of Apache
Beehive, which is an optional framework
that you can integrate with WLP. See
"Apache Beehive and Apache Struts
Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide
for Oracle WebLogic Portal.

Implementation is more complex.

Advanced page flow features are not necessary
for static or simple, one view portlets.

Browser Allows a portlet to display content from a
URL that is outside the portal project.

Provides a "no development needed" portlet
for quick implementation.

Less control over formatting.

Lacks certain features of other portlet types, such
as Content Path and Error Path.

No interportlet communication support.

Clipper Lets you subset or modify the contents of a
remote web page. The portal can potentially
access the clipper portlet's content.

Clipped content is included directly in the portal
page, allowing the potential for overlapping
with other parts of the portal.

Struts Provides a flexible control layer based on
standard technologies like Java Servlets,
JavaBeans, ResourceBundles, and XML.

Provides a more structured approach for
creating and maintaining complex
applications.

Useful for importing existing applications.

Note: Apache Struts is also an optional
framework that you can integrate with
WLP. See "Apache Beehive and Apache
Struts Supported Configurations" in the
Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

Not quite as robust as page flow portlets, which
are based on Apache Beehive. For new
development, page flow portlets provide a better
solution.

Remote Allows you to functionally and
operationally de-couple applications within
your portal.

Allows you to leverage external sources for
portlet content.

Depending on the environment, might
improve performance.

Implementation is more complex.

Your application's features might not be able to
be as robust; for example, some Javascript might
not perform correctly.

Depending on the environment, might have a
performance cost. For more about performance
with remote portlets, refer to Section 10.3,
"Remote Portlets."

Table 3–1 (Cont.) Portlet Type Summary Table

Type Advantages Disadvantages

Part II
Part II Development

During the development phase, you use Oracle Enterprise Pack for Eclipse to create
portlets, pages, and books. During development, you can implement federation and
interportlet communication strategies. In the development stage, careful attention to
best practices is crucial.

For a detailed description of the architecture phase of the portal life cycle, see the
Oracle Fusion Middleware Overview for Oracle WebLogic Portal.

Part II contains the following chapters:

■ Chapter 4, "Understanding Portlet Development"

■ Chapter 5, "Creating Portlets"

■ Chapter 6, "Building Java Portlets"

■ Chapter 7, "Creating Clipper Portlets"

■ Chapter 8, "Working With JSF-Java Portlets"

■ Chapter 9, "Developing Portlets"

■ Chapter 10, "Optimizing Portlet Performance"

■ Chapter 11, "Monitoring and Determining Portlet Performance"

■ Chapter 12, "Configuring Local Interportlet Communication"

■ Chapter 13, "Interportlet Communication Example With Event Handling"

■ Chapter 14, "Adding the Content Presenter Portlet"

■ Chapter 15, "Adding a Third-Party Portlet"

■ Chapter 16, "Using the Collaboration Portlets"

4

Understanding Portlet Development 4-1

4Understanding Portlet Development

This chapter provides conceptual and reference information that you might find useful
as you begin to develop portlets with WebLogic Portal. For a detailed description of
the components that are involved in portlet design, refer to the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal. For instructions on how
to create each type of portlet, refer to Section 5.4, "How to Build Each Type of Portlet."

This chapter contains the following sections:

■ Section 4.1, "Portlet Components"

■ Section 4.2, "Resources for Creating Portlets"

■ Section 4.3, "Portlet Rendering"

■ Section 4.4, "JSP Tags and Controls in Portlets"

■ Section 4.5, "Backing Files"

■ Section 4.6, "Support for Apache Portals Bridges"

4.1 Portlet Components
Portlets are modular panes within a web browser that surface applications,
information, and business processes. Portlets can contain anything from static HTML
content to JSF applications to complex web services and process-heavy applications.
Within a portal application, a portlet is represented as an XML file with a .portlet
file extension. As you build portlets using Oracle Enterprise Pack for Eclipse, the XML
elements and attributes are automatically built.

Figure 4–1 shows the components that make up a portlet, which are located in the
.portlet file. Objects shown in gray text are described in more detail within the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Portlet Components

4-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 4–1 Portlet Components

This section includes the following topics:

■ Section 4.1.1, "Portlet Properties"

■ Section 4.1.2, "Portlet Title Bar, Mode, and State"

■ Section 4.1.3, "Portlet Preferences"

■ Section 4.3.1, "Render and Pre-Render Forking"

■ Section 4.3.2, "Asynchronous Portlet Content Rendering"

■ Section 4.3.3, "Portlets as Popups (Detached Portlets)"

For more information about Look & Feel components, refer to the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

4.1.1 Portlet Properties
Portlet properties are named attributes of the portlet that uniquely identify it and
define its characteristics. Some properties—such as title, definition label, and Content
URI—are required; many other optional properties allow you to enable specific
functions for that portlet such as scrolling, presentation properties, pre-processing
(such as for authorization) and multi-threaded rendering. The specific properties that
you use for a portlet vary depending on your expected use for that portlet.

For detailed information on portlet properties and how to set them, refer to Section 9.1,
"Portlet Properties."

4.1.2 Portlet Title Bar, Mode, and State
When you create a portlet, you can choose whether or not it should have a title bar.
Also, all portlets created with WebLogic Portal support modes and states. Modes
affect the portlet's content; edit, help, and custom modes are available. States affect the
rendering of the portlet; minimize, maximize, normal, float, and delete states are
available.

You must enable the title bar on a portlet if you want to set modes and states for that
portlet.

Resources for Creating Portlets

Understanding Portlet Development 4-3

In certain situations your selection of a mode and state for a portlet might affect your
ability to set up other portlet features, such as interportlet communication. For
example, if you are setting up an event handler that listens to a portlet, you can select
to execute the event handler only if the portlet to which it is listening is in a window
that is not minimized.

For detailed instructions on setting portlet modes and states, refer to Section 9.5,
"Portlet Appearance and Features."

4.1.3 Portlet Preferences
Portlets are distinct applications that you can reuse in a given portal. Once you create
a portlet, you can instantiate it several times.

Along with the ability to create multiple instances of portlets, WebLogic Portal allows
you to specify preferences for portlets. You use preferences to cause each portlet
instance to behave differently yet use the same code and user interface. Portlet
preferences provide the primary means of associating application data with portlets;
this feature is key to personalizing portlets based on their usage.

Plan a portlet implementation that allows portlets to be as reusable as possible;
planning for reuse simplifies your development and testing efforts because you can
differentiate generic portlets by setting unique preferences.

For detailed instructions on setting portlet preferences, refer to Section 9.2, "Portlet
Preferences."

4.2 Resources for Creating Portlets
Although the Portlet Wizard provides an easy way to create portlets, you might find
that it is not your primary means of creating them. You can create a portlet in many
ways, such as duplicating existing portlets or generating a portlet based on an existing
JSP or JSF module. Many resources can provide the raw material for a portlet,
including the following:

■ Portlets in J2EE Shared Libraries – Portlets are provided with WebLogic Portal,
which you can copy into your project and modify for your use. For example, you
can add the Collaboration Portlets (pre-built portlets that are supplied with
WebLogic Portal) to your Portal Web Project, and have access to Calendar, Task,
Address Book, Discussion, and Mail portlets. For more information on the
Collaboration portlets, including installation instructions, see Chapter 16, "Using
the Collaboration Portlets."

■ Third-party portlets – Special-purpose portlets provided as separate products by
partner companies.

■ Existing JSPs, Struts modules, and Page Flows – Existing resources that you can
drag onto a portal page to automatically generate a portlet.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. Apache Struts is
also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations" in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Portlet Rendering

4-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

You can find detailed instructions on how to use these resources as the basis for a
portlet in Chapter 5, "Creating Portlets."

4.3 Portlet Rendering
Portlet rendering consists of two life cycle stages:

■ Pre-rendering – The background work to obtain necessary data or to perform
pre-processing

■ Rendering – The actual drawing of the portlet onto the portal page

General rendering topics are covered in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal. This section contains the following
portlet-specific rendering topics:

■ Section 4.3.1, "Render and Pre-Render Forking"

■ Section 4.3.2, "Asynchronous Portlet Content Rendering"

4.3.1 Render and Pre-Render Forking
By default, pre-rendering and rendering for each portlet on a page is performed in
sequence, and the portal page is not displayed until processing is complete for every
portlet. This sequence can cause a noticeable delay in displaying the web page and
might cause a user to think there is a problem with the web site. To prevent this
situation, you can set up your portlets so that they perform pre-rendering and
rendering tasks in parallel using multi-threaded forked processing.

Forking portlets at the rendering stage is supported for all portlet types. Pre-render
forking is supported for the following portlet types:

■ JSP

■ Page Flow

■ Java (JSR286)

■ WSRP (consumer portlets only)

For detailed instructions on implementing forked portlets, refer to Section 10.4,
"Portlet Forking."

4.3.2 Asynchronous Portlet Content Rendering
Asynchronous portlet rendering allows the content of a portlet to be rendered
independently of the surrounding portal page. When using asynchronous portlet
rendering, a portlet is rendered in two HTTP requests. The first phase is the normal
portal page request during which the portlet's non-content areas, such as the title bar,
are rendered; a second request causes the portlet's content to render in place.

For detailed instructions on implementing asynchronous content rendering, refer to
Section 10.5, "Asynchronous Portlet Content Rendering."

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Backing Files

Understanding Portlet Development 4-5

4.3.3 Portlets as Popups (Detached Portlets)
WebLogic Portal supports the use of detached portlets. Detached portlets provide
popup-style behavior.

For detailed instructions on using detached portlets, refer to Section 9.10, "Detached
Portlets."

4.4 JSP Tags and Controls in Portlets
WebLogic Portal provides JSP tags that you can use within JSPs. Portlets can use JSPs
as their content nodes, enabling reuse and facilitating personalization and other
programmatic functionality. When you use the Palette view in Oracle Enterprise Pack
for Eclipse, you can view available JSP tags and then drag them into the Source View
of your JSP, and use the Properties view to edit elements of the code.

JSP tag libraries appear in the Design Palette whenever the JSP editor is open. If you
do not see this palette, select Window > Show View > Design Palette. Select Tag
Libraries from the palette's drop down menu to show only the tag libraries.

WebLogic Portal also provides custom Apache Beehive controls that make it easy for
you to quickly add pre-built modules to your portal; custom Apache Beehive controls
exist for event management, Visitor Tools, Community management, and so on. For
example, most user management functionality can be easily exposed with a User
Manager Control on a page flow.

For information about the classes associated with WebLogic Portal's JSP tags, refer to
the Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal.

For more information about using Apache Beehive controls within portlets, see
Section 9.7, "JSP Tags and Controls in Portlets."

4.5 Backing Files
The most common means of influencing portlet behavior within the control life cycle is
to use a portlet backing file. A portlet backing file is a Java class that can contain
methods corresponding to Portal control life cycle stages, such as init() and
preRender(). You can use a portlet's backing context, an abstraction of the portlet
control itself, to query and alter the portlet's characteristics. For example, in the init()
life cycle method, a request parameter might be evaluated, and depending on the

Tip: You can also enable asynchronous rendering for an entire portal
desktop by setting a portal property in either Oracle Enterprise Pack
for Eclipse or the WebLogic Portal Administration Console. For more
information on asynchronous desktop rendering, see the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

Note: The term control is also used to refer to the portal (netuix)
framework controls, such as desktop, book, page, and so on. These
controls are referred to in the text as portal framework controls.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Support for Apache Portals Bridges

4-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

parameter's value, the portlet backing context can be used to specify whether the
portlet is visible or hidden.

Backing files can be attached to portals either by using Oracle Enterprise Pack for
Eclipse or coding them directly into a .portlet file.

For detailed instructions on implementing backing files, refer to Section 9.4, "Backing
Files."

4.6 Support for Apache Portals Bridges
WLP supports Apache Portals Bridges, a technology that provides support for JSR 168
compliant portlet development using common web frameworks like Struts, JSF, PHP,
and others.

If using the Apache Portals Bridges, the WLP implementation of the
ServletContextProvider interface is available as
com.bea.portlet.container.ServletContextProviderImpl. For more information on
Portals Bridges, see http://portals.apache.org/bridges.

5

Creating Portlets 5-1

5Creating Portlets

This chapter describes the most common ways to create portlets, including the Portlet
Wizard and the use of out-of-the-box portlets. This chapter also contains instructions
for building each type of portlet that is supported by WebLogic Portal.

Before you begin, be sure you are familiar with the concepts associated with creating
portlets, as described in Chapter 4, "Understanding Portlet Development."

This chapter contains the following sections:

■ Section 5.1, "Supported Portlet Types"

■ Section 5.2, "Portlets in J2EE Shared Libraries"

■ Section 5.3, "Portlet Wizard Reference"

■ Section 5.4, "How to Build Each Type of Portlet"

■ Section 5.5, "Assigning Supporting Files"

■ Section 5.6, "Adding a Portlet to a Portal"

■ Section 5.7, "Deleting Portlets"

5.1 Supported Portlet Types
The following portlet types are supported by WebLogic Portal:

■ Java Server Faces (JSF) Portlets – JSF portlets produced using WebLogic Portal
conform to the JSR 127 specification.

■ Java Server Page (JSP) and HTML Portlets – JSP portlets and HTML portlets
point to JSP or HTML files for their content.

■ Java Portlets (JSR 286) – Java portlets produced using WebLogic Portal can be
used universally by any vendor's application server container that supports JSR
286.

■ Browser (URL) Portlets – Browser portlets display HTML content from an
external URL; no development tasks are required to implement them.

■ Clipper Portlets – A clipper portlet is a portlet that renders content from another
web site. A clipper portlet can include all or a subset of another web site's content
using a process called "web clipping." Clipper portlets are discussed in Chapter 7,
"Creating Clipper Portlets."

■ Remote Portlets – WebLogic Portal's remote portlets conform to the WSRP
standard; they can be hosted within a producer application, and surfaced in a
consumer application.

Portlets in J2EE Shared Libraries

5-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Java Page Flow Portlets – Java page flow portlets use Apache Beehive page flows
to retrieve their content. Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache Beehive and
Apache Struts Supported Configurations" in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

■ Struts Portlets – Struts portlets are based on the Struts framework, which is an
implementation of the Model-View-Controller (MVC) architecture. Apache Struts
is an optional framework that you can integrate with WLP. See "Apache Beehive
and Apache Struts Supported Configurations" in the Oracle Fusion Middleware
Portal Development Guide for Oracle WebLogic Portal.

For a detailed discussion of each portlet type, refer to Chapter 3, "Portlet Types."

5.2 Portlets in J2EE Shared Libraries
You can copy portlets or other resources from a J2EE Shared Library into your portal
application and modify them as needed. A portlet existing in your project will
supersede a portlet of the same name in a J2EE Shared Library. To see a list of
available portlets, you can use the Merged Projects View of the workbench; resources
contained in J2EE Shared Libraries are shown in italic print. You can expand the tree
to see the resources that are stored in the various modules. For a reference list of all the
J2EE Libraries and their locations on your file system, you can select Window >
Preferences > WebLogic > J2EE Libraries.

After you locate a portlet that you want to use, you can right-click the portlet in the
Merged Projects View and select the Copy to Project option. Figure 5–1 shows an
example of a J2EE Shared Library portlet in the Merged Projects view with the Copy to
Project option selected.

Note: WLP supports Apache Portals Bridges. For more information,
see Section 4.6, "Support for Apache Portals Bridges."

Caution: Copying and modifying resources from installed J2EE
Shared Libraries can present a problem if you upgrade WLP or install
a patch in the future. For example, you might have to perform manual
steps to incorporate product changes that affect those resources. For
future upgrades and patch installations, WLP cannot fully support
configurations where J2EE library resources have been copied to the
project and modified.

Portlet Wizard Reference

Creating Portlets 5-3

Figure 5–1 Portlet Being Copied to a Project from Merged Projects View

For more information about J2EE Shared Libraries, refer to the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

5.3 Portlet Wizard Reference
An important tool that you can use to create portlets from scratch is the WebLogic
Portal Portlet Wizard. The following sections describe the Portlet Wizard in detail:

■ Section 5.3.1, "Order of Creation - Resource or Portlet First"

■ Section 5.3.2, "Starting the Portlet Wizard"

■ Section 5.3.3, "New Portlet Dialog"

■ Section 5.3.4, "Select Portlet Type Dialog"

■ Section 5.3.5, "Portlet Details Dialogs"

In general, you choose the portlet type on the first dialog of the wizard; when
generating a portlet based on an existing resource, the Portlet Wizard automatically
detects the portlet type whenever possible.

5.3.1 Order of Creation - Resource or Portlet First
This section provides an overview of the two methods you can use to begin creating a
portlet—creating the portlet resource information/file first or creating the portlet itself
first.

5.3.1.1 Creating the Resource First
You might already have a JSP file, for example, that you want to use as the basis for a
portlet. (In addition to JSP files, you can drag other resources onto the portal (such as
content selectors) to automatically start the portlet wizard.)

If you have an existing resource that you want to use as the basis of a portlet, follow
these steps:

1. Create or open a portal's .portal file in Oracle Enterprise Pack for Eclipse.

Portlet Wizard Reference

5-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

2. Drag the resource, such as a JSP file, into one of the portal's placeholder areas in
the design view in the editor.

Oracle Enterprise Pack for Eclipse prompts you with a dialog similar to the
example in Figure 5–2.

Figure 5–2 Portlet Wizard Prompt Following Drag and Drop of a Resource

If you click Yes, the Portlet Wizard uses information from the resource file to begin the
process of creating a portlet, and displays the Portlet Details dialog. Figure 5–3 shows
an example:

Figure 5–3 Example Portlet Wizard Details Dialog Following Drag and Drop of a
Resource

5.3.1.2 Create the Portlet First
If you do not have an existing source file to start with, you can create the portlet using
the New Portlet dialog and the Portlet Wizard. To do so, right-click a folder in your
portal web project and select New > Portlet. Figure 5–4 shows an example of the New
Portlet dialog.

Portlet Wizard Reference

Creating Portlets 5-5

Figure 5–4 Portlet Wizard New File Dialog

After you confirm or change the parent folder, name the portlet, and click Finish, the
Portlet Wizard begins and displays the Select Portlet Type dialog. Figure 5–5 shows an
example dialog.

Detailed instructions for creating each type of portlet are contained in Section 5.4,
"How to Build Each Type of Portlet."

Figure 5–5 Portlet Wizard - Select Portlet Type Dialog

Portlet Wizard Reference

5-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

5.3.2 Starting the Portlet Wizard
Oracle Enterprise Pack for Eclipse invokes the Portlet Wizard any time you perform
one of these operations:

■ Select File > New > Portlet from Oracle Enterprise Pack for Eclipse's top-level
menu, or right-click a folder in your web application, and select New > Portlet.
After you name the portlet and click Next, the Portlet Wizard starts.

■ Drag and drop a resource such as a JSP from the Package Explorer view onto a
placeholder area of an open portal (in other words, a portal_name.portal file is
open in the editor view of the workbench.) Oracle Enterprise Pack for Eclipse
prompts you with a dialog similar to the example in Figure 5–6.

Figure 5–6 Portlet Wizard Prompt Following Drag and Drop of a Resource

If you click Yes, the Portlet Wizard uses information from the resource file to begin the
process of creating a portlet.

■ Right-click an existing resource such as a JSP file, a portal placeholder, or a portal
content selector; then select Generate Portlet from the context menu. The Portlet
Wizard displays the Portlet Details dialog. Figure 5–7 shows an example of a
dialog after right-clicking a JSP file.

Figure 5–7 Portlet Wizard - Portlet Details Example for JSP Resource

Portlet Wizard Reference

Creating Portlets 5-7

5.3.3 New Portlet Dialog
When you use File > New > Portlet to create a new portlet, a New Portlet dialog
displays before the Portlet Wizard begins. Figure 5–4 shows an example of the New
Portlet dialog.

The parent folder defaults to the location from which you selected to add the portlet.

This dialog requires that you select a project and directory for the new portlet, and
provide a portlet file name. (The file name appears in the Package Explorer view after
you create the portlet.) The Next button is initially disabled; the button enables when
you select a valid project/directory and portlet name. If you select an invalid portal
project in the folder tree on this dialog, an error message appears in the status area
near the top of the dialog explaining that the project is not a valid portal project. You
cannot continue until you have selected a valid project (if one is available).

5.3.4 Select Portlet Type Dialog
When the Portlet Wizard starts, it determines the valid portlet types to offer on the
Select Portlet Type dialog, based on the type of project that you are working in.

For example, if you are working within a Portal Web Project that has only the
WSRP-Producer and Portal Framework Struts facets installed, it does not have the full
set of portal libraries. In this case, only the Struts portlet type is available a valid
selection; the other portlet types are not included in the Select Portlet Type dialog. If
you were to install the optional Apache Beehive facets, then the Java Page Flow portlet
option would appear.

If no valid portlet types exist based on the project type, an informational message
displays.

Figure 5–8 shows the default configuration of the Select Portlet Type dialog (assuming
the default WebLogic Portal facets are installed in the web project).

Note: With WebLogic Portal Version 9.2 and later versions, the
option to convert a non-portal project to a portal project is not offered.
For information on how to integrate portal J2EE Shared Libraries into
an already existing project, see the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

How to Build Each Type of Portlet

5-8 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 5–8 Portlet Wizard - Select Portlet Type Dialog

The Show All Portlet Types option forces all portlet types to appear in the Select
Portlet Type dialog even if their modules were not installed. For information on
installing the optional Page Flow and/or Struts support, see "Apache Beehive and
Apache Struts Supported Configurations" in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

5.3.5 Portlet Details Dialogs
The Portlet Details dialogs that display after you select a portlet type vary according to
the type of portlet you are creating. The portlet-building tasks that are described in
Section 5.4, "How to Build Each Type of Portlet" contain detailed information about
each data entry field of the portlet details dialogs.

5.4 How to Build Each Type of Portlet
The following sections describe how to create each type of portlet supported by
WebLogic Portal:

■ Section 5.4.1, "Building JSP and HTML Portlets"

■ Section 5.4.2, "Building JSF Portlets"

■ Section 5.4.3, "Building Java Portlets"

■ Section 5.4.4, "Building Browser Portlets"

■ Section 5.4.5, "Building Clipper Portlets"

■ Section 5.4.6, "Building Struts Portlets"

■ Section 5.4.7, "Building Remote Portlets"

Caution: If you create and publish portlets that require modules that
have not been properly installed, unexpected behavior and server
runtime errors can occur.

How to Build Each Type of Portlet

Creating Portlets 5-9

■ Section 5.4.8, "Building Java Page Flow Portlets"

5.4.1 Building JSP and HTML Portlets
JSP portlets are very similar to simple JSP files. In most cases you can use existing JSP
files to build portlets from them. JSP portlets are recommended when the portlet is
simple and doesn't require the implementation of complex business logic. Also, JSP
portlets are ideally suited for single page portlets.

There are several ways to invoke the Portlet Wizard, as explained in the section
Section 5.3.2, "Starting the Portlet Wizard." This description assumes that you create a
portlet based on an existing JSP file.

To create a JSP portlet, follow these steps:

1. Right-click a JSP file and select Generate Portlet from the menu.

The Portlet Wizard displays the Portlet Details dialog; Figure 5–9 shows an
example.

Figure 5–9 Portlet Wizard - JSP Portlet Details Dialog

2. Specify the values you want for this portlet, following the guidelines shown in
Table 5–1.

Table 5–1 Portlet Wizard - JSP Portlet Data Entry Fields

Field Description

Title The value for the Title might already be filled in.You can change the value if you wish.

Content Path The value for the Content URI (location of the JSP) is probably already filled in. You can
change this value if you wish either by entering the path to a JSP or browsing to it. You
can also create a new JSP on the fly either by entering a name in the field or by choosing
the New button.

Error Page Path To designate a default error page to appear in case of an error, indicate the path to the
desired URI. You can also create a new error JSP on the fly either by entering a name in
the field or by choosing the New button.

How to Build Each Type of Portlet

5-10 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

3. Click Create to create the portlet, or click Next to assign supporting files. For more
information on assigning supporting files see Section 5.5, "Assigning Supporting
Files."

The Oracle Enterprise Pack for Eclipse window updates, adding the Portlet_
Name.portlet file to the display tree; by default, Oracle Enterprise Pack for
Eclipse places the portlet file in the same directory as the content file.

5.4.2 Building JSF Portlets
As a portlet developer, it is important to know which version of JSF your web
application is configured to use: JSF 1.2 (the default for WLP 10.3.6) or JSF 1.1. The JSF
version determines the underlying technology used for the JSF portlet, and it also
affects how you develop your portlet.

By default, WLP web applications are configured to use Java Server Faces (JSF) 1.2. In
this case, the IDE uses the Java 2.0 Portlet (JSR-286) with the JSR-329 Faces Portlet
Bridge. This bridge allows the JSF portlet to operate within a JSR-286 compliant portlet
container. The resulting portlet is a standard Java 2.0 portlet (JSR-286). The portlet
includes all of the JSR-286 portlet features and properties. The Faces front page is
referenced by the portlet <init-param> property. This Java portlet also uses the
GenericFacesPortlet class, which is the standard Java base class for Faces
portlets. The portlet editor indicates that this JSR- 286 portlet is a JSF portlet by placing
bridge to <faces home page JSP> in the title bar. For an in-depth discussion, see
Chapter 8, "Working With JSF-Java Portlets." For more information on Java portlets
and their capabilities, see Chapter 6, "Building Java Portlets."

If your portal web application is configured to use JSF 1.1, the non-standard or native
WLP bridge for JSF portlets is used instead. If the facelet facet is installed, the
default behavior changes to always use the native WLP bridge for JSF portlets without
regard to what version of JSF (1.1 or 1.2) is selected. The IDE uses the native WLP JSF
portlet bridge and constructs a JSP-backed portlet with a <facesContent> element.
This non-standard bridge is the same bridge used in previous versions of WLP. For an
in-depth discussion on these types of portlets, Chapter 8, "Working With JSF-Java
Portlets.".

For an in-depth discussion of JSF portlet development including best practices, see
Chapter 8, "Working With JSF-Java Portlets." For more information on Java portlets
and their capabilities, see Chapter 6, "Building Java Portlets."

To create a JSF portlet, follow these steps:

Has Titlebar If you want your portlet to have a title bar, check this box. The displayed title matches
the value in the Title field. In order for a portlet to have changeable states or modes, the
portlet must have a title bar. See also Section 9.5, "Portlet Appearance and Features."

State Select the desired check boxes to allow the user to minimize, maximize, float, or delete
the portlet. For a more detailed description of portlet states, refer to Section 9.5.5, "Portlet
States."

Available Modes The basic modes are Help and Edit. You can enable access to Help from the portlet or
you can allow the user to edit the portlet. To enable an option, select the desired check
box and provide the path to the JSP page that will provide the appropriate function. You
can either browse to an existing file or click New to create a new JSP. For a more detailed
description of portlet modes, refer to Section 9.5.2, "Portlet Modes."

Table 5–1 (Cont.) Portlet Wizard - JSP Portlet Data Entry Fields

Field Description

How to Build Each Type of Portlet

Creating Portlets 5-11

1. Right-click in the Package Explorer view, within the web content directory, and
select New > Portlet from the menu.

The New Portlet dialog displays. Figure 5–10 shows an example of the New
Portlet dialog.

Figure 5–10 Portlet Wizard - New Portlet Dialog

The parent folder defaults to the location from which you selected to add the
portlet.

2. Edit the parent folder field if needed to indicate the project and directory for the
new portlet.

The Next button is initially disabled; the button enables when you select a valid
parent folder and portlet name. If you select an invalid portal project in the folder
tree on this dialog, an error message appears in the status area near the top of the
dialog explaining that the project is not a valid portal project.

3. Type a file name for the new portlet.

4. Click Next to continue.

The Portlet Wizard displays the Select Portlet Type dialog.

5. Select the JSF portlet option. If your web application is configured with JSF 1.2 (the
default), select the Java Server Faces (JSF) Portlet option. If the web application
uses JSF 1.1 or facelets, select the Java Server Faces (JSF) Content option. The

Note: The portlet creation wizard differs somewhat depending on
whether you are using JSF 1.2 or 1.1. In describing the wizard in this
section, these differences are highlighted.

How to Build Each Type of Portlet

5-12 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

wizard automatically displays the correct option depending on your JSF
configuration.

The Portlet Wizard displays the Portlet Details dialog; Figure 5–11 shows an
example.

Figure 5–11 Portlet Wizard - JSF Portlet Details Dialog for JSF 1.2 Configuration

6. Specify the values you want for this portlet. If your web application is configured
to use JSF 1.2, follow the guidelines in Table 5–2. If your web application uses JSF
1.1, follow the guidelines in Table 5–3.

Table 5–2 Portlet Wizard - JSF Portlet Data Entry Fields for a JSF 1.2 Configuration

Field Description

Title The value for the portlet title, which displays in the title bar if enabled.

Portlet Name A unique name for the portlet.

Faces Application URL Enter or browse to the inital URL of the Faces Application to be portletized. This
sets the javax.portlet.faces.defaultViewId.view <init-param> which can be
later changed through the portlet editor.

Available Modes The basic modes are Help and Edit. You can enable access to Help from the
portlet or you can allow the user to edit the portlet. To enable an option, select the
desired check box and provide the path to the JSP page that will provide the
appropriate function. You can either browse to an existing file or click New to
create a new JSP. For a more detailed description of portlet modes, refer to
Section 9.5.2, "Portlet Modes."

How to Build Each Type of Portlet

Creating Portlets 5-13

7. Click Create, or click Next to assign supporting files. For more information on
assigning supporting files Section 5.5, "Assigning Supporting Files."

The Oracle Enterprise Pack for Eclipse window updates, adding the Portlet_
Name.portlet file to the display tree. The portlet automatically opens in the portlet
editor. Figure 5–12 shows the portlet editor for a portlet that is configured for JSF
1.2. The portlet shown is a Java 2.0 portlet that uses the JSF 329 bridge.

Table 5–3 Portlet Wizard - JSF Portlet Data Entry Fields for a JSF 1.1 Configuration

Field Description

Title The value for the portlet title, which displays in the title bar if enabled.

Content Path Enter or browse to the front page JSP file or facelet (.xhtml) file of your Faces
application. Click New to create a new Faces JSP or facelet. This file must be
placed within the same web project that contains the JSF portlet. If your web
application uses JSF 1.1 or the Facelet facet, follow the guidelines in Table 5–3.

Error Page Path Note: Error pages are not supported with JSF portlets.

Has Titlebar If you want your portlet to have a title bar, check this box. The displayed title
matches the value in the Title field. In order for a portlet to have changeable states
or modes, the portlet must have a title bar.

State Select the desired check boxes to allow the user to minimize, maximize, float, or
delete the portlet. For a more detailed description of portlet states, refer to
Section 9.5.5, "Portlet States."

Available Modes You can enable access to Help from the portlet or you can allow the user to edit
the portlet.

To enable an option, select the desired check box and provide the path to the file
that will provide the appropriate function. For a more detailed description of
portlet modes, refer to Section 9.5.2, "Portlet Modes."

How to Build Each Type of Portlet

5-14 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 5–12 Portlet Editor for a JSF 1.2 Configuration Portlet

5.4.3 Building Java Portlets
Java portlets are based on the JSR 286 specification that establishes rules for portlet
portability. Java portlets are intended for software companies and other enterprises
that are concerned with portability across multiple portlet containers.

For detailed information on creating and configuring Java portlets for WLP, see
Chapter 6, "Building Java Portlets."

5.4.4 Building Browser Portlets
Browser portlets, also called Content URI portlets, are basically HTML portlets that
use URLs to retrieve their content. Unlike other portlet types that are limited to
displaying data contained within the portal project, browser portlets can display URL
content that is outside from the portal project.

How to Build Each Type of Portlet

Creating Portlets 5-15

There are several ways to invoke the Portlet Wizard, as explained in the section
Section 5.3.2, "Starting the Portlet Wizard." This description assumes that you
right-click in the Package Explorer view tree within a portal project and select New >
Portlet from the menu.

To create a browser portlet, follow these steps:

1. Right-click in the Navigation tree within a portal project and select New > Portlet
from the menu.

The New Portlet dialog displays. Figure 5–13 shows an example of the New
Portlet dialog.

Figure 5–13 Portlet Wizard - New Portlet Dialog

The parent folder defaults to the location from which you selected to add the
portlet.

2. Edit the parent folder field if needed to indicate the project and directory for the
new portlet.

The Finish button is initially disabled; the button enables when you select a valid
parent folder and portlet name. If you select an invalid portal project in the folder
tree on this dialog, an error message appears in the status area near the top of the
dialog explaining that the project is not a valid portal project.

3. Type a file name for the new portlet.

4. Click Finish to continue.

The Portlet Wizard displays the Select Portlet Type dialog.

Tip: A clipper portlet also lets you include remote web content in a
portal page. For information on clipper portlets and how they differ
from browser portlets, see Chapter 7, "Creating Clipper Portlets."

How to Build Each Type of Portlet

5-16 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

5. Click Browser (URL) Portlet and then click Next.

The Portlet Wizard displays the Portlet Details dialog; Figure 5–14 shows an
example.

Figure 5–14 Portlet Wizard - Browser Portlet Details Dialog

6. Specify the values you want for this portlet, following the guidelines shown in
Table 5–4.

7. Click Create.

Table 5–4 Portlet Wizard - Browser Portlet Data Entry Fields

Field Description

Title The title for the portlet. This value appears in the title bar of the portlet in the editor view
of the Oracle Enterprise Pack for Eclipse workbench.

Content URL The value for the Content URL (external URL) that the portlet should use to retrieve its
information.

A validator checks the format of the URL that you enter, and a message notifies you if the
URL is not properly formatted. You can either change the URL or ignore the warning and
continue with the URL as is.

Has Titlebar If you want your portlet to have a title bar, check this box. The displayed title matches the
value in the Title field. In order for a portlet to have changeable states or modes, the
portlet must have a title bar.

State Select the desired check boxes to allow the user to minimize, maximize, float, or delete
the portlet. For a more detailed description of portlet states, refer to Section 9.5.5, "Portlet
States."

Available Modes The basic modes are Help and Edit. You can enable access to Help from the portlet or you
can allow the user to edit the portlet. To enable an option, select the desired check box
and provide the path to the JSP page that will provide the appropriate function. You can
either browse to an existing file or click New to create a new JSP. For a more detailed
description of portlet modes, refer to Section 9.5.2, "Portlet Modes."

How to Build Each Type of Portlet

Creating Portlets 5-17

The Oracle Enterprise Pack for Eclipse window updates, adding the Portlet_
Name.portlet file to the display tree; by default, Oracle Enterprise Pack for Eclipse
places the portlet file in the same directory as the content file.

5.4.5 Building Clipper Portlets
A clipper portlet is a portlet that renders content from another web site. A clipper
portlet can include all or a subset of another web site's content using a process called
"web clipping." Clipper portlets are discussed in Chapter 7, "Creating Clipper
Portlets."

5.4.6 Building Struts Portlets

Use the Portlet Wizard to generate a portlet based on a Struts module, as explained in
this section.

Before you can create a Struts portlet, you must first integrate your existing Struts
application into your portal web application. For detailed information on integrating
Struts applications into WebLogic Portal, see "Integrating Existing Web Applications
into WebLogic Portal" in the Oracle Fusion Middleware Portal Development Guide for
Oracle WebLogic Portal.

To create a Struts portlet, follow these steps:

1. Right-click the Struts application module's XML configuration file located in the
WEB-INF directory of the portal web application.

2. Select Generate Portlet from the menu. The wizard automatically collects and
displays the module path and configuration file name(s) in the Struts Config File
dialog. An example is shown in Figure 5–15. Use the Browse and Add buttons to
locate and add additional configuration files, if applicable.

Note: The internal implementation of Browser portlets depends on
asynchronous portlet content rendering; because of this, the portlet
attribute Async Content that is displayed in the Properties view is set
to none and is read-only. For more information about asynchronous
content rendering, refer to Section 10.5, "Asynchronous Portlet
Content Rendering."

Note: Apache Struts is an optional framework that you can integrate
with WLP. See "Apache Beehive and Apache Struts Supported
Configurations" in the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

Tip: It is highly recommended that you fully develop and test a
Struts application before attempting to host it within a portal. This
helps to separate the complexities of developing a working Struts
application from the additional issues involved in putting the Struts
application into a portlet.

How to Build Each Type of Portlet

5-18 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 5–15 Struts Config File Dialog

3. Click Next.

4. In the Struts Actions dialog, specify an action for the Struts portlet. The actions
that appear in the drop-down menu are based on entries in the configuration
file(s) that were added previously.

Figure 5–16 Struts Actions Dialog

5. Click Create.

The Oracle Enterprise Pack for Eclipse window updates, adding the Portlet_
Name.portlet file to the display tree; by default, Oracle Enterprise Pack for Eclipse
places the portlet file in the directory that you specified in the Struts Module Path
dialog of the wizard.

How to Build Each Type of Portlet

Creating Portlets 5-19

Configuring Multi-Part Form Data Support for a Struts Portlet
You can configure your Struts portlet to handle a multi-part struts action form after a
server request has been posted.

Before you can create a Struts portlet, you must first integrate your existing Struts
application into your portal web application. For detailed information about
integrating Struts applications into WebLogic Portal, see "Integrating Existing Web
Applications into WebLogic Portal" in the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

To add the multi-part form data support to a struts portlet:

1. In Oracle Enterprise Pack for Eclipse, in your portal web application, create a
module for the Struts portlet, as described earlier in this section.

2. In your portal web application, create a JSP page that contains an action form with
the attribute enctype= "multipart/form-data".

3. Open the Strut module's XML configuration file, struts-auto-config.xml,
located in the WEB-INF directory of your portal web application.

4. Configure your struts module to point to the newly created JSP page, and save
struts-auto-config.xml.

5. In struts-auto-config-upload.xml, add the following entries:

<controller inputForward="true"
processorClass="com.bea.struts.adapter.action.AdapterRequestProcessor"
multipartClass=" com.bea.struts.adapter.action.ScopedMultipartRequestHandler"/>

6. Save struts-auto-config-upload.xml.

7. To access the struts application directly, open the browser and use the following
URL: http://localhost:port/struts_webapp/module.do.

Where, localhost:port are the host name and port number where WebLogic
Portal is deployed, struts_webapp is the name of your portal web application
containing the struts module, and module.do is the module in which you want to
implement the multi-part form data support.

For example: http://localhost:7001/StrutsUploadWeb13/upload.do

5.4.7 Building Remote Portlets
Because remote portlet development is a fundamental task in a federated portlet
environment, the task of creating remote portlets is described in detail within the
Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal.

The following types of portlets can be exposed with WSRP inside a WebLogic portal:

■ JavaServer Faces (JSF) portlets

■ JavaServer Pages (JSP) portlets

■ Struts portlets

Note: If you want to run the struts portlet through WebLogic Portal,
make sure your portlet points to the WebLogic Portal tag library,
which is specified in the import statements at the beginning of a JSP
file. If you do not use WebLogic Portal’s HTML tab library, the page
gets redirected outside of the portal page. As a result, the strut
portlet’s JSP page takes over the entire page.

How to Build Each Type of Portlet

5-20 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Java portlets (JSR286; supported only for complex producers)

■ Page Flow portlets

5.4.8 Building Java Page Flow Portlets

You can use the Portlet Wizard to built a portlet that uses Apache Beehive Page Flows
to retrieve its content.

To create a page flow portlet, follow these steps:

1. Right-click the folder where you want to store the page flow portlet. (The folder
must be within the WebContent directory.)

2. Select New > Portlet.

The New Portlet dialog displays.

3. Enter a name for the portlet and click Next.

The Portlet Wizard displays the Select Portlet Type dialog.

4. In the Select Portlet Type page, select the Show All Portlet Types checkbox.

5. Select the Java Page Flow Portlet radio button and click Next.

The Portlet Wizard displays the Portlet Details dialog; Figure 5–17 shows an
example.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. Apache Struts is
also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations" in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Note: Oracle recommends you choose an alternative supported
Portlet type, such as JSF, over Java Page Flow / Apache Beehive
technology. WLP will continue to support Page Flows and Apache
Beehive, however the technology will be deprecated over time and
will not see significant new enhancements.

You can edit the tag attributes manually in the JSP editor's Source tab
or in the Properties view.

For information about the Apache Beehive Netui documentation, see
http://beehive.apache.org/docs/1.0.2/.

For information about the Netui tags, see
http://beehive.apache.org/docs/1.0.2/netui/tags/inde
x.html.

How to Build Each Type of Portlet

Creating Portlets 5-21

Figure 5–17 Portlet Wizard - JPF Portlet Details Dialog

6. Specify the values you want for this portlet, following the guidelines shown in
Table 5–5.

7. Click Create.

Table 5–5 Portlet Wizard - JPF Portlet Data Entry Fields

Field Description

Title The title for this portlet, which displays in the title bar if you select to include one.

Content Path The Page Flow Request URI. You can type a value here, or click the Browse
button to open a class picker and select the appropriate class.

If you use the class picker to choose a page flow class, this fully-qualified class
name is converted to a URI path of a JPF. The JPF is referred to by the .portlet
file when the portlet is created.

If you enter or navigate to a .java that has no corresponding class in the project
or J2EE Shared Libraries, the Portlet Wizard creates the .java file for the page
flow. If multiple project source directories exist, then the wizard prompts you to
store the new .java file in the source directory of your choice.

Error Page Path To designate a default error page to appear in case of an error, check the box and
indicate the path to the desired URI.

Has Titlebar If you want your portlet to have a title bar, check this box. The displayed title
matches the value in the Title field. In order for a portlet to have changeable states
or modes, the portlet must have a title bar.

State Select the desired check boxes to allow the user to minimize, maximize, float, or
delete the portlet. For a more detailed description of portlet states, refer to
Section 9.5.5, "Portlet States."

Available Modes The basic modes are Help and Edit. You can enable access to Help from the
portlet or you can allow the user to edit the portlet. To enable an option, select the
desired check box and provide the path to the JSP page that will provide the
appropriate function. You can either browse to an existing file or click New to
create a new JSP. For a more detailed description of portlet modes, refer to
Section 9.5.2, "Portlet Modes."

Assigning Supporting Files

5-22 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

The Oracle Enterprise Pack for Eclipse window updates, adding the Portlet_
Name.portlet file to the display tree; by default, Oracle Enterprise Pack for Eclipse
places the portlet file in the same directory as the content file.

In order to fully understand the process of creating a page flow portlet, you should be
familiar with the concept of Page Flows. For more information on using page flows
with WebLogic Portal, refer to the Oracle Fusion Middleware Portal Development Guide
for Oracle WebLogic Portal.

5.5 Assigning Supporting Files
Some portlet types allow you to attach supporting files to the portlet. For these
portlets, the Portlet Wizard provides an optional Assign Supporting Files step, shown
in Figure 5–18. This step lets you add a backing file and/or a render dependencies file
to your portlet.

Figure 5–18 Assign Supporting Files Dialog

5.5.1 Adding a Render Dependencies File
Render dependencies allow you to specify resources, such as CSS or JavaScript, that
are required for rendering a portlet in the portal page. For details on render
dependencies (also called portlet dependencies), see Section 9.5.1, "Portlet
Dependencies."

The Assign Supporting Files part of the Portlet Wizard lets you create a new
dependency file or choose an existing one to associate with the portlet. Click New to
bring up the New Dependencies File dialog, and specify a name and location for the
file. Click Browse to locate an existing dependency file.

5.5.2 Adding a Backing File
The most common means of influencing portlet behavior within the control life cycle is
to use a portlet backing file. Backing files are a way for you to provide Java code that

Adding a Portlet to a Portal

Creating Portlets 5-23

will run at different points during the portlet lifecycle. A backing file is a Java class
that implements com.bea.netuix.servlets.controls.content.backing.JspBacking. For
details on backing files, see Section 9.4, "Backing Files."

The Assign Supporting Files part of the Portlet Wizard lets you create a new backing
file or choose an existing one to associate with the portlet. Click New to bring up the
New Backing File Class dialog, and specify a source folder, package, and name for the
file. Click Browse to locate an existing backing file.

5.6 Adding a Portlet to a Portal
In the development phase of the portal life cycle, you add portlets to a portal using the
Oracle Enterprise Pack for Eclipse workbench.

Follow these steps:

1. In the Package Explorer view, double-click the portal (.portal file) to which you
want to add the portlet.

The portal displays in the editor.

2. If your portal has multiple pages, click the desired page to select it.

3. From the Design Palette view, drag the portlet (the .portlet file) onto the portal
page at the desired location.

Figure 5–19 shows an example of this step.

Note: A page must have a layout before you can add a portlet to it.
The vertical or horizontal placement of portlets in a placeholder is
determined by the selected layout for the page.

Deleting Portlets

5-24 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 5–19 Dragging a Portlet from the Palette onto a Portal Page in Editor View

With the portlet selected, you can use the Properties view to customize desired portlet
properties.

For detailed information about portlet properties, refer to Section 9.1, "Portlet
Properties."

When you add a portlet to a page in the workbench editor, a reference to that portlet is
added to the .portal file. You can use the .portal file as a template for creating
desktops in the WebLogic Portal Administration Console. When a portal administrator
creates a desktop based on that template, the portlet is added to the portal resource
library where it can be added to pages in streaming desktops. For an overview of
file-based portals compared with streaming portals, refer to the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

In the Staging phase of the portal life cycle, you use the WebLogic Portal
Administration Console to configure portlets on desktops. A single portlet definition
can be associated with one or more portals (desktops) by creating instances of the
portlet. Each of these portlet instances can have its own "personality" and behavior as
specified by a variety of different configuration options.

For details in adding a portlet to a portal desktop in the WebLogic Portal
Administration Console, refer to Section 17.2.5, "Managing Portlets on Pages."

5.7 Deleting Portlets
To remove a portlet from a portal without deleting the portlet from your portal web
project, right-click the portlet in the Oracle Enterprise Pack for Eclipse workbench
editor and click Delete.

Deleting Portlets

Creating Portlets 5-25

To delete a portlet from your portal web project, right-click the portlet in the Package
Explorer view and choose Delete.

To remove a portlet after you have assembled portlet instances into portal desktops
using the Administration Console, refer to Section 17.2.4, "Deleting a Portlet."

Deleting Portlets

5-26 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

6

Building Java Portlets 6-1

6Building Java Portlets

Java portlets are based on the JSR 286 specification, which provides an API and
establishes rules for portlet portability. Java portlets are intended for software
companies and other enterprises that are concerned with portability across multiple
portlet containers.

WebLogic Portal provides capabilities for Java portlets beyond those listed in the JSR
286 spec. For example, you can set threading options, use a backing file, and so on. To
implement these additional features, WebLogic Portal uses a combination of the
typical .portlet file—which you create in the same way that you create other portlet
types—as well as the standard portlet.xml file and the weblogic-portlet.xml
file.

This chapter includes these topics:

■ Section 6.1, "Building a Java Portlet"

■ Section 6.2, "Java Portlet Deployment Descriptor"

■ Section 6.3, "Portlet Modes and States"

■ Section 6.4, "Portlet Preferences"

■ Section 6.5, "Portlet Initialization Parameters"

■ Section 6.6, "Portlet Filters"

■ Section 6.7, "Order of Portlet Filters"

■ Section 6.8, "Public Render Parameters"

■ Section 6.9, "Event Handling with Java Portlets"

■ Section 6.10, "Deleting Java Portlet Features"

■ Section 6.11, "Using Container Runtime Options"

■ Section 6.12, "Using Global (Shared) Properties"

■ Section 6.13, "Setting Portlet-Level Container Runtime Options"

■ Section 6.14, "Adding Custom Portlet Modes"

■ Section 6.15, "Using Special Portlet Request Attributes"

■ Section 6.16, "Using Portlet-Served Resource Links"

Note: JSR 286 or Version 2.0 of the Portlet Specification is based on
Version 1.0 that was defined in JSR 168. WLP supports the Version 2.0
Java Portlet Specification.

Building a Java Portlet

6-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Section 6.17, "Exporting Java Portlets for Use on Other Systems"

■ Section 6.18, "Importing Java Portlets"

■ Section 6.19, "JSR-286/JSR-168 Portlet Compatibility"

■ Section 6.20, "Adding an Icon to a Java Portlet"

6.1 Building a Java Portlet
To create a Java portlet, follow these steps:

1. Right-click the folder where you want to store the portlet and select New >
Portlet.

The New Portlet dialog displays.

2. Enter a name for the portlet and click Next.

The Portlet Wizard displays the Select Portlet Type dialog.

3. Select the Java Portlet radio button and click Next.

The Java Portlet Details dialog displays. Figure 6–1 shows an example.

Figure 6–1 Portlet Wizard - Java Portlet Details Dialog

4. In the Java Portlet Details dialog, choose whether you want to create a new portlet
or create a new instance of an existing portlet by selecting the appropriate radio
button.

New Portlet – If you are creating a new portlet, WebLogic Portal uses the
information that you enter in the wizard to perform these two tasks:

■ Create a new .portlet file

■ Either create a new portlet.xml file (if this is the first Java portlet that you
are creating in the project), or add an entry in the portlet.xml file, which is
located in the WEB-INF directory.

Building a Java Portlet

Building Java Portlets 6-3

Existing Portlet – If you choose to refer to an existing portlet in the wizard, the
wizard lets you pick a portlet already defined in the portlet.xml file. This
option allows you to create a new .portlet file and associate it with an existing
entry in the portlet.xml file. For the Existing Portlet option, a new portlet will
be created that has a unique definition label, but that references an existing portlet
name in the portlet.xml file. The Existing Portlet option allows you to create
multiple configurations of one portlet to be surfaced as different portlet instances.

5. Specify the values you want for this portlet, following the guidelines shown in
Table 6–1. All fields are required.

6. Click Create to create the portlet or, click Next to assign supporting files. For more
information on assigning supporting files see Section 5.5, "Assigning Supporting
Files."

Based on the values that you entered, the Wizard creates a .portlet file, and
adds an entry to /WEB-INF/portlet.xml, if it already exists, or creates the file if
needed.

Oracle Enterprise Pack for Eclipse displays the newly created portlet and its
current properties. Figure 6–2 shows an example of a Java portlet's appearance
and properties as displayed in the portlet editor.

Table 6–1 Portlet Wizard - Java Portlet Data Entry Fields

Field Description

New Portlet – Title The value for the Title maps to the <title> element in the file portlet.xml. The title in
the .portlet file takes priority over the one in the portlet.xml file.

New Portlet –
Definition Label

Specifies the definition label for the portlet. The value must be unique. The wizard
automatically creates a unique ID if you enter one that is already in use. The definition
label is the portlet’s unique identifier.

New Portlet – Portlet
Name

This string provides a value to the <portlet-name> element in the portlet.xml file
and the portletName attribute of the <netuix:javaPortlet> element in the
.portlet file.

Note: If there is no portletName attribute value specified in the .portlet file, then the
Definition Label is assumed to be the portlet name. In this case, there must be a
<portlet-name> element in the portlet.xml file that corresponds to the Definition
Label.

New Portlet – Class
Name

Enter a valid class name or click Browse to navigate to the location of a Java class. This
value maps to the <portlet-class> element. The class must implement
javax.portlet.Portlet.

You can also create a new class by clicking New and using the New Java Portlet Class
dialog to create the Java portlet class (the dialog automatically creates a class that
implements javax.portlet.Portlet.) If you enter a class name that does not currently exist,
the wizard will create the javax.portlet.Portlet class when you click Create.

Existing Portlet –
Select From List

The dropdown menu is populated from the portlet.xml file and contains the values
from the <portlet-name> elements.

When you select an existing portlet, the Title and Class Name display in read-only fields.

Note: If you import an existing Java portlet into Oracle Enterprise Pack for Eclipse, you do
not need to add an entry in the web.xml file for the WebLogic Portal implementation of
the JSR286 portlet taglib; this taglib is declared implicitly. Be sure to use
http://java.sun.com/portlet as the taglib URI in your JSPs.

Existing Portlet –
Definition Label

Enter a unique definition label. If the label you enter is not unique, a unique one is created
for you automatically. The definition label is used in the .portlet file and allows the
WLP Framework to uniquely identify the new portlet instance. The definition label is not
part of the portlet.xml file.

Java Portlet Deployment Descriptor

6-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 6–2 Java Portlet Appearance and Properties

After you create the portlet, you can modify its properties in the Properties view, or
double-click the portlet in the editor to view and edit the generated Java class. For
more information on setting properties, see Section 9.1, "Portlet Properties."

6.2 Java Portlet Deployment Descriptor
The portlet.xml deployment descriptor file for Java portlets is located in the
WEB-INF directory. In addition, the weblogic-portlet.xml file is an optional
Oracle-specific file that you can use to inject some additional features.

Example 6–1 shows an example of how entries might look in the portlet.xml file:

Example 6–1 Example of a portlet.xml file for a Simple Hello World Java Portlet

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app version="2.0"
 xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <portlet>
 <description>Description goes here</description>

Note: If you delete a .portlet file, the corresponding entry
remains in the portlet.xml file. You might want to clean up the
portlet.xml file periodically; these extra entries do not cause
problems when running the portal but do result in error messages in
the log file.

Portlet Initialization Parameters

Building Java Portlets 6-5

 <portlet-name>helloWorld</portlet-name>
 <portlet-class>aJavaPortlet.HelloWorld</portlet-class>
 <portlet-info>
 <title>Hello World!</title>
 </portlet-info>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 </portlet>
</portlet-app>

6.3 Portlet Modes and States
As with other types of portlets, you can configure portlet modes and states for a Java
portlet. Modes allow you to affect the end user's ability to edit the portlet or display
Help for the portlet. You can also create custom modes. States determine the end user's
ability to affect the rendering of a portlet, such as to maximize or minimize the portlet.
For more information, see Section 9.5.2, "Portlet Modes" and Section 9.5.5, "Portlet
States." For information on custom modes for Java portlets, see Section 6.14, "Adding
Custom Portlet Modes."

6.4 Portlet Preferences
As with other types of portlets, you can configure portlet preferences for Java portlets.
Portlet preferences provide the primary means of associating application data with
portlets. This feature is key to personalizing portlets based on their usage. For more
information, see Section 9.2, "Portlet Preferences."

6.5 Portlet Initialization Parameters
Initialization parameters are specified with the <init-param> element. The
<init-param> element contains a name/value pair as an initialization parameter of
the portlet. You can use the getInitParameterNames() and getInitParameter() methods
of the javax.portlet.PortletConfig interface to return these initialization parameter
names and values in your portlet code. Initialization parameters are described in the
JSR 286 specification.

You can add init-params to your Java portlet by dragging a New Init-Param icon from
the Design Palette onto the Java portlet in the portlet editor. Then, click on the Portlet
Init-Param section of the portlet to display the parameter's properties in the Property
view. In the Property view, you can enter the following initialization parameter data:

■ Description

■ Name

■ Value

For example, if you created an initialization parameter called "Color" and set the
default value to "green," the following entry will be made in the portlet.xml file:

<init-param>
 <description>My init param</description>
 <name>Color</name>
 <value>green</value>
</init-param>

Portlet Filters

6-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

6.6 Portlet Filters
Portlet filters are a major new feature added to the Java Portlet Specification Version 2
(JSR 286). As the specification explains, filters are Java components that allow
on-the-fly transformations of information in both the request to and the response from
a portlet. A portlet filter is a reusable piece of code that can transform the content of
portlet requests and portlet responses. Filters do not generally create a response or
respond to a request as portlets do, rather they modify or adapt the requests, and
modify or adapt the response.

To add a portlet filter(s) to a Java portlet:

1. Create a Java portlet. (See Section 6.1, "Building a Java Portlet.")

2. Create a filter class. The Portlet Wizard provides a convenient mechanism for
creating a Java portlet class. Click the New button in the Java Portlet Details part
of the Portlet Wizard. This feature creates a class that implements the appropriate
interfaces, as described in the following note.

3. Assign the filter to the portlet. Right click the Portlet Filters part of the portlet in
the portlet editor, and select Add Filter, as shown in Figure 6–3. (Or, you can
double-click the New Filter item in the Design Palette.)

Tip: For an in-depth discussion of portlet filters, refer to the Java
Portlet Specification, Version 2 (JSR 286).

Note: The class must implement at least one of these interfaces in the
javax.portlet.filter package, depending on the portlet lifecycle(s) to
which the filter will be applied: ActionFilter, EventFilter, RenderFilter,
or ResourceFilter. Each filter implements a doFilter() method that is
processed when its corresponding life cycle method is called. For
example, the ActionFilter.doFilter(...) method is called when the
processAction life cycle method is invoked by the portlet container.
Refer to the Java Portlet Specification Version 2 for more information.

Tip: You can also drag and drop filters from the Design Palette view
onto the Portlet editor. You can drag and drop either existing filters or
the New Filter item. When you drop a filter, you can choose its
position in the filter list. See Section 6.7, "Order of Portlet Filters."

Portlet Filters

Building Java Portlets 6-7

Figure 6–3 Adding a Filter

4. Complete the Define or Choose a Portlet Filter dialog. The dialog requires that you
provide a name and a class for a new filter or pick an existing one. The filter class
must implement one or more of the javax.portlet.filter classes, which include
ActionFilter, EventFilter, RenderFilter, and ResourceFilter.

If you create a new filter, you must select the life cycle(s) with which to associate
it. To do this, click the Edit button next to the Lifecycles field. For instance, if the
filter class implements RenderFilter interface, you would select the Render Phase.
Figure 6–4 shows the Select Portlet Lifecycle(s) dialog where you pick the life cycle
entities that are implemented in the filter class.

You can optionally enter a Display Name and Init Params (initialization
parameters). The Display Name is the name that is displayed in the IDE. Init
Params are name/value pairs that let you pass values to the init() method of the
Java class. Click the Edit button next to the Init Params field to add them.

The Define or Choose a Portlet Filter dialog also lets you pick an existing filter to
use with a new portlet. Use the Filter Definitions dropdown menu to select a filter
to associate with the portlet. This menu is populated with a list of the filters that
are specified in the portlet.xml file. You can then optionally pick a Display
Name for the filter and add a description. The Display Name is only associated
with the new portlet. After a filter is associated with a portlet, you can edit the
display name and description in the Properties view when you select the filter in
the Design view or Outline view.

Tip: If you click the New button next to the Class field after using
the Select Portlet Lifecycle(s) dialog to pick one or more phases, the
Java Class dialog is automatically populated with the correct
interface(s) corresponding to those selected phases.

Note: When you associate an existing filter with a new portlet, you
are potentially sharing that filter with one or more other portlets.
When you share a filter, you need to remember that the order of filters
as specified in the portlet.xml file is significant. See Section 6.7,
"Order of Portlet Filters."

Order of Portlet Filters

6-8 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

5. Click OK to add the filter to the portlet. The portlet.xml file is only saved to
the disk when you save the .portlet file.

The <filter> and <filter-mapping> elements are automatically added to the
portlet.xml descriptor file. These elements specify the filter name, class, life
cycle phase(s), and mapping. The mapping element allows multiple portlets to
share a single filter definition. For example:

<filter>
 <display-name>Test Filter</display-name>
 <filter-name>filter_1</filter-name>
 <filter-class>javaportlets.MyFilter</filter-class>
 <lifecycle>ACTION_PHASE</lifecycle>
 <lifecycle>RENDER_PHASE</lifecycle>
</filter>
<filter-mapping>
 <filter-name>filter_1</filter-name>
 <portlet-name>jsrportlet4</portlet-name>
</filter-mapping>

Figure 6–4 Defining a Portlet Filter

6.7 Order of Portlet Filters
The Portlet editor presents a list of the filters that have been added to a Java portlet
(see Figure 6–5). The editor shows you the names of the filters and lists them in the
order in which they are defined in the portlet.xml file. This order is significant
because it specifies the order in which the filters are applied to the portlet.

You can easily change the order of the filters. One way to change the order is to drag
and drop the filters in the Portlet editor (see Figure 6–5). Another way to reorder the

Public Render Parameters

Building Java Portlets 6-9

portlet filters is to right-click a filter and select Move Up or Move Down from the
context menu.

Figure 6–5 You Can Drag and Drop Filters to Reorder Them

6.8 Public Render Parameters
Public render parameters are a JSR 286 feature that allows portlets to share parameter
values with other portlets, allowing a form of interportlet communication. For
instance, if portlet A and portlet B are both configured to use a particular public
render parameter, any changes in the parameter's value made by portlet A will be seen
by portlet B. Unlike render parameters, which can't be read during the processAction
lifecycle, public render parameters can be accessed in all lifecycles of the portlet:
processAction, processEvent, render, and serveResource. Public render parameters
automatically work with the asynchronous desktop rendering feature (for details, see
Section 10.5, "Asynchronous Portlet Content Rendering"). Public render parameter
values can also be shared with non-JSR-286 portlets, where they are called "shared
parameters". For more information, see Section 9.3, "Using Shared Parameters.".

To add public render parameters to a Java portlet:

1. Bring up the Define or Choose a Portlet Public Render Param dialog. To do this,
right-click the Portlet Public Render Params part of the Java portlet in the portlet
editor and select Add Public Render Param, as shown in Figure 6–6. Or, you can
double-click on the New Public Render Param item in the Design Palette.

Note: Remember that filters can be mapped to multiple portlets. If
you have multiple portlets mapped to (sharing) a filter, arbitrarily
changing the filter order can produce undesired side effects. For
example, if you change the order in which filters are applied in one
portlet, the reordering will apply to all other portlets that share the
filter.

Tip: For an in-depth discussion of public render parameters and how
to access them, refer to the Java Portlet Specification, Version 2 (JSR
286).

Tip: You can also drag and drop public render parameters from the
Design Palette view onto the Portlet editor. You can drag and drop
either existing render parameters or the New Public Render Param
item. The order in which the parameters appear in the Portlet editor is
not significant.

Public Render Parameters

6-10 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 6–6 Adding a Public Render Parameter

2. The Define or Choose a Portlet Public Render Param dialog lets you define a new
parameter or pick an existing one to associate with the portlet. This dialog is
shown in Figure 6–7.

Figure 6–7 Define or Choose a Portlet Public Render Param Dialog

Public Render Parameters

Building Java Portlets 6-11

To create a new parameter, first enter an identifier as shown in Figure 6–7. The
identifier is a string that identifies the public render parameter within the
portlet.xml deployment descriptor. This identifier is portlet application
scoped. Any portlet that wishes to share the parameter can do so by referencing
this identifier in the portlet.xml file, and can access the public parameter's
value at runtime using the identifier as the parameter name.

The next required field is the QName, or qualified name, that uniquely identifies
the public render parameter. The QName of a public render parameter is used as
the unique identifier when parameter values are being distributed between
different portlet applications, such as portlets consumed through WSRP. For
example, if portlet A from producer X has a public render parameter it accesses
with an identifier (name) of zip, and portlet B from producer Y has a public
render parameter it accesses with an identifier (name) of zipcode, these two
portlets will automatically share the appropriate values as long as the QNames for
their parameters are identical.

The QName consists of a required local part and a namespace URI. If you do not
provide the namespace URI, the default namespace URI for the portal application
is used. For information on QNames and NCNames, see Section 12.12, "About
QNames and Aliases." See also Section 6.12, "Using Global (Shared) Properties" for
information on setting the default namespace. Click Edit next to the QName field
to bring up the Provide QName Components dialog, as shown in Figure 6–8.

The Define or Choose a Portlet Public Render Param dialog also lets you pick an
existing public render parameter to use with a new portlet. Use the Public Render
Param Definitions dropdown menu to select a parameter to associate with the
portlet. This menu is populated with a list of the parameters that are specified in
the portlet.xml file. The QName and NCName, as well as the description, are
not editable from this dialog. To change these values, you can use the Properties
view after the public render parameter is mapped to the portlet. For more
information, see Section 12.12, "About QNames and Aliases."

Figure 6–8 Provide QName Components Dialog

You can optionally specify an alias name. For more information, see Section 12.12,
"About QNames and Aliases."

To add an alias, click Edit and in the next dialog, click New. The Provide QName
Components dialog appears (see Figure 6–8. Enter an optional Namespace URI

Tip: The Provide QName Components dialog automatically forms
the namespace/local part identifier in the standard syntax, for
example: {http://oracle.com/myparams}testparam. If you
enter the QName directly in the Define or Choose a Portlet Public
Render Param dialog, you must use this syntax.

Public Render Parameters

6-12 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

and a Local Part for the QName and click OK. The alias definition appears in the
Provide List of QName Alias(es) dialog (Figure 6–9). You can add as many public
render parameter aliases to a portlet as you like.

Figure 6–9 Provide List of QName Alias(es) Dialog

You can add more than one public render parameter to a portlet. Note that the
portlet.xml file is only updated and saved to the disk when you save the
.portlet file.

3. Click OK to create the parameter.

As a result of performing the steps in this section, the portlet.xml file and the
.portlet file are both updated as follows:

Changes to the portlet.xml File:

First, an application-scoped <public-render-parameter> element is added to the
file. For example:

<portlet-app ...>
 <portlet> ... </portlet>
 <public-render-parameter>
 <identifier>prp_1</identifier>
 <qname xmlns:x="http://oracle.com/myparams">x:testparam</qname>
 </public-render-parameter>
</portlet-app>

In addition, the <supported-public-render-parameter> element is added to
the <portlet> element in portlet.xml (the definition of the portlet to which the
render parameter was added). This element configures the portlet to share the
parameter. In the Java portlet class, the parameter can be set with a call like this:

public class JavaTestPortlet extends GenericPortlet {
 . . .
 public void processAction(ActionRequest req, ActionResponse res)
 throws IOException, PortletException {
 . . .
 res.setRenderParameter("prp_1", testparam);

Deleting Java Portlet Features

Building Java Portlets 6-13

 }
 . . .
}

6.8.1 Public Render Parameter Example
The following example provides code from two portlets that share a public render
parameter called "selectedBook".

Portlet A

The .portlet file for Portlet A has a public render parameter specified with the
identifier "selectedBook". The .jsp file has an anchor tag that uses the renderURL tag
in the Java portlet tag library.

<pz:contentSelector rule="ListBooks" id="listOfBooks"/>
<utility:notNull item="${listOfBooks}">
 <h4>Books You Might Like</h4>
 <utility:forEachInArray array="${listOfBooks}" id="node"
type="com.bea.content.Node">
 <portlet:renderURL var="selectedBookUrl">
 <portlet:param name="selectedBook" value="${node.path}"/>
 </portlet:renderURL>

 <cm:getProperty id="node" name="xTitle" conversionType="html"/>

 </utility:forEachInArray>
</utility:notNull>
Portlet B

The .portlet file for Portlet B has a public render parameter specified with the
identifier "selectedBook". The .jsp file includes the following logic:

<c:choose>
 <c:when test="${param['selectedBook'] != null}">
 <cm:getNode id="bookNode" path="${param['selectedBook']}"/>
 <div><ad:render id="bookNode" /></div>
 </c:when>
 <c:otherwise>
 <p>No book was selected</p>
 </c:otherwise>
</c:choose>

6.9 Event Handling with Java Portlets
For details on using event handling with Java Portlets, see Section 12.7, "Events in Java
Portlets."

6.10 Deleting Java Portlet Features
The procedure for deleting Portlet Modes, Portlet Preferences, Portlet Init-Params,
Portlet Filters, and Portlet Public Render Params is the same. In the portlet editor,
expand the feature menu, right-click the item you want to delete, and select Delete
from the menu, as illustrated in Figure 6–10:

Note: This example uses java portlet tags, not WLP render tags.

Deleting Java Portlet Features

6-14 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 6–10 Deleting a Filter

If you are deleting a shared filter, public render parameter, or event, a confirmation
dialog appears, and you must choose one of the following options:

■ Remove (dissociate) the shared [feature] from this portlet only.

In this case, the feature definition remains in the portlet.xml file. Only the
mapping to the current portlet is removed. Choose this case if other portlets
reference the feature. For example, if multiple portlets reference the same filter,
you would want to leave the filter definition in the portlet.xml file.

■ Delete the shared [feature] from the portlet.xml.

In this case, the entire feature and all mappings to the feature are removed from
the portlet.xml file. Only pick this option if you know that no other portlets
require the feature definition.

For example, Example 6–2 shows an excerpt from a portlet.xml file where a filter
and filter mappings to several portlets are defined. If you delete filter_2 from the
portlet named jsrportlet4 using the first delete option, the element named
jsrportlet4 will be removed from the <filter-mapping> element, as shown in
Example 6–3. Note that the other portlets will continue to reference the filter. If you
select the second delete option, the entire <filter> definition and the
<filter-mapping> will be removed. In this case, no portlets will reference the filter.

Example 6–2 Filter and Filter Mapping Elements Before Delete Operation

<filter>
 <display-name>Filter 2</display-name>
 <filter-name>filter_2</filter-name>
 <filter-class>javaportlets.MyFilter</filter-class>
 <lifecycle>RENDER_PHASE</lifecycle>
</filter>
<filter-mapping>
 <filter-name>filter_2</filter-name>
 <portlet-name>jsrportlet4</portlet-name>
 <portlet-name>jsrportlet5</portlet-name>

Using Container Runtime Options

Building Java Portlets 6-15

 <portlet-name>jsrportlet6</portlet-name>
</filter-mapping>

Example 6–3 Filter and Filter Mapping Elements After Delete Operation

<filter>
 <display-name>Filter 2</display-name>
 <filter-name>filter_2</filter-name>
 <filter-class>javaportlets.MyFilter</filter-class>
 <lifecycle>RENDER_PHASE</lifecycle>
</filter>
<filter-mapping>
 <filter-name>filter_2</filter-name>
 <portlet-name>jsrportlet5</portlet-name>
 <portlet-name>jsrportlet6</portlet-name>
</filter-mapping>

6.11 Using Container Runtime Options
Container runtime options provide a way to change the runtime behavior of the
portlet container. You can declare these options either at the portlet level or at the
portlet application level. You can set container runtime options at the application level
using the Global Shared Properties feature (see Section 6.12, "Using Global (Shared)
Properties"). You can also set container runtime options at the portlet-level. For details
on this technique, see Section 6.13, "Setting Portlet-Level Container Runtime Options."

If set at the application level, an option will apply to all portlets in the application,
except for portlets which explicitly set a different value for the container runtime
option at the portlet level.

Container runtime options can have one or more values, though most runtime options
use only a single value. This section describes the four standard container runtime
options defined in the JSR 286 specification and additional ones supported by WLP.

6.11.1 Standard Container Runtime Options
This section describes four standard container runtime options that are defined in the
JSR 286 specification.

■ javax.portlet.escapeXml

– Affects how URLs are XML-encoded when using the JSR 286 tag library tags
actionUrl, renderUrl, and resourceUrl. See the JSR 286 specification,
section 10.4.1 for a complete description. Note that this container runtime
option does not have any affect on the return value of PortletURL.toString() or
ResourceURL.toString(); in both cases, for JSR 286, the output will use
only ampersand characters. To use ampersand entities or be able to specify the
XML encoding to use when generating URLs not using the tag libraries, see
the BaseURL.write() methods. The setting of this container runtime option
affects only the default behavior of the URL tags; you can override it on a
per-tag basis using the encodeXml attribute.

– Valid Values:

* true – The JSR 286 tag library actionUrl, renderUrl and
resourceUrl tags will default to XML-encoding the resulting URLs
(using ampersand entities for parameter separation) by default.

* false – The default behavior is changed to not XML-encode (and use just
ampersand characters) by default.

Using Container Runtime Options

6-16 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ javax.portlet.servletDefaultSessionScope

– Specifies the scope of the Session object provided to servlets or JSPs which are
included or forwarded to from a Java portlet. See the JSR 286 specification,
section 10.4.3 for a complete description. The default behavior (if this
container runtime option is not set at all) is to map the portlet session with
application scope, equivalent to setting the runtime option value to
APPLICATION_SCOPE. To map instead to the portlet session scope, you can
set the value for this runtime option to PORTLET_SCOPE.

– Valid Values:

* APPLICATION_SCOPE – Maps the session to the application scope

* PORTLET_SCOPE – Maps the session to the portlet scope.

■ javax.portlet.actionScopedRequestAttributes

– Stores request attributes that are set by the portlet code in "scopes", generally
starting at a processAction and continuing until the next processAction,
and provides these request attributes back to the portlet when the next
lifecycle method is called. See the JSR 286 specification section 10.4.4 for a
complete description and examples. The JSR 286 specification requires all
portlet containers to support this container runtime option. The
com.oracle.portlet.excludedActionScopeRequestAttributes
container runtime option described below can be used to limit which request
attributes are stored in the scopes.

– Valid Values:

* true – Store and provide request attribute values between calls to the
portlet. If true is the first value for this container runtime option, you
may further specify the number of attribute scopes the portlet container
should cache by making the second value the string
numberOfCachedScopes, and the third value the number of scopes to
cache.

* false – Do not store request attributes.

■ javax.portlet.renderHeaders

– This option is not currently supported by WebLogic Portal. It is used to
indicate that the portlet supports having its render() method called twice,
setting any header information, portlet title and next possible portlet modes in
the first call, and rendering the body of the portlet in the second call. See the
JSR 286 specification sections 10.4.2 and 11.1.4.3 for complete details.

– Valid Values:

* true – Indicates the portlet supports the two-phase render.

* false – Indicates that the portlet does not support two-phase render.

6.11.2 Other Container Runtime Options Supported by WLP
This section describes several other container runtime options supported by WLP.

■ com.oracle.portlet.compatibilityMode

– Used to invoke one of the compatibility modes available in WebLogic Portal's
Java portlet container. See Section 6.19, "JSR-286/JSR-168 Portlet
Compatibility" for details.

– Valid Values:

Using Container Runtime Options

Building Java Portlets 6-17

* owlp168 – Invokes the WebLogic Portal JSR 168 compatibility mode; also
automatically sets the
com.oracle.portlet.disallowResourceServing runtime option
to true and the com.oracle.portlet.streamingOptimized
runtime option to true, if no other values for those options were
specified.

* owc168 – Invokes the Oracle WebCenter JSR 168 compatibility mode; also
automatically sets the
com.oracle.portlet.disallowResourceServing runtime option
to true if no other value for that option is specified.

■ com.oracle.portlet.disallowResourceServing

– Used to disable portlets from serving resources, which may be a security
concern. See the note in Section 6.19, "JSR-286/JSR-168 Portlet Compatibility"
for details.

– Valid Values:

* true – Portlets will not be allowed to serve resources. This is useful if JSR
168 portlets are run in the JSR 286 container, as any JSR 168 portlet
extending javax.portlet.GenericPortlet will automatically inherit
the JSR 286 functionality, which automatically forwards resource requests
to a file in the webapp named after the resource ID, creating a potential
security problem. For the same security reason, JSR 286 portlets that do
not serve resources are safest to disallow resource serving.

* false – Portlets will be allowed to serve resources.

■ com.oracle.portlet.streamingOptimized

– Indicates the portlet is optimized to run in streaming mode, which may
enhance performance. There are side effects to using this option:

* The RenderResponse.reset() and
RenderResponse.resetBuffer() methods do nothing; they will not
clear the buffer or consistently throw IllegalStateExceptions.
Besides cases where portlet code calls reset() or resetBuffer()
directly, this also affects portlets that write data out before doing a
forward using the PortletRequestDispatcher. When in streaming
mode, the output written before the forward will not be cleared.

* RenderResponse.getBufferSize() will always return 0.

* RenderResponse.setBufferSize() has no effect.

* Headers, cookies and HTML HEAD elements set by the portlet during
render (in one-phase render) or during the RENDER_MARKUP render phase
(in two-phase render) may not be rendered in the portal response to the
client, if the underlying portal response is already committed.

To avoid the underlying portal response from being committed, use the
avoid-response-commit setting in the WEB-INF/wlp-frame-
work-common-config.xml, as described Section 9.13, "Avoiding Com-
mitting Responses."

* RenderResponse.isCommitted() will return a value consistent with
the portlet's behavior, but not reflective of the underlying response. For
example, when the render phase is started for the portlet,
isCommitted() will return false, but if
MimeResponse.flushBuffer() is called, the isCommitted()

Using Container Runtime Options

6-18 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

method will then return true, even if the underlying response is not yet
committed. This behavior is necessary to support
PortletRequestDispatcher.forward() calls, which require the
response to not be committed. This behavior also means that the portlet
has no way of knowing whether headers being set actually make it back to
the client.

* RenderResponse.setProperty() calls will not clear previous values
for the property being set, but will behave the same as
RenderResponse.addProperty() would. This is required to allow
multiple portlets being rendered to the same page to aggregate header
values, rather than resetting other portlets' header values.

– Valid Values:

* true – The portlet supports being rendered in a streaming manner.

* false – The output of the portlet should be buffered.

■ com.oracle.portlet.minimumWsrpVersion

– Specifies minimum required WSRP version for the portlet to work. If the
WSRP version being used is less than the value specified, the portlet will not
be included in a WSRP GetServiceDescription,
GetPortletDescription, GetMarkup and other WSRP responses. This
may be useful for JSR 286 portlets that require the use of events, public render
parameters or portlet-served resources, as these features are not present in the
WSRP 1.0 specification but are supported in WSRP 2.0.

– Valid Values:

* 1 – Any version of WSRP is acceptable.

* 2 – At least WSRP version 2.0 is required.

■ com.oracle.portlet.offerPortletOverWsrp

– Used to indicate whether a portlet should be offered in the WSRP producer's
service description. If this container runtime option is not specified at all, the
default value specified in the WEB-INF/producer-config.xml will be
used. In addition, if a Java portlet has an associated .portlet file, the
offerRemote setting in the .portlet file will override the setting specified
in this container runtime option.

– Valid Values:

* true – The portlet is offered in the WSRP producer's service description.

* false – The portlet will not be included in the service description.

■ com.oracle.portlet.wsrpHeaderMode

– Used only when portlets are being rendered as WSRP remote portlets, to
indicate where cookies and headers should be put in the WSRP SOAP
response as a hint to the WSRP consumer for the header or cookie's intended
final destination. When portlets are run locally (not over WSRP), headers and

Note: Portlets should never depend on the side-effects noted above.
For example, if portlet caching is used, even when streaming mode is
turned on some renders may occur using the default (buffering)
MimeResponse object if the output is destined to be cached.

