Developer's Guide
11g Release 1 (11.1.1)
E13807-02
March 2010
Oracle WebLogic Communication Services Developer's Guide, 11g Release 1 (11.1.1)
E13807-02
Copyright © 2006, 2010, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This preface contains the following sections:
This guide is intended for developers and programmers who want to use Oracle WebLogic Communication Services to develop, package, deploy, and test applications.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
For more information, see the following documents in the Oracle WebLogic Communication Services set:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This part contains introductory information.	
Part I contains the following chapter:	
This chapter describes SIP servlet application development in the following sections:	
The SIP Servlet API is standardized as JSR289 of JCP (Java Community Process).	
Note: In this document, the term "SIP Servlet" is used to represent the API, and "SIP servlet" is used to represent an application created with the API.	
Java Servlets are for building server-side applications, HttpServlets are subclasses of Servlet and are used to create Web applications. SIP Servlet is defined as the generic servlet API with SIP-specific functions added.	
Figure 1-1 Servlet API and SIP Servlet API	
SIP Servlets are very similar to HTTP Servlets, and HTTP servlet developers can quickly adapt to the programming model. The service level defined by both HTTP and SIP Servlets is very similar, and you can easily design applications that support both HTTP and SIP. Listing 1 shows an example of a simple SIP servlet.	
Example 1-1 SimpleSIPServlet.java	
The above example shows a simple SIP servlet that sends back a 200 OK response to the SIP MESSAGE request. As you can see from the list, SIP Servlet and HTTP Servlet have many things in common:	
However, there are several differences between SIP and HTTP servlets. A major difference comes from protocols. The next section describes these differences as well as features of SIP servlets.	
This section describes differences between SIP Servlets and HTTP Servlets.	
You might notice from Example 1-1 that the doMessage method has only one argument. In HTTP, a transaction consists of a pair of request and response, so arguments of a doXxx method specify a request (HttpServletRequest) and its response (HttpServletResponse). An application takes information such as parameters from the request to execute it, and returns its result in the body of the response.	
For SIP, more than one response may be returned to a single request.	
Figure 1-2 Example of Request and Response in SIP	
The above figure shows an example of a response to the INVITE request. In this example, the server sends back three responses 100, 180, and 200 to the single INVITE request. To implement such sequence, in SIP Servlet, only a request is specified in a doXxx method, and an application generates and returns necessary responses in an overridden method.	
Currently, SIP Servlet defines the following doXxx methods:	
One of the major features of SIP is that roles of a client and server are not fixed. In HTTP, Web browsers always send HTTP requests and receive HTTP responses: They never receive HTTP requests and send HTTP responses. In SIP, however, each terminal needs to have functions of both a client and server.	
For example, both of two SIP phones must call to the other and disconnect the call.	
Figure 1-3 Relationship between Client and Server in SIP	
The above example indicates that a calling or disconnecting terminal acts as a client. In SIP, roles of a client and server can be changed in one dialog. This client function is called UAC (User Agent Client) and server function is called UAS (User Agent Server), and the terminal is called UA (User Agent). SIP Servlet defines methods to receive responses as well as requests.	
These doXxx response methods are not the method name of the request. They are named by the type of the response as follows:	
Existence of methods to receive responses indicates that in SIP Servlet requests and responses are independently transmitted an application in different threads. Applications must explicitly manage association of SIP messages. An independent request and response makes the process slightly complicated, but enables you to write more flexible processes.	
Also, SIP Servlet allows applications to explicitly create requests. Using these functions, SIP servlets can not only wait for requests as a server (UAS), but also send requests as a client (UAC).	
Another function that is different from the HTTP protocol is "forking." Forking is a process of proxying one request to multiple servers simultaneously (or sequentially) and used when multiple terminals (operators) are associated with one telephone number (such as in a call center).	
SIP Servlet provides a utility to proxy SIP requests for applications that have proxy functions.	
As the figure below, the structure of SIP messages is the same as HTTP.	
HTTP is basically a protocol to transfer HTML files and images. Contents to be transferred are stored in the message body. HTTP Servlet defines stream manipulation-based API to enable sending and receiving massive contents.	
In SIP, however, only low-volume contents are stored in the message body since SIP is intended for real-time communication. Therefore, above methods are provided only for compatibility, and their functions are disabled.	
In SIP, contents stored in the body include:	
Since the message body is in a small size, processing it in a streaming way increases overhead. SIP Servlet re-defines API to manipulate the message body on memory as follows:	
The following sections describe major functions provided by OWLCS as a SIP servlet container:	
Like HTTP servlet containers, SIP servlet containers manage applications by servlet context (see Figure 6). Servlet contexts (applications) are normally archived in a WAR format and deployed in each application server.	
Note: The method of deploying in application servers varies depending on your product. Refer to the documentation of your application server.	
Figure 1-6 Servlet Container and Servlet Context	
A servlet context for a converged SIP and Web application can include multiple SIP servlets, HTTP servlets, and JSPs.	
OWLCS can deploy applications using the same method as the application server you use as the platform. However, if you deploy applications including SIP servlets, you need a SIP specific deployment descriptor (sip.xml) defined by SIP servlets. The table below shows the file structure of a general converged SIP and Web application.	
Table 1-1 File Structure Example of Application	
File	Description
WEB-INF/	Place your configuration and executable files of your converged SIP and Web application in the directory. You cannot directly refer to files in this directory on Web (servlets can do this).
WEB-INF/web.xml	The Java EE standard configuration file for the Web application.
WEB-INF/sip.xml	The SIP Servlet-defined configuration files for the SIP application.
WEB-INF/classes/	Store compiled class files in the directory. You can store both HTTP and SIP servlets in this directory.
WEB-INF/lib/	Store class files archived as Jar files in the directory. You can store both HTTP and SIP servlets in this directory.
*.jsp, *.jpg	Files comprising the Web application (for example JSP) can be deployed in the same way as Java EE.
Information specified in the sip.xml file is similar to that in the web.xml except <servlet-mapping> setting that is different from HTTP servlets. In HTTP you specify a servlet associated with the file name portion of URL. But SIP has no concept of the file name. You set filter conditions using URI or the header field of a SIP request. The following example shows that a SIP servlet called "register" is assigned all REGISTER methods.	
Example 1-2 Filter Condition Example of sip.xml	
Once deployed, lifecycle of the servlet context is maintained by the servlet container. Although the servlet context is normally started and shutdown when the server is started and shutdown, the system administrator can explicitly start, stop, and reload the servlet context.	
SIP messaging functions provided by a SIP servlet container are classified under the following types:	
All SIP messages that a SIP servlet handles are represented as a SipServletRequest or SipServletResponse object. A received message is first parsed by the parser and then translated to one of these objects and sent to the SIP servlet container.	
A SIP servlet container receives the following three types of SIP messages, for each of which you determine a target servlet.	
Note: Filtering should be done carefully. In OWLCS, when the received SIP message matches multiple SIP servlets, it is delivered only to any one SIP servlet.The use of additional criteria such as request parameters can be used to direct a request to a servlet.	
Each time a SIP Servlet processes messages, a lock is established by the container on the call ID. If a SIP Servlet is currently processing earlier requests for the same call ID when subsequent requests are received, the SIP Servlet container queues the subsequent requests. The queued messages are processed only after the Servlet has finished processing the initial message and has returned control to the SIP Servlet container.	
This concurrency control is guaranteed both in a single containers and in clustered environments. Application developers can code applications with the understanding that only one message for any particular call ID gets processed at a given time.	
Normally, in SIP a "session" means a real-time session by RTP/RTSP. On the other hand, in HTTP Servlet a "session" refers to a way of relating multiple HTTP transactions. In this document, session-related terms are defined as follows:	
Table 1-2 Session-Related Terminology	
Realtime Session	A realtime session established by RTP/RTSP.
HTTP Session	A session defined by HTTP Servlet. A means of relating multiple HTTP transactions.
SIP Session	A means of implementing the same concept as in HTTP session in SIP. SIP (RFC3261) has a similar concept of "dialog," but in this document this is treated as a different term since its lifecycle and generation conditions are different.
Application Session	A means for applications using multiple protocols and dialogs to associate multiple HTTP sessions and SIP sessions. Also called "AP session."
OWLCS automatically execute the following response and retransmission processes:	
When the SIP servlet sends a 4xx, 5xx, or 6xx response to INVITE, it never receives ACK for the response.	
Mostly, applications do not need to explicitly set and see header fields In HTTP Servlet since HTTP servlet containers automatically manage these fields such as Content-Length and Content-Type. SIP Servlet also has the same header management function.	
In SIP, however, since important information about message delivery exists in some fields, these headers are not allowed to change by applications. Headers that can not be changed by SIP servlets are called "system headers." The table below lists system headers:	
Table 1-3 System Headers	
Header Name	Description
Call-ID	Contains ID information to associate multiple SIP messages as Call.
From, To	Contains Information on the sender and receiver of the SIP request (SIP, URI, etc.). tag parameters are given by the servlet container.
CSeq	Contains sequence numbers and method names.
Via	Contains a list of servers the SIP message passed through. This is used when you want to keep track of the path to send a response to the request.
Record-Route, Route	Used when the proxy server mediates subsequent requests.
Contact	Contains network information (such as IP address and port number) that is used for direct communication between terminals. For a REGISTER message, 3xx, or 485 response, this is not considered as the system header and SIP servlets can directly edit the information.
SIP Servlet defines the following utilities that are available to SIP servlets:	
As stated before, SIP Servlet provides a "SIP session" whose concept is the same as a HTTP session. In HTTP, multiple transactions are associated using information like Cookie. In SIP, this association is done with header information (Call-ID and tag parameters in From and To). Servlet containers maintain and manage SIP sessions. Messages within the same dialog can refer to the same SIP session. Also, For a method that does not create a dialog (such as MESSAGE), messages can be managed as a session if they have the same header information.	
SIP Servlet has a concept of an "application session," which does not exist in HTTP Servlet. An application session is an object to associate and manage multiple SIP sessions and HTTP sessions. It is suitable for applications such as B2BUA.	
A SIP factory (SipFactory) is a factory class to create SIP Servlet-specific objects necessary for application execution. You can generate the following objects:	
Table 1-4 Objects Generated with SipFactory	
Class Name	Description
URI, SipURI, Address	Can generate address information including SIP URI from String.
SipApplicationSession	Creates a new application session. It is invoked when a SIP servlet starts a new SIP signal process.
SipServletRequest	Used when a SIP servlet acts as UAC to create a request. Such requests can not be sent with Proxy.proxyTo. They must be sent with SipServletRequest.send.
SipFactory is located in the servlet context attribute under the default name. You can take this with the following code.	
Proxy is a utility used by a SIP servlet to proxy a request. In SIP, proxying has its own sequences including forking. You can specify the following settings in proxying with Proxy:	
This part describes programming guidelines and procedures for SIP applications.	
Part II contains the following chapters:	
This chapter describes how to develop converged HTTP and SIP applications with OWLCS, in the following sections:	
In a converged application, SIP protocol functionality is combined with HTTP or Java EE components to provide a unified communication service. For example, an online push-to-talk application might enable a customer to initiate a voice call to ask questions about products in their shopping cart. The SIP session initiated for the call is associated with the customer's HTTP session, which enables the employee answering the call to view customer's shopping cart contents or purchasing history.	
You must package converged applications that utilize Java EE components (such as EJBs) into an application archive (.EAR file). Converged applications that use SIP and HTTP protocols must be packaged in a single SAR or WAR file containing both a sip.xml	
and a web.xml	
deployment descriptor file.You can optionally package the SIP and HTTP Servlets of a converged application into separate SAR and WAR components within a single EAR file.	
The HTTP and SIP sessions used in a converged application can be accessed programmatically through a common application session object. The SIP Servlet API also helps you associate HTTP sessions with an application session.	
The SIP Servlet specification fully describes the requirements and restrictions for assembling converged applications. The following statements summarize the information in the SIP Servlet specification:	
WEB-INF	
subdirectory; this ensures that the files are not served up as static files by an HTTP Servlet. sip.xml	
and web.xml	
descriptors are required. A weblogic.xml	
deployment descriptor may also be included to configure Servlet functionality in the OWLCS container. distributable	
tag must be present in both sip.xml	
and web.xml	
, or it must be omitted entirely. context-param	
elements are shared for a given converged application. If you define the same context-param	
element in sip.xml	
and in web.xml	
, the parameter must have the same value in each definition. display-name	
or icons	
element is required, the element must be defined in both sip.xml	
and web.xml	
, and it must be configured with the same value in each location. As shown in Figure 2-1, each converged application deployed to the OWLCS container has a unique SipApplicationSession	
, which can contain one or more SipSession	
and ConvergedHttpSession	
objects.	
Figure 2-1 Sessions in a Converged Application	
The API provided by javax.servlet.SipApplicationSession	
enables you to iterate through all available sessions in a given SipApplicationSession	
. It also provides methods to encode a URL with the unique application session when developing converged applications.	
In prior releases, OWLCS extended the basic SIP Servlet API to provide methods for:	
SipApplicationSession	
SipApplicationSession	
objects using either the call ID or session ID This functionality is now provided directly as part of the SIP Servlet API version 1.1, and the proprietary API (com.bea.wcp.util.Sessions	
) is now deprecated. Table 2-0 lists the SIP Servlet APIs to use in place of now deprecated methods. See the SIP Servlet v1.1 API JavaDoc for more information.	
Table 2-1 Deprecated com.bea.wcp.util.Sessions Methods	
Deprecated Method (in com.bea.wcp.util.Sessions)	Replacement Method
---	---
getApplicationSession	javax.servlet.sip.SipSessionsUtil. getApplicationSession
getApplicationSessionsByCallId	None.
createHttpSession	None.
setApplicationSession	javax.servlet.sip.ConvergedHttpSession. getApplicationSession
removeApplicationSession	None.
getEncodeURL	javax.servlet.sip.ConvergedHttpSession. encodeURL
Note: Thecom.bea.wcp.util.Sessions API is provided only for backward compatibility. Use the SIP Servlet APIs for all new development. OWLCS does not support converged applications that mix the com.bea.wcp.util.Sessions API and JSR 289 convergence APIs. Specifically, the deprecated	
When using a replicated domain, OWLCS automatically provides concurrency control when a SIP Servlet modifies a SipApplicationSession	
object. In other words, when a SIP Servlet modifies the SipApplicationSession	
object, the SIP container automatically locks other applications from modifying the object at the same time.	
Non-SIP applications, such as HTTP Servlets, must themselves ensure that the application call state is locked before modifying it. This is also required if a single SIP Servlet needs to modify other call state objects, such as when a conferencing Servlet joins multiple calls.	
To help application developers manage concurrent access to the application session object, OWLCS extends the standard SipApplicationSession	
object with com.bea.wcp.sip.WlssSipApplicationSession	
, and adds two interfaces, com.bea.wcp.sip.WlssAction	
and com.bea.wcp.sip.WlssAsynchronous Action	
, to encapsulate tasks performed to modify the session. When these APIs are used, the SIP container ensures that all business logic contained within the WlssAction	
and WlssAsynchronousAction object is executed on a locked copy of the associated SipApplicationSession	
instance. The sections that follow describe each interface.	
Applications that need to read and update a session attribute in a transactional and synchronous manner must use the WlssAction API. WlssAction obtains an explicit lock on the session for the duration of the action. Example 2-1, "Example Code using WlssAction API" shows an example of using this API.	
Example 2-1 Example Code using WlssAction API	
Because the WlssAction API obtains an exclusive lock on the associated session, deadlocks can occur if you attempt to modify other application session attributes within the action.	
Applications that need to update a different SipApplicationSession while in the context of a locked SipApplicationSession can perform asynchronous updates using the WlssAsynchronousAction API. This API reduces contention when multiple applications might need to update attributes in the same SipApplicationSession at the same time. Example 2-2, "Example Code using WlssAsynchronousAction API" shows an example of using this API.	
To compile applications using this API, you need to include MIDDLEWARE_HOME/server/lib/wlss/wlssapi.jar, and MIDDLEWARE_HOME/server/lib/wlss/sipservlet.jar.	
Example 2-2 Example Code using WlssAsynchronousAction API	
Performing the work on appSession in an asynchronous manner prevents nested locking and associated deadlock scenarios.	
OWLCS includes a sample converged application that uses the com.bea.wcp.util.Sessions	
API. All source code, deployment descriptors, and build files for the example can be installed in OWLCS_HOME	
\samples\sipserver\examples\src\convergence	
. See the readme.html	
file in the example directory for instructions about how to build and run the example.	
This chapter describes programming SIP applications and contains the following sections:	
This section describes how to use the OWLCS SipServletMessage	
interface and configuration parameters to control SIP message header formats	
Applications that operate on wireless networks may want to limit the size of SIP headers to reduce the size of messages and conserve bandwidth. JSR 289 provides the SipServletMessage.setHeaderForm()	
method, which enables application developers to set a long or compact format for the value of a given header.	
One feature of the SipServletMessage	
API provided in JSR 289 is the ability to set long or compact header formats for the entire SIP message using the setHeaderForm	
method.	
In addition to SipServletMessage	
, OWLCS provides a container-wide configuration parameter that can control SIP header formats for all system-generated headers. This system-wide parameter can be used along with SipServletMessage.setHeaderForm	
and SipServletMessage.setHeader	
to further customize header formats.	
Table 3-1 defines the compact header abbreviations described in the SIP specification (http://www.ietf.org/rfc/rfc3261.txt	
). Specifications that introduce additional headers may also include compact header abbreviations.	
A pair of getter/setter methods, setHeaderForm	
and getHeaderForm	
, are used to assign or retrieve the header formats used in the message. These methods assign or return a HeaderForm	
object, which is a simple Enumeration that describes the header format:	
COMPACT	
—Forces all headers in the message to use compact format. This behavior is similar to the container-wide configuration value of "force compact," as described in use-compact-form in the Configuration Reference Manual. LONG	
—Forces all headers in the message to use long format. This behavior is similar to the container-wide configuration value of "force long," as described in use-compact-form in the Configuration Reference Manual. DEFAULT	
—Defers the header format to the container-wide configuration value set in use-compact-form. SipServletResponse.setHeaderForm	
can be used in combination with SipServletMessage.setHeader	
and the container-level configuration parameter, use-compact-form.	
Header formats can be specified at the header, message, and SIP Servlet container levels. Table 3-1 shows the header format that results when adding a new header with SipServletMessage.setHeader	
, given different container configurations and message-level settings with SipServletMessage.setHeaderForm.	
Table 3-2 API Behavior when Adding Headers	
SIP Servlet Container Header Configuration (.SIPServletMessage setHeaderForm Setting
COMPACT	DEFAULT
COMPACT	DEFAULT
COMPACT	COMPACT
COMPACT	COMPACT
COMPACT	LONG
COMPACT	LONG
LONG	DEFAULT
LONG	DEFAULT
LONG	COMPACT
LONG	COMPACT
LONG	LONG
LONG	LONG
FORCE_COMPACT	DEFAULT
FORCE_COMPACT	DEFAULT
FORCE_COMPACT	COMPACT
FORCE_COMPACT	COMPACT
FORCE_COMPACT	LONG
FORCE_COMPACT	LONG
FORCE_LONG	DEFAULT
FORCE_LONG	DEFAULT
FORCE_LONG	COMPACT
FORCE_LONG	COMPACT
FORCE_LONG	LONG
FORCE_LONG	LONG
Table 3-1 shows the system header format that results when setting the header format with WlssSipServletResponse.setUseHeaderForm	
given different container configuration values.	
Table 3-3 API Behavior for System Headers	
SIP Servlet Container Header Configuration (SipServletMessage. setHeaderForm Setting
COMPACT	DEFAULT
COMPACT	COMPACT
COMPACT	LONG
LONG	DEFAULT
LONG	COMPACT
LONG	LONG
FORCE_COMPACT	DEFAULT
FORCE_COMPACT	COMPACT
FORCE_COMPACT	LONG
FORCE_LONG	DEFAULT
FORCE_LONG	COMPACT
FORCE_LONG	LONG
This section describes how to develop SIP Servlets that work with indirect content specified in the SIP message body.	
