Endeca Content Acquisition
System

Web Crawler Guide
Version 3.0.2 - March 2012

ORACLE
ENDECA

Contents

(= - o= 7
ADOUL TNIS QUIAE. ...t e e bttt e e e e bttt e e e e aa b et e e e e sbbe e e e e s anteeeeeeabbneeeeaans 7
WhO should USE thiS QUIAE..........ooiiiiiii e annnneeee 7
Conventions USEd iN thiS QUIAE..........io i e e e e e e e e s s s e e e e e eaaeeeesannnnrenenees 8
(07T g1 e=Tox 119 To T] r=To LT T o] oo o SRS 8
Chapter 1: Introduction.............coo i e e 9
WED CraWler OVEIVIEW. eeeeieeiieeee e e e ettt e e e e e e e e ettt eeeeaaee e e e s e nesteeeeeeeaaaeeeaaaannnssenneeeaaaeeeeeaaannnnnen 9
Running the Endeca sample WED Crawl............... e e e e 10
Chapter 2: Configuration............oeeeiiiiiiiccc e 11
LO70)01 To 8= 1[0) 0 1 [T SRR 11
The default. XM fil. ... ettt e e ettt e e e e sttt e e e e s bbe e e e e s snbeeeeeeaneeeaeeanes 12
I e 0 0T o (=TSR 12
AUthentiCation ProPEILIES.........ooeiiieee e e e e e e e e e e e e aaaaaaeeeeeeeeeeaaanes 15
Properties for authenticated ProXy SUPPOI..........c.uuiiiiiiiiiie e e e e e e e e e e aaeee s 17
= (o1 0 1=l o o] o=y £ 1= USRS
URL normalization Properties...........u oot e et s e e e e e e e e e e aaaeaaaeeeeeeeaeeees
LY Y Y] o TSI 0] o= o 1= 3
o (U0 T TR0 0] oY= o = S
= LR Y Tl o]] 01T [SO PUSU P
T g 1L LY gl o] o] oT=T o 1Y PRSPPI
LI {11 0= gl o] o = 4 1 =T SR
(07 -\ =Yoo o g T T o4 0] 0= T4 1 =Y PR SSR
Document conversion properties.........
Output properties.......cccccveeeviiiicinnneen.
LI TSI CET0 1T TSP PRP
The Crawl-Urlfilter Xt fil€.......o e e e b e e e e e e e e
Regular expression fOrMAL...... ... et
Specifying the NOStS 10 ACCEPT......ci i e
Order of the regUIAr EXPrESSIONS.ciiii ittt e e e e e e e e s e ee e e e aaaeeesssannresraereaaaaeeeenan
EXCIUAING file TOrMALS.cooiieie et s e e
The regex-nNormMalizE€.XMI filE.........oo i e et e e e e snte e e e e e nnbeeeeeennnees
The MIMe-tyPES. XM fIlE. ... e e e e e e e e e e e e e e e e e e e ssaaanteeaneeraaaeeeeeaaans
The parse-pluginS. XM fIl©..... ... e e e e e e e e e e e e e e s et eeeeeaaeaeeeeaaannn
The form-credentialS. XMl fillE..........c.ueiii i e e e e e e e e e nnree e e e ennees
About Form-based authentication
Format of the credentials file..........oo oo e e e e e e e e e
Setting the tiIMEOUL PrOPEITY.......coii et e et e e e et e e e e entee e e e e nned 40
Using special characters in the credentials file............ooviiiiiiii i 40
Authentication EXCEPLIONS.o enned 41
THe 10g4].PrOPEITIES fil....ceiiieiiiie ettt e e e et e e e e sttt e e e e e nbe e e e e e anseeeeeeenraeaeeeneed 41
Enabling the CAS Document Conversion Module with the Web Crawler.............cccooiiiiiiiiieeeie e 42
Disabling the CAS Document Conversion Module with the Web Crawler............ccoocooiiiii i, 42
About Document CoNVErsioN OPLIONS..........coiuiiiiiiee e e e e e e e e e e eeeeeaaeeeasd 43
Setting document CONVEISION OPLIONS.........ccuuiiiiiiiiiei e e e e e e e e e s e rareeeaaaead 44
Configuring Web crawls to write output to a Record Store instance.............cccooviiiiiii e 44
Chapter 3: Supported crawl types.........cmrmecciiiiriiccccs e 47
ADOUL TUIL CrAWIS. ...ttt et e e e e e e ettt e e e e e e e e e e sa e enaeeeeeaaeeeeasaannnsnseneneeaaeaeeesd A7
ADOUL reSUMADIE CraWIS........co ittt e e e e e e e ettt e et e e e e e e e e e e e nnnbenaneeeeaaees? a7
About workspace directories and outpuUL fil@S...........ooiiiiii i 48
Chapter 4: Running the Endeca Web Crawler...............cccceiiiiiiiiiniinnnees 51
Command-line flags fOr CraWIS...........ooi i e e e e e e e e nnes 51
RUNNING FUIL CrAWIS. ...ttt e et e e e bt e e e s e b e e e e e bt ee e e e enbees 53

RUNNING reSUMADIE CraWIS.......coeeeiiiiiiiitii ettt e ettt e s e e e e e e e eeaeaaaaaaaeaeeeseeesessnsnse 54
Record properties generated DY @ Crawl............ooiiiiiiiiiii e 55

Chapter 5: Running the Sample Web Crawler Plug-in
About the Web Crawler plug-in frameWOrK............cooi i
How the Web Crawler processes URLS...........oooiiiiiiiiiiiieiiiiiiieeeeeeee

About the sample custom filter plug-in.........cccooceeeiiiiiiiiiiiiiinne,

Adding a custom plug-in to the Endeca Web Crawler
Opening the sample PlUG-iN PrOJECL....... .o e e e e e e e e e e e e s anneneeeeeeesd
Overview of the sample HTMLMetatagFilter plug-in..............cooiiiiiiiiiiii e
Overview Of the PIUGIN.XMIFIlE...... ... e e e e
Building the SampPle PIUG-iN........c.ueiiiiiei e e s e e s snnn e e e s snnneeed
Adding the plug-in to the CAS lib dir€CIONY........uueiiiiiiie e
Activating the plug-in for the Web Crawler............ooo e
Running the Web Crawler with the New plug-in..........ooiiiiiiii e

iv Endeca Content Acquisition System

Copyright and disclaimer

Copyright © 2003, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create arisk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc.
AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Vi

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Endeca Content Acquisition System

Preface

The Oracle Endeca Commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine™, a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide

This guide describes the major tasks involved in configuring the Endeca Web Crawler and running it
to gather source data from Web sites.

It assumes that you are familiar with the concepts of the Endeca Content Acquisition System and the
Endeca Information Transformation Layer.

Who should use this guide

This guide is intended for application developers who are building applications using the Endeca Web
Crawler and are responsible for running Web crawls and providing the data into an Endeca pipeline
to transform them into Endeca records.

8 | Preface

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: -

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support

Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https:.//support.oracle.com.

Endeca Content Acquisition System Web Crawler Guide

https://support.oracle.com

Chapter 1
Introduction

This section provides introductory information on the Endeca Web Crawler.

Web Crawler Overview

The Web Crawler is installed by default as part of the CAS installation. The Endeca Web Crawler
gathers source data by crawling HTTP and HTTPS Web sites and writes the data in a format that is
ready for Forge processing (XML or binary).

Besides retrieving and converting the source documents, the Web Crawler tags the resulting Endeca
records with metadata properties that are derived from the source documents.

After the Web Crawler writes the Endeca records, you can configure an Endeca record adapter (in
Developer Studio) to read the records into your Endeca pipeline, where Forge processes the records,
and you can add or modify the record properties. These property values can then be mapped to Endeca
dimensions or properties by the property mapper in the pipeline. For details, see "Creating a Pipeline
to read Endeca records" in the Endeca CAS Developer's Guide.

You can then build an Endeca application to access the records and allow your application users to
search and navigate the document contents contained in the records.

The Endeca Web Crawler is intended for large-scale crawling and is designed with a highly modular
architecture that allows developers to create their own plugins. The Endeca Web Crawler supports
these types of crawls:

« full crawls, in which all pages (URLSs) in the seed are crawled.

* resumable crawls (also called restartable crawls), in which the crawl uses the same seed as a
previous crawl, but uses a different crawl depth or configuration.

Note that the current version of the Endeca Web Crawler does not support incremental crawls nor
crawling FTP sites.

SSL Support

You can configure the Endeca Web Crawler to read and write from an SSL-enabled Record Store
instance. For details, see the "SSL Configuration" chapter of the Endeca CAS Developer's Guide.

10 Introduction | Running the Endeca sample Web crawl

Running the Endeca sample Web crawl

You can examine the configuration and operation of the Web Crawler by running a sample Web crawl
located in the CAS\workspace\conf\web-crawler\polite-crawl directory.

The sample configuration crawls the Endeca Web site (http://www.endeca.com) with a
preconfigured seed file (endeca. Ist) in the conf\web-crawler\defaul t directory.

The Endeca sample crawl is configured to output the records as uncompressed XML. The XML format
allows you to easily read the output file (with a text editor or the more command) to confirm that the
crawl collected records. The site.xml file also specifies pol ite-crawl-workspace as the name
of the workspace directory.

To run the Endeca sample crawil:

1. Open a command prompt.
2. Navigate to the CAS root directory.
For example, in a default installation on Windows, this is C:\Endeca\CAS\version .
3. Runtheweb-crawler .bat (for Windows) or web-crawler . sh (for UNIX) script with the following

flags. Be sure to specify 0 (zero) to the —d flag to crawl only the root of the site, as shown in this
example on a Windows machine:

\bin\web-crawler -c ..\workspace\conf\web-crawler\polite-crawl
-d 0 -s http://www.endeca.com

If the crawl begins successfully, you see the INFO progress messages.

When finished, the Web Crawler displays: Crawl complete. The output file named
polite-crawl .xml is in the CAS\version\polite-crawl-workspace\output directory.

Endeca Content Acquisition System Web Crawler Guide

Chapter 2
Configuration

This section provides configuration information for the Endeca Web Crawler.

Configuration files

The Endeca Web Crawler uses the following set of configuration files:

Configuration Filename

default.xml

site.xml

crawl-urlfilter.txt

regex-normalize.xml

mime-types.xml

parse-plugins.xml
form-credentials.xml

log4j .properties

Purpose

The global configuration file, which should contain properties for all of
your crawls with reasonable default values. Specific settings in this file
can be overridden by the site.xml file. Do not remove or rename this
file, because its name and location are hard-coded in the Web Crawler
software.

A per-crawl property overrides file. The settings in this file override those
in the default.xml file. Therefore, this file is meant to be used to adjust
per-crawl settings.

Contains a list of include and exclude regular expressions for URLs. These
expressions determine which URLs the crawler is allowed to visit. Note
that the filters can also be applied to seeds if the
urlfilter.filter-seeds configuration property is set to true.

Contains a list of URL normalizations, which allow you to specify
substitutions to be done on URLs. Each normalization is expressed as a
regular expression and a replacement expression. Note that the seeds
can also be normalized if the urlnormalizer_normalize-seeds
configuration property is set to true.

Contains a list of MIME types known to the system. It is used to look up
the MIME type for a specific file extension.

Maps MIME types to parsers (for example, "text/html" to the HTML parser).
The credentials file for form-based authentication.

The log4j configuration file, which is used to specify logging on certain
components.

12 Configuration | The default.xml file

Location of the configuration files
After you install the CAS, the configuration files are in the following locations:

» The workspace/conf/web-crawler/default directory contains all of the above files, except
for the site.xml file. This directory is the global configuration directory, and you should not
change its name nor remove the default.xml file. Note that the settings of most of its files can
be overridden by the versions in the crawl-specific configuration directories.

» The workspace/conf/web-crawler/polite-crawl directory contains only the site.xml
and crawl-urlfilter._txt files.

» The workspace/conf/web-crawler/non-polite-crawl directory also contains only the
site.xml and crawl-urlfilter._txtfiles. This site.xml contains more aggressive settings,
such as such as no fetcher delay (versus a 1-second delay in the polite version) and a maximum
of 52 threads (versus 1 in the polite version).

You can use a text editor to edit the files.

The default.xml file

The default.xml file is the main configuration file for the Endeca Web Crawler.

The default.xml configuration file contains properties for all of your crawls. These properties should
have values that can be used for most crawl scenarios. If necessary, you can override these default
values with those in the site.xml file.

The default.xml file provides configuration values for these sets of properties:

* HTTP properties

» Authentication properties

» Proxy properties

» Fetcher properties

+ URL normalization properties
» MIME type properties

* Plugin properties

» Parser properties

* Parser filter properties

» URL filter properties

» Crawl scoping properties

» Document Conversion properties
» Output file properties

Each set of properties is covered in its own topic page.
Note: Do not change the name or location of the default.xml configuration file because the

Web Crawler is hard-coded to look for that name and path. If you rename the file, the Web
Crawler throws an exception at start-up and exit.

HTTP Properties
You can set the HTTP properties in the default.xml file.

Endeca Content Acquisition System Web Crawler Guide

Configuration | The default.xml file 13

The default.xml configuration file allows you to set the HTTP transport properties for the Web
Crawler.

Property Name

http.

http.

http.

http.

http.

http.

http.

http.

http.

http.

http.

agent.name

robots.ignore

robots.agents

robots.403.allow

agent.description

agent._url

agent._email

agent.version

timeout

content.limit

redirect.max

Property Value

String that contains the name of the user agent originating the
request (defaultis endeca webcrawler). This value is used
for the HTTP User-Agent request header. Required.

Boolean value (default is False). Determines whether the
crawler ignores the robots.txt.

Comma-delimited list of agent strings, in decreasing order of
precedence (default is endeca webcrawler,*). The agent
strings are checked against the User-Agent field in the
robots.txt file. It is recommended that you put the value of
http.agent.name as the first agent name and keep the
asterisk (*) at the end of the list.

Boolean value (default is false). Some servers return HTTP
status 403 (Forbidden) if robots. txt does not exist. Setting
this value to false means that such sites are treated as
forbidden, while setting it to true means that the site can be
crawled.

String value (default is empty). Provides descriptive text about
the crawler. The text is used in the User-Agent header,
appearing in parenthesis after the agent name.

String value (default is empty). Specifies the URL that appears
in the User-Agent header, in parenthesis after the agent name.
Custom dictates that the URL be a page explaining the purpose
and behavior of this crawler.

String value (default is empty). Specifies the email address
that appears in the HTTP From request header and User-Agent
header. A good practice is to mangle this address (e.g., "info
at example dot com") to avoid spamming.

String value (default is WebCrawler). Specifies the version
of the crawl. The version is used in the User-Agent header.

Integer value (default is 10000). Specifies the default network
timeout in milliseconds.

Integer value (default is 1048576). Sets the length limit in
bytes for downloaded content. If the value is a positive integer
greater than 0, content longer than the setting will not be
downloaded (the page will be skipped). If set to a negative
integer, no limit is set on the content length. Endeca does not
recommend setting this value to O because that value limits
the crawl to producing 0-byte content.

Integer value (default is 5). Sets the maximum number of
redirects the fetcher will follow when trying to fetch a page. If
set to negative or 0, the fetcher will not immediately follow
redirected URLSs, but instead will record them for later fetching.

Endeca Content Acquisition System Web Crawler Guide

14 Configuration | The default.xml file

Property Name Property Value

http.useHttpll Boolean value (default is false). If true, use HTTP 1.1; if
false, use HTTP 1.0.

http.cookies String value (default is empty). Specifies the cookies to be
used by the HTTPClient.

