

8 Defining CAVS Routing Setup IDs

This chapter provides an introduction to CAVS routing setup IDs, and how to create, search, and modify them. It also provides information about setting up routing configurations without creating routing setup IDs.

Composite Application Validation System (CAVS) routing setups are used when CAVS test definitions call services that in turn, call CAVS simulators and when actual applications and services call CAVS simulators instead of calling subsequent actual services.

This chapter includes the following sections:

	
Section 8.1, "Introduction to CAVS Routing Setup IDs"

	
Section 8.2, "How to Create CAVS Routing Setup IDs"

	
Section 8.3, "How to Search for CAVS Routing Setup IDs"

	
Section 8.4, "How to Modify Routing Setup IDs"

	
Section 8.5, "How to Set Up CAVS Routing Configurations Without Creating Routing Setup IDs"

8.1 Introduction to CAVS Routing Setup IDs

CAVS routing setup IDs are used to route the service calls to the CAVS simulators. Use the pages covered in this chapter to set up CAVS routing setup IDs before executing tests. These CAVS routing setup IDs are stored as RouteToCAVS properties in the AIAConfigurationProperties.xml file in <AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config. This file is read during run time to determine whether routing needs to be made to a CAVS simulator or to an actual system.

For example, you could create three routing setup IDs for the scenarios illustrated below.

	
To test the requester Application Business Connector Service (ABCS) or when the provider ABCS is not available, you would want the requester ABCS to call a simulator instead of actual Oracle AIA services. For this scenario, create a routing setup ID to set the RouteToCAVS property to TRUE on the requester ABCS. This will ensure that the message is routed to the CAVS simulator, as indicated in red.

	
Note:

An actual participating application or test definition can be used to invoke the requester ABCS.

	
To test the provider ABCS or when the provider application is not available, you would want the provider ABCS to call a simulator instead of an actual provider application service. For this scenario, create a routing setup ID to set the RouteToCAVS property to TRUE on the provider ABCS. This will ensure that the message is routed to the CAVS simulator, as indicated in blue.

	
Note:

If there is more than one callout from the provider ABCS, the CAVS user can have fine-grained control over the routing by setting the routing at the PartnerLink level (and optionally at the operation level). This is indicated in the figure.

	
To test the requester ABCS and the provider ABCS together, you would create a routing setup ID to set the RouteToCAVS property to FALSE on the requester ABCS so that it can go on to call the provider ABCS and TRUE on the provider ABCS.

Figure 8-1 helps to illustrate the need for different routing setup IDs to test each of these three scenarios. When creating test definitions that will be used to initiate these test scenarios, CAVS enables you to associate the test definition with a specific routing setup ID. This routing setup ID determines the configuration that is required and automatically applies it before executing the test.

Figure 8-1 Sample Scenarios for Using CAVS Routing Setup IDs

[image: This image is described in surrounding text]

For example, if these three test scenarios are grouped into a single test group for execution, each test requires a different routing setup. In this case, you would create three routing setup IDs, 1001, 1002, and 1003, for example.

Each routing setup ID is required by one of the scenarios. You assign routing setup ID 1001 to the test definition for scenario 1, 1002 to the test definition for scenario 2, and so forth. When these three test definitions are executed as a part of the test group, the CAVS system automatically applies routing setup IDs 1001, 1002, and 1003 when executing the appropriate test definition. This eliminates the need to manually modify routing configurations between test scenario executions.

If, for example, you did not associate routing setup ID 1002 with the test definition for scenario 2, the test definition for scenario 2 would use routing setup ID 1001, because it was the last applied routing setup ID.

For more information about assigning a routing setup ID to a test definition, see Section 4.1, "How to Create a Test Definition."

Another option for applying routings is to directly modify them on the Configuration page.

For more information about the Configuration page, see Section 8.5, "How to Set Up CAVS Routing Configurations Without Creating Routing Setup IDs."

8.2 How to Create CAVS Routing Setup IDs

To create CAVS routing setup IDs:

	
Access the Oracle Application Integration Architecture (AIA) Home Page. In the Composite Application Validation System area, click the Go button. Select the Routing Setup tab. Click the Create button. The Create Routing Setup page displays as shown in Figure 8-2.

Figure 8-2 Create Routing Setup Page

[image: This image is described in surrounding text]

	
Upon access, the Create Routing Setup page displays routing information for all services with a RoutetoCAVS property defined in the AIAConfigurationProperties.xml file in <AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

Use this page to perform a one-time setup of routing setup IDs that you can later associate with test definitions using the SetupId field on the Create Test page. By making this association, the required routing setup will be automatically applied during the execution of the test definition.

For more information about the SetupId field, see Section 4.1, "How to Create a Test Definition."

Data saved on this page is stored in a CAVS table, rather than in the AIAConfigurationProperties.xml file.

For more information about how to quickly define a routing configuration that is stored in AIAConfigurationProperties.xml, see Section 8.5, "How to Set Up CAVS Routing Configurations Without Creating Routing Setup IDs."

Use the page elements on the Create Routing Setup page to create a new CAVS routing.

Available elements on the Create Routing Setup page are discussed in Table 8-1.

Table 8-1 Create Routing Setup Page Elements

	Element	Description
	
SetupId

	
Upon saving, a sequentially generated ID is assigned to the routing setup ID.

	
Description

	
Enter a description of the routing setup ID you are creating.

	
InvokingServiceName

	
Lists all services defined in the AIAConfigurationProperties.xml file in <AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

	
PartnerLink

	
The PartnerLink that is invoked by the service that you want to route to the CAVS simulator.

	
Operation

	
The operation of the PartnerLink that you want to route to the CAVS simulator. Displays a value only when multiple operations on the service are invoked using the same PartnerLink, typically when calling an Enterprise Business Service.

	
RouteToCavs

	
Select to indicate that the invoking service should route to the selected CAVS simulator.

	
SimulatorId

	
Click Add to access the Search Definitions page, where you can select the simulator definition that you want an invoking service to route to. Upon access, the page displays all available CAVS simulator definition IDs. Select the simulator definition to which you want to route an invoking service and click the Select button.

If a simulator definition has already been selected, the simulator ID displays. Click Modify to select a different simulator ID. Click Clear to clear the selection.

8.3 How to Search for CAVS Routing Setup IDs

To search for CAVS routing setup IDs:

	
Access the AIA Home Page. In the Composite Application Validation System area, click the Go button. Select the Routing Setup tab. The Routing Setup page displays, as shown in Figure 8-3.

Figure 8-3 Routing Setup Page

[image: This image is described in surrounding text]

	
Use the page elements on the Routing Setup page to search for an existing CAVS routing setup ID, or access functionality to create and delete routings.

Available elements on the Routing Setup page are discussed in Table 8-2.

Table 8-2 Routing Setup Page Elements

	Element	Description
	
SetupId

	
Enter the ID assigned to the routing setup ID you are searching for.

	
Description

	
Enter description text used for the routing setup ID you are searching for.

	
Search

	
Click to execute a search for routing setup IDs using the search criteria entered in the Search Routing Setups group box.

	
Delete

	
Select one or more routing setup IDs that you want to delete and click Delete to execute the deletion.

	
Create

	
Click to access the Create Routing Setup page, where you can create a routing setup ID.

For more information, see Section 8.2, "How to Create CAVS Routing Setup IDs."

	
Apply Routing

	
After you have created a new routing setup ID, you may apply it to populate the AIAConfigurationProperties.xml file. To do this, select a single routing setup ID and click Apply Routing.

If you apply the routing setup ID to the AIAConfigurationProperties.xml file, it becomes a routing configuration that is applied in all executions of the associated invoking service, not just when the routing setup ID is referenced on a test definition.

	
SetupId

	
Click to access the Routing Setup page, where you can modify an existing routing setup ID.

For more information the Routing Setup page, see Section 8.4, "How to Modify Routing Setup IDs."

Routing Setup Actions

Available elements in the Routing Setup Actions area are discussed in Table 8-3.

Table 8-3 Routing Setup Actions Area Elements

	Element	Description
	
Reset Routing

	
Click to set all routing configurations to FALSE. This means that all routings to simulators (RoutetoCAVS property settings) in the AIAConfigurationProperties.xml file will be set to FALSE, whether you have defined them through the Routing Setup pages or directly in the file.

	
View Routing

	
Click to access the Configuration page, where you can access a read-only view of the last applied, or active, routing setup ID.

8.4 How to Modify Routing Setup IDs

To modify routing setup IDs:

	
Access the AIA Home Page. In the Composite Application Validation System area, click the Go button. Select the Routing Setup tab. Click a SetupId link. The Routing Setup page displays as shown in Figure 8-4.

Figure 8-4 Routing Setup Page

[image: This image is described in surrounding text]

	
Use the page elements on the Routing Setup page to modify existing routing setups. Available elements are discussed in Table 8-4.

Data saved on this page is stored in a CAVS table, rather than in the AIAConfigurationProperties.xml file.

If you want to apply the data to the AIAConfigurationProperties.xml file, you must click Apply Routing for the routing setup ID on the Search Routing Setups page.

For more information about the Apply Routings button, see Section 8.3, "How to Search for CAVS Routing Setup IDs."

Table 8-4 Routing Setup Page Elements

	Element	Description
	
SetupId

	
Displays the ID you assigned to routing setup ID on the Create Routing Setup page.

	
Description

	
If applicable, edit the routing setup ID description.

	
Invoking Service Name

	
This is the service after which the service routing to CAVS should happen.

	
PartnerLink

	
The PartnerLink that is invoked by the service that you want to route to the CAVS simulator.

	
Operation

	
The operation of the PartnerLink that you want to route to the CAVS simulator. Displays a value only when multiple operations on the service are invoked using the same PartnerLink, typically when calling an enterprise business service.

	
RouteToCavs

	
Select to indicate that the invoking service should route to the selected CAVS simulator.

	
SimulatorId

	
Click the icon to access the Search Definitions page, where you can select the simulator definition that you want an invoking service to route to.

If a simulator definition has already been selected, the simulator ID displays. Click Modify to select a different simulator ID. Click Clear to clear the selection.

8.5 How to Set Up CAVS Routing Configurations Without Creating Routing Setup IDs

To set up CAVS routing configurations without creating routing setup IDs:

	
Access the AIA Home Page. In the Setup area, click the Go button. Select the Configuration tab. The AIA Configuration page displays as shown in Figure 8-5.

Figure 8-5 AIA Configuration Page

[image: This image is described in surrounding text]

	
Use this page to quickly set up a CAVS routing configuration without having to create routing setup IDs. This is particularly useful when you are only interested in using CAVS simulators without CAVS test definitions.

For example, you may only need to use the CAVS simulator feature for your development purposes and you may not need to uptake the complexity involved in setting up routing setup IDs. In this case, you can use this page to directly modify service routing configurations in the AIAConfigurationProperties.xml file.

	
Note:

If you use this page to modify these service routing configurations, there is no need to manually reload the configurations.

However, if you are using CAVS for extensive testing purposes, we recommend that you use the Routing Setup pages to create your routing setup.

For more information about the Routing Setup page, see Section 8.2, "How to Create CAVS Routing Setup IDs."

What's New in This Guide for Release 11.1.1.7

The following table lists the content that has been added or updated.

For a list of known issues (release notes), see the "Known Issues for Oracle SOA Products and Oracle AIA Foundation Pack" at http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html.

	Content	Changes Made
	
Chapter 2

	
Added information about CAVS WS-Addressing.

	
Chapter 17

	
Added information about how to use the message resubmission user interface.

	
Chapter 20

	
New chapter that describes how to use the Code Compliance Inspector (CCI). This feature used to be called the PIP Auditor.

[image: Oracle Corporation]

A XML Structures of Exportable CAVS Definitions and Instances

This appendix provides XML structures of exportable Composite Application Validation System (CAVS) definitions and instances.

This appendix includes the following sections:

	
Section A.1, "Definition.xml"

	
Section A.2, "Instance.xml"

A.1 Definition.xml

The structure of the Definitions.xml file created by the CAVS definition export feature is shown in Example A-1.

This export feature should be used to migrate definitions between instances running on the same version of Oracle Application Integration Architecture (AIA) Foundation Pack.

Use this structure as a reference if you receive a validation error when importing definitions.

Edit this structure to create new definitions for importing to an Foundation Pack instance.

For more information about the definition export and import feature, see Chapter 12, "Exporting and Importing CAVS Definitions and Instances."

Example A-1 Definition.xml

<DefinitionsList>

<!-- The section below is for one test/simulator definition. This includes all definition details
as well as XPATH conditions set by the user.
For each definition the section below will be repeated -->

<DefinitionsViewRORow>
 <DefinitionId>[Definition ID that was set in the previous environment. During import, the
 target system will generate a new ID for this field]</DefinitionId>
 <Type>[Test|Simulator]</Type>
 <Description>[String. Description of the test or simulator]</Description>
 <State>[Locked|Unlocked]</State>
 <ServiceType>[Synchronous|Notify|Asynchronous two way]</ServiceType>
 <UrlEndpoint>[URL]</UrlEndpoint>
 <SoapAction>[String. Valid soap action from the wsdl of the above URL]</SoapAction>
 <SoapTransportType>[HTTP]</SoapTransportType>
 <MessageRequest>[SOAP Message. Request message along with CAVS SOAP
 envelopes]</MessageRequest>
 <MessageResponse>[SOAP Message. Response message along with CAVS SOAP
 envelopes]</MessageResponse>
 <Delay>[Integer greater than -1. Only in the case of ServiceType Asynchronous two way]</Delay>
 <ServiceName>[String]</ServiceName>
 <ServiceVersion>[String]</ServiceVersion>
 <ProcessName>[String]</ProcessName>
 <PipName>[String]</PipName>
 <AuditedOn>[YYYY-MM-DD HH:MM:SS.M]</AuditedOn>
 <AuditedBy>[oc4jadmin]</AuditedBy>
 <!-- Namespace details from the request/response message. There can be more than one occurrence
 of the section below -->
 <NsXpathsForDefinitionsRO>
 <DefinitionNsXpathsViewRORow>
 <DefinitionId>[Definition ID mentioned above]</DefinitionId>
 <NamespaceAlias>[String. namespace alias]</NamespaceAlias>
 <Namespace>[valid namespace URL]</Namespace>
 </DefinitionNsXpathsViewRORow>
 </NsXpathsForDefinitionsRO>
 <!-- XPATH variables and values. There can be more than one occurrence of the section below
 -->
 <XpathsForDefinitionsRO>
 <DefinitionXpathsViewRORow>
 <DefinitionId>[Definition ID mentioned above]</DefinitionId>
 <XpathSeqId>[Non negative Integer]</XpathSeqId>
 <Xpath>[XPATH expression]</Xpath>
 <IsNodeText>[0|1.Applicable only for Simulator Definitions]</IsNodeText>
 <IsNodeKey>[0|1. Applicable only for Simulator Definitions]</IsNodeKey>
 <Condition>[OK|EQ|NE|LT|GE|LE|Not Null]</Condition>
 <IsSystemGenerated>[0|1]</IsSystemGenerated>
 </DefinitionXpathsViewRORow>
 </XpathsForDefinitionsRO>
</DefinitionsViewRORow>

<!-- The section below is for one group test definition. This includes all definition details as
well as references to Test definitions that are mentioned above.
For each such group definition the section below will be repeated -->

<GroupDefinitions>
 <!-- There can be more than one occurrences of the section below -->
<GroupDefinitionsViewRORow>
 <GroupDefinitionId>[Group Definition ID that was set in the previous environment. During import
 the target system will generate a new ID for this field]
</GroupDefinitionId>
 <Description>[String]</Description>
 <ProcessName>[String]</ProcessName>
 <PipName>[String]</PipName>
 <GDDefinitionsViewRO>
 <!-- There can be more than one occurrences of the section below -->
 <GDDefinitionsViewRORow>
 <GroupDefinitionId>[Group Definition ID set above]</GroupDefinitionId>
 <SeqId>[Non negative Integer]</SeqId>
 <DefinitionId>[One of the Definition ID set in the DefinitionsViewRORow
 section]</DefinitionId>
 <DefinitionSeqId>[Non negative Integer]</DefinitionSeqId>
 <ServiceType>[Synchronous|Notify|Asynchronous two way]</ServiceType>
 <SoapTransportType>[HTTP]</SoapTransportType>
 </GDDefinitionsViewRORow>
 </GDDefinitionsViewRO>
 </GroupDefinitionsViewRORow>
</GroupDefinitions>
</DefinitionsList>

A.2 Instance.xml

The structure of the Instance.xml file created by the CAVS instance export feature is shown in Example A-2.