Data provided by the body of a SIP message can be included either directly in the SIP message body, or indirectly by specifying an HTTP URL and metadata that describes the URL content. Indirectly specifying the content of the message body is used primarily in the following scenarios:	
OWLCS provides a simple API that you can use to work with indirect content specified in SIP messages.	
The content indirection API provided by OWLCS helps you quickly determine if a SIP message uses content indirection, and to easily retrieve all metadata associated with the indirect content. The basic API consists of a utility class, com.bea.wcp.sip.util.ContentIndirectionUtil	
, and an interface for accessing content metadata, com.bea.wcp.sip.util	
.	
SIP Servlets can use the utility class to identify SIP messages having indirect content, and to retrieve an ICParsedData	
object representing the content metadata. The ICParsedData	
object has simple "getter" methods that return metadata attributes.	
Complete details about content indirection are available in RFC 4483.	
See the Oracle Fusion Middleware WebLogic Communication Services API Reference for additional documentation about the content indirection API.	
This section describes how to use the OWLCS SipServletSnmpTrapRuntimeMBean	
to generate SNMP traps from within a SIP Servlet.	
OWLCS includes a runtime MBean, SipServletSnmpTrapRuntimeMBean,	
that enables applications to easily generate SNMP traps. The OWLCS MIB contains seven new OIDs that are reserved for traps generated by an application. Each OID corresponds to a severity level that the application can assign to a trap, in order from the least severe to the most severe:	
To generate a trap, an application simply obtains an instance of the SipServletSnmpTrapRuntimeMBean	
and then executes a method that corresponds to the desired trap severity level (sendInfoTrap()	
, sendWarningTrap()	
, sendErrorTrap()	
, sendNoticeTrap()	
, sendCriticalTrap()	
, sendAlertTrap()	
, and sendEmergencyTrap()	
). Each method takes a single parameter—the String value of the trap message to generate.	
For each SNMP trap generated in this manner, OWLCS also automatically transmits the Servlet name, application name, and OWLCS instance name associated with the calling Servlet.	
In order to obtain a SipServletSnmpTrapRuntimeMBean	
, the calling SIP Servlet must be able to perform MBean lookups from the Servlet context. To enable this functionality, you must assign a OWLCS administrator role-name	
entry to the security-role	
and run-as	
role elements in the sip.xml	
deployment descriptor. Example 3-1 shows a sample sip.xml	
file with the required role elements highlighted.	
Example 3-1 Sample Role Requirement in sip.xml	
Any SIP Servlet that generates SNMP traps must first obtain a reference to the SipServletSnmpTrapRuntimeMBean	
. Example 3-2 shows the sample code for a method to obtain the MBean.	
Example 3-2 Sample Method for Accessing SipServletSnmpTrapRuntimeMBean	
In combination with the method shown in Example 3-2, Example 3-3 demonstrates how a SIP Servlet would use the MBean instance to generate an SNMP trap in response to a SIP INVITE.	
Example 3-3 Generating a SNMP Trap	
This chapter describes requirements and best practices for developing applications for deployment to OWLCS. It contains the following sections:	
In a typical production environment, SIP applications are deployed to a cluster of OWLCS instances that form the engine tier cluster. A separate cluster of servers in the SIP data tier provides a replicated, in-memory database of the call states for active calls. In order for applications to function reliably in this environment, you must observe the programming practices and conventions described in the sections that follow to ensure that multiple deployed copies of your application perform as expected in the clustered environment.	
If you are porting an application from a previous version of OWLCS, the conventions and restrictions described below may be new to you, because the 2.0 and 2.1 versions of WebLogic SIP Server implementations did not support clustering. Thoroughly test and profile your ported applications to discover problems and ensure adequate performance in the new environment.	
OWLCS is a multi-threaded application server that carefully manages resource allocation, concurrency, and thread synchronization for the modules it hosts. To obtain the greatest advantage from the OWLCS architecture, construct your application modules according to the SIP Servlet and Java EE API specifications.	
Avoid application designs that require creating new threads in server-side modules such as SIP Servlets:	
do	
xxx method of a SIP Servlet. If the doxxx	
method spawns additional threads or accesses a different call state before returning control, deadlock scenarios and lost updates to session data can occur. WlssSipApplicationSession.doAction()	
method, described in "Use setAttribute() to Modify Session Data in “No-Call” Scope", does not provide synchronization for spawned Java threads. Any threads created within doAction()	
can execute another doAction()	
on the same WlssSipApplicationSession	
. Similarly, main threads that use doAction()	
to access a different wlssSipApplicationSession	
can lead to deadlocks, because the container automatically locks main threads when processing incoming SIP messages. "Use setAttribute() to Modify Session Data in “No-Call” Scope" describes a potential deadlock situation. Caution: If your application must spawn threads, you must guard against deadlocks and carefully manage concurrent access to session data. At a minimum, never spawn threads inside the service method of a SIP Servlet. Instead, maintain a separate thread pool outside of the service method, and be careful to synchronize access to all session data.	
SIP and HTTP Servlets must not block threads in the body of a SIP method because the call state remains locked while the method is invoked. For example, no Servlet method must actively wait for data to be retrieved or written before returning control to the SIP Servlet container.	
If you deploy your application to more than one engine tier server (in a replicated OWLCS configuration) you must store all application data in the session as session attributes. In a replicated configuration, engine tier servers maintain no cached information; all application data must be de-serialized from the session attribute available in SIP data tier servers.	
To support in-memory replication of SIP application call states, you must ensure that all objects stored in the SIP Servlet session are serializable. Every field in an object must be serializable or transient in order for the object to be considered serializable. If the Servlet uses a combination of serializable and non-serializable objects, OWLCS cannot replicate the session state of the non-serializable objects.	
The SIP Servlet container automatically locks the associated call state when invoking the doxxx	
method of a SIP Servlet. However, applications may also attempt to modify session data in "no-call" scope. No-call scope refers to the context where call state data is modified outside the scope of a normal doxxx	
method. For example, data is modified in no-call scope when an HTTP Servlet attempts to modify SIP session data, or when a SIP Servlet attempts to modify a call state other than the one that the container locked before invoking the Servlet.	
Applications must always use the SIP Session's setAttribute	
method to change attributes in no-call scope. Likewise, use removeAttribute	
to remove an attribute from a session object. Each time setAttribute/removeAttribute	
is used to update session data, the SIP Servlet container obtains and releases a lock on the associated call state. (The methods enqueue the object for updating, and return control immediately.) This ensures that only one application modifies the data at a time, and also ensures that your changes are replicated across SIP data tier nodes in a cluster.	
If you use other set methods to change objects within a session, OWLCS cannot replicate those changes.	
Note that the OWLCS container does not persist changes to a call state attribute that are made after calling setAttribute	
. For example, in the following code sample the setAttribute	
call immediately modifies the call state, but the subsequent call to modifyState()	
does not:	
Instead, ensure that your Servlet code modifies the call state attribute value before calling setAttribute	
, as in:	
Also, keep in mind that the SIP Servlet container obtains a lock to the call state for each individual setAttribute	
call. For example, when executing the following code in an HTTP Servlet, the SIP Servlet container obtains and releases a lock on the call state lock twice:	
This locking behavior ensures that only one thread modifies a call state at any given time. However, another process could potentially modify the call state between sequential updates. The following code is not considered thread safe when done no-call state:	
To make the above code thread safe, you must enclose it using the wlssAppSession.doAction	
method, which ensures that all modifications made to the call state are performed within a single transaction lock, as in:	
Finally, be careful to avoid deadlock situations when locking call states in a "do	
SipMethod" call, such as doInvite()	
. Keep in mind that the OWLCS container has already locked the call state when the instructions of a do	
SipMethod are executed. If your application code attempts to access the current call state from within such a method (for example, by accessing a session that is stored within a data structure or attribute), the lock ordering results in a deadlock.	
Example 4-1 shows an example that can result in a deadlock. If the code is executed by the container for a call associated with callAppSession	
, the locking order is reversed and the attempt to obtain the session with getApplicationSession(callId)	
causes a deadlock.	
Example 4-1 Session Access Resulting in a Deadlock	
See Section 6.3.1, "Modifying the SipApplicationSession" for more information about using the com.bea.wcp.sip.WlssAction	
interface.	
If your SIP Servlet calls the send()	
method within a SIP request method such as doInvite()	
, doAck()	
, doNotify()	
, and so forth, keep in mind that the OWLCS container buffers all send()	
calls and transmits them in order after the SIP method returns. Applications cannot rely on send()	
calls to be transmitted immediately as they are called.	
Caution: Applications must not wait or sleep after a call tosend() because the request or response is not transmitted until control returns to the SIP Servlet container.	
If you have designed and programmed your SIP Servlet to be deployed to a cluster environment, you must include the distributable	
marker element in the Servlet's deployment descriptor when deploying the application to a cluster of engine tier servers. If you omit the distributable	
element, OWLCS does not deploy the Servlet to a cluster of engine tier servers. If you mark distributable	
in sip.xml it must also be marked in the web.xml for a WAR file.	
The distributable	
element is not required, and is ignored if you deploy to a single, combined-tier (non-replicated) OWLCS instance.	
The SIP Servlet 1.1 specification introduces SipApplicationSessionActivationListener	
, which can provide callbacks to an application when SIP Sessions are passivated or activated. Keep in mind that callbacks occur only in a replicated OWLCS deployment. Single-server deployments use no SIP data tier, so SIP Sessions are never passivated.	
Also, keep in mind that in a replicated deployment OWLCS activates and passivates a SIP Session many times, before and after SIP messages are processed for the session. (This occurs normally in any replicated deployment, even when RDBMS-based persistence is not configured.) Because this constant cycle of activation and passivation results in frequent callbacks, use SipApplicationSessionActivationListener	
sparingly in your applications.	
For a JSR289 application, the container is more "intelligent" in removing sessions. For example, there is no need to explicity call invalidate() on a session or sipappsession.	
However, if setExpirs() is used on a session and the application is of a JSR289 type then that call has no effect unless setInvalidateWhenRead(false) is called on the session.	
If you are deploying applications that use other Java EE APIs, observe the basic clustering guidelines associated with those APIs. For example, if you are deploying EJBs you must design all methods to be idempotent and make EJB homes clusterable in the deployment descriptor. See "Clustering Best Practices" for more information.	
This chapter describes how to use OWLCS application composition features, in the following sections:	
Note: The SIP Servlet v1.1 specification (http://jcp.org/en/jsr/detail?id=289) describes a formal application selection and composition process, which is fully implemented in OWLCS. Use the SIP Servlet v1.1 techniques, as described in this document, for all new development. Application composition techniques described in earlier versions of OWLCS are now deprecated. OWLCS provides backwards compatibility for applications using version 1.0 composition techniques, provided that:	
Application composition is the process of "chaining" multiple SIP applications into a logical path to apply services to a SIP request. The SIP Servlet v1.1 specification introduces an Application Router (AR) deployment, which performs a key role in composing SIP applications. The Application Router examines an initial SIP request and uses custom logic to determine which SIP application must process the request. In OWLCS, all initial requests are first delivered to the AR, which determines the application used to process the request.	
OWLCS provides a default Application Router, which can be configured using a text file. However, most installations can develop and deploy a custom Application Router by implementing the SipApplicationRouter	
interface. A custom Application Router enables you to consult data stores when determining which SIP application must handle a request.	
In contrast to the Application Router, which requires knowledge of which SIP applications are available for processing a message, individual SIP applications remain independent from one another. An individual application performs a very specific service for a SIP request, without requiring any knowledge of other applications deployed on the system. (The Application Router does require knowledge of deployed applications, and the SipApplicationRouter	
interface provides for automatic notification of application deployment and undeployment.)	
Individual SIP applications may complete their processing of an initial request by proxying or relaying the request, or by terminating the request as a User Agent Server (UAS). If an initial request is proxied or relayed, the SIP container again forwards the request to the Application Router, which selects the next SIP application to provide a service for the request. In this way, the AR can chain multiple SIP applications as needed to process a request. The chaining process is terminated when:	
When the chain is terminated and the request sent, the SIP container maintains the established path of applications for processing subsequent requests, and the AR is no longer consulted.	
Figure 5-1 shows the use of an Application Router for applying multiple service to a SIP request.	
Note that the AR may select remote as well as local applications; the chain of services need not reside within the same OWLCS container.	
OWLCS includes a Default Application Router (DAR) having the basic functionality described in the SIP Servlet Specification v1.1 (http://jcp.org/en/jsr/detail?id=289	
), Appendix C: Default Application Router. In summary, the OWLCS DAR implements all methods of the SipApplicationRouter	
interface, and is configured using the simple Java properties file described in the v1.1 specification.	
Each line of the DAR properties file specifies one or more SIP methods, and is followed by SIP routing information in comma-delimited format. The DAR initially reads the properties file on startup, and then reads it each time a SIP application is deployed or undeployed from the container.	
To specify the location of the configuration file used by the DAR, configure the properties using the Administration Console, as described in "Configuring a Custom Application Router", or include the following parameter when starting the OWLCS instance:	
(To specify a property file, rather than a URI, include the prefix file:///	
) This Java parameter is specified at the command line, therefore it can be included in your server startup script.	
See Appendix C in the SIP Servlet Specification v1.1 (http://jcp.org/en/jsr/detail?id=289	
) for detailed information about the format of routing information used by the Default Application Router.	
Note that the OWLCS DAR accepts route region strings in addition to "originating," "terminating," and "neutral." Each new string value is treated as an extended route region. Also, the OWLCS DAR uses the order of properties in the configuration file to determine the route entry sequence; the state_info	
value has no effect when specified in the DAR configuration.	
By default OWLCS uses its DAR implementation.	
If you develop a custom Application Router, you must store the implementation for the AR in the /approuter	
subdirectory of the domain home directory. Supporting libraries for the AR can be stored in a /lib	
subdirectory within /approuter	
. (If you have multiple implementations of SipApplicationRouter	
, use the -Djavax.servlet.sip.ar.spi.SipApplicationRouterProvider	
option at startup to specify which one to use.)	
Note: In a clustered environment, the custom AR is deployed to all engine tier instances of the domain; you cannot deploy different AR implementations within the same domain.	
See Section 15 in the SIP Servlet Specification v1.1 (http://jcp.org/en/jsr/detail?id=289	
) for more information about the function of the AR. See also the SIP Servlet v1.1 API for information about how to implement a custom AR.	
The SIP Servlet v1.1 specification also provides a mechanism for associating an initial request with an existing SipApplicationSession	
object. This mechanism is called session key-based targeting. Session key-based targeting is used to direct initial requests having a particular subscriber (request URI) or region, or other feature to an already-existing SipApplicationSession	
, rather than generating a new session. To use this targeting mechanism with an application, you create a method that generates a unique key and annotate that method with @SipApplicationKey	
. When the SIP container selects that application (for example, as a result of the AR choosing it for an initial request), it obtains a key using the annotated method, and uses the key and application name to determine if the SipApplicationSession	
exists. If one exists, the container associates the new request with the existing session, rather than generating a new session.	
Note: If you develop a spiral proxy application using this targeting mechanism, and the application modifies the record-route more than once, it must generate different keys for the initial request, if necessary, when processing record-route hops. If it does not, then the application cannot discriminate record-route hops for subsequent requests.	
See section 15 in the SIP Servlet Specification v1.1 (http://jcp.org/en/jsr/detail?id=289	
) for more information about using session key-based targeting.	
The chapter describes how to apply security constraints to SIP Servlet resources when deploying to OWLCS, in the following sections:	
The SIP Servlet API specification defines a set of deployment descriptor elements that can be used for providing declarative and programmatic security for SIP Servlets. The primary method for declaring security constraints is to define one or more security-constraint	
elements in the sip.xml	
deployment descriptor. The security-constraint	
element defines the actual resources in the SIP Servlet, defined in resource-collection elements	
, that are to be protected. security-constraint	
also identifies the role names that are authorized to access the resources. All role names used in the security-constraint	
are defined elsewhere in sip.xml	
in a security-role	
element.	
SIP Servlets can also programmatically refer to a role name within the Servlet code, and then map the hard-coded role name to an alternate role in the sip.xml	
security-role-ref	
element during deployment. Roles must be defined elsewhere in a security-role	
element before they can be mapped to a hard-coded name in the security-role-ref	
element.	
The SIP Servlet specification also enables Servlets to propagate a security role to a called Enterprise JavaBean (EJB) using the run-as	
element. Once again, roles used in the run-as	
element must be defined in a separate security-role	
element in sip.xml	
.	
Chapter 14 in the SIP Servlet API specification provides more details about the types of security available to SIP Servlets. SIP Servlet security features are similar to security features available with HTTP Servlets; you can find additional information about HTTP Servlet security by referring to these sections in the Oracle WebLogic Communication Services documentation:	
run-as	
element used for propagating roles to called EJBs. See also the example sip.xml	
excerpt in Example 6-1, "Declarative Security Constraints in sip.xml".	
You can distinguish whether you are a proxy application, or a UAS application, by configuring the container to trigger the appropriate SIP response code, either a 401 SIP response code, or a 407 SIP response code. If your application needs to proxy an invitation, the 407 code is appropriate to use. If your application is a registrar application, you must use the 401 code.	
To configure the container to respond with a 407 SIP response code instead of a 401 SIP response code, you must add the <proxy-authentication>	
element to the security constraint.	
You must specify the name of the current security realm in the sip.xml file as follows:	
When you deploy a SIP Servlet, security-role	
definitions that were created for declarative and programmatic security must be assigned to actual principals and/or roles available in the Servlet container. OWLCS uses the security-role-assignment	
element in weblogic.xml	
to help you map security-role	
definitions to actual principals and roles. security-role-assignment	
provides two different ways to map security roles, depending on how much flexibility you require for changing role assignment at a later time:	
security-role-assignment	
element can define the complete list of principal names and roles that map to roles defined in sip.xml	
. This method defines the role assignment at deployment time, but at the cost of flexibility; to add or remove principals from the role, you must edit weblogic.xml	
and redeploy the SIP Servlet. externally-defined	
element in security-role-assignment	
enables you to assign principal names and roles to a sip.xml	
role at any time using the Administration Console. When using the externally-defined	
element, you can add or remove principals and roles to a sip.xml	
role without having to redeploy the SIP Servlet. Two additional XML elements can be used for assigning roles to a sip.xml	
run-as	
element: run-as-principal-name	
and run-as-role-assignment	
. These role assignment elements take precedence over security-role-assignment	
elements if they are used, as described in "Assigning run-as Roles".	
Optionally, you can choose to specify no role mapping elements in weblogic.xml	
to use implicit role mapping, as described in "Using Implicit Role Assignment".	
The sections that follow describe OWLCS role assignment in more detail.	
With implicit role assignment, OWLCS assigns a security-role	
name in sip.xml	
to a role of the exact same name, which must be configured in the OWLCS security realm. To use implicit role mapping, you omit the security-role-assignment	
element in weblogic.xml	
, as well as any run-as-principal-name	
, and run-as-role-assignment	
elements use for mapping run-as	
roles.	
When no role mapping elements are available in weblogic.xml	
, OWLCS implicitly maps sip.xml	
security-role	
elements to roles having the same name. Note that implicit role mapping takes place regardless of whether the role name defined in sip.xml	
is actually available in the security realm. OWLCS display a warning message anytime it uses implicit role assignment. For example, if you use the "everyone" role in sip.xml	
but you do not explicitly assign the role in weblogic.xml	
, the server displays the warning:	
id	
,name=application	
,context-path=/context	
), the role: everyone	
defined in web.xml has not been mapped to principals in security-role-assignment in weblogic.xml. Will use the rolename itself as the principal-name.>You can ignore the warning message if the corresponding role has been defined in the OWLCS security realm. The message can be disabled by defining an explicit role mapping in weblogic.xml	
.	
