ORACLE

Oracle® Fusion Middleware

Web User Interface Developer's Guide for Oracle Application
Development Framework

11gRelease 1 (11.1.1.7.1)
B31973-17

January 2014

Documentation for developers that describes how to create
web-based applications using ADF Faces components and
the supporting architecture.

Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework, 11¢ Release 1 (11.1.1.7.1)

B31973-17
Copyright © 2008, 2014 Oracle and/or its affiliates. All rights reserved.

Primary Authors: Robin Whitmore (lead), Peter Jew, Kathryn Munn, Walter Egan, Himanshu Marathe,
Ralph Gordon, Michele Whittaker, Cindy Hall

Contributing Author: Poh Lee Tan

Contributors: ~ADF Faces development team, Frank Nimphius, Laura Akel, Katia Obradovic-Sarkic, Denis
Tyrell

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PUrOIACE ...t XXX
AN S Lo 1= U< J TSRO RRRRRRRN XXXi
Documentation AcCeSSIDILILYcciiiiiiiiiiiiiii e XXXi
Related DOCUITIEIESveeviieeeieeteeceeeeeteeeee ettt et eae et eae e eaeeaeeeaeeeteeesseebeesaseenteesseesnseesaesnseeseas XXXi
(@03 4N T£=3 115 o) o IR UT RSO PRRRTRRRRR XXXii

What's New in This Guide for Release 11.1.1.7.1 ..., Xxxiii

Partl Getting Started with ADF Faces

Introduction to ADF Faces Rich Client

1.1 Introduction to ADF Faces Rich Clientccccociiiiiiiiiiiiiniinie e 1-1
1.1.1 History of ADF FACESccciiiiiiiiiii e s 1-1
1.1.2 ADF Faces as Rich Client COMPONENEScoevirririiieiiiiiee e 1-2
1.2 Architecture of ADF Faces Componentsccocooiriiiiiiiiiiiiiccccccce e 1-3
1.2.1 Client-Side ArchiteCtUIecocciiiiiiieiie e 1-3
1.2.1.1 Client-Side COMPONENLSc.eriiiiiieiiiie i ree e e 1-4
1.21.2 JavaScript Library Partitioningccooeeoiiiiiiiiii e 1-4
1.2.2 ADF Faces Architectural FEaturescoocoiiiiiiiiiiie e 1-5
1.3 ADF Faces COMPONENESccevieiiiiiiiiiiiiiiiic st 1-6
1.4 ADF Faces Demonstration Applicationcccooeiiiiiiiiiiiii e 1-8
1.4.1 How to Download and Install the ADF Faces Demo Applicationccoceevunnnne 1-8
1.4.2 Using the ADF Faces Demo Applicationcccccvcviiiiiiiiiiiniiicsic e 1-8
1.4.3 Overview of the File Explorer Applicationccccooieiiiiiiiiiiiic 1-14
1.4.4 Viewing the Source Code In JDevVeloperccoooiiiiiiiiiiiiiie e 1-17

Getting Started with ADF Faces

2.1 Developing Declaratively in JDevelopercccocoiiiiiiiiiiiiiiiie e 2-1
2.2 Creating an Application WOrkspaceccoceeiviiriiiiiiniiiiiin e 2-2
2.2.1 How to Create an Application WOorkspacec..ccooouieiiiiiiiiiiiicceccee, 2-2
222 What Happens When You Create an Application Workspacecccceevevuriiennnnnnn, 2-3
2.3 Defining Page FIOWSc.oooiiiiiiiiiicccec e 2-5
2.3.1 How to Define a Page FIOWcccociiiiiiiiiiiiii e 2-5
2.3.2 What Happens When You Use the Diagrammer to Create a Page Flow 2-7
2.4 Creating a View Pagecccooiiiiiiiiic 2-7

2.41
242
243
244
2.4.5
24.6
247
2.4.8
249
2.5

2.5.1
252
2.6

2.6.1
2.6.2
2.6.3
2.7

Part Il

How to Create JSE JSP Pagescccccviiiiiiiiiiiiiciis i 2-9
What Happens When You Create a JSF JSP Pagecccvviiiiiiniiiiiinciciine 2-10
What You May Need to Know About Automatic Component Binding 2-14
How to Create a Facelets XHTML Pagecccocooiiiiiiiiiii 2-17
What Happens When You Create a JSF XHTML Pageccocvvviiiiiiniiiiiinins 2-18
How to Add ADF Faces Components to JSF Pagescccccveviiiiiiiiiiniciiicieeee 2-21
What Happens When You Add Components to a Pagecccoeeeiviniiiiicniiinnnes 2-23
How to Set Component Attributes ... 2-24
What Happens When You Use the Property InSpectorcccooiiiiiiiiiiciiniienne 2-26
Creating EL EXPIeSSIONScccouiiiiiiiiiiiiicie e 2-26
How to Create an EL EXPTessioncccccooiiiiiiiiiiiiiii e 2-27
How to Use EL Expressions Within Managed Beansccccccooviiiiiiiiiiiciicccnene 2-28
Creating and Using Managed Beansc.coccoooiiiiiiiii 2-29
How to Create a Managed Bean in JDeveloperccccoooiiiiiiiiiiiic 2-30
What Happens When You Use JDeveloper to Create a Managed Bean 2-31
What You May Need to Know About Component Bindings and Managed Beans .2-32
Viewing ADF Faces Source Code and Javadoccccociiiiiiiiiiiiiic 2-33

Understanding ADF Faces Architecture

3 Using ADF Faces Architecture

3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.5
3.5.1
3.6
3.6.1
3.7
3.7.1
3.7.2
3.7.3
3.8
3.8.1
3.8.2
3.9
3.9.1
3.9.2

Introduction to Using ADF Faces Architectureccoccooieiiiiiiiiiii, 3-1
Listening for Client EVENtSccoooiiiiiiiii e 3-3
Adding JavaScript to @ Pagecccoveiiiiiiiiii 3-4
How to Use Inline JavaScriptcccoviiiiiiiiiiiiiiii s 3-4
How to Import JavaScript Librariescccoocoiiiiiiiiiiieeee e 3-5
What You May Need to Know About Accessing Client Event Sources 3-5
Instantiating Client-Side COmMpPONeNntscccccooeuiiiiiiiiiiicee e, 3-6
Locating a Client Component on a Pageccccoiiiiiiiiiiiic e 3-7
What You May Need to Know About Finding Components in Naming Containers . 3-7
Determining the User’s Current Locationcccccoeciiiiiiiiiiiiiiiicice e 3-8
How to Determine the User’s Current Locationccccovvviveiiiniiiiniiniciecic 3-9
Accessing Component Properties on the Clientccccoiiiiiiiiiiini 3-10
How to Set Property Values on the Clientccccoiiiiiiiiiiiiii e 3-14
How to Unsecure the disabled Propertyccccocoiiiiiiiniiicic e 3-14
What Happens at Runtime: How Client Properties Are Set on the Client 3-15
Using Bonus Attributes for Client-Side Componentscccoeevciiiiciiiinin i 3-15
How to Create Bonus Attributesccovieviiiiiiiiiniiciicce 3-16
What You May Need to Know About Marshalling Bonus Attributes 3-16
Understanding Rendering and Visibilitycccccooiiiiiiiiiiiii s 3-16
How to Set Visibility Using JavaScriptcccccoiriiiiiiiiieeieesee e 3-18
What You May Need to Know About Visible and the isShowing Function 3-19

4 Using the JSF Lifecycle with ADF Faces

41
4.2

vi

Introduction to the JSF Lifecycle and ADF Facesccoooeoiiiiiiiiiiiiiicc, 4-1
Using the Immediate Attribute ... 4-4

4.3
4.3.1

4.3.2

4.4
4.5
4.6
4.7
4.71
4.7.2
4.7.3

Using the Optimized Lifecyclecccoviiiiiiiiiiiiiiiii e 4-9
What You May Need to Know About Using the Immediate Attribute and the

Optimized Lifecyclecccocoiiiiiiiiiiiiii i 4-10
What You May Need to Know About Using an LOV Component and the Optimized
LIECYCLE .. 4-11
Using the Client-Side Lifecycle ..., 4-13
Using Subforms to Create Regions on a Pagecccooooiiiiiiiii, 4-14
ODbject SCOPE LIECYCLESviiiiiiiieiei e 4-15
Passing Values Between Pagesccocoiiiiiiiiiii 4-16
How to Use the pageFlowScope Scope Within Java Codeccccviiiiiiiiiiiinenne, 4-17
How to Use the pageFlowScope Scope Without Writing Java Codecccueeee. 4-18
What Happens at Runtime: Passing Valuesc.ccccoviiiiiiiiniiiiiiniin s 4-18

5 Handling Events

5.1
5.1.1
5.1.2
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.4
5.4.1
5.4.2
5.4.3
5.5
5.6
5.6.1
5.7
5.7.1

Introduction to Events and Event Handling ..., 5-1
Events and Partial Page Renderingcccooooiiiiiiiiiii i, 5-2
Client-Side Event Modelccccoiiiiiiiiiiiiiiicinc s 5-3

Using ADF Faces Server EVeNntsccccooiiiiiiiiiii e 5-4

Using JavaScript for ADF Faces Client Events ... 5-5
How to Use Client-Side EVentscccccocviiiiiiiiiiiiiiicn i 5-8
How to Return the Original Source of the Event ... 5-10
How to Use Client-Side Attributes for an Event ..., 5-11
How to Block UI Input During Event EXecutioncccoooeioiiiiiiiiiin e 5-11
How to Prevent Events from Propagating to the Server ...l 5-12
What Happens at Runtime: How Client-Side Events Work ... 5-13
What You May Need to Know About Using Naming Containersccc.cceeeene 5-13

Sending Custom Events from the Client to the Servercccooiiiii, 5-14
How to Send Custom Events from the Client to the Server ...l 5-15
What Happens at Runtime: How Client and Server Listeners Work Together 5-16
What You May Need to Know About Marshalling and Unmarshalling Data 5-17

Executing a Script Within an Event Responseccocieviiiiiiiiiiicccce s 5-18

Using Client Behavior TaGsccceoiiiiiiiiiiiiee e 5-20
How to Use the scrollComponentIntoViewBehavior Tagccoooeeiiieiiinnnn. 5-21

Using Polling Events to Update Pagesccccoeiiiiiiiiiiiiiiic e 5-22
How to Use the Poll COMPONENtcoocuiiiiiiiiiiiieie e 5-22

6 Validating and Converting Input

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.4

Introduction to ADF Faces Converters and Validatorscccccececviiiiieieeeeeciescciiieeeeen 6-1
Conversion, Validation, and the JSF Lifecycleccccoccoiiiiiiiiiiiiiii s 6-2
Adding CONVETSIONc.eeiiiiiiiiiii i s s s 6-2
How to Add a Standard ADF Faces CONVETLETcciveeeiiiiciceriirieereeeeeeessscnnenseeeeeens 6-3
How to Set Attributes on a Standard ADF Faces Convertercccceeevevvvevvvenvnnnnnnn. 6-4
What Happens at Runtime: How Converters Workcccocvvieiiiiiiiininin, 6-5
What You May Need to Know About Date Convertersc.cocevvvrieeioiiiiccnienennn. 6-5
How to Add oracle.jbo.domain Converterscccveviiiiiiiiiiiiiin i 6-5
Creating Custom JSF CONVETTScoviiiiiiiiieiie e 6-6

vii

6.4.1 How to Create a Custom JSF CONVEItercccuiiiiiiiiiiiiiiiiieieie et e e 6-6

6.4.2 What Happens When You Use a Custom Converterccocooieiiiiiiiiiicncenne 6-10
6.5 Adding ValIdationcccoioiiiiiiiieii e e 6-10
6.5.1 How to Add Validationcccocviiiiiiiiiin i 6-11
6.5.1.1 Adding ADF Faces Validationccocoiiiiiiiiiniiiin e 6-11
6.5.1.2 Using Validation AttribUtesccocoioiiiiiiiiiiii e 6-11
6.5.1.3 Using ADF Faces Validatorsccooooeeiiiiiiiiiiiiecc 6-11
6.5.2 What Happens at Runtime: How Validators Workcccccociiiiiiiniiniiiinns 6-12
6.5.3 What You May Need to Know About Multiple Validatorscccccoceiiiiiniiinnene 6-13
6.6 Creating Custom JSF Validationcccocoeiiiiiiiii 6-13
6.6.1 How to Create a Backing Bean Validation Methodccocoo 6-14
6.6.2 What Happens When You Create a Backing Bean Validation Method 6-14
6.6.3 How to Create a Custom JSF Validatorc.coouiiiiiiiiiiiieiii e 6-14
6.6.4 What Happens When You Use a Custom JSF Validatorccccccooiiiin 6-16

Rerendering Partial Page Content

71 Introduction to Partial Page Rendering ..o, 7-1
7.2 Enabling Partial Page Rendering Declarativelycccocooiiiiiiiiiiiiiiiieeee e 7-2
7.2.1 How to Enable Partial Page Renderingc.ccccooiiiiiiiiiiiiii 7-4
722 What You May Need to Know About Using the Browser Back Button 7-6
7.2.3 What You May Need to Know About PPR and Screen Readerscccocveveennnnene 7-6
7.3 Enabling Partial Page Rendering Programmaticallycccoooiiiiiiiniiin, 7-6
7.4 Using Partial Page Navigationcccocooiiiiiiiiiii e, 7-8
7.41 How to Use Partial Page Navigationccocieiiiiiiiiiiciie e 7-8
7.4.2 What You May Need to Know About PPR Navigationcccccoeiiiiiiiin 7-9

Part Il Using ADF Faces Components

8 Organizing Content on Web Pages

viii

8.1 Introduction to Organizing Content on Web Pagesccccooiiiiiiiiii, 8-1
8.2 Starting to Lay Out a Pageccocueiiiiiiiiiiii 8-6
8.2.1 Geometry Management and Component Stretchingccccociiiiiiiiiiiiicinn. 8-7
8.2.2 Nesting Components Inside Components That Allow Stretchingcccccueeuennee. 8-9
8.2.3 Using Quick Start Layoutsccooiiiiiiiiiiic e 8-12
8.2.4 Tips for Using Geometry-Managed COMPONENtScccevveeruieiierriienie e 8-13
8.2.5 How to Configure the document Tag ... 8-14
8.3 Arranging Contents to Stretch Across a Pagecccooveiiiiieiiiiiiicc e 8-15
8.3.1 How to Use the panelStretchLayout Componentcccoceveieiieriieenic e 8-17
8.3.2 What You May Need to Know About Geometry Management and the
panelStretchLayout Componentccocvvieniiiiiiniinciec e 8-20
8.4 Using Splitters to Create Resizable Panesccccoccovveiiiiiiiiiiiiiic e 8-21
8.4.1 How to Use the panelSplitter COMPONENtccocuiiiiiiiiiiiiiiie e 8-23
8.4.2 What You May Need to Know About Geometry Management and the panelSplitter
COMPONENT ..ottt e 8-26
8.5 Arranging Content in a Gridcccccoiiiiiiiiiii 8-27
8.5.1 How to Use the panelGridLayout, gridRow, and gridCell Components to Create a
Grid-Based LayOutccccociiiiiiiiiiic e 8-29

8.5.2

8.6
8.6.1
8.7
8.7.1
8.7.2

8.8
8.8.1
8.8.2

8.9
8.9.1
8.9.2
8.9.3
8.9.4
8.10
8.10.1
8.10.2
8.10.3
8.10.4
8.10.5
8.10.6
8.10.7

8.10.8
8.10.9
8.11

8.11.1
8.11.2
8.11.3

8.12
8.12.1
8.12.2
8.13
8.13.1
8.13.2

8.14
8.14.1
8.14.2

What You May Need to Know About Geometry Management and the
panelGridLayout Componentccocceviriiiiiiiniiic i 8-32
Arranging Page Contents in Predefined Fixed Areasccoooooiiiiiiiiiiiii, 8-33
How to Use the panelBorderLayout Componentccoceeeerririiennriice e 8-35
Arranging Content in FOrmMS ..o 8-35
How to Use the panelFormLayout Componentcccooceviciiiiiniiniiiniiecsn e 8-36
What You May Need to Know About Using the group Component with the
panelFormLayout COMPONENtcccocuiiiiiiiiieiie e 8-40
Arranging Contents in a Dashboard ..., 8-44
How to Use the panelDashboard Componentccoccooiiiiiiiiiiiiic, 8-48
What You May Need to Know About Geometry Management and the panelDashboard
COMPONENT ...iviiiiiiii i 8-51
Displaying and Hiding Contents Dynamicallycccccoooiiiiiiiiiiiii, 8-51
How to Use the showDetail Componentccccooooiiiiiiiiiiiiiii, 8-55
How to Use the showDetailHeader Componentcccoceeveienieiirininicnese e 8-56
How to Use the panelBox Componentccccvuiiiiriiiiiiniiicnes s 8-59
What You May Need to Know About Disclosure Eventsc.cccoccoieiininnn. 8-60
Displaying or Hiding Contents in Panelscccccooiiiiiiiie e 8-61
How to Use the panelAccordion Componentcccocueviiriiiiiiniiiciin e 8-68
How to Use the panelTabbed Componentc.ccooiiiiiiiiiii, 8-70
How to Use the panelDrawer COMPONENtcccoveeiiiriiiiiiesee e 8-72
How to Use the panelSpringboard Componentcccocevviiiiiiiiiiiiiniiecciiciee 8-74
What You May Need to Know About Switching Between Grid and Strip Mode8-75
How to Use the showDetailltem Component to Display Content in Panels 8-75
What You May Need to Know About Geometry Management and the showDetailltem
COMPONENT ...viiiiiiiic i 8-79
What You May Need to Know About showDetailltem Disclosure Events 8-80
What You May Need to Know About Skinning and the panelTabbed Component 8-81
Displaying Items in a Static BOXccoooiiiiiiii 8-82
How to Use the panelHeader Componentc..ccoooiiiiiiiiiiicicccee, 8-85
How to Use the decorativeBox COMPONENtcccoeerieiiirioiinieiie e 8-88
What You May Need to Know About Geometry Management and the decorativeBox
COMPONENT ...ttt 8-89
Displaying a Bulleted List in One or More Columnsc..cccovviieiiieiiiiicneeiccieeenns 8-90
How to Use the panelList COMPONENtcccoceiiiiiiiiiiiiiie e 8-91
What You May Need to Know About Creating a List Hierarchy 8-92
Grouping Related ItEMScoociiiiiiiiiii s 8-93
How to Use the panelGroupLayout Componentccoccoeeeeririiieniniiee e 8-95
What You May Need to Know About Geometry Management and the
panelGroupLayout COMPONENtcceeiiriiiiiiiiiiic i 8-97
Separating Content Using Blank Space or Linesc.ccccoviieiiniiiieiiicccccccve s 8-97
How to Use the spacer COMPONENtccceiiiiiiiiiiiieiiie e 8-98
How to Use the Separator Componentccccocuviviriiiiiiniicnes s 8-98

9 Using Input Components and Defining Forms

9.1
9.2

Introduction to Input Components and FOrmscccoccvvveviiiiiiniiiiiin s 9-1
Defining FOTMSooiiiiiiiii e e 9-4

10

9.2.1 How to Add a Form to aPageccccccevviiiiiiiiiiiiic i 9-5

9.2.2 How to Add a Subform to a Pagecccccoiiiiiiiiii 9-5
9.2.3 How to Add a Reset Button to a Formcccocvviriiiiiiiniii e 9-6
9.3 Using the inputText Componentcccoouiiiiiiiiiiiinii e 9-6
9.3.1 How to Add an inputText Componentccoccooiiiiiiiiii i 9-7
9.3.2 How to Add the Ability to Insert Text into an inputText Component 9-10
9.4 Using the Input Number COmMpOnentscccoovuervieriiiiiiiniiiciin s 9-11
9.41 How to Add an inputNumberSlider or an inputRangeSlider Component 9-12
942 How to Add an inputNumberSpinbox Componentcccocoeerveerieeniciiecreeeeens 9-13
9.5 Using Color and Date ChOOSErSc.ccueiiiiiiiiiiiiii e 9-13
9.5.1 How to Add an inputColor Componentcccocueiieiiiieiiiicceee e 9-15
9.5.2 How to Add an InputDate COMPONENtccoceviuiiiiiiiiiiiiiiesee e 9-16
9.5.3 What You May Need to Know About Selecting Time Zones Without the inputDate
COMPONENT ..ooiviiiiiiiiii i 9-18
9.6 Using Selection COMPONENtScooiiiiuiiiiiiiiiiee e 9-19
9.6.1 How to Use Selection COMPONENLEScceruieiiiiiiiiiiiiiecsee e 9-23
9.6.2 What You May Need to Know About the contentDelivery Attribute on the
SelectManyChoice COMPONENtcceeuiiiiiiiiiiiciiceee e 9-25
9.7 Using Shuttle Componentscooiiiiiiiiiiic e 9-26
9.7.1 How to Add a selectManyShuttle or selectOrderShuttle Component 9-28
9.7.2 What You May Need to Know About Using a Client Listener for Selection Events 9-29
9.8 Using the richTextEditor Componentc.ccccooiiiiiiiiiiiii e 9-31
9.8.1 How to Add a richTextEditor Componentccccoeiiiiieiiiiinic e 9-33
9.8.2 How to Add the Ability to Insert Text into a richTextEditor Component 9-34
9.8.3 How to Customize the Toolbarccccciiiiiiiiiiiii e 9-35
9.9 Using File UPloadc.oooiiiiiiiie e 9-36
9.9.1 How to Use the inputFile Componentccccccviiiiiiiriiiiiiniii e 9-39
9.9.2 How to Configure the inputFile Component to Upload Multiple Files 9-40
9.9.3 What You May Need to Know About Temporary File Storagecccccoeeriienenne 9-41
9.94 What You May Need to Know About Uploading Multiple Files 9-42
9.10 Using Code Editorcooiiiiiiiii e 9-44
9.10.1 How to Add a codeEditor COMPONENtccocueiiiiiiiiiiiiiieeiee e 9-47

Using Tables, Trees, and Other Collection-Based Components

10.1 Introduction to Using Collection-Based COMPONENtScceerurriieriieiiiiienieciee e 10-1
10.1.1 Content DelIiVEIYccoiciiiiiiiiiiiii i 10-5
10.1.2 ROW SELECHON ... 10-8
10.1.3 Editing Data in Tables, Trees, and Tree Tablescccccooiiiiiiiiciiicre e 10-9
10.1.4 Using Popup Dialogs in Tables, Trees, and Tree Tablesc..ccccooviiiiiiiiniinennen. 10-11
10.1.5 Accessing Client Collection COMPONENtSccccceriiiiiiriiiiiie i 10-13
10.1.6 Geometry Management for Table, Tree, and Tree Table Components 10-13
10.2 Displaying Data in Tablescccccccviiiiiiiiiiiiin i 10-15
10.2.1 Columns and Colummn Datacceeeoiieriiieiie e e 10-16
10.2.2 Formatting Tablescccccoiiiiiiiiii e 10-17
10.2.3 Formatting Columnscccociiiiiiiiiii i 10-19
10.2.4 How to Display a Table on a Pageccccoooeiiiiiiiiiiiii e, 10-20
10.2.5 What Happens When You Add a Table to a Pagec.ccoooiiiiiiiiiiicicee 10-30

1

10.2.6 What Happens at Runtime: Data Deliveryccccocuiiiiiiiiiiiniiiiinien e 10-31
10.2.7 What You May Need to Know About Programmatically Enabling Sorting for Table

COIUMMNS ..ttt 10-32
10.2.8 What You May Need to Know About Performing an Action on Selected Rows in

TADIES et 10-32
10.2.9 What You May Need to Know About Dynamically Determining Values for Selection

Components in Tablescccccciiviiiiiiiiii 10-33
10.2.10 What You May Need to Know About Using the Iterator Tagc.cceceeiriinie, 10-34
10.3 Adding Hidden Capabilities to a Tablecccooiiiiiiiiiiii e 10-34
10.3.1 How to Use the detailStamp Facetcccocoooviiiiiniiii 10-35
10.3.2 What Happens at Runtime: Disclosing Row Dataccccocoviiiiiiiiiiiiiniincnee 10-36
10.4 Enabling Filtering in Tablesccciiiiiiii e 10-37
10.4.1 How to Add Filtering to a Table ..., 10-38
10.5 Displaying Data in Treesccooiiiiiiieiiiiii e 10-39
10.5.1 How to Display Data in TTEeScccooriiiiiiiiiiiiiiecsee e 10-41
10.5.2 What Happens When You Add a Tree to a Pagecccoeeviiiiiiiiiiniin i, 10-44
10.5.3 What Happens at Runtime: Tree Component Eventscccocceviniiiiiiiiiinnnns 10-44
10.5.4 What You May Need to Know About Programmatically Expanding and Collapsing

INOES et 10-45
10.5.5 What You May Need to Know About Programmatically Selecting Nodes 10-47
10.6 Displaying Data in Tree Tablescccoooiiiiiiiiiii e 10-47
10.6.1 How to Display Data in a Tree Tablecccccoiiiiiiiiiiii e 10-48
10.7 Displaying Table Menus, Toolbars, and Status Barsccccooii, 10-49
10.7.1 How to Add a panelCollection with a Table, Tree, or Tree Tablec..ccecueee 10-51
10.8 Displaying a Collection in @ LiStccccccooiiiiiiiiiiiiee e 10-52
10.8.1 How to Display a Collection in a Listccocoiiiiiiiiiii, 10-55
10.9 Displaying Images in a Carousel ..o 10-57
10.9.1 How to Create a Carouselccoviiiiiiiiiiiinic e 10-62
10.9.2 What You May Need to Know About the Carousel Component and Different

BIOWSETS ...oviiiiiiece e 10-66
10.10 Passing a Row asa Value ... 10-66
10.11 Exporting Data from Table, Tree, or Tree Tablecccccoiiiiiiiiiiiiicii e 10-67
10.11.1 How to Export Table, Tree, or Tree Table Data to an External Format 10-69
10.11.2 What Happens at Runtime: How Row Selection Affects the Exported Data 10-71
10.12 Accessing Selected Values on the Client from Collection-Based Components 10-71
10.12.1 How to Access Values from a Selection in Stamped Components.c..ccueeunne 10-71
10.12.2 What You May Need to Know About Accessing Selected Values 10-74

Using List-of-Values Components

11.1 Introduction to List-of-Values COmMponentscccoevuriiriiiieniiniciicscee e 11-1
11.2 Creating the ListOfValues Data Modelcccoiiiiiiiiiiiiii e 11-7
11.2.1 How to Create the ListOfValues Data Modelcccoccoiiiniiiiiiniii i, 11-8
11.3 Using the inputListOfValues COmMPONeNntccoceiiiiiiiiiiiiiiccie e 11-9
11.3.1 How to Add the InputListOfValues Componentcccocceeveeririiinireieeneeeeee 11-9
11.3.2 What You May Need to Know About Skinning the Search and Select Dialogs in the

LOV COmMPONENtSoocviiiiiiiiiiiiiiiitis ittt 11-11
11.4 Using the InputComboboxListOfValues Componentcccooveviiiirniiiiniinineinnns 11-12

xi

12

13

14

15

Xii

11.4.1 How to Add the InputComboboxListOfValues Componentccccceevverinennnen. 11-12

Using Query Components

121 Introduction to Query Componentsccoouiiiiiiiiiiiiiiiee e 12-1
12.2 Implementing the Model for Your QUeryccoooeiiiiiiiiiiiiieee, 12-3
12.3 Using the quickQuery COMPONENtccccuiiiiriiiiiiieii e 12-10
12.3.1 How to Add the quickQuery Component Using a Modelcccccoeoiinnn. 12-11
12.3.2 How to Use a quickQuery Component Without a Modelcccoo 12-12
12.3.3 What Happens at Runtime: How the Framework Renders the quickQuery Component

and Executes the Searchcccciiiiiiiiiiiii 12-13
12.4 Using the query COmMpONentcccooiiiiiiiiiiiiiii e 12-13
12.4.1 How to Add the Query Componentcccoocooiiiiiiiiiiiceeee 12-17

Using Popup Dialogs, Menus, and Windows

13.1 Introduction to Using Popup Elementsccoooiiiiiiiiiii, 13-1
13.2 Declaratively Creating Popup Elementsc.cccooiiiiiiiiiiiiiie e 13-2
13.2.1 How to Create a Dialogccoooiiiiiiiiiic 13-4
13.2.2 How to Create a Panel WINdOWccociiiiiiiiiniiiiii 13-8
13.2.3 How to Create a Context MeNnUcceviieiiiiiiiciin i 13-10
13.2.4 How to Create a Note WINdOWccceviiiiiiiiiiiciin i 13-11
13.2.5 What Happens at Runtime: Popup Component Eventscccoooeiiin 13-13
13.3 Programmatically Invoking a POPUP ...cceeviiiiiiiiiiii e 13-15
13.3.1 How to Programatically Invoke a POPUD ...ccoouiiiiiiiiiiiiicc 13-16
13.3.2 What Happens When You Programmatically Invoke a Popupcccceeuieiininnn. 13-17
13.4 Invoking Popup ELementsc.ccoiiiiiiiiiiiiiie e 13-17
13.4.1 How to Use the af:showPopupBehavior Tagccccceviviiiiiiniiinicniecn e, 13-17
13.5 Displaying Contextual Information ... 13-19
13.5.1 How to Create Contextual Informationcccecvviviiiiiiiniiiiniccccn, 13-20
13.6 Controlling the Automatic Cancellation of Inline Popupscccccovveriiiiiiiniiciniene, 13-21
13.6.1 How to Disable the Automatic Cancellation of an Inline Popupccccoceee 13-22
13.6.2 What Happens When You Disable the Automatic Cancellation of an Inline Popup
13-22

Using Menus, Toolbars, and Toolboxes

141 Introduction to Menus, Toolbars, and TOOIDOXESuveeiiiiiieiieiieeiieiiee e eeeans 14-1
14.2 Using MenusinaMenu Bar ... 14-2
14.2.1 How to Create and Use Menus ina Menu Barccooooiiiiiiiiiiiiieiei, 14-6
14.3 USING TOOIDATSccoueiiiiiiiiiie et 14-13
14.3.1 How to Create and Use TOOIDATSuuuuuuuiiiiiiiieieiiieeeeeeeeeeeeeeeeeeeeeeee e 14-15
14.3.2 What Happens at Runtime: Determining the Size of Menu Bars and Toolbars 14-19
14.3.3 What You May Need to Know About Toolbarsccoceeiiiiiiiiiiiieieeeee 14-19

Creating a Calendar Application

15.1 Introduction to Creating a Calendar Applicationcccceeieriiiiiieiie e 15-1
15.2 Creating the Calendarcccciiiiiiiiiiiiii 15-4
15.2.1 Calendar CIASSEScuereiueieirieeeetiee et et e e e e e e e s e nneeas 15-5