About setting the HTTPClient cookies
The http.cookies property sets the cookies used by the HTTPClient.

The cookies must be in this format:
DOMAIN1~~~NAME1~~~VALUE1~~~PATH1~~~MAXAGE1~~~SECURE1] | |DOMAIN2~~~._ ..

where:

* DOMAIN is the domain the cookie can be sent to.

NAME is the cookie name.

VALUE is the cookie value.

PATH is the path prefix for which the cookie can be sent.

MAXAGE is the number of seconds for which the cookie is valid (expected to be a non-negative
number, -1 signifies that the cookie should never expire).

SECURE is either true (the cookie can only be sent over secure connections, that is, HTTPS
servers) or fal se (the cookie is considered safe to be sent in the clear over unsecured channels).

Note that the triple-tilde delimiter (~~~) must be used to separate the values.

A sample cookie specification is:

172.30.112.218~~~MYCOOKIE~~~ABRACADABRA=MAGIC~~~/junglegym/mycookie. jsp~~~-
1~~~False

Note that the example cookie never expires and can be sent over unsecured channels.

About obeying the robots.txt file

You can set the Web Crawler to either ignore or obey the robots. txt exclusion standard, as well
as any META ROBOTS tags in HTML pages.

" - . .
7~ Note: By default, the http.robots.ignore property is setto false in default.xml.
However, site.xml in the conf/web-crawler/non-polite-crawl directory contains an
override for the http.robots. ignore property, which is set to true in that file.

For example, if the property is set to false and an HTML page has these META tags:

<html>

<head>

<title>Sample Page</title>

<META NAME="'ROBOTS" CONTENT="'"NOINDEX, NOFOLLOW">
</head>

Endeca Content Acquisition System Web Crawler Guide

Configuration | The default.xml file 15

then the presence of the NOINDEX tag causes the crawler to not index the content of the page (i.e.,
no text or title is extracted), while the NOFOLLOW tag prevents outlinks from being extracted from the
page. In addition, a message is logged for each META tag that is obeyed:

The HTML meta tags for robots contains ""noindex', no text and title are
extracted for: URL

The HTML meta tags for robots contains "nofollow', no outlinks are extracted
for: URL

If the property is set to true, then the robots. txt file is ignored, as well as any META ROBOTS
tags in HTML pages (for example, outlinks are extracted even if the META ROBOTS tag is set to
NOFOLLOW).

Setting the download content limit

If your crawls are downloading files with a lot of content (for example, large PDF or SWF files), you
may see WARN messages about pages being skipped because the content limit was exceeded. To
solve this problem, you should increase the download content limit to a setting that allows all content
to be downloaded.

Any content longer than the size limit is not downloaded (i.e., the page is skipped).

To set the download content limit:

1. In a text editor, open default.xml.

2. Set the value of the http.content. limit property as the length limit, in bytes, for download
content.

]
7~ Note: Note that if the content limit is set to a negative number or 0, no limit is imposed on
the content. However, this setting is not recommended because the Web Crawler may
encounter very large files that slow down the crawl.

3. Save and close the file.

Example of setting the download content limit

In this example, the size of the content is larger than the setting of the http.content. 1 imit property:

WARN com.endeca.itl._web.UrlProcessor
Content limit exceeded for http://xyz.com/pdf/B2B_info.pdf. Page is skipped.

Authentication properties
You can set the authentication properties in the default.xml file.

The HTTPClient supports four different types of HTTP authentication schemes :
* Basic
* Digest
* NTLM
* Form

These schemes can be used to authenticate with HTTP servers or proxies. The table below lists the
properties that correspond to each authentication scheme.

Endeca Content Acquisition System Web Crawler Guide

16 Configuration | The default.xml file

Property Name
http.auth.basic

http.auth.digest

http.auth_.ntlm

http.auth.form.credentials.file

Related Links
The form-credentials.xml file on page 38

Property Value

String value (default is empty). Specifies the
credentials to be used by the HTTPClient for Basic
authentication. If the value is empty, Basic
authentication is not done for the crawl.

String value (default is empty). Specifies the
credentials to be used by the HTTPClient for Digest
authentication. If the value is empty, Digest
authentication is not done for the crawl.

String value (default is empty). Specifies the
credentials to be used by the HTTPClient for NTLM
authentication. If the value is empty, NTLM
authentication is not done for the crawl.

File name (defaultis form-credentials.xml).
Specifies the file in the configuration directory that
provides the credentials for Form-based
authentication. If the value is empty, Form
authentication is not done for the crawl.

The form-credentials.xml file provides the credentials for sites that use form-based

authentication.

About configuring Basic authentication

If a Web server uses HTTP Basic authentication to restrict access to Web sites, you can specify
authentication credentials that enable the Web Crawler to access password-protected pages. The
http.auth.basic property sets the credentials to be used by the HTTPClient for Basic authentication.

The credentials must be specified in this format :

USERNAME1~~~PASSWORD1~~~HOST1~~~PORT1~~~REALM1] | JUSERNAME2~~~_ . .

where:

USERNAME is the user ID to be sent to the host server.
PASSWORD is the password for the user ID.
HOST is the host to which the credentials apply (i.e., the host to be crawled). The value can be a

specific host name or ANY_HOST (which represents any host).

PORT is either a specific host port or ANY_PORT.

» REALM is either a specific realm name on the host or ANY_REALM.

Note that the triple-tilde delimiter (~~~) must be used to separate the values.

A sample credential specification is:

Jjones~~~hell10123~~~myhost~~~ANY_PORT~~~ANY_REALM

About configuring Digest authentication

If a Web server uses HTTP Digest authentication to restrict access to Web sites, you can use the
http.auth.digest property to set the credentials used by the HTTPClient for Digest authentication.

Endeca Content Acquisition System Web Crawler Guide

Configuration | The default.xml file 17

The credentials must be specified in this format:
USERNAME1~~~PASSWORD1~~~HOST1~~~PORT1~~~REALM1] | JUSERNAME2~~~_ . .

where the meanings of the arguments are the same as for Basic authentication.

About configuring NTLM authentication

If a Web server uses HTTP NTLM authentication to restrict access to Web sites, you can specify
authentication credentials that enable the Web Crawler to access password-protected pages. The
http.auth.ntlmproperty sets the credentials to be used by the HTTPClient for NTLM authentication.

S
7~ Note: The Web Crawler only supports Version 1 of the NTLM authentication scheme.

The credentials must be specified in this format:
USERNAME1~~~PASSWORD1~~~HOST1~~~PORT1~~~REALM1~~~DOMAIN1] | JUSERNAME2~~~. ..

where:

USERNAME is the user ID to be sent to the server.

PASSWORD is the password for the user ID.

HOST is a specific host name to which the credentials apply (i.e., the host to be crawled). Note that
you cannot use the ANY_HOST specifier.

PORT is either a specific host port or ANY_PORT.

REALM is either a specific realm name on the host or ANY_REALM.

» DOMAIN is either a domain name or an IP address.

Note that the triple-tilde delimiter (~~~) must be used to separate the values.

Configuring Form-based authentication

If you are crawling sites that implement form-based authentication, you supply the credentials in a
form-credentials._xml file.

To configure form-based authentication:

1. In a text editor, open default.xml.

2. Use the http.auth_form._credentials.file property to specify the name of the
form-credentials._xml file.

>
7~ Note: The form-credentials.xml file should be located in either
workspace/conf/web-crawler/default or the directory that holds a per-crawl set of
configuration files.

Properties for authenticated proxy support

You can configure authenticated proxy support for the Web Crawler.

Many networks use authenticated proxy servers to secure and control Internet access. These proxy
servers require a unique user ID and password for access.

Endeca Content Acquisition System Web Crawler Guide

18 Configuration | The default.xml file

Property Name Property Value

http.proxy.host String value (default is empty). Specifies the
hostname of the authenticated proxy server. If the
value is empty, no proxy is used.

http.proxy.port Number that specifies the port of the authenticated
proxy server (default is empty).

http.proxy.agent.host Name or IP address of the host on which the
crawler would be running (default is empty). This
value is used by the protocol-httpclient plugin. Use
this property only if the proxy needs NTLM
authentication.

http.proxy.username String value (default is empty). Specifies the
username of the proxy. The name will be used by
the protocol-httpclient plugin, if the proxy server
requests basic, digest, and/or NTLM authentication.
For NTLM authentication, do not prefix the
username with the domain (susam is correct
whereas DOMAIN\susam is incorrect).

http.proxy.password String value (default is empty). Specifies the
password for the proxy user ID.

http.proxy.realm String value (default is empty). Specifies the
authentication realm for the proxy. Do not specify
avalue if a realm is not required or if authentication
should take place for any realm. If the site is using
NTLM authentication, note that NTLM does not
use the notion of realms; therefore, you must
specify the domain name of NTLM authentication
as the value for this property.

Fetcher properties

The fetcher is the Web Crawler component that actually fetches pages from Web sites. You can set
the fetcher properties in the default.xml file.

By using the properties listed in the table, you can configure the behavior of the fetcher.

Property Name Property Value

fetcher._delay Value in seconds (default is 2.0). Specifies the
number of seconds a fetcher will delay between
successive requests to the same server. If you
have multiple threads per host, the delay is on a
per-thread basis, not across all threads.

fetcher.delay.max Value in seconds (default is 30). Specifies the
maximum amount of time to wait between page
requests.

fetcher.threads. total Integer (default is 100). Specifies the number of

threads the fetcher should use. This value also

Endeca Content Acquisition System Web Crawler Guide

Configuration | The default.xml file 19

Property Name Property Value

determines the maximum number of requests that
are made at once (because each thread handles
one connection).

fetcher.threads.per-host Integer (default is 1). Specifies the maximum
number of threads that should be allowed to access
a host at one time.

fetcher.retry.max Integer (default is 3). Specifies the maximum
number of times that a page will be retried. The
page is skipped if it cannot be fetched in this
number of retries.

fetcher.retry.delay Value in seconds (default is 5). Specifies the delay
between subsequent retries on the same page. If
this value is less than the Fetcher.delay value,
then the value of Fetcher .delay is used instead.

Use of the max delay and crawl-delay values

The fetcher compares the value of the Fetcher .delay . max property to the value of the Crawl-Delay
parameter in the robots. txt file.

The fetcher works as follows:

« If the Fetcher .delay.max value is greater than the Crawl-Delay value, the fetcher will obey the
amount of time specified by Crawl-Delay.

+ If the Fetcher.delay.max value is less than the Crawl-Delay value, the fetcher will not crawl
the site. It will also generate this error message:

The delay specified in robots.txt is greater than the max delay.
Therefore the crawler will not fully crawl this site. All pending work
from this host has been removed.

+ If the Fetcher.delay.max value is set to -1, the fetcher will wait the amount of time specified
by the Crawl-Delay value.

Note that above behavior occurs only if the http.robots. ignore property is set to false (which
is the default).

Fetcher overrides in the site.xml files
This topic describes overrides for the fetcher property values in the default.xml file.

The site.xml file in the workspace/conf/web-crawler/non-pol ite-crawl directory contains
overrides to the fetcher's default property values.

* The fetcher.delay value is setto 0.0.
» The fetcher.threads. total value is set to 52.
* The fetcher.threads.per-host value is set to 52.

The site.xml file in the workspace/conf/web-crawler/polite-crawl directory overrides the
Tfetcher.delay value, which it sets to 1.0.

Otherwise, both files use the default values for the fetcher properties.

Endeca Content Acquisition System Web Crawler Guide

20 Configuration | The default.xml file

URL normalization properties

You can set the URL normalization properties in the default.xml file.

URL normalization (also called URL canonicalization) is the process by which URLs are modified and
standardized in a consistent manner. The purpose of URL normalization is to transform a URL into a
normalized or canonical URL so it is possible to determine if two syntactically different URLs are

equivalent.

The Web Crawler performs URL normalization in order to avoid crawling the same resource more than
once. By using the properties listed in the table, you can configure how the Web Crawler normalizes

URLs.

Property Name

urlnormalizer

urlnormalizer

urlnormalizer

urlnormalizer

.order

-regex.file

-loop.count

.normalize-seeds

Types of URL normalizers

Property Value

Space-delimited list of URL normalization class
names. Specifies the order in which the URL
normalizers will be run. If any normalizer is not
activated, it will be silently skipped. If other
normalizers not on the list are activated, they will
run in random order after the listed normalizers
run.

File name (default is regex-normalize.xml).
Name of the configuration file used by the Regex-
UrINormalizer class. Note that the file must be
in the configuration directory.

Integer value (default is 1). Specifies how many
times to loop through normalizers, to ensure that
all transformations are performed.

Boolean value (default is fal se). Specifies
whether to normalize the seeds.

The Endeca Web Crawler has three URL normalizers:

* BasicURLNormalizer
« PassURLNormalizer
* RegexURLNormalizer

The BasicURLNormalizer performs the following transformations:

* Removes leading and trailing white spaces in the URL.

» Lowercases the protocol (e.g., HTTP is changed to http).
» Lowercases the host name.
» Normalizes the port (e.g., http://xyz.com:80/index.html is changed to

http://xyz.

com/index.html).

» Normalizes null paths (e.g., http://xyz.comis changed to http://xyz.com/index.html).
* Removes references (e.g., http://xyz.com/about.html#history is changed to

http://xyz.

com/about.html).

* Removes unnecessary paths, in particular the . ./ paths.

Note that these transformations are actually performed by the regex-normalize.xml file.

Endeca Content Acquisition System Web Crawler Guide

Configuration | The default.xml file 21

The PassURLNormal i zer performs no transformations. It is included because it is sometimes useful
if for a given scope at least one normalizer must be defined but no transformations are required.

The RegexURLNormal izer allows users to specify regex substituions on all or any URLs that are
encountered. This is useful for transformations like stripping session IDs from URLs. This class uses
the file specified in the urlnormalizer.regex.file property.

Default order for the URL normalizers
The default classes for the urlnormal izer.order property are:

* org.apache.nutch_net._urlnormalizer._basic.BasicURLNormalizer
» org.apache.nutch.net.urlnormalizer.regex.RegexURLNormalizer

Normalizing the seed list
You can apply normalization to the seed list with the urInormal izer .normal ize-seeds property.

By default, the seeds are read in as-is. In some cases, however, you may want to have URL
normalization applied to the seeds (for example, if the seeds are extracted from a database instead
of manually entered in the seed list by the user).

To normalize the seed list:

1. In a text editor, open the default.xml file.
2. Setthe urlnormalizer._.normalize-seeds property to true.
3. Save and close the file.

Related Links

URL filter properties on page 25
You can configure how the URL filter plugins are handled by the Web Crawler.

MIME type properties
You can set the MIME type mapping properties in the default.xml file.

These properties provide a high-level configuration of how the Web Crawler performs the mapping of
file extensions to MIME types. Note that by default, the list of MIME file extensions is kept in the
mime-types.xml configuration file.

Property Name Property Value

mime.types.file File name (default is mime-types.xml). Specifies
the file in the configuration directory that contains
information mapping filename extensions and
magic sequences to MIME types.

mime.type.magic Boolean value (default is true). Specifies whether
the MIME content-type detector uses magic
resolution to determine the MIME type.

mime.types.trust-server._text-html Boolean value (default is false). Specifies
whether the "text/html" MIME type returned by the
server should be trusted over the URL extension.

Endeca Content Acquisition System Web Crawler Guide

22

Configuration | The default.xml file

Overriding the server text/html MIME type

If there is confusion as to the MIME type of a given URL, the Web Crawler by default trusts the URL
extension over the server MIME type. The mime.types.trust-server.text-html property is
intended for crawls that may experience "text/html|" MIME type resolution problems.