Use implicit role assignment if you want to hard-code your role mapping at deployment time to a known principal name.	
The security-role-assignment	
element in weblogic.xml	
enables you to assign roles either at deployment time or at any time using the Administration Console. The sections that follow describe each approach.	
If you specify a security-role-assignment	
element in weblogic.xml	
, OWLCS requires that you also define a duplicate security-role	
element in a web.xml	
deployment descriptor. This requirement applies even if you are deploying a pure SIP Servlet, which would not normally require a web.xml	
deployment descriptor (generally reserved for HTTP Web Applications).	
Note: If you specify a security-role-assignment in weblogic.xml but there is no corresponding security-role element in web.xml, OWLCS generates the error message:The security-role-assignment references an invalid security-role: rolename The server then implicitly maps the security-role defined in sip.xml to a role of the same name, as described in "Using Implicit Role Assignment".	
For example, Example 6-1 shows a portion of a sip.xml	
deployment descriptor that defines a security constraint with the role, roleadmin	
. Example 6-2 shows that a security-role-assignment	
element has been defined in weblogic.xml	
to assign principals and roles to roleadmin	
. In OWLCS, this Servlet must be deployed with a web.xml	
deployment descriptor that also defines the roleadmin	
role, as shown in Example 6-3.	
If the web.xml	
contents were not available, OWLCS would use implicit role assignment and assume that the roleadmin	
role was defined in the security realm; the principals and roles assigned in weblogic.xml	
would be ignored.	
Example 6-1 Declarative Security Constraints in sip.xml	
Example 6-2 Example security-role-assignment in weblogic.xml	
A basic security-role-assignment	
element definition in weblogic.xml	
declares a mapping between a security-role	
defined in sip.xml	
and one or more principals or roles available in the OWLCS security realm. If the security-role	
is used in combination with the run-as	
element in sip.xml	
, OWLCS assigns the first principal or role name specified in the security-role-assignment	
to the run-as	
role.	
Example 6-2, "Example security-role-assignment in weblogic.xml" shows an example security-role-assignment	
element. This example assigns three users to the roleadmin	
role defined in Example 6-1, "Declarative Security Constraints in sip.xml". To change the role assignment, you must edit the weblogic.xml	
descriptor and redeploy the SIP Servlet.	
The externally-defined	
element can be used in place of the <principal-name>	
element to indicate that you want the security roles defined in the role-name	
element of sip.xml	
to use mappings that you assign in the Administration Console. The externally-defined	
element gives you the flexibility of not having to specify a specific security role mapping for each security role at deployment time. Instead, you can use the Administration Console to specify and modify role assignments at anytime.	
Additionally, because you may elect to use this element for some SIP Servlets and not others, it is not necessary to select the ignore roles and polices from DD option for the security realm. (You select this option in the On Future Redeploys: field on the General tab of the Security->Realms->myrealm control panel on the Administration Console.) Therefore, within the same security realm, deployment descriptors can be used to specify and modify security for some applications while the Administration Console can be used to specify and modify security for others.	
Note: When specifying security role names, observe the following conventions and restrictions:	
Example 6-4 shows an example of using the externally-defined	
element with the roleadmin	
role defined in Example 6-1, "Declarative Security Constraints in sip.xml". To assign existing principals and roles to the roleadmin	
role, the Administrator would use the OWLCS Administration Console.	
See the "Users, Groups, and Security Roles" for information about adding and modifying security roles using the Administration Console.	
The security-role-assignment	
described in "Assigning Roles Using security-role-assignment" can be also be used to map run-as	
roles defined in sip.xml	
. Note, however, that two additional elements in weblogic.xml	
take precedence over the security-role-assignment	
if they are present: run-as-principal-name	
and run-as-role-assignment	
.	
run-as-principal-name	
specifies an existing principle in the security realm that is used for all run-as	
role assignments. When it is defined within the servlet-descriptor	
element of weblogic.xml	
, run-as-principal-name	
takes precedence over any other role assignment elements for run-as	
roles.	
run-as-role-assignment	
specifies an existing role or principal in the security realm that is used for all run-as	
role assignments, and is defined within the weblogic-web-app	
element.	
See "weblogic.xml Deployment Descriptor Reference" for more information about individual weblogic.xml	
descriptor elements. See also "Role Assignment Precedence for SIP Servlet Roles" for a summary of the role mapping precedence for declarative and programmatic security as well as run-as	
role mapping.	
OWLCS provides several ways to map sip.xml	
roles to actual roles in the SIP Container during deployment. For declarative and programmatic security defined in sip.xml	
, the order of precedence for role assignment is:	
weblogic.xml	
assigns a sip.xml	
role in a security-role-assignment	
element, the security-role-assignment	
is used. Note: OWLCS also requires a role definition in web.xml in order to use a security-role-assignment. See "Important Requirements".	
security-role-assignment	
is available (or if the required web.xml	
role assignment is missing), implicit role assignment is used. For run-as	
role assignment, the order of precedence for role assignment is:	
weblogic.xml	
assigns a sip.xml	
run-as	
role in a run-as-principal-name	
element defined within servlet-descriptor	
, the run-as-principal-name	
assignment is used. Note: OWLCS also requires a role definition in web.xml in order to assign roles with run-as-principal-name. See "Important Requirements".	
weblogic.xml	
assigns a sip.xml	
run-as	
role in a run-as-role-assignment	
element, the run-as-role-assignment	
element is used. Note: OWLCS also requires a role definition in web.xml in order to assign roles with run-as-role-assignment. See "Important Requirements"	
weblogic.xml	
assigns a sip.xml run-as	
role in a security-role-assignment	
element, the security-role-assignment	
is used. Note: OWLCS also requires a role definition in web.xml in order to use a security-role-assignment. See "Important Requirements".	
security-role-assignment	
is available (or if the required web.xml	
role assignment is missing), implicit role assignment is used. If you want to debug security features in SIP Servlets that you develop, specify the -Dweblogic.Debug=wlss.Security startup	
option when you start OWLCS. Using this debug option causes OWLCS to display additional security-related messages in the standard output.	
The weblogic.xml	
DTD contains detailed information about each of the role mapping elements discussed in this section. See "weblogic.xml Deployment Descriptor Elements" for more information.	
This chapter describes how to use message logging features on a development system, in the following sections:	
Message logging records SIP and Diameter messages (both requests and responses) received by OWLCS. This requires that the logging level be set to at least the INFO level. You can use the message log in a development environment to check how external SIP requests and SIP responses are received. By outputting the distinguishable information of SIP dialogs such as Call-IDs from the application log, and extracting relevant SIP messages from the message log, you can also check SIP invocations from HTTP servlets and so forth.	
When you enable message logging, OWLCS records log records in the Managed Server log file associated with each engine tier server instance by default. You can optionally log the messages in a separate, dedicated log file, as described in "Configuring Log File Rotation".	
You enable and configure message logging by adding a message-debug	
element to the sipserver.xml	
configuration file. OWLCS provides two different methods of configuring the information that is logged:	
The sections that follow describe each method of configuring message logging functionality using elements in the sipserver.xml	
file. Note that you can also set these elements using the Administration Console, in the Configuration->Message Debug tab of the SipServer console extension node.	
The optional level	
element in message-debug	
specifies a predefined collection of information to log for each SIP request and response. The following levels are supported:	
terse	
—Logs only the domain	
setting, logging Servlet name, logging level	
, and whether or not the message is an incoming message. basic	
—Logs the terse	
items plus the SIP message status, reason phrase, the type of response or request, the SIP method, the From header, and the To header. full	
—Logs the basic	
items plus all SIP message headers plus the timestamp, protocol, request URI, request type, response type, content type, and raw content. Example 7-1 shows a configuration entry that specifies the full	
logging level.	
OWLCS also enables you to customize the exact content and order of each message log record. To configure a custom log record, you provide a format	
element that defines a log record pattern	
and one or more token	
s to log in each record.	
Note: If you specify a format element with a <level>full</level> level element undefined) in message-debug, OWLCS uses "full" message debugging and ignores the format entry. The format entry can be used in combination with either the "terse" or "basic" message-debug levels.	
Table 7-1 describes the nested elements used in the format	
element.	
Table 7-1 Nested format Elements	
param-name	param-value Description
---	---
Specifies the pattern used to format a message log entry. The format is defined by specifying one or more integers, bracketed by "{" and "}". Each integer represents a	
A string token that identifies a portion of the SIP message to include in a log record. Table 7-2 provides a list of available string tokens. You can define multiple	
Table 7-2 describes the string token	
values used to specify information in a message log record:	
Table 7-2 Available Tokens for Message Log Records	
Token	Description
---	---
%call_id	The Call-ID header. It is blank when forwarding.
%content	The raw content.
%content_length	The content length.
%content_type	The content type.
%cseq	The CSeq header. It is blank when forwarding.
%date	The date when the message was received. ("yyyy/MM/dd" format)
%from	The From header (all). It is blank when forwarding.
%from_addr	The address portion of the From header.
%from_tag	The tag parameter of the From header. It is blank when forwarding.
%from_uri	The SIP URI part of the From header. It is blank when forwarding.
%headers	A List of message headers stored in a 2-element array. The first element is the name of the header, while the second is a list of all values for the header.
%io	Whether the message is incoming or not.
%method	The name of the SIP method. It records the method name to invoke when forwarding.
%msg	Summary Call ID
%mtype	The type of receiving.
%protocol	The protocol used.
%reason	The response reason.
%req_uri	The request URI. This token is only available for the SIP request.
%status	The response status.
%time	The time when the message was received. ("HH:mm:ss" format)
%timestampmillis	Time stamp in milliseconds.
%to	The To header (all). It is blank when forwarding.
%to_addr	The address portion of the To header.
%to_tag	The tag parameter of the To header. It is blank when forwarding.
%to_uri	The SIP URI part of the To header. It is blank when forwarding.
See "Example Message Log Configuration and Output" for an example sipserver.xml	
file that defines a custom log record using two tokens.	
By default OWLCS uses String format (UTF-8 encoding) to log the content of SIP messages having a text or application/sdp Content-Type value. For all other Content-Type values, OWLCS attempts to log the message content using the character set specified in the charset	
parameter of the message, if one is specified. If no charset	
parameter is specified, or if the charset	
value is invalid or unsupported, OWLCS uses Base-64 encoding to encrypt the message content before logging the message.	
If you want to avoid encrypting the content of messages under these circumstances, specify a list of String-representable Content-Type values using the string-rep	
element in sipserver.xml	
. The string-rep	
element can contain one or more content-type	
elements to match. If a logged message matches one of the configured content-type	
elements, OWLCS logs the content in String format using UTF-8 encoding, regardless of whether or not a charset	
parameter is included.	
Note: You do not need to specify text/* or application/sdp content types as these are logged in String format by default.	
Example 7-2 shows a sample message-debug	
configuration that logs String content for three additional Content-Type values, in addition to text/* and application/sdp content.	
Example 7-2 Logging String Content for Additional Content Types	
Example 7-3 shows a sample message log configuration in sipserver.xml	
. Example 7-4, "Sample Message Log Output" shows sample output from the Managed Server log file.	
Example 7-3 Sample Message Log Configuration in sipserver.xml	
Example 7-4 Sample Message Log Output	
Message log entries for SIP and Diameter messages are stored in the main OWLCS log file by default. You can optionally store the messages in a dedicated log file. Using a separate file makes it easier to locate message logs, and also enables you to use OWLCS's log rotation features to better manage logged data.	
Log rotation is configured using several elements nested within the main message-debug	
element in sipserver.xml	
. As with the other XML elements described in this section, you can also configure values using the Configuration->Message Debug tab of the SIP Server Administration Console extension.	
Table 7-3 describes each element. Note that a server restart is necessary in order to initiate independent logging and log rotation.	
Table 7-3 XML Elements for Configuring Log Rotation	
Element	Description
---	---
Determines whether a separate log file is used to store message debug log messages. By default, this element is set to false and messages are logged in the general log file.	
Configures the minimum size, in kilobytes, after which the server automatically rotate log messages into another file. This value is used when the	
Defines the name of the log file for storing messages. By default, the log files are stored under	
Configures the criterion for moving older log messages to a different file. This element may have one of the following values:	
Specifies whether or not the server places a limit on the total number of log files stored after a log rotation. By default, this element is set to false.	
Configures the maximum number of log files to keep when	
Determines whether the server must rotate the log file at server startup time.	
Configures a directory in which to store rotated log files. By default, rotated log files are stored in the same directory as the active log file.	
Configures a start time for log rotation when using the	
Specifies the interval, in hours, after which the log file is rotated. This value is used when the	
Specifies the pattern to use for rending dates in log file entries. The value of this element must conform to the	
Example 7-5 shows a sample message-debug	
configuration using log rotation.	
Example 7-5 Sample Log Rotation Configuration	
This part describes developing applications using the Parlay X Web Services and Parlay X Multimedia Messaging API.	
Part IV contains the following chapters:	
This chapter describes support for the Parlay X 2.0 Presence Web services interfaces for developing applications. The Web service functions as a Presence Network Agent which can publish, subscribe, and listen for notifications on behalf of the users of the Web service. This chapter contains the following sections:	
OWLCS provides support for Part 14 of the Parlay X Presence Web Service as defined in the Open Service Access, Parlay X Presence Web Services, Part 14, Presence ETSI ES 202 391-14 specification. The OWLCS Parlay X Web service maps the Parlay X Web service to a SIP/IMS network according to the Open Service Access, Mapping of Parlay X Presence Web Services to Parlay/OSA APIs, Part 14, Presence Mapping, Subpart 2, Mapping to SIP/IMS Networks, ETSI TR 102 397-14-2 specification.	
The HTTP server that hosts the presence Web service is a Presence Network Agent or a Parlay X to SIP gateway.	
The Web services are packaged as a standard .ear file and can be deployed the same as any other Web services through Admin Console. The .ear file contains two .war files that implement the two interfaces. The Web services use the Oracle SDP Platform, Client and Presence Commons shared libraries.	
The following four mbean attributes are configurable for the Presence Supplier Web service:	
For Presence Consumer, there are three mbean attributes that can be configured.	
The presence Web services consist of three interfaces:	
Table 8-1 PresenceConsumer Interface	
Operation	Description
---	---
subscribePresence	The Web Service sends a SUBSCRIBE to the presence server.
getUserPresence	Returns the cached presence status because the status changes of the presentity are asynchronously sent to the Web services through a SIP NOTIFY. The Web services actually have the subscription, not the Web services client.
startPresenceNotification	Enables the Web service client from receiving asynchronous notifications whenever a presentity makes change to its presence status, or presence rules document.
endPresenceNotification	Disables the web service client to receive asynchronous notifications.
Table 8-2 PresenceNotification Interface	
Operation	Description
---	---
statusChanged	The asynchronous operation is called by the Web Service when an attribute for which notifications were requested changes.
statusEnd	This method is called when the duration for the notifications (identified by the correlator) is over. In case of an error or explicit call to endPresenceNotification, this method is not called.
notifySubscription	This asynchronous method notifies the watcher that the presentity handled the pending subscription.
subscriptionEnded	This asynchronous operation is called by the Web Service to notify the watcher that the subscription has terminated.
Table 8-3 PresenceSupplier Interface	
Operation	Description
---	---
publish	Maps directly to a SIP PUBLISH.
getOpenSubscriptions	Called by the presentity (supplier) to check if any watcher wants to subscribe to its presence data. No SIP message maps to this method. Returns pending subscriptions currently in the Web service server.
updateSubscriptionAuthorization	The supplier uses this method to answer any open pending subscriptions. An XCAP PUT message is sent to the XDMS server to update the presence-rule document.
getMyWatchers	Retrieves the local list of watchers from the Web service server.
getSubscribedAttributes	Retrieves the local list of subscribed attributes from the Web service server. Currently, only returns Activity.
blockSubscription	Causes the Web service server to end a watcher subscription by modifying the XCAP document on the XDMS server (that is, putting the watcher on the block list).
This section describes how to use each of the operations in the interfaces, and includes code examples.	
This is the first operation the application must call before using another operation in this interface. It serves two purposes:	
PresenceAttributeType pa = PresenceAttributeType.ACTIVITY;	
Call this operation to retrieve a subscribed presentity presence. If the person is offline, it returns ActivityNone	
and the hardstate note is written to PresenceAttribute.note	
. If it returns Activity_Other	
, the description of the activity is returned in the OtherValue	
field.	
If the Name	
field is equal to "ServiceAndDeviceNote", OtherValue	
is a combination of the service note and the device note. Note that there can be more than one "ServiceAndDeviceNote" when the presentity is logged into multiple clients.	
This asynchronous operation is called by the Web Service when an attribute for which notifications were requested changes.	
This method is called when the duration for the notifications (identified by the correlator) is over. In case of an error or explicit call to endPresenceNotification, this method is not called.	
This asynchronous method notifies the watcher that the presentity handled the pending subscription.	
This asynchronous operation is called by the Web Service to notify the watcher that the subscription has terminated.	
This is the first operation the application must call before using another operation in this interface. It serves three purposes:	
There are three attributes that are of interest when performing a PUBLISH. These attributes can be set in a PresenceAttribute structure and passed into the PUBLISH method.	
This operation retrieves a list of new requests to be on your watcher list.	
This operation allows you to place a watcher on either the block or allow list.	
This operation retrieves the list of watchers in your allow list.	
Table 8-4 and Table 8-5 describe the error codes and their associated error message.	
Table 8-4 OWLCS Parlay X Presence Custom Error Codes: PolicyException	
Error Code	Error Message
---	---
POL0001	General Policy Exception. It can be of following types: SDP20201 Watcher is on the block, polite-block or pending list. SDP20202 Subscription is pending.
POL0002	Privacy verification failed for address <address>, request is refused.
POL0003	Too many addresses specified in message part.
Table 8-5 OWLCS Parlay X Presence Custom Error Codes: ServiceException	
Error Code	Error Message
---	---
SVC0001	General Service Exception. It can be of the following types: SDP20101 Invalid result from XDMS server. SDP20102 Invalid HTTP session data. SDP20103 Invalid uri. SDP20104 Peer unavaliable. SDP20105 Unknown host. SDP20106 Service not avaliable. SDP20107 Internal error. SDP20108 User unauthenticated.
SVC0002	Invalid input value for message part.
SVC0003	Invalid input value for message part, valid values are <values>.
SVC0004	No valid addresses provided in message part.
SVC0005	Correlator <correlator> specified in message part is a duplicate
SVC0220	No subscription request from watcher <watcher> for attribute <attribute>.
SVC0221	<watcher> is not a watcher.
The Contact Management API (CMAPI) is an API for manipulating resource-lists (also known as Buddy Lists) and presence-rules documents. Through this high-level API it is possible to act on behalf of a user to add or remove buddies to the buddy list as well as allowing or blocking other users (watchers) from seeing the user's presence information. The CMAPI is capable of querying and manipulating those resources stored on the XDMS (XML Document Management Server). The CMAPI consists of a web service: XML Document Management Client (XDMC) Service and a Java client stub that is part of the oracle.sdp.client	
shared library.	
The CMAPI is part of the oracle.sdp.client shared library. Once this library is available, developers can import the package and use the API:	
The BuddyListManagerFactory itself follows the singleton pattern, and there is only one instance of a factory per XDMS/XDMC combination. That is, when creating a BuddyListManagerFactory, you must supply the XCAP root URL to the XDMS from where documents are downloaded, as well as supplying the URL to the XDM Client Service that is running on the client side; the XDMC Service URL is passed in through the BindingProvider.ENDPOINT_ADDRESS_PROPERTY property. For each such combination of XCAP root URL and XDM Client Service endpoint, there can only exist exactly one BuddyListManagerFactory instance. Therefore it is possible to create different factories pointing to the different XDMS/XDMC Service combinations.	