16

17

18

15.2.2 How t0 Create @ Calendarooeuuiiiiiiiiii e e e e e e e e ena e ee 15-5

15.3 Configuring the Calendar Componentcccooouiiiiiiiiiiiiiee e, 15-6
15.3.1 How to Configure the Calendar Componentcccocvereiioiiiieeiii e 15-6
15.3.2 What Happens at Runtime: Calendar Events and PPRccccociiiiiiiiiiiniiiciens 15-9
15.4 Adding Functionality Using Popup Componentscccocoeceiieiiiiiiieiccc e, 15-9
15.4.1 How to Add Functionality Using Popup Componentsccocceevveerriiicrncenennenns 15-10
15.5 Customizing the Toolbar ... 15-13
15.5.1 How to Customize the Toolbarcccccciiviiiiiiiiiiii 15-13
15.6 Styling the Calendarcoooiiiiiiii e 15-15
15.6.1 How to Style Activitiescccooiiiiiiiiii e, 15-16
15.6.2 What Happens at Runtime: Activity Stylingcccocoooiiiiiiii, 15-18
15.6.3 How to Customize Datescccccoevriiiiiiiiiiciiic e 15-18
Using Output Components
16.1 Introduction to Output Text, Image, Icon, and Media Componentscccccccereeerenne 16-1
16.2 Displaying Output Text and Formatted Output Textcccccvvviiiiiiiiiniiiiiis 16-2
16.2.1 How to Display Output Textccccoioiiiiiiiii e, 16-3
16.2.2 What You May Need to Know About Allowed Format and Character Codes in the
outputFormatted COMPONENtccoeiiiiiiiiiiiiiii s 16-4
16.3 Displaying ICONScccoiuiiiiiiiiiicc e 16-5
16.4 Displaying IMagescccooieiiiiiiiicii e 16-5
16.5 Using Images as LINKScccoiiiiiiiiiiiii e 16-6
16.6 Displaying Application Status Using IcONScccoeiiiiiiiiiiiiiiic 16-7
16.7 Playing Video and Audio CLPScccoeiriiieiiiiiieiccee 16-8
16.7.1 How to Allow Playing of Audio and Video CLPSc.ccooveiiiiiiiciiiiieeceeee 16-8
Displaying Tips, Messages, and Help
17.1 Introduction to Displaying Tips and MeSSagesccccevurrrrrrieriiiieiieeesee e 17-1
17.2 Displaying Tips for COMPONeNtscccoceeiiiiiiriiiniiis i 17-5
17.3 Displaying Hints and Error Messages for Validation and Conversion 17-5
17.3.1 How to Define Custom Validator and Converter Messagesccccooerrvurererrneennes 17-7
17.3.2 What You May Need to Know About Overriding Default Messages Globally 17-9
17.3.3 How to Display Component Messages Inlineccccoevvieiiiiniiiiniccicie, 17-9
17.3.4 How to Display Global Messages Inlinec.cccoooiiiiiiiiiiii e 17-9
17.4 Grouping Components with a Single Label and Messageccccocoiiiiiiiiiinnns, 17-10
17.5 Displaying Help for COMponentscccocoiiiiiiiiiiiiiiiiiei e 17-12
17.5.1 How to Create Resource Bundle-Based Helpccccoociiiiiiiiiiiiiieee 17-14
17.5.2 How to Create XLIFF-Based Helpcccoouiiiiiiiiiiiiniicic e 17-16
17.5.3 How to Create Managed Bean Helpcccoooeviiiiiiiiii e, 17-18
17.5.4 How to Use JavaScript to Launch an External Help Windowcccocoeeieneie 17-21
17.5.5 How to Create a Java Class Help Providercccccciiiiiiiiiiniiiiiinieieci 17-22
17.5.6 How to Access Help Content from a Ul Componentccccocuvieeieiinnieniinieennene, 17-23
17.5.7 What You May Need to Know About Combining Different Message Types 17-23
Working with Navigation Components
18.1 Introduction to Navigation COMPONENtScccccriiiiiiiiiiiie e 18-1

xiii

19

Xiv

18.2 Using Buttons and Links for Navigation ..o, 18-2

18.2.1 How to Use Command Buttons and Command Linkscccooeiiiiiiiiiiiinins 18-4
18.2.2 How to Use Go Buttons and Go LinKsccccceeviiiniininiiciinc e 18-5
18.3 Configuring a Browser’s Context Menu for Command Linkscccccociiiiiiiiiiniin, 18-6
18.3.1 How to Configure a Browser’s Context Menu for Command Linksc..ccceeeee 18-7
18.3.2 What Happens When You Configure a Browser’s Context Menu for Command Links .
18-7
18.4 Using Buttons or Links to Invoke Functionalityccoooiiiiiii, 18-8
18.4.1 How to Use a Command Component to Download Filescc.cccoci 18-8
18.4.2 How to Use a Command Component to Reset Input Fieldsccccceoviiinnn. 18-10
18.5 Using Navigation Items for a Page Hierarchyccccooiiiiiii 18-10
18.6 Using a Menu Model to Create a Page Hierarchyccccccoooooiiiiiiii 18-14
18.6.1 How to Create the Menu Model Metadatacccccovieiiiiiniiiiniicccce, 18-15
18.6.2 What Happens When You Use the Create ADF Menu Model Wizard 18-22
18.6.3 How to Bind to the XMLMenuModel in the JSF Pagec.ccccccooiiiiiiiinnn. 18-24
18.6.4 How to Use the breadCrumbs Componentccccceviiiiininiiic e, 18-27
18.6.5 What Happens at Runtimeccccocoiiiiiiiiiiiiin e 18-29
18.6.6 What You May Need to Know About Using Custom Attributes 18-30
18.7 Creating a Simple Navigational Hierarchycccccooiiiiiiiiniiceeee 18-32
18.7.1 How to Create a Simple Page Hierarchy ..o 18-34
18.7.2 How to Use the breadCrumbs Componentccooiiiiiiiiiiiii 18-37
18.7.3 What You May Need to Know About Removing Navigation Tabs 18-38
18.7.4 What You May Need to Know About Navigation Tabs in a Compressed Layout . 18-39
18.8 Using Train Components to Create Navigation Items for a Multi-Step Process 18-40
18.8.1 How to Create the Train Modelc.cccoviiiiiiiiiii 18-43
18.8.2 How to Configure Managed Beans for the Train Modelcccooiiiiiinen 18-45
18.8.3 How to Bind to the Train Model in JSF Pagesccccccooiiiiiiiiiiicicc 18-49

Creating and Reusing Fragments, Page Templates, and Components

19.1 Introduction to Reusable Contentccccvciiiiiiiiiiiiiiici 19-1
19.2 Using Page Fragmentscccccoiiiiiiiiiiiiiiii i 19-2
19.2.1 How to Create a Page Fragmentccccooiiiiiiiiii 19-5
19.2.2 What Happens When You Create a Page Fragmentcccccocoiiiiiiiiiiiiiincs 19-6
19.2.3 How to Use a Page Fragment in a JSF Pagecccceviiiiiiiiiiiniiiicci e, 19-7
19.2.3.1 Adding a Page Fragment Using the Component Palettecc.cocoeiiii. 19-7
19.2.3.2 Adding a Page Fragment Using the Application Navigatorccccoceeeis 19-7
19.2.4 What Happens at Runtime: Resolving Page Fragmentscccccooeiiiininiiinnenne 19-7
19.3 Using Page Templatescccooiiiiiiiiiiiic 19-7
19.3.1 How to Create a Page Templatecccccoiiiiiiiiiiiiiiii e 19-11
19.3.2 What Happens When You Create a Page Templateccccooveciiiiiiiniiicee 19-15
19.3.3 How to Create JSF Pages Based on Page Templatesccccoccooiiiiniiiinnn. 19-15
19.3.4 What Happens When You Use a Template to Create a Pagec.ccccoeuvrieinnnne 19-17
19.3.5 What Happens at Runtime: How Page Templates Are Resolvedcc......... 19-18
19.3.6 What You May Need to Know About Page Templates and Naming Containers .. 19-18
19.4 Using Declarative COMPONENLSccecuiiiiiiiiiiiiiiie e 19-18
19.4.1 How to Create a Declarative Componentccccocceiiiiiiiiiiniiiin e, 19-21
19.4.2 What Happens When You Create a Declarative Componentccccoceviviennene. 19-26

20

21

19.4.3 How to Deploy Declarative Componentscccoueriiiriiniiiniin s 19-28

19.4.4 How to Use Declarative Components in JSF Pagesccccccoocviiiiiiiiininin, 19-28
19.4.5 What Happens When You Use a Declarative Component on a JSF Page 19-30
19.4.6 What Happens at RUNtimecccviiiiiiiiiiiici i 19-31
19.5 Adding Resources to Pagesccocooieiiiiiiiiiii 19-31
19.5.1 How to Add Resources to Page Templates and Declarative Components 19-31
19.5.2 What Happens at Runtime: Adding Resources to the Document Header 19-32
Customizing the Appearance Using Styles and Skins
20.1 Introduction to Skins, Style Selectors, and Style Propertiesccccccooviiiiciiinnnnn. 20-1
20.1.1 ADF Faces SKINScuiiiiiiiiiiiiii e e s 20-2
20.1.2 SKIN Style SELECLOTSooiuiiiiieiii i 20-6
20.1.3 Component Style Propertiesccccceieiiiiiiiiiiiiiiin s 20-11
20.2 Applying Custom Skins to Applicationscccoceviiiiiiiiiiiie e, 20-12
20.2.1 How to Add a Custom Skin to an Applicationccccoeiiiiiiiiiiiiiii e 20-13
20.2.2 How to Register the XML Schema Definition File for a Custom Skin 20-13
20.2.3 How to Register a Custom SKinccccoiiiiiiiiiiiic e, 20-14
20.2.4 How to Configure an Application to Use a Custom Skincccocceriiiiiniiiinenns 20-17
20.2.5 What You May Need to Know About Using a Skin in an Oracle BI User Interface 20-18
20.3 Defining Skin Style Propertiesccccoieieiiiiiiiiii i 20-18
20.3.1 How to ApPly SKINS t0 TeXt ..ocoueiiiiiiiiiiii e 20-19
20.3.2 How to Apply SKIins to ICONScceieiiiiiiiiiciiiniics i 20-21
20.3.3 How to Apply Skins to Messagesccccooieieiiieiiiiiciiccece e, 20-22
20.3.4 How to Apply Themes to COMPONENLSoooueiiiiiiiiiiieiie e 20-22
20.3.5 How to Create a Custom ALlIasccceevveriiiiiiiiniiici e 20-23
20.3.6 How to Configure a Component for Changing Skins Dynamically 20-24
20.4 Changing the Style Properties of a COMPONENtcccooveiiiiiiiiiiiiiie e 20-25
20.4.1 How to Set an Inline Style ..., 20-25
20.4.2 How to Set a Style Classccciiiiiiiiiiiiiiiiciic 20-26
20.5 Referring to URLs in a SKin's CSS Fileccciiiiiiiiiiiiii e 20-26
20.6 Versioning Custom SKiNScccccoiiiiiiiiiii 20-27
20.6.1 How to Version a Custom SKiNccccoeiiiiiiiiiiiiiic e 20-27
20.6.2 What Happens When You Version Custom SKInsccocooveiiiiiiniiiiiniceeiene 20-28
20.7 Deploying a Custom Skin File in a JARFileccocoiiiiiiiii, 20-28
Internationalizing and Localizing Pages
21.1 Introduction to Internationalization and Localization of ADF Faces Pages 21-1
21.2 Using Automatic Resource Bundle Integration in JDeveloperccccocoviiiiiininene 21-3
21.21 How to Set Resource Bundle Optionsccccoiiiiiiiiiiiiicii e 21-4
21.2.2 What Happens When You Set Resource Bundle Optionscccecvviiiiiiniiiniinns 21-5
21.2.3 How to Create an Entry in a JDeveloper-Generated Resource Bundle 21-6
21.24 What Happens When You Create an Entry in a JDeveloper-Generated Resource
BUndleooooiiiii 21-6
21.3 Manually Defining Resource Bundles and Localesccccccoeiiiiiiiiiiic, 21-7
21.3.1 How to Define the Base Resource Bundlecccccooiiiiiiiiiiiii 21-8
21.3.2 How to Edit a Resource Bundle Filecccocvviiiiiiiiiiii s, 21-10

XV

22

21.3.3 How to Register Locales and Resource Bundles in Your Application 21-12

21.34 How to Use Resource Bundles in Your Applicationcccccoeviieiiniininnn. 21-14
21.35 What You May Need to Know About Custom Skins and Control Hints 21-15
21.3.6 What You May Need to Know About Overriding a Resource Bundle in a Customizable

APPLCALION oottt 21-15
21.4 Configuring Pages for an End User to Specify Locale at Runtime 21-15
21.41 How to Configure a Page for an End User to Specify Localecccccoeirieennnn. 21-15
21.4.2 What Happens When You Configure a Page to Specify Locale 21-17
21.4.3 What Happens at Runtime When an End User Specifies a Locale 21-18
21.5 Configuring Optional ADF Faces Localization Propertiescccocooiviiiiiininiinenen. 21-18
21.5.1 How to Configure Optional Localization Propertiescccccccoviviieiiiinieniinenn. 21-19

Developing Accessible ADF Faces Pages

22.1 Introduction to Accessible ADF Faces Pagesccccoceiiiiiiiiiiiiiiiic, 22-1
222 Exposing Accessibility Preferencescccoooiiiiiiiiiiiii 22-2
22.2.1 How to Configure Accessibility Support in trinidad-config.xmlcccoceeiis 22-2
22.3 Specifying Component-Level Accessibility Propertiesccocooeiiiiiiiiiiiic, 22-3
22.3.1 ADF Faces Component Accessibility Guidelinescccocoooiiiiiiiiii 22-4
22.3.2 Using ADF Faces Table components in Screen Reader modecccccooiieiiienens 22-6
22.3.3 ADF Data Visualization Components Accessibility Guidelines 22-7
22.3.4 How to Define Access Keys for an ADF Faces Componentcccocoeeiiiininnne. 22-9
22.35 How to Define Localized Labels and Access Keysccccocoieiiiiiiiiniininecieee, 22-10
22.4 Creating Accessible Pages ... 22-11
22.4.1 How to Use Partial Page Rendering ... 22-11
22.4.2 How to Use SCriptingccooicviiiiiiiiiiiii i 22-11
22.4.3 How t0 Use Styles ..o 22-12
22.4.4 How to Use Page Structures and Navigationccccooeeiiiiiiiiiinicniec 22-13
22.4.5 How to Use WAI-ARIA Landmark Regionsccccceviiiiiiniiiiiicceceee e, 22-13
22.5 Running Accessibility Audit Rules ..o 22-14

Part IV Using ADF Data Visualization Components

23

XVi

Introduction to ADF Data Visualization Components

23.1 Introduction to the ADF Data Visualization Componentsccccovuvriiriiiniiiniinniinnnns 23-1
23.2 Defining the ADF Data Visualization COMponentscccocevveiiiiriiiiiiniic e 23-1
23.2.1 GIAPN e e 23-1
23.2.2 GAUZE .o oveiiiiciei e 23-5
23.2.3 PivVOt TADLE ..uuiiiiiiiii eeera s s b e 23-7
23.2.4 GeOGIaPhiC MAP ...ooiuiiiiiiiie i 23-8
23.2.5 L= L A QO - o S 23-9
23.2.6 TEMIELINE ..uuiieieie e e e e e e e e e e e e e e e e aaeeee e e e e er e e e rerara——a————————————— 23-9
23.2.7 Hierarchy VIEWETcoiiiiiiiiiii e e 23-10
23.2.8 Treemap and SUNDUISEcccoiiiiiiiiic 23-12
23.3 Providing Data for ADF Data Visualization Componentscccocooeiveiiiiiieninnenn. 23-13

24 Using ADF Graph Components

241 Introduction to the Graph Componentccocoiiiiiiiiiiiie, 24-1
242 Understanding the Graph Tagsccocooiiiiiiiiii e 24-4
24.2.1 Graph-Specific Tagscccvviiiiiiiiic i 24-4
24.2.2 Common Graph Child Tagscccoieiiiiiiiiceee e 24-5
2423 Graph-Specific Child Tagscccccoeeiiriiieir e e 24-6
24.2.4 Child Set Tagsceecuiiiieiieiiee e 24-7
24.3 Understanding Data Requirements for Graphsccccociiiiiiii 24-7
24.3.1 Area Graph Data ReqUirementscccooouiiiiiiiiiiii i 24-8
24.3.2 Bar Graph Data Requirementscccceviiiiiiiniiiiiiniises s 24-9
24.3.3 Bubble Graph Data Requirementsccoocooiiiiiiiiiiiic e 24-9
24.3.4 Combination Graph Data ReqUirementsc.cccoceereriiiiiieiiiec e 24-10
24.3.5 Funnel Graph Data Requirementsc.ccccoviriiiiiiniiiniic e 24-10
24.3.6 Line Graph Data Requirementsccccccooiiiiiiiiiiiiii e, 24-10
24.3.7 Pareto Graph Data Requirementsc.cccooiiiiiiiiiiiiic e 24-11
24.3.8 Pie Graph Data Requirementscccoceriiiiiiiiiiiniin i 24-11
24.3.9 Polar Graph Data Requirementscccocoiiiiiiiiiiiiiccce e, 24-11
24.3.10 Radar Graph Data ReqUirementsccoceeiiiiiiiiiiiiie e 24-12
24.3.11 Scatter Graph Data Requirementscccccveviiiiiiiiniiiciic e 24-12
24.3.12 Sparkchart Data Requirementsccocooiiiiiiiiiiiiccce e, 24-12
24.3.13 Stock Graph Data ReqUIremMentsccccoiouieieiiiiiiiiiee e 24-13
24.3.131 Stock Graphs: High-Low-Closec.ccoiiiiiiiiiiiii 24-13
24.3.13.2 Stock Graphs: High-Low-Close with Volume ... 24-13
24.3.13.3 Stock Graphs: Open-High-Low-ClOSecccoiiiiiiiiiiiiiicie e 24-14
24.3.13.4 Stock Graphs: Open-High-Low-Close with Volumecccocviiiiiiiinnns 24-14
24.3.13.5 Candle Stock Graphs: Open-Closeccoceiiiiiiiiiiiiice e 24-14
24.3.13.6 Candle Stock Graphs: Open-Close with Volumeccccoccoiiiiiiiiniiiiienens 24-14
24.3.13.7 Candle Stock Graphs: Open-High-Low-Closeccccciiiiiiiniiniiiiiiniiecies 24-15
24.3.13.8 Candle Stock Graphs: Open-High-Low-Close with Volume 24-15
24.4 Creating a GraPhlcccoooiiiiiii e 24-15
24.41 How to Add a Graph to a Pagecccevueviiiiiiiiiiicic 24-15
2442 How to Create a Graph Using Tabular Datacccccoeviieiiiiiiieneccecce, 24-18
24421 Storing Tabular Data for a Graph in a Managed Beancccccceeiiiienenne 24-18
24422 Creating a Graph Using Tabular Dataccccocoiiiiiniinii e 24-19
24.4.3 What Happens When You Create a Graph Using Tabular Datac..ccoceo... 24-19
24.4.4 What You May Need to Know About Graph Image Formatscccooeeieneie 24-20
24.5 Changing the Graph Typecccoiiiiiiiiii e, 24-20
24.6 Customizing the Appearance of Graphsccccccciiiiiiiiiiiiii i 24-21
24.6.1 Changing the Color, Style, and Display of Graph Data Valuescc.cccceeceenneee 24-22
24.6.1.1 How to Specify the Color and Style for Individual Series Items 24-22
24.6.1.2 How to Enable Hiding and Showing Series Itemsccccooviiiiiiiiiiiennenne 24-23
24.6.2 Formatting Data Values in Graphsccocceiiiiiiiiiiie e 24-23
24.6.2.1 How to Format Categorical Data Valuesccccccoeieiiiiiiiiiiic 24-24
24.6.2.2 How to Format Numerical Data Valuescccocooiiiiiiiiiiiiii 24-25
246.2.3 What You May Need to Know About Automatic Scaling and Precision 24-27
24.6.3 Formatting Text in Graphs ..., 24-27
24.6.3.1 How to Globally Set Graph Font Using a SKincccocoiiiiiiiiiiiiiiiieens 24-27

xvii

xviii

24.6.4 Changing Graph Size and Stylecccccvviiiiiiiinii 24-30

24.6.4.1 How to Specify the Size of a Graph at Initial Displaycccccccooiieiiiienennine 24-30
246.4.2 How to Provide for Dynamic Resizing of a Graphc.cccocoeiiviiiininiceenn. 24-30
24.6.4.3 How to Use a Specific Style Sheet for a Graphccoccoviiiiiiniiiiieniieen, 24-30
24.6.5 Changing Graph Background, Plot Area, and Titleccccooiiiiiiniiiiinin, 24-31
24.6.5.1 How to Customize the Background and Plot Area of a Graphcc..cc...... 24-31
24.6.5.2 How to Specify Titles and Footnotes in a Graphccccocovviiiniiiniin i, 24-32
24.6.6 Customizing Graph Axes and Labelscccccceviiiiiiiiniiii, 24-33
24.6.6.1 How to Specify the Title, Appearance, and Scaling of an AXiscccceenee. 24-33
24.6.6.2 How to Specify Scrolling on an AXisccceveriiiiiininiiciin e, 24-34
24.6.6.3 How to Control the Appearance of Tick Marks and Labels on an Axis 24-34
24.6.6.4 How to Format Numbers on an AXisccccovvviiiniiiiiniiciniisne e 24-35
24.6.6.5 How to Set Minimum and Maximum Values on a Data Axisc.cccceeueenen. 24-35
24.6.7 Customizing Graph Legendsccccociiiiiiiiiiiiiinii e, 24-36
24.6.8 Customizing Tooltips in Graphsccceceeiiiiiiiiiii e 24-37
24.7 Customizing the Appearance of Specific Graph Typesccccceviiiiiiiiiiiiiiiiinien, 24-38
2471 Changing the Appearance of Pie Graphsccccceviiiiiiniiiiiniie, 24-38
24.7.1.1 How to Customize the Overall Appearance of Pie Graphsccccooeeceennee. 24-38
24.7.1.2 How to Customize an Exploding Pie Sliceccccocvvviiiiniiiiiiniiicieneeen, 24-39
24.7.2 Changing the Appearance of Lines in Graphsccccocciiiininiiiiininen, 24-39
24.7.2.1 How to Display Either Data Lines or Markers in Graphscccccccovorieennnn. 24-39
24.7.2.2 How to Change the Appearance of Lines in a Graph Seriesccccccevvvenen. 24-40
24.7.3 Customizing Pareto Graphsccccviiiiiiiiiiiiiin i, 24-40
24.7.4 Customizing Scatter Graph Series Markerscocoeviiiiiniiiii e 24-41
24.8 Adding Specialized Features to Graphscccccccviuiiiiiiiiiiini e, 24-42
24.8.1 Adding Reference Lines or Areas to Graphsccccocooiiiiiiiiiii 24-42
24.8.1.1 How to Create Reference Lines or Areas During Designccccccevvrieennen. 24-42
24.8.1.2 What Happens When You Create Reference Lines or Areas During Design .. 24-43
24.8.1.3 How to Create Reference Lines or Areas Dynamically ... 24-44
24.8.2 Using Gradient Special Effects in Graphscccoccoiiiiiiiiiiii e 24-45
24.8.2.1 How to Add Gradient Special Effects to a Graphccccoceviiiiiiiiiininiin, 24-45
24.8.2.2 What Happens When You Add a Gradient Special Effect to a Graph 24-46
24.8.3 Specifying Transparent Colors for Parts of a Graphc.ccccooeiiiiiiiiiiinnin. 24-46
24.8.4 Adding Data Marker Selection Support for Graphsccccoeviviiiiiiiiiiiniienn, 24-47
24.8.41 How to Add Selection Support to Graphsccccccceieiiiiiiiiiniee e, 24-47
248.4.2 What You May Need to Know About Graph Data Marker Selection 24-50
24.8.5 Adding Context Menus to Graphscccceiiiiiiiniiinini e, 24-50
24.8.5.1 How to Configure Graph Context Menuscccccoceveiiiiiiiiiiiin i, 24-50
248.5.2 What You May Need to Know About Flash Rendering Format 24-54
24.8.6 How to React to Changes in the Zoom and Scroll Levelsccccocvviiiiiininnnnnen. 24-55
24.8.7 How to Provide Marker and Legend Dimmingc.ccoooeiiiiiiiniiiiin e, 24-56
24.8.8 Providing an Interactive Time Axis for Graphsccoccoviiriiiniiiiiciee e, 24-56
24.8.8.1 How to Define a Relative Range of Time Data for Displayc..cc.o...... 24-56
24.8.8.2 How to Define an Explicit Range of Time Data for Displaycccccceeeenen. 24-57
24.8.8.3 How to Add a Time Selector to @ Graphccccoviiiiiniiiieeeneecee, 24-57
24.8.9 Adding Alerts and Annotations to Graphsccccocevviiiiiinini e, 24-61
24.9 Animating Graphisccccoiiiiiiiii i 24-62

25

24.9.1 How to Configure Graph Components to Display Active Datac..cccovvrennnne 24-63

24.9.2 How to Specify Animation Effects for Graphs ... 24-64
Using ADF Gauge Components

25.1 Introduction to the Gauge Componentccccccooiiiiiiiiiiiii 25-1
25.1.1 TYPES Of GAUGES ... 25-3
25.1.2 Gauge TerminolOZYcccooiiuiiiiiiiiiieee e 25-4
25.2 Understanding Data Requirements for Gaugescceooeeuiiimiiiiiiiciicccecce 25-5
25.3 Creating @ GAUEZEcoocuiiiiiiii it 25-6
25.3.1 How to Add a Gauge to aPagecceceeuieiiiiiiiiic 25-7
25.3.2 Creating a Gauge Using Tabular Dataccccoooiiiiiiiii 25-9
25.3.2.1 Storing Tabular Data for a Gauge in a Managed Beanccccccvviiiinnnnnn 25-9
25.3.2.2 Structure of the List of Tabular Datacccccoviiiiiiiinii e, 25-9
25.3.3 How to Create a Gauge Using Tabular Dataccccooooiiiiiiii, 25-10
25.3.4 What Happens When You Create a Gauge Using Tabular Dataccccceeenee 25-11
25.3.5 What You May Need to Know About Gauge Image Formats 25-11
25.4 Customizing Gauge Type, Layout, and Appearancecccocceeviriiiniiiniinniiniieeinenns 25-12
25.41 How to Change the Type of the Gaugeccccooiiiiiiiiiii e 25-12
25.4.2 How to Determine the Layout of Gauges in a Gauge Setcccooiieiini, 25-12
25.4.3 Changing Gauge Size and Style ..., 25-13
25.4.3.1 Specifying the Size of a Gauge at Initial Displaycccocooiiiiiiiiiiiiiiieeee 25-13
25.4.3.2 Providing Dynamic Resizing of a Gaugecccoevienieniiiininicccccce, 25-13
25.4.3.3 Using a Custom Style Class for a Gaugeccooeeieiiiiiiiiiiciecceee 25-14
25.4.4 How to Add Thresholds to Gaugescceieiiiiiiiiiiie e 25-14
25.4.4.1 Adding Static Thresholds to Gaugescccocoeiiiiiiiiiiiii 25-14
25.45 How to Format Numeric Values in Gaugescccceeeiiiiiiiiiiicicccccce e, 25-15
25451 Formatting the Numeric Value in a Gauge Metric or Tick Label 25-15
25.4.6 What Happens When You Format the Numbers in a Gauge Metric Label 25-16
25.4.7 What You May Need to Know About Automatic Scaling and Precision 25-16
25.4.8 How to Format Text in Gaugescccceiiiiiiiiiniiiin i 25-16
25.4.9 How to Specify an N-Degree Dialccccooiiiiiiiiiiiiic 25-17
25.4.10 How to Customize Gauge Labelscc.ccooiiiiiiiiii e 25-17
25.4.10.1 Controlling the Position of Gauge Labelscccccccooviiiiiiiiinieee 25-17
25.4.10.2 Customizing the Colors and Borders of Gauge Labelsccccoeeiiienennene. 25-17
25.4.11 How to Customize Indicators and Tick Markscccooiiiiiiiiiiiie 25-18
254111 Controlling the Appearance of Gauge Indicatorsccccocveviiiiiinciiieenenne 25-18
25.4.11.2 Specifying Tick Marks and Labelscccccoiiiiiiiiiiiniiii 25-18
25.411.3 Creating Exterior Tick Labelsccccccoiiiiiiiii 25-19
25.4.12 Specifying Transparency for Parts of a Gaugecccocoeeriiiiiiiiiiiicie e 25-19
25.5 Adding Gauge Special Effects and Animation ..., 25-20
25.5.1 How to Use Gradient Special Effects in a Gaugecccoceevieiieiiiiicniiiiniieie 25-20
25.5.1.1 Adding Gradient Special Effects to a Gaugecccocoeveriiiiiiiiiiine e 25-20
255.2 What Happens When You Add a Gradient Special Effect to a Gauge 25-21
25.5.3 How to Add Interactivity to Gaugesccceevevriiiiiiiiii i, 25-21
2554 How to Animate Gaugescccoeiiiiiiiiiniiiiic i 25-22
25.5.5 How to Animate Gauges with Active Datacccooii, 25-23
25.5.5.1 Configuring Gauge Components to Display Active Datacccccceeieneins 25-23

Xix

26

27

XX

25.5.5.2 Adding Animation to GauZesccceceiiiiiiiiiiic 25-24

25.6 Using Custom Shapes in GaUZesccoeuieiriuiiiiiiiciiiee e 25-24
25.6.1 How to Create a Custom Shapes Graphic Filecccoooiiiiiiiiiiiiieeee, 25-24
25.6.2 How to Use a Custom Shapes Filecccoveiiiiiiiiiiiiiiiniece e, 25-27
25.6.3 What You May Need to Know About Supported SVG Features 25-27
25.6.4 How to Set Custom Shapes Stylesccooiiiiiiiiiieic e 25-28