Assume, for example, that one of the URLs to be crawled is similar to the following:
http://www.xyz.com/scripts/InfoPDF.asp?FileName=4368.pdf

In this case, the actual page is an ASP page, and therefore the server returns "text/html" as the MIME
type for the page. However, the crawler sees that the URL has a ".pdf' extension, and therefore resolves

it as a PDF file (i.e., it overrides the MIME type returned by the server). The crawler then invokes the
Document Conversion module on the page, when in fact it should not.

In the above example, if the mime . types.trust-server.text-html property is set to true, the
crawler trusts the server's "text/html" MIME type instead of the URL extension when resolving this
contention. The Document Conversion module is therefore not invoked.

To override the server text/html MIME type:
1. In a text editor, open the default.xml file.

2. Setthe mime.types.trust-server.text-html property to true.
3. Save the file.

Plugin properties

You can set the plugin properties in the default.xml file.

The Web Crawler contains a number of plugins that perform the core work of the crawler tasks. By
using the properties listed in the table, you can configure which plugins to activate and how to handle
non-activated plugins that are needed by activated plugins.

Property Name Property Value
plugin.folders Comma-delimited list of directory pathnames
(default is

CAS/version/lib/web-crawler/plugins).
Specifies the directories where the plugins are
located. Each element may be a relative or
absolute path. If absolute, it is used as-is; If
relative, it is searched for on the CLASSPATH.

plugin.auto-activation Boolean value (default is true). Specifies if some
plugins that are not activated by the plugin.in-
cludes and plugin.excludes properties must
be automatically activated if they are needed by
some activated plugins.

plugin.includes Regular expression. Specifies which plugin IDs to
include. Any plugin not matching this expression
is excluded.

plugin.excludes Regular expression (default is empty). Specifies

which plugin IDs to exclude.

Endeca Content Acquisition System Web Crawler Guide

Configuration | The default.xml file 23

Default activated plugins
The default regular expression value for the plugin. includes property activates these plugins:

* lib-auth-http

* auth-http-form-basic

* protocol-httpclient

* protocol-file

« urlfilter-regex

* parse-text

* parse-html

* parse-js

* urlnormalizer-pass

* urlnormalizer-regex

* urlnormalizer-basic

* endeca-searchexport-converter-parser
» endeca-generator-html-basic
* output-endeca-record

Specifying the plugins directory
The plugin.folders property lets you specify the location of the plugins directory.

If you retain the default . . . /lib/web-crawler/plugins location, you have to run the web-crawler
startup script from the Web Crawler's root directory. If you specify an abolute path for the location, you
can run the script from any other directory on the machine.

To specify the plugins directory:
1. In a text editor, open the default.xml file.

2. Modify the plugin.folders property as needed.
3. Save and close the file.

Parser properties
You can set the parser properties in the default.xml file.

The Web Crawler contains two HTML scanners that parse HTML documents: NekoHTML and TagSoup.
By using the properties listed in the table, you can configure which HTML parser to use, as well as
other parsing behavior.

Property Name Property Value

parse.plugin.file File name (default is parse-plugins._xml).
Specifies the configuration file that defines the
associations between content-types and parsers.

parser.character.encoding.default ISO code or other encoding representation (default
is windows-1252). Specifies the character
encoding to use when no other information is
available.

Endeca Content Acquisition System Web Crawler Guide

24 Configuration | The default.xml file

Property Name Property Value

parser._html._impl neko or tagsoup (default is neko). Specifies
which HTML parser implementation to use: neko
uses NekoHTML and tagsoup uses TagSoup.

parser.html . form.use_action Boolean value (default is False). If true, the
HTML parser will collect URLs from Form action
attributes.

Note: This may lead to undesirable
behavior, such as submitting empty forms
during the next fetch cycle.

If False, form action attributes will be ignored.

If the Web Crawler configuration includes the DOM for the Web page in the output Endeca records,
the HTML parsers handle invalid XML characters as follows:

» The NekoHTML parser removes the invalid XML characters in the range 0x00-0x1F and 0x7F-0x9F
from the DOM.

» The TagSoup parser strips nothing from the DOM, because TagSoup can efficiently handle invalid
XML characters.

Note that the NekoHTML parser is the default HTML parser.

Parser filter properties

You can set the parser filter properties in the default.xml file.

The Web Crawler contains a number of filter plugins that perform the core work of the crawler tasks.
By using the properties listed in the table, you can configure how the plugins are handled by the Web

Crawler.

Property Name Property Value

parser.filters.order Space-delimited list of parser filter class names
(default is empty). Specifies the order in which the
parser filters are applied.

document.prune.xpath String of XPath expressions (default is empty).

Defines the XPath expressions to be used for the
endeca-xpath-filter.

document.prune.xpath.fol low-outlinks Boolean value (default is true). Determines
whether the crawler will follow outlinks from the
pruned content. If set to true (the default), the
outlinks are followed.

5.3
Note: To use this feature, you must include

endeca-xpath-filterintheplugin.in-
cludes property.

Endeca Content Acquisition System Web Crawler Guide

Configuration | The default.xml file 25

Setting the order of parser filters

The parser . filters.order property allows you to specify the order in which the parser filters are
applied.

To set the order of parser filters:

1. In a text editor, open the default.xml file.
2. Modify the parser.Tilters.order property as needed.

If the property value is empty, all available parser filters (as dictated by the plugin-includes and
plugin-excludes properties) are loaded and applied in system-defined order.

If the property value is not empty, only the named filters are loaded and applied in the given order.
For example, assume that the property has this value:

org.apache.nutch.parse. js.JSParseFilter com.endeca.itl.web.process.fil-
ter._DocumentPruneXPathFilter

In this case, the JSParseFilter is applied first and the DocumentPruneXPathFilter second.

About defining the XPath filter expressions

The document . prune . xpath property defines the XPath expressions that will be used by the Endeca
Document Prune XPath Filter (i.e., the endeca-xpath-filter plugin).

The XPath expressions are delimited using a triple-tilde delimiter (~~~) and are used to prune the
document in this order. Note that all the element names must be defined in uppercase while the attribute
names must be in lowercase.

&
7~ Note: To use this property, you need to include endeca-xpath-filter in the plugin.in-
cludes property.

Example 1: Assume that the property has this XPath expression value:
//DINV~~~//A[@href]

This expression would prune all the DIV elements and links (i.e., the A anchor elements) in the
document.

Example 2: Assume that many of the pages that you are crawling have the same header and footer.
Because the text that is in the header and footer has no correlation to the subject matter of the page,
you want to prune the header and footer text. The XPath expression for this operation would look
similar to this example:

//DIV[@id="masthead"]~~~//DIV[@class="flash']~~~//DIV[@id=""header']~~~
//DIV][@id=""footer"]~~~//SCRIPT~~~//DIV[@id="breadcrumbs']~~~//DIV[@id=""clear-
Both™]

]
7~ Note: If the headers and footers are links, you can set the
document.prune._xpath.follow-outlinks property to false to also prune all outlinks.

URL filter properties

You can configure how the URL filter plugins are handled by the Web Crawler.

Endeca Content Acquisition System Web Crawler Guide

26 Configuration | The default.xml file

Property Name Property Value

urlfilter.regex.file File name (default is crawl-urlfilter.txt).
Specifies the file in the configuration directory
containing regular expressions used by the
urlfilter-regex (RegexURLFilter) plugin.

urlfilter.order Space-delimited list of URL filter class names
(default is empty). Specifies the order in which URL
filters are applied.

urlfilter.filter-seeds Boolean value (default is Fal se). Specifies
whether URL filtering should be applied to the
seeds.

Interaction with crawl scope filtering

Keep in mind that the crawl scope filter (if configured) is applied before all other filters including the
regular expressions in this file custom plugins. This means that once a URL has been filtered out by
the crawl scope, it cannot be added by expressions in this file.

Setting the order of URL filters
The urlfilter.order property allows you to specify the order in which URL filters are applied.

If the property value is empty, all available URL filters (as dictated by the plugin-includes and
plugin-excludes properties) are loaded and applied in system-defined order. If the property value
is not empty, only the named filters are loaded and applied in the given order.

To set the order of URL filters:

1. In a text editor, open default.xml.

2. Setthe value of the urlfilter.order property as a space delimited list of URL filters in order
of priority.

3. Save and close the file.
Example of setting the order of URL filters

Assume that the urlfilter.order property has this value:

org.apache.nutch.urlfilter.regex.RegexURLFilter sample.project.urlfilter.sam-
ple.SampleFilter

In this case, the RegexURLFilter is applied first and the SampleFilter second.

Because all filters are AND'ed, filter ordering does not have an impact on the end result. However, it
may have a performance implication, depending on the relative expensiveness of the filters.

Filtering the seed list
You can apply URL filtering to the seeds with the urlfilter.filter-seeds property.

By default, the seeds are read in as-is (operating under the assumption that the seed lists are
hand-written, small, and easily managed by the user). However, there are some use cases where the
seeds are extracted from a database and the user expects filtering behavior on a large list of seeds.

To filter the seed list:

Endeca Content Acquisition System Web Crawler Guide

Configuration | The default.xml file 27

1. In a text editor, open default.xml.
2. Setthe urlfilter_filter-seeds property to true.
3. Save and close the file.

Related Links

URL normalization properties on page 20
You can set the URL normalization properties in the default.xml file.

Normalizing the seed list on page 21
You can apply normalization to the seed list with the urlnormalizer.normal ize-seeds
property.

Crawl scoping properties
You can implement crawl scoping to control which URLs are crawled.

A crawl scope defines the conditions under which a URL is considered within the scope of a crawl. A
URL is within the crawl scope if it should be fetched for that crawl.

Crawl scoping is applied before all other filters including the regular expressions in the
crawl-urlfilter.txtfile and custom plugins. This order of URL filtering means that even if a
URL makes it through the crawl scope filter, it may still be filtered out by the crawl-urlfilter.txt
file. However, a URL that is excluded by the crawl scope filter cannot be added by the
crawl-urlfilter.txtfile.

The crawl scope properties are listed in the following table.

Property Name Property Value

crawlscope .mode ANY, SAME_DOMAIN, or SAME_HOST (default is
SAME_HOST). Specifies the mode for crawl scoping.

crawlscope.on-redirected-seed Boolean value (default is true). Specifies whether to
filter a URL based on its seed or its redirected seed.

crawlscope.top-level-domains.gener- | Space-delimited list of top-level domain names. Do not

ic modify this list because it may affect how domain names
are retrieved. Contains a list of generic top-level domain
names.

crawlscope.top-level-domains.addi— | Space-delimited list of top-level domain names (default
tional is empty). Specifies additional top-level domain names
that are pertinent to your crawls.

About configuring crawl scoping

The Web Crawler implements a basic crawl scoping scheme to accommodate crawls of multiple seeds.
The crawler can scope a crawl to only visit URLs from the same host or from the same domain as a
seed.

Crawl scoping is implemented via these properties:

» crawlscope.mode

» crawlscope.on-redirected-seed

» crawlscope.top-level-domains.generic

» crawlscope.top-level-domains.additional

Endeca Content Acquisition System Web Crawler Guide

28

Configuration | The default.xml file

The setting of the crawl scope . mode property determines the crawl scoping mode (that is, how URLs
are allowed to be visited). The property sets one of these modes:

» ANY indicates that any URL is allowed to be visited. This mode turns off crawl scoping because
there is no restriction on which URLs can be visited.

+ SAME_DOMAIN indicates that a URL is allowed to be visited only if it comes from the same domain
as the seed URL. The crawler attempts to figure out the domain name from examining the host.

* SAME_HOST (the default) indicates that a URL is allowed to be visited only if it comes from the
same host as the seed URL.

The boolean setting of the crawlscope .on-redirected-seed property affects how redirections
are handled when they result from visiting a seed. The property determines whether crawl scope
filtering is applied to the redirected seed or to the original seed:

* true (the default) specifies that SAME_HOST/SAME_DOMAIN analysis will be performed on the
redirected seed rather than the original seed.

» Talse specifies that SAME_HOST/SAME_DOMAIN filtering will be applied to the original seed.

Note that this redirect filtering property applies only to the SAME_HOST and SAME_DOMAIN crawl scope
modes.

As an example of how these properties work, suppose the seed is set to http://xyz.comand a
redirect is made to http://xyz.go.com. If the crawl is using SAME_HOST mode and has the
crawl .scope.on-redirected-seed property set to true, then all URLs that are linked from here
are filtered against http://xyz.go.com. If the redirect property is set to False, then all URLs that
are linked from here are filtered against http://xyz.com.

The two crawlscope. top-level-domains properties are used for parsing domain names.

How domain names are retrieved from URLs

Every domain name ends in a top-level domain (TLD) name. The TLDs are either generic names (such
as com) or country codes (such as jp for Japan).

However, some domain names use a two-term TLD, which complicates the retrieval of top-level domain
names from URLs.

For example:

* http://www.Xxyz.com has a one-term TLD of com with a domain name of xyz.com.
* http://www.Xxyz.co.uk has a two-term TLD of . co.uk with a domain name of xyz.co.uk

As the example shows, it is often difficult to generalize whether to take the last term or the last two
terms as the TLD name for the domain name. If you take only the last term as the TLD, then it would
work for xyz . com but not for xyz . co . uk (because it would incorrectly result in co.uk as the domain
name). Therefore, the crawler must take this into account when parsing a URL for a domain name.

The two crawlscope . top-level-domains properties are used for determining which TLDs to use
in the domain name:

» The crawlscope.top-level-domains.generic property contains a space-delimited list of
generic TLD names, such as com, gov, or org.

» The crawlscope.top-level-domains.additional property contains a space-delimited list
of additional TLD names that may be encountered in a crawl. These are typically two-term TLDs,
such as co. uk or ma.us. However, you should also add country codes as necessary (for example,
add ca if you are crawling the www. xyz . ca site). You should add TLDs to this list that are not
generic TLDs but that you want to crawl.

The Web Crawler uses the property values as follows when retrieving domain names from URLSs:

Endeca Content Acquisition System Web Crawler Guide

Configuration | The default.xml file 29

1. The crawler first looks at the last term of the host name. Ifitis a TLD in the
crawlscope.top-level-domains.genericlist (such as com), then the crawler takes the last
two terms (xyz and com) as the domain name. This results in a domain name of xyz . com for the
http://www.xyz.com sample URL.

2. Ifthe last term is not one of the generic TLDs, then the crawler does the following: Takes the entire
host name and checks it against the crawlscope.top-level-domains._.additional list; if
not a match, repeats by truncating the first term from the host name and checks it against the list;
if not a match, repeats until a match is found or there are no more terms to be truncated from the
host name.

3. If no terms matched on the additional list, return the last two terms as the domain name and
log an error message.

For example, assume that you will be crawling http://www.Xxyz . co. uk and therefore want a domain
name of xyz . co.uk. First you would add co. uk to the
crawlscope.top-level-domains.additional list. The procedure for returning the domain
name is as follows:

1. The generic TLD list is checked for the uk term, but it is not found.

2. www.Xyz.co.uk is checked against the crawlscope . top-level-domains.additional list,
but no match is found.

3. Xyz.co.uk is checked against the additional TLD list, but no match is found.
4. co.uk is checked against the additional TLD list, and a match is finally found. A domain name of
Xyz .co.uk is returned.

If after step 4 no match is found in the additional list, the last two terms that were checked are
returned as the domain name (co . uk in this example). In addition, a DEBUG-level message similar
to this example is logged:

Failed to get the domain name for url: url
using result as the default domain name

where url is the original URL from which the domain name is to be extracted and result is a domain
name consisting of the final two terms to be checked (such as co . uk). If you see this message, add
the two terms to the additional list and retry the crawl.

