

5 MapViewer JSP Tag Library

	
Deprecated Feature: MapViewer JSP Library:

The MapViewer JSP library is deprecated, and will not be included in future releases of the documentation.
Instead, you are encouraged to use the MapViewer Java API, which is more comprehensive and up to date. Moreover, if you prefer to use tags, consider using the GeoMap tags in the JDeveloper Application Development Framework (ADF).

This chapter explains how to submit requests to MapViewer using JavaServer Pages (JSP) tags in an HTML file. Through an XML-like syntax, the JSP tags provide a set of important (but not complete) MapViewer capabilities, such as setting up a map request, zooming, and panning, as well as identifying nonspatial attributes of user-clicked features.

	
Note:

The MapViewer JSP tag library will not work with Oracle9iAS Release 9.0.2 or the standalone OC4J Release 9.0.2. The minimum version required is Oracle9iAS Release 9.0.3 or the standalone OC4J Release 9.0.3.

You can develop a location-based application by using any of the following approaches:

	
Using the XML API (see Chapter 3)

	
Using the JavaBean-based API (see Chapter 4)

	
Using JSP files that contain XML or HTML tags, or both, and that include custom Oracle-supplied JSP tags (described in this chapter)

Creating JSP files is often easier and more convenient than using the XML or JavaBean-based API, although the latter two approaches give you greater flexibility and control over the program logic. However, you can include calls to the Java API methods within a JavaServer Page, as is done with the call to the getMapTitle method in Example 5-1 in Section 5.3.

All MapViewer JSP tags in the same session scope share access to a single MapViewer bean.

This chapter contains the following major sections:

	
Section 5.1, "Using MapViewer JSP Tags"

	
Section 5.2, "MapViewer JSP Tag Reference Information"

	
Section 5.3, "JSP Example (Several Tags) for MapViewer"

5.1 Using MapViewer JSP Tags

Before you can use MapViewer JSP tags, you must perform one or two steps, depending on whether or not the web application that uses the tags will be deployed in the same OC4J instance that is running MapViewer.

	
If the web application will be deployed in the same OC4J instance that is running MapViewer, skip this step and go to Step 2.

If the web application will be deployed in a separate OC4J instance, you must copy the mvclient.jar file (located in the $MAPVIEWER/web/WEB-INF/lib directory) and the mvtaglib.tld file (located in the $MAPVIEWER/web/WEB-INF directory) to that OC4J instance's application deployment directory. Then you must define a <taglib> element in your application's web.xml file, as shown in the following example:

<taglib>
 <taglib-uri>
 http://xmlns.oracle.com/spatial/mvtaglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/mvtaglib.tld
 </taglib-location>
 </taglib>

	
Import the tag library (as you must do with any JSP page that uses custom tags), by using the taglib directive at the top of the JSP page and before any other MapViewer tags. For example:

<%@ taglib uri="http://xmlns.oracle.com/spatial/mvtaglib"
 prefix="mv" %>

The taglib directive has two parameters:

	
uri is the unique name that identifies the MapViewer tag library, and its value must be http://xmlns.oracle.com/spatial/mvtaglib, because it is so defined in the MapViewer web.xml initialization file.

	
prefix identifies the prefix for tags on the page that belong to the MapViewer tag library. Although you can use any prefix you want as long as it is unique in the JSP page, mv is the recommended prefix for MapViewer, and it is used in examples in this guide.

The following example shows the mv prefix used with the setParam tag:

<mv:setParam title="Hello World!" bgcolor="#ffffff"
 width="500" height="375" antialiasing="true"/>

The tags enable you to perform several kinds of MapViewer operations:

	
To create the MapViewer bean and place it in the current session, use the init tag, which must come before any other MapViewer JSP tags.

	
To set parameters for the map display and optionally a base map, use the setParam tag.

	
To add themes and a legend, use the addPredefinedTheme, addJDBCTheme, importBaseMap, and makeLegend tags.

	
To get information, use the getParam, getMapURL, and identify tags.

	
To submit the map request for processing, use the run tag.

5.2 MapViewer JSP Tag Reference Information

This section provides detailed information about the Oracle-supplied JSP tags that you can use to communicate with MapViewer. Table 5-1 lists each tag and briefly describes the information specified by the tag.

Table 5-1 JSP Tags for MapViewer

	Tag Name	Explanation
	
init

	
Creates the MapViewer bean and places it in the current session. Must come before any other MapViewer JSP tags.

	
setParam

	
Specifies one or more parameters for the current map request.

	
addPredefinedTheme

	
Adds a predefined theme to the current map request.

	
addJDBCTheme

	
Adds a dynamically defined theme to the map request.

	
importBaseMap

	
Adds the predefined themes that are in the specified base map to the current map request.

	
makeLegend

	
Creates a legend (map inset illustration) drawn on top of the generated map.

	
getParam

	
Gets the value associated with a specified parameter for the current map request.

	
getMapURL

	
Gets the HTTP URL for the currently available map image, as generated by the MapViewer service.

	
identify

	
Gets nonspatial attribute (column) values associated with spatial features that interact with a specified point or rectangle on the map display, and optionally uses a marker style to identify the point or rectangle.

	
run

	
Submits the current map request to the MapViewer service for processing. The processing can be to zoom in or out, to recenter the map, or to perform a combination of these operations.

Except where noted, you can use JSP expressions to set tag attribute values at runtime, using the following format:

<mv:tag attribute="<%= jspExpression %>" >

The following sections (in alphabetical order by tag name) provide reference information for all parameters available for each tag: the parameter name, a description, and whether or not the parameter is required. If a parameter is required, it must be included with the tag. If a parameter is not required and you omit it, a default value is used.

Short examples are provided in the reference sections for JSP tags, and a more comprehensive example is provided in Section 5.3.

5.2.1 addJDBCTheme

The addJDBCTheme tag adds a dynamically defined theme to the map request. (It performs the same operation as the <jdbc_query> element, which is described in Section 3.2.9.)

Table 5-2 lists the addJDBCTheme tag parameters.

Table 5-2 addJDBCTheme Tag Parameters

	Parameter Name	Description	Required
	
name

	
Name for the dynamically defined theme. Must be unique among all themes already added to the associated MapViewer bean.

	
Yes

	
min_scale

	
The value to which the display must be zoomed in for the theme to be displayed, as explained in Section 2.4.1. If min_scale and max_scale are not specified, the theme is displayed for all map scales, if possible given the display characteristics.

	
No

	
max_scale

	
The value beyond which the display must be zoomed in for the theme not to be displayed, as explained in Section 2.4.1. If min_scale and max_scale are not specified, the theme is displayed for all map scales, if possible given the display characteristics.

	
No

	
spatial_column

	
Column of type SDO_GEOMETRY containing geometry objects for the map display

	
Yes

	
srid

	
Coordinate system (SDO_SRID value) of the data to be rendered. If you do not specify this parameter, a null coordinate system is assumed.

	
No

	
datasource

	
Name of the data source instance that contains information for connecting to the database

	
YesFoot 1

	
jdbc_host

	
Host name for connecting to the database

	
YesFootref 1

	
jdbc_port

	
Port name for connecting to the database

	
YesFootref 1

	
jdbc_sid

	
SID for connecting to the database

	
YesFootref 1

	
jdbc_user

	
User name for connecting to the database

	
YesFootref 1

	
jdbc_password

	
Password for connecting to the database

	
YesFootref 1

	
jdbc_mode

	
The Oracle JDBC driver (thin or oci8) to use to connect to the database. The default is thin.

	
No

	
asis

	
If set to TRUE, MapViewer does not attempt to modify the supplied query string. If FALSE (the default), MapViewer embeds the SQL query as a subquery of its spatial filter query. (For more information and an example, see Section 3.2.9.)

	
No

	
render_style

	
Name of the style to be used to render the spatial data retrieved for this theme. For point features the default is a red cross rotated 45 degrees, for lines and curves it is a black line 1 pixel wide, and for polygons it is a black border with a semitransparent dark gray interior.

	
No

	
label_style

	
Name of the text style to be used to draw labeling text on the spatial feature for this theme. If you specify label_style, you must also specify label_column. If you do not specify label_style, no label is drawn for the spatial feature of this theme.

	
No

	
label_column

	
The column in the SELECT list of the supplied query that contains the labeling text for each feature (row). If label_style is not specified, any label_column value is ignored.

	
No

Footnote 1 You must specify either datasource or the combination of jdbc_host, jdbc_port, jdbc_sid, jdbc_user, and jdbc_password.

The following example creates a new dynamic theme named bigCities, to be executed using the mvdemo data source and specifying the LOCATION column as containing spatial data. Note that the greater-than (>) character in the WHERE clause is valid here.

<mv:addJDBCTheme name="bigCities" datasource="mvdemo"
 spatial_column="location">
 SELECT location, name FROM cities WHERE pop90 > 450000
</mv:addJDBCTheme>

5.2.2 addPredefinedTheme

The addPredefinedTheme tag adds a predefined theme to the current map request. (It performs the same operation as the <theme> element, which is described in Section 3.2.20.) The predefined theme is added at the end of the theme list maintained in the associated MapViewer bean.

Table 5-3 lists the addPredefinedTheme tag parameters.

Table 5-3 addPredefinedTheme Tag Parameters

	Parameter Name	Description	Required
	
name

	
Name of the predefined theme to be added to the current map request. This theme must exist in the USER_SDO_THEMES view of the data source used by the associated MapViewer bean.

	
Yes

	
datasource

	
Name of the data source from which the theme will be loaded. If you do not specify this parameter, the default data source for the map request is used.

	
No

	
min_scale

	
The value to which the display must be zoomed in for the theme to be displayed, as explained in Section 2.4.1. If min_scale and max_scale are not specified, the theme is displayed for all map scales, if possible given the display characteristics.

	
No

	
max_scale

	
The value beyond which the display must be zoomed in for the theme not to be displayed, as explained in Section 2.4.1. If min_scale and max_scale are not specified, the theme is displayed for all map scales, if possible given the display characteristics.

	
No

The following example adds the theme named THEME_DEMO_CITIES to the current Map request:

<mv:addPredefinedTheme name="THEME_DEMO_CITIES"/>

5.2.3 getMapURL

The getMapURL tag gets the HTTP URL (uniform resource locator) for the currently available map image, as generated by the MapViewer service. This map image URL is kept in the associated MapViewer bean, and it does not change until after the run tag is used.

The getMapURL tag has no parameters.

The following example displays the currently available map image, using the getMapURL tag in specifying the source (SRC keyword value) for the image:

<IMG SRC="<mv:getMapURL/>" ALIGN="top">

5.2.4 getParam

The getParam tag gets the value associated with a specified parameter for the current map request.

Table 5-4 lists the getParam tag parameter.

Table 5-4 getParam Tag Parameter

	Parameter Name	Description	Required
	
name

	
Name of the parameter whose value is to be retrieved. It must be one of the valid parameter names for the setParam tag. The parameter names are case-sensitive. (This attribute must have a literal value; it cannot take a JSP expression value.)

	
Yes

The following example displays the value of the title parameter for the current map request:

<P> The current map title is: <mv:getParam name="title"/> </P>

5.2.5 identify

The identify tag gets nonspatial attribute (column) values associated with spatial features that interact with a specified point or rectangle on the map display, and it optionally uses a marker style to identify the point or rectangle. For example, if the user clicks on the map and you capture the X and Y coordinate values for the mouse pointer when the click occurs, you can retrieve values of nonspatial columns associated with spatial geometries that interact with the point. For example, if the user clicks on a point in Chicago, your application might display the city name, state abbreviation, and population of Chicago, and it might also display a "city" marker on the map near where the click occurred.

The attributes are returned in a String[][] array of string arrays, which is exposed by this tag as a scripting variable.

The list of nonspatial columns to fetch must be provided in the tag body, in a comma-delimited list, which the MapViewer bean uses to construct a SELECT list for its queries.

You can optionally associate a highlighting marker with each feature that is identified by using the style attribute and specifying a marker style. To display a new map that includes the highlighting markers, use the getMapURL tag.

Table 5-5 lists the identify tag parameters.

Table 5-5 identify Tag Parameters

	Parameter Name	Description	Required
	
id

	
Name for the scripting variable through which the returned nonspatial attribute values will be exposed. The first array contains the column names. (This attribute must have a literal value; it cannot take a JSP expression value.)

	
Yes

	
datasource

	
Name of the MapViewer data source from which to retrieve the nonspatial information.

	
No

	
table

	
Name of the table containing the column identified in spatial_column. (This attribute must have a literal value; it cannot take a JSP expression value.)

	
Yes

	
spatial_column

	
Column of type SDO_GEOMETRY containing geometry objects to be checked for spatial interaction with the specified point or rectangle. (This attribute must have a literal value; it cannot take a JSP expression value.)

	
Yes

	
srid

	
Coordinate system (SDO_SRID value) of the data in spatial_column. If you do not specify this parameter, a null coordinate system is assumed.

	
No

	
x

	
The X ordinate value of the point; or the X ordinate value of the lower-left corner of the rectangle if x2 and y2 are specified.

	
Yes

	
y

	
The Y ordinate value of the point; or the Y ordinate value of the lower-left corner of the rectangle if x2 and y2 are specified.

	
Yes

	
x2

	
The X ordinate value of the upper-right corner of the rectangle.

	
No

	
y2

	
The Y ordinate value of the upper-right corner of the rectangle.

	
No

	
style

	
Name of the marker style to be used to draw a marker on features that interact with the specified point or rectangle. To display a new map that includes the highlighting markers, use the getMapURL tag.

	
No

The following example creates an HTML table that contains a heading row and one row for each city that has any spatial interaction with a specified point (presumably, the city where the user clicked). Each row contains the following nonspatial data: city name, population, and state abbreviation. The String[][] array of string arrays that holds the nonspatial information about the associated city or cities is exposed through the scripting variable named attrs. The scriptlet after the tag loops through the array and outputs the HTML table (which in this case will contain information about one city).

<mv:identify id="attrs" style="M.CYAN PIN"
 table="cities" spatial_column="location"
 x="100" y="200">
 City, Pop90 Population, State_abrv State
</mv:identify>

<%
 if(attrs!=null && attrs.length>0)
 {
 out.print("<CENTER> <TABLE border=\"1\">\n");
 for(int i=0; i<attrs.length; i++)
 {
 if(i==0) out.print("<TR BGCOLOR=\"#FFFF00\">");
 else out.print("<TR>\n");
 String[] row = attrs[i];
 for(int k=0; k<row.length; k++)
 out.print("<TD>"+row[k]+"</TD>");
 out.print("</TR>\n");
 }
 out.print("</TABLE></CENTER>");
 }
%>

5.2.6 importBaseMap

The importBaseMap tag adds the predefined themes that are in the specified base map to the current map request. (This has the same effect as using the setParam tag with the basemap attribute.)

Table 5-6 lists the importBaseMap tag parameter.

Table 5-6 importBaseMap Tag Parameter

	Parameter Name	Description	Required
	
name

	
Name of the base map whose predefined themes are to be added at the end of the theme list for the current map request. This base map must exist in the USER_SDO_MAPS view of the data source used by the associated MapViewer bean.

	
Yes

The following example adds the predefined themes in the base map named demo_map at the end of the theme list for the current map request:

<mv:importBaseMap name="demo_map"/>

5.2.7 init

The init tag creates the MapViewer bean and places it in the current session. This bean is then shared by all other MapViewer JSP tags in the same session. The init tag must come before any other MapViewer JSP tags.

Table 5-7 lists the init tag parameters.

Table 5-7 init Tag Parameters

	Parameter Name	Description	Required
	
url

	
The uniform resource locator (URL) of the MapViewer service. It must be in the form http://host:port/mapviewer/omserver, where host and port identify the system name and port, respectively, on which Oracle Fusion Middleware or OC4J listens.

	
Yes

	
datasource

	
Name of the MapViewer data source to be used when requesting maps and retrieving mapping data. If you have not already created the data source, you must do so before using the init tag. (For information about defining a data source, see Section 1.5.2.14.)

	
Yes

	
id

	
Name that can be used to refer to the MapViewer bean created by this tag. (This attribute must have a literal value; it cannot take a JSP expression value.)

	
Yes

The following example creates a data source named mvdemo with an id value of mvHandle:

<mv:init url="http://mycompany.com:8888/mapviewer/omserver"
 datasource="mvdemo" id="mvHandle"/>

5.2.8 makeLegend

The makeLegend tag accepts a user-supplied XML legend specification and creates a standalone map legend image. The legend image is generated by the MapViewer service, and a URL for that image is returned to the associated MapViewer bean. This tag exposes the URL as a scripting variable.

The body of the tag must contain a <legend> element. See Section 3.2.11 for detailed information about the <legend> element and its attributes.

Table 5-8 lists the makeLegend tag parameters.

Table 5-8 makeLegend Tag Parameters

	Parameter Name	Description	Required
	
id

	
Name for the scripting variable that can be used to refer to the URL of the generated legend image. (This attribute must have a literal value; it cannot take a JSP expression value.)

	
Yes

	
datasource

	
Name of the MapViewer data source from which to retrieve information about styles specified in the legend request

	
No

	
format

	
Format of the legend image to be created on the server. If specified, must be GIF_URL (the default) or PNG_URL.

	
No

The following example creates a single-column legend with the id of myLegend, and it displays the legend image.

<mv:makeLegend id="myLegend">
 <legend bgstyle="fill:#ffffff;stroke:#ff0000" profile="MEDIUM">
 <column>
 <entry text="Legend:" is_title="true"/>
 <entry style="M.STAR" text="center point"/>
 <entry style="M.CITY HALL 3" text="cities"/>
 <entry is_separator="true"/>
 <entry style="C.ROSY BROWN STROKE" text="state boundary"/>
 <entry style="L.PH" text="interstate highway"/>
 <entry text="County population density:"/>
 <entry style="V.COUNTY_POP_DENSITY" tab="1"/>
 </column>
 </legend>
</mv:makeLegend>

<P> Here is the map legend: <IMG SRC="<%=myLegend%>"> </P>

5.2.9 run

The run tag submits the current map request to the MapViewer service for processing. The processing can be to zoom in or out, to recenter the map, or to perform a combination of these operations.

The run tag does not output anything to the JSP page. To display the map image that MapViewer generates as a result of the run tag, you must use the getMapURL tag.

Table 5-9 lists the run tag parameters.

Table 5-9 run Tag Parameters

	Parameter Name	Description	Required
	
action

	
One of the following values to indicate the map navigation action to be taken: zoomin (zoom in), zoomout (zoom out), or recenter (recenter the map).

For zoomin or zoomout, factor specifies the zoom factor; for all actions (including no specified action), x and y specify the new center point; for all actions (including no specified action), x2 and y2 specify (with x and y) the rectangular area to which to crop the resulting image.

If you do not specify an action, the map request is submitted for processing with no zooming or recentering, and with cropping only if x, y, x2, and y2 are specified.

	
No

	
x

	
The X ordinate value of the point for recentering the map, or the X ordinate value of the lower-left corner of the rectangular area to which to crop the resulting image if x2 and y2 are specified

	
No

	
y

	
The Y ordinate value of the point for recentering the map, or the Y ordinate value of the lower-left corner of the rectangular area to which to crop the resulting image if x2 and y2 are specified

	
No

	
x2

	
The X ordinate value of the upper-right corner of the rectangular area to which to crop the resulting image

	
No

	
y2

	
The Y ordinate value of the upper-right corner of the rectangular area to which to crop the resulting image

	
No

	
factor

	
Zoom factor: a number by which the current map size is multiplied (for zoomin) or divided (for zoomout). The default is 2. This parameter is ignored if action is not zoomin or zoomout.

	
No

The following example requests a zooming in on the map display (with the default zoom factor of 2), and recentering of the map display at coordinates (100, 250) in the device space.

<mv:run action="zoomin" x="100" y="250"/>

5.2.10 setParam

The setParam tag specifies one or more parameters for the current map request. You can set all desired parameters at one time with a single setParam tag, or you can set different parameters at different times with multiple setParam tags. Most of the parameters have the same names and functions as the attributes of the <map_request> root element, which is described in Section 3.2.1.1. The parameter names are case-sensitive.

Table 5-10 lists the setParam tag parameters.

Table 5-10 setParam Tag Parameters

	Parameter Name	Description	Required
	
antialiasing

	
When its value is TRUE, MapViewer renders the map image in an antialiased manner. This usually provides a map with better graphic quality, but it may take longer for the map to be generated. The default value is FALSE (for faster map generation).

	
No

	
basemap

	
Base map whose predefined themes are to be rendered by MapViewer. The definition of a base map is stored in the user's USER_SDO_MAPS view, as described in Section 2.9.1. Use this parameter if you will always need a background map on which to plot your own themes and geometry features.

	
No

	
bgcolor

	
The background color in the resulting map image. The default is water-blue (RGB value #A6CAF0). It must be specified as a hexadecimal value.

	
No

	
bgimage

	
The background image (GIF or JPEG format only) in the resulting map image. The image is retrieved at runtime when a map request is being processed, and it is rendered before any other map features, except that any bgcolor value is rendered before the background image.

	
No

	
centerX

	
X ordinate of the map center in the data coordinate space

	
No

	
centerY

	
Y ordinate of the map center in the data coordinate space

	
No

	
height

	
The height (in device units) of the resulting map image

	
No

	
imagescaling

	
When its value is TRUE (the default), MapViewer attempts to scale the images to fit the current querying window and the generated map image size. When its value is FALSE, and if an image theme is included directly or indirectly (such as through a base map), the images from the image theme are displayed in their original resolution. This parameter has no effect when no image theme is involved in a map request.

	
No

	
size

	
Vertical span of the map in the data coordinate space

	
No

	
title

	
The map title to be displayed on the top of the resulting map image

	
No

	
width

	
The width (in device units) of the resulting map image

	
No

The following example uses two setParam tags. The first setParam tag sets the background color, width, height, and title for the map. The second setParam tag sets the center point and vertical span for the map.

<mv:setParam bgcolor="#ff0000" width="800" height="600"
 title="My Map!"/>

<mv:setParam centerX="-122.35" centerY="37.85" size="1.5"/>

5.3 JSP Example (Several Tags) for MapViewer

This section presents an example of using JSP code to perform several MapViewer operations.

Example 5-1 initializes a MapViewer bean, sets up map request parameters, issues a request, and displays the resulting map image. It also obtains the associated MapViewer bean and places it in a scripting variable (myHandle), which is then accessed directly in the statement:

Displaying map: <%=myHandle.getMapTitle()%>

Example 5-1 MapViewer Operations Using JSP Tags

<%@ page contentType="text/html" %>
<%@ page session="true" %>
<%@ page import="oracle.lbs.mapclient.MapViewer" %>

<%@ taglib uri="http://xmlns.oracle.com/spatial/mvtaglib"
 prefix="mv" %>
<HTML>
<BODY>
Initializing client MapViewer bean. Save the bean in the session
using key "mvHandle"....<P>
 <mv:init url="http://my_corp.com:8888/mapviewer/omserver"
 datasource="mvdemo" id="mvHandle"/>

Setting MapViewer parameters...<P>
<mv:setParam title="Hello World!" bgcolor="#ffffff" width="500" height="375" antialiasing="true"/>

Adding themes from a base map...<P>
<mv:importBaseMap name="density_map"/>

Setting initial map center and size...<P>
<mv:setParam centerX="-122.0" centerY="37.8" size="1.5"/>

Issuing a map request... <P>
<mv:run/>

<%
 // Place the MapViewer bean in a Java variable.
 MapViewer myHandle = (MapViewer) session.getAttribute("mvHandle");
%>

Displaying map: <%=myHandle.getMapTitle()%>
<IMG SRC="<mv:getMapURL/>" ALIGN="top"/>
</BODY>
</HTML>

E OGC WMS Support in MapViewer

MapViewer supports the rendering of data delivered using the Open GIS Consortium (OGC) Web Map Service (WMS) protocol, specifically the WMS 1.1.1 and 1.3.0 implementation specifications. MapViewer supports the GetMap, GetFeatureInfo, and GetCapabilities requests as defined in the OGC document 01-068r3 and 06-042.

MapViewer does not currently support the optional Styled Layer Descriptor capability, and MapViewer will not function as a Cascading Map Server in this release.

This appendix contains the following major sections:

	
Section E.1, "Setting Up the WMS Interface for MapViewer"

	
Section E.2, "WMS Specification and Corresponding MapViewer Concepts"

	
Section E.3, "Adding a WMS Map Theme"

E.1 Setting Up the WMS Interface for MapViewer

MapViewer is preconfigured to run as a WMS service. Internally, MapViewer translates all incoming WMS requests into proper XML requests to the MapViewer server. For example, the following HTTP request invokes the GetCapabilities service of a MapViewer server:

http://localhost:8888/mapviewer/wms?REQUEST=GetCapabilities&SERVICE=WMS&VERSION=1.1.1
or
http://localhost:8888/mapviewer/wms?REQUEST=GetCapabilities&SERVICE=WMS&VERSION=1.3.0

As shown in this example, the URL for the MapViewer WMS service is typically http://host:port/mapviewer/wms?, where host and port refer to the host and HTTP port of the MapViewer server. The context path /mapviewer/wms refers to the WMS interface of MapViewer.

	
Note:

All WMS requests must be on a single line, so ignore any line breaks that might appear in WMS request examples in this chapter.

E.1.1 Required Files

The following files are required for MapViewer WMS support: WMSFilter.jar and classgen.jar.

	
The servlet filter and its required classes are packaged in WMSFilter.jar. This should be located in the $MAPVIEWER_HOME/web/WEB-INF/lib directory.

	
The servlet filter also requires classgen.jar, which is part of the XML Developer's Kit (XDK) for Java. A standalone OC4J installation usually does not have this file; however, an Oracle Database or full Oracle Fusion Middleware installation will already have this file.

If your system does not already have the classgen.jar file, use a classgen.jar file from the same XDK for Java version as the one that ships with your standalone OC4J version. Place this file in the $MAPVIEWER_HOME/web/WEB-INF/lib directory or in a directory that is in the library path for OC4J.

The classgen.jar and xmlparserv2.jar files must be from the same XDK release, because the classgen.jar file depends on the xmlparserv2.jar file. Also, the XDK release for both files must be OC4J 10.0.0.3 or later, and preferably 10.1.2 or later.

E.1.2 Data Source Named wms

You must define a MapViewer data source named wms, unless every incoming WMS request explicitly specifies a datasource CGI parameter. All requests that do not specify the datasource parameter are by default directed to the data source named wms. For example, the GetCapabilities request will by default list all the available themes that are in the wms data source. (To configure the information returned by a GetCapabilities request, see Section 1.5.2.12.)

E.1.3 SDO to EPSG SRID Mapping File

By default, MapViewer uses the Oracle Spatial (SDO) native SRID (spatial reference ID) values when such information is requested in a WMS request such as GetCapabilities. The EPSG SRID values, however, are more widely used in WMS applications. To have MapViewer use EPSG SRID values when processing WMS requests and generating responses, specify a mapping file. This mapping file is a text file that tells MapViewer which SDO SRID values map to which EPSG SRID values. (Each pair of matching SRID values refers to the same spatial reference system.)

The mapping file contains lines where each line defines one pair of equivalent SRID values in the following format:

sdo_srid=epsg_srid

For example, the following lines define SDO SRID 8307 as equivalent to EPSG SRID 4326, and SDO SRID 81922 as equivalent to EPSG SRID 20248:

8307=4326
81922=20248

After you have created an SDO to EPSG mapping file, you can save it on the server where MapViewer is running, and specify its location in the MapViewer configuration file using the <sdo_epsg_mapfile> element in the <wms_config> element, as explained in Section 1.5.2.12.

E.2 WMS Specification and Corresponding MapViewer Concepts

This section describes the association between, or interpretation of, terms and concepts used in the WMS 1.1.1 and 1.3.0 specifications and MapViewer. It also includes some parameters that are specific to MapViewer but that are not in the WMS 1.1.1 and 1.3.0 specifications.

E.2.1 Supported GetMap Request Parameters

This section describes the supported GetMap request parameters and their interpretation by MapViewer. (Parameters that are specific to MapViewer and not mentioned in the WMS 1.1.1 and 1.3.0 specifications are labeled MapViewer-Only.) The supported parameters are in alphabetical order, with each in a separate subsection. Example E-1 shows some GetMap requests. (Each URL should be entered as a single string.)

Example E-1 GetMap Requests

http://localhost:8888/mapviewer/wms?REQUEST=GetMap&VERSION=1.1.1&FORMAT=image/gif&
SERVICE=WMS&BBOX=-121,37,-119,35&SRS=EPSG:4326&LAYERS=theme_demo_states,theme_
demo_counties,theme_demo_highways,theme_demo_cities&WIDTH=580&HEIGHT=500

http://localhost:8888/mapviewer/wms?REQUEST=GetMap&VERSION=1.3.0&FORMAT=image/gif&
SERVICE=WMS&BBOX=-121,37,-119,35&CRS=EPSG:4326&LAYERS=theme_demo_states,theme_
demo_counties,theme_demo_highways,theme_demo_cities&WIDTH=580&HEIGHT=500

http://localhost:8888/mapviewer/wms?request=GetMap&version=1.3.0&crs=none
&bbox=-122,36,-121,37&width=600&height=400&format=image/png&layers=theme_us_
states&mvthemes=<themes><theme%20name="theme_us_counties"/><theme%20name="theme_
us_road1"/></themes>&legend_
request=<legend%20bgstyle="fill:%23ffffff;stroke:%23ff0000"%20profile="medium"%20p
osition="SOUTH_EAST"><column><entry%20style="v.rb1"%20tab="1"/></column></legend>&

The default data source for a GetMap request is WMS. That is, if you do not specify the DATASOURCE parameter in a GetMap request, it is assumed that a data source named WMS was previously created using the <add_data_source> element (described in Section 7.1.1) in a MapViewer administrative request.

The following optional GetMap parameters are not supported in the current release of MapViewer:

	
TIME (time dimension)

	
ELEVATION (elevation dimension)

	
SLD and WFS URLs

The MapViewer-only parameters must contain valid XML fragments. Because these are supplied in an HTTP GET request, they must be appropriately encoded using a URL encoding mechanism. For example, replace each space () with %20 and each pound sign (#) with %23. The following example shows the use of such encoding:

http://localhost:8888/mapviewer/wms?request=GetMap&version=1.1.1&srs=none&bbox=-12
2,36,-121,37&width=600&height=400&format=image/png&layers=theme_us_
states&mvthemes=<themes><theme%20name="theme_us_counties"/><theme%20name="theme_
us_road1"/></themes>&legend_
request=<legend%20bgstyle="fill:%23ffffff;stroke:%23ff0000"%20profile="medium"%20p
osition="SOUTH_EAST"><column><entry%20style="v.rb1"%20tab="1"/></column></legend>&

E.2.1.1 BASEMAP Parameter (MapViewer-Only)

The BASEMAP parameter specifies a named base map for the specified (or default) data source. If you specify both the BASEMAP and LAYERS parameters, all themes specified in the LAYERS parameters are added to the base map. Therefore, if you just want to get a map using a named base map, specify the BASEMAP parameter but specify an empty LAYERS parameter, as in the following examples:

REQUEST=GetMap&VERSION=1.1.1&BASEMAP=demo_
map&LAYERS=&WIDTH=500&HEIGHT=560&SRS=SDO:8307&BBOX=-122,36,-120,38.5&FORMAT=image/png

REQUEST=GetMap&VERSION=1.3.0&BASEMAP=demo_
map&LAYERS=&WIDTH=500&HEIGHT=560&CRS=SDO:8307&BBOX=-122,36,-120,38.5&FORMAT=image/png

E.2.1.2 BBOX Parameter

The BBOX parameter specifies the lower-left and upper-right coordinates of the bounding box for the data from the data source to be displayed. It has the format BBOX=minX,minY,maxX,maxY. For example: BBOX=-122,36,-120,38.5

E.2.1.3 BGCOLOR Parameter

The BGCOLOR parameter specifies background color for the map display using the RBG color value. It has the format 0xHHHHHH (where each H is a hexadecimal value from 0 to F). For example: BGCOLOR=0xF5F5DC (beige).

E.2.1.4 DATASOURCE Parameter (MapViewer-Only)

The DATASOURCE parameter specifies the name of the data source for the GetMap or GetFeatureInfo request. The default value is WMS. The specified data source must exist prior to the GetMap or GetFeatureInfo request. That is, it must have been created using the <add_data_source> MapViewer administrative request or defined in the MapViewer configuration file (mapViewerConfig.xml).

E.2.1.5 DYNAMIC_STYLES Parameter (MapViewer-Only)

The DYNAMIC_STYLES parameter specifies a <styles> element as part of the GetMap request. For information about the <styles> element, see Section 3.2.19.

E.2.1.6 EXCEPTIONS Parameter

For the EXCEPTIONS parameter, the only supported value is the default: EXCEPTIONS=application/vnd.ogc.se_xml for WMS 1.1.1 and EXCEPTIONS=XML for WMS 1.3.0. The exception is reported as an XML document conforming to the Service Exception DTD available at the following URLs:

http://schemas.opengis.net/wms/1.1.1/WMS_exception_1_1_1.dtd

http://schemas.opengis.net/wms/1.3.0/exceptions_1_3_0.xsd

The application/vnd.ogc.se_inimage (image overwritten with Exception message), and application/vnd.ogc.se_blank (blank image because Exception occurred) options are not supported.

E.2.1.7 FORMAT Parameter

The FORMAT parameter specifies the image format. The supported values are image/gif, image/jpeg, image/png, image/png8, and image/svg+xml.

The default value is image/png.

E.2.1.8 HEIGHT Parameter

The HEIGHT parameter specifies the height for the displayed map in pixels.

E.2.1.9 LAYERS Parameter

The LAYERS parameter specifies a comma-delimited list of predefined theme names to be used for the display. The specified values are considered to a be a case-sensitive, ordered, comma-delimited list of predefined theme names in a default data source (named WMS) or in a named data source specified by the parameter DATASOURCE=<name>. For example, LAYERS=THEME_DEMO_STATES,theme_demo_counties,THEME_demo_HIGHWAYS translates to the following <themes> element in a MapViewer map request:

<themes>
<theme name="THEME_DEMO_STATES"/>
<theme name="theme_demo_counties"/>
<theme name="THEME_demo_HIGHWAYS"/>
</themes>

If you want to specify both a base map and one or more LAYERS values, see the information about the BASEMAP parameter in Section E.2.1.1.

E.2.1.10 LEGEND_REQUEST Parameter (MapViewer-Only)

The LEGEND_REQUEST parameter specifies a <legend> element as part of the GetMap request. For information about the <legend> element, see Section 3.2.11.

E.2.1.11 MVTHEMES Parameter (MapViewer-Only)

The MVTHEMES parameter specifies a <themes> element as part of the GetMap request. For information about the <themes> element, see Section 3.2.21. The primary purpose for the MVTHEMES parameter is to support JDBC themes in a MapViewer request. The MVTHEMES parameter is not a substitute or synonym for the LAYERS parameter; you still must specify the LAYERS parameter.

E.2.1.12 REQUEST Parameter

The REQUEST parameter specifies the type of request. The value must be GetMap, GetFeatureInfo, or GetCapabilities.

E.2.1.13 SERVICE Parameter

The SERVICE parameter specifies the service name. The value must be WMS.

E.2.1.14 SRS (1.1.1) or CRS (1.3.0) Parameter

The SRS parameter (WMS 1.1.1) or the CRS parameter (WMS 1.3.0) specifies the spatial reference system (coordinate system) for MapViewer to use. The value must be one of the following: SDO:srid-value (where srid-value is a numeric Oracle Spatial SRID value), EPSG:4326 (equivalent to SDO:8307), or none (equivalent to SDO:0).

Except for EPSG:4326 (the standard WGS 84 longitude/latitude coordinate system), EPSG numeric identifiers are not supported. The namespace AUTO (WMS 1.1.1) or AUTO2 (WMS 1.3.0), for projections that have an arbitrary center of projection, is not supported.

E.2.1.15 STYLES Parameter

The STYLES parameter is ignored. Instead, use the LAYERS parameter to specify predefined themes for the display.

E.2.1.16 TRANSPARENT Parameter

The TRANSPARENT=TRUE parameter (for a transparent image) is supported for PNG images, that is, with FORMAT=image/png, or FORMAT=image/png8 for indexed (8-bit) PNG format. MapViewer does not support transparent GIF (GIF89) images.

E.2.1.17 VERSION Parameter

The VERSION parameter specifies the WMS version number. The value must be 1.1.1 or 1.3.0.

E.2.1.18 WIDTH Parameter

The WIDTH parameter specifies the width for the displayed map in pixels.

E.2.2 Supported GetCapabilities Request and Response Features

A WMS GetCapabilities request to MapViewer should specify only the following parameters:

	
REQUEST=GetCapabilities

	
VERSION=1.1.1 or VERSION=1.3.0

	
SERVICE=WMS

For example:

http://localhost:8888/mapviewer/wms?REQUEST=GetCapabilities&VERSION=1.1.1&SERVICE=WMS
or
http://localhost:8888/mapviewer/wms?REQUEST=GetCapabilities&VERSION=1.3.0&SERVICE=WMS

The response is an XML document conforming to the WMS Capabilities DTD available at the following, depending on the value of the VERSION parameter (1.1.1 or 1.3.0):

http://schemas.opengis.net/wms/1.1.1/WMS_MS_Capabilities.dtd

http://schemas.opengis.net/wms/1.3.0/capabilities_1_3_0.xsd

However, the current release of MapViewer returns an XML document containing the <Service> and <Capability> elements with the following information:

	
The <Service> element is mostly empty, with just the required value of OGC:WMS for the <Service.Name> element. Support for more informative service metadata is planned for a future release of MapViewer.

	
The <Capability> element has <Request>, <Exception>, and <Layer> elements.

	
The <Request> element contains the GetCapabilities and GetMap elements that describe the supported formats and URL for an HTTP GET or POST operation.

	
The <Exception> element defines the exception format. The Service Exception XML is the only supported format in this release. The <Exception> element returns an XML document compliant with the Service Exception DTD, but it does not report exceptions as specified in the implementation specification. The current release simply uses the CDATA section of a <ServiceException> element to return the OMSException returned by the MapViewer server.

	
The <Layer> element contains a nested set of <Layer> elements. The first (outermost) layer contains a name (WMS), a title (Oracle WebMapServer Layers by data source), and one <Layer> element for each defined data source. Each data source layer contains a <Layer> element for each defined base map and one entry for each valid theme (layer) not listed in any base map. Each base map layer contains a <Layer> element for each predefined theme in the base map.

Themes that are defined in the USER_SDO_THEMES view, that have valid entries in the USER_SDO_GEOM_METADATA view for the base table and geometry column, and that are not used in any base map will be listed after the base maps for a data source. These themes will have no <ScaleHint> element. They will have their own <LatLonBoundingBox> and <BoundingBox> elements.

The Content-Type of the response is set to application/vnd.ogc.wms_xml, as required by the WMS implementation specification.

Because the list of layers is output by base map, a given layer or theme can appear multiple times in the GetCapabilities response. For example, the theme THEME_DEMO_STATES, which is part of the base maps named DEMO_MAP and DENSITY_MAP, appears twice in Example E-2, which is an excerpt (reformatted for readability) from a GetCapabilities response.

Example E-2 GetCapabilities Response (Excerpt)

<Title>Oracle WebMapServer Layers by data source</Title>
<Layer>
 <Name>mvdemo</Name>
 <Title>Datasource mvdemo</Title>
 <Layer>
 <Name>DEMO_MAP</Name>
 <Title>Basemap DEMO_MAP</Title>
 <SRS>SDO:8307</SRS>
 <LatLonBoundingBox>-180,-90,180,90</LatLonBoundingBox>
. . .
 <Layer>
 <Name>DENSITY_MAP</Name>
 <Title>Basemap DENSITY_MAP</Title>
 <SRS>SDO:8307</SRS>
 <LatLonBoundingBox>-180,-90,180,90</LatLonBoundingBox>
 <Layer>
 <Name>THEME_DEMO_STATES</Name>
 <Title>THEME_DEMO_STATES</Title>
 <SRS>SDO:8307</SRS>
 <BoundingBox SRS="SDO:8307" minx="-180" miny="-90" maxx="180"
 maxy="90" resx="0.5" resy="0.5"/>
 <ScaleHint min="50.0" max="4.0"/>
 </Layer>
. . .
 </Layer>
 <Layer>
 <Name>IMAGE_MAP</Name>
 <Title>Basemap IMAGE_MAP</Title>
 <SRS>SDO:41052</SRS>
 <LatLonBoundingBox>-180,-90,180,90</ LatLonBoundingBox>
 <Layer>
 <Name>IMAGE_LEVEL_2</Name>
 <Title>IMAGE_LEVEL_2</Title>
 <SRS>SDO:41052</SRS>
 <BoundingBox SRS="SDO:41052" minx="200000" miny="500000" maxx="750000"
 maxy="950000" resx="0.5" resy="0.5"/>
 <ScaleHint min="1000.0" max="0.0"/>
 </Layer>
. . .
 </Layer>

In Example E-2, the innermost layer describes the IMAGE_LEVEL_2 theme. The <ScaleHint> element lists the min_scale and max_scale values, if any, for that theme in the base map definition. For example, the base map definition for IMAGE_MAP is as follows:

SQL> select definition from user_sdo_maps where name='IMAGE_MAP';

DEFINITION
--
<?xml version="1.0" standalone="yes"?>
<map_definition>
 <theme name="IMAGE_LEVEL_2" min_scale="1000.0" max_scale="0.0"/>
 <theme name="IMAGE_LEVEL_8" min_scale="5000.0" max_scale="1000.0"/>
 <theme name="MA_ROAD3"/>
 <theme name="MA_ROAD2"/>
 <theme name="MA_ROAD1"/>
 <theme name="MA_ROAD0"/>
</map_definition>

In the innermost layer, the <SRS> and <BoundingBox> elements identify the SRID and the DIMINFO information for that theme's base table, as shown in the following Spatial metadata query:

SQL> select srid, diminfo from user_sdo_geom_metadata, user_sdo_themes
 2 where name='IMAGE_LEVEL_2' and
 3 base_table=table_name and
 4 geometry_column=column_name ;

 SRID

DIMINFO(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOLERANCE)
--
 41052
SDO_DIM_ARRAY(SDO_DIM_ELEMENT('X', 200000, 500000, .5), SDO_DIM_ELEMENT('Y', 750
000, 950000, .5))

In Example E-2, the <Layer> element for a base map has an <SRS> element and a <LatLonBoundingBox> element. The <SRS> element is empty if all layers in the base map definition do not have the same SRID value specified in the USER_SDO_GEOM_METADATA view. If they all have the same SRID value (for example, 41052), the SRS element contains that value (for example, SDO:41052). The required <LatLonBoundingBox> element currently has default values (-180,-90,180,90). When this feature is supported by MapViewer, this element will actually be the bounds specified in the DIMINFO column of the USER_SDO_GEOM_METADATA view for that layer, converted to geodetic coordinates if necessary and possible.

All layers are currently considered to be opaque and queryable. That is, all layers are assumed to be vector layers, and not GeoRaster, logical network, or image layers.

E.2.3 Supported GetFeatureInfo Request and Response Features

This section describes the supported GetFeatureInfo request parameters and their interpretation by MapViewer. Example E-3 shows some GetFeatureInfo requests.

Example E-3 GetFeatureInfo Request

http://localhost:8888/mapviewer/wms?REQUEST=GetFeatureInfo&VERSION=1.1.1&BBOX=0,-0
.0020,0.0040&SRS=EPSG:4326&LAYERS=cite:Lakes,cite:Forests&WIDTH=200&HEIGHT=100&INF
O_FORMAT=text/xml&QUERY_LAYERS=cite:Lakes,cite:Forests&X=60&Y=60

http://localhost:8888/mapviewer/wms?REQUEST=GetFeatureInfo&VERSION=1.3.0
&BBOX=0,-0.0020,0.0040&CRS=EPSG:4326&LAYERS=cite:Lakes,cite:Forests&WIDTH=200&HEIGHT=100
&INFO_FORMAT=text/xml&QUERY_LAYERS=cite:Lakes,cite:Forests&I=60&J=60

The response is an XML document and the Content-Type of the response is text/xml. Example E-4 is a response to a GetFeatureInfo request in Example E-3.

Example E-4 GetFeatureInfo Response

<?xml version="1.0" encoding="UTF-8" ?>
<GetFeatureInfo_Result>
 <ROWSET name="cite:Lakes">
 <ROW num="1">
 <ROWID>AAAK22AAGAAACUiAAA</ROWID>
 </ROW>
 </ROWSET>
 <ROWSET name="cite:Forests">
 <ROW num="1">
 <FEATUREID>109</FEATUREID>
 </ROW>
 </ROWSET>
</GetFeatureInfo_Result>

Most of the following sections describe parameters supported for a GetFeatureInfo request. (Parameters that are specific to MapViewer and not mentioned in the WMS 1.1.1 specification are labeled MapViewer-Only.) Section E.2.3.10 explains how to query attributes in a GetFeatureInfo request.