Example 8-1 Obtaining an instance of the BuddyListManagerFactory	
Example 8-1 shows how to obtain a reference to a factory pointing to the XCAP root of localhost:8001/	
services. Every operation performed on this factory is in the context of this particular XCAP root. Hence, when creating a BuddyListManager for a particular user, that BuddyListManager's XCAP root is the one of the factory through which it was created.	
It is important to realize that a BuddyListManager (BLM) is acting on behalf of a particular user. Therefore, if a BLM is created for user Alice, all operations performed on that particular BLM are on behalf of Alice and manipulate her documents. Example 8-2 shows how to create a BLM for Alice through the factory created in the previous section.	
Example 8-2 Obtaining a BuddyListManager for the user Alice	
Example 8-2 shows how to create a BLM for the user Alice with SIP address of sip:alice@example.com. If manipulation of the buddy list and presence rules document of another user is required, then a separate BLM must be created with the appropriate SIP address.	
Adding a buddy to a buddy list is done by first creating a buddy, setting the information needed on that buddy and then using the BLM to add it to the buddy list. Example 8-3 shows how to use the BLM representing Alice to add Bob as a new buddy of Alice and then getting the updated list back.	
Example 8-3 Adding a New Buddy to the Buddy List of Alice	
Example 8-3 shows how to create a new Buddy, Bob, and how that buddy is added to Alice's buddy list by using the BLM representing Alice. To add more information about the user Bob, such as the address and other information, access Bob's Vcard information and then set the appropriate properties.	
Note: Since the methodgetVCard() is actually returning a clone of the VCard, the method setVCard() must be called on the buddy again in order for the information to be updated.	
Removing a buddy is very similar to adding a buddy. Use the method removeBuddy	
and pass in the buddy that is to be removed. If there are many buddies to remove, use the removeBuddies	
method and pass in the list of buddies to remove. Example 8-4 shows how Bob is removed from Alice's buddy list.	
To allow a watcher to view the presence status, use the method allowWatcher	
(String watcher)	
to add the watcher to the allow list. Use blockWatcher	
(String watcher)	
to block someone from viewing your presence status.	
Example 8-5 Allowing or blocking watchers	
BuddyListException	
is the base exception, and if the program is not set to register the specific exception, then it can simply catch it.	
XDMException	
is the base exception for all exceptions concerning communication with the remote XDMS. XDMException	
signals that an error occurred when communicating with the XDMS (for example: a connection problem, wrong path to the XCAP root, or something else).	
DocumentConflictException	
is a subclass to the XDMException; it signals that a mid-air conflict was detected that could not be resolved. This can occur when multiple clients access the same document on the XDMS. BuddyListManager	
attempts to resolve such a clash, but if it cannot, it throws an exception.	
This chapter describes support for the Parlay X 2.1 Multimedia Messaging Web Services interfaces for developing applications. The Web service functions as a Messaging Agent which can send, receive, and listen to notifies on behalf of the users of the Web service. This chapter contains the following sections:	
The following sections describe the semantics of each of the supported operations along with implementation-specific details for the Parlay X Gateway.	
The product support the interfaces defined in the Parlay X 2.1 Multimedia Messaging Web Services specification.	
The Web services are packaged as a standard .ear file and can be deployed the same as any other Web services through Admin Console. The .ear file contains three .war files that implement the three interfaces. The Web services use the Oracle SDP Platform, Client and Presence Commons shared libraries.	
There are four mbean attributes that are configurable for the Messaging Web service:	
The messaging Web services consist of four interfaces:	
Table 9-1 SendMessage Interface	
Operation	Description
---	---
sendMessage	Sends a SIP MESSAGE to designated user(s). Returns an outgoing message ID.
getMessageDeliveryStatus	Returns a set of delivery statuses for each recipient of an outgoing message sent through sendMessage.
Table 9-2 ReceiveMessage Interface	
Operation	Description
---	---
getMessage	Receives an incoming message.
getMessageURIs	Not implemented.
getReceivedMessages	Returns a set of incoming messages for a given user.
This section describes how to use each of the operations in the interfaces, and includes code examples. The following requirements apply:	
This operation sends a SIP MESSAGE to designated user(s). Returns an outgoing message ID.	
Table 9-5 Interface: SendMessage, Operation: sendMessage	
Argument	Type
---	---
addresses	List<StringSipURI>
senderAddress	StringSipURI
subject	String
priority	MessagePriority
charging	ChargingInformation
receiptRequest	SimpleReference
Return Value	Type
messageIdentifier	String
This operation returns a set of delivery statuses for each recipient of an outgoing message sent via sendMessage. Call this operation with the ID returned by sendMessage.	
Table 9-6 Interface SendMessage, Operation: getMessageDeliveryStatus	
Argument	Type
---	---
messageIdentifier	String
Return Value	Type
status	List<DeliveryInformation>
This operation starts message notification at a given endpoint for a user. This means that when messages are received for this user, the client callback notifyMessageReception is invoked at the given MessageNotification endpoint. This also means that the web service stores received messages for this user, and the received messages can be obtained through the ReceiveMessage interface.	
Table 9-7 Interface MessageNotificationManager, Operation: startMessageNotification	
Argument	Type
---	---
reference	SimpleReference
messageServiceActivationNumber	StringSipURI
criteria	String
This operation stops message notification at an endpoint for a user. If a user no longer has notification endpoints, all received messages for that user are no longer stored.	
Table 9-8 Interface MessageNotificationManager, Operation: stopMessageNotification	
Argument	Type
---	---
correlator	String
This operation returns a set of incoming messages for a given user. Messages may only be received after notification has been enabled by invoking the startMessageNotifcation operation in the MessageNotificationManager interface.	
Table 9-9 Interface ReceiveMessage, Operation: getReceivedMessages	
Argument	Type
---	---
registrationIdentifier	StringSipURI
priority	MessagePriority
Return Value	Type
references	List<MessageReference>
This operation receives an incoming message as an attachment. Messages may only be received after notification has been enabled by invoking the startMessageNotifcation operation in the MessageNotificationManager interface.	
Table 9-10 Oracle WebLogic Communication ServicesInterface: ReceiveMessage, Operation: getMessage	
Argument	Type
---	---
messageIdentifier	String
Return Value	Type
n/a	n/a
This part describes using call control functionality.	
Part V contains the following chapter:	
This chapter describes how to perform third party call handling using a multimedia messaging API, and provides samples applications. It contains the following section:	
The Third Party Call Parlay X 2.1 communication services implement the Parlay X 2.1 Third Party Call interface, (Standards reference: ETSI ES 202 391-2 V1.2.1 (2006-12), Open Service Access (OSA); Parlay X Web Services; Part 2: Third Party Call (Parlay X 2)).	
Using a Third Party Call Parlay X 2.1 communication service, an application can:	
In the Parlay X 2.1 Third Party Call communication services model, a call has two distinct stages:	
There are two parties involved in Third Party Call calls: the A-party (the caller) and the B-party (the callee). When a call is set up using a Third Party Call communication service, OWLCS attempts to set up a call leg to the A-party. When the caller goes off-hook (“answers”), OWLCS attempts to set up a call leg to the B-party. When the callee goes off-hook, the two call legs are connected using the underlying network. This ends the call setup-phase.	
The application can cancel the call during this phase.	
While the call is underway, the audio channel that connects the caller and the callee is completely managed by the underlying network. During this phase of the call, the application can only query as to the status of the call. A call can be terminated in two ways, either using the application-facing interface, or having the caller or callee hang up.	
Requests using a Parlay X 2.1 Third Party Call communication service flow only in one direction, from the application to the network. Therefore this communication service supports only application-initiated (or mobile-terminated) functionality.	
Note: Third Party Call communication services manage only the signalling, or controlling, aspect of a call. The media, or audio, channel is managed by the underlying network. Only parties residing on the same network can be controlled, unless:	
This section contains a description of the configuration attributes and operations available for the Parlay X 2.1 Third Party Call.	
Follow these configuration steps:	
Note: There are not any management actions.	
Table 10-1 lists the properties for Parlay X 2.1 Third Party Call	
Table 10-1 Properties for Parlay X 2.1 Third Party Call	
Property	Description
---	---
MBean	Domain=oracle.sdp Name=thirdpartycall InstanceName=ThirdPartyCall Type=oracle.sdp.thirdpartycall.management.TPCMBean
Supported Address Scheme	sip
Service type	ThirdPartyCall
Exposes to the service communication layer a JAVA representation of:	Parlay X2.1 Part 2: Third Party Call
Interfaces with the network nodes using:	SIP: Session Initiation Protocol, RFC 3261
Deployment artifacts:	thirdpartycallwswar-11.1.1.war, thirdpartycallmanagerwar-11.1.1.war, thirdpartycallutil-11.1.1.jar, thirdpartycallmanager-11.1.1.jar, parlayx-11.1.1.jar, packaged in thirdpartycallear-11.1.1.ear
Table 10-2 contains a list of attributes for configuration and maintenance	
Table 10-2 Configuration and Maintenance Attributes	
Attribute	Scope
---	---
ThirdPartyCall ControllerURI	Cluster
ISCRouteURI	Cluster
MaximumCall Duration	Cluster
StatusRetentionTime	Cluster
PAssertedIdentity URI	Cluster
This section describes the standards compliance for the communication services for Parlay X 2.1 Third Party call.	
The Parlay X 2.1 interface complies to ETSI ES 202 391-2 V1.2.1 Open Service Access (OSA); Parlay X Web Services; Part 2: Third Party Call (Parlay X 2). For more information, see the relevant specification at http://parlay.org/en/specifications/pxws.asp	
Table 10-3 Statement of Compliance, Parlay X 2.1 Third Party Call	
Method	Compliant Yes/No
---	---
Interface: ThirdPartyCall	
MakeCall	Y
GetCallInformation	Y
EndCall	Y
CancelCall	Y
The SIP plug-in for Parlay X 2.1 Third Party Call is an integration plug-in that utilizes the Oracle WebLogic SIP Server to connect to a SIP/IMS network. The plug-in connects to a SIP servlet executing in WebLogic SIP Server. The SIP Servlet uses the SIP API provided by the WebLogic SIP server, which in its turn converts the API calls to SIP messages.	
The SIP servlet acts as a Back-to-Back User Agent for all calls.	
The SIP servlet uses the WebLogic SIP server, which conforms to RFC 3261 (http://www.ietf.org/rfc/rfc3261.txt).	
The implementation of the SIP based third party call is in compliance with RFC 3725 - Best Current Practices for Third Party Call Control (3pcc) in the Session Initiation Protocol (SIP) Flow I (http://www.ietf.org/rfc/rfc3725.txt).	
Table 10-4 Statement of Compliance, SIP for Parlay X 2.1 Third Party Call	
Message/Response	Compliant Yes/No
---	---
REGISTER	-
INVITE	Y
ACK	Y
CANCEL	Y
BYE	Y
OPTIONS	-
100 Trying	Y
180 Ringing	Y
181 Call Is Being Forwarded	Y
182 Queued	Y
183 Session Progress	Y
200 OK	Y
300 Multiple Choices	Y
301 Moved Permanently	Y
302 Moved Temporarily	Y
305 Use Proxy	Y
380 Alternate Service	Y
400 Bad Request	Y
401 Unauthorized	Y
402 Payment Required	Y
403 Forbidden	Y
404 Not Found	Y
405 Method Not Allowed	Y
406 Not Acceptable	Y
407 Proxy Authentication Required	Y
408 Request Timeout	Y
410 Gone	Y
413 Request Entity Too Large	Y
414 Request URI Too Long	Y
415 Unsupported Media Type	Y
416 Unsupported URI Scheme	Y
420 Bad Extension	Y
421 Extension Required	Y
423 Interval Too Brief	Y
480 Temporarily Unavailable	Y
481 Call/Transaction Does Not Exist	Y
482 Loop Detected	Y
483 Too Many Hops	Y
484 Address Incomplete	Y
485 Ambiguous	Y
486 Busy Here	Y
487 Request Terminated	Y
488 Not Acceptable Here	Y/N
491 Request Pending	Y
493 Undecipherable	Y
500 Server Internal Error	Y
501 Not Implemented	Y
502 Bad Gateway	Y
503 Service Unavailable	Y
Server Time-out	Y
505 Version Not Supported	Y
513 Message Too Long	Y
600 Busy Everywhere	Y
603 Decline	Y
604 Does Not Exist Anywhere	Y
606 Not Acceptable	Y
This part describes developing applications using Diameter. Diameter is a peer-to-peer protocol that involves delivering attribute-value pairs (AVPs). A Diameter message includes a header and one or more AVPs. The collection of AVPs in each message is determined by the type of Diameter application, and the Diameter protocol also allows for extension by adding new commands and AVPs. Diameter enables multiple peers to negotiate their capabilities with one another, and defines rules for session handling and accounting functions.	
OWLCS includes an implementation of the base Diameter protocol that supports the core functionality and accounting features described in RFC 3588 (http://www.ietf.org/rfc/rfc3588.txt	
). OWLCS uses the base Diameter functionality to implement multiple Diameter applications, including the Sh, Rf, and Ro applications described later in this document.	
You can also use the base Diameter protocol to implement additional client and server-side Diameter applications. The base Diameter API provides a simple, Servlet-like programming model that enables you to combine Diameter functionality with SIP or HTTP functionality in a converged application.	
Part VI contains the following chapters:	
The following chapter provides an overview of using the OWLCS Diameter Base protocol implementation to create your own Diameter applications, in the following sections:	
The sections that follow provide an overview of the base Diameter protocol packages, classes, and programming model used for developing client and server-side Diameter applications. See also the following sections for information about using the provided Diameter protocol applications in your SIP Servlets:	
All classes in the Diameter base protocol API reside in the root com.bea.wcp.diameter	
package. Table 11-1 describes the key classes, interfaces, and exceptions in this package.	
Table 11-1 Key Elements of the Diameter Base Protocol API	
Category	Element
Diameter Node	Node
Diameter Applications	Application, ClientApplication
ApplicationId	A class that represents the Diameter application ID. This ID is used by the Diameter protocol for routing messages to the appropriate application. The
Session	A class that represents a Diameter session. Applications that perform session-based handling must extend this class to provide application-specific behavior for managing requests and answering messages.
Message Processing	Message, Request, Answer
Command	A class that represents a Diameter command code.
RAR, RAA	These classes extend the
ResultCode	A class that represents a Diameter result code, and provides constant values for the base Diameter protocol result codes.
AVP Handling	Attribute
Avp, AvpList	Classes that represent one or more attribute-value pairs in a message. AvpList is also used to represent AVPs contained in a grouped AVP.
Type	A class that defines the supported AVP datatypes.
Error Handling	DiameterException
MessageException	An exception that is raised when an invalid Diameter message is discovered.
AvpException	An exception that is raised when an invalid AVP is discovered.
Supporting Interfaces	Enumerated
SessionListener	An interface that applications can implement to subscribe to messages delivered to a Diameter session.
MessageFactory	An interface that allows applications to override the default message decoder for received messages, and create new types of The default decoding process begins by decoding the message header from the message bytes using an instance of
In addition to these base Diameter classes, accounting-related classes are stored in the com.bea.wcp.diameter.accounting	
package, and credit-control-related classes are stored in com.bea.wcp.diameter.cc	
. See Chapter 14, "Using the Diameter Rf Interface API for Offline Charging", and Chapter 15, "Using the Diameter Ro Interface API for Online Charging" for more information about classes in these packages.	
The following jar files are part of the Diameter API that we expose. To compile against this API, access this file from the following locations:	
The wlssdiameter.jar	
file is located at the following location: MIDDLEWARE_HOME/server/lib/wlss/	
.	
A diameter node is represented by the com.bea.wcp.diameter.Node	
class. A Diameter node may host one or more Diameter applications, as configured in the diameter.xml	
file. In order to access a Diameter application, a deployed application (such as a SIP Servlet) must obtain the diameter Node instance and request the application. Example 11-1 shows the sample code used to access the Rf application.	
Example 11-1 Accessing a Diameter Node and Application	
Diameter Nodes are generally configured and started as part of a OWLCS instance. However, for development and testing purposes, you can also run a Diameter node as a standalone process. To do so:	
diameter.xml	
configuration file for the Node you want to start: diameter.xml	
configuration file to use: All Diameter applications must extend either the base Application	
class or, for client applications, the ClientApplication	
class. The model for creating a Diameter application is similar to that for implementing Servlets in the following ways:	
init()	
method for initialization tasks. diameter.xml	
are made available to the application. Diameter applications must also implement the getId()	
method to return the proper application ID. This ID is used to deliver Diameter messages to the correct application.	
Applications can optionally implement rcvRequest()	
or rcvAnswer()	
as needed. By default, rcvRequest()	
answers with UNABLE_TO_COMPLY, and rcvRequest()	
drops the Diameter message.	
Example 11-2 shows a simple Diameter client application that does not use sessions.	
Example 11-2 Simple Diameter Application	
Applications that perform session-based handling must extend the base Session class to provide application-specific behavior for managing requests and answering messages. If you extend the base Session class, you must implement either rcvRequest()	
or rcvAnswer()	
, and may implement both methods.	
The base Application class is used to generate new Session objects. After a session is created, all session-related messages are delivered directly to the session object. The OWLCS container automatically generates the session ID and encodes the ID in each message. Session attributes are supported much in the same fashion as attributes in SipApplicationSession	
.	
Example 11-3 shows a simple Diameter session implementation.	
Example 11-3 Simple Diameter Session	
To use the sample session class, the TestApplication	
in Example 11-2 would need to add a factory method:	
TestSession	
could then be used to create new requests as follows:	
The answer is delivered directly to the Session object.	
The base Message	
class is used for both Request and Answer message types. A Message always includes an application ID, and optionally includes a session ID. By default, messages are handled in the following manner:	
rcvMessage()	
method is called. rcvMessage()	
method is called The message type is determined from the Diameter command code. Certain special message types, such as RAR, RAA, ACR, ACA, CCR, and CCA, have getter and setter methods in the Message	
object for convenience.	
Either a Session	
or Application	
can originate and receive request messages. Requests are generated using the createRequest()	
method. You must supply a command code for the new request message. For routing purposes, the destination host or destination realm AVPs are also generally set by the originating session or application.	
Received answers can be obtained using Request.getAnswer()	
. After receiving an answer, you can use getSession()	
to obtain the relevant session ID and getResultCode()	
to determine the result. You can also use Answer.getRequest()	
to obtain the original request message.	
Requests can be sent asynchronously using the send()	
method, or synchronously using the blocking sendAndWait()	
method. Answers for requests that were sent asynchronously are delivered to the originating session or application. You can specify a request timeout value when sending the message, or can use the global request-timeout	
configuration element in diameter.xml	
. An UNABLE_TO_DELIVER result code is generated if the timeout value is reached before an answer is delivered. getResultCode()	
on the resulting Answer returns the result code.	
New answer messages are generated from the Request	
object, using createAnswer()	
. All generated answers should specify a ResultCode and an optional Error-Message AVP value. The ResultCode	
class contains pre-defined result codes that can be used.	
Answers are delivered using the send()	
method, which is always asynchronous (non-blocking).	
A Diameter command code determines the message type. For instance, when sending a request message, you must supply a command code.	
The Command	
class represents pre-defined commands codes for the Diameter base protocol, and can be used to create new command codes. Command codes share a common name space based on the code itself.	
The define()	
method enables you to define codes, as in:	
The define()	
method registers a new Command, or returns a previous command definition if one was already defined. Commands can be compared using the reference equality operator (==).	
Attribute Value Pair (AVP) is a method of encapsulating information relevant to the Diameter message. AVPs are used by the Diameter base protocol, the Diameter application, or a higher-level application that employs Diameter.	