Default top-level domain names

The crawlscope.top-level-domains.generic property contains these TLD names in the
default.xml configuration file that is shipped with the product:

* aero
* asia

* biz

» cat

* com

* coop

* edu

* gov

* info

* int

* jobs

* mil

* mobi

* museum

Endeca Content Acquisition System Web Crawler Guide

30 Configuration | The default.xml file

* name
* net

* org

* pro

. tel

* travel

As mentioned in the property table above, you should not modify this list because it may affect how
domain names are determined.

Document conversion properties
You can set the document conversion properties in the default._xml file.

The Endeca Web Crawler uses the CAS Document Conversion Module to perform text extraction on
any document that is not one of these file types: HTML, text-based, or JavaScript. By using the
properties listed in the table, you can configure the behavior of this module.

Note that the CAS Document Conversion Module respects the no-copy option of a PDF. That is, if a
PDF publishing application has a no-copy option (which prohibits the copying or extraction of text
within the PDF), the CAS Document Conversion Module does not extract text from that PDF. To extract
the text, you must re-create the PDF without setting the no-copy option.

Property Name Property Value

doc-conversion.attempts.max Integer value (default is 2). Specifies the maximum
number of times that the module attempts to convert a
document.

doc-conversion.timeout Integer value (default is 60000). Specifies the time-out

value in milliseconds for converting a document.

Large files and the download content limit

Keep in mind that the http.content. Limit property limits the maximum size of the content that
can be downloaded. If the content is larger than the limit (an integer greater than 0), any content longer
than the setting will be not be downloaded and you will see a WARN message similar to this example:

WARN com.endeca.itl.web.UrlProcessor
Content limit exceeded for http://xyz.com/pdf/B2B_info.pdf. Page will be
skipped.

This problem often occurs with large PDF files. If you constantly see these messages, increase the
setting for the http.content. Iimit property.

Related Links

HTTP Properties on page 12
You can set the HTTP properties in the default._xml file.

Output properties

You can set output properties in the default.xml file. You can configure output to either an output
file (the default) or to a Record Store instance.

Endeca Content Acquisition System Web Crawler Guide

Configuration | The default.xml file 31

The properties in the table below allow you to specify the attributes of a crawl output file, such as its
name, location, and output type. The default name of the output file is endecaOut and itis a
compressed binary file by default.

%
Note: By default, the Web Crawler writes output to a file on disk. If desired, you can configure
the Web Crawler to write output to a Record Store instance. Oracle recommends this approach.

Property Name Description

output.file.directory Directory name (default is workspace). Specifies the
directory for the output file. The name is case-sensitive
and is relative to where you run the crawl from. You can
specify a multi-level path. Note that this setting can be
overridden with the -w command-line flag.

output.file.name File name (default is webcrawler-output). Specifies
the filename of the output file. The name is
case-sensitive.

output.file.is-xml Boolean value (default is Fal se). Specifies whether the
output type is XML (true) or binary (false). XML is
useful if you want to visually inspect the Endeca records
after crawling.

output.file.is- compressed Boolean value (default is true). Specifies whether to
compress the Endeca records in a .gz file. Setting this
property to true is useful when storing and transferring
large files.

output.file_binary.file-size-max|Integer value (default is -1). Sets the maximum file size
for binary output files. Output is written to a new file once
the maximum size is reached. If the value is set to -1,
no limits are imposed on the file size.

output.dom. include Boolean value (default is False). Specifies whether to
include the DOM for the Web page in the output Endeca
records.

output.records.properties. Space-delimited list of output record properties (default

excludes is empty). Specifies the properties that should be

excluded from the records. The names can be specified
in a case-insensitive format. Note that wildcard names
are not supported.

log.interval Integer value in seconds (default is 60). Outputs crawl
metrics information to the log every time this number of
seconds has elapsed, per depth.

log. interval .summary Integer value in seconds (default is 300). Outputs
detailed crawl progress information (organized by host)
every time this number of seconds has elapsed.

Related Links

Configuring Web crawls to write output to a Record Store instance on page 44
The Web Crawler can be configured to write its output directly to a Record Store instance,
instead of to an output file on disk (the default). This procedure assumes you are modifying

Endeca Content Acquisition System Web Crawler Guide

32 Configuration | The default.xml file

a single crawl configuration in the site . xml file and not the global Web crawler configuration
in default.xml.

Gathering XHTML information

If the output.dom. include property is set to true, the Web Crawler normalizes the content of
HTML documents into XHTML and stores it in the Endeca.Document . XHTML property in the record.

1. In a text editor, open default._xml.

2. Setthe output.dom. include to true.
You can now extract information from the XHTML using XSLT or any other XML processing system.

3. Note that the Endeca.Document. Text property will also have extracted text, except that the XML
header and the HTML tags are removed. Therefore, if you do not need the XHTML version of the
content, set the output._dom. include property to false.

4. Save and close the file.

Excluding record properties

The output.records.properties.excludes property allows you to specify a list of record
properties that you want excluded from the records.

The list of the excluded property names is space delimited.

%
Note: Wildcards are not supported for the property names.

1. In a text editor, open default.xml.
2. Within the <configuration> element, add the following lines of code:

<property>
<name>output.records.properties.excludes</name>
<value>excludedProperties</value>

</property>

Where excludedProperties is a space delimited list of the properties you wish to exclude.

3. Save and close the file.

Example of excluding record properties

For example, assume you want to exclude both Outlink properties from the output. You would add
this entry to the site .xml configuration file:
<property>

<name>output.records.properties.excludes</name>

<value>Endeca.Document.Outlink Endeca.Document.OutlinkCount</value>
</property>

On the next crawl, the Endeca.Document.Outlink and the Endeca.Document.OutlinkCount
properties will not appear in the output.

Note: You can add the exclusion list to the default.xml file, but the site.xml file is
recommended because you can then specify different property exclusions for different crawl
configurations.

Endeca Content Acquisition System Web Crawler Guide

Configuration | The site.xml file 33

Extensions for additional binary output files

For the output.file_binary.file-size-max property, if output has to be written to more than
one output, the name pattern of the new files is similar to this example:

endecalut-sgmt000.bin
endecalOut-sgmt001.bin
endecalut-sgmt002.bin

That is, if the output. file_name value is set to endecaOut, then the suffix ~-sgmt000 is used for
the first file and the number is increased for subsequent files.

Output file overrides in site.xml files

The site.xml files in the workspace/conf/web-crawler/polite-crawl and
workspace/conf/web-crawler/non-pol ite-crawl directories contain these output file overrides.

config property default.xml polite site.xml non-polite site.xml
output.file.directory workspace polite-crawl-workspace | nonolite-craM-workspece
output.file.name |webcrawler-output polite-crawl non-polite-crawl
output.file.is-xml false true true
autput_file.is-aompressad | true false false

The site.xml file

The site.xml file provides override property values for the global configuration file.

The default.xml file is the global default configuration for your Endeca Web Crawler and should
not change often. Only one copy of this file is shipped with the product, and it is located in the
workspace/conf/web-crawler/default directory.

The site.xml file is where you make the changes that override the default settings on a per-crawl
basis. The properties that you can add to the site.xml file are the same ones that are in the
default._xml file. A site.xml file is included in the
workspace/conf/web-crawler/polite-crawl and
workspace/conf/web-crawler/non-polite-crawl directories, but not in the
workspace/conf/web-crawler/default directory.

Strategy for using the site.xml file

The strategy for using these two configuration files is to have only one directory that contains the
default._xml file, but not a site.xml file. This directory is the default configuration directory.

You then create a separate directory for each different crawl-specific configuration. Each of these
per-crawl directories will not contain the default._xml file, but will contain a site.xml file that is
customized for a given crawl configuration.

When you run a crawl, you point to that crawl's configuration directory by using the —c command-line
option. However, the Web Crawler is hard-coded to first read the configuration files in the
workspace/conf/web-crawler/default directory and then those in the per-crawl directory
(which can override the default files). For this reason, it is important that you do not change the name
and location of the workspace/conf/web-crawler/defaul t directory nor the default.xml file.

Endeca Content Acquisition System Web Crawler Guide

34 Configuration | The crawl-urlfilter.txt file

Differences among the site.xml and default.xml files

The following table lists the differences between the site.xml files in the non-polite-crawl and
the pol 1te-crawl directories, as well as the differences between those files and the global
default._xml file.

config property default.xml polite site.xml non-polite site.xml
http.robots. ignore | false false true
fetcher.delay 2.0 1.0 0.0

fetcher _threads.total | 100 not used 52
fetcher . threads.per-host | 1 1 52
output._file_directory workspace polite-crawl-workspace | ool ite-araM-workspece
output.file_.name |webcrawler-output polite-crawl non-polite-crawl
output._file.is-xml | false true true
autput_file.is-aopressed | true false false

The crawl-urlfilter.txt file

The crawl-urlfilter.txt file provides include and exclude regular expressions for URLs.

The crawl-urlFfilter.txtfile contains a list of include and exclude regular expressions for URLs.
These expressions determine which URLs the crawler is allowed to visit. Note that the include/exclude
expressions do not apply to seeds if url filter.filter-seeds is set to false.

Each regular expression must be prefixed by a + (plus) character or a - (minus) character. Plus-prefixed
expressions are include expressions while minus-prefixed expressions are exclude expressions.

Note that the name of this file is specified to the Web Crawler via the url filter.regex.file
property in the default.xml configuration file.

Regular expression format

The Web Crawler implements Sun’s java.util.regex package to parse and match the pattern of the
regular expression. Therefore, the supported regular-expression constructs are the same as those in
the documentation page for the java.util.regex.Pattern class:

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

This means that among the valid constructs you can use are:

» Escape characters, such \t for the tab character.

» Character classes (simple, negation, range, intersection, subtraction). For example, [*abc] means
match any character except a, b, or c, while [a-zA-Z] means match any upper- or lower-case letter.

» Predefined character classes, such as \d for a digit or \s for a whitespace character.

» POSIX character classes (US-ASCII only), such as \p{Alpha} for an alphabetic character, \p{AlInum}
for an alphanumeric character, and \p{Punct} for punctuation.

 Boundary matchers, such as * for the beginning of a line, $ for the end of a line, and \b for a word
boundary.

Endeca Content Acquisition System Web Crawler Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Configuration | The crawl-urlfilter.txt file 35

* Logical operators, such as X|Y for either X or Y.

For a full list of valid constructs, see the Pattern class documentation page referenced above.

Specifying the hosts to accept
You can set the crawl-ur I i lter. txt files to accept certain hosts.
The crawl-urlfilter.txt files in the configuration directories (default, polite, and
non-polite) all have this line commented out:
accept hosts in MY.DOMAIN.NAME
+~http://([a-z0-9]*\.)*MY_.DOMAIN.NAME.com/

To limit the crawl to a specific domain:

1. In a text editor, open crawl-ur 1 filter_txt.

2. Replace "MY.DOMAIN.NAME" with the domain name that you are crawling, and make this a
non-comment line.

3. Atthe end of the file, replace the plus sign with a minus sign and update the comment as follows:
exclude everything else

4. Save and close the file.

Example of specifying hosts to accept

Specify the hosts to accept in these lines:

accept hosts within endeca.com
+~http://([a-z0-9]*\.)*endeca.com/
Then change the last lines of the file:

include everything
+

to replace the plus sign with a minus sign:
exclude everything else

With these two changes, hosts within the endeca. com domain will be accepted by the crawler and
everything else will be excluded.

Order of the regular expressions

When entering regular expressions, make sure that you enter the exclude expressions before the
include expressions. The reason is that the RegexURLFilter plugin does the regex-pattern matching
from top to bottom.

This means that if there is a match, then that match takes precedence. Therefore, if you have the
include pattern first, then the exclude patterns following it would not take effect.

For example, assume that you have these two entries:

+~http://mysite.com/public
-~http://mysite.com/public/oldcontent

Endeca Content Acquisition System Web Crawler Guide

36 Configuration | The regex-normalize.xml file

In this case, the oldcontent exclusion will never take effect because the publ ic matching takes
precedence.

Excluding file formats

You can globally exclude file formats by adding their file extensions to an exclusion line in the
crawl-urlfilter._txtfile.

The default crawl-ur i lter. txt configuration excludes these file types:

BMP (bitmap image), via the .bmp and .BMP extensions

CSS (Cascading Style Sheet), via the .css extension

EPS (Encapsulated PostScript), via the .eps extension

EXE (Windows executable), via the .exe extension

GIF (Graphics Interchange Format), via the .gif and .GIF extension
GZIP (GNU Zip), via the .gz extension

ICO (icon image), via the .ico and .ICO extension

JPG and JPEG (Joint Photographic Experts Group), via the .jpeg, .JPEG, .jpg, and .JPG extensions
MOV (Apple QuickTime Movie), via the .mov and .MOV extensions
MPG (Moving Picture Experts Group), via the .mpg extension

PNG (Portable Network Graphics), via the .png and .PNG extension
RPM (Red Hat Package Manager), via the .rpm extension

SIT (Stuffit archive), via the .sit extension

TGZ (Gzipped Tar), via the .tgz extension

WMF (Windows Metafile), via the .wmf extension

ZIP (compressed archive), via the .zip extension

Except for HTML, text-based, and JavaScript files, text conversion on all other file types is performed
by the CAS Document Conversion Module (if you have installed and enabled the module). As a rule
of thumb, therefore, you should exclude any file format that is not supported by the module. For a list
of the supported file formats, see the CAS Developer's Guide.

1.
2.
3.

To exclude file formats:

In a text editor, open crawl-urlfilter.txt.

Locate the following lines:

skip image and other suffixes we can"t yet parse
-\.(gif|GIF|Jpg]JPG].- .- |bmp|BMP)$

(the example is truncated for ease of reading)

Modify the second line to reflect file extensions that you wish to exclude.
Save and close the file.

The regex-normalize.xml file

The regex-normal ize.xml file provides substitutions for normalizing URLs.

The regex-normalize.xml file is the configuration file for the RegexUrINormalizer class. The file
allows you to specify regular expressions that can be used as substitutions for URL normalization.
The file provides a set of rules as sample regular expressions.

Endeca Content Acquisition System Web Crawler Guide

Configuration | The mime-types.xml file 37

For example, if you are crawling a site with URLs that contain spaces, you should add the following
regular expression to force URL encoding:

<regex>
<pattern> </pattern>
<substitution>%20</substitution>
<regex>

Note that the expression uses one space character as the value for the pattern. The expression means
that when a space character is found in the URL, the space should be encoded as %20 (hex). For
example, if the URL contains a document named Price List.html, it will be encoded to
Price%20List.html so that it can be processed correctly.

When modifying the file, keep the following in mind:

» The rules are applied to URLs in the order that they occur in the file.

» Because an XML parser reads the file, ampersand (&) characters must be expanded to their HTML
equivalent (&).

Note that the name of this file is specified to the Web Crawler via the urlnormalizer.regex.file
property in the default.xml configuration file.

The mime-types.xml file

The mime-types.xml file provides mappings of file extensions to MIME types.

The mime-types.xml file provides definitions of MIME types by associating file extensions with the
names of MIME types and providing magic sequences.

Note that the name of this file is specified to the Web Crawler via the mime . types. file property in
the default.xml configuration file.

The parse-plugins.xml file

The parse-plugins.xml file provides mappings of MIME types to parsers.
The mime-types.xml file has two purposes:
* It maps MIME types to parsers, that is, which parsing plugin should be called for a particular MIME
type. For example, it maps the HtmlIParser to the text/html MIME type.
* It provides the order in which plugins are invoked for the MIME types.

Note that the name of this file is specified to the Web Crawler via the parse.plugin.file property
in the default.xml configuration file.