E.2.3.1 GetMap Parameter Subset for GetFeatureInfo Requests

A GetFeatureInfo request contains a subset of a GetMap request (BBOX, SRS [1.1.1] or CRS [1.3.0], WIDTH, HEIGHT, and optionally LAYERS parameters). These parameters are used to convert the X, Y (1.1.1) or I, J (1.3.0) point from screen coordinates to a point in the coordinate system for the layers being queried. It is assumed all layers are in the same coordinate system, the one specified by the SRS parameter.

E.2.3.2 EXCEPTIONS Parameter

The only supported value for the EXCEPTIONS parameter is the default: application/vnd.ogc.se_xml for WMS 1.1.1 or xml for WMS 1.3.0. That is, only Service Exception XML is supported. The exception is reported as an XML document conforming to the Service Exception DTD available at the following, depending on the version (1.1.1 or 1.3.0):

http://schemas.opengis.net/wms/1.1.1/WMS_exception_1_1_1.dtd

http://schemas.opengis.net/wms/1.3.0/exceptions_1_3_0.xsd

E.2.3.3 FEATURE_COUNT Parameter

The FEATURE_COUNT parameter specifies the maximum number of features in the result set. The default value is 1. If more features than the parameter's value interact with the query point (X, Y), then an arbitrary subset (of the size of the parameter's value) of the features is returned in the result set. That is, a GetFeatureInfo call translates into a query of the following general form:

SELECT <info_columns> FROM <layer_table>
 WHERE SDO_RELATE(<geom_column>,
 <query_point>, 'mask=ANYINTERACT')='TRUE'
 AND ROWNUM <= FEATURE_COUNT;

E.2.3.4 INFO_FORMAT Parameter

The value of the INFO_FORMAT parameter is always text/xml.

E.2.3.5 QUERY_LAYERS Parameter

The QUERY_LAYERS parameter specifies a comma-delimited list of layers to be queried. If the LAYERS parameter is specified, the QUERY_LAYERS specification must be a subset of the list specified in the LAYERS parameter.

If the QUERY_LAYERS parameter is specified, any BASEMAP parameter value is ignored.

E.2.3.6 QUERY_TYPE Parameter (MapViewer-Only)

The QUERY_TYPE parameter limits the result set to a subset of possibly qualifying features by specifying one of the following values:

	
at_point: returns only the feature at the specified point.

	
nn: returns only the nearest neighbor features, with the number of results depending on the value of the FEATURE_COUNT parameter value (see Section E.2.3.3). The result set is not ordered by distance.

	
within_radius (or within_distance, which is a synonym): returns only results within the distance specified by the RADIUS parameter value (see Section E.2.3.7), up to the number matching the value of the FEATURE_COUNT parameter value (see Section E.2.3.3). The result set is an arbitrary subset of the answer set of potential features within the specified radius. The result set is not ordered by distance.

E.2.3.7 RADIUS Parameter (MapViewer-Only)

The RADIUS parameter specifies the radius of the circular search area for a query in which the QUERY_TYPE parameter value is within_radius (see Section E.2.3.6). If you specify the RADIUS parameter, you must also specify the UNIT parameter (see Section E.2.3.8).

E.2.3.8 UNIT Parameter (MapViewer-Only)

The UNIT parameter specifies the unit of measurement for the radius of the circular search area for a query in which the QUERY_TYPE parameter value is within_radius (see Section E.2.3.6). The value must be a valid linear measure value from the SHORT_NAME column of the SDO_UNITS_OF_MEASURE table, for example: meter, km, or mile.

If you specify the UNIT parameter, you must also specify the RADIUS parameter (see Section E.2.3.7).

E.2.3.9 X and Y or I and J Parameters

The X and Y (WMS 1.1.1) or I and J (WMS 1.3.0) parameters specify the x-axis and y-axis coordinate values (in pixels), respectively, of the query point.

E.2.3.10 Specifying Attributes to Be Queried for a GetFeatureInfo Request

In a GetFeatureInfo request, the styling rule for each queryable layer (theme) must contain a <hidden_info> element that specifies which attributes are queried and returned in the XML response. The <hidden_info> element is the same as the one used for determining the attributes returned in an SVG map request.

An example of such a styling rule as follows:

SQL> select styling_rules from user_sdo_themes where name='cite:Forests';

STYLING_RULES
--
<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <hidden_info>
 <field column="FID" name="FeatureId"/>
 </hidden_info>
 <rule>
 <features style="C.PARK FOREST"> </features>
 <label column="NAME" style="T.PARK NAME"> 1 </label>
 </rule>
</styling_rules>

This styling rule specifies that if cite:Forests is one of the QUERY_LAYERS parameter values in a GetFeatureInfo request, the column named FID is queried, and its tag in the response document will be <FEATUREID>. The tag is always in uppercase. If no <hidden_info> element is specified in the styling rules for the theme's query layer, then the rowid is returned. In Example E-4, the styling rule for the cite:Lakes layer has no <hidden_info> element; therefore, the default attribute ROWID is returned in the XML response. The cite:Forests layer, however, does have a <hidden_info> element, which specifies that the attribute column is FID, and that its tag name, in the response document, should be <FEATUREID>.

E.3 Adding a WMS Map Theme

You can add a WMS map theme to the current map request. The WMS map theme is the result of a GetMap request, and it becomes an image layer in the set of layers (themes) rendered by MapViewer.

To add a WMS map theme, use the WMS-specific features of either the XML API (see Section E.3.1) or the JavaBean-based API (see Section E.3.4).

E.3.1 XML API for Adding a WMS Map Theme

To add a WMS map theme to the current map request using the MapViewer XML API, use the <wms_getmap_request> element in a <theme> element.

For better performance, the <wms_getmap_request> element should be used only to request a map image from a Web Map Server (WMS) implementation. That is, the <service_url> element in a <wms_getmap_request> element should specify a WMS implementation, not a MapViewer instance. If you want to specify a MapViewer instance (for example, specifying <service_url> with a value of http://mapviewer.mycorp.com:8888/mapviewer/wms), consider using a MapViewer predefined theme or a JDBC theme in the <themes> element instead of using a <wms_getmap_request> element.

The following example shows the general format of the <wms_getmap_request> element within a <theme> element, and it includes some sample element values and descriptive comments:

<themes>
 <theme>
 <wms_getmap_request isBackgroundTheme="true">
 <!-- The wms_getmap_request theme is rendered in the order it
 appears in the theme list unless isBackgroundTheme is "true".
 -->
 <service_url> http://wms.mapsrus.com/mapserver </service_url>
 <version> 1.1.1 </version>
 <!-- version is optional. Default value is "1.1.1".
 -->
 <layers> Administrative+Boundaries,Topography,Hydrography </layers>
 <!— layers is a comma-delimited list of names.
 If layer names contain spaces, use '+' instead of a space -->
 <!— styles is optional. It is a comma-delimited list, and it must
 have the same number of names as the layer list, if specified.
 If style names contain spaces, use '+' instead of a space -->
 <styles/>
 <srs> EPSG:4326 </srs>
 <format> image/png </format>
 <transparent> true </transparent>
 <bgcolor> 0xffffff </bgcolor>
 <exceptions> application/vnd.ogc.se_inimage </exceptions>
 <vendor_specific_parameters>
 <!-- one or more <vsp> elements each containing
 a <name> <value> pair -->
 <vsp>
 <name> datasource </name>
 <value> mvdemo </value>
 </vsp>
 <vendor_specific_parameters>
 <wms_getmap_request>
 </theme>
</themes>

The following attribute and elements are available with the <wms_getmap_request> element:

	
The isBackgroundTheme attribute specifies whether or not this theme should be rendered before the vector layers. The default value is false.

	
The <service_url> element specifies the URL (without the service parameters) for the WMS service. Example: http://my.webmapserver.com/wms

	
The <version> element specifies the WMS version number. The value must be one of the following: 1.0.0, 1.1.0, 1.1.1 (the default), or 1.3.0.

	
The <layers> element specifies a comma-delimited list of layer names to be included in the map request.

	
The <styles> element specifies a comma-delimited list of style names to be applied to the layer names in layers.

	
The <srs> element specifies the coordinate system (spatial reference system) name. The default value is EPSG:4326.

	
The <format> element specifies the format for the resulting map image. The default value is image/png.

	
The <transparent> element specifies whether or not the layer or layers being added should be transparent in the resulting map image. The default value is false. To make the layer or layers transparent, specify true.

	
The <bgcolor> element specifies the RGB value for the map background color. Use hexadecimal notation for the value, for example, 0xAE75B1. The default value is 0xFFFFFF (that is, white).

	
The <exceptions> element specifies the format for server exceptions. The default value is application/vnd.ogc.se_inimage.

	
The <vendor_specific_parameters> element contains one or more <vsp> elements, each of which contains a <name> element specifying the parameter name and a <value> element specifying the parameter value.

Example E-5 shows the <wms_getmap_request> element in a map request.

Example E-5 Adding a WMS Map Theme (XML API)

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Raster WMS Theme and Vector Data"
 datasource="mvdemo" srid="0"
 width="500"
 height="375"
 bgcolor="#a6caf0"
 antialiase="true"
 mapfilename="wms_georaster" format="PNG_URL">
 <center size="185340.0">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>596082.0,8881079.0</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="WMS_TOPOGRAPHY" user_clickable="false" >
 <wms_getmap_request isBackgroundTheme="true">
 <service_url> http://wms.mapservers.com:8888/mapserver/wms </service_url>
 <layers> TOPOGRAPHY </layers>
 <srs> EPSG:29190 </srs>
 <format> image/png </format>
 <bgcolor> 0xa6caf0 </bgcolor>
 <transparent> true </transparent>
 <vendor_specific_parameters>
 <vsp>
 <name> ServiceType </name>
 <value> mapserver </value>
 </vsp>
 </vendor_specific_parameters>
 </wms_getmap_request>
 </theme>
 <theme name="cl_theme" user_clickable="false">
 <jdbc_query spatial_column="geom" render_style="ltblue"
 jdbc_srid="82279" datasource="mvdemo"
 asis="false">select geom from classes where vegetation_type = 'forests'
 </jdbc_query>
 </theme>
 </themes>
 <styles>
 <style name="ltblue">
 <svg width="1in" height="1in">
 <g class="color"
 style="stroke:#000000;stroke-opacity:250;fill:#33ffff;fill-opacity:100">
 <rect width="50" height="50"/>
 </g>
 </svg>
 </style>
 </styles>
</map_request>

E.3.2 Predefined WMS Map Theme Definition

The predefined XML definition for a WMS theme uses the same structure of the parameters in Section E.3.1, and adds the optional capabilities_url attribute, which is used by Map Builder when editing a WMS theme. If the capabilities_url attribute is defined, Map Builder will issue a GetCapabilities request to populate some UI elements in the editor page.

Example E-6 shows how to create a predefined WMS theme in the metadata. The base table and base column names can be any values, and in this example 'WMS' is used for both.

Example E-6 Creating a Predefined WMS Theme

INSERT INTO user_sdo_themes VALUES (
 'PRED_WMS_THEME',
 'WMS data',
 'WMS',
 'WMS', '<?xml version="1.0" standalone="yes"?>
 <styling_rules theme_type="wms">
 <service_url> http://sampleserver1b.arcgisonline.com/arcgis/services/Specialty/ESRI_StateCityHighway_USA/MapServer/WMSServer </service_url>
 <layers> 0,1,2 </layers>
 <version> 1.3.0 </version>
 <srs> CRS:84 </srs>
 <format> image/png </format>
 <bgcolor> 0xA6CAF0 </bgcolor>
 <transparent> false </transparent>
 <styles> +,+,+ </styles>
 <exceptions> xml </exceptions>
 <capabilities_url> http://sampleserver1.arcgisonline.com/ArcGIS/services/Specialty/ESRI_StateCityHighway_USA/MapServer/WMSServer? </capabilities_url>
 </styling_rules>');

E.3.3 Authentication with WMS Map Themes

For a WMS server that requires authentication for access to the WMS data, the following must be included in the theme definition:

	
<user> element specifying the user name

	
<password> element specifying the user password

If you use the Map Builder tool to create a WMS map theme, the password value will be automatically encrypted. Figure E-1 shows the use of the Map Builder tool to create a WMS theme with authentication information. In this figure, the Authentication option is checked (enabled), and User and Password are specified.

Figure E-1 Using Map Builder to Specify Authentication with a WMS Theme

[image: Description of Figure E-1 follows]

Description of "Figure E-1 Using Map Builder to Specify Authentication with a WMS Theme"

Example E-7 shows how to create a WMS theme that includes authentication information.

Example E-7 WMS Theme with Authentication Specified

<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="wms">
 <service_url> http://localhost:7001/mapviewer/wms </service_url>
 <user> wmsuser </user>
 <password> ******* </password>
 <layers> THEME_DEMO_STATES </layers>
 <version> 1.1.1 </version>
 <srs> EPSG:4326 </srs>
 <format> image/png </format>
 <bgcolor> 0xA6CAF0 </bgcolor>
 <transparent> true </transparent>
 <exceptions> application/vnd.ogc.se_xml </exceptions>
 <vendor_specific_parameters>
 <vsp>
 <name> datasource </name>
 <value> mvdemo </value>
 </vsp>
 </vendor_specific_parameters>
 <capabilities_url> http://localhost:7001/mapviewer/wms? </capabilities_url>
</styling_rules>

E.3.4 JavaBean-Based API for Adding a WMS Map Theme

To add a WMS map theme to the current map request using the MapViewer JavaBean-based API, use the addWMSMapTheme method.

This method should be used only to request a map image from a Web Map Server (WMS) implementation. That is, the serviceURL parameter should specify a WMS implementation, not a MapViewer instance.

The addWMSMapTheme method has the following format:

addWMSMapTheme(String name, String serviceURL, String isBackgroundTheme,
 String version, String[] layers, String[] styles,
 String srs, String format, String transparent,
 String bgcolor, String exceptions,
 Object[] vendor_specific_parameters
);

The name parameter specifies the theme name.

The serviceURL parameter specifies the URL (without the service parameters) for the WMS service. Example: http://my.webmapserver.com/wms

The isBackgroundTheme parameter specifies whether or not this theme should be rendered before the vector layers. The default value is false.

The version parameter specifies the WMS version number. The value must be one of the following: 1.0.0, 1.1.0, or 1.1.1 (the default).

The layers parameter specifies a comma-delimited list of layer names to be included in the map request.

The styles parameter specifies a comma-delimited list of style names to applied to the layer names in layers.

The srs parameter specifies the coordinate system (spatial reference system) name. The default value is EPSG:4326.

The format parameter specifies the format for the resulting map image. The default value is image/png.

The transparent parameter specifies whether or not the layer or layers being added should be transparent in the resulting map image. The default value is false. To make the layer or layers transparent, specify true.

The bgcolor parameter specifies the RGB value for the map background color. Use hexadecimal notation for the value, for example, 0xAE75B1. The default value is 0xFFFFFF (that is, white).

The exceptions parameter specifies the format for server exceptions. The default value is application/vnd.ogc.se_inimage.

The vendor_specific_parameters parameter specifies a list of vendor-specific parameters. Each element in the object array is a String array with two strings: parameter name and value. Example: vsp = new Object[]{new String[]{"DATASOURCE", "mvdemo"}, //param 1 new String[]{"antialiasing", "true"} //param 2

[image: Oracle Corporation]

9 Oracle Map Builder Tool

This chapter briefly describes the MapViewer Map Builder tool, also referred to as Oracle Map Builder. It does not provide detailed information about the tool's interface; for that you should use see online help available when you use Oracle Map Builder.

Oracle Map Builder is a standalone application that lets you create and manage the mapping metadata (about styles, themes, and base maps) that is stored in the database. For example, use this tool to create a style or to modify the definition of a style. Besides handling the metadata, the tool provides interfaces to preview the metadata (for example, to see how a line style will appear on a map) and also spatial information.

Whenever possible, you should use Oracle Map Builder instead of directly modifying MapViewer metadata views to create, modify, and delete information about styles, themes, and maps. For any modifications made outside Oracle Map Builder, such as with SQL statements, you should refresh the database connection in Oracle Map Builder to get the current items.

To use Oracle Map Builder effectively, you must understand the MapViewer concepts explained in Chapter 2 and the information about map requests in Chapter 3.

This chapter contains the following major sections:

	
Section 9.1, "Running Oracle Map Builder"

	
Section 9.2, "Oracle Map Builder User Interface"

9.1 Running Oracle Map Builder

Oracle Map Builder is shipped as a JAR file (mapbuilder.jar). You can run it as a standalone Java application in a Java Development Kit (J2SE SDK) 1.5 or later environment, as follows:

% java –jar mapbuilder.jar [Options]

Options:

-cache <cache_size> specifies the size of the in-memory geometry cache. Example: -cache 64M

-config <config-file> specifies the location of the file containing Map Builder configuration and preference information. If you do not specify this option, Map Builder looks for a file named oasmapbuilder.xml in your home Java directory. For more information about the configuration and preference file, see Section 1.5.2.

-connect causes Map Builder at startup to register connections for all data sources specified in the oasmapbuilder.xml preferences file or the file specified with the -config option, and it automatically connects to the first available data source. This option increases the application startup time. If this option is not defined, startup is faster, but you must then use the File menu or an icon to connect to any data sources that you want to use (see Section 9.2, "Oracle Map Builder User Interface").

-help displays information about the available options.

9.2 Oracle Map Builder User Interface

Oracle Map Builder generally uses the left side for navigation to find and select objects, and the right side to display information about selected objects. Figure 9-1 shows the main window of Oracle Map Builder, with the metadata navigation tree on the left and a detail pane for a selected area style on the right.

Figure 9-1 Oracle Map Builder Main Window

[image: Description of Figure 9-1 follows]

Description of "Figure 9-1 Oracle Map Builder Main Window"

The menus at the top contain standard entries, plus entries for features specific to Oracle Map Builder.

You can use shortcut keys to access menus and menu items: for example Alt+F for the File menu and Alt+E for the Edit menu; or Alt+H, then Alt+A for Help, then About.

Icons under the menus perform the following actions:

	
Add new connection creates a new database connection for Oracle Map Builder to use.

	
Load/Add/Remove connection loads or adds database connection for Oracle Map Builder to use, or removes a database connection from the available connections that Oracle Map Builder can use.

	
Create new metadata creates a new base map, theme, or style.

	
Open opens a base map, theme, or style.

	
Save saves any changes to the currently selected object.

	
Save All saves any changes to all open objects.

The left side of the Oracle Map Builder window has the Metadata navigator, including a database connection selector, icons for performing actions, and a hierarchical tree display for the MapViewer metadata objects (categorized by object type) accessible to the currently selected database connection. To select an object, expand the appropriate tree node or nodes, then double-click the object.

The right side of the Oracle Map Builder window has tabs and panes for detail views of objects that you select or open

To switch among objects, click the desired tabs; to close a tab, click the X in the tab. If you make changes to an object and click the X, you are asked if you want to save the changes.

The Messages area is used for feedback information as appropriate (for example, results of an action, or error or warning messages).

Detailed help is available within the Oracle Map Builder interface. See the online help for more information about Oracle Map Builder, including information about specific panes and dialog boxes.

Oracle® Fusion Middleware

User's Guide for Oracle MapViewer

11g Release 1 (11.1.1)

E10145-08

March 2013

Describes how to use Oracle MapViewer, a tool that renders maps showing different kinds of spatial data.

Oracle Fusion Middleware User's Guide for Oracle MapViewer, 11g Release 1 (11.1.1)

E10145-08

Copyright © 2001, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Chuck Murray

Contributors: Joao Paiva, L.J. Qian, Ji Yang, Honglei Zhu

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

List of Examples

	1-1 Sample MapViewer Configuration File
	1-2 Restricting Administrative Requests
	1-3 PL/SQL Package for Secure Map Rendering
	1-4 View for Secure Map Rendering
	1-5 Data Source Definition for Secure Map Rendering
	1-6 Data Source Definition Specifying Cookie Name
	2-1 Scalable Marker Style
	2-2 Scalable Line Style
	2-3 Advanced Style with Text Label Style for Each Bucket
	2-4 Labeling an Oriented Point
	2-5 Text Style with Sticky Attribute
	2-6 XML Definition of Styling Rules for an Airport Theme
	2-7 Styling Rules Using the <rendering> Element
	2-8 JDBC Theme in a Map Request
	2-9 JDBC Theme Based on Columns
	2-10 JDBC Theme Based on Columns, with Query Window
	2-11 Complex Query in a Predefined Theme
	2-12 Creating a Predefined Image Theme
	2-13 GeoRaster Theme Containing a SQL Statement
	2-14 GeoRaster Theme Specifying a Raster ID and Raster Data Table
	2-15 Creating a Predefined GeoRaster Theme
	2-16 Preparing GeoRaster Data for Use with a GeoRaster Theme
	2-17 Bitmap Mask in Predefined GeoRaster Theme
	2-18 Reprojection Mode in Predefined GeoRaster Theme
	2-19 Network Theme
	2-20 Creating a Predefined Network Theme
	2-21 Network Theme for Shortest-Path Analysis
	2-22 Network Theme for Within-Cost Analysis
	2-23 Topology Theme
	2-24 Topology Theme Using Debug Mode
	2-25 Creating a Predefined Topology Theme
	2-26 WFS Request with a Dynamic WFS Theme
	2-27 Creating a Predefined WFS Theme
	2-28 Map Request with Predefined WFS Theme
	2-29 Request with a Dynamic WMTS Theme
	2-30 Creating a Predefined WMTS Theme
	2-31 Map Request with Predefined WMTS Theme
	2-32 Defining a Dynamic Custom Geometry Theme
	2-33 Storing a Predefined Custom Geometry Theme
	2-34 Styling Rules for a Predefined Annotation Text Theme
	2-35 Dynamic Annotation Text Theme Definition
	2-36 Dynamic Annotation Text Theme with Default Annotation Column
	2-37 Script to Generate Annotation Text Data
	2-38 XML Definition of Styling Rules for an Earthquakes Theme
	2-39 Advanced Style Definition for an Earthquakes Theme
	2-40 Mapping Population Density Using a Graduated Color Scheme
	2-41 Mapping Average Household Income Using a Graduated Color Scheme
	2-42 Mapping Average Household Income Using a Color for Each Income Range
	2-43 Advanced Style Definition for Gasoline Stations Theme
	2-44 Styling Rules of Theme Definition for Gasoline Stations
	2-45 Nonspatial (External) Data Provider Implementation
	2-46 XML Definition of a Base Map
	2-47 Legend Included in a Map Request
	2-48 Map Request with Automatic Legend
	2-49 Automatic Legend with Themes Specified
	2-50 Cross-Schema Access: Geometry Table
	2-51 Cross-Schema Access: GeoRaster Table
	2-52 Cross-Schema Access: Topology Feature Table
	2-53 Cross-Schema Access: Network Tables
	2-54 Workspace Manager-Related Attributes in a Map Request
	2-55 <list_workspace_name> Element in an Administrative Request
	2-56 <list_workspace_session> Element in an Administrative Request
	2-57 Finding Styles Owned by the MDSYS Schema
	3-1 Simple Map Request ("Hello World")
	3-2 Simple Map Request with a Dynamically Defined Theme
	3-3 Map Request with Base Map, Center, and Additional Predefined Theme
	3-4 Map Request with Center, Base Map, Dynamically Defined Theme, Other Features
	3-5 Map Request for Point Features with Attribute Value and Dynamically Defined Variable Marker Style
	3-6 Map Request with an Image Theme
	3-7 Map Request for Image of Map Legend Only
	3-8 Map Request with SRID Different from Data SRID
	3-9 Map Request Using a Pie Chart Theme
	3-10 JDBC Theme Using a Pie Chart Style
	3-11 Map Request Using Ratio Scale and Mixed Theme Scale Modes
	3-12 Map Request Using Predefined Theme (Binding Parameter and Custom Type)
	3-13 Map Request Using Advanced Styles and Rendering Rules
	3-14 Map Request Using Stacked Styles
	3-15 Map Request Using Predefined WFS Theme
	3-16 Map Request Using Dynamic WFS Theme
	3-17 Map Request Using Dynamic WFS Theme with an Advanced Style
	3-18 Java Program That Interacts with MapViewer
	3-19 PL/SQL Program That Interacts with MapViewer
	3-20 North Arrow
	3-21 Normalization Operation with a GeoRaster Theme
	3-22 Styling Rules with Normalization Operation in a GeoRaster Theme
	3-23 Scale Bar
	3-24 MapViewer Information Request
	3-25 Map Response
	5-1 MapViewer Operations Using JSP Tags
	6-1 Preparing a Map Request
	7-1 Adding a Data Source by Specifying Detailed Connection Information
	7-2 Adding a Data Source by Specifying the Container Data Source
	7-3 Removing a Data Source
	8-1 Source Code for the Simple Application (V1 API)
	8-2 Source Code for the Simple Application (V2 API)
	8-3 XML Definition of an Internal Map Tile Layer
	8-4 XML Definition of an External Map Tile Layer
	8-5 External Map Source Adapter
	8-6 MapSourceAdapter.getTileImageBytes Implementation
	8-7 XML Styling Rules for Predefined Theme Used for FOI Layer
	8-8 XML Styling Rules for a Templated Predefined Theme
	8-9 Theme for Dynamic JDBC Query
	8-10 Transformation Rules Defined in the csdefinition.sql Script
	C-1 Custom Image Renderer for ECW Image Format
	D-1 Implementing the Spatial Provider Class
	D-2 Map Request to Render External Spatial Data
	E-1 GetMap Requests
	E-2 GetCapabilities Response (Excerpt)
	E-3 GetFeatureInfo Request
	E-4 GetFeatureInfo Response
	E-5 Adding a WMS Map Theme (XML API)
	E-6 Creating a Predefined WMS Theme
	E-7 WMS Theme with Authentication Specified

8 Oracle Maps

Oracle Maps is the name for a suite of technologies for developing high-performance interactive web-based mapping applications. Oracle Maps is included with MapViewer.

This chapter contains the following major sections:

	
Section 8.1, "Overview of Oracle Maps"

	
Section 8.2, "Map Tile Server"

	
Section 8.3, "Feature of Interest (FOI) Server"

	
Section 8.4, "Oracle Maps JavaScript API"

	
Section 8.5, "Developing Oracle Maps Applications"

	
Section 8.6, "Using Google Maps and Bing Maps"

	
Section 8.7, "Transforming Data to a Spherical Mercator Coordinate System"

	
Section 8.8, "Dynamically Displaying an External Tile Layer"

8.1 Overview of Oracle Maps

Oracle Maps consists of the following main components:

	
A map tile server that caches and serves pregenerated map image tiles

	
A feature of interest (FOI) server that renders geospatial features that are managed by Oracle Spatial

	
An Ajax-based JavaScript mapping client. (Ajax is an acronym for asynchronous JavaScript and XML.) This client provides functions for browsing and interacting with maps, as well as a flexible application programming interface (API).

The map tile server (map image caching engine) automatically fetches and caches map image tiles rendered by Oracle MapViewer or other web-enabled map providers. It also serves cached map image tiles to the clients, which are web applications developed using the Oracle Maps client API. The clients can then automatically stitch multiple map image tiles into a seamless large map. Because the map image tiles are pregenerated and cached, the application users will experience fast map viewing performance.

The feature of interest (FOI) server (rendering engine) renders spatial feature layers managed by Oracle Spatial, as well as individual geospatial features of point, line, or polygon type that are created by an application. Such FOIs, which typically include both an image to be rendered and a set of associated attribute data, are then sent to the client where a user can interact with them. Unlike the cached image tiles, which typically represent static content, FOIs are dynamic and represent real-time database or application contents. The dynamic FOIs and the static cached map tiles enable you to build web mapping applications.

The JavaScript mapping client is a browser side map display engine that fetches map content from the servers and presents it to client applications. It also provides customizable map-related user interaction control, such as map dragging and clicking, for the application. The JavaScript mapping client can be easily integrated with any web application or portal.

8.1.1 Architecture for Oracle Maps Applications

Figure 8-1 shows the architecture of web mapping applications that are developed using Oracle Maps.

Figure 8-1 Architecture for Oracle Maps Applications

[image: Description of Figure 8-1 follows]

Description of "Figure 8-1 Architecture for Oracle Maps Applications"

Referring to Figure 8-1, applications interact with the Oracle Maps architecture as follows:

	
The application is developed using JavaScript, and it runs inside the JavaScript engine of the web browser.

	
The application invokes the JavaScript map client to fetch the map image tiles from the map tile server, and then it displays the map in the web browser.

	
The application invokes the JavaScript map client to fetch dynamic spatial features from the FOI server and display them on top of the map tiles.

	
The JavaScript map client controls map-related user interaction for the application.

	
When the map tile server receives a map image tile request, it first checks to see if the requested tile is already cached. If the tile is cached, the cached tile is returned to the client. If the tile is not cached, the map tile server fetches the tile into the cache and returns it to the client. Tiles can be fetched either directly from the MapViewer map rendering engine or from an external web map services provider.

	
When the FOI server receives a request, it uses the MapViewer map rendering engine to generate the feature images and to send these images, along with feature attributes, to the client.

8.1.2 Simple Example Using Oracle Maps

Figure 8-2 shows the interface of a simple application created using the Oracle Maps JavaScript V1 API. This example, along with sample applications, tutorials, and API documentation, is included in a separate mvdemo.ear file, which can be downloaded from http://www.oracle.com/technetwork/middleware/mapviewer/. The mvdemo.ear file should be deployed into the same container as the mapviewer.ear file.

	
Note:

The Oracle Maps JavaScript V1 and V2 APIs are described in Section 8.4.
Section 8.1.2.1, "Simple Application Using the V2 API" describes essentially the same simple example but implemented using the V2 API.

The simple application shown in Figure 8-2 can be accessed at http://host:port/mvdemo/fsmc/sampleApp.html. To run this application, follow the instructions in http://host:port/mvdemo/fsmc/tutorial/setup.html to set up the database schema and the necessary map tile layers.

Figure 8-2 Application Created Using Oracle Maps (V1 API)

[image: Description of Figure 8-2 follows]

Description of "Figure 8-2 Application Created Using Oracle Maps (V1 API)"

The application shown in Figure 8-2 displays customers on the map. The map consists of two layers:

	
The map tile layer displays the ocean, county boundaries, cities, and highways. The whole map tile layer displayed in the web browser consists of multiple map image tiles that are rendered by the map tile server.

	
The FOI layer displays customers as red dot markers on top of the map tile layer. If the user clicks on the marker for a customer, an information window is displayed showing some attributes for that customer. The customer markers and attributes are rendered by the FOI server.

In addition to these two layers, a scale bar is displayed in the lower-left corner of the map, and a navigation panel is displayed in the upper-right corner.

The application user can use the mouse to drag the map. When this happens, new image tiles and FOIs are automatically fetched for the spatial region that the map currently covers. The user can also use the built-in map navigation tool to pan and zoom the image, and can show or hide the customers (red dot markers) by checking or unchecking the Show customers box.

Example 8-1 shows the complete source code for the simple application shown in Figure 8-2.

Example 8-1 Source Code for the Simple Application (V1 API)

<html>
<head>
<META http-equiv="Content-Type" content="text/html" charset=UTF-8">
<TITLE>A sample Oracle Maps Application</TITLE>
<script language="Javascript" src="jslib/oraclemaps.js"></script>
<script language=javascript>
var themebasedfoi=null
function on_load_mapview()
{
 var baseURL = "http://"+document.location.host+"/mapviewer";
 // Create an MVMapView instance to display the map
 var mapview = new MVMapView(document.getElementById("map"), baseURL);
 // Add a map tile layer as background.
 mapview.addMapTileLayer(new MVMapTileLayer("mvdemo.demo_map"));
 // Add a theme-based FOI layer to display customers on the map
 themebasedfoi = new MVThemeBasedFOI('themebasedfoi1','mvdemo.customers');
 themebasedfoi.setBringToTopOnMouseOver(true);
 mapview.addThemeBasedFOI(themebasedfoi);
 // Set the initial map center and zoom level
 mapview.setCenter(MVSdoGeometry.createPoint(-122.45,37.7706,8307));
 mapview.setZoomLevel(4);
 // Add a navigation panel on the right side of the map
 mapview.addNavigationPanel('east');
 // Add a scale bar
 mapview.addScaleBar();
 // Display the map.
 mapview.display();
}
function setLayerVisible(checkBox)
{
 // Show the theme-based FOI layer if the check box is checked and
 // hide the theme-based FOI layer otherwise.
 if(checkBox.checked)
 themebasedfoi.setVisible(true) ;
 else
 themebasedfoi.setVisible(false);
}
</script>
</head>
<body onload= javascript:on_load_mapview() >
<h2> A sample Oracle Maps Application</h2>
<INPUT TYPE="checkbox" onclick="setLayerVisible(this)" checked/>Show customers
<div id="map" style="width: 600px; height: 500px"></div>
</body>
</html>

The components of this sample application and the process for creating a client application are described in Section 8.5.1.3.

8.1.2.1 Simple Application Using the V2 API

Figure 8-3 shows a simple example with the essentially the same logic as that shown in Figure 8-2, but using the Oracle Maps JavaScript V2 API.

Figure 8-3 Application Created Using Oracle Maps (V2 API)

[image: Description of Figure 8-3 follows]

Description of "Figure 8-3 Application Created Using Oracle Maps (V2 API)"

Example 8-2 shows the complete source code for the simple application shown in Figure 8-3.

Example 8-2 Source Code for the Simple Application (V2 API)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<TITLE>A sample Oracle Maps V2 application</TITLE>
<script language="Javascript" src="/mapviewer/jslib/v2/oraclemapsv2.js"></script>
<script language=javascript>
var customersLayer=null;
function on_load_mapview()
{
 var baseURL = "http://"+document.location.host+"/mapviewer";
 // Create an OM.Map instance to display the map
 var mapview = new OM.Map(document.getElementById("map"),
 {
 mapviewerURL:baseURL
 });
 // Add a map tile layer as background.
 var tileLayer = new OM.layer.TileLayer(
 "baseMap",
 {
 dataSource:"mvdemo",
 tileLayer:"demo_map",
 tileServerURL:baseURL+"/mcserver"
 });
 mapview.addLayer(tileLayer);
 // Set the initial map center and zoom level
 var mapCenterLon = -122.45;
 var mapCenterLat = 37.7706;
 var mapZoom = 4;
 var mpoint = new OM.geometry.Point(mapCenterLon,mapCenterLat,8307);
 mapview.setMapCenter(mpoint);
 mapview.setMapZoomLevel(mapZoom);
 // Add a theme-based FOI layer to display customers on the map
 customersLayer = new OM.layer.VectorLayer("customers",
 {
 def:
 {
 type:OM.layer.VectorLayer.TYPE_PREDEFINED,
 dataSource:"mvdemo", theme:"customers",
 url: baseURL,
 loadOnDemand: false
 }
 });
 mapview.addLayer(customersLayer);

 // Add a navigation panel on the right side of the map
 var navigationPanelBar = new OM.control.NavigationPanelBar();
 navigationPanelBar.setStyle({backgroundColor:"#FFFFFF",buttonColor:"#008000",size:12});
 mapview.addMapDecoration(navigationPanelBar);
 // Add a scale bar
 var mapScaleBar = new OM.control.ScaleBar();
 mapview.addMapDecoration(mapScaleBar);
 // Display the map.
 // Note: Change from V1. In V2 initialization and display is done just once
 mapview.init();
}
function setLayerVisible(checkBox)
{
 // Show the customers vector layer if the check box is checked and
 // hide it otherwise.
 if(checkBox.checked)
 customersLayer.setVisible(true) ;
 else
 customersLayer.setVisible(false);
}
</script>
</head>
<body onload= javascript:on_load_mapview() >
<h2>A Sample Oracle Maps V2 Application</h2>
<INPUT TYPE="checkbox" onclick="setLayerVisible(this)" checked/>Show customers
<div id="map" style="width: 600px; height: 500px"></div>
</body>
</html>

8.1.3 How Map Content Is Organized

This section describes how the JavaScript client internally organizes various map contents when displayed a map inside a web browser. An application typically places one master HTML DIV object on a web page, and the JavaScript client adds various content layers inside this DIV object.

The map content displayed by the map client is organized by layers. When the application script invokes appropriate map client API, map layers are created inside a map container. The map container is a user-defined HTML DIV object. You can customize the size and the positioning of the map container inside the web page. Figure 8-4 shows the layout of the map layers.

Figure 8-4 Layers in a Map

[image: Description of Figure 8-4 follows]

Description of "Figure 8-4 Layers in a Map"

As shown in Figure 8-4, there are five different types of map content layers: map tiles, theme-based FOI, user-defined FOI or redline, information window, and fixed figures. All layers except the fixed figures layer are moved as a whole when the user drags the map. These movable layers are automatically updated by the map client when the map is dragged or zoomed. (The fixed figures layer is never moved.).

8.1.3.1 Map Tile Layers

A typical Oracle Maps application has at least one map tile layer, which assembles and displays pregenerated map image tiles from the map tile server. The map tile layer displays static map content that does not change very often, and it is typically used as the background map by the client application. For example, in the sample application described in Section 8.1.2 and illustrated in Figure 8-2, the ocean, county boundaries, cities, and highways are all displayed as a map tile layer. Only limited user interaction, such as map dragging, can be performed with a map tile layer.

A map tile layer is usually associated with a MapViewer base map, and is managed by the MapViewer server. However, you can configure a map tile layer to cache map image tiles served by an external (non-MapViewer) map provider.

The Oracle Maps client can also display a custom or built-in external tile layer served directly by an external tile server. The built-in Google Maps and Microsoft Bing Maps tile layers are examples. For more information, see Section 8.6, "Using Google Maps and Bing Maps" and the JavaScript API documentation for class MVGoogleTileLayer and MVBingTileLayer. (If you need to overlay your own spatial data on top of the Google Maps or Bing Maps tile layer, see also Section 8.7, "Transforming Data to a Spherical Mercator Coordinate System".)

Map tile layers are always placed at the bottom of the layer hierarchy. These layers display static and background map contents. When multiple such layers are included, they must all have the same coordinate system and zoom level definitions.

Internally, the map tile layers are usually larger than the size of the map DIV container window. This allows additional tiles to be fetched and cached by the browser. As a result, these tiles will be immediately visible when the map layers are dragged around by the user.

8.1.3.2 Theme-Based FOI Layers

There can be one or more theme-based FOI layers. Each theme-based FOI layer consists of a collection of interactive FOIs that meet certain query criteria defined in a MapViewer predefined theme. FOIs can be points, lines, or polygons. For example, all stores with a sales volume greater than $100,000 can be displayed as a point theme-based FOI layer.

Users can interact with the FOIs by moving the mouse over them or clicking on them. The application can customize how the map client reacts to such user interaction.

All features (geographic and non-geographic) of a theme-based FOI layer are stored in the database. Features are queried and rendered by the FOI server when client applications request them. The query window for the theme-based FOI layers can be customized to be larger than the map DIV window, so that it gives some extra room for dragging the map without refreshing the theme-based FOI layers from server. For more information about theme-based FOI layers, see Section 8.3.1.

8.1.3.3 User-Defined FOI Layers

A user-defined FOI is an interactive feature defined on the client side. The FOI can be a point, line, or polygon feature. Users can interact with a user-defined FOIs in the same way they can with a theme-based FOIs. However, in contrast with a theme-based FOI layer which is rendered as a collection of features, each user-defined FOI is requested and rendered individually. All attributes of the user-defined FOI, including the geometry representation and rendering style, must be provided by the application. For example, a route geometry based on user specified start and end addresses should be displayed as a user-defined line FOI on the map.

The handling of user-defined FOI layers depends on web browser in which the application is running:

	
With Microsoft Internet Explorer, all user-defined individual FOIs added by the application are placed inside a layer directly above the theme-based FOI layers. There can be at most one such layer.

	
With Opera and Mozilla-based browsers such as Netscape and Firefox, all user-defined individual FOIs are placed inside two layers, one for point features and the other for non-point features such as polylines and polygons. The non-point feature layer is placed under the point feature layer.

8.1.3.4 Information Window Layer

An information window is a small pop-up window that displays customizable content in the map. All information windows, when displayed, are placed inside a layer directly above the user-defined individual FOI layer or layers. There can be at most one information window layer.

8.1.3.5 Fixed Figures Layer

The topmost layer contains any fixed figures, which are immovable elements such as copyright notes, a scale bar, a navigation panel, and user-defined map decoration features. (A user-defined map decoration feature is an application defined element that can contain any custom HTML content, such as a map title or a custom control button.) The fixed figures layer is displayed on top of everything else, and it is not moved when the user drags the map.

8.2 Map Tile Server

The map tile server is a map image caching engine that caches and serves pregenerated, fixed-size map image tiles. It is implemented as a Java servlet that is part of the MapViewer server. The map tile server accepts requests that ask for map image tiles specified by tile zoom level and tile location (mesh code), and it sends the requested tiles back to clients.

Figure 8-5 shows the basic workflow of the map tile server.

Figure 8-5 Workflow of the Map Tile Server

[image: Description of Figure 8-5 follows]

Description of "Figure 8-5 Workflow of the Map Tile Server"

As shown in Figure 8-5, when the map tile server receives a request for a map tile, it searches for the tile in the cache storage system. If the tile is cached, the map tile server sends the tile to the client. If the tile is not cached, the map tile server fetches the tile, saves in the cache, and sends it to the client.

You can use the MapViewer administration tool to manage the map tile server.

8.2.1 Map Tile Server Concepts

This section explains map tile server concepts that you need to know to be able to use Oracle Maps effectively.

8.2.1.1 Map Tile Layers and Map Tile Sources

All map tile layers are managed by the map tile server. The map tile server fetches and stores the map image tiles that belong to the map tile layer and returns map image tiles to the client. The map tile server can manage multiple map tile layers.

Each map tile layer can have multiple predefined zoom levels. Each zoom level is assigned a zoom level number ranging from 0 to n-1, where n is the total number of zoom levels. Zoom level 0 is the most zoomed out level and zoom level n-1 is the most zoomed in level.

The map is evenly divided into same-sized small map image tiles on each zoom level. Clients specify a map tile by its zoom level and tile mesh code.

A map tile layer can come from two different types of sources:

	
Internal MapViewer base maps rendered by the MapViewer map rendering engine. A MapViewer base map consists of a set of predefined themes and must be predefined in the database view USER_SDO_MAPS.

	
Maps rendered by an external web map services providers. An external web map services provider is a server that renders and serves maps upon client requests over the web. If you properly configure an adapter that can fetch maps from the external map services provider, the map tile server can fetch and cache map tiles generated by the external map services provider. (A MapViewer instance other than the MapViewer inside which the map tile server is running is also considered an external map services provider.)

8.2.1.2 Storage of Map Image Tiles

Oracle Maps uses the local file system to store cached image tiles. You can customize the path that is used for this storage as part of the map tile server configuration settings.

8.2.1.3 Coordinate System for Map Tiles

Map images are cached and managed by the map tile server as small same-size rectangular image tiles. Currently we support tiling on any two-dimensional Cartesian coordinate system. A geodetic coordinate system can also be supported when it is mapped as if it is a Cartesian coordinate system, where longitude and latitude are treated simply as two perpendicular axes, as shown in Figure 8-6.

Figure 8-6 Tiling with a Longitude/Latitude Coordinate System

[image: Description of Figure 8-6 follows]

Description of "Figure 8-6 Tiling with a Longitude/Latitude Coordinate System"

On each zoom level, the map tiles are created by equally dividing the whole map coordinate system along the two dimensions (X and Y, which inFigure 8-6 represent latitude and longitude). The map tile server needs this dimensional information of the map coordinate system in order to create map image tiles, and therefore you must include this information in the map tile layer configuration settings.

The whole map coordinate system can be represented by a rectangle, and its boundary is specified by (Xmin, Ymin) and (Xmax, Ymax), where Xmin is the minimum X value allowed in the coordinate system, Ymin is the minimum Y value allowed, Xmax is the maximum X value allowed and Ymax is the maximum Y value allowed. In Figure 8-6, Xmin is –180, Ymin is –90, Xmax is 180, and Ymax is 90.

You must also specify the spatial referencing ID (SRID) of the coordinate system to enable the map tile server to calculate map scales.

8.2.1.4 Tile Mesh Codes

Each map tile is specified by a mesh code, which is defined as a pair of integers (Mx, My), where Mx specifies the X dimension index of the tile and My specifies the Y dimension index of the tile. If the tile is the ith tile on X dimension starting from Xmin, then Mx should be i-1. If the tile is the jth tile on Y dimension starting from Ymin, then My should be j-1. Figure 8-7 shows the mesh codes of the tiles on a map.

Figure 8-7 Tile Mesh Codes

[image: Description of Figure 8-7 follows]

Description of "Figure 8-7 Tile Mesh Codes"

The JavaScript map client automatically calculates which tiles it needs for displaying the map in the web browser, and it sends requests with the mesh codes to the server. Mesh codes are transparent to the application, and application developers do not need to deal with mesh codes directly.

8.2.1.5 Tiling Rules

You must create tiling rules that determine how the map is divided and how tiles are created. The map tile server uses these tiling rules to divide the map into small map image tiles that are stored in the tile storage system. These rules are also used by the JavaScript map client.

Because all tiles on a given zoom level are the same size, the map tile server needs to know the following information to perform the tile division:

	
The map tile image size (width and height), specified in screen pixels. This is the physical size of the tile images.