Using Container Runtime Options

Building Java Portlets 6-19

cookies set by portlets are always assumed to go to the client. Setting this
container runtime option sets a default value for the PortletRequest
attribute com.oracle.portlet.wsrpHeaderMode, which can still be
overridden by the portlet at runtime on a per-header basis. If no value for this
container runtime option is set, the portlet container will assume the default
value for the producer as specified in the
WEB-INF/wsrp-producer-config.xml file.

– Valid Values:

* client – Headers and cookies set by the portlet will be directed to go to
the client. (e.g. browser)

* consumer – Headers and cookies set by the portlet will be directed to go
to the consumer and not passed on to the client.

* both – Headers and cookies set by the portlet will be directed to go to the
client and the consumer.

■ com.oracle.portlet.suppressWsrpOptimisticRender

– Suppresses the optimistic render of a portlet after the action and/or event
lifecycles if the portlet is being run over WSRP. Normally, if a WSRP portlet
receives a WSRP PerformBlockingInteraction request
(processAction in JSR 168/JSR 286 portlets) and the portlet does not send
any events as a result, the WSRP producer will render the portlet and return
the portlet's markup in the response of the PerformBlockingInteraction
SOAP message. This markup may be cached by the consumer until the
consumer's page renders, and if nothing else affecting the state of the portlet
happens (such as the portlet receiving an event), the cached markup can be
used by the consumer, eliminating the need for a second SOAP call to
GetMarkup. This assumes that the portlet's render phase is idempotent,
which is always a best practice. However, if the portlet expects to receive an
event, or rendering the portlet is more costly than a second SOAP message for
GetMarkup, you can use this container option to suppress the optimistic
render of the portlet after a processAction or handleEvent call. The
portlet will still be rendered normally when the producer receives the WSRP
GetMarkup request.

– Valid Values:

* true – Optimistic render is always suppressed.

* false – Optimistic render may be performed.

■ com.oracle.portlet.externalScopeRequestAttributes

– This is a multi-valued property, with each value being a regular expression.
Request attributes which match any of the regular expressions are considered
outside of portlet scope, and are shared with the underlying portal request. If
the javax.portlet.actionScopedRequestAttributes option is used,
any request attributes matching the regular expressions declared in
externalScopeRequestAttributes are not stored in the action scope
request attributes.

– Default Values:

* com\.bea\.netuix.*

* com\.bea\.wlw\.runtime.*

* com\.bea\.wsrp.*

Using Container Runtime Options

6-20 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

* javax\.servlet.*

* weblogic\.servlet.*

* com\.bea\.p13n.*

■ com.oracle.portlet.excludedActionScopeRequestAttributes

– This is a multi-valued property, with each value being a regular expression.
Request attributes which match any of the regular expressions are not stored
as action-scoped request attributes if the
javax.portlet.actionScopedRequestAttributes container runtime
option is used, in addition to any request parameters whose values match the
regular expressions defined in the
com.oracle.portlet.externalScopeRequestAttributes container
runtime option.

– Default Values:

* javax\.portlet.*

* oracle\.portlet.*

* com\.oracle\.portlet.*

■ com.oracle.portlet.allowEventPayloadsWithoutJAXBBindings

– Causes the JSR286 container to send a redirect to the browser to the portlet's
render URL after a processAction is run (and after events are handled) so that
reloading the resulting page will not result in another processAction. The
default value is "false".

– Valid Values:

* true – A redirect will be issued after every portlet action.

* false – No redirect will be automatically issued after portlet actions.

■ com.oracle.portlet.redirectAfterAction

– Allows event payload types declared in portlet.xml and event payload
objects sent from JSR 286 portlets to bypass the JSR 286 specification
requirement that these types have a valid JAXB binding. This container
runtime option is valid only at the portlet application level and is ignored if
specified at the portlet level. The default value is false.

– Valid Values:

* true – Event payloads without valid JAXB bindings are allowed.

* false – Event payloads without valid JAXB bindings are not allowed, per
the JSR 286 specification.

■ com.oracle.portlet.wsrpPortletHandle

– Allows the specification of the WSRP portlet handle to be used for the portlet,
which must be unique within the webapp. This container runtime option is
only valid at the portlet level and will be ignored if specified at the
portlet-application level. The default value is the portlet name from
portlet.xml.

– Valid Value:

* A unique string conforming to WSRP portlet handle requirements.

■ com.oracle.portlet.requireIFrame

Using Container Runtime Options

Building Java Portlets 6-21

– Specifies whether the portlet needs to be rendered inside an IFrame. The
default value is "false".

– Valid Values:

* true – The portlet will be rendered inside an IFrame.

* false – The portlet will not be forced to be rendered in an IFrame.

■ com.oracle.portlet.allowWsrpExport

– Specifies whether the WSRP export-portlets operation should be supported for
the webapp. If "false", this will override the setting in
WEB-INF/wsrp-producer-config.xml and turn off the WSRP export-portlets
operation. This option is used mainly for backward-compatibility; it is
preferred to control the export-portlets operation through the
wsrp-producer-config.xml setting. This container runtime option is valid only
at the portlet-application level and will be ignored if specified at the portlet
level. The default value is "true".

– Valid Values:

* true – Export-portlets will be allowed.

* false – Export-portlets will not be allowed.

■ com.oracle.portlet.useWsrpUserContextForUserAuthenticationInfo

– Specifies whether the PortletRequest methods getRemoteUser(),
getUserPrincipal() and isUserInRole() are based on the WSRP user context
information or on standard J2EE security. The default value is "false".

– Valid Values:

* true – The user information will be based on the WSRP user context. This
can be a security problem so this option should be used with care.

* false – The user information will be based on the J2EE authenticated
user.

■ com.oracle.portlet.defaultServedResourceRequiresWsrpRewrite

– Specifies the default WSRP requiresRewrite flag to use when generating
ResourceURLs for portlet-served resources. This setting is used for all
ResourceURLs created by the portlet, unless overridden by the
oracle.portlet.server.resourceRequiresRewriting request
attribute when the ResourceURL methods write() or toString() are called. This
setting is also used to specify the WSRP requiresRewriting flag on the
served resource response, but can be overridden by the presence of the
oracle.portlet.server.resourceRequiresRewriting request
attribute when the portlet’s serveResource() method returns.

– Default Values:

* If unspecified – The requiresRewrite URL flag will not be given a
value, and the requiresRewriting response flag for a
serveResource operation will be based on the MIME type of the
response.

* true – The requiresRewrite URL flag and requiresRewriting
response flag will be set to true, which directs the consumer to overwrite
the resource.

* false – The requiresRewrite URL flag and requiresRewriting
response flag will be set to false, indicating that consumer does not need

Using Global (Shared) Properties

6-22 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

to rewrite the resource, though the consumer may choose to rewrite the
resource.

■ com.oracle.portlet.defaultProxiedResourceRequiresWsrpRewrite

– Specifies the default WSRP requiresRewrite flag to use when encoding
URLs for resources not served by the portlet. This setting is used for all urls
returned by the PortletResponse.encodeURL() method, unless overridden by
the oracle.portlet.server.resourceRequiresRewriting request
attribute when the PortletResponse.encodeURL() method is called.

– Valid Values:

* true – The requiresRewrite flag is set to true, which directs the
consumer to overwrite the resource.

* false – The requiresRewrite flag is set to false, indicating that the
consumer does not need to rewrite the resource.

■ com.oracle.portlet.eventPayloadsXmlType

– Specifies optional XML schema types for JAXB-bindable Java object event
payloads if events are sent over WSRP. This is a multi-valued runtime option;
each value consists of a Java class name / QName pair, separated by a colon
(":") and with the QName specified using the standard Java String
representation of a QName ("\{namespace\}localpart"). For each value
specified, the QName is used as the XML schema type to annotate WSRP
event payloads of the specified Java object type after the object has been
marshalled to XML. This setting is useful when using events to communicate
across portlets on multiple producers from different vendors.

6.12 Using Global (Shared) Properties
Global (Shared) Java Portlet Properties are properties that are available to all Java
portlets within the web application. WLP supports three global shared properties:
Container Runtime Options, Default Namespace, and Portlet URL Listeners. The
properties and their values are stored in the portlet.xml file. Refer to the Java
Portlet Specification Version 2 for detailed information on accessing and using these
global shared properties.

To add or modify global shared properties for a Java portlet, locate the Global (Shared)
Java Portlet Properties section in the Properties view and select the property you wish
to create or modify, as shown in Figure 6–11. Note that because these properties are
shared among multiple portlets, you need to be careful when adding and deleting
them to prevent unwanted side effects. For example, if you change the values for a
shared property in one portlet, the value is changed for all portlets. If you open
another portlet, you will see the changed value reflected there.

Using Global (Shared) Properties

Building Java Portlets 6-23

Figure 6–11 Global Shared Properties

You can set these global shared properties:

■ Container Runtime Options

You can specify certain container runtime options for global shared parameters.
For details on container runtime options, see Section 6.11, "Using Container
Runtime Options." When container runtime options in the global shared
properties are set, the options will take effect at the portlet application level,
applying to all portlets declared in the portlet application.

To bring up a dialog for adding runtime option name/value pairs, select
Container Runtime Options in the Properties view and click Edit. The dialog is
shown in Figure 6–12.

Figure 6–12 Provide List of Container Runtime Option(s) Dialog

The specified runtime option(s) are added to the portlet.xml file. The global
container options apply to all portlets registered in the portlet.xml file. For
example:

<container-runtime-option>
 <name>javax.portlet.actionScopedRequestAttributes</name>
 <value>true</value>
</container-runtime-option>

Tip: You can override container runtime option settings for global
shared parameters for individual portlets by declaring container
runtime options at the portlet level. For more information, see
Section 6.13, "Setting Portlet-Level Container Runtime Options."

Using Global (Shared) Properties

6-24 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

You can also set container runtime options for individual portlets. See Section 6.13,
"Setting Portlet-Level Container Runtime Options." Refer to the Java Portlet
Specification Version 2 for more information on the container runtime options.

■ Default Namespace

Specifies a default namespace for the web application. The default namespace is
used in cases where a public render parameter or an event is defined with only a
local name. The specified namespace is added to the portlet.xml file. For
example:

<default-namespace>http:example.com/events</default-namespace>

■ Portlet URL Listeners

Portlets can register portlet URL listeners to filter URLs before they are generated.
To add a listener, click the Edit button next to the Portlet URL Listeners property.
The Provide List of Portlet URL Listener(s) dialog appears, as shown in
Figure 6–13. Click the New button to add a new listener, or Edit to modify the
selected listener. In the dialog that appears, provide a Class name and, optionally,
a display name and description for the listener.

Figure 6–13 Provide List of Portlet URL Listener(s) Dialog

To receive a callback from the portlet container before a portlet URL is generated
the listener class needs to implement the PortletURLGenerationListener interface
and register it in the portlet.xml file. For example:

<listener>
 <display-name>MyURLListener</display-name>
 <listener-class>javaportlets.URLListener</listener-class>
</listener>

Adding Custom Portlet Modes

Building Java Portlets 6-25

The URL listeners are called in the order they are defined in the portlet.xml
file. The dialog box for adding URL listeners lets you move listeners up or down
to change the order in which they are called.

6.13 Setting Portlet-Level Container Runtime Options
You can specify container runtime options for individual portlets. These options
override any application-level settings (if any) of the same container runtime options
specified at the portlet-application level.

In the Java portlet Properties view, select the Container Runtime Options item under
Local Java Portlet Properties, as shown in Figure 6–14. Just click in the value field to
bring up a dialog for adding runtime option name/value pairs. For more information
on runtime options, see the Java Portlet Specification Version 2, Section 6.12, "Using
Global (Shared) Properties," and Section 6.11, "Using Container Runtime Options."

Figure 6–14 Local Container Runtime Options

6.14 Adding Custom Portlet Modes
A portlet mode indicates the function a portlet is performing when the portlet is
rendered. The Java Portlet Specification includes three required modes: View, Edit,
and Help. In addition, the specification allows for custom modes, which provide the
ability to define additional modes. Custom portlet modes fall into two categories:
portal managed and not portal managed. See the Java Portlet Specification Version 2
for more information.

To add a custom portlet mode:

1. Double-click the New Custom Mode node in the Portlet Editor Controls part of the
Design Palette, as shown in Figure 6–15.

Tip: You can also drag and drop Custom Portlet Modes from the
Design Palette view onto the Portlet editor. You can drag and drop
either existing modes or the Custom Modes > New Custom Mode
item. The position of a mode in the list of modes in a portlet is not
significant.

Adding Custom Portlet Modes

6-26 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 6–15 Selecting Custom Modes

2. Fill out the Define or Choose a Custom Portlet Mode dialog. This dialog lets you
specify a new custom mode or select an existing one for modification.

The Portal-Managed drop down menu lets you select whether or not the custom
mode is portal managed or not. Select default to use the server’s default. In the
case of WebLogic Portal server, this default is true. Select true if you want the
mode to be portal managed regardless of the server’s default. Select false to if you
never want the mode to be portal managed.

See Figure 6–16.

Figure 6–16 Define or Choose a Custom Portlet Mode Dialog

Custom modes are inserted into the portlet.xml file and can be shared by multiple
portlets. Here is a sample custom mode definition:

<custom-portlet-mode>
 <description>My custom mode</description>
 <portlet-mode>wlp:custom_mode_1</portlet-mode>
</custom-portlet-mode>

Using Special Portlet Request Attributes

Building Java Portlets 6-27

6.15 Using Special Portlet Request Attributes
The WLP Java portlet container supports customization of some behaviors at runtime
through the use of special portlet request attributes. Set these attributes in the portlet
Java code before the operation you wish to affect. Because the request values don’t
change until you explicitly change them, the best practice is to explicitly change them.
for example:

request.setAttribute("oracle.portlet.server.resourceRequiresRewriting",
Boolean.TRUE);

String url = response.encodeURL(pathToResourceForRewriting);

request.removeAttribute("oracle.portlet.server.resourceRequiresRewriting");

These special portlet request attributes are:

■ oracle.portlet.server.resourceRequiresRewriting

– If this request attribute is set when a call to
PortletResponse.encodeURL() is made, the value of the request attribute
is used to determine whether the resource being referred to by the URL
requires WSRP rewriting on the consumer, if the portlet is being run over
WSRP. If the portlet is not being run over WSRP, this request attribute has no
effect. Resource proxying is the standard way to retrieve resources with
WSRP: a proxy on the consumer is used to retrieve non-portlet artifacts from
the producer, such as icons or images that the producer portlet may refer to. In
most cases, these proxied artifacts do not contain URLs to other things on the
producer (which would also need to go through the consumer's proxy to work
properly), for example, an image. By default, if this request attribute is not set
or is set to Boolean.FALSE, the resource URLs will not be rewritten on the
proxy. However, for proxied resources which contain URLs that need to be
re-written to also go through the consumer's resource proxy, setting this
request attribute to Boolean.TRUE will ensure that the consumer's resource
proxy rewrites URLs in the resource itself.

– Valid values are java.lang.Boolean objects:

* java.lang.Boolean.TRUE – Indicates that the URL encoded with
PortletResponse.encodeURL() is to a resource which itself requires
URL rewriting on the consumer.

* Any other value – Indicates that the URL encoded with
PortletResponse.encodeURL() is to a resource which does not itself
require URL rewriting on the consumer.

■ com.oracle.portlet.wsrpHeaderMode

– If the portlet is being rendered on a WSRP producer, the value of this attribute
is used to determine where the WSRP container should place the header or
cookie being set on the WSRP SOAP message, as a hint to the consumer of its
intended final destination. The container runtime option of the same name is
used by the portlet container to set an initial value for this request attribute on
each PortletRequest object, if the portlet is being rendered on a WSRP
producer. If the portlet is not being rendered over WSRP, this request attribute
is ignored and all headers and cookies set are assumed to be sent to the client.

– Valid values are java.lang.String objects:

* client – Indicates that the header or cookie is intended to go to the
client.

Using Portlet-Served Resource Links

6-28 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

* consumer – Indicates that the header or cookie is intended to be stored on
the consumer.

* both – Indicates that the header or cookie should be sent to the client and
stored on the consumer.

6.16 Using Portlet-Served Resource Links
JSR 286 portlets can create two different kinds of links to resources: direct links, and
portlet-served resource links. Direct links were supported by the JSR 168 specification,
while portlet-served resources are new in the JSR 286 specification.

6.16.1 Using Direct Links
Direct links are links to a resource in the same web application as the portlet, and are
constructed by the portlet and encoded with the PortletResponse.encodeURL()
method. Resources accessed through direct links do not go through the portal server
and will not have the portlet context available. In general, use direct links when access
to the portlet context or going through the portal is not needed, as direct links are
more efficient than portlet-served resource links, which go through the portal
framework. Examples of resources that may be best served through direct links
include static images and icons that the portlet may wish to include in its markup.

6.16.2 Using Portlet-Served Resource Links
Unlike direct links, portlet-served resource links point back to the portlet, and require
the portlet itself render the resource.

You can create portlet-served resource links using the
javax.portlet.ResourceURL class, or the tag library's resourceUrl tag. When one
of the portlet-served resource links is loaded by a client, the portlet container invokes a
Java portlet's serveResource() method to have the portlet serve the resource. Using
portlet-served resource links, the resource may be protected by portal security and has
access to the portlet context. There are many examples of resources that may be best
served through portlet-served resource links:

■ A resource which reflects the portlet's state, such as a graph or chart based on data
the portlet is displaying

■ Any resource to which the portlet conditionally restricts access

■ Portlet-context dependent JSON or HTML fragments for use in Ajax use-cases

Tip: For more information on portlet-served resources, see the JSR
286 specification, Section 13.

Note: Both direct and portlet-served resource links, when properly
encoded through the PortletResponse.encodeURL() method or the
appropriate ResourceURL methods, will not necessarily result in a
valid URL. The portal framework may instead provide a token that is
turned into a proper URL to the resource when the token is rewritten
on the client. The portlet should therefore never modify a link
provided by the PortletResponse.encodeURL(),
ResourceURL.toString(), or ResourceURL.write() methods before
writing the link to the portlet's markup.

Exporting Java Portlets for Use on Other Systems

Building Java Portlets 6-29

For portlet-served resources, the portlet container acts as a proxy for accessing the
resource; the portlet itself has full control over the resource response. Calls to the
portlet's serveResource() method usually occur after a call to render(), if the portlet's
output from the render contained any portlet-served resource links. During
serveResource(), the portlet has read-only access to the portlet's current render
parameters, shared render parameters, mode and state. Portlets can serve more than
one resource by using a resource ID: an identifier specified on the portlet-served
resource link that is provided to the portlet during a call to serveResource() in the
ResourceRequest.

6.17 Exporting Java Portlets for Use on Other Systems
WebLogic Portal produces Java portlets that conform to the JSR 286 specification and
can be used universally across portals that support JSR 286 portlet containers. Oracle
Enterprise Pack for Eclipse lets you export Java portlets to a supported archive file
(WAR, JAR, or ZIP) that can be deployed on any supported server.

By default, Oracle Enterprise Pack for Eclipse exports the portlet.xml, any Java
class files required by the portlet, and any Java source files. Also, if any class or source
Java files are found within a JAR or ZIP archive, that archive is also exported. You can
optionally specify additional files to be exported.

To export Java portlets to a supported archive file:

1. Select File > Export. You can also right-click in the Project Explorer and select
Export > Export...

2. In the Export page of the export wizard, open the WebLogic Portal folder and
select Portlet(s) to Archive.

3. Click Next.

4. In the Select Portlets page of the export wizard, expand the web project that
contains the Java portlet(s) you want to export. You can select the parent folder

Caution: The javax.portlet.GenericPortlet class, which is
extended by most Java portlets, has a default implementation of
serveResource(). This default implementation simply forwards the
resource request to a file in the same web application identified by the
resource ID. If a portlet does not override this default behavior, it may
be possible for a malicious user to construct a portlet-served resource
URL which serves up any file in the portlet's web application,
bypassing any security constraints set in the web.xml. For this
reason, Oracle recommends that portlets either provide their own
implementation of serveResource() or disable portlet-served resources
entirely using the container runtime option
com.oracle.portlet.disallowResourceServing. For more
information, see Section 6.11, "Using Container Runtime Options."

Tip: You can also use the Import feature to import archive files
containing Java portlets into your Oracle Enterprise Pack for Eclipse
workspace. For details, see Section 6.18, "Importing Java Portlets."

Note: Throughout this section, supported archive files refer to WAR,
JAR, and ZIP files.

Exporting Java Portlets for Use on Other Systems

6-30 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

that contains the portlet(s) or drill down to select individual portlets, as shown in
Figure 6–17. Any portlets and/or parent folders that were selected in the Project
Explorer will be pre-selected by default.

Select the Overwrite existing resources without warning checkbox to force the
export tool to overwrite duplicate files automatically.

Figure 6–17 Select Portlet(s) to Export Dialog

5. Click Next. The Edit Title(s) dialog appears, as shown in Figure 6–18.

Figure 6–18 Edit Title(s) Dialog

Note: All selected portlets must exist within the same web project.
You cannot select portlets for export across different web projects.

Importing Java Portlets

Building Java Portlets 6-31

6. In the Edit Title(s) dialog, you can add or modify the Title and/or Description of
an exported portlet. These fields are written to the exported portlet's
portlet.xml file. Click Next to continue.

7. In the Select Archive page of the export wizard, enter a full path and name for the
archive file, or use the Browse button to specify the path, and click Next. If the
archive does not exist, the wizard will prompt you to create it.

8. In the Select Format page of the export wizard, pick an archive format from the
dropdown list. WLP provides two choices:

■ Oracle WebLogic Server (Generic) – Outputs just the standard Java Portlet
files to the archive, like portlet.xml and the Java Portlet class files. This is
the default option.

■ Oracle WebLogic Portal – In addition to exporting the standard Java Portlet
files, this formatter also exports standard WLP files, such as .porlet files,
backing file classes, and .dependencies files.

9. In the Select Files dialog, select any optional supporting files, such as JSPs, that
you wish to include in the supported archive file. Any files that are included in the
selected archive format (such as portlet.xml) are automatically selected in the
dialog. You can associate a Target Path path with any selected files. Those files
will be placed in the specified target path within the archive file. By default, all
files are stored relative to the root directory of the archive.

10. Click Finish. The archive file is created in the location you specified.

6.18 Importing Java Portlets
WLP provides two tools for importing Java (JSR 168/286) portlets. One lets you import
Java portlets into the your Oracle Enterprise Pack for Eclipse workspace. You can then
add the imported portlets to a portal application, modify them with the portlet editor,
or perform other development functions. The other tool lets you import and deploy
Java portlets using the Portal Administration Console. This section discusses these
tools and techniques for importing JSR 168/286 portlets into a WLP application. This
section includes these topics:

■ Section 6.18.1, "Importing Java Portlets Into Your Eclipse Workspace"

■ Section 6.18.2, "Importing and Deploying JSR 286 Portlets in the Administration
Console"

6.18.1 Importing Java Portlets Into Your Eclipse Workspace
This section explains how to use the Oracle Enterprise Pack for Eclipse to import
portlets and includes these topics:

■ Section 6.18.1.1, "Starting the Import Wizard"

■ Section 6.18.1.2, "Using the Import Wizard"

■ Section 6.18.1.3, "Accessing the Portlets"

■ If you are importing JSR 286 portlets into an existing web application that contains
JSR 168 portlets, see Section 6.19, "JSR-286/JSR-168 Portlet Compatibility" for
important guidelines.

Note: Next button is disabled until you supply a title.

Importing Java Portlets

6-32 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

6.18.1.1 Starting the Import Wizard
To start the import wizard, do the following:

1. Open Oracle Enterprise Pack for Eclipse.

2. Open the portal application into which you want to import the JSR 286 portlets.

3. Select File > Import or right-click on the portal application and select Import.

6.18.1.2 Using the Import Wizard
This section explains how to use the import wizard to import JSR 286 WAR files into
an enterprise application.

1. On the first page of the import wizard, select WebLogic Portal > Portlet(s) from
Archive. Click Next to continue

2. On the Select Project page of the import wizard, select the project into which the
JSR 286 WAR will be imported. The list is automatically populated with the
projects in the current workspace. If you would like to replace an earlier version of
the portlet, select Overwrite existing resources without warning. Click Next to
continue

3. On the Select Archive page of the import wizard, enter the path to the WAR file
containing the JSR 286 compliant portlets to deploy. You can also use the Browse
button to navigate to the WAR file. Click Next to continue

4. On the Select Portlet(s) page of the import wizard, choose the portlets to import
from the JSR 286 WAR selected on the previous page. By default, the portlet(s) will
be imported into the root folder of the portal project chosen in step 2. To import a
portlet into a different location, select the portlet and enter the path in the Target
Path field or click Browse to navigate to the folder. Click Next to continue

5. The Select Files page of the import wizard lists the artifacts that will be included
in the portlet project. By default, all artifacts specified as required in the Import
Template are selected, including the portlet.xml file and any class files used by
the portlet. Select any additional supporting portlet artifacts to include in the
portlet project (you can select directories or individual files). By default, the files
will be imported into the portlet project in the structure shown. To import an
artifact into a different location, select the file or directory and enter the path in the
Target Path field or click Browse to navigate to the folder. Click Next to continue

6. Click Finish to execute the import. If the selected project does not include a portlet
deployment descriptor, an error will appear to notify you that a new descriptor
file will be generated.

6.18.1.3 Accessing the Portlets
After the WAR file is imported, you can add the portlet(s) to your portal. You can use
them in file based .books, .pages, and .portals, or in desktop streaming mode
using the WebLogic Administration Console once they have been published to the
server from the IDE. The imported portlets can be served over WSRP if your portlet
producer project is configured to do so. After a web application is added as a
producer, you can incorporate the application's portlets as you would with any WSRP
producer using the WebLogic Portal Administration Console. See the Oracle Fusion
Middleware Federated Portals Guide for Oracle WebLogic Portal for details.

Note: If the selected project does not include a portlet deployment
descriptor, one will be generated when the JSR 286 WAR file is
imported.

JSR-286/JSR-168 Portlet Compatibility

Building Java Portlets 6-33

6.18.2 Importing and Deploying JSR 286 Portlets in the Administration Console
The WebLogic Portal Administration Console provides a utility for automatically
deploying JSR 286 portlets that are packaged in JSR 286 WAR files. This utility lets you
import JSR 286 WAR files containing JSR 286 portlets, and expose the portlets in WSRP
producers. For detailed information on this utility, see the chapter "Deploying Portal
Applications" in the Oracle Fusion Middleware Production Operations Guide for Oracle
WebLogic Portal.

6.19 JSR-286/JSR-168 Portlet Compatibility
When you use Oracle Enterprise Pack for Eclipse to import JSR 286 portlets into an
existing web application that contains JSR 168 portlets, the existing portlet.xml is
upgraded to the JSR 286 schema. (Note that if you import portlets manually, by editing
the schema files, this upgrade will not occur automatically.) In most cases, the JSR 168
portlets will continue to work exactly as they did before. However, there are a few
cases in which JSR 168 portlets will behave differently in JSR 286; these portlets must
invoke a JSR 168 compatibility mode to run under JSR 286.

The WLP JSR 286 portlet container invokes a JSR 168 compatibility mode for a portlet
if either of the following are true:

■ The portlet.xml in which the portlet is defined has an XML namespace that
does not contain portlet-app_2_0 (it is a JSR168 portlet.xml file). If a file exists
in the web application named /WEB-INF/oracle-portlet.xml, the
WebCenter JSR 168 compatibility mode is invoked; otherwise, the WLP JSR 168
compatibility mode is not invoked.

■ The container runtime option com.oracle.portlet.compatibilityMode is
set to owlp168 (WLP JSR 168 compatibility mode) or owc168 (WebCenter JSR 168

Tip: If your producer and consumer applications share the same
server, it is recommended that you enable local proxy mode. Local
proxy support allows co-located producer and consumer web
applications to short-circuit network I/O and "SOAP over HTTP"
overhead. See the section "Using Local Proxy Mode" in the Oracle
Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal.

Note: JSR 168 portlets run in a JSR 286 container without JSR 168
compatibility mode invoked may be subject to a potential security
hole through the new portlet-served resource feature in JSR 286.
Because the GenericPortlet base class implements the
serveResource() method by simply looking for a file in the web
application with the name specified in the resource ID, malicious
users could gain access to files not intended to be served. When any
JSR 168 compatibility mode is used, the WLP JSR 286 container
disables resource serving for these portlets by default using the
com.oracle.portlet.disallowResourceServing container
runtime option. If JSR 168 portlets are included in a JSR 286
portlet.xml file without specifying a JSR 168 compatibility mode,
Oracle recommends that you use the
com.oracle.portlet.disallowResourceServing container
runtime option to disable resource serving. For information on setting
this container runtime option for individual portlets, see Section 6.13,
"Setting Portlet-Level Container Runtime Options."

JSR-286/JSR-168 Portlet Compatibility

6-34 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

compatibility mode). This allows JSR 286 portlets and JSR 168 portlets from WLP
and/or WebCenter to co-exist in the same web application.

■ Any hide-portlet entries with a value of true will automatically be converted
to a false value for the container runtime option
com.oracle.portlet.offerPortletOverWsrp if no value for that container
runtime option is specified in the portlet.xml file.

If a portlet has a JSR 168 compatibility mode invoked, the portlet container will make
the modifications described in the following sections for the portlet to remain
backwards-compatible with JSR 168.

6.19.1 Generic JSR 168 Compatibility Modifications
To be compliant with the JSR 168 specification, the following modifications will be
made if any JSR 168 compatibility mode is invoked:

6.19.2 WebLogic Portal JSR 168 Compatibility Modifications
The following modifications will be made in addition to the generic modifications if
the WLP JSR 168 compatibility mode is invoked:

WLP JSR 168 Compatibility Mode Functionality Standard JSR 286 Functionality

BaseURL.setParameter(String name, String value) will
throw an IllegalArgumentException if value is null.

The parameter will be removed if it was
already set on the BaseURL

BaseURL.setParameter(String name, String[] values) will
throw an IllegalArgumentException if values is null.

The parameter will be removed if it was
already set on the BaseURL

BaseURL.setParameters(Map<String, String[]>) will
throw an IllegalArgumentException if any of the map
values is null.

The parameter will be ignored.

When using a PortletRequestDispatcher to dispatch to a
servlet or JSP, the provided request.getProtocol() method
will return null.

The provided request.getProtocol() method will
return "HTTP/1.1"

RenderResponse.getWriter() and
RenderResponse.getOutputStream() will throw an
IllegalStateException if
RenderResponse.setContentType() has not been called
previously.

Setting the content type is not required before
calling getWriter or getOutputStream.

PortletContext.getMajorVersion() will return 1. PortletContext.getMajorVersion() will return 2.

The container runtime option
com.oracle.portlet.disallowResourceServing
will be set to true for the portlet if no other value has
been specified for that container runtime option.

The container runtime option
com.oracle.portlet.disallowResource
Serving will be left at the default of false for
the portlet if no other value has been specified
for that container runtime option.

WLP JSR 168 Compatibility Mode Functionality Standard JSR 286 Functionality

PortalURL.toString() will use the web application
setting for ampersand entity encoding.

BaseURL.toString() must return a URL that does not
encode ampersands as XML entities.

When using the JSR 168 tag library, the URLs
generated by the actionUrl and renderUrl tags will
always inherit the default ampersand encoding for
the web application.

URLs must not encode ampersands as XML entities.

PortletResponse.encodeURL() will use the web
application setting for ampersand entity encoding.

PortletResponse.encodeURL() will always use the
ampersand character, not the ampersand entity.

JSR-286/JSR-168 Portlet Compatibility

Building Java Portlets 6-35

6.19.3 WebCenter JSR 168 Compatibility Modifications
The following modifications will be made in addition to the generic modifications if
the WebCenter JSR 168 compatibility mode is invoked:

The portlet container will generate errors if render
is called on a portlet and the portlet does not
implement the methods render(), doDispatch(),
doView() (if portlet mode is VIEW), doEdit() (if
portlet mode is EDIT), or doHelp() (if portlet mode
is HELP).

The portlet's render() method will be invoked
regardless.

The portlet container will generate errors if an
action is invoked on a portlet and the portlet does
not implement processAction().

The processAction() method will be called
regardless.

The container will automatically set the
com.oracle.portlet.streamingOptimized
runtime option to "true" if no other value for that
option is specified, as this was the previous
behavior of JSR168 portlets in WLP.

The container
com.oracle.portlet.streamingOptimized
runtime option will be left at the default of "false" if
no other value for that option is specified.

WebCenter JSR 168 Compatibility Mode Functionality Standard JSR 286 Functionality

PortalURL.toString() will always use the XML ampersand
entity.

BaseURL.toString() must return a URL that
does not encode ampersands as XML
entities.

When using the JSR 168 tag library, the URLs generated by
the actionUrl and renderUrl tags will always inherit the
default ampersand encoding for the web application.

URLs must not encode ampersands as XML
entities.

PortletResponse.encodeURL() will use the XML ampersand
entity for encoding the URL.

PortletResponse.encodeURL() will always
use the ampersand character, not the
ampersand entity.

WLP JSR 168 Compatibility Mode Functionality Standard JSR 286 Functionality

Adding an Icon to a Java Portlet

6-36 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

6.20 Adding an Icon to a Java Portlet
To add an icon to a Java portlet, you need to edit the weblogic-portlet.xml file, as
described in this section.

1. Place the icon in the images directory of the skin that the portal is using. For
example, if the skin name is avitek, icons must be placed in:

myPortal/skins/avitek/images

2. In the Application panel, locate and double-click the weblogic-portlet.xml
file to open it. This file is located in the portal's WEB-INF folder, for example:

myPortal/WEB-INF/weblogic-portlet.xml

3. Add the following lines to the weblogic-portlet.xml file:

<portlet>
 <portlet-name>myPortlet</portlet-name>

If present, the WEB-INF/oracle-portlet.xml file will
be parsed and the following configuration information will
be honored:

■ minimum-wsrp-version entries will automatically
get converted to
com.oracle.portlet.minimumWsrpVersion container
runtime options

■ requires-iframe will be converted to
com.oracle.portlet.requiresIFrame container runtime
options, if no such options are specified in the
portlet.xml file. This will be honored both when the
portlet is run locally and produced over WSRP.

■ navigation-parameters will automatically get
converted to JSR286 public render parameters.

■ hide-portlet entries with a value of true will
automatically get converted to a false value for the
container runtime option
com.oracle.portlet.offerPortletOverWsrp if
no value for that container runtime option is specified
in the portlet.xml file

■ portlet-extension portlet-id entries are
automatically converted to
com.oracle.portlet.wsrpPortletHandle
container runtime options, if no such options are
specified in the portlet.xml file. The value of the
container runtime option will be "E:i" + portlet-id +
":default".

■ portlet-app-extension allow-export entry
will be converted to a
com.oracle.portlet.allowWsrpExport
container runtime option at the portlet-app level, if no
such option is specified in the portlet.xml file.

■ portlet-app-extension
strict-authentication will be converted to a
com.oracle.portlet.useWsrpUserContextFor
UserAuthenticationInfo container runtime
option; if strict-authentication is true, the
container runtime option will be false, otherwise the
container runtime option value will be true.

The container runtime option
com.oracle.portlet.useWsrpUserContextForUserAuthenticat
ionInfo will be set to "true" unless the oracle-portlet.xml file
exists and has a portlet-app-extension "strict-authentication"
element value of "true".

The container
com.oracle.portlet.useWsrpUserContextFor
UserAuthenticationInfo runtime option will
be left at the default value of "false" if no
other value for that option is specified.

WebCenter JSR 168 Compatibility Mode Functionality Standard JSR 286 Functionality

Adding an Icon to a Java Portlet

Building Java Portlets 6-37

 <supports>
 <mime-type>text/html</mime-type>
 <titlebar-presentation>
 <icon-url>myIcon.gif</icon-url>
 </titlebar-presentation>
 </supports>
</portlet>

4. Make these substitutions:

■ Change myPortlet to the name of the portlet that is specified in
WEB-INF/portlet.xml

■ Be sure the mime-type also matches the mime-type found in
WEB-INF/portlet.xml

■ Change myIcon.gif to the name of the icon you wish to add

Adding an Icon to a Java Portlet

6-38 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

7

Creating Clipper Portlets 7-1

7Creating Clipper Portlets

A clipper portlet is a portlet that renders content from another web site. A clipper
portlet can include all or a subset of another web site's content using a process called
"web clipping." This chapter explains how to create and configure clipper portlets.

This chapter includes these topics:

■ Section 7.1, "Introduction"

■ Section 7.2, "Creating a Clipper Portlet"

■ Section 7.3, "Modifying Clipper Portlet Properties"

■ Section 7.4, "Modifying the Appearance of a Clipper Portlet"

■ Section 7.5, "Authenticating a Clipper Portlet"

■ Section 7.6, "Configuring URL Rewriting"

■ Section 7.7, "Clipper Portlets and HTTPS"

■ Section 7.8, "Certificates and WebLogic Server"

■ Section 7.9, "Refreshing the Original Clipper Portlet Page"

■ Section 7.10, "Using Backing Files with Clipper Portlets"

■ Section 7.11, "Updating Portlet Preferences While the Server is Running"

■ Section 7.12, "Clipper Portlet Limitations"

7.1 Introduction
Clipping is an easy technique for including content in your portal. You can clip all or
part of another web site. Users can effectively view and interact with content from
another web site without leaving the portal.

Note that another WLP feature, the browser portlet, also lets you include remote web
page contents in a portal. For information on browser portlets, see Section 5.4.4,
"Building Browser Portlets." A clipper portlet differs from a browser portlet in the
following ways:

■ A browser portlet uses an IFrame, while a clipper portlet includes the content of
the clipped web page into the same page as the rest of the portal. An advantage of
using an IFrame is that it isolates the remote content, preventing it from
overlapping other parts of the portal. Disadvantages are that the portal cannot
access the IFrame's content and portal and IFrame sessions are maintained
separately.

Creating a Clipper Portlet

7-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ A browser portlet returns the entire remote page, while a clipper portlet lets you
subset or modify the contents of a remote web page.

7.2 Creating a Clipper Portlet
You create a clipper portlet using the Portlet Wizard. The steps are similar to those of
creating other types of portlets.

1. If it is not currently open, open the Portal Perspective.

2. Select File > New > Portlet.

3. In the New Portlet dialog, enter a name for the portlet, and click Finish. The
Portlet Wizard opens.

4. In the Portlet Wizard, select Web Clipper Portlet, as shown in Figure 7–1 and click
Next.

Figure 7–1 Selecting Web Clipper Portlet

5. In the Portlet Details dialog, enter a title for the portlet and enter the URL of the
web site you want to clip in the Remote URL field, as shown in Figure 7–2.

Note: No post-processing is performed on the text of a clipped web
page, unless a clipCustomClass preference is specified as described in
Section 7.4, "Modifying the Appearance of a Clipper Portlet." Clipped
text is written verbatim to the response. If the original web page
contains syntax errors, the errors may also appear in the consumer
browser when the clipper portlet is rendered.

Modifying Clipper Portlet Properties

Creating Clipper Portlets 7-3

Figure 7–2 Specifying the URL of a Remote Web Site

6. Click Create to create the new clipper portlet.

7. Modify the clipper portlet, if you want, by adding and editing preferences, as
explained in Section 7.3, "Modifying Clipper Portlet Properties."

7.3 Modifying Clipper Portlet Properties
By setting certain portlet properties, you can change the appearance of a clipper
portlet, subset the content of a web page that appears in a clipper portlet, and provide
authentication. There are two primary ways to modify a clipper portlet's properties:
through the Properties editor and manually.

This section includes these topics:

■ Section 7.3.1, "Using the Properties Editor"

■ Section 7.3.2, "Setting Clipper Properties Manually as Preferences"

7.3.1 Using the Properties Editor
You can use the Properties editor to edit the common set of portlet properties, such as
the title bar and presentation properties. Clipper portlets share most of these
properties with other types of portlets, and the procedure for changing them is the
same. See Section 9.1, "Portlet Properties" for detailed information on editing portlet
properties through the Properties editor.

7.3.2 Setting Clipper Properties Manually as Preferences
Clipper portlets also include a set of properties that do not appear in the Properties
editor and which must be set manually. The easiest way to modify clipper portlet
properties manually is to add and set them as portlet preferences.

Note: By default, the entire web site is included in the clipper
portlet's contents, including the <HEAD> element of the remote site.

Modifying the Appearance of a Clipper Portlet

7-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

To set portlet preferences, do the following:

1. Open the Portlet editor for the clipper portlet. To do this, right click the portlet
name in the Project Explorer and select Open With > Portlet Editor.

2. Right click the Portlet Preferences bar in the portlet editor and select Add
Preference. The Portlet Preferences bar is shown in Figure 7–3.

Figure 7–3 Portlet Preferences Bar

3. In the Properties editor, enter the Preference Name and Preference Value in the
appropriate fields, as shown in Figure 7–4.

Figure 7–4 Preference Name and Value Fields

For more information on setting portlet preferences, see Section 9.2, "Portlet
Preferences."

7.4 Modifying the Appearance of a Clipper Portlet
You can set portlet preferences to specify which portion of a web page to clip. You can
also modify the text that is clipped by implementing a Java class and specifying it as a
portlet preference. Table 7–1 lists and describes the set of clipper portlet preferences

Tip: WLP provides preferences for controlling the extent of a clipped
page and for authentication. See Section 7.4, "Modifying the
Appearance of a Clipper Portlet" and Section 7.5, "Authenticating a
Clipper Portlet" for specific information on those tasks.

Authenticating a Clipper Portlet

Creating Clipper Portlets 7-5

that you may set manually to accomplish these tasks. For details on how to set
preferences, see Section 7.3, "Modifying Clipper Portlet Properties."

7.5 Authenticating a Clipper Portlet
This section explains how to configure authentication for a clipper portlet. Once
configured, clipper portlet authentication is automatic. WebLogic Portal supports two
kinds of clipper portlet authentication:

■ Form-based authentication

■ Basic HTTP authentication

Both of these methods are described in this section.

Note: The preferences clipXPath, clipStartText/clipEndText, and
clipCustomClass (listed in Table 7–1) are exclusive. The system looks
for clipCustomClass first. If that class is not present, the system looks
for clipXPath. If clipXPath is not present, the system looks for
clipStartText/clipEndText.

Table 7–1 Preferences for Determining the Text to Clip

Property Name Property Value

clipXPath (Optional) An XPath that is applied to the remote page. The remote page is required to
be well-formed XML. If you set this option, the system will apply the XPath to the
remote page and put the text of the first node found in the clipper portlet output.

This option provides a convenient way to clip a specific chunk of text. For example,
suppose this preference value is html/body[1], which is an XPath expression that
selects the <body> element of the web page's text.

You can also use this option to specify div elements to clip. For example,
//div[@id="barracuda"] clips out a <div id="barracuda"> element.

clipStartText,
clipEndText

(Optional) Specifying regular expressions that are used to locate the beginning and the
end of the web page text to clip. For example, if the page you want to clip looks like:

Some web site text... <abc> text to clip </abc> Some more web site text...

and you want to clip the text between <abc> and </abc> inclusive, enter the following
properties and values:

clipStartText = <abc>

clipEndText = </abc>

The left angle bracket needs to be escaped if you enter the values directly in the XML
.portlet file. For example:

<netuix:preference name="clipStartText" value="<abc>" modifiable="false"/>

<netuix:preference name="clipEndText" value="<abc>" modifiable="false"/>

clipCustomClass (Optional) This preference specifies the name of a class that implements
com.bea.netuix.clipper.IClipStrategy. This interface lets you define your own clipping
logic. The interface has one method to implement:

String clip(String markup);

Your implementation must have a no-argument constructor. The clipCustomClass
preference registers your implementation with the portlet.

An IClipStrategy class can be used to selectively rewrite a web page; for example, you
can substitute text in the page, or suppress certain elements.

Authenticating a Clipper Portlet

7-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

7.5.1 Form-Based Authentication
Form-based authentication is performed through a server-side form request on the
remote site. You configure this type of authentication by setting preferences on the
portlet. The procedure for setting preferences is described in Section 7.3, "Modifying
Clipper Portlet Properties."

To set up form-based authentication:

1. Set the preference: authenticationType = Form. This preference enables
form-based authentication.

2. Tell the server how to build up the HTTP request that performs the authentication
by setting the preferences listed in Table 7–2.

3. Provide the authentication credentials by setting the preferences listed in
Table 7–2.

The following preferences are used to provide the authentication credentials.

Example 7–1 shows example preferences for form-based authentication.

Example 7–1 Example Form-Based Authentication Preferences

<netuix:preference name="remoteUrl" value="http://some.site.com"
modifiable="false"/>
<netuix:preference name="loginFormUrl" value="http://some.site.com/login.action"
modifiable="false"/>

Note: There are current security limitations associated with
form-based authentication. See Section 7.12, "Clipper Portlet
Limitations."

Table 7–2 HTTP Request Preferences

Preference Name Preference Value

loginFormUrl (Required) The ACTION attribute in the HTML <FORM> element. This is the
URL to which the authentication request is made.

loginFormMethod (Required) The METHOD attribute in the HTML <FORM> element. The
value must be either GET or POST.

loginFormUserParam (Required) The name of the request parameter that holds the login name.

loginFormPasswordParam (Required) The name of the request parameter that holds the login password.

loginFormExtraParams (Optional) A string to append to the request query. Use this string to specify
custom parameters that might need to be set. For example, if the form also
has COLOR and SHAPE parameters, you can set them with:

loginFormExtraParams= COLOR=PURPLE&SHAPE=DIAMOND

Table 7–3 Authentication Credential Preferences

Preference Name Preference Value

groupUsername Specifies shared user name.

groupPassword Specifies the password for the shared user name.

personalUsername Specifies a user name on a per-user basis. Ignored if groupUsername is set.

personalPassword Specifies the password on a per-user basis. Ignored if groupUsername is set.

Configuring URL Rewriting

Creating Clipper Portlets 7-7

<netuix:preference name="authenticationType" value="Form" modifiable="false"/>
<netuix:preference name="loginFormMethod" value="POST" modifiable="false"/>
<netuix:preference name="loginFormUserParam" value="os_username"
modifiable="false"/>
<netuix:preference name="loginFormPasswordParam" value="os_password"
modifiable="false"/>
<netuix:preference name="loginFormExtraParams" value="os_destination=abc"
modifiable="false"/>
<netuix:preference name="groupUsername" value="your_username" modifiable="false"/>
<netuix:preference name="groupPassword" value="your_password" modifiable="false"/>

7.5.2 Basic HTTP Authentication
To set up basic HTTP authentication:

1. Set the preference: authenticationType = BasicHTTP. This preference enables
form-based authentication.

2. Provide the authentication credentials by setting the preferences listed in
Table 7–4.

Example 7–2 shows example basic HTTP authentication preferences.

Example 7–2 Example Basic HTTP Authentication Preferences

<netuix:preference name="authenticationType" value="BasicHTTP"
modifiable="false"/>
<netuix:preference name="groupUsername" value="your_username" modifiable="false"/>
<netuix:preference name="groupPassword" value="your_password" modifiable="false"/>

7.6 Configuring URL Rewriting
This section explains how to configure the way clipper portlets rewrite navigable links
and resource URLs.

This section includes these topics:

■ Section 7.6.1, "Navigable Link Configurations"

■ Section 7.6.2, "Resource URL Configurations"

■ Section 7.6.3, "URL Rewriting Configuration Techniques"

7.6.1 Navigable Link Configurations
Navigable links, such as anchor links, can be configured as follows:

■ Rewrite the link so that the resulting page displays in the portlet. This is the
default.

Table 7–4 Authentication Credential Preferences

Preference Name Preference Value

groupUsername Specifies shared user name.

groupPassword Specifies the password for the shared user name.

personalUsername Specifies a user name on a per-user basis. Ignored if groupUsername is set.

personalPassword Specifies the password on a per-user basis. Ignored if groupUsername is set.

Configuring URL Rewriting

7-8 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Do not rewrite the link. In this case, if you click the link, the linked page opens in
another browser window, not in the portlet.

■ Block the link. Because a clipper portlet embeds the URL that defines a page to clip
in the portal request, it is possible to manually change the URL so the portlet clips
an arbitrary web page. This presents a security risk, because a user could browse
web pages from the WLP server, which may be behind a firewall and thus allow
access to pages that aren't authorized for the given user. Clipper portlets can be
configured to block this security risk.

See Section 7.6.3, "URL Rewriting Configuration Techniques" for more information.

7.6.2 Resource URL Configurations
Resource URLs point to images, stylesheets, scripts, and so on. You can configure a
clipper portlet so that it either does or does not rewrite resource links so that they are
proxied through the WLP server.

By default, resources are proxied, because cookies for clipped pages are stored on the
WLP server. For example, if you clip a page behind a firewall, your browser will not
have access to resources on the remote page. In this case, it is necessary to route
resource requests through the WLP server. However, this proxying can affect WLP
server performance; therefore, you have the option to turn proxying off if you don't
need it.

See Section 7.6.3, "URL Rewriting Configuration Techniques" for more information.

7.6.3 URL Rewriting Configuration Techniques
You can configure the way URLs are rewritten by implementing a Java class called
IClipperUrlFilter or by setting portlet preferences.

7.6.3.1 Implementing IClipperUrlFilter
The SPI interface com.bea.netuix.clipper.IClipperUrlFilter is available for you to define
your link rewriting rules. This interface has three methods, listed in Example 7–3. Your
implementation must have a no-argument constructor. Register your implementation
with the portlet using the urlFilter portlet preference. For example:

<netuix:preference name="urlFilter" value="my.package.MyUrlFilterImpl"
modifiable="false"/>

For more information on setting portlet preferences, see Section 7.3.2, "Setting Clipper
Properties Manually as Preferences" and see "Portlet Preferences" in the Oracle Fusion
Middleware Portlet Development Guide for Oracle WebLogic Portal.

Example 7–3 IClipperUrlFilter Methods

/** Should the url be reachable from the clipper portlet?
 * If this method returns false, rewritten links containing this url will have
 * empty values (for example, a link
 * would be rewritten to , and a request to clip this url would
 * receive a 404 response.
 */
 boolean allowUrl(String url);

 /**
 * Should the url be rewritten to stay within portal context? If this methods
 * returns false, clicking on a link
 * to this url will take the user straight to the target url, which will render

Clipper Portlets and HTTPS

Creating Clipper Portlets 7-9

 * the new page in the full browser, and not inside the clipper portlet.
 *
 * This method applies to navigable urls only: links in anchors, form actions,
 * etc.
 */
 boolean rewriteClickableUrl(String url);

 /**
 * For resource urls only, e.g. image, script, and style tags.
 *
 * Should the resource be proxied through the wlp server, or should the resource
 * link point
 * directly to the original resource in the remote page?
 */
 boolean rewriteResourceUrl(String url);

7.6.3.2 Using Portlet Preferences
If you don't want to define your own class to control link rewriting, you can use these
portlet preferences. For more information on setting portlet preferences, see
Section 7.3.2, "Setting Clipper Properties Manually as Preferences" and see "Portlet
Preferences" in the Oracle Fusion Middleware Portlet Development Guide for Oracle
WebLogic Portal.

■ allowedUrlRegex – Set the value of this portlet preference to a regular expression.
WLP tries to match URLs against this expression, and if the match fails, the link
will be blocked. For example:

<netuix:preference name="allowedUrlRegex" value=".*allowedlink.*"
modifiable="false"/>

■ proxyResourceUrls – If this portlet preference is set to false, resource URLs will
not be rewritten to run through the WLP server. The default value is true. The
following example turns off rewriting for resource links:

<netuix:preference name="proxyResourceUrls" value="false*" modifiable="false"/>

Suppose the clipped page has an image tag .
If the proxyResourceUrls preference value is false, then the clipper page will have
the exact same image link:

But if the value is set to true, the link will look like this:

7.7 Clipper Portlets and HTTPS
This section discusses how to handle clipper portlets with HTTPS URLs.

When an HTTPS link is clipped, the link shows up as an HTTPS link in the portal
page.

If you click on a clipped link that causes a redirect on the remote site from an HTTP
URL to an HTTPS URL, the portal request is redirected from an HTTP URL to an
HTTPS URL, as expected. However, note the following exception to this case: the
initial request to the portal for a given browser session is never redirected to HTTPS.
The following cases illustrate this exception:

Certificates and WebLogic Server

7-10 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

The page www.xyz.com has a link to xyz.com/mail. This link points to
http://mail.google.com/mail, and clicking that link redirects you to
https://www.google.com/accounts/ServiceLogin.

If you clip http://www.xyz.com into your portal at http://myportal.com, start
your browser, and click the mail link in your clipped portal, the portal request will be
redirected to https://myportal.com. The clipped page will be redirected to, for
example, https://www.xyz.com/accounts/ServiceLogin, and you will see
that page.

If you clip http://mail.xyz.com/mail, and you start your browser and open the
portal, then you will not be redirected to HTTPS. The clipped page will still follow the
redirect to, for example, https://www.zyz.com/accounts/ServiceLogin, so
the page contents will look fine, but the route from the browser to the WLP server will
not use HTTPS. Note that the "Sign In" form on that page has an HTTPS action URL,
so the action for the clipped form will point to https://myportal.com.

Likewise, if you clip https://www.xyz.com/accounts/ServiceLogin, and you
start your browser and go to http://myportal.com, then you will not be redirected
to HTTPS on that initial request.

7.8 Certificates and WebLogic Server
For WLS to make an HTTPS request to a site, it must have a certificate for that site in
its keystore. If the certificate is not available, you will see exceptions such as:

[Security:090477]Certificate chain received from aaa.bbb.com - 10.123.45.67 was
not trusted causing SSL handshake failure.

For detailed information on configuring SSL in WLS, see "Configuring Identity and
Trust" in Oracle Fusion Middleware Securing Oracle WebLogic Server. The basic steps to
configure a clipper portlet to use HTTPS correctly are:

1. Obtain a security certificate for the site you are trying to clip.

2. Open a command shell and navigate to the root directory of your domain.

3. Locate the trust keystore; for example, DemoTrust.jks.

4. Obtain the password for the keystore.

5. Use the Java keytool program to import the key. For example:

keytool -import -file my_certificate_file -keystore
DemoTrust.jks -alias some_unique_alias

The alias value is an alias unique to that .jks file. You can view the aliases with the
command:

keytool -list -keystore DemoTrust.jks

7.9 Refreshing the Original Clipper Portlet Page
By default, if a user clicks a link inside a clipper portlet, then visits another page
within the portal, and then returns to the page with the clipper portlet, the clipper

Tip: One way to obtain the certificate is to use the Firefox plug-in
called "Cert Viewer Plus." This plug-in lets you view and save the
security certificate.

Refreshing the Original Clipper Portlet Page

Creating Clipper Portlets 7-11

portlet "remembers" and displays the last URL rendered within the clipper portlet. It is
possible, however, to change this default behavior.

The refresh feature discussed in this section allows you to configure a clipper portlet to
return to its original state in response to an onActivation portal event instead of
rendering the portlet with the currently cached URL for the clipper portlet. This type
of event is fired by a page change or when the portlet is minimized/restored.

The following steps illustrate how to configure a clipper portlet to return to its original
state in response to an onActivation portal event.

1. In the portlet editor, click the Event Handlers link. If no handlers have been
created previously, the link is called No Event Handlers, as shown in Figure 7–5.

Figure 7–5 Event Handlers Link

2. In the Portlet Event Handlers dialog click Add Handler, as shown in Figure 7–6.

Figure 7–6 Portlet Event Handlers Dialog Box

Tip: The refresh feature automatically returns to the URL specified
by the remoteURL portlet preference for the clipper portlet. This
preference specifies the initial URL for the clipper portlet. You specify
this URL when you create the clipper portlet. You can change it by
clicking the Portlet Preferences bar in the clipper portlet editor.

Note that another remoteURL property is cached with the clipper
portlet’s state in the session. This cached property keeps track of the
last URL accessed by the user in the clipper portlet. This cached
property is not necessarily the same as the remote URL specified by
the portlet preference.

Refreshing the Original Clipper Portlet Page

7-12 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

3. From the drop down list, select Handle Portal Event.

The Portlet Event Handlers dialog box expands to allow entry of more details.

4. Uncheck the Only If Displayed checkbox.

5. Check the From Self Instance Only checkbox.

6. From the Event dropdown menu, select onActivation. See Figure 7–7.

Figure 7–7 Event Handler Dialog Box Expanded

7. Click Add Action and select Invoke Backing File.

8. Set the backing file method to handleOnActivation, as shown in Figure 7–8.

Note: All clipper portlets reference the backing file
com.bea.netuix.clipper.ClipperBacking. You can see this
backing file referenced in the clipper portlet properties editor and in
the .portlet file. This backing file class has the method called
handleOnActivation(), which is called in response to the
onActivation event. This method handles the details of restoring
the clipper portlet to its original state. See also Section 7.10, "Using
Backing Files with Clipper Portlets."

Using Backing Files with Clipper Portlets

Creating Clipper Portlets 7-13

Figure 7–8 Specifying the Backing File Method

9. Click OK.

The event handler is added, and now the clipper portlet will be restored to its original
state whenever an onActivation event is fired.

Example 7–4 shows a properly-configured sample .portlet file that reflects the
result of the above configuration steps.

Example 7–4 Configured .portlet File Sample

<netuix:portlet backingFile="com.bea.netuix.clipper.ClipperBacking" definitionLabel="myClipper"
title="Myclipper">
 <netuix:handlePortalEvent event="onActivation"
 eventLabel="handlePortalEvent1"
 fromSelfInstanceOnly="true" onlyIfDisplayed="false">
 <netuix:invokeBackingFileMethod method="handleOnActivation"/>
 </netuix:handlePortalEvent>
 <netuix:titlebar>
 <netuix:minimize/>
 </netuix:titlebar>
 <netuix:content>
 <netuix:jspContent contentUri="/clipper/clipper.jsp"/>
 </netuix:content>
 <netuix:preference modifiable="false" name="remoteUrl" value="http://www.oracle.com"/>
</netuix:portlet>

7.10 Using Backing Files with Clipper Portlets
The clipper portlet comes with its own backing file. For detailed information on
backing files, see "Backing Files" in the Oracle Fusion Middleware Portlet Development
Guide for Oracle WebLogic Portal.

To add your own backing file to a clipper portlet, do the following:

■ Create your own backing class that extends
com.bea.netuix.clipper.ClipperBacking.

Updating Portlet Preferences While the Server is Running

7-14 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ For any of the backing file methods you override, call the super class on that
method.

■ Set the backingFile attribute in your .portlet file to your backing class.

7.11 Updating Portlet Preferences While the Server is Running
If you change the preferences for a clipper portlet in the .portlet file, the changes
are not picked up at runtime unless you set the following attribute in the
WEB-INF/netuix-config.xml file:

<propagate-preferences-on-deploy propagate-to-instances='true' master='file'/>

Preference changes that are made in the Administration Console are picked up
automatically.

7.12 Clipper Portlet Limitations
The following are known limitations on the clipper portlet feature. These limitations
may or may not apply to future releases.

■ Authentication preferences are not encrypted.

■ JavaScript in remote pages is not fully supported. Sites with that use JavaScript
may work, but it is not guaranteed.

■ Persistent cookies are not supported. Remote cookies only last as long as the main
portal session.

■ The current remote URL for a clipper portlet is stored in the session. This means
that to reset your clipper window, you need to close and restart your browser.

8

Working With JSF-Java Portlets 8-1

8Working With JSF-Java Portlets

This chapter discusses procedures and best practices for developing and configuring
JSF portlets within a JSR-286 (Java 2.0) portlet using the Standard JSF Bridge (JSR-329).
For using the WLP native JSF bridge, see

This chapter includes the following sections:

■ Section 8.1, "Overview"

■ Section 8.2, "Creating Java 2.0-JSF 1.2 Portlets"

■ Section 8.3, "JSR-286 and JSR-329 Architecture"

■ Section 8.4, "Understanding WLP and JSF Rendering Life Cycles"

■ Section 8.5, "Accessing WLP Context Objects from JSF Managed Beans"

■ Section 8.6, "Understanding Scopes and JSF Portlets"

■ Section 8.7, "State Sharing"

■ Section 8.8, "Using JSF in Java Portlets"

■ Section 8.9, "Converting Native JSF Portlets to Standard Java JSF Portlets"

■ Section 8.10, "Using Common WLP Features With JSF Portlets"

■ Section 8.11, "Understanding Navigation Within a JSF Portlet"

■ Section 8.12, "Interportlet Communication with JSF Portlets"

■ Section 8.13, "Namespacing"

■ Section 8.14, "Code Examples for Common Use Cases"

■ Section 8.15, "Preparing JSF Portlets for Production"

■ Section 8.16, "Third-Party Libraries"

■ Section 8.17, "Tips for Logging, Iterative Development, and Debugging of JSF
Portlets"

■ Section 8.18, "Appendix: JSFJavaPortletHelper"

8.1 Overview
In a portal environment, an application implemented using Java Server Faces
technology can be surfaced as a portlet by creating a JSF portlet. Oracle WebLogic
Portal has supported the use of JSF for the implementation of portlets by developing
the WLP native bridge since a standards-based bridge did not exist. Starting in WLP
10.3.2, the support for JSF portlets continues to be enhanced with the added support

Overview

8-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

for the JSR-329 standards-based JSF bridge. The new JSR-329 bridge is now the default
for JSF portlets which continues to leverage all of the powerful features of WLP.

This section includes the following topics:

■ Section 8.1.1, "Supported Portlet Bridges"

8.1.1 Supported Portlet Bridges
The standard JSR-286 portlet with the standard JSR-329 compliant bridge is new in
WLP 10.3.2 and allows for JSF portlets to interoperate consistently across all Java
portlet (JSR-286) compliant containers. This type of JSF portlet is now the default.

WLP continues to provide a native JSF portlet bridge implementation for use in web
applications that are configured to use JSF 1.1 and/or the Facelet facet. This option
creates a JSP-style portlet with a <facesContent> XML element, which uses the
native bridge functionality. In other words, a portlet with a <facesContent>
element uses the WLP native JSF bridge. To add the Facelet facet, see the section
"Portal Web Project Wizard" in Oracle Fusion Middleware Portal Development Guide for
Oracle WebLogic Portal, which includes instructions on how to add and remove facets.
The Portal Web Project Wizard does not let you configure JSF 1.2 with Facelets, so you
must choose JSF 1.1.

The Portlet Creation Wizard automatically detects the version of JSF that is used in a
web application and provides the correct portlet type for you to select. When JSF 1.2 is
the configured version, the JSF portlets use Java Portlet 2.0 (JSR-286) with the JSR-329
standard portlet bridge. When JSF 1.1 is the configured version, the WLP native portlet
bridge is used.

Table 8–1 summarizes the types of portlets that are created depending on the version
of JSF you are using. As a developer, it is important to know what kind of portlet is
created. For instance, a standard Java 2.0 (JSR-286) portlet has many characteristics
that do not pertain to the native Faces Content Portlet. The type of portlet created can
affect development choices, like interportlet communication, event handling, and
portlet preferences.

Note: For detailed information about Java portlet features supported
by WLP, see Chapter 6, "Building Java Portlets."

Note: Before WLP 10.3.2, the native JSF portlet bridge was the only
JSF portlet bridge available in WebLogic Portal. If you are developing
a new project, Oracle recommends that you avoid using the native JSF
bridge because it is less likely to be compatible with third-party JSF
toolkits.

Table 8–1 Resulting Portlet Types for JSF Portlets

JSF Version

Facelet Facet
Added to
Project

Type of Portlet
Created

Portlet Bridge
Used Comments

1.1 N/A Faces Content
Portlet

Native WLP Bridge
(non-standard)

JSF 1.1 always uses
the WLP native
bridge

1.2 Yes Faces Content
Portlet

Native WLP Bridge
(non-standard)

Creating Java 2.0-JSF 1.2 Portlets

Working With JSF-Java Portlets 8-3

The version of JSF is configured in the web application as a facet. For more
information on facets, see the section "Adding Facets to an Existing Web Project" in
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

The remaining of this chapter describes configuration and architecture of Java 2.0
portlets using JSF 1.2 and the JSR-329 standard bridge.

8.2 Creating Java 2.0-JSF 1.2 Portlets
For detailed information on creating a Java-JSF standard portlet using the Oracle
Enterprise Pack for Eclipse, see Section 5.4.2, "Building JSF Portlets." At this point you
should have your first Java-JSF portlet created. The artifacts are as follows:

■ The portlet. When opened with an XML editor you should confirm that it is a Java
portlet. This is evident by the following XML snippet:

<netuix:javaPortlet definitionLabel="firstPortlet" portletName="firstPortlet"
title="First Portlet"/>

■ portlet.xml in WEB-INF

This file should contain a new entry for the newly created portlet. In addition, it
should have an <init-param> that has a value for
javax.portlet.faces.defaultViewId.view. The value should be the JSP
or Faces page that this portlet should render for the view. Note that the portlet
class defaults to javax.portlet.faces.GenericFacesPortlet. You may
extend this class to override default behavior for the Java portlet and change the
entry in portlet.xml accordingly. Many of the examples in this section assumes
you will be doing this.

■ The JSP or Faces file to which the view points.

Faces Application URL that was selected in the Portlet Creation Wizard. This is the
beginning page to the portlet. From here the portlet is built using components
similar to building a normal Faces application. The difference is that your JSP
should not contain <html>,<head>,<body>,<title> tags since these are only
used when you own the entire web page, and inside a portlet, you do not. (The
IDE may put these there for you, take them out!) The next sections cover in more
details the points you should be aware of about a Faces application within a portal
container. Your JSP or Faces file may contain plain HTML tags as well as Faces
tags. If it contains no Faces tags, your portlet runs as a Java portlet without the use
of the Faces bridge.

Example 8–1 Sample JSF-JSP

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@ taglib prefix="h" uri="http://java.sun.com/jsf/html"%>
<f:view>
 <h:form id="helloForm" >

1.2 No Java Portlet Version
2.0 (JSR-286)

JSR-329 Bridge
(standard)

Table 8–1 (Cont.) Resulting Portlet Types for JSF Portlets

JSF Version

Facelet Facet
Added to
Project

Type of Portlet
Created

Portlet Bridge
Used Comments

JSR-286 and JSR-329 Architecture

8-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 <h:outputText value="Hello World" />

 </h:form>
</f:view>

8.3 JSR-286 and JSR-329 Architecture
The portlet bridge acts as the translation engine between the portlet environment and
the Faces environment. A portlet is an application that provides a specific piece of
content (for example, HTML, XHTML, WML) to be included as part of a larger picture
called a portal page. A Faces portlet uses the Faces design paradigm within a Java
portlet paradigm. The bridge allows for the blending of the Java portlet lifecycle with
that of Faces lifecycle.

Reading the JSR-329 spec combined with the JSR-286 spec will greatly improve your
understanding about the JSR-286 and JSR-329 architecture. The following are the
salient features of the architecture:

The javax.portlet.faces.GenericFacesPortlet in JSR-329 extends
javax.portlet.GenericPortlet from the JSR-286 specification. A portlet
developer may often want to extend GenericFacesPortlet to handle special init
or destroy processing or override any of the interface methods to implement custom
behavior before calling into the Faces bridge. The GenericFacesPortlet overrides
the init, destroy, doDispatch, doEdit, doHelp, doView, processAction and
processEvent methods of GenericPortlet and defines several new methods to
handle JSF processing.

Chapter 5, "Bridge Request Lifecycle Requirements" of the JSR-329 specification at
http://www.jcp.org/en/jsr/detail?id=329 explains the portlet lifecycle
combined with the Faces lifecycle in more detail. The high-level summary is that the
portlet enters its lifecycle when the client (typically a browser) generates a request
(HttpRequest) to display or interact with the web page which contains the portlet.
The portlet is then asked to render, process an action, process a given event, or serve a
resource based on that client request. Note that when processing an action or an event,
these may trigger more events before a render is completed. In a Faces portlet, these
portlet lifecycles must be coordinated to the Faces system of invoking the managed
bean, processing validations, handling error messages, rendering its components, and
processing the navigation rules. To handle the coordination of these two different
lifecycles is the purpose of the JSR-329 bridge.

Each JSF-Java portlet on the page gets its own instance of the bridge. By default, each
JSF-Java portlet created through the Eclipse IDE uses the base class of the
GenericFacesPortlet. Keep in mind that the portlet container and the Faces
engine are loosely coupled through the portlet bridge. That is, they are not directly
tied to each other. They can communicate indirectly via the underlying request
(HttpRequest) from the client (browser).

The biggest challenge and source of confusion for a Java-JSF portlet developer is the
fact that Faces has a single request model that is split between action and rendering.
The Java portlet model has a multi-request lifecycle split between action and/or event
and rendering. In addition, in the Java portlet 2.0 model, the action process can spawn
one or more events before issuing a render request. The JSR-329 bridge manages this
complexity, but it is also important for the developer to understand the phases to help
aid in writing the appropriate code in the appropriate places for best results.

Understanding WLP and JSF Rendering Life Cycles

Working With JSF-Java Portlets 8-5

8.4 Understanding WLP and JSF Rendering Life Cycles
This section explains WLP and JSF rendering life cycles:

■ Section 8.4.1, "WLP and JSF Life Cycles"

■ Section 8.4.2, "Invocation Order of WLP and JSF Life Cycle Methods"

8.4.1 WLP and JSF Life Cycles
Both WebLogic Portal and JSF frameworks support the concept of component trees
that define the rendering of the HTML page. Both also rely on the concept of rendering
life cycles. Each component tree is traversed multiple times during the execution of the
request. Each traversal is called a life cycle or phase.

When developing JSF portlets, it is helpful to understand how those life cycles interact.
For more information on the phases of the portal life cycle, see Chapter 4,
"Understanding Portlet Development" in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

8.4.2 Invocation Order of WLP and JSF Life Cycle Methods
The following represents the merged life cycle execution order across the Portal, Java
Portlet, and JSF containers:

■ On portal app deploy

– PortalContainer:init

– GenericFacesPortlet.init()

■ On portal app undeploy

– PortalContainer:destroy

– GenericFacesPortlet.destroy()

■ PortalContainer:preRender

■ PortalContainer:render

– GenericFacesPortlet.doView and/or GenericFacesPortlet.serveResource

– JSFContainer:RestoreView (only on first render of portlet instance)

– JSFContainer:RenderResponse

■ Portlet link or form submit processing a Portlet.actionUrl

– GenericFacesPortlet.processAction

Then, if a JSF file is the view:

– JSFContainer:RestoreView

– JSFContainer:ApplyRequestValues

– JSFContainer:ProcessValidations

– JSFContainer:UpdateModelValues

– JSFContainer:InvokeApplication

* JSFContainer:invoke Action Listeners

* JSFContainer:invoke Action method

■ PortalContainer:raiseEvents / JSR-286 Events

Accessing WLP Context Objects from JSF Managed Beans

8-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

– GenericFacesPortlet.processEvent() or annotated event method

– JSFContainer:RestoreView

8.5 Accessing WLP Context Objects from JSF Managed Beans
To enable portlets to programmatically interact with the portal framework, a set of
context objects is available from the JSF managed bean.

Table 8–2 shows what portlet context objects are in scope for different managed bean
methods for different JSF life cycles. This chart is useful when implementing a
managed bean that needs to obtain WLP context information. The key point is that
property getters and setters need to be coded so that they work properly with either
context object since they may be called during either an action or a render phase.
Generally, the PortletPresentationContext is only available during render, and
the PortletBackingContext is only available while processing an action.

8.6 Understanding Scopes and JSF Portlets
This chapter covers scoping topics that apply to JSF portlets.

■ Section 8.6.1, "Conceptual Scopes for Standard JSF Applications"

Note: Unlike for a native JSF portlet, a backing file for Java 2.0
portlet is typically unnecessary since the portlet is already based on a
Java portlet lifecycle paradigm of init, processAction,
processEvent, render, serveResource, destroy. These
lifecycles allow you to implement your backing code into the
appropriate Java method in your Java portlet. However, it is possible
to add a backing file to the portlet to handle certain limited situations,
such as the need to have code process in the preRender phase of the
portlet since the Java portlet lifecycle does not have a one to one
mapping of this lifecycle phase. See Section 8.9, "Converting Native
JSF Portlets to Standard Java JSF Portlets."

Table 8–2 Scope of Portlet Context Objects

JSF Life Cycle
Managed
Bean Method

Portlet
Backing
Context

Portlet
Presentati
on
Context Portal Use Case

PROCESS_VALIDACTIONS get property Yes No Portlet receives a
postback, input is
being validated.

PROCESS_VALIDACTIONS set property Yes No Portlet receives a
postback, input is
being validated.

UPDATE_MODEL_VALUES set property Yes No Portlet receives a
postback, input has
been validated.

INVOKE_APPLICATION action method Yes No Portlet is the target of
a postback.

RENDER_RESPONSE get property No Yes Portlet is being
rendered.

RENDER_RESPONSE set property No Yes Portlet is being
rendered.

Understanding Scopes and JSF Portlets

Working With JSF-Java Portlets 8-7

■ Section 8.6.2, "Conceptual Scopes for Portal Applications"

■ Section 8.6.3, "Implementation Patterns for Portal Scopes"

■ Section 8.6.4, "Reinterpretation of the JSF Session and Request Scopes"

■ Section 8.6.5, "Global Session and Portlet Group Session Scopes"

8.6.1 Conceptual Scopes for Standard JSF Applications
The standard JSF scopes are interpreted differently in a portal environment. This
section discusses the differences and includes the following:

■ Section 8.6.1.1, "JSF Standard Scopes"

■ Section 8.6.1.2, "View Scope"

■ Section 8.6.1.3, "Pageflow/Conversation Scope"

8.6.1.1 JSF Standard Scopes
JSF managed beans have well-defined scopes in the JSF specification. The JSF 1.2
specification provides three scopes for managed beans:

■ Application - Bean state is accessible by all users in the web application.

■ Session - Bean state is accessible to any view for the given user, across the life
span of all requests within the session.

■ Request - Bean state is accessible for the duration of a single request.

In addition to these, several other scopes exist. Specifically, JSF 2.0 adds a View scope,
and many web frameworks provide a Pageflow scope, as described below. However,
these are not supported in JSF 1.2.

8.6.1.2 View Scope
View scope is included in the JSF 2.0 specification. It enables managed beans to be
attached to a specific view across multiple HTTP requests. Once a user navigates to a
different view, the bean state is destroyed. This is a helpful pattern for scoping state to
a single instance of a view for a user, but is not supported in JSF 1.2.

8.6.1.3 Pageflow/Conversation Scope
A Pageflow (also called a conversation) is a subset of the views and controller logic
within a web application that pertains to a logical task or business process. Multiple
pageflows can exist within a web application, and each one usually carries state that
should only be scoped to that pageflow. With Pageflow scope, managed bean state is
accessible across the life span of all requests within the session, limited to the time in
which a user is interacting with the set of views within that Pageflow. This is not
supported in JSF 1.2.

8.6.2 Conceptual Scopes for Portal Applications
Because of the composite nature of a portal user interface, there are more conceptual
scopes for portals than for standard JSF applications.

The list of portal scopes includes:

■ Application - Bean state is accessible by all users in the web application.

■ Global Session - Bean state is accessible to any portlet for the given user, across
the life span of all requests within the web application.

Understanding Scopes and JSF Portlets

8-8 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Portlet Group Session - Bean state is accessible to any view within a group of
portlet instances or definitions for the given user, across the life span of all
requests within the web application. This use case can be important for
interportlet communication.

■ Portlet Instance Session - Bean state is accessible to any view within a single
portlet instance for the given user, across the life span of all requests within the
web application.

■ Pageflow - Bean state is accessible to any view within a Pageflow within a single
portlet instance for the given user, across the life span of all requests within the
Pageflow. This is not supported in JSF 1.2.

■ View - Bean state is accessible for as long as the user is interacting with the current
view across multiple requests within a single portlet instance. If the user is
interacting with another portlet, the bean state is retained. This is not supported in
JSF 1.2.

■ Portal Aware Request - Bean state is accessible with the portlet instance for the
duration of a single request. If the user is interacting with another portlet instance,
the bean state is retained until the next request in which the user interacts with the
portlet.

8.6.3 Implementation Patterns for Portal Scopes
Table 8–3 describes how the standard JSF scopes map to the WLP scopes, and how the
unrepresented JSF scopes are supported. These implementation strategies are
explained in the following sections.

8.6.4 Reinterpretation of the JSF Session and Request Scopes
Table 8–4 compares JSF managed bean scoping levels between a JSF application and a
WLP JSF portlet.

Table 8–3 Managed Bean Scope Implementation Strategies

Portal Managed Bean
Scope Implementation Strategy for JSF Portlets

Application faces-config.xml scope = application

Global Session faces-config.xml scope = session, plus custom code

Portlet Group Session faces-config.xml scope = session, plus custom code

Portlet Instance Session faces-config.xml scope = session

Pageflow Use an alternate navigation controller

View New scope with JSF 2.0 (not supported in this release)

Portal Aware Request faces-config.xml scope = request

Table 8–4 Comparison of Scoping Levels

Faces-Config.xml Scope
Label

Conceptual Scope for JSF
Application

Conceptual Scope for JSF
Portlet

Application Application Application

Session Global Session Portlet Instance Session

Request HttpRequest Portal Aware Request

State Sharing

Working With JSF-Java Portlets 8-9

Because a managed bean declared with session scope in faces-config.xml is
interpreted as Portlet Instance Session scoped with the portlet bridge, it is possible to
put multiple instances of that portlet on a page and not have conflicts. Each portlet
instance that uses the managed bean is provisioned with a distinct instance of the
bean.

Also, the different interpretation of request scope prevents a JSF portlet from breaking
if the user interacts with a second portlet while interacting with the first JSF portlet.

8.6.5 Global Session and Portlet Group Session Scopes
The remaining scopes for managed beans cannot be expressed in
faces-config.xml alone. However, the remaining scopes can be achieved using
code patterns that involve HttpSession. For details, see Section 8.7, "State Sharing."