This entry from the file shows how these parsing rules are set:
<mimeType name=""text/xml">

<plugin id=""parse-html" />

<plugin id="endeca-searchexport-converter-parser" />
</mimeType>

In this entry, the HtmlParser plugin is first invoked for a text/xml MIME type. If that plugin is
successful, the parsing is finished. If it is unsuccessful, then the endeca-searchexport-converter-parser
plugin is invoked.

Endeca Content Acquisition System Web Crawler Guide

38 Configuration | The form-credentials.xml file

Note that this entry:

<mimeType name=""*">
<plugin i1d="endeca-searchexport-converter-parser" />
</mimeType>

indicates that the endeca-searchexport-converter-parser plugin is invoked for any unmatched MIME
type.

In general, you should not modify the contents of this file unless you have written your own parser
plugin.

The form-credentials.xml file

The Form-credentials.xml file provides the credentials for sites that use form-based authentication.

Note that a template Form-credentials.xml file is shipped in the conf/web-crawler/default
directory. You can create a credentials file that corresponds to the needs of your crawl.

About Form-based authentication

The Web Crawler supports Form-based authentication for both GET and POST requests. The
http.auth.form.credentials.file property sets the name of the file that contains the form
credentials to be used by the Web client.

If a Web server uses HTML forms to restrict access to Web sites, you can specify authentication
credentials that enable the Web Crawler to access password-protected pages.

The fields that you specify in the credentials file correspond to the fields that an interactive user fills
in when prompted by the Web browser, and any hidden or static fields that are required for a successful
login. This means that you must coordinate with the server administrators, who must provide you with
the security requirements for the Web sites, including all information that is used to authenticate the
Web Crawler's identity and determine that the crawler has permission to crawl the restricted pages.

In the Web Crawler, the authentication plugin provides a way to execute form-based login for Web
crawls. The plugin implements two main authentication modes:

 Pre-crawl authentication mode performs the authentication before the crawl begins. Note that if
pre-crawl authentication is specified and the request times out, the Authenticator will attempt an
in-crawl authentication for the retry.

+ In-crawl authentication mode performs the authentication as the crawl is progressing. After every
page is fetched and processed, a site-specific authenticator checks the page contents and
determines whether or not the page needs to be refetched (say, if the crawler has been logged
out), and it may log into the site if necessary.

The preCrawlAuth setting in the credentials file determines whether pre-crawl or in-crawl

authentication is performed. If you are uncertain as which mode to use, we recommend that you start
by using the pre-crawl mode, as long as you think that the authentication process will not time out. If,
however, you believe that timeouts will occur, then the in-crawl mode would be more advantageous.

Endeca Content Acquisition System Web Crawler Guide

Configuration | The form-credentials.xml file 39

Format of the credentials file

The format of the form-based authentication credentials file is as follows:
<?xml version="1.0" encoding="UTF-8"7?>

<credentials>

<formCredentials>
<authenticator>

<className>authClass</className>

<configuration>
<siteUrlPattern>siteUrl</siteUrlPattern>
<loginUrl>loginPageUri</loginUrl>
<actionUrl>actionUrl</actionUrli>
<method>authMethodToUse</method>
<preCrawlAuth>shouldPreAuth</preCrawlAuth>
<parameters>

<parameter>

<name>paramName</name>
<value>paramValue</value>

</parameter>
</parameters>
<properties>

<property>

<name>propName</name>
<value>propValue</value>

</property>
</properties>
</configuration>
</authenticator>
</formCredentials>

</credentials>

The meanings of the elements and attribute values are listed in the following table.

Element

<credentials> and
<formCredentials>

<authenticator>

<className>

<configuration>

<siteUrlPattern>

<loginUrl>

<actionUrl>

Meaning

Main opening elements. There can be only one set of these elements
in the file.

Defines one set of settings for the Authenticator plugin. The file will
have multiple <authenticator> sections if the site has multi-form
authentication.

The name of the class that handles authentication logic. The Web
Crawler default authenticator class is:

com.endeca. itl.web.auth.form.BasicFormAuthenticator.
If desired, you can override this class with a custom authentication
class you that implement.

Defines a set of credentials settings and properties.

A regular expression that determines which sites will be authenticated
(i.e., the Authenticator will be run only on those sites).

The URL where the actual login is done (such as
http://samplesite.com/login_html).

A full path to a URL that handles the logic for the GET/POST request,
such as a CGl script. This field corresponds to the ACTION attribute
of the form. Note that an action URL is often different from the login
URL.

Endeca Content Acquisition System Web Crawler Guide

40 Configuration | The form-credentials.xml file

Element Meaning
<method> A value of either GET or POST.
<preCrawlAuth> Boolean value. Indicates whether authentication is done before the

crawl starts (a value of true enables pre-crawl authentication) or
whether the authentication is done during the crawl (a value of false
enables in-crawl authentication).

<parameters> Contains one or more sets of <parameter> elements. The
parameters correspond to the form fields you wish to fill out (such as
the login name and password). By default, the parameters are all
included with the HttpRequest sent to the server.

<parameter> Contains a <name> element that is the name of a field in the form
and a <value> element that is the value to be supplied for that field.

<properties> Contains one or more sets of <property> elements. They are placed
in the Property map and can be accessed as Strings. Properties are
meant to be specific settings for the Authenticator plugin, and allow
a way for the plugin to be customized easily. Note that this element
is optional.

<property> Contains a <name> element that is the name of a property and a
<value> element that is the value of that property.

Setting the timeout property
You can set the authentication timeout with the BasicFormAuthenticator.

The timeout property specifies the logout expiration in milliseconds. If this property is not specified,
it sets the timeout to be the default of -1 (infinite, i.e., no logout expiration).

To set the timeout property:

In a text editor, open the form-credentials.xml file.
Locate the timeout property.

Modify the property's value as needed.

Save and close the file.

Pobh =

Using special characters in the credentials file

XML has a special set of characters that cannot be used in normal XML strings. If you need to enter
any of the following special characters, you must enter them in their encoded format:

Special Character Encoded Format
& &

< <

> >

! '

" "

Endeca Content Acquisition System Web Crawler Guide

Configuration | The log4j.properties file 41

For example, if the string he&l>1o0 is the login password, then the credentials file would have this
entry:
<parameter>
<name>PASSWORD</name>
<value>he& 1> ; lo</name>
</parameter>

Authentication Exceptions

The authentication framework has two Exception classes:

* An AuthenticationFai ledException is thrown if an error prevents the authentication (for
example, the password is wrong).

» A RequestFailedException is thrown if a non-authentication error occurs (for example, the
HTTP connection suddenly shuts down).

The logdj.properties file

The log4j -properties file sets the logging properties.
You can modify the log4j . properties file to change the properties for the log4j loggers.

Default logdj properties

The default log4j .properties file has this configuration:

log4j -rootLogger=ERROR, stdout

log4j - logger.com.endeca=INFO

Logger for crawl metrics

log4j -logger.com.endeca. itl._web._metrics=INFO

log4j -appender.stdout=org.apache.log4j .ConsoleAppender
log4j -appender.stdout. layout=org.apache.log4j .PatternLayout
log4j -appender.stdout. layout.ConversionPat—
tern=%p\t%d{1S08601 }\t%r\t%c\t[%t]\t%m%n

The presence of only the ConsoleAppender means that the standard output is directed to the console,
not to a log file.

Logging to a file

You can change the default log4j . properties configuration so that messages are logged only to
a file or to both the console and a file. For example, you would change the above configuration to a
configuration similar to this:

initialize root logger with level ERROR for stdout and fout
log4j -rootLogger=ERROR, stdout, fout

set the log level for these components

log4j - logger.com.endeca=INFO

log4j -logger.com.endeca.itl._web._metrics=INFO

add a ConsoleAppender to the logger stdout to write to the console
log4j -appender.stdout=org.apache.log4j .ConsoleAppender

log4j -appender.stdout. layout=org.apache.log4j .PatternLayout

use a simple message format

log4j -appender.stdout. layout.ConversionPattern=%m%n

Endeca Content Acquisition System Web Crawler Guide

42

Configuration | Enabling the CAS Document Conversion Module with the Web Crawler

add a FileAppender to the logger fout

log4j -appender . fout=org.apache.log4j .FileAppender

create a log file

log4j -appender.fout.File=crawl.log

log4j -appender.fout. layout=org.apache.log4j .PatternLayout
use a more detailed message pattern

log4j -appender.fout. layout.ConversionPat-
tern=%p\t%d{1S08601 }\t%r\t%c\t[%t]\t%m%n

In the example, the Fi leAppender appends log events to the log file named crawl . log (which is
created in the current working directory). The ConsoleAppender writes to the console using a simple
pattern in which only the messages are printed, but not the more verbose information (logging level,
timestamp, and so on).

In addition, you can change the component logging levels to any of these:

» DEBUG designates fine-grained informational events that are most useful to debug a crawl
configuration.

» TRACE designates fine-grained informational events than DEBUG.

* ERROR designates error events that might still allow the crawler to continue running.

» FATAL designates very severe error events that will presumably lead the crawler to abort.

» INFO designates informational messages that highlight the progress of the crawl at a coarse-grained
level.

» OFF has the highest possible rank and is intended to turn off logging.

» WARN designates potentially harmful situations.

These levels allow you to monitor events of interest at the appropriate granularity without being
overwhelmed by messages that are not relevant. When you are initially setting up your crawl
configuration, you might want to use the DEBUG level to get all messages, and change to a less verbose
level in production.

Note the default 1og4] . properties file contains a number of suggested component loggers that
are commented out. To use any of these loggers, remove the comment (#) character.

Enabling the CAS Document Conversion Module with the
Web Crawler

By default, the Web Crawler is configured to call the CAS Document Conversion Module to convert
any documents that are not text, HTML, SGML, or JavaScript.

Disabling the CAS Document Conversion Module with the
Web Crawler

If desired, you can disable the CAS Document Conversion Module to prevent document conversion
or license warnings. You can either disable the module globally for all crawls, or you can disable the
module on a per crawl basis.

1. To change the default setting for all crawls:
a) Navigate to <install path>\CAS\workspace\conf\web-crawler\default.

Endeca Content Acquisition System Web Crawler Guide

Configuration | About Document Conversion options 43

b) In a text editor, open default.xml.

c) Add a property named plugin.excludes and specify a value of endeca-searchexport-
converter-parser.
For example:
<property>
<name>plugin.excludes</name>
<value>endeca-searchexport-converter-parser</value>
<description>Disable the CAS Document Conversion Module from
running.
</description>
</property>

d) Save and close the file.

2. To change the setting on a per crawl basis:
a) Navigate to <install path>\CAS\workspace\conf\web-crawler\<crawl name>.
b) In a text editor, open site.xml.
c) Add a property named plugin.excludes and specify a value of endeca-searchexport-
converter-parser.
For example:
<property>
<name>plugin.excludes</name>
<value>endeca-searchexport-converter-parser</value>
<description>Disable the CAS Document Conversion Module from
running as part of this crawl configuration.

</description>
</property>

d) Save and close the file.

About Document Conversion options

You can change the default behavior of the CAS Document Conversion Module by specifying options
via JVM property names and values.

Note that you cannot set these options via the standard configuation files.
The two options are:

» stellent.fallbackFormat determines the fallback format, that is, what extraction format will
be used if the CAS Document Conversion Module cannot identify the format of a file. The two valid
settings are asci 18 (files whose types are specifically unidentifiable are treated as plain-text files,
even if they are not plain-text) and none (unrecognized file types are considered to be unsupported
types and therefore are not converted). Use the none setting if you are more concerned with
preventing many binary and unrecognized files from being incorrectly identified as text. If there
are documents that are not being properly extracted (especially text files containing multi-byte
character encodings), it may be useful to try the asci 18 option.

» stellent.fileld determines the file identification behavior. The two valid settings are normal
(standard file identification behavior occurs) and extended (an extended test is run on all files
that are not identified). The extended setting may result in slower crawls than with the normal
setting, but it improves the accuracy of file identification.

Endeca Content Acquisition System Web Crawler Guide

44 Configuration | Configuring Web crawls to write output to a Record Store instance

Default values for the options

The default values are as follows:

Option Defaults value
stellent.fallbackFormat none
stellent.fileld extended

Setting document conversion options

Set the document conversion options as parameters to the Java Virtual Machine (JVM), via the Java
-D option.

To set the fallback format, use one of these two parameters:

1. Run the startup script with the -JVM flag.

&
7~ Note: When using the -JVM flag, it must be the last flag on the command line.

2. Set the fallback format using one of these two parameters:

« -Dstellent.fallbackFormat=ascii8

« -Dstellent.fallbackFormat=none

3. Set the file identification behavior using one of these two parameters:

« -Dstellent.fileld=normal

« -Dstellent.fileld=extended

Example of setting document conversion options

\bin\web-crawler -d 2 -s mysites.lIst -JVM "-Dstellent.fallbackFormat=ascii8"

Note: On Windows machines, the parameters should be quoted if they contain equals signs.

Configuring Web crawls to write output to a Record Store
instance

The Web Crawler can be configured to write its output directly to a Record Store instance, instead of
to an output file on disk (the default). This procedure assumes you are modifying a single crawl
configuration in the site.xml file and not the global Web crawler configuration in default.xml.

There are two main tasks in the configuration process. You create and configure a Record Store
instance to receive the Web Crawler output. Then you configure the Web Crawler to override its default
output settings and instead write to the Record Store instance.

Endeca Content Acquisition System Web Crawler Guide

Configuration | Configuring Web crawls to write output to a Record Store instance 45

The Record Store instance configuration requires a configuration file with two properties for Web
Crawler output. The Web Crawler configuration requires the following two changes to the site.xml
file:

» Add three output properties to specify the host and port of the machine running the Record Store,

and instance name of the Record Store that you want to write to.

* Add a plugin. includes property for the recordstore-outputter plugin. This plugin instructs

the Web Crawler to write to a Record Store instance and over rides the output-endeca-record
which would have instructed the Web Crawler to write to an output file.

Each of these steps is fully described below.

To configure a Web Crawler to write output to a Record Store instance:

1.

Start the Endeca CAS Service if it is not running already
On Windows, the Endeca CAS Service is started by default.

. Using the Component Instance Manager Command-line Utility, create a new Record Store instance

for the Web Crawler output.

a) Start a command prompt and navigate to <install path>\CAS\version\bin.

b) Run the create-component task of component-manager-cmd. Specify the -t option with
an argument of RecordStore. Specify the —n option with a Record Store instance name of
your choice. If necessary, specify host and port information or accept the defaults.

For example, this Windows command creates a Record Store instance named WebCrawlOutput:

C:\Endeca\CAS\3.0.2\bin>component-manager-cmd.bat create-component
-h localhost -n WebCrawlerOutput -p 8500 -t RecordStore

The command prompt displays:
Successfully created component: WebCrawlerOutput

Create a Record Store configuration file that has an 1dPropertyName property of Endeca. Id
and changePropertyNames of Endeca.Document.Text, Endeca.Web.Last-Modified.
For example, here are the contents of a configuration file named recordstore-configura-
tion.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<recordStoreConfiguration xmlns="http://recordstore.itl_endeca.com/">
<changePropertyNames>
<changePropertyName>Endeca.Document.Text</changePropertyName>
<changePropertyName>Endeca.Web.Last-Modi fied</changePropertyName>
</changePropertyNames>
<idPropertyName>Endeca. ld</idPropertyName>
</recordStoreConfiguration>

. Save the Record Store configuration file. You may find it convenient to save it with the other Web

Crawler configuration files.