Using ADF Geographic Map Components

26.1 Introduction to GeographiC Mapsccccoouiiiiieiiiiiiii e 26-1
26.1.1 Available Map Themesccccoviiiiiiiiiiiii i 26-1
26.1.2 Geographic Map Terminologyccccooeeiiiiiiiiiiiicee e 26-2
26.1.3 Geographic Map Component Tagsccccooiriiiiiiiiiiiecsee e 26-4
26.1.3.1 Geographic Map Parent Tagsccoooeiiiiiiiiiiic 26-5
26.1.3.2 Geographic Map Child Tagsccccoiuieiiiiiiiie e 26-5
26.1.3.3 Tags for Modifying Map Themescccooiiiiiiiiiiiinie e 26-5
26.2 Understanding Data Requirements for Geographic Mapsccocovvuviiiiiiniiiniiniinnns 26-6
26.3 Customizing Map Size, Zoom Control, and Selection Area Totalsc.cccevviiiiiinnnns 26-6
26.3.1 How to Adjust the Map SizZecccoooiiiiiiiiiie e 26-6
26.3.2 How to Specify Strategy for Map Zoom Controlccccooiiiiiiiiiic, 26-7
26.3.3 How to Total Map Selection Valuescccoooooiiiiiiiiiicc e, 26-7
26.4 Customizing Map Themescccoooiiiiiiiiiiie e 26-8
26.4.1 How to Customize Zoom Levels for a Themeccccocviviiiiiiiiniinnn e 26-8
26.4.2 How to Customize the Labels of a Map Themec.ccocovviiiiniiiiiniiiie 26-8
26.4.3 How to Customize Color Map Themesccccooiiiiiiiiiiiiiiie e 26-9
26.4.4 How to Customize Point Images in a Point Themeccccoooii 26-9
26.4.5 What Happens When You Customize the Point Imagesina Map 26-10
26.4.6 How to Customize the Bars in a Bar Graph Themecccoociiiiiiiiiinnien, 26-11
26.4.7 What Happens When You Customize the Bars in a Map Bar Graph Theme 26-12
26.4.8 How to Customize the Slices in a Pie Graph Theme ... 26-12
26.4.9 What Happens When You Customize the Slices in a Map Pie Graph Theme 26-13
26.5 Adding a Toolbar toa Mapcccceeiiiiiiiiiiiece e 26-14
26.5.1 How to Add a Toolbar to @ Mapcccoecuiiiiiiiiiii i 26-14
26.5.2 What Happens When You Add a Toolbar to a Mapcccccoevrcieiiiiicniciecee 26-14
26.5.3 What You May Need to Know About Active Data Support for Map Point Themes
26-14

Using ADF Pivot Table Components

27.1 Introductions the ADF Pivot Table Componentccccccviiiiiiiiiiiiin i 27-1
2711 Pivot Table Elements and Terminologycccccociriiriiiiiiniiiciic e 27-2
27.2 Understanding Data Requirements for a Pivot Tablecccccoiiiiiiiiiiiiniiiie 27-3
27.3 Pivoting Layers ... 27-3
27.4 Displaying Large Data Sets in Pivot Tablescccociiiiiiiiiiiiiii e 27-4
27.5 Using Selection in Pivot Tables ..o 27-6
27.6 Sorting in a Pivot Table ... 27-7
27.7 Sizing in @a Pivot Tablecccoioiiiiiii e 27-8
27.7 .1 How to Set the Overall Size of a Pivot Tableccccccvvvieieiieee i e 27-8
27.7.2 How to Resize Rows, Columns, and Layersccccccviviiiiiniiiniiniiiciin e 27-8

28

29

27.7.3 What You May Need to Know About Resizing Rows, Columns, and Layers 27-9

27.8 Updating Pivot Tables with Partial Page Renderingcccoeoooiiiiiiiiiici, 27-9
27.9 Exporting from a Pivot Tableccoooiiiiiiiiiie e 27-10
27.10 Displaying Pivot Tables in Printable Modeccocoiiiiiiiii, 27-11
27.11 Customizing the Cell Content of a Pivot Tablec.ccooiiiiii, 27-11
27111 How to Create a CellFormat Object for a Data Cellcccoooiiiiiiiiiiiiiiiieeeee 27-12
27.11.2 How to Construct a CellFormat Objectccccocviiiiiiiiiiiiiii 27-12
27113 How to Change Format and Text Stylescccooioiiiiiiiiii, 27-13
27.11.4 How to Create Stoplight and Conditional Formatting in a Pivot Table 27-14
27.12 Pivot Table Data Cell Stamping and Editingccccoooiiiiiiiiiii, 27-15
27121 How to Specify Custom Images for Data Cellscccoooiiiiiiiiiiii, 27-16
27.12.2 How to Specify Images, Icons, Links, and Read-Only Content in Header Cells27-16
27.13 Using a Pivot Filter Bar with a Pivot Tablec.cccccccoii, 27-18
27.13.1 How to Associate a Pivot Filter Bar with a Pivot Tableccccccooiiiiiiiiiiinnn, 27-18
Using ADF Timeline Components

28.1 Introduction to the Timeline Componentccoccooiiiiiiiiiii e, 28-1
28.1.1 Timeline Use Cases and EXamplesccociiiiiiiiiiiiiiiiiie e 28-1
28.1.2 End User and Presentation Featuresccccccvviiiiiniiiiiiniinn e 28-3
28.1.2.1 Layout OPtionscccoecciiiiiiiiiie i e e s 28-3
28.1.2.2 Timeline Item Selectionccccceviiiiiiiiiiic 28-3
28.1.2.3 Timeline Grouping and SOrtingccccociiiiiiiiiiici e, 28-3
28.1.2.4 Drag and Drop SUPPOTtccueeiiiiiiie e 28-4
28.1.2.5 Content DELIVETY ...ccc.eiiiiiiiieie e e e 28-5
28.1.2.6 Timeline Image FOormatsccooiiiiiiiiiii 28-5
28.1.2.7 Timeline Display in Printable or Emailable Modescccocoiiii 28-5
28.1.2.8 Active Data Support (ADS)oocviiiiiiiiiii 28-6
28.2 Using Timeline COMPONENESccoiiiiiiiiiiiiiiii e 28-6
28.2.1 Timeline Component Data Requirementsccoccooeiiiiiiiiiiiniicccce 28-6
28.2.2 Configuring TIMELNESccooiiiiiiiiii e s 28-8
28.2.3 How to Add a Timeline to a Pagec.cccooiiiiiiiiiii, 28-9
28.2.4 What Happens When You Add a Timeline to a Pageccccoooevviiiiiiinnninn 28-11
28.3 Adding Data to Timeline COMPONENLSccocuiiiiriiiiiiiieie e 28-11
28.3.1 How to Add Data to a Timelineccccccvivuiiiiiiiiniiiiic i 28-11
28.3.2 What You May Need to Know About Configuring Data for a Dual Timeline 28-14
28.3.3 What You May Need to Know About Adding Data to Timelinescc.ccccc..c... 28-14
28.4 Customizing Timeline Display Elements ..., 28-14
28.4.1 Configuring Timeline Itemscccooiiiiiiiiiiii 28-14
28.4.2 How to Add a Custom Time Scale to a Timelinecccccoeviiiiiiinnininicins 28-15
28.5 Adding Interactive Features to Timelinescccccoccoiiiiiiiiiiiii, 28-16
28.5.1 How to Add Popups to Timeline Itemscccoooiiiiiiiiiiiiiiii e 28-16
28.5.2 How to Configure Timeline Context MeNnuScccccoeciriieiiiiiiie e 28-16
28.5.3 How to Add Drag and Drop to a Timelineccccocviiiiiiiiiiininiiininiecie 28-16
Using ADF Gantt Chart Components

29.1 Introduction to the ADF Gantt Chart Componentscccovveviiiiiiniiicnin i 29-1

XXi

30

XXii

29.11 Types of Gantt Charts ... 29-2

29.1.2 Functional Areas of a Gantt Chartcccccoiiiiiiiiiiii e 29-3
29.1.3 Description of Gantt Chart Taskscccccviiiiiiiiiiiii e 29-4
29.2 Understanding Gantt Chart Tags and Facets ... 29-5
29.3 Understanding Gantt Chart User Interactivitycccocoiiiiiiiiiiii, 29-7
29.3.1 Navigating in a Gantt Chartccocooiiiiiiiii e 29-7
29.3.1.1 Scrolling and Panning the List Region or the Chart Region 29-7
29.3.1.2 How to Navigate to a Specific Date in a Gantt Chartcccoceiviiiiiiiinins 20-8
29.3.1.3 How to Control the Visibility of Columns in the Table Regioncc........ 29-8
29.3.2 How to Display Data in a Hierarchical List or a Flat Listcccccccccooiii 29-8
29.3.3 How to Change the Gantt Chart Time Scaleccccooiiiiiiiii 29-8
29.4 Understanding Data Requirements for the Gantt Chartccccocoiviiiiiiiiiiiiiiniine 29-9
29.4.1 Data for a Project Gantt Chartccocoiiiiiiiiiiii 29-9
29.4.2 Data for a Resource Utilization Gantt Chart ... 29-11
29.43 Data for a Scheduling Gantt Chartcocoiiiiiiiiei e 29-12
29.5 Creating an ADF Gantt Chart ... 29-13
29.5.1 How to Add a Gantt Chart to a Pageccccoeiriiiiiiii 29-13
29.52 What Happens When You Add a Gantt Chart to a Pagecccocovviiiiiiicneenne 29-15
29.5.3 What You May Need to Know About Performing an Action on Selected Tasks or
RESOUICES ...t 29-16
29.6 Customizing Gantt Chart Tasks and Resourcesccoceviiiiiiiiniiiiiiniiiec e, 29-17
29.6.1 Creating a New Task TYPeoooiiiiiiiiiiieee s 29-17
29.6.2 Configuring Stacked Bars in Resource Utilization Gantt Charts 29-18
29.6.3 Configuring a Resource Capacity Linec.ccoooiiiiiiiiiiiii 29-19
29.6.4 Configuring Custom Data FIItersc..ccoiiiiiiiiiiiiiii e, 29-20
29.6.5 Adding a Double-Click Event to a Task Bar ... 29-20
29.7 Customizing Gantt Chart Legends, Toolbars, and Context Menusccccceviveenen. 29-21
29.7.1 How to Customize a Gantt Chart Legendcccccoooiiiiiiiiiieeen, 29-21
29.7.2 Customizing Gantt Chart Toolbars ..., 29-22
29.7.3 Customizing Gantt Chart Context Menuscccccooiiiiiiiiiiiiiic 29-23
29.8 Specifying Nonworking Days, Read-Only Features, and Time AXesccccccveueenen. 29-24
29.8.1 Identifying Nonworking Days in a Gantt Chart ..o 29-24
29.8.1.1 How to Specify Weekdays as Nonworking Daysc.cccceeviiniiniieieenieencnne 29-24
29.8.1.2 How to Identify Specific Dates as Nonworking Dayscccoccveceiinicnennn. 29-25
29.8.2 How to Apply Read-Only Values to Gantt Chart Featuresccccccoeoeiii 29-25
29.8.3 Customizing the Time Axis of a Gantt Chartcccoeviiiiiiiii e, 29-28
29.8.3.1 How to Create and Use a Custom Time AXiSc.cccovveieriininiiniiiie e 29-29
29.9 Adding Interactive Features to Gantt Chartsccccooiiiiiii 29-30
29.9.1 Configuring Page Controls in Gantt Chartscccccceiviiiiiniii e, 29-30
29.9.2 Configuring Synchronized Scrolling Between Gantt Chartscccccceeveviceennn. 29-30
29.10 Printing a Gantt Chart ... 29-33
29.10.1 Print OptionSc.coiiiiiiiiiiicii e 29-33
29.10.2 Action Listener to Handle the Print Eventccccccviiiiiniiniiciccen, 29-34
29.11 Using Gantt Charts as a Drop Target or Drag Sourcecccoccevieiiiiiciiiiicnicicn, 29-35

Using ADF Treemap and Sunburst Components

30.1 Introduction to Treemaps and SUNDUISESc.cceiiiiiiiiiiiiiiici 30-1

30.1.1 Treemap and Sunburst Use Cases and Examplesc.ccccovviiiiniiiiiiiniincnieniieee, 30-1

30.1.2 End User and Presentation Features of Treemaps and Sunburstsc...c......... 30-3
30.1.2.1 Treemap and Sunburst Layoutsccccoooiiiiiiiiiiiic e 30-3
30.1.2.2 Aribute GrOUPS ...ooivviiiiiiiiiiciec i 30-4
30.1.2.3 Legend SUPPOIt ..o 30-5
30.1.2.4 Pattern SUPPOTtccociiiiiiiiiiii 30-5
30.1.2.5 Node Selection SUPPOLtcoovviriiiiiiiiiiii 30-6
30.1.2.6 TOOIHP SUPPOIt ..o 30-6
30.1.2.7 POpup SUPPOTIT ..evviiiiiii i 30-7
30.1.2.8 Context MENUSccciiiiiiiiiii it 30-8
30.1.2.9 Drilling SUPPOTTeovieiiieiiee e 30-8
30.1.2.10 Other NOde SUPPOTIT ..o 30-11
30.1.2.11 Drag and Drop SUPPOTItcccovviriiiiiiiiiiiciin s 30-12
30.1.2.12 SOrting SUPPOTT ..oveeiiiiiiiicii e 30-13
30.1.2.13 Treemap and Sunburst Image Formatsccocceeeiiiiiiiiiiiic e 30-14
30.1.2.14 Advanced Node Contentcccceeveriiiiiiiiiiiniin i 30-14
30.1.2.15 Printing and Email SUpport ... 30-15
30.1.2.16 Active Data Support (ADS)ccocviiiiiiiiiiii 30-16
30.1.2.17 Isolation Support (Treemap ONly)occvvvieiiiiiiiiici 30-16
30.1.2.18 Treemap Group Node Header Customization (Treemap Only) 30-17
30.2 Using the Treemap and Sunburst COMPONENLScccovveiiiiiiiiiiiiiie e 30-18
30.2.1 Treemap and Sunburst Data Requirementsccccocveviiiiiiiniiniinineiece 30-18
30.2.2 Using the Treemap Componentccccooiiiiiiiiiiicce e, 30-25
30.2.2.1 Configuring TreEMAPSceeiivieiiiiiii e 30-25
30.2.2.2 How to Add a Treemap to a Pageccccoeiiiiiiiiiii 30-27
30.2.2.3 What Happens When You Add a Treemap to a Pageccocceeieii 30-29
30.2.3 Using the Sunburst COMPONENLtccocooiiiiiiiiiiie e 30-29
30.2.3.1 Configuring SUNbUISts ..o 30-29
30.2.3.2 How to Add a Sunburst to a Pageccoceeiiiiiiiiii 30-30
30.2.3.3 What Happens When You Add a Sunburst to a Pageccccoceieiiiiiiiennnns 30-32
30.3 Adding Data to Treemap and Sunburst Componentsc.cccevveviiiriniiniiiiieniiecniens 30-33
30.3.1 How to Add Data to Treemap or Sunburst Componentscceceeeereecerieennnne 30-33
30.3.2 What You May Need to Know about Adding Data to Treemaps and Sunbursts ... 30-35
30.4 Customizing Treemap and Sunburst Display Elementsc.cccocooiiiiiiiiiin, 30-35
30.4.1 Configuring Treemap and Sunburst Display Size and Stylecccooiiinnens 30-35
30.4.2 Configuring Pattern Displaycccoooiiiiiiiiiiice e 30-36
30.4.3 Configuring Treemap and Sunburst Attribute Groupsccccooeiiiiiiii, 30-36
30.4.3.1 How to Configure Treemap and Sunburst Discrete Attribute Groups 30-37
30.4.3.2 How to Configure Treemap or Sunburst Continuous Attribute Groups 30-39
30.4.3.3 What You May Need to Know About Configuring Attribute Groups 30-41
30.4.4 How to Configure Treemap and Sunburst Legendsccccooviiriiiiiiinininnne, 30-41
30.4.5 Configuring the Treemap and Sunburst Other Nodecccooiiiiiiiiiiiiiiiens 30-43
30.4.5.1 How to Configure the Treemap and Sunburst Other Nodec..cccoeveenins 30-43
30.4.5.2 What You May Need to Know About Configuring the Treemap and Sunburst
Other NOAE ..o e 30-45
30.4.6 Configuring Treemap and Sunburst SOTtingcceeoiiiiiiiiiiiiiicie e 30-46
30.4.7 Configuring Treemap and Sunburst Advanced Node Content 30-46

xXiii

31

XXiv

30.4.7.1 How to Add Advanced Node Content to a Treemapcccoveviiiinienineennen. 30-46

30.4.7.2 How to Add Advanced Root Node Content to a Sunburst:cccccceeeeenneen. 30-47
30.4.7.3 What You May Need to Know About Configuring Advanced Node Content on
TTEEMAPS ...eeiiiiiiiiiii 30-47
30.4.8 How to Configure Animation in Treemaps and Sunburstscccccoeiein 30-47
30.4.9 Configuring Labels in Treemaps and Sunburstscccoceeeviiiiiniiniiiiieniieenen, 30-49
30.4.9.1 How to Configure Treemap Leaf Node Labelscccoooeriiiiiiiiinnieenn. 30-49
30.4.9.2 How to Configure Sunburst Node Labels ... 30-50
30.4.10 Configuring Treemap Node Headers and Group Gap Displaycccceeeieninn. 30-51
30.4.10.1 How to Configure Treemap Node Headersccocoiiiiiiiininiiiinen, 30-51
30.4.10.2 What You May Need to Know About Treemap Node Headers 30-52
30.4.10.3 How to Customize Treemap Group Gapsccccoeviiiiiiiiiiiiniiiciecceecee, 30-52
30.5 Adding Interactive Features to Treemaps and Sunburstsccccccoeeiiiiiiiiininiceenn. 30-52
30.5.1 Configuring Treemap and Sunburst TOOItPScccoevieiiiiiiiiii 30-52
30.5.2 Configuring Treemap and Sunburst POpupsccccoeeiiiiiiiiiiiii 30-53
30.5.2.1 How to Add Popups to Treemap and Sunburst Componentscc.cceeenee. 30-53
30.5.2.2 What You May Need to Know About Adding Popups to Treemaps and Sunburst
COMPONENLS ..vicuviiiiiiiiis i s 30-56
30.5.3 Configuring Treemap and Sunburst Selection Support ... 30-56
30.5.3.1 How to Add Selection Support to Treemap and Sunburst Components 30-56
30.5.3.2 What You May Need to Know About Adding Selection Support to Treemaps and
SUNDUISES ..vevvviciii i 30-59
30.5.4 Configuring Treemap and Sunburst Context Menusccccoeieiiniinieineen. 30-59
30.5.4.1 How to Configure Treemap and Sunburst Context Menuscccccceeeceenen. 30-59
30.5.4.2 What You May Need to Know About Configuring Treemap and Sunburst Context
IMEIIUS ..ottt 30-64
30.5.5 Configuring Treemap and Sunburst Drilling Support ... 30-65
30.5.5.1 How to Configure Treemap and Sunburst Drilling Supportcccccceeeeenen. 30-65
30.5.5.2 What You May Need to Know About Treemaps and Drilling Support 30-66
30.5.6 How to Add Drag and Drop to Treemaps and Sunburstscccccoooiienn. 30-66
30.5.7 Configuring Isolation Support (Treemap Only)ccccoeiiiiniiiiiiiiiiiecee e, 30-72
30.5.7.1 How to Disable Isolation SUPPOItcccvvuiiiiiiiiiiiiciicn e, 30-72
30.5.7.2 What You May Need to Know About Treemaps and Isolation Support 30-73

Using ADF Hierarchy Viewer Components

31.1 Introduction to Hierarchy VIEWersccccoiiiiiiiiiiiiiiiiiic e 31-1
31.1.1 Understanding the Hierarchy Viewer Componentcccccocveiiiiiiiiniciiiiciieneene 31-1
31.1.2 Hierarchy Viewer Elements and Terminologycccceoeeiiiiiiiiiiiici, 31-4
31.1.3 Available Hierarchy Viewer Layout Optionscccccocciiiiiiiiiiiniiiiic e 31-6
31.1.4 What You May Need to Know About Hierarchy Viewer Rendering and HTML 31-8
31.2 Data Requirements for Hierarchy Viewers ..o, 31-8
31.3 Creating a Hierarchy VIEWercccoiiiiiiiiiiiii e 31-9
31.3.1 How to Add a Hierarchy Viewer to a Pagecccoooiiiiiiiiiiiiic e 31-9
31.4 Managing Nodes in a Hierarchy Viewer ..o, 31-11
31.4.1 How to Specify Node Contentcccocouiiiiiiiiiiiiiicsc e 31-13
31.4.2 How to Configure the Controls on a Nodecccccooiiiiiiiiiiii e, 31-15
31.4.3 How to Specify a Node Definition for an Accessorccooveviiiiiiiniiiicicnn, 31-16
31.4.4 How to Associate a Node Definition with a Particular Set of Data Rows 31-16

31.4.5 How to Specify Ancestor Levels for an Anchor Node ..., 31-17

31.5 Navigating in a Hierarchy Viewer ..., 31-17
31.5.1 How to Configure Upward Navigation in a Hierarchy Viewerc.ccccoceeneee 31-17
31.5.2 How to Configure Same-Level Navigation in a Hierarchy Viewer 31-18
31.5.3 What Happens When You Configure Same-Level Navigation in a Hierarchy Viewer ...
31-18
31.6 Adding Interactivity to a Hierarchy Viewer Componentcccocceiniiriiininiiccnenns 31-19
31.6.1 How to Configure 3D Tilt Panningccooceiiiiiiiiiiiie e, 31-19
31.6.2 How to Configure Node Selection Actioncccooiiiiiiiiiiiiici e, 31-20
31.6.3 Configuring a Hierarchy Viewer to Invoke a Popup Windowccccceeeieneene 31-21
31.6.4 Configuring Hierarchy Viewer Drag and Drop ..., 31-22
31.6.4.1 How to Configure Hierarchy Viewer Drag and Dropcccooeiii 31-26
31.6.4.2 What You May Need to Know About Configuring Hierarchy Viewer Drag and
DIOP ittt 31-33
31.7 Using Panel Cardsccccooiiiiiiiiiii 31-33
31.71 How to Create a Panel Cardcccoccuiiiiiiiiiiiiniiisi i 31-33
31.7.2 What Happens at Runtime When a Panel Card Component Is Rendered 31-34
31.8 Customizing the Appearance of a Hierarchy Viewerc.ccccccooiii, 31-34
31.8.1 How to Adjust the Size of a Hierarchy Viewer ..., 31-35
31.8.2 How to Include Images in a Hierarchy VieWerccccooiiiiiiiiiiiieiii e 31-35
31.8.3 How to Configure the Display of the Control Panelc.cocooviiiiniiiiinn, 31-36
31.8.4 How to Configure the Display of Links and Labelscccccoociiiiniiiiiniinnns 31-36
31.8.5 How to Disable the Hover Detail Windowcccoveiiiiiiiiiiiiininccc e, 31-37
31.9 Adding Search to a Hierarchy Viewercccccoooiiiiiiiiii, 31-38
31.91 How to Configure Searching in a Hierarchy Viewer ..o, 31-38

31.9.2 What You May Need to Know About Configuring Search in a Hierarchy Viewer 31-40
PartV Advanced Topics

32 Creating Custom ADF Faces Components

32.1 Introduction to Custom ADF Faces COMpPonentsccccceviiiiiiiiiiniiiiniicc e 32-1
32.1.1 Developing a Custom Component with JDevelopercccccovveviiiiiiiiiiiniiniienne, 32-2
32.1.2 An Example Custom COMPONENtccueiiiiiiiiiiiiiie i s 32-5
32.2 Setting Up the Workspace and Starter Filescoccoiiiiiiiiiiiiiiii e 32-8
32.2.1 How to Set Up the JDeveloper Custom Component Environmentccccuveenee. 32-9
32.2.2 How to Add a Faces Configuration Filecccccooiiiiiiiiiiii 32-11
32.2.3 How to Add a MyFaces Trinidad Skins Configuration Fileccccociiiieneine 32-11
32.2.4 How to Add a Cascading Style Sheetccoooooiiiiiiiiii, 32-12
32.2.5 How to Add a Resource Kit Loader ..o 32-12
32.2.6 How to Add a JavaServer Pages Tag Library Descriptor Fileccccoccoeiieneine 32-12
32.2.7 How to Add a JavaScript Library Feature Configuration File 32-13
32.2.8 How to Add a Facelets Tag Library Configuration Filec...cccocooinniinnnin, 32-13
32.3 Client-Side DevelOPIMENtcccooiiiiiiiiiiiiiiieie e 32-14
32.3.1 How to Create a JavaScript File for a Componentcccoovviiininiiniiiinicnnne, 32-15
32.3.2 How to Create a Javascript File for an Eventcccooviiiiiiinii, 32-16
32.3.3 How to Create a JavaScript File for a Peercccooiiiiiiiiiiiiieee 32-18

XXV

33

34

XXVi

32.3.4 How to Add a Custom Component to a JavaScript Library Feature Configuration File

32-19
32.4 Server-Side Developmentcccoooiiiiiiiiiii i 32-19
32.4.1 How to Create a Class for an Event Listenercccococoviiniiiiniiciiicncceneen, 32-20
32.4.2 How to Create a Class for an Eventccccccovvviiiiniiiiiini e, 32-21
32.4.3 Creating the Componentccocooiiiiiiiii e 32-22
32.4.4 How to Create a Class for a COMPONENtceevueriiiiiieiiieiie e 32-24
32.4.5 How to Add the Component to the faces-config.xml Fileccccooi 32-26
32.4.6 How to Create a Class for a Resource Bundle ... 32-27
32.4.7 How to Create a Class for a Renderercccooeviiiniiniiiiniiinnecc e, 32-29
32.4.8 How to Add the Renderer to the faces-config.xml Filec.cccoconi 32-29
32.4.9 How to Create JSP Tag Propertiescccooiiiiiiiiiiiiiiiiii e, 32-30
32.4.10 How to Configure the Tag Library Descriptorcccooiiiiiiiiiiiiieieccee e, 32-33
32.4.11 How to Create a Resource Loaderccccooeviiiiiiniiinninin e, 32-35
32.4.12 How to Create a MyFaces Trinidad Cascading Style Sheet ... 32-36
32.5 Deploying a Component Librarycccoccoioiiiiiiiiiiiii e 32-37
32.6 Adding the Custom Component to an Applicationcccccovviviiiiiiniiiiiiniincieee, 32-38
32.6.1 How to Configure the Web Deployment Descriptorccccocveeeeiiniinieineen. 32-38
32.6.2 How to Enable JavaScript Logging and Assertionscccocevcoveiiniincncniceennen. 32-39
32.6.3 How to Add a Custom Component to JSF Pagesccccoceeiiiiiiiiiniiic 32-40

32.6.4 What You May Need to Know About Using the tagPane Custom Component 32-40

Allowing User Customization on JSF Pages

33.1 Introduction to User Customizationccccceeiiiiiiiiiiiiiiie e, 33-1

33.2 Implementing Session Change Persistencecccccocoieiiiiiiiniiiiiiic e 33-4

33.2.1 How to Implement Session Change Persistencecccoccooiiiiiiiiiiiin, 33-4

33.2.2 What Happens When You Configure Your Application to Use Change Persistence
33-4

33.2.3 What Happens at RUNIMEcccooiiiiiiii e 33-5

33.2.4 What You May Need to Know About Using Change Persistence on Templates and
REZIONS ..ot 33-5

Adding Drag and Drop Functionality

34.1 Introduction to Drag and Drop Functionalityccccccoiiiiiiiiii 34-1
34.2 Adding Drag and Drop Functionality for Attributesc.cccoooiiiiiiiiiiiiiii 34-4
34.3 Adding Drag and Drop Functionality for ObJectscccvviiiiiiiiiiiiciiicse e 34-5
34.3.1 How to Add Drag and Drop Functionality for a Single Objectccccccueei 34-6
34.3.2 What Happens at RUNIMEccoociiiiiiii e 34-8
34.3.3 What You May Need to Know About Using the ClientDropListener 34-9
34.4 Adding Drag and Drop Functionality for Collectionsccccecieiiiiiiiiiiiiiiice, 34-9
34.4.1 How to Add Drag and Drop Functionality for Collectionscccccviiiiiieennen. 34-10
34.42 What You May Need to Know About the dragDropEndListenerc........... 34-12
34.5 Adding Drag and Drop Functionality for Componentscccccooeiiiiiiiiiiiinn. 34-12
34.5.1 How to Add Drag and Drop Functionality for Componentscccccceeeurnnennn. 34-13
34.6 Adding Drag and Drop Functionality Into and Out of a panelDashboard Component
34-15
34.6.1 How to Add Drag and Drop Functionality Into a panelDashboard Component .. 34-15

35

36

34.6.2 How to Add Drag and Drop Functionality Out of a panelDashboard Component

34-18
34.7 Adding Drag and Drop Functionality to a Calendarccocooiiiiiiiini, 34-19
34.7.1 How to Add Drag and Drop Functionality to a Calendarcc.cccoooiiiiiiinnnenns 34-20
34.7.2 What You May Need to Know About Dragging and Dropping in a Calendar 34-21
34.8 Adding Drag and Drop Functionality for DVT Graphsccccccocoiiiiiiiiiiiii, 34-21
34.8.1 How to Add Drag and Drop Functionality for a DVT Graphcccocciiiiiiienenne 34-21
34.9 Adding Drag and Drop Functionality for DVT Gantt Chartsccccoooi, 34-22
34.9.1 How to Add Drag and Drop Functionality for a DVT Gantt Component 34-23
34.10 Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and

TTEEMAPS ..ot 34-26

34.10.1 Drag and Drop Example for DVT Hierarchy Viewerscccoccooiiiiiiiniini, 34-26
34.10.2 Drag and Drop Example for DVT Sunbursts ..., 34-27
34.10.3 Drag and Drop Example for DVT Treemapsccccceeeveirieiiiiiiiieiee e 34-28
34.10.4 How to Add Drag and Drop Functionality for a DVT Hierarchy Viewer, Sunburst, or

Treemap COMPONENTceviiiiiiiiiiiii i 34-29
Using Different Output Modes
35.1 Introduction to Using Different Output Modesc.ccooeiiiiiiiiiiiii, 35-1
35.2 Displaying a Page for Printcccooiiiiiiiii 35-2
35.2.1 How to Use the showPrintablePageBehavior Tagccccooiiiiiiiiininiiicirceee 35-2
35.3 Creating Emailable Pagesccccooiiiiiiiii 35-3
35.3.1 How to Create an Emailable Pagecccccoooiiiiiiii, 35-4
35.3.2 How to Test the Rendering of a Page in an Email Clientcccocooiiiiiiiiinene 35-5
35.3.3 What Happens at Runtime: How ADF Faces Converts JSF Pages to Emailable Pages ...