	
The tile size specified according to the map coordinate system. For example, if the map uses a geodetic coordinate system, the tile width and height should be defined in degrees. The size can be specified either explicitly by tile width and height or implicitly by map scale. (Map scale, combined with tile image size, can be used to derive the tile width and height according to the map coordinate system.)

The preceding information constitutes the tiling rule for a given zoom level. Each zoom level must have its own tiling rule. You must define the tiling rules when you specify the configuration settings for the map tile server, as described in Section 8.2.2.

8.2.2 Map Tile Server Configuration

Map tile server configuration settings are stored in local configuration files and in database views. You can customize these settings.

8.2.2.1 Global Map Tile Server Configuration

Global map tile server settings, such as logging options and the default cache storage directory, are stored in the MapViewer configuration file mapViewerConfig.xml, which is under the directory $MAPVIEWER_HOME/web/WEB-INF/conf.

The map tile server configuration settings are defined in element <map_tile_server> inside the top-level <mapperConfig> element, as shown in the following example:

<map_tile_server>
 <tile_storage default_root_path="/scratch/tilecache/"/>
</map_tile_server>

The <tile_storage> element specifies the map tiles storage settings. The default_root_path attribute specifies the default file system directory under which the cached tile images are to be stored. If the default root directory is not set or not valid, the default root directory is $MAPVIEWER_HOME/web/tilecache. A subdirectory under this directory will be created and used for a map tile layer if the map tile layer configuration does not specify the map tiles storage directory for itself. The name of the subdirectory will be the same as the name of the map tile layer.

8.2.2.2 Map Tile Layer Configuration

The configuration settings for a map tile layer are stored in the USER_SDO_CACHED_MAPS metadata view. You should normally not manipulate this view directly, but should instead use the MapViewer administration tool, which uses this view to configure map tile layers.

Each database user (schema) has its own USER_SDO_CACHED_MAPS view. Each entry in this view stores the configuration settings for one map tile layer. If the map tile layer is based on an internal MapViewer base map, the base map associated with the map tile layer must be defined in the same database schema where the map tile layer configuration settings are stored.

The map tile server obtains the map source configuration by querying the USER_SDO_CACHED_MAPS view using the database connections specified by MapViewer data sources. This happens when the map tile server is started or a new data source is added to MapViewer as the result of a MapViewer administration request.

The USER_SDO_CACHED_MAPS view has the columns listed in Table 8-1.

Table 8-1 USER_SDO_CACHED_MAPS View

	Column Name	Data Type	Description
	
NAME

	
VARCHAR2

	
Unique name of the cached map source

	
DESCRIPTION

	
VARCHAR2

	
Optional descriptive text about the cached map source

	
TILES_TABLE

	
VARCHAR2

	
(Not currently used)

	
IS_ONLINE

	
VARCHAR2

	
YES if the map tile layer is online, or NO if the map tile layer is offline. When a tile is missing from the cache and the map tile layer is online, the map tile server will fetch the tile and return the fetched tile to the client. When a tile is missing and the map tile layer is offline, the map tile server will not fetch the tile but will return a blank image to the client.

	
IS_INTERNAL

	
VARCHAR2

	
YES if the map source is an internal map source, or NO if the map source is an external map source

	
DEFINITION

	
CLOB

	
XML definition of the map tile layer, as described later in this section.

	
BASE_MAP

	
VARCHAR2

	
Name of the cached MapViewer base map, if the map source is an internal map source

	
MAP_ADAPTER

	
BLOB

	
The jar file that contains the adapter Java classes of the external map services provider, as described later in this section.

For the DEFINITION column, the map source definition has the following general format:

 <map_tile_layer
 name = "map tile layer name"
 image_format ="tile-image-format">
 <internal_map_source
 data_source="name-of-data-source"
 base_map="name-of-MapViewer-base-map"
 bgcolor="base-map-background-color"
 antialias="whether-to-turn-on-antialiasing"
 />
 </internal_map_source>
 <external_map_source
 url="external-map-service-url"
 adapter_class="name-of-adapter-class"
 proxy_host=" proxy-server-host "
 proxy_port="proxy-server-port"
 timeout="request-timeout"
 request_method="http-request-method: 'GET'|'POST'">
 <properties>
 <property name="property-name" value="property-value"/>
 …
 </properties>
 </external_map_source>
 <tile_storage
 root_path="disk-path-of-cache-root-directory"
 </tile_storage>
 <coordinate_system
 srid="coordinate-system-srid"
 minX="minimum-allowed-X-value"
 maxX="maximum-allowed-X-value"
 minY="minimum-allowed-Y-value"
 maxY="maximum-allowed-Y-value">
 </coordinate_system>
 <tile_image
 width="tile-image-width-in-screen-pixels"
 height="tile-image-height-in-screen-pixels" >
 </tile_image>
 <tile_bound>
 <coordinates> … </coordinates>
 </tile_bound>
 <zoom_levels
 levels="number-of-zoom-levels"
 min_scale="map-scale-at-highest-zoom-level"
 max_scale="map-scale-at-lowest-zoom-level"
 min_tile_width="tile-width-specified-in-map-data-units-at-
 highest-zoom-level"
 max_tile_width="tile-width-specified-in-map-data-units-at-
 lowest-zoom-level">
 <zoom_level
 description="zoom-level-description"
 level_name="zoom-level-name"
 scale="map-scale-of-zoom-level"
 tile_width ="tile-width-specified-in-map-data-units"
 tile_height ="tile-height-specified-in-map-data-units">
 <tile_bound>
 <coordinates> … </coordinates>
 </tile_bound>
 </zoom_level>
 …
 </zoom_levels>
 </map_tile_layer>

The DTD of the map tile layer definition XML is listed in Section A.9.

Example 8-3 shows the XML definition of an internal map tile layer, and Example 8-4 shows the XML definition of an external map tile layer. Explanations of the <map_tile_layer> element and its subelements follow these examples.

Example 8-3 XML Definition of an Internal Map Tile Layer

<?xml version = '1.0'?>
<!-- XML definition of an internal map tile layer.
-->
 <map_tile_layer image_format="PNG">
 <internal_map_source base_map="demo_map"/>
 <tile_storage root_path="/scratch/mapcache/"/>
 <coordinate_system
 srid="8307"
 minX="-180" maxX="180"
 minY="-90" maxY="90"/>
 <tile_image width="250" height="250"/>
 <zoom_levels>
 <zoom_level description="continent level" scale="10000000"/>
 <zoom_level description="country level" scale="3000000"/>
 <zoom_level description="state level" scale="1000000"/>
 <zoom_level description="county level" scale="300000"/>
 <zoom_level description="city level" scale="100000"/>
 <zoom_level description="street level" scale="30000"/>
 <zoom_level description="local street level" scale="10000"/>
 </zoom_levels>
 </map_tile_layer>

Example 8-4 XML Definition of an External Map Tile Layer

<?xml version = '1.0'?>
<!-- XML definition of an external map tile layer.
-->
 <map_tile_layer image_format="PNG">
 <external_map_source
 url="http://elocation.oracle.com/elocation/lbs"
 adapter_class="mcsadapter.MVAdapter">
 <properties>
 <property name="data_source" value="elocation"/>
 <property name="base_map" value="us_base_map"/>
 </properties>
 </external_map_source>
 <tile_storage root_path="/scratch/mapcache"/>
 <coordinate_system
 srid="8307"
 minX="-180" maxX="180"
 minY="-90" maxY="90"/>
 <tile_image width="250" height="250"/>
 <!—
 The following <zoom_levels> element does not have any
 <zoom_level> element inside it. But since it has its levels,
 min_scale and max_scale attributes set, map tile server will
 automatically generate the <zoom_level> elements for the 10
 zoom levels.
 -->
 <zoom_levels levels="10" min_scale="5000" max_scale="10000000" />
 </map_tile_layer>

The top-level element is <map_tile_layer>. The image_format attribute specifies the tile image format; the currently supported values for this attribute are PNG, GIF, and JPG. PNG and GIF images are generally better for vector base maps, while JPG images are generally better for raster maps, such as satellite imagery, because of a better compression ratio. Currently, only tile images in PNG format can have transparent background.

The <internal_map_source> element is required only if the map tiles are rendered by the local MapViewer instance. The base_map attribute is required and specifies the predefined MapViewer base map that is cached by the map tile server; its value should match an entry in the BASE_MAP column in the USER_SDO_CACHED_MAPS view. The bgcolor attribute is optional and specifies the background color of the map. If the value of this attribute is set to NONE, the background will be transparent. (Currently MapViewer can only render transparent PNG map tiles.)

The <external_map_source> element is required only if the map tiles are rendered by an external map services provider. This element has the following attributes:

	
The url attribute is required and specifies the map service URL from which the map tiles can be fetched (for example, http://myhost/mapviewer/omserver).

	
The adapter_class attribute is required and specifies the full name of the map adapter class, including the package names (for example, mcsadapter.MVAdapter).

	
The proxy_host and proxy_port attributes are needed only if the external map provider server must be accessed through a proxy server; these attributes specify the host name and port number, respectively, of the proxy server. If proxy_host is specified as NONE, all map tile requests will be sent directly to the remote server without going through any proxy server. If proxy_host is omitted or specifies an empty string, the global MapViewer proxy setting defined in the mapViewerConfig.xml file will be used when map tile requests are sent.

	
The timeout attribute is optional and specifies the number of milliseconds for which the map tile server must wait for an external map tile image before giving up the attempt. The default timeout value is 15000.

	
The request_method attribute is optional and the HTTP request method for sending map tile requests; its value can be POST (the default) or GET.

The <properties> element in the <external_map_source> element can include multiple <property> elements, each of which specifies a user-defined parameter for use by the map adapter when it fetches map tiles. The same map source adapter can use different set of parameters to fetch different map tile layers. For example, the sample MapViewer adapter mcsadapter.MVAdapter shipped with MapViewer accepts parameters defined as follows:

<properties>
 <property name="data_source" value="elocation"/>
 <property name="base_map" value="us_base_map"/>
</properties>

However, by changing the value attribute values, you can use this adapter to fetch a different base map from the same data source or a different data source.

The <tile_storage> element specifies storage settings for the map tile layer. The optional root_path attribute specifies the file system directory to be used as the root directory of the tile storage. If this attribute is omitted or invalid, the default root directory defined in the mapViewerConfig.xml file is used.

The <coordinate_system> element specifies the map coordinate system, and it has several required attributes. The srid attribute specifies the spatial reference ID of the coordinate system. The minX attribute specifies the lower bound of the X dimension; the minY attribute specifies the lower bound of the Y dimension; the maxX attribute specifies the upper bound of the X dimension; and the maxY attribute specifies the upper bound of the Y dimension. For the standard longitude/latitude (WGS 84) coordinate system, the srid value is 8307; and the minX, minY, maxX, and maxY values are -180, -90, 180, and 90, respectively.

For an internal map tile layer, the map coordinate system can be different from the data coordinate system. If the two are different, the map tile server transforms the map data into the coordinate system defined in the <coordinate_system> element and renders map tile images using this coordinate system.

The <tile_image> element specifies the tile image size settings, and it has the following required attributes: width specifies the width of the tile images in screen pixels, and height specifies the height of the tile images in screen pixels.

The optional <tile_bound> element specifies the bounding box of the cached map tiles. The map tile server only fetches tiles inside this box, and returns a blank tile if the requested tile is outside this box. The bounding box is specified by a rectangle in the map data coordinate system. The rectangle is specified by a <coordinates> element in the following format:

<coordinates>minX, minY, maxX, maxY</coordinates>

The default cache bounding box is the same bounding box specified in the <coordinate_system> element.

The <zoom_levels> element specifies the predefined zoom levels. Only image tiles at predefined zoom levels will be cached and served by the map tile server. The <zoom_levels> element can have multiple <zoom_level> elements, each of which specifies one predefined zoom level. If there are no <zoom_level> elements, the map tile server automatically generates the <zoom_level> elements by using the following attributes inside the <zoom_levels> element. (These attributes can be omitted and will be ignored if any <zoom_level> elements exist.)

	
levels specifies the total number of zoom levels.

	
min_scale specifies the scale of map images at the highest (zoomed in the most) zoom level.

	
max_scale specifies the scale of map images at the lowest (zoomed out the most) zoom level.

	
min_tile_width specifies the width of map tiles at the highest zoom level. The width is specified in map data units.

	
max_tile_width specifies the width of the map tiles at the lowest zoom level. The width is specified in map data units.

For the map tile server to be able to generate the definitions of individual zoom levels automatically, you must specify either of the following combinations of the preceding attributes:

	
levels, min_scale, and max_scale

	
levels, min_tile_width, and max_tile_width

When the zoom levels are defined this way, the map tile server automatically derives the definition of all the individual zoom levels and updates the XML definition with the <zoom_level> elements generated for the zoom levels. You can then make adjustments to each zoom level if you want.

Each zoom level is assigned a zoom level number by the map tile server based on the order in which the zoom levels are defined. The first zoom level defined in the <zoom_levels> element is zoom level 0, the second zoom level is zoom level 1, and so on. These zoom level numbers are used in the tile requests to refer to the predefined zoom levels.

The <zoom_level> element specifies a predefined zoom level, and it has several attributes. The description attribute is optional and specifies the text description of the zoom level. The level_name attribute is optional and specifies the name of the zoom level. The scale attribute specifies the map scale of the zoom level; it is required if the attributes tile_width and tile_height are not defined. The tile_width and tile_height attributes specify the tile width and height, respectively, in map data units. The fetch_larger_tiles attribute is optional and specifies whether to fetch larger map images instead of the small map image tiles; a value of TRUE (the default) means that larger map images that may consist multiple map tiles will be fetched and broken into small map image tiles, which might save network round trips between the map tile server and the map services provider.

In the <zoom_level> element, you must specify either the scale attribute or both the tile_width and tile_height elements.

The <tile_bound> element within the <zoom_level> element optionally specifies the bounding box of the cached map tiles for the zoom level. The map tile server only fetches tiles inside this box, and returns a blank tile if the requested tile is outside this box. The bounding box is specified by a rectangle specified in map data coordinate system. The rectangle is specified by a <coordinates> element (explained earlier in this section) If you specify the <tile_bound> element within the <zoom_level> element, it overrides the overall cache bounding box settings specified by the <tile_bound> element that is above it in the XML hierarchy.

8.2.3 External Map Source Adapter

An external map source adapter is the interface between a map tile server and an external map services provider. When a map image tile needs to be fetched from the external map services provider, the map tile server calls the adapter with information about the zoom level, size, and location of the tile. The adapter then constructs a provider-specific request, sends the request to the external map services provider, and return the resulting image tile to the map tile server.

The external map source adapter is a Java class that must extends the abstract Java class oracle.mapviewer.share.mapcache.MapSourceAdapter, which is defined as follows:

public abstract class MapSourceAdapter
{
 public abstract String getMapTileRequest(TileDefinition tile);
 public byte[] getTileImageBytes(TileDefinition tile) ;
 public Properties getProperties() ;
}

An adapter that extends this class must implement the following method:

	
public String getMapTileRequest(TileDefinition tile)

This method should implement the logic to construct the HTTP request string that can be sent to the map services provider to fetch the map image tile. For example, if the URL of a map tile is http://myhost/mymapserver?par1=v1&par2=v2&par3=v3, the HTTP request string returned by this method should be par1_v1&par2=v2&par3=v3.

When the map tile server cannot find a specific map tile, it calls the getTileImageBytes method to fetch the binary data of the tile image, and that method calls the getMapTileRequest method to construct the map tile request before fetching the tile. The getMapTileRequest method takes one parameter: a TileDefinition object that specifies the zoom level, bounding box, image size and image format of the requested tile. This method returns the HTTP request string.

The map source adapter also inherits all methods implemented in class MapSourceAdapter. Among them, the following methods are more important than the others:

	
public byte[] getTileImageBytes(TileDefinition tile)

This method fetches the actual binary map tile image data from the external map service provider. This method is already implemented. It calls the abstract method getMapTileRequest to construct the map tile request and sends the request to the external map services provider. If the map tiles cannot be fetched by sending HTTP requests, you can override this method to implement the appropriate logic to fetch an image tile from the map source. This method takes one parameter: a TileDefinition object that specifies the zoom level, bounding box, image size, and image format of the requested tile. This method returns the binary tile image data encoded in the image format specified in the map tile layer configuration settings.

	
public Properties getProperties()

This method returns the provider-specific parameters defined in the map tile layer configuration settings explained in Section 8.2.2.2.

The MapSourceAdapter and TileDefinition classes are packaged inside mvclient.jar, which can be found under the directory $MAPVIEWER_HOME/web/WEB/lib.

Example 8-5 shows an external map source adapter.

Example 8-5 External Map Source Adapter

/**
 * This is a sample map source adapter that can be used to fetch map
 * tiles from a MapViewer instance.
 */
package mcsadapter ;

import java.awt.Dimension;
import java.net.URL;
import java.util.Properties;
import oracle.lbs.mapclient.MapViewer;
import oracle.lbs.mapcommon.MapResponse;
import oracle.mapviewer.share.mapcache.*;

/**
 * The map source adapter must extend class
 * oracle.lbs.mapcache.cache.MapSourceAdapter.
 */

public class MVAdapter extends MapSourceAdapter
{
 /**
 * Gets the map tile request string that is to be sent to the map
 * service provider URL.
 * @param tile tile definition
 * @return request string
 */
 public String getMapTileRequest(TileDefinition tile)
 {
 // Get map source specified parameters
 Properties props = this.getProperties() ;
 String dataSource = props.getProperty("data_source") ;
 String baseMap = props.getProperty("base_map") ;
 // Use oracle.lbs.mapclient.MapViewer to construct the request string
 MapViewer mv = new MapViewer(this.getMapServiceURL()) ;
 mv.setDataSourceName(dataSource);
 mv.setBaseMapName(baseMap);
 mv.setDeviceSize(new Dimension(tile.getImageWidth(),
 tile.getImageHeight()));
 mv.setCenterAndSize(tile.getBoundingBox().getCenterX(),
 tile.getBoundingBox().getCenterY(),
 tile.getBoundingBox().getHeight());
 int format = MapResponse.FORMAT_PNG_STREAM ;
 String req = null ;
 switch(tile.getImageFormat())
 {
 case TileDefinition.FORMAT_GIF:
 mv.setImageFormat(MapResponse.FORMAT_GIF_URL);
 req = mv.getMapRequest().toXMLString().replaceFirst(
 "format=\"GIF_URL\"", "format=\"GIF_STREAM\"") ;
 break ;
 case TileDefinition.FORMAT_PNG:
 mv.setImageFormat(MapResponse.FORMAT_PNG_URL);
 req = mv.getMapRequest().toXMLString().replaceFirst(
 "format=\"PNG_URL\"", "format=\"PNG_STREAM\"") ;
 break ;
 case TileDefinition.FORMAT_JPEG:
 mv.setImageFormat(MapResponse.FORMAT_JPEG_URL);
 req = mv.getMapRequest().toXMLString().replaceFirst(
 "format=\"JPEG_URL\"", "format=\"JPEG_STREAM\"");
 break ;
 }

 byte[] reqStr = null ;
 try
 {
 reqStr = req.getBytes("UTF8") ;
 }
 catch(Exception e)
 {}
 // Return the request string.
 return "xml_request="+ new String(reqStr);
 }
}

Example 8-6 shows the implementation of the MapSourceAdapter.getTileImageBytes method.

Example 8-6 MapSourceAdapter.getTileImageBytes Implementation

/**
 * Fetches the map image tile from the external map service provider by
 * sending the HTTP map tile request to the map service provider, and
 * return the binary tile image data. You can rewrite this method so that
 * the adapter can fetch the tile from an external map service provider
 * that does not accept HTTP requests at all.
 * @param tile the tile definition
 * @return the binary tile image data.
 * @throws Exception
 */
public byte[] getTileImageBytes(TileDefinition tile)
 throws Exception
{
 // construct request string
 String request = getMapTileRequest(tile) ;

 if(request == null)
 {
 throw new Exception("Null map tile request string in map source adapter!") ;
 }

 // set proxy settings
 Proxy proxy = null ;

 /* If the proxyHost is "NONE", the request is sent directly to the
 * external server. If the proxyHost is a valid host, that host will
 * be used as the proxy server. If the proxyHost is empty of omitted,
 * the global proxy setting in mapViewerConfig.xml will be in effect.
 */
 boolean noProxy = "NONE".equalsIgnoreCase(getProxyHost()) ;
 if(getProxyHost()!=null && !noProxy)
 {
 SocketAddress addr = new InetSocketAddress(proxyHost, proxyPort);
 proxy = new Proxy(Proxy.Type.HTTP, addr);
 }

 // send the request and get the tile image binary
 PrintWriter wr = null ;
 BufferedInputStream bis = null;
 try
 {
 String urlStr = mapServiceURL ;
 if("GET".equalsIgnoreCase(httpMethod))
 urlStr = mapServiceURL + "?" + request ;
 log.finest("http "+httpMethod+": "+urlStr);

 URL url = new URL(urlStr);
 // Open a URL connection based on current proxy setting
 URLConnection conn =
 proxy!=null? url.openConnection(proxy):
 (noProxy? url.openConnection(Proxy.NO_PROXY):
 url.openConnection()) ;
 conn.setConnectTimeout(timeOut);
 if("GET".equalsIgnoreCase(getHTTPMethod()))
 conn.connect();
 else
 {
 conn.setDoOutput(true);
 wr = new PrintWriter(conn.getOutputStream());
 wr.print(request);
 wr.flush();
 wr.close();
 wr = null ;
 }
 bis = new BufferedInputStream(conn.getInputStream());
 byte[] result = toBytes(bis) ;
 bis.close();
 bis = null ;
 return result;
 }
 catch(Exception ioe)
 {
 throw new Exception("Failed to fetch external map tile.", ioe);
 }
 finally
 {
 try
 {
 if(bis != null)
 {
 bis.close();
 bis = null;
 }
 if(wr != null)
 {
 wr.close();
 wr = null;
 }
 }
 catch(IOException ioee)
 {
 throw ioee;
 }
 }
}

8.3 Feature of Interest (FOI) Server

A feature of interest (FOI) is a business entity or geographical feature that can be manipulated or interacted with by a JavaScript map client running in the web browser. FOI data is dynamically displayed and is not part of the map tile layer. FOIs can be any spatial geometry type, such as points, line strings, and polygons. The ability to search, browse, inspect, and interact with FOIs is essential for location-based services.

The FOI server is a Java servlet running inside MapViewer. It responds to FOI requests from a JavaScript map client by querying the database, rendering FOI images, and sending the FOI images along with FOI attribute data to the client. The JavaScript map client displays the FOI images to the end user and provides interaction with the images.

The FOI server accepts the following types of FOI requests: theme-based and user-defined. Each type of FOI request returns a data layer appropriate for the request type.

8.3.1 Theme-Based FOI Layers

A theme-based FOI layer is a collection of spatial features that have similar characteristics and that are stored in the database. The client fetches a theme-based FOI layer by sending a theme-based FOI layer request to the FOI server. The result of this request is a collection of FOI data entries that meets certain query criteria. Each FOI data entry contains the FOI image, as well as FOI attributes that can be used by the JavaScript map client to implement client-side interactivity.

A theme-based FOI layer is based on a predefined MapViewer theme (see Section 8.3.1.1) or a dynamic JDBC query theme (see Section 8.3.1.3, which defines all information necessary for FOI data rendering. The information includes the table in which the geometry features are stored, the criteria to use during the database query, the attributes that are part of the FOI data, and the style to use when rendering the FOI images. Predefined themes can be defined and configured using the Map Builder tool, which is described in Chapter 9.

8.3.1.1 Predefined Theme-Based FOI Layers

When the client requests FOI data using a predefined theme-based FOI request, it must specify the name of a predefined theme, the scale of the feature images, and the query window used to query the geometry features. The theme name must be defined by the application, while the scale of the feature images and the query window are automatically calculated by the JavaScript map client.

For example, a predefined theme named CUSTOMERS could be defined on a table named CUSTOMERS, which has the following definition:

SQL> DESCRIBE CUSTOMERS
 Name Null? Type
 --------------------------------- ------ ----------------------------
 NAME VARCHAR2(64 CHAR)
 CITY VARCHAR2(64 CHAR)
 COUNTY VARCHAR2(64 CHAR)
 STATE VARCHAR2(64 CHAR)
 LOCATION SDO_GEOMETRY
 SALES NUMBER

The LOCATION column is the spatial column that is used for rendering the customer markers.

The XML styling rules for the CUSTOMERS theme are shown in Example 8-7.

Example 8-7 XML Styling Rules for Predefined Theme Used for FOI Layer

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <hidden_info>
 <field column="CITY" name="City"/>
 <field column="SALES" name="Sales"/>
 </hidden_info>
 <rule>
 <features style="M.CIRCLE"> </features>
 <label column="NAME" style="T.TEXT"> 1 </label>
 </rule>
</styling_rules>

The styling rules in Example 8-7 specify the following. To see how these specifications affect the map display, see Figure 8-2, "Application Created Using Oracle Maps (V1 API)" in Section 8.1.2.

	
The marker style M.CIRCLE is used to render the customers.

	
The NAME column is used as the labeling attribute (label column="NAME"). The value in the NAME column (the name of the customer) is included in the information window that the JavaScript map client displays when the user moves the mouse over the customer marker.

	
The information window also includes the values in columns specified in the <hidden_info> element (CITY and SALES in this example) for that customer. Each <field> element specifies two attributes: column to identify the database column and name to identify a text string to be used in the information window.

8.3.1.2 Templated Predefined Themes

The predefined MapViewer theme can be a standard predefined theme or a templated predefined theme. Both types of predefined themes are defined in the USER_SDO_THEMES view. However, the query conditions of a standard predefined theme are fixed, whereas the query conditions of a templated predefined theme can contain dynamic binding variables whose values can be changed when the theme request is issued.

Example 8-8 shows the XML styling rules for a templated predefined theme that uses two binding variables (with the relevant text shown in bold in the <features> element).

Example 8-8 XML Styling Rules for a Templated Predefined Theme

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <hidden_info>
 <field column="NAME" name="Name"/>
 <field column="CITY" name="City"/>
 <field column="SALES" name="Sales"/>
 </hidden_info>
 <rule>
 <features style="M.CIRCLE">(city=:1 and sales>:2)</features>
 <label column="NAME" style="T.TEXT"> 1 </label>
 </rule>
</styling_rules>

In Example 8-8, the binding variable :1 specifies the name of the city in which the qualifying features must be located, and the binding variable :2 specifies the minimum sales volume of the qualifying features. (That is, only customers in a specified city and with sales above a certain minimum will have store markers displayed.) The values of these two binding variables are not fixed when the theme is defined; instead, they are provided in the requests that the client sends to the server.

8.3.1.3 Dynamic JDBC Query Theme-Based FOI Layers

When the client requests FOI data using a dynamic JDBC theme-based FOI request, it must specify the complete definition of the JDBC theme. The theme definition must specify the rendering style and the SQL query that is to be used to query FOI data, including all geometry and non-geometry attributes.

Example 8-9 shows some JavaScript client code to create an FOI layer that displays a buffer around each customer location.

Example 8-9 Theme for Dynamic JDBC Query

var theme = '<themes><theme name="JDBC_THEME" >' +
 '<jdbc_query asis="true" spatial_column="location"
 jdbc_srid="8307" render_style="C.RED"
 datasource="mvdemo">' +
 'select sdo_geom.sdo_buffer(A.location,1,0.005,'+
 '\'unit=mile arc_tolerance=0.005\') location '+
 ' from customers A' +
 '</jdbc_query></theme></themes>' ;
buffertheme = new MVThemeBasedFOI('buffertheme',theme);

8.3.2 User-Defined FOI Requests

A user-defined FOI is a feature defined on the client side. Unlike the theme-based FOI layer, which is rendered as a collection of features, the user-defined FOI is requested and rendered on an individual basis.

All attributes of the user-defined FOI, including the geometry representation and rendering style, must be provided by the application. The JavaScript map client sends the request, with the geometry representation and rendering style information, to the FOI server. The FOI server renders the FOI image and returns it to the client. The rendering style must be predefined in the USER_SDO_STYLES view.

8.4 Oracle Maps JavaScript API

The Oracle Maps JavaScript client is a browser-based map visualization engine that works on top of the map tile server and the FOI server. It implements the following functions:

	
Fetching map tiles from the map tile server and displaying them as a map tile layer in the web browser.

	
Sending FOI requests to the FOI server, and overlaying user-defined features and Oracle Spatial query-based features on top of the map tile layer.

	
Controlling user interaction, such as dragging for map navigation, clicking FOIs, drawing rectangles, and redlining.

Drawing a rectangle refers to the application user creating a rectangle by clicking and holding the mouse button at one corner of the rectangle, dragging the mouse to the diagonally opposite corner, and releasing the mouse button.

Redlining refers to the application user creating a polygon or polyline by clicking the mouse button and then moving the mouse and clicking multiple times, with each click extending the redline by a straight line. (Redline drawings are often rendered in red, although you can specify a line style that uses any color.)

To access these functions, use the JavaScript API, which consists of several JavaScript classes. The JavaScript API has two versions:

	
Version 1 (V1), the traditional API that is still supported, and described in Section 8.4.1, "JavaScript API V1"

	
Version 2 (V2), a new API introduced in Release 11.1.1.7, and described in Section 8.4.2, "JavaScript API V2"

For detailed information about all classes in the Oracle Maps JavaScript API (V1 and V2), see the Javadoc-style reference documentation, which is included in the mvdemo.ear file and is available at the following locations:

http://host:port/mvdemo/api/oracle_maps_api.jsp (for V1)

http://host:port/mvdemo/api/oracle_maps_html5_api.jsp (for V2)

Tutorials and demos for both the V1 and V2 APIs are available as a standalone packaged application with the root context path /mvdemo. The tutorials start with the basics (display a map tile layer, add a navigation panel, display interactive features and information windows) and move on to more complex topics such as registering event listeners, programmatically creating and using styles, and spatial filtering.

The tutorials are all based on the MVDEMO sample data set (available from the MapViewer page on the Oracle Technology Network) and assume a data source named mvdemo. The tutorial page has three panels. The left one lists the sample code, or demo, titles. Click on one and a map, or the result of executing that sample code, is displayed in the top right panel. The bottom panel has tabs titled JavaScript and HTML, which respectively show the JavaScript and HTML code fragments for the selected demo.

8.4.1 JavaScript API V1

To access the functions of the Oracle Maps JavaScript client, use the JavaScript API Version 1 (V1), which consists of several JavaScript classes, including the following:

	
The MVMapView class is the main entry point of the API. It implements most of the map control interfaces.

	
The MVMapTileLayer class (formerly called the MVBaseMap class) defines a map tile layer that displays map tiles rendered by the map tile server.

	
The MVThemeBasedFOI class defines and controls the theme based FOI layers.

	
The FOI class defines and controls user-defined FOIs.

	
The MVSdoGeometry class defines a geometry object. The geometry can be in any geometry type that is supported by Oracle Spatial.

	
The MVRedLineTool class defines and controls the redline utility.

	
The MVRectangleTool class defines and controls the rectangle tool.

	
The MVOverviewMap class defines and controls the overview map that displays the miniature overview of the main map as a small rectangle (which is itself inside a rectangle tool).

	
The MVMapDecoration class defines and controls map decorations.

MVMapView is the main entry class for all map operations inside the web browser. MVMapView and the other classes provide all essential interfaces for adding logic to your web mapping applications. These logical operations can include the following:

	
Create a map client instance and associate it with the map container DIV object created in the web page.

	
Configure map parameters such as map center and map zoom level.

	
Create and manipulate map tile layers.

	
Create and manipulate theme-based FOI layers.

	
Create and manipulate user-defined individual FOIs.

	
Display an information window on the map.

	
Create fixed map decorations, such as a map title, custom copyright notes, and control buttons.

	
Access built-in utilities such as the navigation bar, scale bar, rectangle tool, redline tool, and overview map.

	
Use event listeners to customize the event handling. You can add event listeners to the MVMapView, MVThemeBasedFOI, and MVFOI classes using the appropriate API methods.

8.4.2 JavaScript API V2

The Oracle Maps JavaScript API Version 2 (V2) takes advantage of the capabilities of modern browsers. Some of its features include:

	
Built-in support of various third party map tile services, such as maps.oracle.com, Nokia Maps, Bing Maps, OpenStreet Maps, and other mapping service providers

	
Rich client side rendering of geospatial data with on-the-fly application of rendering styles and effects such as gradients, animation, and drop-shadows

	
Autoclustering of large number of points and client side heat map generation

	
Client side feature filtering based on attribute values as well as spatial predicates (query windows)

	
A rich set of built-in map controls and tools, including a customizable navigation bar and information windows, configurable layer control, and red-lining and distance measurement tools

The V2 API is not backward compatible with the existing Oracle Maps JavaScript V1 API applications. If you want to use V2-specific features with existing V1 applications (that is, applications written with the V1 API using classes such as MVThemeBasedFOI), those applications will need to be migrated first.

Note, however, that existing server-side predefined styles and themes will work with the V2 API. For example, the following code snippet creates an interactive vector layer based on a predefined theme mvdemo.customers, which has an associated predefined style:

var baseURL = "http://"+document.location.host+"/mapviewer";
var layer = new OM.layer.VectorLayer("layer1",
 {
 def:{
 type:OM.layer.VectorLayer.TYPE_PREDEFINED,
 dataSource:"mvdemo",
 theme:"customers",
 url: baseURL
 }
 });

The V2 API has the following top-level classes and subpackages, all of which are in the namespace OM:

	
The Map class is the main class of the API.

	
The Feature class represents individual geo features (or FOIs as they were known in V1).

	
The MapContext class a top-level class encapsulating some essential contextual information, such as the current map center point and zoom level. It is typically passed into event listeners.

	
The control package contains all the map controls, such as navigation bar and overview map.

	
The event package contains all the map and layer event classes.

	
The filter package contains all the client-side filters (spatial or relational) for selecting, or subsetting, the displayed vector layer features.

	
The geometry package contains various geometry classes.

	
The layer package contains various tile and vector layer classes. The tile layer classes include access to a few online map services such as Oracle, Nokia, Bing, and OpenStreetMap. The vector layers are interactive feature layers and correspond to the MVThemeBasedFOI and MVFOI classes of V1.

	
The infowindow package contains the customizable information windows and their styles.

	
The style package contains styles applicable to vector data on the client side. It also includes visual effects such as animation, gradients, and drop shadows.

	
The tool package contains various map tools such as for distance measuring, red-lining, and geometry drawing.

	
The universe package contains built-in, or predefined, map universes. A map universe defines the bounding box and set of zoom level definitions for the map content. It is similar to a tile layer configuration in the V1 API.

	
The util package contains various utility classes.

	
The visualfilter package provides an interface for the various visual effects, such as gradients and drop shadows.

OM.Map is the main entry class for all map operations inside the web browser. This and other classes provide interfaces for adding application-specific logic, operations, and interactivity in web mapping applications. The application logic and operations can include the following:

	
Create a map client instance and associate it with the map container DIV object created in the web page.

	
Configure map parameters such as map center and map zoom level.

	
Optionally, create and manipulate map tile layers. Unlike in V1, a map tile layer is not required in V2. An application can have only interactive vector layers using a custom Universe that programmatically defines the zoom levels and scales.

	
Create and manipulate vector layers (known as FOIs in V1).

	
Display an information window on the map.

	
Create fixed map decorations, such as a map title, a copyright note, and map controls.

	
Access built-in utilities such as a navigation panel, rectangle or circle tool, scale bar, and overview map panel.

	
Use event listeners to customize event handling and thus map interactions.

For information about developing applications using the V2 API, see Section 8.5.2, "Using the V2 API" and the Oracle-supplied tutorials and demos.

8.4.3 V1 and V2 APIs: Similarities and Differences

Both V1 and V2 APIs have major similarities:

	
They have the same architecture and content organization. (Figure 8-1, "Architecture for Oracle Maps Applications" and Figure 8-4, "Layers in a Map" apply to both versions.)

	
They depend on Oracle Spatial or Locator for spatial analysis (proximity, containment, nearest neighbor, and distance queries) and coordinate system support (SRIDs and transformations).

However, there are some significant differences:

	
The V2 client-side rendering of interactive features (that is, using HTML5 Canvas or SVG) provides for a richer client interactivity and user experience.

	
The V1 "FOI server" is in V2 a data server that streams the vector geometries and attributes for features to the client for local rendering. Therefore, the V1 "FOI layers" and called vector layers in V2.

	
In V2, a background map tile layer is not required in order to display interactive vector layers. So in V2, for example, an application can display a thematic map of states (such as color-filled by population quintile) with no background tile layer.

	
The V2 API depends on and includes JQuery and JQueryUI. So, oraclemapsv2.js includes jquery-1.7.2.min.js and jquery-ui-1.8.16.min.js. If your application also uses JQuery and JQueryUI and includes them already, then use the file oraclemapsv2_core.js in the <script> tag instead to load the Oracle Maps V2 library. That is, use the following:

<script src=”/mapviewer/jslib/v2/oraclemapsv2_core.js”></script>

instead of:

<script src=”/mapviewer/jslib/v2/oraclemapsv2.js”></script>

Table 8-2 shows the general correspondence between the classes in V1 and V1, although the relationships are not always one-to-one.

Table 8-2 Correspondence Between V1 and V2 API Classes

	V1 API Class	V2 API Class
	
MVMapView

	
OM.Map

	
MVMapTileLayer, MVBingTileLayer, built-in tile layers

	
OM.layer.TileLayer, OM.layer.BingTileLayer, ElocationTileLayer, NokiaTileLayer, OSMTileLayer

	
MVCustomMapTileLayer

	
Custom tile layers are not directly supported in the current release of V2. However, you can use custom tile layers by extending OM.layer.TileLayer and supplying a getTileURL callback function.

	
MVThemeBasedFOI

	
OM.layer.VectorLayer

	
MVFOI

	
OM.Feature

	
MVSdoGeometry

	
OM.geometry and its subclasses

	
MVEvent

	
OM.event and its subclasses

	
MVInfoWindowTab

	
OM.infowindow.MVInfoWindowTab

	
Styles (MVStyleColor, MVXMLStyle, MVBucketStyle, MVBarChartStyle, and so on)

	
OM.style and its subclasses

	
Tools (MVToolbar, MVDistanceTool, MVCircleTool, and so on)

	
OM.tool and its subclasses

	
Decorations and controls (MVNavigationPanel, MVMapDecoration, MVScaleBar, and so on)

	
OM.control and its subclasses

8.5 Developing Oracle Maps Applications

If you have all your map data stored in an Oracle database and have MapViewer deployed in Oracle Fusion Middleware, you can develop a web-based mapping application using Oracle Maps by following the instructions in the section relevant to the API version that you are using:.

	
Using the V1 API

	
Using the V2 API

8.5.1 Using the V1 API

To develop Oracle Maps applications using the Version 1 (V1) API, follow the instructions in these sections:

	
Creating One or More Map Tile Layers

	
Defining FOI Metadata

	
Creating the Client Application with the V1 API

8.5.1.1 Creating One or More Map Tile Layers

For each map tile layer displayed on the client side that is served by MapViewer, you must create the corresponding map tile layer on the MapViewer server side. For example, for the sample application described in Section 8.1.2, you must create a map tile layer on the server side to display oceans, county boundaries, cities and highways as a map tile layer on the client. However, if the tile layer is a custom or built-in eternal tile layer, you do not need to define the tile layer on the server side.

Before you can create a map tile layer, you must ensure that the map source from which the map tiles images are to be rendered is ready. If the map tile images are rendered based on map data stored in the database, you must create a MapViewer base map that consists of a set of predefined themes. (You can create the base map using the Map Builder tool, which is described in Chapter 9.) If the map tiles images are rendered by an external map provider, you must write a map source adapter that can fetch map images from the external server using the tile image definition specified by the map tile server.

When the map source is ready, you can create the map tile layer using the MapViewer administration page, as described in Section 1.5.3. When you create the map tile layer, you must provide proper coordinate system definition, map source definition (internal or external), and zoom level definition (number of zoom levels and map scales).

After you create the map tile layer, you can test it by using a JavaServer Page (JSP) demo application shipped with MapViewer. The JSP demo application can be accessed at http://host:port/mapviewer/fsmc/omaps.jsp. Based on your input, this application can display maps served by any map tile layer defined with the MapViewer instance.

8.5.1.2 Defining FOI Metadata

If your application needs to display dynamic features based on database query results as theme-based FOI layers, you must create a predefined MapViewer theme for each theme-based FOI layer. If your application needs to display individual dynamic features as user-defined FOIs, you must define the rendering style or styles used by the FOI server to render the FOI images. You can use the Map Builder tool (described in Chapter 9) to create predefined themes and rendering styles.

8.5.1.3 Creating the Client Application with the V1 API

Oracle Maps client applications running inside web browsers are pure HTML and JavaScript pages that do not require any plug-ins. Therefore, you can build the application using any web technology that delivers content as pure HTM. Such technologies include JavaServer Pages, Java Servlets, ASP, and .NET C#. This section discusses client application development only in pure HTML format, but you can easily apply this information to other web technologies.

As shown in Example 8-1 in Section 8.1.2, the source code for an Oracle Maps application is typically packaged in an HTML page, which consists of the following parts:

	
A <script> element that loads the Oracle Maps client library into the browser JavaScript engine. In Example 8-1, this element is:

<script language="Javascript" src="jslib/oraclemaps.js"></script>

	
An HTML DIV element that is used as the map container in the web page. The size and positioning of the DIV element can be customized to suit your needs. In Example 8-1, this element is:

<div id="map" style="left:10; top:60;width: 600px; height: 500px"></div>

	
JavaScript code that creates and initializes the map client instance. It creates the map client instance, sets up the initial map content (map tile layer, FOI layers, and so on), sets the initial map center and zoom level, implements application-specific logic, displays the map, and implements other application-specific logic.

This code should be packaged inside a JavaScript function, which is executed when the HTML page is loaded from the server to the client web browser. In Example 8-1, this function is named on_load_mapview:

function on_load_mapview()
{
 var baseURL = "http://"+document.location.host+"/mapviewer";
 // Create an MVMapView instance to display the map
 var mapview = new MVMapView(document.getElementById("map"), baseURL);
 // Add a map tile layer as background.
 mapview.addMapTileLayer(new MVMapTileLayer("mvdemo.demo_map"));
 // Add a theme-based FOI layer to display customers on the map
 var themebasedfoi = new MVThemeBasedFOI('themebasedfoi1','mvdemo.customers');
 themebasedfoi.setBringToTopOnMouseOver(true);
 mapview.addThemeBasedFOI(themebasedfoi);
 // Set the initial map center and zoom level
 mapview.setCenter(MVSdoGeometry.createPoint(-122.45,37.7706,8307));
 mapview.setZoomLevel(4);
 // Add a navigation panel on the right side of the map
 mapview.addNavigationPanel('east');
 // Add a scale bar
 mapview.addScaleBar();
 // Display the map.
 mapview.display();
}

This function is specified in the onload attribute of the <body> element, so that it is executed after the web page is loaded. In Example 8-1, this code is as follows:

<body onload= JavaScript:on_load_mapview() >

	
Additional HTML elements and JavaScript code implement other application-specific user interfaces and control logic. In Example 8-1 in Section 8.1.2, a JavaScript function setLayerVisible is implemented to show or hide the theme-based FOI layer when the user checks or unchecks the Show customers check box. The setLayerVisible function is coded as follows:

function setLayerVisible(checkBox)
{
 // Show the theme-based FOI layer if the check box is checked
 // and hide the theme-based FOI layer otherwise.
 if(checkBox.checked)
 themebasedfoi.setVisible(true) ;
 else
 themebasedfoi.setVisible(false);
}

This function is specified in the onclick attribute of the <INPUT> element that defines the check box, so that it is executed whenever the user clicks on the check box. In Example 8-1, this code is as follows:

<INPUT TYPE="checkbox" onclick="setLayerVisible(this)" checked/>Show customers

8.5.2 Using the V2 API

Developing applications with the V2 API is similar to the process for the V1 API. If all the spatial data used for base maps, map tile layers, and interactive layers or themes is stored in an Oracle database, then the map authoring process using the Map Builder tool is the same for both APIs.

If the underlying base map and layers are managed in an Oracle database, each map tile layer displayed in the client application must have a corresponding database metadata entry in the USER_SDO_CACHED_MAPS metadata view (described in Section 8.2.2.2) . Similarly, if an interactive layer is based on database content, it must have a metadata entry in the USER_SDO_THEMES view (described in Section 2.9, especially Section 2.9.2). These tile and interactive layers, and the styles and styling rules for them, can be defined using the Map Builder tool (described in Chapter 9).

To develop Oracle Maps applications using the Version 2 (V2) API, follow these basic steps:

	
Import the oraclemapsv2.js library.

The API is provided in a single JavaScript library packaged as part of the MapViewer EAR archive.

	
After MapViewer is deployed and started, load the library through a <script> tag, for example:

<script type="text/javascript" url="http://localhost:8080/mapviewer/jslib/v2/oraclemapsv2.js"/>

	
Create a <DIV> tag in the HTML page, which will contain the interactive map. (This is the same as in the V1 API.)