Using the Record Store Command-line Utility, set the configuration file for the Record Store instance.

a) Start a command prompt and navigate to <install path>\CAS\version\bin.

b) Run the set-configuration task of recordstore-cmd. Specify the —a option with an
argument of the Record Store instance name. Specify the -F option with the path to the
configuration file for the Record Store instance.

For example, this Windows command sets the configuration file named recordstore-con-
figuration.xml for the Record Store instance named WebCrawlerOutput:
C:\Endeca\CAS\3.0.2\bin>recordstore-cmd.bat set-configuration

-a WebCrawlerOutput -f C:\sample\webcrawler\recordstore-configura-
tion.xml

Endeca Content Acquisition System Web Crawler Guide

46 Configuration | Configuring Web crawls to write output to a Record Store instance

The command prompt displays:
Successfully set recordstore configuration.

6. Modify the site.xml file to include the three output properties that specify the fully qualified name
of the host and the port on which the Record Store is running and the instance name of the Record
Store.

For example, this snippet specifies an instance name of WebCrawlerOutput with defaults for a
Record Store running locally:
<property>
<name>output.recordStore.host</name>
<value>hostname.endeca.com</value>
</property>
<property>
<name>output.recordStore.port</name>
<value>8500</value>
</property>
<property>
<name>output.recordStore. instanceName</name>
<value>WebCrawlerOutput</value>
</property>

7. Inthe site.xml file, add a plugin. includes property for the recordstore-outputter plugin.
This plugin instructs the Web Crawler to write to a Record Store instance.
For example:
<property>
<name>plugin. includes</name>

<value>lib-auth-http|auth-http-form-basic|protocol-httpclient]|proto-
col-file|urlfilter-regex]|parse-(text|html|]js) |endeca-searchexport-convert-
er-parser|urlnormalizer-(pass|regex|basic)|endeca-generator-html-ba-
sic|recordstore-outputter</value>
</property>

8. Inthe site.xml file, delete the plugin. includes property for the output-endeca-record plugin,
if it exists in the file.

9. Optionally, you can remove properties in site.xml file that configure output file settings. These
properties include: output.Ffile.is-compressed, output.file.is-xml, out-
put.file_name, and output.file.directory.

Removing them is useful if you want a clean configuration file, but removing them is not required
because the addition of the recordstore-outputter plugin over rides the file output properties.

10. Run the Web crawl as you normally would.

To confirm the Web crawl wrote output to a Record Store instance, run the list-generations task
of the Record Store Command-line Utility. For the example above, this command confirms the crawl
output for the WebCrawlerOutput instance:

C:\Endeca\CAS\3.0.2\bin>recordstore-cmd list-generations -a WebCrawlerOutput

1D STATUS CREATION TIME
1 COMPLETED Tue Mar 03 17:40:22 EST 2009

%
Note: The Web Crawler does not automatically manage Record Store instances for Web crawls.
For details about managing Record Store instances, see the CAS Developer's Guide.

Endeca Content Acquisition System Web Crawler Guide

Chapter 3
Supported crawl types

This section provides an overview of the full and resumable crawl types that are supported by the
Endeca Web Crawler.

About full crawls

This topic provides an overview of full crawls.

A full crawl means that the crawler processes all the pages in the seeds (except for pages that are
excluded by filters). As part of the full crawl, a crawl history database is created with metadata
information about the URLs. The database is created in the workspace directory of the crawl.

The crawl database provides persistence, so that its history can later be used for resumable crawls.
For example, if the user stops a full crawl via a Control-C in the command window, the crawler closes
the database files before exiting. If the crawl is later resumed (via the -r flag), the resumed crawl
begins with the first URL that has a status of pending.

Workflow of a crawl
The Web Crawler handles full crawls as follows:

1. The crawler creates the crawl history database. If a previous database exists, it is overwritten.
2. The depth of the crawl is entered in the database.

3. From the seed, the crawler generates a list of URLSs to be visited and queues them in the database.
Each URL is given a status of pending because it has not yet been visited.

4. The crawler gets a URL from the queue, visits (and processes) the page, and changes the URL's
status in the database to complete.

5. The crawler repeats step 4 until all the queued URLs are processed.

About resumable crawls

This topic provides an overview of resumable crawls.

A resumable crawl (also called a restartable crawl) is a crawl that uses the seed URLs of a previous
full or resumed crawl. It also uses a greater depth level and/or a different set of configuration settings.

You use the -r (or --resume) command-line flag to resume a crawl. Resumable crawls use the
previously-created crawl history database in the workspace directory, because the database provides

48 Supported crawl types | About workspace directories and output files

the seed and a list of URLs that have already been crawled. Resumable crawls do not recrawl URLs
that have a status of complete in the history database.

Among the possible use-case scenarios for resumable crawls are the following:

* You have successfully run a crawl (for example, a test crawl using a depth of 0). Now you want to
run the same crawl again (i.e., same seeds and same configuration), but this time with a greater
depth. However, because you have the output from the first crawl, you do not want to recrawl those
pages, but instead want to start from where the first crawl finished.

* You have successfully run a crawl, and now want to run the same crawl (i.e., same seeds) but
with a different configuration. Again, you do not want to recrawl any previously-crawled pages and
want to keep the output from the first crawl.

The rules for resumed crawls are the following:

* A previous crawl must have been successfully run. That is, the previous crawl must have generated
a history (state) database that will be used as a starting point for the resumed crawl. Note that
crawls that were stopped (e.g., via a Control-C in the command window) are considered successful
crawls if the crawl was gracefully shut down (that is, the history database is up-to-date).

* The same seed must be used. That is, you cannot use the -s flag to specify a different seed for
the resumed crawler (the flag is ignored if you use it). Instead, the Web Crawler will use the the
seed from the history database. Because the history database also contains the list of URLs that
were crawled, the resumed crawl will not recrawl those URLSs.

» The same workspace directory must be used. You cannot use the -w flag to specify a different
workspace directory. The reason is that the resumed crawl must use the same history database
as the previous crawl (and must also update that database with the newly-crawled information).

* You must use the -d flag to a greater crawl depth than the previous crawl. If you specify a crawl
depth that is less than or the same as the previous crawl, no records are generated. (However, if
you have the same depth as the previous crawl and the previous crawl did not finish that depth,
then records will be generated.) This same rule also applies to the maximum number of requests
to be made (via the -1 flag).

» The —c flag can be used to provide a different configuration for the resumed crawl. The new
configuration is used for the uncrawled pages, but does not affect pages that have already been
crawled.

» Because you can change the configuration, you can specify a new output file name.

» The -T flag cannot be used.

About workspace directories and output files

This topic describes file output settings. By default, Web crawls use the workspace directory to store
their output files. For details about Record Store settings, see the CAS Developer's Guide.

Workspace directory

When a crawl is run, you specify its workspace directory either explicitly (via a path in the -w flag) or
implicitly (via the output.file.directory property in the configuration file). Note that the —-w flag
overrides the setting of the output.file.directory property if the values are different.

By default, the workspace directory has these subdirectories:

» output - default location for the crawl output files.
» state/web - location of the crawl history database.
» logs - location of log files, such as derby . log for the crawl database.

Endeca Content Acquisition System Web Crawler Guide

Supported crawl types | About workspace directories and output files

If you are running simultaneous crawls, each crawl must have its own workspace directory.

Record output file

The name of a crawl output file is set by the output.file._name property in the default.xml
configuration file (which can be overridden by the site.xml file). Assuming the default name of
endecalut, the full name of the output file depends on the configuration settings :

» For compressed binary files (the default), endecaOut-sgmt000.bin.gz will be the name. If
more than one output file is generated, the second file will be endecaOut-sgmt001.bin.gz,
and so on.

» For uncompressed binary files, endecaOut-sgmt000.bin will be the name of the first file,
endecaOut-sgmt001.bin for the second file, and so on.

» For XML files, the name will be either endecaOut.xml .gz (if compression is specified) or

49

endecalOut.xml (if compression is turned off). Note that unlike the binary format, only one XML

file is output, regardless of its size.

The format of the file is set with the output.file. is-xml property, while the
output.file.is-compressed property turns compression on or off.

Archived output files

For the first time that a crawl is run in a given workspace directory, the output file is named as described

in the previous section. For example, if you run a full crawl, the output filename might be
endecalut-sgmt000.bin.gz. If you then run a second crawl (full or resumable), the Web Crawl
works as follows:

1. A directory named archive is created under the output directory.

er

2. The original endecaOut-sgmt000.bin.gz file is moved to the archive directory and is renamed

by adding a timestamp to the name; for example:
endecalut-20091015173554-sgmt000.bin.gz

3. The outpuit file from the second run is named endecaOut-sgmt000.bin.gz and is stored in the

output directory.
4. For every subsequent crawl using the same workspace directory, steps 2 and 3 are repeated.

The timestamp format used for renaming is:
YYYYMMDDHHmMmSS

where:

* YYYY is a four-digit year, such as 2009.

* MM is the month as a number (01-12), such as 10 for October.

» DD is the day of the month, such as 15 (for October 15th).

HH is the hour of the day in a 24-hour format (00-23), such as 17 (for 5 p.m.).
+ mm is the minute of the hour (00-59).

» SS is the second of the minute (00-59).

Note that the timestamp format is hard-coded and cannot be reconfigured.

Endeca Content Acquisition System Web Crawler Guide

Chapter 4

Running the Endeca Web Crawler

This section provides information on how to run the Endeca Web Crawler, including the startup scripts
and the record properties that are returned by the crawls.

Command-line flags for crawls

The Endeca Web Crawler startup script has several flags to control the behavior of the crawl.

The web-crawler startup script has the following flags . If used with no flags, the web-crawler
script displays the usage information and exits.

web-crawler Flag

-cor --conf

-d or --depth

-for --force

-JVM

-lor--limit

Flag Argument

The path of the configuration directory. If this flag is not specified, the
workspace/conf/web-crawler/default directory is used as the
default configuration directory. Note that if the flag points to a directory
other than the default configuration directory (such as
workspace/conf/web-crawler/polite-crawl), the files in the
workspace/conf/web-crawler/default directory are read first.
Optional.

A non-negative integer (greater than or equal to 0) that specifies the
maximum depth of the crawl. The crawl depth is the number of link levels
(starting from the seed URL) that will be crawled (see below for details).
Required for all crawl types.

No argument to the flag. This flag forces the output directory to be deleted
before the crawl is run. Optional, but it cannot be used with resumable
crawls.

Allows arguments on the command line to be passed to the Java Virtual
Machine (JVM). If this flag is used, any arguments before it are passed to
the Web Crawler and any arguments afterwards are appended to those
passed to the JVM. Note that on Windows machines, the flag parameters
should be quoted if they contain equal signs. Optional.

An integer that specifies an approximate maximum for the number of
requests to make (that is, the maximum number of pages to be fetched).
The maximum is a soft limit: when the limit is reached, the Crawler does
not add any more pages to the queue but the Crawler completes any pages
still in the queue.

52

Running the Endeca Web Crawler | Command-line flags for crawls

web-crawler Flag Flag Argument

When the limit is reached, the Web Crawler also writes a URL limit
reached, starting shutdown. message to the log file.

The default is O (zero), which sets no limit. This flag is useful when you are
setting up and testing your crawl configuration. Optional.

-r or --resume Resumes a full or resumable crawl that has been previously run. Optional.

-sor --seed The seed for the crawl. The seed can be one URL, a file containing URLs
(one per line), or a directory containing *.Ist files that contain URLs. The
URLs must be fully qualified, not just the domain names; that is, you must
specify the protocol (http:// or https://) and, if the port is not 80, the
port number. The default port of HTTP is 80. The default port for HTTPS
is 443. Required for full crawls, but is ignored for resumable crawls .

-w or --working The path of the Web Crawler workspace directory. If this flag is not used,
the default name of the workspace directory is workspace and is located
in the directory from which the startup script is run. Because each
workspace directory must have a unique path, you must use this flag if
you are starting multiple Web crawls on the same machine. Optional.

Setting the crawl depth

The crawl depth (as set by the -d flag) specifies how many levels of page links will be followed. Each
URL in the seed has a level of 0 and each link from a seed URL has a level of 1. The links from a level
1 URL have a level of 2 and so on.

For example, if the seed is www . endeca.com, the levels are as follows:

Level 0: www.endeca.com is level 0 and has a link to about.html.
Level 1: about.html is level 1 and its links are level 2.
Level 2: contacts.html is level 2 and its links are level 3.

Therefore, if you want to crawl all the level 2 pages, specify -d 2 as the flag argument.

Specifying the configuration directory

The workspace/conf/web-crawler/default directory is the default configuration directory. For
example, this directory is used if you do not specify the -c flag.

You can also use the -c flag to override one or more configuration files in the default configuration
directory with files from another configuration directory. For example, assume you have a directory
(named intsites) that has a site.xml file for a specific crawl (and no other configuration files).
You would then use the —c flag to point to that directory:

\bin\web-crawler -c conf\web\intsites -d 2 -s conf\web\intsites\int.Ist

In this example, the crawl uses the site.xml from the intsites directory, while the rest of the files
are read from the default configuration directory.

Specifying JVM arguments

To pass additional arguments to the Java Virtual Machine (JVM), you can use the -JVM script flag.
For example, assume you want to override the default maximum heap size setting of 1024 MB that is
hardcoded in the scripts with a setting of 2048 MB. The command line might be as follows:

\bin\web-crawler -d 2 -s conf\web\intsites\int.Ist -JVM -Xmx2g

Endeca Content Acquisition System Web Crawler Guide

Running the Endeca Web Crawler | Running full crawls 53

Keep in mind that this flag must be the last flag on the command line, because any arguments that
follow it are appended to those passed to the JVM.

Running full crawls

You run full crawls from the command line.

A full crawl means that the crawler processes all the URLs in the seed (except for URLs that are
excluded by filters). By default, a crawl history database is created in the workspace/state/web
directory.

You can run multiple, simultaneous crawls on the same machine. When running multiple crawls, each
crawl must have its own workspace directory. All the crawls can use the same configuration, or they
can use a crawl-specific configuration.

4 Note: If you are using the default configuration, you must run Web crawls from the Web Crawler
root directory (i.e., the CAS\version directory). To run crawls from other directories, you must
change the plugin.folders configuration property so that it uses an absolute path (to the
1ib\plugins directory) instead of a relative path.

To run a full crawl:

1. Open a command prompt.

2. Navigate to the Web Crawler root directory.
Note that you can run the startup script from an external directory if you have set an absolute path
in the plugin.folders configuration property.

3. Run the web-crawler .bat (for Windows) or web-crawler . sh (for UNIX) script with at least
the -d and -s flags. You can use the optional flags to customize the crawl, such as using the -w
flag to specify the workspace directory. For example:

\bin\web-crawler -c conf\web\myconfig -d 2 -s mysites.lIst

If the crawl begins successfully, you see the INFO progress messages.
The crawl is finished when you see the Crawler complete message from the Web Crawler. The
output file is written to the output subdirectory in the workspace directory.

Note that by default, the console receives all messages. You can create a crawl log by either redirecting
the output to a log (such as >crawl . 1og) or specifying a file appender in the 1og4j -properties
logging configuration file.

Below is an example of a full crawl using the default polite configuration. For ease of reading, the
timestamps and module names are truncated. The complete output will include the following summaries:

» Crawl metrics information (the PerT sections)
» Crawl progress information organized by host and seed depth

The crawl summaries include such page information as how many pages were fetched, redirected,
retried, gone (i.e., pages were not available because of 404 errors or other reasons), and filtered.