8.7 State Sharing
This section includes the following:

■ Section 8.7.1, "State Sharing Concepts"

■ Section 8.7.2.1, "HttpSession Versus HttpServletRequest"

■ Section 8.7.2.2, "Single Portlet Pattern"

■ Section 8.7.2.3, "Multiple Portlet Pattern"

8.7.1 State Sharing Concepts
JSF managed beans are intended to be the storage containers for application state
within a JSF application. In general, this works well even within a portal environment.
However, this standard JSF pattern is not always sufficient. There are cases where
state needs to be shared with something outside of the JSF portlet. For example:

■ A different portlet instance's JSF managed bean.

■ A portlet instance in a remote servlet container via WSRP.

■ A non-portal object, such as a servlet or servlet filter.

But, there are limitations that must be heeded when working within the JSF container:

■ A JSF managed bean may not invoke any method on any portlet instance's backing
file or Java portlet code, including its own.

■ A JSF managed bean may not invoke any method on a JSF managed bean in
another portlet instance.

■ A portlet backing file or Java portlet code may not invoke any method on any
portlet instance's JSF managed bean.

Despite these limitations, there are ways to handle these types of situations as
explained in the remaining of this section.

8.7.2 State Sharing Patterns
This section includes the following subsections:

■ Section 8.7.2.1, "HttpSession Versus HttpServletRequest"

■ Section 8.7.2.2, "Single Portlet Pattern"

■ Section 8.7.2.3, "Multiple Portlet Pattern"

State Sharing

8-10 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

8.7.2.1 HttpSession Versus HttpServletRequest
This section includes the following:

■ Section 8.7.2.1.1, "Store state in the HttpSession"

8.7.2.1.1 Store state in the HttpSession In a portal environment, the lifecycle of the
request is not always straightforward for the following reasons:

■ WSRP can involve multiple requests - When a user interacts with a portlet which
is being consumed over WSRP, the handling of that interaction and the render of
the portlet can occur over two requests (performBlockingInteraction and
getMarkup requests). Attributes set during the interaction are not available in the
subsequent getMarkup request. In this case, storing state inside an
HttpServletRequest will not behave appropriately.

■ JSR-286 can have multiple request phases as well, for example, first the action
request, and/or event request phase, and then a subsequent render request phase.

■ Scoped requests - A portlet in which a code is executed often does not have access
to the actual HttpServletRequest. Usually, the portlet is a scoped object. The
portlet often does not have access to the actual HttpServletRequest during
code execution. Usually the HttpServletRequest is a scoped object of the
lifecycle phase and attributes set on a scoped request are not visible to other
portlets. This makes sharing state between portlets unfeasible using the request
object.

Therefore, it is often preferred to set the state in the HttpSession and there are
JSR-286 mechanisms (Single Portlet Pattern and Multiple Portlet Pattern) that can help
you. However, storing state in HttpSession has some drawbacks:

■ Attributes set into the HttpSession must be Serializable so that the session can
be replicated within a cluster. Not all Java objects are easily serializable, so this
may be an issue. One way around this issue is to mark that Java object as transient.

■ WebLogic Server distributes or stores the attributes by serializing the attributes.
Adding more attributes to the HttpSession creates higher overhead for the
replication facility. Again it could be that you won't need this attribute replicated,
and therefore, could mark the Java object that is being stored as an attribute as
transient to avoid this replication overhead, since transient objects are not
serialized.

■ If an attribute is appropriate only for the current request, the HttpSession
attribute must be removed by the managed bean after it is finished with it.

■ When used for multiple portlet patterns, the approach is fragile. This is discussed
in more detail in Section 8.7.2.3, "Multiple Portlet Pattern."

8.7.2.2 Single Portlet Pattern
This pattern is defined as sharing state amongst components of a single portlet
instance with other components affiliated with that portlet instance, for example, the
Java Portlet itself and corresponding JSF managed bean. In the case of single pattern,
the state can--depending on the data structure of the state--be passed through as
response render parameters or be stored as request attributes. The best namespace for
setting attributes is using the portlet's instance label so that if the same portlet exists in
more than one location in a portal, its attributes are not mixed. These portlet
components have access to the portlet instance label.

The javax.portlet.actionScopedRequestAttributes container runtime
option handles the request attributes for you, so when they are set, they can be seen in

Using JSF in Java Portlets

Working With JSF-Java Portlets 8-11

the next lifecycle phase. See Section 6.11, "Using Container Runtime Options" for more
details.

8.7.2.3 Multiple Portlet Pattern
Often, it is necessary to have multiple portlets share data between them. Although it
seems intuitive to store this data in the HttpSession object as well, it is not
recommended because the order in which the portlets get and set the state cannot be
predicted. Therefore, HttpSession object should not be used to store data when
users are allowed to move portlets on a page. This limitation applies to WSRP
environment as well.

Oracle recommends using JSR-286 events or JSR-286 public render parameters for this
use case. The major benefits of events and public render parameters are:

■ Layout independent

■ Support for WSRP environments

■ Designed into the JSR-286 portlet architecture. The JSR-286 specification has
implemented Public Render Parameters with the intent on sharing view states
across portlets. In addition, the specification introduced the JSR-286 events with
payloads to enable reacting to state changes. Events add more flexibility, but can
cause extra overhead.

8.8 Using JSF in Java Portlets
You are now familiar with the general architecture. This section focuses on the coding
details of common situations a portlet developer needs to know when writing the
portlet.

It will be helpful if you already have an understanding of the two specifications:
JSR-286 for the Java portlet architecture and JSR-329 for the JSF bridge architecture.

javax.faces.context.ExternalContext, as described in the JSF documentation
"contains all of the per-request state information related to the processing of a single JavaServer
Faces request, and the rendering of the corresponding response." It is here where you will be
able to access the PortletRequest and PortletResponse objects.

FacesContext fc = FacesContext.getCurrentInstance();
ExternalContext ec = fc.getExternalContext();
PortletRequest preq = ec.getRequest();
PortletResponse presp = ec.getResponse();

In the WLP native JSF bridge, the architecture environment was different, thus, the
ExternalContext returned an HttpServletRequest and
HttpServletResponse instead. This is a fundamental concept to understand when
converting your portal application from using native JSF portlets to JSF-Java portlets
or just writing JSF-Java portlets in general. With Java portlets, there is another layer
between the actual HttpServletRequest/HttpServletResponse and the Faces
environment. This Java portlet layer provides for a standards-based way to
developing your portlet.

The following sections explain in more detail common situations using the
PortletRequest/Response and HttpServletRequest/Response objects:

■ Section 8.8.1, "Servlet Request And Servlet Response"

■ Section 8.8.2, "PortletPreferences"

■ Section 8.8.3, "PortletPresentationContext"

Using JSF in Java Portlets

8-12 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Section 8.8.4, "Using JSPs in JSF Portlets"

8.8.1 Servlet Request And Servlet Response
Generally the PortletRequest and PortletResponse objects give you the necessary
access to the client request and response to do most of your development work.
However, there are times when you need access to one layer deeper and need the
actual ServletRequest and ServletResponse.

For example, when the ServletAuthentication class on Oracle WebLogic Server
is used to acquire an authenticated user session, it requires the ServletRequest and
ServletResponse objects. In the native WLP bridge, the following code returned an
instance of these objects:

FacesContext fc = FacesContext.getCurrentInstance();
HttpServletRequest req =
(HttpServletRequest)fc.getExternalContext().getRequest();
HttpServletResponse resp =
 (HttpServletResponse)fc.getExternalContext().getResponse();

This above code gets a ClassCastException when using Java portlets, because now
the getExternalContext().getRequest() call returns a PortletRequest and
getExternalContext().getResponse() returns a PortletResponse.

In the Java portlet code, it is best to get a handle to the ServletRequest and
ServletResponse objects via calling the PortletRequestDispatcher from the
PortletContext object that is returned from the
facesContext.getExternalContext(), like shown below:

FacesContext fc = FacesContext.getCurrentInstance();
Object obj = fc.getExternalContext().getContext();
if (obj instanceof PortletContext){
 PortletContext pc = (PortletContext) obj;
 PortletRequestDispatcher prdispatcher =
 pc.getNamedDispatcher("myServletName");

PortletRequestDispatcher enables you to dispatch control to a resource such as
a servlet or JSP and provides the servlet or JSP a handle to the ServletRequest and
ServletResponse. (In this example a named dispatcher was used, but you can also
get an unnamed dispatcher and use a servlet path instead.)

It is also possible to use a non-standard way of accessing the attributes to gain access
to the HttpServletRequest and HttpServletResponse like this:

FacesContext fc = FacesContext.getCurrentInstance();
ExternalContext ec = fc.getExternalContext();
PortletRequest portletrequest = ec.getRequest();

portletrequest.getAttribute("javax.servlet.request")
portletrequest.getAttribute("javax.servlet.response")

Although this is possible, it is not recommended because it does not take into
consideration the portlet-level scoping of attributes and it is non-standard so it may
not work across all portlet containers the same way. However, there are times that
dispatching control to a servlet or JSP is overkill and this may be more convenient. But
realize that dispatching control to a servlet allows for a more flexible architecture and
keeps specialized code inside a servlet and outside of the portlet environment.

See JSFJavaPortletHelper Class in Appendix: JSFJavaPortletHelper for further
implementation details.

Converting Native JSF Portlets to Standard Java JSF Portlets

Working With JSF-Java Portlets 8-13

8.8.2 PortletPreferences
In the WLP native JSF bridge, preferences are handled through the
PortletBackingContext, which could be referenced from a backing file. With Java
portlets there is a standard API call for getting the PortletPreferences object.

The following code is an example of how to access the PortletPreferences object
from within a JSF managed bean method. It acquires the PortletRequest object
through which the standard API call of getPreferences() and returns the
PortletPreferences object.

FacesContext fc = FacesContext.getCurrentInstance();
PortletRequest pr = (PortletRequest);
fc.getExternalContext().getRequest();
PortletPreferences prefs = pr.getPreferences();

To learn more about PortletPreferences, see Chapter 9, "Developing Portlets."

8.8.3 PortletPresentationContext
The PortletPresentationContext is a WLP class that represents the portal
desktop environment. In the WLP native JSF bridge, the JSP file in use typically gets
the PortletPresentationContext during the render phase. You can continue to
access the PortletPresentationContext through a JSP by dispatching control
from your Java portlet to the JSP as described in Section 8.8.1, "Servlet Request And
Servlet Response." Doing it this way keeps WLP specific code more isolated.

If you have a need to access the PortletPresentationContext from a JSF
managed bean method, you must provide the actual ServletRequest object to the
PortletPresentationContext factory object. This technique is shown in the
JSFJavaPortletHelper Class example.

8.8.4 Using JSPs in JSF Portlets
In a Java portlet, you can use simple JSP pages that do not contain Faces component
tags. These pages behave like a basic Java portlet and are processed without going
through the Faces bridge. Using non-Faces component JSP pages may be preferred in
some cases such as handing file upload, since the JSF 1.1 and JSF 1.2 implementations
did not include a JSF component for this common web use case. See Section 8.14,
"Code Examples for Common Use Cases" for an example.

8.9 Converting Native JSF Portlets to Standard Java JSF Portlets
For the most part, the JSF views that worked in the WLP native JSF bridge should
continue to work in a Java portlet using the JSR-329 standards bridge. However, there
are some differences that you should take into account when converting from the
Native JSF Portlets in the Standard Java JSF Portlets.

This section includes the following:

■ Section 8.9.1, "Backing Files"

■ Section 8.9.2, "NamingContainer"

■ Section 8.9.3, "Events"

■ Section 8.9.4, "Preferences"

■ Section 8.9.5, "Localization"

■ Section 8.9.6, "Error Pages"

Converting Native JSF Portlets to Standard Java JSF Portlets

8-14 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Section 8.9.7, "Portlet Modes"

■ Section 8.9.8, "ServletRequest/ServletResponse"

8.9.1 Backing Files
If you used backing files in your native JSF portlets, then Oracle recommends moving
the source code that was in there to the appropriate Java portlet methods. Although,
there is not a complete one-to-one correspondence with the backing file lifecycle and
the portlet lifecycle, it is possible, with the use of events, to create similar behavior.
This will help reduce complexity of your portlet code.

To do this, you will want to subclass the GenericFacesPortlet class.

Example 8–2 GenericFacesPortlet

public class MyCustomPortlet extends GenericFacesPortlet {
 @Override
 public void processAction(ActionRequest actionRequest, ActionResponse
 actionResponse)
 {
 //code from the backing file's handlePostBackData() method goes here
 super.processAction(actionRequest, actionResponse);
 }
 @Override
 public void init()
 {
 /*code to execute when the portlet is first initialized. Note this has
 different timing than a backing file init() method.
 */
 super.init();
 }
 @Override
public void destroy()
{
/*code to execute when the portlet is destroyed. Note this has different timing
than a backing file destroy() method.
*/
 super.destroy();
 }

Example 8–3 Changing entry in portlet.xml

<portlet>
 <portlet-name>MySpecialPortlet</portlet-name>
 <portlet-class>oracle.samples.wlp.jsf.portlets.MyCustomPortlet
 </portlet-class>
 <init-param>
 <name>javax.portlet.faces.defaultViewId.view</name>
 <value>/demo/display.jsp</value>
 </init-param>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
</portlet>

Please note the following differences in the lifecycle between the backing file methods
and the Java portlet methods:

Converting Native JSF Portlets to Standard Java JSF Portlets

Working With JSF-Java Portlets 8-15

■ Backingfile.handlePostBackData() - this is always called, even if the
portlet is not the target.

■ MyCustomPortlet.processAction() - this is only called if the portlet is the
target.

If code existed in your backing file's handlePostBackData() method that always
needs to be executed, then in a Java portlet paradigm, the portlet should subscribe to
the appropriate event for your situation.

For example, the portal OnRefresh event is sent to all portlets that are about to be
rendered as well as after a processAction has occurred. So, listening for this event
in your subclassed Java portlet would be recommended in order to handle setting
visibility if that setting of visibility was something that was in the
handlePostbackData() method of the backing file. Review the portal events in the
section "Event Types" of Oracle Fusion Middleware Portlet Development Guide for Oracle
WebLogic Portal for more information on the types of events available to you.

8.9.2 NamingContainer
For the JSF-JSP files used in the JSF Native Portlets, remove all references to the WLP's
<jsf-naming:namingContainer>. This is because JSR-329 has its own way of
handling namespacing; using WLP’s namespacing causes errors in a Java based JSF
Portlet.

8.9.3 Events
Convert the WLP proprietary events to the standards-based Java Portlet events model
that is new in JSR-286. See Section 12.4, "Portlet Event Handling" for further details.

See Section 12.3, "Differences Between Portal Events and Java Portlet Events" for more
details on how to access portal events within your Java Portlet.

8.9.4 Preferences
If using preferences, change how the PortletPreference object is obtained by
using the Java Portlet API supplied in the PortletRequest object.

8.9.5 Localization
If using localization, set up the Java Portlet localization for the portlet title.

8.9.6 Error Pages
The native JSF portlet includes an attribute for the error path, which redirects your
portlet when an error occurs. See Section 8.10.1.2, "Portlet Error Page" for how to
handle errors with Java Portlets.

8.9.7 Portlet Modes
In the JSF native portlets, the help/edit mode .jsp files could not contain any JSF
tags, this is no longer the case with Java-JSF portlets. JSF tags may exist in the help or
edit or custom modes.

Using Common WLP Features With JSF Portlets

8-16 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

8.9.8 ServletRequest/ServletResponse
If you are using ServletRequest and ServletResponse in your native JSF
portlets, you may want to move this code to its own servlet so that it can get a handle
to the servletRequest and servletResponse objects. Or, create a helper class to
consolidate the coding effort to get the servletRequest and servletResponse
from the PortletRequest object. See Section 8.8, "Using JSF in Java Portlets" for
further details.

8.10 Using Common WLP Features With JSF Portlets
This section describes how commonly used WebLogic Portal features are used in an
environment with JSF portlets.

This section includes the following:

■ Section 8.10.1, "Portlet Container Features"

■ Section 8.10.2, "Portal Container Features and JSF Portlets"

■ Section 8.10.3, "Ajax Enablement"

8.10.1 Portlet Container Features
This section discusses the following portlet container features:

■ Section 8.10.1.1, "Portlet Modes"

■ Section 8.10.1.2, "Portlet Error Page"

■ Section 8.10.1.3, "Portlet Preferences"

■ Section 8.10.1.4, "Portlet Dependencies"

8.10.1.1 Portlet Modes
For more information about portlet modes, see Section 9.5.2, "Portlet Modes." Java-JSF
Portlets support portlet modes and custom modes just as a Java portlet does. The
portlet.xml file identifies which modes it supports and what the defaultViewId
should be.

8.10.1.2 Portlet Error Page
A common WLP feature for portlets is the ability to set an error path in the event of an
error. This works differently for standard Java portlets. The Java portlet specification
requires that the portlet throws a PortletException.

Since Java portlet is the underlying technology for the Java-JSF portlet, a
PortletException is thrown in the event a portlet cannot process an operation
successfully. Therefore, the error page processing is handled in your subclass of
GenericFacesPortlet by catching the error in a try/catch block and sending the
appropriate error page instead. A more generic approach is to write a portlet filter that
watches all responses and handles PortletException in a consistent manner. See
Section 6.6, "Portlet Filters" for more details.

In the JSF native portlets, the error page could not contain any JSF tags, this is no
longer the case with JSR-286 Faces portlets. JSF tags may exist in the error .jsp file.

8.10.1.3 Portlet Preferences
Portlet preferences provide the primary means of associating application data with
portlets. Portlet preferences are accessible through the WLP portlet context objects. For

Using Common WLP Features With JSF Portlets

Working With JSF-Java Portlets 8-17

detailed information on portlet preferences in JSR-286 portlets, see Section 9.2.2.3,
"Getting and Setting Preferences for Java Portlets Using the Preferences API."

In the context of a JSF portlet, note that after setting preferences values for the portlet,
store() must be called. This call is best accomplished by setting preferences in JSF
managed bean property setters, and then calling store() in an action method.

To illustrate this technique, consider a JSF portlet that lets a user get a stock quote. The
last quote the user obtains is persisted using portlet preferences. The JSF view is
shown in Example 8–4. This view retrieves portlet preference values from a JSF
managed bean. The managed bean, shown in Example 8–5 sets and gets the preference
values from WLP.

Example 8–4 A JSF View

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri='http://bea.com/faces/adapter/tags-naming' prefix='jsf-naming' %>
<f:view>
<h:panelGrid columns="4" width="100%">
<h:form id="stockForm">
 <h:panelGroup>
 <h:outputText value="Stock Quote:"/>
 </h:panelGroup>
 <h:panelGroup>
 <h:inputText id="ticker" value="#{WLPPrefsRequestBean.ticker}"
 required="true"/>
 </h:panelGroup>
 <h:panelGroup>
 <h:inputText id="shares" value="#{WLPPrefsRequestBean.shares}"
 required="true"/>
 </h:panelGroup>
 <h:panelGroup>
 <h:outputText value="#{WLPPrefsRequestBean.currentValue} "/>
 </h:panelGroup>
 <h:panelGroup></h:panelGroup>
 <h:panelGroup></h:panelGroup>
 <h:panelGroup>
 <h:commandButton action="#{WLPPrefsRequestBean.getQuote}"
 id="quote" value="Get Quote"/>
 </h:panelGroup>
 <h:panelGroup>
 <h:commandButton action="#{WLPPrefsRequestBean.resetQuote}"
 id="reset" value="Reset"/>
 </h:panelGroup>
</h:form>
</h:panelGrid>
</f:view>

The managed bean is listed in Example 8–5.

Example 8–5 The JSF Managed Bean

package oracle.samples.wlp.jsf.beans;
import java.io.Serializable;

Note: Example 8–5 uses a utility class described in Section 8.18,
"Appendix: JSFJavaPortletHelper."

Using Common WLP Features With JSF Portlets

8-18 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

import javax.portlet.PortletPreferences;
import oracle.samples.wlp.jsf.JSFJavaPortletHelper;
/**
 * An example that shows how to use WLP preferences with a JSF managed bean.
 * This example makes the following assumptions for the preference writes to work
properly:
 * 1. The bean is request scoped
 * 2. The user is authenticated
 * 3. The portal is a streaming desktop, not a .portal
 */
public class WLPPrefsRequestBean implements Serializable {
 private static final long serialVersionUID = 1L;
 private static final String TICKER = "ticker";
 private static final String TICKER_DEF = "ORCL";
 private static final String SHARES = "shares";
 private static final String SHARES_DEF = "1000";

 /**
 * The request scoped preferences object.
 */
 private PortletPreferences prefs;

 /**
 * Constructor. Initializes the preference object.
 */
 public WLPPrefsRequestBean () {
 prefs = JSFJavaPortletHelper.getPreferencesObject();
 }

 // ACTION METHODS

 /**
 * Updates the preference values set by the user.
 * @return always null, to retain the same JSF view
 */
 public String getQuote() {
 // all the setting work is done in the setters
 // what is left is to store the new prefs into the database
 JSFJavaPortletHelper.storePreferences(prefs);
 return null;
 }

 /**
 * Resets the preferences back to their defaults.
 * @return always null, to retain the same JSF view
 */
 public String resetQuote() {
 JSFJavaPortletHelper.setPreference(prefs, TICKER, TICKER_DEF);
 JSFJavaPortletHelper.setPreference(prefs, SHARES, SHARES_DEF);
 JSFJavaPortletHelper.storePreferences(prefs);
 return null;
 }

 // GETTERS AND SETTERS

 public String getShares() {
 return JSFJavaPortletHelper.getPreference(prefs, SHARES, SHARES_DEF);
 }

 public void setShares(String shares) {

Using Common WLP Features With JSF Portlets

Working With JSF-Java Portlets 8-19

 JSFJavaPortletHelper.setPreference(prefs, SHARES, shares);
 }

 public String getTicker() {
 return JSFJavaPortletHelper.getPreference(prefs, TICKER, TICKER_DEF);
 }

 public void setTicker(String ticker) {
 JSFJavaPortletHelper.setPreference(prefs, TICKER, ticker);
 }

 public int getCurrentValue() {
 // convert the String preference into an integer
 String sharesStr = getShares();
 int shares = 0;
 try { shares = Integer.parseInt(sharesStr); }
 catch (Exception e) {}
 // compute some bogus value
 return shares * 52;
 }
}

8.10.1.4 Portlet Dependencies
JavaScript use is widespread. While it is possible to add Javascript to any portlet, JSF
or other types, there are important considerations to think about when introducing
Javascript inside your portlet.

The primary concern is the mechanism by which a developer can introduce custom
JavaScript into a portlet. While it is certainly possible to inject arbitrary JavaScript
using script tags in the <body> or <view> of the page, this causes several problems:

■ It may cause multiple copies of the same JavaScript file to be downloaded.

■ The files are inserted under the BODY element, not the HEAD, which technically
is invalid HTML.

■ The JavaScript is not namespaced to an instance, causing potential for collisions of
functions and variables between portlets.

WLP provides elegant solutions to these issues. For more information, see
Section 9.5.1, "Portlet Dependencies."

While it is important to read that documentation, here is a quick summary of the
features:

Portlets can identify which Javascript files (.js files) they depend upon. This
dependency is configured by creating a Render Dependencies Configuration file for
the portlet. Inside the Javascript files, the Javascript variables and functions can be
prefixed with a token "wlp_rewrite_" automatically.

An example of using WLP's Portlet Dependencies feature to inject Javascript inside a
portlet in order to perform DOM manipulation can be found in the section
"Section 8.10.3, "Ajax Enablement." Another common reason for injecting Javascript
inside your portlet is for client-side form validation.

8.10.2 Portal Container Features and JSF Portlets
This section discusses the following portal container features:

■ Section 8.10.2.1, "Locale Provider"

Using Common WLP Features With JSF Portlets

8-20 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Section 8.10.2.2, "Skeleton Files"

8.10.2.1 Locale Provider
WLP provides the ability to implement a LocaleProvider to determine the most
appropriate locale for the portal. For more details, see "Section 8.15.5, "Localizing JSF
Portlets" in Section 8.15, "Preparing JSF Portlets for Production."

8.10.2.2 Skeleton Files
Skeleton files control the rendering of each component of the WLP page. They are
implemented as JSPs. The use of JSF components in these JSPs is not supported. The
WLP framework renders the skeletons using standard JSP technology. For more
information about skeletons, see the chapter "User Interface Development" in Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

8.10.3 Ajax Enablement
Many web sites are Ajax enabled to provide a rich user experience. Ajax allows the
browser to emulate the interactivity of traditional desktop applications. There are
three primary patterns for using Ajax in a portal. This section describes each of those
patterns, and explains how to implement the pattern with JSF portlets in WebLogic
Portal.

■ Section 8.10.3.1, "Partial Page Rendering Pattern"

■ Section 8.10.3.2, "Stateless API Request Pattern"

■ Section 8.10.3.3, "Portlet Aware API Request Pattern"

8.10.3.1 Partial Page Rendering Pattern
The Partial Page Rendering (PPR) is the case in which an XmlHttpRequest is issued
to the server, and the server responds with visual markup (XHTML or HTML). This
markup is written directly into the browser page, updating the content that the user
sees. There are several challenges related to this capability:

■ The Ajax request must enter through a proper Portal entry point, so that state such
as portlet preferences and previous view state can be honored.

■ It requires the server to be able to return a subset of the markup for the visible
page.

■ Some portal-like interactions, like interportlet communication, require the server
to respond with more markup than the client expected (e.g. markup for multiple
portlets).

Because of these complex issues, WLP supports official techniques for implementing
PPR with WLP portlets - Asynchronous Desktop and Asynchronous Portlet modes.
These facilities are available to all portlet types, and are transparent to the portlet
developer. Thus, any Java-JSF portlet can utilize these facilities without changes to the
portlet implementation. These modes are configured using simple configuration
settings.

Asynchronous Desktop Mode Asynchronous Desktop mode causes all portlets on
the portal to become asynchronous. The WLP framework rewrites all URLs on the
portal pages such that they invoke Ajax requests (XMLHttpRequests). This facility
supports all WLP framework features, including interportlet communication. This
setting is either on or off for the entire desktop.

Using Common WLP Features With JSF Portlets

Working With JSF-Java Portlets 8-21

For more information, see the section "Asynchronous Desktop Rendering" in Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Asynchronous Portlet Mode - Ajax or IFrame Asynchronous Portlet mode is similar
to Asychronous Desktop mode except that it is configured at the portlet level. This
allows more fine-grained configuration of what is Ajax-enabled by the framework.
This mode can also be configured to use IFrames instead of Ajax. The primary
limitation with this mode is that interportlet communication is not supported.

For more information, see the section "Asynchronous Portlet Content Rendering" in
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

8.10.3.2 Stateless API Request Pattern
Some use cases work better when the server does not serve up presentation markup,
but raw data. In these cases, the client has the necessary code to process that data, and
render the presentation markup appropriately. The first type of this pattern is that of a
stateless API. Such an API is not specific to the portal or even portlet; it is a general
purpose API. In these cases, the XmlHttpRequest must pass all of the necessary
information for the server to process the request. The classic example of this type of
API is a search box autocomplete API. In this use case, after a user types a character in
a search box, and XmlHttpRequest is sent to the server with the contents of the
search box. The server responds with a list of possible matches, and JavaScript on the
client renders them in a drop down list. Such an API need not be aware of any portal
context to fulfill the request. Therefore, any WebLogic Portal portlet (JSF or otherwise)
may use such an API without restriction. The Ajax invocation in this case is fulfilled
outside the context of the portal environment, and thus there are not any unique issues
related to WLP. There are many examples available on the web. Searches for
"javascript autocomplete example" will yield many results.

8.10.3.3 Portlet Aware API Request Pattern
The third pattern is for Ajax requests that target data service APIs that have access to
the portlet context. The service may need access to the portlet instance's preferences,
for example. For these cases, WebLogic Portal's framework must be involved in the
request processing. In support of this use case, WebLogic Portal must provide the
following:

■ Instancing support - The ability to differentiate which portlet instance on the client
issued the request.

■ Context support - The ability to provide portlet instance context, such as its
instance label or preferences.

■ IPC awareness - If the Ajax invocation changes the state of the portlet, other
portlets might also need to be updated.

WebLogic Portal implements a wrapper for the standard XmlHttpRequest to
provide these features. The following example demonstrates its use.

Portlet Aware Data API Example
This example shows how to invoke an API via Ajax that operates within the JSF
portlet's context. Meaning, the API implementation has access to portlet instance
context such as preferences. The API can return the data in any textual format it
chooses, with JSON, XML or simple text being common choices.

The example is shown below. It consists of a simple portlet with just a link. Clicking
on the link on the portlet will cause an Ajax request to target a data API implemented
in the JSF portlet.

Using Common WLP Features With JSF Portlets

8-22 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 8–1 A view of the example portlet

1. Create the JavaScript function that issues the Ajax request using the WLP
XmlHttpRequest wrapper. Allow the caller to pass the URL in to the function. A
more generic DOM manipulation may be necessary based on URL passed in, but
this example is made for ease in understanding. For more information on the use
of wlp_rewrite_ token used, see the section "Portlet Dependencies" in Oracle
Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal.

Example 8–6 The JavaScript Function That Invokes the WLP-Specific XMLHttpRequest

// ajaxPortlet.js
function wlp_rewrite_issueAjax(dataUrl) {
 var xmlhttp = new bea.wlp.disc.io.XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 if ((xmlhttp.readyState == 4) && (xmlhttp.status == 200)) {
 var data = xmlhttp.responseText;
 // MODIFY: do something with the data here
 document.getElementById
 ("wlp_rewrite_xprDiv").innerHTML = data;
 }
 };
 xmlhttp.open('GET', dataUrl, true);
 xmlhttp.send();
}

2. Create the JSF JSP. The URL that is invoked in the Ajax request is retrieved from a
JSF backing bean via the EL expression
#{JavaScriptPortletSessionBean.ajaxDataURL}. The backing bean
implementation is discussed later. The portlet instance label is prepended to the
function due to the use of the wlp_rewrite_ token in the JavaScript file above.

Example 8–7 The JSF JSP That Triggers the Ajax Call Using an 'onclick' Handler

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:namespace var="portletns"/>

<f:view>
 <h:form id="ajaxDemoForm">
 <h:outputLink value="#"
 onclick="#{JavaScriptPortletSessionBean.portletInstanceLabel}_issueAjax
 ('#{JavaScriptPortletSessionBean.ajaxDataURL}'); return false;">

 <h:outputText value="Invoke Portlet Data API via Ajax"/>
 </h:outputLink>
 <f:verbatim>
</br>
 </f:verbatim>
 <div id="<%=portletns%>_xprDiv" style="background-color: #ffcccc;">replace me
 </div>

 </h:form>
</f:view>

Using Common WLP Features With JSF Portlets

Working With JSF-Java Portlets 8-23

3. Implement a JSF managed bean that provides the core logic for implementing the
Ajax solution. The getPortletInstanceLabel() method can remain
unchanged, but the getAjaxDataURL()method need to be modified to suit your
needs. Note the resource Id set here. Remember to add this managed bean to the
faces-config.xml file.

Example 8–8 The JSF managed bean that provides the Ajax data API

package oracle.samples.wlp.jsf.beans.ajaxdemo;
import javax.faces.context.FacesContext;
import javax.portlet.RenderResponse;
import javax.portlet.ResourceURL;
import oracle.samples.wlp.jsf.JSFJavaPortletHelper;

/*
 * Demo faces managed bean
 */
public class JavaScriptPortletSessionBean {
 ResourceURL ajaxUrl = null;
 // PORTLET INSTANCE LABEL
 public String getPortletInstanceLabel() {
 return JSFJavaPortletHelper.getInstanceLabel();
 }
 // AJAX DATA API URL
 public String getAjaxDataURL() {
 if (ajaxUrl == null){
 RenderResponse rresponse = null;
 FacesContext fc = FacesContext.getCurrentInstance();
 Object obj = fc.getExternalContext().getResponse();
 if (obj instanceof RenderResponse){
 rresponse = (RenderResponse) obj;
 ajaxUrl = rresponse.createResourceURL();
 ajaxUrl.setResourceID("ajax-getData");
 }
 }
 if(ajaxUrl != null) {
 return ajaxUrl.toString();
 }
 else {
 //throw error here
 return "error";
 }
 }
}

4. Create a Java class that extends the GenericFacesPortlet class.

Example 8–9 The Java Portlet with serveResource Implemented

package oracle.samples.wlp.jsf.portlets.ajaxdemo;
import java.io.IOException;
import javax.portlet.PortletException;
import javax.portlet.PortletRequestDispatcher;
import javax.portlet.ResourceRequest;
import javax.portlet.ResourceResponse;
import javax.portlet.faces.GenericFacesPortlet;
public class AjaxEnabledPortlet extends GenericFacesPortlet {
 public void serveResource(ResourceRequest request, ResourceResponse response)
 throws PortletException, IOException{
 String resourceid = request.getResourceID();

Using Common WLP Features With JSF Portlets

8-24 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 if ("ajax-getData".equals(resourceid)){
 PortletRequestDispatcher prd = null;
 //demo servlet providing the data service,
 request.setAttribute("dataRqst", "getDemoData");
 prd = getPortletContext().getNamedDispatcher("MyDataService");
 prd.include(request,response);
 }
 else{
 super.serveResource(request, response);
 }
 }
}

5. Create the portlet dependencies file (.dependencies) to link in the
ajaxPortlet.js JavaScript file from above. Note the use of content-uri= in
order for wlp_rewrite_ tokens to be rewritten. For more information on
creating dependencies files, see the section "Portlet Dependencies" in Oracle Fusion
Middleware Portlet Development Guide for Oracle WebLogic Portal.

Example 8–10 Dependencies Sample

<?xml version="1.0" encoding="UTF-8"?>
<p:window
xmlns:p="http://www.bea.com/servers/portal/framework/laf/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0.0
laf-window-1_0_0.xsd ">
 <p:render-dependencies>
 <p:html>
 <p:scripts>
 <p:search-path>
 <p:path-element>.</p:path-element>
 </p:search-path>
 <p:script type="text/javascript" content-uri="ajaxPortlet.js" />
 </p:scripts>
 </p:html>
 </p:render-dependencies>
</p:window>

6. Create the portlet (.portlet file) using the Portlet Wizard (See Section 5.4.2,
"Building JSF Portlets"). Use the JSF JSP file created in Step 2 as the "Faces
Application URL" in the "Portlet Details" dialog box and enter the path to the
dependencies file created in Step 5 in the "Render Dependencies Path" field on
"Assign Supporting Files" dialog box while using the Portlet Wizard. (You can also
attach or change the dependencies file used by the portlet using the IDE after the
portlet has been created.)

Once the .portlet file is created, open the WEB-INF/portlet.xml file to
change the name of the <portlet-class> for the portlet just created, to the class
name created in Step 4. In this example that is AjaxEnabledPortlet. This is
necessary since the GenericFacesPortlet was subclassed in this example to
add custom resource serving.

Was:

<portlet>
.
.
.
 <portlet-class>

Using Common WLP Features With JSF Portlets

Working With JSF-Java Portlets 8-25

 javax.portlet.faces.GenericFacesPortlet
 </portlet-class>
.
.
.
</portlet>

Change to:

<portlet>
.
.
.
 <portlet-class>
 oracle.samples.wlp.jsf.portlets.ajaxdemo.AjaxEnabledPortlet
 </portlet-class>
.
.
.
</portlet>

7. Add the portlet to a portal (.portal file). This portal must have Disc enabled.
You can enable Disc in the portal property sheet in the IDE for .portal files, or in
the Portal Administration Tool for streaming desktops. For information about how
to enable Disc, see http://download.oracle.com/docs/cd/E15919_
01/wlp.1032/e14229/disc.htm.

8. Create the servlet (called MyDataService in Example 8–11) that the portlet
dispatches to in its serveResource()method.

Example 8–11 A Fake DataService Servlet Returning Data for the Request

package oracle.samples.wlp.jsf.portlets.ajaxdemo;
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
public class MyDataService extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 doDataService(request,response);
 }
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 doDataService(request,response);
 }

 private String doDataService(HttpServletRequest givenRequest,
HttpServletResponse givenResponse){
 // AJAX DATA API SERVICE IMPLEMENTATION
 // Could return any text format, like JSON, XML, simple text
 // Data is hardcoded in this example, but could easily be
 // accessing a database and be dynamic.
 try {
 Object attrObj = givenRequest.getAttribute("dataRqst");
 if (attrObj != null) {
 String attr = (String) attrObj;
 if (attr.equals("getDemoData")) {
 PrintWriter pw = givenResponse.getWriter();

Understanding Navigation Within a JSF Portlet

8-26 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 pw.println("The answer is 42.");
 pw.flush();
 pw.close();
 }
 }
 }
 catch (IOException ioe) {
 //MODIFY: log the io exception
 System.out.println("IOException occured." + ioe.getStackTrace());
 }
 //MODIFY: put your error message here
 return "data request could not be processed.";
 }
}

9. Remember to add that servlet mapping to your web.xml file. For security reasons,
it is advisable to make such things only available through a named request
dispatcher.

Example 8–12 Servlet Mapping

<servlet>
<!-- should only be accessible through a named request dispatcher -->
<!-- for ajax demo -->
<servlet-name>MyDataService</servlet-name>
 <servlet-class>
 oracle.samples.wlp.jsf.portlets.ajaxdemo.MyDataService
 </servlet-class>
</servlet>

Now you have the pieces in place to compile and restart your server so you can run
AjaxEnabledPortlet just created. The portlet should display a link "Invoke Portlet
Data API via Ajax" and a <div> that says "replace me".

When the link "Invoke Portlet Data API via Ajax" is clicked, the "replace me" should be
replaced by the data, "The answer is 42", coming back from the "MyDataService"
servlet.

This shows one way to invoke a data service using Ajax within a JSF portlet.

8.11 Understanding Navigation Within a JSF Portlet
This section discusses navigation between views within a JSF portlet:

■ Section 8.11.1, "Navigating Within a Portlet with the JSF Controller"

■ Section 8.11.2, "Support for Redirects"

8.11.1 Navigating Within a Portlet with the JSF Controller
This section discusses the use case in which a user interacts with a portlet, triggering
an update to that portlet.

It is standard to use command buttons and command links tied to actions to control
navigation through the JSF application. Example 8–13 uses a navigation rule and in
Example 8–14 a commandButton uses that rule. With the JSF navigation controller,
three different approaches may be used when defining the value for the action
attribute on the command button or the command link:

Understanding Navigation Within a JSF Portlet

Working With JSF-Java Portlets 8-27

■ The action attribute is not specified on the component. This indicates that the
navigation is a postback to the same view.

■ The action attribute is a hard-coded name of a navigation path to follow. This
name is mapped in the controller configuration in the faces-config.xml file
linked to an actual view in Example 8–13.

■ The action attribute contains Expression Language (EL) that invokes a backing
bean method to evaluate a navigation path or null to indicate postback.

Each of these approaches is valid when a JSF application is operating as a JSF portlet.
The JSF portlet bridge ensures the URLs are written properly to maintain this behavior
correctly within a portal.

Example 8–13 Navigation Configuration in faces-config.xml

<navigation-rule>
 <from-view-id>/portlets/sample/page2.jsp</from-view-id>
 <navigation-case>
 <from-outcome>gotoPage1</from-outcome>
 <to-view-id>/portlets/sample/page1.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

Example 8–14 Command Button That Uses the Navigation Rule

<h:commandButton action="gotoPage1" id="gotoPage1Button"
 value="Goto Page 1">
</h:commandButton>

8.11.2 Support for Redirects
The JSF navigation controller supports HTTP redirect as an annotation on a navigation
case. The JSF controller issues an HTTP redirect to the client for the target page of the
navigation case if it is configured to do so. Example 8–15 illustrates such a redirect
navigation case. In Example 8–15, note the use of the explicit <redirect/> element
to indicate a redirect. The navigation case does not work properly when the redirect
configuration is used within a JSF portlet in WLP.

Example 8–15 Redirect in a Navigation Case

<navigation-rule>
 <from-view-id>/portlets/redirect/page2.jsp</from-view-id>
 <navigation-case>
 <from-outcome>gotoPage1</from-outcome>
 <to-view-id>/portlets/redirect/page1.jsp</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

Depending on the context in which it is being called, the above redirect navigation
case will either be ignored by the portal, or the rule will execute and send the user to
the target page via an entire web page redirect, thus taking the user out of the portal
context entirely. This behavior occurs because the redirect URL is not rewritten to
remain within the portal environment. Therefore, you should avoid specifying
redirect/ in the JSF navigation rules since it tries to redirect the entire web page
and not just the portlet itself.

Interportlet Communication with JSF Portlets

8-28 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Another way to do a redirect to the same page is to use the Java portlet setEvent to
redirect from a managed bean. For instance, after a user has successfully
authenticated, the portlet should be redirected so the portal page is re-rendered with
the authentication information. This can be done like this:

FacesContext fc = FacesContext.getCurrentInstance();
obj = fc.getExternalContext().getResponse();
ActionResponse ar = (ActionResponse) obj;
 ar.setEvent(new QName("urn:com:oracle:wlp:netuix:event:portal",
 "framework.redirectBeforeRender"),null);

This triggers a portal event to inform the container that it should refresh its
components before rendering. In the authentication use case, this provides for the
correct user experience by re-rendering the portal components to display any
personalization effects for the authenticated user.

8.12 Interportlet Communication with JSF Portlets
The example described in this section assumes there are two JSF Java portlets set up in
your portal. The example will explain how Interportlet Communication (IPC) can be
set up between them, allowing one portlet (the sending portlet) to notify another
portlet (the receiving portlet) of a user interaction. This is just a simple overview of
one possible use case for using IPC in JSF -Java portlets; it is not a complete
step-by-step example.

In this example, a user clicks a link in the sending portlet and as a result, the receiving
portlet displays the URL tied to that link. So this example is about one portlet
triggering a navigation event in another portlet. It may be helpful to brush up on the
details of Interportlet Communication (IPC) with Java portlets, see Chapter 12,
"Configuring Local Interportlet Communication." Note that events described in this
section are Java Portlet Events and not the native WLP events.

In order to have a Java event handled by the Java Portlet and not automatically sent
through to the JSR-329 bridge as a Faces event, the following <context-param>
must be added to the web.xml file. This is documented in the JSR-329 spec, but noted
here as well. In this snippet of XML as shown in Example 8–16, the
javax.portlet.faces.autoDispatchEvents application parameter is set to
false. This is a web application level setting, not a portlet-level setting.

Example 8–16 autoDispatchEvents Set to False

<!-- tells the bridge to let the jsr286 events process -->
<context-param>
 <param-name>javax.portlet.faces.autoDispatchEvents</param-name>
 <param-value>false</param-value>
</context-param>

This setting allows for Java portlets to have their annotated events called. Without it,
all events are assumed to be JSF events and the portlet container is bypassed.

Receiving Portlet Setup
The Java portlet code for the portlet receiving the Java event is shown in
Example 8–17. In this example, a subclass called ExampleIPCPortlet extends
GenericFacesPortlet so that code can be added to handle the event and do
customized processing in the doView() method. For more information about these
methods, see Chapter 6, "Building Java Portlets."

Interportlet Communication with JSF Portlets

Working With JSF-Java Portlets 8-29

Example 8–17 Java Portlet Example

public class ExampleIPCPortlet extends GenericFacesPortlet {
 private static String CURRENTVIEWID = "currentViewId";
 @Override
 protected void doView(RenderRequest request, RenderResponse response)
 throws PortletException, java.io.IOException
 {
 String view = (String) request.getParameter(CURRENTVIEWID);
 if (view != null) {
 request.setAttribute("javax.portlet.faces.viewId", view);
 }
 super.doView(request, response);
 }
 @ProcessEvent(qname="{http://oracle.com/sampleEvents}display.change")
 public void processViewChange(EventRequest eRequest, EventResponse eResponse)
 throws PortletException, IOException
 {
 Event event = eRequest.getEvent();
 String eventValue = (String) event.getValue();
 // set the new view id
 eResponse.setRenderParameter(CURRENTVIEWID, eventValue);
 }
}

The portlet.xml (Example 8–18) file contains the definition of the event to be
dispatched to the receiving portlet. The event is defined like this:

<event-definition>
 <qname xmlns:x="http://oracle.com/sampleEvents">x:display.change</qname>
 <value-type>java.lang.String</value-type>
</event-definition>

The portlet must be set up to listen for this event. The portlet.xml file snippet,
shown in Example 8–18, contains an example of the receiving portlet definition. The
<supported-processing-event> indicates the events to which the receiving
portlet listens. Also note <portlet-class> for the receiving portlet is not
GenericFacesPortlet, but the subclass name
oracle.samples.wlp.jsf.portlets.ExampleIPCPortlet instead. The
subclassing of GenericFacesPortlet was required to create a customized
doView()method and the processViewChange()method shown above in the
Example 8–17, "Java Portlet Example".

Example 8–18 portlet.xml

<portlet>
 <portlet-name>display</portlet-name>
 <display-name>display</display-name>
 <portlet-class>oracle.samples.wlp.jsf.portlets.ExampleIPCPortlet
 </portlet-class>
 <init-param>
 <name>javax.portlet.faces.defaultViewId.view</name>
 <value>/demo/display.jsp</value>
 </init-param>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <portlet-info>
 <title>Display</title>
 <short-title>Display</short-title>

Interportlet Communication with JSF Portlets

8-30 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 </portlet-info>
 <supported-processing-event>
 <qname xmlns:x="http://oracle.com/sampleEvents">x:display.change</qname>
 </supported-processing-event>
</portlet>

When the link in the sending portlet is clicked, the display.change is fired and the
receiving portlet (ExampleIPCPortlet) is set up to listen for that event. As a result,
the receiving Java portlet sets a render parameter when processing the event. This
render parameter is accessed when the doView() method is called, thus changing the
receiving portlet's view when the portlet container completes the render request for
the portlet.

Sending Portlet Setup
To create the sending portlet, which sends the event to the receiving portlet, a regular
GenericFacesPortlet with a regular JSF-JSP file that uses a JSF managed bean to create a
URL can be used. The .jsp file should contain a link that looks something like
Example 8–19. In addition, the managed bean for this JSF view will contain the myURL
method like shown in Example 8–20. This method sends an event with the URL it
wants the portlet receiving the event to change its view to. (Hardcoding URLs like this
example is not recommended in a production environment, but is here for
demonstration purposes only.)

The Example 8–18 shows the XML necessary for the portlet to identify that it will send
this Java portlet event. Note the <supported-publishing-event> added to its
portlet definition.

<supported-publishing-event>
 <qname
 xmlns:x="http://oracle.com/sampleEvents"> x:display.change
 </qname>
</supported-publishing-event>

Example 8–19 .jsp File to Call a Bean

… //This is an example of a commandLink using a faces bean to create the action
url //
 <t:commandLink action="#{ExampleBean.myURL}">
 <h:outputText value="my IPC example" />
 </t:commandLink>

Example 8–20 Faces Bean Method for "ExampleBean" That Sends the Event

public String myURL() {
 sendEvent("/demo/examples/myNext.jsp");
 return null;
}
public void sendEvent(String viewId){
 FacesContext fc = FacesContext.getCurrentInstance();
 Object obj = fc.getExternalContext().getResponse();
 if (obj instanceof ActionResponse){
 ActionResponse ar = (ActionResponse) obj;
 ar.setEvent
 (new QName("http://oracle.com/sampleEvents",
 "display.change"),
 viewId);
 }

Namespacing

Working With JSF-Java Portlets 8-31

}

To summarize the flow of events, when a user clicks the link in the sending portlet, the
sending portlet uses the URL created at render time from myURL() in the bean code,
which in turn calls sendEvent(viewId) with the appropriate URL. The sendEvent
method then creates a Java portlet event which the receiving portlet is configured to
listen, as shown above in the portlet.xml previously described. Upon receiving the
event, the receiving portlet should display the "/demo/examples/myNext.jsp".

Now you have a portal example that uses JSF for its components and Java portlet
eventing to trigger Interportlet Communication that invokes a navigational change of
the listening portlet.

8.13 Namespacing
This section discusses namespacing issues that must be addressed when building JSF
portlets. Namespacing often comes into play when multiple instances of the same
portlet exist within the portal. When there is more than one instance of a portlet, or
two different portlets are using similar Javascript, then each instance needs to label its
component uniquely. This is commonly done with putting a unique instance Id in
front of the portlet's components in order to uniquely identify them through code. The
following sections describe ways to do this:

■ Section 8.13.1, "Client ID Namespacing with the View Components"

■ Section 8.13.2, "Client ID Namespacing with the WLP NamingContainer"

■ Section 8.13.3, "Javascript Namespacing with Portlet Tag Library"

8.13.1 Client ID Namespacing with the View Components
When a JSF portlet is rendered onto a portal page, it can coexist with other JSF portlets
on that same page. In JSF, like other web frameworks, it is critical that the Id attribute
on each element of the X/HTML browser page is unique. JSF has the concept of a
naming container, which provides an Id namespace to all components it contains. The
most common naming container is the View component (the f:view tag).

Because all JSF portlets contain an f:view tag as the root component (otherwise, it's
not really a JSF portlet but just a Java Portlet at that point), WebLogic Portal and the
JSR-329 bridge, for most cases, can correctly introduce a namespace for all component
Ids in each portlet.

8.13.2 Client ID Namespacing with the WLP NamingContainer
In the native JSF bridge, Oracle recommended the use of the NamingContainer
component to strengthen the scoping mechanism within the portal. For JSF with Java
Portlet technology, this practice is no longer necessary and causes problems if used. If
migrating from the WLP native bridge to the JSR-329 bridge, remove any
NamingContainer components from the JSF views.

8.13.3 Javascript Namespacing with Portlet Tag Library
There are scenarios when you may find it helpful to use the standard portlet tag
library and the namespace tag, as shown in Example 8–21. The Java portlet
specification mandates that this tag library be available in the portlet container to give
.jsp files an access to the portlet-specific elements. In this example, the <div id …>
is namespaced, so that each instance of this portlet contains a unique <div id …>,

Code Examples for Common Use Cases

8-32 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

and allows code to access it accordingly by getting the instance label of the portlet.
This is not unique to JSF portlets; a feature of the Java Portlet standard.

Example 8–21 Javascript Namespacing Example

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet" %>

<portlet:namespace var="portletns"/>
.
.
.
<div id="<%=portletns%>_xprDiv" style="background-color: #ffcccc;">replace me
</div>
.
.
.

The WLP API also allows access to the portlet instance label for namespacing purposes
via PortletPresentationContext and the PortletBackingContext. The method in
JSFJavaPortletHelper Class called getInstanceLabel implements an example of
one way to do this, and can be called from within a managed bean. The Ajax
Enablement example shows how this can be used to change a <div> through an Ajax
call.

8.14 Code Examples for Common Use Cases
These code examples are illustrated here for learning purposes. These examples
describe one of the many ways to implement common use cases. Your business
application may require an expansion to these concepts.

■ Section 8.14.1, "Uploading Images"

■ Section 8.14.2, "Login/Logout Example"

■ Section 8.14.3, "Login Portlet Implementation"

■ Section 8.14.4, "Putting Login Portlet Into A Portal environment"

8.14.1 Uploading Images
This section discusses uploading a file and serving the uploaded file (or any resource)
to the browser. JSF 1.1 and JSF 1.2 did not come with an equivalent JSF component tag
for the HTML file upload tag of:

<input type="file" size="50" name="file" accept="image/png,image/jpeg,image/gif"/>

However, the third party tools such as Tomahawk provide such tags. In a
JSR-286-based portlet, you can use multiple ways to upload files. One way is to create
a pure JSR-286 solution, without using JSF because JSF does not provide the
appropriate tag.

This section includes the following:

■ Section 8.14.1.1, "File Upload with HTML tags"

■ Section 8.14.1.2, "File Upload with Tomahawk tags"

Code Examples for Common Use Cases

Working With JSF-Java Portlets 8-33

8.14.1.1 File Upload with HTML tags
If you are not interested in using a third party library, but want to do a file upload,
then you need to create a normal HTML JSP and parse the form manually.

1. Create the JSP file for uploading files. This should contain plain HTML elements
since JSF 1.2 does not provide a similar component.

Example 8–22 JSP File For Uploading Files Using Plain HTML Elements

%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
<%@ page import="javax.portlet.*"%>
<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet"%>
<portlet:defineObjects />
Example of multiple file upload.
<form id="uploadForm" method="post" action="<portlet:actionURL/>"
enctype="multipart/form-data">
<table border="0">
<tr>
 <td/>
</tr>
<tr>
 <td>Select your picture:</td>
 <td><input type="file" size="50" name="file"
accept="image/png,image/jpeg,image/gif" /></td>
</tr>
<tr>
 <td/>
</tr>
<tr>
 <td>Select your picture:</td>
 <td><input type="file" size="50" name="file"
accept="image/png,image/jpeg,image/gif" /></td>
</tr>
<tr>
 <td><input type="submit" value="Upload" /></td>
</tr>
</table>
</form>
<%
 String message = renderRequest.getParameter("renderMessage");
 if (message != null) {
 %>
<pre>
<%= message %>
</pre>
<%
 }
%>

2. Create the Java class to parse your form. Example 8–23 uses the javax.mail.*
classes to process the content from the multipart form. It uses a class called
FormDataHelper. This class takes an ActionRequest from the
processAction JSR-286 method.

Example 8–23 FormDataHelper

package oracle.samples.wlp;
import java.io.IOException;
import java.io.InputStream;

Code Examples for Common Use Cases

8-34 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

import java.io.OutputStream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import javax.activation.DataSource;
import javax.mail.BodyPart;
import javax.mail.MessagingException;
import javax.mail.internet.MimeBodyPart;
import javax.mail.internet.MimeMultipart;
import javax.portlet.ActionRequest;
import javax.portlet.PortletException;

/**
 * This uses the javax.mail classes to take the content from the multipart form.
 * This is called from the 'processAction' method of a JSR286 portlet.
 * To construct this class, send in the actionRequest from the processAction
 method.
 *
 */
public class FormDataHelper {
 // The MIME prefix for all multipart media types
 private static final String MULTIPART_PREFIX = "multipart/";
 // The MIME content type for the file upload form data
 private static final String MULTIPART_FORM_DATA = "multipart/form-data";
 // The MIME content type for plain text data
 private static final String PLAIN_TEXT = "text/plain";
 private ActionRequest actionRequest;
 //these are initialized lazily
 private Map<String, List<String>> formParams;
 private Map<String, List<MimeBodyPart>> formBodyParts;
 private boolean mIsInitialized=false;
 private boolean mHasMultipart=false;
 /**
 * Constructor
 */
 public FormDataHelper(ActionRequest request)
 {
 actionRequest = request;
 }
 /**
 * Get the parameter value for the given name
 * @param name
 * @return
 * @throws PortletException
 */
 public String getParameter(String name)
 throws PortletException
 {
 String value = actionRequest.getParameter(name);
 if (value != null){
 return value;
 }
// If we don't find a value, make sure we have parsed in the parameters and body
parts
 initParameters();
 if (!mHasMultipart)
 {
 return null;

Code Examples for Common Use Cases

Working With JSF-Java Portlets 8-35

 }
 List<String> paramList = (List<String>)formParams.get(name);
 if (paramList != null)
 {
 return (String)paramList.get(0);
 }
 else
 {
 return null;
 }
}
/**
 * Get all the parameter values for the given name
 * @param name
 * @return
 * @throws PortletException
 */
public String[] getParameterValues(String name)
throws PortletException
{
 String[] values = actionRequest.getParameterValues(name);
 if (!mHasMultipart)
 {
 return values;
 }
 // Make sure we have parsed in the parameters and body parts
 initParameters();
 List<String> valueList = formParams.get(name);
 if (valueList == null)
 {
 return values;
 }
 else
 {
 int size = valueList.size();
 if (values != null)
 {
 List<String> newValueList = new ArrayList<String>(values.length +
 size);
 newValueList.addAll(Arrays.asList(values));
 newValueList.addAll(valueList);
 valueList = newValueList;
 }
 values = new String[size];
 valueList.toArray(values);
 return values;
 }
}
/**
 * Get mime body part
 * @param name
 * @return
 * @throws PortletException
 */
public MimeBodyPart getMimeBodyPart(String name)
throws PortletException
{
 // Make sure we have parsed in the parameters and body parts
 initParameters();
 if (!mHasMultipart)

Code Examples for Common Use Cases

8-36 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 {
 return null;
 }
 List<MimeBodyPart> parts = (List<MimeBodyPart>)formBodyParts.get(name);
 return parts == null ? null : (MimeBodyPart)parts.get(0);
}
/**
 * Get all the mime parts for the given name
 * @param name
 * @return
 * @throws PortletException
 */
public MimeBodyPart[] getMimeBodyParts(String name)
throws PortletException
{
// Make sure we have parsed in the parameters and body parts
 initParameters();
 if (!mHasMultipart)
 {
 return null;
 }
 List<MimeBodyPart> parts = formBodyParts.get(name);
 if (parts == null)
 {
 return null;
 }
 MimeBodyPart[] mimeBodyParts = new MimeBodyPart[parts.size()];
parts.toArray(mimeBodyParts);
return mimeBodyParts;
}
/*
 * Lazy initialization of the parameter map and body parts.
 * This is what processes the form and figures out what is there.
 */
private void initParameters() throws PortletException
{
 if (mIsInitialized)
{
 return;
}
// Strip off any extra attributes and whitespace from the content type,
// so we can compare it
 String contentType = actionRequest.getContentType();
 if (contentType == null)
{
 mIsInitialized = true;
 return;
}
 int sepIndex = contentType.indexOf(';');
 if (sepIndex != -1)
{
 contentType = contentType.substring(0, sepIndex).trim();
}
 if (contentType.equalsIgnoreCase(MULTIPART_FORM_DATA))
 {
 formParams = new HashMap<String, List<String>>(20);
 formBodyParts = new HashMap<String, List<MimeBodyPart>>(20);
 DataSource datasource = new DataSource()
 {
 public InputStream getInputStream() throws IOException

Code Examples for Common Use Cases

Working With JSF-Java Portlets 8-37

 {
 return actionRequest.getPortletInputStream();
 }
 public OutputStream getOutputStream() throws IOException
 {
 throw new IOException("OutputStream not available");
 }
 public String getContentType()
 {
 return actionRequest.getContentType();
 }
 public String getName()
 {
 return getClass().getName();
 }
 };
 try
 {
 MimeMultipart multipartMessage = new MimeMultipart(datasource);
 parseMultiPart(multipartMessage, null);
 }
 catch (MessagingException me)
 {
 throw new PortletException(me);
 }
 catch (IOException ioe)
 {
 throw new PortletException(ioe);
 }
 mHasMultipart = true;
 }
 mIsInitialized = true;
}
private void parseMultiPart(MimeMultipart multipartMessage, String
parentFieldName)
throws MessagingException, IOException
{
 int partCount = multipartMessage.getCount();
 // Go through each body part, decided on its 'type' and add to the
 // parameter map and file list as appropriate
 BodyPart part;
 MimeBodyPart mimePart;
 Object content;
 String[] disps;
 String disp, lcDisp;
 List<MimeBodyPart> partValues;
 List<String> values;
 for (int i = 0; i < partCount; i++)
{
 part = multipartMessage.getBodyPart(i);
 if (!(part instanceof MimeBodyPart))
{
 continue;
}
 mimePart = (MimeBodyPart)part;
 // The Content Disposition header tells us how to treat the body part
 disps = mimePart.getHeader("Content-Disposition");
 if (disps == null || disps.length == 0)
{
 continue;

Code Examples for Common Use Cases

8-38 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

}
 disp = disps[0];
 lcDisp = disp.toLowerCase();
 // Get the field name out of the disposition header, if present
 int nameStart, nameEnd;
 if ((nameStart = lcDisp.indexOf("name=\"")) != -1 &&
 (nameEnd = lcDisp.indexOf("\"", nameStart + 6)) != -1)
{
 parentFieldName = disp.substring(nameStart + 6, nameEnd);
}
 // If we don't have a field name, there's not much we can do with this body part
 if (parentFieldName == null)
{
 continue;
}
 // If this is a multipart body part, we recurse on its contents using
 // the current field name
 if (mimePart.getContentType().toLowerCase().startsWith(MULTIPART_PREFIX))
{
 content = mimePart.getContent();
 if (content instanceof MimeMultipart)
 {
 parseMultiPart((MimeMultipart)content, parentFieldName);
 }
}
// Decide whether this is a parameter or a file, according to whether
// the filename attribute is present in the disposition header
else if ((nameStart = lcDisp.indexOf("filename=\"")) != -1 &&
(nameEnd = lcDisp.indexOf("\"", nameStart + 10)) != -1)
{
 partValues = formBodyParts.get(parentFieldName);
 if (partValues == null)
 {
 partValues = new ArrayList<MimeBodyPart>();
 formBodyParts.put(parentFieldName, partValues);
}
partValues.add(mimePart);
//get the Filename from header -- so we can clip the path if it exists.
 String
 filename=getFileNameFromHeader(lcDisp.substring(nameStart+10,lcDisp.length()-1));
 if (!(filename).equals(mimePart.getFileName())){
 mimePart.setFileName(filename);
 }
}
 else if (mimePart.getContentType().toLowerCase().startsWith(PLAIN_TEXT))
{
 content = mimePart.getContent();
 if (content instanceof String)
 {
 values = formParams.get(parentFieldName);
 if (values == null)
 {
 values = new ArrayList<String>();
 formParams.put(parentFieldName, values);
 }
 values.add((String)content);
 }
 }
 } // end for each body part
}

Code Examples for Common Use Cases

Working With JSF-Java Portlets 8-39

private String getFileNameFromHeader(String filename){
// The filename may contain a full path. Cut to just the filename.
 int slash =
 Math.max(filename.lastIndexOf('/'), filename.lastIndexOf('\\'));
 if (slash > -1) {
 filename = filename.substring(slash + 1); // past last slash
 }
 return filename;
 }
}

3. Create the Java portlet class that extends GenericJavaPortlet, as shown in
Example 8–24. Use this class when generating your Java Portlet (.portlet file)
through the IDE. Notice that the processAction method instantiates the
FormDataHelper class and processes the file data out of the mime parts.

Example 8–24 JavaFileUploadPortlet

package oracle.samples.wlp.portlets;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.mail.MessagingException;
import javax.mail.internet.MimeBodyPart;
import javax.portlet.ActionRequest;
import javax.portlet.ActionResponse;
import javax.portlet.GenericPortlet;
import javax.portlet.PortletException;
import javax.portlet.PortletRequestDispatcher;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;
import oracle.samples.wlp.FormDataHelper;
/**
 * A JSR286 portlet that uploads content from a multipart form.
 * This was intended to use with JSF for the form,
 * but JSF does not have a component equivalent to the <input type="file" />,
 * so instead it uses a .jsp file for the html for this portlet.
 */
public class JavaFileUploadPortlet extends GenericPortlet {
private static final String DISPATCH_JSP = "/demo/fileupload/fileupload.jsp";
/**
 * Dispatches to a jsp to display the form.
 */
public void doView(RenderRequest renderRequest, RenderResponse renderResponse)
 throws PortletException, IOException
 {
 PortletRequestDispatcher rd = getPortletContext().getRequestDispatcher(DISPATCH_
JSP);
 rd.include(renderRequest, renderResponse);
}
/**
 * Takes the action request which creates a FormDataHelper so that the multipart
 * form data can be accessed.
 */
@Override
public void processAction(ActionRequest actionRequest, ActionResponse
actionResponse)

Code Examples for Common Use Cases

8-40 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

{
 FormDataHelper formdata = new FormDataHelper(actionRequest);
 try {
 MimeBodyPart[] mimeparts = formdata.getMimeBodyParts("file");
 int uploaded =0;
 if (mimeparts == null)
 {
 actionResponse.setRenderParameter("renderMessage", "Didn't find files to
upload.");
 return;
 }
 for (MimeBodyPart filedata: mimeparts){
 // Just to demonstrate what information you can get from the uploaded
file.
 System.out.println("File type: " + filedata.getContentType());
 System.out.println("File name: " + filedata.getFileName());
 System.out.println("File size: " + filedata.getSize() + " bytes");

 /************ your business logic here ************
 * This is writing the image to the "uploadedcontent"
 * directory under WebContent.
 * This directory needs read/write permissions by the 'user
 * running the webserver'.
 */
 InputStream inputstream = filedata.getInputStream();
 if (filedata.getSize() > 0){
 byte [] imageBytes = new byte[inputstream.available()];
 inputstream.read(imageBytes);
 String realpath = getPortletContext().getRealPath("/uploadedcontent/");
 File file =new File(realpath + "/" + filedata.getFileName());
 FileOutputStream fop=new FileOutputStream(file);
 fop.write(imageBytes);
 fop.flush();
 fop.close();
 uploaded++;
 }
 }
 actionResponse.setRenderParameter("renderMessage", "Uploaded " + uploaded
+ " files.");
 }
 catch (PortletException e) {
 // Show error message.
 FacesContext.getCurrentInstance().addMessage("uploadForm", new
FacesMessage(
 FacesMessage.SEVERITY_ERROR, "File upload failed with
PortletException error.", null));
e.printStackTrace();
 }
catch (MessagingException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
catch (IOException e) {
FacesContext.getCurrentInstance().addMessage("uploadForm", new FacesMessage(
 FacesMessage.SEVERITY_ERROR, "File upload failed with IOException
error.", null));
e.printStackTrace();
}

 }

Code Examples for Common Use Cases

Working With JSF-Java Portlets 8-41

}

From here, you could expand your HTML to create a separate portlet to display the
content you just uploaded. This is just an example of how to upload content. Typically,
the location of the uploaded content is configurable.

8.14.1.2 File Upload with Tomahawk tags
To avoid writing your own parsing mechanism, another option is to install third party
libraries like Tomahawk. Tomahawk provides the component called
inputFileUpload that provides the capability to upload content. Although
WebLogic Portal does not explicitly support it, you can use this component by adding
third party libraries. See Third-Party Libraries for more details on how to configure
this library.

8.14.2 Login/Logout Example
Another common example that nearly every web application needs is the capability to
authenticate/unauthenticate the user. This section provides some code examples to
help you develop login/logout functionality within Java-JSF portlets. There are
multiple ways to develop this functionality, this section focuses on some of them.

This section includes the following:

■ Section 8.14.2.1, "Login Portlet Design"

■ Section 8.14.2.2, "Handling Redirects with JSR-286/JSR-329"

■ Section 8.14.2.3, "Invalidating the Session with the JSR-329 Bridge"

8.14.2.1 Login Portlet Design
The login portlet discussed in this section is implemented in JSF. It uses a single view
that toggles the visibility of the login/logout controls based on the authenticated state
of the user.

This login portlet offers the following features:

■ Implemented as a JSF portlet

■ A single view with two forms - one for login and one for logout

■ Uses a JSF managed bean and dispatches to a servlet to perform the authentication
logic

■ Employs the JSF localization facility

Figure 8–2 JSF Login

Code Examples for Common Use Cases

8-42 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 8–3 Logout

This is different from a typical web application since in a web application the
login/logout page is normally the first screen the user reaches and thus all future
pages have an authenticated session. In the portal paradigm, the user may access
portlets within a portal without logging in and seeing a non-customized view of the
application. Then, once he/she does login, via a login portlet like shown here, then all
other portlets within the portal must re-render with this new authenticated session
and show the user's customized view. The opposite is true once a user logs out. This
need to re-render all the components in the portal tree adds a little more complexity to
managing login/logout functionality in a portal vs a regular web application.

The two biggest considerations for the developer are triggering redirects to manage
the re-rendering of the component tree, and authenticating/unauthenticating the user
session within the middle of a JSF lifecycle.

8.14.2.2 Handling Redirects with JSR-286/JSR-329
By the time a user is authenticated, the portal framework has also started processing
the rendered page. It is too late for the framework to re-compute the page. Therefore,
the solution is to force a redirect after the user logs in or logs out via the login portlet.
In the native bridge architecture, this is accomplished via a backing file. But with
JSR-286/JSR-329, this can be simplified because JSR-329 allows for backing bean action
methods to trigger events to do redirects.

8.14.2.3 Invalidating the Session with the JSR-329 Bridge
The WLP JSF portlet native bridge’s limitation is that a user's HttpSession cannot be
invalidated when the JSF lifecycles are processing. This is no longer an issue with the
JSR-329 bridge.

8.14.3 Login Portlet Implementation
This section includes the following:

■ Section 8.14.3.1, "JSF Login View"

■ Section 8.14.3.2, "JSF Managed Backing Bean"

■ Section 8.14.3.3, "Resource Bundle"

■ Section 8.14.3.4, "Portlet Definition File"

■ Section 8.14.3.5, "Redirect"

8.14.3.1 JSF Login View
The login.jsp page contains two forms - one for login and one with a button to
logout. Only one form is visible at a time, and the visibility is controlled by a flag that
indicates whether the user is authenticated.

Example 8–25 The login.jsp for the JSF 1.2 Login Portlet

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@ taglib prefix="h" uri="http://java.sun.com/jsf/html"%>

Code Examples for Common Use Cases

Working With JSF-Java Portlets 8-43

<f:view>
 <f:loadBundle basename="oracle.samples.wlp.jsf.portlets.login.loginportlet"
var="i18n" />
 <h:form id="loginBeanForm"
rendered="#{!JSFLoginPortletRequestBean.authenticated}">
 <h:panelGrid id="outerLayout" columns="1" width="100%"
style="background-color: azure;">
 <h:panelGroup id="titleLine">
 <h:outputText value="#{i18n.login_intro}:" style="color: cornflowerblue;
font-size: medium"/>
 </h:panelGroup>
 <h:messages layout="table" showDetail="false" showSummary="true"
style="color: red;" />
 <h:panelGroup id="formFields">
 <h:panelGrid columns="2" width="60%"
 style="background-color: azure">
 <h:panelGroup style="text-align: right">
 <h:outputText value="#{i18n.login_username}:"/>
 </h:panelGroup>
 <h:panelGroup style="text-align: left">
 <h:inputText id="username" required="true"
 value="#{JSFLoginPortletRequestBean.username}" />
 </h:panelGroup>
 <h:panelGroup style="text-align: right">
 <h:outputText value="#{i18n.login_password}:"/>
 </h:panelGroup>
 <h:panelGroup style="text-align: left">
 <h:inputSecret id="password" required="true"
 value="#{JSFLoginPortletRequestBean.password}" />
 </h:panelGroup>
 <h:panelGroup/>
 <h:panelGroup style="text-align: left">
 <h:commandButton id="loginButton" immediate="false"
action="#{JSFLoginPortletRequestBean.authenticate_generic}" value="#{i18n.login_
button}"/>
 </h:panelGroup>
 </h:panelGrid>
 </h:panelGroup>
 </h:panelGrid>
</h:form>
 <h:form id="logoutForm" rendered="#{JSFLoginPortletRequestBean.authenticated}">
 <h:panelGrid id="outerLayout" columns="1" width="100%" style="background-color:
azure;">
 <h:commandButton action="#{JSFLoginPortletRequestBean.userLogout_generic}"
id="logoutButton" value="#{i18n.logout_button}"/>
 </h:panelGrid>
</h:form>
</f:view>

8.14.3.2 JSF Managed Backing Bean
The login.jsp in Example 8–25 uses a JSF managed bean, which is shown in
Example 8–26. Notice the JSF managed backing bean calls the
JSFJavaPortletHelper class which contains the core logic to log the user in.

Example 8–26 JSF Managed Bean Calls the JSFJavaPortletHelper Class

package oracle.samples.wlp.jsf.portlets.login;
import java.io.Serializable;

Code Examples for Common Use Cases

8-44 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import oracle.samples.wlp.jsf.JSFJavaPortletHelper;
public class JSFLoginPortletRequestBean implements Serializable {
private static final long serialVersionUID = 1L;
private static final String BUNDLE_NAME =
"oracle.samples.wlp.jsf.portlets.login.loginportlet";
private String username;
private String password;
private String action;
// ACTION METHODS
/**
 * Action method for the login CommandButton
 * Uses non-wlp specific way of authentication
 *
 * @return
 */
 public String authenticate_generic() {
 // perform the actual authentication call
 setAction("login");
 boolean success = JSFJavaPortletHelper.authenticate_generic(username,
password);
 if (success) {
 // Wipe out the given username & password, just in case someone
 // is tempted to make this bean Session scoped (should be
 // Request) By keeping this password around in the bean,
 // it is open to temptation for abuse
 password = "invalidated";
 username = "invalidated";
 }
 else {
 //Login Failed
 String errorText = JSFJavaPortletHelper.getBundleMessage(BUNDLE_NAME,
"login_error");
 // Add the message to the context
 FacesContext fc = FacesContext.getCurrentInstance();
 FacesMessage msg = new FacesMessage(
 FacesMessage.SEVERITY_ERROR, errorText, errorText);
 fc.addMessage(null, msg);

 }
 return null;
 }
 /**
 * Action method called during logout for the servlet to do the logout
 */
 public String userLogout_generic() {
 setAction("logout");
 JSFJavaPortletHelper.logout_generic();
 return null;
 }
// GETTERS AND SETTERS

**
* @return true if the user is authenticated
*/
public boolean isAuthenticated() {
 return JSFJavaPortletHelper.isAuthenticated();
}
/**

Code Examples for Common Use Cases

Working With JSF-Java Portlets 8-45

* @return the user name
*/
public String getUsername() {
 return this.username;
}
public String getUsernameForDisplay(){
 return JSFJavaPortletHelper.getUsernameForDisplay("");

}
/**
* @param username the user name to be authenticated
*/
public void setUsername(String username) {
this.username = username;
}
/**
* Retrieves a placeholder for the password. We never
* want to display back the actual password to the user,
* so just return an empty string
* @return an empty String
*/
public String getPassword() {
 return this.password;
}
/**
* @param password the password to be used for authentication
*/
public void setPassword(String password) {
this.password = password;
}
public String getAction() {
 return this.action;
}
public void setAction(String action) {
 this.action = action;
}
}

The managed bean needs to be wired into the application. XML element shown in
Example 8–27 must be added to faces-config.xml.

Example 8–27 Registering the Login Managed Bean in faces-config.xml

<managed-bean>
 <description>Handles authentication for the Login portlet.</description>
 <managed-bean-name>JSFLoginPortletRequestBean</managed-bean-name>
 <managed-bean-class>
 oracle.samples.wlp.jsf.JSFLoginPortletRequestBean
 </managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
</managed-bean>

8.14.3.3 Resource Bundle
A good practice is to create a resource bundle for the portlet. This should be located in
a file that matches the basename of the <f:loadBundle> tag. In this example the
resource bundle is in:
oracle/samples/wlp/jsf/portlets/login/loginportlet.properties in
the Java resources /src folder.

Code Examples for Common Use Cases

8-46 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Example 8–28 Login.jsp

#login.jsp
login_titlle=Login Page
login_imageAlt=Login
login_intro=Please enter your username and password
login_username=Username
login_password=Password
login_button=Login
logout_button=Logout
login_error=The username or password are invalid.
welcome_intro=Welcome

8.14.3.4 Portlet Definition File
Example 8–29 contains the pieces that tie together all the pieces described in this
section. The .portlet file defines the portlet name and that it is a Java portlet.

Example 8–29 The Portlet Definition File for the Login Portlet (JSF 1.2 Java Portlet)

<?xml version="1.0" encoding="UTF-8"?>
<portal:root
 xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"
 xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0
portal-support-1_0_0.xsd">
 <netuix:javaPortlet
 definitionLabel="login_generic" portletName="DemoLoginGeneric"
title="Generic Login"/>
</portal:root>

Example 8–30 portlet.xml File

<portlet>
 <portlet-name>DemoLoginGeneric</portlet-name>
 <display-name>DemoLoginGeneric</display-name>
 <portlet-class>javax.portlet.faces.GenericFacesPortlet</portlet-class>
 <init-param>
 <name>javax.portlet.faces.defaultViewId.view</name>
 <value>/demo/generic/login.jsp</value>
 </init-param>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <portlet-info>
 <title>Login</title>
 <short-title>Login</short-title>
 </portlet-info>
</portlet>

The portlet.xml file in Example 8–30 shows that the DemoLogin portlet from the
.portlet XML file is a GenericFacesPortlet, and contains
defaultViewId.view as an init-param. If you subclassed
GenericFacesPortlet, the subclass name should be in the <portlet-class>
element. The <init-param> element of
javax.portlet.faces.defaultViewId.view points to the login.jsp shown

Code Examples for Common Use Cases

Working With JSF-Java Portlets 8-47

in Example 8–28. When the developer is creating a portlet via the portlet editor in
workshop, and saves the portlet, then the .portlet file gets created as does the entry
in the portlet.xml file. This is how the pieces are tied together.

Let’s review the pieces we have and how they work together. The browser requests to
view this portlet, the portlet container determines that it is a Java portlet, so it looks in
the portlet.xml file for the class name, the class is instantiated and calls the
login.jsp because that is what the defaultViewId is set to. Now the login.jsp
uses the managed bean. This managed bean is invoked when a user submits the form.
The web container recognizes the managed bean since it is configured in the
faces-config.xml file.

Notice that the managed bean uses a class called JSFJavaPortletHelper
(JSFJavaPortletHelper Class). In this code, you will notice that the actual
authentication happens in a servlet named LoginServlet.

In the servlet, there are some important things to note. First, the
HttpServletRequest that the LoginServlet receives from the dispatch is a wrapped
HttpServletRequest. The WLS ServletAuthentication class requires a
non-wrapped request in its method calls. So, the unwrap method in this LoginServlet
example displays how the given wrapped HttpServletRequest can be unwrapped
to get the actual HttpServletRequest the ServletAuthentication methods
require.

Second, after authenticating, an attribute is associated with the request so the managed
bean can use it to determine if the login/logout was successful. This is a design
decision at this point, and you may have other security checks to do before a user can
log in. Moreover, you should namespace this attribute name carefully in real-world
implementations.