This export feature can be used to export a test or group instance in XML format that can be used with XML reporting tools to generate reports of test executions.

For more information about the instance export feature, see Chapter 12, "Exporting and Importing CAVS Definitions and Instances."

Example A-2 Instance.xml

<InstancesList><?xml version = '1.0' encoding = 'UTF-8'?>
<InstancesViewRORow>
<!-- There would be more occurrences of this if more instances are exported--!>
 <InstanceId>[Instance ID that was assigned by the environment in which the instance was
 run]</InstanceId>
 <Type>[Test|Simulator|Group</Type>
 <Status>[Status of the instances being exported] </Status>
 <StartedOn>[Date and time at which the instance started]</StartedOn>
 <EndedOn>[Date and time at which the instance ended]</EndedOn>
 <IsStaled>[0|1]</IsStaled>
 <DefinitionId>[Definition ID of the definition that generated the instance]</DefinitionId>
 <Description>[Description of the definition ID that generated the instance]</Description>
 <ServiceType>Synchronous|Asynchronous two-way|Asynchronous (notify)</ServiceType>
 <SoapAction>[String. Valid SOAP action for the WSDL defined for the definition
 ID]</SoapAction>
 <SoapTransportType>HTTP</SoapTransportType>
 <MessageRequest>actual request message</MessageRequest>
 <MessageResponse>actual response message</MessageResponse>
 <DefinitionsViewRO>
 <DefinitionsViewRORow>
 <DefinitionId>[Definition ID mentioned above]</DefinitionId>
 <Type>[Type mentioned above] </Type>
 <Description>[Description mentioned above]</Description>
 <State>[Locked|Unlocked]</State>
 <ServiceType>[Service Type mentioned above] </ServiceType>
 <SoapAction>[SOAP Action mentioned above] </SoapAction>
 <SoapTransportType>HTTP</SoapTransportType>
 <MessageRequest>[Request message defined in the corresponding Test or Simulator
 definition]</MessageRequest>
 <MessageResponse>[Response message defined in the corresponding Test or Simulator
 definition]</MessageResponse>
 <AuditedOn>[YYYY-MM-DD HH:MM:SS.M]</AuditedOn>
 <AuditedBy>[oc4jadmin]</AuditedBy>
 </DefinitionsViewRORow>
 </DefinitionsViewRO>
 <InstanceXpathsViewRO>
 <InstanceXpathsViewRORow>
 <InstanceId>[Instance ID assigned to the instance}</InstanceId>
 <XpathSeqId>[Non-negative integer] </XpathSeqId>
 <Status>[Status of the instance] </Status>
 <Xpath>/soap:Envelope</Xpath>
 <IsNodeKey>[0|1. Applicable only for Simulator Definitions]</IsNodeKey>
 <Condition>[OK|EQ|NE|LT|GE|LE|Not Null]</Condition>
 </InstanceXpathsViewRORow>
 </InstanceXpathsViewRO>
 <InstanceNsXpathsViewRO>
 <InstanceNsXpathsViewRORow>
 <InstanceId>[Instance ID assigned to the instance] </InstanceId>
 <NamespaceAlias>[String]</NamespaceAlias>
 <Namespace>[Valid namespace URL]</Namespace>
 </InstanceNsXpathsViewRORow>
 </InstanceNsXpathsViewRO>
</InstancesViewRORow></InstancesList>

14 Setting Up Error Handling

This chapter provides an overview and discusses how to create user roles, associate email addresses to user roles, configure notification details, and how to set up error handling configuration details.

This chapter includes the following sections:

	
Section 14.1, "Introduction to Setting Up Error Handling"

	
Section 14.2, "How to Create Error Handling User Roles"

	
Section 14.3, "How to Associate Email Addresses with Error Handling User Roles"

	
Section 14.4, "How to Configure Notification Details"

	
Section 14.5, "How to Set Up AIA Error Handling Configuration Details"

14.1 Introduction to Setting Up Error Handling

Setting up error handling involves configuring the following items:

	
Error notification enablement

Error notification functionality is enabled by default.

For more information about disabling error notification functionality, see Section 15.4, "Disabling Error Notifications."

	
Oracle BPM Worklist enablement

Oracle BPM Worklist functionality is disabled by default.

For more information about enabling Oracle BPM Worklist functionality, see Section 16.2, "How to Enable the Oracle BPM Worklist."

	
Error handling user roles

Create user roles in WebLogic Server Administration Console to receive error notifications and Oracle BPM Worklist task assignments.

For more information, see Section 14.2, "How to Create Error Handling User Roles."

	
Error handling user role email addresses

Use Oracle User Messaging Service to associate email addresses with error handling user roles. Error notifications will be sent to the email addresses specified.

For more information, see Section 14.3, "How to Associate Email Addresses with Error Handling User Roles."

	
Notification configuration details

Configure details that enable error notification emails to be sent.

For more information, see Section 14.4, "How to Configure Notification Details."

	
Error handling configuration details

Define and modify error handling configuration details, including Error Notification and Oracle Worklist roles and responsibilities for processes operating in an Oracle Application Integration Architecture (AIA) ecosystem.

For more information, see Section 14.5, "How to Set Up AIA Error Handling Configuration Details."

	
Error handling responsibilities

If you do not want to assign Actor and FYI user roles for specific error scenarios, you can assign default Actor and FYI user roles in AIAConfigurationProperties.xml.

For more information, see "Configuring Oracle AIA Processes for Error Handling and Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

Figure 14-1 illustrates the way in which error handling setup elements enable Error Notification functionality.

Figure 14-1 Error Handling Setup Elements That Enable Error Notification Functionality

[image: This image is described in surrounding text]

Figure 14-2 illustrates the way in which error handling setup elements enable Oracle Worklist functionality.

Figure 14-2 Error Handling Setup Elements That Enable Oracle Worklist Functionality

[image: This image is described in surrounding text]

14.2 How to Create Error Handling User Roles

To create error handling user roles:

	
Access the Oracle WebLogic Server Administration Console: http://<host>:<port>/console.

	
In the Domain Structure menu, click Security Realms.

	
On the Summary of Security Realms page, select myrealm.

	
On the Settings for myrealm page, select the Users and Groups tab.

	
Select the Users tab.

	
Create and modify user roles for use with the Error Handling Framework. For error handling notification and worklist functionality to work as designed, ensure that you are using user roles and not groups.

For more information about setting up user roles, see "Using the Administration Console to Manage Users, Groups, and Roles" in Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.

	
Note:

Any user roles you create in the WebLogic Server Administration Console are stored in the Oracle WebLogic Server's embedded LDAP server. You may integrate a third-party LDAP solution to the embedded LDAP server.

For more information about Oracle WebLogic Server s embedded LDAP server, see "Security Provider Databases" in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.

14.3 How to Associate Email Addresses with Error Handling User Roles

To associate email address with error handling user roles:

	
Access the My Messaging Channels page in the Oracle User Messaging Service standalone user interface: http://<soa-host>:<soa-port>/sdpmessaging/userprefs-ui.

For more information about creating, updating, and deleting a message channel, see "How to Manage Messaging Channels" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

	
Associate an email address with an error handling user role.

For more information about creating user roles, see Section 14.2, "How to Create Error Handling User Roles."

	
Ensure that the messaging channel name you enter corresponds to an error handling user role name you have created according to information in Section 14.2, "How to Create Error Handling User Roles."

14.4 How to Configure Notification Details

To configure notification details:

	
Set up workflow notification properties in the Oracle Enterprise Manager.

For more information about how to set up these properties, see "Configuring Human Workflow Notification Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

	
Configure an email messaging channel. This enables the messaging service to resolve the email address when trying to send a notification to a user.

For more information about how to configure an email messaging channel, see the Oracle WebLogic Communication Services Developer's Guide.

	
Set the sender address for email notifications to a valid email address. Set this value in the FROM.EMAIL.ID property in the Error Handling Module section of the AIAConfigurationProperties.xml file. For example:

<Property name="FROM.EMAIL.ID">Email:AIA-Error-Handling@oracle.com</Property>

For more information about requirements for working with AIAConfigurationProperties.xml, see "How to Set Up AIA Workstation" in Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

14.5 How to Set Up AIA Error Handling Configuration Details

This section includes the following topic: Section 14.5.1, "What You Need to Know about Setting Up Error Handling Configurations."

To set up AIA error handling configuration details:

	
Access the Error Notifications page. To access the page,

Access the AIA Home Page. In the Setup area, click the Go button. Select the Error Notification tab. The Error Notification page displays as shown in Figure 14-3 and Figure 14-4.

Figure 14-3 Error Notification Page (1 of 2)

[image: This image is described in surrounding text]

Figure 14-4 Error Notification Page (2 of 2)

[image: This image is described in surrounding text]

	
Use the page elements to define and modify error handling configuration details for processes operating in an Oracle AIA ecosystem, including Error Notification and Oracle Worklist roles and Error Notification throttling parameters.

The error handling configurations you define on the Error Notifications page are stored in the AIA_ERROR_NOTIFICATIONS table.

	
Note:

For a given process, if no entry is found in the AIA_ERROR_NOTIFICATIONS table, the Actor and FYI roles specified in AIAConfigurationProperties.xml are used for Error Notifications and Oracle Worklist assignments, if enabled. By default, the Actor role is set to AIAIntegrationAdmin. Therefore, you are not required to populate the AIA_ERROR_NOTIFICATIONS table unless there is an explicit need.

For more information, see "Configuring Oracle AIA Processes for Error Handling and Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

Descriptions of key elements on the Error Notification page are discussed in Table 14-1.

Table 14-1 Error Notification Page Elements

	Element	Description
	
ErrorCode

	
For BPEL and Mediator process system error notifications, this is the fault code.

For business errors using catch blocks, this is the business error code you are catching. This is user-defined, for example, OUT_OF_INV.

The sample error code for system faults is {http://schemas.oracle.com/bpel/extension}remoteFault and {http://schemas.oracle.com/bpel/extension}bindingFault.

	
SystemCode

	
This is the system code of the participating application.

	
ProcessName

	
This is the business process in which the service is participating.

	
ServiceName

	
For BPEL and Mediator services, this is the name of the service that experiences the error for which you are defining error notification details. For example, SampleBPELProcess.

	
NotificationRole

	
If you have enabled Error Notifications, specify the user role that you want to receive Actor error notifications for a process.

If you have enabled Oracle Worklist functionality, specify the role to which you want to assign Actor tasks for a process.

The Actor role is responsible for taking action to correct the error that generated the notification.

For Error Notifications or Oracle Worklist functionality, ensure that the role you specify here has a corresponding entry in the Oracle WebLogic Server Administration Console user store.

For more information, see Section 14.2, "How to Create Error Handling User Roles."

For Error Notifications functionality, ensure that the user role has an email address defined in the Oracle WebLogic User Messaging Service.

For more information, see Section 14.3, "How to Associate Email Addresses with Error Handling User Roles."

	
FyiNotificationRole

	
If you have enabled Error Notifications, specify the user role that you want to receive FYI error notifications for a process.

If you have enabled Oracle BPM Worklist functionality, specify the role to which you want to assign FYI tasks for a process.

This is the role that will be given information about the error, but will not be responsible for taking any actions to correct the error that generated the notification.

For Error Notifications or Oracle BPM Worklist functionality, ensure that the role you specify here has a corresponding entry in your implementation s user management store. By default, the AIA user management store is WebLogic s embedded LDAP server.

For more information, see Section 14.2, "How to Create Error Handling User Roles."

For Error Notifications functionality, ensure that the user role has an email address defined in Oracle User Messaging Service preferences.

For more information, see Section 14.3, "How to Associate Email Addresses with Error Handling User Roles."

	
ErrorType

	
The default value is AIA_EH_DEFAULT. Use this value if you want to use the AIA default error listener as the consuming component for this error notification.

Enter a unique value here if you are using extended error handling functionality.

For more information about extending error handling, see "Configuring Oracle AIA Processes for Error Handling and Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

If you want to use default and extended error handling functionality in a single error notification definition, add multiple Error Type values separated by commas. For example, AIA_EH_DEFAULT, ORDER_FO, where AIA_EH_DEFAULT is the default Oracle AIA follow-through action, and ORDER_FO identifies the custom JMSCorrelationID for the extended error handling implementation. The listeners and associated actions for both of these error types will be executed at run time.

	
ErrorExtHandler (error extension handler)

	
The default value is ERRORHANDLER_EXT. Use this value for the error notification if you are not using an extended handler and the fault message will be generated based on the default fault message schema.

For more information about extending fault messages, see "Configuring Oracle AIA Processes for Error Handling and Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

If you are using an extended handler to extend the fault message for this error notification, enter a unique value to identify the extension handler that will be used to enrich the fault message.

	
AggrCountTot (aggregation count total)

	
Error notification throttling must be enabled before this field value can be used to control the issuance of error notifications.

For more information, see Section 15.2.2, "How to Enable Error Notification Throttling."

Enter the total number of error notifications you want the system to suppress during a specific time interval for the given error scenario. The count is valid only during the specified time interval.

An error notification email is issued for the first error during the time interval. After reaching the count value, the count is reset to 0 and another error notification email is issued.

	
StDatetime/EndDatetime

	
Error notification throttling must be enabled before these field values can be used to control the issuance of error notifications.

For more information, see Section 15.2.2, "How to Enable Error Notification Throttling."

Enter the start and end date-and-time intervals to which you want the count value to apply.

For example, if you set the AggrCountTot field value to 100, the start date and time to 30-Oct-2009 18:00:00, and the end date and time to 01-Nov-2009 17:00:00, one error notification email will be sent out on the first occurrence of an error in the time interval. When the count value entered in the AggrCountTot field is reached, the count is reset to 0 and another error notification email is issued.

The date and time values used to track the time interval are derived from the database. The date and time displayed in the fields are derived from your browser time. Hover over the field values to view the database time.

14.5.1 What You Need to Know about Setting Up Error Handling Configurations

The Error Handling Framework uses runtime values and the data you enter on this page to execute the following hierarchical logic to determine the appropriate Error Notification and Oracle BPM Worklist assignment roles for an error.

	
If all four runtime values (SYSTEM CODE, ERROR CODE, SERVICE NAME, and PROCESS_NAME) are available and they map to an entry in this table, use the specified roles.

	
If the ERROR CODE, SERVICE_NAME, and PROCESS_NAME are available and map to an entry in this table, use the specified roles.

	
If the SERVICE_NAME and PROCESS_NAME are available and map to an entry in this table, use the specified roles.

	
If the SERVICE_NAME is available and maps to an entry in this table, use the specified roles.

	
If none of these values are available, the default values are fetched from the AIAConfigurationProperties.xml file.

4 Creating and Modifying Test Definitions

This chapter describes how to create and modify test definitions and how to provide multiple request and response message sets in a single test definition.

A test definition is a configuration of a single execution of the test initiator service. The test definition stores test data and test execution instructions. A test definition can be executed alone, or in a single-threaded batch as a part of a group definition.

This chapter includes the following sections:

	
Section 4.1, "How to Create a Test Definition"

	
Section 4.2, "How to Modify a Test Definition"

	
Section 4.3, "How to Provide Multiple Request and Response Message Sets in a Single Test Definition"

4.1 How to Create a Test Definition

To create a test definition:

	
Access the Oracle Application Integration Architecture (AIA) Home Page. In the Composite Application Validation System area, click the Go button. Select the Definitions tab. Click the Create Test button.

The Create Test page displays, as shown in Figure 4-1 and Figure 4-2.

Figure 4-1 Create Test Page (1 of 2)

[image: This image is described in surrounding text]

Figure 4-2 Create Test Page (2 of 2)

[image: This image is described in surrounding text]

	
On the Create Test page, use the page elements discussed in Table 4-1 to create test definitions.

Table 4-1 Create Test Page Elements

	Element	Description
	
Id

	
Upon saving the test definition, displays a unique key identifier that is assigned to the test definition.

	
Name

	
Enter a descriptive name that you want to use for the test definition.

	
Type

	
Displays the type of definition you chose to create. On the Create Test page, this value will always be set to Test.

	
Service Type

	
Select the business service pattern of the web service that you want to test using the test definition: Synchronous (request-and-reply), Notify (asynchronous request-only), or Asynchronous two way.

	
Service Name

	
Enter the name of the web service that you want to test using the test definition. This is the name of the web service being called by the URL provided in the Endpoint URL field.

	
Service Version

	
Enter the version of the web service that you want to test using the test definition. This is the version of the web service being called by the URL provided in the Endpoint URL field.