	
Create a client-side map instance that will handle all map display functions.

The class is named OM.Map and is the main entry point of the V2 API. So, OM.Map in V2 is equivalent to MVMApView in V1.

	
Set up a map universe (unless you also do the optional next step).

A map universe basically defines the overall map extent, the number of zoom levels, and optionally the resolution (in map units per pixel) at each zoom level. In the V1 API, this information is contained in a tile layer definition. Those will continue to work in V2; however, in V2 a predefined tile layer is not necessary in order to display interactive vector layers or themes. For example, an interactive thematic map of sales by region does not need to have a background map, or tile layer.

	
(Optional) Add a tile layer that serves as the background map.

The tile layer can be from the database, such as mvdemo.demo_map, or from a supported service, such as Nokia Maps. Adding a tile layer also implicitly defines a map universe, and therefore the preceding step (setting up a map universe) is not necessary in this case.

	
Add one or more interactive vector layers.

An OM.layer.VectorLayer is equivalent to MVThemeBasedFOI in the V1 API. The main difference in that OM.VectorLayer uses HTML5 (Canvas or SVG) technology to render all the data in the browser. So, unless specified otherwise, all vector layer content is loaded once and there are no subsequent database queries, or data fetching, on map zoom or pan operations.

	
Add one or more map controls, tools, and other application-specific UI controls so that users can set the displayed layers, styling, and visual effects.

For detailed instructions and related information, see the Oracle-supplied tutorials and demos.

8.5.2.1 Creating the Client Application with the V2 API

Oracle Maps V2 applications run inside web browsers and require only HTML5 (Canvas) support and JavaScript enabled. No additional plugins are required.

As shown in Example 8-1, "Source Code for the Simple Application (V1 API)"in Section 8.1.2, the source for an Oracle Maps application is typically packaged in an HTML page, which consists of the following parts:

	
A <script> element that loads the Oracle Maps V2 client library into the browser's JavaScript engine. For example:

<script src=”/mapviewer/jslib/v2/oraclemapsv2.js”></script>

	
An HTML <div> element that will contain the map. For example:

<div id="map" style="width: 600px; height: 500px"></div>

	
JavaScript code that creates the map client instance and sets the initial map content (tile and vector layer), the initial center and zoom, and map controls. This code should be packaged inside a function which is executed when the HTML page is loaded or ready. The function is specified in the onload attribute of the <body> element of the HTML page. For example:

function on_load_mapview()
{
 var baseURL = "http://"+document.location.host+"/mapviewer";
 // Create an OM.Map instance to display the map
 var mapview = new OM.Map(document.getElementById("map"),
 {
 mapviewerURL:baseURL
 });
 // Add a map tile layer as background.
 var tileLayer = new OM.layer.TileLayer(
 "baseMap",
 {
 dataSource:"mvdemo",
 tileLayer:"demo_map",
 tileServerURL:baseURL+"/mcserver"
 });
 mapview.addLayer(tileLayer);
 // Set the initial map center and zoom level
 var mapCenterLon = -122.45;
 var mapCenterLat = 37.7706;
 var mapZoom = 4;
 var mpoint = new OM.geometry.Point(mapCenterLon,mapCenterLat,8307);
 mapview.setMapCenter(mpoint);
 mapview.setMapZoomLevel(mapZoom);
 // Add a theme-based FOI layer to display customers on the map
 customersLayer = new OM.layer.VectorLayer("customers",
 {
 def:
 {
 type:OM.layer.VectorLayer.TYPE_PREDEFINED,
 dataSource:"mvdemo", theme:"customers",
 url: baseURL,
 loadOnDemand: false
 }
 });
 mapview.addLayer(customersLayer);
 // Add a navigation panel on the right side of the map
 var navigationPanelBar = new OM.control.NavigationPanelBar();
 navigationPanelBar.setStyle(
{backgroundColor:"#FFFFFF",buttonColor:"#008000",size:12});
 mapview.addMapDecoration(navigationPanelBar);
 // Add a scale bar
 var mapScaleBar = new OM.control.ScaleBar();
 mapview.addMapDecoration(mapScaleBar);
 // Display the map.
 // Note: Change from V1. In V2 initialization and display is done just once
 mapview.init();
}

	
Additional HTML elements and JavaScript code that implement other application-specific user interface and control logic. For example, the HTML <input> element and JavaScript function setLayerVisible together implement a layer visibility control. The setLayerVisible function is coded as follows:

function setLayerVisible(checkBox)
{
 // Show the customers vector layer if the check box is checked and
 // hide it otherwise.
 if(checkBox.checked)
 customersLayer.setVisible(true) ;
 else
 customersLayer.setVisible(false);
}

The function is specified in the onclick attribute of the <input> element defining the checkbox. In the following example, the function is executed whenever the user clicks on the Show Customers check box:

<INPUT TYPE="checkbox" onclick="setLayerVisible(this)" checked/>Show Customers

8.6 Using Google Maps and Bing Maps

Applications can display Google Maps tiles or Microsoft Bing Maps tiles as a built-in map tile layer, by creating and adding to the map window an instance of MVGoogleTileLayer or MVBingTileLayer, respectively. Internally, the Oracle Maps client uses the official Google Maps or Bing Maps API to display the map that is directly served by the Google Maps or Microsoft Bing Maps server.

	
To use the Google Maps tiles, your usage of the tiles must meet the terms of service specified by Google (see https://developers.google.com/readme/terms).

	
To use the Bing Maps tiles, you must get a Bing Maps account. Your usage must meet the licensing requirement specified by Microsoft (see http://www.microsoft.com/maps/).

If you need to overlay your own spatial data on top of the Google Maps or Microsoft Bing Maps tile layer, see also Section 8.7, "Transforming Data to a Spherical Mercator Coordinate System".)

The following sections describe the two options for using built-in map tile layers:

	
Section 8.6.1, "Defining Google Maps and Bing Maps Tile Layers on the Client Side"

	
Section 8.6.2, "Defining the Built-In Map Tile Layers on the Server Side"

8.6.1 Defining Google Maps and Bing Maps Tile Layers on the Client Side

To define a built-in map tile layer on the client side, you need to create a MVGoogleTileLayer or MVBingTileLayer object, and add it to the MVMapView object. (As of Oracle Fusion Middleware Release 11.1.1.6, MVGoogleTileLayer uses the Google Maps Version 3 API by default, and MVBingTileLayer uses the Bing Maps Version 7 API by default.)

For example, to use Google tiles, add the Google tile layer to your map:

mapview = new MVMapView(document.getElementById("map"), baseURL);
tileLayer = new MVGoogleTileLayer() ;
mapview.addMapTileLayer(tileLayer);

In your application, you can invoke the method MVGoogleTileLayer.setMapType or MVBingTileLayer.setMapType to set the map type to be one of the types supported by the map providers, such as road, satellite, or hybrid.

For usage examples and more information, see the JavaScript API documentation for MVGoogleTileLayer and MVBingTileLayer, and the tutorial demos Built-in Google Maps Tile Layer and Built-in Bing Maps Tile Layer.

8.6.2 Defining the Built-In Map Tile Layers on the Server Side

You can define a built=-in map tile layer on the server side and use it as a regular MapViewer tile layer on the client side. To define a built-in map tile layer on the server side, follow these steps:

	
Log into the MapViewer Administration Page (explained in Section 1.5.1).

	
Select the Manage Map Tile Layers tab and click Create.

	
When you are asked to select the type of map source, choose Google Maps or Bing Maps and click Continue.

	
Select the data source where the tile layer is to be defined.

	
Set the license key that you have obtained from the map provider.

	
Click Submit to create the tile layer.

After you have created the built-in map tile layer on the server side, you can use it like any other tile layer served by MapViewer. You do not need to add any <script> tag to load the external JavaScript library.

The following example shows a Bing Maps tile layer defined on the server side:

mapview = new MVMapView(document.getElementById("map"), baseURL);
// The Bing tile layer is defined in data source "mvdemo".
tileLayer = new MVMapTileLayer("mvdemo.BING_MAP") ;
mapview.addMapTileLayer(tileLayer);

In your application, you can invoke the method MVMapTileLayer.setMapType to set the map type to be one of the types supported by the map providers, such as road, satellite, or hybrid.

8.7 Transforming Data to a Spherical Mercator Coordinate System

Popular online map services such as Google Maps and Microsoft Bing Maps use a spherical Mercator projection for their maps. If you are using an Oracle Database release earlier than 11.1.0.7, and if you need to overlay your own spatial data on top of such a tile layer, such as a Google Maps or Microsoft Bing Maps tile layer, you must set up the database to properly handle coordinate system transformation between the coordinate system of that tile layer and your own data coordinate system, if the two coordinate systems are not the same.

	
Note:

To perform the actions in this section, your database must be Release 10.2.0.1 or later.

Google Maps uses a Spherical Mercator coordinate system (EPSG: 3785), which is also widely used among commercial API providers such as Yahoo! Maps and Microsoft Bing Maps. This coordinate system (SRID 3785) was not provided with Oracle Spatial before Release 11.1.0.7. In order to enable MapViewer and Oracle Spatial to transform your own data to this coordinate system, you must first add this coordinate system definition into your Oracle database if it is not already defined.

To check if this coordinate system is defined, you can enter the following statement:

SELECT srid FROM mdsys.cs_srs WHERE srid=3785;

If the preceding statement returns a row, you do not need to perform the actions in this section. If the preceding statement does not return a row, you must perform the actions in this section in order to be able to overlay your own spatial data on top of the tile layer.

Follow these steps:

	
Connect to the database as a privileged user, such as one with the DBA role.

	
Run the csdefinition.sql script, as follows. (Replace $OC4J_HOME with the root directory of the OC4J instance where your MapViewer is deployed, and enter the command on a single line.)

	
Linux: $OC4J_HOME/j2ee/home/applications/mapviewer/web/WEB-INF/admin/csdefinition.sql

	
Windows: $OC4J_HOME\j2ee\home\applications\mapviewer\web\WEB-INF\admin\csdefinition.sql

	
If necessary, create a transformation rule to cause Oracle Spatial to skip datum conversion when transforming data from a specified coordinate system to the Spherical Mercator system. To find out if you need to create such a transformation rule, see Section 8.7.1.

	
Either pre-transform your spatial data for better performance, or let MapViewer transform the data at runtime ("on the fly"). Note that if your database release is earlier than 10.2.0.4, pre-transforming is the only option.

	
To pre-transform all your data into the Spherical Mercator coordinate system, use the SDO_CS.TRANSFORM_LAYER procedure on all the data, and use the transformed data for mapping. (See the SDO_CS.TRANSFORM_LAYER reference section in Oracle Spatial and Graph Developer's Guide.)

	
To let MapViewer transform the data at runtime, do not transform the data before using it for mapping.

8.7.1 Creating a Transformation Rule to Skip Datum Conversion

Spatial data is often in a coordinate system based on an ellipsoid datum, such as WGS84 or BNG. In such cases, Oracle Spatial by default applies datum conversion when transforming the data into the Spherical Mercator system. This will introduce a small amount of mismatch or error between your data and the Google Maps other map service tiles. If you want to address this issue, you can create transformation rules that tell Oracle Spatial to skip datum conversion when transforming data from a specified coordinate system to the Spherical Mercator system.

Example 8-10 shows SQL statements that are included in the csdefinition.sql script and that create such transformations rules. However, if the coordinate system of your spatial data is not covered by the rules shown in Example 8-10, you can create your own rule if the coordinate system of your data is not covered by these rules. (For more information about creating coordinate system transformation rules, see Oracle Spatial and Graph Developer's Guide.)

Example 8-10 Transformation Rules Defined in the csdefinition.sql Script

-- Create the tfm_plans, that is, the transformation rules.
-- Note: This will result in an incorrect conversion since it ignores a datum
-- datum between the ellipsoid and the sphere. However, the data will match
-- up better on Google Maps.

-- For wgs84 (8307)
call sdo_cs.create_pref_concatenated_op(83073785, 'CONCATENATED OPERATION 8307 3785', TFM_PLAN(SDO_TFM_CHAIN(8307, 1000000000, 4055, 19847, 3785)), NULL);

-- For 4326, EPSG equivalent of 8307
call sdo_cs.create_pref_concatenated_op(43263785, 'CONCATENATED_OPERATION_4326_3785', TFM_PLAN(SDO_TFM_CHAIN(4326, 1000000000, 4055, 19847, 3785)), NULL);

-- For OS BNG, Oracle SRID 81989
call sdo_cs.create_pref_concatenated_op(819893785, 'CONCATENATED OPERATION 81989 3785', TFM_PLAN(SDO_TFM_CHAIN(81989, -19916, 2000021, 1000000000, 4055, 19847, 3785)), NULL);

-- For 27700, EPSG equivalent of 81989
call sdo_cs.create_pref_concatenated_op(277003785, 'CONCATENATED_OPERATION_27700_3785', TFM_PLAN(SDO_TFM_CHAIN(27700, -19916, 4277, 1000000000, 4055, 19847, 3785)), NULL);
commit;

8.8 Dynamically Displaying an External Tile Layer

The Oracle Maps JavaScript API supports dynamically defining an external tile layer without needing any server-side storage of either the definition or the tile images. Basically, you can use the class MVCustomTileLayer to reference and display tile layers served directly from any external map tile server on the web, such as the ESRI ArcGIS tile server, the OpenStreet map tile server, or other vendor-specific map tile servers.

To do so, you need to do the following when creating a new MVCustomTileLayer instance:.

	
Know the configuration of the map tile layer, specifically its coordinate system, boundary, and zoom level.

	
Supply a function that can translate a tile request from Oracle Maps into a tile URL from the external tile server.

The configuration of a tile layer takes the form of a JSON object, and is generally in the format illustrated by the following example:

var mapConfig = {mapTileLayer:"custom_map", format:"PNG",
coordSys:{srid:8307,type:"GEODETIC",distConvFactor:0.0, minX:-180.0,minY:-90.0,maxX:180.0,maxY:90.0},
zoomLevels:
[{zoomLevel:0,name:"level0",tileWidth:15.286028158107968,tileHeight:15.286028158107968,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:1,name:"level1",tileWidth:4.961746909541633,tileHeight:4.961746909541633,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:2,name:"level2",tileWidth:1.6105512127664132,tileHeight:1.6105512127664132,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:3,name:"level3",tileWidth:0.5227742142726501,tileHeight:0.5227742142726501,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:4,name:"level4",tileWidth:0.16968897570090388,tileHeight:0.16968897570090388,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:5,name:"level5",tileWidth:0.05507983954154727,tileHeight:0.05507983954154727,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:6,name:"level6",tileWidth:0.017878538533723076,tileHeight:0.017878538533723076,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:7,name:"level7",tileWidth:0.005803187729944108,tileHeight:0.005803187729944108,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:8,name:"level8",tileWidth:0.0018832386690789012,tileHeight:0.0018832386690789012,tileImageWidth:256,tileImageHeight:26},
{zoomLevel:9,name:"level9",tileWidth:6.114411263243185E-4,tileHeight:6.114411263243185E-4,tileImageWidth:256,tileImageHeight:256}]
};

For the a function that can translate a tile request from Oracle Maps into a tile URL from the external tile server, specify a function such as the following example:

function getMapTileURL(minx, miny, width, height, level)
{
 var x = (minx-mapConfig.coordSys.minX)/mapConfig.zoomLevels[level].tileWidth ;
var y = (miny-mapConfig.coordSys.minY)/mapConfig.zoomLevels[level].tileHeight ;
return "http://localhost:8888/mapviewer/mcserver?request=gettile&format=" + mapConfig.format + "&zoomlevel="+level+"&mapcache=mvdemo.demo_map&mx=" + Math.round(x) + "&my=" + Math.round(y) ;
}

In the preceding example, the function getMapTileURL() is implemented by the application to supply a valid URL from the external tile server that fetches a map tile image whose top-left corner will be positioned at the map location (minx,miny) by the Oracle Maps client. Each map tile image is expected to have the specified size (width,height), and it should be for the specified zoom level (level). This specific example is actually returning a gettile URL from the local MapViewer tile server; however the approach also applies to any non-MapViewer tile servers.

The new custom tile layer is added to the client mapViewer just like a built-in map tile layer.

10 Oracle MapViewer Editor

This chapter describes the Oracle MapViewer Editor, also referred to as the Map Editor. It contains essentially the same information as is available in the online help available when you use Oracle Map Editor.

To see the online help, click the Help (question mark) icon in the Map Canvas area toolbar:

[image: Help icon]

Major Topics

MapViewer Editor Concepts and Usage

MapViewer Editor Reference

10.1 MapViewer Editor Concepts and Usage

The Related Topics cover important MapViewer Editor concepts and include a suggested typical workflow to help you get started editing spatial data.

Related Topics

About the MapViewer Editor

MapViewer Editor Main Window

Editing Sessions

Getting Started: A Typical Workflow

Known Issues

See Also

MapViewer Editor Reference

10.1.1 About the MapViewer Editor

The MapViewer Editor is a web-based spatial data editing tool. It is distributed as part of the MapViewer EAR file, and can be launched as a Java applet from any web browser once the MapViewer server is up and running. The MapViewer Editor supports multiuser, multisession online data editing capabilities across an enterprise.

The MapViewer Editor assume that the spatial data to be edited consists of two-dimensional (2D) geometries of type SDO_GEOMETRY. Oriented points are supported. However, editing of 3D and LRS (Linear Referencing System) geometries is not fully supported, and editing operations on these objects may produce unknown results (that is, such data might be able to be visualized, but editing operations might not work).

To use the MapViewer Editor effectively, you must understand the concepts explained in the "Spatial Data Types and Metadata" chapter in Oracle Spatial and Graph Developer's Guide.

10.1.2 MapViewer Editor Main Window

The MapViewer Editor has the main window shown in Figure 10-1.

Figure 10-1 MapViewer Editor Main Window

[image: Description of Figure 10-1 follows]

Description of "Figure 10-1 MapViewer Editor Main Window"

The MapViewer Editor main window has three major areas:

	
The Edit Session Area on the left side (labeled in the figure as STATES_SE, the current editing session name) enables you to specify operations and settings for the session and data layers, and to override the default rendering and labeling properties. The Rendering Properties and Labeling Properties panels can be expanded and collapsed.

	
The Map Canvas Area in the middle is where the map is displayed. The content of this area changes to reflect properties or preferences that you set, tools that you select, and data editing operations that you perform.

	
The Tools Area on the right side contains a set of collapsible panels, each containing a set of tools grouped according to their functions. The panels are for Feature Tools, Drawing Tools, Vertex Tools, Grouping Tools, Geometry Tools, and Transformation Tools.

10.1.3 Editing Sessions

With the MapViewer Editor, an editing session (also referred to as just a session) defines a personal workspace where you, the MapViewer Editor user, can edit spatial data. Each session can contain at least the following information:

	
Name of the session (specified when you create a new session)

	
List of data layers, including background layers and editable tables with spatial geometry data

	
Data table display styles

	
Name of the user that created the session (that is, the session owner)

The session definition is stored persistently in the database where edits for that session will occur. A user can have multiple editing sessions at any given time.

Within each session, you typically add one or more background layers (each of which can be any predefined theme, base map, or tile layer), plus one or more editing layers. The editing layers usually come from the same MapViewer data source (the database schema) or from published features of Web Feature Servers (WFS).

Editing sessions are stored in the USER_SDO_EDIT_SESSIONS view. Before you use the MapViewer Editor, a DBA must run the sdedefinition.sql script, as explained in Section 10.1.4.1, "Installing the USER_SDO_EDIT_SESSIONS View".

10.1.3.1 Editing Mode

To edit spatial data, you just perform certain basic steps as explained in Section 10.1.4, "Getting Started: A Typical Workflow", one of which is to enable editing mode for the session editable layer.

The editable data tables in a session may be rendered differently depending on whether the session editable layer is in editing mode. When you create or reopen a session, the layer is generally not in editing mode. When not in editing mode, the data layers are rendered by the MapViewer server, and the editor application simply displays an image generated by the server.

When you switch the layer session into editing mode, the editable data tables are rendered differently from the other layers (which are still rendered at the server side). These tables are rendered as live vector features ready to be edited. A good practice is to not set to editable mode when too many features are visible, because the application will try to load them on the client side. For editing it is recommended that you work on small areas to avoid bringing too much information to the client.

Any edits made within a session can be saved, and the saved changes, while persisted in the database, are only visible within the same session unless the session is being edited in LIVE workspace. If another user creates a new session that operates on the same data table but on a workspace that is not LIVE, that session will not see the changes made in the first session, and vice versa. Changes are only visible to others when a session with a workspace other than LIVE is merged.

When a session is merged, all the edits made within that session are published to the live data tables, and are visible by any user that queries the table. The session is effectively completed, but it is still stored in the database (for future editing), and it can be purged later.

If a session has saved edits but has not been merged, the editor can reopen it anytime from anywhere, and continue to make edits. It is typical for a session to be kept open for multiple days or even longer.

10.1.3.2 Security and Multiuser Editing Considerations

The MapViewer Editor is designed to be used by multiple users across an organization. The editor itself relies on the MapViewer server for user management and security. When a user launches the editor from the MapViewer home page, that user must be logged in to the server as a J2EE or middleware user with the map_edit_role role. New users can be added to the J2EE container by your administrator, and the required map_edit_role role must be granted. (The map_admin_role role also enables a user to log in and use the MapViewer Editor.)

Each user must create or reopen an editing session, where that user can make changes to the data tables. In a multiuser environment, conflicts between edits across sessions may be unavoidable unless all users coordinate their work and follow clear rules.

10.1.4 Getting Started: A Typical Workflow

This topic describes a typical workflow example that involves making some edits to a spatial data table, using the MVDEMO sample data schema. The basic steps are:

	
Installing the USER_SDO_EDIT_SESSIONS View

	
Making a MapViewer Data Source Editable

	
Launching the MapViewer Editor and Logging In

	
Selecting a Data Source and Creating a New Session

	
Adding Data Layers to a Session

	
Changing Data Layer Properties

	
Navigating the Map and Enabling Editing Mode

	
Selecting a Feature for Editing

	
Saving and Merging Session Edits

These basic steps illustrate a typical work flow where you create a new session, load an existing geometry table, make a few edits then end the session and merge the changes to the live table if session is versioned.

(Alternatively, after creating a new session, you can also create a new table by clicking on the tree node to create a new geometry layer. You can then add a few background layers and start digitizing new features for your new table.)

10.1.4.1 Installing the USER_SDO_EDIT_SESSIONS View

This one-time task, which must be performed by a DBA, installs the USER_SDO_EDIT_SESSIONS system view that is required by the MapViewer Editor. To perform this installation, run the SQL script file sdedefinition.sql, which is in the MapViewer WEB-INF/admin directory.

The definitions of all editing sessions are stored in the USER_SDO_EDIT_SESSION view. Each session has the following attributes:

	
name: name of the session.

	
description: description of the session.

	
editor: name of the owner of the session. This name is not the user schema name, but can be any name that identifies the person doing the editing.

	
area: name of the area for the session (not currently used).

	
workspace: name of then underlying Oracle workspace. The workspace name is automatically assigned when the session is created. If the session is not versioned, the name LIVE is assigned; if the session is versioned, the name is a combination of <editor-name>_<session-name>_<data-source-name>.

	
definition: XML description of the session, including the general session attributes and the layer descriptions.

10.1.4.2 Making a MapViewer Data Source Editable

The MapViewer Editor will only load data sources that have been made editable. To make a data source editable, you must modify the <map_data_source> element of the MapViewer configuration file to specify editable="true". For example:

<map_data_source name="mvdemo"
 jdbc_host="yourhost.com"
 jdbc_sid="lbsmain"
 jdbc_port="37407"
 jdbc_user="mvdemo"
 jdbc_password="!mvdemo"
 jdbc_mode="thin"
 number_of_mappers="3"
 allow_jdbc_theme_based_foi="true"
 editable="true"
 />

The default value for the editable attribute is false, which means that the data source is not editable.

10.1.4.3 Launching the MapViewer Editor and Logging In

Before using the MapViewer Editor, ensure that MapViewer is deployed and the mvdemo data source is defined.

	
Go to the MapViewer home page, typically http://<host>:<port>/mapviewer.

	
Click the Editor link in the upper-right corner (between Admin and Help).

	
Log in as the administrative user for the application server (for example, weblogic for WebLogic Server).

A loading screen is displayed with a large Java icon. After the loading is complete, the MapViewer Editor Main Window is displayed.

10.1.4.4 Selecting a Data Source and Creating a New Session

Select a data source and create a new editing session.

	
In the Session and Data Layer Operations Toolbar on the left in the Edit Session Area, click the Open an edit session icon to display a dialog box with the editable data sources for this MapViewer server, shown in Figure 10-2.

Figure 10-2 Open an Edit Session

[image: Description of Figure 10-2 follows]

Description of "Figure 10-2 Open an Edit Session"

	
To select a data source on a displayed available server, click it. For example, in the data sources display tree, under MVDEMO, click the Create Edit Session node.

	
In the Create Edit Session dialog box, enter the appropriate information:

Name: Name for the editing session. Example: STATES_LIVE

Description: Optional descriptive text about the session. Example: Edit US states data

Version Enabled: If this option is checked, a new workspace will be created for this session, and any changes can be merged later. If this option is not selected, the session edits will be applied directly to LIVE data without any version control. For versioned sessions (not LIVE), the workspace name will be on the form <EDITOR_NAME>_<SESSION_NAME>_<DATASOURCE>, so each versioned session will have its own workspace.

	
Note:

Versioned sessions involve tables that have been version-enabled using Oracle Workspace Manager. For more information, see Oracle Database Workspace Manager Developer's Guide.

If the data source is not on a displayed available server, you can click Connect to Server to display the dialog box shown in Figure 10-3.

Figure 10-3 Select Data Source

[image: Description of Figure 10-3 follows]

Description of "Figure 10-3 Select Data Source"

In the Select Data Source dialog box, enter the appropriate information:

	
MapViewer Server: URL of the MapViewer server for the data source.

	
Editor Name: Name of the session owner (to be used to filter the sessions to be displayed).

	
Data Server Authentication (Form Type): If the MapViewer server is a secured server.(with form authentication), check this option and enter the User and Password information.

After you click OK, all edit session names on the specified this server associated with the specified editor name will be loaded into the tree.

10.1.4.5 Adding Data Layers to a Session

Add one or more data layers to the editing session.

	
In the Session and Data Layer Operations Toolbar on the left in the Edit Session Area, click the Add spatial data icon to display the Add Spatial Data dialog box.

	
In this dialog box, shown in Figure 10-4, click the desired server, then Geometry layers, then the desired data source (MVDEMO in this example), and then the desired layer (STATES in this example).

Figure 10-4 Add Spatial Data

[image: Description of Figure 10-4 follows]

Description of "Figure 10-4 Add Spatial Data"

[8307] next to each layer indicates that the layer is based on SRID 8307, that is, the WGS 84 longitude-latitude coordinate system. All data used in an editing session must be based on the same SRID.

After you click OK, the MapViewer Editor sets an area for the map based on the metadata information for the layer table, retrieves the area covered by the data, and sets a subset area as the current map area. (If the map area does not contain data, enter other values on the map canvas, such as center X, center Y, and height or scale, and press the Refresh button to redraw the map.)

10.1.4.6 Changing Data Layer Properties

For editable layers based on Oracle tables, you must ensure that Key Column is correctly set for this data, and that it is not ROWID.

When the editable layer is added in the Edit Session Area, the MapViewer Editor automatically checks if the layer table has a primary key, and it sets the Key Column property with this value. If Key Column is set to ROWID, the MapViewer Editor cannot edit the data. In this case, you must set the Key Column property to another column in the table that contains unique values. (It does not have to be the primary key of the table, but it must contain unique values.)

To change the Key Column value:, in the Session and Data Layer Operations Toolbar on the left in the Edit Session Area, click Edit session properties to display a dialog box for editing Session and Layer Preferences.

	
In the Session and Data Layer Operations Toolbar on the left in the Edit Session Area, click Edit session properties to display a dialog box for editing Session and Layer Preferences

	
In the dialog box, for Key Column select a text column that contains unique values. For example, for STATES the key column could be STATE_ABRV (the two-character state abbreviation).

10.1.4.7 Navigating the Map and Enabling Editing Mode

You can use the Navigation Panel in the upper-left corner of the map canvas area to pan the map and to perform zoom (marquee, in, out) operations.

You can use the Data Layers panel in the Edit Session Area on the left to control layer visibility, make layers editable, specify or change the target layer on which editing operations are applied, and make other selections that affect the editing session behavior.

Some suggested steps:

	
Pan to the specific map area that you want to edit and optionally zoom, using the Navigation Panel in the upper-left corner of the map canvas area.

	
For the desired data layer, check the Layer is editable (pencil) icon in the Data Layers panel to enter in editing mode for the layer.

If the session is versioned and a data layer is made editable, the MapViewer Editor checks that the layer base table is versioned using Oracle Workspace Manager; and if it is not versioned, you will need to specify the table's primary key for versioning (if no primary key is defined).

	
For the desired data layer, check the Current editing target (target) icon in the Data Layers panel to specify that any editing will be applied to this layer.

	
Perform some editing operations using the tools in the Tools Area. (See also Selecting a Feature for Editing.)

10.1.4.8 Selecting a Feature for Editing

When the session is in editing or selection mode, as you mouse over the map area, the features are highlighted. When you click on a feature, it becomes selected (with an animated border and transparent interior area), for example, as the U.S. state of Florida is in Figure 10-5.

Figure 10-5 Feature Selected

[image: Description of Figure 10-5 follows]

Description of "Figure 10-5 Feature Selected"

The rendering of the data layer is determined by the choices made in the Rendering Properties panel. The labeling is determined by the choices made in the Labeling Properties panel. Dynamic styles are created based on the choices made in those properties panels.

The MBR (minimum bounding rectangle) of the selected feature (Florida in the preceding figure) has a manipulator around it, with nine squares that you can use to drag and resize this feature. You can also use the small red circle to rotate the feature.

The Tools Area panels in the right side of the window have tools for selection, drawing, vertex editing, grouping, and other operations.

10.1.4.9 Saving and Merging Session Edits

After you have made desired edits, save them by clicking one of these buttons on the Map Canvas Area toolbar:

	
Save edited data in the target layer applies unsaved changes that have been made in the current target layer

	
Save all edited data applies all unsaved changes that have been made in the current session.

It is recommended that you save edits frequently while in editing mode. When a save is requested, the edited data is sent back to server to be committed.

For a versioned session, remember that your edits so far are visible only in your own versioned session; they are not visible to any other users (or sessions).

	
Note:

Versioned sessions involve tables that have been version-enabled using Oracle Workspace Manager. For more information, see Oracle Database Workspace Manager Developer's Guide.

If you are completely done with a versioned session, and ready to make the changes visible to the world, you will need to merge the session by clicking the Merge session visible layers icon in the Session and Data Layer Operations Toolbar near the top in the Edit Session Area on the left. (Only versioned layers are processed; therefore, if you have many layers in the session to be merged, you can work individually on layers by making them visible, while leaving edits on other (non-visible) layers for later.)

For a versioned editing session, once changes are saved, the editable layers base tables can be merged with LIVE data. For a merge, the editable layer the edit session workspace data is compared with current LIVE data; and if a conflict occurs, the Resolve Conflicts dialog box is displayed. For example, Figure 10-6 shows that the large feature in red has a conflict for the GEOMETRY and NAME columns.

Figure 10-6 Resolve Conflicts

[image: Description of Figure 10-6 follows]

Description of "Figure 10-6 Resolve Conflicts"

Define how to resolve the conflicts by selecting the version attribute to be used as LIVE data. Note that a feature can have conflicts on both spatial and nonspatial attributes, and you can select values from the different data to resolve the conflicts. In the preceding figure, conflicts are resolved using the GEOMETRY value from the STATES_V editing session and the NAME value from the LIVE data.

When the merge process is executed and finished, the versioned edit session features will have the values selected to resolve the conflicts. The versioned editing session will still exist, but it can be purged later after final merge.

If the layer has many conflicts, you do not need to resolve all of them at once. Every time you work in the Resolve Conflicts dialog box and click OK, the affected conflicts to be resolved are processed in the server; but if the data still has one or more other conflicts, then the merge operation is not executed until all conflicts have been resolved for the layer.

Click Yes to confirm that you want the changes to be merged to the live data table that is visible to all users on the map data. If there are conflicts between versioned data and LIVE data, a merge tool dialog is displayed for resolving the conflicts and for merging the data.

10.1.5 Known Issues

See the "readme" file for any known problems and considerations with the current release.

10.2 MapViewer Editor Reference

The reference topics provide information about MapViewer Editor preferences (properties) and the areas of the main window.

Related Topics

Session and Layer Preferences

Edit Session Area

Map Canvas Area

Tools Area

See Also

MapViewer Editor Concepts and Usage

10.2.1 Session and Layer Preferences

You can edit certain preferences for session and layer properties, to specify the default values for the associated properties. The properties for which you can set preferences are in the following categories:

<session-name> Properties
Control Layer Properties
 Feature Selection
 Drawing Tools
 Vertex Tools
 Background Layer
 Scale Bar Layer
 Manipulator Layer
Data Layer Properties
 <data-layer-name> (one for each data layer)

If you make any changes in any pane and if you want to save these changes, you must click Apply before you switch to another pane or before you click Close to close the Edit Preferences dialog box.

10.2.1.1 <session-name> Properties

Includes options for the editing session.

Logging Level: Level of information for logging: info for basic (limited) information or finest for detailed information. (finest provides more information, but takes longer and requires more disk storage.)

HTTP Timeout: Maximum time in seconds to wait for a response from an HTTP request (for example, when accessing the capabilities of a WFS server).

Use HTTP Proxy: If checked, specifies the host and port of the HTTP proxy server to be used.

10.2.1.2 Control Layer Properties

Includes options for the visual aspects of the editing session, such as colors and sizes for various objects.

For color-related options, click the small box that shows the current default color to display the Choose Color dialog box, in which you can specify a new color using one of several ways: Swatches, HSV, HSL, RGB, or CMYK. For each specification that you make, the Preview area of the dialog box shows how it will appear. To save a specification, click Apply.

10.2.1.2.1 Feature Selection

Mouse over feature color: Color to be displayed for the feature under the mouse location.

Target feature color: Color of selected features of a target layer.

Non-target feature color: Color of selected features of a layer that is not a target layer

Feature element color: Color to highlight geometry elements of a feature. Used for validating and viewing feature geometries.

10.2.1.2.2 Drawing Tools

Cursor center color: Cross marker color inside cursor symbol when drawing.

Cursor border color: Boundary color of cursor symbol when drawing.

Cursor point size: Cursor symbol size in pixels.

Snap point center color: Cross marker color inside cursor symbol when mouse location snaps with a snap layer.

Snap point border color: Boundary color of cursor symbol when mouse location snaps with a snap layer.

Line segment color: Segment color between points when digitizing lines or polygons.

Line segment width: Segment width between points when digitizing lines or polygons.

Rubberband segment color: Line segment color when moving the mouse to digitize points of lines or polygons.

Rubberband segment width: Line segment width when moving the mouse to digitize points of lines or polygons.

10.2.1.2.3 Vertex Tools

Show vertices: Highlights selected feature vertices when moving the mouse around a feature boundary.

Vertex box color: Color of the rectangles representing the vertices.

Vertex box size: Size in pixels of the rectangles representing the vertices.

10.2.1.2.4 Background Layer

Background color for the displayed map area.

10.2.1.2.5 Scale Bar Layer

Show scale bar: Displays the Map Scale Bar.

10.2.1.2.6 Manipulator Layer

Color: Boundary color of the manipulator rectangle.

Snap Highlight Color: Color to highlight a snap point. When a feature is selected and the manipulator rectangle is visible, right-clicking provides an option to set a snap point on the selected feature. This snap point can be used when moving the feature to snap at another location.

Changed Feature Color: Color of the boundary of the feature when it is being moved.

Handle Size: Size in pixels of the manipulator rectangle corner markers.

Hide When Obstructed: Hides the manipulator rectangle when it is covered by another panel.

10.2.1.3 Data Layer Properties

For each data layer, the properties for which you can set preferences depend on the type of data layer:

	
Geometry Layer Properties

	
WFS Layer Properties

10.2.1.3.1 Geometry Layer Properties

Contains the Data Set and Rendering tabs.

Data Set tab:

MapViewer Server: URL of the MapViewer server where the layer is defined.

Key Column: Layer key column for editable features. Does not need to be the primary key, but the data values must be unique.

Geometry Column: Name of the geometry column associated with this layer.

Query Condition: Optional condition for filtering the layer features (SQL WHERE clause without the WHERE keyword).

Live Scale: (Not currently used.)

Label Column: If checked, specify the column containing text data to be used to label features.

Shared Boundary: Applies editing operations on other geometry objects that share a boundary with the object being edited.

For example, assume that two property lots share a boundary. If this option is checked and if you edit one property lot to make it larger by modifying the shared boundary, then the other property lot's definition is modified and its size becomes correspondingly smaller. If this option is not checked, then the second lot's definition is not changed (and the two lots' definitions will overlap spatially).

Create Sequence: Creates a new sequence on the MapViewer server.

Rendering tab:

Render in MapViewer when not editable: Displays the layer in MapViewer even when it is not editable. If this option is not checked, the layer is displayed only when it is editable.

10.2.1.3.2 WFS Layer Properties

Key Column: Layer key column for editable features. Does not need to be the primary key, but the data values must be unique. Always FID for WFS 1.0.0 layers,

Geometry Column: Name of the spatial attribute of the WFS feature type.

Label Column: If checked, specify the column containing text data to be used to label features.

Polygon outer ring orientation: Specifies the polygon outer ring orientation. For Oracle Spatial data, the outer ring orientation is counterclockwise, but for external data served by WFS servers this orientation may be different. This value will be considered when building new polygons. If the polygon outer boundary digitizing has a different orientation than this value, then the coordinates will be automatically reoriented.

Shared Boundary: Applies editing operations on other features that share a boundary with the feature being edited.

For example, assume that two property lots share a boundary. If this option is checked and if you edit one property lot to make it larger by modifying the shared boundary, then the other property lot's definition is modified and its size becomes correspondingly smaller. If this option is not checked, then the second lot's definition is not changed (and the two lots' definitions will overlap spatially).

Capabilities GET URL: URL on the WFS server for GetCapabilities requests.

Version: WFS server version. (Currently only 1.0.0 is supported.)

Authentication: Specifies whether to apply Basic-type Authentication (for a secured WFS server).

10.2.2 Edit Session Area

The Edit Session area on the left side of the MapViewer Editor window enables you to specify operations and settings for the session and data layers, and to override the default rendering and labeling properties. The Rendering Properties and Labeling Properties panels can be expanded and collapsed.

	
Session and Data Layer Operations Toolbar

	
Data Layers

	
Rendering Properties

	
Labeling Properties

10.2.2.1 Session and Data Layer Operations Toolbar

At the top of the Edit Session area is a toolbar with icons for the following operations:

	
Open an edit session: Displays a dialog box in which you select the editing session to be opened.

	
Add spatial data layer: Displays a dialog box where you can add a spatial data layer to your session. Geometry layers from spatial tables can be edited; predefined themes, base maps, and tile layers are generally used as background layers and cannot be edited.

Expand the MapViewer layers or WFS layers hierarchy to find the desired data layer, then click OK.

	
Remove data layer: Removes the currently selected data layer from the Data Layers area.

	
Move data layer up: Moves the currently selected data layer up one level in the Data Layers area.

	
Move data layer down: Moves the currently selected data layer down one level in the Data Layers area.

	
Edit session properties: Displays a dialog box for editing Session and Layer Preferences.

	
Merge session visible layers (active only for versioned editing sessions) Merges merge layer workspace with LIVE workspace. (See Saving and Merging Session Edits.)

	
Save edit session definition: Saves the current session definition to the USER_SDO_EDIT_SESSIONS view. (See Editing Sessions and Installing the USER_SDO_EDIT_SESSIONS View.)

	
Delete current edit session: Removes the current session definition in the USER_SDO_EDIT_SESSIONS view.

For versioned sessions, this also removes the workspace associated with the session. However, as for versioned layer base tables, if the session layer base table has not been modified in any other workspace, a dialog box is displayed letting you choose whether to unversion the table; however, if the session layer base table has been modified in any other workspace, the table is kept versioned.

10.2.2.2 Data Layers

The Data Layers panel has a header row and a row for each spatial data layer that is available for editing (that has been added and not removed). The header row has columns with icons for each of the following operations, so that you can select and deselect options for individual layers.

	
Layer is visible (glasses icon): Controls whether the layer is visible on the map canvas or not.

	
Layer is editable (pencil icon): Controls whether the layer is editable (that is, is in editing mode for the current editing session).

A layer must be editable before you can modify its spatial data. One or more layers can be editable in a session. When you make a layer editable, the current features for the layer are loaded into the map area (if they are not already loaded) for editing.

	
Current editing target (target icon): Identifies the layer on which editing operations are to be applied.

Only zero or one layers can be the editing target, and a layer must be the editing target before you can modify its spatial data.

	
Snapping to this layer (snap icon): Controls whether the layer is a snap layer, namely, one that can be used to snap vertices when digitizing feature geometry points. In a snap layer, if the mouse pointer moves close enough to an existing vertex, the pointer automatically snaps over to that existing vertex.

Multiple layers can be used as snap layers.

	
Selection occurs on this layer (selection icon): Controls whether the layer is a selection layer.

Selection tools are used in selection layers. Features from one selection layer can be used to generate features in a different target layer, using operations such as union, intersection, and difference. One or more layers can be selection layers. When you make a layer a selection layer, the current features for the layer are loaded into the map area (if they are not already loaded) for selection.

You can use the Session and Data Layer Operations Toolbar to add and remove data layers and to move layers up and down in the display.

10.2.2.3 Rendering Properties

Rendering properties affect the rendering of editable data. Select an editable layer row in the data layer panel, and the contents of the Rendering Properties panel will reflect the current style used by the layer. You can view and modify Color, Line, and Marker properties using the appropriate tabs.

	
For Color, the attributes are fill color, stroke color, and color fill color transparency.

	
For Line, the attributes are fill/stroke color, line width, and fill/stroke color transparency.

	
For Marker, the attributes are marker type, fill color, stroke color, marker size, and fill color transparency.

10.2.2.4 Labeling Properties

Labeling properties affect the labeling of editable data. Select an editable layer row in the data layer panel, and the contents of the Labeling Properties panel will reflect the current style used by the layer.

For Labeling Properties, the attributes are text font, text color, text size, italics, and bold.

10.2.3 Map Canvas Area

The Map Canvas area in the middle of the window is where the map is displayed. The content of this area changes to reflect properties or preferences that you set, tools that you select, and data editing operations that you perform.

At the top of the Map Canvas area is a toolbar with icons for the following operations:

	
Save edited data in the target layer

	
Save all edited data

	
Undo last change

	
Redo last operation

	
Help (question-mark icon)

	
Draw previous map (not currently used)

	
Draw next map (not currently used)

	
Cx and Cy (map center X and Y coordinates in units of the spatial reference system, or SRID; for example, longitude and latitude for WGS 84 data)

	
Height (in units of the SRID) or Scale (in meters for geodetic data) of the Y-axis for the area represented in the map canvas area. For example, at a particular map canvas size and zoom level, and with WGS 84 (longitude/latitude) data, the Height value might be 5.2657 (degrees of latitude) and the corresponding Scale value might be 5,750,861 (meters).

	
Refresh the map preview

10.2.3.1 Navigation Panel

Below the Map Canvas area toolbar and on the left is a navigation panel, shown in Figure 10-7.

Figure 10-7 Navigation Panel

[image: Description of Figure 10-7 follows]

Description of "Figure 10-7 Navigation Panel"

	
Use the circle (spinning wheel) to pan the map (rotate and click an arrowhead to move the display in that direction).

	
Use the rectangle to select (press, drag, release) an area to zoom to (sometimes called marquee zoom).

	
Use the plus sign (+) to zoom in.

	
Use the minus sign (-) to zoom out.

10.2.3.2 Map Scale Bar

If you have enabled the Show scale bar property for the Scale Bar Layer, then near the bottom of the map canvas area and on the right is a map scale bar that shows the distance in miles (mi) and kilometers (km) or meters (m) represented by various segments in the bar. Figure 10-8 shows an example.

Figure 10-8 Scale Bar

[image: Description of Figure 10-8 follows]

Description of "Figure 10-8 Scale Bar"

The distances in the scale bar reflect the current zoom level.

10.2.4 Tools Area

The Tools area on the right side of the MapViewer Editor window contains a set of collapsible panels, each containing a set of tools grouped according to their functions. Specific panels and tools are enabled (visible and usable) depending on the application context. For example, if there is any active editable layer, the selection tools are enabled.