Example 8–31 LoginServlet

package oracle.samples.wlp.jsf.portlets.login;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletRequestWrapper;
import javax.servlet.http.HttpServletResponse;
import oracle.samples.wlp.jsf.portlets.login.JSFLoginPortletRequestBean;
import weblogic.servlet.security.ServletAuthentication;
/**
 * Login servlet that authenticates/unathenticates the user.
 *
 */
public class LoginServlet extends HttpServlet {
 public static final String AUTHENTICATED="LoginServlet.authenticated";
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 doLoginLogout(request,response);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 doLoginLogout(request,response);
 }
 /**
 * Login in the user.
 * Instead of using ServletAuthentication, use your company's login logic in

Code Examples for Common Use Cases

8-48 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

this servlet.
 *
 * The request is updated with an attribute of "authenticated" with a boolean
value of
 * true = user is authenticated, false = the user is NOT authenticated;
 *
 * Note: The given request needs to be unwrapped, so that Weblogic Server
gets an unwrapped request in order
 * to do authentication. The given request needs to be kept, so that an
attribute can be added to it and be
 * seen on the JSFLoginPortletRequestBean.
 *
 * @param request
 * @param response
 */
 public void doLoginLogout(HttpServletRequest givenRequest, HttpServletResponse
givenResponse){

 JSFLoginPortletRequestBean loginPortletRequestBean =
(JSFLoginPortletRequestBean)
givenRequest.getAttribute("JSFLoginPortletRequestBean");
 if (loginPortletRequestBean != null) {
 if (loginPortletRequestBean.getAction().equals("login")) {
 //Note: wls specific authentication here. Implement your own
here as necessary.
 HttpServletRequest unwrappedRequest = unwrap(givenRequest);
 int result =
ServletAuthentication.weak(loginPortletRequestBean.getUsername(),
loginPortletRequestBean.getPassword(),unwrappedRequest,givenResponse);
 givenRequest.setAttribute(AUTHENTICATED, result ==
ServletAuthentication.AUTHENTICATED);
 }
 else {
 if (loginPortletRequestBean.getAction().equals("logout")) {
 givenRequest.getSession().invalidate();
 givenRequest.setAttribute(AUTHENTICATED, false);
 }
 }
 }
 }
 /**
 * Need to unwrap the request, so we can send the real request to the
ServletAuthentication
 * @param request
 * @return HttpServletRequest
 */
 private HttpServletRequest unwrap(HttpServletRequest request){
 while (request instanceof HttpServletRequestWrapper) {
 HttpServletRequestWrapper wrequest = (HttpServletRequestWrapper)
request;
 request =(HttpServletRequest) wrequest.getRequest();
 }
 return request;
 }
}

Remember you must add your servlet class to the web.xml file.

<servlet>
<!-- should only be accessible thru a named request dispatcher -->

Code Examples for Common Use Cases

Working With JSF-Java Portlets 8-49

<servlet-name>LoginServlet</servlet-name>
<servlet-class>oracle.samples.wlp.jsf.portlets.login.LoginServlet</servlet-class>
</servlet>

8.14.3.5 Redirect
The next important topic is redirect. Notice that both the authenticate() and
logout() methods do a redirect. The page must be redirected so that any other
portlets on the portal re-retrieve their markup to the newly
authenticated/unauthenticated user. There are other ways of doing a redirect, but in
WLP, this is the recommended way, which is called send an event. The code snippet is:

//redirect the page, so any customization for this user is picked up after
successful login
 obj = fc.getExternalContext().getResponse();
 ActionResponse ar = (ActionResponse) obj;
 r.setEvent(new QName("urn:com:oracle:wlp:netuix:event:portal",
"framework.redirectBeforeRender"),null);

8.14.4 Putting Login Portlet Into A Portal environment
The login portlet is ready, now let's see it working in a portal environment. To do this,
you need to create a second portlet, called WelcomePortlet in this example. It will
change the display to show the user name once login has occurred and no name once
logout has occurred. The expected behavior is to see the WelcomePortlet refresh to
show the authenticated user's version.

Example 8–32 shows the welcome.portlet file.

Example 8–32 welcome.portlet File

<?xml version="1.0" encoding="UTF-8"?>
<portal:root
 xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"
 xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0
 portal-support-1_0_0.xsd">
 <netuix:javaPortlet
 definitionLabel="welcome" portletName="welcome" title="Welcome"/>
</portal:root>

Example 8–33 Entry in the portlet.xml file

<portlet>
 <portlet-name>welcome</portlet-name>
 <display-name>welcome</display-name>
<portlet-class>javax.portlet.faces.GenericFacesPortlet</portlet-class>
 <init-param>
 <name>javax.portlet.faces.defaultViewId.view</name>
 <value>/demo/welcome.jsp</value>
 </init-param>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <portlet-info>
 <title>Welcome</title>

Code Examples for Common Use Cases

8-50 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 <short-title>Welcome</short-title>
 </portlet-info>
</portlet>

Notice that the defaultViewId is the welcome.jsp. The welcome.jsp then uses
the JSFLoginPortletRequestBean to determine if authentication has occurred
and to show the user's display name.

Example 8–34 welcome.jsp

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@ taglib prefix="h" uri="http://java.sun.com/jsf/html"%>
<f:view>
 <f:loadBundle basename="oracle.samples.wlp.jsf.portlets.login.loginportlet"
var="i18n" />
<h:form id="welcomeGenericForm"
rendered="#{!JSFLoginPortletRequestBean.authenticated}">
 <h:outputText value="#{i18n.welcome_intro}" />
 </h:form>
<h:form id="welcomeUserForm"
rendered="#{JSFLoginPortletRequestBean.authenticated}">
 <h:outputText value="#{i18n.welcome_intro}" />
<h:outputText value="#{JSFLoginPortletRequestBean.usernameForDisplay}"/>
 </h:form>
</f:view>

Now add the WelcomePortlet to a portal using the workshop IDE. The resulting
.portal file should look something like Example 8–35.

Example 8–35 demo.portal

<?xml version="1.0" encoding="UTF-8"?>
<portal:root xmlns:html="http://www.w3.org/1999/xhtml-netuix-modified/1.0.0"
 xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"
 xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0
portal-support-1_0_0.xsd">
 <netuix:desktop definitionLabel="demo_demo_portal" discEnabled="false"
dvtEnabled="false"
 encoding="UTF-8" markupName="desktop" markupType="Desktop"
scrollToWindow="true"
 title="New Portal Desktop" treeOptimizationEnabled="true">
 <netuix:lookAndFeel definitionLabel="bighornLookAndFeel"
 description="A look and feel using the bighorn skin and skeleton"
 markupName="bighornLookAndFeel" markupType="LookAndFeel"
skeleton="bighorn"
 skin="bighorn" title="Bighorn">
 <netuix:titlebarButtonOrder>
 <netuix:otherButtons/>
 <netuix:namedButton name="float"/>
 <netuix:namedButton name="edit"/>
 <netuix:namedButton name="help"/>
 <netuix:namedButton name="minimized"/>
 <netuix:namedButton name="maximized"/>
 <netuix:namedButton name="delete"/>
 </netuix:titlebarButtonOrder>
 </netuix:lookAndFeel>

Code Examples for Common Use Cases

Working With JSF-Java Portlets 8-51

 <netuix:shell description="A header and footer is included in this shell."
 markupName="headerFooter" markupType="Shell" title="Header-Footer
Shell">
 <netuix:head/>
 <netuix:body>
 <netuix:header/>
 <netuix:book defaultPage="demo_demo_portal_page_1"
 definitionLabel="demo_demo_portal_book_1" markupName="book"
 markupType="Book" title="Main Page Book">
 <netuix:singleLevelMenu
 description="This menu provides a single level of tabs
used to navigate across pages."
 markupName="singleLevelMenu" markupType="Menu"
 title="Single Level Menu"/>
 <netuix:content>
 <netuix:page definitionLabel="demo_demo_portal_page_1"
 markupName="page"
 markupType="Page" title="Main">
 <netuix:content>
 <netuix:flowLayout
 description="This layout uses the flowLayout
 control to create two columns in which
 placeables flow vertically."

htmlLayoutUri="/framework/markup/layout/twocolumn.html.txt"

iconUri="/framework/markup/layout/twocolumn.gif"
 markupName="twoColumnFlowLayout"
 markupType="Layout"
 orientation="horizontal" title="Two Column
 Flow Layout">
 <netuix:placeholder
 description="The left most placeholder in
 this layout."
 markupName="twoColumnFlow_left"
 markupType="Placeholder"
 title="left" usingFlow="false"
 width="25%">
 <netuix:portletInstance
 contentUri="/demo/login.portlet"
 instanceLabel="login_1"
 markupType="Portlet" title="Login"/>
 </netuix:placeholder>
 <netuix:placeholder
 description="The right most placeholder in
 this layout."
 markupName="twoColumnFlow_right"
 markupType="Placeholder"
 title="right" usingFlow="false"
 width="65%">
 <netuix:portletInstance
 contentUri="/demo/welcome.portlet"
 instanceLabel="welcome_1"
 markupType="Portlet" title="Welcome"/>
 </netuix:placeholder>
 </netuix:flowLayout>
 </netuix:content>
 </netuix:page>
 </netuix:content>
 </netuix:book>

Preparing JSF Portlets for Production

8-52 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 <netuix:footer/>
 </netuix:body>
 </netuix:shell>
 </netuix:desktop>
</portal:root>

Now when running the portal, the first time rendered, the user isn't authenticated.

Figure 8–4 First Time/ Not Authenticated

Then, after logging in, it should look like Figure 8–5.

Figure 8–5 Authenticated

The redirect should automatically happen, which causes the WelcomePortlet to
refresh itself and welcomes the new user.

8.15 Preparing JSF Portlets for Production
This section discusses best practices to follow before deploying a JSF portlet into a
production environment.

■ Section 8.15.1, "Configuration Tasks"

■ Section 8.15.2, "Handling Errors"

■ Section 8.15.3, "Performance and Scalability"

■ Section 8.15.4, "Securing JSF Portlets"

■ Section 8.15.5, "Localizing JSF Portlets"

8.15.1 Configuration Tasks
This section discusses configuration tasks to perform before deploying a JSF portlet to
a production environment.

8.15.1.1 Configuring URL Templates for Proxy Servers
WLP is responsible for generating URLs that properly stay within the context of the
portal. WLP does this for page tabs and also for portlet links. Section 8.11,
"Understanding Navigation Within a JSF Portlet" describes how WLP rewrites links for
JSF Command Button and Link components automatically.

In production, the URL that a user enters to navigate to a WebLogic Portal instance
must not target the machine hosting that instance. The user should instead be routed

Preparing JSF Portlets for Production

Working With JSF-Java Portlets 8-53

through a proxy server or load balancer. This is a best practice for scalability and
security. WLP provides a configuration feature for configuring URLs properly in such
an environment. The JSF link rewriting mechanism honors this non-JSF configuration
feature.

For more information on the WLP URL template feature, see the section "Working
with URLs" in the Oracle Fusion Middleware Portal Development Guide for Oracle
WebLogic Portal. Even though Apache Beehive dependency has been removed as of the
10.3.2 release, the following template configuration is still valid for proxy server
configuration. You do not need the Apache Beehive facet for this configuration file to
work.

The steps for configuring URLs to make use of a proxy server are:

1. In Eclipse, in your Portal Web Project, go to the Merged Resources view.

2. Right-click WEB-INF/beehive-url-template-config.xml, then choose
Copy to Project.

3. Go to the Project Navigation view, then double-click the copied file.

4. Add the URL template entry shown in Example 8–36, replacing the IP address
with the IP address of the proxy server or load balancer.

5. Configure the proxy server to forward to WebLogic Portal. (See your vendor's
proxy server configuration documentation for instructions on how to do this.)

Example 8–36 Configure URL Generation That Refers to a Proxy Server

<url-template>
 <name>default</name>
 <value>http://192.168.0.5:{url:port}/{url:path}?{url:queryString}
{url:currentPage}
 </value>
</url-template>

8.15.1.2 JSF Portlets with WSRP
When developing portlets with JSF, the WSRP capabilities of WLP work correctly. JSF
portlets can be exposed as WSRP portlets, just as with any other portlet type. For
detailed information on WSRP portlets, see Oracle Fusion Middleware Federated Portals
Guide for Oracle WebLogic Portal.

8.15.2 Handling Errors
When moving to production, you want to make sure all possible errors are handled
gracefully and the user will not see a stack trace. See Section 8.10, "Using Common
WLP Features With JSF Portlets" for details.

8.15.3 Performance and Scalability
This section discusses best practices for developing efficient and scalable JSF portlets.

Caution: WSRP-1.0 and WSRP-2.0 do not support portlets with Ajax
features. However, WLP includes proprietary extensions in WSRP-2.0
to provide limited support for client rewriteable resource URLs. Some
Ajax functionality can be supported if the container in use is the
WebLogic Portal container.

Preparing JSF Portlets for Production

8-54 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Section 8.15.3.1, "JSF Portlets in a Clustered Environment"

■ Section 8.15.3.2, "Portlet Render Caching"

8.15.3.1 JSF Portlets in a Clustered Environment
WebLogic Portal runs on WebLogic Server, which includes industry-leading clustering
technology. Clustering provides for both load balancing and failover capabilities. For
the most part, WebLogic Server achieves both transparently. You do not need to know
about the underlying clustering capabilities.

However, for failover to work properly, WebLogic Server replicates the user's
HttpSession to a secondary node in the cluster. This enables the user to have a
seamless experience if one node were to fail. But, in order for an HttpSession to be
replicated without loss of data, the objects set as attributes within it must be
serializable. For more information, see the section "Failover and Replication in a
Cluster" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server available
at http://download.oracle.com/docs/cd/E12839_
01/web.1111/e13709.pdf.

For JSF portlets to support failover, the JSF portlet state is written to the
HttpSession object. Therefore, all JSF state objects must be serializable. Even
request-scoped managed beans are written into the HttpSession in a portal
environment. Therefore, it is a best practice for all managed beans, even those that are
request scoped, to be serializable.

8.15.3.2 Portlet Render Caching
The WLP portal framework provides an easy solution for improving portlet rendering
performance. The WLP Portlet Caching mechanism is the preferred way of handling
caching, and not the JSR-286 suggested caching mechanism. When a portlet is not
designed for user interaction or does not handle an interportlet communication event
during the request, the portlet's markup can be served from cache. By default, a
portlet's rendered markup is not cached. To enable portlet caching, set the following
values in the Portlet Properties view: (see Figure 8–6).

■ Set the Render Cacheable property to true.

■ Set the Caches Expires property to the number of seconds to cache the portlet
markup.

Note: When a JSF portlet's markup is rendered from cache, none of
the JSF life cycle methods are invoked during the request.

Preparing JSF Portlets for Production

Working With JSF-Java Portlets 8-55

Figure 8–6 Portlet Cache Configuration

8.15.4 Securing JSF Portlets
This section discusses best practices for securing JSF portlets.

■ Section 8.15.4.1, "Deny Direct Access to the Portlet Views"

■ Section 8.15.4.2, "Session Timeouts"

8.15.4.1 Deny Direct Access to the Portlet Views
To develop JSF portlets as standalone JSF applications, you must map the Faces servlet
in web.xml, as shown in Example 8–37.

Example 8–37 Prefix Servlet Mapping in web.xml

<servlet-mapping>
 <servlet-name>faces</servlet-name>
 <url-pattern>*.jsf</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>faces</servlet-name>

Preparing JSF Portlets for Production

8-56 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 <url-pattern>*.faces</url-pattern>
</servlet-mapping>

Note that these mappings exist in web.xml only to support the direct access use case.
Generally, in production it is not recommended to allow users to target the JSF views
directly. It is better to force users to navigate to those views through the portal user
interface. This can be enforced by removing the prefix and suffix mappings to the
Faces servlet in web.xml.

8.15.4.2 Session Timeouts
It is a good practice to test the behavior of a web application for the request that
immediately follows an HttpSession timeout. JSF portlets behave the same as
traditional JSF applications during a session timeout in that the previous state of the
portlet is not retained. Thus the user is taken back to the initial state of the JSF portlet
just like it is in a JSF application. It is therefore important to ensure that your portal
components re-render with the unauthenticated user in the session timeout use case.

8.15.5 Localizing JSF Portlets
This section discusses best practices and techniques for localizing JSF portlets prior to
moving to production.

8.15.5.1 Configuring the Localization
When implementing localization, keep in mind that there are three different
localization layers in the portal architecture. The first layer is of localization at the
WLP portal level for books and pages. The second layer is of localization at the Java
portlet level for title and description. The third layer is of localization at the JSF
component level.

WLP provides portal localization for the .book and .page files. For detailed
information, see the section "Localizing Titles for File-Based Books, Pages, and
Portlets" in Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

The Java Portlet specification provides the localization for the title and description of
the portlet. To ensure that your portlet works across different third-party portlet
containers, the Java standard locale support should be used. This is accomplished by
adding <supported-locale> to the portlet's entry in the portlet.xml file. For
further details, see the JSR-286 specification at
http://jcp.org/aboutJava/communityprocess/final/jsr286/index.htm
l.

In addition, JSF provides localization for the JSF components within a JSF view using a
locale pluggable interface. The ViewHandler interface has a method
calculateLocale()that performs the localization functionality of the JSF display
components. When developing JSF portlets, it is a best practice to create a bundle for
each individual portlet definition. Or, if several portlets are always to be used
together, a resource bundle can be shared between a group of portlets. This enables
portlets to be reused more easily across portal projects.

Another best practice is to make sure WLP, JSF, and Java portlets are all configured
with the same set of locales. This ensures a consistent localized experience for a
rendered page.

Third-Party Libraries

Working With JSF-Java Portlets 8-57

8.16 Third-Party Libraries
This section includes the following:

■ Section 8.16.1, "Facelets"

■ Section 8.16.2, "Tomahawk"

8.16.1 Facelets
WLP does not support the use of Facelets with JSF 1.2. If you require adding Facelet
support, the portlets must use the WLP native Faces bridge. See the section "Using
Facelets" available at http://download.oracle.com/docs/cd/E13155_
01/wlp/docs103/portlets/jsf_portlet_development.html#wp1040473.

8.16.2 Tomahawk
WLP does not officially support the use of Tomahawk components, so they are not
included in the WebLogic Portal installation. This also means there are no assurances
that all Tomahawk tags will work flawlessly within a WebLogic Portal environment.
However, you can configure these components in the portal application and test them.
It is recommended to use the latest Tomahawk version for JSF 1.2.

Follow these instructions to configure it:

1. Download the Tomahawk JAR file for JSF 1.2: at least tomahawk12-1.1.10.jar
or later.

2. Copy the JAR file into WEB-INF/lib.

3. In web.xml, add the following entries in the appropriate places.

Example 8–38 web.xml Settings For Tomahawk

<!-- Make entries that explicitly enable the portal-friendly changes
introduced with latest versions of Tomahawk ->
<context-param>
 <param-name>org.apache.myfaces.CHECK_EXTENSIONS_FILTER</param-name>
 <param-value>false</param-value>
</context-param>
<context-param>
 <param-name>
 org.apache.myfaces.DISABLE_TOMAHAWK_FACES_CONTEXT_WRAPPER
 </param-name>
 <param-value>false</param-value>
</context-param>
<!-- Configure the mechanism for bringing in resources (.js, .css). ->
<context-param>
 <param-name>org.apache.myfaces.ADD_RESOURCE_CLASS</param-name>
 <param-value>
 org.apache.myfaces.renderkit.html.util.NonBufferingAddResource
 </param-value>
</context-param>
<!-- Map the resource loading capability of Tomahawk ->
<!-- myfaces configuration -->
<filter>
 <filter-name>MyFacesExtensionsFilter</filter-name>
<filter-class>org.apache.myfaces.webapp.filter.ExtensionsFilter</filter-class>
 <init-param>
 <description>Set the size limit for uploaded files.
 Format: 10 - 10 bytes

Tips for Logging, Iterative Development, and Debugging of JSF Portlets

8-58 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 10k - 10 KB
 10m - 10 MB
 1g - 1 GB
 </description>
 <param-name>uploadMaxFileSize</param-name>
 <param-value>20m</param-value>
 </init-param>
</filter>
<!-- extension mapping for adding <script/>, <link/>, and other resource tags to
JSF-pages -->
<filter-mapping>
 <filter-name>MyFacesExtensionsFilter</filter-name>
 <!-- servlet-name must match the name of your javax.faces.webapp.FacesServlet
entry -->
 <servlet-name>Faces Servlet</servlet-name>
</filter-mapping>
<!-- extension mapping for serving page-independent resources (javascript,
stylesheets, images, etc.) -->
<filter-mapping>
 <filter-name>MyFacesExtensionsFilter</filter-name>
 <url-pattern>/faces/myFacesExtensionResource/*</url-pattern>
</filter-mapping>

8.17 Tips for Logging, Iterative Development, and Debugging of JSF
Portlets

For WebLogic Portal Web Projects, the integration of logging is pre-configured. The
WebLogic Integrated Commons Logging facet is a required facet for any Portal Web
Project.

Follow these steps to increase the log sensitivity level to enable Debug messages to be
output to the console:

1. Log on to the WebLogic Console, usually at a URL like:
http://localhost:7001/console.

2. Navigate to Servers > AdminServer > Logging tab.

3. Click the Advanced link to get the full set of controls.

4. In the Log file section, set the Severity Level to Debug.

5. In the Standard out section, set the Severity Level to Debug.

6. Click Save.

7. On the next request to a portal page that contains JSF portlets, you will see debug
output on the server console window.

8.17.1 Using Iterative Development for JSF Portlets
This section discusses techniques for iterative development of JSF portlets.

■ Section 8.17.1.1, "Testing Outside of the Portlet Container"

■ Section 8.17.1.2, "Using Application Republish"

■ Section 8.17.1.3, "HttpSession Caching"

■ Section 8.17.1.4, "Handling OutOfMemory Errors"

Tips for Logging, Iterative Development, and Debugging of JSF Portlets

Working With JSF-Java Portlets 8-59

8.17.1.1 Testing Outside of the Portlet Container
Sometimes it is desirable to test the JSF portlet view outside of the portlet container. In
other words, it is possible to target the view URL directly like a standard JSF
application does. If the JSF view can execute without the portal, then this is a good
way to debug issues with the JSF code. Targeting the view file directly isolates the JSF
container from the portlet container, so it helps in analyzing and fixing problems. See
Section 8.15.4, "Securing JSF Portlets" for more details on how to map the Faces servlet
in web.xml.

8.17.1.2 Using Application Republish
WebLogic Server automatically republishes changes to JSP files. However, if auto
publishing is disabled, you must explicitly republish the changes to source code or
deployment descriptors from the Server pane in Eclipse (among other ways). This
process is not specific to Portal Web Projects.

8.17.1.3 HttpSession Caching
JSF caches the user's views in the HttpSession. Therefore, while WebLogic Server
detects that a JSP has been updated, any existing session contains an outdated copy of
the view. It is therefore necessary to begin a new HttpSession after modifying a JSF
JSP. This issue is not specific to Portal Web Projects.

8.17.1.4 Handling OutOfMemory Errors
Unfortunately, certain implementations of JSF have memory leaks that occur during a
web application redeploy. During long development sessions across many
redeployments, the server may fail with an OutOfMemoryException. Therefore, you
must restart the server when this exception occurs. This issue is not specific to Portal
Web Projects.

8.17.2 Debugging
This section discusses how to use the Eclipse debugger to troubleshoot JSF portlets.
See the Eclipse documentation for information on enabling the Eclipse debugger.

When debugging a portlet, usually the best place to start is to set breakpoints in the
entire code, including managed bean methods as well as subclassed Java portlet code.
But sometimes you need to look into the portal framework. This is because the JSF
bridge invokes the JSF implementation, which in turn processes and renders the
portlet. For this reason, you should set break points in the JSF implementation and
within the JSF bridge as well. Source code is available for the open source JSF
implementations and JSR-329 bridge implementation.

This section includes the following:

■ Section 8.17.2.1, "Attaching Source (Step 1)"

■ Section 8.17.2.2, "Suggested JSF Framework Break Points (Step 2)"

8.17.2.1 Attaching Source (Step 1)
You can investigate resources on the web that explain how to attach source code to the
JAR files in your project (for example, you can search for "eclipse attach source"). The
main issue for JSF development is locating the proper source files for the JSF
implementation used in your web project.

You can download the Sun reference implementation (RI) code from the Mojarra
project site at https://javaserverfaces.dev.java.net.

Appendix: JSFJavaPortletHelper

8-60 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

8.17.2.2 Suggested JSF Framework Break Points (Step 2)
The following list provides some JSF implementation break points to get started
(assumes Sun RI):

■ *com.sun.faces.lifecycle.LifecycleImpl.execute() - The front door
to all JSF processing, a good place to start.

■ *com.sun.faces.lifecycle.RestoreViewPhase.execute() – Restores
the correct view; useful if the portlet is rendering the wrong view.

■ *com.sun.faces.lifecycle.InvokeApplicationPhase.execute() -
Invokes an action; useful when diagnosing issues invoking action methods.

8.18 Appendix: JSFJavaPortletHelper
You may find it helpful to create a helper class to develop the common functionality
that you can reuse in your portlets. Example 8–39 shows how you can implement a
helper class. This class is a concrete code example of many of the concepts discussed in
this chapter. Use at your own discretion.

Example 8–39 JSFJavaPortletHelper Class

package oracle.samples.wlp.jsf;
import java.security.Principal;
import java.util.ResourceBundle;
import javax.faces.context.FacesContext;
import javax.portlet.ActionRequest;
import javax.portlet.ActionResponse;
import javax.portlet.PortletContext;
import javax.portlet.PortletRequest;
import javax.portlet.PortletPreferences;
import javax.portlet.PortletRequestDispatcher;
import javax.portlet.PortletResponse;
import javax.servlet.ServletContext;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
import javax.xml.namespace.QName;
import oracle.samples.wlp.jsf.portlets.login.LoginServlet;
import weblogic.servlet.security.ServletAuthentication;
import com.bea.netuix.servlets.controls.portlet.PortletPresentationContext;
import com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext;
import com.bea.netuix.servlets.manager.AppContext;
/**
 * A helper class with examples of many useful methods for JSF portlets. These
 * methods are expected to be called from JSF managed beans.
 * This is to aid in the development of JSF portlets.
 */
public class JSFJavaPortletHelper {
 // STANDARD CONTEXT
 /**
 * Gets the HttpServletRequest from the FacesContext.
 * Must only be called from a JSF managed bean.
 * @return an HttpServletRequest implementation
 */
 static public HttpServletRequest getServletRequest() {
 HttpServletRequest httpServletRequest = null;
 FacesContext fc = FacesContext.getCurrentInstance();
 Object obj = fc.getExternalContext().getRequest();
 //how jsr329 bridge finds the request, another way is to dispatch to a

Appendix: JSFJavaPortletHelper

Working With JSF-Java Portlets 8-61

servlet or jsp
 if (obj instanceof PortletRequest){
 PortletRequest pr = (PortletRequest) obj;
 httpServletRequest = (HttpServletRequest)
 pr.getAttribute("javax.servlet.request");
 }
 //how native bridge finds the request
 else if (obj instanceof HttpServletRequest){
 httpServletRequest = (HttpServletRequest) obj ;
 }
 return httpServletRequest;
 }
 /**
 * Gets the HttpSession from the FacesContext.
 * Must only be called from a JSF managed bean.
 *
 * @return a HttpSession implementation
 */
 static public HttpSession getSession() {
 HttpServletRequest request = getServletRequest();
 return request.getSession();
 }
 /**
 * Gets the HttpServletResponse from the FacesContext.
 * Must only be called from a JSF managed bean.
 *
 * @return a HttpServletResponse implementation
 *
 */
 static public HttpServletResponse getServletResponse() {
 HttpServletResponse httpServletResponse = null;
 FacesContext fc = FacesContext.getCurrentInstance();
 Object obj = fc.getExternalContext().getRequest();
 //how jsr329 bridge finds the response, another way is to dispatch to a
servlet or jsp
 if (obj instanceof PortletRequest){
 PortletRequest pr = (PortletRequest) obj;
 httpServletResponse = (HttpServletResponse)
pr.getAttribute("javax.servlet.response");
 }
 //how native bridge finds the request
 else {
 obj = fc.getExternalContext().getResponse();
 httpServletResponse = (HttpServletResponse) obj ;
 }
 return httpServletResponse;
 }

 /**
 * Gets the PortletResponse from the FacesContext. Only valid when using the
JSR329-bridge.
 *
 * @return PortletResponse
 *
 */
 static public PortletResponse getPortletResponse() {

 FacesContext fc = FacesContext.getCurrentInstance();
 Object obj = fc.getExternalContext().getResponse();
 if (obj instanceof PortletResponse){

Appendix: JSFJavaPortletHelper

8-62 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 return (PortletResponse)obj;
 }
 else {
 return null;
 }
 }

 /**
 * Gets the localized resource bundle using the passed bundle name
 * Must only be called from a JSF managed bean.
 *
 * @param bundleName the String name of the bundle
 * @return the ResourceBundle containing the localized messages for the
 */
 static public ResourceBundle getBundle(String bundleName) {
 FacesContext context = FacesContext.getCurrentInstance();
 ResourceBundle bundle =
ResourceBundle.getBundle(bundleName,context.getViewRoot().getLocale());
 return bundle;
 }
 /**
 * Gets the localized message using the passed bundle name and message
 * Must only be called from a JSF managed bean.
 *
 * @param bundleName the String name of the bundle
 * @param messageKey the String key to be found in the bundle properties
 * @return the String containing the localized message
 */
 static public String getBundleMessage(String bundleName, String
 messageKey) {
 String message = "";
 ResourceBundle bundle = getBundle(bundleName);
 if (bundle != null) {
 message = bundle.getString(messageKey);
 }
 return message;
 }
 // *************** PORTAL ENVIRONMENT **************//
 //Note: Although these methods show getting the actual Servlet request from
the PortletRequest, another way to do this
 //would be to dispatch to an actual Servlet that then gets an instance of the
PortletBackingContext and
 //PortletPresentationContext. This latter way may be more portable and
isolate your WLP specific code better.

 /**
 * Gets the PortletBackingContext object. This method will return null
 * if called during the RENDER_RESPONSE JSF lifecycle.
 * Must only be called from a JSF managed bean.
 *
 * @return the active PortletBackingContext, or null
 */
 static public PortletBackingContext getPortletBackingContext() {
 return
 PortletBackingContext.getPortletBackingContext(getServletRequest());
 }
 /**
 * Gets the PortletPresentationContext object. This method will return
 * if NOT called during the RENDER_RESPONSE JSF lifecycle.
 * Must only be called from a JSF managed bean.

Appendix: JSFJavaPortletHelper

Working With JSF-Java Portlets 8-63

 *
 * @return the active PortletPresentationContext, or null
 */
 static public PortletPresentationContext getPortletPresentationContext() {
 HttpServletRequest request = getServletRequest();
 return PortletPresentationContext.getPortletPresentationContext(request);
 }
 /**
 * Returns true if the user can make customizations
 * (preferences, add/move/remove portlets, add pages) to the portal.
 * This is based on factors such as: is the user authenticated,
 * is it a streaming portal (not a .portal file),
 * and customization is enabled in netuix-config.xml.
 * Can be called from any web application class.
 *
 * @return a boolean, true if it is possible for the user to make
customizations
 */
 static public boolean isCustomizable() {
 return AppContext.isCustomizationAllowed(getServletRequest());
 }
 // ***** AUTHENTICATION ******///
 //The following are authentication methods that are used in the Login/Logout
Example
 /**
 * Is the current user authenticated?
 * Must only be called from a JSF managed bean.
 *
 * @return true if the user is authenticated, false if not
 */
 static public boolean isAuthenticated() {
 Principal principal =
FacesContext.getCurrentInstance().getExternalContext().getUserPrincipal();
 return principal != null;
 }

 /**
 * Is the current user authenticated?
 * This checks an attribute set on the PortletRequest by the LoginServlet,
whether
 * the user is authenticated.
 *
 * @return true if the user is authenticated, false if not
 */
 static public boolean isAuthenticatedViaAttribute() {
 PortletRequest pr =
(PortletRequest)(FacesContext.getCurrentInstance().getExternalContext().getRequest
());
 Boolean authenticated= ((Boolean)
pr.getAttribute(LoginServlet.AUTHENTICATED));
 return authenticated.booleanValue();
 }
 /**
 * Get the current user's username from the container.
 * Must only be called from a JSF managed bean.
 *
 * @return the user name, null if the user is not authenticated
 */
 static public String getUsername() {
 String username = null;

Appendix: JSFJavaPortletHelper

8-64 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 Principal principal =

FacesContext.getCurrentInstance().getExternalContext().getUserPrincipal();
 if (principal != null) {
 username = principal.getName();
 }
 return username;
 }
 /**
 * Get the current user's username for display. If the user is not
authenticated, it
 * will return the name passed as the anonymousUsername parameter.
 * DO NOT use this method
 * for anything other than display (e.g. access control, auditing, business
logic),
 * as the passed anonymous name may conflict with an actual username in the
system.
 * Must only be called from a JSF managed bean.
 *
 * @param anonymousUsername a String localized name to use for an anonymous
user, like "Guest"
 * @return the user name
 */
 static public String getUsernameForDisplay(String anonymousUsername) {
 String username = anonymousUsername;
 Principal principal =
FacesContext.getCurrentInstance().getExternalContext().getUserPrincipal();
 if (principal != null) {
 username = principal.getName();
 }
 return username;
 }
 // USER AUTHENTICATION METHODS
 /**
 * Authenticate the user with WebLogic Server
 * See <code> authenticate_generic </code> for using a serlvet to do
authentication.
 *
 * @param username the String username
 * @param password the String password as provided by the user
 * @return true if the login was successful, false if not
 */
 static public boolean authenticate(String username, String password) {
 HttpServletRequest httpServletRequest = getServletRequest();
 HttpServletResponse httpServletResponse = getServletResponse();
 //wlp specific way of authentication
 int result = ServletAuthentication.weak(username, password,
httpServletRequest, httpServletResponse);

 //redirect the page, so any customization for this user is picked up after
successful login
 if (result != ServletAuthentication.FAILED_AUTHENTICATION) {
 Object obj =
 FacesContext.getCurrentInstance().getExternalContext().getResponse();
 if (obj instanceof ActionResponse){
 ActionResponse ar = (ActionResponse) obj;
 ar.setEvent(new QName("urn:com:oracle:wlp:netuix:event:portal",
"framework.redirectBeforeRender"),null);
 }
 }

Appendix: JSFJavaPortletHelper

Working With JSF-Java Portlets 8-65

 return result != ServletAuthentication.FAILED_AUTHENTICATION;
 }

 /**
 * This will authenticate the user putting the WLS specific authentication
process in a servlet.
 * Thus isolating container specific code better.
 * It calls to a LoginManager servlet to do the authentication.
 * If the environment is not using the standard JSR329-bridge, it will default
to WLP specific authentication.
 * If authentication is successful, it will then set an event using JSR286
style eventing, to request a redirect before render
 * so that any personal specific components will be re-rendered.
 * @param username of user to authenticate
 * @param password of user to authenticate
 * @return true to indicate username/password has been authenticated, false if
it failed.
 *
 */
 static public boolean authenticate_generic(String username, String password) {
 HttpServletRequest httpServletRequest = null;
 HttpServletResponse httpServletResponse = null;
 FacesContext fc = FacesContext.getCurrentInstance();
 Object obj = fc.getExternalContext().getContext();
 //how jsr329 bridge finds the request
 if (obj instanceof PortletContext){
 PortletContext pc = (PortletContext) obj;
 PortletRequestDispatcher prdispatcher =
pc.getNamedDispatcher("LoginServlet");
 try{

prdispatcher.include((PortletRequest)fc.getExternalContext().getRequest(),
 (PortletResponse)fc.getExternalContext().getResponse());
 }
 catch(Exception e) {
 //MODIFY : user proper logging methods
 System.out.println("Exception on dispatch:" + e.toString());
 e.printStackTrace();
 return false;
 }
 }
 //how native bridge finds the request & response
 else if (obj instanceof ServletContext){
 httpServletRequest = (HttpServletRequest)
fc.getExternalContext().getRequest() ;
 httpServletResponse = (HttpServletResponse)
 fc.getExternalContext().getResponse();
 //wlp specific way of authentication
 ServletAuthentication.weak(username, password, httpServletRequest,
httpServletResponse);
 }
 //redirect the page, so any customization for this user is picked up after
successful login
 if (isAuthenticated()) {
 obj = fc.getExternalContext().getResponse();
 ActionResponse ar = (ActionResponse) obj;
 ar.setEvent(new QName("urn:com:oracle:wlp:netuix:event:portal",
"framework.redirectBeforeRender"),null);
 return true;
 }

Appendix: JSFJavaPortletHelper

8-66 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 else {
 return false;
 }

 }

 /**
 * Logout the user invalidating the session object directly and then send
event to redirect.
 * See <code> logout_generic </code> for using a serlvet to do
un-authentication.
 * Call this if using the jsr329 bridge, otherwise use a backing file
 */
 static public boolean logout() {
 FacesContext fc = FacesContext.getCurrentInstance();
 Object obj = fc.getExternalContext().getResponse();
 if (obj instanceof ActionResponse){
 HttpSession session = getSession();
 session.invalidate();
 ActionResponse ar = (ActionResponse) obj;
 ar.setEvent(new QName("urn:com:oracle:wlp:netuix:event:portal",
"framework.redirectBeforeRender"),null);
 return true;
 }
 else {
 return false;
 }

 }

 /**
 * Logout the user invalidating the session object through the use of a
servlet.
 * Send event to redirect after un-authenticating the user.
 * Call this if using the jsr329 bridge, otherwise use a backing file
 *
 **/
 static public boolean logout_generic() {
 FacesContext fc = FacesContext.getCurrentInstance();
 Object obj = fc.getExternalContext().getContext();
 //how jsr329 bridge finds the request, wlp specific implementation
 if (obj instanceof PortletContext){
 PortletContext pc = (PortletContext) obj;
 PortletRequestDispatcher prdispatcher =
pc.getNamedDispatcher("LoginServlet");
 try{

prdispatcher.include((ActionRequest)fc.getExternalContext().getRequest(),
 (ActionResponse)fc.getExternalContext().getResponse());
 }
 catch(Exception e) {
 //MODIFY : user proper logging methods
 System.out.println("Exception on dispatch:" + e.toString());
 e.printStackTrace();
 return false ;
 }
 } else {
 return false;
 }
 //check the attribute the servlet set

Appendix: JSFJavaPortletHelper

Working With JSF-Java Portlets 8-67

 boolean authorized = isAuthenticatedViaAttribute();
 if (!authorized) { //logout was successful
 obj = fc.getExternalContext().getResponse();
 ActionResponse ar = (ActionResponse) obj;
 ar.setEvent(new QName("urn:com:oracle:wlp:netuix:event:portal",
"framework.redirectBeforeRender"),null);
 }
 return authorized;
 }

 // NAMESPACES AND LABELS
 /**
 * Gets the current portlet's instance label.
 * Must only be called from a JSF managed bean.
 *
 * @return the String instance label
 */
 static public String getInstanceLabel() {
 return getInstanceLabel(getServletRequest());
 }
 /**
 * Gets the current portlet's instance label.
 * Can be called from any web application class.
 *
 * @param the HttpServletRequest object
 * @return the String instance label
 */
 static public String getInstanceLabel(HttpServletRequest request) {
 String label = "_global";
 PortletBackingContext pbc =
PortletBackingContext.getPortletBackingContext(request);
 if (pbc != null) {
 label = pbc.getInstanceLabel();
 }
 else {
 PortletPresentationContext ppc =
PortletPresentationContext.getPortletPresentationContext(request);
 if (ppc != null) {
 label = ppc.getInstanceLabel();
 }
 }
 return label;
 }
 /**
 * Gets the current portlet's definition label.
 * Must only be called from a JSF managed bean.
 *
 * @return the String definition label
 */
 static public String getDefinitionLabel() {
 return getDefinitionLabel(getServletRequest());
 }
 /**
 * Gets the current portlet's definition label.
 * Can be called from any web application class.
 *
 * @param the HttpServletRequest object
 * @return the String definition label
 */
 static public String getDefinitionLabel(HttpServletRequest request) { String

Appendix: JSFJavaPortletHelper

8-68 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

label = "_global";
 PortletBackingContext pbc =
PortletBackingContext.getPortletBackingContext(request);
 if (pbc != null) {
 label = pbc.getDefinitionLabel();
 }
 else {
 PortletPresentationContext ppc =
 PortletPresentationContext.getPortletPresentationContext(request);
 if (ppc != null) {
 label = ppc.getDefinitionLabel();
 }
 }
 return label;
 }
 // **** PORTLET PREFERENCE METHODS **** //
 /**
 * Gets an instantiated preferences object for the portlet;
 * it must be obtained once per request.
 * Must only be called from a JSF managed bean.
 * Only works with JSR-329 bridge
 *
 * @return the PortletPreferences object for the request
 */
 static public PortletPreferences getPreferencesObject() {
 FacesContext fc = FacesContext.getCurrentInstance();
 PortletRequest pr = (PortletRequest) fc.getExternalContext().getRequest();
 return pr.getPreferences();
 }
 /**
 * Gets the single value preference.
 *
 * @param name the String name of the preference
 * @param value the String default value to use if the preference isn't
 * @return the String value
 */
 static public String getPreference(PortletPreferences prefs, String name,
 String value) {
 if (prefs != null) {
 value = prefs.getValue(name, value);
 }
 return value;
 }
 /**
 * Sets a single value preference into the preferences object.
 * storePreferences() must be called subsequently to persist the change.
 *
 * @param name the String name of the preference
 * @param value the String value of the preference
 */
 static public void setPreference(PortletPreferences prefs, String name, String
value) {
 if (prefs != null) {
 try {
 prefs.setValue(name, value);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

Appendix: JSFJavaPortletHelper

Working With JSF-Java Portlets 8-69

 /**
 * After setting updated values into the preferences object, call this
 * method so they can be stored in the persistent store in a single atomic
 * operation.
 *
 * @param prefs the PortletPreferences to be persisted
 * @return a boolean, true if the store succeeded
 */
 static public boolean storePreferences(PortletPreferences prefs) {
 if (!isCustomizable()) {
 return false;
 }
 try {
 prefs.store();
 } catch (Exception e) {
 e.printStackTrace();
 return false;
 }
 return true;
 }
}

Appendix: JSFJavaPortletHelper

8-70 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

9

Developing Portlets 9-1

9Developing Portlets

This chapter discusses features for developing and configuring portlets. This chapter
contains the following sections:

■ Section 9.1, "Portlet Properties"

■ Section 9.2, "Portlet Preferences"

■ Section 9.4, "Backing Files"

■ Section 9.5, "Portlet Appearance and Features"

■ Section 9.6, "Getting Request Data in Page Flow Portlets"

■ Section 9.7, "JSP Tags and Controls in Portlets"

■ Section 9.8, "Portlet State Persistence"

■ Section 9.9, "Advanced Portlet Development with Tag Libraries"

■ Section 9.10, "Detached Portlets"

■ Section 9.11, "Working with Inlined Portlets"

■ Section 9.12, "Extracting Books and Pages"

■ Section 9.13, "Avoiding Committing Responses"

9.1 Portlet Properties
Portlet properties are named attributes of the portlet that uniquely identify it and
define its characteristics. Some properties—such as title, definition label, and content
URI—are required; many optional properties allow you to enable specific functions for
the portlet such as scrolling, presentation properties, pre-processing (such as for
authorization) and multi-threaded rendering. The specific properties that you use for a
portlet vary depending on your expected use for that portlet.

During the development phase of the portal life cycle, you generally edit portlet
properties using the Oracle Enterprise Pack for Eclipse interface; this section describes
properties that you can edit using Oracle Enterprise Pack for Eclipse.

During staging and production phases, you typically use the WebLogic Portal
Administration Console to edit portlet properties; only a subset of properties are
editable at that point. For instructions on editing portlet properties from the WebLogic
Portal Administration Console, refer to Section 17.2.2, "Modifying Library Portlet
Properties" and Section 17.2.3, "Modifying Desktop Portlet Properties."

For a detailed description of all portlet properties, refer to Section 9.1.3, "Portlet
Properties in the Portal Properties View" and Section 9.1.4, "Portlet Properties in the
Portlet Properties View."

Portlet Properties

9-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

This section contains the following topics:

■ Section 9.1.1, "Editing Portlet Properties"

■ Section 9.1.2, "Tips for Using the Properties View"

■ Section 9.1.3, "Portlet Properties in the Portal Properties View"

■ Section 9.1.4, "Portlet Properties in the Portlet Properties View"

9.1.1 Editing Portlet Properties
To edit portlet properties, follow these steps:

1. Navigate to the location of the portlet whose properties you want to edit, and
double-click the .portlet file to open it in the workbench editor.

2. Click the border of the desired portlet component to display the properties for that
component in the Properties view.

The displayed properties vary according to the active area that you select. If you
click the outer border, properties for the entire portlet appear; if you click the inner
border, properties for the content of the portlet appear, and so on.

3. Navigate to the Properties view to view the current values for the portlet
properties. Figure 9–1 shows a segment of a JSP portlet's Properties view:

Figure 9–1 Editing Portlet Properties - JSP Portlet Properties View Example

4. Double-click the field that you want to change.

If you click on a property field, a description of that field displays in the status bar.

Values for some portlet properties are not editable after you create the portlet.

In some cases, from the property field you can view associated information
pertaining to that portlet property; for example, the Java portlet Class Name
property contains a read-only value with an Open button to view the associated
Java file. For more information about options available in the Properties view,
refer to Section 9.1.2, "Tips for Using the Properties View."

9.1.2 Tips for Using the Properties View
The behavior of the Properties view varies depending on the type of field you are
editing. The following tips might help you as you manipulate the content of the data
fields in the Properties view.

Portlet Properties

Developing Portlets 9-3

■ If a file is associated with a portlet property, the Properties view includes an Open
button in addition to a Browse button; you can click Open to display the
appropriate Eclipse editor/view for the file type.

■ If you want to edit the XML source for a portlet, you can right-click the .portlet
file in the Package Explorer view and choose Edit with > XML Editor to open the
file using the basic XML editor that Eclipse provides.

■ The book, page, and portlet actions in the palette display properties in the
Properties view when you select them in the palette. The cell editor for the content
file property is read only, and includes an Open button; clicking Open displays
the Eclipse editor/view for the applicable file type.

■ For page flow portlets, a property editor is available for page flow content paths
when displaying a page flow portlet in the editor. The property editor is a dialog
cell editor that allows you to type in the URI of the page flow directly, or you can
click the ellipses button to launch the page flow class picker dialog. If you open
the dialog, the page flow class name is converted to a URI when you leave the
dialog. WebLogic Portal stores the URI in the .portlet file when you save the
portlet. The property editor validates the page flow URI specified and warns you
if you choose a URI that has no corresponding page flow class. You can choose to
proceed anyway and store an invalid URI; you should create a valid class later so
that the portlet works correctly.

■ For page flow portlets, while in the portlet editor you can double-click the portlet
content view to launch the corresponding Java element specified in the portlet
content path. This consists of the page flow source if the source is available in the
project or attached to the JAR containing the class. If the source cannot be located,
then the disassembled class browser is displayed showing the contents of the
class.

■ Due to a limitation in Eclipse, some long property descriptions are truncated in the
Status bar. To display the entire description, while the property is highlighted
click the Show Property Description button in the menu. A popup window
displays the full text of the property's description. Click outside the window to
close it.

9.1.3 Portlet Properties in the Portal Properties View
The properties described in this section are contained within the .portal file and are
editable using Oracle Enterprise Pack for Eclipse. The values you enter here override
the corresponding value in the .portlet file, if a value exists there.

To display the portlet properties that display in the Properties view for a portal, follow
these steps:

Caution: The Eclipse XML editor has limited validation capabilities.
Oracle recommends the use of a robust validation tool to ensure that
your hand-edited XML is valid.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Portlet Properties

9-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

1. Double-click the .portal file of the portal for which you want to view portlet
instance properties.

A WYSIWYG view of the portal appears in the editor.

2. Click a portlet to highlight it.

An orange border appears around the outside edge of the portlet.

The Properties view displays the properties of the portlet instance; Figure 9–2 shows
an example.

Figure 9–2 Portlet Instance Properties in the Portal Properties View

Table 9–1 describes these properties and their values.

Note: These steps assume that you have an existing portal that
contains portlets.

Table 9–1 Portlet Instance Properties in the Properties View

Property Value

Default Minimized Optional. Select true for the portlet to be minimized when it is rendered. The default
value is false. Change the value for this property only if you want to override the
default value provided by the .portlet file.

Instance Label Required. A single portlet, represented by a .portlet file, can be used multiple times in
a portal. Each use of that portlet is a portlet instance, and each portlet instance must have
a unique ID, or Instance Label. A default value is entered automatically, but you can
change the value. Instance labels help WebLogic Portal manage the runtime state of
multiple instances of portlets independently of each other on the server. WebLogic Portal
also uses instance labels during URL rewriting and scoping of various HTML controls
such as names of forms, and ID attributes.

Orientation Optional. Hint to the skeleton to position the portlet title bar on the top, bottom, left, or
right side of the portlet. You must build your own skeleton to support this property. The
allowable values are: default, top=0, left,=1 right=2, bottom=3.

Enter a value for this property only if you want to override the orientation specified in the
.portlet file. Selecting default removes the orientation attribute from the portlet,
book, and/or portlet instance; use this value if you want to revert to the framework
default setting for this attribute.

Portlet Properties

Developing Portlets 9-5

9.1.4 Portlet Properties in the Portlet Properties View
The properties described in this section are contained within the .portlet file and
are editable using Oracle Enterprise Pack for Eclipse. The values you enter here
override the corresponding value in the .portlet file, if a value exists there.

When you select the outer border of a portlet in the portlet editor, a related set of
properties appears in the Properties view. The displayed properties vary according to
the type of portlet that you are viewing. Figure 9–3 shows a portion of the Properties
view for a portlet.

Figure 9–3 Properties View Example Showing Portlet Properties

Table 9–2 describes these properties and their values.

Portlet URI Required. The path (relative to the project) of the parent .portlet file. For example, if
the file is stored in Project\myportlets\my.portlet, the Portlet URI is
/myportlets/my.portlet.

Theme Optional. Select a theme to give the portlet a different Look & Feel than the rest of the
desktop.

Title Enter a title if you want to override the default title specified in the .portlet file. The
title is used in the portlet title bar.

Table 9–1 (Cont.) Portlet Instance Properties in the Properties View

Property Value

Portlet Properties

9-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Table 9–2 Properties in the Portlet Properties View

Property Value

Portlet Backing File Optional. If you want to use a class for preprocessing (for example, authentication) prior
to rendering the portlet, enter the fully qualified name of that class. That class should
implement the interface com.bea.netuix.servlets.controls.content.backing.JspBacking or
extend com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking. From the
data field you can choose to browse to a class or open the currently displayed class.

Singleton Backing
Instance

Optional. Performance setting for books, pages, and portlets that use backing files.

When Singleton Backing Instance is set to true, an instance of a backing file is shared
among all books, pages, or portlets that request the backing file. You must synchronize
any instance variables that are not thread safe.

When Singleton Backing Instance is set to false, a new instance of a backing file is
created each time the backing file is requested by a different book, page, or portlet.

Content Path Required. The path (relative to the project) to the file/class to be used for the portlet's
content. From the data field you can choose to browse to a file (or class for page flow
portlets) or open the currently displayed file/class. For example, if the content is stored
in Project/myportlets/my.jsp, the Content URI is /myportlets/my.jsp.

Error Page Path Optional. The path (relative to the project) to the JSP or HTML file to be used for the
portlet's error message if the main content cannot be rendered. For example, if the error
page is stored in Project/myportlets/error.jsp, the Content URI is
/myportlets/error.jsp.

Async Content
Rendering

Allows you to specify whether to use asynchronous content for a given portlet and the
implementation to use. An editable dropdown menu provides the selections none,
ajax, iframe, and iframe_unwrapped. Portlet files that do not contain the
asyncContent attribute appear with the initial value none displayed.

For more information, refer to Section 10.5, "Asynchronous Portlet Content Rendering."

Note: The iframe_unwrapped value is used for interoperability with WebCenter 10g
ADF Faces portlets. You must use the iframe_unwrapped value if you are consuming
(through WSRP) a WebCenter 10g ADF Faces portlet in a WebLogic Portal. Using this
value prevents potential rendering problems by wrapping the ADF Faces portlet in an
IFrame, while explicitly excluding WebLogic Portal-specific markup from rendering
within the IFrame. For more information on WSRP interoperability between WebCenter
and WebLogic Portal, see the Oracle Fusion Middleware Federated Portals Guide for Oracle
WebLogic Portal.

Tip: You can also enable asynchronous rendering for an entire portal desktop by setting
a portal property in either Oracle Enterprise Pack for Eclipse or the WebLogic Portal
Administration Console. For more information on asynchronous desktop rendering, see
the Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Cache Expires (seconds) Optional. When the Render Cacheable property is set to true, enter the number of
seconds after which the portlet cache expires.

Cache Render
Dependencies

This instance-scoped boolean property appears in the Properties view whenever a
window portlet or proxy portlet is loaded, allowing render dependencies to be cached.
See also Section 9.5.1, "Portlet Dependencies."

The value defaults to true if the attribute is not already included in the .portlet file.
The value is read-only for proxy portlets and editable for all other portlet types. For
proxy portlets, the value is initialized from the producer whenever a proxy portlet is
generated from the portlet wizard.

This property does not affect requests targeted to the portlet.

Portlet Properties

Developing Portlets 9-7

Client Classifications Optional. Select the multichannel devices on which the portlet can be viewed. The list of
displayed devices is obtained from the file Project_
Path\WEB-INF\client-classifications.xml. You must create this file to map
clients to classifications in your portal web project. For more information about this
task, refer to the Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

In the Manage Portlet Classifications dialog:

Select whether you want to enable or disable classifications for the portlet.

Move the client classifications you want to enable or disable from the Available
Classifications to the Selected Classifications.

Click OK.

When you disable classifications for a portlet, the portlet is automatically enabled for
the classifications that you did not select for disabling.

Default Minimized Required. Select true if you want the portlet to be minimized when it is rendered. The
default value is false.

Definition Label Required. Each portlet must have a unique value within the web project. For Java
portlets, you type the desired value when creating the portlet; for the remaining portlet
types, a value is generated automatically when you create the portlet. Definition labels
can be used to navigate to portlets. Also, components must have Definition Labels for
entitlements and delegated administration.

As a best practice, you should edit this value in Oracle Enterprise Pack for Eclipse to
create a meaningful value. This is especially true when offering portlets remotely, as it
makes it easier to identify them from the producer list.

Description Optional. A short text description of the portlet. The description is displayed in the
Administration Console and Visitor Tools areas, and is sent from a WSRP producer
where applicable.

Event Handlers Optional. Use this value to configure interportlet communication using portlet events.
The default is No event handlers. To select or add an event handler, click Browse in
the Properties view. You an also click the Event Handlers link in the portlet editor. Both
of these methods bring up the Portlet Event Handlers dialog box. For details, see
Chapter 12, "Configuring Local Interportlet Communication." For information on event
handling in remote portlets, see the Oracle Fusion Middleware Federated Portals Guide for
Oracle WebLogic Portal.

Forkable For details on this property, refer to Section 10.4, "Portlet Forking."

Fork Pre-Render For details on this property, refer to Section 10.4, "Portlet Forking."

Fork
Pre-RenderTimeout
(seconds)

For details on this property, refer to Section 10.4, "Portlet Forking."

Fork Render For details on this property, refer to Section 10.4, "Portlet Forking."

Fork Render Timeout
(seconds)

For details on this property, refer to Section 10.4, "Portlet Forking."

Orientation Optional. Hint to the skeleton to position the portlet title bar on the top, bottom, left, or
right side of the portlet. You must build your own skeleton to support this property in
the .portal file. Following are the numbers used in the .portal file for each
orientation value: top=0, left=1, right=2, bottom=3.

You can override the orientation in each instance of the portlet (in the Properties view).

Table 9–2 (Cont.) Properties in the Portlet Properties View

Property Value

Portlet Properties

9-8 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Packed Optional. Rendering hint that can be used by the skeleton to render the portlet in either
expanded or packed mode. You must build your own skeleton to support this property.

When packed="false" (the default), the portlet takes up as much horizontal space as it
can.

When packed="true," the portlet takes up as little horizontal space as possible.

From an HTML perspective, this property is most useful when the window is rendered
using a table. When packed="false," the table's relative width would likely be set to
"100%." When packed="true," the table width would likely remain unset.

Render Cacheable Optional. To enhance performance, set to true to cache the portlet. For example,
portlets that call web services perform frequent, expensive processing. Caching web
service portlets greatly enhances performance.

Do not set this to true if you are doing your own caching.

For more information, refer to Section 10.2, "Portlet Caching."

Render Dependencies
Path

Optional. Lets you specify the path to a render dependency file (also called a portlet
dependency file). Render dependencies are resources that are required for rendering a
portlet. For details, see Section 9.5.1, "Portlet Dependencies."

Shared Parameters Optional. Portlet shared parameters are similar to JSR 286-based public render
parameters. The primary difference is that shared public render parameters handle
complex data types while shared parameters only handle String data. For details, see
Section 9.3, "Using Shared Parameters."

Required User
Properties Mode

For remote portlets only. Optional. Possible values are none, all, or specified. If the
value is specified, then you must enter a list of property names in the field Required
User Properties Names field.

Required User
Properties Names

For remote portlets only. Optional. Use this field if you entered a value of specified
in the Required User Properties Mode field; enter a comma-delimited list of property
names.

Title Required. Enter the title for the portlet's title bar. You can override this title in each
instance of the portlet (in the portal editor, as described in Section 9.1.3, "Portlet
Properties in the Portal Properties View").

Page Flow Action Optional. The initial action to be executed in a page flow. If not specified, the begin
action is used. Only available for Page Flow portlets.

Note: Page Flows are a feature of Apache Beehive, which is an optional framework that
you can integrate with WLP. See "Apache Beehive and Apache Struts Supported
Configurations" in the Oracle Fusion Middleware Portal Development Guide for Oracle
WebLogic Portal.

Page Flow Refresh
Action

Optional. The action to be executed in the page flow when the page is refreshed but the
portlet is not targeted. This is equivalent to using portlet event handlers configured on
the onRefresh portal event to invoke the page flow action. Only available for Page
Flow portlets.

Table 9–2 (Cont.) Properties in the Portlet Properties View

Property Value

Portlet Properties

Developing Portlets 9-9

Request Attribute
Persistence

Optional. Possible values are none, session, and transient-session. This
attribute controls attribute persistence for Page Flow, JSF, and Struts portlets. The
default is session, where request attributes populated by an action are persisted into a
collection class that is placed into a session attribute so that the portal framework can
safely include the forwarded JSP on subsequent requests without re-running the action.
Using the value session can cause session memory consumption and replication that
would not otherwise occur in a standalone Page Flow, JSF, or Struts application. The
value transient-session places a serializable wrapper class around a HashMap
into the session. The value none performs no persistence operation.

JPF or Struts portlets that have the transient-session value applied generally have
the same behavior as existing portlets; however, in failover cases, the persisted request
attributes disappear on the failed-over-to server. In the failover case, you must write
forward JSPs to handle this contingency gracefully by, at a minimum, not expecting any
particular request attribute to be populated; ideally you should include the ability to
either repopulate automatically or present the user with a link to re-run the last action
to repopulate the request attributes. For non-failover cases, request attributes are
persisted, providing a performance advantage for non-postback portlets identical to
default session persistence portlets.

Portlets that have the none value applied will never have request attributes available on
refresh requests; you must write forward JSPs to assume that they will not be available.
You can use this option to completely remove the framework-induced session memory
loading for persisted request attributes.

Note: Page Flows are a feature of Apache Beehive, which is an optional framework that
you can integrate with WLP. Apache Struts is also an optional framework that you can
integrate with WLP. See "Apache Beehive and Apache Struts Supported
Configurations" in the Oracle Fusion Middleware Portal Development Guide for Oracle
WebLogic Portal.

Faces Events (Optional) Lets you add name/action pairs to a JSF portlet. The name field is simply an
alias. Event handlers (and the Event Handler dialog) can simply reference this name.
The action is a reference to a JSF view ID, such as myfaces/foo.face. Only available
for JSF portlets. For more information on adding event handlers, see Section 12.4,
"Portlet Event Handling."

Content Presentation
Class

A CSS class that overrides any default CSS class used by the component's skeleton.

For proper rendering, the class must exist in a cascading style sheet (CSS) file in the
Look and Feel's selected skin, and the skin's skin.xml file must reference the CSS file.

Sample: If you enter "my-custom-class", the rendered HTML from the default skeletons
looks like this:

<div class="my-custom-class">

The properties you enter are added to the component's parent <div> tag. This property
also applies to books and pages. For more information, refer to the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

Content Presentation
Style

Optional. The primary uses are to allow content scrolling and content height-setting.

For scrolling, enter the following attributes:

overflow:auto – Enables vertical and horizontal scrolling

For setting height, enter the following attribute:

height:200px

where 200px is any valid HTML height setting.

You can also set other style properties for the content as you would using the
Presentation Style property. The properties are applied to the component's
content/child <div> tag.

Table 9–2 (Cont.) Properties in the Portlet Properties View

Property Value

Portlet Properties

9-10 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Offer as Remote Optional. Defines whether the portlet is accessible using the WSRP producer. The
default is true, which allows the portlet to be accessed. For more information about
entitling remote portlets, refer to the Oracle Fusion Middleware Federated Portals Guide for
Oracle WebLogic Portal.

Content Backing File Optional. If you want to use a backing file for content prior to rendering the portlet,
enter the fully qualified name of the appropriate class. That class should implement the
interface com.bea.netuix.servlets.controls.content.backing.JspBacking or extend
com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking.

Can Delete Optional. If set to true the portlet can be deleted from a page.

Can Float Optional. If set to true the portlet can be floated into a separate window. For
instructions on creating a floatable Java portlet, which requires editing the
weblogic-portlet.xml file, in Section 6.20, "Adding an Icon to a Java Portlet."

Can Maximize Optional. If set to true the portlet can be maximized.

Can Minimize Optional. If set to true the portlet can be minimized.

Edit Path Optional. The path (relative to the project) to the portlet's edit page.

Help Path Optional. The path (relative to the project) to the portlet's help file.

Icon Path Optional. The path (relative to the project) to the graphic to be used in the portlet title
bar. You must create a skeleton to support this property.

Content Path Required. The path (relative to the project) to the JSP, HTML, or .java file to be used
for portlet's mode content, such as the edit page. For example, if the content is stored in
Project/myportlets/editPortlet.jsp, the Content URI is /myportlets/editPortlet.jsp.

Although a Browse button appears for this property, if you want to point to a page flow
you must manually enter the path to the .java.

Error Path Optional. The path (relative to the project) to the JSP, HTML, or .java file to be used
for the error message if the portlet's mode page cannot be rendered. For example, if the
error page is stored in Project/myportlets/errorPortletEdit.jsp, the Content URI is
/myportlets/errorPortletEdit.jsp.

Although a Browse button appears for this property, if you want to point to a page flow
you must manually enter the path to the .java.

Visible Optional. Makes the mode icon (such as the edit icon) in the title bar or menu invisible
(false) or visible (true). Set Visible to false when, for example, you want to provide
an edit URL in a desktop header.

Name Optional. Displayed when you select an individual mode. An optional name for the
mode, such as Edit.

Presentation Class This property is described in the Oracle Fusion Middleware Portal Development Guide for
Oracle WebLogic Portal.

Presentation ID This property is described in the Oracle Fusion Middleware Portal Development Guide for
Oracle WebLogic Portal.

Presentation Style This property is described in the Oracle Fusion Middleware Portal Development Guide for
Oracle WebLogic Portal.

Properties Optional. A comma-delimited list of name-value pairs to associate with the object. This
information can be used by skeletons to affect rendering.

Skeleton URI This property is described in the Oracle Fusion Middleware Portal Development Guide for
Oracle WebLogic Portal.

Connection
Establishment Timeout

Optional. The number of milliseconds after which this portlet will time out when
establishing an initial connection with its producer.

Table 9–2 (Cont.) Properties in the Portlet Properties View

Property Value

Portlet Properties

Developing Portlets 9-11

Connection Timeout Optional. The number of milliseconds after which this portlet will time out when
communicating with its producer, after the physical connection has been established. If
not specified here, the default value contained in the file
WEB-INF/wsrp-producer-registry.xml is used.

Group ID Optional. This value is assigned by the producer and is not editable. Portlets with the
same Group ID from the same producer can share sessions. The Group ID value is
meaningful only to the producer and not manipulated by WebLogic Portal.

Invoke Render
Dependencies

This boolean property allows the consumer to obtain render dependencies from the
producer during the pre-render life cycle of a proxy portlet.

When a portlet on a producer has a lafDependenciesUri value, the producer
exposes the invokeRenderDependencies boolean in the portlet description. For
more information on this attribute, refer to Section 9.5.1, "Portlet Dependencies."

Note: Provide an absolute path for the lafDependenciesUri attribute, rather than a
relative path.

The value defaults to false if the attribute is not included in the .portlet file. The
value is read-only, and is initialized from the producer whenever a proxy portlet is
generated from the portlet wizard.

Portlet Handle Required. The producer's unique identifier for the portlet that this proxy references. The
value is not editable.

Producer Handle Required. The producer's unique identifier.

Templates Stored in
Session

Indicates whether the producer stores URL templates in the user's session on the
producer side. This boolean is meaningful only when URL Template Processing boolean
is set to true.

URL Template
Processing

Indicates whether the producer uses URL templates to create URLs. If true, the
consumer supplies URL templates. If false, the producer rewrites URLs using special
rewrite tokens.

User Context Stored In
Session

Required. The purpose of this value is to cut down on network traffic by sending the
user's context (including the profile) only once per session. For WebLogic Portal
producers it will always be true. For third party producers it can be true or false,
depending on the response from GetServiceDescription. If it is false, the entire user
context will be sent on every getMarkup and performBlockingInteraction request. If
true it will be sent only once per producer session.

This boolean value defaults to false if the attribute is not included in the .portlet
file.

The value is read-only, and is initialized from the producer whenever a proxy portlet is
generated from the portlet wizard.

Listen To (Deprecated) Allows this portlet to invoke an action when another portlet invokes the
same action. This functionality has been replaced with the more complete interportlet
communication mechanism. For more information on interportlet communication, refer
to Chapter 12, "Configuring Local Interportlet Communication."

Struts Action The begin action that this struts portlet should invoke on the first request to the portlet.

Note: Apache Struts is also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations" in the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

Table 9–2 (Cont.) Properties in the Portlet Properties View

Property Value

Portlet Preferences

9-12 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

9.2 Portlet Preferences
Portlet preferences provide the primary means of associating application data with
portlets. This feature is key to personalizing portlets based on their usage. This section
describes portlet preferences in detail.

After you create a portlet, you can instantiate it several times. Because you can create
several instances of a portlet, it is natural to expect each instance to behave differently
yet use the same code and user interface. For instance, consider a typical portlet to
display a Stock Portfolio. Given a list of stock symbols, this portlet retrieves quotes
from a stock quote web service periodically, and displays the quotes in the portlet
window. By letting each user change the list of stock symbols and a time interval to
reload the quote data, you can let each user customize this portlet.

The portlet needs to be able to store the list of stock symbols and the retrieval interval
persistently, and update these values whenever a user customizes these values. In
particular, the following data must be persistently managed:

■ Default Values – Your portlet may specify a default list of stock symbols and a
reasonable retrieval interval. These values are applicable to all usages of the
portlet no matter who the user is. The user could even be anonymous.

■ Customized Values – Your portlet also needs to be able to store these values when
a user updates the values for a given portlet instance. Note that your portlet
should also scope this data to an instance, such that other instances of this portlet
are not affected by this customization.

Technically, a portlet preference is a named piece of string data. For example, a Stock
Portfolio portlet could have the following portlet preferences:

■ A preference with name "stockSymbols" and value "ORCL, MSFT"

■ Another preference with name "refreshInterval" and value "600" (in seconds).

You can associate several such preferences with a portlet. WebLogic Portal provides
the following means to manage portlet preferences:

■ Specify portlet preferences during the development phase

When you are building a portlet using the Oracle Enterprise Pack for Eclipse
workbench, you can specify the names and default values of preferences for each
portlet. All portlet instances derived from this portlet will, by default, assume the
values specified during development.

■ Let administrators modify portlet preferences

WebLogic Portal allows portal administrators to modify preferences for a given
portlet instance.This task occurs during the staging phase and uses the WebLogic
Portal Administration Console.

Struts Module The struts module that is associated with this struts portlet.

A "struts module" is a means of scoping a particular set of struts actions to a group
called a module, which generally maps to a single subdirectory of web resources and a
separate struts-config.xml file.

Struts Refresh Action Optional. The action to be performed in the struts module when the page is refreshed
but the portlet itself is not targeted.

Content Url Required. The content control takes a URI that is expected to be a URL for a standalone
application or web page, and embeds the URL as portlet content.

Table 9–2 (Cont.) Properties in the Portlet Properties View

Property Value

Portlet Preferences

Developing Portlets 9-13

■ Let portlets access and modify preferences at request time

At request time, your portlets can programmatically access and update
preferences using a javax.portlet.PortletPreferences object. You can
create an edit page for your portlet to let users update preferences, or you can
automatically update preferences as part of your normal portlet application flow.

This section contains the following topics:

■ Section 9.2.1, "Specifying Portlet Preferences"

■ Section 9.2.2, "Using the Preferences API to Access or Modify Preferences"

■ Section 9.2.3, "Portlet Preferences SPI"

■ Section 9.2.4, "Best Practices in Using Portlet Preferences"

9.2.1 Specifying Portlet Preferences
The steps to associate preferences with a portlet depend on the type of portlet you are
building. If you are using the Java Portlet API, described in Section 9.2.2.3, "Getting
and Setting Preferences for Java Portlets Using the Preferences API," the steps follow
those specified in the Java Portlet Specification. For other kinds of portlets, you can use
the Oracle Enterprise Pack for Eclipse workbench to add preferences to a portlet.

You can also allow the administrator to create new preferences using the
Administration Console. However, because the portlet developer is more likely to be
aware of how portlet preferences are used by the portlet, it is generally better to create
portlet preferences during the development phase.

9.2.1.1 Specifying Preferences for Java Portlets in the Deployment Descriptor
For portlets using Java Portlet API, you can specify preferences in the portlet
deployment descriptor according to the specification. For all portlets in a web project,
the deployment descriptor is portlet.xml, found in the WEB-INF directory of the
web project. Example 9–1 provides an example.

Example 9–1 Specifying Portlet Preferences in portlet.xml with a Single Value

<portlet>
 <description>This portlet displays a stock portfolio.</description>
 <portlet-name>portfolioPortlet</portlet-name>
 <portlet-class>portlets.stock.PortfolioPortlet </portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>edit</portlet-mode>
 </supports>
 <portlet-info>
 <title>My Portfolio</title>
 </portlet-info>
 <portlet-preferences>
 <preference>
 <name>stockSymbols</name>
 <value>ORCL, MSFT</value>
 </preference>
 <preference>
 <name>refreshInterval</name>
 <value>600</value>
 </preference>
 </portlet-preferences>
</portlet>

Portlet Preferences

9-14 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

This snippet deploys the portfolio portlet with two preferences: a preference with
name stockSymbols and value ORCL, MSFT, and another preference refreshInterval
with value 600.

Instead of specifying a single value for the stockSymbols preference, you can declare
each symbol as a separate value as shown in Example 9–2 below, with the value
elements shown in bold.

Example 9–2 Specifying Portlet Preferences with Values Specified Separately

<portlet>
 <description>
 This portlet displays a stock portfolio.
 </description>
 <portlet-name>portfolioPortlet</portlet-name>
 <portlet-class>portlets.stock.PortfolioPortlet </portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>edit</portlet-mode>
 </supports>
 <portlet-info>
 <title>My Portfolio</title>
 </portlet-info>
 <portlet-preferences>
 <preference>
 <name>stockSymbols</name>
 <value>ORCL</value>
 <value>MSFT</value>
 </preference>
 <preference>
 <name>refreshInterval</name>
 <value>600</value>
 </preference>
 /portlet-preferences>
</portlet>

If you prefer that portlets should not be allowed to programmatically update any
given preference, you can mark the preference as read-only. Example 9–3 shows an
example of preventing a portlet from changing the refreshInterval.

Example 9–3 Specifying a Read-Only Portlet Preference Value

<portlet>
 <description>
 This portlet displays a stock portfolio.
 </description>
 <portlet-name>portfolioPortlet
 <portlet-class>portlets.stock.PortfolioPortlet
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>edit</portlet-mode>
 </supports>
 <portlet-info>
 <title>My Portfolio</title>
 </portlet-info>
 <portlet-preferences>
 <preference>
 <name>stockSymbols</name>
 <value>ORCL</value>
 <value>MSFT</value>

Portlet Preferences

Developing Portlets 9-15

 /preference>
 <preference>
 <name>refreshInterval</name>
 <value>600</value>
 <read-only>true</read-only>
 </preference>
 </portlet-preferences>
</portlet>

Note that by marking a preference read-only, you are preventing the portlet from
changing the current value only at request time. Portal administrators can always
change the value(s) of a preference using the Administration Console.

9.2.1.2 Specifying Preferences for Other Types of Portlets using Oracle Enterprise
Pack for Eclipse
If you are building other kinds of portlets besides Java portlets, you can add
preferences using Oracle Enterprise Pack for Eclipse.

To add a preference, follow these steps:

1. Click to select the portlet for which you want to add a preference.

2. In the Outline view for the portlet, right-click Preferences and in the context menu
click Add Preference. Figure 9–4 shows an example of the preferences context
menu.

Figure 9–4 Portlet Preferences Context Menu

A new preference is added to the tree hierarchy with the name New Preference
Preference.

3. Click the new item to display its properties in the Properties view.

4. Edit the values in the Properties view. Figure 9–5 shows an example of the fields in
the Properties view.

Portlet Preferences

9-16 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 9–5 Portlet Preferences Properties View

Table 9–3 describes the attributes for portlet preferences as shown in the Properties
view.

9.2.1.3 Configuring Portlet Preference Deployment Options
By default, changes to portlet preferences made in a .portlet or portlet.xml are
not propagated to the WebLogic Portal Administration Console. For example, if you
change the name of a preference in a .portlet file and republish the portlet, the
name change does not appear in the Administration Console. Instead, the renamed
preference appears in the Administration Console as a new preference. For example, if
you change the name of preference Pref_1 to Pref_2 in a .portlet and republish the
portlet, in the Administration Console you will not see this name change; instead, you
will see two separate preferences show up: Pref_1 and Pref_2.

To change this default behavior, add the following sub-element to the customization
element of the netuix-config.xml file in your portal web application:

<propagate-preferences-on-deploy propagate-to-instances="true" master="file"/>

For example:

<customization>
 <enable>true</enable>
 <exclude-dir dir="/portlets_excluded" />
 <propagate-preferences-on-deploy propagate-to-instances="true" master="file"/>
</customization>

With this setting, changes you make to a portlet preference in a .portal or
portlet.xml file will be propagated to the Administration Console. Changes made
to the attributes Name, Modifiable, Multi-valued, and Value are propagated.

Table 9–3 Portlet Preference Properties

Field Value

Modifiable Indicates whether the preference is read-only or can be modified by the user. The default is
true.

Multi Valued Indicates whether the preference can have multiple values. The default is true.

To specify multiple values for a preference, create multiple preferences with the same name.

Description A brief description of the preference.

Name Name of the preference.

Value Each preference can have one or more values. Each value is of type java.lang.String.

Portlet Preferences

Developing Portlets 9-17

9.2.2 Using the Preferences API to Access or Modify Preferences
At request time, portlet preferences for a given portlet are represented as instances of
the javax.portlet.PortletPreferences interface. This interface is part of the
Java Portlet API. This interface specifies methods to access and modify portlet
preferences.

9.2.2.1 Getting Preferences Using the Preferences API
Table 9–4 describes methods that allow a portlet to access its preferences.

9.2.2.2 Setting Preferences Using the Preferences API
Table 9–5 describes methods that allow a portlet to change preference values.

After modifying preferences by calling setValue(), setValues() and reset() methods,
you must call store() explicitly to make the changes permanent; otherwise, changes
will not be made permanent.

9.2.2.3 Getting and Setting Preferences for Java Portlets Using the Preferences
API
For portlets written using the Java Portlet API, you can obtain an instance of
javax.portlet.PortletPreferences object from the incoming portlet request –
javax.portlet.RenderRequest within the processAction() method, or
javax.portlet.ActionRequest within the render() method.

In Example 9–4, the portlet displays a form to edit the current values of portlet
preferences in a JSP page included from the doEdit() method of the portfolio portlet.

Table 9–4 Methods that Allow a Portlet to Access its Preference Values

Method Purpose

String getValue(String name, String default) Use this method to get the first value of a preference.

String[] getValues(String name, String[] defaults) Use this method to get all the values of a preference.

boolean isReadOnly(String name) Use this method to determine whether a given preference is
read-only.

Enumeration getNames() Use this method to get an enumeration of the names of all
preferences.

Map getMap() Use this method to get a map of preferences. The keys in this
map are the names of all the preferences, and the values are
the same as those returned by getValues(String name,
String[] defaults)

Table 9–5 Methods that Allow a Portlet to Change Preference Values

Method Purpose

void setValue(String name, String value) Use this method to set the value of a preference

void setValues(String name, String[] values) Use this method to set several values for a preference

void store() Use this method to commit the changes made to preferences for a
portlet.

void reset(String name) Use this method to reset the value of a preference to its default, or
remove the preference if there is no default

Portlet Preferences

9-18 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Example 9–4 Portlet Displays a Form to Edit Preferences

<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet"%>
<%@ page import="javax.portlet.PortletPreferences" %>

<portlet:defineObjects/>

<%
 PortletPreferences prefs = renderRequest.getPreferences();
 String refreshInterval = prefs.getValue("refreshInterval", "600");
 String symbols = prefs.getValue("stockSymbols", "ORCL, MSFT");
%>

<form method="POST" action="">
 <table>
 <tr>
 <td>Symbols</td><td><input name="symbols"
 value="<%=symbols>"/></td>
 </tr>
 <tr>
 <td>Refresh Interval</td><td><input name="refreshInterval"
 value="<%=refreshInterval>"/></td>
 </tr>
 <tr>
 <td></td>
 <td><input type="submit" value="Submit"/></td>
 </tr>
 </table>
</form>

The portlet updates the preferences in its processAction() method, as shown in
Example 9–5.