	
Process Name

	
Enter the name of the process that includes the web service that you want to test using the test definition.

	
PIP Name (Process Integration Pack name)

	
Enter the name of the PIP that includes the web service that you want to test using the test definition.

	
Endpoint URL

	
Enter the URL of the web service that you want to test using the test definition. The endpoint URL value can be found in the WSDL of the web service that you want to test.

	
Get Operations

	
Click to display the list of operations supported by the WSDL associated with the Endpoint URL value you provided. Supported operations display in the Select WSDL Operations window.

Select the operation that you want to test using the test definition. The selected operation displays in the SOAP Action field.

	
SOAP Action

	
If you clicked Get Operations to select an operation in the Select WSDL Operations window, the selected operation displays here.

Alternatively, you can manually enter the operation called by the web service that you want to test using the test definition. The value you enter must match an action provided in the WSDL of the web service that you want to test.

	
Get Messages

	
Click to generate a request stub message for the operation specified in the SOAP Action field. For test definitions with the Service Type field set to Synchronous, the response stub message will also be generated.

	
Routing Setup Id

	
Select a routing configuration that you want to use for the test.

For more information about routing configurations, see Chapter 8, "Defining CAVS Routing Setup IDs."

Test Messages

Use the Test Messages group box to enter request and response XML message text. By default, SOAP envelope XML text is provided in these fields. You can use the Get Messages button to generate request and response stub messages based on selected endpoint URL and operation values. Alternatively, you can paste XML text within this default SOAP envelope or paste your own XML text already enclosed in an envelope into these fields.

Elements available in the Test Messages group box are discussed in Table 4-2.

For more information about obtaining request and response XML message text, see Section 2.5.1, "How to Obtain Message XML Text from a BPEL Process."

For more information about how to create test request and response messages that hold multiple sets of test data in a single definition, see Section 4.3, "How to Provide Multiple Request and Response Message Sets in a Single Test Definition."

Table 4-2 Create Test Page - Test Messages Group Box Elements

	Element	Description
	
Request Message

	
Entering request message XML text for a test definition is required, whether the Service Type field value is set to Synchronous, Notify, or Asynchronous two way.

When you first access the Create Test page, the Request Message text box is populated with a SOAP stub message.

You can use the Get Messages button to generate a request stub message based on selected endpoint URL and operation values.

If you are manually entering your request message, the Paste your SOAP Message Content here text in the stub message indicates where you should paste your actual request message text. This request message should mimic the XML message text sent by the service that normally initiates the service.

If the Service Type field value is set to Synchronous or Asynchronous two way, you may choose to not enter response message XML text in this field. You do not need to enter response message XML if you are manually entering XPath values directly on the Modify Test Definition page or if the test you are running does not require validation of the response message. For example, your test may be focused on just populating data.

	
Expected Response Message

	
The ability to enter response message XML text is available when the Service Type field value is set to Synchronous or Asynchronous two way.

When you first access the Create Test page, the Expected Response Message text box is populated with a SOAP stub message.

If you are manually entering your request message, the Paste your SOAP Message Content here text in the stub message indicates where you should paste your actual response message text. Enter a response message that is the expected response message XML. This facilitates the generation of XPath values, which are used to validate the actual response message returned in the test. You may also choose to manually enter or modify the XPath values directly on the Modify Test Definition page. If you are manually entering XPath values, you do not need to enter response message XML text.

For test definitions with the Service Type field set to Synchronous, the response message stub will have been generated when you clicked the Get Messages button during request message generation.

When you enter response message XML text on this page, you can click the Generate Xpath button on the Modify Test Definition page to generate the XPath values that will be used to validate the expected response message you entered on this page against the actual response returned by the test.

The Expected Response Message text box is unavailable when the Service Type field value is set to Notify.

	
Cancel

	
Click to exit the page and return to the Definitions page.

	
Next

	
Click to save entries on the Create Test page and go to the Modify Test Definition page, where you can further edit your test definition, generate XPaths, and execute the test.

	
Save and Return

	
Click to save entries on the Create Test page and return to the Definitions page.

4.2 How to Modify a Test Definition

To modify a test definition:

	
Access the Modify Test Definition page, as shown in Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6, and Figure 4-7.

To access the Modify Test Definition page, use one of the following navigation paths:

	
Access the AIA Home Page. In the Composite Application Validation System area, click the Go button. Select the Definitions tab. Click the Create Test button. Enter required values on the Create Test page and click Next.

	
Access the AIA Home Page. In the Composite Application Validation System area, click the Go button. Select the Definitions tab. Click an Id link for an unlocked test definition in the Search Result Selection grid on the Definitions page.

	
Access the AIA Home Page. In the Composite Application Validation System area, click the Go button. Select the Instances tab. Click a Definition Id link for an unlocked test definition on the Instances page.

	
Access the AIA Home Page. In the Composite Application Validation System area, click the Go button. Select the Instances tab. Click an instance ID link. Click a Definition Id link for an unlocked test definition on the Test Instances Detail page.

Figure 4-3 Modify Test Definition Page (1 of 5)

[image: This image is described in surrounding text]

Figure 4-4 Modify Test Definition Page (2 of 5)

[image: This image is described in surrounding text]

Figure 4-5 Modify Test Definition Page (3 of 5)

[image: This image is described in surrounding text]

Figure 4-6 Modify Test Definition Page (4 of 5)

[image: This image is described in surrounding text]

Figure 4-7 Modify Test Definition Page (5 of 5)

[image: This image is described in surrounding text]

	
Use the page elements on the Modify Test Definition page to modify an existing test definition and execute and manage existing test definitions.

The page displays values that have already defined for the test definition. You can modify the values in editable fields.

Most of the elements on this page also appear on the Create Test Definition page and are documented in Section 4.1, "How to Create a Test Definition." Any additional elements are discussed here.

The Time-out (msec) (in milliseconds) field displays only for a test definition with a Service Type value of Asynchronous two way.

Enter the number of milliseconds that you want the test definition to remain available for the asynchronous reply before timing out. If this length of time passes before the asynchronous response is returned, a failure will be issued.

If your test includes a simulator definition, the Time-out (msec) value you provide here must be greater than the Delay (msec) value defined on the simulator definition.

For more information about the Delay (msec) field, see Chapter 5, "Creating and Modifying Simulator Definitions"

Test Messages

Use the Test Messages group box to generate XPath values based on provided response XML message text. By default, SOAP envelope XML text is provided in these fields. You can use the Get Messages button to generate request and response stub messages based on selected endpoint URL and operation values. Alternatively, you can paste XML text within this default SOAP envelope, or paste your own XML text already enclosed in an envelope into these fields.

Available Test Message group box elements are discussed in Table 4-3.

For more information about obtaining request and response XML message text, see Section 2.5.1, "How to Obtain Message XML Text from a BPEL Process."

For more information about how to create test request and response messages that hold multiple sets of test data in a single definition, see Section 4.3, "How to Provide Multiple Request and Response Message Sets in a Single Test Definition."

Table 4-3 Modify Definitions Page - Test Messages Group Box Elements

	Element	Description
	
Request Message

	
If request message XML text was entered on the Create Test page, it is accessible and editable on this page.

Entering request message XML text for a test definition is required, whether the Service Type field value is set to Synchronous, Notify, or Asynchronous two way.

You can use the Get Messages button to generate a request stub message based on selected endpoint URL and operation values.

If you are manually entering your request message, the Paste your SOAP Message Content here text in the stub message indicates where you should paste your actual request message text. This request message should mimic the XML message text sent by the service that normally initiates the service.

	
Request CorrelationId Message

	
This field only displays for a test definition with the Service Type field value set to Asynchronous two way. For this service type, entering a correlation ID value ensures that when the asynchronous response is actually received, the Composite Application Validation System (CAVS) is able to correlate it to the correct request.

If your request message is an Enterprise Business Message (EBM), leave this field blank, as the EBM header ID is automatically used as the correlation ID. In this case, because the EBM header ID is used as the correlation ID, do not use it as a key column in the simulator definition, if applicable.

If your request message is not an EBM, you must enter a correlation ID value. This correlation must be based on a unique key of the message. For example, CreateOrder can use Order ID as the correlation ID.

Click Lookup to access the Choose Request Correlation Id page, where you can select a correlation ID from XPath variables available in the message.

	
Expected Response Message

	
The ability to enter response message XML text is available when the Service Type field value is set to Synchronous or Asynchronous two way.

If expected response message XML test was entered on the Create Test page, it is accessible and editable on this page.

You can manually enter the response message text on this page, or for test definitions with the Service Type field set to Synchronous, you can use the Get Messages button to generate a response stub message based on selected endpoint URL and operation values.

Entering the expected response message XML facilitates the generation of XPath values, which are used to validate the actual response message returned in the test. You may also choose to manually enter or modify the XPath values directly on the Modify Test Definition page. If you are manually entering XPath values, you do not need to enter response message XML text.

When you enter response message XML text on this page, you can click Generate Xpath button on the Modify Test Definition page to generate the XPath values that will be used to validate the expected response message you entered on this page against the actual response returned by the test.

If the Service Type field value is set to Synchronous or Asynchronous two way, you may choose to not enter response message XML text in this field. You do not need to enter response message XML if you are manually entering XPath values directly on the Modify Test Definition or if the test you are running does not require validation of the response message. For example, your test may be focused on just populating data.

The Expected Response Message text box is unavailable when the Service Type field value is set to Notify. In this case, a response message is not a test requirement.

	
Generate Xpath

	
Click to generate namespace and XPath values based on available Endpoint URL and Response Message values.

After you have generated XPath values, consider deleting any rows that will not be used in the testing effort.

The Generate Xpath button is unavailable when the Service Type field value is set to Notify. In this case, a response message is not a test requirement.

	
Response Message Correlation ID

	
This field only displays for a test definition with the Service Type field value set to Asynchronous two way. For this service type, entering a correlation ID value ensures that when the asynchronous response is actually received, the CAVS is able to correlate it to the correct request.

If your response message is an EBM, leave this field blank, as the EBM header ID is automatically used as the correlation ID. In this case, because the EBM header ID is used as the correlation ID, do not use it as a key column in the simulator definition, if applicable. If your response message is not an EBM, you must enter a correlation ID value. This correlation must be based on a unique key of the message. For example, CreateOrder can use Order ID as the correlation ID.

Click Lookup to access the Choose Response Correlation Id page, where you can select a correlation ID from XPath variables available in the message.

Prefix and Namespace Selection

Use the Prefix and Namespace Selection grid to define namespace data that will be used in the XPath values defined in the XPath Selection grid. Elements available in the Prefix and Namespace Selection grid are discussed in Table 4-4.

Table 4-4 Prefix and Namespace Selection Grid Elements

	Element	Description
	
Delete

	
Select one or more namespace rows and click Delete to execute the deletion. This button only appears when namespace rows are present.

	
Create

	
Click to manually add and populate a namespace row.

	
Prefix

	
Prefix that should be used for the namespace.

	
Namespace

	
Namespace to be used in the XPath data for the test definition.

XPath Selection

Use the XPath Selection grid to work with XPath values that are used to compare the actual response message returned in the test to the expected response message defined in the Response Message text box on this page. The values in this grid use the namespace values set in the Prefix and Namespace Selection grid.

A common adjustment you will likely need to make to XPath conditions and expected node values in this grid is to generalize certain specific values, such as EBM IDs. For example, an EBM ID is unique for each transaction, so your test definition will likely not want to specify a particular EBM ID as response criteria. Instead, you may want to generalize the criteria to just verify that the EBM ID is a number greater than zero or use the Is Valid condition value.

	
Note:

If you are entering XPath values manually, it is important to maintain correlations with the values entered in the Prefix and Namespace Selection grid. Each XPath node must have a prefix (namespace alias) that has been defined in the Prefix and Namespace Selection grid, unless it is an XPath expression.

The XPath Selection grid is unavailable when the Service Type field value is set to Notify. In this case, a response message is not a test requirement.

Elements available in the XPath Selection grid are discussed in Table 4-5.

Table 4-5 XPath Selection Grid Elements

	Element	Description
	
Xpath

	
When working with a test definition that contains multiple request and response data sets, use the Xpath drop-down list box to select the data set you want to use to run the test.

For more information about providing multiple data sets in a test definition, see Section 4.3, "How to Provide Multiple Request and Response Message Sets in a Single Test Definition."

	
Delete

	
Select one or more XPath rows and click Delete to execute the deletion. This button only appears when XPath rows are present.

	
Create

	
Click to manually add and populate an XPath row.

	
XPath Sequence Id

	
Indicates the sequence of the XPath expressions. This value is required. This value is read-only when it has been generated using the Generate Xpath button.

	
XPath

	
XPath data to be used in the test definition. These values can include XPath nodes and expressions. This value is read-only when it has been generated using the Generate Xpath button.

	
Condition

	
Select an available value:

	
Is Valid: The value provided in the XPath field is valid and no Expected Node Value is supplied.

	
Equals To: The value provided in the XPath field is valid and an Expected Node Value is supplied.

	
Not Equal To

	
Less Than

	
Greater Than

	
Less Than Equal

	
Greater Than Equal

	
Not Null

	
Expected Node Value

The value expected in the response XML message. When you use the Generate Xpath button to generate XPath data, this value may be populated, but can be modified as necessary. The Condition field value is used to qualify this value.

Test Instance Selection

Select the Test Instances tab to display the Test Instance Selection grid, which displays information about test instances generated using the test definition.

Click Id to access the test instance on the Test Instance Detail page.

For more information about the Test Instance Detail page, see Section 9.2, "How to View Test Instance Details."

Linked Simulator Definition Selection

Select the Simulator Definitions tab to display the Linked Simulator Definition Selection grid, which displays information about simulator definitions that are linked to the selected test definition.

Available elements on the Simulator Definition tab are discussed in Table 4-6.

Table 4-6 Linked Simulator Definition Selection Grid Elements

	Element	Description
	
Unassign

	
Select one or more simulator definition rows that you want to disassociate with the test definition. Click Unassign to execute the disassociation.

	
Assign

	
Click to access the Search Definitions - Simulator page, where you can search for a simulator definition that you want to assign to the test definition. Making this assignment facilitates reporting. After the test definition runs and generates a test instance, all simulator instances generated by the simulator definition associated with the test definition will automatically be linked to the test instance.

After you have assigned a simulator definition using the Search Definitions - Simulator page, the Modify Test Definition page appears, and displays the selected simulator definition.

	
Refresh

	
Click to refresh the Modify Test Definition page.

	
Simulator Definition Id

	
Click for an unlocked simulator definition to access the Modify Simulator Definition page.

Click for a locked simulator definition to access the View Simulator Definition page, where you can access a read-only view of the simulator definition.

Group Definition Selection

Select the Group Definitions tab to display the Group Definition Selection grid, which displays information about group definitions that include the test definition.

Elements available in the Group Definition Selection grid are discussed in Table 4-7.

Table 4-7 Group Definition Selection Grid Elements

	Element	Description
	
Group Definition Id

	
Click to access the group definition on the Group Definition Detail page.

For more information about the Group Definition Detail page, see Chapter 7, "Working with Group Definitions."

	
Group Name

	
Displays the descriptive name assigned to the group definition.

	
Sequence Id within Group

	
Displays the sequence in which the test definition is initiated by the group definition.

	
Cancel

	
Click to discard any updates you have made and return to the Definitions page.

	
Actions

	
Select the action you want to take with the test definition.

	
Execute: Select to execute the test definition. The status of the test execution appears at the top of the page. When a test definition has successfully executed, you can view details of the test instance on the Test Instance Details page.

For more information about the Test Instance Details page, see Chapter 9, "Working with Test and Simulator Instances."

	
Lock: Select to lock the test definition and view the test definition on the View Test Definition page. A locked definition cannot be edited.

	
Duplicate: Select to duplicate the test definition. The duplicate definition is created using the exact values of the original, with the exception of being given a unique Id value.

	
Apply

	
Click to apply and save any changes you have made to values on the page.

	
Save

	
Click to save entries on the page and go to the Definitions page.

For more information about the Definitions page, see Chapter 6, "Searching for Test and Simulator Definitions."

4.3 How to Provide Multiple Request and Response Message Sets in a Single Test Definition

You can create a test definition that contains multiple pairs of request and response message data, as shown in Figure 4-8. This means that test definitions only need to be created per usage requirements, not per test data requirements.

For example, if you want to test a process against five sets of test data, you can create a single test definition to test the process and include in it all five sets of test data against which you want the process to operate. This is as opposed to creating five separate test definitions, one per combination of process and set of test data.