The Tools groups are:

	
Feature Tools (select, deselect, delete, duplicate, and edit feature's attributes)

	
Drawing Tools (create new features by drawing their shapes on the map)

	
Vertex Tools (manipulate individual vertices; split a polygon or perform void-related operations; break an existing line)

	
Grouping Tools (group and ungroup features)

	
Geometry Tools (validate, inspect, simplify, and add a buffer around a geometry)

	
Transformation Tools (scale, rotate, and translate features)

10.2.4.1 Feature Tools

Icons are available for the following tools:

	
Select a feature: Acts both as a generic pointer tool and a single selection tool (when clicking on a feature). When clicking on an area with no feature, it also deselects any currently selected features. When a feature is selected, its outlines become animated and (when the entire feature is within the map viewport) a set of manipulators (small squares) will be displayed around it. The Shift key can be used with the mouse click to deselect a feature if it is selected or to add it to selected list if it is not selected.

The manipulators are a set of markers that can be used to move, scale, or rotate the feature. To move a feature, press and drag the center square mark. To scale feature, press and drag one of the outside square marks. To rotate feature, press and drag the circle mark. Multiple operations can be performed, and then click anywhere outside the feature to effectively apply the changes, or use the Transformation Tools tools to apply the changes.

	
Select multiple features: Can be used to select multiple features by holding and dragging a rectangle on the map. Features that have any interaction with the rectangle are selected. The Shift key can be used with the mouse drag to deselect selected features or to add new selections to the existing selection set.

	
Select features by attribute values: Allows the selection of features based on an attribute value. Displays the Feature Selection by Attribute dialog box, where you can specify the layer base table, the attribute column, the attribute value to be used in selection, and whether to add the result to the existing selections (if any) or to replace the existing selections with the result.

	
Unselect (deselect) features: Deselects the currently selected features.

	
Delete selected features: Deletes the currently selected features.

	
Duplicate selected features: Duplicates selected features.

	
Edit feature attributes: Edits the attributes of the selected feature.

10.2.4.2 Drawing Tools

To make the drawing tools active, check on a layer to be editable and check on a target layer. When creating a new feature using one of these tools, first deselect any selected features if you want the new geometry to be a separate new feature. If you use a feature creation tool while a feature is selected, the default behavior is to append the new geometry to the selected feature.

Icons are available for the following tools:

	
Draw a point: Creates a new point feature. When you click on the map, a new point is created on the map, and a pop-up lets you enter the required key-column value, plus other attribute columns that you may want to populate. If a sequence name is assigned (can be changed in layers property panel), then the key value is automatically populated for the new feature.

	
Draw a line: Creates a new line string feature (one or more linear segment). Use the left mouse button to digitize points, and the right button to end the line string.

	
Draw a polygon: Creates a new polygon feature using linear segments. Use the left mouse button to digitize points, and the right button to end the polygon. The last point will be automatically linked to first point. To add holes (voids) to a polygon, use the corresponding tool under Grouping Tools.

	
Draw a rectangle: Creates a new rectangle feature. Press and drag to the diagonally opposite corner, then release to generate an optimized rectangle.

	
Draw a circle or ellipse: Creates a new circle or ellipse feature. Press and drag, then release to generate the circle or ellipse.

10.2.4.3 Vertex Tools

Vertex tools can be used to manipulate individual vertices. To make the vertex tools active, check on a layer to be editable and check on a target layer.

Icons are available for the following tools:

	
Add a vertex point to a line string: Adds a new vertex to an existing line segment. As you move pointer close to the target line segment, it automatically snaps onto the segment; the snapped highlighted circle is a valid location to add the vertex. Then click to add the new vertex.

	
Remove a vertex point from a line string: Removes an existing vertex. Move the mouse to the vertex (will be highlighted) and click to remove it. You also can press and drag to remove multiple vertices inside the dragging area.

	
Select and move vertex: Moves an existing vertex. Move the mouse to the vertex (snaps will highlight the vertex) and then press and drag the vertex to the new position.

	
Add a void polygon: Creates a new void in an existing polygon. Select a polygon feature and digitize the new void polygon inside the feature polygon. Use the left mouse button to digitize points, and the right button to end the polygon. The last point will be automatically linked to first point.

	
Remove a void from a polygon: Removes an existing void from a polygon. To remove the void, click anywhere inside the void boundary of the selected feature, or press and drag a rectangle that encloses the void polygon.

	
Break a line: Breaks an existing feature line string (simple line) into two lines and generates a new feature. Move the mouse over the line (snaps will highlight break points), and then click to break at the location. A dialog box is displayed for selecting which part will be a new feature and defining the new feature's attributes.

	
Split a polygon: Splits a polygon feature into two features. Move the mouse over polygon boundary (split point will be highlighted), click to get the split point (it turns blue), then click to the next split line points until you click on another boundary split point to end the split line (snaps shows the boundary point highlighted). If a polygon has void elements that are also in the split line path, when you get a split point at the void boundary, the next split line point must be at the same void element boundary. After ending the split, a dialog box is displayed for selecting which part will be a new feature and defining the new feature's attributes.

10.2.4.4 Grouping Tools

Grouping tools are used to perform operations on multiple features and elements. With some of these tools, the target layer may be different from the selection layer. Grouping tools use Oracle Spatial and Graph operations such as union, difference, and intersections.

Icons are available for the following tools:

	
Group features: Groups features. Select one or more features and click this button to group the selected features into a new feature. (A union operation is performed.)

	
Ungroup feature element: (Not currently used.)

	
Remove feature element: Removes one or more feature elements from within a features. To specify multiple elements, drag a rectangle that encloses them, and release.

	
Generate a feature from a union of features: Generates a new feature or updates an existing feature (in the target layer) based on a union of selected features. The selected features list must have features from a layer that is not the current target layer.

For example, assume that layer A is currently the target layer and you want to generate a new feature with the union of features from layer B.

	
Change the selection layer in Data layers panel on the left to layer B.

	
Select one or more features in layer B.

	
Click the Generate a feature from a union of features icon to perform the union operation between the selected features in layer B. If layer A also has a selected feature, then this feature will also be used in the union operation, and the target feature geometry will be updated.

	
Generate a feature from an intersection of features: Generates a new feature or updates an existing feature (in the target layer) based on an intersection of selected features. The selected features list must have features from a layer that is not the current target layer.

For example, assume that layer A is currently the target layer and you want to generate a new feature with the intersection of features from layer B.

	
Change the selection layer in Data layers panel on the left to layer B.

	
Select one or more features in layer B.

	
Click the Generate a feature from an intersection of features icon to perform the intersection operation between the selected features in layer B. If layer A also has a selected feature, then this feature will also be used in the intersection operation, and the target feature geometry will be updated.

	
Generate a feature from a difference of features: Generates a new feature or updates an existing feature (in the target layer) based on a difference of selected features. The selected features list must have features from a layer that is not the current target layer.

For example, assume that layer A is currently the target layer and you want to generate a new feature with the difference of features from layer B.

	
Change the selection layer in Data layers panel on the left to layer B.

	
Select one or more features in layer B.

	
Click the Generate a feature from a difference of features icon to perform the difference operation between the selected features in layer B. If layer A also has a selected feature, then this feature will also be used in the difference operation, and the target feature geometry will be updated.

	
Update target layer geometries with union of features: Updates features in the target layer with union of selected features from a different selection layer.

For example, assume there are two layers, one for States and another one for Counties, with each layer having its individual geometries. Each county feature has an attribute defining the State to which it belongs. You can make changes in county features, and then update the related state geometry with the union of the counties' changes. The results will include any necessary boundary adjustments in both geometry layers. Some sample steps:

	
Make Counties layer the target and the selection layer, and select all counties in State A.

	
Make some changes on these selected features (for example, scale all of them together).

	
Make the State layer the target layer and click the Update target layer geometries with union of features icon. A dialog box for defining the link attributes between the two layers is displayed, where you specify the target layer, target key attribute column, selection layer, and selection join attribute column.

After you click OK, the geometries of the target layer State will be updated with the union of selected features based on the selection join attribute.

10.2.4.5 Geometry Tools

Geometry tools are used to perform Oracle Spatial and Graph operations on geometry objects.

Icons are available for the following tools:

	
Validate selected geometries: Validates the selected feature geometries. If any invalid geometry is found, a dialog box is displayed with the invalid Oracle Spatial and Graph codes (For detailed information about geometry validation and error codes, see the reference material about the SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function in Oracle Spatial and Graph Developer's Guide.)

Selecting a table row in the dialog box highlights the geometry segment section related to the error. You may be able to use the available MapViewer Editor tools to fix any errors.

	
View geometry elements: Displays a dialog box showing the geometry elements of the selected feature. You can click on a geometry node or one of the elements will highlight its border. You cannot edit the geometry information in this dialog box.

	
Simplify selected geometries: Simplifies selected geometries. For polygon features, it first builds an internal topology to generate single edges between adjacent geometries. Depending on the number of selected geometries, this step may take a while for building the topology. A dialog box with two algorithm options is then shown, and you can simplify all edges or select a subset of edges to simplify. When selecting specific edges, you can also use the Shift key to deselect any previous selection. The available options depend on whether you select the Douglas-Peucker or Visvalingham-Whyatt algorithm.

For Douglas-Peucker (uses the SDO_UTIL.SIMPLIFY function, described in Oracle Spatial and Graph Developer's Guide):

	
Threshold: Minimum distance between vertices to be considered. For geodetic data, this value is in meters; otherwise, it is in data units. Use the bar to define a range of points to be removed. (However, this does not necessarily mean that the algorithm will remove precisely this amount of data.)

	
Simplify: Simplifies the selected geometries.

	
Reset: Undoes the last simplification operation.

	
o % Points: The percentage of original vertices retained after simplification.

For Visvalingham-Whyatt (uses the SDO_UTIL.SIMPLIFYVW function, described in Oracle Spatial and Graph Developer's Guide):

	
o % of points to remove: use bar to define a range of points to be removed. (However, this does not necessarily mean that the algorithm will remove precisely this amount of data.)

	
Taller triangles: Allows taller triangles when applying the flatness filter.

	
o % Points: The percentage of original vertices retained after simplification.

	
Generate a buffer feature from the selected feature: Generates a buffer feature around the selected feature. Enter the distance value to generate the buffer. If the data is geodetic, enter the value in meters; otherwise, enter the value in data units.

10.2.4.6 Transformation Tools

Icons are available for the following transformation tools:

	
Rotate selected geometries: Rotates the selected feature geometries with a specified value in degrees.

	
Scale selected geometries in X: Scales the selected feature geometry with a specified factor in the X direction.

	
Scale selected geometries in Y: Scales the selected feature geometry with a specified factor in the Y direction.

	
Translate selected geometries in X: Translates the selected geometries with a specified value in data units in X direction.

	
Translate selected geometries in Y: Translates the selected geometries with a specified value in data units in Y direction.

	
Apply transformation to selected features in target layer: Applies the current transformation to just the selected features of the target layer.

	
Apply transformation to all selected features: Applies the current transformation to all selected features.

	
Reset transformation: Clears the current transformation.

C Creating and Registering a Custom Image Renderer

This appendix explains how to implement and register a custom image renderer for use with an image theme. (Image themes are described in Section 2.3.3.)

If you want to create a map request specifying an image theme with an image format that is not supported by MapViewer, you must first implement and register a custom image renderer for that format. For example, the ECW format in Example 3-6 in Section 3.1.6 is not supported by MapViewer; therefore, for that example to work, you must first implement and register an image renderer for ECW format images.

The interface oracle.sdovis.CustomImageRenderer is defined in the package sdovis.jar, which is located in the $ORACLE_HOME/lbs/lib directory in an Oracle Fusion Middleware environment. If you performed a standalone installation of OC4J, sdovis.jar is unpacked into $MAPVIEWER/web/WEB-INF/lib. The following is the source code of this interface.

/**
 * An interface for a custom image painter that supports user-defined image
 * formats. An implementation of this interface can be registered with
 * MapViewer to support a custom image format.
 */
public interface CustomImageRenderer
{
 /**
 * The method is called by MapViewer to find out the image format
 * supported by this renderer.

 * This format string must match the one specified in a custom image renderer
 * element defined in the configuration file (mapViewerConfig.xml).
 */
 public String getSupportedFormat() ;

 /**
 * Renders the given images. MapViewer calls this method
 * to tell the implementor the images to render, the current map
 * window in user space, and the MBR (in the same user space) for each
 * image.
 *

 * The implementation should not retain any reference to the parameters
 * permanently.
 * @param g2 the graphics context to draw the images onto.
 * @param images an array of image data stored in byte array.
 * @param mbrs an array of double[4] arrays containing one MBR for each
 * image in the images array.
 * @param dataWindow the data space window covered by the current map.
 * @param deviceView the device size and offset.
 * @param at the AffineTransform using which you can transform a point
 * in the user data space to the device coordinate space. You can
 * ignore this parameter if you opt to do the transformation
 * yourself based on the dataWindow and deviceView information.
 * @param scaleImage a flag passed from MapViewer to indicate whether
 * the images should be scaled to fit the current device window.
 * If it is set to false, render the image as-is without
 * scaling it.
 */
 public void renderImages(Graphics2D g2, byte[][] images, double[][] mbrs,
 Rectangle2D dataWindow, Rectangle2D deviceView,
 AffineTransform at, boolean scaleImage) ;
}

After you implement this interface, you must place your implementation class in a directory that is part of the MapViewer CLASSPATH definition, such as the $MAPVIEWER/web/WEB-INF/lib directory. If you use any native libraries to perform the actual rendering, you must ensure that any other required files (such as .dll and .so files) for these libraries are accessible to the Java virtual machine (JVM) that is running MapViewer.

After you place your custom implementation classes and any required libraries in the MapViewer CLASSPATH, you must register your class with MapViewer in its configuration file, mapViewerConfig.xml (described in Section 1.5.2). Examine, and edit as appropriate, the following section of the file, which tells MapViewer which class to load if it encounters a specific image format that it does not already support.

 <!-- ** -->
 <!-- ******************** Custom Image Renderers ********************** -->
 <!-- ** -->
 <!-- Uncomment and add as many custom image renderers as needed here,
 each in its own <custom_image_renderer> element. The "image_format"
 attribute specifies the format of images that are to be custom
 rendered using the class with the full name specified in "impl_class".
 You are responsible for placing the implementation classes in the
 MapViewer classpath.
 -->
 <!--
 <custom_image_renderer image_format="ECW"
 impl_class="com.my_corp.image.ECWRenderer"/>
 -->

In this example, for any ECW formatted image data loaded through the <jdbc_image_query> element of an image theme, MapViewer will load the class com.my_corp.image.ECWRenderer to perform the rendering.

Example C-1 is an example implementation of the oracle.sdovis.CustomImageRenderer interface. This example implements a custom renderer for the ECW image format. Note that this example is for illustration purposes only, and the code shown is not necessarily optimal or even correct for all system environments. This implementation uses the ECW Java SDK, which in turn uses a native C library that comes with it. For MapViewer to be able to locate the native dynamic library, you may need to use the command-line option -Djava.library.path when starting the OC4J instance that contains MapViewer.

Example C-1 Custom Image Renderer for ECW Image Format

package com.my_corp.image;
import java.io.*;
import java.util.Random;
import java.awt.*;
import java.awt.geom.*;
import java.awt.image.BufferedImage;

import oracle.sdovis.CustomImageRenderer;
import com.ermapper.ecw.JNCSFile; // from ECW Java SDK

public class ECWRenderer implements CustomImageRenderer
{
 String tempDir = null;
 Random random = null;

 public ECWRenderer()
 {
 tempDir = System.getProperty("java.io.tmpdir");
 random = new Random(System.currentTimeMillis());
 }

 public String getSupportedFormat()
 {
 return "ECW";
 }

 public void renderImages(Graphics2D g2, byte[][] images,
 double[][] mbrs,
 Rectangle2D dataWindow,
 Rectangle2D deviceView,
 AffineTransform at)
 {
 // Taking the easy way here; you should try to stitch the images
 // together here.
 for(int i=0; i<images.length; i++)
 {
 String tempFile = writeECWToFile(images[i]);
 paintECWFile(tempFile, g2, mbrs[i], dataWindow, deviceView,at);
 }
 }

 private String writeECWToFile(byte[] image)
 {
 long l = Math.abs(random.nextLong());
 String file = tempDir + "ecw"+l+".ecw";
 try{
 FileOutputStream fos = new FileOutputStream(file);
 fos.write(image);
 fos.close();
 return file;
 }catch(Exception e)
 {
 System.err.println("cannot write ecw bytes to temp file: "+file);
 return null;
 }
 }

 private void paintECWFile(String fileName, Graphics2D g,
 double[] mbr,
 Rectangle2D dataWindow,
 Rectangle2D deviceView,
 AffineTransform at)
 {
 JNCSFile ecwFile = null;
 boolean bErrorOnOpen = false;
 BufferedImage ecwImage = null;
 String errorMessage = null;

 try {
 double dFileAspect, dWindowAspect;
 double dWorldTLX, dWorldTLY, dWorldBRX, dWorldBRY;
 int bandlist[];
 int width = (int)deviceView.getWidth(),
 height = (int)deviceView.getHeight();
 int line, pRGBArray[] = null;

 ecwFile = new JNCSFile(fileName, false);

 // Work out the correct aspect for the setView call.
 dFileAspect = (double)ecwFile.width/(double)ecwFile.height;
 dWindowAspect = deviceView.getWidth()/deviceView.getHeight();

 if (dFileAspect > dWindowAspect) {
 height =(int)((double)width/dFileAspect);
 } else {
 width = (int)((double)height*dFileAspect);
 }

 // Create an image of the ecw file.
 ecwImage = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_RGB);
 pRGBArray = new int[width];

 // Set up the view parameters for the ecw file.
 bandlist = new int[ecwFile.numBands];
 for (int i=0; i< ecwFile.numBands; i++) {
 bandlist[i] = i;
 }
 dWorldTLX = ecwFile.originX;
 dWorldTLY = ecwFile.originY;
 dWorldBRX = ecwFile.originX +
 (double)(ecwFile.width-1)*ecwFile.cellIncrementX;
 dWorldBRY = ecwFile.originY +
 (double)(ecwFile.height-1)*ecwFile.cellIncrementY;

 dWorldTLX = Math.max(dWorldTLX, dataWindow.getMinX());
 dWorldTLY = Math.max(dWorldTLY, dataWindow.getMinY());
 dWorldBRX = Math.min(dWorldBRX, dataWindow.getMaxX());
 dWorldBRY = Math.min(dWorldBRY, dataWindow.getMaxY());

 // Set the view.
 ecwFile.setView(ecwFile.numBands, bandlist, dWorldTLX,
 dWorldTLY, dWorldBRX, dWorldBRY, width, height);

 // Read the scan lines.
 for (line=0; line < height; line++) {
 ecwFile.readLineRGBA(pRGBArray);
 ecwImage.setRGB(0, line, width, 1, pRGBArray, 0, width);
 }

 } catch(Exception e) {
 e.printStackTrace(System.err);
 bErrorOnOpen = true;
 errorMessage = e.getMessage();
 g.drawString(errorMessage, 0, 50);
 }

 // Draw the image (unscaled) to the graphics context.
 if (!bErrorOnOpen) {
 g.drawImage(ecwImage, 0, 0, null);
 }

 }
}

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

	accelerator keys
	
	for Map Builder tool menus, 9.2

	active theme
	
	getting, 4.3.5

	add_data_source element, 7.1.1
	addBucketStyle method, 4.3.4
	addCollectionBucketStyle method, 4.3.4
	addColorSchemeStyle method, 4.3.4, 4.3.4
	addColorStyle method, 4.3.4
	addGeoRasterTheme method, 4.3.3
	addImageAreaStyleFromURL method, 4.3.4, 4.3.4
	addImageMarkerStyleFromURL method, 4.3.4, 4.3.4, 4.3.4, 4.3.4
	addImageTheme method, 4.3.3
	adding themes to a map, 2.4
	addJDBCTheme method, 4.3.3
	addJDBCTheme tag, 5.2.1
	addLinearFeature method, 4.3.3
	addLineStyle method, 4.3.4, 4.3.4
	addLinksWithinCost method, 4.3.3
	addMarkerStyle method, 4.3.4
	addNetworkLinks method, 4.3.3
	addNetworkNodes method, 4.3.3
	addNetworkPaths method, 4.3.3
	addNetworkTheme method, 4.3.3
	addPointFeature method, 4.3.3
	addPredefinedTheme method, 4.3.3
	addPredefinedTheme tag, 5.2.2
	addShortestPath method, 4.3.3
	addStyle method, 4.3.4
	addTextStyle method, 4.3.4
	addThemesFromBaseMap method, 4.3.3
	addTopologyDebugTheme method, 4.3.3
	addTopologyTheme method, 4.3.3
	addVariableMarkerStyle method, 4.3.4
	addWMSMapTheme method, E.3.4
	administrative requests, 7
	
	restricting, 1.5.2.3
	Workspace Manager support, 2.8

	advanced style, 2.2
	
	pie chart example, 3.1.9
	thematic mapping and, 2.3.11
	XML format for defining, A.6

	advanced styles
	
	example, 3.1.12

	ALL_SDO_MAPS view, 2.9, 2.9.1
	ALL_SDO_STYLES view, 2.9, 2.9.3
	ALL_SDO_THEMES view, 2.9, 2.9.2
	allow_jdbc_theme_based_foi attribute, 1.5.2.14
	allow_local_adjustment attribute, 1.5.2.5
	animated loading bar, B.2
	annotation text themes, 2.3.10
	antialiasing
	
	attribute of map request, 3.2.1.1
	setAntiAliasing method, 4.3.2
	setParam tag parameter, 5.2.10

	APIs
	
	JavaScript for Oracle Maps, 8.4
	MapViewer JavaBean, 4
	
	adding a WMS map theme, E.3.4

	MapViewer JavaScript for SVG maps, B
	MapViewer XML, 3
	
	adding a WMS map theme, E.3.1

	PL/SQL, 6

	appearance
	
	attributes affecting theme appearance, 2.3.12

	area style, 2.2
	
	XML format for defining, A.4

	asis attribute, 3.2.9
	aspect ratio
	
	preserving, 3.2.2, 3.2.3

	authentication
	
	WMS map themes, E.3.3

	automatic legends, 2.4.2
	AWT headless mode support, 1.3
	azimuthal equidistant projection
	
	used by MapViewer for globular map projection, 1.5.2.5

B

	background color
	
	for WMS requests, E.2.1.3
	setting, 4.3.2

	background image URL
	
	setting, 4.3.2

	bar chart marker style
	
	XML format for defining, A.6.5

	base maps, 2.4
	
	adding themes from base map to current map request, 4.3.3
	definition (example), 2.4
	for WMS requests, E.2.1.1
	importing, 5.2.6
	listing for a data source, 7.2
	part_of_basemap attribute for theme, 3.2.20
	setting name of, 4.3.2
	use_cached_basemap attribute, 3.2.1.1
	XML format, A
	XML format for defining, A.8

	basemap
	
	attribute of map request, 3.2.1.1
	setParam tag parameter, 5.2.10

	BASEMAP parameter (WMS), E.2.1.1
	BBOX parameter (WMS), E.2.1.2
	bean
	
	MapViewer API for, 4

	bgcolor
	
	attribute of map request, 3.2.1.1
	setParam tag parameter, 5.2.10

	BGCOLOR parameter (WMS), E.2.1.3
	bgimage
	
	attribute of map request, 3.2.1.1
	setParam tag parameter, 5.2.10

	binding parameters, 2.3.1.3
	
	example, 3.1.11

	Bing Maps
	
	built-in map tile layers, 8.6
	displaying tile layer using Oracle Maps, 8.1.3.1
	transforming data to the Microsoft Bing Maps coordinate system, 8.7

	bitmap masks
	
	with GeoRaster themes, 2.3.4.2

	border margin
	
	for bounding themes, 3.2.2

	bounding box
	
	for WMS requests, E.2.1.2
	specifying for map, 3.2.3

	bounding themes
	
	specifying for map, 3.2.2, 4.3.2

	bounding_themes element, 3.2.2
	box element, 3.2.3
	bucket style
	
	adding to map request, 4.3.4, 4.3.4
	specifying labels for buckets, 2.2.2
	XML format for defining, A.6.1

	bugs, 10.1.5
	built-in map tile layers, 8.6

C

	cache
	
	metadata, 2.5, 7.6.1
	spatial data, 1.5.2.6, 7.6.2
	with predefined themes, 2.3.1.5

	caching attribute
	
	for predefined theme, 2.3.1.5, A.7

	center element, 3.2.4
	center point
	
	setting, 4.3.2

	centerX
	
	setParam tag parameter, 5.2.10

	centerY
	
	setParam tag parameter, 5.2.10

	classgen.jar file, E.1.1
	clear_cache element, 7.6.1
	clear_theme_cache element, 7.6.2
	clickable (live) features, 4.3.10
	client handle, 6.2.2
	cluster
	
	deploying MapViewer on middle-tier cluster, 1.7.2

	collection bucket style
	
	adding to map request, 4.3.4
	with discrete values, A.6.1.1

	collection style
	
	XML format for defining, A.6.6, A.6.7

	color scheme style
	
	adding to map request, 4.3.4, 4.3.4
	XML format for defining, A.6.2

	color stops (heat map), A.6.8
	color style, 2.2
	
	adding to map request, 4.3.4
	XML format for defining, A.1

	configuring MapViewer, 7.7
	conflicts during merge
	
	resolving, 10.1.4.9

	connection information
	
	for adding a data source, 7.1.1

	container data source, 1.5.2.14, 7.1.1
	container theme name (heat map), A.6.8
	container_ds attribute, 1.5.2.14, 7.1.1, 7.1.1
	container-controlled logging, 1.5.2.1
	cookie
	
	getting authenticated user’s name from, 1.8.2

	coordinate system, 2.4
	
	conversion by MapViewer for map request, 3.1.8

	coordinate system ID
	
	See SRID

	cost analysis
	
	of network nodes, 4.3.3

	cross-schema map requests, 2.7
	custom image renderer
	
	creating and registering, C
	custom_image_renderer element, 1.5.2.8

	custom spatial provider
	
	creating and registering, D
	s_data_provider element, 1.5.2.9

D

	data providers
	
	nonspatial, 1.5.2.10

	data source methods
	
	using, 4.3.8

	data sources
	
	adding, 7.1.1
	checking existence of, 4.3.8, 7.1.5
	clearing metadata cache, 7.6.1
	container_ds attribute, 1.5.2.14, 7.1.1
	explanation of, 2.5
	for WMS requests, E.2.1.4
	listing, 7.1.4
	listing base maps in, 7.2
	listing names of, 4.3.8
	listing themes in, 7.3
	permanent, 1.5.2.14
	redefining, 7.1.3
	removing, 7.1.2
	setting name of, 4.3.2
	using multiple data sources in a map request (datasource attribute for theme), 3.2.20, 3.2.20

	data types supported, 10.1.1
	data_source_exists element, 7.1.5
	datasource
	
	attribute of map request, 3.2.1.1
	attribute of theme specification in a map request, 3.2.20, 3.2.20

	DATASOURCE parameter (WMS), E.2.1.4
	dataSourceExists method, 4.3.8
	DBA_SDO_STYLES view, 2.9.3
	debug mode
	
	topology themes, 2.3.6
	
	adding theme, 4.3.3

	decorative aspects
	
	attributes affecting theme appearance, 2.3.12

	deleteAllThemes method, 4.3.5
	deleteMapLegend method, 4.3.2
	deleteStyle method, 4.3.4
	deleteTheme method, 4.3.5
	demo
	
	MapViewer JavaBean API, 4.2

	deploying MapViewer, 1.4
	disableFeatureSelect function, B.3.1
	disablePolygonSelect function, B.3.1
	disableRectangleSelect function, B.3.1
	doQuery method, 4.3.9
	doQueryInMapWindow method, 4.3.9
	dot density marker style
	
	XML format for defining, A.6.4

	drawing tools, 10.2.4.2
	drawLiveFeatures method, 4.3.10
	DTD
	
	exception, 3.5
	Geometry (Open GIS Consortium), 3.6
	information request, 3.3
	map request, 3.2
	
	examples, 3.1

	map response, 3.4

	dynamic themes
	
	adding to map request, 4.3.3

	DYNAMIC_STYLES parameter (WMS), E.2.1.5
	dynamically defined styles, 2.2, 3.2.18
	
	adding to map request, 4.3.4
	for WMS requests, E.2.1.5
	removing, 4.3.4

	dynamically defined themes, 2.3.2, 3.2.9, 3.2.20
	
	See also JDBC themes

E

	Edit Session area, 10.2.2
	edit_config_file element, 7.7
	editing mode, 10.1.3.1
	editing sessions, 10.1.3
	enableFeatureSelect function, B.3.1
	enablePolygonSelect function, B.3.1
	enableRectangleSelect function, B.3.1
	enableThemes method, 4.3.5
	EPSG
	
	in SRS parameter (WMS), E.2.1.14

	example programs using MapViewer
	
	Java, 3.1.15
	PL/SQL, 3.1.16

	exception DTD, 3.5
	EXCEPTIONS parameter (WMS)
	
	for GetFeatureInfo request, E.2.3.2
	for GetMap request, E.2.1.6

	external attribute data, 2.3.11.1

F

	fast_unpickle attribute, 3.2.20
	feature labels
	
	support for translation, 2.3.1.6

	feature of interest (FOI), 8.3
	feature selection
	
	enabling and disabling, B.3.1

	feature tools, 10.2.4.1
	FEATURE_COUNT parameter (WMS), E.2.3.3
	features
	
	new, Preface

	features of interest (FOIs)
	
	allow_jdbc_theme_based_foi attribute, 1.5.2.14

	field element
	
	for hidden information, 3.2.9, A.7

	filter (spatial)
	
	getting, 4.3.9, 4.3.9

	fixed_svglabel attribute, 3.2.20
	FOI (feature of interest), 8.3
	FOIs
	
	allow_jdbc_theme_based_foi attribute, 1.5.2.14

	footnote attribute, 3.2.1.1, 3.2.1.1
	
	map request, 3.2.1.1

	footnote_style attribute, 3.2.1.1, 3.2.1.1
	
	map request, 3.2.1.1

	format
	
	attribute of map request, 3.2.1.1

	FORMAT parameter (WMS), E.2.1.7

G

	geodetic data
	
	projecting to local non-geodetic coordinate system, 1.5.2.5

	geoFeature element, 3.2.5
	Geometry DTD (Open GIS Consortium), 3.6
	geometry tools, 10.2.4.5
	GeoRaster themes, 2.3.4
	
	adding to current map request, 4.3.3
	bitmap masks, 2.3.4.2
	defining with jdbc_georaster_query element, 3.2.6
	library files needed, 1.4
	reprojection, 2.3.4.3
	setting polygon mask, 2.3.4, 4.3.5
	theme_type attribute in styling rules, A.7

	getActiveTheme method, 4.3.5
	getAntiAliasing method, 4.3.2
	GetCapabilities request and response, E.2.2
	getDataSources method, 4.3.8
	getEnabledThemes method, 4.3.5
	GetFeatureInfo request
	
	specifying attributes to be queried, E.2.3.10
	supported features, E.2.3

	getGeneratedMapImage method, 4.3.7
	getGeneratedMapImageURL method, 4.3.7
	getInfo function, B.3.1
	getLiveFeatureAttrs method, 4.3.10
	GetMap request
	
	parameters, E.2.1

	getMapMBR method, 4.3.7
	getMapResponseString method, 4.3.7
	getMapURL tag, 5.2.3
	getNumLiveFeatures method, 4.3.10
	getParam tag, 5.2.4
	getScreenCoordinate function, B.4
	getSelectedIdList function, B.3.1
	getSelectPolygon function, B.3.1
	getSelectRectangle function, B.3.1
	getSpatialFilter method, 4.3.9, 4.3.9
	getThemeEnabled method, 4.3.5
	getThemeNames method, 4.3.5
	getThemePosition method, 4.3.5
	getThemeVisibleInSVG method, 4.3.5
	getting started, 10.1.4
	getUserCoordinate function, B.4
	getUserPoint method, 4.3.9, 4.3.9, 4.3.9
	getWhereClauseForAnyInteract method, 4.3.9, 4.3.9
	getXMLResponse method, 4.3.6
	GIF format, 3.2.1.1
	GIF_STREAM format, 3.2.1.1
	GIF_URL format, 3.2.1.1
	globular map projection, 1.5.2.5
	Google Maps
	
	built-in map tile layers, 8.6
	displaying tile layer using Oracle Maps, 8.1.3.1
	transforming data to the Google Maps coordinate system, 8.7

	grid sample factor (heat map), A.6.8
	grouping tools, 10.2.4.4

H

	hasLiveFeatures method, 4.3.10
	hasThemes method, 4.3.5
	headless AWT mode support, 1.3
	heat map style
	
	XML format for defining, A.6.8

	height
	
	attribute of map request, 3.2.1.1
	setParam tag parameter, 5.2.10

	HEIGHT parameter (WMS), E.2.1.8
	hidden information (SVG maps)
	
	displaying when mouse moves over, 3.2.1.1, 4.3.2
	hidden_info element, 3.2.9, 3.2.9, A.7

	hidden themes
	
	getThemeVisibleInSVG method, 4.3.5
	setThemeVisible method, 4.3.5

	hidden_info attribute, 3.2.5
	hidden_info element, 3.2.9, 3.2.9, A.7
	hideTheme function, B.2
	high availability
	
	using MapViewer with, 1.7

	highlightFeatures method, 4.3.10

I

	identify method, 4.3.9
	identify tag, 5.2.5
	image area style
	
	adding to map request, 4.3.4, 4.3.4

	image format
	
	for WMS requests, E.2.1.7
	setting, 4.3.2

	image marker style
	
	adding to map request, 4.3.4, 4.3.4
	XML format for defining, A.2.2

	image renderer
	
	creating and registering, C
	custom_image_renderer element, 1.5.2.8

	image scaling
	
	setting automatic rescaling, 4.3.2

	image themes, 2.3.3
	
	adding, 4.3.3
	defining with jdbc_image_query element, 3.2.7
	example, 3.1.6
	setting scale values, 4.3.5
	setting transparency value, 4.3.5
	setting unit and resolution values, 4.3.5
	theme_type attribute in styling rules, A.7

	images
	
	getting sample image for a style, 2.2.5

	imagescaling
	
	attribute of map request, 3.2.1.1
	setParam tag parameter, 5.2.10

	importBaseMap tag, 5.2.6
	indexed PNG format support, 3.2.1.1
	INFO_FORMAT parameter (WMS), E.2.3.4
	info_request element, 3.3
	infoon attribute, 3.2.1.1
	information request DTD, 3.3
	init tag, 5.2.7
	initial scale, 3.2.1.1
	initscale attribute, 3.2.1.1
	installing MapViewer, 1.4
	internationalization
	
	translation of feature labels, 2.3.1.6

	isClickable method, 4.3.10
	issues, 10.1.5

J

	jai_codec.jar file, 1.4
	jai_core.jar file, 1.4
	Java example program using MapViewer, 3.1.15
	JAVA_IMAGE format, 3.2.1.1
	JavaBean-based API for MapViewer, 4
	
	demo, 4.2
	Javadoc, 4.2

	Javadoc
	
	MapViewer JavaBean API, 4.2

	JavaScript API for Oracle Maps, 8.4
	JavaScript functions for SVG maps, B
	JavaServer Pages (JSP)
	
	tag library for MapViewer, 5

	JDBC theme-based features of interest, 1.5.2.14
	JDBC themes, 2.3.2
	
	adding, 4.3.3, 5.2.1
	saving complex SQL queries, 2.3.2.2
	using a pie chart style, 3.1.9

	jdbc_georaster_query element, 3.2.6
	jdbc_host attribute, 7.1.1
	jdbc_image_query element, 3.2.7
	jdbc_mode attribute, 7.1.1
	jdbc_network_query element, 3.2.8
	jdbc_password attribute, 7.1.1
	jdbc_port attribute, 7.1.1
	jdbc_query element, 3.2.9
	jdbc_sid attribute, 7.1.1
	jdbc_tns_name attribute, 7.1.1
	jdbc_topology_query element, 3.2.10
	jdbc_user attribute, 7.1.1
	join view
	
	key_column styling rule attribute required for theme defined on join view, A.7

	JPEG image format support, 3.2.1.1
	JSP tag library for MapViewer, 5

K

	keepthemesorder attribute, 3.2.1.1
	key_column attribute
	
	for theme defined on a join view, A.7

	known issues, 10.1.5

L

	label attribute, 2.3.11
	label_always_on attribute, 3.2.20
	label_max_scale attribute, 2.4.1
	label_min_scale attribute, 2.4.1
	labeling of spatial features, 2.3.1.1
	
	label styles for individual buckets, 2.2.2
	translation of feature labels, 2.3.1.6

	LAYERS parameter (WMS), E.2.1.9
	legend, 2.4.2
	
	automatic, 2.4.2
	creating, 5.2.8
	deleting, 4.3.2
	element, 3.2.11
	example, 2.4.2
	for WMS requests, E.2.1.10
	setting, 4.3.2, 4.3.2, 4.3.2

	LEGEND_REQUEST parameter (WMS), E.2.1.10
	legendSpec parameter, 4.3.2
	line style, 2.2
	
	adding to map request, 4.3.4, 4.3.4
	XML format for defining, A.3

	linear features
	
	adding, 4.3.3
	removing, 4.3.3

	list_data_sources element, 7.1.4
	list_maps element, 7.2
	list_predefined_themes element, 7.3
	list_styles element, 7.4
	list_theme_styles element, 7.5
	list_workspace_name element, 2.8
	list_workspace_session element, 2.8
	live features, 4.3.10
	load balancer
	
	using MapViewer with, 1.7.2

	loading bar, B.2
	local geodetic data adjustment
	
	specifying for map, 1.5.2.5

	logging element, 1.5.2.1
	logging information, 1.5.2.1
	
	container-controlled, 1.5.2.1

	logo
	
	specifying for map, 1.5.2.5

	longitude/latitude coordinate system, 2.4

M

	main window, 10.1.2
	makeLegend tag, 5.2.8
	Map Builder tool, 9, 9
	
	running, 9.1
	user interface (UI), 9.2

	map canvas, 10.2.3
	map image file information, 1.5.2.2
	map legend, 2.4.2
	
	creating, 5.2.8
	deleting, 4.3.2
	example, 2.4.2
	legend element, 3.2.11
	setting, 4.3.2, 4.3.2, 4.3.2

	map logo, 1.5.2.5
	map note, 1.5.2.5
	map rendering, 1.8
	map request DTD, 3.2
	
	examples, 3.1

	map requests
	
	cross-schema, 2.7
	getting parameter value, 5.2.4
	sending to MapViewer service, 4.3.6
	setting parameters for, 5.2.10
	submitting using run JSP tag, 5.2.9
	XML API, 3

	map response
	
	extracting information from, 4.3.7

	map response DTD, 3.4
	map response string
	
	getting, 4.3.7

	map result file name
	
	setting, 4.3.2

	map scale bar, 10.2.3.2
	map size
	
	setting, 4.3.2

	map tile layers
	
	built-in, 8.6
	XML format for defining, A.9

	map tile server, 8.2
	
	configuring, 1.5.2.13

	map title, 1.5.2.5
	
	setting, 4.3.2

	map URL
	
	getting, 5.2.3

	map_data_source element, 1.5.2.14
	map_request element, 3.2.1
	
	attributes, 3.2.1.1

	map_tile_server element, 1.5.2.13
	map_tile_theme element, 3.2.12
	mapbuilder.jar file, 9.1
	mapdefinition.sql file, 2.9
	map-level mouse-click event control functions, B.3.2.1
	mappers (renderers), 2.5
	
	number of, 1.5.2.14, 7.1.1

	mapping profile, 2.1
	maps, 1.8, 2.4
	
	creating by adding themes and rendering, 2.4
	explanation of, 2.4
	how they are generated, 2.6
	listing, 7.2
	metadata view, 2.9
	scale, 2.4.1
	size, 2.4.1

	MapViewer
	
	Quick Start kit, 1.4

	MapViewer bean
	
	creating, 5.2.7

	MapViewer client handle, 6.2.2
	MapViewer configuration file
	
	editing, 7.7
	sample, 1.5.2

	MapViewer Editor
	
	about, 10.1.1
	main window, 10.1.2

	MapViewer exception DTD, 3.5
	MapViewer information request DTD, 3.3
	MapViewer server
	
	restarting, 7.8

	mapViewerConfig.xml configuration file
	
	editing, 7.7
	sample, 1.5.2

	marker style, 2.2
	
	adding to map request, 4.3.4, 4.3.4, 4.3.4
	orienting, 2.2.3.2
	using on lines, A.2.4
	XML format for defining, A.2

	marquee zoom, 10.2.3.1
	masks
	
	bitmap (GeoRaster themes), 2.3.4.2

	max_scale attribute, 2.4.1
	MBR
	
	getting for map, 4.3.7

	merging edits, 10.1.4.9
	metadata cache, 2.5
	
	clearing, 7.6.1

	metadata views, 2.9
	
	mapdefinition.sql file, 2.9

	Microsoft Bing Maps
	
	built-in map tile layers, 8.6
	displaying tile layer using Oracle Maps, 8.1.3.1
	transforming data to the Microsoft Bing Maps coordinate system, 8.7

	middle-tier cluster
	
	deploying MapViewer on, 1.7.2

	min_dist attribute, 3.2.20
	min_scale attribute, 2.4.1
	minimum bounding rectangle (MBR)
	
	getting for map, 4.3.7

	minimum_pixels attribute, 3.2.20
	mixed theme scale mode, 3.1.10
	mode attribute, 3.2.20
	mouse click
	
	event control functions for SVG maps, B.3
	getting point associated with, 4.3.9, 4.3.9, 4.3.9

	mouse-click event control function, 3.2.20, B.3.2.2
	mouse-move event control function, 3.2.20, B.3.2.2
	mouse-out event control function, 3.2.20, B.3.2.2
	mouse-over event control function, 3.2.20, B.3.2.2
	moveThemeDown method, 4.3.5
	moveThemeUp method, 4.3.5
	multiprocess OC4J instance
	
	deploying MapViewer on, 1.7.1

	MV_DATELIST type, 1.4.3.3
	MV_NUMBERLIST type, 1.4.3.3
	MV_STRINGLIST type, 1.4.3.3
	mvclient.jar file, 5.1
	mvtaglib.tld file, 5.1
	MVTHEMES parameter (WMS), E.2.1.11

N

	navbar attribute, 3.2.1.1
	navigation bar (SVG map), 3.2.1.1, 4.3.2
	navigation panel, 10.2.3.1
	network analysis
	
	shortest-path, 2.3.5.2, 4.3.3
	within-cost, 2.3.5.2, 4.3.3

	network connection information
	
	for adding a data source, 7.1.1

	network themes, 2.3.5
	
	adding, 4.3.3
	defining with jdbc_network_query element, 3.2.8
	library files needed, 1.4
	setting labels, 4.3.5
	theme_type attribute in styling rules, A.7

	networked drives
	
	using MapViewer with, 1.7.2

	new features, Preface
	non_map_request element, 7
	non_map_response element, 7
	non-map requests
	
	See administrative requests

	nonspatial attributes
	
	getting values, 5.2.5
	identifying, 4.3.9
	querying, 4.3.9

	nonspatial data provider, 2.3.11.1
	nonspatial data providers
	
	registering, 1.5.2.10

	north_arrow element, 3.2.13
	note
	
	specifying for map, 1.5.2.5

	ns_data_provider element, 1.5.2.10
	number_of_mappers attribute, 1.5.2.14, 2.5, 7.1.1

O

	OGC (Open GIS Consortium)
	
	Geometry DTD, 3.6
	WMS support by MapViewer, E

	oms_error element, 3.5
	omserver (in URL)
	
	getting a sample image of a style, 2.2.5

	onclick attribute, 3.2.5, 3.2.20
	
	map request, 3.2.1.1

	onClick function (SVG map), 4.3.2, 4.3.5
	onmousemove attribute, 3.2.20
	
	map request, 3.2.1.1

	onmouseout attribute, 3.2.20
	onmouseover attribute, 3.2.20
	onpolyselect attribute, B.3.2.3
	
	map request, 3.2.1.1

	onrectselect attribute, B.3.2.3
	
	map request, 3.2.1.1

	Open GIS Consortium
	
	Geometry DTD, 3.6
	WMS support by MapViewer, E

	operation element, 3.2.14
	operations element, 3.2.15
	Oracle Map Builder tool, 9
	Oracle Maps, 8
	
	feature of interest server, 8.3
	JavaScript API, 8.4
	map tile server, 8.2

	Oracle Real Application Clusters (RAC)
	
	using MapViewer with, 1.6

	orientation vector, 3.2.5
	
	using with an oriented point, 2.2.3

	oriented points
	
	pointing label or marker in direction of orientation vector, 2.2.3

P

	pan method, 4.3.6
	parameter element, 3.2.16
	parameter value for map request
	
	getting, 5.2.4

	parameters
	
	binding, 2.3.1.3

	parameters for map request
	
	setting, 5.2.10

	part_of_basemap attribute, 3.2.20
	PDF image format support, 3.2.1.1
	permanent data sources
	
	defining, 1.5.2.14

	pickling
	
	fast_unpickle theme attribute, 3.2.20
	setThemeFastUnpickle method, 4.3.5

	pie chart
	
	map request using, 3.1.9

	PL/SQL
	
	API for MapViewer, 6

	PL/SQL example program using MapViewer, 3.1.16
	plsql_package attribute, 1.5.2.14
	PNG image format support, 3.2.1.1
	PNG8 (indexed) image format support, 3.2.1.1
	point features
	
	adding, 4.3.3
	removing, 4.3.3

	polygon mask
	
	setting for GeoRaster theme, 2.3.4, 4.3.5

	polygon selection
	
	enabling and disabling, B.3.1

	polygon_mask attribute, 2.3.4
	predefined mouse-click event control functions, B.3.1
	predefined themes, 2.3.1, 3.2.20
	
	adding, 4.3.3, 5.2.2
	binding parameters example, 3.1.11
	caching of, 2.3.1.5
	LAYERS parameter (WMS), E.2.1.9
	listing, 7.3
	listing styles used by, 7.5
	WMS map, E.3.2

	preferences, 10.2.1
	prerequisite software for using MapViewer, 1.3
	preserve_aspect_ratio attribute, 3.2.2, 3.2.3
	problems, 10.1.5
	progress indicator
	
	loading of map, B.2

	projection of geodetic data to local non-geodetic coordinate system, 1.5.2.5
	properties, 10.2.1
	proxy (web) for MapViewer service
	
	setting, 4.3.2

Q

	query type
	
	for WMS requests, E.2.3.6

	query window
	
	setting, 4.3.2

	QUERY_LAYERS parameter (WMS), E.2.3.5
	QUERY_TYPE parameter (WMS), E.2.3.6
	Quick Start kit, 1.4