Example 9–5 Portlet Updates the Preferences in the processAction() Method

public class PortfolioPortlet extends GenericPortlet
{
 {
 public void doEdit(RenderRequest renderRequest, RenderResponse
 renderResponse)
 throws IOException, PortletException
 {
 ...
 }
 public void processAction(ActionRequest actionRequest, ActionResponse
 actionResponse)
 throws PortletException
 {
 String refreshInterval =
 actionRequest.getParameter("refreshInterval");
 String symbols = actionRequest.getParameter("stockSymbols");

 PortletPreferences prefs = actionRequest.getPreferences();
 prefs.setValue("refreshInterval", refreshInterval);
 prefs.setValue("stockSymbols", symbols);
 try
 {
 prefs.store();
 }
 catch(SecurityException se) {
 // Thrown when the user does not have enough privileges to store

Portlet Preferences

Developing Portlets 9-19

 // preferences. Make sure that the user logged into the portal.
 ...
 }
 catch(catch(IOException ioe) {
 // There is an error storing preferences
 ...
 }
 }
}

During processAction(), this portlet uses the javax.portlet.ActionRequest
object to obtain preferences.

9.2.2.4 Getting and Setting Portlet Preferences Using the API for Other Portlet
Types
Portlet preferences can be accessed and updated from other kinds of portlets too. The
main difference is in the way your portlets obtain an instance of the
javax.portlet.PortletPreferences object.

■ Before rendering, portlets can use
com.bea.netuix.servlets.controls.portlet.PortletBackingContex
t to obtain portlet preferences; for example, in a page flow action, or in the
handlePostbackData() method of the backing file associated with the portlet.

■ During the render phase portlets can use
com.bea.netuix.servlets.controls.portlet.PortletPresentationC
ontext to obtain portlet preferences; for example, in a JSP associated with a page
flow.

Both these classes provide a method getPortletPreferences(HttpServletRequest req)
that takes javax.servlet.HttpServletRequest as an argument and return an
object of type javax.portlet.PortletPreferences. For more information, see
Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal .

9.2.2.5 JSP Tags for Getting Portlet Preferences
WebLogic Portal provides a JSP tag library for setting up portlet preferences. Table 9–6
describes the applicable JSP tags.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Table 9–6 JSP Tags for Getting Portlet Preferences

Method Purpose

getPreference Use this tag to get the value of a portlet preference.

getPreferences Use this tag to get all the values of a portlet preference. This tag can also
used to write multiple values to the output separated by a separator.

Portlet Preferences

9-20 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

For more information on the Java classes associated with these tags, refer to the Oracle
Fusion Middleware Java API Reference for Oracle WebLogic Portal

9.2.3 Portlet Preferences SPI
In WebLogic Portal, the framework includes a default implementation that manages
portlet preferences in the built-in PF_PORTLET_PREFERENCE and PF_PORTLET_
PREFERENCE_VALUE database tables. If desired, you can replace this
implementation with your own.

You can use the Portlet Preferences SPI to allow portal applications to manage portlet
preferences outside framework-managed database tables. For example, you can store
preferences along with other application data in another back-end system or a
different set of database tables.

When propagating a portal, the preferences SPI participates in the propagation
process. When you exporting data for the propagation, the SPI is called to obtain the
preferences, and when you are importing data, the SPI is called to store the
preferences.

The following sections describe how to use the Portlet Preferences SPI.

9.2.3.1 Implement the SPI
You specify the SPI using the interface
com.bea.portlet.prefs.IPreferenceAppStore. An implementation of this
class must be deployed as a EJB jar file.

Example 9–6 provides an example.

Example 9–6 Implementing the SPI Using the Interface IPreferencesAppStore

public interface IPreferenceAppStore extends EJBObject
{
 /**
 * Returns preferences for a portlet entity with the given uniqueId.
 *
 * The returned java.util.Map contains
 * com.bea.netuix.application.prefs.Preference
 * objects keyed against their names.</p>
 *
 * @param uniqueId unique ID
 * @return preferences
 */
 public Map getPreferences(PortletPreferencesId uniqueId) throws
 RemoteException, PreferenceAppStoreException;

 /**

forEachPreference Use this tag to iterate through all the preferences of a portlet. You can
nest other tags (getPreference, getPreferences, ifModifiable and Else)
inside this tag.

ifModifible Use this tag to include the body of this tag if the given portlet preference
is not read-only.

else Use this tag in conjunction with the ifModifiable tag to include the body
of this tag if the given portlet preference is read-only

Table 9–6 (Cont.) JSP Tags for Getting Portlet Preferences

Method Purpose

Portlet Preferences

Developing Portlets 9-21

 * Writes the preferences to the underlying persistence.
 *
 * This method should be implemented to be atomic. That is, the
 * implemenation should guarantee that either all preference
 * values are persisted or none at all.
 *
 * The java.util.Map argument should contain
 * com.bea.netuix.application.prefs.Preference
 * objects keyed against their names.
 *
 * @param uniqueId unique ID
 * @param preferences preferences
 */
 public void storePreferences(PortletPreferencesId uniqueId,
 Map preferences) throws RemoteException, PreferenceAppStoreException;

 /**
 * Clear all preferences for the given unique ID from the
 * underlying persistence store.
 *
 * @param uniqueIds unique IDs
 */
 public void removePreferences(PortletPreferencesId[] uniqueIds) throws
 RemoteException, PreferenceAppStoreException;
}

9.2.3.2 Using the SPI
To cause the framework to use a new SPI in place of the default SPI, you must update
the EJB named PreferencePersistenceManager in the ejb-jar.xml file within
netuix.jar. The value BEA_netuix.DefaultStore must be changed to the name
of the SPI EJB as specified in its deployment descriptor (ejb-jar.xml). The value
com.bea.portlet.prefs.provider.DefaultStoreHome must be changed to
the home interface of the SPI implementation.

The code segment in Example 9–7 shows the default entries, which you must change
to use the SPI.

Example 9–7 Example Code Showing Default Entries that Must be Changed

<session>
 <ejb-name>PreferencePersistenceManager</ejb-name>
 <home>com.bea.portlet.prefs.PreferencePersistenceManagerHome</home>
 <remote>com.bea.portlet.prefs.PreferencePersistenceManager</remote>
 <ejb-class>com.bea.portlet.prefs.PreferencePersistenceManagerImpl
 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <env-entry-name>prefs-spi-jndi-name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

Caution: To edit the ejb-jar.xml file you need to copy the J2EE library
resources into your project. Keep in mind that with future updates to
the WebLogic Portal product, you might have to perform manual
steps in order to incorporate product changes that affect those
resources.

Portlet Preferences

9-22 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 <env-entry-value>BEA_netuix.DefaultStore</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>prefs-spi-home-class-name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>com.bea.portlet.prefs.provider.DefaultStoreHome
 </env-entry-value>
 </env-entry>
<!-- Snip -->
</session>

9.2.4 Best Practices in Using Portlet Preferences
This section discusses best practices in using portlet preferences.

9.2.4.1 Desktop Testing of Portlet Preferences
In order to view and test the preferences that you have created, you must use a
desktop view from the WebLogic Portal Administration Console rather than Oracle
Enterprise Pack for Eclipse's Open on Server view.

Portlets accessed from .portal files cannot store preferences. If you update a
preference using a .portal file, your portlet encounters a
java.lang.UnsupportedOperationException error.

9.2.4.2 Users Must be Authenticated
You must provide a means for users to log in before they can update preferences;
users who are updating portlet preferences must first be authenticated. If an
anonymous user attempts to update a portlet, a java.lang.SecurityException
error occurs.

Note that portlets can always get portlet preferences whether or not the user is
anonymous or whether the portlet is accessed via a .portal file.

9.2.4.3 Do Not Store Arbitrary Data as Preferences
It is tempting to store arbitrary application data as portlet preferences. For example, if
you have a portlet that allows users to upload and store documents on the server, it
might seem appropriate to store those documents as portlet preferences. This is not a
good practice. The purpose of portlet preferences is to associate some properties for a
portlet instance without having to be aware of any implementation-specific portlet
instance IDs. These properties allow customization of the portlet's behavior. The
underlying implementation of portlet preferences is not designed for storing arbitrary
application data.

The following steps outline an alternative implementation that can meet the needs of
the portlet:

Perform setup steps:

1. Add a preference to your portlet. This preference acts as the primary key to your
portlet's application data. Assign a default value for this preference.

2. Create tables in your database to store application data with the value of the
preference as the primary key.

Set up preferences in your portlet:

1. When you want to associate application data with the current portlet instance,
check the value of the preference. If the value is the default, generate a new value

Using Shared Parameters

Developing Portlets 9-23

(for example, using a sequence number generator), and set this as the value of the
preference, and store the preference.

2. If the value of the preference is not the default, you do not need to generate a new
value.

3. Store your application data using the value of the preference as the primary key.

This procedure ensures that your application data is always scoped to portlet
instances.

9.2.4.4 Do Not Use Instance IDs Instead of Preferences
The portal framework maintains instance identity using internally generated instance
IDs. Portlets can access their instance IDs using getInstanceId() methods on
com.bea.netuix.servlets.controls.portlet.PortletPresentationCont
ext and
com.bea.netuix.servlets.controls.portlet.PortletBackingContext.

Storing data directly in the database using portlet instance IDs does not work, for the
following reasons:

■ The portal framework generates instance IDs, and portlets have no control over
when and how those instance IDs are generated.

■ Instance IDs might change at any time without the portlet's knowledge. For
example, as the user or administrator customizes a desktop using Visitor Tools or
the Administration Console, the framework can create new instances or change
the instance ID of a portlet. If the instance ID changes, your portlet cannot load the
data from your database; the primary key has changed without your portlet being
aware of it.

9.3 Using Shared Parameters
Shared parameters permit portlets to share parameter values with other portlets,
allowing a simple form of interportlet communication. For instance, if portlet A and
portlet B are both configured to use a particular shared parameter, any changes in the
parameter's value made by portlet A will be seen by portlet B.

Shared parameters can only contain string values. Like HTTP parameters, shared
parameter can have zero or more values. A shared parameter value remains
unchanged until the portlet (or another portlet) explicitly changes it. The values of
shared parameters can be shared within a single portlet application or across multiple
portlet applications. For instance, if Portlet A sets a shared parameter, Portlet B can
read the value of that parameter, if both portlets are properly configured.

9.3.1 Setting Shared Parameters
You can set shared parameter values during the handlePostback and event-handling
portlet life cycles. You can also set shared parameters on a portlet postback URL.

To set the value of a shared parameter, the portlet must use the
PortletBackingContext.setSharedParameterValue() or

Note: Shared parameters provide the same functionality as, and
interoperability with, JSR 286 portlet public render parameters (see
also Section 6.8, "Public Render Parameters"). Shared parameters have
the same semantics as JSR 286 public render parameters.

Using Shared Parameters

9-24 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

PortletBackingContext.setSharedParameterValues() methods during handlePostback
or event-handling, or you can set a value for the parameter on any postback URL.

If the value is set using the PortletBackingContext methods, the change in value will
take effect immediately, and all other portlets using the same shared parameter will
see the new value. If set on a postback URL, the new value will take effect when the
URL is clicked on, and all portlets sharing that parameter will see the new value.

9.3.2 Accessing Shared Parameters
You can access (read) shared parameter values during the handlePostback, event
handling, preRender, and render portlet life cycles.

The current values of shared parameters can be read using the
getSharedParameterValue() and getSharedParameterValues() methods of the
PortletBackingContext class during handlePostback and event-handling. The same
methods can be called on the PortletPresentationContext class during preRender and
render portlet life cycle phases. Using these methods will ensure that the most current
value of the shared parameter is returned.

If a shared parameter is set on a postback URL, the portlet will be able to access the
value of the parameter that was set on the URL using the
HttpServletRequest.getParameter() method, but this may not be the most current
value of the parameter.

For example, assume Portlet A and Portlet B are both configured to have a shared
parameter X. Portlet A sets a value of "1" for X on one of its postback URLs, which
then gets clicked on. Portlet B has a backing file with a handlePostbackData() method,
which gets called and reads the value of X as 1, then sets the value of X to "2". When
rendering, in Portlet A a call to HttpServletRequest.getParameter("X") will return "1"
(as this is the value for parameter "X" in the request), but a call to the method
PortletPresentationContext.getSharedParameterValue("X") will return "2" (as this is the
current value for the shared parameter).

9.3.3 Persistence of Shared Parameters
Unlike "normal" portlet parameters, shared parameter values are retained until they
are explicitly set to a new value. For example, for a "normal" portlet parameter Y, if
the portlet doesn't include a value for Y in a portlet URL, when the URL is clicked on,
the portlet will see no value for Y. If the portlet sets a value for a shared parameter X
in its backing file during a handlePostback operation, the value for X will remain
accessible and constant no matter how many interactions happen with the portlet,
until the portlet (or another portlet) explicitly changes the value of the shared
parameter.

9.3.4 Creating Shared Parameters
To create a shared parameter:

1. In the Portlet Properties view, select the Shared Parameters button.

2. In the Provide List of Shared Parameter(s) dialog, select New. The Provide Shared
Parameter Components dialog appears, as shown in Figure 9–6.

Using Shared Parameters

Developing Portlets 9-25

Figure 9–6 Provide Shared Parameter Components Dialog

3. In the Provide Shared Parameter Components dialog, enter the following values:

■ Param ID – The identifier is a string that identifies the shared parameter
within the .portlet file. This identifier is the name of the parameter that this
particular portlet will use to read and set the shared parameter's value. Other
portlets may access the same shared parameter using a different name
(identifier) as long as the QName is identical.

■ QName – The QName, or qualified name, uniquely identifies the shared
parameter. The QName consists of a required local part and a namespace URI.
If you do not provide the namespace URI, the default namespace URI for the
portal application is used. Click Edit to bring up a dialog for providing
QName components. For information on QNames, see Section 12.12, "About
QNames and Aliases."

■ Aliases – You can optionally specify one or more (comma separated) alias
names. For more information about aliases, see Section 12.12, "About QNames
and Aliases."

4. Click OK in both dialogs.

Example 9–8 illustrates how to get and set shared parameters in a JSP portlet’s backing
file.

Example 9–8 Getting and Setting Shared Parameter Values

public boolean handlePostbackData(HttpServletRequest request, HttpServletResponse response)
 {
 PortletBackingContext ctx = PortletBackingContext.getPortletBackingContext(request);
 // Read the shared parameter configured with an identifier of "distanceKM"
 String kilometers = ctx.getSharedParameterValue("distanceKM");
 int km = Integer.parseInt(kilometers);

 // Set a shared parameter for the distance in meters
 ctx.setSharedParameterValue("distanceMeters", Integer.toString(km * 1000));

 return(true);
 }

Backing Files

9-26 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

9.4 Backing Files
The most common means of influencing portlet behavior within the control life cycle is
to use a portlet backing file. A portlet backing file is a Java class that can contain
methods corresponding to portal control life cycle stages, such as init() and
preRender(). A portlet's backing context, an abstraction of the portlet control itself, can
be used to query and alter the portlet's characteristics. For example, in the init() life
cycle method, a request parameter might be evaluated, and depending on the
parameter's value, the portlet backing context can be used to specify whether the
portlet is visible or hidden. For more information about backing contexts, refer to the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Backing files can be attached to portlets either by using Oracle Enterprise Pack for
Eclipse or by referencing them directly in a .portlet file.

Backing files are simple Java classes that implement the
com.bea.netuix.servlets.controls.content.backing.JspBacking
interface or extend the
com.bea.netuix.servlets.controls.content.backing.AbstractJspBack
ing interface abstract class. The methods on the interface are callbacks
corresponding to the control's lifecycle methods (refer to Section 9.4.1, "How Backing
Files are Executed") and are invoked at the same time the control’s life cycle methods
are invoked.

The following portal controls support backing files:

■ Desktops

■ Books

■ Pages

■ Portlets

■ JspContent controls (generic view controls)

The interportlet communication example in Chapter 12, "Configuring Local
Interportlet Communication" uses backing files.

This section contains the following topics:

■ Section 9.4.1, "How Backing Files are Executed"

■ Section 9.4.2, "Thread Safety and Backing Files"

■ Section 9.4.4, "Backing File Guidelines"

■ Section 9.4.4.1, "Adding a Backing File Using Oracle Enterprise Pack for Eclipse"

9.4.1 How Backing Files are Executed
All backing files are executed before and after the portal control is called. In its life
cycle, each backing file calls these methods:

■ init()

■ handlePostBackData()

■ preRender()

■ dispose()

Figure 9–7 illustrates the life cycle of a backing file.

Backing Files

Developing Portlets 9-27

Figure 9–7 Backing File Life Cycle

On every request, the following sequence occurs:

1. All init() methods are called on all backing files in depth-first order (that is, in
the order they appear in the tree). This method is called whether or not the control
(the portal, page, book, or desktop) is on an active page.

2. If the _nfpb parameter is set to true, all handlePostbackData() methods are
called.

■ If the backing file's handlePostbackData() method returns true, the
raiseChangeEvents() method is called. This method causes events to fire,
which is necessary if the backing file tries to make any state or mode changes.

3. All preRender() methods are called for all portal framework controls on an
active (visible) page.

4. The controls are called and rendered on the active page.

5. The dispose() method is called on each backing file.

9.4.2 Thread Safety and Backing Files
A new instance of a backing file is created per request, so you do not have to worry
about thread safety issues. New Java VMs are specially tuned for short-lived objects,
so this is not the performance issue it was in the past. Also, JspContent controls
support an attribute that allows you to specify whether or not the backing file is thread
safe, called Singleton Backing Instance. If this value is set to true, only one instance of
the backing file is created and shared across all requests.

Note: In the following steps, the methods are called unless items on
inactive pages have been "optimized away" if tree optimization is
enabled. For example, if tree optimization is enabled and items on an
inactive page are not included on the resulting partial control tree,
then the method is not called.

Tip: You can use the method
AbstractJspBacking.isRequestTargeted(request) to determine if a
request is for a particular portlet.

Backing Files

9-28 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

9.4.3 Scoping and Backing Files
The difference between having a backing file as part of <netuix: portlet
backingfile =some_value> or part of <netuix: jspContent
backingfile=some_value> is related to scoping.

For example, if you have the backing file on the portlet itself, you can actually stop the
portlet from rendering. If the backing file is at the jspContent level, the portlet portion
of the control tree has already run; you use this implementation to run processes that
are specifically for the JSP in the portlet.

9.4.4 Backing File Guidelines
Follow these guidelines when creating a backing file:

■ Ensure netuix_servlet.jar is included in the in the project classpath;
otherwise, compilation errors occur.

■ When implementing the init() method, avoid any heavy processing, because
the init() method is called on all controls, whether they are visible or not.

Example 9–9 shows an example backing file.In this example, the
AbstractJspBacking class is extended to provide the backing functionality
required by the portlet. The example uses a session attribute because of the volatility
of the HTTPRequest object; Oracle recommends that you pass data between life cycle
methods using the session rather than the request object.

Example 9–9 Backing File Example

package backing;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
import com.bea.netuix.events.Event;
import com.bea.netuix.events.CustomEvent;
import com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;
public class ListenCustomerName extends AbstractJspBacking
{
 public void listenCustomerName(HttpServletRequest request,
 HttpServletResponse response, Event event)
 {
 CustomEvent customEvent = (CustomEvent) event;
 String message = (String) customEvent.getPayload();
 HttpSession mySession = request.getSession();
 mySession.setAttribute("customerName", message);
 }
}

9.4.4.1 Adding a Backing File Using Oracle Enterprise Pack for Eclipse
You can add a backing file to a portlet either from within Oracle Enterprise Pack for
Eclipse or by coding it directly into the file to which you are attaching it. In Eclipse,
you can specify the backing file in the Backing File field of the Properties view, as
shown in Figure 9–8. You need to specify the backing directory and, following a
dot-separator, only the backing file name. Do not include the backing file extension; for
example enter this:

backing.ListenCustomerName

Not this:

Backing Files

Developing Portlets 9-29

backing.ListenCustomerName.java

For the preceding example, if you include the file extension, the application interprets
it as the file name—because the file path is specified by a dot-separator—and looks for
a non-existent file called java in a non-existent directory called
ListenCustomerName.

Figure 9–8 Adding a Backing File Using Oracle Enterprise Pack for Eclipse

The Portlet Wizard provides an optional Assign Supporting Files step, shown in
Figure 9–9. This step lets you add a backing file and/or a render dependencies file to
your portlet when you create it.

Figure 9–9 Assign Supporting Files Dialog

9.4.4.2 Adding the Backing File Directly to the .portlet File
To add the backing file by coding it into a .portlet file, use the backingFile
parameter within the <netuix:jspContent> element, as shown in Example 9–10.

Example 9–10 Adding a Backing File to a .portlet File

<netuix:content>
 <netuix:jspContent
 backingFile="portletToPortlet.pageFlowSelectionDisplayOnly.menu.
 backing.MenuBacking"
 contentUri="/portletToPortlet/pageFlowSelectionDisplayOnly/menu/

Portlet Appearance and Features

9-30 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 menu.jsp"/>
</netuix:content>

9.5 Portlet Appearance and Features
Some aspects of portlet appearance are controlled by default at the portal level, such as
colors, layouts, and themes. Appearance/rendering characteristics and portlet-specific
features include the use of title bars and associated states (minimize, maximize, float,
and delete) and modes that affect portlet content (edit mode, help mode, and custom
modes).

The following sections describe how to work with portlet-specific appearance/content
features and modes:

■ Section 9.5.1, "Portlet Dependencies"

■ Section 9.5.2, "Portlet Modes"

■ Section 9.5.3, "Creating Custom Modes"

■ Section 9.5.5, "Portlet States"

■ Section 9.5.6, "Portlet Title Bar Icons"

■ Section 9.5.7, "Portlet Height and Scrolling"

9.5.1 Portlet Dependencies
This section explains discusses portlet dependency files (also called render
dependency files), a feature that lets you specify resources that are required for
rendering a portlet.

This section contains the following topics:

■ Section 9.5.1.1, "Introduction"

■ Section 9.5.1.2, "Identifying Portlet Dependencies"

■ Section 9.5.1.3, "Creating, Editing, and Adding a Dependency File"

■ Section 9.5.1.4, "Example Dependency Files"

■ Section 9.5.1.5, "Considerations and Limitations"

■ Section 9.5.1.6, "Scoping JavaScript Variables and CSS Styles"

■ Section 9.5.1.7, "Rewriting Resource URLs"

9.5.1.1 Introduction
In a rendered HTML page, the proper place to include most types of resources, such as
script files or style sheet references, is in the header of the document. Portlets
sometimes need to specify resources that are required for rendering the portlet in the
page. In the past, methods for making required elements available on the page
included placing elements into the skeleton, which is not recommended because this

Note: You can also add render dependency files to books and pages.
For details, see "Adding Render Dependencies to Books and Pages" in
the Oracle Fusion Middleware Portal Development Guide for Oracle
WebLogic Portal.

Portlet Appearance and Features

Developing Portlets 9-31

creates a coupling between the skeleton and the portlet; or putting references directly
in the portlet content, leading to the possibility of creating invalid HTML.

The problem was exacerbated in a federated (WSRP) environment because remote
portlets are potentially included in several places and there was no way for one of
these portlets to indicate that it relies on, for example, a piece of a CSS that resides in
an external file.

WebLogic Portal now provides an explicit way to handle this requirement, using the
portlet dependencies feature.

The concepts related to skin and skeleton resource dependencies are more formally
known as render dependencies and script dependencies. Typical examples of such
dependencies are CSS files and JavaScript files.

Both skins and skeletons can now specify such dependencies as well as associated
search paths to be used for resolving these dependencies. Additionally, mechanisms
exist to eliminate redundancy and to provide a reliable ordering for dependencies
related to skins, skeletons, and theme skin and skeletons. These same capabilities are
available for portlets, as well as books and pages, so that a portlet can specify
necessary dependencies in a standards-compliant way; you identify these
dependencies using appropriate elements located in the head section of the rendered
page. The other advantages of the Look & Feel dependencies framework are also
realized at a portlet level, such as reliable ordering and redundancy elimination.

9.5.1.2 Identifying Portlet Dependencies
The configuration of portlet dependencies shares the same mechanisms as the
standard Look & Feel—you use an XML configuration document conforming to a
standard Look & Feel schema. This XML document is referenced from a .portlet
file using an attribute on the portlet element.

As with a Look & Feel's render dependencies, you can resolve a portlet's render
dependencies utilizing a set of application search paths. Additionally, the search paths
of the Look & Feel skin, or any appropriate Theme skin, are used before the portlet's
own search paths to resolve a portlet's render dependencies.

You can specify a portlet's dependencies configuration file in the Oracle Enterprise
Pack for Eclipse Properties view by entering the value in LAF Dependencies Path field.
Alternatively, you can add the attribute lafDependenciesUri to the portlet element
in a .portlet file, as shown in the following example:

<netuix:portlet definitionLabel="myPortlet" title="My Portlet"
lafDependenciesUri="/portlets/example/myPortlet.dependencies">

By convention, you should adhere to the following guidelines when setting up a
portlet's dependencies configuration file:

■ Give the file the same name as the .portlet file.

■ Assign the file a .dependencies extension.

■ Locate the file at the same level in the file hierarchy as the .portlet file.

Tip: You can add multiple dependencies files to a portlet by
specifying a comma-separated list of paths in the
lafDependenciesUri attribute.

Portlet Appearance and Features

9-32 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Although the guidelines listed here are not required, deviating from them can lead to
unexpected behavior. For more information, refer to Section 9.5.1.5, "Considerations
and Limitations."

The portlet dependencies configuration file uses standard types from the standard
Look & Feel schemas and looks similar to the example shown in Example 9–11.

Example 9–11 Portlet Dependencies Configuration File Example

<?xml version="1.0" encoding="UTF-8"?>
<p:window
xmlns:p="http://www.bea.com/servers/portal/framework/laf/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0.0
laf-window-1_0_0.xsd ">
 <p:render-dependencies>
 <p:html>
 <p:links>
 <p:search-path>
 <p:path-element>.</p:path-element>
 </p:search-path>
 <p:link rel="stylesheet" type="text/css" href="my.css"/>
 </p:links>
 </p:html>
 </p:render-dependencies>
</p:window>

The configuration file shown in Example 9–11 causes a CSS file to be included in the
rendered page output (as a link element in the HTML head section). First, the search
occurs for the CSS file relative to the Look & Feel or Theme skin search paths for the
links element. If the CSS file is not found, then the search path in the configuration file
is used. Relative search paths use the directory of the configuration file as a base.

The default behavior is to look first in the Look & Feel or Theme–specified search
paths. This behavior allows a Look & Feel/Theme the ability to properly skin portlet
resources. However, portlet-level resources should not be placed in the Look &
Feel/Theme directories. If a situation arises when you do not want to use this
behavior, you can disable it by specifying a value of false for the use-skin-paths
attribute on the render-dependencies element.

9.5.1.3 Creating, Editing, and Adding a Dependency File
You can use the New Render Dependencies dialog box in Oracle Enterprise Pack for
Eclipse to create a valid dependency file that you can then complete using Oracle
Enterprise Pack for Eclipse's XML editor.

WLP provides several ways to access the New Render Dependencies dialog box. This
dialog lets you create a Render Dependencies file (a .dependencies file) in the web
project.

You can attach multiple dependencies files to a portlet, book, or page. You can set the
Render Dependencies Path for a portlet, book, or page to be a comma-delimited list of
paths. All of the dependencies files in those multiple paths will be used to resolve
dependencies. This feature includes filtering to avoid duplicates so that the same
artifacts are not injected multiple times in the markup.

Tip: For example dependency files, see Example 9–11, Example 9–12,
and Example 9–13.

Portlet Appearance and Features

Developing Portlets 9-33

The following actions bring up the New Render Dependencies dialog. This dialog lets
you create a render dependency file. You can then associate the file with a portlet with
the portlet’s Render Dependencies Path property.

■ Right-click in the main body of a portlet in the portlet editor and select Create
Render Dependency File. This brings up the New Render Dependencies Dialog,
which lets you create the file.

■ Select File > New > Other > WebLogic Portal > Markup Files > Render
Dependencies. This brings up the New Render Dependencies Dialog, which lets
you create the file.

■ In the portlet Properties view, edit the Render Dependencies Path property. The
Properties view provides a button that brings up the New Render Dependencies
dialog.

■ Use the Assign Supporting Files page of the New Portlet Wizard to create a
dependencies file. See Section 5.5, "Assigning Supporting Files."

You can also create a dependency file from scratch as follows:

1. Select File > New > Other.

2. In the New dialog, open the XML folder and select XML. The New XML File
wizard opens.

3. Choose Create XML From XML Schema File and click Next.

4. Enter a name for the XML file in the XML File Name dialog and click Next.

5. In the Select XML Schema File dialog, choose Select XML Catalog Entry and in
the Key column select laf-window-1_0_0.xsd as the schema. Click Next.

6. In the Select Root Element dialog, choose the root element window.

7. Optionally check the boxes that add optional attributes/elements to your new
XML file.

8. Click Finish.

9. Rename the generated file's extension from .xml to .dependencies.

You can use the Oracle Enterprise Pack for Eclipse XML editor to add elements and
attributes to the dependency file. Right-click on an element and use the menu to select
child elements and add attributes. As shown in Figure 9–10, valid choices based on the
schema file are automatically populated in the menu.

Note: The .dependencies file must reside in a WebLogic Portal
framework project, within the web content folder (typically named
WebContent).

Portlet Appearance and Features

9-34 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 9–10 Editing a Dependencies File

9.5.1.4 Example Dependency Files
This section includes the following examples:

■ Section 9.5.1.4.1, "Including JavaScript in a Render Dependencies File"

■ Section 9.5.1.4.2, "Including Meta and Style Elements in a Render Dependencies
File"

9.5.1.4.1 Including JavaScript in a Render Dependencies File Example 9–12 illustrates how
to include both an external JavaScript file as well as an embedded script.

Example 9–12 Including JavaScript

<p:window
 xmlns:p='http://www.bea.com/servers/portal/framework/laf/1.0.0'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xsi:schemaLocation='http://www.bea.com/servers/portal/framework/laf/1.0.0
 laf-window-1_0_0.xsd '>
 <p:render-dependencies>
 <p:html>
 <p:scripts>
 <p:search-path>
 <p:path-element>.</p:path-element>
 </p:search-path>
 <p:script type='text/javascript' src='my.js'/>
 <p:script type='text/javascript'>
 alert('hello world');
 </p:script>
 </p:scripts>
 </p:html>
 </p:render-dependencies>
</p:window>

9.5.1.4.2 Including Meta and Style Elements in a Render Dependencies File Example 9–13
shows the use of both the metas and styles elements. The metas element lets you
specify HTML meta tags, and the styles element lets you embed HTML style tags.

Tip: Source view of the XML editor. Simply hover the mouse pointer
over the element and a help pop-up appears. Also, in the Source view,
you can click in an element and press F2 to display the help pop-up.

Portlet Appearance and Features

Developing Portlets 9-35

Example 9–13 Use of Meta and Styling Elements

<p:window
 xmlns:p='http://www.bea.com/servers/portal/framework/laf/1.0.0'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xsi:schemaLocation='http://www.bea.com/servers/portal/framework/laf/1.0.0
 laf-window-1_0_0.xsd '>
 <p:render-dependencies>
 <p:html>
 <p:metas>
 <p:meta name='keywords' content='pirate, ninja'/>
 </p:metas>
 <p:styles>
 <p:style type='text/css'>
 div.myClass {
 background-color: red;
 }
 </p:style>
 </p:styles>
 </p:html>
 </p:render-dependencies>
</p:window>

9.5.1.5 Considerations and Limitations
At this time, Oracle Enterprise Pack for Eclipse does not provide editing capabilities
for portlet render dependencies configuration files; you can use the included
Eclipse-based XML file editor for this purpose.

Oracle recommends that you not share a single .dependencies file across several
portlets. Although WebLogic Portal does not prevent this usage, sharing a single file
might lead to confusion when coordinating updates to the file later.

9.5.1.6 Scoping JavaScript Variables and CSS Styles
Whenever you place multiple instances of a portlet on a page, you can encounter
scoping problems with JavaScript variables and CSS styles. For example, if a portlet
includes inlined JavaScript and you place two instances of that portlet on a page, it is
possible that changing a JavaScript variable in one portlet will affect the other portlet.

To ensure that JavaScript and CSS styles are scoped to a specific portlet instance, add
the token wlp_rewrite_ to the front of the variable or style class name. When the
portlet is rendered, this token is replaced by the portlet instance label, which is unique
for each portlet instance.

For example, to ensure portlet instance-level scoping of a JavaScript variable called
stockQuote that is defined in a .js file that is referenced from a .dependencies
file, you need to append wlp_rewrite_ to the front of the variable name:

var wlp_rewrite_stockQuote

To ensure portlet instance-level scoping of a CSS class name called portlet_bg that
is defined in a .css file that is referenced from a .dependencies file, you need to
append wlp_rewrite_ to the front of the class name. For example:

.wlp_rewrite_portlet_bg { background_color:white; }

In both of these cases, the wlp_rewrite_ token is replaced by the portlet's instance
label, which is a unique identifier.

Portlet Appearance and Features

9-36 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

9.5.1.7 Rewriting Resource URLs
Some portals have several look and feels that include resources that are named the
same. For example, look and feel ABC and XYZ might both have a graphic called
logo.gif. As a portlet developer, you do not know which look and feel a portal
administrator or user might choose. To avoid hard coding pathnames to resources in
your portlets, you can enclose the resource name with the wlp_rewrite? and
/wlp_rewrite tokens. For example, the following image source is hard coded:

To avoid associating the resource path with a particular look and feel (for example,
/bighorn), you can do this:

When you use these tokens, WebLogic Portal searches for the named resource using
the same mechanism it uses to search for resources associated with the currently
specified look and feel. This means that whichever look and feel is selected, the correct
graphics will be retrieved (assuming that the named graphic exists for that look and
feel). If the resource cannot be found in the scope of the current look and feel, the
original value specified will be used as-is (for example,
titlebar-button-help.gif).

9.5.2 Portlet Modes
All portlets created with WebLogic Portal support the use of modes. Modes allow you
to affect the end user's ability to edit the portlet or display Help for the portlet. You
add icon buttons to a portlet's title bar to indicate the availability of a mode.

The following pre-defined modes exist for WebLogic Portal:

■ Edit – Lets you specify a custom file that lets users modify the portlet's content
when they click the Edit button.

■ Help – Lets you specify a custom file that shows users help content for the portlet
when they click the Help button.

You can also create your own custom portlet modes using WebLogic Portal.

Buttons for the selected modes appear in the portlet's title bar. Figure 9–11 shows an
example of the default buttons for the portlet modes when displayed in the editor;
Figure 9–12 shows the appearance of the mode icons in a running portlet.

Note: The scoping mechanism described in this section only works
for .css and .js files that are referenced with the content-uri
dependency file attribute. Files linked with the src attribute or the link
tag will not be rewritten.

Portlet Appearance and Features

Developing Portlets 9-37

Figure 9–11 Portlet Mode and State Buttons in Editor

Figure 9–12 Portlet Mode and State Buttons in a Running Portlet

When you use the Portlet Wizard to create a portlet, mode and state settings are
available on the Portlet Details dialog. These settings can also be edited in the portlet's
Properties view: The following sections describe possible methods of performing these
tasks.

9.5.2.1 Adding or Removing a Mode for an Existing Portlet
To add or remove the Help or Edit mode from the title bar, follow these steps:

1. Display the portlet for which you want to add or remove a mode.

2. Right-click the title bar of the displayed portlet to display the context menu.
Figure 9–13 shows an example of the title bar context menu.

Figure 9–13 Available Portlet Modes - Title Bar Context Menu

3. Click Available Modes.

Portlet Appearance and Features

9-38 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Checkmarks on the submenu indicate the available modes for this portlet, which
were determined when you created it. Figure 9–14 shows an example of the
submenu.

Figure 9–14 Portlet Mode - Available Modes Submenu

4. Click the mode for which you want to change the availability status. For example,
in Figure 9–14, the Help mode is checked (available); when you click Help, the
Help button disappears from the title bar.

5. Select File > Save to save your changes.

9.5.2.2 Properties Related to Portlet Modes
You can view and edit the mode's property details in the Properties view. For
example, you can edit the Portlet Backing File property if you want to perform
preprocessing before rendering the portlet's mode page (such as the edit page).

To display the mode properties for the portlet, click the expand/contract toggle button
in the Portlet Mode area of the portlet. Edit mode properties and Help mode
properties display in the Properties view.

For descriptions of the mode properties, refer to Table 9–7.

9.5.3 Creating Custom Modes
A custom mode is a portlet mode that you implement. Like with the help and edit
modes, a custom mode is activated with a button that appears in the portlet's title bar.
To implement a custom mode, you need to supply a display part, typically a JSP, and a
backing file. This section includes an example that explains how to create a simple
custom mode that lets a user add or remove the Maximize button from a portlet. Once
you understand the basic principles involved in writing a custom mode, you can
create a custom mode to perform the specific tasks you want.

Figure 9–15 shows the example portlet and the portlet's custom mode view. When the
user clicks the custom mode button in the example portlet on the left, the portlet
display changes to the custom mode view on the right. In this example, the custom
mode offers a way for the user to add or remove the portlet's Maximize button.

Portlet Appearance and Features

Developing Portlets 9-39

Figure 9–15 Selecting a Custom Mode

1. Create a JSP portlet in which to embed the custom mode. For information on JSP
portlets, see Section 5.4.1, "Building JSP and HTML Portlets." For this example, any
JSP portlet will suffice.

2. Create a JSP page to display the custom mode view when a user clicks the custom
mode button. For example, Example 9–14 shows a JSP for a custom mode that lets
a user add or remove the Maximize button from a portlet. The code to execute this
action is in a backing file, which is discussed next. In this example, the JSP is called
togglebutton.jsp.

Example 9–14 Sample Custom Mode JSP

<%@ page import="com.bea.portlet.PostbackURL"%>
<%
 PostbackURL url = PostbackURL.createPostbackURL(request, response);
%>
<TABLE CELLSPACING="10" ID="toggleButtonsTable">
 <TH>Using a Button and Backing File</TH>
 <TR>
 <TD>
 Click Toggle Off to remove the Maximize button from the
portlet.

 Click Toggle On to restore it.
 </TD>
 </TR>
 <TR>
 <TD>
 <FORM method="post" name="Toggle" action="<%=url.toString()%>">
 <INPUT ID="toggle_off" TYPE="SUBMIT" NAME="toggle_off" VALUE="Toggle
Off">
 <INPUT ID="do_nothing" TYPE="SUBMIT" NAME="do_nothing" VALUE="Toggle
On">
 </FORM>
 </TD>
 </TR>
</TABLE>

3. Create a backing file for the custom mode. Example 9–15 implements the
JspBacking interface and implements the preRender() method of that interface. In
this example, the preRender() method removes the Maximize button from the
portlet in response to a request. Refer to Oracle Fusion Middleware Java API
Reference for Oracle WebLogic Portal for details on the API used in this example.

Portlet Appearance and Features

9-40 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Example 9–15 Sample Backing File

package modes;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.bea.netuix.servlets.controls.content.backing.JspBacking;
import com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext;
import com.bea.netuix.servlets.controls.window.WindowCapabilities;
import com.bea.p13n.util.debug.Debug;

public class MyMode implements JspBacking {

 public void dispose() {
 }

 public boolean handlePostbackData(HttpServletRequest arg0,
 HttpServletResponse arg1) {
 return true;
 }

 public void init(HttpServletRequest arg0, HttpServletResponse arg1) {
 }

 public boolean preRender(HttpServletRequest request, HttpServletResponse
response) {
 PortletBackingContext pbc =
 PortletBackingContext.getPortletBackingContext(request);
 if (request.getParameter("toggle_off") != null)
 {
 try
 {
 pbc.setCapabilityVisible(WindowCapabilities.MAXIMIZED.getName(),
 false);
 }
 catch (NullPointerException npe)
 {
 //
 }
 }
 return true;
 }
}

4. Add a new custom mode to the portlet by dragging the New Custom Mode icon
from the Design Palette to the portlet, as shown in Figure 9–16. You will be
prompted to enter a name for the mode. You can enter a name now, or accept the
default and change the name later.

Portlet Appearance and Features

Developing Portlets 9-41

Figure 9–16 Adding a New Custom Mode

5. Open the Properties view for the custom mode. To do this, click in the Custom
Mode region of the portlet in the portlet editor, as shown in Figure 9–17. The
properties for the custom mode appear in the Properties view.

Figure 9–17 Displaying Mode Properties

6. In the Properties view, enter the path of the custom mode JSP in the Content Path
field. This is the JSP that is displayed when the mode is activated. You can find the
Content Path field in the Mode Properties section of the Properties view, as shown
in Figure 9–18.

7. In the Properties view, enter the name of the backing file class, including the full
package name. You can find the Portlet Backing File field in the Mode Properties
section of the Properties view, as shown in Figure 9–18.

Figure 9–18 Specifying a Content File and a Backing File

Portlet Appearance and Features

9-42 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

8. Test the custom mode by placing the example portlet in a portal and running it on
the server. Select the portlet's custom mode button, as shown previously in
Figure 9–15, to display the custom mode view. Click Toggle Off to remove the
Maximize button, as shown in Figure 9–19.

Figure 9–19 Testing the Example

Section 9.5.4, "Custom Mode Properties" briefly describes each of the custom mode
properties.

9.5.4 Custom Mode Properties
Table 9–7, Table 9–8, and Table 9–9 describe the mode, presentation, and toggle button
properties.

Tip: The Properties view lets you set many other custom mode
properties, such as an image for the custom mode button, a rollover
image, button text, alternate text, and others. Refer to Table 9–7 at the
end of this section for information on each of the custom mode
properties.

Table 9–7 Mode Properties

Property Value

Content Path Required. The path (relative to the project) to the file/class to be used for
the custom mode portlet's content. From the data field you can choose to
browse to a file (or class for page flow portlets) or open the currently
displayed file/class. For example, if the content is stored in
Project/myportlets/my.jsp, the Content URI is
/myportlets/my.jsp.

Error Path Optional. The path (relative to the project) to the JSP, HTML, or page flow
file to be used for the error message if the portlet's mode page cannot be
rendered. For example, if the error page is in
project/myportlets/errorPortletEdit.jsp, the Content URI is
/myportlets/errorPortletEdit.jsp.

Portlet Backing File Optional. If you want to use a class for preprocessing (for example,
authentication) prior to rendering the portlet, enter the fully qualified name
of that class. That class should implement the JspBacking interface or
extend AbstractJspBacking. From the data field you can choose to browse
to a class or open the currently displayed class.

Visible Optional. Makes the mode icon in the title bar or menu invisible (false) or
visible (true). Set Visible to false when, for example, you want to
provide an custom mode URL in a desktop header.

Portlet Appearance and Features

Developing Portlets 9-43

9.5.5 Portlet States
States determine the end user's ability to affect the rendering of a portlet. WebLogic
Portal supports these portlet states:

Normal – the typical rendered appearance of the portlet.

■ Minimize – Collapses the portlet, leaving only the title bar, when the user clicks
the Minimize button.

■ Maximize – Makes the portlet take up the entire desktop area (not including the
desktop header and footer) when the user clicks the Maximize button.

■ Float – Displays the portlet in a popup window when the user clicks the Float
button.

Table 9–8 Presentation Properties

Property Value

Presentation Class This property is described in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

Presentation ID This property is described in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

Presentation Style This property is described in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

Properties Optional. A comma-delimited list of name-value pairs to
associate with the object. This information can be used by
skeletons to affect rendering.

Skeleton URI This property is described in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

Table 9–9 Toggle Button Properties

Property Value

Activate Alternate Text Popup text that appears when the mouse pointer hovers over the custom
mode button.

Activate Image An image for the button that activates the custom mode. Place the image in
the images directory of the skin that your portal uses.

Activate Rollover Image URI Provides a rollover image for the custom mode button. Place the image in
the images directory of the skin that your portal uses.

Active Not generally used, but available for use by custom skeletons.

Alternate Text Not generally used, but available for use by custom skeletons.

Deactivate Alternate Text Popup text that appears when the mouse pointer hovers over the custom
mode button.

Deactivate Image URI An image for the button that deactivates the custom mode. Place the image
in the images directory of the skin that your portal uses.

Deactivate Rollover Image UI Provides a rollover image for the button that deactivates the custom mode.
Place the image in the images directory of the skin that your portal uses.

Image Not generally used, but available for use by custom skeletons.

Name The name of the custom mode. If specified, the name appears in the Portlet
editor view, Outline view, and Properties view. If no name is supplied, a
default name is used.

Rollover Image Not generally used, but available for use by custom skeletons.

Portlet Appearance and Features

9-44 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Delete – Removes the portlet from the desktop when the user clicks the Delete
button.

When you use the Portlet Wizard to create a portlet, state and mode settings are
available on the Portlet Details dialog. These settings can also be edited in the portlet's
Properties view: The following sections describe possible methods of performing these
tasks.

9.5.5.1 Modifying Portlet States in Oracle Enterprise Pack for Eclipse
You can select which of the states you want to include with the portlet by following
these steps:

1. Right-click the portlet title bar.

A context menu showing applicable states appears. Figure 9–20 shows an example
of the title bar context menu showing all states as available.

Figure 9–20 Portlet State - Title Bar Context Menu

2. Click to select the state that you want to change.

Selecting a state adds it to the portlet, while deselecting the state removes it from
the portlet. For example, in Figure 9–20, all four states are selected, and appear in
the title bar. If you click to deselect Deletable, the Delete button on the portlet
disappears.

3. Select File > Save to save your changes.

9.5.5.2 Minimizing or Maximizing a Portlet Programmatically
You can minimize or maximize a portlet either in the portlet file or in a portlet's
backing file. The actual code is the same for both. Here is an example of maximizing a
(Java page flow) portlet:

PortletBackingContext context =
PortletBackingContext.getPortletBackingContext(request);

context.setupStateChangeEvent(WindowCapabilities.MAXIMIZED.getName());

You can put this code in an action method of the Java page flow or in the
handlePostbackData method of the backing file. When using the backing file, in
order to get the handlePostbackData method to be called, you must have '_
nfpb=true' in the URL.

These mechanisms do not work if asynchronous content rendering is enabled for the
portlet.

Portlet Appearance and Features

Developing Portlets 9-45

9.5.6 Portlet Title Bar Icons
The default state and mode icons used in portlet title bars are stored in the
wlp-lookandfeel-web-lib J2EE Shared Library; you can view them in Merged Projects
view in the various subdirectories of framework/skins.

9.5.7 Portlet Height and Scrolling
All portlets created with WebLogic Portal support height and scrolling.

■ Height affects the portlet's displayed height on the portlet page.

■ Scrolling affects whether or not the portlet is scrollable.

You can control the height of portlets and determine whether or not their contents
scroll.

Portlet height and scrolling is controlled by the following CSS style attributes:

■ overflow: auto – Enables vertical and horizontal scrolling

■ height: 200px (where 200px is any valid HTML setting)

You can set these attributes on a portlet that is open in the workbench editor.

To set these properties, follow these steps:

1. Open a portlet in the workbench editor.

2. Click the outer border of the portlet to display the portlet properties in the
Properties view.

3. In the Properties view, set one of the following properties:

■ Presentation Style - Enter any of the previously listed attributes for this
property. You can use overflow and height. Separate the values with a
semicolon.

■ Presentation Class - Enter the name of a style sheet class that contains the
height or scrolling attributes that you want to use.

■ Content Presentation Style - Enter any of the previously listed attributes for
this property. You can use overflow and height. Separate the values with a
semicolon.

■ Content Presentation Class - Enter the name of a style sheet class that
contains the height or scrolling attributes that you want to use.

Figure 9–21 shows an example of a height property, set using Content Presentation
Style.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Note: The distinction between Presentation Style and Content
Presentation Style, for example, is the location where the styling is
applied (portlet or content). The use of one or the other depends on
the specifics of what the specific styling is trying to accomplish.

Portlet Appearance and Features

9-46 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 9–21 Portlet Height and Scrolling Presentation Properties Example

Based on the entries shown in Figure 9–21, the result looks similar to the example
in Figure 9–22.

Figure 9–22 Portlet Height and Scrolling—Portlet Appearance Results

If you use the Presentation Class property instead of the Presentation Style
property, you must have the corresponding style class defined in a CSS file.

For example, if you use the value .portlet-scroll in the Content Presentation Class
field, you must have the following style class definition already set up in your CSS
file:

.portlet-scroll
{
 overflow:auto;
 height:250px;
}

4. Select File > Save to save your changes.

9.5.7.1 Making All Portlets Scroll
To provide portlet height and scrolling automatically, you can specify an additional
rule for the standard portlet content CSS class. For example, you can do one of the
following:

■ Add a <style> element to the skin.xml file for your Look & Feel containing
this rule:

.bea-portal-window-content
{
 height: 250px;

Getting Request Data in Page Flow Portlets

Developing Portlets 9-47

 overflow: auto;
}

■ Alternatively, you can place the above rule in a custom CSS file and create a
<style> or <link> element in the skin.xml file that references the custom CSS
file.

For more information on portal skins, themes, and skeletons, refer to the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

9.6 Getting Request Data in Page Flow Portlets

A page flow stores information in the requests. If you have a portal page with multiple
page flow portlets, you need a way for each page flow to individually store and
retrieve that information. For example, the request object for a page might have a
variable car_type, with a value of x. When the page flow runs, it obtains this value and
uses it in some way. If you have another page flow portlet with a car_type value of z,
and if only one request exists for the whole page, the two page flow portlets might
interfere with each other. To prevent this problem, WebLogic Portal essentially makes
a copy of the outer (portal) request to make separate scoped requests, one for each
portlet. This gives each page flow portlet its own unique request to use to store its
information.

In some cases, you might want to use information that is stored at the outer request
rather than within the scoped request.

For example, if you use regular HTML tags within Netui form tags, you might have
something similar to this:

<netui:form action="myAction">
 <input type="check box" name="test"/>
 <netui:button value="myAction"></netui:button>
</netui:form>

Based on the tags used above, you might typically use a regular getParameter
request like this:

<%request.getParameter("test")%>

However, to get that HTML input value from the outer request, use the following:

<%@page import="org.apache.beehive.netui.pageflow.scoping.ScopedServletUtils"%>
 <%
 HttpServletRequest outerRequest = ScopedServletUtils.getOuterRequest
 (request);
 %>
 test: <%=outerReq.getParameter("test")%>

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

JSP Tags and Controls in Portlets

9-48 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

9.7 JSP Tags and Controls in Portlets
WebLogic Portal provides JSP tags that you can use within JSPs. You can view
available JSP tags in the Design Palette and then drag them into the Source View of
your JSP, and use the Properties view to edit elements of the code.

WebLogic Portal also provides custom Apache Beehive controls that make it easy for
you to quickly add pre-built modules to your portal; custom Java controls exist for
event management, Visitor Tools, Community management, and so on. For example,
most user management functionality can be easily exposed with a User Manager
Control on a page flow.

9.7.1 Viewing Available JSP Tags
When you open a JSP in Oracle Enterprise Pack for Eclipse, you can use the Design
Palette to display all the JSP tags currently loaded and available; Figure 9–23 shows a
portion of the display.

Figure 9–23 Design Palette Showing Available JSP Tags

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Note: The term control is also used to refer to the portal (netuix)
framework controls, such as desktop, book, page, and so on. These
controls are referred to in the text as portal framework controls.

JSP Tags and Controls in Portlets

Developing Portlets 9-49

To use a tag, drag it into the editor, use the Source View to edit the code directly, and
use the Properties view to set properties, as shown in Figure 9–24:

Figure 9–24 Dragging a JSP Tag into the Design View – Properties for Add User JSP Tag

For information about the Java class associated with each JSP tag, refer to Oracle Fusion
Middleware Java API Reference for Oracle WebLogic Portal.

9.7.2 Viewing Available Controls
To view the available custom controls provided by WebLogic Portal when viewing a
page flow:

1. Open an existing page flow (.java file) or create a new page flow.

For information about creating page flows using Oracle Enterprise Pack for
Eclipse, refer to the Oracle Enterprise Pack for Eclipse User's Guide.

2. If you are not already using the Page Flow Perspective, Oracle Enterprise Pack for
Eclipse asks if you want to switch to it. Do so.

3. Right-click in the source view for the Page Flow and select Insert > Control, as
shown in Figure 9–25.

Figure 9–25 Insert > Control Menu Selection

The Select Control dialog box displays, as shown in Figure 9–26.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Portlet State Persistence

9-50 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 9–26 Select Control Dialog

4. Expand the desired folder to view the custom Java controls for WebLogic Portal
that you can choose from.

After you add a custom WebLogic Portal control, all the methods in the control
become available to your Page Flow.

For more information about the custom controls provided by WebLogic Portal, refer to
the Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal. For
details about each control, refer to the Oracle Fusion Middleware Java API Reference for
Oracle WebLogic Portal. (Links to the Javadoc for each of the controls packages are
conveniently listed in the Javadoc Overview frame.)

9.8 Portlet State Persistence
You can control portlet state persistence using the persistence-enabled attribute
in the netuix-config.xml file, which is located by default in the WEB-INF
directory. Using this attribute causes the state to be saved in the WebLogic Portal
database. The attribute is set to false by default.

The following code segment shows an example of the attribute syntax:

<control-state-location>
<session persistence-enabled="true"/>
</control-state-location>

WebLogic Portal places an entry for the control tree state in the PROPERTY_KEY
table, with the following PROPERTY_SET_NAME value:

■ BEA_PORTAL_FRAMEWORK_CONTROL_TREE_STATE

9.9 Advanced Portlet Development with Tag Libraries
During the Development phase, you can use tag libraries to add features to a custom
Community or a portal web application. This section discusses the following tag
libraries:

■ The ActiveMenus JSP tag library

Advanced Portlet Development with Tag Libraries

Developing Portlets 9-51

■ The DragDrop JSP tag library

■ The DynamicContent JSP tag library

■ The UserPicker JSP tag library

See the Oracle Fusion Middleware Communities Guide for Oracle WebLogic Portal for
additional information.

9.9.1 Adding ActiveMenus
You can add the ActiveMenus JSP tag library to a custom Community or a portal
web application.

The ActiveMenus JSP tag library lets you set up a popup menu that displays when the
mouse hovers over specific text. An activemenus-config.xml file controls the
contents of each menu. The activemenus_taglib.jar file contains the
ActiveMenus tag library.

You can tie a user's capability to the ActiveMenu that you see when you hover your
mouse over an item (an Issue, for example) and hover over the arrow that appears. In
this example, if your assigned capabilities include the ability to delete items, you will
see the Delete choice.

Perform the following steps to enable ActiveMenus in a custom Community:

1. In Oracle Enterprise Pack for Eclipse, make the activemenus_taglib.jar file
available to your portal web project. When you create your portal web project, you
must enable the WebLogic Portal Collaboration check boxes.

2. Add the activemenus-config.xml file to your /WEB-INF directory in your
portal web project. Add the file by right-clicking the activemenus-config.xml
file and choosing Copy To Project. Configure the file by follow the instructions in
Section 9.9.1.1, "Configuring the ActiveMenus Tag" to edit the
activemenus-config.xml file.

3. Register the GetActiveMenusResourceServlet by adding the servlet and
servlet-mapping to the web.xml file in the /WEB-INF directory in your portal
web project. You can edit the file in Oracle Enterprise Pack for Eclipse by
double-clicking the web.xml file. Right-click the web-app line in the file and
choose Add Child > message-destination - welcome-file-list > servlet. Add
GetActiveMenusResourceServlet to the servlet-name line. Add
com.bea.apps.groupspace.servlets.GetActiveMenusResourceServle
t to the servlet-class line. See Figure 9–27 to view the edited file in Oracle
Enterprise Pack for Eclipse.

Note: You do not need to follow the procedures in this section for
GroupSpace communities. ActiveMenus are enabled by default for
GroupSpace communities. Note that the GroupSpace application is
deprecated. Oracle recommends that you consider using Oracle
WebCenter Collaboration as a foundation for collaboration.

Advanced Portlet Development with Tag Libraries

9-52 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 9–27 Editing the web.xml File in Oracle Enterprise Pack for Eclipse

The code sample in Example 9–16 shows the new information you added.

Example 9–16 Code Sample of GetActiveMenusResourceServlet

<!-- ActiveMenus Servlet Mappings -->
<servlet>
 <servlet-name>GetActiveMenusResourceServlet</servlet-name>
 <servlet-class>
 com.bea.apps.groupspace.servlets.GetActiveMenusResourceServlet
 </servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>GetActiveMenusResourceServlet</servlet-name>
 <url-pattern>GetActiveMenusResourceServlet</url-pattern>
</servlet-mapping>

4. Redeploy the application for the changes to take effect.

After you enable the ActiveMenus, you must configure the ActiveMenus tag.

9.9.1.1 Configuring the ActiveMenus Tag
To use the ActiveMenus tag, you must set up the activemenus-config.xml file
(the XSD that defines this config file is located in the activemenus_taglib.jar file
as activemenus-config.xsd). This activemenus-config.xml file file must
exist in your web application's /WEB-INF directory. Multiple menus can be set up that
consist of completely different items, styles, and icons.

Use the following sections to configure the activemenus-config.xml file:

■ Section 9.9.1.1.1, "Using The TypeInclude tag"

■ Section 9.9.1.1.2, "Using The Type Tag"

■ Section 9.9.1.1.3, "Using The TypeDefault Tag"

■ Section 9.9.1.1.4, "Using The menuItem Tag"

9.9.1.1.1 Using The TypeInclude tag Use the typeInclude tag to keep your
configuration file clean. Rather than adding the type tag (see Section 9.9.1.1.2, "Using
The Type Tag") you can add this tag and point its href attribute to an XML file

Advanced Portlet Development with Tag Libraries

Developing Portlets 9-53

(relative to the web application) that contains all of the type information. An example
of the typeInclude tag is:

<typeInclude xhref="/WEB-INF/activemenuTypes/username.xml"/>.

You can also use the type tag with the typeInclude tag in the configuration file. See
the code sample in Example 9–17.

Example 9–17 You Can Use the typeInclude Tag with the Type Tag in the
activemenus-config.xml File

<typeInclude xhref="/WEB-INF/activemenuTypes/username.xml"/>
<type>
 <menuItem>
 <param name="linkId"/>
 <action action="editLink">
 <i18nNamebundleName="com.bea.apps.groupspace.links.
 LinksPopupMenu" key="edit.link"/>
 </action>

 </menuItem>
</type>

When you point to another XML file, ensure that you namespace it correctly, as shown
in Example 9–18.

Example 9–18 Pointing to Another XML File Called username.xml

<type name="username"
 xmlns="http://www.bea.com/servers/apps/groupspace/ui/
 activemenus-config/9.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/servers/apps/groupspace/ui/
 activemenus-config/9.0">
...
</type>

9.9.1.1.2 Using The Type Tag The type tag defines the individual menus to use within
the web application. The name attribute must be unique for each menu, because the
name is how the menu is referenced when you use the ActiveMenus tag. Following is
an example of the type tag:

<type name="foo">
</type>

9.9.1.1.3 Using The TypeDefault Tag The typeDefault tag defines what displays in the
browser where the ActiveMenus tag is used. You can control the text that displays,
the style of the text, and the image that appears on the mouseover of that text (which
denotes the menu itself).

The following items display within the browser where you used the ActiveMenus
tag:

Note: The TypeDefault and MenuItem tags must be contained
within the type tag.

Advanced Portlet Development with Tag Libraries

9-54 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ The displayText Attribute – Defines the actual text that displays. If the
displayText is not defined, whatever text is placed in the display attribute of
the ActiveMenus tag appears. However, if you want to display other text, you
can specify a class and a method within that class that returns a String to display.
The following example shows how to display other text.

GetUserNameFromProfile.java

public class GetUserNameFromProfile
{
 public static String getName(String userName)
 {
 return "XXX-" + username + "-XXX";
 }
}

If you use this code, the configuration defined above, and the following
ActiveMenus tag: <activemenus display="UserName" type="foo"/>,
the following displays in the browser: XXX-UserName-XXX.

This example allows you to use the information entered in the body of the
ActiveMenus tag to look up other information to display. For instance, a
username can be used to look up a user's full name to display. The only rules
surrounding this action is that the method used for the display text is public,
static, takes in a String, and returns a String. No other information can be passed
into that method.

■ The displayTextStyle Attribute – Defines the CSS style or class that stylizes
the display text. In order for the class attribute to work correctly, the class must
be defined on the page (or the CSS file that defines the class must be imported).

■ The displayMenuImage Attribute – Defines the image that appears when the
display text is passed over with the mouse. If this tag is not defined, the default
image is used. This image is in the activemenus_taglib.jar file and is called
menu_default.gif.

■ The menuStyle Attribute – Defines the CSS style or class that stylizes the menu
itself, which can include the border or background color. For the class attribute
to work correctly, the class must be defined on the page (or the CSS file that
defines the class must be imported).

9.9.1.1.4 Using The menuItem Tag The menuItem tag defines the individual items
within the popup menu. Example 9–19 shows a code sample using the menuItem tag.

Example 9–19 The menuItem Tag

<menuItem>
 <param name="userId"/>
 <xmlHttp url="GetFirstNameServlet"/>
 <row class="menuRow" style="backround-color:red"/>
 <text class="menuText" style="color:#000000"/>
 <rowRollover class="menuRowRollover" style="background-color:green"/>
 <textRollover class="menuTextRollover" style="color:#FFFFFF"/>
</menuItem>
<menuItem>
 <javascript>

Note: The TypeDefault and MenuItem tags must be contained
within the type tag.

Advanced Portlet Development with Tag Libraries

Developing Portlets 9-55

 <name>Testing</name>
 <script>testing(this);</script>
 </javascript>
</menuItem>
<menuItem default="true" showMenuItem="false">
 <param name="q" value="foo"/>
 <link url="http://www.google.com">
 <name>Google</name>
 </link>
</menuItem>
<menuItem>
 <showMenuItem className="com.foo.CheckUserRights" methodName=
 "doesUserHaveRights">
 <rights name="can_view"/>
 <rights name="can_edit"/>
 </showMenuItem>
 <allParams/>
 <action action="addEditLink" disableAsync="true">
 <i18nName bundleName="com.foo.LinksPopupMenu" key="edit.link"/>
 </action>
</menuItem>
<menuItem>
 <allParams/>
 <dcAction action="showFeedData" dcContainerId="feedDataContainer">
 <i18nName bundleName="com.foo.LinksPopupMenu" key="show.
 feedData"/>
 </dcAction>
</menuItem>

The menuItem tag defines the individual items within the popup menu with the
following four types:

■ The javascript Element – This element can be any JavaScript that you want to
run when the user clicks this menu item. To make this more useful, you can
retrieve the values that you specify in the param tag (see the code sample below)
through custom parameters that are added to the menu item. Following is a basic
example of how to implement JavaScript.

...
 <activeMenus:activemenus display="Foo Link" type="link">
 <param name="linkId" value="${fooLink.id}"/>
 <param name="linkParent" value="${fooLink.parent}"/>
 </activeMenus:activemenus>
...

The next step is to define the custom JavaScript in your configuration file. The
JavaScript must pass in the code shown in the following sample.

...
 <type name="link">
 <menuItem>
 <allParams/>
 <javascript>
 <name>Testing</name>
 <script>fooTest(this);</script>
 </javascript>
 </menuItem>
 </type>
...

Advanced Portlet Development with Tag Libraries

9-56 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

The last step in implementing the JavaScript element is to access the values in your
JavaScript function, as shown in the following code sample.

...
 <script>
 function fooTest(object)
 {
 var linkId = object.getAttribute("linkId");
 var linkParentName = object.getAttribute("linkParent");
 }
 </script>
 ...

■ The xmlHttp Element – The xmlHttp references a servlet (which must follow all
standard servlet configuration). Whatever the servlet outputs is shown in that row
of the menu. If "" or null is returned from the xmlHttp servlet, the menu item
row does not appear in the menu. The information is retrieved through an
xmlHttp request, which allows the information to be updated without refreshing
the page. For example, you could show a user's online status that would update
without having to make a full post. The two rules that surround writing your
servlet for this is that all the processing must happen in the servlet's doPost()
method. The second rule is that the defined parameters are passed in as request
parameters. Following is an example of getting the query parameters:

String userName = request.getHeader("linkId");

■ The link Element – This static URL opens a new browser window pointed to the
defined URL. This tag can take in either a name tag or an i18nName tag (defined
below) that is displayed within the menu itself. Any defined parameters are added
to the end of the link as regular request parameters.

■ The action Element – This action name must be available to the page or portlet
that contains the ActiveMenus tag. This element runs the action within the
current browser, so you can use forwards to control your page flow. This tag can
take in a name tag or an i18nName tag (defined below) that will appear within the
menu itself. Any defined parameters passed in are available on the request as
parameters. Following is an example of retrieving these values from a page flow:

■ String linkId = getRequest().getParameter("linkId");

You can also use an attribute called disableAsync within AJAX-enabled
portlets. If you want your menu item action to submit outside of the AJAX
framework (so the page makes a full post), set this attribute to true. By default,
the attribute is set to false.

■ The dcAction Element – If you have a Dynamic Content container set up within
your page, you can set up a menu item to call an action and have it update the
Dynamic Content container. This works the same as an action menu item, and
takes in the action name to execute. The only difference is you must specify the
dcContainerId and it must correspond to a dcContainerId that is defined
within a <dc:executeContainerAction> tag on the page.

■ Other attributes and elements that you might use include the following:

– The showMenuItem Element – Add this element if you need to conditionally
show the menu item (for example, based on a set of rights for the current
user). You define a class name and a method name that determines if the
menu item should be shown. You can use multiple showMenuItem tags, each
using different classes, methods, or rights. If you use more than one tag, all
cases must be satisfied in order for the menu item to appear. For example, if

Advanced Portlet Development with Tag Libraries

Developing Portlets 9-57

the user passes nine of 10 cases, the menu item does not appear because all
cases were not passed. Example 9–20 shows how you can use the
showMenuItem tag.

Example 9–20 The CheckUserRights.java Class with the showMenuItem Tag

public class CheckUserRights
{
 public static boolean doesUserHaveRights(HttpServletRequest request,
 String[] rights)
 {
 for(int i=0;i<rights.length;i++)
 {
 if(!checkAccess(request, rights[i]))
 {
 return false;
 }
 }
 return true;
 }
 }

■ The default Attribute – When this attribute is used in a menuItem tag and set to
true, the display text anchor's href will be the link or action. Use this attribute
when you want a default action to occur when clicking the main link, and you also
want to display the action for consistency purposes. The default value for this
attribute is false.

■ The showMenuItem Attribute – When this attribute is used in a menuItem tag
and set to false, the menu item does not appear in the ActiveMenu. Use this
attribute when you want a default action to occur when you click the main link,
but you do not want to display the action. The default value for this attribute is
true.

■ The allParams Element – This element specifies that all of the parameters
defined on the tag (see Section 9.9.1.2, "Using the ActiveMenus Tag") are set up on
this menu item. If this element is not used (and the param element is not used),
then parameters are not set up on the menu item.

■ The param Element – This element sets the specified parameters on the menu
item. The param element has a name attribute that must match the name attribute
on a param element that is set within the ActiveMenu tag (see Section 9.9.1.2,
"Using the ActiveMenus Tag"). This also has a value attribute that can be used to
hard code a value at configuration time. If this value attribute has been set, but a
value was also specified at run-time (for example, using the param tag within the
ActiveMenu tag), the run-time value takes precedence over the hard-coded
value. Also, if just the hard-coded value is to be used, the param tag does not have
to be specified when you use the ActiveMenus tag.

■ The name Element – This element displays only the static name defined within the
tag as the menu item.

■ The i18nName Element – This element has both a bundleName attribute, which
must map to an available .properties file, and a key attribute. The

Note: Do not wrap an ActiveMenus tag in an anchor tag because you
can get undesired results. Instead, use the default and showMenuItem
attributes to control the ActiveMenu display text link.

Advanced Portlet Development with Tag Libraries

9-58 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

bundleName attribute uses the standard Java ResourceBundle convention. The
key attribute defines the key to grab within the specified bundle. The text that
relates to this key within this bundle is what appears in the menu item.

■ The img Element – This element adds the specified image to the left column as an
icon. You must specify the path to the image file in relation to your web
application.

■ The bgImg Element – This element replaces the background image used in the left
column with the specified image. You must specify the path to the image file in
relation to your web application.

■ The row Element – This element defines the CSS style or class that stylizes the row
of the menu item. For the class attribute to work correctly, the class must be
defined on the page (or the CSS file that defines the class must be imported).

■ The text Element – This element defines the CSS style or class that stylizes the
text of the menu item. For the class attribute to work correctly, the class must be
defined on the page (or the CSS file that defines the class must be imported).

■ The rowRollover Element – This element defines the CSS style or class that
stylizes the row of the menu item when it is rolled over. For the class attribute to
work correctly, you must define the class on the page (or the CSS file that defines
the class must be imported).

■ The textRollover Element – This element defines the CSS style or class that
stylizes the text of the menu item when it is rolled over. For the class attribute to
work correctly, you must define the class on the page (or the CSS file that defines
the class must be imported).

9.9.1.2 Using the ActiveMenus Tag
The taglib.tld file is located in the activemenus_taglib.jar file.

You can use the following attributes and elements with the ActiveMenus tag:

■ The display Attribute – This attribute defines what appears in place of the tag
itself. If you use the displayText attribute, this is the value that is passed to the
method defined in the displayText tag.

■ The type Attribute – This required attribute defines what is in the menu and must
match a type defined in the activemenus-config.xml file.

■ The href Attribute – This optional attribute can override the default anchor href
for the display text of the tag.

■ The newWindow Attribute – This optional href attribute specifies the link to open
in a new browser window. This is a Boolean attribute, and you set it to true or
false.

■ The class Attribute – This optional attribute defines a CSS class for the display
text.

■ The style Attribute – This optional attribute defines a CSS style to place on the
display text.

■ The rightClick Attribute – This Boolean attribute turns the menu into a
right-click menu, rather than a rollover menu. The default is false. If this

Note: The TypeDefault and MenuItem tags must be contained
within the type tag.

Advanced Portlet Development with Tag Libraries

Developing Portlets 9-59

attribute is set to true, you right-click the display text to bring up the menu. The
menu appears under the mouse.

■ The escapeXml Attribute – This attribute is the same as escapeXml within the
JSTL tags. If you set it to true, characters are converted to their corresponding
character entity codes.

■ The param Element – This element sets up parameters that can be passed in and
used for the different menu items. The following two attributes are both required:

– The name Attribute – This is the parameter name and must match the name
attribute (if used) when defining a menu item in the
activemenus-config.xml file. The name attribute also references the
parameter within your menu item code. You can use a runtime expression.

– The value Attribute – This is the parameter value, and you can use a runtime
expression.

9.9.2 Enabling Placeable Movement
You can use the DragDrop JSP tag library to enable placeable movement functionality
in a custom Community or a portal web application. You must identify moveable
objects that are displayed on a JSP, and identify drop zones that are configured to react
to a dropped moveable object. The drop zones react by triggering Page Flow actions,
calling JavaScript functions, or posting data to a servlet.

Perform the following actions before you use the DragDrop tag library:

■ Include the dragdrop_taglib.jar file in the web application's CLASSPATH

■ Place the code shown in Example 9–21 into your web.xml file

Example 9–21 Code Entry in the web.xml File

<servlet>
 <servlet-name>DragDropResourceServlet</servlet-name>
 <servlet-class>com.bea.apps.communities.servlets.
 GetDragDropResourceServlet
</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>DragDropResourceServlet</servlet-name>
 <url-pattern>DragDropResourceServlet</url-pattern>
</servlet-mapping>

9.9.2.1 Using the DragDrop Tags
Three tags are defined in the DragDrop tag library. Following are descriptions of how
each tag is used, along with sample JSP code:

■ The dragDropScript Tag – This tag includes the necessary DragDrop JavaScript
libraries in the page. The logic embedded into the tag ensures that these libraries
are included only once per request.

Note: If a class is specified on the tag, the default class specified in
the activemenus-config.xml file is overridden and the default style is
not placed on the activename. If a style is specified on the tag, the
default class is placed on the activename. If a class="" is specified on
the tag, the default class is not placed on the activename.

Advanced Portlet Development with Tag Libraries

9-60 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ The draggableResource Tag – This tag identifies a moveable resource on the
page.

■ The resourceDropZone Tag – This tag identifies an area on the page that reacts
when a moveable resource is dropped.

9.9.2.1.1 Using the dragDropScript Tag You must include the dragDropScript tag
before you use any other DragDrop tags on the page. This tag ensures that the
appropriate JavaScript libraries are included. The dragDropScript tag does not take
any attributes.

The following example shows how to use the dragDropScript tag:
<dragdrop:dragDropScript/>.

9.9.2.1.2 Using the draggableResource Tag The draggableResource tag specifies a
moveable resource on the page. The tag takes the following attributes:

■ The resourceId Attribute – The unique identifier of the resource that is being
moved. This identifier should be an ID that can be used by the underlying
business logic to uniquely identify the resource.

■ The resourceName Attribute – The representative name of the resource being
moved.

The draggableResource tag performs a search for a child img tag that has a
dragdrop:image attribute. This image becomes the image that is displayed while
performing the placeable movement operation. The image must have an absolute
height and width attribute.

The resourceId value is accessible through the JavaScript function
getSourceId(), when the value is dropped onto a resourceDropZone. The
resourceId value is also available as a parameter in the request named sourceId,
when it is dropped onto a resourceDropZone that triggers a POST action. See
Example 9–22.

Example 9–22 The sourceId Request Dropped onto a resourceDropZone

<dragdrop:draggableResource imageId="0" resourceId="${id}"resourceName=
 "${name}">

 ${name}
</dragdrop:draggableResource>

9.9.2.1.3 Using the resourceDropZone Tag The resourceDropZone tag identifies an
area where moveable resources can be placed.

The tag takes the following attributes:

■ The targetId Attribute – The unique identifier of the drop zone object. This
identifier can be an ID that can be used by the underlying business logic to
uniquely identify which object received the drop action.

■ The jsFunctionCall Attribute – A JavaScript function that executes when a
draggableResource is dropped on this resourceDropZone.

■ The pageFlowAction Attribute – A valid Page Flow action that is initiated when
a draggableResource is dropped on this resourceDropZone.

■ The formAction Attribute – A valid JSP or servlet that receives a POST action
when a draggableResource is dropped on this resourceDropZone.

Advanced Portlet Development with Tag Libraries

Developing Portlets 9-61

Only one of the following attributes is required: jsFunctionCall,
pageFlowAction, or formAction. The jsFunctionCall takes precedence, then
pageFlowAction, and finally formAction.

The targetId value is accessible through the JavaScript function getTargetId()
when a moveable resource is placed. It is also available as a parameter in the
targetId request when a moveable resource is placed that triggers a POST action.
The following code shows how this works:

<dragdrop:resourceDropZone targetId="${id}" pageFlowAction="moveIssue">
 Issues Folder
</dragdrop:resourceDropZone>

Example 9–23 demonstrates how the moveIssue action can be coded in a file called
IssuesPageFlowController.java.

Example 9–23 Coding the moveIssue Action

@Jpf.Action(forwards={ @Jpf.Forward(name = "success", path =
 "displayIssuesTree.do")})
 protected Forward moveIssue() {
 Forward forward = new Forward("success");
 String sourceId = getRequest().getParameter("sourceId");
 String targetId = getRequest().getParameter("targetId");
 move(sourceId, targetId);
 return forward;
 }

9.9.3 Enabling Dynamic Content
You can use the DynamicContent tag library to quickly update parts of a JSP page in
a custom Community or a portal web application.

The DynamicContent tags let you use an AJAX request to update part of a JSP page
within a Page Flow-based portlet. The tags allow parts of the page to be updated
without performing a full portal request. These AJAX requests are smaller and faster
than full portal requests, and therefore provide a more responsive user experience
when interacting with a portal application.

These tags are easy to incorporate into standard Page Flow-based portlet development
and can help create advanced user interface features that improve a user's portal
experience.

Tip: See also the Oracle Fusion Middleware Client-Side Developer's
Guide for Oracle WebLogic Portal for information on developing rich,
interactive applications.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Advanced Portlet Development with Tag Libraries

9-62 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

9.9.3.1 Understanding the DynamicContent Tags
This section describes the main tags in the DynamicContent tag library.

9.9.3.1.1 The Container Tag The Container tag designates a place on the JSP page that
contains the HTML output from the execution of a Page Flow action. The only
required attribute for this tag is a container id. This id is referenced by other
DynamicContent tags to identify the container. The following code shows how this
tag is used: <dc:container dcContainerId="outputContainer"/>.

9.9.3.1.2 The Container Action Script Tag This tag is a child of the Container tag and
identifies a Page Flow action that can be executed and whose HTML output is placed
inside the parent container. The containerActionScript tag takes the following
attributes:

■ The action attribute – The Page Flow action name.

■ The initial attribute – Designates an action in the container as the initial action.
This is the action that initially populates the container.

■ The async attribute – Specifies if the action is performed synchronously or
asynchronously. The default is synchronous.

■ The onErrorCallback Attribute – A user-defined JavaScript function that is
called if a client-side error occurs during the AJAX request creation and
processing.

Only the action attribute is required. The following code sample shows how this tag
is used in the parent Container tag:

<dc:container dcContainerId="outputContainer">
 <dc:containerActionScript action="resetDynamicContentContainer"
 initial="true"/>
 <dc:containerActionScript action="showServerTime"/>
<dc:container/>

9.9.3.1.3 The Execute Container Action Tag The Execute Container Action tag is used to
create a call to a specific action inside a container. This tag takes the following
attributes:

■ The dcContainerId attribute – The id of the container in which the action is
defined.

■ The action attribute – The Page Flow action name.

■ The async attribute – This specifies if the action is performed synchronously or
asynchronously. The default is synchronous.

■ The var attribute – A request attribute variable that holds a reference to the action
JavaScript call.

The dcContainerId and action attributes are required. Following is a sample of
how this tag is used:

<dc:executeContainerAction action="showServerTime" dcContainerId=

Note: The DynamicContent tags are not related to Asynchronous
Portlet Content Rendering. Asynchronous portlets allow for the entire
portlet content to be rendered independently of the portal. The
DynamicContent tags are designed to affect small parts of a JSP page
within a portlet.