Figure 4-8 Providing Multiple Request and Response Message Sets in a Single Test Definition

[image: This image is described in surrounding text]

When multiple sets of test data are included in a test definition, each set will be executed in sequence. Separate test instances will be generated for each set of data. Test instances will reflect the success or failure of each segment of the test run using each set of test data.

Request Message Format

Use the format shown in Example 4-1 to include multiple sets of request data in the test definition.

The CAVSRequestInputs and CAVSRequestInput_1 envelope are autogenerated. Use copy and paste commands to create more sets; CAVSRequestInput_2 and CAVSRequestInput_3, for example.

Example 4-1 Request Message Format

<cavs:CAVSRequestInputs xmlns:cavs="http://schemas.xmlsoap.org/cavs/requestenvelope/">
<cavs:CAVSRequestInput_1>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">
 <ns1:SimpleProcessProcessRequest>
 . . .
 </ns1:SimpleProcessProcessRequest>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSRequestInput_1>

<cavs:CAVSRequestInput_2>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">
 <ns1:SimpleProcessProcessRequest>
 . . .
 </ns1:SimpleProcessProcessRequest>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSRequestInput_2>
</cavs:CAVSRequestInputs>

Response Message Format

Use the format shown in Example 4-2 to include multiple sets of response data in the test definition.

Example 4-2 Response Message Format

<cavs:CAVSResponseOutput_1>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">
 <ns1:SimpleProcessProcessResponse>
 . . .
 </ns1:SimpleProcessProcessResponse>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSResponseOutput_1>

<cavs:CAVSResponseOutput_2>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">
 <ns1:SimpleProcessProcessResponse>
 . . .
 </ns1:SimpleProcessProcessResponse>
 </soap:Body>
</soap:Envelope>
</cavs:CAVSResponseOutput_2>
</cavs:CAVSResponseOutputs>

After entering request and response data sets and clicking the Generate Xpath button on the Modify Test Definition page, the XPath Selection grid provides access to the Please select an Xpath drop-down list box, where you can select the set of test data you want to use to run the test.

For more information about the Modify Test Definition page, see Section 4.2, "How to Modify a Test Definition."

If your testing scenario includes simulator definitions, you can likewise create simulator definitions that contain multiple request and response message sets that work with the sets defined in your test definition.

For more information, see Section 5.3, "How to Provide Multiple Request and Response Message Sets in a Single Simulator Definition."

1 Introduction to the Composite Application Validation System

This chapter describes the purpose and key components of the Composite Application Validation System (CAVS). It also describes design assumptions and knowledge prerequisites.

The Composite Application Validation System (CAVS) is a framework that provides a structured approach to test integration of Oracle Application Integration Architecture (AIA) services. The CAVS includes test initiators that simulate web service invocations and simulators that simulate service endpoints.

This chapter includes the following sections:

	
Section 1.1, "Describing the Purpose of the Composite Application Validation System"

	
Section 1.2, "Describing Key Components of the CAVS Framework"

	
Section 1.3, "Describing the CAVS Design Assumptions and Knowledge Prerequisites"

1.1 Describing the Purpose of the Composite Application Validation System

In the context of AIA, where there is a sequence of service invocations; spanning Application Business Connector Services (ABCSs), Enterprise Business Services (EBSs), Enterprise Business Flows (EBFs), and participating applications; the CAVS test initiators and simulators enable a layered testing approach. Each component in an integration can be thoroughly tested without having to account for dependencies by using test initiators and simulators on either end.

Consequently, when you build an integration, you have the ability to add new components to an already tested subset, allowing any errors to be constrained to the new component or to the interface between the new component and the existing component. This ability to isolate and test individual web services within an integration provides the benefit of narrowing the test scope, thereby distancing the service test from possible faults in other components.

Test initiators and simulators can be used independent of each other, thereby allowing users to effectively substitute them for non-available AIA services or participating applications.

The CAVS provides a repository that stores these test initiator and simulator definitions created by the CAVS user, as well as an interactive user interface to create and manage the same. Tests can be configured to run individually or in a single-threaded batch.

The CAVS provides value as a testing tool throughout the integration development life cycle:

	
Development

Because integration developers working with AIA are dealing with integrating disparate systems, they typically belong to different teams. To this end, the CAVS provides an effective way to substitute dependencies, letting developers focus on the functionality of their own service rather than being preoccupied with integrations to other services.

	
Quality assurance

The CAVS allows quality assurance engineers to unit and flow test integrations, thereby providing a way to easily certify different pieces of an integration. The reusability of test definitions, simulators, and test groups helps in regression testing and provides a quick way to certify new versions of services.

1.2 Describing Key Components of the CAVS Framework

The CAVS framework operates using the following key components:

	
Test definition

	
Simulator definition

Test Definition

The CAVS test initiator reads test data and feeds it to the web service being tested. You create the test data as a part of a test definition. The test definition is a configuration of the test initiator and contains test execution instructions.

The CAVS user creates a definition using the CAVS user interface (UI) to define the service endpoint URL that needs to be invoked, as well as the request message that will be passed along with metadata about the test definition itself.

For more information about creating test definitions, see Chapter 4, "Creating and Modifying Test Definitions."

The test initiator is a logical unit that executes test definitions to call the endpoint URL defined and creates test instances. This call is no different from any other request initiated by other clients. If the test definition Service Type value is set to Synchronous or Asynchronous two-way, the actual response can be verified against predefined response data to validate the accuracy of the response.

Figure 1-1 illustrates the high-level concept of the test initiator.

Figure 1-1 CAVS Test Definition

[image: This image is described in surrounding text]

Simulator Definition

The CAVS simulator is used to simulate a web service. Simulators typically contain predefined responses for a specific request. CAVS users create several simulator definitions, each for a specific set of input.

At run time, the CAVS simulator framework receives data from the service being tested. Upon receiving the request, CAVS locates the appropriate simulator definition, validates the input against predefined request values, and then returns predefined response data so that the web service being tested can continue processing.

For more information about creating simulator definitions, see Chapter 5, "Creating and Modifying Simulator Definitions".

Figure 1-2 illustrates the high-level concept of the CAVS simulator:

Figure 1-2 CAVS Simulator

[image: This image is described in surrounding text]

1.3 Describing the CAVS Design Assumptions and Knowledge Prerequisites

The CAVS operates with the following design assumptions:

	
The CAVS assumes that the requester and provider ABCSs it is testing are implemented using BPEL.

	
The CAVS is designed to initiate requests and simulate responses as SOAP messages using SOAP over HTTP. The request and response messages that you define in test and simulator definitions must contain the entire XML SOAP document, including the SOAP envelope, message header, and body (payload).

	
The correlation logic between the test initiator and the response simulator is based on timestamps only. For this reason, test and simulator instances generated in the database schema will not always be reconcilable, especially when the same web service is invoked multiple times during a very short time period, as in during performance testing.

	
The CAVS does not provide or authenticate security information for web services that are initiated by a test initiator or received by a response simulator. However, security information passed through the system by the web service can be used as a part of verification and validation logic.

	
When a participating application is involved in a CAVS testing flow, execution of tests can potentially modify data in a participating application. Therefore, consecutive running of the same test may not generate the same results. The CAVS is not designed to prevent this kind of data tampering because it supports the user s intention to include a real participating application in the flow. The CAVS has no control over modifications that are performed in participating applications.

This issue does not apply if your CAVS test scenario uses test definitions and simulator definitions to replace all participating applications and other dependencies. In this case, all cross-reference data is purged after the test scenario has been executed. This enables rerunning of the test scenario.

	
Note:

CAVS cross reference data is purged at the end of a test execution when executing a test definition and at the end of a test group execution when executing a test group definition. Therefore, if you want to execute test definitions that are dependent on cross referencing data created by earlier test executions, ensure that you include all dependent test definitions in a test group and execute the test group.

For more information about how to make test scenarios rerunnable, see Chapter 11, "Purging CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios."

To work effectively with the CAVS, users must have working knowledge of the following concepts and technologies:

	
AIA

	
XML

	
XPath

	
SOAP

Oracle® Fusion Middleware

Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack

11g Release 1 (11.1.1.7)

E17366-07

February 2013

Describes how to use Composite Application Validation System initiators and simulators to test AIA service integrations. Test initiators simulate service invocations and simulators simulate service endpoints. Describes how to use error handling and logging components, including error notifications and trace and error logs, to support services operating in an AIA ecosystem.

Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack, 11g Release 1 (11.1.1.7)

E17366-07

Copyright © 2001, 2013 Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

12 Exporting and Importing CAVS Definitions and Instances

This chapter describes how to export and import Composite Application Validation System (CAVS) definitions and instances.

This chapter includes the following sections:

	
Section 12.1, "How to Export and Import Definitions"

	
Section 12.2, "How to Export Test and Simulator Instances"

	
Section 12.3, "How to Export Group Instances"

12.1 How to Export and Import Definitions

To export and import CAVS definitions:

	
Access the Oracle Application Integration Architecture (AIA) Home Page. In the Composite Application Validation System area, click the Go button. Select the Definitions tab. The Definitions page displays, as shown in Figure 12-1.

Figure 12-1 Definitions Page

[image: This image is described in surrounding text]

Use the Export and Import buttons on this page to migrate test definitions, simulator definitions, and any associated group definitions in XML flat-file format between instances running on the same version of Foundation Pack.

Examples of uses for this export and import functionality include:

	
QA may want to certify a set of definitions that have been run in one build in other builds.

	
Support analysts and customers may want to exchange definition files.

	
You may want to verify validity of new environments.

	
Select one or more definitions and click the Export button to initiate the export. The following options display:

	
Export selected Definition(s) only

	
Export selected Definition(s) and associated Group Definition(s)

	
Export selected Definition(s), associated GroupDefinition(s) and Test Definition(s) that belong to the associated GroupDefinition(s) but are not selected

Select an option and click the Proceed button to create and save the definitions to a location on your local system. The default file name for the exported definition(s) is Definitions.xml.

If a test definition that you are exporting is associated with a routing setup ID, the routing setup information will also be exported.

If that routing setup is associated with one or more simulator definitions, which were provided when the Route To CAVS option was set to TRUE, then these simulator definitions will also be exported.

For more information about the structure of the Definitions.xml file created by the CAVS export definition feature, see Appendix A, "XML Structures of Exportable CAVS Definitions and Instances."

	
Use the Import button to upload a test, simulator, or group definition in the XML flat-file format generated by CAVS export functionality.

You can generate these files by clicking the Export button on this page. The definition file to be uploaded must be accessible by the local system being used to perform the upload.

Click the Import button and browse for the file you want to upload. The CAVS validates the structure of the file being uploaded. If the structure is invalid, an error will be raised.

If a test definition that you are importing is associated with a routing setup ID, the routing setup information will also be imported.

If that routing setup is associated with one or more simulator definitions, which were provided when the Route To CAVS option was set to TRUE, then these simulator definitions will also be imported.

For more information about the valid structure of the Definitions.xml file created by the CAVS export definition feature, see Appendix A, "XML Structures of Exportable CAVS Definitions and Instances."

	
Imported definitions will still reference endpoint URLs pointing to tested web services in the source system. You must update imported definition endpoint URL values to point to tested web services in the target system. The CAVS enables you to update these URLs directly on the following pages:

Click the Change URL button on this page to access the Modify Test Definitions page, where you can update the Endpoint URL field value.

For more information about the Endpoint URL field, see Section 4.1, "How to Create a Test Definition."

Because the sequential definition IDs assigned in the source system may not be valid in the target system, new sequential definition IDs will be assigned by the target system. As a result, associations between definitions will be severed in the target system and will need to be reestablished.

Because test, simulator, and group instance details that may be associated with definitions in the source system are not valid in the target system, they will not be imported.

If the same definition is uploaded multiple times, multiple duplicate definitions will be created in the target system.

For more information about the Definitions page, see Chapter 6, "Searching for Test and Simulator Definitions."

12.2 How to Export Test and Simulator Instances

To export test and simulator instances:

	
Access the AIA Home Page. In the Composite Application Validation System area, click the Go button. Select the Instances tab. The Instances page displays, as shown in Figure 12-2.

For more information about the Instances page, see Chapter 9, "Working with Test and Simulator Instances."

Figure 12-2 Instances Page

[image: This image is described in surrounding text]

	
Use the Export feature to export instances in XML format. You can use XML-based reporting tools to generate reports of test and simulator executions using these XML files.

Select one or more instances and click the Export button to initiate the export.

For more information about the structure of the Definitions.xml file created by the CAVS export instance feature, see Appendix A, "XML Structures of Exportable CAVS Definitions and Instances."

	
Click Save to create and save the definitions to a location on your local system. The default file name for the exported definition(s) is Instances.xml.

12.3 How to Export Group Instances

To export group instances:

	
Access the AIA Home Page. In the Composite Application Validation System area, click the Go button. Select the Group Instances tab. The Group Instances page displays, as shown in Figure 12-3.

For more information about the Group Instances page, see Section 10.1, "How to View Group Instances."

Figure 12-3 Group Instances Page

[image: This image is described in surrounding text]

	
Select one or more group instances that you want to export and click the Export button to execute the download.

For more information about the structure of the Definitions.xml file created by the CAVS export definition feature, see Appendix A, "XML Structures of Exportable CAVS Definitions and Instances."

List of Examples

	4-1 Request Message Format
	4-2 Response Message Format
	5-1 Request Message Format
	5-2 Response Message Format
	5-3 Request Message Format
	5-4 Request SOAP Message Nodes
	5-5 Response SOAP Message
	5-6 Response Message Modified by CAVS
	15-1 AIAEHNotifications.xml
	15-2 EMAIL Element in AIAEHNotifications.xml
	15-3 FYI_EMAIL Element in AIAEHNotifications.xml
	15-4 URL Element in AIAEHNotification.xml
	15-5 EXT_URL Element in AIAEHNotifications.xml
	15-6 Customizing the Subject Line of Error Notification Emails
	15-7 Customizing the Body Text of Error Notification Emails
	15-8 Customizing Application Links in Body Text of Error Notification Emails
	17-1 Sample ResubmissionParams.properties for AQ based Resubmission
	17-2 Sample ResubmissionParams.properties for WLS JMS based Resubmission
	17-3 Sample ResubmissionParams.properties for Resequencer based Resubmission
	A-1 Definition.xml
	A-2 Instance.xml

B Code Compliance Inspector: New Terminology & Available Assertion Executors

This appendix describes the new terminology, delivered assertions, and the available assertion executors for the Code Compliance Inspector tool.

There are two executors for CCI:

	
XPathExecutor: contains all of the XPath related operations. For example, "XpathExistsCheck" and "XpathNodeCountEqualCheck"

	
FSExecutor: contains all of the file system related operations. For example, "FileExistCheck" and "FilesMatchPatternCheck"

This appendix includes the following sections:

	
Section B.1, "New Terminology"

	
Section B.2, "Delivered Assertions"

	
Section B.3, "Assertion Parameters for the XPathExecutor"

	
Section B.4, "Assertion Parameters for the FSExecutor"

	
Section B.5, "Available Operations for the XPathExecutor"

	
Section B.6, "Available Operations for the FSExecutor"

B.1 New Terminology

The Code Compliance Inspector was previously called the Process Integration Pack (PIP) Auditor. The new labels and concepts for Code Compliance Inspector are described in Table B-1.

Table B-1 New terminology

	Old Name	New Name	Description
	
PIP Auditor

	
Code Compliance Inspector

	
Run the Code Compliance Inspector to check for good coding practices.

	
Rule

	
Assertion

	
Assertion replaces the <Rule> tag within the old Rules.xml. Assertions can be defined once within the AssertionCatalog.xml files and then used within one or more Policies in the Policies.xml files.

	
RuleSet

	
AssertionSet

	
AssertionSet replaces the <Ruleset> tag within the old Rules.xml. AssertionSet is informational only and is not surfaced in the JDeveloper Extension or in the Code Compliance By Policy Report.

	
Rules.xml

	
AssertionCatalog.xml

	
There are two files: AssertionCatalog-AIA-<version>.xml and AssertionCatalog-WS-I-<version>.xml.

	
Category

	
Category

	
Category is part of an Assertion's definition in AssertionCatalog.xml. Category is a tag within the definition of an Assertion, that is largely just informational. For this release, existing categories will become the Policy names; meaning that all Assertions tagged with a particular category will appear in the Policies.xml files using a Policy name that matches the Category.

	
TestSuite

	
Policy

	
Replaces the <TestSuite name= > tag in the old TestSuite.xml with <Policy name= >; Policies can be reused into more coarse-grained policy buckets using the <depends name=> tag.