The Avp	
class represents a Diameter attribute-value pair. You can create new AVPs with an attribute value in the following way:	
You can also specify the attribute name directly, as in:	
The value that you specify must be valid for the specified attribute type.	
To create a grouped AVP, use the AvpList	
class, as in:	
You can create new attributes to extend your Diameter application. The Attribute class represents an AVP attribute, and includes the AVP code, name, flags, optional vendor ID, and type of attribute. The class also maintains a registry of defined attributes. All attributes share a common namespace based on the attribute code and vendor ID.	
The define()	
method enables you to define new attributes, as in:	
Table 11-1 lists the available attribute types and describes how they are mapped to Java types.	
The define()	
method registers a new attribute, or returns a previous definition if one was already defined. Attributes can be compared using the reference equality operator (==).	
Table 11-2 Attribute Types	
Diameter Type	Type Constant
---	---
Integer32	Type.INTEGER32
Integer64	Type.INTEGER64
Float32	Type.FLOAT32
OctetString	Type.BYTES
UTF8String	Type.STRING
Address	Type.ADDRESS
Grouped	Type.GROUPED
The Diameter API enables you to create converged applications that utilize both SIP and Diameter functionality. A SIP Servlet can access an available Diameter application through the Diameter Node, as shown in Example 11-4.	
Example 11-4 Accessing the Rf Application from a SIP Servlet	
SIP uses Call-id (the SIP-Call-ID header) to identify a particular call session between two users. OWLCS automatically links a Diameter session to the currently-active call state by encoding the SIP Call-id into the Diameter session ID. When a Diameter message is received, the container automatically retrieves the associated call state and locates the Diameter session. A Diameter session is serializable, so you can store the session as an attribute in a the SipApplicationSession	
object, or vice versa.	
Converged applications can use the Diameter SessionListener	
interface to receive notification when a Diameter message is received by the session. The SessionListener	
interface defines a single method, rcvMessage()	
. Example 11-5 shows an example of how to implement the method.	
Example 11-5 Implementing SessionListener	
Note: The SessionListener implementation must be serializable for distributed applications.	
The following chapter describes how to use the Diameter Sh profile service and the Profile Service API, based on the OWLCS Diameter protocol implementation, in your own applications, and contains the following sections:	
The IMS specification defines the Sh profile service as the method of communication between the Application Server (AS) function and the Home Subscriber Server (HSS), or between multiple IMS Application Servers. The AS uses the Sh profile service in two basic ways:	
The user data available to an AS may be defined by a service running on the AS (repository data), or it may be a subset of the user's IMS profile data hosted on the HSS. The Sh interface specification, 3GPP TS 29.328, defines the IMS profile data that can be queried and updated through Sh. All user data accessible through the Sh profile service is presented as an XML document with the schema defined in 3GPP TS 29.328.	
The IMS Sh profile service is implemented as a provider to the base Diameter protocol support in OWLCS. The provider transparently generates and responds to the Diameter command codes defined in the Sh application specification. A higher-level Profile Service API enables SIP Servlets to manage user profile data as an XML document using XML Document Object Model (DOM). Subscriptions and notifications for changed profile data are managed by implementing a profile listener interface in a SIP Servlet.	
Figure 12-1 Profile Service API and Sh Provider Implementation	
OWLCS includes a provider for the Diameter Sh profile service. Providers to support additional interfaces defined in the IMS specification may be provided in future releases. Applications using the profile service API are able to use additional providers as they are made available.	
See "Configuring Diameter Sh Client Nodes and Relay Agents" in Configuring Network Resources for full instructions on setting up Diameter support.	
OWLCS provides a simple profile service API that SIP Servlets can use to query or modify subscriber profile data, or to manage subscriptions for receiving notifications about changed profile data. Using the API, a SIP Servlet explicitly requests user profile documents through the Sh provider application. The provider returns an XML document, and the Servlet can then use standard DOM techniques to read or modify profile data in the local document. Updates to the local document are applied to the HSS after a "put" operation.	
The document selector key identifies the XML document to be retrieved by a Diameter interface, and uses the format protocol://uri/reference_type[/access_key]	
. Servlets that manage profile data can explicitly obtain an Sh XML document from a Profile Service using a document selector key, and then work with the document using DOM.	
The protocol	
portion of the selector identifies the Diameter interface provider to use for retrieving the document. Sh XML documents require the sh://	
protocol designation.	
With Sh document selectors, the next element, uri	
, generally corresponds to the User-Identity or Public-Identity of the user whose profile data is being retrieved. If you are requesting an Sh data reference of type LocationInformation or UserState, the URI value can be the User-Identity or MSISDN for the user.	
Table 12-2 summarizes the possible URI values that can be supplied depending on the Sh data reference you are requesting. 3GPP TS 29.328 describes the possible data references and associated reference types in more detail.	
Table 12-1 Possible URI Values for Sh Data References	
Sh Data Reference Number	Data Reference Type
---	---
0	RepositoryData
10	IMSPublicIdentity
11	IMSUserState
12	S-CSCFName
13	InitialFilterCriteria
14	LocationInformation
15	UserState
17	Charging information
17	MSISDN
The final element of the document selector key, reference_type	
, specifies the data reference type being requested. For some data reference requests, only the uri	
and reference_type	
are required. Other Sh requests use an access key, which requires a third element in the document selector key corresponding to the value of the Attribute-Value Pair (AVP) defined in the document selector key.	
Table 12-2 summarizes the required document selector key elements for each type of Sh data reference request.	
Table 12-2 Summary of Document Selector Elements for Sh Data Reference Requests	
Data Reference Type	Required Document Selector Elements
---	---
RepositoryData	sh://uri/reference_type/Service-Indication
IMSPublicIdentity	sh://uri/reference_type/[Identity-Set] where Identity-Set is one of:
sh://sip:user@oracle.com/IMSPublicIdentity/Registered-Identities	
IMSUserState	sh://uri/reference_type
S-CSCFName	sh://uri/reference_type
InitialFilterCriteria	sh://uri/reference_type/Server-Name
LocationInformation	sh://uri/reference_type/(CS-Domain
UserState	sh://uri/reference_type/(CS-Domain
Charging information	sh://uri/reference_type
MSISDN	sh://uri/reference_type
OWLCS provides a helper class, com.bea.wcp.profile.ProfileService	
, to help you easily retrieve a profile data document. The getDocument()	
method takes a constructed document key, and returns a read-only org.w3c.dom.Document	
object. To modify the document, you make and edit a copy, then send the modified document and key as arguments to the putDocument()	
method.	
Note: If Diameter Sh client node services are not available on the OWLCS instance when getDocument() the profile service throws a "No registered provider for protocol" exception.	
OWLCS caches the documents returned from the profile service for the duration of the service method invocation (for example, when a doRequest()	
method is invoked). If the service method requests the same profile document multiple times, the subsequent requests are served from the cache rather than by re-querying the HSS.	
Example 12-1 shows a sample SIP Servlet that obtains and modifies profile data.	
Example 12-1 Sample Servlet Using ProfileService to Retrieve and Write User Profile Data	
The IMS Sh interface enables applications to receive automatic notifications when a subscriber's profile data changes. OWLCS provides an easy-to-use API for managing profile data subscriptions. A SIP Servlet registers to receive notifications by implementing the com.bea.wcp.profile.ProfileListener	
interface, which consists of a single update	
method that is automatically invoked when a change occurs to profile to which the Servlet is subscribed. Notifications are not sent if that same Servlet modifies the profile information (for example, if a user modifies their own profile data).	
Note: In a replicated environment, Diameter relay nodes always attempt to push notifications directly to the engine tier server that subscribed for profile updates. If that engine tier server is unavailable, another server in the engine tier cluster is chosen to receive the notification. This model succeeds because session information is stored in the SIP data tier, rather than the engine tier.	
In order to receive a call back for subscribed profile data, a SIP Servlet must do the following:	
com.bea.wcp.profile.ProfileListener	
. subscribe	
method in the com.bea.wcp.profile.ProfileService	
helper class. listener	
element in sip.xml	
. "Implementing ProfileListener" describes how to implement ProfileListener	
and use the susbscribe	
method. In addition to having a valid listener implementation, the Servlet must declare itself as a listener in the sip.xml	
deployment descriptor file. For example, it must add a listener	
element declaration similar to:	
Actual subscriptions are managed using the subscribe	
method of the com.bea.wcp.profile.ProfileService	
helper class. The subscribe method requires that you supply the current SipApplicationSession	
and the key for the profile data document you want to monitor. See "Creating a Document Selector Key for Application-Managed Profile Data".	
Applications can cancel subscriptions by calling ProfileSubscription.cancel()	
. Also, pending subscriptions for an application are automatically cancelled if the application session is terminated.	
Example 12-2 shows sample code for a Servlet that implements the ProfileListener	
interface.	
Example 12-2 Sample Servlet Implementing ProfileListener Interface	
This chapter describes how to use the Profile Service API to develop custom profile rovider, in the following sections:	
OWLCS includes a profile service API, com.bea.wcp.profile.API	
, that may have multiple profile service provider implementations. A profile provider performs the work of accessing XML documents from a data repository using a defined protocol. Deployed SIP Servlets and other applications need not understand the underlying protocol or the data repository in which the document is stored; they simply reference profile data using a custom URL, and OWLCS delegates the request processing to the correct profile provider.	
The provider performs the necessary protocol operations for manipulating the document. All providers work with documents in XML DOM format, so client code can work with many different types of profile data in a common way.	
Figure 13-1 Profile Service API and Provider Implementation	
Each profile provider implemented using the API may enable the following operations against profile data:	
Clients that want to use a profile provider obtain a profile service instance through a Servlet context attribute. They then construct an appropriate URL and use that URL with one of the available Profile Service API methods to work with profile data. The contents of the URL, combined with the configuration of profile providers, determines the provider implementation that OWLCS to process the client's requests.	
The sections that follow describe how to implement the profile service API interfaces in a custom profile provider.	
A custom profile providers is implemented as a shared Java EE library (typically a simple JAR file) deployed to the engine tier cluster. The provider JAR file must include, at minimum, a class that implements com.bea.wcp.profile.ProfileServiceSpi	
. This interface inherits methods from com.bea.wcp.profile.ProfileService	
and defines new methods that are called during provider registration and unregistration.	
In addition to the provider implementation, you must implement the com.bea.wcp.profile.ProfileSubscription	
interface if your provider supports subscription-based notification of profile data updates. A ProfileSubscription	
is returned to the client subscriber when the profile document is modified.	
The Oracle Fusion Middleware WebLogic Communication Services API Reference describes each method of the profile service API in detail. Also keep in mind the following notes and best practices when implementing the profile service interfaces:	
putDocument	
, getDocument	
, and deleteDocument	
methods each have two distinct method signatures. The basic version of a method passes only the document selector on which to operate. The alternate method signature also passes the address of the sender of the request for protocols that require explicit information about the requestor. subscribe	
method has multiple method signatures to allow passing the sender's address, as well as for supporting time-based subscriptions. com.bea.wcp.profile.ProfileServiceSpi	
, include a "no-op" method implementation that throws the OperationNotSupportedException. com.bea.wcp.profile.ProfileServiceSpi	
defines provider methods that are called during registration and unregistration. Providers can create connections to data stores or perform any required initializing in the register	
method. The register	
method also supplies a ProviderBean	
instance, which includes any context parameters configured in the provider's configuration elements in profile.xml	
.	
Providers must release any backing store connections, and clean up any state that they maintain, in the unregister	
method.	
Providers must be deployed as a shared Java EE library, because all other deployed applications must be able to access the implementation.	
See "Creating Shared Java EE Libraries and Optional Packages". For most profile providers, you can simply package the implementation classes in a JAR file. Then register the library with OWLCS using the instructions in See "Deploying Shared Java EE Libraries and Dependent Applications".	
After installing the provider as a library, you must also identify the provider class as a provider in a profile.xml	
file. The name	
element uniquely identifies a provider configuration, and the class	
element identifies the Java class that implements the profile service API interfaces. One or more context parameters can also be defined for the provider, which are delivered to the implementation class in the register	
method. For example, context parameters might be used to identify backing stores to use for retrieving profile data.	
Example 13-1 shows a sample configuration for a provider that accesses data using XCAP.	
Example 13-1 Provider Mapping in profile.xml	
When an application makes a request using the Profile Service API, OWLCS must find a corresponding provider to process the request. By default, OWLCS maps the prefix of the requested URL to a provider name	
element defined in profile.xml	
. For example, with the basic configuration shown in Example 13-1, OWLCS would map Profile Service API requests beginning with xcap://	
to the provider class com.mycompany.profile.XcapProfileProvider.	
Alternately, you can define a mapping	
entry in profile.xml	
that lists the prefixes corresponding to each named provider. Example 13-2 shows a mapping with two alternate prefixes.	
Example 13-2 Mapping a Provider to Multiple Prefixes	
If the explicit mapping capabilities of profile.xml	
are insufficient, you can create a custom mapping class that implements the com.bea.wcp.profile.ProfileRouter interface, and then identify that class in the map-by-router	
element. Example 13-3 shows an example configuration.	
You can optionally use the Administration Console to create or modify a profile.xml	
file. To do so, you must enable the profile provider console extension in the config.xml	
file for your domain.	
Example 13-4 Enabling the Profile Service Resource in config.xml	
The profile provider extension appears under the SipServer node in the left pane of the console, and enables you to configure new provider classes and mapping behavior.	
The following chapter describes how to use the Diameter Rf interface API, based on the OWLCS Diameter protocol implementation, in your own applications, and contains the following sections:	
Offline charging is used for network services that are paid for periodically. For example, a user may have a subscription for voice calls that is paid monthly. The Rf protocol allows an IMS Charging Trigger Function (CTF) to issue offline charging events to a Charging Data Function (CDF). The charging events can either be one-time events or may be session-based.	
OWLCS provides a Diameter Offline Charging Application that can be used by deployed applications to generate charging events based on the Rf protocol. The offline charging application uses the base Diameter protocol implementation, and allows any application deployed on OWLCS to act as CTF to a configured CDF.	
For basic information about offline charging, see RFC 3588: Diameter Base Protocol (http://www.ietf.org/rfc/rfc3588.txt	
). For more information about the Rf protocol, see 3GPP TS 32.299 (http://www.3gpp.org/ftp/Specs/html-info/32299.htm	
).	
For both event and session based charging, the CTF implements the accounting state machine described in RFC 3588. The server (CDF) implements the accounting state machine "SERVER, STATELESS ACCOUNTING" as specified in RFC 3588.	
The reporting of offline charging events to the CDF is managed through the Diameter Accounting Request (ACR) message. Rf supports the ACR event types described in Table 14-1.	
Table 14-1 Rf ACR Event Types	
Request	Description
---	---
START	Starts an accounting session.
INTERIM	Updates an accounting session.
STOP	Stops an accounting session
EVENT	Indicates a one-time accounting event.
The START, INTERIM, and STOP event types are used for session-based accounting. The EVENT type is used for event based accounting, or to indicate a failed attempt to establish a session.	
Event-based charging events are reported through the ACR EVENT message. Example 14-1 shows the basic message flow.	
Session-based charging uses the ACR START, INTERIM, and STOP requests to report usage to the CDF. During a session, the CTF may report multiple ACR INTERIM requests depending on the session lifecycle. Example 14-2 shows the basic message flow	
Example 14-2 Message Flow for Session-Based Charging	
Here, ACA START is sent a receipt of a service request by OWLCS. ACA INTERIM is typically sent upon expiration of the AII timer. ACA STOP is issued upon request for service termination by OWLCS.	
The Rf	
API is packaged as a Diameter application similar to the Sh application used for managing profile data. The Rf Diameter API can be configured and enabled by editing the Diameter configuration file located in DOMAIN_ROOT/config/custom/diameter.xml	
, or by using the Diameter console extension. Additionally, configuration of both the CDF realm and host can be specified using the cdf.realm and cdf.host initialization parameters to the Diameter Rf application.	
Example 14-3 shows a sample excerpt from diameter.xml	
that enables Rf with a CDF realm of "oracle.com" and host "cdf.oracle.com:"	
Example 14-3 Sample Rf Application Configuration (diameter.xml)	
Because the RfApplication	
uses the Diameter base accounting messages, its Diameter application id is 3 and there is no vendor ID.	
OWLCS provides an offline charging API to enable any deployed application to act as a CTF and issue offline charging events. This API supports both event-based and session-based charging events.	
The classes in package com.bea.wcp.diameter.accounting	
provide general support for Diameter accounting messages and sessions. Table 14-2 summarizes the classes.	
Table 14-2 Diameter Accounting Classes	
Class	Description
---	---
ACR	An Accounting-Request message.
ACA	An Accounting-Answer message.
ClientSession	A Client-based accounting session.
RecordType	Accounting record type constants.
In addition, classes in package com.bea.wcp.diameter.charging	
support the Rf application specifically. Table 14-3 summarizes the classes.	
Table 14-3 Diameter Rf Application Support Classes	
Charging	Common definitions for 3GPP charging functions
---	---
RfApplication	Offline charging application
RfSession	Offline charging session
The RfApplication	
class can be used to directly send ACR requests for event-based charging. The application also has the option of directly modifying the ACR request before it is sent out. This is necessary in order for an application to add any custom AVPs to the request.	
In particular, an application must set the Service-Information AVP it carries the service-specific parameters for the CDF. The Service-Information AVP of the ACR request is used to send the application-specific charging service information from the CTF (WLSS) to the CDF (Charging Server). This is a grouped AVP whose value depends on the application and its charging function. The Offline Charging API allows the application to set this information on the request before it is sent out.	
For session-based accounting, the RfApplication	
class can also be used to create new accounting sessions for generating session-based charging events. Each accounting session is represented by an instance of RfSession	
, which encapsulates the accounting state machine for the session.	
If the Rf application is deployed, then applications deployed on OWLCS can obtain an instance of the application from the Diameter node (com.bea.wcp.diameter.Node	
class). Example 14-4 shows the sample Servlet code used to obtain the Diameter Node	
and access the Rf application.	
Example 14-4 Accessing the Rf Application	
Applications can safely use a single instance of RfApplication	
to issue offline charging requests concurrently, in multiple threads. Each instance of RfSession	
actually holds the per-session state unique to each call.	
For session-based charging requests, an application first uses the RfApplication	
to create an instance of RfSession	
. The application can then use the session object to create one or more charging requests.	
The first charging request must be an ACR START request, followed by zero or more ACR INTERIM requests. The session ends with an ACR STOP request. Upon receipt of the corresponding ACA STOP message, the RfApplication	
automatically terminates the RfSession	
.	
Example 14-5 shows the sample code used to start a new session-based accounting session.	
Example 14-5 Starting a Session-Based Account Session	
In Example 14-5, the RfSession	
is stored as a SIP application session attribute so that it can be used to send additional accounting requests as the call progresses. Example 14-6 shows how to send an INTERIM request.	
Example 14-6 Sending an INTERIM request	
An application may want to send one or more ACR INTERIM requests while a call is in progress. The frequency of ACR INTERIM requests is usually based on the Acct-Interim-Interval AVP value in the ACA START message sent by the CDF. For this reason, an application timer must be used to send ACR INTERIM requests at the requested interval. See 3GPP TS 32.299 for more details about interim requests.	
The Acct-Interim-Interval (AII) timer value is used to indicate the expiration time of an Rf accounting session. It is specified when ACR START is sent to the CDF to initiate the accounting session. The CDF responds with its own AII value, which must be used by the CTF to start a timer upon whose expiration an ACR INTERIM message must be sent. This INTERIM message informs the CDF that the session is still in use. Otherwise, the CDF terminates the session automatically.	
It is the application's responsibility to send ACR INTERIM messages, because these are used to send updated Service-Information data to the CDF. Oracle recommends creating a ServletTimer that is set to expire according to the AII value. When the timer expires, the application must send an ACR INTERIM message with the updated service information data.	