Advanced Portlet Development with Tag Libraries

Developing Portlets 9-63

 "outputContainer"
 var="showServerTimeVar"/>

In the previous example, the call to the specified action is stored in the variable
showServerTimeVar. This variable can then be referenced, as shown in the
following HTML code:

<form>
 <input type="button" onclick="${showServerTimeVar}" value="Show Server
 Time"/>
</form>

When the user clicks a button, an AJAX request is created that executes the
showServerTime action and places the HTML output generated by that action into
the container with the id of outputContainer.

9.9.3.1.4 The Parameter Tags The DynamicContent tags also include tags for
parameters that are passed into the action through the request. You can define
parameters within the executeContainerAction tag or the
containerActionScript tag. These parameters are then accessible in the Page
Flow action by calling the request.getParameter() method.

9.9.3.2 Using the DynamicContent Tags
Some critical limitations are associated with the DynamicContent tags. The AJAX
requests used to trigger the Page Flow actions are not processed through the main
portal servlet. These requests go through a special servlet that performs some
processing to ensure that the proper Page Flow instance is used. Many key elements
that are normally available in the request are not accessible from these AJAX requests.
For example, in Community-based portal applications, the CommunityContext
object is not accessible from the AJAX request. The lack of access to some of these
framework elements could have an impact on things like entitlements and security.

Because of these limitations, the DynamicContent tags are best suited for specific
uses that involve small amounts of processing, with few dependencies on larger
framework services. The following use cases could benefit from the DynamicContent
tags:

■ Update a small location on a JSP page to display frequently updated data obtained
through periodic client-side polling. For example, you could notify users of
unread mail or display the number of users logged onto a system.

■ Use the tags as a pagination mechanism for tabled data presented across multiple
pages.

■ Send multiple requests to the server to obtain successive images to navigate
through a series of images in a photo gallery. The DynamicContent tags provide
a tool to avoid an expensive portal request to view each photo.

■ Obtain remote data, such as stock quotes or weather information from remote
sites. The obtained data can be displayed in a designated area on the page without
updating other parts of the page.

9.9.4 Using the User Picker
During the Development phase, you can use the UserPicker tag library to add a
form button to a JSP page in a custom Community or a portal web application.

The UserPicker:popupButton tag provides the developer with the ability to add a
form button to a JSP page which opens a popup window that displays a list of current

Detached Portlets

9-64 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

users. You can select a user from this list. The name of the selected user is populated
into a specified form field on the parent window.

9.9.4.1 Using the UserPicker Tags
This section describes the UserPicker:popupButton tag in a custom Community
and how to use the following attributes:

■ The inputId Tag – The id of the HTML form input element that is populated
with the selected user's name. This tag is optional.

■ The inputTagId Tag – The tagId of the netui-based form input element that is
populated with the selected user's name. If the inputId tag is provided, the
inputTagId tag is ignored. This tag is optional.

■ The buttonImage Tag – The src path to the image for the popup button. This tag
is required.

■ The atnProviderName Tag – The Authentication Provider name. If an
atnProviderName is supplied, there is no provider drop-down box in the popup
window. If an atnProviderName is not supplied, the default provider is used. If
you have configured multiple Authentication Providers, a drop-down box appears
in the popup window to allow you to specify a provider. This tag is optional.

9.10 Detached Portlets
WebLogic Portal supports the use of detached portlets, which provide popup-style
behavior. Technically, a detached portlet is defined as anything outside of the calling
portal context. Any portlet type supported by WebLogic Portal can be rendered as a
detached portlet.

9.10.1 Considerations for Using Detached Portlets
Keep the following considerations in mind as you implement detached portlets:

■ Detached portlets are never referenced from within a portal; there is no portlet
instance in the portal associated with a detached portlet.

■ The detached or "pop-up" portlet feature is not supported for remote (WSRP)
portlets.

■ Detached portlets can be streamed but generally cannot be entitled or customized;
the library instance can be entitled, but portlet instances that are de-coupled from
the portlet library cannot. For more information about library portlet instances and
de-coupling, refer to the Oracle Fusion Middleware Production Operations Guide for
Oracle WebLogic Portal.

Tip: When the UserPicker:popupButton tag is used in a Community,
the Community members are listed, rather than users.

Note: Opening the same portal desktop in multiple browser
windows that share the same process (and, therefore, the same
session) is not supported. For example, using the render:pageURL
tag or the JavaScript window.open function to open a portal desktop
in a new window is not supported and can result in unwanted side
effects. For instance, if a portlet is deleted in the new window, and
then the user tries to interact with that portlet in the main window,
the interaction will fail.

Working with Inlined Portlets

Developing Portlets 9-65

■ Detached portlet are not visible or accessible from the WebLogic Portal
Administration Console portlet library.

■ In a streamed portal, the primary instance of the portal is used. In some cases, the
primary instance cannot be determined; for example, you might have set
entitlements on the primary instance to make it not viewable, or you could have
set up a configuration that excludes portlets from the scanner and poller so that
they are not streamed into the database. If the primary instance cannot be
determined, a static version of the portlet is used (the portlet will be served in file
mode). In these cases, some features related to a streamed portal (such as a
community context) will not be available, and applications might be required to
implement workarounds.

■ Although technically a detached portlet can be implemented to use asynchronous
rendering, this is not a best practice and is not recommended.

■ No presentation mechanism is provided as part of the detached portlet feature; the
application must define how to actually present the portlet. For example, a floated
portlet will automatically be popped up in a separate window; detached portlets
have no such mechanism, so your application must handle popping up the
window.

■ When developing detached portlets, you can place them anywhere in the
hierarchy of your portal web application; the portal references the absolute path to
the portlet.

■ The framework for standalone portlets creates a "dummy" control tree above the
portlet, including desktop, book, and page controls. The context objects associated
with such controls reflect the state of the dummy controls, and not of the main
control tree; for example, if a portlet tries to get information about its current book
or page, the Book/Page Presentation/Backing Context objects will not reflect the
actual structure of the portal. There might also be cases where the dummy control
tree does not support certain backing context APIs. When developing your portal,
you need to keep this artificial control tree structure in mind.

9.10.2 Building Detached Portlets
You use the standalonePortletUrl class or associated JSP tag to create URLs to
detached portlets.

To create a detached portlet URL from a JSP page, you use the
render:standalonePortletUrl JSP tag or class; the following example shows the syntax
of the JSP tag:

<render:standalonePortletUrl portletUri="/absolute_path/detached_portlet_
name.portlet" .../>

To create a detached portlet URL from Java code, use the following example as a
guide:

StandalonePortletURL detachedURL =
StandalonePortletURL.createStandalonePortletURL(request, response);

detachedURL.setPortletUri("/path/to/detached.portlet");

9.11 Working with Inlined Portlets
A file-based portlet can exist either as a stand-alone .portlet file or as an inlined
portlet. Typically, within the Oracle Enterprise Pack for Eclipse portal editing

Working with Inlined Portlets

9-66 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

framework, .portlet files are included in portals by reference. For instance, when
you drag a .portlet file onto a portal, page or book, a reference is created to the
portlet file inside the portal, page, or book. On the other hand, an inlined portlet's
entire XML definition is embedded directly in a page or book.

Inlined portlets are created under the following circumstances:

■ If you create a remote book or page that contains portlets, those portlets will be
inlined in the .book or .page file. For detailed information on creating remote
books and pages, see the Oracle Fusion Middleware Federated Portals Guide for Oracle
WebLogic Portal.

■ If you use the Export/Import Utility to extract a .book or .page file that contains
portlets, those portlets will be inlined if they were originally inlined. If the original
page contained referenced portlets, they will be referenced when the page is
extracted. For detailed information on the Export/Import Utility, see the Oracle
Fusion Middleware Production Operations Guide for Oracle WebLogic Portal.

You can drag and drop, cut, copy, and paste inline portlets from one page or book to
another from within the portal editor.

Figure 9–28 shows a remote page that contains an inlined portlet and a referenced
portlet. Note that the icon used in an inlined portlet is distinct from a referenced
portlet.

Figure 9–28 Inlined Portlet in the Portlet Editor

9.11.1 Extracting Inlined Portlets
You can export an inlined portlet to a .portlet file. When you do this, the resulting
.portlet file is functionally equivalent to any other .portlet file. When you
extract an inlined portlet, the inlined portlet XML code is automatically removed from
the source file (a page or book) and replaced with a reference to the newly created
.portlet file.

Tip: You can edit the properties of inlined portlets exactly like
file-based portlets; however, portlet states and modes are not editable
for inlined portlets.

Extracting Books and Pages

Developing Portlets 9-67

To extract an inlined portlet, do the following:

1. Right-click the inlined portlet in the Book or Page Editor and select Extract Portlet
to New File, as shown in Figure 9–29.

Figure 9–29 Extract Portlet to New File

2. In the Save As dialog, enter a name for the new portlet.

9.11.2 Setting the Theme of an Inlined Portlet
You can set the theme of an inlined portlet exactly as you would for a referenced
portlet. To set the theme, right-click the inlined portlet in the book or page editor, and
pick a theme from the Theme menu. The theme is retained for that portlet as long as it
remains referenced in the page or book.

9.12 Extracting Books and Pages
You can extract any book or page in a portal to a .book or .page file. Once a book or
page is extracted, you are free to use it in another portal within the same portal web
application if you wish.

The procedure for extracting books and pages is similar to the procedure for extracting
inlined portlets, described in Section 9.11.1, "Extracting Inlined Portlets." To extract a
book or page, do the following:

1. Right-click border of the book or page in the Portal Editor and select Extract Book
(or Page) to New File.

2. In the Save As dialog, enter a name for the new book or page file.

Note: After you extract an inlined portlet, you can undo the
operation (re-inline the portlet). However, note that the .portlet file
that was created during the extraction will not be deleted from your
system. The source document will simply not reference the .portlet file
any longer.

Tip: Project > Clean command.

Tip: Any theme applied to a book or page is retained for an extracted
book or page as long as the book or page remains referenced in the
portal.

Avoiding Committing Responses

9-68 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

9.13 Avoiding Committing Responses
The WebLogic Portal framework generally uses a non-buffered model for rendering
portlets, meaning that each portlet renders directly to the underlying portal response.
This generally scales and performs better than a fully buffered response.

Because individual portlets write to the underlying portal HttpServletResponse, the
actions of individual portlets or portlet components may commit the response. For
example, simply flushing an outputstream or writer, as is frequently automatically
done for JSPs and simple println() calls, will automatically commit the response. Once
the response is committed, certain operations such as setting cookies become
impossible for other portlets when they render.

In general, the best practice for portlet developers in WebLogic Portal is to perform
such operations during the pre-render life cycle (such as in a backing file's preRender()
method), but this may not always be possible, for example if JSR168 or JSR286 portlets
are being used, or if the portlet is accessed over WSRP.

To allow portlets to set cookies and headers during the render life cycle, you can use a
setting in the WEB-INF/wlp-framework-common-config.xml file. If you set the
<avoid-response-commit> element to true, a response wrapper will be put on
the base portal response to avoid committing the response as long as possible.

This response wrapper is used when rendering portal pages and ignores calls to
flushBuffer(). The wrapper also ensures that flushes of the response output stream or
response writer do not automatically commit the response. The response may still be
automatically committed when the output exceeds the response buffer size; the
optional bufferSize attribute can be used to set a response buffer size other than the
servlet container's default buffer size.

When using this configuration option for non-Java portlets, use the
PortletPresentationContext object's addCookie() and addHeader() methods to add
cookies and headers on the response from portlets during the render life cycle. You can
do this as long as the response buffer has not overflowed and forced the response to
commit. Cookies or headers set on the HttpServletResponse (instead of the
PortletPresentationContext) are generally ignored during the render phase of the
portlet life cycle.

For Java portlets' (JSR168/JSR286), the PortletResponse addCookie() and
addProperty() methods automatically set the cookies or headers on the underlying
response, as long as the response buffer has not overflowed and forced the response to
commit.

For WSRP portlets returning cookies or headers during a getMarkup operation, the
framework will also automatically set the cookies or headers on the underlying
response. If using a WSRP interceptor on a getMarkup operation, the
PortletPresentationContext methods must be used to set cookies or headers on the
consumer's response.

10

Optimizing Portlet Performance 10-1

10Optimizing Portlet Performance

The process of optimizing your portlets for the best possible performance spans all
phases of development. You should continually monitor performance and make
appropriate adjustments.

This chapter describes performance optimizations that you can incorporate as you
develop portlets.

This chapter contains the following sections:

■ Section 10.1, "Performance-Related Portlet Properties"

■ Section 10.2, "Portlet Caching"

■ Section 10.3, "Remote Portlets"

■ Section 10.4, "Portlet Forking"

■ Section 10.5, "Asynchronous Portlet Content Rendering"

10.1 Performance-Related Portlet Properties
Customizing performance-related portlet properties can help you improve
performance. For example, you can set process-expensive portlets to pre-render or
render in a multi-threaded (forkable) environment. If a portlet has been designed as
forkable (multi-threaded) you have the option of adjusting that setting when building
your portal.

The following portlet properties are performance related:

■ Render Cacheable/Cache Expires

■ Forkable/Fork Render/Fork Render Timeout

■ Fork Pre-Render/Fork Pre-Render Timeout

■ AsyncContent

Section 9.1, "Portlet Properties" includes descriptions of these properties. If you design
your portlets to allow portal administrators to adjust cache settings and rendering
options, you can modify those properties in the Administration Console.

10.2 Portlet Caching
You can cache the portlet within a session instead of retrieving it each time it recurs
during a session (on different pages, for example). Portlets that call web services
perform frequent, expensive processing; caching web service portlets greatly enhances
performance. Portlet caching is well-suited to caching personalized content; however,

Remote Portlets

10-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

it is not well suited to caching static content that is presented identically to all users
and that rarely expires.

The ideal use case of the portlet cache is for content that is personalized for each user
and expires often. In other situations, it might be more beneficial to use other caching
alternatives. For more information and a detailed examination of the Render Cacheable
property and a discussion of when you should or should not use it, refer to "Portlet
Caching," at
http://www.oracle.com/technology/pub/articles/dev2arch/2005/01/p
ortlet_caching.html. See also the Oracle Fusion Middleware Cache Management
Guide for Oracle WebLogic Portal.

10.3 Remote Portlets
Remote portlets are made possible by Web Services for Remote Portlets (WSRP), a web
services standard that allows you to "plug-and-play" visual, user-facing web services
with portals or other intermediary web applications. WSRP allows you to consume
applications from WSRP-compliant Producers, even those far removed from your
enterprise, and surface them in your portal.

While there might be a performance boost related to the use of remote portlets, it is
unlikely that you would implement them for this reason. The major performance
benefit of remote portlets is that any portal framework controls within the application
(portlet) that you are retrieving are rendered by the producer and not by your portal.
The expense of calling the control life cycle methods is borne by resources not
associated with your portal.

If the expense of portal rendering sufficiently offsets the expense of transport and the
other limitations described above are inconsequential to your application, using
remote portlets can provide some performance boost to your portal.

For more information on implementing remote portlets with WSRP, refer to the Oracle
Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal.

10.4 Portlet Forking
Portlet forking allows portlets to be processed on multiple threads. Depending on the
available server resources, this means that the portal page will refresh more quickly
than if all portlets were processed sequentially. Forking is supported for JSP, Page
Flow, Java, and WSRP portlets (consumer portlets only).

Note: Fetching data from the producer can be expensive. You need
to decide if that expense is within reason given the resources locally
available.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Portlet Forking

Optimizing Portlet Performance 10-3

This section includes these topics:

■ Section 10.4.1, "Configuring Portlets for Forking"

■ Section 10.4.2, "Architectural Details of Forked Portlets"

■ Section 10.4.3, "Best Practices for Developing Forked Portlets"

10.4.1 Configuring Portlets for Forking
Forking is easy to enable – you just set properties using the portlet Properties editor in
Oracle Enterprise Pack for Eclipse, as shown in Figure 10–1. The available forking
properties are described in this section. For detailed information on the Portlet
Properties editor, see Section 9.1, "Portlet Properties."

Figure 10–1 Forking Properties

Note: Although using this feature might reduce the response time to
the user in most situations, on a heavily loaded system it can actually
decrease overall throughput as more threads are being used on the
server/JVM for each request—adding to contention for shared
resources.

Portlet Forking

10-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

The forking properties, if set, appear as XML elements a .portlet file. Example 10–1
shows a sample of a portlet configured for both pre-render and render forking:

Example 10–1 Forking Properties Set in a .portlet File

<netuix:portlet title="Forked Portlet"
 definitionLabel="forkedPortlet1"
 forkable="true"
 forkPreRender="true"
 forkRender="true">
 <netuix:content>
 <netuix:jspContent contentUri="/portlets/forked.jsp"
 backingFile="backing.PreRenderBacking"/>
 </netuix:content>

Table 10–1 Portlet Forking Properties

Property Value

Forkable This property must be set to true if you want the portlet to be forked. This property
identifies the portlet as safe to run forked. If this attribute is false (the default), the
portlet will not be forked regardless of the settings of the other two forking properties.
See Section 10.4.3, "Best Practices for Developing Forked Portlets" for tips on developing
forked portlets.

When set to true, a portal administrator can use the Run the Portlet in a Separate
Thread property. If set to false, that property is not available to administrators. See the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal for
information on using the Administration Console to edit portlet properties.

Fork Pre-Render Enables forking (multi-threading) in the pre-render life cycle phase. For an overview of
the portal life cycle, see Section 10.4.2, "Architectural Details of Forked Portlets." See also
"How the Control Tree Affects Performance" in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal for more information about the control tree
life cycle.

Setting Fork Pre-Render to true indicates that the portlet's pre-render phase should be
forked. See Section 10.4.2.2.1, "Dispatching Pre-Render Forked Portlets to Threads" for
more information on the pre-render phase.

Fork Pre-Render
Timeout (seconds)

If Fork Pre-Render is set to true, you can set an integer timeout value, in seconds, to
indicate that the portal framework should wait only as long as the timeout value for
each fork pre-render phase. The default value is -1 (no timeout). If the time to execute
the forked pre-render phase exceeds the timeout value, the portlet itself times out (that
is, the remaining life cycle phases for this portlet are cancelled), the portlet is removed
from the page where it was to be displayed, and an error level message is logged that
looks something like the following example.

<May 26, 2005 2:04:05 PM MDT> <Error> <netuix>

<BEA-423350> <Forked render timed out for portlet

with id [t_portlet_1_1]. Portlet will not be included in response.>

Fork Render Setting to true tells the framework that it should attempt to multi-thread render the
portlet. This property can be set to true only if the Forkable property is set to true.
See Section 10.4.2.2.2, "Dispatching Render Forked Portlets to Threads" for more
information on the render phase.

Fork Render Timeout
(seconds)

If Fork Render is set to true, you can set an integer timeout value, in seconds, to
indicate that the portal framework should wait only as long as the timeout value for
each fork render portlet. The default value is -1 (no timeout). When a portlet rendering
times out, an error is logged, but no markup is inserted into the response for the
timed-out portlet.

Selecting a value of 0 or -1 removes the timeout attribute from the portlet; use this
value if you want to revert to the framework default setting for this attribute.

Portlet Forking

Optimizing Portlet Performance 10-5

</netuix:portlet>

10.4.2 Architectural Details of Forked Portlets
Generally, forking is easy to understand and to enable. However, with a deeper
understanding of how forking works, you can avoid potential problems and
unwanted side effects. This section discusses the architectural design of forked
portlets. For specific implementation tips, see Section 10.4.3, "Best Practices for
Developing Forked Portlets."

This section includes these topics:

■ Section 10.4.2.1, "Understanding Request Latency and the Portal Life Cycle"

■ Section 10.4.2.2, "Queuing and Dispatching Forked Portlets for Processing"

■ Section 10.4.2.3, "Threading Details and Coordination"

■ Section 10.4.2.4, "Forking Versus Asynchronous Rendering"

10.4.2.1 Understanding Request Latency and the Portal Life Cycle
For most requests to the portal, the total time to process the request, or request latency,
is roughly related to the time needed to run through the portal life cycle phases
successively for all the portlets. Each life cycle phase is performed by walking through
a tree of objects, called the control tree, that make up the portal. Each phase is
essentially a depth-first walk over the tree, where the root of the tree is the desktop,
and the leaves of the tree are the books, pages, portlets, and other so-called controls.
Figure 10–2 illustrates the general structure of a portal control tree.

Figure 10–2 Simple Portal Schematic Example

Figure 10–3 illustrates the successive phases of the portal rendering life cycle. During
the first traversal of the control tree, the init() method is called on each control. On the
second traversal, loadState() is called, and so on, until every control is processed.

Typically, portlet processing time is dominated by the execution of business logic,
especially if the portlets must access remote resources such as databases or web
services, or if they are computationally intensive. Forking allows you to parallelize
some of these longer running portlet operations to decrease the overall request
latency. If forking is enabled, these operations are collected in a queue and dispatched

Portlet Forking

10-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

to multiple threads for processing. Depending on your server's resource availability,
forking can theoretically reduce request latency to the maximum latency of any of the
forked portlets.

Figure 10–3 Flow of Portal Life Cycle Methods

10.4.2.2 Queuing and Dispatching Forked Portlets for Processing
During the pre-render phase of the portal life cycle, all portal controls are iterated and
pre-rendering operations are executed. Any portlets that are marked for either
pre-render or render forking are identified during this pass and, if they are marked for
forking, they are placed in separate queues: a pre-render queue and a render queue.
(See Section 10.4.1, "Configuring Portlets for Forking" for details on how to mark
portlets for pre-render and render forking.)

At the appropriate times, these queues are dispatched to threads and processed, as
explained in the following sections. See also Section 10.4.2.3, "Threading Details and
Coordination."

10.4.2.2.1 Dispatching Pre-Render Forked Portlets to Threads In the pre-render phase of the
portal life cycle, portlets typically perform business logic, typically by handling
postback data or by calling a backing file method, such as the
AbstractJSPBacking.preRender() method.

During normal pre-render processing of the portal, any portlet that is marked for
pre-render forking is placed into a queue and the pre-render processing is skipped.

Portlet Forking

Optimizing Portlet Performance 10-7

After the entire pre-render phase has been performed, the queue is inspected. If it is
not empty, the queue is dispatched and the portlets in the queue are assigned to a
worker thread. After the queue is fully dispatched, the main portal thread waits until
either all the worker threads are completed or timed out.

10.4.2.2.2 Dispatching Render Forked Portlets to Threads In some cases, business logic is
performed during the render phase of the portal life cycle, typically when JSP
scriptlets are used.

Before running through the render life cycle, the render queue is examined. If it is not
empty, the queue is dispatched and any portlets in the queue are assigned to worker
threads. As with pre-render forking, the main portal thread waits until all of the
render threads are either completed or timed out. The resulting buffered response
from each thread is saved for each completed forked portlet. At this point, the actual
render life cycle phase is run. When a portlet is encountered that was marked for
forking, the render processing is skipped and the saved buffered response data for the
portlet is written to into the response.

Some types of portlets, notably Struts or Page Flow portlets, provide a mapping
between the underlying application technology and the portal life cycle model.
Usually in these cases, actions are provided to handle business logic during the handle
postback or pre-render phases of the life cycle.

10.4.2.3 Threading Details and Coordination
The worker threads used by the forking feature are implemented as WLS
WorkManager classes (commonj.work.WorkManager). WebLogic Portal does not
directly allocate any threads; rather, a WorkManager is identified by its JNDI name. If
found, the WorkManager is used to dispatch the worker threads (Work instances). The
default WorkManager for dispatching forked portlets is called
wm/forkedRenderQueueWorkManager, with a default called wm/Default. If you
need to customize the WorkManager for any reason, you can specify an alternate
instance through the weblogic.xml or weblogic-config.xml file by associating the
alternate instance with the JNDI name wm/forkedRenderQueueWorkManager. See
also Section 10.4.3.1, "Consider Thread Safety."

The framework uses a ForkedLifecycleContext object to coordinate between the
mainline life cycle thread and the forked Worker instances. During initialization of a
Worker, the ForkedLifecycleContext is created and registered with the forking
dispatch queue. When the Work instance has completed, the ForkedLifecycleContext
is set to completed and the waiting mainline thread is notified. Alternately, if the
waiting mainline thread determines that the forked Work instance is taking too long
and should be timed out, the ForkedLifecycleContext is marked as timed out and the
Work instance is removed from the dispatch queue. Note that in this case, the Work
item is not aborted, and will keep running until the portlet code being run for either
the pre-render or render phase is completed. You can obtain the current
ForkedPreRenderContext or ForkedRenderContext using a utility method on those
classes from the request. You can then check if a timeout has been set to detect cases

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. Apache Struts is
also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations" in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Portlet Forking

10-8 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

where the Worker thread was timed out by the portal framework and should be
aborted.

10.4.2.4 Forking Versus Asynchronous Rendering
Regardless of whether or not you use render forking, the portal does not render until
all portlets complete rendering. If you want portlets to render individually, you can
use asynchronous portlet rendering.

Asynchronous portlet content rendering refers to page processing that occurs on the
client browser; multiple threads are spawned, using AJAX or IFRAME technology.
Asynchronous portlet rendering allows the contents of a portlet to render
independently from the surrounding portal page. This can provide a significant
performance boost; for example, when a portal visitor works within a portlet, only that
individual portlet needs to be redrawn.

For details on asynchronous rendering, see Section 10.5, "Asynchronous Portlet
Content Rendering." For a comparison of portlet forking and asynchronous rendering,
see Section 10.5.6, "Comparison of Asynchronous and Conventional or Forked
Rendering."

10.4.3 Best Practices for Developing Forked Portlets
This section discusses three primary issues you need to consider when developing
forked portlets: thread safety, runtime environment, and interportlet communication
issues.

10.4.3.1 Consider Thread Safety
Although the portal framework handles thread safety issues that affect the framework
itself, any code you write that is intended to be used in forked portlets should be
written in a threadsafe manner.

■ Only mark thread-safe portlets as forkable. This helps to ensure that
administrators do not incorrectly enable forking for portlets that were not written
with thread safety in mind.

■ Cautiously evaluate interactions between your code and portal framework
constructs. For example, do not unwrap the request and response objects. They are
used specifically to isolate the request and response. For certain types of portlets,
particularly Page Flow and Struts portlets, an additional wrapper is put in place,
so one level of unwrap may work, but unwrapping to the root request or response
will cause threading issues.

■ Avoid using portal-managed objects, such as the request and response, for your
own code synchronization. These objects are used by the portal framework for
synchronization. If you use them for that purpose, out of order lock acquisition
and deadlocks can occur.

Caution: Using forked rendering with asynchronous portlet content
rendering is unnecessary, is not recommended, and could result in
unexpected behavior.

Portlet Forking

Optimizing Portlet Performance 10-9

10.4.3.2 Consider the Runtime Environment for Forked Portlets
When designing forked portlets, try to maximize their independence from other
constructs in the portal (such as BackingContext) and from other portlets. Such
dependencies create problems for forked portlets because forked portlets are
inherently isolated from the runtime environment.

10.4.3.2.1 Isolation of Forked Portlets from the Runtime Environment The primary difference
between the runtime environment for forked portlets and non-forked portlets is in
their level of isolation. This difference occurs because of the way that forked portlets
are collected and dispatched outside of the life cycle execution for the main portal
control tree.

Each life cycle iteration of the control tree results in a life cycle method being called for
that control. In this way, each control has the opportunity to perform life cycle specific
business logic. Additionally, each life cycle method invocation involves both a begin
and end operation, which enables setup and teardown for controls that require such
functionality.

Enabling preRender or render forking moves the execution of a portlet's life cycle
processing from occurring within the main portal control tree walk to outside of it.
The main side effects of this are:

■ The forked portlet is essentially isolated from any stateful setup that its placement
in the control tree provided.

■ Forked portlets are executed out of order, both in terms of other nodes in the
control tree and even amongst other sibling portlets. For the preRender phase,
controls deeper in depth-first order will be executed ahead of forkPrerender
portlets. For the render phase, all forkRender portlets will be executed before any
other control in the tree processes its render phase.

As a developer of forked portlets, be aware that code meant to be executed in a forked
portlet should be as stand-alone as possible. Avoid relying on interaction with other
portlets, other controls higher in the control tree, or state provided by other controls in
the control tree.

Do not rely on any processing done during the same life cycle in other portlets,
because forking a portlet both takes it out of order with respect to control tree
execution and applies an arbitrary ordering among forked portlets in the dispatch
queue.

10.4.3.2.2 BackingContext and Pre-Render Forked Portlets For preRender forked portlets,
one of the main areas of concern for forked portlets is the BackingContext framework.
This framework is managed in part by a stack-based implementation involving the
request, which depends on Backable controls in the control tree to push and pop their
BackingContext instances onto and off of the request. All of these activities happen
during the pre-render life cycle phase. When writing a portlet that expects a particular
BackingContext stack environment, problems can occur with Fork Pre-Render mode.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. Apache Struts is
also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations" in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Asynchronous Portlet Content Rendering

10-10 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Any access to BackingContexts through the request will result in that BackingContext
not being available while forked.

To work around this BackingContext issue, you can use non-contextual methods to
obtain BackingContexts for other presentation controls in the control tree, but these
generally involve explicit walking of the context tree, and some contexts may be
unavailable because the context in question has already been cleaned up by the control
that manages it in preRender.

10.4.3.3 Use Caution with Interportlet Communication and Forked Portlets
Interportlet communication (IPC) is another area of concern for forked portlets. Again,
the more you can isolate a portlet's logic, the more successfully it will run in a forked
environment.

IPC is performed in several different life cycles. When an IPC scenario is enabled that
results in an IPC call initiated during preRender, and a portlet is also enabled for
forking, that IPC will not be performed, since the actual dispatch of the IPC event
queue happens immediately following the main execution of preRender() over the
control tree. This is of primary concern to portlets that raise IPC events in a backing
file preRender() method, from a Page Flow, a Struts begin action, or from a JSF
beginning view root.

10.5 Asynchronous Portlet Content Rendering
Asynchronous portlet rendering allows you to render the content of a portlet
independently from the surrounding portal page. This can provide a huge
performance boost; for example, when a portal visitor works within a portlet, only that
individual portlet needs to be redrawn.

You can use either AJAX technology or IFRAME technology to implement
asynchronous rendering for individual portlets. When using asynchronous portlet
rendering, a portlet renders in two requests. The normal portal page request process
occurs first; during this process, the portlet's non-content areas, such as the title bar,
are rendered. Rather than rendering the actual portlet content, a placeholder for the
content is rendered. A subsequent request process displays the portlet content.

This section contains the following topics:

■ Section 10.5.1, "Implementing Asynchronous Portlet Content Rendering"

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. Apache Struts is
also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations" in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Tip: You can also enable asynchronous rendering for an entire portal
desktop. Both portlet-specific (as discussed in this section) and
desktop asynchronous rendering offer quicker response times than
synchronous rendering. Note that the portlet-specific and desktop
options for asynchronous rendering are mutually exclusive features.
For more information on asynchronous desktop rendering and tips on
deciding which method to choose, see the chapter "Designing Portals
for Optimal Performance" in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

Asynchronous Portlet Content Rendering

Optimizing Portlet Performance 10-11

■ Section 10.5.3, "Considerations for IFRAME-based Asynchronous Rendering"

■ Section 10.5.4, "Considerations for AJAX-based Asynchronous Rendering"

■ Section 10.5.5, "Comparison of IFRAME- and AJAX-based Asynchronous
Rendering"

■ Section 10.5.6, "Comparison of Asynchronous and Conventional or Forked
Rendering"

■ Section 10.5.8, "Asynchronous Content Rendering and IPC"

10.5.1 Implementing Asynchronous Portlet Content Rendering
The portlet property asyncContent in the Properties view allows you to specify
whether to use asynchronous rendering, and to select which technology to use. An
editable drop-down menu provides the selections none, ajax, iframe, and iframe_
unwrapped. If you want to create a customized implementation of asynchronous
rendering, you can do so by editing the .portlet file to set this up.

Portlet files that do not contain the asyncContent attribute appear with the initial
value none displayed in the Properties view. Any changes to the setting are saved to
the .portlet file.

Keep the following global considerations in mind for any asynchronous rendering
implementation:

■ As a best practice, do not depend on the built-in navigation features (Back and
Forward buttons) of a browser. Build navigation into your portlets so that
navigation is handled at that level of interaction.

If navigation is handled by the browser, the behavior of a portlet will vary
according to the type of asynchronous rendering technology used, and this
inconsistency can be confusing to the end user. For example, with IFRAME
technology each portlet interaction is tracked, but this interaction does not update
the "view" from the server's perspective; if the user clicks the Back button, the
server takes the user to a state preceding the interaction with the portlet.

Note: The iframe_unwrapped value is used for interoperability
with WebCenter 10g ADF Faces portlets. You must use the iframe_
unwrapped value if you are consuming (through WSRP) a
WebCenter 10g ADF Faces portlet in a WebLogic Portal. Using this
value prevents potential rendering problems by wrapping the ADF
Faces portlet in an IFrame, while explicitly excluding WebLogic
Portal-specific markup from rendering within the IFrame. For more
information on WSRP interoperability between WebCenter and
WebLogic Portal, see the Oracle Fusion Middleware Federated Portals
Guide for Oracle WebLogic Portal.

Note: Although Browser portlets use an internal implementation
that appears similar to that of an asynchronous portlet and both
portlet types use IFRAME HTML elements, the actual
implementations are quite different. Browser portlets are merely
displaying static embedded documents, but asynchronous IFRAME
portlets are managed by the framework.

Asynchronous Portlet Content Rendering

10-12 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ The initial (completion of) page load for an asynchronously rendered portlet page
will be longer because, for example, loading a page containing five asynchronous
portlets entails six requests to the server. However, because the portal page begins
to load quickly, the user might perceive a faster load time even if the completion
takes more time overall.

■ You should pre-define portlet sizes using Look & Feel settings; otherwise, as the
page loads, the portlets might resize several times as they adjust to their
arrangement on the page.

■ Portlet backing files are run twice: once for the outer (portal) request and another
for the inner (content) request. You can use the set of framework APIs in the
PortletBackingContext class to distinguish between these two requests; for more
information, refer to the Javadoc information for these APIs:

com.bea.netuix.servlets.controls.portlet.PortletPresentationContext.isAsyncConten
t()

com.bea.netuix.servlets.controls.portlet.PortletPresentationContext.isContentOnly
()

com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext.isAsyncCo
ntent()

com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext.isContent
Only()

■ Asynchronous portlet rendering can be used with control tree optimization. Most
of the best practices for control tree optimization also apply to the design of
asynchronous rendering. For more information on control tree optimization, refer
to the Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

■ Interportlet communication is not supported when asynchronous content
rendering is enabled; however, you can temporarily disable asynchronous
rendering in specific situations if needed. For details, refer to Section 10.5.8,
"Asynchronous Content Rendering and IPC." If you require interportlet
communication, consider using asynchronous desktop rendering, as described in
the chapter "Designing Portals for Optimal Performance" in the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

■ HTTP redirects are not supported when asynchronous content rendering is
enabled; however, you can temporarily disable asynchronous rendering using the
same mechanisms as those described in Section 10.5.8, "Asynchronous Content
Rendering and IPC."

■ Using forked pre-rendering or forked rendering in an asynchronous portlet is
unnecessary and in any case is not recommended, and although this is not an error
condition, it could result in unexpected behavior.

■ Using PostbackURLs (not derived types) within an asynchronous portlet (or a
floated portlet) causes the portlet to lose various aspects of its state, including the
results of render caching. Additionally, multiple instances of such portlets will
begin to share state. To avoid this issue, you can use one of these workarounds:

– Use alternative mechanisms for generating URLs more appropriate to the
portlet type, such as <render:jspContentUrl> or <netui:anchor>.

– Add GenericURL.WINDOW_LABEL_PARAM directly to the PostbackURL with
the value returned from PortletPresentationContext.getLabel() or
PortletBackingContext.getLabel().

Asynchronous Portlet Content Rendering

Optimizing Portlet Performance 10-13

■ WebLogic Portal allows portlets to change the current window state or mode of a
portlet either programmatically, or using parameters added to URLs. When you
enable asynchronous rendering for a portlet, these mechanisms will not provide a
consistent view to the end user; for example, the title bar rendered above the
portlet will not immediately reflect the change in the mode or state.

■ In addition to the issues described in Section 10.5.8, "Asynchronous Content
Rendering and IPC," you must carefully consider the implications whenever a
portlet tries to communicate with the portal (or the portal communicates with the
portlet). For example, suppose a portlet or JSP places data in the request for the
doobie portlet to process; if portlet doobie is asynchronous, it is running on a
different request and will never see the data. Because of this behavior, there will
be cases when you should not use asynchronous portlets in your implementation.

10.5.2 Thread Safety and Asynchronous Rendering
If you use asynchronous portlet content rendering, be sure that your code (for
example, in backing files) is thread safe. The portal framework handles the major
issues outside of a developer's control, such as concurrent access to the request and
response; and it manages coordination of issues such as waiting for all async
operations to finish and assembling the results in the correct order. But the portlet
developer has the responsibility for ensuring that the user code is thread safe.

This consideration also applies to parallel (forked) portlet processing. See Section 10.4,
"Portlet Forking."

10.5.3 Considerations for IFRAME-based Asynchronous Rendering
Some special considerations associated with IFRAME-based asynchronous rendering
include:

■ IFRAME rendering varies depending on the browser. Making an IFRAME
implementation seamless to an end user involves several factors, such as proper
skin/skeleton development conventions, cross-browser development, and so on.

■ If the content is larger than the IFRAME region, horizontal and/or vertical
scrolling will be enabled. Be careful of content which itself contains scrolling
regions, as it can be difficult to manipulate all scrolling regions to view all
embedded content.

■ IFRAME rendering might complicate other aspects of portal development, such as
cross-portlet drag and drop.

■ IFRAME rendering works whether or not Javascript is enabled.

■ You can disable asynchronous portlet content rendering for certain operations by
using the <render:context> tag or the AsyncContentContext class as
described in Section 10.5.8.2, "Disabling Asynchronous Rendering for a Single
Interaction"; however, these mechanisms do not work correctly when
IFRAME-based asynchronous rendering is used. To avoid this issue, turn off
asynchronous rendering or use AJAX-based asynchronous rendering.

10.5.4 Considerations for AJAX-based Asynchronous Rendering
Some special considerations associated with Asynchronous JavaScript and XML
(AJAX)-based asynchronous rendering include:

■ AJAX technology relies on Javascript. If users disable Javascript in their browser,
AJAX-based portlets will be broken (the content will never render).

Asynchronous Portlet Content Rendering

10-14 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ This mechanism might not be compatible with other AJAX mechanisms, such as
those that might typically be used by content authors to dynamically populate
forms, for example. Generally speaking, a best practice is to either let WebLogic
Portal manage AJAX at the portal level, or turn off AJAX for a portlet if you intend
to incorporate AJAX behaviors into your portlet.

■ The current AJAX implementation does not support XHTML. The implementation
performs DOM operations that are known not to work in some browsers when
using an XHTML content type. This problem arises when a Look & Feel skeleton is
configured to use an XHTML content type.You can avoid this problem by doing
one of two things:

– Use an HTML content type for the portal

– Use the IFRAME-based implementation of async portlet rendering

10.5.5 Comparison of IFRAME- and AJAX-based Asynchronous Rendering
Table 10–2 summarizes the advantages and disadvantages of IFRAME- and
AJAX-based asynchronous rendering. Oracle recommends AJAX as a more robust
implementation.

10.5.6 Comparison of Asynchronous and Conventional or Forked Rendering
The following table compares some of the behavior and features of conventional or
forked rendering and asynchronous portlet content rendering.

Table 10–2 IFRAME-based and AJAX-based Asynchronous Portlet Summary Table

Type Advantages Disadvantages

IFRAME Works with Javascript enabled or disabled

Support for embedded media (non-HTML)
files

Supports XHTML.

Generally perceived as providing a less intuitive
user experience

Can complicate more full-featured portlet
development tasks, such as cross-portlet drag
and drop

AJAX Generally perceived as providing a more
intuitive user experience

Provides a single document for full-featured
portlet development tasks, such as cross-portlet
drag and drop

Provides better Look & Feel integration

Works only with Javascript enabled

Does not currently support XHTML

Table 10–3 Comparison of Behaviors - Forked/Conventional Rendering and Asynchronous Rendering

Behavior/Feature Forked or Conventional Rendering Asynchronous Rendering

Completed rendering
of page

Page does not render until all portlet
processing is complete

Page, and portlet frames, render immediately;
individual portlet content renders as
processing completes

HTML page No changes between conventional
rendering and forked rendering

Page uses AJAX or IFRAME for rendering.

Rendering requests Requires only one request. Requires n + 1 requests

(where n is the number of asynchronous
portlets)

True only for page requests; when interacting
with an individual portlet, only one request is
required.

Asynchronous Portlet Content Rendering

Optimizing Portlet Performance 10-15

10.5.7 Portal Life Cycle Considerations with Asynchronous Content Rendering
This section provides more information about life cycle and control tree implications
associated with using asynchronous content rendering.

For the initial request for a portal page, backing files attached to the portlet will run in
the context of a full portal control tree. However, portlet content—such as Page Flows,
managed beans, JSP pages, and so on—will not run for this initial request.

The values for the above-referenced APIs will be:

PortletBackingContext.isAsyncContent() = true

PortletBackingContext.isContentOnly() = false

For the subsequent content requests, backing files attached to the portlet, and the
portlet content itself—such as Page Flows, managed beans, JSP pages, and so on—will
run in the context of a "dummy" control tree.

The values for the above-referenced APIs will be:

PortletBackingContext.isAsyncContent() = true

PortletBackingContext.isContentOnly() = true

PortletPresentationContext.isAsyncContent() = true

PortletPresentationContext.isContentOnly() = true

An important consequence of this model is that when asynchronous content rendering
is enabled for portlets, the portlet content will run in isolation from the rest of the
portal. Such portlets therefore cannot expect to have direct access to other portal
controls such as books, pages, desktops, other portlets, and so on.

10.5.8 Asynchronous Content Rendering and IPC
Although IPC is not supported when asynchronous content rendering is enabled,
WebLogic Portal provides some features that allow these two mechanisms to coexist in
your portal environment. In addition, you can disable asynchronous rendering for
single requests using the mechanisms described in this section.

This section also applies to HTTP redirects.

Refresh Entire page refreshes when interaction
occurs on any portlet

Refresh required only for an individual
portlet.

IPC Support IPC supported IPC not supported, although some
workarounds exist for AJAX asynchronous
portlets.

Page
request/response

Server response to page request includes
content of page

Portal page does not include portlet content
(less information needs to be returned by the
server); page starts loading faster

Note: The techniques described in this section do not currently work
with IFRAME portlets.

Table 10–3 (Cont.) Comparison of Behaviors - Forked/Conventional Rendering and Asynchronous

Behavior/Feature Forked or Conventional Rendering Asynchronous Rendering

Asynchronous Portlet Content Rendering

10-16 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

10.5.8.1 File Upload Forms
For forms containing file upload mechanisms, the WebLogic Portal framework
automatically causes page refreshes without the need for any workarounds.

10.5.8.2 Disabling Asynchronous Rendering for a Single Interaction
Generally, if a portlet needs to disable asynchronous content rendering for a single
interaction (such as a form submission, link click, and so on), you should use the
mechanism described in this section.

From a JSP page, use the <render:context> tag as follows. You can find this tag in
the Design Palette under Tag Libraries > Portal Framework Rendering > Context.

<render:context asyncContentDisabled="true">

Form, anchor, etc. would appear here

(that is, <netui:form action="submit"...)

</render:context>

From Java code:

try {

AsyncContentContext.push(request).setAsyncContentDisabled(true);

// Code that generates a URL would appear here

} finally {

AsyncContentContext.pop(request)

}

10.5.8.3 URL Compression
URL compression interferes with some of the AJAX-specific mechanisms for page
refreshes. Because of this, URL compression must also be disabled whenever
asynchronous content rendering is disabled to force page refreshes. WebLogic Portal
disables URL compression automatically except when file upload forms are used; in
this situation, you must explicitly disable it. Use the following examples as a guide:

From a JSP page:

<render:controlContext urlCompressionDisabled="true">

Form, anchor, etc. would appear here

Tip: If you enable asynchronous rendering at the portal/desktop
level, you can use IPC without restrictions. For more information on
asynchronous portal/desktop rendering, see the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

Tip: When you use these mechanisms to disable asynchronous
rendering, the portlet's action/rendering will be performed using two
requests. The portlet's action is performed in the page request, while
the portlet's rendering is performed on a subsequent request. Ensure
that your action does not use request attributes to pass information to
your JSP page.

Asynchronous Portlet Content Rendering

Optimizing Portlet Performance 10-17

(that is, <netui:form action="submit"...)

</render:controlContext>

From Java code:

try {

UrlCompressionContext.push(request).setUrlCompressionDisabled(true);

// Code that generates a URL would appear here

} finally {

UrlCompressionContext.pop(request)

}

For more information about implementing URL compression, refer to the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

Asynchronous Portlet Content Rendering

10-18 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

11

Monitoring and Determining Portlet Performance 11-1

11Monitoring and Determining Portlet
Performance

Oracle WebLogic Portal supports the collection of analytics. You can use these
analytics to deliver information to other products such as Oracle WebCenter Analytics
or they can be consumed locally via custom code. These analytics are exposed through
a public WebLogic Portal API in the com.bea.netuix.servlets.controls.analytics
package. For more information, see the Oracle Fusion Middleware Java API Reference for
Oracle WebLogic Portal. For information on using Oracle WebCenter Analytics, see the
Oracle Fusion Middleware Oracle WebCenter Analytics Administrator's Guide for Oracle
WebLogic Portal.

This chapter focuses on deriving and using these metrics for uses such as monitoring
Service Level Agreements (SLAs), triggering a warning if a specific portlet's response
time is excessive, and replacing a misbehaving portlet with an alternate portlet.

This appendix contains the following sections:

■ Section 11.1, "Introduction"

■ Section 11.2, "Use Case"

■ Section 11.3, "Detecting a Misbehaving Portlet"

■ Section 11.4, "Disabling the Bad Portlet and Enabling an Alternative Portlet"

11.1 Introduction
Portals aggregate content and applications. Portals encapsulate these applications or
content into subcomponents called portlets. Portlets are then brought together into a
unified view that can be managed in one place. What happens when one of these
portlets misbehaves or becomes unavailable? WebLogic Portal has many options for
dealing with these scenarios. A few common ones are Web Service for Remote Portlets
(WSRP) timeouts, interceptors, caching, threading, and AJAX enabled portlets. Each of
these solutions deals with the problem in a different way and each has their own set of
advantages and disadvantages. Using the public API
com.bea.netuix.servlets.controls.analytics package, you can provide a
more comprehensive way of dealing with this problem.

11.2 Use Case
Supposed that you have a portal that brings together different applications (portlets)
into a single portal. Each of these applications (portlets) is mission critical in their own
right and if one goes down it is mandatory that it not disrupt the other applications.
Additionally, if one application goes down, an alternate (backup) application must be

Detecting a Misbehaving Portlet

11-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

displayed in its place. After the original application resumes normal service levels, it
should be brought back online to replace the temporary application.

The first challenge is determining when an a portlet is not meeting a particular Service
Level Agreement (SLA). The second challenge is providing the ability to bring certain
portlets online or offline based on logic applicable the SLA.

The solution to portlet failure and replacement uses two features available in
WebLogic Portal. The first feature deals with detecting when a portlet is not meeting a
particular SLA. The second feature deals with disabling the poorly behaving portlet
and enabling a temporary portlet in its place. Each of these features are useful by
themselves but when combined provide a more comprehensive solution to the
problem.

11.3 Detecting a Misbehaving Portlet
To capture analytic events, you use the same hook that Oracle WebCenter Analytics
uses to capture all of its events. However, rather than using that hook to provide the
rich set of reporting capabilities provided by Oracle WebCenter Analytics, you can use
the hook to simply determine when a portlet is misbehaving.

The first step is to implement the AnalyticEventHandler interface. One ore more
implementations of this interface are called by the server whenever a portlet or page
completes its processing. This means any implementation must be extremely efficient,
as it may get called 50 or more times per request.

Example 11–1 Portlet Rendering Time Detection

public class MyAnalyticEventHandlerImpl implements AnalyticEventHandler
{
 private final static long SLA = 5000000000L; // Five seconds (nano time)

 /**
 * <p>Implementation class may perform any one-time initializations here. If
 * this method fails (throws an exception) the event handler will not be
 * registered and no event handling will take place.</p>
 */
 public void init() {
 System.out.println("My Analytic Event Handler Initialized");
 }

 /**
 * <p>This method is called by the container at the end of each page's and
 * portlet's run. It is invoked for every page and portlet on every request.
 * Since this method is called so frequently the implementation must be
 * extremely efficient, or the entire portal's performace will suffer.</p>
 * @param analyticEvent the event to be logged.
 */
 public void log(AnalyticEvent analyticEvent)
 {
 // Ignore all but portlet events.
 if (analyticEvent.getAnalyticEventObject().equals

Note: The other previously mentioned methods for dealing with
these types of issues can be used in conjunction with the method
described here. For simplicity, this example does not include any
other mechanisms.

Disabling the Bad Portlet and Enabling an Alternative Portlet

Monitoring and Determining Portlet Performance 11-3

 (AnalyticEvent.AnalyticEventObject.PORTLET))
 {
 if (analyticEvent.getTotalTime() > SLA)
 {
 System.out.println("WARNING: portlet " +
 analyticEvent.getDefinitionLabel() + " is exceeding SLA of " +
 String.valueOf(SLA / 1000000000L) + " seconds.");
 }
 }
 }

 /**
 * <p>Implementation class may perform cleanup operations here.
 * Note: there is no guarantee this method will be called.
 * </p>
 */
 public void dispose() {
 }
}

The main method of interest is the log(AnalyticEvent analyticEvent)
method. This method is invoked for every page and portlet on every request. The
AnalyticEvent class contains a variety of information including the times for
various lifecycle phases of the portlet.

The AnalyticEventObject has three attributes or methods that provide the
functionality to detect a misbehaving portlet:

■ getAnalyticEventObject()– Reports what type of object this event is for,
such as a portlet or a page.

■ getDefinitionLabel() or getInstanceLabel() – Provides the unique
identifiers for the portlet.

■ getTotalTime() – Provides the total time it takes for the portlet to run through
all of its lifecycles.

If the total time for a portlet to render exceeds 5 seconds, an error message is logged to
the console. Note that times returned by these methods are in nanoseconds. As
illustrated in the next section, you can use the ServiveLevelManager service to
disable the portlet an enable another portlet.

Generally, you should package the service provider in a JAR file. The JAR should
consist of any necessary classes (including the AnalyticEventHandler), and file
named
META-INF/services/com.bea.netuix.servlets.controls.analytics.Ana
lyticEventHandler. This services file must contain one and only one class name
and must be a concrete AnalyticEventHandler implementation.

The service provider JAR or JARs should then be deployed with the application by
including the JAR in the web application's WEB-INF/lib directory. Provider JARs
may also be included in the application or system class path, although this changes the
scoping of the provider class objects, and causes the provider implementations to be
shared by multiple web applications.

11.4 Disabling the Bad Portlet and Enabling an Alternative Portlet
The ServiceLevelManager service allows you to enable and disable portlets based
on a variety of identifiers. You can either disable a specific instance of a portlet or all
instances of the portlet definition. In this example, all instances of the portlet definition

Disabling the Bad Portlet and Enabling an Alternative Portlet

11-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

are disabled. This choice is based on the assumption that if a portlet definition is
poorly behaving, then all instances of that portlet are behaving poorly. You can just as
easily disable one offending instance.

Alternatively, you can call the ServicLevelManger interface from an administration
JSP. If you are using this approach, the administration JSP would list all the poorly
behaving portlets and an administrator would have to manually disable the
misbehaving portlets and re-enable the good ones.

In the scenario described in Section 11.2, "Use Case," you create an alternate portlet
that could display a message saying the service is down, or provide a cached set of
results, or get information from an alternate source. Regardless of what the alternate
portlet does, it goes in the same placeholder as the misbehaving portlet.

As illustrated in Example 11–2, the alternate portlet is disabled on startup. When a
portlet goes amiss, the alternate portlet is enabled and the bad portlet is disabled.

Example 11–2 Enabling an Alternate Portlet and Disabling a Misbehaving Portlet

/** Service-provider interface for {@link AnalyticEventHandler} implementations.
 * <p/>
 * An analytic event handler is a concrete subclass of this interface that
 * has a public no-argument constructor and implements the interface methods
 * specified below.
 * <p/>
 * An AnalyticEventHandler implementer should generally package their
 * provider in a jar. That jar should consist of any necessary classes
 *(including, of course, an implementation of AnalyticEventHandler), as well
 * as a file named <tt>META-INF/services/com.bea.netuix.servlets.controls.
 * analytics.AnalyticEventHandler<tt>. That services file must contain one
 * and only one class name which must be a concrete AnalyticEventHandler
 * implementation.
 * <p/>
 * The provider jar(s) should then be deployed with the application by
 * including the jar in the webapp's <tt>WED-INF/lib</tt> directory.
 * Provider jars may also be included in the application or system classpath,
 * although this changes the scoping of the provider class objects, and
 *causes the provider implementations to be shared by multiple web apps.
 * <p/>
 * On initialization, the {@link com.bea.netuix.servlets.controls.
 * analytics.AnalyticEventDispatcher} will load such provider. Id the
 * Dispatcher fails to load or initialize the event handler a error message
 * will be logged and no event handling will take place.
 * <p/>
 * NOTE: Implementations of the interface methods must be safe for use by
 * multiple concurrent threads.
 * <p/>
 */
public class MyAnalyticEventHandlerImpl implements AnalyticEventHandler
{
 private final static long SLA = 5000000000L; // Five seconds (nano time)
 /**
 * <p>Implementation class may perform any one-time initializations here.
 * If this method fails (throws an exception) the event handler will not
 * be registered and no event handling will take place.</p>
 */
 public void init() {
 System.out.println("My Analytic Event Handler Initialized");
 // Disable alternate portlet
 ServiceLevelManagerFactory serviceLevelManagerFactory =
 ServiceLevelManagerFactory.getInstance();

Disabling the Bad Portlet and Enabling an Alternative Portlet

Monitoring and Determining Portlet Performance 11-5

 ServiceLevelManager serviceLevelManager =
 serviceLevelManagerFactory.getServiceLevelManager("/portal_1");

serviceLevelManager.setServiceLevelForDefinitionLabel(PortletServiceLevel.suspende
d, "alternate_pdl");
 }
 /**
 * <p>This method is called by the container at the end of each page's
 * and portlet's run. It is invoked for every page and portlet on every
 * request. Since this method is called so frequently the implementation
 * must be extremely efficient, or the entire portal's performace will
 * suffer.</p>
 * @param analyticEvent the event to be logged.
 */
 public void log(AnalyticEvent analyticEvent)
 {
 // Ignore all but portlet events.
 if (analyticEvent.getAnalyticEventObject().equals
 (AnalyticEvent.AnalyticEventObject.PORTLET))
 {
 // This will disable any portlet that has a response time > then
 // the SLA
 if (analyticEvent.getTotalTime() > SLA)
 {
 System.out.println("WARNING: portlet " +
 analyticEvent.getDefinitionLabel() + " is exceeding SLA of "
 + String.valueOf(SLA / 1000000000L) + " seconds.");
 ServiceLevelManagerFactory serviceLevelManagerFactory =
 ServiceLevelManagerFactory.getInstance();
 System.out.println("Servlet context path: " +
 analyticEvent.getServletContextName());
 // Note: service level manager is scoped to the context path
 // (request.getContextPath()). Before 10.2 this has to be known,
 // in 10.2, you can retrieve it from the AnalyticEvent using
 // String getWebappContextPath();
 ServiceLevelManager serviceLevelManager =
 serviceLevelManagerFactory.getServiceLevelManager("/portal_1");
 PortletServiceLevel portletServiceLevel =
 serviceLevelManager.getServiceLevelForDefinitionLabel
 (analyticEvent.getDefinitionLabel());
 System.out.println("Suspending Portlet: " +
 analyticEvent.getDefinitionLabel());
 serviceLevelManager.setServiceLevelForDefinitionLabel
 (PortletServiceLevel.suspended,
 analyticEvent.getDefinitionLabel());
 // Activating alternate portlet
 System.out.println("Activating Alternate Portlet ");

serviceLevelManager.setServiceLevelForDefinitionLabel(PortletServiceLevel.active,
"alternate_pdl");
 }
 }
 }
 /**
 * <p>Implementation class may perform cleanup operations here.
 * Note: there is no guarantee this method will be called.
 * </p>
 */
 public void dispose() {
 }

Disabling the Bad Portlet and Enabling an Alternative Portlet

11-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

}

To get a reference to the ServiceLevelManager, you need to access it through the
service level factory. ServiceLevelManagers are scoped to the web application. As
such the factory requires the webapp context path. The method of interest is:

serviceLevelManagerFactory.getServiceLevelManager("/mywebapp");

To disable (or enable) a particular portlet, set the PortletServiceLevel on the
selected portlet. In Example 11–2, the following code disables the alternate portlet:

serviceLevelManager.setServiceLevelForDefinitionLabel(PortletServiceLevel.
 suspended, analyticEvent.getDefinitionLabel());

The alternate portlet is enabled by the same method:

serviceLevelManager.setServiceLevelForDefinitionLabel(PortletServiceLevel.
 active, "alternate_pdl");

In this example, the bad portlet is not disabled until it has actually run because you do
not know it is bad until it takes more then 5 seconds to run. In an actual application,
you would probably use timeouts for a better implementation. Also, the alternate
portlet does not go online until the next request, as this request has already finished. If
you want to have the alternate portlet run as part of this request, you could perform a
redirect that picks up the new portlet.

In WebLogic Portal 10.0, you had to hard code the web application context path:

ServiceLevelManager serviceLevelManager =
 serviceLevelManagerFactory.getServiceLevelManager("/portal_1");

In WebLogic Portal 10.2 and later versions, you can get this path from the analytic
event using:

String getWebappContextPath();

12

Configuring Local Interportlet Communication 12-1

12Configuring Local Interportlet
Communication

This chapter discusses IPC and describes the IPC techniques available to portlet
developers.

This chapter includes these topics:

■ Section 12.1, "Introduction"

■ Section 12.2, "Overview of Interportlet Communication Techniques"

■ Section 12.3, "Differences Between Portal Events and Java Portlet Events"

■ Section 12.4, "Portlet Event Handling"

■ Section 12.5, "Using the Portlet Event Handlers Wizard"

■ Section 12.6, "Custom Event Handling"

■ Section 12.7, "Events in Java Portlets"

■ Section 12.8, "Subscribing Java Portlets to Portal Framework Events"

■ Section 12.9, "Public Render Parameters"

■ Section 12.10, "Shared Parameters"

■ Section 12.11, "IPC Special Considerations and Limitations"

■ Section 12.12, "About QNames and Aliases"

12.1 Introduction
Interportlet communication (IPC) describes a handful of technologies and features that
allow portlets to share data and react to events. This chapter discusses the IPC
techniques supported by WLP.

For an overview of the IPC methods supported by WLP, see Section 12.2, "Overview of
Interportlet Communication Techniques." The remainder of the chapter discusses each
IPC method in greater detail.

Tip: A good way to learn about how to use IPC in WLP is to work
through the comprehensive example in Chapter 13, "Interportlet
Communication Example With Event Handling."

Overview of Interportlet Communication Techniques

12-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

12.2 Overview of Interportlet Communication Techniques
WLP supports several types of interportlet communication. You need to determine
which type of IPC works best for your application. For instance, if you simply want to
make some data from one portlet available to another, public or shared render
parameters might be the best, simplest approach. If your application requires a portlet
to notify other portlets that it has changed, then event handling is the best approach.

Table 12–1 summarizes the IPC techniques that WLP supports and discusses the
advantages or disadvantages of each one.

12.3 Differences Between Portal Events and Java Portlet Events
The Java portlet specification version 2.0 (JSR 286) provides a model for handling
events that is slightly different from the event model WLP uses for other portlet types.
This section describes some of the differences between the event models.

In the WLP event model, you can declare event handlers that have a variety of
possible actions, such as firing another event, changing the portlet's mode or state, or
invoking a method on the backing file. The Java portlet event model supports only one
action when an event is received: the processEvent() method (or another method, if
properly annotated) is called on the portlet. The event handling code in the Java

Table 12–1 Interportlet Communication Features of WLP

IPC Feature Description Support Notes and Recommendations

Events All WLP portlet types, including
remote portlets, support event
handling. The event framework allows
portlets to fire and receive events.
Event handling is the primary focus of
this chapter.

Note: For information on using event
handling for remote (WSRP) portlets,
see "Interportlet Communication for
Remote Portlets" in the Oracle Fusion
Middleware Federated Portals Guide for
Oracle WebLogic Portal.

All portlet
types

In general, event handling is the
recommended technique for IPC.
Events support complex
payloads, permit chaining,
support notification, and present
a loose coupling between portlets.

Public Render
Parameters (JSR 286
Portlets)

and

Shared Parameters
(Other Portlet Types)

Public render parameters and shared
parameters allow portlets to share
simple String values with other
portlets. When any portlet makes a
change to a shared parameter, other
portlets which share that parameter
will always see the latest value set for
that parameter.

For details, see Section 12.9, "Public
Render Parameters" and Section 9.3,
"Using Shared Parameters."

All portlet
types

An advantage to using public
render parameters and shared
parameters over event handling is
that you avoid the need for an
explicit event handler, because
the Portal framework
automatically provides the latest
values of shared parameters to all
portlets that subscribe to them.
Unlike events, shared parameters
do not provide an explicit
notification when a value
changes.

Custom Data Transfer
(remote portlets only)

Custom data transfer provides a
simple way to pass data between
producers and consumers in a
federated portal environment. For
detailed information on custom data
transfer, see "Transferring Custom
Data" in the Oracle Fusion Middleware
Federated Portals Guide for Oracle
WebLogic Portal.

Remote
portlets
only

Generally, the recommended best
practice is to use event handling
or public render parameters /
shared render parameters instead
of custom data transfer for remote
IPC.

Portlet Event Handling

Configuring Local Interportlet Communication 12-3

portlet can then take whatever actions are necessary, such as firing another event or
changing the portlet's mode or state.

The WLP event model allows portlet event handlers to listen to events coming only
from certain portlets. The Java portlet event model does not support this behavior
directly, but this can be achieved by including information about the sending portlet in
the event's payload, and having the receiving portlet take appropriate action based on
this information.

The WLP event model allows portlets to receive events only if they were generated for
the particular portlet instance (the Self Instance Only option). For example, check the
Self Instance Only checkbox if you want a portlet to receive an event when it is
minimized, but not to receive an event when another portlet is minimized. The Java
portlet event model does not have any corresponding concept, but by default some
event types (refresh, activation, deactivation, mode change and state change events)
are only delivered to Java portlets if the event was generated for the particular
instance. For details, see Section 12.8, "Subscribing Java Portlets to Portal Framework
Events." Note that this model does not prevent functionality available to other portlet
types, but it does require a bit more code to achieve.

For example, if Portlet A wants to know when Portlet B has been minimized and both
are Java portlets, only Portlet B will receive the event when it is minimized. However,
in its event handler method, Portlet B can send another event to which Portlet A can
subscribe to let Portlet A know that Portlet B was minimized.

The WLP event model also allows portlets to receive events only if the portlet is
currently being displayed; the Java portlet event model has no equivalent concept-
events are always sent to Java portlets whether or not they are being displayed.

All events sent from Java portlets are treated as custom events for other portlet types.
For example, if in a Java portlet you use the following code:

actionResponse.setEvent(new QName("sampleNamespace", "sampleEvent"), null);

Other portlet types can receive this event by declaring a custom event handler with a
QName consisting of the namespace sampleNamespace and local part
sampleEvent.

12.4 Portlet Event Handling
Events are supported for all of the portlet types supported by WLP and are the
recommended mechanism for performing IPC in WebLogic Portal. Events permit
chaining, support notification, and present a loose coupling between portlets. Portlet
events can optionally carry accompanying data called a payload, which is a
serializable Java object.

While events are supported for all portlet types, they are surfaced to Java portlets
slightly differently, to comply with the JSR 286 specification. For all portlet types,
event handlers may be declared in the .portlet files, but for JSR 286 portlets to
remain compatible with other Java Portlet containers, they must exclusively use Java
Portlet Events. For more information, see Section 12.7, "Events in Java Portlets."

The Portlet Editor provides a Portlet Event Handlers dialog for configuring events on
a portlet. Three components that must be configured for all portlet event types
declared in .portlet files are:

■ Event Handlers – Handlers specify which type of event the portlet will listen for.
Types of event handlers include portal events, custom events, faces events, and
others. For a complete list and descriptions, see Table 12–2.

Portlet Event Handling

12-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Actions – You specify an action to perform in response to an event. Actions
include changing the window mode, changing the window state, firing a custom
event, and others. For a complete list and descriptions, see Table 12–3.

■ Event Name – Each type of event handler requires an event name or action to be
specified. The portal event handler is designed to respond to pre-defined events,
such as the event fired when a portlet is minimized (onMinimize event). The
custom event handler, on the other hand, responds to a named event that is
typically fired programmatically from a JSP or Java class. In a similar way, the
page flow handler responds to a named Action.

This section contains the following topics:

■ Section 12.4.1, "Event Handlers"

■ Section 12.4.2, "Event Actions"

■ Section 12.4.3, "Event Types"

■ Section 12.5.4, "Definition Labels and Interportlet Communication"

12.4.1 Event Handlers
Event handlers listen for events raised on subscribed portlets and fire one or more
actions when a specific event is detected. An event handler element is a child of the
<portlet> element, and a portlet can have any number of events associated with it.
Table 12–2 lists the event handlers that are available on the Add Handler menu of the
Portlet Event Handlers wizard:

Table 12–2 Event Handlers

Event Description

Handle Generic Event Generic event handlers respond to all kinds of events, custom
events, portal events, Struts events, and so on. A generic event
handler just requires the event name to process the event. For
details, see Section 12.4.1.1, "Generic Event Handlers" below.

Note: Generic Events are deprecated. Oracle recommends that you
use another event handler.

Handle Portal Event Portal events are fired in response to certain kinds of actions that
occur within the portal. The actions include state and mode changes.
An example of a state change is minimizing a portlet. When you
click the minimize button, an onMinimize event is fired. Mode
change events are fired when a user clicks the edit or help button on
a portlet. In addition, a portal event is fired when a portlet is
refreshed. Portal event handlers do something in response to a
portal event.

Handle Custom Event Custom events are fired by you, the developer. Custom events can
be fired from the handlePostbackData() method of a backing file or
from an event handler. See Section 12.6, "Custom Event Handling"
for more information.

Portlet Event Handling

Configuring Local Interportlet Communication 12-5

12.4.1.1 Generic Event Handlers
The generic event handler, with an event attribute value of myEvent, will be triggered
on the following conditions:

■ A custom event with event=myEvent is fired within the portal.

■ A page flow action with name myEvent is raised by a portlet within the portal.

■ The same conditions to which the <handlePortalEvent event=myEvent>
handler would react.

■ A generic event (see below) with event=myEvent is fired within the portal.

Using a generic event handler allows you to more effectively decouple your portal
design, because your application does not need to know the source or type of an event.
You can change the portlet type (for example, from a page flow portlet to a JSP portlet,
with a backing file firing custom events) without affecting how you events are
processed.

Handle PageFlow Event Page flow events are sent by the framework automatically when a
page flow action is triggered. You can define a page flow event
handler (on that portlet) that responds to these events and performs
actions, such as to notify other portlets (that is, raise a custom event)
or invoke a backing file call-back method, and so on.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Handle Struts Event Struts events are fired automatically by the framework when a
Struts action is triggered. You can define a Struts event handler (on
that portlet) that responds to these events and performs actions,
such as to notify other portlets (that is, raise a custom event) or
invoke a backing file call-back method, and so on.

Note: Apache Struts is an optional framework that you can integrate
with WLP. See "Apache Beehive and Apache Struts Supported
Configurations" in the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

Handle Faces Event Faces events are fired automatically by the framework when a JSF
action is triggered. You can define a Faces event handler (on that
portlet) that responds to these events and performs actions, such as
to notify other portlets (that is, raise a custom event) or invoke a
backing file call-back method, and so on.

Note: Because of the non-specific way generic event handlers are
triggered, it is possible that they will be triggered by an event that
isn't intended. Because of this, generic events and generic event
handlers have been deprecated by Oracle going forward, and it is
recommended that you use the event handler for the specific type of
event you wish to trap. Previous limitations regarding WSRP
changing event types to generic events have been eliminated, so there
is no longer any reason to use a generic event handler.

Table 12–2 (Cont.) Event Handlers

Event Description

Portlet Event Handling

12-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

12.4.2 Event Actions
When event handlers are triggered by receiving an appropriate event, they perform a
configurable action on the host portlet. Triggering events may come from another
portlet in the application, or possibly from the same portlet, depending on the type of
event and how the handler is configured. For example, when the user minimizes a
portlet, a portal event called onMinimize is sent, which causes any event handlers
listening for it to perform their actions, such as firing a custom event or calling a
method on the portlet's backing file.

Table 12–3 lists the event actions available for portlets.

12.4.3 Event Types
An event action depends upon the type of event being raised. Except for portal events,
all other events can be identified in the Events field on the Portlet Event Handlers
Wizard, as described in Section 12.5, "Using the Portlet Event Handlers Wizard."
Events available with the portal event handler are listed in Table 12–4.

Table 12–3 Event Actions

This action... Has this effect...

Change Window Mode Changes the mode from its current mode to a user-specified mode; for example,
from help mode to edit mode.

Change Window State Changes the state from its current state to a user-specified state; for example, from
maximized to delete state.

Activate Page Opens the page on which the portlet currently resides.

Fire Generic Event Fires a user-specified generic event. Generic events have been deprecated; Oracle
recommends that you use custom events instead.

Fire Custom Event Fires a user-defined custom event.

Invoke BackingFile Method Runs a method in the backing file attached to the portlet. For more information on
backing files, refer to Section 9.4, "Backing Files."

Table 12–4 Events Available to a Portal Event Handler

This event... Fires an action when the portlet...

onActivation Becomes visible

onDeactivation Ceases to be visible

onMinimize Is minimized

onMaximize Is maximized

onNormal Returns to its normal state from either a maximized or minimized state

onDelete Is deleted from the portal

onHelp Enters the help mode

onEdit Enters the edit mode

onView Enters the view mode

onRefresh Is refreshed

onInit The onInit event is broadcast once per portal request. Use this event if you want
to define an event handler that is always executed on every portal request.

Using the Portlet Event Handlers Wizard

Configuring Local Interportlet Communication 12-7

12.5 Using the Portlet Event Handlers Wizard
The Portlet Event Handlers wizard included in Oracle Enterprise Pack for Eclipse
allows you to configure several types of event handlers and actions. The following
steps summarize the process of setting up an event handler using the wizard:

1. Select a type of event handler to create.

2. Determine the portlets to which that handler will listen.

3. Select an event for which the handler will listen.

4. Select and configure an action to fire when the event occurs.

The following sections describe the dialogs of the wizard and provide information
about the information required in each field of the dialogs.

For a specific procedural example of how to use the event handler wizard, refer to
Chapter 13, "Interportlet Communication Example With Event Handling."

12.5.1 Opening the Portlet Event Handlers Wizard
You can open the Portlet Event Handlers wizard in two ways:

■ The wizard opens when you open a portlet in Oracle Enterprise Pack for Eclipse
and click the ellipsis button next to Event Handlers in the Properties view.

■ The wizard opens when you click the Event Handlers link in the portlet editor.

The wizard appears, as shown in Figure 12–1.

onLookAndFeelReinit This event is fired when a Look & Feel is re-initialized. This happens whenever
the Look & Feel is dynamically changed, such as when any of the reinit() methods
on a PortalLookAndFeel object are called. See the PortalLookAndFeel class in
Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal for more
information about the reinit() methods.

For instance, if you capture information about the Look & Feel, you need to know
when the Look & Feel changes so that you can refresh it with the captured
information. This event provides that notification.

onModeChange Mode changes.

onStateChange State changes.

onCustomEvent Receives a custom event.

Refer to Section 12.4.1, "Event Handlers."

Note: If no event handlers have been added, the Events field
indicates that. If any event handlers have been added, the field
indicates the number that currently exist.

Table 12–4 (Cont.) Events Available to a Portal Event Handler

This event... Fires an action when the portlet...

Using the Portlet Event Handlers Wizard

12-8 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 12–1 Portlet Event Handlers Wizard

When you click Add Handler, the event handler drop-down menu allows you to select
a handler; to add an action, click Add Action to open the event action drop-down
menu.

Based on your selection, the dialog box expands, displaying additional fields that you
can use to set up the handler or action. Figure 12–2 shows an example of the expanded
dialog for adding an event handler. Note that the entry fields in the wizard are
validated; the OK button is disabled until all errors are corrected for the currently
displayed properties.

Figure 12–2 Expanded Event Handlers Dialog

12.5.2 Portlet Event Handlers Wizard - Add Handler Field Descriptions
Table 12–5 explains the fields in the Add Handler dialog and how your selections
affect the behavior of the event.

Using the Portlet Event Handlers Wizard

Configuring Local Interportlet Communication 12-9

12.5.3 Portlet Event Handlers Wizard - Add Action Field Descriptions
The available fields for the action depend on the type of action that you select.
Table 12–6 explains the possible fields in the expanded Portlet Event Handlers dialog
and how your selections affect the behavior of the action.

Note: WebLogic Portal attempts to validate the settings of the
Handle Event part of the Portlet Event Handlers dialog. You will
receive an error message if any problems are detected. For detailed
information on the WebLogic Portal validation framework, see the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Table 12–5 Portlet Event Handlers Wizard - Add Handler

Field Description

Event Label Required. This identifier can be used by the <filterEvent> tag in the portal file
to distinguish multiple event handlers in the same portlet.

Description Optional.

Only If Displayed check box Optional. Indicates that the portlet to receive the event must be on the current page
and not minimized or maximized—the portlet's content must be currently in a
rendered state. (Remember that the user must also be entitled to see the portlet.)
The default is true.

Note: If the event is <handlePortalEvent event="onMinimize"
fromSelfInstanceOnly="true"> then it is logically impossible for this event to fire if
onlyIfDisplayed="true".

From Self Instance Only
checkbox

Optional. Defines whether the handler for a given portlet instance is invoked only
when the source event originates from that instance. The default is false.

If From Self instance Only is set to true, any Listen To values are ignored.

Listen To (wildcard) Identifies the portlet(s) that this portlet can listen to. The values include:

■ Any – Listens to events fired from any portlet in the portal.

■ This – Listens to events fired from the currently selected portlet.

■ Selected Portlets – (default) Listens to events fired from selected portlets only.
Click the ... button in the Listen To (portlets) part of the dialog to select
portlets.

■ This and Selected Portlets – Listens to events fired from the currently selected
portlet and portlets selected in the Listen To (portlets) part of the dialog.

Listen To (portlets) Optional. Allows you to specify the portlets that this portlet can listen to. You can
choose a .portlet file from the file system by clicking the ... button). When you
select a .portlet file and click OK, the portlet is added to the Listen To list. This
part of the dialog is only enabled if you chose either the Selected Portlets or This
and Selected Portlets option in the Listen To (wildcard) menu.

Caution: The values that you enter here are not validated. A typo in either an event
name or a definition label can be very difficult to resolve later.

Portlet You can type a portlet name in the field and click Add, or click the browse button
to navigate to the portlet for which you want to listen.

Event or Action Depending on the event handler you added, you will choose an event or an action
for which the portlet will listen. For example, if you added the
HandlePortalEvent handler, you can use the Event drop-down menu to select
portal events, such as the onRefresh event. If you choose a handler that exposes
actions, type the name of the action in the Action field. For example, if you chose
HandlePageFlowEvent, you could type submitReport. The submitReport
action of the page flow is now visible in the Action drop-down menu.

Custom Event Handling

12-10 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

12.5.4 Definition Labels and Interportlet Communication
IPC behavior is based on portlet definition labels; that is, all portlet instances of a
given .portlet file respond to the same events. You can use the event handler
options Only If Displayed and From Self Instance Only to discriminate among the
instances of the same .portlet file. For a description of these options, refer to
Section 12.5.2, "Portlet Event Handlers Wizard - Add Handler Field Descriptions."

12.6 Custom Event Handling
All WLP portlet types support custom event handling. A custom event is an event that
you define, and can contain a developer-defined payload. A custom event handler is
triggered when a custom event is received, and the handler can fire any pre-defined
action, including calling a user-defined method in a backing file.

The Portlet Event Handlers dialog with the Handle Custom Event handler selected is
shown in Figure 12–3. Note that the entry fields in the wizard are validated; the OK
button is disabled until all errors are corrected for the currently displayed properties.

Table 12–6 Portlet Event Handlers Wizard - Add Action

Field Description

Change Window Mode Enter the value of the new window mode.

Change Window State Enter the value of the new window state; possible values are normal, minimized,
maximized.

Activate Page This action activates the page on which the portlet <portlet_def_id>
currently resides. This action will fire only when triggered during the
handlePostBack life cycle.

Do not select the Activate Page action if the Only If Displayed check box is
selected. Logically, if the portlet is responding to the event only if it is displayed,
the page that it is on must be active anyway.

Invoke Struts Action Use this selection to cause an Apache Struts action to be raised. The value must
be an unqualified name of a Struts action defined in the embedded content. This
action is only available on the menu for Struts portlets.

Note: Apache Struts is an optional framework that you can integrate with WLP.
See "Apache Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Fire Generic Event Use this selection to cause a generic event to be raised.

Enter the name of the generic event.

Fire Custom Event Use this selection to cause a custom event to be raised.

Enter the name of the custom event.

Invoke BackingFile Method Use this selection to cause a backing file method to run. Enter the name of the
method that you want to invoke. This action is only available on the menu if a
backing file is configured for the portlet.