	
Test

	
Assertion

	
Replaces the <Test rulename= > tag in the old TestSuite.xml.

	
TestSuite.xml

	
Polices.xml

	
There are two files: Policies-AIA-<version>.xml and Policies-WS-I-<version>.xml. Within the Policies.xml provided by Oracle, the policy name should match the Catalog names used within the Assertions in the AssertionCatalog.xml. Customers can modify the Policies.xml including renaming and reorganizing the Policies & Assertions.

	
pipaudit

	
CheckCompliance

	
Command line utility.

	
Priority

	
Priority

	
This term remains the same. Priorities are defined as:

	
Priority 1 assertions are the basic assertions that an integration project has to satisfy 100% to be qualified as a Compliant.

	
Priority 2 assertions are more stringent on certain design time patterns and an integration project that meets these assertions is qualified as Conformant.

	
Priority 3 assertions are the most stringent at the lowest levels of the technology, and an integration project that meets at least a certain threshold of these assertions is qualified as Fully Conformant.

	
Priority 4 assertions are recently introduced assertions that can be qualified as P3 or P2 or P1 assertions. For this release, these assertions do not play a role in the qualification of an integration project.

Priority levels are additive in nature, so passing Priority 2 (conformant) means that you need to pass Priority 1 (compliance) as well. A detailed list of pre-defined assertions can be viewed in the packaged Assertion Catalog XML files available under the ComplianceInspector/config directory.

B.2 Delivered Assertions

The following tables show the delivered assertions. These pre-defined assertions can be viewed in the packaged Assertion Catalog XML files located in the ComplianceInspector/config directory.

Table B-2 Category :Coding Standards

	Assertion	Priority	Description
	
NoTargetSysIdHardWiringInDVMLookupCheck

	
1

	
The Target SystemId must not be hardwired in DVM lookups when used in XSL. The syntax used should be: orcl:lookupValue('DVM_NAME',$DVMSourceCol,XPATH,$DVMTargetCol,'') where DVM_NAME can contain alphanumeric and underscore characters and XPATH can contain any XPATH expression.

Note: the targetId column can be one of the following: 1) Any Xpath. 2) 'COMMON' 3) a variable that does not contain a hard coded string value. 4) Xpath function.

	
NoTargetSysIdHardWiringInXREFLookupCheck

	
1

	
The Target SystemId must not be hardwired in XREF lookups when used in XSL. The syntax used should be: xref:lookupXRef('XREF_NAME',$XREFSourceCol,XPATH,$XREFTargetCol,true()|false()) where XREF_NAME can contain alphanumeric and underscore characters and XPATH can contain any XPATH expression.

Note: the targetId column can be one of the following: 1) Any Xpath. 2) 'COMMON' 3) a variable that does not contain a hard coded string value. 4) Xpath function.

	
TXNEnableInASyncDelayed

	
2

	
This check is for an Async Delayed Response service. It must participate in a global transaction.

	
TXNEnableInFireForget

	
2

	
This check is for a Fire and Forget service. It must participate in a global transaction.

	
TonkenizedReferencesInXSLCheck

	
2

	
All http URLs that point to an http server location must be tokenized with ${hostname} and ${port}.

	
NameSpacePrefixesNamingInBPELCheck

	
3

	
In a BPEL process, namespace prefixes must follow naming standard guidelines. The ns1, ns2 prefixes which are generated by default are not allowed.

Table B-3 Category :Error Handling Standards

	Assertion	Priority	Description
	
CatchBlockBindingFaultExistInBPELCheck

	
2

	
Catch block has to be defined for BindingFault in BPEL process.

	
CatchBlockRemoteFaultExistInBPELCheck

	
2

	
Catch block has to be defined for RemoteFault in BPEL process.

Table B-4 Category :Loose Coupling Standards

	Assertion	Priority	Description
	
TonkenizedReferencesInBpelCheck

	
2

	
All http URLs that point to an http server location must be tokenized with ${hostname} and ${port}.

	
TonkenizedReferencesInCompositeCheck

	
2

	
All http URLs that point to an http server location must be tokenized with ${hostname} and ${port}.

	
TonkenizedReferencesInWSDLCheck

	
2

	
All http URLs that point to an http server location must be tokenized with ${hostname} and ${port}.

Table B-5 Category :Naming Standards

	Assertion	Priority	Description
	
BPELAssignActivityNamingCheck

	
3

	
Change the default JDeveloper generated name for the 'assign' activity.

	
BPELInvokeActivityNamingCheck

	
3

	
Change the default JDeveloper generated name for the 'invoke' activity.

	
BPELReceiveActivityCheck

	
3

	
Change the default JDeveloper generated name for the 'receive' activity.

	
BPELReplyActivityNamingCheck

	
3

	
Change the default JDeveloper generated name for the 'reply' activity.

	
BPELScopeActivityCheck

	
3

	
Change the default JDeveloper generated name for the 'scope' activity.

Table B-6 Category :Performance Standards

	Assertion	Priority	Description
	
CompletionPersistPolicyCheck

	
1

	
The bpel.config.completionPersistPolicy property configures how the instance data is saved. For synch transient processes, the value for this property should be 'faulted.' Only the faulted instances will be saved.

	
SynchAuditLogLevelCheck

	
1

	
The bpel.config.auditLavel property configures how the BPEL service engine will capture audit details. For Synch Transient processes, the value for this property should be 'faulted.'

Table B-7 Category :Reusability Standards

	Assertion	Priority	Description
	
NoLocalSchemasInBPELCheck

	
2

	
The BPEL Process folder must not contain any schema files. All Utility schemas must be accessed from a web server.

	
NoLocalAdaptersInBPELCheck

	
3

	
Adapters should be defined as ESB services. This helps in Endpoint Virtualization. Also, BPEL processes gain homogeneity, focusing on business problems rather than protocol transformations.

	
NoSchemaElementsDefinedInWSDLCheck

	
3

	
WSDLs should use schema imports. All schema elements must be defined in XSD.

Table B-8 Category :Security Standards

	Assertion	Priority	Description
	
NoPlinkusageForSettingWSSecPropCheck

	
1

	
BPEL processes must not use property for passing the username and password for ws-security. OWSM should be used for all web services invocation authentication purposes.

	
NoUnamePwdInDVMCheck

	
1

	
DVM stores must not store credentials. They should not contain UserName and Password values. OWSM should be used for all web services invocation authentication purposes.

Table B-9 Category :WS-I BP Standards

	Assertion	Priority	Description
	
SchemaImportUsedforXSDOnlyCheck

	
3

	
WSDL import elements must not be used to import other kinds of XML schemas. WSDL imports must only import WSDLs. This check is to ensure compatibility with the WS interoperability basic profile 1.0.

	
SchemaImportsOnlyInsideSchemaCheck

	
3

	
XML Schema 'import' statements must be within the xsd:schema element of the types element.

	
SchemaNodeOnlyInsideWsdlTypesCheck

	
3

	
XML Schema elements must be within the xsd:types element of the types element.

	
SchemaTargetNamespaceExistCheck

	
3

	
All xsd:schema elements contained in a wsdl:types element must have a targetNamespace attribute with a valid and non-null value, unless the xsd:schema element has xsd:import and/or xsd:annotation as its only child element(s).

	
SchemaTargetNamespaceMatchingCheck

	
3

	
WSDLs must not import WSDLs that have a different targetNamespace in the definition. This assertion assumes that inputDir contains the AIAMetaData directory.

	
SchemaXSDFileRootSchemaCheck

	
3

	
XSD files must import XSD files that have schema as a root node in the location of xsd:import. This assertion assumes that inputDir contains the AIAMetaData directory .

	
UTFEncodingUsedinSchemaCheck

	
3

	
Schema definitions must use UTF-8 or UTF-16 encoding. UTF encoding can be specified in the processing instruction of an XML. The assertion looks for the existence of UTF in the processing instructions. This check is to ensure compatibility with the WS interoperability basic profile 1.0.

	
UTFEncodingUsedinWSDLCheck

	
3

	
WSDL description must use UTF-8 or UTF-16 encoding. UTF encoding can be specified in the processing instruction of an xml. The assertion looks for the existence of UTF in the processing instruction. This check is to ensure compatibility with the WS interoperability basic profile 1.0.

	
WSDLDocumentationIsFirstChildCheck

	
3

	
The wsdl:documentation element may be present as the first child element of wsdl:import, wsdl:part and wsdl:definitions in addition to the elements cited in the WSDL1.1 specification.

	
WSDLFileRootDefinitionsCheck

	
3

	
WSDLs must import WSDL files that have definitions as a root node in the location of wsdl:import. This assertion assumes that inputDir contains the AIAMetaData directory.

	
WSDLImportLocationNotEmptyCheck

	
3

	
The location attribute of all wsdl:import elements must be non-empty.

	
WSDLImportNoRelativeURIInNSCheck

	
3

	
The namespace attribute of wsdl:import must not be a relative URI. The URI should be an absolute URI as per URI standards. This check is to ensure compatibility with the WS interoperability basic profile 1.0.

	
WSDLImportOnlyPrecededByDocCheck

	
3

	
All WSDL import elements must only be preceded by WSDL documentation element in a WSDL file. This check is to ensure compatibility with the WS interoperability basic profile 1.0.

	
WSDLImportUsedforWSDLOnlyCheck

	
3

	
WSDL import element must not be used to import other kinds of XML schemas. WSDL import must only import WSDLs. This check is to ensure compatibility with WS interoperability basic profile 1.0.

	
WSDLImportsOnlyInsideDefinitionCheck

	
3

	
All WSDL 'import' statements must be within wsdl:definition elements.

	
WSDLOperationMustHaveInputCheck

	
3

	
Solicit-Response and Notification type operations must not be used in a wsdl:portType definition. For example, output messages should always be after input messages.

	
WSDLOperationNameMustBeUniqueCheck

	
3

	
All wsdl:portType elements must have operations with distinct values for their name attributes(overloading).

	
WSDLPartMustNotUseElementAndTypeCheck

	
3

	
A wsdl:message element must not specify both 'type' and 'element' attributes on the same wsdl:part element.

	
WSDLTargetNamespaceMatchingCheck

	
3

	
WSDLs must not import other WSDLs that have different targetNamespace in definitions. This assertion assumes that inputDir contains the AIAMetaData directory.

	
WSDLTypesOnlyPrecededByDocAndImportCheck

	
3

	
All WSDL types elements must only be preceded by WSDL documentation element or wsdl import in a WSDL file. This check is to ensure compatibility with the WS interoperability basic profile 1.0.

	
XMLversionUsageInSchemaCheck

	
3

	
XSD files must use XML version 1.0. The XML version can be specified in the processing instructions of an XML. The assertion looks for the existence of version in the processing instructions. This check is to ensure compatibility with WS interoperability basic profile 1.0.

	
XMLversionUsageInWSDLCheck

	
3

	
WSDL files must use XML version 1.0. The XML version can be specified in the processing instructions of an XML. The assertion looks for the existence of version in the processing instructions. This check is to ensure compatibility with WS interoperability basic profile 1.0.

B.3 Assertion Parameters for the XPathExecutor

The following tables describe the mandatory and optional parameters for the XPathExecutor.

B.3.1 Mandatory Parameters List

Table B-10 describes the mandatory parameters.

Table B-10 Mandatory Parameters for XPathExecutor

	Param Name	Description	Default Value	Example	Failure Situation
	
Xpath.search

	
XPath to be executed on a particular document

	
No default

	
//xsl:variable/@name

	
XPath execution failure exception

	
xpath.namespace.prefixes

	
The list of delimited values of namespace prefixes that are used for a particular XPath expression execution.

	
No default

	
'bpel="http://schemas.xmlsoap.org/ws/2003/03/business-process/"; xsl="http://www.w3.org/1999/XSL/Transform"; aiacfg="http://xmlns.oracle.com/aia/core/config/V1"; wsdl="http://schemas.xmlsoap.org/wsdl/"; xsd="http://www.w3.org/2001/XMLSchema"; xsd="http://www.w3.org/2001/XMLSchema";

	
XPath execution failure exception

	
assertCondition

	
If the Assertion level attribute "operation" is not present then this param value will be the valid executor operation name. Otherwise, this can be used as a sub-operation value.

	
No default

	
XpathValuesPatternMatchCheck

	
Unsupported operation exception

	
xpath.match.regxpattern

	
Assertion value

	
No default

	
[a-zA-Z_0-9]*

The regular expression says that a variable name can contain only alphanumeric characters with underscores.

	
Error depending on the comparison type

B.3.2 Optional Parameters List

Table B-11 describes the optional parameters.

Table B-11 Optional Parameters for XPathExecutor

	Param Name	Description	Default Value	Example	Failure Situation
	
xpath.notexist.ignore

	
Every XPath operation assumes that the comparison between the XPath execution result and the assertValue can only be made if the output NodeList returned after evaluating the Xpath contains at least one node (the default behavior except for the 'XpathExists' and 'XpathNotExists' operations). The default behavior of non-compliance is reported if the XPath does not return any nodes.)

	
False

	
We have a test saying "all compensate activities in BPEL should start with a prefix of compensate". Now if we do not have any compensate activities in a BPEL file, Code Compliance Inspector reports a non-compliance. If we specify xpath.notexist.ignore="true", then the test would be considered a success by Code Compliance Inspector.

	
--

	
xml.external.filename

	
There are situations when the assertValue is more than just a mere String. The value can be an entire XML fragment, which contains regEx patterns. In this case, a compare file argument specifies the file and the XPath specifies the fragment within the file.

	
No default

	
Used to compare standard code snippets.

<Param name="xml.external.filename" value="${faultXML}" default="AIAStdCode.xml"/>

	
--

	
xml.external.search.xpath

	
Xml.external.search.xpath is always used with xml.external.filename. As mentioned above, this XPath helps us identify the XML fragment for comparison.

	
--

	
<Param name="xml.external.search.xpath" value="//EBMHeaderPopulation/corecom:EBMHeader/P4/corecom:MessageProcessingInstruction"/>

This is used with the xml.external.filename param above.

When we apply the XPath (Xml.external.search.xpath) on the file (Xml.external.filename) we get an XML fragment for comparison. In the above example, the MessageProcessingInstruction returned by evaluating XPath on selected files is evaluated against MessageProcessingInstruction returned by evaluating Xml.external.search.xpath on the file Xml.external.filename.

	
--

	
xml.node.match.mode

	
Special operations, if any, to be executed to derive the assertValue. Otherwise, the default behavior is executed which is stated in the default section

	
Default: String

It converts the NodeList from Resultant XPath to string (ConvertNodeListToStirng)

	
Currently, the only supported type is length. By default, when nothing is specified, it converts the resultant NodeList to String.

	
--

B.4 Assertion Parameters for the FSExecutor

The following tables describe the mandatory and optional parameters for the FSExecutor.

B.4.1 Mandatory Parameters List

Table B-12 describes the mandatory parameters.

Table B-12 Mandatory Parameters for the FSExecutor

	Param Name	Description	Default Value	Example	Failure Situation
	
assertCondition

	
Any one of the operations supported by the FSExecutor. See the Available Operations for FSExecutor section.

	
No default

	
FileNotExistCheck

	
Unsupported Operation exception

	
filename.search.regxpattern

	
Regular expression for selecting matching files.

	
No default

	
a-zA-Z_0-9_/]*(EBF)((V)[0-9]*)??.wsdl

	
Invalid Regular expression

B.4.2 Optional Parameters List

Table B-13 describes the optional parameters.

Table B-13 Optional Parameters for the FSExecutor

	Param Name	Description	Default Value	Example	Failure Situation
	
filename.match.regxpattern

	
Assertion value (String)

	
No default

	
InputFilePattern_(c|C)ustom.xsl

	
--

	
filecontent.exclude.regxpattern

	
Exclude of file for which content matched with this pattern (Regular Expression)

	
No default

	
.*(c|C)ustom.xsl

	
--

	
filename.exclude.regxpattern

	
Exclude of file for which filename matched with this pattern (Regular Expression)

	
No default

	
.*(JMSProducer|OutboundHeader).*.wsdl

	
--

B.5 Available Operations for the XPathExecutor

The following tables describe the available operations for the XPathExecutor.

XpathListExistCheck

Checks for the existence of the nodes in the given XPath List. Every XPath in the list should have at least one node. This is very similar to the XpathExist operation except that we can check for multiple XPaths.