Applications generally use the synchronous sendAndWait()	
method. However, if latency is critical, an asynchronous API is provided wherein the application Servlet is asynchronously notified when an answer message is received from the CDF. To use the asynchronous API, an application first registers an instance of SessionListener	
in order to asynchronously receive messages delivered to the session, as shown in Example 14-7.	
Example 14-7 Registering a SessionListener	
Attributes can be stored in an RfSession	
instance similar to the way SIP application session attributes are stored. In the above example, the associated SIP application was stored as an RfSession	
so that it is available to the listener callback.	
When a Diameter request or answer message is received from the CDF, the application Servlet is notified by calling the rcvMessage(Message msg)	
method. The associated SIP application session can then be retrieved from the RfSession	
if it was stored as a session attribute, as shown in Example 14-8.	
Example 14-8 Retrieving the RfSession after a Notification	
For an event-based charging request, the charging request is a one-time event and the session is automatically terminated upon receipt of the corresponding EVENT ACA message. The sendAndWait(long timeout)	
method can be used to synchronously send the EVENT request and block the thread until a response has been received from the CDF. Example 14-9 shows an example that uses an RfSession	
for sending an event-based charging request.	
Example 14-9 Event-Based Charging Using RfSession	
For convenience, it is also possible send event-based charging requests using the RfApplication	
directly, as shown in Example 14-10.	
Example 14-10 Event-Based Charging Using RfApplication	
Internally, the RfApplication	
creates an instance of RfSession	
associated with the ACR request, so this method is equivalent to creating the session explicitly.	
For both session and event based accounting, the RfSession	
class automatically handles creating session IDs, as well as updating the Accounting-Record-Number AVP used to sequence messages within the same accounting session.	
In the above cases the applications waits for up to 1000 ms to receive an answer from the CDF. If no answer is received within that time, the Diameter core delivers an UNABLE_TO_COMPLY error response to the application, and cancels the request. If no timeout is specified with sendAndWait()	
, then the default request timeout of 30 seconds is used. This default value can be configured using the Diameter console extension.	
The accounting session state for offline charging is serializable, so it can be stored as a SIP application session attribute. Because the client APIs are synchronous, it is not necessary to maintain any state for the accounting session once the Servlet has finished handling the call.	
For event-based charging events it is not necessary for the application to maintain any accounting session state because it is only used internally, and is disposed once the ACA response has been received.	
The following chapter describes how to use the Diameter Ro interface API, based on the OWLCS Diameter protocol implementation, in your own applications, and contains the following sections:	
Online charging, also known as credit-based charging, is used to charge prepaid services. A typical example of a prepaid service is a calling card purchased for voice or video. The Ro protocol allows a Charging Trigger Function (CTF) to issue charging events to an Online Charging Function (OCF). The charging events can be immediate, event-based, or session-based.	
OWLCS provides a Diameter Online Charging Application that deployed applications can use to generate charging events based on the Ro protocol. This enables deployed applications to act as CTF to a configured OCF. The Diameter Online Charging Application uses the base Diameter protocol that underpins both the Rf and Sh applications.	
The Diameter Online Charging Application is based on IETF RFC 4006: Diameter Credit Control Application (http://www.ietf.org/rfc/rfc4006.txt	
). However, the application supports only a subset of the RFC 4006 required for compliance with 3GPP TS 32.299: Telecommunication management; Charging management; Diameter charging applications (http://www.3gpp.org/ftp/Specs/html-info/32299.htm	
). Specifically, the OWLCS Diameter Online Charging Application provides no direct support for service-specific Attribute-Value Pairs (AVPs), but the API that is provided is flexible enough to allow applications to include custom service-specific AVPs in any credit control request.	
RFC 4006 defines two basic types of credit authorization models:	
Credit authorization with unit reservation can be performed with either event-based or session-based charging events. Credit authorization with direct debiting uses immediate charging events. In both models, the CTF requests credit authorization from the OCF prior to delivering services to the end user. In both models	
The sections that follow describe each model in more detail.	
RFC 4006 defines both Event Charging with Unit Reservation (ECUR) and Session Charging with Unit Reservation (SCUR). Both charging events are session-based, and require multiple transactions between the CTF and OCF. ECUR begins with an interrogation to reserve units before delivering services, followed by an additional interrogation to report the actual used units to the OCF upon service termination. With SCUR, it is also possible to include one or more intermediate interrogations for the CTF in order to report currently-used units, and to reserve additional units if required. In both cases, the session state is maintained in both the CTF and OCF.	
For both ECUR and SCUR, the online charging client implements the "CLIENT, SESSION BASED" state machine described in RFC 4006.	
For direct debiting, Immediate Event Charging (IEC) is used. With IEC, a single transaction is created where the OCF deducts a specific amount from the user's account immediately after completing the credit authorization. After receiving the authorization, the CTF delivers services. This form of credit authorization is a one-time event in which no session state is maintained.	
With IEC, the online charging client implements the "CLIENT, EVENT BASED" state machine described in IETF RFC 4006.	
Unit determination refers to calculating the number of non-monetary units (service units, time, events) that can be assigned prior to delivering services. Unit rating refers to determining a price based on the non-monetary units calculated by the unit determination function.	
It is possible for either the OCF or the CTF to handle unit determination and unit rating. The decision lies with the client application, which controls the selection of AVPs in the credit control request sent to the OCF.	
The RoApplication	
is packaged as a Diameter application similar to the Sh application used for managing profile data. The Ro Diameter application can be configured and enabled by editing the Diameter configuration file located in DOMAIN_ROOT/config/custom/diameter.xml	
, or by using the Diameter console extension.	
The application init parameter ocs.host	
specifies the host identity of the OCF. The OCF host must also be configured in the peer table as part of the global Diameter configuration. Alternately, the init parameter ocs.realm	
can be used to specify more than one OCF host using realm-based routing. The corresponding realm definition must also exist in the global Diameter configuration.	
Example 15-1 shows a sample excerpt from diameter.xml	
that enables Ro with an OCF host name of "myocs.oracle.com."	
Example 15-1 Sample Ro Application Configuration (diameter.xml)	
Because the RoApplication	
is based on the Diameter Credit Control Application, its Diameter application id is 4.	
OWLCS provides an online charging API to enable any deployed application to act as a CTF and issue online charging events to an OCS through the Ro protocol. All online charging requests use the Diameter Credit-Control-Request (CCR) message. The CC-Request-Type AVP is used to indicate the type of charging used. In the charging API, the CC-Request-Type is represented by the RequestType	
class in package com.bea.wcp.diameter.cc	
. Table 15-1 shows the request types associated with different credit authorization models.	
Table 15-1 Credit Control Request Types	
Type	Description
IEC	Immediate Event Charging
ECUR	Event Charging with Unit Reservation
SCUR	Session Charging with Unit Reservation
For ECUR and SCUR, units are reserved prior to service delivery and committed upon service completion. Units are reserved with INITIAL_REQUEST	
and committed with a TERMINATION_REQUEST	
. For SCUR, units can also be updated with UPDATE_REQUEST	
.	
The base diameter package, com.bea.wcp.diameter	
, contains classes to support the re-authorization requests used in Ro. The com.bea.wcp.diameter.cc	
package contains classes to support credit-control applications, including Ro applications. com.bea.wcp.diameter.charging	
directly supports the Ro credit-control application. Table 15-2 summarizes the classes of interest to Ro credit-control.	
Table 15-2 Summary of Ro Classes	
Class	Description
Constant definitions	
Online charging application	
Online charging session	
Credit Control Request	
Credit Control Answer	
ClientSession	Credit control client session
RequestType	Credit-control request type
RAR	Re-Auth-Request message
RAA	Re-Auth-Answer message
If the Ro application is deployed, then applications deployed on OWLCS can obtain an instance of the application from the Diameter node (com.bea.wcp.diameter.Node	
class). Example 15-2 shows the sample Servlet code used to obtain the Diameter Node	
and access the Ro application.	
Example 15-2 Accessing the Ro Application	
This code example would make RoApplication	
available to the Servlet as an instance variable. The instance of RoApplication	
is safe for use by multiple concurrent threads.	
The RoApplication	
can be used to create new sessions for session-based credit authorization. The RoSession	
class implements the appropriate state machine depending on the credit control type, either ECUR (Event-Based Charging with Unit Reservation) or SCUR (Session-based Charging with Unit Reservation). The RoSession	
class is also serializable, so it can be stored as a SIP session attribute. This allows the session to be restored when necessary to terminate the session or update credit authorization.	
The example in Example 15-3 creates a new RoSession	
for event-based charging, and sends a CCR request to start the first interrogation. The RoSession	
instance is saved so that it can be terminated later, after the service has finished.	
Note that the RoSession	
class automatically handles creating session IDs; the application is not required to set the session ID.	
Example 15-3 Creating and Using a RoSession	
The OCS may initiate credit re-authorization by issuing a Re-Auth-Request (RAR) to the CTF. The application can register a session listener for handling this type of request. Upon receiving a RAR, the Diameter subsystem invoke the session listener on the applications corresponding RoSession	
object. The application must then respond to the OCS with an appropriate RAA message and initiate credit re-authorization to the CTF by sending a CCR with the CC-Request-Type AVP set to the value UPDATE_REQUEST, as described in section 5.5 of RFC 4006 (http://www.ietf.org/rfc/rfc4006.txt	
).	
A session listener must implement the SessionListener	
interface and be serializable, or it must be an instance of SipServlet	
. A Servlet can register a listener as follows:	
Example 15-4 shows sample rcvMessage()	
code for processing a Re-Auth-Request.	
Example 15-4 Managing a Re-Auth-Request	
In Example 15-4, upon receiving the Re-Auth-Request the application sends an RAA with the result code DIAMETER_LIMITED_SUCCESS to indicate to the OCS that an additional CCR request is required in order to complete the procedure. The CCR is then sent to initiate credit re-authorization.	
Note: Because the Diameter subsystem locks the call state before delivering the request to the corresponding RoSession, the call state remains locked while the handler processes the request.	
The CCR class represents a Diameter Credit-Control-Request message, and can be used to send credit control requests to the OCF. For both ECUR (Event-Based Charging with Unit Reservation) and SCUR (Session-Based Charging with Unit Reservation), an instance of RoSession	
is used to create new CCR requests. You can also use RoApplication	
directly to create CCR messages for IEC (Immediate Event Charging). Example 15-5 shows an example of how to create and send a CCR.	
Example 15-5 Creating and Sending a CCR	
Once a CCR request is created, you can set whatever application- or service-specific AVPs that are required before sending the request using the addAvp()	
method. Because some of the same AVPs need to be included in each new request for the session, it is also possible to set these AVPs on the session itself. Example 15-6 shows a sample that sets:	
A custom AVP is also added directly to the CCR request.	
Example 15-6 Setting AVPs in the CCR	
In this case, the same Subscription-Id and Service-Identifier are added to every new request for the session. The custom AVP "Custom-Message" is added to the message before it is sent out.	
Applications can examine the Result-Code AVP in CCA error responses from the OCF to detect the cause of a failure and take an appropriate action. Locally-generated errors, such as an unavailable peer or invalid route specification, cause the request send method to throw an IOException	
to with a detailed message indicating the nature of the failure.	
Applications can also use the Diameter Timer Tx value for determining when the OCF fails to respond to a credit authorization request. Timer Tx has a default value of 10 seconds, but can be overridden using the tx.timer	
init parameter in the RoApplication	
configuration. Timer Tx starts when a CCR is sent to the OCF. The timer resets after the corresponding CCA is received.	
If Tx expires before a corresponding CCA arrives, any call to waitForAnswer	
immediately returns null to indicate that the request has timed out. An application can then take action according to the value of the Credit-Control-Failure-Handling (CCFH) AVP in the request. See section 5.7, "Failure Procedures" in RFC 4006 (http://www.ietf.org/rfc/rfc4006.txt	
) for more details.	
Example 15-7 terminates the credit control session if timer Tx expires before receiving the CCA. If the CCA is received later by the Diameter subsystem, the message is ignored because the session longer exists.	
This part describes how to use Oracle User Messaging Service.	
This part contains the following chapters:	
This chapter describes Oracle User Messaging Service (UMS).	
This chapter includes the following topic:	
Oracle User Messaging Service enables two-way communication between users and deployed applications. Key features include:	
There are three types of components that make up Oracle User Messaging Service. These components are standard Java EE applications, making it easy to deploy and manage them using the standard tools provided with Oracle WebLogic Server.	
In addition to the components that make up UMS itself, the other key entities in a messaging environment are the external gateways required for each messaging channel. These gateways are not a part of UMS or Oracle WebLogic Server. Since UMS Drivers support widely-adopted messaging protocols, UMS can be integrated with existing infrastructures such as a corporate email servers or XMPP (Jabber) servers. Alternatively, UMS can connect to outside providers of SMS or text-to-speech services that support SMPP or VoiceXML, respectively.	
The system architecture of Oracle User Messaging Service is shown in Figure 16-1.	
For maximum flexibility, the components of UMS are separate Java EE applications. This allows them to be deployed and managed independently of one another. For example, a particular driver can be stopped and reconfigured without affecting message delivery on all other channels.	
Exchanges between UMS client applications and the UMS Server occur as SOAP/HTTP web service requests for web service clients, or through Remote EJB and JMS calls for BPEL messaging activities. Exchanges between the UMS Server and UMS Drivers occur through JMS queues.	
Oracle UMS server and drivers are installed alongside SOA or BAM in their respective WebLogic Server instances. A WebCenter installation includes the necessary libraries to act as a UMS client application, invoking a server deployed in a SOA instance.	
This chapter describes how to use the User Messaging Service (UMS) API to develop applications, and describes how to build two sample applications, usermessagingsample.ear and usermessagingsample-echo.ear. It contains the following topics:	
The UMS Java API supports developing applications for EJB clients. It consists of packages grouped as follows:	
There are two choices for a J2EE application module that uses the UMS EJB Client API:	
Whichever application module is selected uses the UMS Client API to register the application with the UMS Server and subsequently invoke operations to send or retrieve messages, status, and register or unregister access points. For a complete list of operations refer to the Oracle Fusion Middleware User Messaging Service API Reference.	
The samples with source code are available on Oracle Technology Network (OTN).	
This section describes the requirements for creating a UMS EJB Client. You can create a MessagingEJBClient instance by using the code in the MessagingClientFactory class.	
When creating an application using the UMS EJB Client, the application must be packaged as an EAR file, and the usermessagingclient-ejb.jar module bundled as an EJB module.	
Example 17-1 shows code for creating a MessagingEJBClient instance using the programmatic approach:	
Example 17-1 Programmatic Approach to Creating a MessagingEJBClient Instance	
You can also create a MessagingEJBClient instance using a declarative approach. The declarative approach is normally the preferred approach since it allows you to make changes at deployment time.	
You must specify all the required Application Info properties as environment entries in your J2EE module's descriptor (ejb-jar.xml, or web.xml).	
Example 17-2 shows code for creating a MessagingEJBClient instance using the declarative approach:	
The API reference for class MessagingClientFactory can be accessed from the Oracle Fusion Middleware User Messaging Service API Reference.	
You can create a message by using the code in the MessageFactory class and Message interface of oracle.sdp.messaging.	
The types of messages that can be created include plaintext messages, multipart messages that can consist of text/plain and text/html parts, and messages that include the creation of delivery channel (DeliveryType) specific payloads in a single message for recipients with different delivery types.	
This section describes the various types of messages that can be created.	
Example 17-3 shows how to create a plaintext message using the UMS Java API.	
Example 17-4 shows how to create a multipart or alternative message using the UMS Java API.	
Example 17-4 Creating a Multipart or Alternative Message Using the UMS Java API	
When sending a message to a destination address, there could be multiple channels involved. Oracle UMS application developers are required to specify the correct multipart format for each channel.	
Example 17-5 shows how to create delivery channel (DeliveryType) specific payloads in a single message for recipients with different delivery types.	
Each top-level part of a multiple payload multipart/alternative message must contain one or more values of this header. The value of this header must be the name of a valid delivery type. Refer to the available values for DeliveryType in the enum DeliveryType.	
Example 17-5 Creating Delivery Channel-specific Payloads in a Single Message for Recipients with Different Delivery Types	
The API reference for class MessageFactory can be accessed from the Oracle Fusion Middleware User Messaging Service API Reference.	
The API reference for interface Message can be accessed from the Oracle Fusion Middleware User Messaging Service API Reference.	
The API reference for enum DeliveryType can be accessed from the Oracle Fusion Middleware User Messaging Service API Reference.	
This section describes type of addresses and how to create address objects.	
There are two types of addresses, device addresses and user addresses. A device address can be of various types, such as email addresses, instant messaging addresses, and telephone numbers. User addresses are user IDs in a user repository.	
You can address senders and recipients of messages by using the class AddressFactory to create Address objects defined by the Address interface.	
Example 17-6 shows code for creating a single Address object:	
Example 17-7 shows code for creating multiple Address objects in a batch:	
Example 17-8 shows code for adding sender or recipient addresses to a message:	
Example 17-8 Adding Sender or Recipient Addresses to a Message	
Example 17-9 shows code for creating a recipient with a Failover address:	
The API reference for class AddressFactory can be accessed from the Oracle Fusion Middleware User Messaging Service API Reference.	
The API reference for interface Address can be accessed from the Oracle Fusion Middleware User Messaging Service API Reference.	
You can use Oracle UMS to retrieve message status either synchronously or asynchronously.	
To perform a synchronous retrieval of current status, use the following flow from the MessagingClient API:	
or,	
To retrieve an asynchronous notification of message status, perform the following:	
This section describes how an application receives messages. To receive a message you must first register an access point. From the application perspective there are two modes for receiving a message, synchronous and asynchronous.	
AccessPoint represents one or more device addresses to receive incoming messages. An application that wants to receive incoming messages must register one or more access points that represent the recipient addresses of the messages. The server matches the recipient address of an incoming message against the set of registered access points, and routes the incoming message to the application that registered the matching access point.	
You can use AccessPointFactory.createAccessPoint to create an access point and MessagingClient.registerAccessPoint	
to register it for receiving messages.	
To register an SMS access point for the number 9000:	
To register SMS access points in the number range 9000 to 9999:	
You can use the method MessagingClient.receive	
to synchronously receive messages. This is a convenient polling method for light-weight clients that do not want the configuration overhead associated with receiving messages asynchronously. This method returns a list of messages that are immediately available in the application inbound queue.It performs a non-blocking call, so if no message is currently available, the method returns null.	
Note: A single invocation does not guarantee retrieval of all available messages. You must poll to ensure receiving all available messages.	
Asynchronous receiving involves a number of tasks, including configuring MDBs and writing a Stateless Session Bean message listener. See the sample application usermessagingsample-echo for detailed instructions.	
A MessageFilter is used by an application to exercise greater control over what messages are delivered to it. A MessageFilter contains a matching criterion and an action. An application can register a series of message filters; they get applied in order against an incoming (received) message; if the criterion matches the message, the action is taken. For example, an application can use MessageFilters to implement desired blacklists, by rejecting all messages from a given sender address.	
You can use MessageFilterFactory.createMessageFilter	
to create a message filter, and MessagingClient.registerMessageFilter	
to register it. The filter is added to the end of the current filter chain for the application. When a message is received, it is passed through the filter chain in order; if the message matches a filter's criterion, the filter's action is taken immediately. If no filters match the message, the default action is to accept the message and deliver it to the application.For example, to reject a message with the subject "spam":	
To reject messages from e-mail address "spammer@foo.com":	
This section describes how to create an application called usermessagingsample, a Web client application that uses the UMS EJB Client API for both outbound messaging and the synchronous retrieval of message status. usermessagingsample also supports inbound messaging. Once you have deployed and configured usermessagingsample, you can use it to send a message to an e-mail client.	