Invoke Page Flow Action Use this selection to cause a page flow action to be raised. This action is only
available on the menu for page flow portlets.

Note: Page Flows are a feature of Apache Beehive, which is an optional
framework that you can integrate with WLP. See "Apache Beehive and Apache
Struts Supported Configurations" in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

Invoke Faces Action Use this selection to cause a JSF action to be raised. This action is only available
on the menu for JSF portlets.

Custom Event Handling

Configuring Local Interportlet Communication 12-11

Figure 12–3 Custom Event Handler Dialog

Table 12–7 describes the fields and features of the Custom Event Handler form dialog
shown in Figure 12–7.

Table 12–7 Custom Event Dialog Fields

Field Description

Event Label Required. This identifier can be used by the <filterEvent>
tag in the portal file to distinguish multiple event handlers in the
same portlet.

Description Optional.

Only If Displayed checkbox Optional. Indicates that the portlet to receive the event must be
on the current page and not minimized or maximized—the
portlet's content must be currently in a rendered state.
(Remember that the user must also be entitled to see the portlet.)
The default is true.

Note: If the event is <handlePortalEvent event="onMinimize"
fromSelfInstanceOnly="true"> then it is logically impossible for
this event to fire if onlyIfDisplayed="true".

From Self Instance Only
checkbox

Optional. Defines whether the handler for a given portlet
instance is invoked only when the source event originates from
that instance. The default is false.

If From Self instance Only is set to true, any Listen To values are
ignored.

Custom Event Handling

12-12 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

For information on the Add Action button selections, see Section 12.4.2, "Event
Actions." Note that the Fire Custom Event action requires an Event Namespace, as
shown in Figure 12–4. The Namespace must be a qualified QName namespace. For
information on namespaces, see Section 12.12, "About QNames and Aliases."

Listen To (wildcard) Identifies the portlet(s) that this portlet can listen to. The values
include:

■ Any – Listens to events fired from any portlet in the portal.

■ This – Listens to events fired from the currently selected
portlet.

■ Selected Portlets – (default) Listens to events fired from
selected portlets only. Click the ... button in the Listen To
(portlets) part of the dialog to select portlets.

■ This and Selected Portlets – Listens to events fired from the
currently selected portlet and portlets selected in the Listen
To (portlets) part of the dialog.

Listen To (portlets) Optional. Allows you to specify the portlets that this portlet can
listen to. You can choose a .portlet file from the file system
by clicking the ... button). When you select a .portlet file and
click OK, the portlet is added to the Listen To list. This part of
the dialog is only enabled if you chose either the Selected
Portlets or This and Selected Portlets option in the Listen To
(wildcard) menu.

Caution: The values that you enter here are not validated. A
typo in either an event name or a definition label can be very
difficult to resolve later.

Portlet You can type a portlet name in the field and click Add, or click
the browse button to navigate to the portlet for which you want
to listen.

Event Namespace Enter a QName or NCName to uniquely identify the event. For
details, see Section 12.12, "About QNames and Aliases."

Event Name Enter a name for the event. The custom event handler responds
to this named event, which is typically fired programmatically
from a JSP or Java class.

Aliases (Optional) Enter an alias for the event. For details, see
Section 12.12, "About QNames and Aliases."

Table 12–7 (Cont.) Custom Event Dialog Fields

Field Description

Events in Java Portlets

Configuring Local Interportlet Communication 12-13

Figure 12–4 Fire Custom Event Dialog

12.7 Events in Java Portlets
The JSR 286 specification adds support for events to Java portlets. WLP has previously
supported events for all portlet types, including JSR 168 portlets, but in a manner
slightly different from the JSR 286 specification. While the methods for handling
events described in Section 12.4, "Portlet Event Handling" will continue to work for
JSR 286 portlets, it is recommended that you use the JSR-286-standard event handling
for Java portlets. This will maximize portability of these portlets to other Portal
containers.

This section explains how to add events to Java portlets in a JSR-286-compliant way.

12.7.1 Overview
In JSR 286, portlets can declare events that they are interested in receiving, called
processing events, and events that they are expected to fire, called publishing events.
Only events declared as processing events will be delivered to the portlet, but the
portlet is allowed to fire events it does not declare as publishing events. The list of
declared published events is used exclusively at development time to give an
indication to developers of what types of events a portlet may fire; it is not used at
portlet runtime.

The Portlet Event Handlers dialog box for Java portlet types allows you to declare
non-JSR-286-compliant event handling in the WLP-Handled Events tab, and to declare
JSR-286-compliant events in the Java Portlet Events tab.

WLP-handled events are placed in the .portlet file for the portlet and are handled
by the WLP framework. These events are not portable to other JSR 286 portlet
containers, and therefore are not the recommended technique for handling events for
Java portlets. Oracle recommends that you use Java portlet events instead.

Because Java portlet events comply to the JSR 286 standard, they are portable to other
JSR 286 portlet containers. In the Java Portlet Events tab, the dialog handles the job of
updating the portlet.xml file with the correct elements and attributes. Java portlets

Events in Java Portlets

12-14 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

receive and can send events from the portlet's Java code. Note that a single portlet can
both send and receive events.

Refer to the Java Portlet Specification Version 2 for more information on Java portlet
event handling.

12.7.2 Adding a Processing Event
By declaring a processing event, you are declaring an event that the portlet can
receive. Java portlets only receive events that are declared as processing events.

To add a processing event to a Java portlet:

1. Open the Portlet Event Handlers dialog. You can open the dialog by clicking the
Event Handlers button in the Properties view or by clicking the Event Handlers
link in the portlet editor. Note that the entry fields in the dialog are validated; the
OK button is disabled until all errors are corrected for the currently displayed
properties.

2. In the Portlet Event Handlers dialog, select the Java Portlet Events tab.

3. Select Processing from the Event Type menu, as shown in Figure 12–5.

Figure 12–5 Selecting a Processing Event Type

4. Click Add Processing Event. The Define or Choose a Portlet Event Definition
dialog opens, as shown in Figure 12–6.

Events in Java Portlets

Configuring Local Interportlet Communication 12-15

Figure 12–6 Define or Choose a Portlet Event Definition Dialog

5. To create a new event, select Define a new portlet event definition, and fill out
the form.

Optionally, you can choose to select an existing event definition. To do this, select
the radio button and pick an event from the drop down menu. This menu is only
populated if one or more events were previously defined by other portlets in the
same portlet application (portlet.xml).

6. (Optional) Specify an alias name. For information on aliases, see Section 12.12,
"About QNames and Aliases."

To add an alias, click Edit and in the next dialog, click New. The Provide QName
Components dialog appears (see Figure 12–7). Enter an optional Namespace URI
and a Local Part for the QName and click OK. The alias definition appears in the
Provide List of QName Alias(es) dialog (Figure 12–8). You can add as many event
aliases to the event declaration as you like.

Events in Java Portlets

12-16 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 12–7 Provide QName Components Dialog

Figure 12–8 Provide List of QName Alias(es) Dialog

7. (Optional) Enter a data type in the Value Type field. The Value Type specifies the
Java object type of the event payload. If unspecified, all data types are accepted. If
you specify a type, the Java portlet container will enforce the type of the event's
payload: incoming events with payloads not matching this type will not be
delivered to the portlet, and if the portlet fires an event with a payload type not
matching the declared type, an IllegalArgumentException will be thrown. Per the
JSR 286 specification, any types declared here must have a valid JAXB binding;
most Java object types representing primitives have such bindings, as does
java.lang.String.

8. Click OK to create the event. The new event appears in the Event Type list in the
Portlet Event Handlers dialog box.

9. Click OK in the Portlet Event Handlers dialog when you are finished entering
processing events. Note that the event definition is not saved in the portlet.xml
file until you save the .portlet file.

12.7.3 Adding a Publishing Event
By declaring a publishing event, you are giving a hint as to the types of events the
portlet can send. There is no enforcement of this as a restriction at runtime.

Events in Java Portlets

Configuring Local Interportlet Communication 12-17

To add a publishing event to a Java portlet:

1. Open the Portlet Event Handlers dialog. You can open the dialog by clicking the
Event Handlers button in the Properties view or by clicking the Event Handlers
link in the portlet editor. Note that the entry fields in the dialog are validated; the
OK button is disabled until all errors are corrected for the currently displayed
properties.

2. In the Portlet Event Handlers dialog, select the Java Portlet Events tab.

3. Select Publishing from the Event Type menu, as shown in Figure 12–9.

Figure 12–9 Selecting a Publishing Event Type

4. Click Add Publishing Event. The Define or Choose a Portlet Event Definition
dialog opens, as shown in Figure 12–10.

Events in Java Portlets

12-18 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 12–10 Define or Choose a Portlet Event Definition Dialog

5. To create a new event, select Define a new portlet event definition, and fill out
the form. For the QName or NCName, you can edit the defaults by clicking the
Edit button. This name is a unique name to identify the event. For more
information, see Section 12.12, "About QNames and Aliases."

Optionally, you can choose to select an existing event definition. To do this, select
the radio button and pick an event from the drop down menu. This menu is only
populated if one or more events were previously defined.

6. (Optional) For details on the Aliases section, see Section 12.12, "About QNames
and Aliases." You can enter more than one alias.

7. (Optional) Enter a data type in the Value Type field. The Value Type specifies the
Java object type of the event payload. If unspecified, all data types are accepted. If
you specify a type, the Java portlet container will enforce the type of the event's
payload: incoming events with payloads not matching this type will not be
delivered to the portlet, and if the portlet fires an event with a payload type not
matching the declared type, an IllegalArgumentException will be thrown. Per the
JSR 286 specification, any types declared here must have a valid JAXB binding;
most Java object types representing primitives have such bindings, as does
java.lang.String.

8. Click OK to create the event. The new event appears in the Event Type list in the
Portlet Event Handlers dialog box.

Events in Java Portlets

Configuring Local Interportlet Communication 12-19

9. Click OK in the Portlet Event Handlers dialog when you are finished entering
publishing events. Note that the event definition is not saved in the portlet.xml
file until you save the .portlet file.

12.7.4 Modifying a Java Portlet Event
This section explains how to modify Publishing and Processing Java portlet events.

1. Open the Portlet Event Handlers dialog. You can open the dialog by clicking the
Event Handlers button in the Properties view or by clicking the Event Handlers
link in the portlet editor.

2. In the Portlet Event Handlers dialog, select the Java Portlet Events tab.

Use the Event Type drop-down menu to select either a Publishing or Processing.
Publishing events are sent by the portlet and Processing events are received by the
portlet.

Edit the selected event in the Java Portlet Event section on right side of the dialog
box, as shown in Figure 12–11. After making changes to the editable fields, click
OK. For more information on the editable fields, see Section 12.7.2, "Adding a
Processing Event."

Figure 12–11 Editing a Java Portlet Event Definition

12.7.5 Deleting a Java Portlet Event
If you are deleting a Java portlet event, a dialog appears, and you must choose one of
the following options:

■ Remove (disassociate) the Java portlet event from this portlet only.

Note: All entry fields in the Portlet Event Handlers dialog are
validated. An error dialog appears when the validation fails. You
cannot click OK or switch events, tabs, or event types until the errors
are corrected for the currently displayed event properties.

Events in Java Portlets

12-20 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

In this case, the event definition remains in the portlet.xml file. Only the
mapping to the current portlet is removed. Choose this case if other portlets
reference the event. For example, if multiple portlets reference the same event, you
would want to leave the event definition in the portlet.xml file.

■ Delete the Java portlet event from the portlet.xml.

In this case, the entire event and all mappings to the event are removed from the
portlet.xml file. Only pick this option if you know that no other portlets
require the event definition.

For example, Example 12–1 shows an excerpt from a portlet.xml file where three
events are defined in the <event-definition> elements: eventDef_1,
eventDef_2, and eventDef_3. The definition for the portlet called myJsf has all
three events added to it, in the <supported-processing-event> elements.

If you remove eventDef_1 from the portlet named myJsf using the first option
(disassociate), the <supported-processing-event> element named eventDef_1
will be removed from the portlet definition, as shown in Example 12–2. Note that any
other portlets will continue to reference the event. If you select the second delete
option, the entire <event-definition> element and the
<supported-processing-event> element(s) will be removed. In this case, no
portlets will reference the event.

Example 12–1 Event Definitions and Mapping Elements Before a Disassociate Operation

<portlet-app ...>
 <portlet>
 <portlet-name>myJsf</portlet-name>
 <portlet-class>JsfPortlet</portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <portlet-info>
 <title>JSF Portlet</title>
 </portlet-info>
 <supported-processing-event><name>eventDef_1</name>
 </supported-processing-event>
 <supported-processing-event><name>eventDef_2</name>
 </supported-processing-event>
 <supported-processing-event><name>eventDef_3</name>
 </supported-processing-event>
 </portlet>
 ...
 <event-definition>
 <name>eventDef_1</name></event-definition>
 <event-definition>
 <name>eventDef_2</name></event-definition>
 <event-definition>
 <name>eventDef_3</name></event-definition>

</portlet-app>

Example 12–2 Event Definitions and Mapping Elements After Disassociate Operation

<portlet-app ...>
 <portlet>
 <portlet-name>myJsf</portlet-name>
 <portlet-class>JsfPortlet</portlet-class>

Subscribing Java Portlets to Portal Framework Events

Configuring Local Interportlet Communication 12-21

 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <portlet-info>
 <title>JSF Portlet</title>
 </portlet-info>
 <supported-processing-event><name>eventDef_2</name>
 </supported-processing-event>
 <supported-processing-event><name>eventDef_3</name>
 </supported-processing-event>
 </portlet>
 ...
 <event-definition>
 <name>eventDef_1</name></event-definition>
 <event-definition>
 <name>eventDef_2</name></event-definition>
 <event-definition>
 <name>eventDef_3</name></event-definition>

</portlet-app>

12.8 Subscribing Java Portlets to Portal Framework Events
Java portlets can receive events generated by the portal framework (as opposed to
events fired by other portlets) by simply subscribing to the appropriate event name.
The table below gives the namespace and local name for the event QName for Java
portlets to subscribe to for portal-generated events.

The column From Self Instance Only indicates whether the portlet will only receive
the event if the event was fired for the particular portlet instance.

When the local name in the table below is in italics, it indicates that the event's local
name should be the name of the specific action or event name the portlet wishes to
receive an event about. For example, if the Java portlet wanted to receive an event
whenever a JSF portlet triggered a JSF action named reset, the Java portlet would
subscribe to an event with a QName consisting of the namespace
urn:com:oracle:wlp:netuix:event:faces and local name reset.

Table 12–8 Namespaces and Local Names Portal Framework Events

Event Type Sent Namespace Local Name

From Self
Instance
Only

Faces When a JSF action occurs on
a JSF portlet.

urn:com:oracle:wlp:netuix:event:faces actionName No

Generic When another portlet sends
a Generic event.

urn:com:oracle:wlp:netuix:event:generic eventName No

Custom When any portlet sends a
custom event.

See Section 12.8.1, "Custom Event
Namespaces."

eventName No

Struts When a Struts action occurs
on a Struts portlet.

urn:com:oracle:wlp:netuix:event:struts actionName No

PageFlow When a page flow action
occurs in a JPF portlet.

urn:com:oracle:wlp:netuix:event:pageflow actionName No

Init Every time a portal page is
rendered.

urn:com:oracle:wlp:netuix:event:init init No

LookAndFeelReinit When a Look and Feel is
dynamically changed.

urn:com:oracle:wlp:netuix:event:laf-reinit reinit No

Public Render Parameters

12-22 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

12.8.1 Custom Event Namespaces
For custom events, the namespace of the event is the namespace the event was sent
with. For non-Java portlets, if no namespace was specified for the custom event when
it was sent, the default custom event namespace of
urn:com:oracle:wlp:netuix:event:custom is applied. For example, if in the
.portlet file for a non-Java portlet there is an event handler with an action of:

<netuix:fireCustomEvent event="myCustomEvent"/>

A Java portlet could receive this event by subscribing to an event with a QName
consisting of the namespace urn:com:oracle:wlp:netuix:event:custom and
local name myCustomEvent.

If an empty namespace is explicitly declared for a custom event, the event will not
receive the default custom event namespace. For example, if in the .portlet file for a
non-Java portlet there is an event handler with an action of:

<netuix:fireCustomEvent qname="{}myCustomEvent"/>

A Java portlet could receive this event by subscribing to an event with a QName
consisting of the namespace "" (the empty string) and local name myCustomEvent.

12.8.2 Local Name for Notification Events
For notification events, the local name for the event to subscribe to is generated by
appending the namespace of the notification payload, the string "_._", and the
notification's payload name. In this way, Java portlets can subscribe to receive events
only for the particular notification(s) they wish.

12.9 Public Render Parameters
Public render parameters are a JSR 286 feature that allows portlets to share simple
String values with other portlets during all phases of the portlet lifecycle. For more
information, see Section 6.8, "Public Render Parameters."

Notification When the user has a
notification.

urn:com:oracle:wlp:netuix:event:notification See Section 12.8.2,
"Local Name for
Notification
Events."

No

Refresh Whenever the portlet is
refreshed.

urn:com:oracle:wlp:netuix:event:refresh refresh No

Activation When a portlet first
becomes visible.

urn:com:oracle:wlp:netuix:event:window activate Yes

Deactivation When a portlet ceases to be
visible.

urn:com:oracle:wlp:netuix:event:window deactivate Yes

Mode Change When the portlet's mode
changes.

urn:oasis:names:tc:wsrp:v2:types newMode Yes

State Change When the portlet's state
changes.

urn:oasis:names:tc:wsrp:v2:types newWindowState Yes

Table 12–8 (Cont.) Namespaces and Local Names Portal Framework Events

Event Type Sent Namespace Local Name

From Self
Instance
Only

About QNames and Aliases

Configuring Local Interportlet Communication 12-23

12.10 Shared Parameters
Shared parameters are the same as JSR 286 portlet public render parameters, but for
non-Java portlet types. For details, see Section 9.3, "Using Shared Parameters."

12.11 IPC Special Considerations and Limitations
The following sections describe special considerations that you should keep in mind as
you implement interportlet communications.

This section contains the following topics:

■ Section 12.11.1, "Using Asynchronous Portlet Rendering with IPC"

■ Section 12.11.2, "Consistency of the Listen To Field"

12.11.1 Using Asynchronous Portlet Rendering with IPC
Although IPC is not supported when asynchronous content rendering for specific
portlets is enabled, WebLogic Portal provides some features that allow these two
mechanisms to coexist in your portal environment. In addition, you can disable
asynchronous rendering for single requests using the mechanisms described in
Section 10.5.8, "Asynchronous Content Rendering and IPC."

12.11.2 Consistency of the Listen To Field
Pay attention to the Listen To field when you set up the listener portlet. The portlet
definition you use on the consumer must match the WSRP portlet's portlet definition.
For example, if you have "portlet_2" listening to "portlet_1", the WSRP portlet
corresponding to "portlet_1"—the proxy on the consumer—must also have its portlet
definition label set to "portlet_1". For more information on using IPC with WSRP, refer
to the Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal.

12.12 About QNames and Aliases
Portlet events and shared parameters (called public render parameters for Java
portlets) both make use of QNames and optional aliases to allow interportlet
communication. The QName provides a unique identifier for an event or shared
parameter that is used internally by the portal framework when distributing events
and shared parameter values. QNames allow a degree of isolation for portlets, to
ensure that they do not interfere with other portlets' operations. Aliases provide a
mechanism for renaming events or shared parameters as they are delivered to
individual portlets, allowing communication between portlets that may not have been
designed to communicate with each other.

A QName is a qualified name consisting of a Namespace URI and a Local Part, as
defined by the Namespaces in XML standard from the W3C. This standard defines
exactly what the namespace URI and Local Part can consist of, but to simplify, the
namespace is any URI and the local part is an NCName – a string beginning with a
letter or underscore followed by any letters, numbers, dashes ('-'), underscores ('_') or
periods ('.'). In Java, the string representation of a QName object is

Tip: If you enable asynchronous rendering at the portal/desktop
level, you can use IPC without restrictions. For more information on
asynchronous portal/desktop rendering, see the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

About QNames and Aliases

12-24 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

{namespace}localName, with the namespace inside of braces to distinguish it from the
local name. For convenience in the rest of this section, this nomenclature will be used.

12.12.1 QNames and Aliases in Events
QNames are used as the unique identifying name for events. Having both a
namespace and local name for the event allows portlet developers to develop a suite of
portlets which communicate with each other, while minimizing the chances of name
collisions with other portlets. For example, a set of travel portlets from company XYZ
may communicate using an event named
{urn:com:xyz:travel}location.change. If a set of map portlets from
company ABC also makes use of an event with a local name of location.change,
they can ensure that the event won't cause confusion for the portlets from XYZ by
using a unique namespace, for example {urn:com:abc:map}location.change.

Aliases make it possible for a single event handler to accept events with multiple
different QNames. Aliases let you declare that an event with a particular QName is
functionally equivalent to an event with another QName. Aliases are simply a list of
QNames. When the portal framework is distributing an event to portlets, if the event's
QName matches a declared alias for another event definition, the event will be
renamed to match the portlet's expected event QName before it is delivered.

For example, if portlet X has declared an event it wishes to receive with a QName of
{urn:com:xyz:travel}location.change, with an alias to
{urn:com:abc:map}countrySelected, when an event with a QName of
{urn:com:abc:map}countrySelected is fired by any portlet, the event payload
will remain the same but the event will be delivered to portlet X using the QName
{urn:com:xyz:travel}location.change. In this way, portlet X can have a
single event-handler which accepts only a single event name, but other events can be
declaratively sent to this event handler using aliases.

Aliases apply only to the portlets that explicitly declare them. For example, given the
following setup:

Portlet A:

■ Handles Event: {abc}zipCode

Portlet B:

■ Handles Event: {def}zip

– Alias: {abc}zipCode

■ Handles Event: {xyz}postalCode

Portlet C:

■ Handles Event: {xyz}postalCode

– Alias: {abc}zipCode

– Alias: {def}zip

If an event is sent (by any portlet) with a QName of {abc}zipCode, Portlet A will
receive the event with a QName of {abc}zipCode, portlet B will receive the event

Tip: The Provide QName Components dialog automatically forms
the namespace/local part identifier in the standard syntax, for
example: {http://oracle.com/myevents}testevent. If you
enter the QName directly in the Define or Choose a Portlet Public
Render Param dialog, you must use this syntax.

About QNames and Aliases

Configuring Local Interportlet Communication 12-25

with a QName o {def}zip, and portlet C will receive the event with a QName of
{xyz}postalCode.

If an event is sent (by any portlet) with a QName of {def}zip, Portlet A will not
receive the event, Portlet B will receive the event with a QName of {def}zip, and
Portlet C will receive the event with a QName of {xyz}postalCode.

12.12.2 QNames and Aliases in Shared Parameters / Public Render Parameters
Shared parameters (called public render parameters in JSR 286 portlets) are accessed
by portlets using a simple String name, called the identifier. When a portlet wants to
read or set the value of a shared parameter in its code, it does so using this identifier.
Since the identifier is used as a parameter name, there is a high probability it could
conflict with another parameter of the same name being used by a different portlet.

For example, a map portlet may use a parameter called location to store latitude
and longitude coordinates, while a wiki portlet in the same portal may use a
parameter called location to keep information on what content is currently being
displayed. To avoid these name collisions with shared parameters, each shared
parameter is declared with both an identifier (the name used by the portlet to access
the parameter), and a QName (the unique name used by the portal framework to
distribute the value to other portlets).

For example, if there are three portlets on a page:

Portlet A:

■ Shared Parameter Identifier: location

■ Shared Parameter QName: {urn:abc}map.location

Portlet B:

■ Shared Parameter Identifier: location

■ Shared Parameter QName: {urn:xyz}wiki.page.name

Portlet C:

■ Shared Parameter Identifier: coordinates

■ Shared Parameter QName: {urn:abc}map.location

In this scenario, Portlets A and C share the parameter with QName
{urn:abc}map.location. Portlet A accesses it using the parameter name
location, while portlet C accesses it using the parameter name coordinates.
When Portlet B sets a parameter named location, even though it has the same
identifier as the shared parameter from Portlet A, Portlet A would not see the new
value because the QNames are different.

Aliases are used for shared parameters to give an alternate QName for a shared
parameter, as a means of "inheriting" the value of other shared parameters. In most
cases this is simple and straightforward, but because of how shared parameter values
are distributed, this can have some side-effects that are not immediately obvious. For
example, given the following setup:

Note: For detailed information on Shared Parameters, see
Section 9.3, "Using Shared Parameters." For detailed information on
Public Render Parameters, see Section 12.9, "Public Render
Parameters."

About QNames and Aliases

12-26 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Portlet A:

■ Shared Parameter Identifier: firstName

■ Shared Parameter QName: {urn:abc}customer.name.first

– Alias: {urn:xyz}customerFirstName

Portlet B:

■ Shared Parameter Identifier: first

■ Shared Parameter QName: {urn:xyz}customerFirstName

Portlet C:

■ Shared Parameter Identifier: name

■ Shared Parameter QName: {urn:qrs}customer.name

– Alias: {urn:abc}customer.name.first

In this scenario, if portlet B sets the value of its shared parameter first to Alice, the
portal framework will distribute the shared parameter value using the QName
{urn:xyz}customerFirstName. Because portlet A has aliased its shared parameter
to that QName, portlet A will then see a value of Alice for its parameter named
firstName. Portlet C will not see a new value for its shared parameter name.

Continuing this scenario, if portlet A sets its parameter firstName to Bob, portlet C
will then see the value of its parameter named name as Bob. Portlet B's value of
parameter first remains Alice, as it was not aliased to portlet A's shared
parameter.

Furthermore, if portlet C then sets its parameter name to Carl, there are no aliases for
portlet C's shared parameter QName in any of the other shared parameter
declarations, so portlet A's parameter firstName will have a value of Bob, portlet B's
parameter first will have a value of Alice, and portlet C's parameter name will
have a value of Carl.

To avoid this conditional distribution of shared parameter values, you can set up
reciprocal aliases. For example:

Portlet A:

■ Shared Parameter Identifier: firstName

■ Shared Parameter QName: {urn:abc}customer.name.first

– Alias: {urn:xyz}customerFirstName

– Alias: {urn:qrs}customer.name

Portlet B:

■ Shared Parameter Identifier: first

■ Shared Parameter QName: {urn:xyz}customerFirstName

– Alias: {urn:abc}customer.name.first

– Alias: {urn:qrs}customer.name

Portlet C:

■ Shared Parameter Identifier: name

■ Shared Parameter QName: {urn:qrs}customer.name

– Alias: {urn:abc}customer.name.first

About QNames and Aliases

Configuring Local Interportlet Communication 12-27

– Alias: {urn:xyz}customerFirstName

Because each shared parameter declaration in this setup has aliases to the other two,
setting a shared parameter value in any of the portlets will cause all of the portlets to
receive the same value.

About QNames and Aliases

12-28 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

13

Interportlet Communication Example With Event Handling 13-1

13Interportlet Communication Example With
Event Handling

This chapter describes the process of setting up interportlet communications (IPC)
between two portlets by using the Portal Event Handlers wizard in Oracle Enterprise
Pack for Eclipse. This is a simple example in which minimizing one portlet changes the
text string in another portlet in the portal.

Read this chapter to become familiar with the basic concepts of IPC and the IDE
features that help you configure interportlet communication. For more detailed
information about IPC and the IDE user interface, see Chapter 12, "Configuring Local
Interportlet Communication."

This section contains the following topics:

■ Section 13.1, "Before You Begin – Environment Setup"

■ Section 13.2, "Basic IPC Example"

13.1 Before You Begin – Environment Setup
Before you use the interportlet communication example in this chapter, you must have
an existing portal development environment, consisting of a domain, Portal EAR
project, Portal Web project, Datasync project, and portal. To complete the pre-requisite
tasks, perform the tasks described in Oracle Fusion Middleware Tutorials for Oracle
WebLogic Portal, using the information in Table 13–1 to enter the necessary values.

1. Create a Portal domain (server).

2. Create a Portal EAR project.

3. Associate the EAR project with the server.

4. Create a Portal web project.

5. Create a portal.

Note: For detailed instructions on creating a domain using the
Domain Configuration Wizard, see the Oracle Fusion Middleware
Tutorials for Oracle WebLogic Portal.

Basic IPC Example

13-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

With a development environment set up, you can complete the steps described in this
section:

■ Section 13.2, "Basic IPC Example"

In this exercise, you create individual portlets, JSPs, and backing files to establish
interportlet communications within the portal project. You then add these portlets to a
portal and test the project to ensure that communication is successful.

13.2 Basic IPC Example
It might be helpful to become familiar with the Portal Event Handlers Wizard and
backing files before attempting to replicate this example. For more information about

Table 13–1 IPC Example - Environment Setup Values

Setup Information Notes/Values

Domain Configuration Wizard - Welcome Create a new WebLogic domain (the default)

Note: For detailed instructions on creating a domain using the
Domain Configuration Wizard, see the Oracle Fusion Middleware
Tutorials for Oracle WebLogic Portal.

Domain Configuration Wizard -

Select Domain Source

In the Generate a domain configured automatically to support
the following Oracle products list, select WebLogic Portal.

When you do this, other components are selected automatically;
keep all of them selected.

Domain Configuration Wizard -

Configure Administrator Username and
Password

User name: weblogic

User password: webl0gic

Confirm user password: webl0gic

Note: The password must include at least one non-alphabetical
character. In this case, the "0" in webl0gic is a zero.

Domain Configuration Wizard -

Configure Server Start Mode and JDK

Development Mode (the default)

JRockit SDK

Domain Configuration Wizard -

Customize Environment and Services Settings

No (the default)

Domain Configuration Wizard -

Create WebLogic Domain

Domain name: ipcDomain

Domain location: Accept the default, or specify another directory
on your system.

Portal EAR Project Wizard EAR Project Name: ipcEAR

Switch to the Portal Perspective if you are not already using it.

Servers view Right-click the server in the Servers view and select Add and
Remove Projects

Associate the ipcEAR project with the portal domain
ipcDomain.

Portal Web Project Wizard Web Project Name: ipcTestWebProject

In the Add project to an EAR checkbox: Check the box and add
to ipcEAR

Portal Wizard Right-click the ipcWebProject/WebContent folder and select
New > Portal

Portal Name: ipcPortal

Basic IPC Example

Interportlet Communication Example With Event Handling 13-3

the wizard, refer to Section 12.5, "Using the Portlet Event Handlers Wizard." For more
information on backing files, refer to Section 9.4, "Backing Files."

This exercise includes five main tasks:

1. Section 13.2.1, "Create the Portlets"

2. Section 13.2.2, "Create the Backing File"

3. Section 13.2.3, "Attach the Backing File"

4. Section 13.2.4, "Add the Event Handler to bPortlet"

5. Section 13.2.5, "Test the Project"

13.2.1 Create the Portlets
In this section, you create two JSP files and the JSP portlets that surface these files. You
also create a backing file that contains the instructions necessary to complete the
communication between the two portlets, and you add an event handler to one of the
portlets. After you have created the portlets and attached the backing file, you test the
project in your browser.

13.2.1.1 Create the JSP Files and Portlets
To create the JSP files that the portlets will surface, do the following:

1. In the Project View, right-click the WebContent folder and select New > Portlet.

2. In the New Portlet dialog, enter the name aPortlet.jsp for the new portlet, and
click Next.

3. In the Select Portlet Type wizard page, select JSP/HTML Portlet, and click Next.
(See Figure 13–1.)

Note: Before continuing with this procedure, ensure that Oracle
Enterprise Pack for Eclipse is running and the ipcWebProject node is
expanded.

Basic IPC Example

13-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 13–1 Select Portlet Type

4. In the Portlet Details wizard page, select the Minimizable and Maximizable
states, and click Create. (See Figure 13–2.)

Figure 13–2 Portlet Details

5. Locate the aPortlet.jsp file. By default, it will be in the
WebContent/aportlet folder. Double-click the file to open it in the editor.

6. Replace the default text in the file with the text "Minimize Me!" as shown in
Figure 13–3.

Basic IPC Example

Interportlet Communication Example With Event Handling 13-5

Figure 13–3 JSP File Showing Edited Body Text

7. Save the file as aPortlet.jsp

8. In the same directory, make a copy of aPortlet.jsp and give the name
bPortlet.jsp to the copy.

9. Open bPortlet.jsp in the workbench editor if it is not already open.

The XML code for the JSP file appears.

10. Copy the code from Example 13–1 into the JSP, replacing everything from
<netui:html> through </netui:html>. This code displays event handling
from the backing file that you will create and attach in a subsequent step.

Example 13–1 New JSP Code for bPortlet.jsp

<netui:html>
 <% String event = (String)request.getAttribute("minimizeEvent");%>
 <head>
 <title>
 Web Application Page
 </title>
 </head>
 <body>
 <p>
 Listening for portlet A minimize event:<%=event%>
 </p>
 </body>
</netui:html>

The source should look like the example in Figure 13–4.

Basic IPC Example

13-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 13–4 Updated bPortlet JSP Source

11. Save the file.

12. Following the same steps you used previously, generate a portlet from the
bPortlet.jsp file.

Checkpoint: At this point the ipcWebProject/WebContent folder contains these
files: aPortlet.jsp, aPortlet.portlet, bPortlet.jsp, and
bPortlet.portlet.

13.2.2 Create the Backing File
To create the backing file, do the following:

1. In ipcTestWebProject, select the Java Resources/src folder and select File
> New > Folder from the main menu.

The Create New Folder dialog box appears.

2. Create a folder called backing.

The folder backing will appear under ipcTestWebProject/src, as shown in
Figure 13–5.

Figure 13–5 New Backing File Folder in Package Explorer View

3. Right-click the backing folder and select New > Other.

Basic IPC Example

Interportlet Communication Example With Event Handling 13-7

4. In the New – Select a wizard dialog, select Java > Class, and click Next.

The New Java Class dialog appears, as shown in Figure 13–6. The Source folder
field auto-fills with the default path; leave it as is. The Package field auto-fills with
backing; leave it as is.

Figure 13–6 New Java Class Dialog

5. In the Name field, enter Listening and click Finish.

The new Java class appears in the editor.

6. Delete the entire default contents of Listening.java, and copy the code from
Example 13–2 into the file. Figure 13–7 shows the top portion of the
Listening.java file as it should look after you paste the code into it.

7. When you're finished, save the file.

Example 13–2 Backing File Code for Listening.java

package backing;
import com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;
import com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext;
import com.bea.netuix.events.Event;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
public class Listening extends AbstractJspBacking
{
 static final long serialVersionUID=1L;
 public void handlePortalEvent(HttpServletRequest request,
 HttpServletResponse response, Event event)
 {
 String attributeId= this.getPortletInstanceLabel(request) + "_
minimizeEventHandled";
 // NB: Use the HttpSession to pass data between lifecycle phases
 // (that is, to the pre-render phase). Passing data between
 // backing file callback methods using the HttpRequest or static
 // instance variables should be avoided.
 // The portlet instance label is used to create a unique
 // attribute name for the session attribute.

 request.getSession().setAttribute(attributeId, "minimized!");
 }
 public boolean preRender(HttpServletRequest request, HttpServletResponse
 response)

Basic IPC Example

13-8 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

 {
 String attributeId= this.getPortletInstanceLabel(request) +
 "_minimizeEventHandled";
 if (request.getSession().getAttribute(attributeId) != null)
 {
 // Reset the session flag
 request.getSession().removeAttribute(attributeId);
 // Pass minimize event notification to the JSP via the request.
 request.setAttribute("minimizeEvent", "Minimize event handled");
 }
 else
 {
 request.setAttribute("minimizeEvent", null);
 }
 return true;
 }
 private String getPortletInstanceLabel(HttpServletRequest request)
 {
 PortletBackingContext context=
 PortletBackingContext.getPortletBackingContext(request);
 return context.getInstanceLabel();
 }
}

Figure 13–7 Listening.java with Updated Backing File Code

13.2.3 Attach the Backing File
Now you will attach the backing file created in the previous section to
bPortlet.portlet. Perform the following steps:

1. In the Package Explorer, double-click bPortlet.portlet to open it.

2. Click on the portlet in the editor, if needed, to display the portlet's properties. You
should see an orange border around the outside of the portlet, as shown in
Figure 13–8.

Basic IPC Example

Interportlet Communication Example With Event Handling 13-9

Figure 13–8 bPortlet with Outer Border Selected to Display Properties

3. In the Properties view, enter backing.Listening into the Backable Properties
> Portlet Backing File field, as shown in Figure 13–9.

Figure 13–9 Attaching the Backing File in the Properties View

4. Save the portlet file.

13.2.4 Add the Event Handler to bPortlet
You now add the event handler to bPortlet.portlet. This handler will be set up
so that it will listen for an event on a specific portlet and fire an action in response to
that event. To add the event handler, perform the following steps:

1. Click on the portlet in the editor if needed to display its properties.

2. In the Properties view, click in the Value column of the Event Handlers property.
A browse button appears, as shown in Figure 13–10.

Tip: The Properties view is a default view in the Portal perspective.
If it is not visible, select Window > Show View > Properties.

Note: bPortlet.portlet should be displayed in the Oracle Enterprise
Pack for Eclipse editor. If it isn't, locate it in the
ipcTestWebProject/WebContent folder in the application panel and
double-click it.

Basic IPC Example

13-10 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 13–10 Event Handlers Button

3. Click the ellipsis button to display the Portlet Event Handlers dialog, as shown in
Figure 13–11.

Figure 13–11 Portlet Event Handlers Dialog Box

4. Click Add Handler to open the Event Handler drop-down list.

5. From the drop down list, select Handle Portal Event.

The Portlet Event Handlers dialog box expands to allow entry of more details, as
shown in Figure 13–12.

Basic IPC Example

Interportlet Communication Example With Event Handling 13-11

Figure 13–12 Event Handler Dialog Box Expanded

6. Accept the defaults for all fields except Portlet.

7. In the Portlet field, click the ellipses button.

The Please Choose a File dialog appears.

8. Click aPortlet.portlet and click OK.

The dialog box closes and aPortlet_1 appears in the Listen to (portlets): list, as
shown in Figure 13–13. The label aPortlet_1 is the definition label of the portlet to
which the event handler will listen.

Figure 13–13 Adding portlet_1

9. Click the Event drop-down control to open the list of portal events that the
handler can listen for and select onMinimize, as shown in Figure 13–14.

Figure 13–14 Event Drop-down List

Basic IPC Example

13-12 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

10. Click Add Action to open the action drop-down list and select Invoke
BackingFile Method.

The Invoke BackingFile selection will not appear unless a backing file is detected
by WebLogic Portal.

11. In the Method field, enter handlePortalEvent, as shown in Figure 13–15.

The dropdown menu for this field displays the last several values that you
entered, if applicable.

Figure 13–15 Adding the Backing File Method

12. Click OK.

The event handler is added. Note that the Value field of the Event Handlers
property now indicates 1 Event Handler.

13.2.5 Test the Project
Test the communication between your portlets by following these steps:

1. Select ipcPortal.portal to display it in the workbench editor.

2. Drag both aPortlet.portlet and bPortlet.portlet from the Package
Explorer view onto the portal layout, as shown in Figure 13–16.

Note: Before you begin, ensure that all files are saved.

Basic IPC Example

Interportlet Communication Example With Event Handling 13-13

Figure 13–16 Portal Layout with aPortlet and bPortlet Added

3. Save the portal.

4. Run the portal. To do this, right-click ipcPortal.portal in the Package
Explorer view and select Run As > Run on Server.

5. At the Run On Server – Define a New Server dialog, click Finish.

Wait while the server starts and the application is published to the server. The
portal will render in your browser (Figure 13–17).

Figure 13–17 ipcLocal Portal in Browser

6. Click the minimize button to minimize aPortlet.

Note the content change in bPortlet, as shown in Figure 13–18.

Basic IPC Example

13-14 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 13–18 ipcPortal Showing the Effect of Minimizing aPortlet

13.2.6 Summary
In this example, you set up your environment and you added two JSP portlets to a
local portal. One portlet, aPortlet, was fairly simple, while the second portlet, bPortlet,
surfaced a more complex JSP file, used a backing file, and contained a portal event
handler. When you tested the communication between the portlets, you observed how
the bPortlet changed when an event occurred on aPortlet. This is called local
interportlet communication.

14

Adding the Content Presenter Portlet 14-1

14Adding the Content Presenter Portlet

The Content Presenter portlet allows users to retrieve and display different kinds of
content in a portal in real time, without assistance from your IT Department or
software developers. For example, you might want to display a list of the most recent
Press Releases so users can browse them and click one to read the entire Press Release.
You can place images (a photograph or a chart, for example) or add textual content on
a portal page. You can also segregate content by subject matter to target different
audiences.

In the Content Presenter Example, you can perform inline editing to quickly change
the content that displays in the portlet.

This chapter includes these sections:

■ Section 14.1, "Using the Content Presenter Example"

■ Section 14.2, "Configuring the Content Presenter Portlet in Your Portal"

14.1 Using the Content Presenter Example
WebLogic Portal includes a Content Presenter Example, and allows you to perform
inline editing on a Content Presenter portlet to modify the portlet's content. Editing
the portlet's content also changes the content in the content repository. The Example's
Content Presenter portlet uses the public Dojo rich text editor.

This section contains the following topics:

■ Section 14.1.1, "Starting the Content Presenter Example"

■ Section 14.1.2, "Performing Inline Editing in the Content Presenter Example"

■ Section 14.1.3, "Enabling Inline Editing in Your Portlets"

Note: Content Presenter requires that the Apache Beehive facets are
installed in the web application. For information on installing Apache
Beehive facets, see “Apache Beehive and Apache Struts Supported
Configurations" in the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

Tip: The Content Presenter portlet works only with streamed
portals.

Using the Content Presenter Example

14-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

14.1.1 Starting the Content Presenter Example
To start the Content Presenter sample:

1. From the Windows Start Menu, start the WebLogic sample server. (You can also
double-click the startWebLogic.cmd file located in the <WLPORTAL_
HOME>/samples/domains/portal/bin directory.)

2. After the server starts, from the Windows Start Menu choose Oracle Products >
WebLogic Portal > Examples > Visit Portal Examples.

3. On the WebLogic Portal Sample Domain, select Go to the Content Presenter
demo. (You can also launch the Content Presenter Example in a browser at
http://localhost:7041/contentpresenter/).

4. Enter your user name and password and click Login.

See Section 14.1.2, "Performing Inline Editing in the Content Presenter Example" for
instructions on how to perform inline edits to the content in a portlet in the Content
Presenter Example.

14.1.2 Performing Inline Editing in the Content Presenter Example
The Content Presenter Example is the only portal where you can perform inline HTML
content editing without doing additional setup tasks. By default, the Content Presenter
Example lets you immediately edit the content in the Letter from the CEO Portlet, or
you can enable the Training Announcement Portlet for inline editing. Inline editing in
the Content Presenter Example works only on single-item portlets.

The Letter from the CEO portlet in the Content Presenter Example is already
configured for inline editing because it uses the template view with inline editing
enabled and has the appropriate entitlement rights. To configure the Training
Announcement portlet for inline editing, see Section 14.1.2.2, "Enabling Inline Editing
for the Training Announcement Portlet.")

This section contains the following topics:

■ Section 14.1.2.1, "Entering Inline Edits"

■ Section 14.1.2.2, "Enabling Inline Editing for the Training Announcement Portlet"

14.1.2.1 Entering Inline Edits
To enter inline edits to the Letter from the CEO portlet:

1. Follow the steps in Section 14.1.1, "Starting the Content Presenter Example" to start
the Content Presenter Example and log in.

2. After you log in, click Edit HTML in the Letter from the CEO portlet, as shown in
Figure 14–1. The Content Presenter Configuration Wizard appears.

Figure 14–1 Click the Edit HTML Button that Appears in the Text of the Portlet

3. Enter your edits or insert a link to other content or graphics outside your content
management system. For example, before the signature line, type Sincerely, as
shown in Figure 14–2.

Using the Content Presenter Example

Adding the Content Presenter Portlet 14-3

Figure 14–2 Enter Text in the Signature Line

4. Click Save. Your changes appear in the portlet and are saved to the CM
Repository.

14.1.2.2 Enabling Inline Editing for the Training Announcement Portlet
One other portlet in the Content Presenter Example, the Training Announcement
portlet, allows inline editing. Inline editing is turned off by default for this portlet, so
you must first enable the inline editing capability by choosing a different content
display template view.

To enable inline editing for the Training Announcement portlet:

1. Follow the instructions in Section 14.1.1, "Starting the Content Presenter Example"
to log into the Content Presenter Example.

2. In the Training Announcement portlet in the Content Presenter Example, click
Edit in the portlet's title bar, as shown in Figure 14–3.

Tip: You can perform inline editing on two portlets in the Content
Presenter Example. Inline editing is not available for the Content
Presenter portlets in your portal.

Using the Content Presenter Example

14-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 14–3 Click Edit to Enable Inline Editing for this Portlet

3. In the Content Presenter Configuration Wizard's Single or Multiple Items window,
click Next. (If you use the wizard to change this portlet to allow multiple content
items, rather than a single item, you cannot enable inline editing. For more
information on configuring the portlet, see Section 14.2.1, "Configuring the
Content Presenter Portlet.")

4. In the wizard's Select Content window, click Next.

5. In the wizard's Select Template & View window, select Single Item View with
Inline Edit and click Next.

6. In the wizard's Portlet Properties window, click Next.

7. In the wizard's Finish window, click Save. The Edit HTML button appears in the
Training Announcement portlet. If you do not see the Edit Content button, you
might not have the correct entitlement. See the Oracle Fusion Middleware Security
Guide for Oracle WebLogic Portal for instructions on setting entitlements.

8. Click Edit HTML to change the content in the portlet or insert a link to other
content or graphics outside your content management system.

9. Click Save. Your changes are saved to the CM Repository.

14.1.3 Enabling Inline Editing in Your Portlets
You can use the three sample JSP files that ship with WLP to enable inline HTML
editing in your own Content Presenter portlets. Inline editing does not work with
library services enabled, because library services support versioning.

Edit the files in the order listed below. The files are located in the following directories:

1. Display Template (Outer Template) – <WLPORTAL_
HOME>\samples\applications\portalApp\
contentPresenterSampleWeb\samplePresenterTemplates\
inlineEditExamplePresenterTemplate.jsp

2. CM Display Template (Inner Template) That Displays the Content – <WLPORTAL_
HOME>\samples\applications\portalApp\contentPresenterSampleWe
b\sampleCMTemplates\inlineEditExampleCMTemplate.jsp

3. JSP File that Performs Other Work – <WLPORTAL_
HOME>\samples\applications\portalApp\contentPresenterSampleWe
b\sampleCMTemplates\saveNode.jsp

The files include detailed comments to help you customize them for your portlets. For
example, you might want to replace the DOJO rich text editor with your own rich text
editor. You might want to change the entitlements on the portlets or their look and
feel.

Configuring the Content Presenter Portlet in Your Portal

Adding the Content Presenter Portlet 14-5

14.2 Configuring the Content Presenter Portlet in Your Portal
The Content Presenter portlet ships with WebLogic Portal. You must configure the
portlet before you can use it.

The Content Presenter portlet uses a portlet framework that is based on Content
Management, metadata, and templates that let business users step through a wizard to
quickly retrieve and display content that is appropriate to the audience. The
framework allows WebLogic Portal customers to easily publish content in a variety of
ways to almost any site.

The Content Presenter portlet can read content from any configured content provider.
Content providers can be any repository that implements the WebLogic Portal Content
Management Service Provider Interface, including third-party Content Management
vendor products, file systems, or other database systems.

When you plan your Content Presenter portlet, determine who will view your content
and if you plan to re-use the portlet later for a different audience. Plan entitlements to
determine who can choose content to display in the Content Presenter portlet. If a
logged-in user has Delegated Administration rights, the user can edit the content in
the Content Presenter portlet.

You must be a member of the Portal System Administrators role or the Content
Presenter Administrators role to configure the Content Presenter portlet. Portal System
Administrators and Content Presenter Administrators have edit and delete capabilities
on the Content Presenter portlet itself, and edit capabilities on any page where the
portlet is placed. Also, by default any SQLAUTHENTICATOR user can configure the
Content Presenter portlet.

If you plan to have a group of users (for example, a subset of the Portal System
Administrators role) edit the Content Presenter portlet, this subgroup must have edit
and delete capabilities for the Content Presenter portlet itself and edit capabilities for
the page that contains the portlet. If the group does not have edit and delete
capabilities to the portlet, the group's members will not be able to see the Edit icon in
the portlet.

See the Oracle Fusion Middleware Security Guide for Oracle WebLogic Portal for more
information on setting entitlements and creating roles and groups. Portal System
Administrators and Content Presenter Administrators can also turn a portlet off by
disabling the activation flag in the portlet's preferences in the Administration Console.

If you use Portlet Publishing to configure a Content Presenter portlet, some features
are not available. See Section 14.2.1.2, "Using Portlet Publishing to Expose a Content
Presenter Portlet" for more information.

This section contains the following topic:

■ Section 14.2.1, "Configuring the Content Presenter Portlet"

14.2.1 Configuring the Content Presenter Portlet
The Content Presenter portlet ships with WebLogic Portal. You must add the Content
Presenter facet in Oracle Enterprise Pack for Eclipse when you set up your portal web

Caution: If you add or modify your Content Presenter portlet using
the Visitor Tools (rather than the Administration Console), the portlet
is no longer configurable in your desktop. You should add or modify
your Content Presenter portlet in the Administration Console.

Configuring the Content Presenter Portlet in Your Portal

14-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

project. By default, your portal administrator has the ability to administer the Content
Presenter portlet (to move portlets, turn a portlet off, and so on) in the Administration
Console.

In a desktop, use the Content Presenter's Configuration Wizard to determine the
content you want to display, and how to display it (through templates and template
views). The Content Presenter portlet stores those choices as portlet preferences for
each portlet instance.

Perform the following steps to configure the Content Presenter portlet:

1. In Oracle Enterprise Pack for Eclipse, create and deploy a Portal EAR project, web
project, a portal, and a method to authenticate users (such as a login portlet)
according to the instructions in the Oracle Fusion Middleware Tutorials for Oracle
WebLogic Portal. You should also create a Datasync project if you plan to use
Content Selectors to display content in the Content Presenter portlet.

2. Start the Administration Console and choose Portal > Portal Management.

3. Create a page and a desktop (you can choose to create a desktop from a desktop
template, library resources, or a .portal file) according to the instructions in
Oracle Fusion Middleware Tutorials for Oracle WebLogic Portal.

4. Select the page you created in Step 3 in the Portal Management tree in the
Library/Pages directory (or wherever you saved it). Add the Content
Presenter portlet to the page by clicking Add Page Contents. Click Add Contents
in the appropriate column, select the check boxes next to the Content Presenter
portlet and a login portlet (if that is the method you are using to authenticate
users), and click Save. (If you do not see a list of portlets in the Add Books and
Portlets to Placeholder page, click the drop-down box and select Portlets, and click
Show all.)

5. In the Portal Management tree, select the Portals directory, the portal you created,
and your desktop.

6. With the desktop selected, click View Desktop.

7. In the new browser window, log into the desktop and click Open Configuration
Wizard in the Content Presenter portlet. A new unconfigured Content Presenter
portlet does not appear until you log in, and only if you have rights to edit it.

8. In the Content Presenter Configuration Wizard, select one of the following in the
Single or Multiple Items window:

■ Multiple Content Items – Pick more than one content item and display them.
You can create a custom list of content, choose all content in a specific folder,
use the results of a Content Selector, or run a search to find content. The result
is a list of content items in the portlet.

Tip: When you create your Portal Web Project, you must select the
Content Presenter Framework facet in the WebLogic Portal
(Optional) directory in order to view and use the Content Presenter
portlet.

Note: The Content Presenter portlet can only be configured from the
desktop it is placed on.

Configuring the Content Presenter Portlet in Your Portal

Adding the Content Presenter Portlet 14-7

■ Single Content Item – Browse or search for one item. The item can be an
image, article, link to a file, link to a URL, and so on. The result is the content
item displaying inline in the portlet.

See Figure 14–4. Click Next after you select an option.

Figure 14–4 Determine How Much Content You Want to Display

9. The choice you made in Step 8 in this section determines which wizard pages you
see and what you choose next.

a. If you chose Single Content Item in Step 8, you can select Browse in the
wizard's Select Content window to navigate through the repository tree to
locate content, select the item, and click Next.

You can also select Search to find content by keyword or content type. (If you
have multiple content repositories configured, you can also search by
repository.) By default, all content types are listed in the Content Type field. If
you want to control which content types appear in the Content Type field, you
can set entitlements by user. In order to have these entitlements by user
evaluated, override the
com.bea.content.ui.framework.AllowObjectClassViewRights
context parameter in the web.xml file. If you change the setting to false, the
entitlements set on the content types determine the content types that are
listed in the Content Type field. If you change the setting to true, or you omit
the context parameter altogether, all content types appear for all users.

See the Oracle Fusion Middleware Security Guide for Oracle WebLogic Portal for
instructions on setting up users and roles in the Administration Console, and
adding view capabilities so users can see the object classes in the Content Type
field. Click Update Search Results to view the results. Adjust the Items per
Page field to determine how many search results to display in the wizard.
Select an item; see Figure 14–6. Click Next.

Configuring the Content Presenter Portlet in Your Portal

14-8 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 14–5 Narrow Your Search with a Keyword

10. If you chose Multiple Content Items in Step 8 of this section, select one of the
following in the wizard's Select Content window to specify your content items:

– Custom List of Specific Content Items – This type of content retrieval is not a
live search; it displays content from a list that you create. Click Browse for
Content Items to navigate through the repository tree to locate content.

You can also click Search for Content Items, enter a keyword, and click
Update Search Results to retrieve content by keyword. If you have multiple
content repositories configured, you can also search within a specific
repository. To search your repository, you must configure it and make it
searchable. The repository that ships with a WebLogic Portal for a new
domain is not automatically indexed for searching. See the Oracle Fusion
Middleware Content Management Guide for Oracle WebLogic Portal for
instructions on indexing your repository.

Figure 14–6 shows that after you retrieve multiple items and click Browse for
Content Items, you can select an item and click Add Item to List. The custom
list lets you control the order in which the content displays by selecting the
check box next to the item and clicking Move Up or Move Down. Moving
content to the top of the list ensures that a certain content item displays first.
See Figure 14–7.

Configuring the Content Presenter Portlet in Your Portal

Adding the Content Presenter Portlet 14-9

Figure 14–6 Custom List of Specific Content Items

You can also verify that you selected the correct content by clicking View
Content to preview the content you selected. The actual content and other
details appear in a separate window. If you selected an image, the image also
appears. You can also click Edit Content to change the property values of the
item. If the item is a binary file, you can download the item, upload new
values, or change the property values.

After you determine the order of the content, click Next.

– Results of a Search Query – Locate content by entering a keyword or
selecting a content type (such as an image or a book) and clicking Preview
Query Results. You can enter multiple keywords (separated by a space)
and the or connector is assumed. For example, if you search for IRA
retirement, results will include the keyword IRA or retirement. If you have
multiple content repositories configured and you are entitled to view
them, you can also search by repository.

You can click Advanced Search Query Options to create a query filter or
a sort filter. Clicking Create New Query Filter applies a filter to your
query, such as property name, an operator, and a value to narrow down
your search results. For example, you can search for content created after
1/1/07 by selecting the Creation Date property, selecting After, and then
entering a date. Click Add Filter and the new filter appears in the Query
Filters section, as shown in Figure 14–7.

You can click Create New Sort Filter to determine how to display the
search results. For example, you can display the most recently-modified
content by selecting the Last Modified Date property, selecting Descend-
ing, and clicking Add Sort Filter. The new sort filter appears in the Sort
Filters section. See Figure 14–7 to see how you can display the most
recently-modified content first (descending order). You can change the
order in which the results are sorted by clicking the up or down arrow to

Tip: The Similar operator retrieves results that contain words that are
similar to the keyword (for example, the word might be misspelled).

Configuring the Content Presenter Portlet in Your Portal

14-10 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

move the items in the sort filter up or down in the list (from ascending to
descending, for example.)

Figure 14–7 Query Filter and Sort Filter

Click Preview Query Results to view the results of the search query. The
search query searches both property values and binary content. Adjust the
Items per page field to determine how many search results to display in the
wizard (it does not affect the final display). Each time someone visits the
Content Presenter portlet, the search is re-run. Since content in the repository
can change, the results might be different the next time the portlet renders.
Click Next.

– Contents of a Folder – Navigate through the repository tree to locate a
content folder, click Select this Item, and click Next. Each time a user
views this portlet, the most current content items in the selected folder are
retrieved. Any content can behave like a folder; therefore, you can select
any child items under that content.

– Results of a Content Selector – Select a Content Selector that you created
in Oracle Enterprise Pack for Eclipse, and click Select this Item. Content
Selectors use rules to target specific groups of people with content items
from the WLP Virtual Content Repository. See the Oracle Fusion
Middleware Interaction Management Guide for Oracle WebLogic Portal for
more information. Each time the portlet renders, the most current Content

Tip: Running a search query is more resource intensive than
retrieving content from a specific node or retrieving the contents of a
specific folder. When possible, try to retrieve specific content, rather
than running a search.

Configuring the Content Presenter Portlet in Your Portal

Adding the Content Presenter Portlet 14-11

Selectors are retrieved. Click Next after you locate the Content Selector
you want to display.

11. In the wizard's Select Template & View window, select an item from the
Template Category field, and then select a template. A template category helps
you organize your templates and template views. You can have as many template
categories as you need, but you should plan your organization strategy early, so
that you do not have to update the preference values of existing Content Presenter
portlet instances. A template is similar to a folder and is used to organize content.
The default template that appears is based on the single or multiple content choice
you made in Step 8 in this section.

WebLogic Portal ships with the following two default templates:

– Default Single Item Template – Lets you view a single item and a single
property. See Figure 14–8. This template appears because you chose Single
Content Item in Step 8.

– Default Multiple Items Template – Lets you view multiple items and
properties in a bulleted list. This template appears because you chose
Multiple Content Items in Step 8.

You should create your own custom template based on the content you want to
display. The custom templates you create appear in the wizard. See the Oracle
Fusion Middleware Content Management Guide for Oracle WebLogic Portal for
instructions on creating custom templates and views.

Select an item in the Template Views field. A template view controls the layout
and formatting of the content in the portlet. For example, you might create a
template for your company's Press Releases. You could then create several custom
template views that display the content in the following ways: a summary of the
Press Release, the full text of the press release, details of the Press Release, and so
on.

If you chose the Default Single Item Template in Step 10 in this section (which
displays a single piece of content), or a custom template that you created that does
not contain views, select Default Single Item View for the template view. If you
chose the Default Multiple Items Template in Step 10 in this section, select Default
Multiple Items View for the template view. If you created a custom template
view as described in the Oracle Fusion Middleware Content Management Guide for
Oracle WebLogic Portal, that template view also appears here.

For templates or views that support pagination of multiple content items, set the
Items per Page value to the maximum number of items you want to display at one
time on the template. With the appropriate pagination JSP tags on the template or
view, users can navigate large numbers of items while viewing only a manageable
few.

Click Next after you select a template and view. See Figure 14–8.

Note: You can customize how templates and views paginate in the
Content Presenter Configuration Wizard. For more information on the
pagination tags, see the CM JSP Tag Javadoc in Oracle Fusion
Middleware JSP Tag Java API Reference for Oracle WebLogic Portal

Configuring the Content Presenter Portlet in Your Portal

14-12 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 14–8 Select a Template and View

12. In the wizard's Title & Theme window, enter a title (which appears as the
portlet's title in the titlebar and the Administration Console) and description for
the portlet. Select a theme from the Portlet Theme field and click Next. See
Figure 14–9. The borderless theme presents your content with no background or
border, so the content looks as if it is inline. If you choose the borderless theme, the
Edit icon (discussed in Step 12) appears only when you mouse over the top of the
portlet.

Figure 14–9 Enter a Description for the Portlet and Pick a Theme

13. In the portlet's Preview & Save window, you can click View Content or Edit
Content. Click Save to save your changes to this page and to shared portlets in the
library. Click Preview Changes in Portlet to view the changes in the portlet. Only
you can see this version of this portlet. When previewing the portlet, you can click
Edit to make changes to it. (If someone is authorized to make changes to your
portlet and does so while you are previewing the portlet, you can no longer
preview your version of the portlet. If this occurs, click Continue to see the newer
version of the portlet.)

Tip: Clicking Preview Changes in Portlet puts the portlet into a
"preview state". The portlet will remain in its preview state until you
click Cancel or Save in the wizard. The preview state is maintained
even if you log out or close your browser window. If you make
changes in other steps of the wizard, you must click Preview Changes
in Portlet to update the preview with your changes, or click Save to
make the changes public.

Configuring the Content Presenter Portlet in Your Portal

Adding the Content Presenter Portlet 14-13

You can also click Advanced Options and select Save to Current Page (to save
your changes to the current page only) or select Save to Shared Portlet in Library,
to save changes to this shared portlet in the library. Saving changes at the library
level globally affects everywhere the shared portlet was placed. You see this
option enabled only if you clicked Create New Shared Portlet. When you click
Create New Shared Portlet, you use these settings to create a new portlet in the
library. The new portlet is available to all entitled users of this web application
and can be placed on any page. The current page is updated to use this new
portlet, rather than the current portlet. The new portlet also appears in the
Administration Console in the \Library\Portlets\ directory. Inheritance
rules apply to shared portlets in the library. See the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal for more information on inheritance.
Figure 14–10 shows the Finish window.

When you finish previewing the portlet, click Return to Wizard or click the Edit
icon to return to this step in the wizard and make any additional changes. If you
want to save your changes, click Save.

Figure 14–10 Preview or Save the Portlet

Note: Content Presenter portlets that are configured on pages in the
library will remain on the page in the library, even if the page has
been customized on the desktop. The only way to make Content
Presenter configurations local to a desktop is to add a configured or
unconfigured Content Presenter portlet directly to the desktop, or
customize the portlet on the desktop by changing or adding
localizations to the portlet on the desktop using the Administration
Console.

Tip: To be able to use the Create New Shared Portlet button in the
Advanced Options, you must have edit rights on the page and delete
rights on the portlet, in addition to the rights needed to configure a
Content Presenter portlet.

Configuring the Content Presenter Portlet in Your Portal

14-14 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

The new content displays in the Content Presenter portlet. Figure 14–11 shows an
example of content that is an advertisement for a college savings account.

Figure 14–11 A Single Content Item Displayed in the Content Presenter Portlet

You can use a custom template or template view to change the look of the Content
Presenter portlet. See "Content Presenter Content Display Template Views" in the
Oracle Fusion Middleware Content Management Guide for Oracle WebLogic Portal for
instructions.

This section also contains the following topics:

■ Section 14.2.1.1, "Changing How Much Content Appears in the Portlet"

■ Section 14.2.1.2, "Using Portlet Publishing to Expose a Content Presenter Portlet"

14.2.1.1 Changing How Much Content Appears in the Portlet
You can change the amount of content that a portlet displays. Use the Content
Presenter Example to edit the Avitek - In the News portlet to display three specific
press releases, rather than a list of all press releases.

Perform the following steps to change how much content appears in a portlet:

1. Follow the instructions in Section 14.1.1, "Starting the Content Presenter Example"
to log into the Content Presenter Example.

2. In the Avitek - In the News portlet in the Content Presenter Example, click Edit in
the portlet's title bar.

3. In the Content Presenter Configuration Wizard, click 2. Select Content.

4. Select Custom List of Specific Content Items to display content from a list that
you create.

5. Navigate through the repository tree to locate content in the Shared Content
Repository folder and select the HR > Press Releases folder.

Tip: The Content Presenter portlet uses error logging to catch
exceptions and displays an error message in the portlet if you have
rights to configure the portlet. For example, you might receive an
error message if content your portlet is referencing was deleted, or a
template or view the portlet is using was removed. The error message
instructs you to reconfigure the Content Presenter portlet to fix the
errors. You must have edit and delete capabilities in order to
configure the portlet.

Configuring the Content Presenter Portlet in Your Portal

Adding the Content Presenter Portlet 14-15

6. Select the AvitekFutureInvestorsProgram.htm press release and click Add Item to
List. Repeat these steps for two additional press releases:
DividendsAnnouncement.htm and NewRewardsCreditCard.htm. This step will
control what displays in the portlet– rather than all press releases appearing, only
these three will appear.

7. If you want user to see the DividendsAnnouncement press release first in the list,
select the check box next to it and click Move Up.

8. Click Next to save your changes.

9. In the Select Template & View window, click Next.

10. In the Portlet Properties window, click Next.

11. In the Finish window, click Preview Changes in Portlet.

12. The three press releases now appear. Click Return to Wizard.

13. Click Save.

14.2.1.2 Using Portlet Publishing to Expose a Content Presenter Portlet
You must be entitled to use Portlet Publishing to expose a Content Presenter portlet. If
you use Portlet Publishing to expose your Content Presenter portlet, some features are
not available.

The following list describes features that are not part of a Content Presenter portlet
exposed with Portlet Publishing:

■ Advanced options are not available when you expose a Content Presenter portlet
through Portlet Publishing. You can save the portlet's configuration only at its
current location (for example, a desktop or a page in a library).

■ There is no Title Bar, so you cannot click Edit in the portlet's title bar. You can edit
the portlet configuration only by rolling your mouse over the top portion of the
portlet, which enables the edit button on the top right of the portlet.

■ Themes do not apply in portlets exposed through Portlet Publishing. Therefore,
you cannot change the currently selected theme of the Content Presenter portlet.

For more information on Portlet Publishing, see the Oracle Fusion Middleware
Client-Side Developer's Guide for Oracle WebLogic Portal.

Tip: When you use Portlet Publishing, work with only one Content
Presenter portlet on a page at a time. If you work on more than one
Content Presenter portlet on a page, an error appears. Close one of the
Content Presenter wizards to continue working.

Configuring the Content Presenter Portlet in Your Portal

14-16 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

15

Adding a Third-Party Portlet 15-1

15Adding a Third-Party Portlet

This chapter discusses special-purpose portlets that are provided by WebLogic Portal
and partner companies that you can easily incorporate into your portal.

15.1 Using the Collaboration Portlets
WebLogic Portal provides a set of portlets for adding collaborative features to your
portal. For detailed information on how to use the collaboration portlets, see
Chapter 16, "Using the Collaboration Portlets."

15.2 Autonomy Portlets
If you want to use Autonomy Corporation’s search functionality, you can purchase a
license from Autonomy Corporation.

For more information about Autonomy, see Oracle Fusion Middleware Autonomy Search
Integration Sample Guide for Oracle WebLogic Portal.

15.3 Documentum Portlets
EMC Documentum has partnered with Oracle to offer EMC Documentum Content
Services for Oracle Weblogic Portal. This product provides a packaged set of
Documentum functionality exposed through the Oracle WebLogic Portal
infrastructure, allowing users to access and interact with all types of enterprise content
including web pages, documents, and rich media such as audio and video.

From a portlet development perspective, a key feature of this product is the inclusion
of Documentum portlets—application components that expose standardized,
enhanced content management user functions through the portal interface.

Documentum portlets expose four key applications:

■ Content management portlets allow users to manage any type of content.

■ Web Publisher portlets permit casual users to publish content to web sites and
portals.

■ eRoom portlets provide dashboard views into EMC Documentum eRooms and
allow multiple project management.

■ The Enterprise Content Integration (ECI) Services portlet enables continuous
access to content in other repositories, databases, and Web sites.

See the Documentum web site for more information on Documentum portlets for
WebLogic Portal

MobileAware Portlets

15-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

15.4 MobileAware Portlets
Oracle Communication and Mobility Server provides a standards-based,
non-proprietary environment that extends Oracle WebLogic deployments to offer
multichannel mobile services in significantly reduced time frames. Enterprises can
broaden the effectiveness of business-critical systems for employees and customers,
and mobile carriers can rapidly deploy new, data-centric services, without the need for
re-training and re-tooling.

For more information about Oracle Communication and Mobility Server and how to
use it with WebLogic Portal, see the product documentation on Oracle Technology
Network (OTN) .

16

Using the Collaboration Portlets 16-1

16Using the Collaboration Portlets

WebLogic Portal provides a set of portlets for adding collaborative features to your
portal. You can use these collaboration portlets in any WebLogic Portal desktop.

This chapter includes these topics:

■ Section 16.1, "What Are Collaboration Portlets"

■ Section 16.2, "Adding Collaboration Portlets to Your Portal"

■ Section 16.3, "Configuring Collaboration Portlets for a Shared View"

■ Section 16.4, "Using the Collaboration Portlet Source Code"

■ Section 16.5, "Using the Calendar Portlet"

■ Section 16.6, "Using the Mail Portlet"

■ Section 16.7, "Using the Contacts Portlet"

■ Section 16.8, "Using the Tasks Portlet"

■ Section 16.9, "Using the Discussion Forums Portlet"

■ Section 16.10, "Setting Up the Rich Text Editor"

16.1 What Are Collaboration Portlets
WebLogic Portal provides the following collaboration portlets that you can use in any
WebLogic Portal desktop.

Note: The Collaboration Portlets require that the Apache Beehive
facets are installed in the web application. For information on
installing Apache Beehive facets, see "Apache Beehive and Apache
Struts Supported Configurations" in the Oracle Fusion Middleware
Portal Development Guide for Oracle WebLogic Portal.

Note: User portlets are portlets that store data on a per-user basis.
Common area portlets store data in a common location that can be
viewed by all users. The Calendar, Address Book, and Tasks portlets
are user portlets by default. In some cases, you might want to
reconfigure them to be common area portlets. For example, you might
want to configure a corporate events calendar where all users see the
same data. See Section 16.3, "Configuring Collaboration Portlets for a
Shared View" for details.

Adding Collaboration Portlets to Your Portal

16-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Calendar Portlet – (User portlet) Lets you create and schedule appointments.

■ Mail Portlet – (User portlet) Allows you send and receive personal e-mail. This
portlet supports IMAP and POP.

■ Address Book Portlet – (User portlet) Lets you view and manage names,
addresses, phone numbers, e-mail addresses, and other information in a personal
address book.

■ Tasks Portlet – (User portlet) Allows you to create and track Community items or
personal items on a To Do list.

■ Discussion Portlet – (Common area portlet) Lets you post and monitor topics of
interest.

16.2 Adding Collaboration Portlets to Your Portal
This section explains how to add collaboration portlets to your portal and configure
them properly. The basic steps are:

■ Section 16.2.1, "Step 1: Add Collaboration Facets"

■ Section 16.2.2, "Step 2: Add Collaboration Repository to Your Domain"

■ Section 16.2.3, "Step 3: Create a Role for Collaboration Portlet Users"

■ Section 16.2.4, "Step 4. (Optional) Configure a Repository"

■ Section 16.2.5, "Step 5. Entitle the Collaboration Data Repository"

■ Section 16.2.6, "Step 6. Add Users to the New Role"

■ Section 16.2.7, "Step 7. Configure the Collaboration Portlets"

■ Section 16.2.8, "Step 8. Add Collaboration Portlets to Your Desktop"

16.2.1 Step 1: Add Collaboration Facets
You must add the appropriate facets to both the portal EAR projects and the portal
Web projects in which the collaboration portlets will be used.

1. Add the relevant collaboration portlet facets to your portal EAR project.

a. In the Navigator view, right-click your portal EAR project and choose
Properties.

b. In the Properties view, select Project Facets, and click Add/Remove Project
Facets.

c. In the Add/Remove window, expand WebLogic Portal Collaboration and
select both Collaboration Portlets Application Libraries and Collaboration
API.

d. Click Finish, then OK.

2. Add the Collaboration Portlets facet to your portal web project.

a. Perform the same sub-steps above, selecting the WebLogic Portal
Collaboration > Collaboration Portlets facet.

Tip: The collaboration portlets are also available for use in custom
communities. For detailed information on creating communities, see
the WebLogic Portal Oracle Fusion Middleware Communities Guide for
Oracle WebLogic Portal.

Adding Collaboration Portlets to Your Portal

Using the Collaboration Portlets 16-3

After you add the collaboration portlet facets, collaboration portlets themselves must
be configured properly, as explained in the following steps. After configuration, they
are available to add to a portal desktop.

16.2.2 Step 2: Add Collaboration Repository to Your Domain
If you have not done so, you need to create or extend a domain to includes the
Collaboration Repository components.

1. If you have an existing server and it is running, stop the server.

2. Start the Configuration Wizard. From the Windows Start menu, choose Oracle
Products > WebLogic Server > Tools > Configuration Wizard.

3. In the Configuration Wizard, select Create for a new domain or Extend for an
existing domain, and click Next.

4. If you selected Create in Step 3, select WebLogic Portal Collaboration Repository
check box and click Next. If you are extending an existing domain, select the
domain root directory, and click Next.

5. Complete the remaining wizard windows.

6. Restart the server.

16.2.3 Step 3: Create a Role for Collaboration Portlet Users
Users of the collaboration portlets must be entitled to use the repository in which
collaboration data is stored. This section explains how to create an new user role.

1. Start the WebLogic Portal Administration Console and log in.

2. Create a new enterprise application-scoped visitor entitlement. To do this, select
Users, Groups, & Roles > Visitor Entitlement > Browse Roles.

3. Set the role scope. In the Browse Roles from panel, click Update to bring up the
Update Role Scope dialog. In the dialog, select Enterprise Application Scope, and
click Update.

4. Select Visitor Roles > Browse Roles > Create New Role. Enter a name for the new
role and save it.

16.2.4 Step 4. (Optional) Configure a Repository
Data generated by collaboration portlets is stored in a content repository. By default,
collaboration portlets are configured to store data in the repository subfolder
/Communities_Repository/Collaboration.

If you wish, you can use any WLP content repository for storing collaboration portlet
data. Note that library services must be disabled for the repository. Collaboration
portlet data is not supported for third party repositories, such as Documentum
repositories. See the Oracle Fusion Middleware Content Management Guide for Oracle
WebLogic Portal for detailed information on content repositories. It is a good practice to
create a subfolder in the repository in which to store the data, as explained in this
section.

Tip: A general best practice is to create a custom repository for
collaboration data. See "Configuring Additional WLP Repositories" in
the Oracle Fusion Middleware Content Management Guide for Oracle
WebLogic Portal for details.

Adding Collaboration Portlets to Your Portal

16-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

To create a subfolder in which to store collaboration portlet data, do the following:

1. Select Content > Content Management. In the Repository View, select your
repository.

2. Click Add Folder and add a new folder to the repository of your choice.

In a later step, you will configure individual collaboration portlets to point to the
repository folder of your choice, which is an option if the default location is not
desirable.

16.2.5 Step 5. Entitle the Collaboration Data Repository
You must properly entitle the repository folder in which collaboration portlet data will
be stored. Only entitled users can use the collaboration portlets.

1. Select the subfolder you created or targeted to store collaboration data.

2. Select the Entitlements tab for the subfolder.

3. Click Add Role and add the new user role you created for the collaboration
portlets. Entitle the role with the capabilities Create, View, Update, and Delete.

16.2.6 Step 6. Add Users to the New Role
You must add any users who will use the collaboration portlets to the new role. Select
the role and click Add Users to Role. Use the dialog to add users to the role.

16.2.7 Step 7. Configure the Collaboration Portlets
Configure the collaboration portlets so that they are aware of the repository that you
configured. To do this, you edit certain portlet preferences.

1. Select Portal > Portal Management.

2. Expand the Portal Resources > Library > Portlets folder.

3. For each collaboration portlet that you wish to use, do the following:

a. Select a portlet to configure. For example, click Discussion to configure the
Discussion portlet.

b. Click Portlet Preferences.

c. Edit collaboration.personal_repository.path and set its value to the
designated collaboration data folder in your repository. For example, if you
created a folder named MyCollaborationData in the repository called
MyCollaborationRepository, set the value to:
/MyCollaborationRepository/MyCollaborationData.

d. Edit collaboration.personal_repository.name and set its value to the name of
the repository you are using for collaboration data. For example, if you are
using a repository called MyCollaborationRepository, set the value to
MyCollaborationRepository.

Tip: Be sure to add any new users to the role if you want them to use
the collaboration portlets. To create new users, select Users, Groups,
& Roles > User Management. After you create a new user, add it to
the role.

Configuring Collaboration Portlets for a Shared View

Using the Collaboration Portlets 16-5

16.2.8 Step 8. Add Collaboration Portlets to Your Desktop
Now that you have configured your collaboration portlets, you can add them to a
desktop.

If you configured everything properly, authorized users can access the collaboration
portlets after logging in. Folders will be created in the collaboration repository as they
are needed. For example, Figure 16–1 shows the repository structure for an example
discussion forum on beekeeping.

Figure 16–1 Repository Structure for a Discussion Forum

16.3 Configuring Collaboration Portlets for a Shared View
This section explains how to reconfigure user portlets to be common area portlets.
User portlets restrict the portlet's data to individual users, while common area portlets
allow entitled users to share a the same view of the portlet's data.

16.3.1 Overview of User and Common Area Portlets
Collaboration portlets fall into two categories: common area portlets and user portlets:
Typically, common area portlets are recommended for use cases where all users need
to share the same view of the portlet's data. For example, you could create a calendar
that displays corporate events to all users. In this case, you would need to configure
the Calendar portlet (which is a user portlet by default) to be a common area portlet.

■ Common area portlets write data to a shared repository that is accessible to all
entitled users. By default, the Discussion portlet is a common area portlet.

■ User portlets write data to a user-specific repository location that is accessible only
to the currently logged in user. A user portlet's repository location is based on the
root repository location specified by the portlet preference (see Section 16.2.7, "Step
7. Configure the Collaboration Portlets"). For example, if the Calendar portlet
preference is set to be /MyRepository/Collaboration/calendar, and if the
Calendar portlet is configured as a user portlet, it will write to the location

Note: Collaboration portlets only work if the user is authenticated.
Your desktop must include a login portlet. For more information on
authentication, see the Oracle Fusion Middleware Security Guide for
Oracle WebLogic Portal.

Using the Collaboration Portlet Source Code

16-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

/MyRepository/Collaboration/calendar/<username>. The Calendar, Address
Book, Tasks, and Mail portlets are user portlets by default.