Table B-14 XpathListExistCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath where zero nodes are expected

	
-

	
Xpath.namespace.prefixes

	
-

	
-

	
Xpath.1.search

	
-

	
/A/B

	
Xpath.2.search

	
-

	
And so on... We can check for 'n' XPaths in this manner (xpathn)

	
xml.local.imports.resovable

	
-

	
-

	
xml.remote.imports.resovable

	
-

	
-

	
local.metadir

	
-

	
-

XpathNotExistsCheck

Checks for the existence of the nodes in the given XPath List. Every XPath in the list should have at least one node. This is very similar to the XpathExist operation except that we can check for multiple XPaths.

Table B-15 XpathNotExistsCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath where zero nodes are expected

	
-

	
Xpath.namespace.prefixes

	
-

	
-

	
xml.local.imports.resovable

	
-

	
Same as the one in XpathExists.

	
xml.remote.imports.resovable

	
-

	
-

	
local.metadir

	
-

	
-

XpathNodeCountLessThanCheck

Checks if the number of nodes found at the XPath is less than the assert value.

Table B-16 XpathNodeCountLessThanCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for which node count is checked.

	
-

	
Xpath.namespace.prefixes

	
-

	
-

	
xpath.match.regxpattern

	
Maximum number of nodes that can be present for the XPath. Note that if your intended value is 'n' then the assert value is its 'n+1'.

	
All BPEL processes, which follow SYNC Request Response pattern, should not have more than 6 extension points.

So assert value would be '7'.

XpathNodeCountGreaterThanCheck

Checks if the number of nodes found at the XPath is less than the assert value.

Table B-17 XpathNodeCountGreaterThanCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for which node count is checked.

	
-

	
Xpath.namespace.prefixes

	
-

	
-

	
xpath.match.regxpattern

	
Minimum number of nodes that can be present for the XPath. Note that if your intended value is 'n' then the assert value is its 'n-1'.

	
All BPEL processes, which follow SYNC Request Response pattern, should have minimum of 4 extension points.

So assert value would be '3'.

XpathValuesLessThanCheck

Checks if the value in the XPath is less than the assert value.

Table B-18 XpathValuesLessThanCheck

	Operation	Description	Comments
	
Xpath.search

-

	
XPath for which node count is checked.

	
-

	
Xpath.namespace.prefixes

	
-

	
-

	
xpath.match.regxpattern

	
Maximum number that the value from the XPath can have. Note that if your intended value is 'n' then the assert value is its 'n+1'.

	
All BPEL processes, which follow SYNC Request Response pattern, should not have more than 6 extension points.

So assert value would be '7'.

XpathValuesLessThanEqualCheck

Checks if the value in the XPath is less than or equal to the assert value.

Table B-19 XpathValuesLessThanEqualCheck -

	Operation	Description	Comments
	
Xpath.search

	
XPath for which node count is checked.

	
-

	
Xpath.namespace.prefixes

	
-

	
-

	
xpath.match.regxpattern

	
Maximum number that the value from XPath can have.

	
-

XpathValuesGreaterThanCheck

Checks if the value in the XPath is greater than the assert value.

Table B-20 XpathValuesGreaterThanCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for which node count is checked.

	
-

	
Xpath.namespace.prefixes

	
-

	
-

	
xpath.match.regxpattern

	
Minimum number of nodes that can be present for the XPath. Note that if your intended value is 'n' then the assert value is its 'n-1'.

	
All BPEL processes, which follow SYNC Request Response pattern, should have minimum of 4 extension points.

So assert value would be '3'.

XpathValuesGreaterThanEqualCheck

Checks if the value in the XPath is greater than or equal to the assert value.

Table B-21 XpathValuesGreaterThanEqualCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for which node count is checked.

	
-

	
Xpath.namespace.prefixes

	
-

	
-

	
xpath.match.regxpattern

	
Minimum number of nodes that can be present for the XPath.

	
-

CompareNodeWithRegExXMLCheck

Checks if the node returned by the XPath matches the XML snippet from a file. Note that it is a regular expression comparison and the snippet can contain regular expressions.

Table B-22 CompareNodeWithRegExXMLCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for the node, which has to be checked.

	
-

	
xpath.namespace.prefixes

	
-

	
-

	
xml.external.filename

	
The XML file where the snippet for comparison lies.

	
"ABCS WSDL should be documented as per AIA Documentation standards." The file AIAStdCode.xml for example contains all the XML snippets. So this file is the xml.external.filename

	
xml.external.search.xpath

	
//ABCSwsdlDoc/wsdl:documentation

	
XPath to derive the XML snippet from the xml.external.filename XML file.

This XPath will separate out just the documentation snippet from the XML.

CompareNodeListWithRegExXMLCheck

Checks if every node from the NodeList returned by the XPath matches the XML snippet from a file. Note that it is a regular expression comparison and the snippet can contain regular expressions. This can be used when multiple nodes from a file have to be checked against the same XML snippet.

Table B-23 CompareNodeListWithRegExXMLCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for the NodeList, which has to be checked.

	
Every node from NodeList returned from this XPath should be compliant to the XML snippet derived using xml.external.filename and xml.external.search.xpath.

	
xpath.namespace.prefixes

	
-

	
-

	
xml.external.filename

	
The XML file where the snippet for comparison lies.

	
"Catch blocks are defined as per AIA Error Handling Guidelines." The file AIAStdCode.xml for example contains all the XML snippets. So this file is the xml.external.filename

	
xml.external.search.xpath

	
XPath to derive the XML snippet from the xml.external.filename XML file.

	
//catch

This XPath will separate out just the documentation snippet from the XML.

XpathValuesEqualCheck

Checks if the string value of every node from the NodeList returned by the XPath matches the string value specified in the assert value.

Table B-24 XpathValuesEqualCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for the NodeList, which has to be checked.

	
Every node from NodeList returned from this XPath should be compliant to the assert value.

	
xpath.namespace.prefixes

	
-

	
-

	
xpath.match.regxpattern

	
String value to check against.

	
-

	
xpath.notexist.ignore

	
-

	
-

XpathValuesNotEqualCheck

Checks if the string value of every node from the NodeList returned by the XPath does not match the string value specified in the assert value.

Table B-25 XpathValuesNotEqualCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for the NodeList, which has to be checked.

	
Every node from NodeList returned from this XPath should be compliant to the assert value.

	
xpath.namespace.prefixes

	
-

	
-

	
xpath.match.regxpattern

	
String value to check against.

	
-

	
xpath.notexist.ignore

	
-

	
-

XpathValuesPatternMatchCheck

Checks if the string value of every node from the NodeList returned by the XPath matches the regular expression pattern specified in the assert value.

Table B-26 XpathValuesPatternMatchCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for the NodeList, which has to be checked.

	
Every node from NodeList returned from this XPath should be compliant to the assert value.

	
xpath.namespace.prefixes

	
-

	
-

	
xpath.match.regxpattern

	
Regular expression pattern to check against.

	
"All Assign activities in a BPEL process should start with a prefix of Assign followed by activity name". The pattern would look like: (Assign){1}(_)??(([a-zA-Z])([a-zA-Z_0-9])*)

	
xpath.notexist.ignore

	
-

	
-

XpathValuesNotMatchPatternCheck

Checks if the string value of every node from the NodeList returned by the XPath does not match the regular expression pattern specified in the assert value. This does the exact opposite check of XpathValuesPatternMatch.

Table B-27 XpathValuesNotMatchPatternCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for the NodeList, which has to be checked.

	
Every node from NodeList returned from this XPath should be compliant to the assert value.

	
xpath.namespace.prefixes

	
-

	
-

	
xpath.match.regxpattern

	
Regular expression pattern to check against.

	
"Target node should not be populated during ABM to EBM transformation in Requester ABCSImpl."

The following pattern would ensure that no hard coding of target ID is present. :([a-zA-Z_0-9\s]*)

	
xpath.notexist.ignore

	
-

	
-

XpathValueNotContainsCheck

Checks if the string value of every node from the NodeList returned by the XPath does not contain the string specified in the assert value.

Table B-28 XpathValueNotContainsCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for the NodeList, which has to be checked.

	
Every node from NodeList returned from this XPath should be compliant to the assert value.

	
xpath.namespace.prefixes

	
-

	
-

	
xpath.match.regxpattern

	
String value to check against.

	
"DVM stores should have no credentials stored.."

The following pattern would ensure that no tokens that are generally used to store credentials are used in DVMs.:UserName;Password;uname;pwd;username;password

	
xpath.notexist.ignore

	
-

	
-

XpathValueContainsCheck

Checks if the string value of every node from the NodeList returned by the XPath contains the string specified in the assert value.

Table B-29 XpathValueContainsCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for the NodeList, which has to be checked.

	
Every node from NodeList returned from this XPath should be compliant to the assert value.

	
xpath.namespace.prefixes

	
-

	
-

	
xpath.match.regxpattern

	
String value to check against.

	
-

	
xpath.notexist.ignore

	
-

	
-

ExistsRegExXMLCheck

Iterates through the children of the node specified by xml.external.filename and xml.external.search.xpath. Checks if every node in NodeList returned by executing xml.external.search.xpath on xml.external.filename, exists in the NodeList returned by executing xpath on the policies file. Note that CompareNodeWithRegExXML checks against the xml.external.filename. The behavior is reverse in this operation. This operation iterates through all the children of the node from xml.external.filename and makes sure each one of them is present in the NodeList from XPath.

Table B-30 ExistsRegExXMLCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for the NodeList, which has to be checked.

	
Every node from NodeList returned from this XPath should contain all the children of the node derived from xml.external.filename and xml.external.search.xpath.

	
xpath.namespace.prefixes

	
-

	
-

	
xml.external.filename

	
String value to check against.

	
"Ensure MessageProcessingInstruction is populated fully in ReqABM_to_EBM xsl".

	
xml.external.search.xpath

	
-

	
-

	
xml.node.match.mode

	
-

	
1: (NODE_MUST) This is the default option. All the elements are considered for comparison. Any missing elements are reported for non-compliance.

2: (NODE_IGNORE). If xml.node.match.mode is specified as 2, then missing nodes are not considered for comparison. For example, consider an XML structure with A as a parent and B and C as children (<A><C/>). When xml.node.match.mode=1 and if node B or C is absent all together, then non-compliance is reported. If we want to change this default behavior to report a compliance, then we should specify xml.node.match.mode=2. Note that if a node is present then it should conform to the regular expression specified.

3: (NODE_OPTIONAL). This lets us pick and choose what differences we would want to ignore. We can add an attribute minoccurs="0" in any element that we would want to skip comparison when not found. For example, consider an XML structure where A is a parent element and has 2 children B and C (<A><C/>). If we want a scenario where missing B's should be reported as compliance where as missing C's should be reported as non-compliance then this is how we can achieve it through xml.node.match.mode: <A><B minoccurs="0"/><C/>

	
xpath.notexist.ignore

	
-

	
-

NotExistsRegExXMLCheck

Iterates through children of node specified by xml.external.filename and xml.external.search.xpath. Checks if every node in NodeList returned by executing xml.external.search.xpath on xml.external.filename, does not exist in the NodeList returned by executing the XPath on the policies file. Note that this does the exact reverse of ExistsRegExXML.

Table B-31 NotExistsRegExXMLCheck

	Operation	Description	Comments
	
Xpath.search

	
XPath for the NodeList, which has to be checked.

	
Every node from NodeList returned from this XPath should contain all the children of the node derived from xml.external.filename and xml.external.search.xpath.

	
xpath.namespace.prefixes

	
-

	
-

	
xml.external.filename

	
String value to check against.

	
-

	
xml.external.search.xpath

	
-

	
Example of this would be say we want to make sure double notifications are not sent as part of error handling. So we could check for the non-existence of certain error handling code snippets in some of the catch blocks.

	
xml.node.match.mode

	
-

	
See the table description for ExistsRegExXML for more information.

	
xpath.error.path

	
-

	
This would be helpful if we would want to show the user the node, which is not supposed to exist. For example, if we want to show the user the catch block that contains the redundant call, this is how we can do it:

<Param name="xpath.error.path" default="@faultName"/>

	
xpath.notexist.ignore

	
-

	
-

B.6 Available Operations for the FSExecutor

The following tables describe the available operations for the FSExecutor

FileExistCheck

Checks if a file of particular pattern exists in the selected directory.

Table B-32 FileExistCheck

	Operation	Description	Comments
	
filename.search.regxpattern

	
Pattern of the file to be selected.

	
If you want to check for the existence of a config file, for example, AIAConfigurations.xml in every ABCS integration project, then you can select FileType="*" and context="ABCS" and then provide "AIAConfigurations.xml" in this param value.

FileNotExistCheck

Checks if a file of particular pattern does not exist in the selected directory.

Table B-33 FileNotExistCheck

	Operation	Description	Comments
	
filename.search.regxpattern

	
Pattern of the file to be selected.

	
If you want to check for the non-existence of a local schema in every ABCS integration project, then you can select FileType="*" and context="ABCS" and then provide "*.xsd" in this param value.

FilesMatchPatternCheck

Checks if the selected file name matches a particular pattern.

Table B-34 FilesMatchPatternCheck

	Operation	Description	Comments
	
filename.search.regxpattern

	
Pattern of the file to be selected.

	
If you want to check for the existence of an extension WSDL in every ABCS integration project, then you can select FileType="*" and context="ABCS" and then provide ".*(ABCSImpl)((V)[0-9]*)??.wsdl" in this param value.

	
filename.match.regxpattern

	
The pattern the file name should be checked against.

	
If you want to assert that the extension file selected matches a particular naming pattern, for example: ".*(ABCSImpl)Extension.wsdl"

11 Purging CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios

This chapter describes how to purge Composite Application Validation System (CAVS)-related cross-reference entries to allow test scenarios to be rerun.

This chapter includes the following sections:

	
Section 11.1, "Introduction to Purging CAVS-Related Cross-Reference Entries"

	
Section 11.2, "How to Purge CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios"

11.1 Introduction to Purging CAVS-Related Cross-Reference Entries

When a participating application is involved in a CAVS testing flow, execution of tests can potentially modify data in a participating application. Therefore, consecutive running of the same test may not generate the same results. The CAVS is not designed to prevent this kind of data tampering because it supports the user s intention to include a real participating application in the flow. The CAVS has no control over modifications that are performed in participating applications.

However, this issue does not apply if your CAVS test scenario uses test definitions and simulator definitions to replace all participating applications and other dependencies. In this case, all cross-reference data is purged after the test scenario has been executed. This enables rerunning of the test scenario.

11.2 How to Purge CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios

To purge CAVS-related cross-reference entries to enable rerunning of test scenarios:

	
Process integration packs (PIPs) that are delivered to work with Oracle Application Integration Architecture (AIA) Foundation Packs are delivered with cross-reference systems in place. They are named CAVS_<XYZ>, where <XYZ> is the participating application system.

For example, for systems EBIZ and SEBL, the PIP is delivered with cross-reference systems CAVS_EBIZ and CAVS_SEBL.

	
For every system type defined on the Systems page for which you want to make test scenarios rerunnable (<XYZ>), create a related CAVS system (CAVS_<XYZ>). The System Type field value for the CAVS-related entry should match the name of the system for which it is created.

For more information about the Systems page, see "Building AIA Integration Flows" in Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

	
When testing a provider Application Business Connector Service (ABCS) in isolation, the Enterprise Business Message (EBM) will be passed from the CAVS to the provider ABCS with the NamespacePrefixedEBMName/EBMHeader/Target/ID element set as CAVS_<XYZ>.

	
When testing a requester ABCS in isolation, the element in the Application Business Message (ABM) that normally contains the Internal ID value will now contain the CAVS-specific Internal ID value set for the system on the Systems page.

	
When testing an entire flow (requester ABCS-to-Enterprise Business Service [EBS] -to-provider ABCS), you must set the Default.SystemID property of the provider ABCS to CAVS_<XYZ>, where <XYZ> is the system.

	
To do this, edit the Default.SystemID property value in the AIAConfigurationProperties.xml file in the <AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config directory.

	
Reload updates to the AIAConfigurationProperties.xml file.

For more information about reloading updates to AIAConfigurationProperties.xml, see "Building AIA Integration Flows" in Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

	
You can now commence testing the entire flow.

	
Note:

If the test scenario is an entire flow that includes multiple instances of the same system, this approach will not work. In this case, data created in the cross-reference will remain making the same test case non-rerunnable.

10 Working with Group Instances

This chapter describes how to view group instances and how to view group instance details.

A group instance captures the details of the execution of a group definition.