Example of running a full crawl

C:\Endeca\CAS\3.0.2>_\bin\web-crawler -c ..\workspace\conf\web-crawler\po-
lite-crawl -d O -s http://www.endeca.com

INFO 2009-07-27 09:38:47,528 0 com.endeca.itl.web.Main [main]
Adding seed: http://www.endeca.com
INFO 2009-07-27 09:38:47,544 16 com.endeca.itl _web_Main [main]

Endeca Content Acquisition System Web Crawler Guide

54 Running the Endeca Web Crawler | Running resumable crawls

Seed URLs: [http://www.endeca.com]

INFO 2009-07-27 09:38:49,606 2078 com.endeca. itl _.web.db.CrawlDbFactory
[main] [Initialized crawldb: com.endeca.itl._web.db.BufferedDerbyCrawlDb
INFO 2009-07-27 09:38:49,606 2078 com.endeca.itl._web.Crawler

[main] Using executor settings: numThreads = 100, maxThreadsPerHost=1
INFO 2009-07-27 09:38:50,841 3313 com.endeca.itl _web._Crawler

[main] Fetching seed URLs.

INFO 2009-07-27 09:38:51,622 4094 com.endeca.itl _web.Crawler

[main] Seeds complete.

INFO 2009-07-27 09:38:51,653 4125 com.endeca.itl._web.Crawler

[main] Starting crawler shut down, waiting for running threads to complete
INFO 2009-07-27 09:38:51,653 4125 com.endeca.itl _web._Crawler

[main] Progress: Level: Cumulative crawl summary (level)

INFO 2009-07-27 09:38:51,653 4125 com.endeca.itl _web.Crawler

[main] host-summary: www.endeca.com to depth 1

host depth completed total blocks
www.endeca.com O 1 1 1
www.endeca.com 1 0 38 1
www.endeca.com all 1 39 2

INFO 2009-07-27 09:38:51,653 4125 com.endeca.itl.web.Crawler
[main] host-summary: total crawled: 1 completed. 39 total.

INFO 2009-07-27 09:38:51,653 4125 com.endeca.itl.web.Crawler
[main] Shutting down CrawlDb

INFO 2009-07-27 09:38:51,700 4172 com.endeca.itl.web.Crawler
[main] Progress: Host: Cumulative crawl summary (host)

INFO 2009-07-27 09:38:51,715 4187 com.endeca.itl.web.Crawler

[main]
Host: www.endeca.com: 1 fetched. 0.0 mB. 1 records. O redirected. O retried.
0

gone. 19 filtered.

INFO 2009-07-27 09:38:51,715 4187 com.endeca.itl _web.Crawler
[main] Progress: Perf: All (cumulative) 2.0s. 0.5 Pages/s. 4.8 kB/s. 1
fetched. 0.0 mB.

1 records. O redirected. O retried. 0 gone. 19 filtered.

INFO 2009-07-27 09:38:51,715 4187 com.endeca.itl _web._Crawler
[main] Crawl complete.

Running resumable crawls

You run a resumable crawl from the command line.

You can run a resumable crawl if you use the same workspace directory as the previous crawl and if
a valid history database exists in the state/web directory. The resumed crawl work runs any URL
in the database that has a status of pending and also generates new URLs to crawl.

Keep in mind that the value of the -d flag should be greater than that of the previous crawl, or else
no new records are retrieved (unless the previous crawl! did not finish the depth). Also, you cannot
change the seed. You can, however, change the configuration of the resumed crawl.

?Nom:meamu%@ﬂwdemmummmwmbmwmbmawbmuﬁbemnﬂmnmewmmewmr
root directory (i.e., in a Windows installation \CAS\version directory). To run crawls from
other directories, you must change the plugin.folders configuration property so that it uses
an absolute path (to the Fib\plugins directory) instead of a relative path.

To run a resumable crawl:

Endeca Content Acquisition System Web Crawler Guide

Running the Endeca Web Crawler | Record properties generated by a crawl 55

1. Open a command prompt.
2. Navigate to the Web Crawler root directory.
For example, in a default installation on Windows, this is \CAS\version .

Note that you can run the startup script from an external directory if you have set an absolute path
in the plugin.folders configuration property.

3. Runthe web-crawler .bat (for Windows) or web-crawler . sh (for UNIX) script with the -r and
-d) flags. Use the -w flag if you need to specify the location of the workspace directory. For example:

\bin\web-crawler -r -d 3

If the crawl begins successfully, the first INFO message reads:
Resuming an old crawl. Seed URLs are ignored.

The crawl is finished when you see the Crawler complete message from the Web Crawler. The
output file is written to the output subdirectory in the workspace directory, while the previous output
file is renamed and moved to the output\archive subdirectory.

Below is an example of a resumed crawl using the default polite configuration. For ease of reading,
the timestamps and module names are truncated. As with full crawls, the complete output will include
the crawl metrics and crawl host progress summaries.

Example of running a resumed crawl

C:\Endeca\3.0.2\CAS>_.\bin\web-crawler -d 1 -c ..\workspace\conf\web-
crawler\polite-crawl -r

Resuming an old crawl. Seed URLs are ignored.

Initialized crawldb: com.endeca.itl._web.db.BufferedDerbyCrawlDb
Using executor settings: numThreads = 100, maxThreadsPerHost=1
Resuming the crawl.

Starting crawler shut down, waiting for running threads to complete
Finished level: host: endeca.com, depth: 1, max depth reached
Progress: Level: Cumulative crawl summary (level)

host-summary: endeca.com to depth 2

host depth completed total blocks
endeca.com 0 0 0 0
endeca.com 1 36 36 1
endeca.com 2 0 141 1
endeca.com all 36 177 2

host-summary: total crawled: 36 completed. 177 total.
Shutting down CrawlDb
Progress: Host: Cumulative crawl summary (host)
Host: endeca.com: 35 fetched. 0.4 mB. 35 records.
O redirected. O retried. 1 gone. 377 filtered.
Progress: Perf: All (cumulative) 40.0s. 0.9 Pages/s.
9.6 kB/s. 35 fetched. 0.4 mds. O redirected.
0 retried. 1 gone. 377 filtered.
Crawl complete.

Record properties generated by a crawl

During a crawl, the Endeca Web Crawler produces record properties according to a standardized
naming scheme.

Endeca Content Acquisition System Web Crawler Guide

56

Running the Endeca Web Crawler | Record properties generated by a crawl

The Web Crawler generates record properties and assigns them a qualified name with a period (.) to
separate qualifier terms. The qualified name is constructed as follows:

» The first term is always Endeca and is followed by one or more additional terms.

» The second term describes a property category (for example, Web or Document).

« If present, the third and fourth terms fully qualify the property (for example, Endeca.Web .URL . Pro-
tocol).

Any of these properties can be mapped to Endeca properties or dimensions by the Property Mapper
in your pipeline.
Source-file properties

The following record properties describe the source of files that are fetched from a Web crawl.

Endeca Property Name Property Value

Endeca.SourceType Indicates the source type of the crawl. The Web Crawler
produces values with Web.

Endeca. ld Provides a unique identifier for a record. Endeca. Id has
the same value as Endeca.Web.URL.

Endeca.Web.Accept-Ranges The value of the Accept-Ranges header field, which allows
the server to indicate its acceptance of range requests for a
resource.

Endeca.Web.Connection The value of the Connection general-header field as returned

from the server.

Endeca.Web.Content-Type The value of the Content-Type header field, which indicates
the media type of the entity-body. Examples of media types
are text/html and image/qgif.

Endeca.Web.ETag The value of the ETag header field, which provides the current
value of the entity tag for the requested variant.

Endeca.Web.Host The Internet host and port number where the document
resides. The absence of port information implies the default
port for the service requested.

Endeca.Web_HTTP.Content- The value of the Content-Length header field, which indicates
Length the size of the entity-body.
Endeca.Web.HTTP.Status The HTTP response status code, which determines the

outcome of the request (for example, 200 indicates a
successful request).

Endeca.Web.Last-Modified The value of the Last-Modified entity-header field, which
indicates the date and time at which the origin server believes
the file was last modified. Typically, the value is the file
system last-modified time.

Endeca.Web_HTMLMetaTag-name | The value of an HTML meta tag, where name is the name of
the meta tag. For example, Endeca.Web .HTML—~
MetaTag . keywords would contain the keywords defined
in the tag.

Endeca.Web.SeedUrl The URL of the seed from which this URL came.

Endeca Content Acquisition System Web Crawler Guide

Running the Endeca Web Crawler | Record properties generated by a crawl 57

Endeca Property Name Property Value

Endeca.Web.LinkedFromUrl The URL of the page that contained the outlink to this page.
Endeca.Web.LinkedFromUrl .Link- | The text that was used on the LinkedFromUrl1 to link to
Text this page.

Endeca.Web.Server The value of the Server response-header field, which contains

information about the software used by the origin server to
handle the request (for example, Apache-Coyote/1.1).

Endeca.Web_URL The URL of the document.
Endeca.Web_URL._.Protocol The protocol of the source document (for example, http or
https).

Content properties

The content properties contain information (including the text) of the document. Note that some of the
properties are generated by the CAS Document Conversion Module.

Endeca Property Name

Endeca.Document.CharEncodingFor—
Conversion

Endeca.Document.Metadata.at-
tribute

Endeca.Document_MimeType

Endeca.Document.OriginalCharEncod-

ing

Endeca.Document.Outlink

Endeca.Document.OutlinkCount

Endeca.Document.Text

Endeca.Document.TextExtraction.Er-
ror

Endeca.Document.Title

Property Value

The encoding used for text conversion of the document.

Metadata information in the document. The metadata
attributes depend on which ones were added by the
authoring tool used to create the document. For
example, an Adobe Acrobat PDF document could have
such metadata attributes as Endeca.Document .Meta-
data.title and Endeca.Document._Metada-
ta.primary_author.

The MIME Type of the document, if it can be
determined. Common examples of this property value
include text/html, application/pdf, and
image/git.

The original encoding of the body of the document, if it
can be determined. This property value could be an
ISO code or other encoding representation (for example,
UTF-8, CP1252, or ISO-8859-1).

A hypertext link (as an absolute URL) that references
another document or another site.

The number of links (Endeca.Document.Outlink
properties) in this document.

The text (content) of the source document. Note that
the Document Conversion Module typically does not
preserve line break information.

An error that occurred during the parsing process,
including errors returned by the Document Conversion
Module.

The title of the document.

Endeca Content Acquisition System Web Crawler Guide

58 Running the Endeca Web Crawler | Record properties generated by a crawl

Endeca Property Name Property Value

Endeca.Document.XHTML The content of the document in XHTML. This property
is created only when the output.dom. include
property is set to true. If it is, the Web Crawler
normalizes the content of HTML documents to XHTML
and stores it in this property.

Endeca.File.Size The size of the file, as indicated by the size of the byte
stream.

Character encoding maps

For the two encoding properties, the OriginalCharEncoding is retrieved from the content-type set
in the HTTP header; if that fails, the Web Crawler tries to retrieve it from the downloaded content bytes.

The Web Crawler also keeps an alias map that maps character encodings which are often used in
mislabelled documents to their correct encodings. The map is:

ISO-8859-1 maps to windows-1252
* EUC-KR maps to x-windows-949

» x-EUC-CN maps to GB18030

* GBK maps to GB18030

If the encoding is mapped to a value, then CharEncodingForConversion is set to the mapped
value; otherwise, it is set to the same value as the OriginalCharEncoding value.

Endeca Content Acquisition System Web Crawler Guide

Chapter 5
Running the Sample Web Crawler Plug-in

This section provides instructions for running the sample Web Crawler plug-in, a custom parse filter
plug-in that adds HTML meta tags as additional properties to the output records.

About the Web Crawler plug-in framework

The Endeca Web Crawler is based on the Apache Nutch open-source project. As a result, its major
functionality is implemented as plug-ins. Its framework allows you to write your own plug-ins, such as
plug-ins that extract additional content from Web pages.

The sample plug-in demonstrates how to integrate custom plug-ins into the Web Crawler. The Endeca
Web Crawler APIs contain sample code and documentation to help you create your own plug-ins.

All plug-ins (including the default plug-ins and user-created plug-ins) reside in the
CAS/version/lib/web-crawler/plugins directory. Each individual plug-in directory contains
one or more JAR files and a plug-in descriptor file (named plugin.xml).

How the Web Crawler processes URLs

Knowing how the Web Crawler processes URLs helps you understand where a new plug-in fits in,
because the URL processing is accomplished by a series of plug-ins.

Each URL is processed by a thread in the following manner:

60

Running the Sample Web Crawler Plug-in | About the Web Crawler plug-in framework

Fetch -

Cantent URL

Y

In-crawl Auth

¥

Parse

Parse

) J

Parse Filter(s)

Y

Generate

Record

A

Y

Output
Record

The processing flow is as follows:

. The scheduler determines which URL should be fetched (this step is not shown in the diagram).
. Fetch: A Protocol plug-in (such as the protocol-httpclient plug-in) fetches the bytes for

a URL and places them in a Content object.

. In-crawl Auth: An Authenticator plug-in can determine whether form-based authentication is

required. If so, a specific login URL can be fetched, as shown in the diagram.

. Parse: A Parse plug-in parses the content (the Content object) and generates a Parse object. It

also extracts outlinks. For example, the parse-html plug-in uses the Neko library to extract the
DOM representation of a HTML page.

. Filter: ParseFi Iter plug-ins do additional processing on raw and parsed content, because these

plug-ins have access to both the Content and Parse objects from a particular page. For example,
the endeca-xpath-filter plug-in (if activated) uses XPath expressions to prune documents.

. Generate: A record is generated and written to the record output file. In addition, any outlinks are

queued by the scheduler to be fetched.

In the processing flow, the sample htmImetatags plug-in would be part of step 5, because it does
additional processing of the parsed content.

Endeca Content Acquisition System Web Crawler Guide

Running the Sample Web Crawler Plug-in | About the sample custom filter plug-in 61

About the sample custom filter plug-in

Custom filters (ParseFi I'ter) implement content extensions. These filters can examine the contents
of a page (either the raw page contents or the parsed DOM) and add additional properties to records
that are produced.

These properties can augment records with additional information beyond generic HTML document
properties (such as content size, encoding, and title).

The HTMLMetatagFilter plug-in illustrates how to add a custom plug-in to the Web Crawler. It is located
in CAS\version\sample\custom-web-crawler-plugin.

By default, the Web Crawler does not return HTTP meta tags in the record output. The sample plug-in
extends the default parsing of HTML documents by adding property values (i.e., HTML meta tags) to
the Endeca records that the Web Crawler generates. These HTML meta tags include such data as
keywords, descriptions, authors, and so on.

For example, an HTML page can have these meta tags:

<html>

<head>

<title>XYZ: The Worldwide Leader In Sports</title>

<meta name="‘description’ CONTENT='XYZ.com provides sports coverage." />
<meta name="keywords' CONTENT="XYZ.com, sports scores, sports news' />
<meta name="'robots"™ content="index, follow" />

<meta name="'googlebot” content="index, follow" />

</head>

<body>

</body>

</html>

The HTMLMetatagFilter plug-in can add the properties to the Parse class's metadata object. These
metadata properties are added to the Endeca record. For example:

<PROP NAME="Endeca.Document.HTML.MetaTag.description'>
<PVAL>XYX.com provides sports coverage.</PVAL>

</PROP>

<PROP NAME="Endeca.Document.HTML.MetaTag.keywords'>
<PVAL>XYX.com, sports scores, sports news.</PVAL>
</PROP>

Adding a custom plug-in to the Endeca Web Crawler

This topic offers an overview of how to add your custom plug-in to the Endeca Web Crawler.

To add a custom plug-in to the Endeca Web Crawler:

Open Eclipse and load your custom plug-in project.
Use Eclipse to write the Java code for your new class.
Create the plugin.xml file for the new plug-in.

Build the JAR file for your new plug-in.