35-6
Using the Active Data Service with an Asynchronous Backend
36.1 Introduction to Using the Active Data Serviceccccoooiiiiiiiiiii, 36-1
36.2 Process Overview for Using Active Data Serviceccccocveiiiiiiiiiiiii, 36-2
36.3 Implement the ActiveModel Interface in a Managed Beanc.ccociiiiiiiiinnneene 36-3
36.3.1 What You May Need to Know About Read Consistencycccoceeeiniiiiiinnn 36-6
36.4 Pass the Event Into the Active Data Serviceccoviviiiiiiiiiiiiiiiiiccc e, 36-6
36.5 Register the Data Update Event Listenerccccooiiiiiiiiiii e 36-7
36.6 Configure the ADF Component to Display Active Datacccccoccoiiiiiiiii, 36-8

Part VI Appendixes

A ADF Faces Configuration

A1 Introduction to Configuring ADF Facescccooiiiiiiiiiiiiiic A-1
A2 Configuration in wWeb.Xmlccoooiiiiiii e A-1
A21 How to Configure for JSF and ADF Faces in web.xmlccociiiiiiiiiiiiiiciene A-2
A22 What You May Need to Know About Required Elements in web.xml A-3
A23 What You May Need to Know About ADF Faces Context Parameters in web.xml ...A-4
A.23.1 State SAVINGocccviiiiiiiiiii A-4
A232 DebUZZING ...oceviiiiiieee e A-5

XXVii

XXViii

A.233 File Uploadingc.coiieiiiiiiiiiiccice A-6

A23.4 Resource Debug Modecooouiiiiiiiii A-6
A235 ASSEITIONS .veivviiitiiiiii ettt e A-6
A2.3.6 Enabling the Application for Real User Experience Insightccccccoeviirnninne. A-6
A237 Facelets SUPPOItoouieiiiiee e A-7
A2338 Dialog PrefiX ...ccueeiiiiieii e e s A-7
A23.9 Compression for CSS Class Namesccceevueriiiiiiniiiciin i A-7
A.2.3.10 Test AUtOmMationccoiviiiiiiiii A-7
A23.11 UIViewWRO0Ot CaChingcccooiiiiiiiiiiiiie e e A-8
A.23.12 Themes and Tonal Styles ..., A-9
A.2.3.13 Partial Page Navigationccccooiiiiiiiiiiiiic e, A-9
A23.14 JavaScript Partitioning ... A-9
A.2.3.15 Framebustingcoooiiiiiiii A-10
A.2.3.16 Version Number Informationccccoeiiiiiiiiiiiniiii A-11
A23.17 Suppressing Auto-Generated Component IDsccccoociiiiiiiiiiiniiiciecee A-11
A.2.3.18 ADF Faces Caching Filter ... A-12
A.2.3.19 Configuring Native Browser Context Menus for Command Links A-13
A.2.3.20 Internet Explorer Compatibility View Modecccoiiiiiiiiiiiiiiceee A-13
A23.21 Session Timeout Warningccoccooieiiiiiiiiiiii e A-13
A.2.3.22 JSP Tag Execution in HTTP Streamingcccooeiiiiiiiiiiiiiiie, A-14
A.2.3.23 SPIASR SCIEEM ... A-14
A.2.3.24 Graph and Gauge Image Formatcccooiiiiiiiii A-14
A.2.3.25 Geometry Management for Layout and Table Componentsc..c...... A-14
A24 What You May Need to Know About Other Context Parameters in web.xml A-15
A3 Configuration in faces-config.xmlcocooiiiiiiiiii A-16
A.3.1 How to Configure for ADF Faces in faces-config.xmlcccccoo A-16
A4 Configuration in adf-config.Xmloccoiiiiiiiiiiii e A-17
A4 How to Configure ADF Faces in adf-config.xmlcccccooooiiiiiiniiiii, A-17
A4.2 Defining Caching Rules for ADF Faces Caching Filterccccccocooiiiii A-18
A43 Configuring Flash as Component Output Formatcccccccoeeiiiiiiiiiiiiiiieeee A-19
A4.4 Using Content Delivery Networkscoociiiiiiiiiiiic A-20
A4.41 What You May Need to Know About Skin Style Sheets and CDN A-23
A442 What You May Need to Know About JavaScript and CDNcccccceeiieenns A-24
A5 Configuration in adf-settings.xml ... A-24
A5.1 How to Configure for ADF Faces in adf-settings.xmlccccoooiiiiiiiiiiiinces A-24
A5.2 What You May Need to Know About Elements in adf-settings.xml A-25
A5.21 Help Systemccooouiiiiiic A-25
Ab22 Caching RUIESccoiiiiiii e A-26
A6 Configuration in trinidad-config.Xmlccccooiiiiiiiii e A-27
A.6.1 How to Configure ADF Faces Features in trinidad-config.xml A-27
A.6.2 What You May Need to Know About Elements in trinidad-config.xml A-28
A.6.2.1 Animation Enabled ..o A-28
A6.2.2 SKin Familyccciiiiiiiiiiiii A-28
A6.2.3 Time Zone and Yearccccooiiiiiiiiiiii i A-29
Ab6.24 Enhanced Debugging OUtputcccooiiiiiiiiiiie e A-29
A.6.2.5 Page Accessibility Level ... A-29
A6.2.6 Language Reading Directioncccoooiiiiiiiiiiiiiiiciic e A-30

A6.2.7 Currency Code and Separators for Number Groups and Decimal Points A-30

A.6.2.8 Formatting Dates and Numbers Localecccccooiiiiiiiiii A-31
A6.2.9 OUPUE MOAE ... s A-31
A.6.2.10 Number of Active PageFlowScope Instancescccccoceiiiiiiiiiiiiiciicc, A-31
A.6.2.11 Custom File Uploaded Processorcceiuieiiiiiciiiciiiciccee e, A-31
A.6.2.12 Client-Side Validation and Conversioncccocvvievniiniiiiniccin e A-32
A7 Configuration in trinidad-skins.xml ..., A-32
A.8 Using the RequestContext EL Implicit Objectcccooioiiiiiiiii, A-32
A9 Using JavaScript Library Partitioningccccceviiiiiiiiiiiii e, A-34
A9.1 How to Create a JavaScript Featureccccccciiiiiiiiiiiiininn e A-35
A.9.2 How to Create JavaScript Partitionsccooceiieiiiiiii, A-36
A9.3 What You May Need to Know About the adf-js-partitions.xml File A-37
A9.4 What Happens at Runtime: JavaScript Partitioningccccovviiiiiniiiiiniiciens A-44

B Message Keys for Converter and Validator Messages

B.1 Introduction to ADF Faces Default Messagesccccoociiuiiiiiiiiiiciiciccc e, B-1
B.2 Message Keys and Setter Methods ..o B-1
B.3 Converter and Validator Message Keys and Setter Methodsccccoeiiiiiiiiiiiinncns B-2
B.3.1 Af:cONVErtCOlOr ..oiiiiiiiiiiis i B-2
B.3.2 af:convertDateTimeccociiiiiiiiiii B-2
B.3.3 af:coNVErtNUMDETc.ociiiiiiiic B-3
B.3.4 afivalidateByteLength ..., B-4
B.3.5 af:validateDateRestrictionccccceiiiiiiiiiiiiiii B-4
B.3.6 af:validateDate TIMERANEGEoovuiiiiiiiiiiiiie e e B-5
B.3.7 afivalidateDoubleRange ..., B-6
B.3.8 afrvalidateLength ... B-7
B.3.9 af:validateREGEXD ...ooiiiiiii e B-8

C Keyboard Shortcuts

C.1 Introduction to Keyboard ShOrtCutsccooiiiiiiiiiiiiie e C-1
C.z2 Tab Traversal ... C-1
C.21 Tab Traversal Sequence on a Pagecccoccoiiiiiiiiiiiiii e, C-2
c.22 Tab Traversal Sequence in a Tableccccoiiiiiiiiiii e C-2
C.3 Shortcut Keys ..o C-4
C.3.1 Accelerator Keysocooiiiiiiiiiiii C-4
C.3.2 ACCESS KEYS ... s C-5
C.3.3 Shortcut Keys for Common Componentsccccoeiiiiiiiiiiciiciccecieece C-8
C.34 Shortcut Keys for Widgetsccooiiiiiiiiiiiii e, C-8
C.35 Shortcut Keys for Screen Reader Modeccoociiiiiiiiiiiiiiic e C-9
C.3.6 Shortcut Keys for Rich Text Editor Componentccccoociiiiiiiiiiinii C-9
C.3.7 Shortcut Keys for Table, Tree, and Tree Table Componentsc.ccceeuvreriunennne. C-10
C.3.8 Shortcut Keys for Table, Tree, and Tree Table Components in Screen Reader Mode
C-13
C.3.9 Shortcut Keys for ADF Data Visualization Componentscccoceoiiiiiin C-14
C.3.10 Shortcut Keys for Calendar Componentcccooeeviiiieiieiieieinecee e C-19
C.3.11 Shortcut Keys for Calendar Component in Screen Reader Modecccceueee. C-21

XXiX

C4
C.5

Default Cursor or FOCUS PlacemeEntcoevuniiiieniiiiii e e e e e e e s eeaaaes Cc-22
The Enter Keyooouiiiiiie e Cc-22

D Creating Web Applications for Touch Devices Using ADF Faces

D.1
D.2
D.3

Introduction to Creating Web Applications for Touch Devices Using ADF Faces D-1
How ADF Faces Behaves in Mobile Browsers on Touch Devicesccccveieeiieeiieennne. D-1
Best Practices When Using ADF Faces Components in a Mobile Browser D-5

E Quick Start Layout Themes

F Troubleshooting ADF Faces

XXX

F.1
F.2
F.3
F.3.1
F.3.2
F.3.3
F.3.4
F.3.5
F.3.6
F.3.7
F.3.8
F.3.9
F.4

Introduction to Troubleshooting ADF Facesccccoiiiiiiiiiiiiiice, F-1
Getting Started with Troubleshooting the View Layer of an ADF Application F-2
Resolving Common Problems ... F-4
Application Displays an Unexpected White Backgroundcccocovviiiiiiininnnne, F-5
Application is Missing Expected Imagescccooceiiiiiiiiiiii F-5
Data Visualization Components Fail to Display as Expectedcccccccooiiiininnnn F-5
High Availability Application Displays a NotSerializableExceptioncccccuee.e. F-6
Unable to Reproduce Problem in All Web Browserscccocoiieiiiiiiiciiie, F-6
Application is MissSiNg CONENTcccoeieiiiiiiieieiie e F-7
Browser Displays an ADF_Faces-60098 EIT0rccocoviiiiiiniiiinin i F-7
Browser Displays an HTTP 404 or 500 Error ..o, F-7
Browser Fails to Navigate Between Pagescccccociiiiiiiiiiiiiciice e F-8
Using My Oracle Support for Additional Troubleshooting Information F-8

Audience

Preface

Welcome to the Web User Interface Developer’s Guide for Oracle Application Development
Framework!

This document is intended for developers who need to create the view layer of a web
application using the rich functionality of ADF Faces components.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following related documents:

» Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

» Oracle Fusion Middleware Java EE Developer’s Guide for Oracle Application
Development Framework

» Oracle Fusion Middleware Desktop Integration Developer’s Guide for Oracle Application
Development Framework

» Oracle Fusion Middleware Mobile Browser Developer’s Guide for Oracle Application
Development Framework

» Oracle Fusion Middleware Administrator’s Guide for Oracle Application Development
Framework

» Oracle JDeveloper 11g Online Help

XXXi

» Oracle JDeveloper 11g Release Notes, included with your JDeveloper 11g installation,
and on Oracle Technology Network

» Oracle Fusion Middleware Java API Reference for Oracle ADF Faces
» Oracle Fusion Middleware Java API Reference for Oracle ADF Faces Client JavaScript

» Oracle Fusion Middleware Java API Reference for Oracle ADF Data Visualization
Components

» Oracle Fusion Middleware Tag Reference for Oracle ADF Faces
» Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces
» Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors

» Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Skin
Selectors

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXXii

What's New in This Guide for Release
11.1.1.7.1

For Release 11.1.1.7.1, this guide has been updated in several ways. The following table
lists the sections that have been added or changed.

Note: This version of the guide may not contain the most recent
content. To view the latest version, access the guide directly from the
library on OTN. To see what has been added to this newer version,
compare the What's New sections of each guide.

For changes made to Oracle JDeveloper and Oracle Application Development
Framework (Oracle ADF) for this release, see the New Features page on the Oracle
Technology Network at
http://www.oracle.com/technetwork/developer-tools/jdev/overview/
index.html.

Sections Changes Made

All Chapters Screenshots reflect new ADF Faces Skyros skin.
Chapter 2 Getting Started with ADF Faces

Section 2.6.3, "What You May Need to Know About Added content regarding the use of the
Component Bindings and Managed Beans" UIComponentReference APL

Chapter 5 Handling Events

Section 5.1.1, "Events and Partial Page Rendering" Information added about event root components.

Chapter 6 Validating and Converting Input

Section 6.3.4, "What You May Need to Know About Date Section added to document interpretation of

Converters"

four-digit year values when using a two-digit year
pattern with a date converter.

Chapter 8 Organizing Content on Web Pages

Section 8.5, "Arranging Content in a Grid" Section added to document using the

panelGridLayout, gridRow and gridCell
components.

Section 8.9, "Displaying and Hiding Contents Dynamically" Content added to document how to use a skinning

key to control the indentation of child components of
the showDetail component.

XXXxiii

Sections

Changes Made

Section 8.10, "Displaying or Hiding Contents in Panels"

Section revised to include the panelSpringboard and
panelDrawer components, and to document the new
values for the position attribute on the panelTabbed
component.

Section 8.10.9, "What You May Need to Know About
Skinning and the panelTabbed Component”

Section added to document how to use a skinning
key to configure how the panelTabbed component
handles overflow.

Various sections in Chapter 8

Content added to describe how to globally set how
geometry managed components handle being
stretched, using the DEFAULT_DIMENSIONS web.xml
parameter.

Chapter 9 Using Input Components and Defining Forms

Section 9.9, "Using File Upload"

Section revised to include multiple file upload
behavior of the inputFile component.

Section 9.10, "Using Code Editor"

Section added to document the codeEditor
component.

Chapter 10 Using Tables, Trees, and Other
Collection-Based Components

Chapter 10, "Using Tables, Trees, and Other
Collection-Based Components"

Chapter title changed from "Using Tables and Trees."

Section 10.1.1, "Content Delivery"

Added content that describes the new scrollPolicy
attribute that determines how tables handle
navigation. Also added content to describe how to
globally set how table components handle being
stretched, using the DEFAULT_DIMENSIONS web.xml
parameter.

Section 10.2.3, "Formatting Columns"

Added content to describe column sorting and
column spanning.

Section 10.2.4, "How to Display a Table on a Page"

Procedures added for the new colSpan,
freezeDirection, scrollPolicy,
selectionEventDelay, sortable, and sortStrength
attributes.

Content also added to describe when to use the
dimensionsFrom attribute with regards to the new
DEFAULT_DIMENSIONS web.xml parameter.

Section 10.8, "Displaying a Collection in a List"

Section added to document the 1istView and
listItem components.

Section 10.9, "Displaying Images in a Carousel”

Section moved from "Chapter 16 Using Output
Components," to this chapter.

Section 10.11, "Exporting Data from Table, Tree, or Tree
Table"

Section revised to add CSV files as an export option.

Chapter 15 Creating a Calendar Application

Section 15.3.1, "How to Configure the Calendar
Component"

Section updated to add the new
allDayActivityOrder, hourZoom, and
timeSlotsPerHour attributes.

Chapter 16 Using Output Components

Section 16.6 "Displaying Images in a Carousel”

Section moved to Chapter 10, "Using Tables, Trees,
and Other Collection-Based Components"

Chapter 18 Working with Navigation Components

XXXiV

Sections

Changes Made

Section 18.7.4, "What You May Need to Know About
Navigation Tabs in a Compressed Layout"

Section added to describe the -tr-layout-type
skinning key that allows you to render
navigationPane components on a conveyor belt
when an application window is in a compressed
layout.

Chapter 20 Customizing the Appearance Using Styles
and Skins

Section 20.1, "Introduction to Skins, Style Selectors, and
Style Properties”

Revised to describe the Skyros skin, the new default
skin for applications created using this release.

Section 20.2.5, "What You May Need to Know About Using
a Skin in an Oracle BI User Interface"

Section added to note that configuration is required
in the Oracle BI Presentation Services'
instanceconfig.xml file to map the skins provided
by ADF to the skins provided by Oracle BI
Presentation Services.

Chapter 22 Developing Accessible ADF Faces Pages

Section 22.3.3, "ADF Data Visualization Components
Accessibility Guidelines"

Revised to describe accessibility for treemaps and
sunbursts.

Chapter 23 Introduction to ADF Data Visualization
Components

Section 23.2, "Defining the ADF Data Visualization
Components"

Revised to include new timeline, treemap, and
sunburst components.

Downloading Custom Fonts for Flash Images

Obsolete section removed.

Chapter 24 Using ADF Graph Components

Section 24.1, "Introduction to the Graph Component"

Code sample updated to remove deprecated
imageFormat attribute.

Section 24.4.1, "How to Add a Graph to a Page"

Section added to document graph creation from the
Component Palette.

Section 24.4.4, "What You May Need to Know About Graph
Image Formats"

Section revised to document HTMLS5 support for
image formats.

Section 24.6.3.1, "How to Globally Set Graph Font Using a
Skin"

Procedure revised to remove references to the
blafplus-rich.desktop skin.

Section 24.6.4, "Changing Graph Size and Style"

Sections revised to recommend AFStretchwidth
when setting width attributes to 100%.

Section 24.8.6, "How to React to Changes in the Zoom and
Scroll Levels"

Procedure corrected to include correct reference for
sample bean and to add a step to configure scrolling
if not already done.

Section 24.8.8.1, "How to Define a Relative Range of Time
Data for Display”

Procedure updated to remove reference to the
dvt:timeAxis attribute which is deprecated for
graphs.

Section 24.8.8.2, "How to Define an Explicit Range of Time
Data for Display”

Procedure revised to include a managed bean
requirement for storing the start and end dates for
the range.

Section 24.8.8.3, "How to Add a Time Selector to a Graph"

Procedure added to document time selector
configuration.

Section 24.9.1, "How to Configure Graph Components to
Display Active Data"

Table added to list the graph components that
support Active Data and procedure simplified.

Chapter 25 Using ADF Gauge Components

Section 25.1, "Introduction to the Gauge Component”

Revised to include HTMLS5 support for image
formats.

XXXV

Sections

Changes Made

Section 25.3.1, "How to Add a Gauge to a Page"

Section and procedure added to document gauge
creation from the Component Palette.

Section 25.3.2.2, "Structure of the List of Tabular Data"

Code sample revised to match figure data.

Section 25.3.5, "What You May Need to Know About Gauge
Image Formats"

Revised to include Skyros skin support for HTMLS5.

Section 25.4.2, "How to Determine the Layout of Gauges in
a Gauge Set"

Procedure revised to remove -1 option for the
gaugeSetColumnCount attribute.

Section 25.4.5.1, "Formatting the Numeric Value in a Gauge
Metric or Tick Label"

Procedure revised to include tick label formatting.

Section 25.4.11, "How to Customize Indicators and Tick
Marks"

Procedures revised to account for attributes that are
already added to the gauge during creation.

Section 25.5.5.1, "Configuring Gauge Components to
Display Active Data"

Procedure simplified.

Chapter 27 Using ADF Pivot Table Components

Section 27 .4, "Displaying Large Data Sets in Pivot Tables"

Section and procedure added to document how to
add page controls in desktop and mobile application

pages.

Section 27.10, "Displaying Pivot Tables in Printable Mode"

Section added to describe pivot table and pivot filter
bar behavior when page is output in simplified
modes.

Section 27.12.1, "How to Specify Custom Images for Data
Cells"

Section and procedure revised to document how to
configure word wrapping in pivot table header cells.

Chapter 28 Using ADF Timeline Components

Chapter 28, "Using ADF Timeline Components”

Chapter added to document new Data Visualization
Tools timeline component.

Chapter 29 Using ADF Gantt Chart Components

Section 29.2, "Understanding Gantt Chart Tags and Facets"

Section revised to add new facets and details of
facets supported by Gantt chart components.

Section 29.5, "Creating an ADF Gantt Chart"

Procedure revised to document Gantt chart creation
from the Component Palette.

Section 29.5.1, "How to Add a Gantt Chart to a Page"

Procedure revised to document configuring
alternating background row shades in Gantt chart
table region.

Section 29.6.2, "Configuring Stacked Bars in Resource
Utilization Gantt Charts"

New section added to document configuring a
resource utilization Gantt chart bar to display as a
metric stacked on the previous metric.

Section 29.6.3, "Configuring a Resource Capacity Line"

New section added to document configuring a
resource metric as a horizontal line used to display
threshold or capacity levels.

Section 29.8.2, "How to Apply Read-Only Values to Gantt
Chart Features"

Revised section to define additional attributes
available to set as read-only features.

Section 29.9.1, "Configuring Page Controls in Gantt Charts"

Section and procedure added to document how to
add page controls in desktop and mobile application

pages.

Section 29.9.2, "Configuring Synchronized Scrolling
Between Gantt Charts"

Section added to document how to configure
synchronized horizontal scrolling between the chart
side of two Gantt charts.

XXXVi

Sections

Changes Made

Section 29.11, "Using Gantt Charts as a Drop Target or Drag
Source"

Procedure revised for adding drag and drop
functionality to Gantt charts.

Chapter 30 Using ADF Treemap and Sunburst
Components

Chapter 30, "Using ADF Treemap and Sunburst
Components"

Chapter added to document new Data Visualization
Tools treemap and sunburst components.

Chapter 31 Using ADF Hierarchy Viewer Components

Section 31.1.1, "Understanding the Hierarchy Viewer
Component"

Code sample revised to show new style defaults and
remove inlineStyle attributes.

Section 31.3, "Creating a Hierarchy Viewer"

Section added to document hierarchy viewer creation
from the Component Palette.

Section 31.6.4, "Configuring Hierarchy Viewer Drag and
Drop"

Section and procedure added to document support
for drag and drop.

Section 31.8.1, "How to Adjust the Size of a Hierarchy
Viewer"

Section revised to reflect new skinning style classes.

How to Configure a Hierarchy Viewer to Invoke a Context
Menu

Section removed due to incorrect and duplicate
content

Chapter 35 Using Different Output Modes

Section 35.2, "Displaying a Page for Print"

Added the popup component as a valid root for the
showPrinablePageBehavior tag.

Chapter 36 Using the Active Data Service with an
Asynchronous Backend

Chapter 36, "Using the Active Data Service with an
Asynchronous Backend"

Chapter added to document how to use the Active
Data Service

Appendix A ADF Faces Configuration

Section A.2.3.4, "Resource Debug Mode"

Fixed wording about caching.

Section A.2.3.14, "JavaScript Partitioning"

Revised section to document the
oracle.adf.view.rich.libraryPartitioning.
DISABLED context parameter.

Section A.2.3.16, "Version Number Information"

Section added to describe new web.xml parameter
that can display version numbers for ADF
components.

Section A.2.3.20, "Internet Explorer Compatibility View
Mode"

Section added to describe the new web.xml
parameter that displays an alert asking the user to
disable the Internet Explorer ccompatibility mode.

Section A.2.3.25, "Geometry Management for Layout and
Table Components"

Content added to describe how to globally set how
geometry managed components and tables handle
being stretched, using the DEFAULT DIMENSIONS
web.xml parameter.

Appendix C Keyboard Shortcuts

Section C.3.7, "Shortcut Keys for Table, Tree, and Tree Table
Components"

Section revised to include additional information
about row selection delay during keyboard
navigation in Table and Tree Table components.

Appendix D Creating Web Applications for Touch
Devices Using ADF Faces

Section D.2, "How ADF Faces Behaves in Mobile Browsers
on Touch Devices"

Added information about how tables on tablets
handle navigation.

XXXVii

Sections

Changes Made

Section D.3, "Best Practices When Using ADF Faces
Components in a Mobile Browser"

Added best practices for using tables in tablet
interfaces.

Appendix F Troubleshooting ADF Faces

Appendix F, "Troubleshooting ADF Faces"

New appendix added to document troubleshooting
the application user interface.

XXXViii

Part |

Getting Started with ADF Faces

Part I contains the following chapters:
s Chapter 1, "Introduction to ADF Faces Rich Client"
» Chapter 2, "Getting Started with ADF Faces"

1

Introduction to ADF Faces Rich Client

This chapter introduces ADF Faces rich client, providing a history, an overview of the
framework functionality, and an overview of each of the different component types
found in the library. It also introduces the ADF Faces demonstration application that
can be used in conjunction with this guide.

This chapter includes the following sections:

s Section 1.1, "Introduction to ADF Faces Rich Client"

» Section 1.2, "Architecture of ADF Faces Components"
= Section 1.3, "ADF Faces Components"

= Section 1.4, "ADF Faces Demonstration Application"

1.1 Introduction to ADF Faces Rich Client

ADF Faces rich client (known also as ADF Faces) is a set of JavaServer Faces (JSF)
components that include built-in Asynchronous JavaScript and XML (AJAX)
functionality. While AJAX brings rich client-like functionality to browser-based
applications, using JSF provides server-side control, which reduces the amount of
JavaScript code that application developers need to write in order to implement
AJAX-based applications.

In addition to providing a rich set of JSF components, the ADF Faces rich client
framework (RCF) provides a client-side programming model familiar to developers
accustomed to the JSF development model. Most of the RCF differs little from any
standard JSF application: the server programming model is still JavaServer Faces, and
the framework still uses the JavaServer Faces lifecycle, server-side component tree,
and the expression language (EL). However, the RCF also provides a client-side
programming model and lifecycle that execute independently of the server.
Developers can find and manipulate components from JavaScript, for example get and
set properties, receive and queue events, and so forth, entirely from JavaScript. The
RCF makes sure that changes to component state are automatically synchronized back
to the server to ensure consistency of state, and that events are delivered, when
necessary, to the server for further processing.

Before providing more detailed information regarding ADF Faces, it may help to have
a brief history of the ADF Faces library and Rich Internet Applications (RIAs) and
AJAX in general.

1.1.1 History of ADF Faces

In the 1990s, software vendors began to see the need for Internet applications to
appear and behave more like desktop applications, and so they developed RIA

Introduction to ADF Faces Rich Client 1-1

Introduction to ADF Faces Rich Client

frameworks on which to build these applications. However, these frameworks
required that users install proprietary plug-ins in order to utilize the functionality. As
web standards developed, and Java web applications became more prevalent, the
development community at large started to recognize the need for a standard
view-layer framework. The Java Community Process (JCP) developed JSF as a user
interface standard for Java web applications. From the formative years of JSR-127 in
2001, through the first release in 2004, and up to the current release, the JCP has
brought together resources from the community, including Oracle, to define the JSF
specification and produce a reference implementation of the specification. JSF is now
part of the Java EE standard.

With JSF being a standard for building enterprise Java view components, vendors
could now develop their own components that could run on any compliant
application server. These components could now be more sophisticated, allowing
developers to create browser-based RIAs that behaved more like thick-client
applications. To meet this need, Oracle developed a set of components called ADF
Faces that could be used on any runtime implementation of JSE. ADF Faces provided a
set of over 100 components with built-in functionality, such as data tables, hierarchical
tables, and color and date pickers, that exceeded the functionality of the standard JSF
components. To underline its commitment to the technology and the open source
community, Oracle has since donated that version of the ADF Faces component library
to the Apache Software Foundation, and it is now known as Apache MyFaces
Trinidad. This component library is currently available through the Apache Software
Foundation.

ADF Faces not only provided a standard set of complex components, pages were now
able to be partially refreshed using partial page rendering with AJAX. AJAX is a
combination of asynchronous JavaScript, dynamic HTML (DHTML), XML, and the
XmlHttpRequest communication channel, which allows requests to be made to the
server without fully rerendering the page. However, pages built solely using AJAX
require a large amount of JavaScript to be written by the developer.

The latest version of ADF Faces takes full advantage of AJAX, and it also provides a
fully-functioning framework, allowing developers to implement AJAX-based RIAs
relatively easily with a minimal amount of hand-coded JavaScript. Using ADF Faces,
you can easily build a stock trader's dashboard application that allows a stock analyst
to use drag and drop to add new stock symbols to a table view, which then gets
updated by the server model using an advanced push technology. To close new deals,
the stock trader could navigate through the process of purchasing new stocks for a
client, without having to leave the actual page. ADF Faces insulates the developer
from the need to deal with the intricacies of JavaScript and the DHTML differences
across browsers.

1.1.2 ADF Faces as Rich Client Components

ADF Faces rich client framework offers complete RIA functionality, including drag
and drop, lightweight dialogs, a navigation and menu framework, and a complete
JavaScript APL The library provides over 100 RIA components, including hierarchical
data tables, tree menus, in-page dialogs, accordion panels, dividers, and sortable
tables. ADF Faces also includes data visualization components, which are Flash- and
SVG-enabled components capable of rendering dynamic charts, graphs, gauges, and
other graphics that provide a real-time view of underlying data. Each component also
offers customizing and skinning, along with support for internationalization and
accessibility.

To achieve these capabilities, ADF Faces components use a rich JSF render kit. This kit
renders both HTML content as well as the corresponding client-side components. This

1-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Architecture of ADF Faces Components

built-in support enables you to build RIAs without needing extensive knowledge of
the individual technologies.

ADF Faces can also be used in an application that uses the Facelets library. Facelets is a
JSF-centric declarative XML view definition technology that provides an alternative to
using the JSP engine technology for the view. For more details about the architecture of
ADF Faces, see Section 1.2, "Architecture of ADF Faces Components."

Tip: You can use ADF Faces in conjunction with ADF Model data
binding, allowing you to declaratively bind ADF Faces components to
the business layer. Using ADF Model data binding, most developer
tasks that would otherwise require writing code are declarative.
However, this guide covers only using ADF Faces components in a
standard JSF application. For more information about using ADF
Faces with the ADF Model, see the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

In addition to an extensive library of RIA components, Oracle also offers Oracle
JDeveloper, a full-featured development environment with built-in declarative support
for ADF Faces components, allowing you to quickly and easily build the view layer of
your web application. JDeveloper contains a visual layout editor that displays JSF
pages in a WYSIWYG environment. The Component Palette in JDeveloper holds
visual representations of each of the ADF Faces components, which allows you to drag
and drop a component onto a page in the visual editor, instead of having to manually
add tag syntax to a page. You can use JDeveloper throughout the complete
development lifecycle, as it has integrated features for modeling, coding, debugging,
testing, tuning, and deploying. For more information about using JDeveloper, see
Chapter 2, "Getting Started with ADF Faces."

1.2 Architecture of ADF Faces Components

Unlike frameworks where most of the application logic resides on the client, with ADF
Faces application logic resides mostly on the server, executing in the JSF lifecycle. The
Java data model also remains on the server: the ADF Faces framework performs initial
rendering of its components on the server, generating HTML content that is consumed
directly by browsers. Rendering HTML on the server means that there is less
client-side rendering overhead, which is helpful for complex components.

Note: Because ADF Faces adheres to the standards of the JSF
technology, this guide is mostly concerned with content that is in
addition to, or different from, JSF standards. Therefore, it is
recommended that you have a basic understanding of how JSF works
before beginning to develop with ADF Faces. To learn more about JSE,
visit the Java web site at
http://www.oracle.com/technetwork/java/index.html.

1.2.1 Client-Side Architecture

JavaScript performance can suffer when too many objects are created. To improve
performance, the RCF minimizes the number of component objects present on the
client, and the number of attributes sent to the client. The framework also has the
JavaScript files that make up the components housed in configurable partitions,
allowing your application to load only the required JavaScript.