Of the two application modules choices described in Section 17.1.1, "Creating a J2EE Application Module", this sample focuses on the Web Application Module (WAR), which defines some HTML forms and servlets. You can examine the code and corresponding XML files for the Web App module from the provided usermessagingsample-src.zip source. The servlets uses the UMS EJB Client API to create an UMS EJB Client instance (which in turn registers the application's info) and sends messages.	
This application, which is packaged as a Enterprise ARchive file (EAR) called usermessagingsample.ear, has the following structure:	
import	
of the oracle.sdp.messaging	
shared library. The pre-built sample application, and the source code (usermessagingsample-src.zip) are available on OTN.	
The following steps describe the process of building an application capable of outbound messaging using usermessagingsample.ear as an example:	
To enable the Oracle User Messaging Service's E-Mail Driver to perform outbound messaging and status retrieval, configure the E-Mail Driver as follows:	
Note: This sample application is generic and can support outbound messaging through other channels when the appropriate messaging drivers are deployed and configured.	
This section describes using a Windows-based build of JDeveloper to build, compile, and deploy usermessagingsample through the following steps:	
Note: If you choose to use a different directory, you must update the oracle.sdp.messaging library source path to JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar.	
Figure 17-1 Oracle JDeveloper Main Window	
In the Oracle JDeveloper main window the project appears.	
Figure 17-2 Oracle JDeveloper Main Window	
Perform the following steps to deploy the application:	
You have successfully deployed the application.	
Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and optionally configure a default device for the user receiving the message in User Messaging Preferences.	
Note: Refer to "Configuring Notifications" in the Oracle Fusion Middleware SOA Developer's Guide for more information.	
Once usermessagingsample has been deployed to a running instance of WLS, perform the following:	
When prompted, enter login credentials. For example, username weblogic. The browser page for testing messaging samples appears (Figure 17-5).	
Figure 17-5 Testing the Sample Application	
Email:<sender_address>.	
For example, enter Email:sender@oracle.com.	
Email:<recipient_address1>, Email:<recipient_address2>.	
If you have configured user messaging preferences, you can address the message simply to "User:<username>". For example, User:weblogic.	
This section describes how to create an application called usermessagingsample-echo, a demo client application that uses the UMS EJB Client API to asynchronously receive messages from an e-mail address and echo a reply back to the sender.	
This application, which is packaged as a Enterprise ARchive file (EAR) called usermessagingsample-echo.ear, has the following structure:	
import	
of the oracle.sdp.messaging	
shared library. The pre-built sample application, and the source code (usermessagingsample-echo-src.zip) are available on OTN.	
The following steps describe the process of building an application capable of asynchronous inbound and outbound messaging using usermessagingsample-echo.ear as an example:	
To enable the Oracle User Messaging Service's E-Mail Driver to perform inbound and outbound messaging and status retrieval, configure the E-Mail Driver as follows:	
Note: This sample application is generic and can support inbound and outbound messaging through other channels when the appropriate messaging drivers are deployed and configured.	
This section describes using a Windows-based build of JDeveloper to build, compile, and deploy usermessagingsample-echo through the following steps:	
Note: If you choose to use a different directory, you must update the oracle.sdp.messaging library source path to JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar.	
In the Oracle JDeveloper main window the project appears (Figure 17-10).	
Figure 17-10 Oracle JDeveloper Main Window	
Perform the following steps for each module:	
Example 17-11 Application Information	
Example 17-12 Application Information	
Note: If you chose a different ApplicationName and ApplicationInstanceName for your own application, remember to update this message selector. Asynchronous receiving does not work otherwise.	
Perform the following steps to deploy the application:	
You have successfully deployed the application.	
Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and optionally configure a default device for the user receiving the message in User Messaging Preferences.	
Note: Refer to "Configuring Notifications" in the Oracle Fusion Middleware SOA Developer's Guide for more information.	
Once usermessagingsample-echo has been deployed to a running instance of WLS, perform the following:	
When prompted, enter login credentials. For example, username weblogic. The browser page for testing messaging samples appears (Figure 17-13).	
Figure 17-13 Testing the Sample Application	
EMAIL:<server_address>.	
For example, enter EMAIL:myserver@example.com.	
Figure 17-15 Access Point Registration Status	
If the UMS messaging driver for that channel is configured correctly, you can expect to receive an echo message back from the usermessagingsample-echo application.	
Perform the following steps to create a new Application Server Connection.	
Figure 17-16 New Application Server Connection	
Figure 17-17 New Application Server Connection	
Username: weblogic	
Password: weblogic	
The Application Server Connection has been created.	
This chapter describes the Parlay X Multimedia Messaging Web Service that is available with Oracle User Messaging Service and how to use the Parlay X Web Services Multimedia Messaging API to send and receive messages through Oracle User Messaging Service.	
Note: To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.	
This chapter contains the following sections:	
Note: Oracle User Messaging Service also ships with a Java client library that implements the Parlay X API.	
The following sections describe the semantics of each of the supported operations along with implementation-specific details for the Parlay X Gateway. The following tables, describing input/output message parameters for each operation, are taken directly from the Parlay X specification.	
Oracle User Messaging Service implements a subset of the Parlay X 2.1 Multimedia Messaging specification. Specifically Oracle User Messaging Service supports the SendMessage and ReceiveMessage interfaces. The MessageNotification and MessageNotificationManager interfaces are not supported.	
The SendMessage interface allows you to send a message to one or more recipient addresses by using the sendMessage	
operation, or get the delivery status for a previously sent message by using the getMessageDeliveryStatus operation. The following requirements apply:	
Table 18-1 describes message descriptions for the sendMessageRequest	
input in the sendMessage	
operation.	
Table 18-1 sendMessage Input Message Descriptions	
Part Name	Part Type
---	---
addresses	xsd:anyURI[0..unbounded]
senderAddress	xsd:string
subject	xsd:string
priority	MessagePriority
charging	common: ChargingInformation
receiptRequest	common:SimpleReference
Table 18-2 describes sendMessageResponse	
output messages for the sendMessage	
operation.	
The getMessageDeliveryStatus	
operation gets the delivery status for a previously sent message. The input "requestIdentifier" is the "result" value from a sendMessage operation. This is the same identifier that is referred to as a Message ID in other Messaging documentation.	
Table 18-3 describes the getMessageDeliveryStatusRequest	
input messages for the getMessageDeliveryStatus	
operation.	
Table 18-3 getMessageDeliveryStatusRequest Input Message Descriptions	
Part Name	Part Type
---	---
registrationIdentifier	xsd:string
Table 18-4 describes the getMessageDeliveryStatusResponse output messages for the getMessageDeliveryStatus	
operation.	
Table 18-4 getMessageDeliveryStatusResponse Output Message Descriptions	
Part Name	Part Type
---	---
result	DeliveryInformation [0..unbounded]
The ReceiveMessage interface has three operations. The getReceivedMessages	
operation polls the server for any messages received since the last invocation of getReceivedMessages	
. Note that getReceivedMessages	
does not necessarily return any message content; it generally only returns message metadata.	
The other two operations, getMessage	
and getMessageURIs	
, are used to retrieve message content.	
This operation polls the server for any received messages. Note the following requirements:	
Table 18-5 describes the getReceivedMessagesRequest	
input messages for the getReceivedMessages	
operation.	
Table 18-5 getReceivedMessagesRequest Input Message Descriptions	
Part Name	Part Type
---	---
registrationIdentifier	xsd:string
priority	MessagePriority
Table 18-6 describes the getReceivedMessagesResponse	
output messages for the getReceivedMessages	
operation.	
Table 18-6 getReceivedMessagesResponse Output Message Descriptions	
Part Name	Part Type
---	---
registrationIdentifier	xsd:string
priority	MessagePriority
The getMessage	
operation retrieves message content, using a message ID from a previous invocation of getReceivedMessages. There is no SOAP body in the response message; the content is returned as a single SOAP attachment.	
Table 18-7 describes the getMessageRequest	
input messages for the getMessage	
operation.	
Table 18-7 getMessageRequest Input Message Descriptions	
Part Name	Part Type
---	---
messageRefIdentifier	xsd:string
There are no getMessageResponse	
output messages for the getMessage	
operation.	
The getMessageURIs	
retrieves message content as a list of URIs. Note the following requirements:	
Table 18-8 describes the getMessageURIsRequest	
input messages for the getMessageURIs	
operation.	
Table 18-8 getMessageURIsRequest Input Message Descriptions	
Part Name	Part Type
---	---
messageRefIdentifier	xsd:string
Table 18-9 describes the getMessageURIsResponse	
output messages for the getMessageURIs	
operation.	
The Parlay X Messaging specification leaves certain parts of the messaging flow undefined. The main area that is left undefined is the process for binding a client to an address for synchronous receiving (through the ReceiveMessage interface).	
Oracle User Messaging Service includes an extension interface to Parlay X to support this process. The extension is implemented as a separate WSDL in an Oracle XML namespace to indicate that it is not an official part of Parlay X. Clients can choose to not use this additional interface or use it in some modular way such that their core messaging logic remains fully compliant with the Parlay X specification.	
ReceiveMessageManager is the Oracle-specific interface for managing client registrations for receiving messages. Clients use this interface to start and stop receiving messages at a particular address. (This is analogous to the concept of registering/unregistering access points in the Messaging API).	
Invoking this operation allows a client to bind itself to a given endpoint for the purpose of receiving messages. Note the following requirements:	
stopReceiveMessage	
and getReceivedMessages	
operations. The startReceiveMessage	
operation has the following inputs and outputs:	
Table 18-10 describes the startReceiveMessageRequest	
input messages for the startReceiveMessage	
operation.	
Table 18-10 startReceiveMessageRequest Input Message Descriptions	
Part Name	Part Type
---	---
registrationIdentifier	xsd:string
messageService ActivationNumber	xsd:anyURI
criteria	xsd:string
There are no startReceiveMessageResponse	
output messages for the startReceiveMessage	
operation.	
Invoking this operation removes the previously-established binding between a client and a receiving endpoint. The client specifies the same registration ID that was supplied when startReceiveMessage	
was called in order to identify the endpoint binding that is being broken. If there is no corresponding registration ID binding known to the server for this application, a Policy Error results.	
Table 18-11 describes the stopReceiveMessageRequest	
input messages for the stopReceiveMessage	
operation.	
Table 18-11 stopReceiveMessageRequest Input Message Descriptions	
Part Name	Part Type
---	---
registrationIdentifier	xsd:string
There are no stopReceiveMessageResponse	
output messages for the stopReceiveMessage	
operation.	
While it is possible to assemble a Parlay X Messaging Client using only the Parlay X WSDL files and a Web Service assembly tool, we also provide pre-built Web Service stubs and interfaces for the supported Parlay X Messaging interfaces. Due to difficulty in assembling a Web Service with SOAP attachments in the style mandated by Parlay X, we recommend the use of the provided API rather than starting from WSDL.	
For a complete listing of the classes available in the Parlay X Messaging API, see the Oracle Fusion Middleware User Messaging Service API Reference. The main entry points for the API are through the following client classes:	
Each client class allows a client application to invoke the operations in the corresponding interface. Additional Web Service parameters such as the remote gateway URL and any required security credentials, are provided when an instance of the client class is constructed. See the Oracle Fusion Middleware User Messaging Service API Reference for more details. The security credentials are propagated to the server using standard WS-Security headers, as mandated by the Parlay X specification.	
The general process for a client application is to create one of the client classes above, set the necessary configuration items (endpoint, username, password), then invoke one of the business methods (for example SendMessageClient.sendMessage(), etc). For examples of how to use this API, see the Messaging samples on Oracle Technology Network (OTN), and specifically usermessagingsample-parlayx-src.zip.	
This chapter describes how to create, deploy and run the sample chat application with Parlay X APIs provided with Oracle User Messaging Service on OTN.	
Note: To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.	
This chapter contains the following sections:	
This sample demonstrates how to create a Web-based chat application to send and receive messages through e-mail, SMS, or IM. The sample uses standards-based Parlay X Web Service APIs to interact with a User Messaging server. The sample application includes web service proxy code for each of three Web service interfaces: the SendMessage and ReceiveMessage services defined by Parlay X, and the ReceiveMessageManager service which is an Oracle extension to Parlay X. You must define an Application Server connection in JDeveloper, and deploy and run the application.The application is provided as a pre-built Oracle JDeveloper project that includes a simple web chat interface.	
Perform the following steps to run and deploy the pre-built sample application:	
In the Oracle JDeveloper main window the project appears.	
Figure 18-1 Oracle JDeveloper Main Window	
This opens the precreated JDeveloper application for the Parlay X sample application. The application contains one Web module. All of the source code for the application is in place. You must configure the parameters that are specific to your installation.	
You have successfully deployed the application.	
Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and configure a default device for the user receiving the message in User Messaging Preferences, as described in the following sections.	
Note: Refer to "Configuring Notifications" in the Oracle Fusion Middleware SOA Developer's Guide for more information.	
Perform the following steps to run and test the sample:	
http://<host>:<port>/usermessagingsample-parlayx/	
The 'Messaging Parlay X Sample' Web page appears (Figure 18-7). This page contains navigation tabs and instructions for the application.	
Figure 18-7 Messaging Parlay X Sample Web Page	
Figure 18-8 Configuring the Web Service Endpoints and Credentials	
Verify that the message "Registration operation succeeded" appears.	
Figure 18-11 New Application Server Connection	
Figure 18-12 New Application Server Connection	
Username: weblogic	
Password: weblogic	
The Application Server Connection has been created.	
This chapter describes the User Messaging Preferences that are packaged with Oracle User Messaging Service. It describes how to work with messaging channels and to create contact rules using messaging filters.	
Note: To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.	
This chapter contains the following sections:	
User Messaging Preferences allows a user who has access to multiple channels (delivery types) to control how, when, and where they receive messages. Users define filters, or delivery preferences, that specify which channel a message must be delivered to, and under what circumstances. Information about a user's devices and filters are stored in any database supported for use with Oracle Fusion Middleware.	
For an application developer, User Messaging Preferences provide increased flexibility. Rather than an application needing business logic to decide whether to send an email or SMS message, the application can just send to the user, and the message gets delivered according to the user's preferences.	
Since preferences are stored in a database, this information is shared across all instances of User Messaging Preferences in a domain.	
The oracle.sdp.messaging.userprefs	
package contains the User Messaging Preferences API classes. For more information, refer to the Oracle Fusion Middleware User Messaging Service API Reference.	
User Messaging Preferences defines the following terminology:	
User Messaging Preferences allows configuration of notification delivery preferences based on the following:	
One use case for notification delivery preference is for bugs entered into a bug tracking system. For example, user Alex wants to be notified through SMS and EMAIL channels for bugs filed against his product with priority = 1 by a customer type = Premium. For all other bugs with priority > 1, he only wants to be notified by EMAIL. Alex's preferences can be stated as follows:	
Example 19-1 Notification Delivery Preferences	
A runtime service, the Oracle Rules Engine, evaluates the filters to process the notification delivery of user requests.	
A delivery preference rule consists of rule comparisons and rule actions. A rule comparison consists of a rule term (a system term or a business term) and the associated comparison operators. A rule action is the action to be taken if the specified conditions in a rule are true.	
Table 19-2 lists data types supported by User Messaging Preferences. Each system term and business term must have an associated data type, and each data type has a set of pre-defined comparison operators. Administrators cannot extend these operators.	
Table 19-1 Data Types Supported by User Messaging Preferences	
Data Type	Comparison Operators
---	---
Date	<, >, between, <=, >=
Time	==, !=, between
Number (Decimal)	<, >, between, <=, >=
String	==, !=, contains, not contains
Note: The String data type does not support regular expressions.The Time data type is only available to System Terms.	
Table 19-2 lists system terms, which are pre-defined business terms. Administrators cannot extend the system terms.	
Table 19-2 System Terms Supported by User Messaging Preferences	
System Term	Data Type
---	---
Date	Date
Time	Time
Business terms are rule terms defined and managed by the system administrator through Oracle Application Server 11g Enterprise Manager. For more information on adding, defining, and deleting business terms, refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite. A business term consists of a key, a data type, an optional description, and an optional List of Values (LOV).	
Table 19-3 lists the pre-defined business terms supported by User Messaging Preferences.	
Table 19-3 Pre-defined Business Terms for User Messaging Preferences	
Business Term	Data Type
---	---
Organization	String
Time	Number (Decimal)
Priority	String
Application	String
Application Type	String
Expiration Date	Date
From	String
To	String
Customer Name	String
Customer Type	String
Status	String
Amount	Number (Decimal)
Due Date	Date
Process Type	String
Expense Type	String
Total Cost	Number (Decimal)
Processing Time	Number (Decimal)
Order Type	String
Service Request Type	String
Group Name	String
Source	String
Classification	String
Duration	Number (Decimal)
User	String
Role	String
For a given rule, a User Messaging Preferences user can define one of the following actions:	
Tip: User Messaging Preferences does not provide a filter action that instructs "do not send to a specified channel." A best practice is to specify only positive actions, and not negative actions in rules.	
Any channel that a user creates is associated with that user's system ID. In Oracle User Messaging Service, channels represent both physical channels, such as mobile phones, and also e-mail client applications running on desktops, and are configurable on the The Messaging Channels tab (Figure 19-1).	
The Messaging Channels tab enables users to perform the following tasks:	
To create a channel:	
To edit a channel, select it and click Edit (Figure 19-4). The editing page appears for the channel, which enables you to add or change the channel properties described in Section 19.2.1, "Creating a Channel".	
Certain channels are based on information retrieved from your user profile in the identity store, and this address cannot be modified by User Messaging Preferences (Figure 19-5). The only operation that can be performed on such as channel is to make it the default.	
Figure 19-5 Edit a Identity Store-Backed Channel	
E-Mail is the default for receiving notifications. To set another channel as the default, select it, click Edit, and then click "Set as default channel." A check mark (Figure 19-7) appears next to the selected channel, designating it as the default means of receiving notifications.	
The Messaging Filters tab (Figure 19-8) enables users to build filters that specify not only the type of notifications they wish to receive, but also the channel through which to receive these notifications through a combination of comparison operators (such as is equal to, is not equal to), business terms that describe the notification type, content or source, and finally, the notification actions, which send the notifications to all channels, block channels from receiving notifications, or send notifications to the first available channel.	
Figure 19-9 illustrates the creation of a filter called "Travel Filter", by a user named "weblogic", for handling notifications regarding Customers during his travel. Notifications that match all of the filter conditions are first directed to his "Business Mobile" channel. If this channel becomes unavailable, Oracle User Messaging Service transmits the notifications as e-mails since the next available channel selected is "Business Email".	
To create a filter:	
If you select the Date attribute, select one of the following comparison operators and then select the appropriate dates from the calendar application.	
To edit a filter, first select it and then click Edit (Figure 19-9). The editing page appears for the filter, which enables you to add or change the filter properties described in Section 19.3.1, "Creating Filters".	
The Settings tab (Figure 19-10), accessed from the upper right area, enables users to set the following parameters:	
This part contains reference information.	
Part VIII contains the following appendices:	
This appendix describes how to create your own Oracle User Messaging Service applications using the procedures and code provided.	
This chapter includes the following sections:	
Note: For more information, and for code samples, refer to Oracle Technology Network (http://otn.oracle.com).	
This chapter describes how to build and run the Send Message to User Specified Channel application provided with Oracle User Messaging Service.	
Note: To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.	
This chapter contains the following sections:	
The "Send Message to User Specified Channel" application demonstrates a BPEL process that allows a message to be sent to a user through a messaging channel specified in User Messaging Preferences. After you have configured a device and messaging channel addresses for each supported channel and the default device, Oracle User Messaging Service routes the message to the user based on the preferred channel setting that you configured.	
The installation of SOA and User Messaging Service has already been performed on your hosted instance, and the sample users have already been seeded. Perform the following steps to enable notifications in soa-infra, if not already done:	
Perform the following steps to set the email address for user "weblogic" by using the JXplorer LDAP browser:	
Download and install JXplorer from http://www.jxplorer.org.	