R

	RAC (Oracle Real Application Clusters)
	
	using MapViewer with, 1.6

	radius
	
	for WMS requests, E.2.3.7

	RADIUS parameter (WMS), E.2.3.7
	rasterbasemap attribute, 3.2.1.1
	ratio scale mode
	
	example, 3.1.10

	Real Application Clusters (Oracle RAC)
	
	using MapViewer with, 1.6

	recenter function, B.1
	rectangle selection
	
	enabling and disabling, B.3.1

	redefine_data_source element, 7.1.3
	redlining, 8.4
	remove_data_source element, 7.1.2
	removeAllDynamicStyles method, 4.3.4
	removeAllLinearFeatures method, 4.3.3
	removeAllPointFeatures method, 4.3.3
	renderer
	
	creating and registering custom image renderer, C
	custom_image_renderer element, 1.5.2.8

	renderers (mappers), 2.5
	
	number_of_mappers attribute, 1.5.2.14, 7.1.1

	rendering a map, 2.4
	
	secure map rendering, 1.8

	rendering rules
	
	example, 3.1.12

	reprojection
	
	with GeoRaster themes, 2.3.4.3

	REQUEST parameter (WMS)
	
	GetMap or GetCapabilities, E.2.1.12

	required software for using MapViewer, 1.3
	resolution
	
	setThemeUnitAndResolution method, 4.3.5

	Resolve Conflicts dialog box, 10.1.4.9
	response string for map
	
	getting, 4.3.7

	restart element, 7.8
	restarting the MapViewer server, 7.8
	restrictions, 10.1.5
	rotation attribute, 3.2.1.1
	rules
	
	styling, 2.3.1.1

	run method, 4.3.6
	run tag, 5.2.9

S

	sample image
	
	getting for a style, 2.2.5

	save_images_at element, 1.5.2.2
	saving edits, 10.1.4.9
	scalable styles, 2.2.1
	scale bar, 3.2.17, 10.2.3.2
	scale mode
	
	mixed theme example, 3.1.10
	ratio example, 3.1.10

	scale of map, 2.4.1
	
	setting for theme, 4.3.5

	scale_bar element, 3.2.17
	scaling
	
	of image, 3.2.1.1, 5.2.10

	SDO_GEOMETRY 2D data support, 10.1.1
	SDO_MVCLIENT package, 6
	sdonm.jar file, 1.4
	secure, 1.8
	secure map rendering, 1.8
	
	plsql_package attribute, 1.5.2.14
	web_user_type attribute, 1.5.2.14

	secure rendering, 1.8
	security
	
	security_config element, 1.5.2.7

	security_config element, 1.5.2.7
	selectable themes (SVG map), 4.3.5
	selectable_in_svg attribute, 3.2.5, 3.2.20
	selectFeature function, B.3.1
	selection event mouse-click event control functions, B.3.2.3
	sendXMLRequest method, 4.3.6
	seq attribute, 2.3.11
	SERVICE parameter (WMS), E.2.1.13
	setAllThemesEnabled method, 4.3.5
	setAntiAliasing method, 4.3.2
	setBackgroundColor method, 4.3.2
	setBackgroundImageURL method, 4.3.2
	setBaseMapName method, 4.3.2
	setBoundingThemes method, 4.3.2
	setBox method, 4.3.2
	setCenter method, 4.3.2
	setCenterAndSize method, 4.3.2
	setClickable method, 4.3.10
	setDataSourceName method, 4.3.2
	setDefaultStyleForCenter method, 4.3.2
	setDeviceSize method, 4.3.2
	setFullExtent method, 4.3.2
	setGeoRasterThemePolygonMask method, 4.3.5
	setImageFormat method, 4.3.2
	setImageScaling method, 4.3.2
	setLabelAlwaysOn method, 4.3.5
	setMapLegend method, 4.3.2, 4.3.2, 4.3.2
	setMapRequestSRID method, 4.3.2
	setMapResultFileName method, 4.3.2
	setMapTitle method, 4.3.2
	setNetworkThemeLabels method, 4.3.5
	setParam tag, 5.2.10
	setSelectPolygon function, B.3.1
	setSelectRectangle function, B.3.1
	setServiceURL method, 4.3.2
	setShowSVGNavBar method, 4.3.2
	setSize method, 4.3.2
	setSVGOnClick method, 4.3.2
	setSVGShowInfo method, 4.3.2
	setSVGZoomFactor method, 4.3.2
	setSVGZoomLevels method, 4.3.2
	setSVGZoomRatio method, 4.3.2
	setThemeAlpha method, 4.3.5
	setThemeEnabled method, 4.3.5
	setThemeFastUnpickle method, 4.3.5
	setThemeOnClickInSVG method, 4.3.5
	setThemeScale method, 4.3.5
	setThemeSelectableInSVG method, 4.3.5
	setThemeUnitAndResolution method, 4.3.5
	setThemeVisible method, 4.3.5
	setWebProxy method, 4.3.2
	setZoomRatio function, B.1
	shortcut keys
	
	for Map Builder tool menus, 9.2

	shortest-path analysis, 2.3.5.2
	
	addShortestPath method, 4.3.3

	showLoadingBar function, B.2
	showTheme function, B.2
	simplify_shapes attribute, 3.2.20
	size (map)
	
	setting, 4.3.2

	size of map, 2.4.1
	size_hint attribute, 3.2.2
	snap_to_cache_scale attribute, 3.2.1.1
	spatial data cache
	
	clearing, 7.6.2
	customizing, 1.5.2.6

	spatial data provider
	
	custom, 1.5.2.9

	spatial filter
	
	getting, 4.3.9, 4.3.9

	spatial reference ID
	
	See SRID

	spatial_data_cache element, 1.5.2.6
	spot light radius (heat map), A.6.8
	SRID
	
	attribute of map request, 3.2.1.1
	conversion by MapViewer for map request, 3.1.8
	setting, 4.3.2

	SRS mapping
	
	customizing, 1.5.2.11

	SRS parameter (WMS), E.2.1.14
	srs_mapping element, 1.5.2.11
	stacked styles
	
	example, 3.1.13

	sticky attribute for text style, 2.2.4
	style element, 3.2.18
	styles, 2.2
	
	adding to map request, 4.3.4
	advanced, 2.2
	
	pie chart example, 3.1.9
	thematic mapping and, 2.3.11
	XML format for defining, A.6

	area, 2.2
	
	XML format for defining, A.4

	bar chart
	
	XML format for defining, A.6.5

	bucket
	
	adding to map request, 4.3.4
	specifying labels for buckets, 2.2.2
	XML format for defining, A.6.1

	collection
	
	XML format for defining, A.6.6, A.6.7

	color, 2.2
	
	adding to map request, 4.3.4
	XML format for defining, A.1

	color scheme
	
	adding to map request, 4.3.4
	XML format for defining, A.6.2

	dot density
	
	XML format for defining, A.6.4

	dynamically defined, 2.2, 3.2.18
	
	adding to map request, 4.3.4

	getting sample image, 2.2.5
	heat map
	
	XML format for defining, A.6.8

	image marker
	
	adding to map request, 4.3.4, 4.3.4, 4.3.4, 4.3.4
	XML format for defining, A.2.2

	label styles for buckets, 2.2.2
	line, 2.2
	
	adding to map request, 4.3.4, 4.3.4
	XML format for defining, A.3

	listing, 7.4
	listing those used by a predefined theme, 7.5
	marker, 2.2
	
	adding to map request, 4.3.4
	XML format for defining, A.2

	metadata view, 2.9
	removing, 4.3.4
	scaling size of, 2.2.1
	stacked
	
	example, 3.1.13

	text, 2.2
	
	adding to map request, 4.3.4
	XML format for defining, A.5

	TrueType font-based marker
	
	XML format for defining, A.2.3

	variable marker
	
	adding to map request, 4.3.4
	XML format for defining, A.6.3

	vector marker
	
	adding to map request, 4.3.4
	XML format for defining, A.2.1

	XML format, A

	styles element, 3.2.19
	STYLES parameter (WMS), E.2.1.15
	styling rules, 2.3.1.1, A
	
	XML format for specifying, A.7

	SVG Basic (SVGB) image format support, 3.2.1.1
	SVG Compressed (SVGZ) image format support, 3.2.1.1
	SVG maps
	
	display control functions, B.2
	fixed_svglabel attribute, 3.2.20
	hidden themes, 4.3.5
	hidden_info attribute, 3.2.5
	infoon attribute, 3.2.1.1
	initscale attribute, 3.2.1.1
	JavaScript functions, B
	mouse-click event control functions, B.3
	navbar attribute, 3.2.1.1
	navigation bar, 4.3.2
	navigation control functions, B.1
	onclick attribute, 3.2.1.1, 3.2.5, 3.2.20
	onClick function, 4.3.2, 4.3.5
	onmousemove attribute, 3.2.1.1, 3.2.20
	onmouseout attribute, 3.2.20
	onmouseover attribute, 3.2.20
	onpolyselect attribute, 3.2.1.1, B.3.2.3
	onrectselect attribute, 3.2.1.1, B.3.2.3
	other control functions, B.4
	part_of_basemap attribute, 3.2.20
	rasterbasemap attribute, 3.2.1.1
	selectable themes, 4.3.5
	selectable_in_svg attribute, 3.2.5, 3.2.20
	setSVGShowInfo method, 4.3.2
	setSVGZoomFactor method, 4.3.2
	setSVGZoomLevels method, 4.3.2
	setSVGZoomRatio method, 4.3.2
	setThemeOnClickInSVG method, 4.3.5
	setThemeSelectableInSVG method, 4.3.5
	setThemeVisible method, 4.3.5
	SVG_STREAM and SVG_URL format attribute values, 3.2.1.1
	SVGTINY_STREAM and SVGTINY_URL format attribute values, 3.2.1.1
	SVGZ_STREAM and SVGZ_URL format attribute values, 3.2.1.1
	visible themes, 4.3.5
	visible_in_svg attribute, 3.2.20
	zoomfactor attribute, 3.2.1.1
	zoomlevels attribute, 3.2.1.1
	zoomratio attribute, 3.2.1.1

	SVG Tiny (SVGT) image format support, 3.2.1.1
	switchInfoStatus function, B.2
	switchLegendStatus function, B.2

T

	taglib directive, 5.1
	templated themes, 2.3.1.3
	temporary styles
	
	See dynamically defined styles

	text style, 2.2
	
	adding to map request, 4.3.4
	orienting, 2.2.3.1
	sticky attribute, 2.2.4
	XML format for defining, A.5

	thematic mapping, 2.3.11
	
	using external attribute data, 2.3.11.1

	theme element, 3.2.20
	theme_modifiers element, 3.2.22
	theme_type attribute
	
	for certain types of predefined themes, A.7

	theme-level mouse-event control functions, B.3.2.2
	themes, 2.3
	
	adding to a map, 2.4
	annotation text, 2.3.10
	attributes affecting appearance, 2.3.12
	checking for, 4.3.5
	clearing spatial data cache, 7.6.2
	deleting, 4.3.5, 4.3.5
	disabling, 4.3.5, 4.3.5
	dynamic
	
	adding to map request, 4.3.3

	dynamically defined, 2.3.2, 3.2.9, 3.2.20
	enabling, 4.3.5, 4.3.5, 4.3.5
	fast unpickling, 3.2.20, 4.3.5
	feature selection
	
	enabling and disabling, B.3.1

	fixed SVG label, 3.2.20
	for WMS requests, E.2.1.11
	GeoRaster, 2.3.4
	
	adding to current map request, 4.3.3
	defining with jdbc_georaster_query element, 3.2.6
	setting polygon mask, 2.3.4, 4.3.5
	theme_type attribute in styling rules, A.7

	getting, 4.3.5
	hidden information display, 3.2.1.1
	image, 2.3.3
	
	adding, 4.3.3
	defining with jdbc_image_query element, 3.2.7
	setting transparency value, 4.3.5
	setting unit and resolution values, 4.3.5
	theme_type attribute in styling rules, A.7

	initial scale, 3.2.1.1
	JavaScript function to call on click, 3.2.5, 3.2.20
	JavaScript function to call on mouse-move event, 3.2.20
	JavaScript function to call on mouse-out event, 3.2.20
	JavaScript function to call on mouse-over event, 3.2.20
	JavaScript function to call on polygon selection, B.3.2.3
	JavaScript function to call on rectangle selection, B.3.2.3
	JDBC, 2.3.2
	keeping in order, 3.2.1.1
	listing, 4.3.5, 7.3
	map_tile_theme element, 3.2.12
	metadata view, 2.9
	minimum distance, 3.2.20
	moving down, 4.3.5
	moving up, 4.3.5
	navigation bar, 3.2.1.1
	network, 2.3.5
	
	adding, 4.3.3
	defining with jdbc_network_query element, 3.2.8
	setting labels, 4.3.5
	theme_type attribute in styling rules, A.7

	north_arrow element, 3.2.13
	part of base map, 3.2.20
	predefined, 2.3.1, 3.2.20
	raster base map, 3.2.1.1
	resolution value
	
	setting, 4.3.5

	selectable in SVG maps, 3.2.5, 3.2.20, 4.3.5
	setting GeoRaster theme polygon mask, 2.3.4, 4.3.5
	setting labels always on, 3.2.20, 4.3.5
	setting network theme labels, 4.3.5
	setting scale values, 4.3.5
	setting visible or hidden, 4.3.5
	styling rules, A.7
	templated, 2.3.1.3
	topology, 2.3.6
	
	adding, 4.3.3
	debug mode, 2.3.6
	debug mode (adding theme), 4.3.3
	defining with jdbc_topology_query element, 3.2.10
	theme_type attribute in styling rules, A.7

	unit value
	
	setting, 4.3.5

	visibility in SVG maps, 3.2.20
	WFS, 2.3.7
	WMS map
	
	adding, E.3
	adding (JavaBean-based API), E.3.4
	adding (XML API), E.3.1
	authentication with, E.3.3

	WMTS, 2.3.8
	Workspace Manager support, 2.8
	XML format, A
	zoom factor, 3.2.1.1
	zoom levels, 3.2.1.1
	zoom ratio, 3.2.1.1

	themes element, 3.2.21
	thick clients
	
	using optimal MapViewer bean methods for, 4.3.10

	tiny SVG images
	
	SVG Tiny (SVGT) image format support, 3.2.1.1

	tips
	
	specifying using hidden_info attribute, 3.2.5

	title
	
	attribute of map request, 3.2.1.1
	setParam tag parameter, 5.2.10
	specifying for map, 1.5.2.5

	title_style attribute, 3.2.1.1, 3.2.1.1
	
	map request, 3.2.1.1

	Tools area, 10.2.4
	topology themes, 2.3.6
	
	adding, 4.3.3
	debug mode, 2.3.6
	
	adding theme, 4.3.3

	defining with jdbc_topology_query element, 3.2.10
	theme_type attribute in styling rules, A.7

	transformation tools, 10.2.4.6
	translation
	
	of feature labels, 2.3.1.6

	transparency
	
	setThemeAlpha method, 4.3.5

	transparency attribute, 3.2.20
	transparent
	
	attribute of map request, 3.2.1.1

	TRANSPARENT parameter (WMS)
	
	supported for PNG format, E.2.1.16

	TrueType font-based marker style
	
	XML format for defining, A.2.3

U

	unit
	
	setThemeUnitAndResolution method, 4.3.5

	unit of measurement
	
	for WMS requests, E.2.3.8

	UNIT parameter (WMS), E.2.3.8
	unpickling
	
	fast_unpickle theme attribute, 3.2.20
	setThemeFastUnpickle method, 4.3.5

	use_cached_basemap attribute, 3.2.1.1
	use_globular_projection option, 1.5.2.5
	user interface (UI) main window, 10.1.2
	USER_SDO_CACHED_MAPS view, 2.9
	USER_SDO_EDIT_SESSIONS view, 10.1.4.1
	USER_SDO_GEOM_METADATA view
	
	entry for predefined theme based on a view, 2.3.1
	inserting row into, 2.3.1

	USER_SDO_MAPS view, 2.9, 2.9.1
	USER_SDO_STYLES view, 2.9, 2.9.3
	USER_SDO_THEMES view, 2.9, 2.9.2
	USER_SDO_TILE_ADMIN_TASKS view, 2.9
	user-defined mouse event control functions, B.3.2
	
	theme-level, B.3.2.2

	user-defined mouse-click event control functions
	
	map-level, B.3.2.1
	selection event, B.3.2.3

V

	variable marker style
	
	adding to map request, 4.3.4
	XML format for defining, A.6.3

	vector marker style
	
	adding to map request, 4.3.4
	XML format for defining, A.2.1

	VERSION parameter (WMS), E.2.1.17
	vertex tools, 10.2.4.3
	views
	
	key_column styling rule attribute required for theme defined on join view, A.7
	metadata, 2.9

	visible themes
	
	getThemeVisibleInSVG method, 4.3.5
	setThemeVisible method, 4.3.5

	visible_in_svg attribute, 3.2.20

W

	Web Map Service (WMS) protocol, E
	
	adding a WMS map theme, E.3
	setting up for MapViewer, E.1
	See also entries starting with "WMS"

	web proxy for MapViewer service
	
	setting, 4.3.2

	web_user_type attribute, 1.5.2.14
	WFS map requests
	
	examples, 3.1.14

	WFS themes, 2.3.7
	WGS 84 coordinate system, 2.4
	WHERE clause
	
	getting, 4.3.9, 4.3.9

	width
	
	attribute of map request, 3.2.1.1
	setParam tag parameter, 5.2.10

	WIDTH parameter (WMS), E.2.1.18
	within-cost analysis, 2.3.5.2
	
	addLinksWithinCost method, 4.3.3

	WMS Capabilities responses
	
	customizing, 1.5.2.12

	WMS data source
	
	default for GetMap requests, E.2.1

	WMS map themes
	
	adding, E.3
	
	JavaBean-based API, E.3.4
	XML API, E.3.1

	authentication with, E.3.3
	predefined, E.3.2

	wms_config element, 1.5.2.12
	wms_getmap_request element, E.3.1
	WMSFilter.jar file, E.1.1
	WMTS themes, 2.3.8
	workflow (typical), 10.1.4
	Workspace Manager
	
	support in MapViewer, 2.8

	workspace_date attribute, 2.8
	workspace_date_format attribute, 2.8
	workspace_date_nlsparam attribute, 2.8
	workspace_date_tswtz attribute, 2.8
	workspace_name attribute, 2.8
	workspace_savepoint attribute, 2.8

X

	X parameter (WMS), E.2.3.9
	X11 DISPLAY variable
	
	no need to set when using AWT headless mode, 1.3

	XML
	
	API for MapViewer, 3
	format for base maps, map tile layers
	
	XML format, A

	format for map tile layers, A
	format for styles, A
	format for themes, A

	xmlparserv2.jar file, E.1.1

Y

	Y parameter (WMS), E.2.3.9

Z

	zoom, 10.2.3.1
	zoom factor, 3.2.1.1, 4.3.2
	zoom levels, 3.2.1.1, 4.3.2
	zoom ratio, 3.2.1.1, 4.3.2
	
	setting, B.1

	zoomfactor attribute, 3.2.1.1
	zoomIn method, 4.3.6, 4.3.6, 4.3.6
	zoomlevels attribute, 3.2.1.1
	zoomOut method, 4.3.6, 4.3.6
	zoomratio attribute, 3.2.1.1

3 MapViewer Map Request XML API

This chapter explains how to submit map requests in XML format to MapViewer, and it describes the XML document type definitions (DTDs) for the map requests (input) and responses (output). XML is widely used for transmitting structured documents using the HTTP protocol. If an HTTP request (GET or POST method) is used, it is assumed the request has a parameter named xml_request whose value is a string containing the XML document for the request.

(In addition to map requests, the MapViewer XML API can be used for administrative requests, such as adding new data sources. Administrative requests are described in Chapter 7.)

As shown in Figure 1-1 in Section 1.1.1, the basic flow of action with MapViewer is that a client locates a remote MapViewer instance, binds to it, sends a map request, and processes the map response returned by the MapViewer instance.

A request to the MapViewer servlet has the following format:

http://hostname[:port]/MapViewer-servlet-path?xml_request=xml-request

In this format:

	
hostname is the network path of the server on which MapViewer is running.

	
port is the port on which the web server listens.

	
MapViewer-servlet-path is the MapViewer servlet path (for example, mapviewer/omserver).

	
xml-request is the URL-encoded XML request submitted using the HTML GET or POST method.

The input XML is required for all requests. The output depends on the content of the request: the response can be either an XML document, or a binary object containing the (generated image) file requested by the user.

In an input request, you must specify a data source, and you can specify one or more of the following:

	
Themes and styles.

	
A center point or a box for the map display, and options such as highlight, label, and styles.

	
A predefined base map, which can be reused and overlaid with custom data.

	
A custom theme with the user data points (or any geometry) retrieved dynamically and plotted directly from an accessible database.

	
Custom features (point, circles, or any geometry) specified in the XML request string to be plotted. These require that you provide the dynamic data in the format of the <geoFeature> element (described in Section 3.2.5), as defined in the DTD. The geometry portion of the <geoFeature> element adopts the Geometry DTD as specified in Open GIS Consortium Geography Markup Language Version 1.0 (OGC GML v1.0).

	
Thematic mapping.

You can manage the definition of base maps, themes, and styles (individual symbologies) using the Map Builder tool, which is described in Chapter 9.

For the current release, MapViewer accepts only a coordinate pair to identify the location for a map request; it cannot take a postal address as direct input for a map.

This chapter first presents some examples of map requests (see Section 3.1), and then presents detailed explanations of the following XML DTDs for requests and other operations:

	
Map Request DTD

	
Information Request DTD

	
Map Response DTD

	
MapViewer Exception DTD

	
Geometry DTD (OGC)

3.1 Map Request Examples

This section provides examples of map requests. It refers to concepts, elements, and attributes that are explained in detail in Section 3.2. It contains sections with the following examples:

	
Section 3.1.1, "Simple Map Request"

	
Section 3.1.2, "Map Request with Dynamically Defined Theme"

	
Section 3.1.3, "Map Request with Base Map, Center, and Additional Predefined Theme"

	
Section 3.1.4, "Map Request with Center, Base Map, Dynamically Defined Theme, and Other Features"

	
Section 3.1.5, "Map Request for Point Features with Attribute Value and Dynamically Defined Variable Marker Style"

	
Section 3.1.6, "Map Request with an Image Theme"

	
Section 3.1.7, "Map Request for Image of Map Legend Only"

	
Section 3.1.8, "Map Request with SRID Different from Data SRID"

	
Section 3.1.9, "Map Request Using a Pie Chart Theme"

	
Section 3.1.15, "Java Program Using MapViewer"

	
Section 3.1.16, "PL/SQL Program Using MapViewer"

3.1.1 Simple Map Request

Example 3-1 is a very simple map request. It requests a map consisting of a blank blue image (from the mvdemo data source) with the string Hello World drawn on top. (The datasource attribute is required for a map request, even though this specific map request does not retrieve any map data from the data source.)

Example 3-1 Simple Map Request ("Hello World")

<?xml version="1.0" standalone="yes"?>
<map_request title="Hello World" datasource = "mvdemo"/>

3.1.2 Map Request with Dynamically Defined Theme

Example 3-2 is a simple map request with one dynamically defined theme. It requests a map of all Oracle Spatial geometries from the COUNTIES table.

Example 3-2 Simple Map Request with a Dynamically Defined Theme

<?xml version="1.0" encoding="UTF-8" ?>
<map_request datasource="lbs_data">
 <themes>
 <theme name="t1">
 <jdbc_query spatial_column = "GEOM"
 datasource = "lbs_data">
 SELECT geom FROM counties
 </jdbc_query>
 </theme>
 </themes>
</map_request>

3.1.3 Map Request with Base Map, Center, and Additional Predefined Theme

Example 3-3 requests a map with a specified center for the result map, and specifies a predefined theme (poi_theme_us_restaurants) to be rendered in addition to the predefined themes that are part of the base map (basemap="us_base").

Example 3-3 Map Request with Base Map, Center, and Additional Predefined Theme

<?xml version="1.0" encoding="UTF-8" ?>
<map_request datasource="lbs_data" title="LBS CUSTOMER MAP"
 basemap="us_base" width="500" height="375"
 bgcolor="#a6cae0" format="GIF_URL">
 <center size="1">
 <geoFeature typeName="mapcenter" label="Motel 1" text_style="T.MOTEL"
 render_style="M.MOTEL" radius="300">
 <geometricProperty>
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <srs>SDO:8265</srs>
 <themes>
 <theme name="poi_theme_us_restaurants"/>
 </themes>
</map_request>

Notes on Example 3-3:

	
Because basemap is specified, MapViewer first draws all predefined themes for that base map before drawing the specified theme (poi_theme_us_restaurants).

	
The center will be drawn with a marker of the M.MOTEL style and the label Motel 1 in the T.MOTEL style.

	
A circle with a radius of 300 meters will be drawn around the center.

3.1.4 Map Request with Center, Base Map, Dynamically Defined Theme, and Other Features

Example 3-4 requests a map with a specified center, a predefined theme named theme_lbs_customers, a dynamically defined theme named sales_by_region, and all base themes in the base map us_base_road, plus two features: a polygon representing the top sales region, and a point. The requested map will be stored at the MapViewer host and a URL to that GIF image (format="GIF_URL") will be returned to the requester.

Example 3-4 Map Request with Center, Base Map, Dynamically Defined Theme, Other Features

<?xml version="1.0" encoding="UTF-8" ?>
<map_request datasource="lbs_data2" title="LBS CUSTOMER MAP 2"
 width="400" height="300" format="GIF_URL" basemap="us_base_road">
 <center size="1.5">
 <geoFeature typeName="nil">
 <geometricProperty>
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="theme_lbs_customers"/>
 <theme name="sales_by_region">
 <jdbc_query spatial_column ="region"
 label_column="manager"
 render_style="V.SALES COLOR"
 label_style="T.SMALL TEXT"
 jdbc_host="data.my_corp.com"
 jdbc_sid="orcl"
 jdbc_port="1521"
 jdbc_user="scott"
 jdbc_password="password"
 jdbc_mode="thin"
 > select region, sales, manager from my_corp_sales_2001
 </jdbc_query>
 </theme>
 </themes>
 <geoFeature typeName="nil" label="TopSalesRegion"
 text_style="9988" render_style="2837">
 <geometricProperty>
 <Polygon srsName="SDO:8265">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>42.9,71.1 43.2,72.3 39.2,73.0 39.0,
 73.1 42.9,71.1</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </geometricProperty>
 </geoFeature>
 <geoFeature render_style="1397" text_style="9987">
 <geometricProperty>
 <Point>
 <coordinates>-122.5615, 37.3266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
</map_request>

In Example 3-4, sales_by_region is a dynamically defined theme. For information about dynamically defining a theme, see Section 3.2.20 and Section 3.2.9.

3.1.5 Map Request for Point Features with Attribute Value and Dynamically Defined Variable Marker Style

Example 3-5 shows a map request to render point features with a dynamically defined variable marker style. The attribute_values attribute defines the value that will be used to find the appropriate bucket (for the range into which the value falls), as defined in the variable marker style.

Example 3-5 Map Request for Point Features with Attribute Value and Dynamically Defined Variable Marker Style

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Point Features with Variable Marker Style"
 datasource="mvdemo"
 srid="0"
 width="500"
 height="375"
 bgcolor="#a6caf0"
 antialiase="true"
 format="PNG_URL">
 <center size="19.2">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-116.65,38.92</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <geoFeature
 render_style="varmarkerpf"
 attribute_values="50000.0">
 <geometricProperty>
 <Point>
 <coordinates>-112.0,43.0</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 <geoFeature
 render_style="varmarkerpf"
 attribute_values="125000.0">
 <geometricProperty>
 <Point>
 <coordinates>-123.0,40.0</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 <geoFeature
 render_style="varmarkerpf"
 attribute_values="200000.0">
 <geometricProperty>
 <Point>
 <coordinates>-116.64,38.92</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 <geoFeature
 render_style="varmarkerpf"
 attribute_values="300000.0">
 <geometricProperty>
 <Point>
 <coordinates>-112.0,35.0</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 <styles>
 <style name="varmarkerpf">
 <AdvancedStyle>
 <VariableMarkerStyle basemarker="mkcircle" startsize="10"
 increment="5">
 <Buckets>
 <RangedBucket label="less than 100k" high="100000.0"/>
 <RangedBucket label="100k - 150k" low="100000.0" high="150000.0"/>
 <RangedBucket label="150k - 250k" low="150000.0" high="250000.0"/>
 <RangedBucket label="250k - 350k" low="250000.0" high="350000.0"/>
 </Buckets>
 </VariableMarkerStyle>
 </AdvancedStyle>
 </style>

 <style name="mkcircle">
 <svg>
 <g class="marker" style="stroke:blue;fill:red;">
 <circle r="20"/>
 </g>
 </svg>
 </style>

 </styles>
</map_request>

3.1.6 Map Request with an Image Theme

Example 3-6 requests a map in which an image theme is to be plotted underneath all other regular vector data. The image theme is specified in the <jdbc_image_query> element as part of the <theme> element in a map request. (For an explanation of image themes, see Section 2.3.3.)

Example 3-6 Map Request with an Image Theme

<?xml version="1.0" encoding="UTF-8" ?>
<map_request datasource="lbs_data" title="LBS Image MAP"
 basemap="us_roads" format="GIF_STREAM">
 <center size="1">
 <geoFeature>
 <geometricProperty>
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="anImageTheme">
 <jdbc_image_query image_format="ECW"
 image_column="image"
 image_mbr_column="img_extent"
 jdbc_srid="33709"
 datasource="lbs_data">
 SELECT image, img_extent, image_id FROM my_images
 </jdbc_image_query>
 </theme>
 </themes>
</map_request>

MapViewer processes the request in Example 3-6 as follows:

	
MapViewer retrieves the image data by executing the user-supplied query (SELECT image, img_extent, image_id FROM my_images) in the current map window context.

	
MapViewer checks its internal list of all registered image renderers to see if one supports the ECW format (image_format="ECW"). Because MapViewer as supplied by Oracle does not support the ECW format, you must implement and register a custom image renderer that supports the format, as explained in Appendix C.

	
MapViewer calls the renderImages method, and image data retrieved from the user-supplied query is passed to the method as one of its parameters.

	
MapViewer retrieves and renders any requested vector data on top of the rendered image.

3.1.7 Map Request for Image of Map Legend Only

Example 3-7 requests a map with just the image of the map legend, but without rendering any spatial data. In this example, the legend explains the symbology used for identifying cities, state boundaries, interstate highways, and county population density. (Map legends are explained in Section 3.2.11.)

Example 3-7 Map Request for Image of Map Legend Only

<?xml version="1.0" standalone="yes"?>
<map_request
 datasource = "mvdemo"
 format="PNG_URL">

 <legend bgstyle="fill:#ffffff;stroke:#ff0000" profile="MEDIUM" position="SOUTH_EAST">
 <column>
 <entry text="Map Legend" is_title="true"/>
 <entry style="M.STAR" text="center point"/>
 <entry style="M.CITY HALL 3" text="cities"/>
 <entry is_separator="true"/>
 <entry style="C.ROSY BROWN STROKE" text="state boundary"/>
 <entry style="L.PH" text="interstate highway"/>
 <entry text="County population:"/>
 <entry style="V.COUNTY_POP_DENSITY" tab="1"/>
 </column>
 </legend>

</map_request>

Generating just the map legend image, as in Example 3-7, can save processing time if you display the stored map legend image on a web page separately from the actual displayed maps. This avoids the need to generate a legend each time there is a map request.

3.1.8 Map Request with SRID Different from Data SRID

Example 3-8 requests a map displayed in a coordinate system (srid="32775" for US - Equal Area Projection) that is different from the coordinate system associated with the county theme data (jdbc_srid="8265" for Longitude/Latitude - NAD 83). As a result, during the rendering process, MapViewer converts all geometries from the data SRID to the map request SRID.

If no coordinate system is associated with the theme data, MapViewer assumes that the data is associated with the coordinate system of the map request, and no conversion occurs.

Example 3-8 Map Request with SRID Different from Data SRID

<?xml version="1.0" standalone="yes"?>
<map_request
 title="US Counties: Equal-Area Projection (SRID=32775)"
 datasource="mvdemo"
 srid="32775"
 width="500"
 height="375"
 bgcolor="#a6caf0"
 antialiase="true"
 format="PNG_URL">
 <center size="4000000.0">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-218191.9643,1830357.1429</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="county_th" user_clickable="false">
 <jdbc_query
 spatial_column="geom"
 render_style="C.COUNTIES"
 jdbc_srid="8265"
 datasource="mvdemo"
 asis="false">select geom from counties</jdbc_query>
 </theme>
 </themes>
</map_request>

3.1.9 Map Request Using a Pie Chart Theme

This section shows how to use thematic mapping with a pie chart theme. The result is a map in which each county contains a pie chart in which the size of each slice reflects the proportion of the population in a specified household income level category (low, medium, or high) in the county.

The basic steps are as follows.

	
Create an advanced style that defines the characteristics of the pie charts to be used. The following example creates an advanced style named V.PIECHART1.

INSERT INTO user_sdo_styles VALUES (
'V.PIECHART1', 'ADVANCED', null,
'<?xml version="1.0" ?>
<AdvancedStyle>
 <PieChartStyle pieradius="10">
 <PieSlice name="low" color="#ff0000"/>
 <PieSlice name="medium" color="#ffff00"/>
 <PieSlice name="high" color="#00ff00"/>
 </PieChartStyle>
</AdvancedStyle>', null, null);

When the style defined in the preceding example is applied to a geographic feature, a pie chart is created with three slices. The pieradius attribute specifies the size of each pie chart in pixels. Each slice (<PieSlice> element) has a color defined for it. The name attribute for each slice is ignored by MapViewer.

	
Create a new theme that uses the style that you created, as in the following example:

INSERT INTO user_sdo_themes VALUES (
'THEME_PIE_CHART', null, 'COUNTIES', 'GEOM',
'<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule column="INC_LOW,INC_MED,INC_HIGH">
 <features style="C.US MAP YELLOW"> </features>
 <label column="''dummy''" style="V.PIECHART1"> 1 </label>
 </rule>
</styling_rules>');

In the theme definition in the preceding example, the <label> element of the styling rule specifies style="V.PIECHART1", to indicate that this pie chart style (the style created in Step 1) is used to label each geometry displayed on the map.

The column attribute (column="''dummy''" in this example) is required, even though it has no effect on the resulting map. The column attribute value can be dummy or any other string, and the value must be enclosed on both sides by two single quotation marks.

Because the V.PIECHART1 style is defined with three slices, the preceding example must specify the names of three columns from the COUNTIES table, and these columns must have a numeric data type. The column names are INC_LOW, INC_MED, and INC_HIGH. These columns will supply the value that will be used to determine the size of each pie slice.

	
Issue a map request that uses the theme that you created. Example 3-9 requests a map that uses the THEME_PIE_CHART theme that was created in Step 2.

Example 3-9 Map Request Using a Pie Chart Theme

<?xml version="1.0" standalone="yes"?>
<map_request datasource = "mvdemo"
 format="PNG_STREAM">
 <themes>
 <theme name="THEME_PIE_CHART"/>
 </themes>
</map_request>

Figure 3-1 shows part of a display resulting from the map request in Example 3-9.

Figure 3-1 Map Display Using a Pie Chart Theme

[image: Description of Figure 3-1 follows]

Description of "Figure 3-1 Map Display Using a Pie Chart Theme"

You can also use the pie chart style in a dynamic (JDBC) theme when issuing a map request. You must specify the complete SQL query for a JDBC theme in the map request, because you must identify the attribute columns that are needed by the pie chart style. Any columns in the SELECT list that are not SDO_GEOMETRY columns or label columns are considered to be attribute columns that can be used by an advanced style.

Example 3-10 is a sample request with a JDBC theme using a pie chart style. The SQL query (SELECT geom, 'dummy', sales, service, training FROM support_centers) is included in the theme definition.

Example 3-10 JDBC Theme Using a Pie Chart Style

<?xml version="1.0" standalone="yes"?>
<map_request
 basemap="CA_MAP"
 datasource = "mvdemo"
 format="PNG_URL">
 <themes>
 <theme name="support_center">
 <jdbc_query spatial_column="geom" datasource="tilsmenv"
 label_column="dummy",
 label_style="V.PIECHART1">
 SELECT geom, 'dummy', sales, service, training
 FROM support_centers
 </jdbc_query>
 </theme>
 </themes>
</map_request>

3.1.10 Map Request Using Ratio Scale and Mixed Theme Scale Modes

Example 3-11 requests a map specifying a center and a ratio scale to define the map area. Two themes are used: a predefined theme named THEME_US_COUNTIES1, which uses the default screen inch scale mode, and a JDBC theme names STATES_TH, which uses the ratio mode.

Example 3-11 Map Request Using Ratio Scale and Mixed Theme Scale Modes

<?xml version="1.0" standalone="yes"?>
<map_request
title="States (ratio), counties (screen inch), center and scale"
datasource="tilsmenv"
width="500"
height="400"
bgcolor="#a6caf0"
antialiase="true"
format="PNG_URL"
>
<center scale="5000000">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-90.0,32.0</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
</center>
<themes>
 <theme name="STATES_TH" min_scale="5.0E7" max_scale="1.0E7" scale_mode="ratio">
 <jdbc_query
 label_column="STATE"
 spatial_column="geom"
 label_style="T.STATE NAME"
 render_style="C.COUNTIES"
 jdbc_srid="8265"
 datasource="tilsmenv"
 asis="false">select geom,state from states
 </jdbc_query>
 </theme>
 <theme name="THEME_US_COUNTIES1" min_scale="2.286" />
</themes>
</map_request>

3.1.11 Map Request Using Predefined Theme (Binding Parameter and Custom Type)

Example 3-12 requests a map using a predefined theme with a styling rule that selects all counties where a state abbreviation is in the selection list. When the predefined theme is created, the selection list is represented as a binding parameter, as follows:

INSERT INTO user_sdo_themes VALUES (
 'COUNTIES_BY_STATES', null, 'COUNTIES', 'GEOM',
 '<styling_rules>
 <rule>
 <features style="C.COUNTIES"> (state_abrv in (select column_value from table(:1))) </features>
 <label column="COUNTY" style="T.CITY NAME"> 1 </label>
 </rule>
</styling_rules>');

This binding parameter can accept one or more values, for which you can create a custom SQL data type that represents this set of values, as follows:

CREATE OR REPLACE TYPE string_array AS TABLE OF VARCHAR2(64);

Then, you can use this custom data type on the binding parameter of the map request, as shown in Example 3-12.

Example 3-12 Map Request Using Predefined Theme (Binding Parameter and Custom Type)

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Binding Parameters and STRING_ARRAY type"
 datasource = "mvdemo"
 width="640"
 height="480"
 bgcolor="#a6cae0"
 antialiase="false"
 format="PNG_STREAM">

 <themes>
 <theme name="COUNTIES_BY_STATES" >
 <binding_parameters>
 <parameter value="FL,ME,CA,OH" type="STRING_ARRAY"/>
 </binding_parameters>
 </theme>
 </themes>

</map_request>

3.1.12 Map Request Using Advanced Styles and Rendering Rules

Example 3-13 requests a map using the <rendering> element, and it combines two advanced styles that are based on different columns. In this example, an advanced style named POPVMK is based on column POP90, and another advanced style named EQRBRANK is based on column RANK90. Point features (from the CITIES table) are rendered. The shape of the feature is defined by the advanced style associated with column POP90, and the feature color is defined by the advanced style associated with column RANK90.

Example 3-13 Map Request Using Advanced Styles and Rendering Rules

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Cross advanced styles"
 datasource="mvdemo"
 width="640"
 height="480"
 bgcolor="#a6caf0"
 antialiase="false"
 format="PNG_STREAM"
>
 <center size="7.7">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-72.96,41.25</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>

 <themes>
 <theme name="cities">
 <jdbc_query
 label_column="city"
 spatial_column="location"
 label_style="T.CITY NAME"
 jdbc_srid="8265"
 datasource="mvdemo"
 asis="false">select location,city,pop90,rank90 from cities
 </jdbc_query>
 <rendering>
 <style name="POPVMK" value_columns="POP90">
 <substyle name="EQRBRANK" value_columns="RANK90" changes="FILL_COLOR"/>
 </style>
 </rendering>
 </theme>
 </themes>

 <styles>
 <style name="STAR_TRANSP">
<svg width="1in" height="1in">
 <desc/>
 <g class="marker" style="stroke:#000000;fill:#FF0000;fill-opacity:0;width:15;height:15;font-family:Dialog;font-size:12;font-fill:#FF0000">
 <polyline points="138.0,123.0,161.0,198.0,100.0,152.0,38.0,198.0,61.0,123.0,0.0,76.0,76.0,76.0,100.0,0.0,123.0,76.0,199.0,76.0"/>
 </g>
</svg>
 </style>

 <style name="POPVMK">
 <AdvancedStyle>
 <VariableMarkerStyle basemarker="STAR_TRANSP" startsize="7" increment="5">
 <Buckets>
 <RangedBucket seq="0" label="100217 - 1905803.75" low="100217" high="1905803.75"/>
 <RangedBucket seq="1" label="1905803.75 - 3711390.5" low="1905803.75" high="3711390.5"/>
 <RangedBucket seq="2" label="3711390.5 - 5516977.25" low="3711390.5" high="5516977.25"/>
 <RangedBucket seq="3" label="5516977.25 - 7322564" low="5516977.25" high="7322565"/>
 </Buckets>
 </VariableMarkerStyle>
 </AdvancedStyle>
 </style>

 <style name="EQRBRANK">
 <AdvancedStyle>
 <BucketStyle>
 <Buckets low="1" high="196" nbuckets="4" styles="C.RED,C.RB13_1,C.RB13_6,C.SEQ6_01"/>
 </BucketStyle>
 </AdvancedStyle>
 </style>
 </styles>

 <legend bgstyle="fill:#ffffff;fill-opacity:50;stroke:#ff0000" profile="SMALL" position="SOUTH_EAST">
 <column>
 <entry text="Map Legend" is_title="true" />
 <entry text="POP90:" />
 <entry style="POPVMK" tab="1" />
 <entry text="RANK90:" />
 <entry style="EQRBRANK" tab="1" />
 </column>
 </legend>
</map_request>

3.1.13 Map Request Using Stacked Styles

Example 3-14 requests a map using the <rendering> element, and it defines multiple styles (C.COUNTIES and PIECHART1) to be applied on each theme feature.

Example 3-14 Map Request Using Stacked Styles

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Theme with Stacked Styles"
 datasource="mvdemo"
 width="600"
 height="450"
 bgcolor="#a6caf0"
 antialiase="true"
 format="PNG_STREAM"
>
 <center size="18">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-122.729,40.423</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="STACKEDSTYLES">
 <jdbc_query
 label_column="state"
 spatial_column="geom"
 label_style="T.STATE NAME"
 jdbc_srid="8265"
 datasource="mvdemo"
 asis="false">select geom,state,HHI0_10,HHI10_15,HHI100UP,HHI15_25,HHI25_35 from states
 </jdbc_query>
 <rendering>
 <style name="C.COUNTIES"/>
 <style name="PIECHART1" value_columns="HHI0_10,HHI10_15,HHI100UP,HHI15_25,HHI25_35"/>
 </rendering>
 </theme>
 </themes>

 <styles>
 <style name="piechart1">
 <AdvancedStyle>
 <PieChartStyle pieradius="10">
 <PieSlice name="A" color="#FFFF00"/>
 <PieSlice name="B" color="#000000"/>
 <PieSlice name="H" color="#FF00FF"/>
 <PieSlice name="I" color="#0000FF"/>
 <PieSlice name="W" color="#FFFFFF"/>
 </PieChartStyle>
 </AdvancedStyle>
 </style>
 </styles>

</map_request>

3.1.14 WFS Map Requests

This section contains examples of WFS map requests, one using a predefined theme and one using a dynamic theme.