Introduction to ADF Faces Rich Client 1-3

http://java.sun.com
http://java.sun.com
http://java.sun.com
http://www.oracle.com/technetwork/java/index.html

Architecture of ADF Faces Components

1.2.1.1 Client-Side Components

In JSF, as in most component-based frameworks, an intrinsic property of the
component model is that components can be nested to form a hierarchy, typically
known as the component tree. This simply means that parent components keep track of
their children, making it possible to walk over the component tree to find

all descendents of any given component. While the full component tree still exists on
the server, the ADF Faces client-side component tree is sparsely populated. Client-side
components primarily exist to add behavior to the page by exposing an API contract
for both application developers as well as for the framework itself. It is this contract
that allows, among other things, toggling the enabled state of a button on the client.
Therefore, client-side components are created only for those components that are truly
needed on the client, typically those that have been explicitly configured to have client
representation.

It is also possible for JavaScript components to be present that do not correspond to
any existing server-side component. For example, some ADF Faces components have
client-side behavior that requires popup content. These components may create
AdfRichPopup JavaScript components, even though no Java RichPopup component
may exist.

The JavaScript class that you will interact with most is AdfUIComponent and its
subclasses. An instance of this class is the client-side representation of a server-side
component. Each client component has a set of properties (key/value pairs) and a list
of listeners for each supported event type. All RCF JavaScript classes are prefixed with
Adf to avoid naming conflicts with other JavaScript libraries. For example,
RichCommandButton has AdfRichCommandButton, RichDocument has AdfRichDocument,
and so on.

While the Java UIComponent object represents the state of the component, and this
object is what you interact with to register listeners and set properties, the Renderer
handles producing HTML and receiving postbacks on behalf of the component. In the
RCEF client-side JavaScript layer, client-side components have no direct interaction with
the document object model (DOM) whatsoever. All DOM interaction goes through an
intermediary called the peer. Peers interact with the DOM generated by the Java
renderer and handle updating that state and responding to user interactions.

Peers have a number of other responsibilities, including:
= DOM initialization and cleanup

= DOM event handling

s Geometry Management

= Partial page response handling

s Child visibility change handling

1.2.1.2 JavaScript Library Partitioning

A common issue with JavaScript-heavy frameworks is determining how best to
deliver a large JavaScript code base to the client. On one extreme, bundling all code
into a single JavaScript library can result in a long download time. On the other
extreme, breaking up JavaScript code into many small JavaScript libraries can result in
a large number of roundtrips. Both approaches can result in the end user waiting
unnecessarily long for the initial page to load.

To help mitigate this issue, ADF Faces aggregates its JavaScript code into partitions. A
JavaScript library partition contains code for components and/or features that are
commonly used together. By default, ADF Faces provides a partitioning that is

1-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Architecture of ADF Faces Components

intended to provide a balance between total download size and total number of
roundtrips.

One benefit of ADF Faces's library partitioning strategy is that it is configurable.
Because different applications make use of different components and features, the
default partitioning provided by ADF Faces may not be ideal for all applications. As
such, ADF Faces allows the JavaScript library partitioning to be customized on a
per-application basis. This partitioning allows application developers to tune the
JavaScript library footprint to meet the needs of their application. For more
information about configuring JavaScript partitioning, see Section A.9, "Using
JavaScript Library Partitioning."

1.2.2 ADF Faces Architectural Features

The RCF enables many architectural features that can be used throughout your
application. For example, because processing can be done on the client, small amounts
of data can be exchanged with the server without requiring the whole page to be
rendered. This is referred to as partial page rendering (PPR). Many ADF Faces
components have PPR functionality implemented natively. For example, the

ADF Faces table component comes with built-in AJAX-style functionality that lets you
scroll through the table, sort the table by clicking a column header, mark a row or
several rows for selection, and even expand specific rows in the table, all without
requiring a roundtrip to the server, and with no coding needed. For more information,
see Chapter 7, "Rerendering Partial Page Content."

The RCF also adds functionality to the standard JSF lifecycle. Examples include a
client-side value lifecycle, a subform component that allows you to create independent
submittable regions on a page without the drawbacks of using multiple forms on a
single page, and an optimized lifecycle that can limit the parts of the page submitted
for processing. For more information, see Chapter 4, "Using the JSF Lifecycle with ADF
Faces."

The RCF uses the standard JSF event framework. However, events in the RCF have
been abstracted from the standard JavaScript DOM event model. Though the events
share some of the same abstractions found in the DOM event model, they also add
functionality. Consequently, you need not listen for click events on buttons, for
example. You can instead listen for AdfActionEvent events, which may or may not
have been caused by key or mouse events. RCF events can be configured to either
deliver or not deliver the event to the server. For more information, see Chapter 5,
"Handling Events."

ADF Faces input components have built-in validation capabilities. You set one or more
validators on a component by either setting the required attribute or by using the
prebuilt ADF Faces validators. In addition, you can create your own custom validators
to suit your business needs.

ADF Faces input components also have built-in conversion capabilities, which allow
users to enter information as a string and the application can automatically convert the
string to another data type, such as a date. Conversely, data stored as something other
than a string can be converted to a string for display and updating. Many components,
such as the inputDate component, automatically provide this capability. For more
information, see Chapter 6, "Validating and Converting Input."

In addition to these architectural features, the RCF also supports the following:

= Fully featured client-side architecture: Many of the features you need to create
AJAX-type functionality in your web application are found in the client side of the
architecture. For more information, see Chapter 3, "Using ADF Faces
Architecture.”

Introduction to ADF Faces Rich Client 1-5

ADF Faces Components

= Reuse: You can create page templates, as well as page fragments and composite
components made up of multiple components, which can be used throughout
your application. For more information, see Chapter 19, "Creating and Reusing
Fragments, Page Templates, and Components.”

= Skinning: You can globally change the appearance of components. For more
information, see Chapter 20, "Customizing the Appearance Using Styles and
Skins."

= Internationalization: You can change text and other display attributes based on the
user’s locale. For more information, see Chapter 21, "Internationalizing and
Localizing Pages."

» Accessibility: You can implement accessibility support, including keyboard
shortcuts and text descriptions. For more information, see Chapter 22,
"Developing Accessible ADF Faces Pages."

= Custom component creation: You can create your own components that use the
RCEF. For more information, see Chapter 32, "Creating Custom ADF Faces
Components."

= User customizations: You can create your pages so that they allow users to change
certain display attributes for components at runtime. For more information, see
Chapter 33, "Allowing User Customization on JSF Pages."

s Drag and drop: You can allow attribute values, collection values, or complete
components to be dragged from one component to another. For more information,
see Chapter 34, "Adding Drag and Drop Functionality."

1.3 ADF Faces Components

ADF Faces components generally fall into two categories. Layout components are
those that are used to organize the contents of the page. Along with components that
act as containers to determine the layout of the page, ADF Faces layout components
also include interactive container components that can show or hide content, or that
provide sections, lists, or empty spaces. Certain layout components support geometry
management, that is, the process by which the size and location of components appear
on a page. The RCF notifies these components of browser resize activity, and they in
turn are able to resize their children. This allows certain components to stretch or
shrink, filling up any available browser space. JDeveloper provides prebuilt
quick-start layouts that declaratively add layout components to your page based on
how you want the page to look. For more information about layout components and
geometry management, see Chapter 8, "Organizing Content on Web Pages."

The remaining components are considered to be in the common category, and are
divided into the following subcategories:

= Input components: Allow users to enter data or other types of information, such as
color selection or date selection. ADF Faces also provides simple lists from which
users can choose the data to be posted, as well as a file upload component. For
more information about input components, see Chapter 9, "Using Input
Components and Defining Forms."

= Table and tree components: Display structured data in tables or expandable trees.
ADF Faces tables provide functionality such as sorting column data, filtering data,
and showing and hiding detailed content for a row. Trees have built-in
expand/collapse behavior. Tree tables combine the functionality of tables with the
data hierarchy functionality of trees. For more information, see Chapter 10, "Using
Tables, Trees, and Other Collection-Based Components."

1-6 Web User Interface Developer's Guide for Oracle Application Development Framework

ADF Faces Components

List-of-Values (LOV) components: Allow users to make selections from lists driven
by a model that contains functionality like searching for a specific value or
showing values marked as favorites. These LOV components are useful when a
field used to populate an attribute for one object might actually be contained in a
list of other objects, as with a foreign key relationship in a database. For more
information, see Chapter 11, "Using List-of-Values Components."

Query components: Allow users to query data. ADF Faces provides two query
components. The Query component can support multiple search criteria,
dynamically adding and deleting criteria, selectable search operators, match
all/any selections, seeded or saved searches, a basic or advanced mode, and
personalization of searches. The QuickQuery component is a simplified version of
the Query component that allows a search on a single item (criterion). For more
information, see Chapter 12, "Using Query Components."

Popup components: Display data in popup windows or dialogs. The dialog
framework in ADF Faces provides an infrastructure to support building pages for
a process displayed in a new popup browser window separate from the parent
page. Multiple dialogs can have a control flow of their own. For more information,
see Chapter 13, "Using Popup Dialogs, Menus, and Windows."

Explorer-type menus and toolbars: Allow you to create menu bars and toolbars.
Menus and toolbars allow users to select from a specified list of options (in the
case of a menu) or buttons (in the case of a toolbar) to cause some change to the
application. For more information, see Chapter 14, "Using Menus, Toolbars, and
Toolboxes."

Calendar component: Displays activities in day, week, month, or list view. You can
implement popup components that allow users to create, edit, or delete activities.
For more information, see Chapter 15, "Creating a Calendar Application."

Output components: Display text and graphics, and can also play video and music
clips. ADF Faces also includes a carousel output component that can display
graphics in a revolving carousel. For more information, see Chapter 16, "Using
Output Components."

Labels, tips, and messages: Display labels for other components, along with
mouseover tips and error messages. Unlike standard JSF input components, ADF
Faces components that support messages automatically display their own
messages. You can also have components display informational content, for
example contextual help. For more information, see Chapter 17, "Displaying Tips,
Messages, and Help."

Navigation components: Allow users to go from one page to the next. ADF Faces
navigation components include buttons and links, as well as the capability to
create more complex hierarchical page flows accessed through different levels of
menus. For more information, see Chapter 18, "Working with Navigation
Components."

Data visualization components: Allow users to view and analyze complex data in
real time. ADF data visualization components include graphs, gauges, pivot
tables, geographic maps, Gantt charts, and hierarchy viewers that display
hierarchical data as a set of linked nodes, for example an organization chart. For
more information, see Chapter 23, "Introduction to ADF Data Visualization
Components."

Introduction to ADF Faces Rich Client 1-7

ADF Faces Demonstration Application

1.4 ADF Faces Demonstration Application

ADF Faces includes a demonstration application that allows you both to experiment
with running samples of the components and architecture features, and view the
source code.

1.4.1 How to Download and Install the ADF Faces Demo Application

In order to view the demo application (both the code and at runtime), install
JDeveloper, and then download and open the application within JDeveloper.

You can download the ADF Faces demo application from the Oracle Technology
Network (OTN) web site. Navigate to
http://www.oracle.com/technetwork/developer-tools/adf/overview/
index-092391.html and click the link for installing the ADF Faces Rich Client
demo. The resulting page provides detailed instructions for downloading the WAR file
that contains the application, along with instructions for deploying the application to a
standalone server, or for running the application using the Integrated WebLogic Server
included with JDeveloper.

If you do not want to install the application, you can run the application directly from
OTN by clicking the ADF Faces Rich Client Components Hosted Demo link.

1.4.2 Using the ADF Faces Demo Application

The demo application contains the following:

» Tag guide: Demonstrations of ADF Faces components, validators, converters, and
miscellaneous tags, along with a property editor to see how changing attribute
values affects the component. Figure 1-1 shows the demonstration of the
selectManyCheckbox component. Each demo provides a link to the associated tag
documentation.

1-8 Web User Interface Developer's Guide for Oracle Application Development Framework

http://www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html

ADF Faces Demonstration Application

Figure 1-1 Tag Demonstration

Tag Guide | Skinning | Feature Demos | Visual Designs Commonly Confused Components Find
This iz a test case for rich selectMany components. Select a value from the rich selectMany and use either the partial or full Attributes Update il
postback command button to push the value of the selectMany control into the underlying model (a bean property). The Ko
outputText will display the submitted value. accesshey
The value attribute in the example below is bound to a List autosubmit [
Drinks 7] coffee changed [C]
[[]tea changedDesc
orange juice I} dientComponent [
O w!ne contentStyle
[milk
[fizz customizationld
beer disabled [T
[]lemenade helpTopicld
partial postback id targetlistbox
full posthack immediate [C]
The submitted value was: inlineStyle
By choosing a message type, the appropriate message will be added to the selectManyChedkbox, i label Drinks
[none .
layout wvertical
[fatal
error localvalueset
[[]warning readonly [
confirmation rendere:
firmati dered
Dinf\: rendererType orade.adf.rich.Checkbox
This demo shows the selectManyCheckbox inside of a popup. | Show SelectManyCheckbox required [C]
See also: requiredMessageDetail
editableTable shortDesc bl
showRequired [
simple [T
styleClass
submittedValue

Print Content | Show Attachment

transient -

s Skinning: Demonstrations of skinning on the various components. You can see, for
example, how changing style selectors affects how a component is displayed.
Figure 1-2 shows how setting certain style selectors affects the
inputNumberSpinbox component.

Introduction to ADF Faces Rich Client 1-9

ADF Faces Demonstration Application

Figure 1-2 Skinning Demonstration

inputNumberSpinbox Demo Accessbilty About.. Home TagDoc TagDemo Skinning Docs

box Dema

Tag Guide | Skinning | Feature Demos | Visual Designs Commonly Confused Companents %

This page demos inputhlumberSpinbox's skinning keys that are defined in the demoCompanents

skin. 2Name 19004
Style Selectors ReadOnly 1900
Select the styles that you wish to see displayed in the panel on the right.

&l i pay P a Disabled (NESHH
[F] Dema:al

aflinputMumberSpinbox {background-color:pink}

[aflinputMumberSpinbos: :access ey {oolor:agual

[aflinputMumberspinbos: :content {background-color:red}

[aflinputMumberSpinbos: :label {color:red}

[aflinputMumberSpinbos: iincrementorcon-style { background-mage:wurl(/afr fgo_dwn.png);.
[aflinputMumberSpinbos: :decrementor 4con-style £ background-mage:url(/afrfgo_dwn.png_t
[aflinputMumberspinbosx:read-only {background-color:yellow}

[aflinputMumberspinbosx:read-only: :content {backoround-color:purple}
afinputMumberSpinbox:read-only: :label {color:blug} N
[aflinputMumberSpinbox:disabled {background-color: 00C000}
affinputMumberSpinbox:disabled: :content {background-color: #00C0CO}

[aflinputMumberspinbosx:disabled: label {color: #0000C0}%

[aflinputMumberspinbos: :spinbox-cell:disabled {border-width: 3px} I}
[aflinputMumberSpinbos: :dynamic-help-icon-style {badkground-color: red}

[aflinputiumberspinbas: :dynamic-help-icon-style:hover {backaround-color: green}

[aflinoutumberspinbox: :dvnamic-helo-icon-stvie:active {backaround-color: bluet

> Icon Selectors
» Aliases

> Resource Styles

4| 1 | b

B, Print Content | Show Attachment

s Feature demos: Various pages that demonstrate different ways you can use ADF
components. For example, the File Explorer is an application with a live data
model that displays a directory structure and allows you to create, save, and move
directories and files. This application is meant to showcase the components and
features of ADF Faces in a working application, as shown in Figure 1-3. For more
information about the File Explorer application, see Section 1.4.3, "Overview of the
File Explorer Application."

1-10 Web User Interface Developer's Guide for Oracle Application Development Framework

ADF Faces Demonstration Application

Figure 1-3 File Explorer Application

Fi|e EIP'OI’EI’ Feature Demos © Or Corporation Home Page Pa e Template Source (@]
=

@ Table [F] TreeTable i List

23 My Files
3 Foldero
]

Name Size (KB) Type Date Modified Propert
B3 Folder2 [34] File1.doc 10 Document File 05/05/2012 4:02 PM Propert
3 Folder3 File 1. html 10 HTML File 09/05/2012 4:02PM Fropert
3 Folder4 File1.pdf 10 PDF File 09/05/2012 4:02 PM Propert
3 Folders Filel.ds 10 ¥LS File 09/05/2012 4:02FPM Propert
3 Folders
3 Folder7
(3 Foldera
(3 Folders

> [Folder1n

> [Folder11

» [0 Folder1z

» [Folder13

» [Folder14

> [Folder1s

% [Folder16

» £ Folder17

» [Folder1s

> [Folder1a

» (3 Folderzo

> @ Search

Copyright {c) 2008, 2011, Orade andjor its affiiates. All rights reserved. About

Other pages demonstrate the main architectural features of ADF Faces, such as
layout components, AJAX postback functionality, and drag and drop. Figure 1-4
shows the demonstration on using the AutoSubmit attribute and validation.

Introduction to ADF Faces Rich Client 1-11

ADF Faces Demonstration Application

Figure 1-4 Framework Demonstration

autoSubmit L Home: urce Templ:

Tag Guide | Skinning Visual Designs Commonly Confused Components

AutoSubmit and Validation i
AutoSubmit is very useful, but often you don't want it to trigger validation on the other components on the page. In the pastin order to avoid validation with autosubmit you had to:
e set component's immediate attribute to true. Immediate is needed so that the component's valueChangeEvent will be called before the rest of the components are validated.
¢ add a valueChangeListener and in it:
o call context.renderResponze(). The renderResponse call is needed because otherwise the lifecyde continues to the validate phase where the rest of the components will be
validated,
o set values if needed, since renderResponse is called the updateModel phase for this component will not be reached. See last demo on this page for example of setting a value.

m

Demos
1. The good news is thatin certain cases, induding autoSubmit, we support an 'optimized lifecydle’, which means not all components on the page are validated, Notice that in this demo the
required field does not get validated as you toggle the radio buttons despjte the fact that the demo does not follow the instructions mentioned in the first section of this page.
* Required Field 'Tlxgs
@) Show
@ Hide

2. Now let's try running a similar demo to the one above, except in this case the required field is in the section of the page that is being ppr updated. Notice the required field is validated,
and you cannot hide the required field. This is because any part of the page that is being ppr updated is induded in the lifecyde, and hence validated.
@) Show
() Hide
*Required Field

3. What has to be done to get the example above working? In the next demo we've followed the instructions from in the first section of the page. We've setimmediate to 'true’ and the
following code is in the valueChangeListener: setShow3({Boolean. TRUE. equals(vee. getMewvalue())); FacesContext.getCurrentinstance().renderResponse();.
@) Show
() Hide

*Required Field
submit cancel | Note that we can still create a cancel button that navigates away from the page by putting the cancel button in its own subform

AutoSubmit and Validation for LOV component

For the inputListOfalues and inputComboBoxListOfValues components, the procedures described above will not always work. Consider the following example. Say you have an
inputListOfyalues component fram which & user selects an employee name, and an inputText component whose required attribute is set to true, and that is to updated with the employee's ID
number once an employee is selected from the LOV popup. The Empno field is updated because it's a partialTarget of the LOV.

B, Print Content | Show Attachment

= Visual designs: Demonstrations of how you can use types of components in
different ways to achieve different Ul designs. Figure 1-5 shows how you can
achieve different looks for a toolbar.

1-12 Web User Interface Developer's Guide for Oracle Application Development Framework

ADF Faces Demonstration Application

Figure 1-5 Toolbar Design Demonstration

Toolbar Visual Design Demo

smmandButton, and quickQuery

-
' 8l Employee Name

Primary /Medium Theme

Toolbars (Primary/Medium) - Two row toolbox example, containing menuBar, menu, toolbar, commandToolbarButton, commandButton, and quickQuery
Objects = View ~ Formatv © AR m [Munfresze & Maximize (7 back m Refresh | back r
search (Employes Name] +
Example showing commandToolbarButtons not on a toolbar

2R | & E [T Unfreeze %Mammlze ™ back m Refresh | back m &= || i=

4

Secondary /Light Theme

Toolbars (Secondary/Light) - Two row toolbox example, containing menuBar, menu, toolbar, commandToolbarButton, commandButton, and quickQuery
rae el [Munfreeze & Maximize (% back [B bold Refresh | back |
search (Employee Name] +

Example showing commandTeolbarButtons not on a tealbar

B Z | R | & E [TI] Unfreeze %Mammlze ™ back m Refresh | back m = | i=

Cbjects + View = Format+ Empty =

Default Theme

= Styles: Demonstration of how setting inline styles and content styles affects
components. Figure 1-6 shows different styles applied to the panelBox
component.

Figure 1-6 Styles Demonstration

panelBox Demo . ing : ing Template

Tag Guide | Skinning | Feature Demos | Visual Designs | Styles | Commonly Confused Components Find

= = inli i
This page demos the effect various contentStyle and inlineStyle parameters have on this component. Tand*C represent inlineStyle and contentStyle, respectively. il

PanelBox Text Elan Fan

[ElText—=Color—» color:Aqua;

[l Text—=5ize—> font-size:large;

[ClText-->Bold—-> font-weight:bald;
[C]Text-->Decoration—» text-decoration:line-through;
[Text-->Font—» font-family:Times New Roman;

[V] Text—>Italic-> font-style:italic;

[C] Text-->Horizontal Align-> text-align:right;
[C]Text--=vertical Align—= vertical-align:super;
Background—:=Color—3 background-color:Red

[Background—=Repeat—> background repeat:repeat;
[Background—=Image—> /images/CoffeeBean.bmp
[Box—=Width--> width: 250px;

[Box—=Height--> height: 50px;

[Box—>Border Colar—> border-color:Lime;

[Box—>Barder Width—> border-width: thick;

[Box--=Border Style--> border-style:dotted;

[C] Box—>0utline Style—= outiine-style:double;

[Box—=0utiine Color—3 outline-color:Fuchsia;

[Box—>0utiine Width—> outine-width:medium;

[Box—->Padding—-> padding: 20px;

D Box-->Margin--> margin: 20px;

[Classification--List Type--> list-style-type:upper-roman;
[Classification--List Inage--> list-style-image:none;

m

-

Evd
OEOOOOEOEOOEOEEEEOEEEEEE

&, Print Content | Show Attachment

Introduction to ADF Faces Rich Client 1-13

ADF Faces Demonstration Application

s Commonly confused components: A comparison of components that provide
similar functionality. Figure 1-7 shows the differences between the various
components that display lists.

Figure 1-7 Commonly Confused Components

vy About.. Home PageSource Template Source O

ADF Faces Rich Client

-
Skin + Settings » kmarkable Link

Tag Guide | Skinning | Feature Demos | Visual Designs %

Commonly Confused Components
Demonstrations of components that are often confused.

« Secondary Windows « Choice
Compares the following components: Compares the following components:
o afidialog o afinputComboboxListOfValues
o afipopup o afiselectOneChoice
o afinotewindow o afinputlistOfValues
o afipanelwindow o Tabs
* Checkboxes Compares the following components:
Compares the following components: o afnavigationPane with hint="tabs'
o afiselectBooleanCheckbox o afipanelTabbed
o afiselectManyCheckbox % « Command Buttons

« Radio Buttons Compares the following components:
Compares the following components: o aFcommandButton
o afiselectBooleanRadio o af:commandToolbarButton
o afiselectOneRadio

1.4.3 Overview of the File Explorer Application

Because the File Explorer is a complete working application, many sections in this
guide use that application to illustrate key points, or to provide code samples. The
source for the File Explorer application can be found in the fileExplorer directory.

The File Explorer application uses the fileExplorerTemplate page template. This
template contains a number of layout components that provide the basic look and feel
for the application. For more information about layout components, see Chapter 8§,
"Organizing Content on Web Pages." For more information about using templates, see
Chapter 19, "Creating and Reusing Fragments, Page Templates, and Components."

The left-hand side of the application contains a panelAccordion component that holds
two areas: the directory structure and a search field with a results table, as shown in
Figure 1-8.

1-14 Web User Interface Developer's Guide for Oracle Application Development Framework

ADF Faces Demonstration Application

Figure 1-8 Directory Structure Panel and Search Panel

= Folders
0= My Files -
3 Foldero
£
3 Folderz
[Folder3
3 Folder4
[Folders
3 Folders -
&8 search

m

(I

» When was it modified?
> What size is it?

You can expand and collapse both these areas. The directory structure is created using
a tree component. The search area is created using input components, a command
button, and a table component. For more information about using panelAccordion
components, see Section 8.10, "Displaying or Hiding Contents in Panels." For more
information about using input components, see Chapter 9, "Using Input Components
and Defining Forms." For more information about using command buttons, see
Chapter 18, "Working with Navigation Components.” For more information about
using tables and trees, see Chapter 10, "Using Tables, Trees, and Other
Collection-Based Components."

The right-hand side of the File Explorer application uses tabbed panes to display the
contents of a directory in either a table, a tree table or a list, as shown in Figure 1-9.

Figure 1-9 Directory Contents in Tabbed Panels

B Table | [F] Tree Table 3= List

View + fj' Detach
Mame Size (KB) Type
@ File1.doc 10 Document File
File L.html 10 HTML File
File 1.pdf 10 POF File
File 1.xls 10 LS File

The table and tree table have built-in toolbars that allow you to manipulate how the
contents are displayed. In the table an list, you can drag a file or subdirectory from one
directory and drop it into another. In all tabs, you can right-click a file, and from the
context menu, you can view the properties of the file in a popup window. For more
information about using tabbed panes, see Section 8.10, "Displaying or Hiding
Contents in Panels." For more information about table and tree table toolbars, see
Section 10.7, "Displaying Table Menus, Toolbars, and Status Bars." For more
information about enabling drag and drop, see Chapter 34, "Adding Drag and Drop
Functionality." For more information about using context menus and popup windows,
see Chapter 13, "Using Popup Dialogs, Menus, and Windows."

The top of the File Explorer application contains a menu and a toolbar, as shown in
Figure 1-10.

Introduction to ADF Faces Rich Client 1-15

ADF Faces Demonstration Application

Figure 1-10 Menu and Toolbar

File v Edit v m Help
+ Faolders .
Search [E
® Table
T2 Foldel & Tree Table

3 MyFiles ® List
3 Folde Refrech
[J Folderss

Current Locatio

The menu options allow you to create and delete files and directories and change how
the contents are displayed. The Help menu opens a help system that allows users to
provide feedback in dialogs, as shown in Figure 1-11.

Figure 1-11 Help System

B~ Email Customer Foe 8B Speak with Customer Service y Rate the Site | 0 User Palls

Speak with a FileExplorer.com Customer Service Representative

We're available 24 hours a day, 7 days a week, 365 days a year.
Let us know a good time to call you, and we'll have a customer service representative contact yt

Pick a date and time for us to call you |'-53!-) (UTC-08:00) Los Angeles - Padific Ti
@ Phone number where we should call you Extension
% Alternate phone number Extension

The help system consists of a number of forms created with various input components,
including a rich text editor. For more information about menus, see Section 14.2,
"Using Menus in a Menu Bar." For more information about creating help systems, see
Section 17.5, "Displaying Help for Components." For more information about input
components, see Chapter 9, "Using Input Components and Defining Forms."

Within the toolbar of the File Explorer are controls that allow you navigate within the
directory structure, as well as controls that allow you to change the look and feel of the
application by changing its skin. Figure 1-12 shows the File Explorer application using
the simple skin.

1-16 Web User Interface Developer's Guide for Oracle Application Development Framework

ADF Faces Demonstration Application

Figure 1-12 File Explorer Application with the Simple Skin

Logo Here File Explorer

Tag Guide | [B] Oracle Caorporation Home Page DJ

File~ Editv Wiewv Helpw

-~

()2 | Select Skin | simple v Refresh| |

||

|Search

Current Location: |N0ne

= T2 Folders
= 3 My Files A
(3 Folderd E
3 Faldert
3 Folderz

[Folder3
PR Calaaud

A Tahle”@ Tree TabIeHEE List|

“Wieme v

Marne

| Size (kB)] Type Date Madifie

: @ Search

All ar part of the file name
rat typ of File?

- When was it modified?
- What size is it?

Search I

There were no files found

Fy

MNarne |Type |Size (KB)

[File Pat
A

Mo File ltem

< | 4

For more information about toolbars, see Section 14.3, "Using Toolbars." For more
information about using skins, see Chapter 20, "Customizing the Appearance Using

Styles and Skins."

1.4.4 Viewing the Source Code In JDeveloper

All the source files for the ADF Faces demo application are contained in one project
(you give this project a name when you create it during installation). The project is
divided into two directories: Application Sources and Web Content. Application
Sources contains the oracle.adfdemo.view package, which in turn contains packages
that hold managed beans that provide functionality throughout the application.

Tip: The managed beans for the component demos are in the
component package and the managed beans for the File Explorer
application are in the explorer package.

The Web Content directory contains all the web resources used by the application,
including JSPX files, JavaScript libraries, images, configuration files, and so on.

Tip: The components subdirectory contains the resources for the
component demos. The docs directory contains the tag and Javadoc
documentation. The fileExplorer directory contains the resources for
the File Explorer application.

Introduction to ADF Faces Rich Client 1-17

ADF Faces Demonstration Application

1-18 Web User Interface Developer's Guide for Oracle Application Development Framework

2

Getting Started with ADF Faces

This chapter describes how to use JDeveloper to declaratively create ADF Faces
applications.

This chapter includes the following sections:

= Section 2.1, "Developing Declaratively in JDeveloper"
» Section 2.2, "Creating an Application Workspace"

» Section 2.3, "Defining Page Flows"

= Section 2.4, "Creating a View Page"

= Section 2.5, "Creating EL Expressions"

» Section 2.6, "Creating and Using Managed Beans"

» Section 2.7, "Viewing ADF Faces Source Code and Javadoc"

2.1 Developing Declaratively in JDeveloper

Using JDeveloper 11g with ADF Faces and JSF provides a number of areas where page
and managed bean code is generated for you declaratively, including creating EL
expressions and automatic component binding. Additionally, there are a number of
areas where XML metadata is generated for you declaratively, including metadata that
controls navigation and configuration.

At a high level, the development process for an ADF Faces view project usually
involves the following:

s Creating an application workspace
= Designing page flows

= Designing and creating the pages using either JavaServer Pages (JSPs) or Facelet
pages

= Deploying the application. For more information about deployment, see the Oracle
Fusion Middleware Administrator’s Guide for Oracle Application Development
Framework. If your application uses ADF Faces with the ADF Model layer, the ADF
Controller, and ADF Business Components, see the "Deploying Fusion Web
Applications" chapter of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework.

Ongoing tasks throughout the development cycle will probably include the following:
s Creating managed beans

s Creating and using EL expressions

Getting Started with ADF Faces 2-1

Creating an Application Workspace

= Viewing ADF Faces source code and Javadoc

JDeveloper also includes debugging and testing capabilities. For more information, see
the "Testing and Debugging ADF Components" chapter of the Oracle Fusion Middleware
Fusion Developer’s Guide for Oracle Application Development Framework.

2.2 Creating an Application Workspace

The first steps in building a new application are to assign it a name and to specify the
directory where its source files will be saved. By creating an application using
application templates provided by JDeveloper, you automatically get the organization
of your workspace into projects, along with many of the configuration files and
libraries required by the type of application you are creating.

2.2.1 How to Create an Application Workspace

You create an application workspace using the Create Application wizard.

To create an application:
1. In the JDeveloper main menu, choose File > New.