16.3.2 Configuring a Common Area Portlet
This section explains how to reconfigure user portlets to be common area portlets.
Note that by default, the Calendar, Address Book, Tasks, and Mail portlets are user
portlets.

1. Copy the portlets you want to configure to your local project. To do this:

a. Open the Merged Projects View in Oracle Enterprise Pack for Eclipse. (To
open the Merged Projects view, select Window > Show View > Merged
Projects.)

b. Right-click each portlet (located in the portlets/collaboration folder) and select
Copy to Project. See Section 5.2, "Portlets in J2EE Shared Libraries" for
information on the Copy to Project feature.

2. Rename each copied portlet. For example, change Tasks.portlet to
Tasks-Team.portlet.

3. In a text editor, open each .portlet file and change the definition label and title.
For example:

Before:

<netuix:portlet definitionLabel="task" title="My Task"
 lafDependenciesUri="/portlets/collaboration/collaboration.dependencies">

After:

<netuix:portlet definitionLabel="task_team" title="Team Task"
 lafDependenciesUri="/portlets/collaboration/collaboration.dependencies">

4. Also in the text editor, for each portlet, change the <netuix:meta> tag
containing the AccountListenerImpl to use the CmAccountListener instead of the
PersonalAccountListener. For example:

Before:

<netuix:meta name="collaboration.portlet.AccountListenerImpl"
 content="portlets.collaboration.common.c11n.PersonalAccountListener"/>

After:

<netuix:meta name="collaboration.portlet.AccountListenerImpl"
 content="portlets.collaboration.common.c11n.CmAccountListener"/>

5. Save each .portlet file.

16.4 Using the Collaboration Portlet Source Code
Source code for the collaboration portlets is available to WebLogic Portal developers,
as explained in this section.

Tip: Because mail is usually intended to be used by specific users
rather than shared among many users, it is typically not necessary to
reconfigure the Mail portlet to be a common area portlet.

Using the Calendar Portlet

Using the Collaboration Portlets 16-7

16.4.1 Copying the Source Code to Your Project
To use the source code, you must first copy it from a J2EE Shared Library to your
workspace.

Source code for the collaboration portlets is located in the J2EE Shared Library
wlp-collab-portlets-web-lib. To use this source code, you need to copy it from
the shared library to your project workspace. See Section 5.2, "Portlets in J2EE Shared
Libraries" for information on the Copy to Project feature.

Java source code for the collaboration portlets is copied to WEB-INF/src/portlets.
Javadoc for the collaboration portlet code is copied to WEB-INF/src/javadoc.zip.

16.4.2 Source Code Disclaimers
If you modify any of the source code for the collaboration portlets, be aware of the
following disclaimers:

■ If you modify the source code and discover a bug, you must either reproduce the
problem using the original collaboration portlet code or provide a simple code
sample that illustrates that a bug exists in the WebLogic Portal API bug.

■ If you change the original copy of the collaboration portlet source code and later
apply a software patch to WebLogic Portal, be you must copy the updated source
code from its library module to your workspace and reapply the changes you
made to the original source code.

16.5 Using the Calendar Portlet
The Calendar portlet lets you create and schedule appointments. The Calendar portlet
can store personal Calendar information and Community Calendar information.

You can customize the number of Calendar days that display. A Calendar
appointment shows up in the Notifications Center when the appointment time is
within the amount of time you specify.

16.5.1 Adding a Calendar Appointment
Perform the following steps to add an appointment to your calendar:

1. Select the Schedule tab and the Calendar tab.

2. Select the Community tab or the Personal tab to add an item to each of those
Calendars.

3. Click Add Appointment. You can also click the appropriate time in the calendar
and add the appointment.

4. Enter the following information about the appointment:

■ Primary Information – Click Primary Information and enter the subject, time,
date, description, and location of your appointment. You can indicate whether
the calendar shows your appointment time as busy or free. You can also
indicate the importance of the appointment: High, Medium, or Low. These
settings are reflected on the calendar.

■ In the Description field, enter text describing the appointment. If your System
Administrator and Portal Administrator enabled rich text editing for this
portlet, you can click Rich text to use the formatting toolbar to format your
text, or click Plain text to enter text without formatting. If rich text editing is
disabled for this portlet, the Rich text and Plain text links are not available.

Using the Calendar Portlet

16-8 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ Repeating – Click Repeating and indicate the frequency of the appointment.
For example, if you select Weekly, the appointment is scheduled
automatically for the same day and time each week. By default, meetings do
not repeat. You can also specify an end date for repeating meetings.
Figure 16–2 shows a recurring meeting every Monday for five months.

Figure 16–2 Repeating Calendar Appointment

■ Attachments – Click Attachments and add a file to the appointment by clicking
Browse, choosing a file on your file system, and clicking Attach.

■ Click Save. The new appointment appears in the Calendar portlet.

See Figure 16–3 to view information for a new appointment.

Tip: For instructions on enabling rich text editing in a portlet, see
Section 16.10, "Setting Up the Rich Text Editor."

Using the Calendar Portlet

Using the Collaboration Portlets 16-9

Figure 16–3 New Calendar Appointment

16.5.2 Managing Your Calendar
You can also perform the following tasks:

■ Edit an Appointment – You can reschedule or change an appointment's time,
date, or location by selecting the appointment and clicking Edit.

■ Changing the View – Modify what you see in the portlet by clicking Day, Week,
Month, or Upcoming. All day appointments are shown at the top of the calendar
page and indicated with a yellow bullet point to clearly distinguish them from
timed appointments. Set the default view by clicking the Calendar portlet's Edit
icon.

■ Editing Preferences – Click the Calendar portlet's Edit icon to specify the
following preferences:

– Time Zone – Select the time zone in which you are working.

– Default View – Select Day, Week, or Month to change the scope of your
displayed calendar. Select Upcoming Events to display the upcoming events
view by default.

– Number of days in Upcoming Events – Select the number of days to display
for the Upcoming Events view.

– Time Intervals – Select the interval of time you want your calendar to display
by selecting one of the pre-set intervals for Day, Week, or Month views.

– Week Starting Day – Select the day your typical work week begins.

Using the Mail Portlet

16-10 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

– Working Hours – Select starting and ending hours for your typical work day.

■ Deleting an Appointment – Select the appointment and click Delete.

16.6 Using the Mail Portlet
The Mail portlet allows users to send and receive personal e-mail to other members in
your Community and to people outside the Community.

Unread messages are highlighted and display a closed envelope icon. Messages in the
Inbox that you have already read are not in bold text and the icon is not highlighted.

16.6.1 Configuring the Mail Portlet
You must configure your mail account and add information about your incoming and
outgoing mail server.

Perform the following steps to configure your mail account for incoming and outgoing
mail:

1. Select the Communicate tab and the Mail tab.

2. If the Add Account page does not display, click the Mail portlet's Edit button.

3. Enter information by clicking Account Information, General Mail Settings,
Incoming Mail Settings, and Outgoing Mail Settings:

■ Account Information – Enter the name of your mail account. Do not use
special characters. Select the Set as the default account to make this your
default mail account.

■ General Mail Settings – In the Mail message 'display from' field, enter the
name you want to appear in the From field in your e-mails. In the From email
address field, enter your e-mail address.

■ Incoming Mail Messages – Complete all of the fields to set up your incoming
mail server. Each field is required:

– The incoming mail username – The user name to access your incoming
mail server.

– The incoming mail password – The password to access your incoming
mail server.

– Incoming mail host name or IP address – The server name or IP address
of the incoming mail server.

– Incoming mail protocol – The protocol the incoming mail server
supports. You can select POP3 or IMAP.

– Incoming mail port – The port to connect to the incoming mail server.
This defaults to the value for the selected protocol. Enter port 110 for
POP3 or 143 for IMAP.

– The mail timer retrieve mail interval – The time out value in seconds for
the incoming mail server to poll for new messages.

■ Outgoing Mail Messages – Complete all of the fields to set up your outgoing
mail server. Each field is required:

– Outgoing mail username – The user name to access your outgoing mail
server.

Using the Mail Portlet

Using the Collaboration Portlets 16-11

– Outgoing mail password – The password to access your outgoing mail
server.

– Outgoing mail host name or IP address – The outgoing host name or IP
address.

– Outgoing mail protocol – The protocol the outgoing mail server supports.
You can select SMTP.

– Outgoing mail port – The port to connect to the outgoing mail server.
This defaults to the value for the selected protocol. For SMTP, enter 25.

See Figure 16–4.

4. Click Save.

Figure 16–4 Configuring the Mail Servers

Using the Mail Portlet

16-12 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

16.6.1.1 Removing a Mail Account
If you entered and saved incorrect information when configuring the Mail portlet, an
error appears. You should delete this incorrect setup information by removing the
mail account you created.

Perform the following steps to delete the account from the list of mail accounts:

1. In the Mail portlet, click Edit (as shown in Figure 16–5) to get to the Mail
Preferences window.

2. Click Mail Accounts to expand that section.

3. Select the account you want to delete.

4. Click Delete to remove the highlighted account.

Figure 16–5 Click the Edit Icon to View the Mail Preferences Window

16.6.2 Sending E-Mail
Perform the following steps to send an e-mail:

1. Select the Communicate tab and the Mail tab.

2. Click New Message to send a new e-mail.

3. Enter information by clicking Primary Information, Attachments, or Options:

4. Primary Information – Click Primary Information and enter the recipients,
subject, and additional text. The To field is the only required field. You can also
click To to pick a recipient from your list of personal contacts. You can click Check
Names to view your contacts. In the text area, enter text for the body of the e-mail.
If your System Administrator and Portal Administrator enabled rich text editing
for this portlet, you can click Rich text to use the formatting toolbar to format your
text, or click Plain text to enter text without formatting. If rich text editing is
disabled for this portlet, the Rich text and Plain text links are not available.

■ Attachments – Click Attachments to add a file to the e-mail. Click Browse,
select the file, click Open, and click Attach. The file can be a document or a
binary file.

■ Options – Click Options and select a priority for your e-mail. You can also
save a copy of the e-mail to your Sent folder and be notified when the
recipient reads the mail.

See Figure 16–6.

5. Click Send. (Clicking Save as Draft saves the e-mail in your Drafts folder so you
can send it later.) You cannot delete your Inbox, Sent Items, or Drafts folders.

Tip: For instructions on enabling rich text editing in a portlet, see
Section 16.10, "Setting Up the Rich Text Editor."

Using the Mail Portlet

Using the Collaboration Portlets 16-13

Figure 16–6 New E-Mail Message

16.6.3 Viewing Mail
Perform the following steps to send and view your e-mail and attachments:

1. View an e-mail by clicking the item.

2. You can click Reply to send a reply to the e-mail, or Forward to send the e-mail to
someone else.

3. If the e-mail has an attachment, click it and click the attachment name, and Open
to view it or Save to download it.

4. Click Done to return to your other mail messages.

16.6.4 Managing Mail
You can also perform the following tasks in the Mail portlet:

■ Change an E-Mail's Status – Select the check box next to the e-mail, select Mark as
Unread or Mark as Read from the drop-down list, and click the arrow next to the

Tip: Click Check Messages to refresh the page and display new
e-mails.

Using the Contacts Portlet

16-14 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Message Actions field. For example, if you selected Mark as Unread, the e-mail
changes from bold text to normal text and the envelope icon is no longer green.

■ Filter Your E-Mails – Click Unread or High Priority to view messages with that
status. Click All to view all e-mails in your Inbox.

■ Create, Rename, Move, and Delete Folders – Manage your mail folders by
clicking Manage Folders. Create a new folder by selecting where you want the
folder, clicking the Create Subfolder link, entering a name, and clicking OK. You
can also click Rename, Delete, Move, or Copy to make changes to folders you
created.

■ Change E-Mail Accounts – Select a different account name from the Accounts
drop-down list on the Mail portlet.

■ Delete an E-Mail – Remove an e-mail by selecting the check box next to it and
clicking Delete. The deleted e-mail is placed in a Deleted folder. When you delete
items from that folder, the e-mail and any attachments are removed from the
database.

■ Create an E-Mail Signature – Enter text that you can attach to the bottom of
outgoing messages by clicking the portlet's Edit icon and clicking Mail
Preferences. Enter the information in the Signature field and select the Add
signature to outgoing messages check box and click Save. Click the Leave Edit
icon to return to return to the Mail portlet.

■ Change the Number of E-Mails Displayed – Control how many e-mails display
in the Mail portlet by clicking the portlet's Edit button and clicking Mail
Preferences. Select 10, 25, or 50 from the Messages Per Page drop-down list and
click Save. Click Leave Edit to return to the Mail portlet.

16.6.5 Searching Mail
You can search for individual Mail folders and messages for keywords that appear in
the Subject, Body, From, or Date fields.

16.7 Using the Contacts Portlet
Use the Contacts portlet to view and manage names, addresses, phone numbers,
e-mail addresses, and other information in a personal address book. The Contacts
portlet can store Personal Contacts and Community Contacts.

The Contacts portlet works with the Mail portlet. If you receive an e-mail from
someone, you can open the e-mail in the Mail portlet and click Add to Contacts to add
the sender to your Contacts list.

16.7.1 Adding a Contact
Perform the following steps to add a new Contact:

1. Select the Communicate tab and the Contacts tab.

2. Select the Community tab to add a Community contact or the Personal tab to add
a personal contact.

3. Click Add Contact. The Add Contact dialog appears.

4. Enter information about the contact by clicking each of the following:

Using the Contacts Portlet

Using the Collaboration Portlets 16-15

■ Primary Information – Enter the contact's name, including first, middle, and
last name, as well as title and name suffix. You can also enter the contact's
e-mail address.

■ Business Information – Enter the contact's business details in the Business
Information section. This section is optional.

■ Personal Information – Enter the contact's personal information, such as
home phone, personal cell phone, birthday, and so on. This section is optional.

■ Other Information – Enter information about the contact. This section is
optional.If your System Administrator and Portal Administrator enabled rich
text editing for this portlet, you can click Rich text to use the formatting
toolbar to format your text, or click Plain text to enter text without formatting.
If rich text editing is disabled for this portlet, the Rich text and Plain text links
are not available.

See Figure 16–7 to view the fields for a new business contact.

5. Click Save. The contact appears in the Contacts portlet, as shown in Figure 16–8.

Tip: For instructions on enabling rich text editing in a portlet, see
Section 16.10, "Setting Up the Rich Text Editor."

Using the Contacts Portlet

16-16 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Figure 16–7 Adding a New Business Contact

Figure 16–8 New Contact

Using the Contacts Portlet

Using the Collaboration Portlets 16-17

16.7.2 Filtering and Navigating Contacts
The Contacts portlet provides several ways to filter and navigate through your list of
contacts. If the list of contacts is long, the application breaks it into pages. Navigate
these pages using the arrow buttons.

To change the default number of contacts per page, click the portlet's Edit icon. Click
Addressbook Preferences and use the Contacts per Page drop-down list to change the
default number of contacts that appear.

The Contacts portlet lets you filter the contacts that are displayed in the table in
several ways, including the following:

■ View All – Click All to list all contacts in the portlet, as shown in Figure 16–9.

Figure 16–9 Viewing All Contacts

■ Alphabetical – Click a letter link to list the contacts whose last names start with
that letter.

■ Sort Contacts – You can sort the list of contacts by clicking the title of a column.
For instance, to sort your contacts by last name in ascending order, click the
heading of the Last column. The up arrow indicates that the column is sorted in
ascending order. A down arrow indicates descending order.

■ Search for Contacts – You can search for contacts by entering a search term and
clicking Search. For more information on searching contacts, see Section 16.7.4,
"Searching Contacts."

16.7.3 Managing Contacts
You can also perform the following tasks:

■ Editing a Contact – Modify a contact's information by clicking the contact's name,
clicking Edit, and modifying the information.

■ Deleting a Contact – Remove one or more contacts by selecting the check box next
to the contact and clicking Delete. To select all check boxes in a column, click the
check box in the table's heading row.

16.7.4 Searching Contacts
You can use the following information to search for contacts:

■ First name

■ Middle name

■ Last name

■ Company name

■ E-mail address

To perform a search, enter the search string in the Search field and click Search. The
results appear in the portlet.

Using the Tasks Portlet

16-18 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

16.8 Using the Tasks Portlet
The Tasks portlet allows you to create and track Community items or personal items
on a To Do list. You can view recent tasks and quickly add new tasks. The Tasks
portlet can store personal information and Community information.

The Tasks portlet provides summary information about a list of tasks including
priority, attachments, subject, status, and due date. Tasks can be sorted by each of
these fields, except file attachments and priority.

16.8.1 Adding a Task
Perform the following steps to create a new Task:

1. Select the Schedule tab and the Tasks tab.

2. Select the Community tab to add a Community task or the Personal tab to add a
personal task.

3. Click Add Task

4. Enter the following information:

■ Primary Information – Click Primary Information and enter the following
information:

– Subject – Enter text describing the Task.

– Due Date – Click the calendar icon and select a due date and time.

– Start Date – Click the calendar icon and select a start date and time.

– Status – Click the drop-down list and choose Not Started, Completed,
or In Progress.

– Importance – Click the drop-down list and choose High, Low, or Medium.
On the Tasks portlet, high priority tasks are denoted with a red
exclamation point, while low priority tasks have a blue down arrow.

■ Other Information – Click Other Information to add categories for this Task
(separated by a semicolon), adjust the Percent Complete, or add detailed
Comments. If your System Administrator and Portal Administrator enabled
rich text editing for this portlet, you can click Rich text to use the formatting
toolbar to format your text, or click Plain text to enter text without formatting.
If rich text editing is disabled for this portlet, the Rich text and Plain text links
are not available.

■ Attachments – Click Attachments to add a document to this Task. Click
Browse to locate the document and click Attach. The Task is saved before you
add the attachment.

See Figure 16–10.

5. Click Save. This Task appears in the Tasks portlet with a red exclamation point to
show it has a high priority, as shown in Figure 16–11.

Tip: For instructions on enabling rich text editing in a portlet, see
Section 16.10, "Setting Up the Rich Text Editor."

Using the Tasks Portlet

Using the Collaboration Portlets 16-19

Figure 16–10 New Task with an Attachment

Figure 16–11 High Priority Task

You can view information differently by clicking the columns to reorder them.

16.8.2 Managing Tasks
■ View Detail About a Task – See more information about the Task by clicking the

Task name in the Subject column.

■ Edit a Task – Modify the Task's details by clicking the Task name in the Subject
column and clicking Edit.

■ Mark a Task as Completed on Your To Do List – If the task is completed, you can
cross it off your list. Select the check box next to the Task and click Mark
Complete. The Task now has a line through it. The line remains even if you
refresh the page.

■ Find Tasks – Enter the subject of the Task in the Search bar and click Search.

■ Delete a Task – Remove a Task from your To Do list by selecting the check box
next to the Task and clicking Delete. Click OK.

Using the Discussion Forums Portlet

16-20 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

16.9 Using the Discussion Forums Portlet
The Discussion Forums portlet lets users post and monitor topics of interest. A
Community owner or creator creates categories (folders) and Discussion Forums, and
other Community members can post topics and reply to the threaded discussions.
Community owners and creators can create, edit, and delete categories, Discussion
Forums, and topics. Community owners, creators, and contributors have create and
edit capabilities, and viewers have read capability only.

A Discussion Forum exists within the Community, rather than outside the Community
(such as an RSS channel).

You can organize your Discussion Forums by creating categories to organize Forums
with similar topics.

16.9.1 Adding a Category and a Discussion Forum
Perform the following steps to create a category and a Discussion Forum:

1. Select the Collaborate tab and the Discussion Forums tab.

2. You can create a category to organize Discussion Forums with similar topics. Click
Add Category.

3. Enter the following information for the new category:

■ Name – Enter text describing the category that will contain the Discussion
Forums.

■ Keywords – Enter searchable words that are contained in this Discussion
Forum. Use a comma or a space to separate keywords; the or search connector
is assumed when the search is performed. For example, car, truck retrieves car
or truck. This field allows you to quickly retrieve relevant Discussion Forums
when you perform a property search.

■ Description – Enter text describing the category. If your System Administrator
and Portal Administrator enabled rich text editing for this portlet, you can
click Rich text to use the formatting toolbar to format your text, or click Plain
text to enter text without formatting. If rich text editing is disabled for this
portlet, the Rich text and Plain text links are not available.

See Figure 16–12.

4. Click Add. The category appears in the portlet.

5. Create a Discussion Forum by selecting the category and clicking Add Forum.

6. Enter the following information for the new Discussion Forum:

■ Name – Enter text describing the purpose of the Discussion Forum.

■ Keywords – Enter searchable words that are contained in this discussion. Use
a comma or a space to separate keywords; the or search connector is assumed
when the search is performed. For example, car, truck retrieves car or truck.
This field allows you to quickly retrieve the Discussion Forum when you
perform a property search.

■ Author Masked – Select this check box to not display the author.

Tip: For instructions on enabling rich text editing in a portlet, see
Section 16.10, "Setting Up the Rich Text Editor."

Using the Discussion Forums Portlet

Using the Collaboration Portlets 16-21

■ Description – Enter text describing the Discussion Forum topic. If your
System Administrator and Portal Administrator enabled rich text editing for
this portlet, you can click Rich text to use the formatting toolbar to format
your text, or click Plain text to enter text without formatting. If rich text
editing is disabled for this portlet, the Rich text and Plain text links are not
available.

7. Click Add. The new Discussion Forum appears in the portlet, as shown in
Figure 16–13.

Figure 16–12 New Category

Figure 16–13 New Discussion Forum

16.9.2 Adding a Discussion Topic
After you create a Discussion Forum, Community members can add topics to it.

Perform the following steps to add a topic to a Discussion Forum:

1. Select the Collaborate tab and the Discussion Forums tab.

2. Select the category and click the name of the Discussion Forum in the Forum
column.

Tip: For instructions on enabling rich text editing in a portlet, see
Section 16.10, "Setting Up the Rich Text Editor."

Using the Discussion Forums Portlet

16-22 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

3. Click Post New Topic.

4. Enter the following information:

■ Name – Enter text describing this topic. The topic name must be unique, and
the following characters are not permitted: \ and /.

■ Keywords – Enter searchable words that are contained in this topic. Use a
comma or a space to separate keywords; the or search connector is assumed
when the search is performed. For example, car, truck retrieves car or truck.
This field allows you to quickly retrieve topics when you perform a property
search.

■ Author Masked – Select this check box to not display the author.

■ Description – Enter text for your topic. If your System Administrator and
Portal Administrator enabled rich text editing for this portlet, you can click
Rich text to use the formatting toolbar to format your text, or click Plain text
to enter text without formatting. If rich text editing is disabled for this portlet,
the Rich text and Plain text links are not available.

■ Attachments – Add a file by clicking Attachments and clicking Browse.
Locate your file and click Open. Add the file by clicking Attach.

5. Click Save. The Discussion Topic appears in the Discussion Forums portlet. See
Figure 16–14.

Figure 16–14 The New Discussion Topic Appears in the Discussion Forums Portlet

16.9.3 Replying to a Discussion Topic
After you create topics, Community members can post replies to topics.

Perform the following steps to add a topic to a Discussion Forum:

1. Select the Collaborate tab and the Discussion Forums tab.

2. In the Browse tab, select the category and the Discussion Forum.

3. Click the name of the Discussion Forum in the Forum column.

4. Click the topic's name in the Topic column and click Reply.

5. Enter your reply information and click Save.

Tip: For instructions on enabling rich text editing in a portlet, see
Section 16.10, "Setting Up the Rich Text Editor."

Setting Up the Rich Text Editor

Using the Collaboration Portlets 16-23

16.9.4 Managing Discussion Forums
Owners, creators, and contributors can also perform the following tasks in the
Discussion Forums portlet:

■ Edit a Discussion Forum – Select the Discussion Forum's category, click the
Forum's name in the Category column, and click Edit.

■ Edit a Category – Click the category's name in the Category column and then click
Edit.

■ Delete a Discussion Forum – Click the Discussion Forum's name and click Delete.
Deleting a Discussion Forum removes it and all its topics from the database.

In addition to adding a topic to a Discussion Forum, Community members can also
perform the following tasks:

■ Edit Your Topic – Select the category and select the Discussion Forum. Click the
topic's name in the Topic column and click Edit.

■ Control What You See – Select the Discussion Forum and the topic, and click
Discussion Overview to view the topics and replies in the Discussion Forum.
Select Small, Medium, or Large for the amount of space available to display topics
and replies. You can also select the Hide Previews check box.

■ View More Details – Click Discussion Details to view the author of the topic,
date and time the topic was posted, and the body of the topic.

16.10 Setting Up the Rich Text Editor
Some Collaboration portlets have a rich text editor to apply formatting to documents
or other items. Portal Administrators can allow users to access a portlet's formatting
toolbar and a bottom toolbar, which lets them view the item's HTML text or preview
the item.

For example, enabling rich text editing in the Tasks portlet allows users to use the
formatting toolbar to apply bold, Italic, indentations, colored fonts, and so on.
Enabling the bottom toolbar in the portlet lets users see and use the HTML, Edit, and
Preview buttons.

You can enable or disable the rich text editor settings for the following portlets:

■ Calendar

■ Tasks

■ AddressBook (in the Contacts portlet)

■ Mail

■ Discussion Forums

16.10.1 Enabling Rich Text Editing
The System Administrator must edit the web.xml file to enable the rich text editor
and the bottom toolbar, and then the Portal Administrator sets the portlet preferences.

Perform the following two steps to enable the rich text editor:

1. The System Administrator uses a text editor to edit the web.xml file in your
/WEB-INF directory and add the required context parameters and values, as
shown in Example 16–1. After you edit the file, restart the WebLogic server. Use
the following guidelines to determine how to set the values in the web.xml file:

Setting Up the Rich Text Editor

16-24 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

■ If the rich text editor (RichTextEditorEnabled)value is set to false in
the web.xml file, rich text editing is not enabled and the bottom toolbar is not
enabled and does not appear in the portlet. You cannot override the settings in
the Administration Console, as described in Step 2.

■ If the bottom toolbar (RichTextEditorHTMLToolBarEnabled) value is set
to false in the web.xml file, and the rich text editor value is set to true, rich
text editing is enabled, but not the bottom toolbar. The bottom toolbar does
not appear in the portlet. You cannot override the bottom toolbar settings in
the Administration Console.

■ If the bottom toolbar value is set to true but the rich text editor is set to
false, the bottom toolbar is not enabled and rich text editing is not enabled.
You cannot override the settings in the Administration Console.

2. After the context parameters are added to the web.xml file, the Portal
Administrator uses the Administration Portal to modify portlet preference settings
for each portlet. See Section 16.10.1.1, "Modifying Portlet Preferences for Rich Text
Editing."

Example 16–1 Add Context Parameters and Values to the End of the web.xml File

<context-param>
 <param-name>com.bea.apps.groupspace.RichTextEditorEnabled</param-name>
 <param-value>true</param-value>
</context-param>

<context-param>
 <param-name>com.bea.apps.groupspace.RichTextEditorHTMLToolBarEnabled
 </param-name>
 <param-value>true</param-value>
</context-param>

<context-param>
 <param-name>collaboration.RichTextEditorEnabled</param-name>
 <param-value>true</param-value>
</context-param>

16.10.1.1 Modifying Portlet Preferences for Rich Text Editing
You can use portlet preferences to control the rich text editor and the bottom toolbar
for individual portlets.

Perform the following steps in the Administration Console to change portlet
preferences for rich text editing and the bottom toolbar:

1. In the Administration Console, choose Portal > Portal Management.

2. In the Portal Resources tree, expand the Library folder and the Portlets folder.

3. Click Next or Prev to locate the portlet you wish to modify and select it so that it is
highlighted.

Caution: If the web.xml file's rich text editor values are set to
false, any edits you make to portlet preferences in the
Administration Console are ignored. If the rich text editor value is
false, but the bottom toolbar value is set to true, the toolbar does
not appear in the portlet.

Setting Up the Rich Text Editor

Using the Collaboration Portlets 16-25

4. After you select the portlet, click Portlet Preferences.

5. Locate the preference you want to change.

6. Verify that the preference's setting is true, to allow the portlet to display the rich
text editor. If this preference is set to any value other than true, the portlet
displays a simple text area for entering information. After you locate the portal
preference you want to change, click Edit.

Select the Is Modifiable check box for the RichTextEditorEnabled preference
to allow users to modify this preference. Do not select the Is Multi-valued check
box. Click Save. See Figure 16–15

7. You can also change the preference that controls the display of the bottom toolbar.
For example, if you change the RichTextEditorHTMLToolBarEnbled
preference to true, the portlet displays the bottom toolbar when the rich text
editor is available. The toolbar controls the Edit, HTML, and the Preview buttons.
Clicking HTML allows a user to enter HTML directly into the text area. See
Figure 16–16.

8. After making your changes to the portlet preferences, click Save to see the change
appear in your portlet in your Community desktop. If you made preference
changes at the library level, click Propagate to Instances to force proliferation of
this preference to every instance of this portlet. WebLogic Portal overwrites all
desktop instance's preferences with the library preferences. For more information
on propagating to instances, see the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

Figure 16–15 The Rich Text Editor in a Portlet

Figure 16–16 The Bottom Toolbar in a Portlet that Allows Rich Text Editing

Tip: By default, rich text editing is not enabled for any of the
portlets.

Setting Up the Rich Text Editor

16-26 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Part III
Part III Staging

Oracle recommends that you deploy your portal, including portlets, to a staging
environment, where it can be assembled and tested before going live. In the staging
environment, you use the WebLogic Portal Administration Console to assemble and
configure desktops. You also test your portal in a staging environment before
propagating it to a live production system.

For a detailed description of the architecture phase of the portal life cycle, see the
Oracle Fusion Middleware Overview for Oracle WebLogic Portal.

Part III contains these chapters:

■ Chapter 17, "Assembling Portlets into Desktops"

■ Chapter 18, "Deploying Portlets"

17

Assembling Portlets into Desktops 17-1

17Assembling Portlets into Desktops

You perform the tasks described in this chapter to prepare the individual portlets that
are part of your portal application for public consumption. After you add portlets to
desktops, you can configure and test the application as a whole, and then deploy it to
the production environment when it is ready for public access.

Before you perform the tasks described in this chapter, use the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal to create the framework
into which you will add the portlets— this includes the portal and its menus, layouts,
the Look & Feel components for the overall portal, and the framework of the actual
desktop. Also, you must have already created the set of portlets in the portlet library,
from which you will choose the portlets to add to the desktop.

The primary tools used in this chapter are the WebLogic Portal Administration
Console, the WebLogic Portal Propagation Utility (to move database and LDAP data
between staging, development, and production), WebLogic Server application
deployment tools, and any external content or security providers that you are using.

This chapter contains the following sections:

■ Section 17.1, "Portlet Library"

■ Section 17.2, "Managing Portlets Using the Administration Console"

17.1 Portlet Library
The WebLogic Portal Administration Console organizes portal resources in a tree that
consists of Library resources and desktop resources. Understanding the relationship
between Library and desktop resources helps you to understand the effects and
consequences of propagation.

The following text describes the relationships between the following instances of
portal assets:

■ Primary instance – Created in Oracle Enterprise Pack for Eclipse and stored in a
.portal or .portlet file.

■ Library instance – Created or updated in the Administration Portal, and
displayed in the Portal Resources tree under the Library node.

■ Desktop instance – Created or updated in the Administration Portal, and
displayed in the Portal Resources tree under the Portals node.

■ Visitor instance – Created or updated in the Visitor Tools.

For more details on portlets in libraries and in desktops, refer to the Oracle Fusion
Middleware Production Operations Guide for Oracle WebLogic Portal.

Managing Portlets Using the Administration Console

17-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

17.2 Managing Portlets Using the Administration Console
This section contains instructions for performing portlet-related tasks using the
WebLogic Portal Administration Console.

This section contains the following topics:

■ Section 17.2.1, "Copying a Portlet in the Library"

■ Section 17.2.2, "Modifying Library Portlet Properties"

■ Section 17.2.3, "Modifying Desktop Portlet Properties"

■ Section 17.2.4, "Deleting a Portlet"

■ Section 17.2.5, "Managing Portlets on Pages"

■ Section 17.2.6, "Overview of Portlet Categories"

■ Section 17.2.7, "Overview of Portlet Preferences"

■ Section 17.2.8, "Creating a Portlet Preference"

■ Section 17.2.9, "Editing a Portlet Preference"

■ Section 17.2.10, "Overview of Delegated Administration"

■ Section 17.2.11, "Overview of Visitor Entitlements"

17.2.1 Copying a Portlet in the Library
You can use this feature of the WebLogic Portal Administration Console to duplicate
an existing portlet and use it as a template for a "new" portlet.

Perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet
that you want to copy.

2. Click Copy Portlet. The Copy Portlet dialog displays.

3. Enter a title and description for the copied portlet.

4. Click OK. The portlet is added at the bottom of the portlet list.

You can now customize the copied portlet by modifying its properties and
preferences.

17.2.2 Modifying Library Portlet Properties
Portlet properties include all of the features and elements that make up the portlet. As
a portal administrator, you can modify some of these properties from the Details tab.
You can also edit the title, description, and locale information from the Title &
Description tab, as described below.

To modify the properties of a portlet that resides in the library, perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet
that you want to modify.

2. From the Details tab, select the type of property that you want to change. Use the
table below for guidance.

Managing Portlets Using the Administration Console

Assembling Portlets into Desktops 17-3

17.2.3 Modifying Desktop Portlet Properties
Portlet properties include all of the features and elements that make up the portlet. As
a portal administrator, you can modify some of these properties from the Details tab.
You can also edit the title, description, and locale information from the Title &
Description tab, as described below.

To modify the properties of a portlet that resides on a desktop, perform these steps:

1. Expand the Portals node in the Portal Resources tree and navigate to the portlet
that you want to modify.

2. From the Details tab, select the type of property that you want to change. Use the
table below as a guide.

Table 17–1 Modifying Library Portlet Properties

Property to Change Procedure

Change title and description of
the portlet in the current locale

1. Click Title & Description.

2. Click the locale (for example, en) in the Locale cell; the Add a Localized Title
& Description dialog displays.

3. Enter a new Title and/or Description.

4. Click Update.

Add a localized title for the
portlet

1. Click Title & Description.

2. Click Add Localized Title; the Add a Localized Title & Description dialog
appears.

3. Enter a Language and Country identifier, Variant if applicable, Title, and a
Description for the localized title.

4. Click Create.

Portlet Preferences Refer to Section 17.2.8, "Creating a Portlet Preference" and Section 17.2.9, "Editing
a Portlet Preference."

Portlet Theme 1. Click Appearance; the Edit Appearance dialog displays.

2. From the drop-down menu, select a Theme.

3. Click Update.

Render caching and timeout 1. Click Advanced Properties.

2. In the Render Caching Enabled drop-down menu, select True or False.

3. If you selected True, enter a cache expiration value in the Cache Expiration
field.

4. Click Update.

Table 17–2 Modifying Desktop Portlet Properties

Property to Change Procedure

Title and Description You must edit these values within the Library resource tree. Expand the Library
node, select the portlet that you want to edit, and follow the instructions in
Section 17.2.2, "Modifying Library Portlet Properties."

Portlet Preferences Refer to Section 17.2.8, "Creating a Portlet Preference" and Section 17.2.9,
"Editing a Portlet Preference."

Portlet Theme 1. Click Appearance; the Edit Appearance dialog displays.

2. From the drop-down menu, select a Theme.

3. Click Update.

Managing Portlets Using the Administration Console

17-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

17.2.4 Deleting a Portlet
You can delete portlets from the Administration Console only if they were created
there; for example, if you used the Copy Portlet feature to duplicate the portlet.
Portlets created in Oracle Enterprise Pack for Eclipse cannot be deleted using the
Administration Console.

Perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet
that you want to delete.

2. Click Delete Portlet.

17.2.5 Managing Portlets on Pages
The contents of a page include portlets and books. You can view the portlets that are
already on your page, and add and remove portlets to construct your page.

17.2.5.1 Adding Portlets to a Page
Library: To add a content to a page, perform these steps:

1. In the Portal Resource tree, expand the Library node and navigate to a page. The
Details tab displays.

2. Click Page Contents. The Edit Contents tab displays.

3. Click Add Contents. The Add Books and Portlets to Placeholder dialog displays.

4. Display the pages that you want to choose from, using the Search area if needed.

5. Choose the portlets that you want to add by selecting the desired check boxes, and
click Add.

6. When finished, click Save.

Desktop: To add a portlets to a page, perform these steps:

1. In the Portal Resource tree, expand the Portals node and navigate to a page. The
Details tab displays.

2. Click Page Contents. The Edit Contents tab displays.

3. Click Add Contents; search for existing portlets if needed, then select the portlets
that you want, and click Add. When finished, click Save.

17.2.5.2 Positioning Elements on a Page
The page layout is the grid structure of a page that holds placeholders for portlets and
books on the page. You can select a layout for your portlets/books, and drag and drop
them between the placeholders to customize the layout of each page.

Perform these steps:

1. In the Portal Resource tree, expand either the Library node or the Portals node as
applicable, and select a page. The Details tab displays.

2. Click Page Contents. The Edit Contents tab displays.

3. If you want to change to a different layout, select a layout in the Layout
drop-down menu.

4. Select the method that you want to use to position the elements on the page by
selecting an option in the Position Elements area. The default is Drag & Drop.

Managing Portlets Using the Administration Console

Assembling Portlets into Desktops 17-5

5. Move portlets or books between placeholder columns.

6. If you want to prevent users from moving or deleting elements from a
placeholder, select the Lock Placeholder check box.

7. When finished, click Save Changes.

17.2.6 Overview of Portlet Categories
Portlet categories provide for the classification of portlets, which is useful when
organizing a large collection of portlets into meaningful groupings. The portlet
categories are similar to other hierarchical structures in that parent "folders" can
contain child folders and/or portlets. You must first create a portlet category, and then
you can manage portlets by adding them to a category or moving them between
categories.

17.2.6.1 Creating a Portlet Category
To create a portlet category:

1. In the Portal Resources tree, expand the Library folder and select Portlet
Categories. The Browse Category tab displays.

2. Click Create New Category.

3. Type a title and description for the new category in the pop-up window.

4. Click Create.

17.2.6.2 Modifying Portlet Category Properties
Portlet category properties include all of the features and elements that make up the
category. As a portal administrator, you can modify some of these properties from the
Summary tab. You can also edit the title, description, and locale information from the
Titles & Descriptions tab, as described below.

Perform these steps:

1. In the Portal Resources tree, expand the Library node and navigate to a portlet
category.

2. From the Summary tab, select the type of property that you want to change. Use
the table below as a guide.

Table 17–3 Modifying Portlet Category Properties

Property to Change Procedure

Change title and description of
the category in the current
locale

1. Click Title & Description.

2. Click the locale (for example, en) in the Locale cell; the Add a Localized Title
& Description dialog displays.

3. Enter a new Title and/or Description.

4. Click Update.

Managing Portlets Using the Administration Console

17-6 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

17.2.6.3 Adding Portlets to a Portlet Category
To add portlets into a category:

1. Expand the Library node in the Portal Resources tree and navigate to a portlet
category. The Summary tab displays.

2. Click Portlets In Category.

3. Click Add Portlets.

4. In the Available Portlets area, select the portlets that you want to add, and click
Add to include them in the Selected Portlets area.

5. Click Save.

17.2.7 Overview of Portlet Preferences
A portlet preference is a property in a portlet that can be customized by either an
administrator or a user. Your portlet might already have preferences, but if you have
the appropriate Delegated Administration rights you can create additional portlet
preferences.

17.2.8 Creating a Portlet Preference
To create a portlet preference, perform these steps:

1. Expand the Portals node or the Library node in the Portal Resources tree, as
appropriate, and navigate to the portlet for which you want to create a preference.
The Details tab displays.

2. Click Add Portlet Preference.

3. Fill in the information in the fields. Use the table below as a guide.

Add a localized title for the
category

1. Click Title & Description.

2. Click Add Localized Title; the Add a Localized Title & Description dialog
appears.

3. Enter a Language and Country identifier, Variant if applicable, Title, and a
Description for the localized title.

4. Click Create.

Portlets in Category Refer to Section 17.2.6.3, "Adding Portlets to a Portlet Category."

Categories in Category 1. Click Categories In Category; the Browse Category tab displays.

2. Click Create New Category; the Create New Category dialog displays.

3. Enter a Title and Description for the new category.

4. Click Create. The category is created and added to the currently selected
category.

Table 17–4 Creating a Portlet Preference

For this field: Enter this information:

Name The name you want to give this preference.

Description A description of this preference.

Table 17–3 (Cont.) Modifying Portlet Category Properties

Property to Change Procedure

Managing Portlets Using the Administration Console

Assembling Portlets into Desktops 17-7

4. Click Save.

For library instances of portlets, when you add a preference it automatically
proliferates to library page instances and desktop page instances if the instances
have not been decoupled.

5. If you want to force proliferation of this preference to every instance of this portlet,
click Propagate to Instances; WebLogic Portal overwrites all desktop instance's
preferences with the library preferences are. When complete, a message appears at
the top of the Administration Console.

Here are some tips related to portlet preferences that you might find useful:

■ When desktop instances of a portlet have no preferences, they automatically
inherit the preferences from the library instance of the portlet.

■ When desktop instances of a portlet have their own preferences set, they will not
automatically inherit preferences from the library instance.

■ If a desktop instance of a portlet has its own preferences set and these preferences
are removed, it will automatically inherit all preferences from the library instance.

■ If a desktop instance of a portlet has inherited preferences from the library
instance and the desktop instance of this preference has been modified, it will no
longer automatically inherit new preferences from the library or updates made to
the library portlet's instance of this preference.

■ If a desktop instance of a portlet has inherited the preferences from the library
instance and no desktop instance specific preferences have been set, and the
inherited preferences have not been modified in the desktop instance, the desktop
instance will inherit all updates to the library preferences.

17.2.9 Editing a Portlet Preference
If you have the appropriate Delegated Administration rights, you can edit a portlet's
preferences to change the way a portlet behaves.

To edit a portlet preference:

1. Expand the Portals node or the Library node in the Portal Resources tree, as
appropriate, and navigate to the portlet for which you want to edit a preference.
The Details tab displays.

2. Click Portlet Preferences.

3. Select the portlet preference by clicking its name in the Name column.

4. Edit the information in the fields. Use the table below as a guide.

Value(s) A value for a preference.

Is Modifiable? (checkbox) Select this check box if you want to allow end users to modify this preference.

Is Multi-Valued? (checkbox) Select this check box if you want to enter multiple values for the preference. If
you select this box, an additional data entry field displays for you to enter
additional values. Click Add Another Value after entering each value, until you
are finished.

Table 17–4 (Cont.) Creating a Portlet Preference

For this field: Enter this information:

Managing Portlets Using the Administration Console

17-8 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

5. Click Save.

For library instances of portlets, when you edit a preference it automatically
proliferates to library page instances and desktop page instances if the instances
have not been decoupled.

6. If you want to force proliferation of this change to every instance of this portlet,
click Propagate to Instances. When complete, a message appears at the top of the
Administration Console.

17.2.10 Overview of Delegated Administration
In your organization, you typically want individuals to have different access privileges
to various administration tasks and resources. For example, a system administrator
might have access to every feature in the WebLogic Portal Administration Console.
The system administrator might then create a portal administrator role that can
manage instances of portal resources in specific desktop views of your portal, and a
library administrator role that can manage your portal resource library. Other
delegated administration roles only have access to resources if that access has been
explicitly granted.

For more information about using delegated administration as a part of your security
strategy, see the Oracle Fusion Middleware Security Guide for Oracle WebLogic Portal.

17.2.11 Overview of Visitor Entitlements
Visitor entitlements allow you to define who can access the resources in a portal
application and what they can do with those resources. This access is based on the role
assigned to a portal visitor, allowing for flexible management of the resources.

For more information about using visitor entitlements as a part of your security
strategy, see the Oracle Fusion Middleware Security Guide for Oracle WebLogic Portal.

Table 17–5 Editing a Portlet Preference

For this field: Enter this information:

Name The name you want to give this preference.

Description A description of this preference.

Value(s) A value for a preference.

Is Modifiable? (checkbox) Select this check box if you want to allow end users to modify this preference.

Is Multi-Valued? (checkbox) Select this check box if you want to enter multiple values for the preference. If
you select this box, an additional data entry field displays for you to enter
additional values. Click Add Another Value after entering each value, until
you are finished.

18

Deploying Portlets 18-1

18Deploying Portlets

This chapter discusses deploying portlets.

18.1 Deploying Portlets
Generally speaking, a WebLogic Portal application consists of an EAR file, an LDAP
repository, and a database. The EAR file contains application code, such as JSPs and
Java classes, and portal framework files that define portals, portlets, and datasync
data. The embedded LDAP contains security-related data, such as entitlements, roles,
users, and groups. The database contains representations of portal framework and
datasync elements used by the portal runtime in streaming mode.

Portlet data can fall into the following two categories:

■ Portal Framework Data – Refers to desktops, books, pages, and other portal
framework elements that are created with the WebLogic Portal Administration
Console.

■ EAR Data – Refers to the final product of Oracle Enterprise Pack for Eclipse
development—a J2EE EAR file. The EAR must be deployed to a destination server
using the deployment feature of the WebLogic Server Administration Console.

When you deploy or redeploy a portal application EAR file to a server in production
mode, .portlet files are automatically loaded into the database.

The primary tools you use to perform portlet deployment are the WebLogic Portal
propagation tools and the deployment feature of the WebLogic Server Administration
Console. For detailed instructions on deploying a portal and its portlets, refer to the
Oracle Fusion Middleware Production Operations Guide for Oracle WebLogic Portal.

Deploying Portlets

18-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Part IV
Part IV Production

A production portal is live and available to end users. A portal in production can be
modified by administrators using the WebLogic Portal Administration Console and by
users using Visitor Tools. For instance, an administrator might add additional portlets
to a portal or reorganize the contents of a portal.

For a detailed description of the architecture phase of the portal life cycle, see the
Oracle Fusion Middleware Overview for Oracle WebLogic Portal.

Part IV contains the following chapter:

■ Chapter 19, "Managing Portlets in Production"

19

Managing Portlets in Production 19-1

19Managing Portlets in Production

During the life cycle of a WebLogic Portal application it moves back and forth between
development, staging, and production environments. This chapter contains
information about managing portlets that are on a production system.

This chapter contains the following sections:

■ Section 19.1, "Pushing Changes from the Library into Production"

■ Section 19.2, "Transferring Changes from Production Back to Development"

19.1 Pushing Changes from the Library into Production
Proliferation is the process by which changes made to the Library instance of a portal
asset are pushed into user-customized instances of that asset. For example, if a portal
administrator deletes a portlet from a desktop, that change must be reflected into
user-customized instances of that desktop.

The WebLogic Portal Administration Console includes a configuration setting for
Proliferation under Configuration Settings > Service Administration > Portal
Resources. The proliferation settings include synch, asynch, and off.

For more information on proliferation, refer to the Oracle Fusion Middleware Production
Operations Guide for Oracle WebLogic Portal.

19.2 Transferring Changes from Production Back to Development
WebLogic Portal utilities such as the propagation tools and the Export/Import Utility
allow you to reliably move and merge changes between environments. The
Export/Import Utility allows a full round-trip development life cycle, where you can
easily move portals from a production environment back to your Oracle Enterprise
Pack for Eclipse development environment.

For instructions on using the propagation tools and Export/Import Utility, refer to the
Oracle Fusion Middleware Production Operations Guide for Oracle WebLogic Portal.

Transferring Changes from Production Back to Development

19-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

A

Oracle Enterprise Pack for Eclipse Portlet Database Data A-1

AOracle Enterprise Pack for Eclipse Portlet
Database Data

This appendix describes how portlet data is managed by databases, and contains the
following sections:

■ Section A.1, "Database Structure for Portlet Data"

■ Section A.2, "Portlet Resources in the Database"

A.1 Database Structure for Portlet Data
When a portlet's data is loaded into the database, the portlet XML is parsed and a
number of tables are populated with information about the portlet, including PF_
PORTLET_DEFINITION, PF_MARKUP_DEFINITION, PF_PORTLET_INSTANCE, PF_
PORTLET_PREFERENCE, L10N_RESOURCE, and L10N_INTERSECTION.

PF_PORTLET_DEFINITION is the master record for the portlet and contains columns
for properties that are defined for the portlet, such as the definition label, the forkable
setting, edit URI, help URI, and so on. The definition label and web application name
are the unique identifying records for the portlet. Portlet definitions refer to the rest of
the actual XML for the portlet that is stored in PF_MARKUP_DEF.

In the Development phase, you use Oracle Enterprise Pack for Eclipse to create
portlets and place them onto a portal. In the Staging phase, you use the
Administration Console to add portlets to portal desktops. Each time you add a portlet
to a desktop, you create an instance of that portlet. Portlet instances allow for multiple
variations of the same portlet definition.

The following four types of portlet instances are recorded in the database for storing
portlet properties:

■ Primary – Properties defined in development and stored in the .portlet file.

■ Library – Properties defined in the Portal Library, which may be changed using
the WebLogic Administration Portal.

■ Admin – A customized instance of the portlet in a desktop. This allows you to
customize a portlet in a particular way for a desktop without affecting other
instances of the portlet in other desktops.

■ User – User-customized instances of the portlet defined in the Visitor Tools.

PF_PORTET_INSTANCE contains properties for the portlet for attributes such as
DEFAULT_MINIMIZED, TITLE_BAR_ORIENTATION, and PORTLET_LABEL.

If a portlet has portlet preferences defined, those are stored in the PF_PORTLET_
PREFERENCE table.

Portlet Resources in the Database

A-2 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Finally, portlet titles can be internationalized. Those names are stored in the L10N_
RESOURCE table which is linked using L10N_INTERSECTION to PF_PORTLET_
DEFINITION.

A.1.1 Removing Portlets from Production
If a portlet is removed from a newly deployed portal application and it has already
been defined in the production database, it is marked as IS_PORTLET_FILE_
DELETED in the PF_PORTLET_DEFINITION table. It displays as grayed out in the
WebLogic Administration Portal, and user requests for the portlet, if it is still
contained in a desktop instance, return a message indicating that the portlet is
unavailable.

A.2 Portlet Resources in the Database
During the development phase, the .portlet files for portal web projects are stored
as XML in the portal web application. As a developer creates new .portlet files, a
file polling thread monitors changes and loads the development database with the
.portlet information. When a portlet's data is loaded into the database, the portlet
XML is parsed and a number of tables are populated with information about the
portlet. Changes that you make using the WebLogic Portal Administration Console are
directly reflected in the database.

This section contains the following sections:

■ Section A.2.1, "Types of Database Tables"

■ Section A.2.2, "Management of Portlet Data"

■ Section A.2.3, "How the Database Shows Removed Portlets"

A.2.1 Types of Database Tables
Separate database tables store information about portlet resources, including the
following:

■ Definitions – Portlet definition properties including creation date, content URI,
whether the portlet is forkable or cacheable, whether it has a backing file, and so
on.

■ Instances (including a subset of tables for WSRP) – Instance properties indicate
whether the portlet is minimized by default, title bar orientation (top, left, right,
bottom), the parent portlet instance if applicable, and so on.WSRP portlet
properties include proxy portlet instance values.

■ Categories – Portlet categories provide for the classification of portlets, which is
useful when organizing a large collection of portlets into meaningful groupings.
The database stores values for the category ID and creation/modification dates.

■ Category definitions – The database stores values for the category ID and
creation/modification dates, parent category, and so on.

■ Preferences – Preference properties, such as whether or not the preference can be
multi-valued or whether it is modifiable, are stored in this table.

■ Preference values – The database stores the actual value of portlet preferences.

■ User properties – The database table maintains values of portlet user properties
for WSRP user profile propagation.

Portlet Resources in the Database

Oracle Enterprise Pack for Eclipse Portlet Database Data A-3

A.2.2 Management of Portlet Data
When a portlet is loaded into the database, the portlet XML is parsed and a number of
tables are populated with information about the portlet, including PF_PORTLET_
DEFINITION, PF_MARKUP_DEFINITION, PF_PORTLET_INSTANCE, PF_PORTLET_
PREFERENCE, L10N_RESOURCE, and L10N_INTERSECTION.

PF_PORTLET_DEFINITION is the master record for the portlet and contains rows for
properties that are defined for the portlet, such as the definition label, the forkable
setting, edit URI, help URI, and so on. The definition label and web application name
are the unique identifying records for the portlet. Portlet definitions refer to the rest of
the actual XML for the portlet that is stored in PF_MARKUP_DEF.

PF_MARKUP_DEF contains stored tokenized XML for the .portlet file. This means
that the .portlet XML is parsed into the database and properties are replaced with
tokens. For example, the following code fragment shows a tokenized portlet:

<netuix:portlet $(definitionLabel) $(title) $(renderCacheable) $(cacheExpires)>

These tokens are replaced by values from the master definition table in PF_PORTLET_
DEFINITION, or by a customized instance of the portlet stored in PF_PORTLET_
INSTANCE.

The following four types of portlet instances are recorded in the database for storing
portlet properties:

■ Primary – Properties defined in development and stored in the .portlet file.

■ Library – Properties defined in the Portal Library, which you can change using the
WebLogic Portal Administration Console.

■ Admin – A customized instance of the portlet in a desktop. This allows you to
customize a portlet in a particular way for a desktop without affecting other
instances of the portlet in other desktops.

■ User – User-customized instances of the portlet defined in the Visitor Tools.

PF_PORTET_INSTANCE contains properties for the portlet for attributes such as
DEFAULT_MINIMIZED, TITLE_BAR_ORIENTATION, and PORTLET_LABEL.

If a portlet has portlet preferences defined, those are stored in the PF_PORTLET_
PREFERENCE table.

Finally, portlet titles can be internationalized. Those names are stored in the L10N_
RESOURCE table which is linked using L10N_INTERSECTION and PF_PORTLET_
DEFINITION.

A.2.3 How the Database Shows Removed Portlets
If a portlet is removed from a deployed portal project, and it has already been defined
in the production database, the portlet is marked as IS_PORTLET_FILE_DELETED in
the PF_PORTLET_DEFINITION table. The portlet displays as grayed out in the
Administration Console, and user requests for the portlet (if it is still contained in a
desktop instance) return a message indicating that the portlet is unavailable.

Tip: The tool you use to manipulate these resources varies according
to the resource, and the phase of development you are in; for example,
you can change portlet preferences using either Oracle Enterprise
Pack for Eclipse or the WebLogic Portal Administration Console, but
you must use the Administration Console to create portlet categories.

Portlet Resources in the Database

A-4 Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

For detailed information about the content of WebLogic Portal database tables, refer to
the Oracle Fusion Middleware Database Administration Guide for Oracle WebLogic Portal.

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Architecture
	1 Introduction
	1.1 Portlet Overview
	1.2 Portlet Development and the Portal Life Cycle
	1.2.1 Architecture
	1.2.2 Development
	1.2.3 Staging
	1.2.4 Production

	1.3 Getting Started
	1.3.1 Prerequisites
	1.3.2 Related Guides

	2 Portlet Planning
	2.1 Portlet Development in a Distributed Portal Team
	2.2 Portlets in a Non-Portal Environment
	2.3 Planning Portlet Instances
	2.4 Security
	2.5 Interportlet Communication
	2.6 Performance Planning

	3 Portlet Types
	3.1 Java Server Faces (JSF) Portlets
	3.2 Java Server Page (JSP) and HTML Portlets
	3.3 Java Portlets
	3.4 Java Page Flow Portlets
	3.5 Struts Portlets
	3.6 Browser (URL) Portlets
	3.7 Clipper Portlets
	3.8 Remote (Proxy) Portlets
	3.9 Portlet Type Summary Table

	Part II Development
	4 Understanding Portlet Development
	4.1 Portlet Components
	4.1.1 Portlet Properties
	4.1.2 Portlet Title Bar, Mode, and State
	4.1.3 Portlet Preferences

	4.2 Resources for Creating Portlets
	4.3 Portlet Rendering
	4.3.1 Render and Pre-Render Forking
	4.3.2 Asynchronous Portlet Content Rendering
	4.3.3 Portlets as Popups (Detached Portlets)

	4.4 JSP Tags and Controls in Portlets
	4.5 Backing Files
	4.6 Support for Apache Portals Bridges

	5 Creating Portlets
	5.1 Supported Portlet Types
	5.2 Portlets in J2EE Shared Libraries
	5.3 Portlet Wizard Reference
	5.3.1 Order of Creation - Resource or Portlet First
	5.3.1.1 Creating the Resource First
	5.3.1.2 Create the Portlet First

	5.3.2 Starting the Portlet Wizard
	5.3.3 New Portlet Dialog
	5.3.4 Select Portlet Type Dialog
	5.3.5 Portlet Details Dialogs

	5.4 How to Build Each Type of Portlet
	5.4.1 Building JSP and HTML Portlets
	5.4.2 Building JSF Portlets
	5.4.3 Building Java Portlets
	5.4.4 Building Browser Portlets
	5.4.5 Building Clipper Portlets
	5.4.6 Building Struts Portlets
	5.4.7 Building Remote Portlets
	5.4.8 Building Java Page Flow Portlets

	5.5 Assigning Supporting Files
	5.5.1 Adding a Render Dependencies File
	5.5.2 Adding a Backing File

	5.6 Adding a Portlet to a Portal
	5.7 Deleting Portlets

	6 Building Java Portlets
	6.1 Building a Java Portlet
	6.2 Java Portlet Deployment Descriptor
	6.3 Portlet Modes and States
	6.4 Portlet Preferences
	6.5 Portlet Initialization Parameters
	6.6 Portlet Filters
	6.7 Order of Portlet Filters
	6.8 Public Render Parameters
	6.8.1 Public Render Parameter Example

	6.9 Event Handling with Java Portlets
	6.10 Deleting Java Portlet Features
	6.11 Using Container Runtime Options
	6.11.1 Standard Container Runtime Options
	6.11.2 Other Container Runtime Options Supported by WLP

	6.12 Using Global (Shared) Properties
	6.13 Setting Portlet-Level Container Runtime Options
	6.14 Adding Custom Portlet Modes
	6.15 Using Special Portlet Request Attributes
	6.16 Using Portlet-Served Resource Links
	6.16.1 Using Direct Links
	6.16.2 Using Portlet-Served Resource Links

	6.17 Exporting Java Portlets for Use on Other Systems
	6.18 Importing Java Portlets
	6.18.1 Importing Java Portlets Into Your Eclipse Workspace
	6.18.1.1 Starting the Import Wizard
	6.18.1.2 Using the Import Wizard
	6.18.1.3 Accessing the Portlets

	6.18.2 Importing and Deploying JSR 286 Portlets in the Administration Console

	6.19 JSR-286/JSR-168 Portlet Compatibility
	6.19.1 Generic JSR 168 Compatibility Modifications
	6.19.2 WebLogic Portal JSR 168 Compatibility Modifications
	6.19.3 WebCenter JSR 168 Compatibility Modifications

	6.20 Adding an Icon to a Java Portlet

	7 Creating Clipper Portlets
	7.1 Introduction
	7.2 Creating a Clipper Portlet
	7.3 Modifying Clipper Portlet Properties
	7.3.1 Using the Properties Editor
	7.3.2 Setting Clipper Properties Manually as Preferences

	7.4 Modifying the Appearance of a Clipper Portlet
	7.5 Authenticating a Clipper Portlet
	7.5.1 Form-Based Authentication
	7.5.2 Basic HTTP Authentication

	7.6 Configuring URL Rewriting
	7.6.1 Navigable Link Configurations
	7.6.2 Resource URL Configurations
	7.6.3 URL Rewriting Configuration Techniques
	7.6.3.1 Implementing IClipperUrlFilter
	7.6.3.2 Using Portlet Preferences

	7.7 Clipper Portlets and HTTPS
	7.8 Certificates and WebLogic Server
	7.9 Refreshing the Original Clipper Portlet Page
	7.10 Using Backing Files with Clipper Portlets
	7.11 Updating Portlet Preferences While the Server is Running
	7.12 Clipper Portlet Limitations

	8 Working With JSF-Java Portlets
	8.1 Overview
	8.1.1 Supported Portlet Bridges

	8.2 Creating Java 2.0-JSF 1.2 Portlets
	8.3 JSR-286 and JSR-329 Architecture
	8.4 Understanding WLP and JSF Rendering Life Cycles
	8.4.1 WLP and JSF Life Cycles
	8.4.2 Invocation Order of WLP and JSF Life Cycle Methods

	8.5 Accessing WLP Context Objects from JSF Managed Beans
	8.6 Understanding Scopes and JSF Portlets
	8.6.1 Conceptual Scopes for Standard JSF Applications
	8.6.1.1 JSF Standard Scopes
	8.6.1.2 View Scope
	8.6.1.3 Pageflow/Conversation Scope

	8.6.2 Conceptual Scopes for Portal Applications
	8.6.3 Implementation Patterns for Portal Scopes
	8.6.4 Reinterpretation of the JSF Session and Request Scopes
	8.6.5 Global Session and Portlet Group Session Scopes

	8.7 State Sharing
	8.7.1 State Sharing Concepts
	8.7.2 State Sharing Patterns
	8.7.2.1 HttpSession Versus HttpServletRequest
	8.7.2.1.1 Store state in the HttpSession

	8.7.2.2 Single Portlet Pattern
	8.7.2.3 Multiple Portlet Pattern

	8.8 Using JSF in Java Portlets
	8.8.1 Servlet Request And Servlet Response
	8.8.2 PortletPreferences
	8.8.3 PortletPresentationContext
	8.8.4 Using JSPs in JSF Portlets

	8.9 Converting Native JSF Portlets to Standard Java JSF Portlets
	8.9.1 Backing Files
	8.9.2 NamingContainer
	8.9.3 Events
	8.9.4 Preferences
	8.9.5 Localization
	8.9.6 Error Pages
	8.9.7 Portlet Modes
	8.9.8 ServletRequest/ServletResponse

	8.10 Using Common WLP Features With JSF Portlets
	8.10.1 Portlet Container Features
	8.10.1.1 Portlet Modes
	8.10.1.2 Portlet Error Page
	8.10.1.3 Portlet Preferences
	8.10.1.4 Portlet Dependencies

	8.10.2 Portal Container Features and JSF Portlets
	8.10.2.1 Locale Provider
	8.10.2.2 Skeleton Files

	8.10.3 Ajax Enablement
	8.10.3.1 Partial Page Rendering Pattern
	8.10.3.2 Stateless API Request Pattern
	8.10.3.3 Portlet Aware API Request Pattern

	8.11 Understanding Navigation Within a JSF Portlet
	8.11.1 Navigating Within a Portlet with the JSF Controller
	8.11.2 Support for Redirects

	8.12 Interportlet Communication with JSF Portlets
	8.13 Namespacing
	8.13.1 Client ID Namespacing with the View Components
	8.13.2 Client ID Namespacing with the WLP NamingContainer
	8.13.3 Javascript Namespacing with Portlet Tag Library

	8.14 Code Examples for Common Use Cases
	8.14.1 Uploading Images
	8.14.1.1 File Upload with HTML tags
	8.14.1.2 File Upload with Tomahawk tags

	8.14.2 Login/Logout Example
	8.14.2.1 Login Portlet Design
	8.14.2.2 Handling Redirects with JSR-286/JSR-329
	8.14.2.3 Invalidating the Session with the JSR-329 Bridge

	8.14.3 Login Portlet Implementation
	8.14.3.1 JSF Login View
	8.14.3.2 JSF Managed Backing Bean
	8.14.3.3 Resource Bundle
	8.14.3.4 Portlet Definition File
	8.14.3.5 Redirect

	8.14.4 Putting Login Portlet Into A Portal environment

	8.15 Preparing JSF Portlets for Production
	8.15.1 Configuration Tasks
	8.15.1.1 Configuring URL Templates for Proxy Servers
	8.15.1.2 JSF Portlets with WSRP

	8.15.2 Handling Errors
	8.15.3 Performance and Scalability
	8.15.3.1 JSF Portlets in a Clustered Environment
	8.15.3.2 Portlet Render Caching

	8.15.4 Securing JSF Portlets
	8.15.4.1 Deny Direct Access to the Portlet Views
	8.15.4.2 Session Timeouts

	8.15.5 Localizing JSF Portlets
	8.15.5.1 Configuring the Localization

	8.16 Third-Party Libraries
	8.16.1 Facelets
	8.16.2 Tomahawk

	8.17 Tips for Logging, Iterative Development, and Debugging of JSF Portlets
	8.17.1 Using Iterative Development for JSF Portlets
	8.17.1.1 Testing Outside of the Portlet Container
	8.17.1.2 Using Application Republish
	8.17.1.3 HttpSession Caching
	8.17.1.4 Handling OutOfMemory Errors

	8.17.2 Debugging
	8.17.2.1 Attaching Source (Step 1)
	8.17.2.2 Suggested JSF Framework Break Points (Step 2)

	8.18 Appendix: JSFJavaPortletHelper

	9 Developing Portlets
	9.1 Portlet Properties
	9.1.1 Editing Portlet Properties
	9.1.2 Tips for Using the Properties View
	9.1.3 Portlet Properties in the Portal Properties View
	9.1.4 Portlet Properties in the Portlet Properties View

	9.2 Portlet Preferences
	9.2.1 Specifying Portlet Preferences
	9.2.1.1 Specifying Preferences for Java Portlets in the Deployment Descriptor
	9.2.1.2 Specifying Preferences for Other Types of Portlets using Oracle Enterprise Pack for Eclipse
	9.2.1.3 Configuring Portlet Preference Deployment Options

	9.2.2 Using the Preferences API to Access or Modify Preferences
	9.2.2.1 Getting Preferences Using the Preferences API
	9.2.2.2 Setting Preferences Using the Preferences API
	9.2.2.3 Getting and Setting Preferences for Java Portlets Using the Preferences API
	9.2.2.4 Getting and Setting Portlet Preferences Using the API for Other Portlet Types
	9.2.2.5 JSP Tags for Getting Portlet Preferences

	9.2.3 Portlet Preferences SPI
	9.2.3.1 Implement the SPI
	9.2.3.2 Using the SPI

	9.2.4 Best Practices in Using Portlet Preferences
	9.2.4.1 Desktop Testing of Portlet Preferences
	9.2.4.2 Users Must be Authenticated
	9.2.4.3 Do Not Store Arbitrary Data as Preferences
	9.2.4.4 Do Not Use Instance IDs Instead of Preferences

	9.3 Using Shared Parameters
	9.3.1 Setting Shared Parameters
	9.3.2 Accessing Shared Parameters
	9.3.3 Persistence of Shared Parameters
	9.3.4 Creating Shared Parameters

	9.4 Backing Files
	9.4.1 How Backing Files are Executed
	9.4.2 Thread Safety and Backing Files
	9.4.3 Scoping and Backing Files
	9.4.4 Backing File Guidelines
	9.4.4.1 Adding a Backing File Using Oracle Enterprise Pack for Eclipse
	9.4.4.2 Adding the Backing File Directly to the .portlet File

	9.5 Portlet Appearance and Features
	9.5.1 Portlet Dependencies
	9.5.1.1 Introduction
	9.5.1.2 Identifying Portlet Dependencies
	9.5.1.3 Creating, Editing, and Adding a Dependency File
	9.5.1.4 Example Dependency Files
	9.5.1.4.1 Including JavaScript in a Render Dependencies File
	9.5.1.4.2 Including Meta and Style Elements in a Render Dependencies File

	9.5.1.5 Considerations and Limitations
	9.5.1.6 Scoping JavaScript Variables and CSS Styles
	9.5.1.7 Rewriting Resource URLs

	9.5.2 Portlet Modes
	9.5.2.1 Adding or Removing a Mode for an Existing Portlet
	9.5.2.2 Properties Related to Portlet Modes

	9.5.3 Creating Custom Modes
	9.5.4 Custom Mode Properties
	9.5.5 Portlet States
	9.5.5.1 Modifying Portlet States in Oracle Enterprise Pack for Eclipse
	9.5.5.2 Minimizing or Maximizing a Portlet Programmatically

	9.5.6 Portlet Title Bar Icons
	9.5.7 Portlet Height and Scrolling
	9.5.7.1 Making All Portlets Scroll

	9.6 Getting Request Data in Page Flow Portlets
	9.7 JSP Tags and Controls in Portlets
	9.7.1 Viewing Available JSP Tags
	9.7.2 Viewing Available Controls

	9.8 Portlet State Persistence
	9.9 Advanced Portlet Development with Tag Libraries
	9.9.1 Adding ActiveMenus
	9.9.1.1 Configuring the ActiveMenus Tag
	9.9.1.1.1 Using The TypeInclude tag
	9.9.1.1.2 Using The Type Tag
	9.9.1.1.3 Using The TypeDefault Tag
	9.9.1.1.4 Using The menuItem Tag

	9.9.1.2 Using the ActiveMenus Tag

	9.9.2 Enabling Placeable Movement
	9.9.2.1 Using the DragDrop Tags
	9.9.2.1.1 Using the dragDropScript Tag
	9.9.2.1.2 Using the draggableResource Tag
	9.9.2.1.3 Using the resourceDropZone Tag

	9.9.3 Enabling Dynamic Content
	9.9.3.1 Understanding the DynamicContent Tags
	9.9.3.1.1 The Container Tag
	9.9.3.1.2 The Container Action Script Tag
	9.9.3.1.3 The Execute Container Action Tag
	9.9.3.1.4 The Parameter Tags

	9.9.3.2 Using the DynamicContent Tags

	9.9.4 Using the User Picker
	9.9.4.1 Using the UserPicker Tags

	9.10 Detached Portlets
	9.10.1 Considerations for Using Detached Portlets
	9.10.2 Building Detached Portlets

	9.11 Working with Inlined Portlets
	9.11.1 Extracting Inlined Portlets
	9.11.2 Setting the Theme of an Inlined Portlet

	9.12 Extracting Books and Pages
	9.13 Avoiding Committing Responses

	10 Optimizing Portlet Performance
	10.1 Performance-Related Portlet Properties
	10.2 Portlet Caching
	10.3 Remote Portlets
	10.4 Portlet Forking
	10.4.1 Configuring Portlets for Forking
	10.4.2 Architectural Details of Forked Portlets
	10.4.2.1 Understanding Request Latency and the Portal Life Cycle
	10.4.2.2 Queuing and Dispatching Forked Portlets for Processing
	10.4.2.2.1 Dispatching Pre-Render Forked Portlets to Threads
	10.4.2.2.2 Dispatching Render Forked Portlets to Threads

	10.4.2.3 Threading Details and Coordination
	10.4.2.4 Forking Versus Asynchronous Rendering

	10.4.3 Best Practices for Developing Forked Portlets
	10.4.3.1 Consider Thread Safety
	10.4.3.2 Consider the Runtime Environment for Forked Portlets
	10.4.3.2.1 Isolation of Forked Portlets from the Runtime Environment
	10.4.3.2.2 BackingContext and Pre-Render Forked Portlets

	10.4.3.3 Use Caution with Interportlet Communication and Forked Portlets

	10.5 Asynchronous Portlet Content Rendering
	10.5.1 Implementing Asynchronous Portlet Content Rendering
	10.5.2 Thread Safety and Asynchronous Rendering
	10.5.3 Considerations for IFRAME-based Asynchronous Rendering
	10.5.4 Considerations for AJAX-based Asynchronous Rendering
	10.5.5 Comparison of IFRAME- and AJAX-based Asynchronous Rendering
	10.5.6 Comparison of Asynchronous and Conventional or Forked Rendering
	10.5.7 Portal Life Cycle Considerations with Asynchronous Content Rendering
	10.5.8 Asynchronous Content Rendering and IPC
	10.5.8.1 File Upload Forms
	10.5.8.2 Disabling Asynchronous Rendering for a Single Interaction
	10.5.8.3 URL Compression

	11 Monitoring and Determining Portlet Performance
	11.1 Introduction
	11.2 Use Case
	11.3 Detecting a Misbehaving Portlet
	11.4 Disabling the Bad Portlet and Enabling an Alternative Portlet

	12 Configuring Local Interportlet Communication
	12.1 Introduction
	12.2 Overview of Interportlet Communication Techniques
	12.3 Differences Between Portal Events and Java Portlet Events
	12.4 Portlet Event Handling
	12.4.1 Event Handlers
	12.4.1.1 Generic Event Handlers

	12.4.2 Event Actions
	12.4.3 Event Types

	12.5 Using the Portlet Event Handlers Wizard
	12.5.1 Opening the Portlet Event Handlers Wizard
	12.5.2 Portlet Event Handlers Wizard - Add Handler Field Descriptions
	12.5.3 Portlet Event Handlers Wizard - Add Action Field Descriptions
	12.5.4 Definition Labels and Interportlet Communication

	12.6 Custom Event Handling
	12.7 Events in Java Portlets
	12.7.1 Overview
	12.7.2 Adding a Processing Event
	12.7.3 Adding a Publishing Event
	12.7.4 Modifying a Java Portlet Event
	12.7.5 Deleting a Java Portlet Event

	12.8 Subscribing Java Portlets to Portal Framework Events
	12.8.1 Custom Event Namespaces
	12.8.2 Local Name for Notification Events

	12.9 Public Render Parameters
	12.10 Shared Parameters
	12.11 IPC Special Considerations and Limitations
	12.11.1 Using Asynchronous Portlet Rendering with IPC
	12.11.2 Consistency of the Listen To Field

	12.12 About QNames and Aliases
	12.12.1 QNames and Aliases in Events
	12.12.2 QNames and Aliases in Shared Parameters / Public Render Parameters

	13 Interportlet Communication Example With Event Handling
	13.1 Before You Begin - Environment Setup
	13.2 Basic IPC Example
	13.2.1 Create the Portlets
	13.2.1.1 Create the JSP Files and Portlets

	13.2.2 Create the Backing File
	13.2.3 Attach the Backing File
	13.2.4 Add the Event Handler to bPortlet
	13.2.5 Test the Project
	13.2.6 Summary

	14 Adding the Content Presenter Portlet
	14.1 Using the Content Presenter Example
	14.1.1 Starting the Content Presenter Example
	14.1.2 Performing Inline Editing in the Content Presenter Example
	14.1.2.1 Entering Inline Edits
	14.1.2.2 Enabling Inline Editing for the Training Announcement Portlet

	14.1.3 Enabling Inline Editing in Your Portlets

	14.2 Configuring the Content Presenter Portlet in Your Portal
	14.2.1 Configuring the Content Presenter Portlet
	14.2.1.1 Changing How Much Content Appears in the Portlet
	14.2.1.2 Using Portlet Publishing to Expose a Content Presenter Portlet

	15 Adding a Third-Party Portlet
	15.1 Using the Collaboration Portlets
	15.2 Autonomy Portlets
	15.3 Documentum Portlets
	15.4 MobileAware Portlets

	16 Using the Collaboration Portlets
	16.1 What Are Collaboration Portlets
	16.2 Adding Collaboration Portlets to Your Portal
	16.2.1 Step 1: Add Collaboration Facets
	16.2.2 Step 2: Add Collaboration Repository to Your Domain
	16.2.3 Step 3: Create a Role for Collaboration Portlet Users
	16.2.4 Step 4. (Optional) Configure a Repository
	16.2.5 Step 5. Entitle the Collaboration Data Repository
	16.2.6 Step 6. Add Users to the New Role
	16.2.7 Step 7. Configure the Collaboration Portlets
	16.2.8 Step 8. Add Collaboration Portlets to Your Desktop

	16.3 Configuring Collaboration Portlets for a Shared View
	16.3.1 Overview of User and Common Area Portlets
	16.3.2 Configuring a Common Area Portlet

	16.4 Using the Collaboration Portlet Source Code
	16.4.1 Copying the Source Code to Your Project
	16.4.2 Source Code Disclaimers

	16.5 Using the Calendar Portlet
	16.5.1 Adding a Calendar Appointment
	16.5.2 Managing Your Calendar

	16.6 Using the Mail Portlet
	16.6.1 Configuring the Mail Portlet
	16.6.1.1 Removing a Mail Account

	16.6.2 Sending E-Mail
	16.6.3 Viewing Mail
	16.6.4 Managing Mail
	16.6.5 Searching Mail

	16.7 Using the Contacts Portlet
	16.7.1 Adding a Contact
	16.7.2 Filtering and Navigating Contacts
	16.7.3 Managing Contacts
	16.7.4 Searching Contacts

	16.8 Using the Tasks Portlet
	16.8.1 Adding a Task
	16.8.2 Managing Tasks

	16.9 Using the Discussion Forums Portlet
	16.9.1 Adding a Category and a Discussion Forum
	16.9.2 Adding a Discussion Topic
	16.9.3 Replying to a Discussion Topic
	16.9.4 Managing Discussion Forums

	16.10 Setting Up the Rich Text Editor
	16.10.1 Enabling Rich Text Editing
	16.10.1.1 Modifying Portlet Preferences for Rich Text Editing

	Part III Staging
	17 Assembling Portlets into Desktops
	17.1 Portlet Library
	17.2 Managing Portlets Using the Administration Console
	17.2.1 Copying a Portlet in the Library
	17.2.2 Modifying Library Portlet Properties
	17.2.3 Modifying Desktop Portlet Properties
	17.2.4 Deleting a Portlet
	17.2.5 Managing Portlets on Pages
	17.2.5.1 Adding Portlets to a Page
	17.2.5.2 Positioning Elements on a Page

	17.2.6 Overview of Portlet Categories
	17.2.6.1 Creating a Portlet Category
	17.2.6.2 Modifying Portlet Category Properties
	17.2.6.3 Adding Portlets to a Portlet Category

	17.2.7 Overview of Portlet Preferences
	17.2.8 Creating a Portlet Preference
	17.2.9 Editing a Portlet Preference
	17.2.10 Overview of Delegated Administration
	17.2.11 Overview of Visitor Entitlements

	18 Deploying Portlets
	18.1 Deploying Portlets

	Part IV Production
	19 Managing Portlets in Production
	19.1 Pushing Changes from the Library into Production
	19.2 Transferring Changes from Production Back to Development

	A Oracle Enterprise Pack for Eclipse Portlet Database Data
	A.1 Database Structure for Portlet Data
	A.1.1 Removing Portlets from Production

	A.2 Portlet Resources in the Database
	A.2.1 Types of Database Tables
	A.2.2 Management of Portlet Data
	A.2.3 How the Database Shows Removed Portlets