Example 3-15 requests a map using a predefined WFS theme named BC_MUNICIPALITY, which is defined as follows:

INSERT INTO user_sdo_themes VALUES (
 'BC_MUNICIPALITY',
 'WFS theme',
 'BC_MUNICIPALITY',
 'THE_GEOM',
'<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="wfs" service_url="http://www.refractions.net:8080/geoserver/wfs/GetCapabilities?" srs="EPSG:3005">
 <rule>
 <features style="C.BLUE"> </features>
 <label column="name" style="T.CITY NAME"> 1 </label>
 </rule>
</styling_rules>');

Example 3-15 shows a map request that renders this predefined WFS theme.

Example 3-15 Map Request Using Predefined WFS Theme

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Predefined WFS MAP"
 datasource = "mvdemo"
 width="640"
 height="480"
 bgcolor="#a6cae0"
 antialiase="true"
 format="PNG_STREAM">

 <center size="76000">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>1260500,470000</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>

 <themes>
 <theme name="bc_municipality" />
 </themes>

</map_request>

Example 3-16 shows a map request that uses a dynamic WFS theme.

Example 3-16 Map Request Using Dynamic WFS Theme

<?xml version="1.0" standalone="yes"?>
<map_request
 title="WFS MAP"
 datasource = "mvdemo"
 width="640"
 height="480"
 bgcolor="#a6cae0"
 antialiase="true"
 format="PNG_STREAM">

 <center size="76000">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>1260500,470000</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>

 <themes>
 <theme name="wfs" >
 <wfs_feature_request
 service_url="http://www.refractions.net:8080/geoserver/wfs/GetCapabilities?"
 srs="EPSG:3005"
 feature_name="bc_hospitals"
 spatial_column="the_geom"
 render_style="M.STAR"
 label_column="name"
 label_style="T.CITY NAME"
 datasource="mvdemo" />
 </theme>
 </themes>

</map_request>

Example 3-17 shows a map request for a dynamic WFS theme with an advanced style to render features.

Example 3-17 Map Request Using Dynamic WFS Theme with an Advanced Style

<?xml version="1.0" standalone="yes"?>
<map_request
 title="WFS Theme with Advanced Style"
 datasource = "mvdemo"
 width="640"
 height="480"
 bgcolor="#a6cae0"
 antialiase="true"
 format="PNG_STREAM">
 <center size="10.">
 <geoFeature >
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-70., 44.</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>

 <themes>
 <theme name="wfs" >
 <wfs_feature_request
 service_url="http://199.29.1.81:8181/miwfs/GetFeature.ashx?"
 srs="EPSG:4326"
 feature_name="usa"
 spatial_column="obj"
 render_style="CBSTATES"
 label_column="STATE_NAME"
 label_style="T.CITY NAME"
 feature_attributes="state"
 datasource="mvdemo" />
 </theme>
 </themes>

 <styles>
 <style name="CBSTATES">
 <AdvancedStyle>
 <BucketStyle>
 <Buckets default_style="C.COUNTIES">
 <CollectionBucket seq="0" type="string" style="C.RB13_13">MA</CollectionBucket>
 <CollectionBucket seq="1" type="string" style="C.RB13_1">NH</CollectionBucket>
 <CollectionBucket seq="2" type="string" style="C.RB13_7">ME</CollectionBucket>
 </Buckets>
 </BucketStyle>
 </AdvancedStyle>
 </style>
 </styles>
</map_request>

3.1.15 Java Program Using MapViewer

Example 3-18 uses the java.net package to send an XML request to MapViewer and to receive the response from MapViewer. (Note, however, most programmers will find it more convenient to use the JavaBean-based API, described in Chapter 4, or the JSP tag library, described in Chapter 5.)

Example 3-18 Java Program That Interacts with MapViewer

import java.net.*;
import java.io.*;

/**
 * A sample program that shows how to interact with MapViewer
 */
public class MapViewerDemo
{
 private HttpURLConnection mapViewer = null;

 /**
 * Initializes this demo with the URL to the MapViewer server.
 * The URL is typically http://my_corp.com:8888/mapviewer/omserver.
 */
 public MapViewerDemo(String mapViewerURLString)
 {
 URL url;

 try
 {
 url = new URL(mapViewerURLString);
 mapViewer = (HttpURLConnection) url.openConnection();
 mapViewer.setDoOutput(true);
 mapViewer.setDoInput(true);
 mapViewer.setUseCaches(false);
 }
 catch (Exception e)
 {
 e.printStackTrace(System.err);
 System.exit(1);
 }
 }

 /**
 * Submits an XML request to MapViewer.
 * @param xmlreq the XML document that is a MapViewer request
 */
 public void submitRequest(String xmlreq)
 {
 try
 {
 mapViewer.setRequestMethod("POST"); //Use HTTP POST method.
 OutputStream os = mapViewer.getOutputStream();
 //MapViewer expects to find the request as a parameter
 //named "xml_request".
 xmlreq = "xml_request="+URLEncoder.encode(xmlreq);
 os.write(xmlreq.getBytes());
 os.flush();
 os.close();
 }
 catch (Exception e)
 {
 e.printStackTrace(System.err);
 System.exit(1);
 }
 }

 /**
 * Receives an XML response from MapViewer.
 */
 public String getResponse()
 {
 ByteArrayOutputStream content = new ByteArrayOutputStream();
 InputStream is = null;
 try
 {
 is = mapViewer.getInputStream();
 int c;
 while ((c = is.read()) != -1)
 content.write(c);
 is.close();
 content.flush();
 content.close();
 return content.toString();
 }
 catch (Exception e)
 {
 e.printStackTrace(System.err);
 return null;
 }
 }

 // A simple main program that sends a list_data_sources XML
 // request to MapViewer through HTTP POST
 public static void main(String[] args)
 {
 if(args.length<1)
 {
 System.out.println("Usage: java MapViewerDemo <mapviewer url>");
 System.out.println("Example: java MapViewerDemo http://my_corp.com/mapviewer/omserver");
 System.exit(1);
 }

 // A sample XML request for MapViewer
 String
 listDataSources = "<?xml version=\"1.0\" standalone=\"yes\"?>" +
 " <non_map_request>" +
 " <list_data_sources/>" +
 " </non_map_request>";

 MapViewerDemo tester = null;
 tester = new MapViewerDemo(args[0]);
 System.out.println("submitting request:\n"+listDataSources);
 tester.submitRequest(listDataSources);
 String response = tester.getResponse();
 System.out.println("response from MapViewer: \n" + response);
 }
}

3.1.16 PL/SQL Program Using MapViewer

Example 3-19 is a sample PL/SQL program that sends an XML request to the MapViewer server.

Example 3-19 PL/SQL Program That Interacts with MapViewer

set serverout on size 1000000;

--
-- Author: Clarke Colombo
--
declare

 l_http_req utl_http.req;
 l_http_resp utl_http.resp;
 l_url varchar2(4000):= 'http://my_corp.com:8888/mapviewer/omserver';

 l_value varchar2(4000);
 img_url varchar2(4000);
 response sys.xmltype;

 output varchar2(255);

 map_req varchar2(4000);

begin

 utl_http.set_persistent_conn_support(TRUE);

 map_req := '<?xml version="1.0" standalone="yes"?>
 <map_request title="MapViewer Demonstration"
 datasource="mvdemo"
 basemap="course_map"
 width="500"
 height="375"
 bgcolor="#a6cae0"
 antialiasing="false"
 format="GIF_URL">
 <center size="5">
 <geoFeature>
 <geometricProperty>
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 </map_request>';

 l_http_req := utl_http.begin_request(l_url, 'POST', 'HTTP/1.0');

 --
 -- Sets up proper HTTP headers.
 --
 utl_http.set_header(l_http_req, 'Content-Type', 'application/x-www-form-urlencoded');
 utl_http.set_header(l_http_req, 'Content-Length', length('xml_request=' || map_req));
 utl_http.set_header(l_http_req, 'Host', 'my_corp.com');
 utl_http.set_header(l_http_req, 'Port', '8888');
 utl_http.write_text(l_http_req, 'xml_request=' || map_req);
 --
 l_http_resp := utl_http.get_response(l_http_req);

 utl_http.read_text(l_http_resp, l_value);

 response := sys.xmltype.createxml (l_value);

 utl_http.end_response(l_http_resp);

 img_url := response.extract('/map_response/map_image/map_content/@url').getstringval();

 dbms_output.put_line(img_url);

end;
/

3.2 Map Request DTD

The following is the complete DTD for a map request, which is followed by reference sections that describe each element and its attributes.

<?xml version="1.0" encoding="UTF-8"?>
<!-- <box> is defined in OGC GML v1.0 -->
<!ELEMENT map_request ((box | center | bounding_themes)?, srs?, legend?, themes?,
 styles?, scale_bar?, north_arrow?, geoFeature*)>
<!ATTLIST map_request
 datasource CDATA #REQUIRED
 srid CDATA #IMPLIED
 basemap CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 antialiasing (TRUE|FALSE) "FALSE"
 imagescaling (TRUE|FALSE) "TRUE"
 format (GIF|GIF_URL|GIF_STREAM|JAVA_IMAGE|
 PNG_STREAM|PNG_URL|PNG8_STREAM|PNG8_URL|
 JPEG_STREAM|JPEG_URL|PDF_STREAM|PDF_URL|
 SVG_STREAM|SVGZ_STREAM|SVGTINY_STREAM|
 SVG_URL|SVGZ_URL|SVGTINY_URL) "GIF_URL"
 transparent (TRUE|FALSE) "FALSE"
 title CDATA #IMPLIED
 bgcolor (CDATA) "#A6CAF0"
 bgimage CDATA #IMPLIED
 zoomlevels CDATA #IMPLIED
 zoomfactor CDATA #IMPLIED
 zoomratio CDATA #IMPLIED
 initscale CDATA #IMPLIED
 navbar (TRUE|FALSE) "TRUE"
 infoon (TRUE|FALSE) "TRUE"
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 rasterbasemap (TRUE|FALSE) "FALSE"
 onrectselect CDATA #IMPLIED
 onpolyselect CDATA #IMPLIED
 use_cached_basemap (TRUE|FALSE) "FALSE"
 snap_to_cache_scale (TRUE|FALSE) "FALSE"
 title_style CDATA #IMPLIED
 footnote CDATA #IMPLIED
 footnote_style CDATA #IMPLIED
 rotation CDATA #IMPLIED*
 >
<!ELEMENT center (geoFeature)>
<!ATTLIST center
 size CDATA #REQUIRED
>
<!ELEMENT box (coordinates) >
<!ATTLIST box
 ID CDATA #IMPLIED
 srsName CDATA #REQUIRED
 preserve_aspect_ratio (TRUE|FALSE) "FALSE"
>
<!ELEMENT bounding_themes (#PCDATA) >
<!ATTLIST bounding_themes
 border_margin CDATA #IMPLIED
 preserve_aspect_ratio CDATA "TRUE"
 size_hint CDATA #IMPLIED
>
<!ELEMENT srs (#PCDATA) >

<!ELEMENT themes (theme+) >
<!ELEMENT theme (jdbc_query | jdbc_image_query | jdbc_georaster_query
 | jdbc_network_query | jdbc_topology_query
 | map_tile_theme
)? >
<!ATTLIST theme
 name CDATA #REQUIRED
 datasource CDATA #IMPLIED
 max_scale CDATA #IMPLIED
 min_scale CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 fast_unpickle (TRUE|FALSE) "TRUE"
 mode CDATA #IMPLIED
 min_dist CDATA #IMPLIED
 fixed_svglabel (TRUE|FALSE) "FALSE"
 visible_in_svg (TRUE|FALSE) "TRUE"
 selectable_in_svg (TRUE|FALSE) "FALSE"
 part_of_basemap (TRUE|FALSE) "FALSE"
 simplify_shapes (TRUE|FALSE) "TRUE"
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 onmouseover CDATA #IMPLIED
 onmouseout CDATA #IMPLIED
 workspace_name CDATA #IMPLIED
 workspace_savepoint CDATA #IMPLIED
 workspace_date CDATA #IMPLIED
 workspace_date_format CDATA #IMPLIED
>
<!ELEMENT jdbc_query (#PCDATA, hidden_info?)>
<!ATTLIST jdbc_query
 asis (TRUE|FALSE) "FALSE"
 spatial_column CDATA #REQUIRED
 key_column CDATA #IMPLIED
 label_column CDATA #IMPLIED
 label_style CDATA #IMPLIED
 render_style CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT hidden_info (field+)>
<!ELEMENT field (#PCDATA)>
<!ATTLIST field
 column CDATA #REQUIRED
 name CDATA #IMPLIED
>
<!ELEMENT jdbc_image_query (#PCDATA) >
<!ATTLIST jdbc_image_query
 asis (TRUE|FALSE) "FALSE"
 image_format CDATA #REQUIRED
 image_column CDATA #REQUIRED
 image_mbr_column CDATA #REQUIRED
 image_resolution CDATA #IMPLIED
 image_unit CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT jdbc_georaster_query (#PCDATA) >
<!ATTLIST jdbc_georaster_query
 asis (TRUE|FALSE) "FALSE"
 georaster_table CDATA #REQUIRED
 georaster_column CDATA #REQUIRED
 raster_id CDATA #IMPLIED
 raster_table CDATA #IMPLIED
 raster_pyramid CDATA #IMPLIED
 raster_bands CDATA #IMPLIED
 datasource CDATA #IMPLIED
 polygon_mask CDATA #IMPLIED
 transparent_nodata CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin">
<!ELEMENT jdbc_network_query (#PCDATA) >
<!ATTLIST jdbc_network_query
 asis (TRUE|FALSE) "FALSE"
 network_name CDATA #REQUIRED
 network_level CDATA #IMPLIED
 link_style CDATA #IMPLIED
 direction_style CDATA #IMPLIED
 direction_position CDATA #IMPLIED
 direction_markersize CDATA #IMPLIED
 link_labelstyle CDATA #IMPLIED
 link_labelcolumn CDATA #IMPLIED
 node_style CDATA #IMPLIED
 node_markersize CDATA #IMPLIED
 node_labelstyle CDATA #IMPLIED
 node_labelcolumn CDATA #IMPLIED
 path_ids CDATA #IMPLIED
 path_styles CDATA #IMPLIED
 path_labelstyle CDATA #IMPLIED
 path_labelcolumn CDATA #IMPLIED
 analysis_algorithm CDATA #IMPLIED
 shortestpath_style CDATA #IMPLIED
 shortestpath_startnode CDATA #IMPLIED
 shortestpath_endnode CDATA #IMPLIED
 shortestpath_startstyle CDATA #IMPLIED
 shortestpath_endstyle CDATA #IMPLIED
 withincost_startnode CDATA #IMPLIED
 withincost_style CDATA #IMPLIED
 withincost_cost CDATA #IMPLIED
 withincost_startstyle CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT jdbc_topology_query (#PCDATA)>
<!ATTLIST jdbc_topology_query
 asis (TRUE|FALSE) "FALSE"
 topology_name CDATA #REQUIRED
 feature_table CDATA #REQUIRED
 spatial_column CDATA #REQUIRED
 label_column CDATA #IMPLIED
 label_style CDATA #IMPLIED
 render_style CDATA #IMPLIED
 datasource CDATA #IMPLIED
 edge_style CDATA #IMPLIED
 edge_marker_style CDATA #IMPLIED
 edge_marker_size CDATA #IMPLIED
 edge_label_style CDATA #IMPLIED
 node_style CDATA #IMPLIED
 node_label_style CDATA #IMPLIED
 face_style CDATA #IMPLIED
 face_label_style CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT map_tile_theme (#PCDATA)>
<!ATTLIST map_tile_theme
 map_tile_layer CDATA # REQUIRED
 snap_to_tile_scale (TRUE|FALSE) "FALSE"
>
<!ELEMENT geoFeature (description?, property*,
 geometricProperty)>
<!ATTLIST geoFeature
 typeName CDATA #IMPLIED
 id CDATA #IMPLIED
 render_style CDATA #IMPLIED
 text_style CDATA #IMPLIED
 label CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 marker_size CDATA #IMPLIED
 radius CDATA #IMPLIED
 attribute_values CDATA #IMPLIED
 orient_x CDATA #IMPLIED
 orient_y CDATA #IMPLIED
 orient_z CDATA #IMPLIED
 selectable_in_svg (TRUE|FALSE) "FALSE"
 onclick CDATA #IMPLIED
 hidden_info CDATA #IMPLIED
>
<!ELEMENT legend column+ >
<!ATTLIST legend
 bgstyle CDATA #implied
 font CDATA #implied
 location_x CDATA #implied
 location_y CDATA #implied
 offset_x CDATA #implied
 offset_y CDATA #implied
 profile (MEDIUM|SMALL|LARGE) "MEDIUM"
 position (SOUTH_WEST|SOUTH_EAST|SOUTH|NORTH|
 NORTH_WEST|NORTH_EAST|EAST|WEST|CENTER) "SOUTH_WEST"
>
<!ELEMENT column entry+ >
<!ATTLIST entry
 is_title (true|false) "false"
 is_separator (true|false) "false"
 tab CDATA "0"
 style CDATA #implied
 text CDATA #implied
>
<!ELEMENT scale_bar >
<!ATTLIST scale_bar
 mode (METRIC_MODE|US_MODE|DUAL_MODES) "METRIC_MODE"
 position (SOUTH_WEST|SOUTH_EAST|SOUTH|NORTH|
 NORTH_WEST|NORTH_EAST) "NORTH_EAST"
 offset_y CDATA #implied
 offset_y CDATA #implied
 color1 CDATA #implied
 color1_opacity CDATA #implied
 color2 CDATA #implied
 color2_opacity CDATA #implied
 length_hint CDATA #implied
 label_color CDATA #implied
 label_font_family CDATA #implied
 label_font_size CDATA #implied
 label_halo_size CDATA #implied
 label_position (TOP|BOTTOM) "TOP"
>
<!ELEMENT styles (style+) >
<!ELEMENT style (svg | AdvancedStyle)?>
<!ATTLIST style
 name CDATA #REQUIRED
>
<!ELEMENT north_arrow (style, location?, size?) >

The main elements and attributes of the map request DTD are explained in sections that follow. The <map_request> element is described in Section 3.2.1. The remaining related elements are described, in alphabetical order by element name, in the following sections:

	
Section 3.2.2, "bounding_themes Element"

	
Section 3.2.3, "box Element"

	
Section 3.2.4, "center Element"

	
Section 3.2.5, "geoFeature Element"

	
Section 3.2.6, "jdbc_georaster_query Element"

	
Section 3.2.7, "jdbc_image_query Element"

	
Section 3.2.8, "jdbc_network_query Element"

	
Section 3.2.9, "jdbc_query Element"

	
Section 3.2.10, "jdbc_topology_query Element"

	
Section 3.2.11, "legend Element"

	
Section 3.2.12, "map_tile_theme Element"

	
Section 3.2.13, "north_arrow Element"

	
Section 3.2.14, "operation Element"

	
Section 3.2.15, "operations Element"

	
Section 3.2.16, "parameter Element"

	
Section 3.2.17, "scale_bar Element"

	
Section 3.2.18, "style Element"

	
Section 3.2.19, "styles Element"

	
Section 3.2.20, "theme Element"

	
Section 3.2.21, "themes Element"

3.2.1 map_request Element

The <map_request> element has the following definition:

<!ELEMENT map_request ((box | center | bounding_themes)?, srs?, legend?, themes?,
 styles?, geoFeature*)>
<!ELEMENT map_request ((box | center | bounding_themes)?, srs?, legend?, themes?,
 styles?, geoFeature*, north_arrow?)>

The root element of a map request to MapViewer is always named map_request.

<map_request> can have a child element that is <box> (see Section 3.2.3), <center> (see Section 3.2.4), or <bounding_themes> (see Section 3.2.2), which specifies the range of the user data to be plotted on a map. If none of these child elements is specified, the result map is drawn using all data available to MapViewer.

The optional <srs> child element is ignored by the current version of MapViewer.

The optional <legend> element (see Section 3.2.11) is used to draw a legend (map inset illustration) on top of a generated map, to make the visual aspects of the map more meaningful to users.

The optional <themes> element (see Section 3.2.21) specifies predefined or dynamically defined themes.

The optional <styles> element (see Section 3.2.19) specifies dynamically defined styles.

The <geoFeature> element (see Section 3.2.5) can be used to specify any number of individual geometries and their rendering attributes.

The optional <north_arrow> element (see Section 3.2.13) is used to draw a north arrow marker based on the request rotation.

MapViewer first draws the themes defined in a base map (if a base map is specified as an attribute in the root element), then any user-provided themes, and finally any geoFeature elements.

3.2.1.1 map_request Attributes

The root element <map_request> has a number of attributes, some required and the others optional. The attributes are defined as follows:

<!ATTLIST map_request
 datasource CDATA #REQUIRED
 srid CDATA #IMPLIED
 basemap CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 antialiasing (TRUE|FALSE) "FALSE"
 imagescaling (TRUE|FALSE) "TRUE"
 format (GIF|GIF_URL|GIF_STREAM|JAVA_IMAGE|
 PNG_STREAM|PNG_URL|PNG8_STREAM|PNG8_URL|
 JPEG_STREAM|JPEG_URL|PDF_STREAM|PDF_URL|
 SVG_STREAM|SVGZ_STREAM|SVGTINY_STREAM|
 SVG_URL|SVGZ_URL|SVGTINY_URL) "GIF_URL"
 transparent (TRUE|FALSE) "FALSE"
 title CDATA #IMPLIED
 title_style CDATA #IMPLIED
 footnote CDATA #IMPLIED
 footnote_style CDATA #IMPLIED
 rotation CDATA #IMPLIED*
 bgcolor (CDATA) "#A6CAF0"
 bgimage CDATA #IMPLIED
 zoomlevels CDATA #IMPLIED
 zoomfactor CDATA #IMPLIED
 zoomratio CDATA #IMPLIED
 initscale CDATA #IMPLIED
 navbar (TRUE|FALSE) "TRUE"
 infoon (TRUE|FALSE) "TRUE"
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 rasterbasemap (TRUE|FALSE) "FALSE"
 onrectselect CDATA #IMPLIED
 onpolyselect CDATA #IMPLIED
 keepthemesorder CDATE #IMPLIED
 use_cached_basemap (TRUE|FALSE) "FALSE"
 snap_to_cache_scale (TRUE|FALSE) "FALSE"
 title_style CDATA #IMPLIED
 footnote CDATA #IMPLIED
 footnote_style CDATA #IMPLIED
 rotation CDATA #IMPLIED*
>

datasource is a required attribute that specifies a data source. A data source provides information to MapViewer about where to fetch the user data (and the mapping metadata) that is required to render a map.

srid is an optional attribute. If it is specified, it provides the SRID value of the coordinate system (spatial reference system) for the map request. If necessary, theme geometries will be converted to the specified coordinate system before being rendered, although geometries with an undefined coordinate system will not be converted. If this attribute is not specified, MapViewer uses the coordinate system of the first theme to be rendered as the coordinate system for the map request.

basemap is an optional attribute. When it is specified, MapViewer renders all themes that are specified for this base map. The definition of a base map is stored in the user's USER_SDO_MAPS view, as described in Section 2.9.1. Use this attribute if you will always need a background map on which to plot your own themes and geometry features.

width and height are optional attributes that together specify the size (in device units) of the resulting map image. This size is different from the size specified in the center element or box element, which is the range of the window into a user's source data. The default width and height values are 500 and 375 pixels, respectively. The unit is in pixels except for PDF formats, in which case pt is used as the unit, and the relationship with pixels is approximately 1 pt = 1.333 px (or, 1px = 0.75 pt). Thus, for example, if you request a map with size 500x375 "pt" in PDF format, this should generate an image of approximately 667x500 pixels.

antialiasing is an optional attribute. When its value is TRUE, MapViewer renders the map image in an antialiased manner. This usually provides a map with better graphic quality, but it may take longer for the map to be generated. The default value is FALSE (for faster map generation). (For backward compatibility, antialiase is a synonym for antialiasing, but you are encouraged to use antialiasing.)

imagescaling is an optional attribute. When its value is TRUE (the default), MapViewer attempts to scale the images to fit the current querying window and the generated map image size. When its value is FALSE, and if an image theme is included directly or indirectly (such as through a base map), the images from the image theme are displayed in their original resolution. This attribute has no effect when no image theme is involved in a map request.

format is an optional attribute that specifies the file format of the returned map image. The default value is GIF_URL, which is a URL to a GIF image stored on the MapViewer host system.

	
If you specify GIF, the generated GIF image data is embedded in a MapResponse object and returned to the client. If you specify GIF_STREAM, the generated image map content is returned directly to the client through the HTTP MIME type image/gif.

	
If you specify JAVA_IMAGE, a Java 2D BufferedImage object with a color model of TYPE_INT_RGB is embedded in a MapResponse object and returned to the client.

	
If you specify PNG_STREAM, the stream of the image in nonindexed PNG format is returned directly; if you specify PNG_URL, a URL to a nonindexed PNG image stored on the MapViewer host system is returned. (The PNG image format has some advantages over the GIF format, including faster image encoding and true color support.)

	
If you specify PNG8_STREAM, the stream of the image in indexed PNG format is returned directly; if you specify PNG8_URL, a URL to an indexed PNG image stored on the MapViewer host system is returned. (The PNG image format has some advantages over the GIF format, including faster image encoding and true color support. The indexed PNG format limits the total number of colors available for displaying the map to 256.)

	
If you specify JPEG_STREAM, the stream of the image in JPEG format is returned directly; if you specify JPEG_URL, a URL to a JPEG image stored on the MapViewer host system is returned.

	
If you specify PDF_STREAM, the stream of the image in PDF document format is returned directly; if you specify PDF_URL, a URL to a PDF document stored on the MapViewer host system is returned.

	
If you specify SVG_STREAM, the stream of the image in SVG Basic (SVGB) format is returned directly; if you specify SVG_URL, a URL to an SVG Basic image stored on the MapViewer host system is returned.

	
If you specify SVGZ_STREAM, the stream of the image in SVG Compressed (SVGZ) format is returned directly; if you specify SVGZ_URL, a URL to an SVG Compressed image stored on the MapViewer host system is returned. SVG Compressed format can effectively reduce the size of the SVG map by 40 to 70 percent compared with SVG Basic format, thus providing better performance.

	
If you specify SVGTINY_STREAM, the stream of the image in SVG Tiny (SVGT) format is returned directly; if you specify SVGTINY_URL, a URL to an SVG Tiny image stored on the MapViewer host system is returned. (The SVG Tiny format is designed for devices with limited display capabilities, such as cell phones.)

transparent is an optional attribute that applies to indexed PNG (PNG8_STREAM or PNG8_URL) formats only. When its value is TRUE, MapViewer makes the map background color completely transparent. The default value is FALSE.

title is an optional attribute that specifies the map title to be displayed on the top of the resulting map image.

title_style is an optional attribute that specifies the name of the text style to be used when rendering the title.

footnote is an optional attribute that specifies the footnote text to be added on the final map.

footnote_style is an optional attribute that specifies the name of the text style to be used when rendering the footnote.

bgcolor is an optional attribute that specifies the background color in the resulting map image. The default is water-blue (RGB value #A6CAF0). It must be specified as a hexadecimal value.

bgimage is an optional attribute that specifies the background image (GIF or JPEG format only) in the resulting map image. The image is retrieved at runtime when a map request is being processed, and it is rendered before any other map features, except that any bgcolor value is rendered before the background image.

zoomlevels is an optional attribute that specifies the number of zoom levels for an SVG map. The default is 4.

zoomfactor is an optional attribute that specifies the zoom factor for an SVG map. The zoom factor is the number by which to multiply the current zoom ratio for each integer increment (a zoomin operation) in the zoom level. The inverse of the zoomfactor value is used for each integer decrement (a zoomout operation) in the zoom level. For example, if the zoomfactor value is 2 (the default), zooming in from zoom level 4 to 5 will enlarge the detail by two; for example, if 1 inch of the map at zoom level 4 represents 10 miles, 1 inch of the map at zoom level 5 will represent 5 miles. The zoom ratio refers to the relative scale of the SVG map, which in its original size (zoom level 0) has a zoom ratio of 1.

zoomratio is an optional attribute that specifies the zoom ratio when an SVG map is initially displayed. The default value is 1, which is the original map size (zoom level 0). Higher zoom ratio values show the map zoomed in, and lower values show the map zoomed out.

initscale is an optional attribute that specifies the initial scale when an SVG map is first displayed. The default value is 1, which is the original map size (zoom level 0). Higher values will show the SVG map zoomed in when it is first displayed.

navbar is an optional attribute that specifies whether to display the built-in navigation bar on an SVG map. If its value is TRUE (the default), the navigation bar is displayed; if it is set to FALSE, the navigation bar is not displayed.

infoon is an optional attribute that specifies whether to display hidden information when the mouse moves over features for which hidden information is provided. If its value is TRUE (the default), hidden information is displayed when the mouse moves over such features; if it is set to FALSE, hidden information is not displayed when the mouse moves over such features. Regardless of the value, however, hidden information is always rendered in an SVG map; this attribute only controls whether hidden information can be displayed. (To specify the hidden information for a feature, use the hidden_info attribute in the <geoFeature> element, as explained in Section 3.2.5.)

onclick is an optional attribute that specifies the name of the JavaScript function to be called when a user clicks on an SVG map. The JavaScript function must be defined in the HTML document outside the SVG definition. This function must accept two parameters: x and y, which specify the coordinates inside the SVG window where the click occurred. The coordinates are defined in the local SVG window coordinate system, which starts at (0, 0) at the upper-left corner and ends at (width, height) at the lower-right corner. For information about using JavaScript functions with SVG maps, see Appendix B.

onmousemove is an optional attribute that specifies the name of the JavaScript function to be called when a user moves the mouse on an SVG map. The JavaScript function must be defined in the HTML document outside the SVG definition. This function must accept two parameters: x and y, which specify the coordinates inside the SVG window where the move occurred. The coordinates are defined in the local SVG window coordinate system, which starts at (0, 0) at the upper-left corner and ends at (width, height) at the lower-right corner. For information about using JavaScript functions with SVG maps, see Appendix B.

rasterbasemap is an optional attribute. If the map format is SVG and the value of this attribute is TRUE, MapViewer renders the base map as a raster image. In this case, the base map image becomes the background image for the SVG map, and all other vector features are rendered on top of it.

onrectselect is an optional attribute that specifies the name of the JavaScript function to be called when a user draws a rectangular selection area by clicking and dragging the mouse (to indicate two diagonally opposite corners) on an SVG map. The JavaScript function must be defined in the HTML document outside the SVG definition. This function must not accept any parameters. For information about using JavaScript functions with SVG maps, see Appendix B.

onpolyselect is an optional attribute that specifies the name of the JavaScript function to be called when a user draws a polygon-shaped selection area by clicking and dragging the mouse (to indicate more than two vertices) on an SVG map. The JavaScript function must be defined in the HTML document outside the SVG definition. This function must not accept any parameters. For information about using JavaScript functions with SVG maps, see Appendix B.

keepthemesorder is an optional attribute. If the map format is not SVG and the value of this attribute is TRUE, MapViewer always renders the themes in the order specified in the map request; if the value of this attribute is FALSE, raster themes will be rendered before vector themes.

use_cached_basemap is an optional attribute. If the value of this attribute is TRUE and if a map tile layer caches the same base map specified by the basemap attribute, MapViewer tries to use the map images cached by the map tile server to render the map specified by the map request. For information about the map tile server, see Section 8.2.

snap_to_cache_scale is an optional attribute that is effective only when the use_cached_basemap attribute value is TRUE. It affects the behavior of MapViewer only when the map scale specified by the map request does not match that of any predefined cached zoom level. If this attribute is FALSE, MapViewer uses the cached map images to render the base map only when the map scale specified by the map request matches the scale of a cached predefined zoom level. If this attribute is TRUE, MapViewer always uses the cached map images to render the base map and adjusts the map scale to fit that of a cached predefined zoom level when the request map scale does not match any of the cached predefined zoom levels.

title_style is an optional attribute that defines the text style to be used for the title.

footnote is an optional attribute that defines the text for a footnote to be added to the map.

footnote_style is an optional attribute that defines the text style to be used for the footnote text.

rotation is an optional attribute defined in degrees to apply a rotation on the map. Positive values means counterclockwise rotation of the map. Rotation values are ignored if the request does not have a window defined (no center and size defined, or using bounding themes). Rotation is not supported for requests using base maps coming from the Oracle Maps cache.

3.2.2 bounding_themes Element

The <bounding_themes> element has the following definition:

<!ELEMENT bounding_themes (#PCDATA) >
<!ATTLIST bounding_themes
 border_margin CDATA #IMPLIED
 preserve_aspect_ratio CDATA "TRUE"
 size_hint CDATA #IMPLIED
>

You can specify one or more themes as the bounding themes when you cannot predetermine the data size for a map. For example, you may have one dynamic theme that selects all data points that meet certain criteria, and you then want to plot those data points on a map that is just big enough to enclose all the selected data points. In such cases, you can use the <bounding_themes> element to specify the names of such dynamic themes. MapViewer first processes any themes that are specified in the <bounding_themes> element, generates a bounding box based on the resulting features of the bounding themes, and then prepares other themes according to the new bounding box.

The <bounding_themes> element is ignored if you specify the <box> or <center> element in the map request.

border_margin is an optional attribute that specifies the percentage to be added to each margin of the generated bounding box. For example, if you specify a value of 0.025, MapViewer adds 2.5% of the width to the left and right margins of the generated bounding box (resulting in a total 5% width expansion in the x-axis); similarly, 2.5% of the height is added to the top and bottom margins. The default value is 0.05, or 5% to be added to each margin.

preserve_aspect_ratio is an optional attribute that indicates whether or not the bounding box generated after processing the bounding themes should be further modified so that it has the same aspect ratio as the map image or device. The default is TRUE, which modifies the bounding box to preserve the aspect ratio, so as not to distort the resulting map image.

size_hint is an optional attribute that specifies the vertical span of the map in terms of the original data unit. For example, if the user's data is in decimal degrees, the size_hint attribute specifies the number of decimal degrees in latitude. If the user's data is projected with meter as its unit, MapViewer interprets size_hint in meters.

The size_hint attribute can be used to extend the boundary limit. This is useful when the bounding theme has just one point feature. For example, the bounding theme can be a point resulting from a geocoding query, and you want to place this point in the middle of the map and extend the boundary from that point.

The element itself contains a comma-delimited list of names of the bounding themes. The theme names must exactly match their names in the map request or the base map used in the map request. The following example shows a map request with two bounding themes, named theme1 and theme3, and with 2 percent (border_margin="0.02") added to all four margins of the minimum bounding box needed to hold features associated with the two themes:

<?xml version="1.0" standalone="yes"?>
<map_request
 title="bounding themes"
 datasource = "tilsmenv"
 basemap="qa_map"
 width="400"
 height="400"
 bgcolor="#a6cae0"
 antialiase="false"
 mapfilename="tilsmq202"
 format="PNG_STREAM">

 <bounding_themes border_margin="0.02">theme1, theme3</bounding_themes>

 <themes>
 <theme name="theme1" min_scale="5.0E7" max_scale="0.0">
 <jdbc_query
 datasource="tilsmenv"
 jdbc_srid="8265"
 spatial_column="geom" label_column="STATE"
 render_style="myPattern" label_style="myText"
 >SELECT geom, state from states where state_abrv='IL'</jdbc_query>
 </theme>
 <theme name="theme3" min_scale="5.0E7" max_scale="0.0">
 <jdbc_query
 datasource="tilsmenv"
 jdbc_srid="8265"
 spatial_column="geom" label_column="STATE"
 render_style="myPattern" label_style="myText"
 >SELECT geom,state from states where state_abrv='IN'</jdbc_query>
 </theme>

 </themes>

 <styles>
 <style name="myPattern">
 <svg width="1in" height="1in">
 <desc></desc>
 <g class="area"
 style="stroke:#0000cc;fill:#3300ff;fill-opacity:128;line-style:L.DPH">
 </g>
 </svg>
 </style>
 <style name="myText">
 <svg width="1in" height="1in">
 <g class="text" float-width="3.0"
 style="font-style:bold;font-family:Serif;font-size:18pt;fill:#000000">
 Hello World!
 </g>
 </svg>
 </style>
 </styles>
</map_request>

The preceding example displays a map in which the states of Illinois and Indiana are displayed according to the specifications in the two <theme> elements, both of which specify a rendering style named myPattern. In the myText style, the text "Hello World!" is displayed only when the style is being previewed in a style creation tool, such as the Map Builder tool. When the style is applied to a map, it is supplied with an actual text label that MapViewer obtains from a theme.

Figure 3-2 shows the display from the preceding example.

Figure 3-2 Bounding Themes

[image: Description of Figure 3-2 follows]

Description of "Figure 3-2 Bounding Themes"

3.2.3 box Element

The <box> element has the following definition:

<!ELEMENT box (coordinates) >
<!ATTLIST box
 ID CDATA #IMPLIED
 srsName CDATA #REQUIRED
 preserve_aspect_ratio (TRUE|FALSE) "FALSE"
>

The <box> element is used to specify the bounding box of a resulting map. It uses a <coordinates> element to specify two coordinate value pairs that identify the lower-left and upper-right corners of the rectangle. The coordinate values are interpreted in terms of the user's data. For example, if the user's data is geodetic and is specified in decimal degrees of longitude and latitude, a <coordinates> specification of -72.84, 41.67, -70.88, 42.70 indicates a bounding box with the lower-left corner at longitude-latitude coordinates (-72.84, 41.67) and the upper-right corner at coordinates (-70.88, 42.70), which are in the New England region of the United States. However, if the data is projected with meter as its unit of measurement, the coordinate values are interpreted in meters.

preserve_aspect_ratio is an optional attribute that indicates whether or not the box coordinates should be further modified so that it has the same aspect ratio as the map image or device. The default is FALSE, in order to keep compatibility with previous versions that do not have this attribute. If this value is set to TRUE, the box is modified to preserve the aspect ratio, so as not to distort the resulting map image.

3.2.4 center Element

The <center> element has the following definition:

<!ELEMENT center (geoFeature)>
<!ATTLIST center
 size CDATA #REQUIRED
>

The <center> element is used to specify the center of a resulting map. It has a required attribute named size, which specifies the vertical span of the map in terms of the original data unit. For example, if the user's data is in decimal degrees, the size attribute specifies the number of decimal degrees in latitude. If the user's data is projected with meter as its unit, MapViewer interprets the size in meters.

The center itself must embed a <geoFeature> element, which is specified in Section 3.2.5.

3.2.5 geoFeature Element

The <geoFeature> element has the following definition:

<!ELEMENT geoFeature (description?, property*,
 geometricProperty)>
<!ATTLIST geoFeature
 typeName CDATA #IMPLIED
 id CDATA #IMPLIED
 render_style CDATA #IMPLIED
 text_style CDATA #IMPLIED
 label CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 marker_size CDATA #IMPLIED
 radius CDATA #IMPLIED
 attribute_values CDATA #IMPLIED
 orient_x CDATA #IMPLIED
 orient_y CDATA #IMPLIED
 orient_z CDATA #IMPLIED
 selectable_in_svg (TRUE|FALSE) "FALSE"
 onclick CDATA #IMPLIED
 hidden_info CDATA #IMPLIED
>

<geoFeature> elements are used to provide individual geospatial entities to be rendered on a map. The main part of a <geoFeature> element is the geometry (<geometricProperty> element), which must be supplied in compliance with the OGC GML v1.0 Geometry DTD (described in Section 3.6).

typeName is an optional attribute that is ignored by the current release of MapViewer.

id is an optional attribute that can be used to uniquely identify the feature among all the geospatial features on the SVG map. (See the explanation of the selectable_in_svg attribute.) Otherwise, this attribute is ignored by MapViewer.

render_style is an optional attribute. When it is omitted, the geoFeature is not rendered. If it is supplied, its value must be the name of a style stored in the user's USER_SDO_STYLES view.

text_style is an optional attribute. If it is supplied (and if the render_style and label attributes are present and valid), it identifies the style to be used in labeling the feature. If it is not specified, a default text style is used.

label is an optional attribute. If it is supplied (and if the render_style and label attributes are present and valid), it identifies text that is used to label the feature.

label_always_on is an optional attribute. If it is set to TRUE, MapViewer labels the features even if two or more labels will overlap in the display of a theme. (MapViewer always tries to avoid overlapping labels.) If label_always_on is FALSE (the default), when it is impossible to avoid overlapping labels, MapViewer disables the display of one or more labels so that no overlapping occurs. The label_always_on attribute can also be specified for a theme (theme element, described in Section 3.2.20). Specifying label_always_on as TRUE for a feature in the geoFeature element definition gives you control over which features will have their labels displayed if label_always_on is FALSE for a theme and if overlapping labels cannot be avoided.

marker_size is an optional attribute. If it is supplied with a point feature, and if render_style is a marker-type style, the specified size is used by MapViewer in rendering this feature. This provides a mechanism to override the default value specified for a marker style.

radius is an optional attribute. If it is supplied, it specifies a number or a comma-delimited list of numbers, with each number representing the radius of a circle to be drawn centered on this feature. For geodetic data, the unit is meters; for non-geodetic data, the unit is the unit of measurement associated with the data.

attribute_values is an optional attribute. If it is supplied, it specifies a value or a comma-delimited list of values to be used with bucket ranges of an advanced style (for example, values for pie chart segments or bucket values for variable markers).

orient_x and orient_y optionally specify a virtual end point to indicate an orientation vector for rotating a marker symbol (such as a shield symbol to indicate a highway) or text at a specified point. (orient_z is reserved for future use by Oracle.) The value for each must be from -1 to 1. The orientation start point is assumed to be (0,0), and it is translated to the location of the physical point to which it corresponds.

Figure 3-3 illustrates an orientation vector of approximately 34 degrees (counterclockwise from the x-axis), resulting from specifying orient_x="0.3" orient_y="0.2". (To have an orientation that more precisely matches a specific angle, refer to the cotangent or tangent values in the tables in a trigonometry textbook.)

Figure 3-3 Orientation Vector

[image: Description of Figure 3-3 follows]

Description of "Figure 3-3 Orientation Vector"

selectable_in_svg is an optional attribute that specifies whether or not the feature is selectable on an SVG map. The default is FALSE; that is, the feature is not selectable on an SVG map. If this attribute is set to TRUE and if theme feature selection is allowed, the feature can be selected by clicking on it. If the feature is selected, its color is changed and its ID is recorded. You can get a list of the ID values of all selected features by calling the JavaScript function getSelectedIdList() defined in the SVG map. (For feature selection to work correctly, the id attribute value of the feature must be set to a value that uniquely identifies it among all the geospatial features on the SVG map.) For information about using JavaScript functions with SVG maps, see Appendix B.

onclick is an optional attribute that specifies the name of the JavaScript function to be called when a user clicks on the feature. The JavaScript function must be defined in the HTML document outside the SVG definition. This function must accept only four parameters: the theme name, the key of the feature, and x and y, which specify the coordinates (in pixels) of the clicked point on the SVG map. For information about using JavaScript functions with SVG maps, see Appendix B.

hidden_info is an optional attribute that specifies an informational note or tip to be displayed when the mouse is moved over the feature. To specify multiple lines, use "\n" between lines. For example, hidden_info="State park with\nhistorical attractions" specifies a two-line tip. (To enable the display of hidden information in the map, you must specify infoon="true" in the <map_request> element, as explained in Section 3.2.1.1.)

The following example shows a <geoFeature> element specification for a restaurant at longitude and latitude coordinates (-78.1234, 41.0346). In this case, the feature will be invisible because the render_style and text_style attributes are not specified.

<geoFeature typeName="Customer" label="PizzaHut in Nashua">
 <geometricProperty>
 <Point srsName="SDO:8265">
 <coordinates>-78.1234,41.0346</coordinates>
 </Point>
 </geometricProperty>
</geoFeature>

The following example shows a <geoFeature> element specification for a point of interest at longitude and latitude coordinates (-122.2615, 37.5266). The feature will be rendered on the generated map because the render_style attribute is specified. The example specifies some label text (A Place) and a text style for drawing the label text. It also instructs MapViewer to draw two circles, centered on this feature, with radii of 1600 and 4800 meters. (In this case, the srsName attribute of the <Point> element must be present, and it must specify an Oracle Spatial SRID value using the format "SDO:<srid>". Because SRID value 8265 is associated with a geodetic coordinate system, the radius values are interpreted as 1600 and 4800 meters.)

<geoFeature render_style="m.star"
 radius="1600,4800"
 label="A Place"
 text_style="T.Name">
 <geometricProperty>
 <Point srsName="SDO:8265">
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
</geoFeature>

Figure 3-4 is a map drawn using the <geoFeature> element in the preceding example. The feature is labeled with the text A Place, and it is represented by a red star marker surrounded by two concentric circles.