The New Gallery opens, where you can select different application components to
create.

2. Inthe New Gallery, expand the General node, select Applications and then Java
EE Web Application, and click OK.

This template provides the building blocks you need to create a web application
that uses JSF for the view and Enterprise JavaBean (E]B) session beans and Java
Persistence API (JPA) entities for business services. All the files and directories for
the business layer of your application will be stored in a project that by default is
named Model. All the files and directories for your view layer will be stored in a
project that by default is named ViewController.

Note: This document covers only how to create the ADF Faces
project in an application, without regard to the business services used
or the binding to those services. For information about how to use
ADF Faces with the ADF Model layer, the ADF Controller, and ADF
Business Components, see the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework. For
more information about using ADF Faces with the ADF Model layer
and EJBs and JPA, see Oracle Fusion Middleware Java EE Developer's
Guide for Oracle Application Development Framework.

3. In the Create Java EE Web Application dialog, set a name, directory location, and
package prefix of your choice and click Next.

4. In the Name Your Project page, you can optionally change the name and location
for your web project. On the Project Technologies tab, double-click ADF Faces to
move that technology to the Selected pane. This automatically adds the necessary
libraries and metadata files to your web project. Click Next.

5. In the Configure Java Settings page, optionally change the package name, Java
source path, and output directory for your view layer. Click Next.

2-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating an Application Workspace

6. Inthe Name Your Project page, you can optionally change the name and location
for your Java project. By default, the necessary libraries and metadata files for Java
EE are already added to your data model project. Click Next.

7. Inthe Configure Java Settings page, optionally change the package name, Java
source path, and output directory for your model layer. Click Next.

8. Configure the E]B settings as needed. For help on this page, click Help or press F1.
Click Finish.

2.2.2 What Happens When You Create an Application Workspace

When you create an application workspace using the Java EE Web Application
template, JDeveloper creates a project named Model that will contain all the source files
related to the business services in your application. JDeveloper automatically adds the
libraries needed for your EJB project. For example, if you kept the default E]B settings,
JDeveloper adds the EJB 3.0 library.

JDeveloper also creates a project named ViewController that will contain all the
source files for your ADF Faces view layer. JDeveloper automatically creates the JSF
and ADF configuration files needed for the application. Additionally, JDeveloper adds
the following libraries to your view project:

= JSF12
= JSTL1.2
= JSP Runtime

The ADF Faces and other runtime libraries are added when you create a JSF page in
your project.

Once the projects are created for you, you can rename them. Figure 2-1 shows the
workspace for a new Java EE Web application.

Getting Started with ADF Faces 2-3

Creating an Application Workspace

Figure 2-1 New Workspace for an ADF Application

© Oracle JDeveloper, 11g Development Build - Application1%. jws : Model.jpr

File Edit ¥iew Application Refactor Search Mavigate Build Run ¥ersioning Tools Window Help

FoEag 90 XER Q-©O- M- hikda- - -u- A

(@8- b
=l application Mavigator 2] [Elapplication1s overview = [£jResource Palette =
Application13 ~|E | avaFiles -(@b~ ®)
B = : Java Files: - 7 K | F- = - @ 2/
Projects B & V- WML Files . : [* My Catalogs
({3 Madsl Offline Databases Sratus File Project =

~ IDE Connections
iewController Page Flows -2
BD Web Content weh Pages
[0 WEB-INF
(B8 faces-config.xml

‘Weh Services

Business Components
-7 Page Flows Binding Files

Enterprise JavaBeans 3.0

[+ Application Resources
| Data Cantrols @ 7
[Recently Opened Files

finpphcation Server - Structure E]

Terminating Inkeg

i Editing,

JDeveloper also sets configuration parameters in the configuration files based on the
options chosen when you created the application. In the web.xml file, these are
configurations needed to run a JSF application (settings specific to ADF Faces are
added when you create a JSF page with ADF Faces components). Example 2-1 shows
the web.xml file generated by JDeveloper when you create a new Java EE application.

Example 2-1 Generated web.xml File

<?xml version = '1.0' encoding = 'UTF-8'?>
<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee">
<description>Empty web.xml file for Web Application</description>
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>
</web-app>

2-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Defining Page Flows

Configurations required for specific ADF Faces features are covered in the respective
chapters of this guide. For example, any configuration needed in order to use the
Change Persistence framework is covered in Chapter 33, "Allowing User
Customization on JSF Pages." For comprehensive information about configuring an
ADF Faces application, see Appendix A, "ADF Faces Configuration."

2.3 Defining Page Flows

Once you create your application workspace, often the next step is to design the flow
of your Ul As with standard JSF applications, ADF Faces applications use navigation
cases and rules to define the page flow. These definitions are stored in the
faces-config.xml file. J]Developer provides a diagrammer through which you can
declaratively define your page flow using icons.

Figure 2-2 shows the navigation diagram created for a simple page flow that contains
two pages: a DisplayCustomer page that shows data for a specific customer, and an
EditCustomer page that allows a user to edit the customer information. There is one
navigation rule that goes from the display page to the edit page and one navigation
rule that returns to the display page from the edit page.

Figure 2-2 Navigation Diagram in JDeveloper

edit

o Ll

haclk
IDisplay Customer jspx IEditCustomer jspx

Note: If you plan on using ADF Model data binding and the ADF
Controller, then instead of using standard JSF navigation rules, you
use task flows. For more information, see the "Getting Started with
ADF Task Flows" chapter of the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

Best Practice: The ADF Controller extends the JSF default controller.
While you can technically use the JSF controller and ADF Controller in
your application, you should use only one or the other.

For more information on how navigation works in a JSF application, see the Java EE 5
tutorial at http://www.oracle.com/technetwork/java/index.html.

2.3.1 How to Define a Page Flow

You use the navigation diagrammer to declaratively create a page flow using JSP or
JSPX pages. When you use the diagrammer, JDeveloper creates the XML metadata
needed for navigation to work in your application in the faces-config.xml file.

Getting Started with ADF Faces 2-5

http://java.sun.com
http://www.oracle.com/technetwork/java/index.html

Defining Page Flows

Note: The diagrammer supports only pages created as JSP and JSPX
files. If you need to create navigation for XHTML pages, you must
code the XML manually.

To create a page flow:

1. In the Application Navigator, double-click the faces-config.xml file for your
application. By default, this is in the Web Content/WEB-INF node.

2. In the editor window, click the Diagram tab to open the navigation diagrammer.

3. If the Component Palette is not displayed, from the main menu choose View >
Component Palette. By default, the Component Palette is displayed in the upper
right-hand corner of JDeveloper.

4. In the Component Palette, use the dropdown menu to choose JSF Diagram
Objects.

The components are contained in two accordion panels: Components and
Diagram Annotations. Figure 2-3 shows the Component Palette displaying JSF
navigation components.

Figure 2-3 Component Palette in JDeveloper

i Component Palette ... =]

|JSF Diagram Ohjecks - |

&8 @
Components

=z J5F Navigation Case

J5F Page

2% wyildcard Mavigation Rule

Diagram Annaotations

D [ote

ada] Mlake Atkachment

5. Select the component you wish to use and drag it onto the diagram.

JDeveloper redraws the diagram with the newly added component.

Tip: You can also use the overview editor to create navigation rules
and navigation cases by clicking the Overview tab. Press F1 for details
on using the overview editor to create navigation.

Additionally, you can manually add elements to the
faces-config.xml file by directly editing the page in the source
editor. To view the file in the source editor, click the Source tab.

Once the navigation for your application is defined, you can create the pages and add
the components that will execute the navigation. For more information about using
navigation components on a page, see Chapter 18, "Working with Navigation
Components."

2-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a View Page

2.3.2 What Happens When You Use the Diagrammer to Create a Page Flow

When you use the diagrammer to create a page flow, JDeveloper creates the associated
XML entries in the faces-config.xml file. Example 2-2 shows the XML generated for
the navigation rules displayed in Figure 2-2.

Example 2-2 Navigation Rules in faces-config.xml

<navigation-rule>
<from-view-id>/DisplayCustomer.jspx</from-view-id>
<navigation-case>
<from-outcome>edit</from-outcome>
<to-view-id>/EditCustomer. jspx</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/EditCustomer</from-view-id>
<navigation-case>
<from-outcome>back</from-outcome>
<to-view-id>/DisplayCustomer</to-view-id>
</navigation-case>
</navigation-rule>

2.4 Creating a View Page

From the page flows you created during the planning stages, you can double-click the
page icons to create the actual JSP files. When you create a JSP for an ADF Faces
application, you can choose to create an XML-based JSP document (which uses the
extension *.jspx) rather than a *. jsp file.

Best Practice: Using an XML-based document has the following
advantages:

= It simplifies treating your page as a well-formed tree of Ul
component tags.

= It discourages you from mixing Java code and component tags.

= Itallows you to easily parse the page to create documentation or
audit reports.

If you want to use Facelets instead of JSP in your application, you can instead create
XHTML files. Facelets is a JSF-centric declarative XML view definition technology that
provides an alternative to using the JSP engine.

Best Practice: Use Facelets to take advantage of the following:

s The Facelets layer was created specifically for JSE, which results in
reduced overhead and improved performance during tag
compilation and execution.

= Facelets is considered the primary view definition technology in
JSF 2.0.

= Some future performance enhancements will only be available

with Facelets

ADF Faces provides a number of components that you can use to define the overall
layout of a page. JDeveloper contains predefined quick start layouts that use these
components to provide you with a quick and easy way to correctly build the layout.

Getting Started with ADF Faces 2-7

Creating a View Page

You can choose from one, two, or three column layouts, and then determine how you
want the columns to behave. For example, you may want one column’s width to be
locked, while another column stretches to fill available browser space. Figure 2-4
shows the quick start layouts available for a two-column layout with the second
column split between two panes. For more information about the layout components,
see Chapter 8, "Organizing Content on Web Pages."

Figure 2-4 Quick Layouts

Component Gallery,

Categories Types
One Calumn
Layouts Options
Three Colurnn
| | |) | | | | A [Apply Themes
Two Column
4 4 4 4 Left, Partial
Header {5plit
Left and

Stretched)

& 4
a8 =] 4 a ++ be stretched ko il

this conkainer.

Dimension does nok
8 vary based on
browser dimension.

Splitter with collapse

v
direction.

=0 Scrallable panel.

| Help | | (o] 4 J | Cancel |

Along with adding layout components, you can also choose to apply a theme to the
chosen quick layout. These themes add color styling to some of the components used
in the quick start layout. To see the color and where it is added, see Appendix E,
"Quick Start Layout Themes." For more information about themes, see Section 20.3.4,
"How to Apply Themes to Components."

When you know you want to use the same layout on many pages in your application,
ADF Faces allows you to create and use predefined page templates. When creating
templates, the template developer can not only determine the layout of any page that
will use the template (either by selecting a quick layout design, as shown in

Figure 2—4, or by building it manually) but can also provide static content that must
appear on all pages, as well as create placeholder attributes that can be replaced with
valid values for each individual page. For example, ADF Faces ships with the Oracle
Three-Column-Layout template. This template provides areas for specific content,
such as branding, a header, and copyright information, and also displays a static logo
and busy icon, as shown in Figure 2-5.

2-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a View Page

Figure 2-5 Oracle Three Column Layout Template

untitled 1.jspx [
Eﬁ ~ Show [Full Screen Size '] @ [None 'IDeFauIt 'INone ']E &
[header | status|

Whenever a template is changed, for example if the layout changes, any page that uses
the template will also be automatically updated. For more information about creating
and using templates, see Section 19.3, "Using Page Templates."

At the time you create a JSF page, you can also choose to create an associated backing
bean for the page. Backing beans allow you to access the components on the page
programmatically. For more information about using backing beans with JSF JSP
pages, see Section 2.4.3, "What You May Need to Know About Automatic Component
Binding."

Best Practice: Create backing beans only for pages that contain
components that must be accessed and manipulated
programmatically. Use managed beans instead if you need only to
provide additional functionality accessed through EL expressions on
component attributes (such as listeners).

You can also choose to have your page available for display in mobile devices. Once
your page files are created, you can add UI components and work with the page
source.

2.4.1 How to Create JSF JSP Pages
You create JSF JSP pages using the Create JSF Page dialog.

To create a JSF JSP page:

1. In the Application Navigator, right-click the directory where you would like the
page to be saved, and choose New. In the New Gallery, expand the Web Tier
node, select JSF and then JSF Page, and click OK.

OR

From a navigation diagram, double-click a page icon for a page that has not yet
been created.

Getting Started with ADF Faces 2-9

Creating a View Page

2. Complete the Create JSF Page dialog. For help, click Help in the dialog. For more
information about the Page Implementation option, which can be used to
automatically create a backing bean and associated bindings, see Section 2.4.3,
"What You May Need to Know About Automatic Component Binding."

2.4.2 What Happens When You Create a JSF JSP Page

When you use the Create JSF Page dialog to create a JSF page, JDeveloper creates the
physical file and adds the code necessary to import the component libraries and
display a page. The code created depends on whether or not you chose to create a

. Jspx document. Example 2-3 shows a . jspx page when it is first created by
JDeveloper.

Example 2-3 Declarative Page Source Created by JDeveloper

<?xml version='1.0"' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
<jsp:directive.page contentType="text/html;charset=UTF-8"/>
<f:view>
<af:document id="dl">
<af:form id="fl"></af:form>
</af:document>
</f:view>
</jsp:root>

If you chose to use one of the quick layouts, then JDeveloper also adds the components
necessary to display the layout. Example 2—4 shows the generated code when you
choose a two-column layout, where the first column is locked and the second column
stretches to fill up available browser space, and you also choose to apply themes.

Example 2-4 Two-Column Layout

<?xml version='1.0"' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
<jsp:directive.page contentType="text/html;charset=UTF-8"/>
<f:view>
<af:document id="dl">
<af:form id="f1">
<af:panelStretchLayout startWidth="100px" id="psll">
<f:facet name="start"/>
<f:facet name="center">
<!-- id="af_twocol_left_sidebar_stretched" -->
<af:decorativeBox theme="dark" id="db2">
<f:facet name="center">
<af:decorativeBox theme="medium" id="dbl">
<f:facet name="center"/>
</af:decorativeBox>
</f:facet>
</af:decorativeBox>
</f:facet>
</af:panelStretchLayout>
</af:form>

2-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a View Page

</af:document>
</f:view>
</jsp:root>

If you chose to automatically create a backing bean using the Page Implementation
section of the dialog, JDeveloper also creates and registers a backing bean for the page,
and binds any existing components to the bean. Example 2-5 shows the code created
for a backing bean for a page.

Example 2-5 Declarative Backing Bean Source Created by JDeveloper
package view.backing;

import oracle.adf.view.rich.component.rich.RichDocument;
import oracle.adf.view.rich.component.rich.RichForm;

public class MyFile {
private RichForm f1;
private RichDocument dl;

public void setFl(RichForm f1) {
this.fl = f1;
}

public RichForm getF1() {
return f1;

}

public void setDl (RichDocument dl) ({
this.documentl = di;
}

public RichDocument getD1() {
return dl;

}

Tip: You can access the backing bean source from the JSF page by
right-clicking the page in the editor, and choosing Go to and then
selecting the bean from the list.

Additionally, JDeveloper adds the following libraries to the view project:

s ADF Faces Runtime 11

= ADF Common Runtime

= ADF DVT Faces Runtime

s Oracle JEWT

s ADF DVT Faces Databinding Runtime

JDeveloper also adds entries to the web.xml file, as shown in Example 2-6.

Example 2-6 Code in the web.xml File After a JSF JSP Page is Created

<?xml version = '1.0' encoding = 'UTF-8'?>
<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaliocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

Getting Started with ADF Faces 2-11

Creating a View Page

version="2.5" xmlns="http://java.sun.com/xml/ns/javaee">
<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>client</param-value>
</context-param>
<context-param>
<param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
<param-value>false</param-value>
</context-param>
<context-param>
<param-name>oracle.adf.view.rich.versionString.HIDDEN</param-name>
<param-value>false</param-value>
</context-param>
<filter>
<filter-name>trinidad</filter-name>
<filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>trinidad</filter-name>
<servlet-name>Faces Servlet</servlet-name>
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatcher>
</filter-mapping>
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet>
<servlet-name>resources</servlet-name>
<servlet-class>
org.apache.myfaces.trinidad.webapp.ResourceServlet
</servlet-class>
</servlet>
<servlet>
<servlet-name>BIGRAPHSERVLET</servlet-name>
<servlet-class>
oracle.adfinternal.view.faces.bi.renderkit.graph.GraphServlet
</servlet-class>
</servlet>
<servlet>
<servlet-name>BIGAUGESERVLET</servlet-name>
<servlet-class>
oracle.adfinternal.view.faces.bi.renderkit.gauge.GaugeServlet
</servlet-class>
</servlet>
<servlet>
<servlet-name>MapProxyServlet</servlet-name>
<servlet-class>
oracle.adfinternal.view.faces.bi.renderkit.geoMap.servlet.MapProxyServlet
</servlet-class>
</servlet>
<servlet>
<servlet-name>GatewayServlet</servlet-name>
<servlet-class>
oracle.adfinternal.view.faces.bi.renderkit.graph.FlashBridgeServlet
</servlet-class>
</servlet>
<gservlet-mapping>
<servlet-name>Faces Servlet</servlet-name>

2-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a View Page

<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

<gservlet-mapping>
<servlet-name>resources</servlet-name>
<url-pattern>/adf/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>resources</servlet-name>
<url-pattern>/afr/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>BIGRAPHSERVLET</servlet-name>
<url-pattern>/servlet/GraphServlet/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>BIGAUGESERVLET</servlet-name>
<url-pattern>/servlet/GaugeServlet/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>MapProxyServlet</servlet-name>
<url-pattern>/mapproxy/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>resources</servlet-name>
<url-pattern>/bi/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>GatewayServlet</servlet-name>
<url-pattern>/flashbridge/*</url-pattern>

</servlet-mapping>

</web-app>

In the faces-config.xml file, when you create a JSF JSP page, JDeveloper creates an
entry that defines the default render kit (used to display the components in an HTML
client) for ADF Faces, as shown in Example 2-7.

Example 2-7 Generated faces-config.xml File

<?xml version="1.0" encoding="UTF-8"?>
<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">
<application>
<default-render-kit-id>oracle.adf.rich</default-render-kit-id>
</application>
</faces-config>

An entry in the trinidad-config.xml file defines the default skin used by the user
interface (UI) components in the application, as shown in Example 2-8.

Example 2-8 Generated trinidad-config.xml File

<?xml version="1.0" encoding="UTF-8"?>

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
<gskin-family>skyros</skin-family>
<skin-version>vl</skin-version>

</trinidad-config>

When the page is first displayed in JDeveloper, it is displayed in the visual editor
(accessed by clicking the Design tab), which allows you to view the page in a
WYSIWYG environment. You can also view the source for the page in the source editor

Getting Started with ADF Faces 2-13

Creating a View Page

by clicking the Source tab. The Structure window located in the lower left-hand corner
of JDeveloper, provides a hierarchical view of the page.

2.4.3 What You May Need to Know About Automatic Component Binding

Backing beans are managed beans that contain logic and properties for Ul components
on a JSF page (for more information about managed beans, see Section 2.6, "Creating
and Using Managed Beans"). If when you create your JSF JSP page you choose to
automatically expose Ul components by selecting one of the choices in the Page
Implementation option of the Create JSF Page dialog, JDeveloper automatically creates
a backing bean (or uses a managed bean of your choice) for the page. For each
component you add to the page, JDeveloper then inserts a bean property for that
component, and uses the binding attribute to bind component instances to those
properties, allowing the bean to accept and return component instances.

Specifically, JDeveloper does the following when you use automatic component

binding;:

s Creates a JavaBean using the same name as the JSP or JSPX file, and places it in the
view.backing package (if you elect to have JDeveloper create a backing bean).

s Creates a managed bean entry in the faces-config.xml file for the backing bean.
By default, the managed bean name is backing_<page_name> and the bean uses
the request scope (for more information about scopes, see Section 4.6, "Object
Scope Lifecycles").

Note: JDeveloper does not create managed bean property entries in
the faces-config.xmnl file. If you wish the bean to be instantiated with
certain property values, you must perform this configuration in the
faces-config.xml file manually. For more information, see

Section A.3.1, "How to Configure for ADF Faces in faces-config.xml."

= On the newly created or selected bean, adds a property and accessor methods for
each component tag you place on the JSP. JDeveloper binds the component tag to
that property using an EL expression as the value for its binding attribute.

» Deletes properties and methods for any components deleted from the page.

Once the JSP is created and components added, you can then declaratively add
method binding expressions to components that use them by double-clicking the
component in the visual editor, which launches an editor that allows you to select the
managed bean and method to which you want to bind the attribute. When automatic
component binding is used on a JSP and you double-click the component, skeleton
methods to which the component may be bound are automatically created for you in
the page’s backing bean. For example, if you add a command button component and
then double-click it in the visual editor, the Bind Action Property dialog displays the
page’s backing bean along with a new skeleton action method, as shown in Figure 2-6.

2-14 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a View Page

Figure 2—-6 Bind Action Property Dialog

Bind Action Property E|
Managed Bean: | backing_unkitled3 | | Hew.. |
Method; |n:|:|1_a|:ti|:|n |"|

|H;Ip| | Ik | | Cancel |

You can select from one these methods, or if you enter a new method name,
JDeveloper automatically creates the new skeleton method in the page's backing bean.
You must then add the logic to the method.

Note: When automatic component binding is not used on a JSP, you
must select an existing managed bean or create a new backing bean to
create the binding.

For example, suppose you created a JSP with the file name myfile. jspx. If you chose
to let JDeveloper automatically create a default backing bean, then JDeveloper creates
the backing bean as view.backing.MyFile.java, and places it in the \src directory of
the ViewController project. The backing bean is configured as a managed bean in the
faces-config.zxml file, and the default managed bean name is backing myfile.

Example 2-9 shows the code on a JSP that uses automatic component binding, and
contains form, inputText, and commandButton components.

Example 2-9 JSF Page Code with Automatic Component Binding

<f:view>
<af:document id="dl" binding="#{backing myfile.dl}">
<af:form id="f1" binding="#{backing_myfile.fl}">
<af:inputText label="Label 1" binding="#{backing MyFile.inputTextl}"
id="inputTextl"/>
<af:commandButton text="commandButton 1"
binding="#{backing MyFile.cbl}"
id="cbl"/>
</af:form>
</af:document>
</f:view>

Example 2-10 shows the corresponding code on the backing bean.

Example 2-10 Backing Bean Code Using Automatic Component Binding

package view.backing;

import oracle.adf.view.rich.component.rich.RichDocument;

import oracle.adf.view.rich.component.rich.RichForm;

import oracle.adf.view.rich.component.rich.input.RichInputText;
import oracle.adf.view.rich.component.rich.nav.RichCommandButton;

public class MyFile {
private RichForm f1;
private RichDocument di;
private RichInputText inputTextl;

Getting Started with ADF Faces 2-15

Creating a View Page

private RichCommandButton cbl;

public void setForml (RichForm f1) {
this.forml = f1;

public RichForm getF1() ({
return f1;

public void setDl (RichDocument dl) {
this.dl = di;

public RichDocument getD1() {
return dl;

public void setItl(RichInputText inputTextl) {
this.inputTextl = inputTextl;

public RichInputText getInputTextl() {
return inputTextl;

public void setCbl (RichCommandButton cbl) {
this.commandButtonl = commandButtonl;

public RichCommandButton getCbl () {
return cbl;

public String cbl_action() {
// Add event code here...
return null;

}

Example 2-11 shows the code added to the faces-config.xml file to register the
page’s backing bean as a managed bean.

Example 2-11 Registration for a Backing Bean

<managed-bean>
<managed-bean-name>backing MyFile</managed-bean-name>
<managed-bean-class>view.backing.MyFile</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>

In addition, when you edit a Java file that is a backing bean for a JSP, a method binding
toolbar appears in the source editor for you to bind appropriate methods quickly and
easily to selected components in the page. When you select an event, JDeveloper
creates the skeleton method for the event, as shown in Figure 2-7.

2-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a View Page

Figure 2-7 You Can Declaratively Create Skeleton Methods in the Source Editor

@MyFﬂe.java E] [a,Reso
—

(- PR AL @it EEE MR (e = componentsi [cbi | Eventsi [none = -
LS. uL = Ul Mone
I3 attributeChangeListener
actionListener
= public RichDocument getDli) { returnlListener
return di;
3 launchListener
= public woid setItl(RichInputText itl) {

this.itl = itl;
+

= public RichInputText getItli) |
return itl:

}
= public wvoid setChl (RichCommandButton chl) {
this.chl = chl;
}

= public RichCommandButton getChli() {
return chl:

b
= public String chl_action() {
4 Add ewvent code here...
return null;

Once you create a page, you can turn automatic component binding off or on, and you
can also change the backing bean to a different Java class. Open the JSP in the visual
Editor and from the JDeveloper menu, choose Design > Page Properties. Here you can
select or deselect the Auto Bind option, and change the managed bean class. Click
Help for more information about using the dialog.

Note: If you turn automatic binding off, nothing changes in the
binding attributes of existing bound components in the page. If you
turn automatic binding on, all existing bound components and any
new components that you insert are bound to the selected managed
bean. If automatic binding is on and you change the managed bean
selection, all existing bindings and new bindings are switched to the
new bean.

You can always access the backing bean for a JSP from the page editor by right-clicking
the page, choosing Go to, and then choosing the bean from the list of beans associated
with the JSP.

2.4.4 How to Create a Facelets XHTML Page
You use the Create Facelets Page dialog to create the XHTML file.

To create an XHTML page:

1. In the Application Navigator, right-click the directory where you would like the
page to be saved, and choose New. In the New Gallery, expand the Web Tier
node, select Facelets and then Facelets Page and click OK.

Tip: Click the All Technologies tab in the New Gallery if Facelets is
not a listed technology.

Getting Started with ADF Faces 2-17

Creating a View Page

2. Complete the Create Facelets Page dialog. For help, click Help in the dialog.

2.4.5 What Happens When You Create a JSF XHTML Page

When you use the Create Facelets Page dialog to create an XHTML page, JDeveloper
creates the physical file and adds the code necessary to import the component libraries
and display a page. Example 2-3 shows an .xthml page when it is first created by
JDeveloper.

Example 2-12 Declarative Page Source Created by JDeveloper

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EE"
"http://www.w3.org/TR/xhtml1/DTD/xhtall-transitional.dtd">
<f:view xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
<af:document>
<af:form/>
</af:document>
</f:view>

Additionally, JDeveloper adds the following libraries to the view project:
= Facelets Runtime

s ADF Faces Runtime 11

s ADF Common Runtime

s ADF DVT Faces Runtime

s Oracle JEWT

s ADF DVT Faces Databinding Runtime

JDeveloper also adds entries to the web.xml file, as shown in Example 2-13.

Example 2-13 Code in the web.xml File After a JSF XHTML Page is Created

<?xml version = '1.0' encoding = 'UTF-8'?>
<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaliocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5" xmlns="http://java.sun.com/xml/ns/javaee">
<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>client</param-value>
</context-param>
<context-param>
<param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
<param-value>false</param-value>
</context-param>
<context-param>
<param-name>oracle.adf.view.rich.versionString.HIDDEN</param-name>
<param-value>false</param-value>
</context-param>
<context-param>
<param-name>org.apache.myfaces.trinidad.FACELETS_VIEW_MAPPINGS</param-name>
<param-value>*.xhtml</param-value>
</context-param>
<context-param>

2-18 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a View Page

<param-name>facelets.SKIP_XML_INSTRUCTIONS</param-name>
<param-value>true</param-value>
</context-param>
<context-param>
<param-name>org.apache.myfaces.trinidad.ALTERNATE_VIEW_HANDLER</param-name>
<param-value>
org.apache.myfaces.trinidadinternal.facelets.TrinidadFaceletViewHandler
</param-value>
</context-param>
<context-param>
<param-name>facelets.DEVELOPMENT</param-name>
<param-value>true</param-value>
</context-param>
<context-param>
<param-name>facelets.SKIP_COMMENTS</param-name>
<param-value>true</param-value>
</context-param>
<context-param>
<param-name>facelets.DECORATORS</param-name>
<param-value>
oracle.adfinternal.view. faces.facelets.rich.AdfTagDecorator
</param-value>
</context-param>
<context-param>
<param-name>facelets.RESOURCE_RESOLVER</param-name>
<param-value>
oracle.adfinternal.view. faces.facelets.rich.AdfFaceletsResourceResolver
</param-value>
</context-param>
<filter>
<filter-name>trinidad</filter-name>
<filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>trinidad</filter-name>
<servlet-name>Faces Servlet</servlet-name>
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatcher>
</filter-mapping>
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet>
<servlet-name>resources</servlet-name>
<servlet-class>
org.apache.myfaces.trinidad.webapp.ResourceServlet
</servlet-class>
</servlet>
<servlet>
<servlet-name>BIGRAPHSERVLET</servlet-name>
<servlet-class>
oracle.adfinternal.view.faces.bi.renderkit.graph.GraphServlet
</servlet-class>
</servlet>
<servlet>
<servlet-name>BIGAUGESERVLET</servlet-name>
<servlet-class>
oracle.adfinternal.view.faces.bi.renderkit.gauge.GaugeServlet

Getting Started with ADF Faces 2-19

Creating a View Page

</servlet-class>

</servlet>

<servlet>
<servlet-name>MapProxyServlet</servlet-name>
<servlet-class>

oracle.adfinternal.view.faces.bi.renderkit.geoMap.servlet.MapProxyServlet

</servlet-class>

</servlet>

<servlet>
<servlet-name>GatewayServlet</servlet-name>
<servlet-class>

oracle.adfinternal.view.faces.bi.renderkit.graph.FlashBridgeServlet

</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>resources</servlet-name>
<url-pattern>/adf/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>resources</servlet-name>
<url-pattern>/afr/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>BIGRAPHSERVLET</servlet-name>
<url-pattern>/servlet/GraphServlet/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>BIGAUGESERVLET</servlet-name>
<url-pattern>/servlet/GaugeServlet/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>MapProxyServlet</servlet-name>
<url-pattern>/mapproxy/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>resources</servlet-name>
<url-pattern>/bi/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>GatewayServlet</servlet-name>
<url-pattern>/flashbridge/*</url-pattern>

</servlet-mapping>

</web-app>

An entry is also created in the faces-config.xml file for the view handler, as shown in
Example 2-14.

Example 2-14 Generated faces-config.xml File for an XHTML Page

<?xml version="1.0" encoding="UTF-8"?>
<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">
<application>
<default-render-kit-id>oracle.adf.rich</default-render-kit-id>
</application>
</faces-config>

2-20 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a View Page

An entry in the trinidad-config.xml file defines the default skin used by the user
interface (UI) components in the application, as shown in Example 2-15.