This chapter includes the following sections:

	
Section 10.1, "How to View Group Instances"

	
Section 10.2, "How to View Group Instance Details"

10.1 How to View Group Instances

To view group instances:

	
Access the Oracle Application Integration Architecture (AIA) Home Page. In the Composite Application Validation System area, click the Go button. Select the Group Instances tab. The Group Instances page displays, as shown in Figure 10-1.

Figure 10-1 Group Instances Page

[image: This image is described in surrounding text]

	
Use the page elements on the Group Instances page to search for group instances and access a page you can use to view group instance details.

Search Group Instances

Use the elements in the Search Group Instances group box, as discussed in Table 10-1, to enter search criteria to find the group instance you are searching for.

Table 10-1 Search Group Instances Group Box Elements

	Element	Description
	
Id

	
Enter the unique key identifier assigned to the group instance.

	
Group Definition Id

	
Enter the unique key ID assigned to the group definition that generated the instance.

	
Name

	
Enter a descriptive name assigned to the group definition.

	
Process Name

	
Enter the name of the process associated with the group definition that generated the instance.

	
PIP Name (process integration pack)

	
Enter the name of the Process Integration Pack (PIP) associated with the group definition that generated the instance.

	
Start Date

	
Enter a start date and time that you want to use as search criteria. The search will look for all group instances that were created on and after the given date and time.

	
Search

	
Click to execute a search for group instances using the search criteria entered in the Search Group Instances group box.

Search Result Selection

Use the elements in the Search Result Selection grid, as discussed in Table 10-2, to work with group instances returned in your search results. Upon accessing this page, the grid is populated by all group instances.

Table 10-2 Search Result Selection Grid Elements

	Element	Description
	
Delete

	
Select one or more group instances that you want to delete and click the Delete button to execute the deletion.

	
Export

	
For more information exporting group instances, see Chapter 12, "Exporting and Importing CAVS Definitions and Instances."

	
Id

	
Click to access the Group Instances Detail page.

	
Group Definition Id

	
Click to access the Group Definition Detail page.

For more information about the Group Definition Detail page, see Chapter 7, "Working with Group Definitions."

10.2 How to View Group Instance Details

To view group instance details:

	
Access the AIA Home Page. In the Composite Application Validation System area, click the Go button. Select the Group Instances tab. Click a group instance Id link on the Group Instances page. The Group Instances Detail page displays as shown in Figure 10-2.

Figure 10-2 Group Instances Detail Page

[image: This image is described in surrounding text]

	
Use the page elements on the Group Instances Detail page, as discussed in Table 10-3, to view the details of a group instance.

Table 10-3 Group Instances Detail Page Elements

	Element	Description
	
Id

	
Displays the unique key identifier assigned to the group instance.

	
Group Definition Id

	
Click to access the Group Definition Detail page.

	
Name

	
Displays the descriptive name assigned to the group definition.

	
Process Name

	
Displays the name of the process associated with the group definition that generated the instance.

	
PIP Name

	
Enter the name of the PIP associated with the group definition that generated the instance.

	
Start Date

	
Displays the date and time at which the group instance was initiated.

	
Delete

	
Select one or more test instance rows that you want to delete and click the Delete button to execute the deletion.

	
Definition Sequence Id

	
Indicates the sequence in which the test definitions were initiated by the group definition that generated the group instance.

	
Definition Id

	
Click to access the Modify Test Definition page.

For more information about the Modify Test Definition page, see Section 4.2, "How to Modify a Test Definition."

	
Instance Id

	
Click to access the Test Instances Detail page.

For more information about the Test Instances Detail page, see Section 9.2, "How to View Test Instance Details."

	
Status

	
Displays the status of the test instance in the group instance.

	
Initiated: The test instance has been initiated.

	
Ended: This status is only applicable to test instances that do not involve validations. Indicates that the instance has ended.

	
Faulted: The test instance could not execute properly due to exceptions or faults.

	
Failed: The test instance did not pass validation.

	
Passed: The instance passed validation.

	
Start Date

	
Displays the date and time at which the test instance was initiated.

	
End Time

	
Displays the date and time at which the test instance ended.

Preface

Welcome to Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide. This document describes how to use Composite Application Validation System initiators and simulators to test AIA service integrations. Test initiators simulate service invocations and simulators simulate service endpoints. It describes how to use error handling and logging components, including error notifications and trace and error logs, to support services operating in an AIA ecosystem.

Audience

This document is intended for users of the components and utilities delivered with Oracle Application Integration Architecture Foundation Pack.

Oracle AIA Guides

Oracle Application Integration Architecture (AIA) provides the following guides and resources for this 11.1.1.7 release:

	
Oracle Fusion Middleware Installation and Upgrade Guide for Oracle Application Integration Architecture Foundation Pack

	
Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation Pack

	
Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack

	
Oracle Fusion Middleware Reference Process Models User's Guide for Oracle Application Integration Architecture Foundation Pack

	
Oracle Fusion Middleware Migration Guide for Oracle Application Integration Architecture

	
Oracle Fusion Middleware Product-to-Guide Index for Oracle Application Integration Architecture Foundation Pack

Related Documents

The following guides are relevant to Oracle AIA development activities and are provided as a part of the overall Oracle Fusion Middleware 11.1.1.7 documentation library:

	
Oracle Fusion Middleware Installation Guide for Oracle SOA Suite and Oracle Business Process Management Suite

	
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite

	
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

	
Oracle Fusion Middleware Security and Administrator's Guide for Web Services

	
Oracle Fusion Middleware User Guide for Oracle Enterprise Repository

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Enabling Accessibility Features for AIA Home

The Application Integration Architecture (AIA) Home page appears after installing Oracle AIA Foundation Pack. For more information, see Oracle Fusion Middleware Installation and Upgrade Guide for Oracle Application Integration Architecture Foundation Pack 11g Release 1 (11.1.1.7).

Users can set options to enable screen readers, high contrast colors, and large fonts:

	
Screen Reader: If you are using a screen reader, we recommend that you select the Screen Reader option to ensure that your screen reader can access and read all components of the application. When screen-reader mode is enabled, the application displays a screen-reader optimized view of components. Screen-reader mode may degrade, but not obscure, the display for sighted users. If this option is not enabled, your screen reader may not be able to access and read all components.

	
High Contrast Colors: Select the High Contrast Colors option to display the application using high-contrast-friendly visual content. Enabling high-contrast mode makes the application compatible with operating systems or browsers that have high-contrast features enabled. For example, the application will change its use of background images and background colors to prevent the loss of visual information. Note that high-contrast mode is more beneficial if it is used in conjunction with your browser's or operating system's high-contrast mode. Also, you may find it beneficial to use the large-font mode along with the high-contrast mode.

	
Large Fonts: Select the Large Font option to display the application using browser-zoom-friendly content. Enabling large-font mode displays the application using text and containers that are scalable in size. This makes the application compatible with browsers that are set to larger font sizes and to work with browser-zoom capabilities. If you are not using the browser-based large-font mode or zoom capabilities, you should disable this option. Also, you may find it beneficial to use the high-contrast mode along with the large-font mode. If this option is not enabled, most text and many containers will use a fixed size to provide a consistent look.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Index

A B C D E F G I K L M N O P R S T U W

A

	asynchronous (notify) MEP testing flow
	
	simulator definition, 2.3.2
	test definition, 2.3.2

	asynchronous (two-way) MEP testing flow
	
	simulator definition, 2.3.3
	test definition, 2.3.3

B

	B2B errors, accessing, 19.1
	BPEL process, obtaining message XML, 2.5.1

C

	CAVS
	
	asynchronous (notify) testing flows, 2.3.2
	asynchronous (two-way) testing flows, 2.3.3
	complex flow testing, 2.4.2
	creating routing setup IDs, 8.2
	creating simulator definitions, 5.1
	creating test definitions, 4.1
	definitions export structure, A
	design assumptions, 1.3
	exporting definitions, 12.1
	exporting group instances, 12.3
	exporting simulator instances, 12.2
	exporting test instances, 12.2
	flow testing, 2.4.2
	group definitions, 3.1, 7.1
	group instances, 3.1
	importing definitions, 12.1
	instances export structure, A
	key components, 1.2
	knowledge prerequisites, 1.3
	modifying routing setup IDs, 8.4
	modifying simulator definitions, 5.2
	modifying test definitions, 4.2
	obtaining message XML, 2.5.1
	overview of defining tests, 3.2
	overview of running tests, 3.2
	process flows, 2.3.1
	purging cross-reference entries, 11.1
	routing setup IDs, 8.1
	searching for routing setup IDs, 8.3
	setting up routing configurations, 8.5
	simulator definition key component, 1.2
	simulator definitions, 3.1
	simulator instances, 3.1
	synchronous testing flows, 2.3.1
	test definition key component, 1.2
	test definitions, 3.1
	test instances, 3.1
	test requirements, 2
	test scenarios, 2.1
	unit testing, 2.4.1
	web services, 3.3
	working with group instances, 10.1
	working with simulator instances, 9.1
	working with test instances, 9.1

	Code Compliance Inspector
	
	using, 20

	complex flow testing
	
	using CAVS, 2.4.2

	Composite Application Validation System
	
	See CAVS

	cross-references, purging CAVS-related, 11.2

D

	definition export structure, A
	dynamic responses, sending in simulator response, 5.5

E

	error handling
	
	accessing B2B errors, 19.1
	associating email addresses with user roles, 14.3
	BPEL system faults, 13.3
	configuring, 14.5
	configuring notification details, 14.4
	configuring notification throttling parameters, 15.2.3
	creating user roles, 14.2
	customizing notification email URLs, 15.3.4
	customizing notification emails, 15.3
	disabling notifications, 15.4
	enabling notification throttling, 15.2.2
	fault categories, 13.1.1
	for B2B faults, 13.4
	for business faults, 13.2
	key features, 13.1
	mediator system faults, 13.3
	notification throttling overview, 15.2.1
	notifications, 15.1
	setting up, 14.1
	setting up notification throttling, 15.2
	using the Message Resubmission Utility, 17.1
	using the Oracle BPM Worklist, 16.1

	Error Handling Framework
	
	See also error handling

	Error Handling Framework overview, 13.1
	error logging
	
	accessing logs, 18.4
	enabling, 18.2
	overview, 18.1

	error notifications
	
	configuring, 14.4
	configuring throttling parameters, 15.2.3
	customizing body text of emails, 15.3.3
	customizing email subject line, 15.3.2
	customizing emails, 15.3
	customizing URLs, 15.3.4
	disabling, 15.4
	enabling throttling, 15.2.2
	overview, 15.1
	setting up throttling, 15.2
	throttling overview, 15.2.1

F

	faults
	
	B2B, 13.4
	BPEL system, 13.3
	business, 13.1.1
	mediator system, 13.3
	system, 13.1.1

	flow testing using CAVS, 2.4.2
	formats
	
	request message, 4.3
	response message, 4.3

G

	gathering test requirements, 2
	group definitions, 3.1
	
	creating, 7.2
	group instance selection, 7.2
	modifying, 7.2
	search group, 7.1
	test definition selection, 7.2
	working with, 7.1

	group instances, 3.1
	
	exporting, 12.3
	viewing, 10.1
	viewing details, 10.2

I

	instances, export structure, A

K

	key components
	
	simulator definition, 1.2
	test definition, 1.2

L

	logging
	
	accessing trace and error logs, 18.4
	searching for messages, 18.4.2
	using trace and error logs, 18.1

M

	message exchange pattern
	
	asynchronous (notify) process flow, 2.3.2
	process flows, 2.3.1

	Message Resubmission
	
	using the UI, 17.2

	Message Resubmission Utility
	
	overview, 17.1

	message sets
	
	multiple requests and responses, 4.3
	provide multiple requests and responses in simulator definition, 5.3
	request message format, 4.3
	response message formats, 4.3

	message XML, obtaining from a BPEL process, 2.5.1

N

	notification details, configuring for error handling, 14.4

O

	Oracle BPM Worklist
	
	enabling, 16.2
	overview, 16.1
	using, 16.3

P

	PIP Auditor
	
	see Code Compliance Inspector, B.1

	process flows, testing the asynchronous (notify) MEP, 2.3.2

R

	routing setup IDs
	
	creating, 8.2
	defining, 8.1
	modifying, 8.4
	routing setup actions, 8.3
	searching for, 8.3

S

	simulator definitions, 1.2, 3.1
	
	asynchronous (notify) MEP testing flow, 2.3.2, 2.3.2
	asynchronous (two-way) MEP testing flow, 2.3.3, 2.3.3
	creating, 5.1
	modifying, 5.2
	providing multiple request and response message sets, 5.3
	searching for, 6.1
	supporting chatty services, 5.4
	synchronous MEP testing flow, 2.3.1, 2.3.1
	working with, 6.1

	simulator instances, 3.1
	
	exporting, 12.2
	viewing details, 9.3
	working with, 9.1

	simulator responses, sending dynamic responses, 5.5
	synchronous MEP testing flow
	
	simulator definitions, 2.3.1
	test definitions, 2.3.1

T

	test definitions, 1.2, 3.1
	
	asynchronous (notify) MEP testing flow, 2.3.2, 2.3.2
	asynchronous (two-way) MEP testing flow, 2.3.3, 2.3.3
	creating, 4.1
	exporting, 12.1
	importing, 12.1
	modifying, 4.2
	provide multiple request and response message sets, 4.3
	searching for, 6.1
	synchronous MEP testing flow, 2.3.1, 2.3.1
	working with, 6.1

	test instances, 3.1
	
	exporting, 12.2
	viewing details, 9.2
	working with, 9.1

	test requirements, gathering, 2
	testing flows
	
	asynchronous (notify) testing flows, 2.3.2
	asynchronous (two-way), 2.3.3
	synchronous, 2.3.1

	tests
	
	defining in CAVS, 3.2
	running in CAVS, 3.2

	trace logging
	
	accessing logs, 18.4
	overview, 18.1
	setting levels, 18.3

U

	unit testing using CAVS, 2.4.1
	user roles
	
	associating email addresses, 14.3
	creating for error handling, 14.2

W

	web service for CAVS, 3.3
	WS-Addressing
	
	using, 5.2.1

17 Using the AIA Message Resubmission Utility

This chapter provides an overview and describes how to use the AIA Message Resubmission Utility. The AIA Message Resubmission Utility enables users to resubmit error messages based on these integration milestones: Queue, Topic, Resequencer, or AQ.

This chapter includes the following sections:

	
Section 17.1, "Introduction to the AIA Message Resubmission Utility"

	
Section 17.2, "Using the AIA Message Resubmission Utility User Interface"

	
Section 17.3, "Using the Command Line AIA Message Resubmission Utility"

17.1 Introduction to the AIA Message Resubmission Utility

To use the AIA Message Resubmission Utility, you must implement error handling and recovery for the asynchronous message exchange pattern.

For more information, see "Configuring Oracle AIA Processes for Error Handling and Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

According to this implementation method, when a message cannot be delivered to a service or component in the flow of a global transaction, the message is rolled back to the appropriate source milestone. This source milestone corresponds to a Queue or a Topic, a Resequencer, or AQ. It is here that the message will be persisted until it can be resubmitted for delivery to the service or component.

At the same time, a fault is raised by the Error Handling framework and, if enabled, error notifications and Oracle BPM Worklist tasks regarding the fault are created to alert administrators.

For more information about the Oracle BPM Worklist, see Chapter 16, "Using the Oracle BPM Worklist."

For more information about error notifications, see Chapter 15, "Using Error Notifications."

Once notified, the most natural course of action is for the administrator to bring up the failed service or component. After the service or component is back up and running, the administrator can use the AIA message resubmission utility to recover the faulted message from the source milestone. The AIA message resubmission utility changes the state of the faulted message to the Ready state, enabling it to be picked up by the consumer process.

Messages can be resubmitted by user interface or by command line in these ways:

	
UI-based AIA Message Resubmission. For more information, see Section 17.2, "Using the AIA Message Resubmission Utility User Interface".

	
Command line AIA Message Resubmission:

	
Oracle AQ store-based resubmission. For more information, see Section 17.3.1, "AQ Store Based Resubmission".

	
WLS JMS store-based (can be configured with file system or database). For more information, see Section 17.3.2, "WLS JMS based Resubmission".

	
Resequencer-based. For more information, see Section 17.3.3, "Resequencer Based Resubmission".

Figure 17-1 displays the architecture of the AIA message resubmission utility.

Figure 17-1 AIA Message Resubmission Utility Architecture

[image: Message resub arch diagram]

17.2 Using the AIA Message Resubmission Utility User Interface

This section discusses how to use the message resubmission utility user interface (UI) to resubmit faulted messages. The UI is integrated into the AIA Home page.