The following example uses the user "weblogic". You may create and use additional users.	
Performing the following procedure of building the sample from scratch allows you to learn how to add messaging to your SOA Composite Applications, and use User Messaging Preferences.	
Figure A-1 Creating a New Application and Project (1 of 3)	
Figure A-2 Creating a New Application and Project (2 of 3)	
Figure A-3 Creating a New Application and Project (3 of 3)	
In the Oracle JDeveloper main window you can view the following components of the application under the Composite.xml tab.	
Note: You must later create the messaging service resource that is used to send the message when you create the User Notification BPEL process (steps 13-19).	
Figure A-5 Empty and Default BPEL Application	
Figure A-6 Accessing the BPELProcess1.xsd File	
In the generated file, SendMessage.xsd, in the xsd folder in the application navigator under projects, the following element definition is created by default:	
This xsd element defines the input for the BPEL process.	
Select the Source tab (Figure A-7), and replace the line above with the following three lines:	
Figure A-7 Modifying the Inputs in the BPELProcess1.xsd File	
Figure A-8 Viewing the Expanded Process Element	
The User Notification activity appears (Figure A-9).	
Figure A-9 User Notification Activity Before Configuring the Inputs	
Figure A-10 Defining the Recipient ("to") Expression	
Figure A-11 Defining the Subject Expression	
Figure A-13 Confirming the Changes to the Inputs	
The changes to the inputs are saved and the configuration of the User Notification Activity is complete. You can now see the User Notification Activity in the BPEL application (Figure A-14). The SOA Composite is complete.	
Figure A-14 User Notification Activity After Configuration of Inputs	
Perform the following steps to create a new Application Server Connection.	
Figure A-15 New Application Server Connection	
Figure A-16 New Application Server Connection	
Username: weblogic	
Password: weblogic	
The Application Server Connection has been created.	
Perform the following steps to deploy the project:	
Figure A-18 Verifying that the Deployment is Successful	
You have successfully deployed the application.	
Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and configure a default device for the user receiving the message in User Messaging Preferences, as described in the following sections.	
Note: Refer to "Configuring Notifications" in the Oracle Fusion Middleware SOA Developer's Guide for more information.	
For users to receive the notifications, they must register the devices that they use to access messages through User Messaging Preferences. Perform the following steps:	
The User Messaging Preferences application appears.	
You are prompted for login credentials.	
A checkmark appears next to the selected channel, designating it as the default means of receiving notifications. All messages sent to that user are sent to that channel.	
The following steps describe how to perform a test message transmission through Enterprise Manager.	
Perform the following steps to run and test the sample:	
http://<host>:<port>/em	
. Enter the following values:	
Log in to the Human Workflow Engine. Verify the outgoing notifications and their statuses from the Notification Manager tab. (Figure A-20).	
Figure A-20 Viewing Outgoing Notifications	
This chapter describes how to build and run the Send Email with Attachments application provided with Oracle User Messaging Service.	
Note: To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.	
This chapter contains the following sections:	
The "Send Email With Attachment" application demonstrates a BPEL process that sends an e-mail with an attached file. A BPEL process looks up a user's e-mail address from the identity store, reads a file from the file system, creates e-mail content and then sends an email to the user.Section A.2.5, "Building the Sample" shows you how to add an e-mail with attachments to your SOA composite application, allowing your applications to be enabled with messaging.If you want to model the application from scratch, go to the section titled Building the Sample. Or, you can directly use the pre-built project provided with this tutorial.Before you run the pre-built sample or build the application from scratch, you must install and configure the server as described in Section A.2.2, "Installing and Configuring SOA and User Messaging Service". By default, soa-infra does not send out notifications. The following steps describe installing and configuring the e-mail drivers needed to communicate with the e-mail server.	
The installation of SOA and User Messaging Service has already been performed on your hosted instance, and the sample user, "weblogic", has already been created. Perform the following steps to enable notifications in soa-infra, if not already done:	
Perform the following steps to set the email address for user "weblogic" by using the JXplorer LDAP browser:	
Download and install JXplorer from http://www.jxplorer.org.	
The following example uses the user "weblogic". You may create and use additional users.	
Perform the following steps to run and deploy the pre-built sample application:	
In the Oracle JDeveloper main window you can view the following components of the sample application under the Composite.xml tab.	
Figure A-21 Oracle JDeveloper Main Window	
You have successfully deployed the application.	
Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and configure a default device for the user receiving the message in User Messaging Preferences, as described in the following sections.	
Note: Refer to "Configuring Notifications" in the Oracle Fusion Middleware SOA Developer's Guide for more information.	
The following steps describe how to perform a test message transmission through Enterprise Manager.	
Perform the following steps to run and test the sample:	
http://<host>:<port>/em	
. Enter the following values:	
To send files such as pdf, doc, gif or jpeg files, the following values can be used for the attachmentMimeType entry:	
Performing the following procedure of building the sample from scratch allows you to learn how to add messaging to your SOA Composite Applications, and use User Messaging Preferences.	
Figure A-23 Creating a New Application and Project (1 of 3)	
Figure A-24 Creating a New Application and Project (2 of 3)	
Figure A-25 Creating a New Application and Project (3 of 3)	
In the Oracle JDeveloper main window you can view the following components of the sample application under the Composite.xml tab.	
Note: You must later create the messaging service resource that is used to send the message when you create the User Notification BPEL process (steps 13-19).	
Figure A-27 Accessing the SendEmailWithAttachments.xsd File	
In the generated file, SendEmailWithAttachments.xsd, in the xsd folder in the application navigator under projects, the following element definition is created by default:	
Select the Source tab, and replace the lines above with the following:	
This xsd element defines the input for the BPEL process.	
This expression (Figure A-30) takes the data from the Web Service and maps it to the business e-mail of the local SOA user.	
Figure A-30 Expression Builder for the To Path	
The expression must appear as follows:	
Figure A-31 shows the Expression Builder for the Subject.	
Figure A-31 Expression Builder for the Subject	
The expression must appear as follows:	
Figure A-32 Expression Builder for the Body	
The expression must appear as follows:	
When an e-mail has multiple parts, the attachment count includes the body that is set with the Wizard above. The body specified by the Wizard above is set as the first body part. For example, to represent a multipart mail with one (1) attached file, enter “2” as the number of body parts. When there is one attachment, enter '1' as the number of body parts.	
Each body part has three attributes: MimeType, BodyPartName and ContentBody. By default, the wizard generates default names, MIME types and contents for each of the attachments. The assignment of these body parts has to be changed to set the correct data by modifying the copy rules in the assign activity in the notification scope. The copy rules (specified in the Copy Operation tab) are grouped for each assignment in the following order (the copy-to constructs are also listed):	
When making changes in the EmailParamAssign node (for example, editing the XPath variables), perform a Save All from the File menu after making each change. This ensures that the changes are reflected in the .bpel file.	
Figure A-36 Editing the mimeType of the Second Body Part	
Figure A-37 Editing the XPath for mimeType	
Figure A-38 Editing the Attachment Name for the Second Attachment	
Figure A-39 Editing the XPath for BodyPartName	
Figure A-40 Editing the Attachment Contents of the Second Attachment	
ora:readFile() xpath function is available under “BPEL Xpath Extension Functions”.	
Figure A-41 Editing the XPath from the ContentBody	
The Process Modeling procedure is complete. You can use the information in this procedure to add notification with attachments to your SOA composite application.You can now deploy and run the application as described in Section A.2.3, "Running the Pre-Built Sample".	
Perform the following steps to create a new Application Server Connection.	
Figure A-43 New Application Server Connection	
Figure A-44 New Application Server Connection	
Username: weblogic	
Password: weblogic	
The Application Server Connection has been created.	
The following chapter provides a complete reference to the profile provider configuration file, profile.xml	
, in the following sections:	
The profile.xml	
file configures attributes of a profile service provider, such as:	
profile.xml	
is stored in the DOMAIN_DIR	
/config/custom	
subdirectory where DOMAIN_DIR	
is the root directory of the OWLCS domain.	
Figure B-1 shows the element hierarchy of the profile.xml	
file.	
Figure B-1 Element Hierarchy of profile.xml	
Oracle recommends using the Administration Console profile service extension to modify profile.xml	
indirectly, rather than editing the file by hand. Using the Administration Console ensures that the profile.xml	
document always contains valid XML. See Configuring Profile Providers Using the Administration Console in Developing Applications with OWLCS.	
You may need to manually view or edit profile.xml	
to troubleshoot problem configurations, repair corrupted files, or to roll out custom profile provider configurations to a large number of machines when installing or upgrading OWLCS. When you manually edit profile.xml	
, you must reboot servers to apply your changes.	
If you need to modify profile.xml	
on a production system, follow these steps:	
DOMAIN_DIR	
/config/custom/profile.xml	
file, where DOMAIN_DIR	
is the root directory of the OWLCS domain. profile.xml	
file as necessary. See "XML Element Description" for a full description of the XML elements. The full schema for the profile.xml	
file is bundled within the profile-service-descriptor-binding.jar	
library, installed in the WLSS_HOME	
/server/lib/wlss	
directory.	
See Developing Custom Profile Providers in Developing SIP Applications for sample listings of profile.xml	
configuration files.	
The following sections describe each XML element in profile.xml	
.	
The top level profile-service	
element contains the entire profile service configuration.	
Specifies how requests for profile data are mapped to profile provider implementations.	
Specifies the technique used for mapping documents to providers:	
router	
uses a custom router class, specified by map-by-router	
, to determine the provider. prefix	
uses the specified map-by-prefix	
entry to map documents to a provider. provider-name	
uses the specified name	
element in the provider	
entry to map documents to a provider. Configures the profile provider implementation and startup options.	
Specifies a name for the provider configuration. The name	
element is also used for mapping documents to the provider if you specify the provider-name	
mapping technique.	
The following chapter describes how to use Eclipse to develop SIP Servlets for use with OWLCS, in the following sections:	
This document provides detailed instructions for using the Eclipse IDE as a tool for developing and deploying SIP Servlets with OWLCS. The full development environment requires the following components, which you must obtain and install before proceeding:	
Building a SIP Servlet produces a Web Archive (WAR file or directory) as an end product. A basic SIP Servlet WAR file contains the subdirectories and contents described in Figure C-1.	
Follow these steps to set up the development environment for a new SIP Servlet project:	
The sections that follow describe each step in detail.	
In order to deploy and test your SIP Servlet, you need access to a OWLCS domain that you can reconfigure and restart as necessary. Follow the instructions in Oracle WebLogic Communication Services Installation Guide to create a new domain using the Configuration Wizard. When generating a new domain:	
Eclipse 3.4 uses the required version Java 6 (1.6) by default. Follow these steps to verify the configured JVM:	
MIDDLEWARE_HOME/jdk160_05	
directory and click OK. Follow these steps to create a new Eclipse project for your SIP Servlet development, adding the OWLCS libraries required for building and deploying the application:	
MIDDLEWARE_HOME/server/lib/weblogic.jar	
file to your project. MIDDLEWARE_HOME/server/lib/wlss/sipservlet.jar	
and MIDDLEWARE_HOME/server/lib/wlss/wlssapi.jar	
files to your project. The build.xml	
file that you created compiles your code, packages the WAR, and copies the WAR file to the /applications	
subdirectory of your development domain. OWLCS automatically deploys valid applications located in the /applications	
subdirectory.	
In order to debug SIP Servlets, you must enable certain debug options when you start OWLCS. Follow these steps to add the required debug options to the script used to start OWLCS, and to attachthe debugger from within Eclipse:	
Note: On Linux, debug is enabled by default if you install in developer mode. However, the port is set to 8453.	
StartWebLogic.cmd	
script for your development domain. %DEBUG_OPTS%	
variable in the place indicated below: This chapter describes guidelines and issues related to porting existing applications based on SIP Servlet v1.0 specification to Oracle WebLogic Communication Services and the SIP Servlet v1.1 specification. It contains the following sections:	
The SIP Servlet v1.1 specification describes a formal application selection and composition process, which is fully implemented in OWLCS. Use the SIP Servlet v1.1 techniques for all new development. Application composition techniques described in earlier versions of OWLCS are now deprecated.	
OWLCS provides backwards compatibility for applications using version SIP Servlet 1.0 composition techniques, provided that:	
The SipSession	
and SipApplicationSession	
interfaces are no longer serializable in the SIP Servlet v1.1 specification. OWLCS maintains binary compatibility for the earlier v1.0 specification, to allow any compiled applications that treat these interfaces as serializable objects to work. However, you must modify the source code of such applications before you can recompile them with OWLCS.	
Version 1.0 Servlets that stored the SipSession	
as a serializable info object using the TimerService.createTimer	
API can achieve similar functionality by storing the SipSession	
ID as the serializable info	
object. On receiving the timer expiration callback, applications must use the SipApplicationSession	
and the serialized ID object returned by the ServletTimer	
to find the SipSession	
within the SipApplicationSession	
using the retrieved ID. See the SIP Servlet v1.1 API JavaDoc for more information.	
SipServletResponse.setCharacterEncoding()	
no longer throws UnsupportedEncodingException	
. If you have an application that explicitly catches UnsupportedEncodingException	
with this method, the existing, compiled application can be deployed to OWLCS unchanged. However, the source code must be modified to not catch the exception before you can recompile.	
SIP Servlet v1.1 acknowledges that SipServletRequest	
and SipServletResponse	
objects always belong to a SIP transaction. The specification further defines the conditions for committing a message, after which no application can modify or re-send the message. See 5.2 Implicit Transaction State in the SIP Servlet Specification v1.1 (http://jcp.org/en/jsr/detail?id=289	
) for a list of conditions that commit SIP messages.	
As a result of this change, any attempt to modify (set, add, or remove a header) or send a committed message now results in an IllegalStateException	
. Ensure that any existing code checks for the committed status of a message using SipServletMessage.isCommitted()	
before modifying or sending a message.	
SIP Servlet v1.1 introduces a new javax.servlet.sip.Parameterable	
interface for accessing, creating, and modifying parameters in various SIP headers. Note that the system header parameters described in Table D-1 are immutable and cannot be modified using this new interface.	
Table D-1 Immutable System Header Parameters	
Header	Immutable Parameters
From	tag
To	tag
Via	branch, received, rport, wlsslport, wlssladdr, maddr, ttl
Record-Route	All parameters are immutable.
Route	For initial requests, the application that pushes the Route header can modify any of the header's parameters. In all other cases, the parameters of the Route header are immutable.
Path	For Register requests, the application that pushes the Path header can modify any of the header's parameters.In all other cases, the parameters of the Path header are immutable.
For applications in OWLCS, the Proxy function is always transactionally stateful, and setting the Proxy object to stateless has no effect.	
The Proxy.setStateful()	
and Proxy.getStateful()	
methods are redundant: Proxy.getStateful()	
always returns true, and Proxy.setStateful()	
performs no operation.	
OWLCS automatically detects precompiled, v1.0 deployments and alters the SIP container behavior to maintain backward compatibility. The sections that follow describe differences in behavior that occur when deploying v1.0 SIP Servlets to OWLCS.	
The SIP Servlet v1.1 specification requires more strict validation of Servlet deployments than the previous specification. In the following cases, v1.0 SIP Servlets can be successfully deployed to OWLCS, but a warning message gets displayed at deployment:	
listener-class	
element of a v1.0 deployment descriptor but the corresponding class does not implement the EventListener	
interface, a warning is displayed during deployment. (Version 1.1 SIP Servlets that declare a listener must implement EventListener	
, or the application cannot be deployed). servlet-class	
element of a v1.0 deployment descriptor, but the corresponding class does extend the SipServlet	
abstract class, a warning is displayed. (Version 1.1 SIP Servlets must extend SipServlet	
, or the application cannot be deployed). The SIP Servlet v1.1 specification now recommends that the SIP container throw an IllegalStateException	
if an application attempts to modify a committed message. To maintain backward compatibility, OWLCS throws the IllegalStateException	
only when a version 1.1 SIP Servlet deployment modifies a committed message.	
The SIP Servlet v1.1 specification now defines the Path	
header as a system header, which cannot be modified by an application. Version 1.0 SIP Servlets can still modify the Path	
header, but a warning message is generated. Version 1.1 SIP Servlets that attempt to modify the Path	
header fail with an IllegalArgumentException	
.	
In OWLCS, SipServletResponse.createPrack()	
can throw Rel100Exception	
only for version 1.1 SIP Servlets. createPrack()	
does not throw the exception for version 1.0 SIP Servlets to maintain backward compatibility.	
For version 1.1 SIP Servlets, OWLCS throws an IllegalStateException	
if a version 1.1 SIP Servlet specifies a duplicate branch URI with Proxy.proxyTo(uri)	
or Proxy.proxyTo(uris)	
. To maintain backward compatibility, OWLCS ignores the duplicate URIs (and throws no exception) if a version 1.0 SIP Servlet specifies duplicate URIs with these methods.	
SIP Servlet v1.1 makes several protocol changes that effect the behavior of proxy branching for both sequential and parallel proxying.	
For sequential proxying, the v1.1 specification requires that OWLCS start a branch timer using the maximum of the sequential-search-timeout	
value, which is configured in sip.xml	
, or SIP protocol Timer C (> 3 minutes). Prior versions of OWLCS always set sequential branch proxy timeouts using the value of sequential-search-timeout	
; this behavior is maintained for v1.0 deployments.	
For parallel proxying, the v1.1 specification provides a new proxyTimeout	
value that controls proxying. The specification requires that OWLCS reset a branch timer using the configured proxyTimeout	
value, rather than using the Timer C value as required in the SIP Servlet v1.0 specification. The Timer C value is still used for v1.0 deployments.	
Earlier versions of WebLogic SIP Server provided proprietary APIs to support functionality and RFCs that were not supported in the SIP Servlet v1.0 specification. The SIP Servlet v1.1 specification adds new RFC support and functionality, making the proprietary APIs redundant. Table D-2 shows newly-available SIP Servlet v1.1 methods that must be used in place of now-deprecated WebLogic SIP Server methods. The deprecated methods are still available in this release to provide backward compatibility for v1.0 applications.	
Table D-2 Deprecated APIs	
Deprecated Methods (WebLogic SIP Server Proprietary)	Replacement Method (SIP Servlet v1.1)
See Table 6–1, "Sessions in a Converged Application".	
Previous versions of the OWLCS SNMP MIB definition did not follow the WebLogic MIB naming convention. Specifically, the MIB table column name label did not begin with the table name. OWLCS changes the SNMP MIB definition to prepend labels with sipServer
in order to comply with the WebLogic naming convention and provide compatibility with WebLogic tools that generate the metadata file.
For example, in version 3.x the SipServerEntry
MIB definition was:
In OWLCS, the definition is now:
This change in the MIB may cause backwards compatibility issues if an application or script uses the MIB table column name labels directly. All hard-coded labels, such as iso.org.dod.internet.private.enterprises.bea.wlss.sipServerTable.t1TimeoutInterval
must be changed to prepend the table name (iso.org.dod.internet.private.enterprises.bea.wlss.sipServerTable.sipServerT1TimeoutInterval
).
Note: Client-side SNMP tools generally load a MIB and issue commands to retrieve values based on the loaded MIB labels. These tools are unaffected by the above change.The complete OWLCS MIB file is installed as $WLSS_HOME/server/lib/wlss/BEA-WLSS-MIB.asn1. |
The diagnostic monitors and diagnostic actions provided in OWLCS are now prefixed with occas/
. For example, the SIP Server 3.1 Sip_Servlet_Before_Service
monitor is now named occas/Sip_Servlet_Before_Service
. You must update any existing diagnostic configuration files or applications that reference the non-prefixed names before they can work with OWLCS.
 Copyright © 2006, 2010, Oracle and/or its affiliates. All rights reserved. |