Example 2-15 Generated trinidad-config.xml File

<?xml version="1.0" encoding="UTF-8"?>

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
<skin-family>skyros</skin-family>
<gkin-version>vl</skin-version>

</trinidad-config>

When the page is first displayed in JDeveloper, it is displayed in the visual editor
(accessed by clicking the Design tab), which allows you to view the page in a
WYSIWYG environment. You can also view the source for the page in the source editor
by clicking the Source tab. The Structure window located in the lower left-hand corner
of JDeveloper, provides a hierarchical view of the page.

2.4.6 How to Add ADF Faces Components to JSF Pages

Once you have created a page, you can use the Component Palette to drag and drop
components onto the page. JDeveloper then declaratively adds the necessary page
code and sets certain values for component attributes.

Tip: For detailed procedures and information about adding and
using specific ADF Faces components, see Part III, "Using ADF Faces
Components".

Note: You cannot use ADF Faces components on the same page as
MyPFaces Trinidad components (tr: tags) or other AJAX-enabled
library components. You can use Trinidad HTML tags (trh:) on the
same page as ADF Faces components, however you may experience
some browser layout issues. You should always attempt to use only
ADF Faces components to achieve your layout.

Note that your application may contain a mix of pages built using
either ADF Faces or other components.

To add ADF Faces components to a page:
1. In the Application Navigator, double click a JSF page to open it in the editor.

2. If the Component Palette is not displayed, from the menu choose View >
Component Palette. By default, the Component Palette is displayed in the upper
right-hand corner of JDeveloper.

3. In the Component Palette, use the dropdown menu to choose ADF Faces.

The components are contained in three accordion panels: Common Components,
Layout, and Operations. Figure 2-8 shows the Component Palette displaying the
Common Components for ADF Faces.

Getting Started with ADF Faces 2-21

Creating a View Page

Figure 2-8 Component Palette in JDeveloper

ﬁ[umpunent Palette | LeResa. .. -]
|F'.DF Faces "’|

&0 ©

Carmon Components

are Bread Crumbs
(3 Button

[E] calendar

O Carousel

T Carausel Ikem
Bl choose Color
[E] choose Date
B column

@ Zontext Info
Dialog

FH Facet Ref
Farm

(3 50 Butkan

) Layouk
Operations

4. Select the component you wish to use and drag it onto the page.

JDeveloper redraws the page in the visual editor with the newly added
component. In the visual editor, you can directly select components on the page
and use the resulting context menu to add more components. Figure 2-9 shows a
page in the visual editor.

2-22 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a View Page

Figure 2-9 Page Displayed in the Visual Editor

newFiIeItem.ispH |

i - ShoW'|Fu|| Screen Size'||§”None vIDeFauIt 'INone '|E HELB I U
?2?af document | ABEL SKIP L INK_TE> @ Choose Color
[E Chaose Date
Create © outon
& Link
lN ew @ @ GoButton
. & Golink
File 5 con
h . n @ Image .
Please enter required file name field and) 15 1o color cking
the plus sign icon below to modify default InpLt Combiobox List OF Valuss
: E| Input Date
. #{. currentFileP ath
#{ }#{ } E# Tnput File
Input List Of Yalues
* Mame |New File 2 Inpuk Text
File Path #...currentFilePath} ﬁ Output Text
Cutput Formatted
pHide File Properties Select Boolean Checkbox

(®) Select Boolean Radio
Select Many Checkbox
Select Many Choice I
= ER select Many Listhosx
m m - - - Select One Chaoice
- | Design This Container EE Selact One Listhox:
(®) Select One Radio
i Spacer

Hide in Design Yiew

Tip: You can also drag and drop components from the palette into
the Structure window or directly into the code in the source editor.

You can always add components by directly editing the page in the
source editor. To view the page in the source editor, click the Source
tab at the bottom of the window.

2.4.7 What Happens When You Add Components to a Page

When you drag and drop components from the Component Palette onto a JSF page,
JDeveloper adds the corresponding code to the JSF page. This code includes the tag
necessary to render the component, as well as values for some of the component
attributes. Example 2-16 shows the code when you drop an Input Text and a Button
component from the palette.

Example 2-16 JDeveloper Declaratively Adds Tags to a JSF Page

<af:inputText label="Label 1" id="itl"/>
<af:commandButton text="commandButton 1" id="cb"/>

Note: If you chose to use automatic component binding, then
JDeveloper also adds the binding attribute with its value bound to the
corresponding property on the page’s backing bean. For more
information, see Section 2.4.3, "What You May Need to Know About
Automatic Component Binding."

When you drop a component that contains mandatory child components (for example
a table or a list), JDeveloper launches a wizard where you define the parent and also
each of the child components. Figure 2-10 shows the Table wizard used to create a
table component and the table’s child column components.

Getting Started with ADF Faces 2-23

Creating a View Page

Figure 2-10 Table Wizard in JDeveloper

Create ADE Faces Table &

Decide whether wou want ko bind vour table ko a data source now, or create it with unbound columns.
[Bind Data Mow

Element Type:
Calurnns: % 7 XK
Header Value Component
#row.coll- afoubputText

colz #{row,colz} afoutputText

col3 #{row.col3k afoutputText

cold #{row.col4l afoutputText

cols #{row.colsk af:outputText E
u
&

| Help | | QK J | Cancel |

Example 2-17 shows the code created when you use the wizard to create a table with
three columns, each of which uses an outputText component to display data.

Example 2-17 Declarative Code for a Table Component

<af:table var="row" id="tl">
<af:column sortable="false" headerText="coll" id="cl">
<af:outputText value="#{row.coll}" id="otl"/>
</af:column>
<af:column sortable="false" headerText="col2" id="c2">
<af:outputText value="#{row.col2}" id="ot2"/>
</af:column>
<af:column sortable="false" headerText="col3" id="c3">
<af:outputText value="#{row.col3}" id="ot3"/>
</af:column>
</af:table>

2.4.8 How to Set Component Attributes

Once you drop components onto a page you can use the Property Inspector (displayed
by default at the bottom right of JDeveloper) to set attribute values for each
component.

Tip: If the Property Inspector is not displayed, choose View >
Property Inspector from the main menu.

Figure 2-11 shows the Property Inspector displaying the attributes for an inputText
component.

2-24 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a View Page

Figure 2-11 JDeveloper Property Inspector

@Input Text - #{explorerBundle['file... E]

G -t) 3@
= Common
o Id: |Fi|eName | v
Rendered: |<deFauIt> (true) v| w
B Label: |#{explorerBundIe['FiIeproperties.n v | w
@ value: #{newFiIeItem.nameH B
Appearance

Style
Behavior

Advanced

The Property Inspector has sections that group similar properties together. For
example, the Property Inspector groups commonly used attributes for the inputText
component in the Common section, while properties that affect how the component
behaves are grouped together in the Behavior section. Figure 2-12 shows the Behavior

section of the Property Inspector for an inputText component.

Figure 2-12 Behavior Section of the Property Inspector

.@Input Test - #{explorerBundle['file... E]

& S B8 P3)@

=] Behavior

o Required: |true—V| ~
ReadCnly: |W| e
Disabled: |W| w
AutoSubrmit: |W| w
AutaTab: |W| w
PartialTriggers: | | w
Yalidation
MaximumLength: l:l v
Immediate: |W(halse)v| v
Corverter: |W| v
Validatar: l:l R
WalueChangeListener: l:l ~

To set component attributes:

1. Select the component, in the visual editor, in the Structure window, or by selecting

the tag directly in the source editor.

2. In the Property Inspector, expand the section that contains the attribute you wish

to set.

Tip: Some attributes are displayed in more than one section.
Entering or changing the value in one section will also change it in
any other sections. You can search for an attribute by entering the

attribute name in the search field at the top of the inspector.

3. Either enter values directly into the fields, or if the field contains a dropdown list,
use that list to select a value. You can also use the dropdown to the right of the
field, which launches a popup containing tools you can use to set the value. These
tools are either specific property editors (opened by choosing Edit) or the
Expression Builder, which you can use to create EL expressions for the value
(opened by choosing Expression Builder). For more information about using the

Getting Started with ADF Faces 2-25

Creating EL Expressions

Expression Builder, see Section 2.5, "Creating EL Expressions." This popup also
displays a description of the property, as shown in Figure 2-13.

Figure 2-13 Property Tools and Help

'@Form - Property Inspector E]
B4R /(@ $0)
DefaultCommand: l:l ~
UsesUpload: |W| A
TargetFrame: I:E' v

TargetFrame

Expression Builder...

= Property Help

the target frame for the form.
Can either specify a
uzer-defined frame name, of use
one of the following walues:

+ Advanced

+ Customization

2.4.9 What Happens When You Use the Property Inspector

When you use the Property Inspector to set or change attribute values, JDeveloper
automatically changes the page source for the attribute to match the entered value.

Tip: You can always change attribute values by directly editing the
page in the source editor. To view the page in the source editor, click
the Source tab at the bottom of the window.

2.5 Creating EL Expressions

2-26

You use EL expressions throughout an ADF Faces application to bind attributes to
object values determined at runtime. For example, #{UserList.selectedUsers} might
reference a set of selected users, #{user.name} might reference a particular user's
name, while #{user.role == 'manager'} would evaluate whether a user is a manager
or not. At runtime, a generic expression evaluator returns the List, String, and
boolean values of these respective expressions, automating access to the individual
objects and their properties without requiring code.

At runtime, the value of certain JSF Ul components (such as an inputText component
or an outputText component) is determined by its value attribute. While a component
can have static text as its value, typically the value attribute will contain an EL
expression that the runtime infrastructure evaluates to determine what data to display.
For example, an outputText component that displays the name of the currently
logged-in user might have its value attribute set to the expression #{UserInfo.name}.
Since any attribute of a component (and not just the value attribute) can be assigned a
value using an EL expression, it's easy to build dynamic, data-driven user interfaces.
For example, you could hide a component when a set of objects you need to display is
empty by using a boolean-valued expression like #{not empty
UserList.selectedUsers} in the Ul component's rendered attribute. If the list of
selected users in the object named UserList is empty, the rendered attribute evaluates
to false and the component disappears from the page.

In a typical JSF application, you would create objects like UserList as a managed bean.
The JSF runtime manages instantiating these beans on demand when any EL

Web User Interface Developer's Guide for Oracle Application Development Framework

Creating EL Expressions

expression references them for the first time. When displaying a value, the runtime
evaluates the EL expression and pulls the value from the managed bean to populate
the component with data when the page is displayed. If the user updates data in the
UI component, the JSF runtime pushes the value back into the corresponding managed
bean based on the same EL expression. For more information about creating and using
managed beans, see Section 2.6, "Creating and Using Managed Beans." For more
information about EL expressions, see the Java EE 5 tutorial at
http://www.oracle.com/technetwork/java/index.html.

2.5.1 How to Create an EL Expression

You can create EL expressions declaratively using the JDeveloper Expression Builder.
You can access the builder from the Property Inspector.

To use the Expression Builder:

1. In the Property Inspector, locate the attribute you wish to modify and use the right
most dropdown menu to choose Expression Builder.

2. Create expressions using the following features:

= Use the Variables tree to select items that you want to include in the
expression. The tree contains a hierarchical representation of the binding
objects. Each icon in the tree represents various types of binding objects that
you can use in an expression.

To narrow down the tree, you can either use the dropdown filter or enter
search criteria in the search field. The EL accessible objects exposed by ADF
Faces are located under the adfFacesContext node, which is under the JSF
Managed Beans node, as shown in Figure 2-14.

Figure 2-14 adfFacesContext Objects in the Expression Builder

-2 Expression Builder g|
Select values from variables and operators ko create an expression or directly type the expression here:
Expression: H @ ¢

‘ariables: |Comm0n | Operands:
':\.)) |and
Z-[_7) I5F Managed Beans or

- MyFile Et
D (OraBISelectionScript
(-7 OraBIStyleSheetBean E:
=R adfFaces xk e
----- @ accessibilityMode e
B[] agent not
----- @@ applicationContextManager empty
----- 3 backingBeanScopeProvider +
----- @ changeManager N
----- 3 clientvalidationDisabled *
-----) currencyCode dive
-7 datallpdateManager mod
----- & debuglutput
----- @8 decimalSeparator
-7 dislnnService
Descripkion
Help (a4 | | Cancel

Getting Started with ADF Faces 2-27

http://java.sun.com

Creating EL Expressions

Tip: For more information about these objects, see the ADF Faces
Javadoc.

Selecting an item in the tree causes it to be moved to the Expression box
within an EL expression. You can also type the expression directly in the
Expression box.

= Use the operator buttons to add logical or mathematical operators to the
expression.

Figure 2-15 shows the Expression Builder dialog being used to create an
expression that binds to the value of a label for a component to the label property
of the explorer managed bean.

Figure 2-15 The Expression Builder Dialog

& Expression Builder El

Seleck values from variables and operators to create an expression or directly bype the expression here:
Expression: H @ ¢

#{explorer.contentviewManager tableContentview. labell

Variables: |Comm0n w | Operands:
':\' 0]) [and
-] explorer or
=7 contentviewManager at

D conkentYiewTab It
[T contentisws E:
[T listTableContentyiew .

E}D tableContentyisw q

ne
-7 commandMenultem nat
@[] contentModel ety
-] contentTable "
----- @78 disclosed _
-] FileExplorerBean s
..... m icon dl\l’
.....) mod
----- [5¥3) name
----- @53 selected
-7 showDetailtem
Description
Help (o] 4 | | Cancel

2.5.2 How to Use EL Expressions Within Managed Beans

While JDeveloper creates many needed EL expressions for you, and you can use the
Expression Builder to create those not built for you, there may be times when you need
to access, set, or invoke EL expressions within a managed bean.

Example 2-18 shows how you can get a reference to an EL expression and return (or
create) the matching object.

Example 2-18 Resolving an EL Expression from a Managed Bean

public static Object resolveExpression(String expression) {
FacesContext facesContext = getFacesContext();
Application app = facesContext.getApplication();
ExpressionFactory elFactory = app.getExpressionFactory();
ELContext elContext = facesContext.getELContext();
ValueExpression valueExp =

2-28 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating and Using Managed Beans

elFactory.createValueExpression (elContext, expression,
Object.class);
return valueExp.getValue (elContext) ;

Example 2-19 shows how you can resolve a method expression.

Example 2-19 Resolving a Method Expression from a Managed Bean

public static Object resloveMethodExpression(String expression,

Class returnType,
Class[] argTypes,
Object[] argValues) {

FacesContext facesContext = getFacesContext();

Application app = facesContext.getApplication();

ExpressionFactory elFactory = app.getExpressionFactory();

ELContext elContext = facesContext.getELContext();

MethodExpression methodExpression =

elFactory.createMethodExpression (elContext, expression, returnType,
argTypes) ;
return methodExpression.invoke (elContext, argValues);

Example 2-20 shows how you can set a new object on a managed bean.

Example 2-20 Setting a New Object on a Managed Bean

public static void setObject (String expression, Object newValue) {

FacesContext facesContext = getFacesContext();

Application app = facesContext.getApplication();

ExpressionFactory elFactory = app.getExpressionFactory();

ELContext elContext = facesContext.getELContext();

ValueExpression valueExp =
elFactory.createValueExpression (elContext, expression,

Object.class);

//Check that the input newValue can be cast to the property type
//expected by the managed bean.
//Rely on Auto-Unboxing if the managed Bean expects a primitive
Class bindClass = valueExp.getType (elContext) ;
if (bindClass.isPrimitive() || bindClass.isInstance(newValue)) {
valueExp.setValue (elContext, newValue);

2.6 Creating and Using Managed Beans

Managed beans are Java classes that you register with the application using various
configuration files. When the JSF application starts up, it parses these configuration
files and the beans are made available and can be referenced in an EL expression,
allowing access to the beans’ properties and methods. Whenever a managed bean is
referenced for the first time and it does not already exist, the Managed Bean Creation
Facility instantiates the bean by calling the default constructor method on the bean. If
any properties are also declared, they are populated with the declared default values.

Often, managed beans handle events or some manipulation of data that is best
handled at the front end. For a more complete description of how managed beans are
used in a standard JSF application, see the Java EE 5 tutorial at
http://www.oracle.com/technetwork/java/index.html.

Getting Started with ADF Faces 2-29

http://java.sun.com
http://java.sun.com
http://java.sun.com

Creating and Using Managed Beans

Best Practice: Use managed beans to store only bookkeeping
information, for example the current user. All application data and
processing should be handled by logic in the business layer of the
application.

In a standard JSF application, managed beans are registered in the faces-config.xml
configuration file.

Note: If you plan on using ADF Model data binding and ADF
Controller, then instead of registering managed beans in the
faces-config.zxml file, you may need to register them within ADF
task flows. For more information, refer to the "Using a Managed Bean
in a Fusion Web Application” section of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

2.6.1 How to Create a Managed Bean in JDeveloper

You can create a managed bean and register it with the JSF application at the same
time using the overview editor for the faces-config.xml file.

To create and register a managed bean:
1. In the Application Navigator, open the faces-config.xml file.

2. In the editor window, click the Overview tab.
3. In the overview editor, click the Managed Beans tab.

Figure 2-16 shows the editor for the faces-config.xml file used by the ADF Faces
demo that contains the File Explorer application.

Figure 2-16 Managed Beans in the faces-config.xml File

[faces—conﬁg.xml L
@'
Managed Beans
Mavigation Rulss ‘@ Managed Beans T+ ¥
Validators
Converters Mame Class Scope
- validate oracle, adfdema. view.featur... session
o testPosthack oracle, adfdemo. view. featur, .. session
Referenced Beans requestPosthack oracle, adfdema, view.featur, ., request
Render Kits tableTestData oracle. adfdermo. view.table.ri... application
Life Cycle tableTotalData oracle, adfdemo. view. table.ri,.. session
- tableFooter Totallata oracle, adfdema, view, tableri,,. session
i tableFilker oracle, adfdema. view.table.ri... session
Components unknownCountData oracle, adfdema, view. tableri,.. application
-/ List Entries: tableTotalData 'ﬂ-
Yalue Class: 4,

Yalue

4. Click the Add icon to add a row to the Managed Bean table.

5. In the Create Managed Bean dialog, enter values. Click Help for more information
about using the dialog. Select the Generate Class If It Does Not Exist option if
you want JDeveloper to create the class file for you.

2-30 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating and Using Managed Beans

Note: When determining what scope to register a managed bean
with or to store a value in, keep the following in mind:

= Always try to use the narrowest scope possible.

= If your managed bean takes part in component binding by
accepting and returning component instances (that is, if UI
components on the page use the binding attribute to bind to
component properties on the bean), then the managed bean must
be stored in request or backingBean scope. If it can’t be stored in
one of those scopes (for example, if it needs to be stored in
session scope for high availability reasons), then you need to use
the ComponentReference API. For more information, see
Section 2.6.3, "What You May Need to Know About Component
Bindings and Managed Beans."

» Use the session scope only for information that is relevant to the
whole session, such as user or context information, or for
high-availability reasons. Avoid using the session scope to pass
values from one page to another.

For more information about the different object scopes, see Section 4.6,
"Object Scope Lifecycles."

6. You can optionally add managed properties for the bean. When the bean is
instantiated, any managed properties will be set with the provided value. With the
bean selected in the Managed Bean table, click the New icon to add a row to the
Managed Properties table. In the Property Inspector, enter a property name (other
fields are optional).

Note: While you can declare managed properties using this editor,
the corresponding code is not generated on the Java class. You must
add that code by creating private member fields of the appropriate
type, and then by choosing the Generate Accessors menu item on the
context menu of the code editor to generate the corresponding get
and set methods for these bean properties.

2.6.2 What Happens When You Use JDeveloper to Create a Managed Bean

When you create a managed bean and elect to generate the Java file, J]Developer
creates a stub class with the given name and a default constructor. Example 2-21
shows the code added to the MyBean class stored in the view package.

Example 2-21 Generated Code for a Managed Bean

package view;

public class MyBean {
public MyBean() {
}

}

You now must add the logic required by your page. You can then refer to that logic
using an EL expression that refers to the managed-bean-name given to the managed
bean. For example, to access the myInfo property on the my_bean managed bean, the
EL expression would be:

Getting Started with ADF Faces 2-31

Creating and Using Managed Beans

#{my_bean.myInfo}

JDeveloper also adds a managed-bean element to the faces-config.xml file.
Example 2-22 shows the managed-bean element created for the MyBean class.

Example 2-22 Managed Bean Configuration on the faces-config.xml File

<managed-bean>
<managed-bean-name>my_bean</managed-bean-name>
<managed-bean-class>view.MyBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>

2.6.3 What You May Need to Know About Component Bindings and Managed Beans

To avoid issues with managed beans, if your bean needs to use component binding
(through the binding attribute on the component), you must store the bean in request
scope. (If your application uses the Fusion technology stack, then you must store it in
backingBean scope. For more information, see the "Using a Managed Bean in a Fusion
Web Application" section in the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework.) However, there may be circumstances
where you can’t store the bean in request or backingBean scope. For example, there
may be managed beans that are stored in session scope so that they can be deployed
in a clustered environment, and therefore must implement the Serializable interface.
When they are serializable, managed beans that change during a request can be
distributed to other servers for fail-over. However, ADF Faces components (and JSF
components in general) are not serializable. So if a serialized managed bean attempts
to access a component using component binding, the bean will fail serialization
because the referenced component cannot be serialized. There are also thread safety
issues with components bound to serialized managed beans because ADF Faces
components are not thread safe.

When you need to store a component reference to a Ul component instance in a
backing bean that is not using request or backingBean scope, you should store a
reference to the component instance using the Trinidad ComponentReference APL The
UIComponentReference.newUIComponentReference () method creates a serializable
reference object that can be used to retrieve a UIComponent instance on the current
page. Example 2-23 shows how a managed bean might use the UIComponentReference
API to get and set values for a search field.

Example 2-23 Session Scoped Managed Bean Uses the UIComponentReference API

private ComponentReference<UIInput> searchField;

public void setSearchField(UIInput searchField)
{
if(this.searchField == null)
this.searchField = ComponentReference.newUIComponentReference (searchField);

}

public UIInput getSearchField()
{
return searchField ==null ? null : searchField.getComponent () ;

}

2-32 Web User Interface Developer's Guide for Oracle Application Development Framework

Viewing ADF Faces Source Code and Javadoc

Keep the following in mind when using the UIComponentReference APL

The APl is thread safe as long as it is called on the request thread.
The ADF Faces component being passed in must have an ID.

The reference will break if the component is moved between naming containers or
if the ID on any of the ancestor naming containers has changed.

For more information about the UIComponentReference API, see the Trinidad JavaDoc.

2.7 Viewing ADF Faces Source Code and Javadoc

You can view the ADF Faces Javadoc directly from JDeveloper.

To view Javadoc for a class:

1.
2.

From the main menu, choose Navigate > Go to Javadoc.

In the Go to Javadoc dialog, enter the class name you want to view. If you don’t
know the exact name, you can either begin to type the name and JDeveloper will
provide a list of classes that match the name. ADF Faces components are in the
oracle.adf.view.rich package.

Tip: When in a Java class file, you can go directly to the Javadoc for a

class name reference or for a JavaScript function call by placing your
cursor on the name or function and pressing Ctrl+D.

Getting Started with ADF Faces 2-33

Viewing ADF Faces Source Code and Javadoc

2-34 Web User Interface Developer's Guide for Oracle Application Development Framework

Part li

Understanding ADF Faces Architecture

Part II contains the following chapters:

Chapter 3, "Using ADF Faces Architecture"

Chapter 4, "Using the JSF Lifecycle with ADF Faces"
Chapter 5, "Handling Events"

Chapter 6, "Validating and Converting Input"
Chapter 7, "Rerendering Partial Page Content"

3

Using ADF Faces Architecture

This chapter outlines the major features of the ADF Faces client-side architecture.
This chapter includes the following sections:

= Section 3.1, "Introduction to Using ADF Faces Architecture”

= Section 3.2, "Listening for Client Events"

= Section 3.3, "Adding JavaScript to a Page"

= Section 3.4, "Instantiating Client-Side Components"

= Section 3.5, "Locating a Client Component on a Page"

= Section 3.6, "Determining the User’s Current Location"

» Section 3.7, "Accessing Component Properties on the Client"

= Section 3.8, "Using Bonus Attributes for Client-Side Components"

= Section 3.9, "Understanding Rendering and Visibility"

3.1 Introduction to Using ADF Faces Architecture

The ADF Faces rich client framework (RCF) provides many of the features you need to
create AJAX-type functionality in your web application, all built into the framework. A
key aspect of the RCF is the sparsely populated client-side component model. Client
components exist only when they are required, either due to having a clientListener
handler registered on them, or because the page developer needs to interact with a
component on the client side and has specifically configured the client component to
be available.

The main reason client components exist is to provide an API contract for the
framework and for developers. You can think of a client-side component as a simple
property container with support for event handling. Because client components exist
only to store state and provide an API, they have no direct interaction with the DOM
(document object model) whatsoever. All DOM interaction goes through an
intermediary called the peer. Most of the inner workings of the framework are hidden
from you. Using JDeveloper in conjunction with ADF Faces, you can use many of the
architectural features declaratively, without having to create any code.

For example, because RCF does not create client components for every server-side
component, there may be cases where you need a client version of a component
instance. Section 3.4, "Instantiating Client-Side Components," explains how to do this
declaratively. You use the Property Inspector in JDeveloper to set properties that
determine whether a component should be rendered at all, or simply be made not
visible, as described in Section 3.9, "Understanding Rendering and Visibility."

Using ADF Faces Architecture 3-1

Introduction to Using ADF Faces Architecture

Other functionality may require you to use the ADF Faces JavaScript APL For
example, Section 3.5, "Locating a Client Component on a Page," explains how to use
the API to locate a specific client-side component, and Section 3.7, "Accessing
Component Properties on the Client," documents how to access specific properties.

The following RCF features are more complex, and therefore have full chapters
devoted to them:

ADF Faces additions to the lifecycle: The ADF Faces framework extends the JSF
lifecycle, providing additional functionality, including a client-side value lifecycle.
For more information, see Chapter 4, "Using the JSF Lifecycle with ADF Faces."

Event handling: ADF Faces adheres to standard JSF event handling techniques. In
addition, the RCF provides AJAX-based rich postbacks (called partial page
rendering), as well as a client-side event model. For more information, see

Chapter 5, "Handling Events."

Conversion and validation: ADF Faces input components have built-in capabilities
to both convert and validate user entries. You can also create your own custom
converters and validators. For more information, see Chapter 6, "Validating and
Converting Input."

Partial page rendering: Partial page rendering (PPR) allows small areas of a page
to be refreshed without the need to redraw the entire page. Many ADF Faces
components have built-in PPR functionality. In addition, you can declaratively
configure PPR so that an action on one component causes a rerender of another.
For more information, see Chapter 7, "Rerendering Partial Page Content."

Geometry management: ADF Faces provides a number of layout components,
many of which support geometry management by automatically stretching their
contents to take up available space. For more information, see Chapter §,
"Organizing Content on Web Pages."

Messaging and help: The RCF provides the ability to display tooltips, messages,
and help for input components, as well as the ability to display global messages
for the application. The help framework allows you to create messages that can be
reused throughout the application.You create a help provider using a Java class, a
managed bean, an XLIFF file, or a standard properties file, or you can link to an
external HTML-based help system. For more information, see Chapter 17,
"Displaying Tips, Messages, and Help."

Hierarchical menu model: ADF Faces provides navigation components that render
items such as tabs and breadcrumbs for navigating hierarchical pages. The RCF
provides an XML-based menu model that, in conjunction with a metadata file,
contains all the information for generating the appropriate number of hierarchical
levels on each page, and the navigation items that belong to each level. For more
information, see Chapter 18, "Working with Navigation Components."

Reusable components: The RCF provides three reusable building blocks that can
be used by multiple pages in your application: page fragments that allow you to
create a part of a page (for example an address input form); page templates that
can provide a consistent look and feel throughout your application that can be
updated with changes automatically propagating to all pages using the template;
and declarative components that are composite components that developers can
reuse, ensuring consistent behavior throughout the application. For more
information, see Chapter 19, "Creating and Reusing Fragments, Page Templates,
and Components."

Applying skins: The RCF allows you to create your own look and feel by creating
skins used by the ADF Faces components to change their appearance. For more

3-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Listening for Client Events

information, see Chapter 20, "Customizing the Appearance Using Styles and
Skins."

s Internationalization and localization: You can configure your JSF page or
application to use different locales so that it displays the correct language based on
the language setting of a user’s browser. For more information, see Chapter 21,
"Internationalizing and Localizing Pages."

» Accessibility: ADF Faces components have built-in accessibility support for user
agents, for example a web browser rendering to nonvisual media such as a screen
reader or magnifier. Accessibility support also includes access keys that allow
users to access components and links using only the keyboard, and audit rules that
provide directions to create accessible images, tables, frames, forms, error
messages, and popup dialogs using accessible HTML markup. For more
information, see Chapter 22, "Developing Accessible ADF Faces Pages."

s User-driven personalization: Many ADF Faces components, such as the
panelSplitter, allow users to change the display of the component at runtime. By
default, these changes live only as long as the page request. However, you can
configure your application so that the changes can be persisted through the length
of the user’s session. For more information, see Chapter 33, "Allowing User
Customization on JSF Pages."

s Drag and drop capabilities: The RCF allows the user to move (cut and paste), copy
(copy and paste), or link (copy and paste as a link) data from one location to
another. When the drop is completed, the component accepting the drop rerenders
using partial page rendering. For more information, see Chapter 34, "Adding Drag
and Drop Functionality."

The remainder of this chapter focuses on working with the client-side framework.

3.2 Listening for Client Events

In a traditional JSF application, if you want to process events on the client, you must
listen to DOM-level events. However, these events are not delivered in a portable
manner. The ADF Faces client-side event model is similar to the JSF events model, but
implemented on the client. The client-side event model abstracts from the DOM,
providing a component-level event model and lifecycle, which executes independently
of the server. Consequently, you do not need to listen for c1ick events on buttons. You
can instead listen for AdfActionEvent events, which can be caused by key or mouse
events.

Events sent by clients are all subclasses of the AdfBaseEvent class. Each client event
has a source, which is the component that triggered the event. Events also have a type
(for example, action or dialog), used to determine which listeners are interested in
the event. You register a client listener on the component using the af:clientListener
tag.

For example, suppose you have a button that, when clicked, causes a "Hello World"
alert to be displayed. You would first register a listener with the button that will
invoke an event handler, as shown in Example 3-1.

Example 3-1 Registering a Client Listener

<af:commandButton text="Say Hello">
<af:clientListener method="sayHello" type="action"/>
</af:commandButton>

Using ADF Faces Architecture 3-3

Adding JavaScript to a Page

Tip: Because the button has a registered client listener, the
framework will automatically create a client version of the
component.

Next, implement the handler in a JavaScript function, as shown in Example 3-2.

Example 3-2 JavaScript Event Handler

function sayHello(event)

{
alert ("Hello, world!")
}

When the button is clicked, because there is a client version of the component, the
AdfAction client event is invoked. Because a clientListener tag is configured to
listen for the AdfAction event, it causes the sayHello function to execute. For more
information about client-side events, see Section 5.3, "Using JavaScript for ADF Faces
Client Events."