The AIA message resubmission utility figures out the milestone that is involved in an integration flow, based on the AIA Fault (canonical) and then resubmits any failed messages by connecting to the actual milestone whether it is a WLS Queue, Topic, Resequencer, or AQ.

The AIA message resubmission UI enables you query the error queue and filter for failed messages of interest, helping you to choose candidates for resubmission.

You can search for faults based on filters like Execution Context ID, Message ID, ErrorCode, Composite Name, Resource Type and other AIA context-related parameters. The ability to search and filter based on ErrorCode, for example, distinguishes system faults from business faults.

The UI also enables bulk resubmission of messages, and lets you quickly re-start a set of integration flows and track their status.

You can still use the command line utility for error resubmission. For more information, see Section 17.3, "Using the Command Line AIA Message Resubmission Utility".

To search for and resubmit faults:

	
Access the Oracle Application Integration Architecture (AIA) Home Page. In the AIA Message Resubmission Utility area, click the Go button. The Search Error Messages page displays, as shown in Figure 17-2 and Figure 17-3.

Figure 17-2 Search Error Messages Page (1 of 2)

[image: This image is described in surrounding text.]

Figure 17-3 Search Error Messages Page (2 of 2)

[image: This image is described in surrounding text.]

	
On the Search page, use the page elements discussed in Table 17-1 to search for faults.

	
Tip:

You can submit a single row or multiple rows at a time. You can also submit multiple rows of the same resource type at a time. To select multiple rows, press the Ctrl key and click your mouse.

Table 17-1 Search Error Messages Page Elements

	Element	Description
	
Match

	
Click the All or Any radio button if you want to match all or any of the search criteria.

	
Advanced

	
Click Advanced to open the advanced search window, shown in Figure 17-6.

	
Saved Search

	
You can save your own search criteria at any time, enabling you to quickly search on status and other criteria, such as failed messages, messages in process, ready for resubmission, or resubmitted messages.

	
Execution Context ID

	
A unique identifier used to correlate individual events as being part of the same request execution flow.

	
Message ID

	
A string value that uniquely identifies each message sent by a WLS JMS provider/AQ/Resequencer.

	
Resource Type

	
Choose from the list of available resource types: Queue, Topic or Resequencer.

	
Resource Name

	
Click the Resource Name lookup icon to see all of the available Resource Names and Resource Types. The dialog box shows the milestones that are configured in WLS and are automatically fetched, making it easy to choose the correct resource.

	
Reported Date

	
The reported date of an error message. You can filter error messages from a specific date using this field.

	
Error Code

	
For BPEL and Mediator process system error notifications, this is the fault code.

For business errors using catch blocks, this is the business error code you are catching. This is user-defined, for example, OUT_OF_INV.

	
System Code

	
This is the system code of the participating application.

	
Process Name

	
This is the business process in which the service is participating.

	
Service Name

	
For BPEL and Mediator services, this is the name of the service that experiences the error for which you are defining error notification details. For example, SampleBPELProcess.

	
Composite Instance ID

	
Click the Composite Instance ID link to open the Enterprise Manager (EM) flow trace page. The EM drill down page displays the integration flow stack and all of the composites involved in the process orchestration.

	
Status

	
Statuses are: Ready for resubmission, Message is in process of resubmission, Resubmitted, Failed.

	
Search Key

	
Click the Search Key lookup icon to see all of the available application context keys. The application context correlation fields are automatically fetched and displayed.

The context information comes from the source participating applications, for example, Siebel where an order is placed and an OrderID is available. This field tracks and correlates the faulted message in the integration layer.

	
Search Value

	
This is the value for a selected application context key. For example, "1001"(value of OrderID).

	
Search

	
Click Search to see results in the Search Result page, shown in Figure 17-3.

	
Reset

	
Click Reset to clear all search fields.

	
Save

	
Click Save to save your search criteria.

Search Results

Use the page elements on the Search Results page to view, submit, or delete messages. Available elements are discussed in Table 17-2.

Table 17-2 Search Results Page Elements

	Element	Description
	
View

	
Click View and choose Columns, Manage Columns to add or remove columns to your Search Result view.

	
Delete

	
Select a fault and click the Delete button.

	
Submit

	
Select a fault and click the Submit button.

	
Detach

	
Click Detach to separate search the criteria pane and the Search result pane.

	
Go Up or Go To Top

	
Click the Go Up or Go to Top buttons to move through the list.

	
Show as Top button

	
Click a message and then click Show as Top to move the message to the top of the list.

	
Last Modified Date

	
The the last modified date of an error message.

	
Message Order

	
The order of an error message that is logged (the sequence number).

	
Error Stamping

	
This is the Error Type value used to stamp the JMSCorrelationID. The JMSCorrelationID is used by the custom error listener to identify fault messages that require its custom error handling.

For example: AIA_EH_DEFAULT, ORDER_FO

	
Composite Version

	
The version of the composite that is deployed and active.

	
Service Engine

	
The type of service engine. It can be a BPEL process, human workflow, a decision service, Oracle mediator, or spring that executes the business logic of their respective components within the SOA composite application.

	
Composite Instance ID

	
Click the Composite ID field to see the trace flow in Oracle Enterprise Manager (EM). You must be logged in to EM to see the trace flow.

	
Message ID

	
Click the Message ID link to open a brand new page.

	
Business Context

	
Click the Business Context button to open the search details dialog which provides a search key and search value.

	
Status

	
Statuses are: Ready for resubmission, Message is in process of resubmission, Resubmitted, Failed.

	
Status Message

	
The Status Message is displayed based on the status of the error message.

Ready for resubmission - Message is in error state.

Resubmitted - Message is resubmitted to main queue.

Failed - Exception stack trace.

Finding Messages of Interest

You can use the Oracle EM Flow Trace page to review the integration flow stack and all of the composites involved in a process orchestration, enabling you to narrow down messages of interest.

You must already be logged in to Oracle EM.

	
Click the Composite Instance ID link to open the Flow Trace page in EM. This page shows the flow of the message through various composite and component instances as in Figure 17-4.

Figure 17-4 EM Flow Trace Page

[image: This image is described in surrounding text.]

	
After determining a message of interest, close this window. In the AIA Message Resubmission Utility Search Results page, click on the message and then click the Submit button. The Status changes to In Progress as in Figure 17-5.

Figure 17-5 Search Result Page

[image: This image is described in surrounding text.]

	
After the message has been submitted, click Composite Instance ID again to see the EM page where you can see that resubmission has happened--notice that a new set of activities were triggered in the flow trace.

Using the Advanced Search:

	
Click the Advanced button to open the Search Error Messages window, shown in Figure 17-6. You can search on different criteria and click Search to initiate a search. Click Reset to clear the criteria. Click Add Fields to add search fields.

Figure 17-6 Advanced Search

[image: Surrounding text describes Figure 17-6 .]

Viewing Message Detail:

	
From the Search Result page, click the Message ID to open the specific message and get more detail, as in Figure 17-7.

Figure 17-7 Message ID Detail

[image: This image is described in surrounding text.]

17.3 Using the Command Line AIA Message Resubmission Utility

Messages can be resubmitted by user interface or by command line.

For more information about using the UI, see Section 17.2, "Using the AIA Message Resubmission Utility User Interface".

17.3.1 AQ Store Based Resubmission

	
For message resubmission scenarios that involve Oracle Advanced Queue, Topic, internally the MSG_RESUBMIT stored procedure is used. This procedure assumes that the message type is SYS.AQ$_JMS_MESSAGE.

If the message type being used is not SYS.AQ$_JMS_MESSAGE, change the data type for the MSG variable in the MSG_RESUBMIT stored procedure and then recompile the procedure. You can then use the Message Resubmission Utility for resubmission based on message ID.

For more information about configuring a queue with AQ to support resubmission, see "Configure AQ JMS Foreign Server Destinations" in Oracle Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server.

	
Access the Oracle AIA log file, <DOMAIN_HOME>/servers/<SOA Server Name>/logs/aia-error.log to look up the following values included in the IntermediateMessageHop element for the message that requires resubmission:

	
SenderResourceTypeCode

	
SenderResourceID

	
SenderMessageID

For more information about these values in the context of the Oracle AIA fault message schema, see "Configuring Oracle AIA Processes for Error Handling and Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

Alternatively, you can also look up the aia-error.log in the Oracle Enterprise Manager.

	
Under WebLogic Domain, <domain name>, right-click the manage server entry (usually soa_server1).

	
Navigate to Logs, View Log Messages. On the Log Message page, provide search criteria (optional) and click the Search button.

For more information about viewing the Oracle AIA log in Oracle Enterprise Manager, see Chapter 18, "Using Trace and Error Logs."

	
AIAResubmissionUtility is available under $AIA_HOME/util, so browse to $AIA_HOME/util/AIAResubmissionUtility. Set all the required values in ResubmissionParams.properties file.

	
Note:

The messageID should be in normal format, and should not start with ID : < >

Example 17-1 Sample ResubmissionParams.properties for AQ based Resubmission

jms.app.admin.hostName=example.oracle.com
jms.app.admin.port=7001
jms.app.soa.url=t3://example.oracle.com:8001
jms.app.userName=weblogic
jms.app.password=password
isCluster=true
jms.resourceCFJndi=jms/aia/aiaResourceCF
jms.errorResourceCFJndi=jms/aia/aiaErrorQueueCF
resourceType=1
resourceName=AIA_SiebelCustomerJMSQueue
messageID=7109EDC5FFD9BA25E04014908FC62C90
forceResubmit=false

	
For Windows, execute $AIA_INSTANCE\bin\aiaenv.bat.

For Linux, source $AIA_INSTANCE/bin/aiaenv.sh.

	
Navigate to $AIA_HOME/util/AIAMessageResubmissionUtil and execute the following:

ant –f MessageResubmit.xml -logfile $AIA_HOME/util/AIAResubmissionUtility/MessageResubmit.log

The MessageResubmit.xml script references the edited ResubmissionParams.properties file. Based on the results of the command line execution, the status for a specific message will be set in the back end. Statuses are: Ready for resubmission, Message is in process of resubmission, Resubmitted, Failed.

	
Note:

All of these properties are self explanatory in the ResubmissionParams.properties file. For security reasons the "Password" property should be deleted from the properties file after the execution of the command line AIA Message Resubmission Utility.

Multiple message IDs of a particular composite can be set for the messageID property with comma “,” as a delimiter. For example: 7109EDC5FFD9BA25E0401, 9EDC5FFD9BA25E04014908F.

17.3.2 WLS JMS based Resubmission

	
Access the Oracle AIA log file, <DOMAIN_HOME>/servers/<SOA Server Name>/logs/aia-error.log, to look up the following values included in the IntermediateMessageHop element for the message that requires resubmission:

	
SenderResourceTypeCode

	
SenderResourceID

	
SenderMessageID

For more information about these values in the context of the Oracle AIA fault message schema, see "Configuring Oracle AIA Processes for Error Handling and Trace Logging" in Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack.

Alternatively, you can also look up the aia-error.log in the Oracle Enterprise Manager.

	
Under WebLogic Domain, <domain name>, right-click the manage server entry (usually soa_server1).

	
Navigate to Logs, View Log Messages. On the Log Message page, provide search criteria (optional) and click the Search button.

For more information about viewing the Oracle AIA log in Oracle Enterprise Manager, see Chapter 18, "Using Trace and Error Logs."

	
You may optionally define jms.resourceCFJndi= and jms.errorResourceCFJndi= property values in the ResubmissionParams.properties file. The default values for the error jndi are fetched based on the resourceName that is provided in the properties file by using the mbean infrastructure. The connection factories are derived based on the naming standards. See the second list item below.

	
The jms.resourceCFJndi= property defines a resource-specific ConnectionFactory that will be used to connect to the resource error queue. In this context, a resource is a JMS queue or topic. This property cannot have multiple values, even if you have multiple connection factories. You must specify one ConnectionFactory to be used by the resubmission script.

	
If the resource name is AIASamples_Queue and the JNDI is jndi/aia/AIASamples_Queue, the ConnectionFactory property value would be jndi/aia/AIASamples_QueueCF.

	
The jms.errorResourceCFJndi= property defines a generic ConnectionFactory that will be used to connect to all resource error queues that are not explicitly defined using the jms.resourceCFJndi= property. If you do not define this value, it automatically uses jms/aia/aiaErrorQueueCF which is created during AIA Foundation Pack installation.

	
AIAResubmissionUtility is available under $AIA_HOME/util, so browse to $AIA_HOME/util/AIAResubmissionUtility. Set all the required values in ResubmissionParams.properties file.

	
Note:

The messageID should be in the format ID : < >

Multiple message IDs of a particular composite can be set for the messageID property with comma “,” as a delimiter. For example: ID:<7109EDC5FFD9BA25E0401>, ID:<9EDC5FFD9BA25E04014908F>.

Example 17-2 Sample ResubmissionParams.properties for WLS JMS based Resubmission

jms.app.admin.hostName=example.oracle.com
jms.app.admin.port=7001
jms.app.soa.url=t3://example.oracle.com:8001
jms.app.userName=weblogic
jms.app.password=password
isCluster=true
jms.resourceCFJndi=jms/aia/aiaResourceCF
jms.errorResourceCFJndi=jms/aia/aiaErrorQueueCF
resourceType=1
resourceName=AIA_SiebelCustomerJMSQueue
messageID=ID:<983029.1264581138423.0>
forceResubmit=false

	
For Windows, execute $AIA_INSTANCE\bin\aiaenv.bat.

For Linux, source $AIA_INSTANCE/bin/aiaenv.sh.

	
Navigate to $AIA_HOME/util/AIAMessageResubmissionUtil and execute the following:

ant -f MessageResubmit.xml -logfile $AIA_HOME/util/AIAResubmissionUtility/MessageResubmit.log

The MessageResubmit.xml script references the edited ResubmissionParams.properties file. Based on the results of the command line execution, the status for a specific message will be set in the back end. Statuses are: Ready for resubmission, Message is in process of resubmission, Resubmitted, Failed.

	
Note:

All of these properties are self explanatory in the ResubmissionParams.properties file. For security reasons the "Password" property should be deleted from the properties file after the execution of the command line AIA Message Resubmission Utility.

17.3.3 Resequencer Based Resubmission

	
Faults/rejected messages which are marked as Recovery Needed in the EM Console can only be resubmitted using AIAResubmissionUtility. To get the list of faulted/rejected messages in the EM Console, navigate to SOA, click on corresponding domain and navigate to Faults and Rejected messages tab in the middle pane.

	
Make a list of all faulted instances (which are marked as Recovery Needed).

	
Get the composite name and messageID/GroupID (xpath of the messageID is defined at the design time of the resequencer) of the faulted instances.

	
AIAResubmissionUtility is available under $AIA_HOME/util. Navigate to $AIA_HOME/util/AIAResubmissionUtility and set all the required values in ResubmissionParams.properties file.

	
Note:

The resourceName should be in the format default/<compositeName>!<version>.

Multiple message IDs of a particular composite can be set for the messageID property with comma “,” as a delimiter. For example: 7109EDC5FFD9BA25E0401, 9EDC5FFD9BA25E04014908F.

Example 17-3 Sample ResubmissionParams.properties for Resequencer based Resubmission

jms.app.admin.hostName=example.oracle.com
jms.app.admin.port=7001
jms.app.soa.url=t3://example.oracle.com:8001
jms.app.userName=weblogic
jms.app.password=password
isCluster=true
jms.resourceCFJndi=jms/aia/aiaResourceCF
jms.errorResourceCFJndi=jms/aia/aiaErrorQueueCF
resourceType=3
resourceName=default/JMSConsumer!1.0
messageID=7109EDC5FFD9BA25E0
forceResubmit=false

	
For Windows, execute $AIA_INSTANCE\bin\aiaenv.bat.

For Linux, source $AIA_INSTANCE/bin/aiaenv.sh.

	
Navigate to $AIA_HOME/util/AIAMessageResubmissionUtil and execute the following:

ant –f MessageResubmit.xml -logfile $AIA_HOME/util/AIAResubmissionUtility/MessageResubmit.log

The MessageResubmit.xml script references the edited ResubmissionParams.properties file. Based on the results of the command line execution, the status for a specific message will be set in the back end. Statuses are: Ready for resubmission, Message is in process of resubmission, Resubmitted, Failed.

	
Note:

All of these properties are self explanatory in the ResubmissionParams.properties file. For security reasons the "Password" property should be deleted from the properties file after the execution of the command line AIA Message Resubmission Utility.