Create a directory for the plug-in (containing the JAR file and plugin.xml) and copy it to the
CAS/version/lib/web-crawler/plugins directory.

o DN~

Endeca Content Acquisition System Web Crawler Guide

62 Running the Sample Web Crawler Plug-in | Opening the sample plug-in project

6. Activate the plug-in by adding the plug-in ID to the plugins. include property in the site.xml
configuration file.

7. Run the Web Crawler and verify that record output contains the new properties that the plug-in
added.

See following topics for more detailed explanations of the above steps.

Opening the sample plug-in project

For the purpose of this sample, you load the sample parse filter plug-in project. If you were creating
your own plug-in, you would create your own Eclipse project.

To open the sample plug-in project:

1. Start Eclipse.
2. Import the sample plug-in project from the custom-web-crawler-plugin directory:
a) Open the File menu.
b) Click Import.
c) Expand the General folder.
d) Select Existing Projects into Workspace and click Next.
e) Click Browse and navigate to CAS\version\sample\custom-web-crawler-plugin.
f) Click Ok
g) Check Copy projects into workspace then click Finish.

Under the Filter-htmlmetatags project, note the src\ java directory that contains the com.en-
deca. itl _web.parse package and the source file.

Overview of the sample HTMLMetatagFilter plug-in

For the purpose of this sample, we use the source for the HTMLMetatagFi Iter class that is in the
HTMLMetatagFi lter . java source file (in the
CAS/version/sample/custom-web-crawler-plugin/src directory). If you were writing your
own plug-in, you would write the code for your custom plug-in.

This source file can be used as a template for your custom plug-in package.
package com.endeca.itl.web.parse;

import java.util _Map;
import java.util_Properties;

import org.apache.hadoop.conf.Configuration;
import org.apache.nutch.parse.HTMLMetaTags;
import org.apache.nutch.parse.Parse;

import org.apache.nutch._parse.ParseData;
import org.apache._nutch.parse.ParseFilter;
import org.apache.nutch.protocol.Content;

public class HTMLMetatagFilter implements ParseFilter {

public static String METATAG_PROPERTY_NAME_PREFIX = 'Endeca.Docu-
ment.HTML .MetaTag."";

Endeca Content Acquisition System Web Crawler Guide

}

Running the Sample Web Crawler Plug-in | Overview of the sample HTMLMetatagFilter plug-in 63

public Parse filter(Content content, Parse parse) throws Exception {
parse.getData() -getParseMeta() .add(""FILTER-HTMLMETATAG", "ACTIVE™);

ParseData parseData = parse.getData();
if (parseData == null) return parse;

HTMLMetaTags tags = parse.getData().getMetaTag();
if (tags == null) return parse;

Properties tagProperties = tags.getGeneralTags();
for (Map.Entry<Object,Object> entry : tagProperties.entrySet()) {
parse.getData() -getParseMeta() .add(METATAG_PROPERTY_NAME_PREFIX

+ (String)entry.getkey(), (String)entry.getValue());
}

return parse;

}

public Configuration getConf() {
return null;
}

public void setConf(Configuration conf) {
}

The code works as follows:

1.

The Metadata.add() method adds a metadata name/value mapping to the Parse object (the
name is FILTER-HTMLMETATAG and value is ACTIVE). You can leave in this line in the code when
you first run the custom parse-filter plug-in, to verify that the objects are being updated. After you
are satisfied that the plug-in is running correctly, you can remove the line from the code.

parse.getData() -getParseMeta() .add(""FILTER-HTMLMETATAG",
“"ACTIVE™);

. The Parse.getData() method returns a ParseData object, which contains data extracted from

a page’s content. Because plug-ins should be programmed in a defensive manner, the object is
checked to make sure that it is not null before proceeding.

ParseData parseData = parse.getData();
ifT (parseData == null) return parse;

The ParseData.getMetaTag() method returns an HTMLMetaTags object, which holds the
information about HTML meta tags extracted from a page. Note that this method has been added
by Endeca, and is therefore not part of the original Nutch API. The object is then checked to ensure
that it contains data.

HTMLMetaTags tags = parse.getData().getMetaTag();
if (tags == null) return parse;

. The HTMLMetaTags -getGeneralTags() method returns a Properties object containing all

of the properties.
Properties tagProperties = tags.getGeneralTags();

Endeca Content Acquisition System Web Crawler Guide

64 Running the Sample Web Crawler Plug-in | Overview of the plugin.xml file

5. lterate through the properties. For each name/value pair, add a new entry to the Parse’s Metadata
object (accessed via the ParseData . getParseMeta() method). The MetaData.add() method
actually adds the metadata name/value mapping.

for (Map.Entry<Object,Object> entry : tagProperties.entrySet()) {
parse.getData() -getParseMeta() .add(METATAG_PROPERTY_ NAME_PREFIX

+ (String)entry.getkKey(), (String)entry.getValue());

}

When the class finishes, it returns the modified Parse object.

Overview of the plugin.xml file

The plugin.xml file describes the plug-in to the Web Crawler. The file resides in the plug-in directory
along with the JAR file.

The following is the plugin.xml file that is included with the HTMLMetatagFi I ter project:

<?xml version="1.0" encoding="UTF-8"7?>
<plugin

id="filter-htmlmetatags"

name="""

version="1.0"
provider-name="com.endeca. itl._.web">
<runtime>

<library name="filter-htmlmetatags.jar">
<export name="*"/>

</library>

</runtime>

<requires>

<import plugin="nutch-extensionpoints'/>
</requires>

<extension i1d=""com.endeca.itl.web.parse.HTMLMetatagFilter"
name=""HTML Metatag filter"
point="org.apache._.nutch.parse.ParseFilter'>
<implementation id="filter-htmlmetatags"
class=""com.endeca. itl.web.parse.HTMLMetatagFilter'>
</implementation>

</extension>

</plugin>

The file defines the name of the JAR (Fi lter-htmlmetatags. jar), the name of the extension
point (ParseFilter), and the name of the implementing class (HTMLMetatagFi Iter). It also sets
the ID of the plug-in (with the <plugin id> attribute); you set this ID in the configuration file, as
shown later.

Building the sample plug-in

For the purpose of this sample, use Eclipse to build a JAR of the sample Web Crawler parse plug-in.

To build the sample plug-in JAR file in Eclipse:

1. Right-click on the source file and select Export.
2. Select Java > JAR file and click Next.

Endeca Content Acquisition System Web Crawler Guide

Running the Sample Web Crawler Plug-in | Adding the plug-in to the CAS lib directory 65

3. In the JAR File Specification dialog:
a) Select the resources to export (the com.endeca.itl.web.parse package).
b) Ifitis not already checked, select Export generated class files and resources.
c) Select an export destination.
d) Select Compress the contents of the JAR file.
e) Click Next when you are satisfied with the specification.

4. Select any other JAR Packaging Options that you want and click Finish.

The next step is to copy the files to the proper locations in the CAS directory.

Adding the plug-in to the CAS lib directory

After you build the Jar for your custom plug-in, create a directory for the plug-in and copy this to the
Web Crawler's plug-in directory.

To add your plug-in to the CAS lib directory:

1. Create a directory of the same name that is specified in the plugin id elementinthe plugin.xml
file. For example, the sample plug-in uses Fi lter-htmlmetatags as the name of the directory.

2. Copy the Jar and the plugin.xml file into the directory.
3. Copy the directory to the CAS\version\lib\web-crawler\plugins directory.

The next step is to activate the plug-in for the Web Crawler.

Activating the plug-in for the Web Crawler

Oracle recommends that you modify the crawl-specific site.xml file, rather than the global
default.xml file (this is because the site . xml settings override the defaul t.xml global settings).

Use the following steps to activate the plug-in.

To activate the plug-in for the Web Crawler:

1. From default.xml (located in CAS\workspace\conf\web-crawler\default), copy the
plugin.includes and plugin.excludes properties to site.xml (located in
CAS\workspace\conf\web-crawler\polite-crawl or
CAS\workspace\conf\web-crawler\non-polite-crawl).

2. Add the plug-in ID to the plugin. includes property in the site.xml file, as shown in this
abbreviated example:

<property>
<name>plugin. includes</name>
<value>filter-htmlmetatags| ... | output-endeca-record</value>
<description>
Regular expression naming plugin directory names to include.
</description>

Endeca Content Acquisition System Web Crawler Guide

66 Running the Sample Web Crawler Plug-in | Running the Web Crawler with the new plug-in

</property>

&
77 Note: The value name (filter-htmlmetatags in this example) must refer to the plug-in
ID as set in the plug-in’s plugin.xml definition file.

3. Check both configuration files (defaul t.xml and site.xml) for the plugin.excludes property
and make certain that the plug-in ID is not excluded, as in the following example:
<property>
<name>plugin.excludes</name>
<value></value>
<description>
Regular expression naming plugin directory names to exclude.
</description>
</property>

4. Check the parse filtering order. If you are using the parser . fi lters.order configuration property
to specify the order by which parse filters are applied, make sure that you include the Filter-
htmlmetatags in the property value. If you are not using this property (i.e., it has an empty value),
you can leave the property as-is.

You can now run the Web Crawler with the new plug-in.

Running the Web Crawler with the new plug-in

After you activate the new plug-in, you can run new crawls exactly as before.

1. Run the Web Crawler.

2. Examine the record output to verify that returned records contain the new properties from the
plug-in.

Example of a record returned with new properties

In this example, the “description” and “keywords” meta tags are returned. A returned record with the
new Endeca.Document_HTML .MetaTag properties looks as follows:

<PROP NAME="Endeca.Document._HTML.MetaTag.description'>
<PVAL>XYX.com provides sports coverage.</PVAL>

</PROP>

<PROP NAME="Endeca.Document.HTML .MetaTag.keywords'>
<PVAL>XYX.com, sports scores, sports news.</PVAL>

</PROP>

Endeca Content Acquisition System Web Crawler Guide

Index

A

authenticated proxy properties, configuring 17
authentication schemes

Basic 16

Digest 17

Form-based 38

NTLM 17

overview of supported 15

B

Basic authentication, configuring 16
binary format for output file, specifying 31

Cc

CAS Document Conversion Module
configuration properties 30
compression for output file, configuring 31
configuration
authenticated proxy 17
authentication properties 15
cookie format 14
crawl scope properties 27
default.xml file 12
document conversion properties 30
fetcher properties 18
HTTP properties 13
logging 41
MIME type properties 21
number of threads 19
overview 11
parse plugins 37
parser filter properties 24
parsers 23
plugin properties 22
URL filter properties 26
URL normalization properties 20
XPath filter properties 25
cookies, format for 14
crawl database 47
crawl scoping
configuring 27
interaction with URL filters 26

credentials file for form-based authentication 38

D

default.xml file 12

depth of crawl, specifying 52
derby.log file 48

Digest authentication, configuring 17

domains to crawl, configuring 35
downloaded content, limiting size of 13

E

Endeca Document Conversion Module
flags for 43
properties generated by 57

Endeca record properties 56

Endeca sample crawl, running 10

Endeca Web Crawler
authentication schemes supported 15
configuration files 11
crawl database 47
flags for startup scripts 51
logging configuration file 41
overview 9
running crawls with the Record Store 44
running full crawls 53
running resumable crawls 54
specifying JVM arguments 52
workspace directory 52

excluding record properties from crawls 32

F

fetcher properties, configuring 18
flags for startup script 51
Form-based authentication, configuring 38
full crawls
about 47
running 53

G

generated record properties 56

H

HTML parsers, configuring 23
HTTP properties, configuring 13

interrupted crawls, resuming 52

J

JVM arguments for crawls, specifying 52

Index

L

limiting the number of requests 52
log summaries, configuring interval for 31
log4j.properties default file 41
loggers
changing logging levels 42
sending output to a file 41

magic resolution for MIME type detection 21
MIME types

configuring properties 21

parse plugins for 37

N

NekoHTML parser 24

network timeout, setting 13

NTLM authentication, configuring 17
number of requests for a crawl, maximum 52

(o)

output records file
compressing 31
naming format 49
setting name 31
specifying file type 31

P

page retries, configuring 19
plugins
configuring properties 22
mapping parser 37
URL filter 26
proxy hosts, using 18
proxy, authenticated 17
pruning documents 25

R

record properties
excluding 32
generated during crawls 56

68

resumable crawls
about 47
running 54
script flag for 52
robots.txt, ignoring or obeying 14
running crawls
authentication 15
full 53
JVM arguments for 52
maximum number of requests 52
output filename 49
resumable 54
resuming 52
seed for 52
specifying depth 52
running Web crawls with the Record Store 44

S

sample crawl, Endeca 10
seed for crawl, specifying 52

T

TagSoup HTML parser 24
threads, configuring number of 19

U

URL filters

applying to seed list 26

configuring properties for 26

specifying inclusion and exclusion expressions 34
URL normalization

applying to seed list 21

configuring properties 20

specifying substitutions with regular expressions 36

w

Web crawls with the Record Store 44
workspace directory, specifying 52

X

XHTML content, extracting 32
XML format for output file, specifying 31
XPath filter properties, configuring 25

Endeca Content Acquisition System

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction
	Web Crawler Overview
	Running the Endeca sample Web crawl

	Configuration
	Configuration files
	The default.xml file
	HTTP Properties
	About setting the HTTPClient cookies
	About obeying the robots.txt file
	Setting the download content limit

	Authentication properties
	About configuring Basic authentication
	About configuring Digest authentication
	About configuring NTLM authentication
	Configuring Form-based authentication

	Properties for authenticated proxy support
	Fetcher properties
	Use of the max delay and crawl-delay values
	Fetcher overrides in the site.xml files

	URL normalization properties
	Types of URL normalizers
	Normalizing the seed list

	MIME type properties
	Overriding the server text/html MIME type

	Plugin properties
	Default activated plugins
	Specifying the plugins directory

	Parser properties
	Parser filter properties
	Setting the order of parser filters
	About defining the XPath filter expressions

	URL filter properties
	Setting the order of URL filters
	Filtering the seed list

	Crawl scoping properties
	About configuring crawl scoping
	How domain names are retrieved from URLs
	Default top-level domain names

	Document conversion properties
	Output properties
	Gathering XHTML information
	Excluding record properties
	Extensions for additional binary output files
	Output file overrides in site.xml files

	The site.xml file
	The crawl-urlfilter.txt file
	Regular expression format
	Specifying the hosts to accept
	Order of the regular expressions
	Excluding file formats

	The regex-normalize.xml file
	The mime-types.xml file
	The parse-plugins.xml file
	The form-credentials.xml file
	About Form-based authentication
	Format of the credentials file
	Setting the timeout property
	Using special characters in the credentials file
	Authentication Exceptions

	The log4j.properties file
	Enabling the CAS Document Conversion Module with the Web Crawler
	Disabling the CAS Document Conversion Module with the Web Crawler
	About Document Conversion options
	Setting document conversion options

	Configuring Web crawls to write output to a Record Store instance

	Supported crawl types
	About full crawls
	About resumable crawls
	About workspace directories and output files

	Running the Endeca Web Crawler
	Command-line flags for crawls
	Running full crawls
	Running resumable crawls
	Record properties generated by a crawl

	Running the Sample Web Crawler Plug-in
	About the Web Crawler plug-in framework
	How the Web Crawler processes URLs

	About the sample custom filter plug-in
	Adding a custom plug-in to the Endeca Web Crawler
	Opening the sample plug-in project
	Overview of the sample HTMLMetatagFilter plug-in
	Overview of the plugin.xml file
	Building the sample plug-in
	Adding the plug-in to the CAS lib directory
	Activating the plug-in for the Web Crawler
	Running the Web Crawler with the new plug-in

	Index