3.3 Adding JavaScript to a Page

You can either add inline JavaScript directly to a page or you can import JavaScript
libraries into a page. When you import libraries, you reduce the page content size, the
libraries can be shared across pages, and they can be cached by the browser. You
should import JavaScript libraries whenever possible. Use inline JavaScript only for
cases where a small, page-specific script is needed.

Performance Tip: Including JavaScript only in the pages that need it
will result in better performance because those pages that do not need
it will not have to load it, as they would if the JavaScript were
included in a template. However, if you find that most of your pages
use the same JavaScript code, you may want to consider including the
script or the tag to import the library in a template.

Note, however, that if a JavaScript code library becomes too big, you
should consider splitting it into meaningful pieces and include only
the pieces needed by the page (and not in a template). This approach
will provide improved performance, because the browser cache will
be used and the HTML content of the page will be smaller.

3.3.1 How to Use Inline JavaScript

Create and use inline JavaScript in the same way you would in any JSF application.
Once the JavaScript is on the page, use a clientListener tag to invoke it.

To use inline JavaScript:

1. Add the MyFaces Trinidad tag library to the root element of the page by adding
the code shown in bold in Example 3-3.

Example 3-3 MyFaces Trinidad Tag Library on a Page

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
xmlns:trh="http://myfaces.apache.org/trinidad/html">

3-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Adding JavaScript to a Page

2. Create the JavaScript on the page.

For example, the sayHello function shown in Example 3-2 might be included in a
JSF page as shown in Example 3-4.

Example 3—4 Inline JavaScript

<af:resource>
function sayHello()
{
alert("Hello, world!")
}

</af:resource>

Note: Do not use the f:verbatimtag in a page or template to specify
the JavaScript.

3. In the Structure window, right-click the component that will invoke the JavaScript,
and choose Insert inside component > ADF Faces > Client Listener.

4. In the Insert Client Listener dialog, in the Method field, enter the JavaScript
function name. In the Type field, select the event type that should invoke the
function.

3.3.2 How to Import JavaScript Libraries

Use the af: resource tag to access a JavaScript library from a page. This tag should
appear inside the document tag’s metaContainer facet.

To access a JavaScript library from a page:

1. Below the document tag, add the code shown in bold in Example 3-5 and replace
/mySourceDirectory with the relative path to the directory that holds the
JavaScript library.

Example 3-5 Accessing a JavaScript Library
<af:document>
<f:facet name="metaContainer">
<af:resource source="/mySourceDirectory"/>
</facet>
<af:form></af:form>
</af:document>

2. In the Structure window, right-click the component that will invoke the JavaScript,
and choose Insert inside component > ADF Faces > Client Listener.

3. In the Insert Client Listener dialog, in the Method field, enter the fully qualified
name of the function. For example, if the sayHello function was in the MyScripts
library, you would enter MyScripts.sayHello. In the Type field, select the event
type that should invoke the function.

3.3.3 What You May Need to Know About Accessing Client Event Sources

Often when your JavaScript needs to access a client, it is within the context of a listener
and must access the event’s source component. Use the getSource () method to get the

Using ADF Faces Architecture 3-5

Instantiating Client-Side Components

client component. Example 3—6 shows the sayHello function accessing the source
client component in order to display its name.

Example 3-6 Accessing a Client Event Source

function sayHello(actionEvent)
{

var component=actionEvent.getSource();

//Get the ID for the component
var id=component.getId

alert ("Hello from "+id);

}

For more information about accessing client event sources, see Section 5.3, "Using
JavaScript for ADF Faces Client Events." For more information about accessing
client-side properties, see Section 3.7, "Accessing Component Properties on the Client."
For a complete description of how client events are handled at runtime, see

Section 5.3.6, "What Happens at Runtime: How Client-Side Events Work."

3.4 Instantiating Client-Side Components

The RCF does not make any guarantees about which components will have
corresponding client-side component instances by default. You will usually interact
with client-side components by registering a clientListener handler. When a
component has a registered clientListener handler, it will automatically have
client-side representation. If you have to access another component on the client, then
explicitly configure that component to be available on the client by setting the
clientComponent attribute to true.

Performance Tip: Only set clientComponent to true if you plan on
interacting with the component programmatically on the client.

When you set the clientComponent attribute to true, the framework creates an
instance of an AdfUIComponent class for the component. This class provides the API
that you can work with on the client side and also provides basic property accessor
methods (for example, getProperty () and setProperty()), event listener registration,
and event delivery-related APIs. The framework also provides renderer-specific
subclasses (for example, AdfRichOutputText) which expose property-specific accessor
methods (for example, getText () and setText ()). These accessor methods are simply
wrappers around the AdfUIComponent class’s getProperty () and setProperty ()
methods and are provided for coding convenience.

For example, suppose you have an outputText component on the page that will get its
value (and therefore the text to display) from the sayHello function. That function
must be able to access the outputText component in order to set its value. For this to
work, there must be a client-side version of the outputText component. Example 3-7
shows the JSF page code. Note that the outputText component has an id value and the
clientComponent attribute is set to true. Also, note there is no value in the example,
because that value will be set by the JavaScript.

Example 3-7 Adding a Component

<af:commandButton text="Say Hello">
<af:clientListener method="sayHello" type="action"/>
</af:commandButton>

3-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Locating a Client Component on a Page

<af:outputText id="greeting" value="" clientComponent="true">

Because the outputText component will now have client-side representation, the
JavaScript will be able to locate and work with it.

3.5 Locating a Client Component on a Page

When you need to find a client component that is not the source of an event, you can
use the AdfUIComponent . findComponent (expr) method. This method is similar to the
JSF UIComponent . findComponent () method, which searches for and returns the
UIComponent object with an ID that matches the specified search expression. The
AdfUIComponent . findComponent (expr) method simply works on the client instead of
the server.

Example 3-8 shows the sayHello function finding the outputText component using
the component’s ID.

Example 3-8 Finding a Client Component Using findComponent()

function sayHello(actionEvent)

{

var component=actionEvent.getSource();

//Find the client component for the "greeting" af:outputText
var greetingComponent=component.findComponent ("greeting");

//Set the value for the outputText component
greetingComponent.setValue ("Hello World")

}

Instead of using the AdfUIComponent . findComponent (expr) method, you can use the
AdfPage.PAGE. findComponentByAbsoluteld(absolute expr) method when you
know the absolute identifier for the component, but you don't have a component
instance to call AdfUIComponent . findComponent (expr) on. AdfPage.PAGE is a global
object that provides a static reference to the page's context object. However, if the
component you are finding is within a naming container, then you must use
AJfUIComponent. findComponent. For more information, see Section 3.5.1, "What You
May Need to Know About Finding Components in Naming Containers."

Note: There is also a confusingly named

AdfPage.PAGE. findComponent (clientId) method, however this
function uses implementation-specific identifiers that can change
between releases and should not be used by page authors.

3.5.1 What You May Need to Know About Finding Components in Naming Containers

If the component you need to find is within a component that is a naming container
(such as pageTemplate, subform, table, and tree), then instead of using the
AdfPage.PAGE. findComponentByAbsoluteId (absolute expr) method, use the
AdfUIComponent . findComponent (expr) method. The expression can be either absolute
or relative.

Tip: You can determine whether or not a component is a naming

container by reviewing the component tag documentation. The tag
documentation states whether a component is a naming container.

Using ADF Faces Architecture 3-7

Determining the User’s Current Location

Absolute expressions use the fully qualified JSF client ID (meaning, prefixed with the
IDs of all NamingContainer components that contain the component) with a leading
NamingContainer.SEPARATOR_CHAR character, for example:

":" + (namingContainersToJumpUp * ":") + some ending portion of the
clientIdOfComponentToFind

For example, to find a table whose ID is t1 that is within a panel collection component
whose ID is pcl contained in a region whose ID is r1 on page that uses the myTemplate
template, you might use the following:

:myTemplate:rl:pcl:tl

Alternatively, if both the components (the one doing the search and the one being
searched for) share the same NamingContainer component somewhere in the
hierarchy, you can use a relative path to perform a search relative to the component
doing the search. A relative path has multiple leading NamingContainer.SEPARATOR_
CHAR characters, for example:

":" + clientIdOfComponentToFind

In the preceding example, if the component doing the searching is also in the same
region as the table, you might use the following:

: :somePanelCollection:someTable

Tip: Think of a naming container as a folder and the clientId as a
file path. In terms of folders and files, you use two sequential periods
and aslash (../) tomove up in the hierarchy to another folder. This
is the same thing that the multiple colon (:) characters do in the
findComponent () expression. A single leading colon (:) means that
the file path is absolute from the root of the file structure. If there are
multiple leading colon (:) characters at the beginning of the
expression, then the first one is ignored and the others are counted,
one set of periods and a slash (. ./) per colon (:) character.

When deciding whether to use an absolute or relative path, keep the following in
mind:

s If you know that the component you are trying to find will always be in the same
naming container, then use an absolute path.

= If you know that the component performing the search and the component you
are trying to find will always be in the same relative location, then use a relative
path.

There are no getChildren() or getFacet () functions on the client. Instead, the
AdfUIComponent.visitChildren() function is provided to visit all children
components or facets (that is all descendents). See the ADF Faces JavaScript
documentation for more information.

3.6 Determining the User’s Current Location

ADF Faces provides JavaScript APIs that return the current contextual page
information, in response to an event. The AdfPage.prototype.getViewId() function
returns the identifier for the currently displayed view. This ID is set when either a full
page render or a partial page navigation occurs. The

3-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Determining the User’s Current Location

AdfPage.prototype.getComponentsByType (componentType) function returns an array
of component instances that match the given component type.

For example, say your application contains a page with tabs, and each tab is made up
of a number of regions. Each region could contain other nested regions as well. You
can use the APIs to return a String identifier that is a combination of the viewId of the
entire page and the viewIds of the fragments displayed in each of the regions currently
rendered on the page, as shown in Example 3-9.

3.6.1 How to Determine the User’s Current Location

In order to retrieve the viewID property of the region component on the client, the
user activity monitoring feature needs to be enabled by setting a parameter in the
web.xml file. You then create JavaScript code that builds a String representation of the
viewIds that make up the current page.

To determine a context identifier:
1. Double-click the web.xml file.

2. In the source editor, set the oracle.adf.view. faces.context .ENABLE_ADF
EXECUTION_CONTEXT_PROVIDER to true.

This parameter notifies ADF Faces that the ExecutionContextProvider service
provider is enabled. This service monitors and aggregates user activity
information for the client-initiated requests.

3. Setoracle.adf.view.rich.automation.ENABLED to true.

This parameter ensures that component IDs are set for all components. For more
information, see Section A.2.3.10, "Test Automation.”

4. Create the JavaScript to build the context identifier (for more information about
adding JavaScript, see Section 3.3, "Adding JavaScript to a Page").

Example 3-9 shows JavaScript used to get the current view ID for a region.

Example 3-9 JavaScript to Retrieve viewlds
/ * %
* Returns a String identifier comprising the page viewId and viewIds
* of the fragments displayed in each of the displayed regions
*/
TestLibrary.prototype.getCurrentPageInfo = function()
{
var pageldentifier = null;
var page = AdfPage.PAGE;
if (page)
{
// get the viewId of the page
var viewId = page.getViewId();
// get all region components currently displayed on the page
var regionComponents = page.getComponentsByType ("oracle.adf.RichRegion");
var regionViewIds = new Array();
for (var index = 0; index < regionComponents.length; index++)
{
var regionComp = regionComponents|[index]);
if (regionComp)
{
regionViewIds.push (regionComp.getProperty ("viewId"));

}

Using ADF Faces Architecture 3-9

Accessing Component Properties on the Client

// construct page identifier
if (viewId != null && regionViewIds.length > 0)
contextId = viewId.concat (regionViewIds.toString());

}

return contextId;

}

3.7 Accessing Component Properties on the Client

For each built-in property on a component, convenience accessor methods are
available on the component class. For example, you can call the getvValue () method on
a client component and receive the same value that was used on the server.

Note: All client properties in ADF Faces use the getXyz function
naming convention including boolean properties. The isXyz naming
convention for boolean properties is not used.

Constants are also available for the property names on the class object. For instance,
you can use AdfRichDialog.STYLE CLASS constant instead of using "styleClass".

Note: In JavaScript, it is more efficient to refer to a constant than to
code the string, as the latter requires an object allocation on each
invocation.

When a component’s property changes, the end result should be that the component’s
DOM is updated to reflect its new state, in some cases without a roundtrip to the
server. The component's role in this process is fairly limited: it simply stores away the
new property value and then notifies the peer of the change. The peer contains the
logic for updating the DOM to reflect the new component state.

Note: Not all property changes are handled through the peer on the
client side. Some property changes are propagated back to the server
and the component is rerendered using PPR.

As noted in Section 1.2.2, "ADF Faces Architectural Features," most property values
that are set on the client result in automatic synchronization with the server (although
some complex Java objects are not sent to the client at all). There are however, two
types of properties that act differently: secured properties and disconnected properties.

Secured properties are those that cannot be set on the client at all. For example, say a
malicious client used JavaScript to set the immediate flag on a commandLink component
to true. That change would then be propagated to the server, resulting in server-side
validation being skipped, causing a possible security hole (for more information about
using the immediate property, see Section 4.2, "Using the Immediate Attribute").
Consequently, the immediate property is a secured property.

Attempts to set any other secured property from JavaScript will fail. For more
information, see Section 3.7.2, "How to Unsecure the disabled Property." Table 3-1
shows the secure properties on the client components.

3-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Accessing Component Properties on the Client

Table 3—1 Secure Client Properties
Component Secure Property
AdfRichChooseColor colorData
AdfRichComboboxListOfValue disabled
readOnly
AdfRichCommandButton disabled
readOnly
blocking
AdfRichCommandImageLink blocking
disabled
partialSubmit
AdfRichCommandLink readOnly
AdfRichDialog dialogListener
AdfRichDocument failedConnectionText
AdfRichInputColor disabled
readOnly
colorData
AdfRichInputDate disabled
readOnly
valuePassThru
AdfRichInputFile disabled
readOnly
AdfRichInputListOfValues disabled
readOnly
AdfRichInputNumberSlider disabled
readOnly
AdfRichInputNumberSplinBox disabled
readOnly
maximum
minimum
stepSize
AdfRichInputRangeSlider disabled
readOnly
AdfRichInputText disabled
readOnly
secret
AdfRichPopUp launchPopupListener

model
returnPopupListener
returnPopupDatalistener

createPopupld

Using ADF Faces Architecture 3-11

Accessing Component Properties on the Client

Table 3-1 (Cont.) Secure Client Properties

Component Secure Property

AdfRichUIQuery conjunctionReadOnly
model
queryListener

queryOperationListener

AdfRichSelectBooleanCheckbox disabled

readOnly

AdfRichSelectBooleanRadio

disabled
readOnly

AdfRichSelectManyCheckbox

disabled
readOnly

valuePassThru

AdfRichSelectManyChoice

disabled
readOnly

valuePassThru

AdfRichSelectManyListBox

disabled
readOnly

valuePassThru

AdfRichSelectManyShuttle

disabled
readOnly

valuePassThru

AdfRichSelectOneChoice

disabled
readOnly

valuePassThru

AdfRichSelectOneListBox

disabled
readOnly

valuePassThru

AdfRichSelectOneRadio

disabled
readOnly

valuePassThru

AdfRichSelectOrderShuttle

disabled
readOnly

valuePassThru

AdfRichUITable

filterModel

AdfRichTextEditor

disabled
readOnly

AdfUIChart

chartDrillDownListener

AdfUIColumn

sortProperty

3-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Accessing Component Properties on the Client

Table 3-1 (Cont.) Secure Client Properties

Component

Secure Property

AdfUICommand

actionExpression
returnlListener
launchListener

immediate

AdfUIComponentRef

componentType

AdfUIEditableValueBase

immediate
valid
required
localvalueSet
submittedvalue

requiredMessageDetail

AdfUIMessage.js for
AdfUINavigationLevel level
AdfUINavigationTree rowDisclosurelListener
startLevel
immediate
AdfUIPage rowDisclosurelListener
immediate
AdfUIPoll immediate
pollListener
AdfUIProgress immediate
AdfUISelectBoolean selected
AdfUISelectInput actionExpression
returnListener
AdfUISelectRange immediate
rangeChangeListener
AdfUIShowDetailBase immediate
disclosureListener
AdfUISingleStep selectedStep
maxStep
AdfUISubform default
AdfUITableBase rowDisclosurelistener

selectionListener
immediate
sortListener
rangeChangelListener

showAll

Using ADF Faces Architecture 3-13

Accessing Component Properties on the Client

Table 3-1 (Cont.) Secure Client Properties

Component Secure Property

AdfUITreeBase immediate
rowDisclosureListener
selectionListener
focusRowKey

focusListener

AdfUITreeTable rowsByDepth

rangeChangelListener

AdfUIValueBase converter

ADF Faces does allow you to configure the disabled property so that it can be made
unsecure. This can be useful when you need to use JavaScript to enable and disable
buttons. When you set the unsecure property to true, the disabled property (and only
the disabled property) will be made unsecure.

Disconnected properties are those that can be set on the client, but that do not propagate
back to the server. These properties have a lifecycle on the client that is independent of
the lifecycle on the server. For example, client form input components (like
AdfRichInputText) have a submittedvalue property, just as the Java
EditableValueHolder components do. However, setting this property does not
directly affect the server. In this case, standard form submission techniques handle
updating the submitted value on the server.

A property can be both disconnected and secured. In practice, such properties act like
disconnected properties on the client: they can be set on the client, but will not be sent
to the server. But they act like secured properties on the server, in that they will refuse
any client attempts to set them.

3.7.1 How to Set Property Values on the Client

The RCF provides setXYZ convenience functions that provide calls to the
AJdfUIComponent setProperty () function. The setProperty () function takes the
following arguments:

= Property name (required)

= New value (required)

3.7.2 How to Unsecure the disabled Property

You use the unsecured property to set the disabled property to be unsecure. You need
to manually add this property and the value of disabled to the code for the
component whose disabled property should be unsecure. For example, the code for a
button whose disabled property should be unsecured would be:

<af:commandButton text="commandButton 1" id="cbl" unsecure="disabled"/>

Once you set the unsecure attribute to disabled, a malicious JavaScript could change
the disabled attribute unwittingly. For example, say you have an expense approval
page, and on that page, you want certain managers to be able to only approve invoices
that are under $200. For this reason, you want the approval button to be disabled
unless the current user is allowed to approve the invoice.

3-14 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Bonus Attributes for Client-Side Components

If you did not set the unsecured attribute to disabled, the approval button would
remain disabled until a round-trip to the server occurs, where logic determines if the
current user can approve the expense. But because you want the button to display
correctly as the page loads the expense, say you set the unsecure attribute to disabled.
Now you can use JavaScript on the client to determine if the button should be
disabled. But now, any JavaScript (including malicious JavaScript that you have no
control over) can do the same thing.

To avoid this issue, you must ensure that your application still performs the same logic
as if the round-trip to the server had happened. In the expense report approval screen,
you might have JavaScript that checks that the amount is under $200, but you still
need to have the action for the approval button perform the logic on the server.
Adding the logic to the server ensures that the disabled attribute does not get changed
when it should not.

Similarly, if you allow your application to be modified at runtime, and you allow users
to potentially edit the unsecure and/or the disabled attributes, you must ensure that
your application still performs the same logic as if the round-trip to the server had
occurred.

3.7.3 What Happens at Runtime: How Client Properties Are Set on the Client

Calling the setProperty () function on the client sets the property to the new value,
and synchronously fires a PropertyChangeEvent event with the new values (as long as
the value is different). Also, setting a property may cause the component to rerender
itself.

3.8 Using Bonus Attributes for Client-Side Components

In some cases you may want to send additional information to the client beyond the
built-in properties. This can be accomplished using bonus attributes. Bonus attributes
are extra attributes that you can add to a component using the clientAttribute tag.
For performance reasons, the only bonus attributes sent to the client are those specified
by clientAttribute.

The clientAttribute tag specifies a name/value pair that is added to the server-side
component's attribute map. In addition to populating the server-side attribute map,
using the clientAttribute tag results in the bonus attribute being sent to the client,
where it can be accessed through the

AdfUIComponent.getProperty ("bonusAttributeName") method.

The RCF takes care of marshalling the attribute value to the client. The marshalling
layer supports marshalling of a range of object types, including strings, booleans,
numbers, dates, arrays, maps, and so on. For more information on marshalling, see
Section 5.4.3, "What You May Need to Know About Marshalling and Unmarshalling
Data."

Performance Tip: In order to avoid excessive marshalling overhead,
use client-side bonus attributes sparingly.

Note: The clientAttribute tag should be used only for bonus
(application-defined) attributes. If you need access to standard
component attributes on the client, instead of using the
clientAttribute tag, simply set the clientComponent attribute to
true. For more information, see Section 3.4, "Instantiating Client-Side
Components."

Using ADF Faces Architecture 3-15

Understanding Rendering and Visibility

3.8.1 How to Create Bonus Attributes

You can use the Component Palette to add a bonus attribute to a component.

To create bonus attributes:

1. In the Structure window, select the component to which you would like to add a
bonus attribute.

2. In the Component Palette, from the Operations panel, drag and drop a Client
Attribute as a child to the component.

3. In the Property Inspector, set the Name and Value attributes.

3.8.2 What You May Need to Know About Marshalling Bonus Attributes

Although client-side bonus attributes are automatically delivered from the server to
the client, the reverse is not true. That is, changing or setting a bonus attribute on the
client will have no effect on the server. Only known (nonbonus) attributes are
synchronized from the client to the server. If you want to send application-defined
data back to the server, you should create a custom event. For more information, see
Section 5.4, "Sending Custom Events from the Client to the Server."

3.9 Understanding Rendering and Visibility

All ADF Faces display components have two attributes that relate to whether or not
the component is displayed on the page for the user to see: rendered and visible.

The rendered attribute has very strict semantics. When rendered is set to false, there
is no way to show a component on the client without a roundtrip to the server. To
support dynamically hiding and showing page contents, the RCF adds the visible
attribute. When set to false, the component's markup is available on the client but the
component is not displayed. Therefore calls to the setVisible (true) or

setVisible (false) method will, respectively, show and hide the component within
the browser (as long as rendered is set to true), whether those calls happen from Java
or from JavaScript.

Performance Tip: You should set the visible attribute to false only
when you absolutely need to be able to toggle visibility without a
roundtrip to the server, for example in JavaScript. Nonvisible
components still go through the component lifecycle, including
validation.

If you do not need to toggle visibility only on the client, then you
should instead set the rendered attribute to false. Making a
component not rendered (instead of not visible) will improve server
performance and client response time because the component will not
have client-side representation, and will not go through the
component lifecycle.

Example 3-10 shows two outputText components, only one of which is rendered at a
time. The first outputText component is rendered when no value has been entered
into the inputText component. The second outputText component is rendered when a
value is entered.

Example 3-10 Rendered and Not Rendered Components

<af:panelGroupLayout layout="horizontal">
<af:inputText label="Input some text" id="input"

3-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Understanding Rendering and Visibility

value="#{myBean. inputValue}"/>
<af:commandButton text="Enter"/>
</af:panelGroupLayout>
<af:panelGroupLayout layout="horizontal">
<af:outputLabel value="You entered:"/>
<af:outputText value="No text entered" id="outputl"
rendered="#{myBean.inputValue==null}"/>
<af:outputText value="#{myBean.inputValue}"
rendered="#{myBean.inputValue !=null}"/>
</af:panelGroupLayout>

Provided a component is rendered in the client, you can either display or hide the
component on the page using the visible property.

Example 3-11 shows how you might achieve the same functionality as shown in
Example 3-10, but in this example, the visible attribute is used to determine which
component is displayed (the rendered attribute is true by default, it does not need to
be explicitly set).

Example 3-11 Visible and Not Visible Components

<af:panelGroupLayout layout="horizontal">
<af:inputText label="Input some text" id="input"
value="#{myBean. inputValue}"/>
<af:commandButton text="Enter"/>
</af:panelGroupLayout>
<af:panelGroupLayout layout="horizontal">
<af:outputLabel value="You entered:"/>
<af:outputText value="No text entered" id="outputl"
visible="#{myBean.inputValue==null}"/>
<af:outputText value="#{myBean.inputValue}"
visible="#{myBean.inputvalue !=null}"/>
</af:panelGroupLayout>

However, because using the rendered attribute instead of the visible attribute
improves performance on the server side, you may instead decide to have JavaScript
handle the visibility.

Example 3-12 shows the page code for JavaScript that handles the visiblity of the
components.

Example 3-12 Using JavaScript to Turn On Visibility

function showText ()

{
var outputl = AdfUIComponent.findComponent ("outputl")
var output2 = AdfUIComponent.findComponent ("output2")
var input = AdfUIComponent.findComponent ("input")

if (input.getValue() == "")
{

outputl.setVisible(true);
}

else

{
output?2.setVisible(true)

Using ADF Faces Architecture 3-17

Understanding Rendering and Visibility

3.9.1 How to Set Visibility Using JavaScript

You can create a conditional JavaScript function that can toggle the visible attribute
of components.

To set visibility:
1. Create the JavaScript that can toggle the visibility. Example 3-12 shows a script

that turns visibility on for one outputText component if there is no value;
otherwise, the script turns visibility on for the other outputText component.

2. For each component that will be needed in the JavaScript function, expand the
Advanced section of the Property Inspector and set the ClientComponent attribute
to true. This creates a client component that will be used by the JavaScript.

3. For the components whose visibility will be toggled, set the visible attribute to
false.

Example 3-13 shows the full page code used to toggle visibility with JavaScript.

Example 3-13 JavaScript Toggles Visibility

<f:view>
<af:resource>
function showText ()
{
var outputl = AdfUIComponent.findComponent ("outputl")
var output2 = AdfUIComponent.findComponent ("output2")
var input = AdfUIComponent.findComponent ("input")

if (input.value == "")

{
outputl.setVisible(true);
}

else

{
output?2.setVisible(true)
}

}
</af:resource>
<af:document>
<af:form>
<af:panelGroupLayout layout="horizontal">
<af:inputText label="Input some text" id="input"
value="#{myBean. inputValue}" clientComponent="true"
immediate="true"/>
<af:commandButton text="Enter" clientComponent="true">
<af:clientListener method="showText" type="action"/>
</af:commandButton>
</af :panelGroupLayout>
<af:panelGroupLayout layout="horizontal">
<af:outputLabel value="You entered:" clientComponent="false"/>
<af:outputText value="No text entered" id="outputl"
visible="false" clientComponent="true"/>
<af:outputText value="#{myBean.inputValue}" id="output2"
visible="false" clientComponent="true"/>
</af :panelGroupLayout>
</af:form>
</af:document>
</f:view>

3-18 Web User Interface Developer's Guide for Oracle Application Development Framework

Understanding Rendering and Visibility

3.9.2 What You May Need to Know About Visible and the isShowing Function

If the parent of a component has its visible attribute set to false, when the
isVisible function is run against a child component whose visible attribute is set to
true, it will return true, even though that child is not displayed. For example, say you
have a panelGroupLayout component that contains an outputText component as a
child, and the panelGroupLayout component’s visible attribute is set to false, while
the outputText component’s visible attribute is left as the default (true). On the
client, neither the panelGroupLayout nor the outputText component will be displayed,
but if the isVisible function is run against the outputText component, it will return
true.

For this reason, the RCF provides the isShowing () function. This function will return
false if the component’s visible attribute is set to false, or if any parent of that
component has visible set to false.

Using ADF Faces Architecture 3-19

Understanding Rendering and Visibility

3-20 Web User Interface Developer's Guide for Oracle Application Development Framework

4

Using the JSF Lifecycle with ADF Faces

This chapter describes the JSF page request lifecycle and the additions to the lifecycle
from ADF Faces, and how to use the lifecycle properly in your application.

This chapter includes the following sections:

= Section 4.1, "Introduction to the JSF Lifecycle and ADF Faces"
= Section 4.2, "Using the Immediate Attribute"

= Section 4.3, "Using the Optimized Lifecycle"

» Section 4.4, "Using the Client-Side Lifecycle"

» Section 4.5, "Using Subforms to Create Regions on a Page"

= Section 4.6, "Object Scope Lifecycles"

» Section 4.7, "Passing Values Between Pages"

4.1 Introduction to the JSF Lifecycle and ADF Faces

Because the ADF Faces rich client framework (RCF) extends the JSF framework, any
application built using the ADF Faces rich client framework uses the standard JSF
page request lifecycle. However, the ADF Faces framework extends that lifecycle,
providing additional functionality, such as a client-side value lifecycle, a subform
component that allows you to create independent submittable regions on a page
without the drawbacks (for example, lost user edits) of using multiple forms on a
single page, and additional scopes.

To better understand the lifecycle enhancements that the RCF delivers, it is important
that you understand the standard JSF lifecycle. This section provides only an overview.
For a more detailed explanation, refer to the JSF specification at
http://www.oracle.com/technetwork/java/index.html.

When a JSF page is submitted and a new page is requested, the JSF page request
lifecycle is invoked. This lifecycle handles the submission of values on the page,
validation for components on the current page, navigation to and display of the
components on the resulting page, as well as saving and restoring state. The JSF
lifecycle phases use a Ul component tree to manage the display of the faces
components. This tree is a runtime representation of a JSF page: each UI component
tag in a page corresponds to a Ul component instance in the tree. The FacesServlet
object manages the page request lifecycle in JSF applications. The FacesServlet object
creates an object called FacesContext, which contains the information necessary for
request processing, and invokes an object that executes the lifecycle.

Figure 4-1 shows the JSF lifecycle of a page request. As shown, events are processed
before and after each phase.

Using the JSF Lifecycle with ADF Faces 4-1

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Introduction to the JSF Lifecycle and ADF Faces

Figure 4-1 Lifecycle of a Page Request in an ADF Faces Application

Faces Reqguest » .
Restore View

|
Process events

'

Apply Request Values
|

Process events

'

Process Validations
|

’7 Process events

Update Mocdlel \Values
|

Process events

v

Invoke Application

Process events

v

Render Response | Faces Response g,

-

If initial render ar no data from subrmitted page
If walidation fails

If actionSource component set to immediate

In a JSF application, the page request lifecycle is as follows:

= Restore View: The component tree is established. If this is not the initial rendering
(that is, if the page was submitted back to server), the tree is restored with the
appropriate state. If this is the initial rendering, the component tree is created and
the lifecycle jumps to the Render Response phase.

= Apply Request Values: Each component in the tree extracts new values from the
request parameters (using its decode method) and stores the values locally. Most
associated events are queued for later processing. If a component has its
immediate attribute set to true, then the validation, the conversion, and the events
associated with the component are processed during this phase. For more
information, see Section 4.2, "Using the Immediate Attribute."

» Process Validations: Local values of components are converted from the input type
to the underlying data type. If the converter fails, this phase continues to
completion (all remaining converters, validators, and required checks are run), but
at completion, the lifecycle jumps to the Render Response phase.

If there are no failures, the required attribute on the component is checked. If the
value is true, and the associated field contains a value, then any associated
v