Figure 3-4 Map with <geoFeature> Element Showing Two Concentric Circles

[image: Description of Figure 3-4 follows]

Description of "Figure 3-4 Map with <geoFeature> Element Showing Two Concentric Circles"

3.2.6 jdbc_georaster_query Element

The <jdbc_georaster_query> element, which is used to define a GeoRaster theme, has the following definition:

<!ELEMENT jdbc_georaster_query (#PCDATA) >
<!ATTLIST jdbc_georaster_query
 asis (TRUE|FALSE) "FALSE"
 georaster_table CDATA #REQUIRED
 georaster_column CDATA #REQUIRED
 raster_id CDATA #IMPLIED
 raster_table CDATA #IMPLIED
 raster_pyramid CDATA #IMPLIED
 raster_bands CDATA #IMPLIED
 datasource CDATA #IMPLIED
 polygon_mask CDATA #IMPLIED
 transparent_nodata CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>

For detailed usage and reference information about GeoRaster themes, see Section 2.3.4.

3.2.7 jdbc_image_query Element

The <jdbc_image_query> element, which is used to define an image theme (described in Section 2.3.3), has the following definition:

<!ELEMENT jdbc_image_query (#PCDATA) >
<!ATTLIST jdbc_image_query
 asis (TRUE|FALSE) "FALSE"
 image_format CDATA #REQUIRED
 image_column CDATA #REQUIRED
 image_mbr_column CDATA #REQUIRED
 image_resolution CDATA #IMPLIED
 image_unit CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>

To define a theme dynamically, you must supply a valid SQL query as the content of the <jdbc_image_query> element. You must specify the JDBC connection information for an image theme (either datasource or the combination of jdbc_host, jdbc_port, jdbc_sid, jdbc_user, and jdbc_password).

jdbc_srid is an optional attribute that specifies the coordinate system (SDO_SRID value) of the data to be rendered.

jdbc_mode identifies the Oracle JDBC driver (thin or oci8) to use to connect to the database.

asis is an optional attribute. If it is set to TRUE, MapViewer does not attempt to modify the supplied query string. If asis is FALSE (the default), MapViewer embeds the SQL query as a subquery of its spatial filter query. For example, assume that you want a map centered at (-122, 37) with size 1, and the supplied query is:

SELECT geometry, sales FROM crm_sales WHERE sales < 100000;

If asis is FALSE, the actual query that MapViewer executes is similar to:

SELECT * FROM
 (SELECT geometry, sales FROM crm_sales WHERE sales < 100000)
WHERE sdo_filter(geometry, sdo_geometry(. . . -122.5, 36.5, -123.5, 37.5 . . .) ='TRUE';

In other words, the original query is further refined by a spatial filter query for the current map window. However, if asis is TRUE, MapViewer executes the query as specified, namely:

SELECT geometry, sales FROM crm_sales WHERE sales < 100000;

image_format identifies the format (such as GIF or JPEG) of the image data. If the image format is not supported by MapViewer, you must create and register a custom image renderer for the format, as explained in Appendix C.

image_column identifies the column of type BLOB where each image is stored.

image_mbr_column identifies the column of type SDO_GEOMETRY where the footprint (minimum bounding rectangle, or MBR) of each image is stored.

image_resolution is an optional attribute that identifies the original image resolution (number of image_unit units for each pixel).

image_unit is an optional attribute, except it is required if you specify the image_resolution attribute. The image_unit attribute specifies the unit of the resolution, such as M for meter. The value for this attribute must be one of the values in the SDO_UNIT column of the MDSYS.SDO_DIST_UNITS table. In Example 2-12 in Section 2.3.3.1, the image resolution is 2 meters per pixel.

For an example of using the <jdbc_image_query> element to specify an image theme, see Example 3-6 in Section 3.1.6.

3.2.8 jdbc_network_query Element

The <jdbc_network_query> element, which is used to define a network theme, has the following definition:

<!ELEMENT jdbc_network_query (#PCDATA) >
<!ATTLIST jdbc_network_query
 asis (TRUE|FALSE) "FALSE"
 network_name CDATA #REQUIRED
 network_level CDATA #IMPLIED
 link_style CDATA #IMPLIED
 direction_style CDATA #IMPLIED
 bidirection_style CDATA #IMPLIED
 direction_position CDATA #IMPLIED
 direction_markersize CDATA #IMPLIED
 direction_multimarker (TRUE|FALSE) "FALSE"
 link_labelstyle CDATA #IMPLIED
 link_labelcolumn CDATA #IMPLIED
 node_style CDATA #IMPLIED
 node_markersize CDATA #IMPLIED
 node_labelstyle CDATA #IMPLIED
 node_labelcolumn CDATA #IMPLIED
 path_ids CDATA #IMPLIED
 path_styles CDATA #IMPLIED
 path_labelstyle CDATA #IMPLIED
 path_labelcolumn CDATA #IMPLIED
 analysis_algorithm CDATA #IMPLIED
 shortestpath_style CDATA #IMPLIED
 shortestpath_startnode CDATA #IMPLIED
 shortestpath_endnode CDATA #IMPLIED
 shortestpath_startstyle CDATA #IMPLIED
 shortestpath_endstyle CDATA #IMPLIED
 withincost_startnode CDATA #IMPLIED
 withincost_style CDATA #IMPLIED
 withincost_cost CDATA #IMPLIED
 withincost_startstyle CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>

For detailed usage and reference information about network themes, see Section 2.3.5.

3.2.9 jdbc_query Element

The <jdbc_query> element is used to define a theme dynamically. This element and its associated <hidden_info> element have the following definitions:

<!ELEMENT jdbc_query (#PCDATA, hidden_info?)>
<!ATTLIST jdbc_query
 asis (TRUE|FALSE) "FALSE"
 spatial_column CDATA #REQUIRED
 key_column CDATA #IMPLIED
 label_column CDATA #IMPLIED
 label_style CDATA #IMPLIED
 render_style CDATA #IMPLIED
 x_column CDATA #IMPLIED
 y_column CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT hidden_info (field+)>
<!ELEMENT field (#PCDATA)>
<!ATTLIST field
 column CDATA #REQUIRED
 name CDATA #IMPLIED
>

To define a theme dynamically, you must supply a valid SQL query as the content of the <jdbc_query> element. You must specify the spatial_column (column of type SDO_GEOMETRY) and the JDBC connection information for a dynamically defined theme (either datasource or the combination of jdbc_host, jdbc_port, jdbc_sid, jdbc_user, and jdbc_password).

If the selectable_in_svg attribute value is TRUE in the <theme> element, you must use the key_column attribute in the <jdbc_query> element to specify the name of a column that can uniquely identify each selected feature from the JDBC query. The specified column must also appear in the SELECT list in the JDBC query.

render_style and label_style are optional attributes. For render_style, for point features the default is a red cross rotated 45 degrees, for lines and curves it is a black line 1 pixel wide, and for polygons it is a black border with a semitransparent dark gray interior.

x_column and y_column are optional attributes. If specified, they are used to define a point JDBC theme based on two columns in a table, so that MapViewer can render a point theme based on values in these columns. For more information, see Section 2.3.2.1.

jdbc_srid is an optional attribute that specifies the coordinate system (SDO_SRID value) of the data to be rendered.

jdbc_mode identifies the Oracle JDBC driver (thin or oci8) to use to connect to the database.

asis is an optional attribute. If it is set to TRUE, MapViewer does not attempt to modify the supplied query string. If asis is FALSE (the default), MapViewer embeds the SQL query as a subquery of its spatial filter query. For example, assume that you want a map centered at (-122, 37) with size 1, and the supplied query is:

SELECT geometry, sales FROM crm_sales WHERE sales < 100000;

If asis is FALSE, the actual query that MapViewer executes is similar to:

SELECT * FROM
 (SELECT geometry, sales FROM crm_sales WHERE sales < 100000)
WHERE sdo_filter(geometry, sdo_geometry(. . . -122.5, 36.5, -123.5, 37.5. . .) ='TRUE';

In other words, the original query is further refined by a spatial filter query using the current map window. However, if asis is TRUE, MapViewer executes the query as specified, namely:

SELECT geometry, sales FROM crm_sales WHERE sales < 100000;

The <hidden_info> element specifies the list of attributes from the base table to be displayed when the user moves the mouse over the theme's features. The attributes are specified by a list of <field> elements.

Each <field> element must have a column attribute, which specifies the name of the column from the base table, and it can have a name attribute, which specifies the display name of the column. (The name attribute is useful if you want a text string other than the column name to be displayed.)

For examples of using the <jdbc_query> element to define a theme dynamically, see Example 3-2 in Section 3.1.2 and Example 3-4 in Section 3.1.4.

3.2.10 jdbc_topology_query Element

The <jdbc_topology_query> element, which is used to define a topology theme, has the following definition:

<!ELEMENT jdbc_topology_query (#PCDATA)>
<!ATTLIST jdbc_topology_query
 asis (TRUE|FALSE) "FALSE"
 topology_name CDATA #REQUIRED
 feature_table CDATA #REQUIRED
 spatial_column CDATA #REQUIRED
 label_column CDATA #IMPLIED
 label_style CDATA #IMPLIED
 render_style CDATA #IMPLIED
 datasource CDATA #IMPLIED
 edge_style CDATA #IMPLIED
 edge_marker_style CDATA #IMPLIED
 edge_marker_size CDATA #IMPLIED
 edge_label_style CDATA #IMPLIED
 node_style CDATA #IMPLIED
 node_label_style CDATA #IMPLIED
 face_style CDATA #IMPLIED
 face_label_style CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>

For detailed usage and reference information about topology themes, see Section 2.3.6.

3.2.11 legend Element

The <legend> element has the following definition:

<!ELEMENT legend (column,themes)? >
<!ATTLIST legend
 bgstyle CDATA #implied
 font CDATA #implied
 location_x CDATA #implied
 location_y CDATA #implied
 offset_x CDATA #implied
 offset_y CDATA #implied
 profile (MEDIUM|SMALL|LARGE) "MEDIUM"
 position (SOUTH_WEST|SOUTH_EAST|SOUTH|NORTH|
 NORTH_WEST|NORTH_EAST|EAST|WEST|CENTER) "SOUTH_WEST"
>
<!ELEMENT column entry+ >
<!ATTLIST entry
 is_title (true|false) "false"
 is_separator (true|false) "false"
 tab CDATA "0"
 style CDATA #implied
 text CDATA #implied
 text_size CDATA #implied
 width CDATA #implied
 height CDATA #implied
>
<!ELEMENT themes theme+ >
<!ATTLIST theme
 name CDATA #REQUIRED
>

<legend> elements are used to draw a legend (map inset illustration) on top of a generated map, to make the visual aspects of the map more meaningful to users. The main part of a <legend> element is one or more <column> elements, each of which defines a column in the legend. (If no <column> elements are present, an automatic legend is created, as explained in Section 2.4.2.) A one-column legend will have all entries arranged from top to bottom. A two-column legend will have the two columns side by side, with the first column on the left, and each column having its own legend entries. Figure 2-13 in Section 2.4.2 shows a one-column legend. Figure 3-5 shows a two-column legend.

Figure 3-5 Two-Column Map Legend

[image: Description of Figure 3-5 follows]

Description of "Figure 3-5 Two-Column Map Legend"

bgstyle is an optional attribute that specifies the overall background style of the legend. It uses a string with syntax similar to scalable vector graphics (SVG) to specify the fill and stroke colors for the bounding box of the legend. If you specify an opacity (fill-opacity or stroke-opacity) value, the fill and stroke colors can be transparent or partially transparent. The following example specifies a background that is white and half transparent, and a stroke (for the legend box boundary) that is red:

bgstyle="fill:#ffffff;fill-opacity:128;stroke:#ff0000"

font is an optional attribute that specifies the name of the font to be used for text that appears in the legend image. You can specify a logical font name that is supported by Java (serif, sansserif, monospaced, dialog, or dialoginput). You can also specify the name of a physical font that is available on the system where the MapViewer server is running.

location_x and location_y are optional attributes that specify the X and Y coordinates (in screen units) of the start of the legend. If you specify these attributes, they override any specification for the position attribute.

offset_x and offset_y are optional attributes to be used with the position attribute. The default distance from the borders for the position hint corresponds to 10 pixels. You can use these offset parameters to override the default value.

profile is an optional attribute that specifies a relative size of the legend on the map, using one of the following keywords: SMALL, MEDIUM (the default), or LARGE.

position is an optional attribute that specifies where the legend should be drawn on the map. The default is SOUTH_WEST, which draws the legend in the lower-left corner of the resulting map.

is_title is an optional attribute of the <entry> element. When its value is TRUE, the entry is used as the title for the column, which means that the description text appears in a more prominent font than regular legend text, and any other style attribute defined for the entry is ignored. The default is FALSE.

is_separator is an optional attribute of the <entry> element. When its value is TRUE, the entry is used to insert a blank line for vertical spacing in the column. The default is FALSE.

tab is an optional attribute of the <entry> element. It specifies the number of tab positions to indent the entry from the left margin of the column. The default is 0 (zero), which means no indentation.

style is an optional attribute of the <entry> element. It specifies the name of the MapViewer style (such as a color or an image) to be depicted as part of the entry.

text is an optional attribute of the <entry> element. It specifies the description text (for example, a short explanation of the associated color or image) to be included in the entry.

text_size is an optional attribute of the <entry> element. It specifies the size (in display units) of the description text to be included in the entry. The specified value overrides the MapViewer predefined profile size.

width and height are optional attributes that together specify the size (in device units) of the legend entry Any specified values override the defaults, which depend on the MapViewer profile values for small, medium, and large text.

The following example shows the <legend> element specification for the legend in Figure 2-13 in Section 2.4.2.

<legend bgstyle="fill:#ffffff;fill-opacity:128;stroke:#ff0000"
 position="NORTH_WEST">
 <column>
 <entry text="Map Legend" is_title="true"/>
 <entry style="M.STAR" text="center point"/>
 <entry style="M.CITY HALL 3" text="cities"/>
 <entry is_separator="true"/>
 <entry style="C.ROSY BROWN STROKE" text="state boundary"/>
 <entry style="L.PH" text="interstate highway"/>
 <entry text="County population:"/>
 <entry style="V.COUNTY_POP_DENSITY" tab="1"/>
 </column>
</legend>

In the preceding example:

	
The background color has an opacity value of 128 (fill-opacity:128), which means that the white background will be half transparent.

	
The legend boundary box will be red (stroke:#ff0000).

	
The legend boundary box will be positioned in the upper-left part of the display (position="NORTH_WEST").

	
The legend will be the default size, because the profile attribute (which has a default value of MEDIUM) is not specified.

	
The legend will have a single column, with entries arranged from top to bottom.

	
The first entry is the legend title, with the text Map Legend.

	
The fourth entry is a separator for adding a blank line.

	
The seventh entry is description text (County population:) that users of the generated map will associate with the next (and last) entry, which specifies an advanced style. The County population: text entry is helpful because advanced styles usually have their own descriptive text, and you do not want users to become confused about which text applies to which parts of the legend.

	
The last entry specifies an advanced style (style="V.COUNTY_POP_DENSITY"), and it is indented one tab position (tab="1") so that the colors and text identifying various population density ranges will be easy for users to distinguish from the preceding County population: description text.

3.2.12 map_tile_theme Element

The <map_tile_theme> element is used to define a map tile theme, which produces a map image layer rendered by the map tile server with pregenerated map image tiles. The map image tiles can be served by any internal or external map service providers. This element has the following definition:

<!ELEMENT map_tile_theme (#PCDATA)>
<!ATTLIST map_tile_theme
 map_tile_layer CDATA # REQUIRED
 snap_to_tile_scale (TRUE|FALSE) "FALSE"
>

map_tile_name specifies the name of the map tile layer that has been predefined with MapViewer.

snap_to_tile_scale is an optional attribute that specifies whether to adjust the map scale to fit that of one of the predefined map tile layer zoom levels. If this attribute is FALSE, the scale of the result map is always the same as what the map request specifies; and if the map request scale does not fit any of the predefined map tile layer zoom levels, the map tile images are scaled to fit the map request scale. If this attribute is TRUE, the scale of the result map is adjusted to fit one of the predefined map tile layer zoom levels when the request map scale does not fit any of the predefined zoom levels.

3.2.13 north_arrow Element

The <north_arrow> element specifies a style (usually a marker) to point to the north direction on the map. It uses the map request rotation attribute to define its orientation. This element has the following definition:

<!ELEMENT north_arrow (style, location?, size?) >

The <style> element specifies the name of the style (typically a marker style) for the north arrow.

The <location> element is optional. It specifies the X and Y coordinate values (in pixels) of the position on the map for the north arrow. The default value is (25, 25).

The <size> element is optional. It specifies the width and height (in pixels) to be used by MapViewer in rendering the north arrow. The default value is (16, 32).

Example 3-20 shows a north arrow definition using style m.image41_bw, located at position (35, 35) of the map image, and with width 16 and height 32.

Example 3-20 North Arrow

<north_arrow>
 <style> m.image41_bw </style>
 <location> 35,35 </location>
 <size> 16,32 </size>
</north_arrow>

3.2.14 operation Element

The <operation> element enables you to perform additional transformations on the original data during rendering. The <operation> element has the following definition:

<!ELEMENT operation (parameter+) >
<!ATTLIST parameter
 name CDATA #REQUIRED
>

Currently this element is used in GeoRaster themes (described in Section 2.3.4). You can perform some image processing operations on the original image, such as normalization, equalization, linear stretch, piecewise linear stretch, brightness and contrast adjustment, and threshold change.

Example 3-21 specifies the normalization operation with a GeoRaster theme.

Example 3-21 Normalization Operation with a GeoRaster Theme

<theme name="geor_theme" >
 <jdbc_georaster_query
 jdbc_srid="0"
 datasource="mvdemo"
 georaster_table="dem"
 georaster_column="georaster"
 asis="false"> select georaster from dem
 </jdbc_georaster_query>
 <operations>
 <operation name="normalize">
 </operation>
 </operations>
 </theme>

The following code segment shows a manual linear stretch operation. (For automatic linear stretch, include the <operation> element but no <parameter> elements.)

 <operation name="linearstretch">
 <parameter name="autostretch" value="false"/>
 <parameter name="lowstretch" value="50"/>
 <parameter name="highstretch" value="150"/>
 </operation>

Table 3-1 lists the image processing operations, their <operation> element name keyword values, and (where relevant) associated <parameter> element values.

Table 3-1 Image processing Options for GeoRaster Theme Operations

	Operation	<operation> name value	<parameter> values
	
Normalization

	
normalize

	
(Not applicable)

	
Equalization

	
equalize

	
(Not applicable)

	
Linear stretch

	
linearstretch

	
name=autostretch (automatic)

name=lowstretch (low stretch)

name=highstretch (high stretch)

	
Piecewise linear stretch

	
piecewiselinearstretch

	
(Not applicable)

	
Brightness

	
brightness

	
value=[number]

	
Contrast

	
contrast

	
value=[number]

	
Change threshold

	
changethreshold

	
name=threshold (threshold)

name=lowsthreshold (low threshold)

name=highthreshold (high threshold)

3.2.15 operations Element

The <operations> element specifies one or more <operation> elements (described in Section 3.2.14). The <operations> element has the following definition:

<!ELEMENT operations (oepration+) >

For a predefined GeoRaster theme, the <operations> element will be part of the styling rule definition. Example 3-21 shows the styling rules for a GeoRaster theme that uses the normalization operation.

Example 3-22 Styling Rules with Normalization Operation in a GeoRaster Theme

<styling_rules theme_type="georaster" raster_table="RDT_DEM"
 raster_id="1">
 <operations>
 <operation name="normalize"/>
 </operations>
</styling_rules>

3.2.16 parameter Element

The <parameter> element defines values to be used in an operation to be applied on themes. (The operation is specified in an <operations> element, described in Section 3.2.14.) The <parameter> element has the following definition:

<!ELEMENT parameter >
<!ATTLIST parameter
 name CDATA #REQUIRED
 value CDATA #REQUIRED
>

Each parameter must have a name and value associated with it.

3.2.17 scale_bar Element

The <scale_bar> element defines a scale bar (to show how many kilometers or miles are represented by a distance marked on the bar) to be added to the map request, if the map has a known spatial reference system (SRS). You can specify a single display mode (Metric or US) or dual mode (both Metric and US). The <scale_bar> element has the following definition:

<!ELEMENT scale_bar >
<!ATTLIST scale_bar
 mode (METRIC_MODE|US_MODE|DUAL_MODES) "METRIC_MODE"
 position (SOUTH_WEST|SOUTH_EAST|SOUTH|NORTH|
 NORTH_WEST|NORTH_EAST) "NORTH_EAST"
 offset_y CDATA #implied
 offset_y CDATA #implied
 color1 CDATA #implied
 color1_opacity CDATA #implied
 color2 CDATA #implied
 color2_opacity CDATA #implied
 length_hint CDATA #implied
 label_color CDATA #implied
 label_font_family CDATA #implied
 label_font_size CDATA #implied
 label_halo_size CDATA #implied
 label_position (TOP|BOTTOM) "TOP"
>

All <scale_bar> attributes are optional.

mode specifies if the scale bar should be in metric or US mode, or in both modes. The default is METRIC_MODE.

position defines the relative location on the map to place the scale bar. The default is NORTH_EAST.

offset_x and offset_y define the X and Y values to offset the scale bar position from the map margin. The default value for each is 0.

color1, color1_opacity, color2, and color2_opacity define the colors to be used when rendering the scale bar. color1 and color2 have a default value for red, green, blue; color1_opacity has a default value of (0x44, 0x44, 0x44, 210); and color 2_opacity has a default value of (0xee, 0xee, 0xee, 210).

length_hint defines the preferred number of pixels to be used to render the scale bar. The default is approximately 17% of the map width.

label_color, label_font_family, label_font_size, and label_halo_size affect the scale bar text. The defaults are black color, Serif font family, 12pt font size, and no halo (0 halo size).

label_position defines the position of the text relative to the scale bar (TOP or BOTTOM). The default is TOP.

Example 3-23 defines a scale bar.

Example 3-23 Scale Bar

<scale_bar
 position="SOUTH_WEST"
 mode="US_MODE"
 color1="#ff0000"
 color1_opacity="128"
 color2="#00ffff"
 label_font_family="Dialog"
 label_font_size="15"
 label_font_style="italic"
 label_font_weight="bold"
 label_halo_size="2.8"
 label_position="bottom"
 offset_y="5"
/>

3.2.18 style Element

The <style> element has the following definition:

<!ELEMENT style (svg | AdvancedStyle)?>
<!ATTLIST style
 name CDATA #REQUIRED
>

The <style> element lets you specify a dynamically defined style. The style can be either of the following:

	
An SVG description representing a color, line, marker, area, or text style

	
An advanced style definition (see Section A.6) representing a bucket, a color scheme, or a variable marker style

The name attribute identifies the style name.

The following example shows an excerpt that dynamically defines two styles (a color style and an advanced style) for a map request:

<map_request . . .>
 . . .
 <styles>
 <style name="color_red">
 <svg width="1in" height="1in">
 <g class="color"
 style="stroke:red;stroke-opacity:100;fill:red;fill-opacity:100">
 <rect width="50" height="50"/>
 </g>
 </svg>
 </style>

 <style name="ranged_bucket_style">
 <AdvancedStyle>
 <BucketStyle>
 <Buckets>
 <RangedBucket seq="0" label="less than 100k"
 high="100000.0" style="C.RB13_13"/>
 <RangedBucket seq="1" label="100k - 150k" low="100000.0"
 high="150000.0" style="C.RB13_1"/>
 <RangedBucket seq="2" label="150k - 250k" low="150000.0"
 high="250000.0" style="C.RB13_4"/>
 <RangedBucket seq="3" label="250k - 350k" low="250000.0"
 high="350000.0" style="C.RB13_7"/>
 <RangedBucket seq="4" label="350k - 450k" low="350000.0"
 high="450000.0" style="C.RB13_10"/>
 </Buckets>
 </BucketStyle>
 </AdvancedStyle>
 </style>
 </styles>
</map_request>

3.2.19 styles Element

The <styles> element has the following definition:

<!ELEMENT styles (style+) >

The <styles> element specifies one or more <style> elements (described in Section 3.2.18).

3.2.20 theme Element

The <theme> element has the following definition:

<!ELEMENT theme (jdbc_query | jdbc_image_query | jdbc_georaster_query
 | jdbc_network_query | jdbc_topology_query | map_tile_theme)?,
 operations? >
<!ATTLIST theme
 name CDATA #REQUIRED
 datasource CDATA #IMPLIED
 template_theme CDATA #IMPLIED
 max_scale CDATA #IMPLIED
 min_scale CDATA #IMPLIED
 label_max_scale CDATA #IMPLIED
 label_min_scale CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 fast_unpickle (TRUE|FALSE) "TRUE"
 mode CDATA #IMPLIED
 min_dist CDATA #IMPLIED
 fixed_svglabel (TRUE|FALSE) "FALSE"
 visible_in_svg (TRUE|FALSE) "TRUE"
 selectable_in_svg (TRUE|FALSE) "FALSE"
 part_of_basemap (TRUE|FALSE) "FALSE"
 simplify_shapes (TRUE|FALSE) "TRUE"
 transparency CDATA #IMPLIED
 minimum_pixels CDATA #IMPLIED
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 onmouseover CDATA #IMPLIED
 onmouseout CDATA #IMPLIED
 workspace_name CDATA #IMPLIED
 workspace_savepoint CDATA #IMPLIED
 workspace_date CDATA #IMPLIED
 workspace_date_format CDATA #IMPLIED
 fetch_size CDATA #IMPLIED
 timeout CDATA #IMPLIED
>

The <theme> element lets you specify a predefined or dynamically defined theme.

	
For a predefined theme, whose definition is already stored in your USER_SDO_THEMES view, only the theme name is required.

	
For a dynamically defined theme, you must provide the information in one of the following elements: <jdbc_query> (described in Section 3.2.9), <jdbc_image_query> (described in Section 3.2.7), <jdbc_georaster_query> (described in Section 2.3.4), <jdbc_network_query> (described in Section 2.3.5), or <jdbc_topology_query> (described in Section 2.3.6).

	
For a GeoRaster theme, you can define some image processing options (described in Section 3.2.14).

The name attribute identifies the theme name. For a predefined theme, the name must match a value in the NAME column of the USER_SDO_THEMES view (described in Section 2.9.2). For a dynamically defined theme, this is just a temporary name for referencing the jdbc_query-based theme.

datasource is an optional attribute that specifies a data source for the theme. If you do not specify this attribute, the data source for the map request is assumed (see the datasource attribute explanation in Section 3.2.1.1). By specifying different data sources for different themes, you can use multiple data sources in a map request.

template_theme is an optional attribute that can be used to render two or more themes when a predefined theme has same name in multiple data sources. You cannot repeat theme names in a map request, but if you have two different data sources with same predefined theme name, you can use this attribute to render both themes. The following example specifies two themes that are based on a US_STATES theme that exists in two data sources, but that has a different content in each data source.

<themes>
 <theme name="US_STATES" datasource="dsrc"/>
 <theme name="OTHER_US_STATES" template_theme="US_STATES" datasource="other_dsrc" />
</themes>

The max_scale and min_scale attributes affect the visibility of this theme. If max_scale and min_scale are omitted, the theme is always rendered, regardless of the map scale. (See Section 2.4.1 for an explanation of max_scale and min_scale.)

The label_max_scale and label_min_scale attributes affect the visibility of feature labels of this theme. If label_max_scale and label_min_scale are omitted, the theme feature labels are always rendered when the map scale is within the visible range of theme scales (that is, within the max_scale and min_scale range). (See Section 2.4.1 for an explanation of label_max_scale and label_min_scale.)

label_always_on is an optional attribute. If it is set to TRUE, MapViewer labels all features of the theme even if two or more labels will overlap in the display. (MapViewer always tries to avoid overlapping labels.) If label_always_on is FALSE (the default), when it is impossible to avoid overlapping labels, MapViewer disables the display of one or more labels so that no overlapping occurs. The label_always_on attribute can also be specified for a map feature (geoFeature element, described in Section 3.2.5), thus allowing you to control which features will have their labels displayed if label_always_on is FALSE for a theme and if overlapping labels cannot be avoided.

fast_unpickle is an optional attribute. If it is TRUE (the default), MapViewer uses its own fast unpickling (unstreaming) algorithm instead of the generic JDBC conversion algorithm to convert SDO_GEOMETRY objects fetched from the database into a Java object accessible to MapViewer. This process improves performance, but occasionally the coordinates may lose some precision (around 0.00000005), which can be significant in applications where all precision digits of each coordinate must be kept. If fast_unpickle is set to FALSE, MapViewer uses the generic JDBC conversion algorithm. This process is slower than MapViewer's fast unpickling process, but there is never any loss of precision.

mode is an optional attribute. For a topology theme, you can specify mode="debug" to display edges, nodes, and faces, as explained in Section 2.3.6. The mode attribute is ignored for other types of themes.

min_dist is an optional attribute. It specifies the minimum on-screen distance (number of pixels) between two adjacent shape points on a line string or polygon for rendering of separate shape points. If the on-screen distance between two adjacent shape points is less than the min_dist value, only one shape point is rendered. The default value is 0.5. You can specify higher values to reduce the number of shape points rendered on an SVG map, and thus reduce the size of the resulting SVG file. You can specify different values in different theme definitions, to allow for customized levels of detail in SVG maps.

fixed_svglabel is an optional attribute that specifies whether to display the labels on an SVG map using the original "fixed" labels, but having them appear larger or smaller as the zoom level increases (zoomin) or decreases (zoomout), or to use different labels with the same text but different actual sizes so that the apparent size of each label remains the same at all zoom levels. If the fixed_svglabel value is specified as TRUE, the same theme labels are displayed on the map at all zoom levels, with the labels zoomed in and out as the map is zoomed in and out. If the value is FALSE (the default), different theme labels are displayed at different zoom levels so that the size of each displayed label appears not to change during zoomin and zoomout operations.

visible_in_svg is an optional attribute that specifies whether or not to display the theme on an SVG map. If its value is TRUE (the default), the theme is displayed; if it is set to FALSE, the theme is not displayed. However, even if this attribute is set to FALSE, the theme is still rendered to the SVG map: the theme is initially invisible, but you can make it visible later by calling the JavaScript function showTheme() defined in the SVG map. For information about using JavaScript functions with SVG maps, see Appendix B.

selectable_in_svg is an optional attribute that specifies whether or not the theme is selectable on an SVG map. The default is FALSE; that is, the theme is not selectable on an SVG map. If this attribute is set to TRUE and if theme feature selection is allowed, each feature of the theme displayed on the SVG map can be selected by clicking on it. If the feature is selected, its color is changed and its ID (its rowid by default) is recorded. You can get a list of the ID values of all selected features by calling the JavaScript function getSelectedIdList() defined in the SVG map. For information about using JavaScript functions with SVG maps, see Appendix B.

part_of_basemap is an optional attribute. If the map format is SVG and the value of this attribute is TRUE, MapViewer renders the theme as part of and on top of the base map, which is rendered as a raster image.

simplify_shapes is an optional attribute that specifies whether or not the shapes are simplified before being rendered. Simplification is useful when you want a map display with less fine resolution than the original geometries. For example, if the display resolution cannot show the hundreds or thousands of turns in the course of a river or in a political boundary, better performance might result if the shapes were simplified to show only the major turns. The default is TRUE; that is, shapes are simplified before being rendered. If this attribute is set to FALSE, MapViewer attempts to render all vertices and line segments from the original geometries, and performance may be slower.

transparency is an optional parameter to define the basic alpha composing value to be applied on themes during rendering. The value can be from 0 to 1, with 0 meaning completely transparent and 1 (the default) meaning completely opaque (no transparency).

minimum_pixels is an optional parameter that defines the level of resolution to be used on the spatial filter query. This may be useful to avoid rendering too many elements at the same position of the screen. (See the Oracle Spatial documentation about the min_resolution and max_resolution options for the SDO_FILTER operator.) The unit for minimum_pixels is screen pixels. For example, minimum_pixels=1 means that the spatial filter query will not return features with a resolution less than the amount that 1 pixel represents for the current device window and current query window

onclick is an optional attribute that specifies the name of the JavaScript function to be called when a user clicks on an SVG map and theme feature selection is allowed (see the selectable_in_svg attribute explanation). The JavaScript function must be defined in the HTML document that has the SVG map embedded. This function must accept only four parameters: the theme name, the key of the feature, and x and y, which specify the coordinates (in pixels) of the clicked point on the SVG map. For information about using JavaScript functions with SVG maps, see Appendix B.

onmousemove is an optional attribute that specifies the name of the JavaScript function to be called when a user moves the mouse on top of any feature of the theme on an SVG map. The JavaScript function must be defined in the HTML document that has the SVG map embedded. This function must accept only four parameters: the theme name, the key of the feature, and x and y, which specify the coordinates (in pixels) of the point for the move on the SVG map. For information about using JavaScript functions with SVG maps, see Appendix B.

onmouseover is an optional attribute that specifies the name of the JavaScript function to be called when a user moves the mouse into a feature of the theme on an SVG map. (Unlike the onmousemove function, which is called whenever the mouse moves inside the theme, the onmouseover function is called only once when the mouse moves from outside a feature of the theme to inside a feature of the theme.) The JavaScript function must be defined in the HTML document that has the SVG map embedded. This function must accept only four parameters: the theme name, the key of the feature, and x and y, which specify the coordinates (in pixels) of the point at which the mouse moves inside a feature on the SVG map. For information about using JavaScript functions with SVG maps, see Appendix B.

onmouseout is an optional attribute that specifies the name of the JavaScript function to be called when a user moves the mouse out of a feature of the theme on an SVG map. The JavaScript function must be defined in the HTML document that has the SVG map embedded. This function must accept only four parameters: the theme name, the key of the feature, and x and y, which specify the coordinates (in pixels) of the point at which the mouse moves out of a feature on the SVG map. For information about using JavaScript functions with SVG maps, see Appendix B.

workspace_name, workspace_savepoint, workspace_date, and workspace_date_format are optional attributes related to support for Workspace Manager in Mapviewer, which is explained in Section 2.8.

fetch_size is an optional attribute that specifies how many rows will be prefetched into memory. The default value is 100.

timeout is an optional attribute that specifies the number of milliseconds to wait for the connection to the WMS or WFS server.

3.2.21 themes Element

The <themes> element has the following definition:

<!ELEMENT themes (theme+) >

The <themes> element specifies one or more <theme> elements (described in Section 3.2.20). If you have specified a base map (basemap attribute of the map_request element), any themes that you specify in a <themes> element are plotted after those defined in the base map. If no base map is specified, only the specified themes are rendered.

Inside this <themes> element there must be one or more <theme> child elements, which are rendered in the order in which they appear.

3.2.22 theme_modifiers Element

The <theme_modifiers> element has the following definition:

<!ELEMENT theme_modifiers (theme_decorations)? >

The theme modifiers enable you to override the theme definition on a base map, without having to edit and change the base map definition. The <theme_decorations> element has the same attributes as the <theme> element (described in Section 3.2.20).

The following example overrides the labels_always_on attribute for the theme_us_airport theme on the base map FORCED_LABELING.

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Override labeling on map definition"
 basemap="FORCED_LABELING"
 datasource="tilsmenv"
 width="500"
 height="375"
 bgcolor="#a6caf0"
 antialiase="true"
 format="PNG_URL">
 <center size="15.0">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-122.4,37.8</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <theme_modifiers>
 <theme_decorations name="theme_us_airport" label_always_on="false"/>
 </theme_modifiers>
</map_request>

3.3 Information Request DTD

In addition to issuing map requests (see Section 3.2) and administrative requests (see Chapter 7), you can issue information requests to MapViewer. An information request is an XML request string that you can use to execute SQL queries and obtain the result as an array of strings or an XML document. The SQL query must be a SELECT statement and must select only primitive SQL types (for example, not LOB types or user-defined object types).

The following is the DTD for a MapViewer information request.

<!ELEMENT info_request (#PCDATA) >
<!ATTLIST info_request
 datasource CDATA #REQUIRED
 format (strict | non-strict) "strict"
>

datasource is a required attribute that specifies the data source for which to get the information.

format is an optional attribute. If it is strict (the default), all rows are formatted and returned in an XML document. If format is set to non-strict, all rows plus a column heading list are returned in a comma-delimited text string.

Example 3-24 shows an information request to select the city, 1990 population, and state abbreviation from the CITIES table, using the connection information in the mvdemo data source and returning the information as an XML document (format="strict").

Example 3-24 MapViewer Information Request

<?xml version="1.0" standalone="yes"?>
<info_request datasource="mvdemo" format="strict">
 SELECT city, pop90 population, state_abrv state FROM cities
</info_request>

Example 3-24 returns an XML document that includes the following:

<?xml version="1.0" encoding="UTF-8"?>
 <ROWSET>
 <ROW num="1">
 <CITY>New York</CITY>
 <POPULATION>7322564</POPULATION>
 <STATE>NY</STATE>
 </ROW>
 <ROW num="2">
 <CITY>Los Angeles</CITY>
 <POPULATION>3485398</POPULATION>
 <STATE>CA</STATE>
 </ROW>
 <ROW num="3">
 <CITY>Chicago</CITY>
 <POPULATION>2783726</POPULATION>
 <STATE>IL</STATE>
 </ROW>
 <ROW num="4">
 <CITY>Houston</CITY>
 <POPULATION>1630553</POPULATION>
 <STATE>TX</STATE>
 </ROW>
 . . .
 </ROWSET>

3.4 Map Response DTD

The following is the DTD for the map response resulting from normal processing of a map request. (Section 3.5 shows the DTD for the response if there was an exception or unrecoverable error.)

<!ELEMENT map_response (map_image)>
<!ELEMENT map_image (map_content, box, themes, WMTException)>
<!ELEMENT map_content EMPTY>
<!ATTLIST map_content url CDATA #REQUIRED>
<!ELEMENT WMTException (#PCDATA)>
<!ATTLIST WMTException version CDATA "1.0.0"
 error_code (SUCCESS|FAILURE) #REQUIRED
>

The response includes the URL for retrieving the image, as well as any error information. When a valid map is generated, its minimum bounding box is also returned, along with the list of themes that have features within the minimum bounding rectangle (MBR) that intersects with the bounding box.

Example 3-25 shows a map response.

Example 3-25 Map Response

<?xml version="1.0" encoding="UTF-8" ?>
<map_response>
 <map_image>
 <map_content url="http://map.oracle.com/output/map029763.gif"/>
 <box srsName="default">
 <coordinates>-122.260443,37.531621 -120.345,39.543</coordinates>
 </box>
 <themes>
 <theme name="US_STATES" />
 <theme name="US_HIGHWAYS" />
 </themes>
 <WMTException version="1.0.0" error_code="SUCCESS">
 </WMTException>
 </map_image>
</map_response>

3.5 MapViewer Exception DTD

The following DTD is used by the output XML when an exception or unrecoverable error is encountered while processing a map request:

<!ELEMENT oms_error (#PCDATA)>

The exception or error message is embedded in this element.

3.6 Geometry DTD (OGC)

MapViewer supports the Geometry DTD as defined in the Open Geospatial Consortium (OGC) GML v1.0 specification. This specification has the following copyright information:

Copyright © 2000 OGC All Rights Reserved.

This specification includes the following status information, although its current official status is Deprecated Recommendation Paper:

This document is an OpenGIS® Consortium Recommendation Paper. It is similar to a
proposed recommendation in other organizations. While it reflects a public
statement of the official view of the OGC, it does not have the status of a OGC
Technology Specification. It is anticipated that the position stated in this
document will develop in response to changes in the underlying technology.
Although changes to this document are governed by a comprehensive review
procedure, it is expected that some of these changes may be significant.

The OGC explicitly invites comments on this document. Please send them to
gml.rfc@opengis.org

The following additional legal notice text applies to this specification:

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The OGC Geometry DTD in this specification is as follows:

<!-- == -->
<!-- G e o g r a p h y -->
<!-- M a r k u p -->
<!-- L a n g u a g e -->
<!-- -->
<!-- (G M L) -->
<!-- -->
<!-- G E O M E T R Y D T D -->
<!-- -->
<!-- Copyright (c) 2000 OGC All Rights Reserved. -->
<!-- == -->

<!-- the coordinate element holds a list of coordinates as parsed character
data. Note that it does not reference a SRS and does not constitute a proper
geometry class. -->
<!ELEMENT coordinates (#PCDATA) >
<!ATTLIST coordinates
 decimal CDATA #IMPLIED
 cs CDATA #IMPLIED
 ts CDATA #IMPLIED >

<!-- the Box element defines an extent using a pair of coordinates and a SRS name. -->
<!ELEMENT Box (coordinates) >
<!ATTLIST Box
 ID CDATA #IMPLIED
 srsName CDATA #REQUIRED >

<!-- == -->
<!-- G E O M E T R Y C L A S S D e f i n i t i o n s -->
<!-- == -->

<!-- a Point is defined by a single coordinate. -->
<!ELEMENT Point (coordinates) >
<!ATTLIST Point
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!-- a LineString is defined by two or more coordinates, with linear
interoplation between them. -->
<!ELEMENT LineString (coordinates) >
<!ATTLIST LineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!-- a Polygon is defined by an outer boundary and zero or more inner
boundaries. These boundaries are themselves defined by LinerRings. -->
<!ELEMENT Polygon (outerBoundaryIs, innerBoundaryIs*) >
<!ATTLIST Polygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT outerBoundaryIs (LinearRing) >
<!ELEMENT innerBoundaryIs (LinearRing) >

<!-- a LinearRing is defined by four or more coordinates, with linear
interpolation between them. The first and last coordinates must be
coincident. -->
<!ELEMENT LinearRing (coordinates) >
<!ATTLIST LinearRing
 ID CDATA #IMPLIED >

<!-- a MultiPoint is defined by zero or more Points, referenced through a
pointMember element. -->
<!ELEMENT MultiPoint (pointMember+) >
<!ATTLIST MultiPoint
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT pointMember (Point) >

<!-- a MultiLineString is defined by zero or more LineStrings, referenced
through a lineStringMember element. -->
<!ELEMENT MultiLineString (lineStringMember+) >
<!ATTLIST MultiLineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT lineStringMember (LineString) >

<!-- a MultiPolygon is defined by zero or more Polygons, referenced through a
polygonMember element. -->
<!ELEMENT MultiPolygon (polygonMember+) >
<!ATTLIST MultiPolygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT polygonMember (Polygon) >

<!-- a GeometryCollection is defined by zero or more geometries, referenced
through a geometryMember element. A geometryMember element may be any one of
the geometry classes. -->
<!ENTITY % GeometryClasses "(
 Point | LineString | Polygon |
 MultiPoint | MultiLineString | MultiPolygon |
 GeometryCollection)" >

<!ELEMENT GeometryCollection (geometryMember+) >
<!ATTLIST GeometryCollection
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT geometryMember %GeometryClasses; >

<!-- == -->
<!-- G E O M E T R Y P R O P E R T Y D e f i n i t i o n s -->
<!-- == -->

<!-- GML provides an 'endorsed' name to define the extent of a feature. The
extent is defined by a Box element, the name of the property is boundedBy. -->
<!ELEMENT boundedBy (Box) >

<!-- the generic geometryProperty can accept a geometry of any class. -->
<!ELEMENT geometryProperty (%GeometryClasses;) >

<!-- the pointProperty has three descriptive names: centerOf, location and
position. -->
<!ELEMENT pointProperty (Point) >
<!ELEMENT centerOf (Point) >
<!ELEMENT location (Point) >
<!ELEMENT position (Point) >

<!-- the lineStringProperty has two descriptive names: centerLineOf and
edgeOf. -->
<!ELEMENT lineStringProperty (LineString) >
<!ELEMENT centerLineOf (LineString)>
<!ELEMENT edgeOf (LineString)>

<!-- the polygonProperty has two descriptive names: coverage and extentOf. -->
<!ELEMENT polygonProperty (Polygon) >
<!ELEMENT coverage (Polygon)>
<!ELEMENT extentOf (Polygon)>

<!-- the multiPointProperty has three descriptive names: multiCenterOf,
multiLocation and multiPosition. -->
<!ELEMENT multiPointProperty (MultiPoint) >
<!ELEMENT multiCenterOf (MultiPoint) >
<!ELEMENT multiLocation (MultiPoint) >
<!ELEMENT multiPosition (MultiPoint) >

<!-- the multiLineStringProperty has two descriptive names: multiCenterLineOf
and multiEdgeOf. -->
<!ELEMENT multiLineStringProperty (MultiLineString) >
<!ELEMENT multiCenterLineOf (MultiLineString) >
<!ELEMENT multiEdgeOf (MultiLineString) >

<!-- the multiPolygonProperty has two descriptive names: multiCoverage and
multiExtentOf. -->
<!ELEMENT multiPolygonProperty (MultiPolygon) >
<!ELEMENT multiCoverage (MultiPolygon) >
<!ELEMENT multiExtentOf (MultiPolygon) >

<!ELEMENT geometryCollectionProperty (GeometryCollection) >

<!-- == -->
<!-- F E A T U R E M E T A D A T A D e f i n i t i o n s -->
<!-- == -->

<!-- Feature metadata, included in GML Geometry DTD for convenience; name and
description are two 'standard' string properties defined by GML. -->

<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>

